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Abstract 

There are many diseases caused by genes such as cystic fibrosis , hereditary spherocy­

tosis and duchenne muscular dystrophy. Identifying the actual disease- causing genes 

is important since it may help prevent or avoid genetic disorder. Finding out which 

genes contribute to diseases is also helpful for understanding why some individuals are 

more inclined to have physical diseases than others. To do this, we should determine 

regions of chromosomes that are likely to contain the particular genes responsible for 

a given human disease. Genetic linkage analysis is developed as a statistical method 

that allows us to determine these regions of chromosomes. 

Geneticists use pedigrees because they offer many advantages for genetic mapping 

regardless of the incidence of the genetic disease. One of this advantages is that 

study of pedigrees is quite powerful if the disease is rare, nevertheless there are many 

other aspects, like genetic homogeneity, the patterns of transmission, etc. These 

advantages make the study of pedigrees attractive. However, utilizing such pedigrees 

in genetic analysis is a computationally challenging task. Time complexity of some 

algorithms for genetic analysis is expone~tial in the size of the pedigree. Therefore, 

it is desirable to find a potentialy optimal subpedigree that connects the individuals 

with the disorder. The aim of this thesis is to study the methods of finding optimal 

subpedigrees conditional on the observed data in a large pedigree. 

In chapter 1, we first provide background of finding optimal subpedigrees in a 

large original pedigree problem, in particular, one method to find such subpedigrees 

that uses graph theory techniques. Then, we introduce some terminologies in graph 
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theory related to the Steiner tree problem. At the end of this chapter, some basic 

ideas about statistical genetics are provided. 

Chapter 2 concentrates on the description of constructing subpedigrees in a large 

pedigree based on the Steiner tree problem in graph theory. Two pieces of software, 

PedHunter and Miniped, that use the Steiner tree algorithm in constructing optimal 

subpedigrees are introduced. The study in this chapter also enables us to consider 

the most likely descent trees conditional on the observed data. 

Chapter 3 is devoted to the study of algorithms for finding the most likely descent 

trees. We first present an algorithm to find the probability of every edge in all possible 

descent trees, and then reformulate this problem into a directed Steiner tree problem 

in graph theory. Furthermore, we provide an approximation algorithm to solve this 

directed Steiner tree problem. 

The final chapter summarizes the results in this thesis and points out some prob­

lems for future study. 
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Chapter 1 

Introduction 

Variation of human physical traits (such as hair curl, tongue rolling and hitch- hiker's 

thumb) and diseases (such as cystic fibrosis, Huntington's disease and neurofibro­

matosis type-1) is now viewed as having some genetic influences. However, in most 

human inherited diseases, the gene or genes responsible for the disease as well as their 

locations remain unknown. 

Searching for the particular genes responsible for some given disease is a critical 

step in the understanding oL ge11.etic.dise e Tr-aditional-l-y fim:ling-a disease gene 

starts with linkage analysis. Genetic linkage analysis is a useful statistical method 

that is used to map disease genes and associate functionality of genes with their 

location on the chromosome. More specifically, the goal of linkage analysis is to find 

out the location of the gene relative to a genetic marker with known location, which 

has been genotyped in the nuclear family. 

If offspring obtain some disease passed from parents along with a specific genetic 

marker, then it can be concluded that the genes which are responsible for the disease 

are located close to the genetic marker on the chromosome. In this case, the normal 

allele and the disease allele can be distinguished by seeking the occurrence of the 

disease in a pedigree. Therefore, a pedigree plays an important role in linkage analysis. 

Linkage analysis of pedigree data is also a powerful technique to find a candidate 
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region of the genome, which is likely to contain the gene responsible for the particular 

trait or disease under investigation. On the other hand, pedigree data can be used to 

predict the recurrence risk of a disease in future generations. In summary, pedigree 

analysis allows a better understanding of the transmission of a gene or genes in a 

family. 

Successfully mapping the genes for complex traits requires large global population 

samples. If the populations in our study have better characteristics and their history 

can be established, we have more opportunities to design statistical strategies for 

mapping critical DNA regions. Isolated populations are such large global population 

samples. 

Population isolates have already been proved to be an important and powerful 

resource for locating genes. A population isolate is a subpopulation without genetic 

interchange from other surrounding subpopulations over many generations because 

of the geographical and/ or cultural isolation. Genetically, isolated populations pos­

sess many advantages for mapping inherited disorders. Foremost among these is the 

existence of multigenerational pedigrees including the affected individuals sharing an­

cestral haplotypes derived from a small number of founders. Here is a list of features 

of isolated populations versus outbred populations [44]: 

• Higher prevalence for some diseases 

• More inbreeding and opportunities to map recessive genes 

• More uniform genetic background 

• Better genealogical records 

• Easier to standardize phenotype definitions 

• Wider regions o.f linkage disequilibrium 

• Closer to Hardy Weinberg equilibrium 

• Less migration and more intact families 

• More homogeneous environment 

• Potentially more affected people 
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• More opportunities for replication 

• Higher participation rate in studies 

Although large extended human pedigrees from population isolates have great po­

tential for linkage analysis, utilizing such pedigrees is computationally challenging. 

Figure 1.1 shows a large human pedigree. The pedigree size limits applicability of cur­

rent linkage analysis software. For example, the Lander- Green-Kruglyak algorithm 

is frequently used for exact multipoint linkage analysis (see, e.g., [30, 32, 1, 20]). 

, However, computer programs implementing this algorithm can not handle exactly 

large pedigrees with complex structures. Time and space complexity can increase 

exponentially with the size of a pedigree. Therefore, investigators have to reduce the 

complexity of these pedigrees by trimming, breaking or splitting a large pedigree into 

smaller fragments for multipoint linkage analysis, haplotype reconstruction and IBD 

(identical by descent) computations. 

1.1 Related works 

Many algorithms of simplifying the pedigree structure to fit the genetic analysis have 

been proposed recently (see, e.g., [2, 51, 34, 43, 17]). Each simplified pedigree should 

contain all affected individuals and at least one common ancestor. 

1.1.1 Pedigree trimming 

Geneticists are often forced to simplify pedigrees by dropping "irrelevant" members 

automatically. The goal of the pedigree trimming problem is to trim the uninformative 

branches in a complicated pedigree. PowerTrim and Mendel are two programs for 

solving the pedigree trimming problem provided by Thornton and Haines [51] and 

Lange and Sinsheirner [34], respectively. 

Individuals or whole families satisfying the following conditions [51] are trimmed 
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Figure 1.1: An initial pedigree from a population isolate. Pedigree drawn using 

software package Pedfiddler version 0.5. 

4 
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from original pedigrees by PowerTrim. 

• Families consisting of only a parent and a child. 

• Individuals who have no parents and no children. 

• Individuals who are unaffected and ungenotyped. 

• Individuals who are ungenotyped, have no genotyped descendants, and have 

either an affected parent or an affected sibling. 

• Founder individuals who are unaffected and ungenotyped and have· only one 

child. 

• Individuals or groups of individuals within a family who are unconnected to the 

proband. 

Pedigree trimming algorithms potentially reduce the .time consumed in linkage 

analysis by decreasing pedigree size. 

1.1.2 P edigree breaking 

In 2001, Pankratz and Iturra [43] proposed a semiautomatic method to partition an 

entire pedigree into more manageable subunits. They used principles from factor 

analysis to split a large pedigree into discrete subgroups for fitting computational 

constraints. This method has been applied to the Genetic Analysis Workshop 12 

Hutterite pedigree. In this analysis, twelve pedigrees were used to perform a genome 

wide linkage scan for IgE serum level. The result of two point linkage analysis is 

that two marker loci D1S3723 (LOD = 3.7) and D1S534 (LOD = 3.58) on chromo­

some 1 have strong evidence for linkage. There is a maximum LOD score of 4.58 on 

chromosome 1 at 143 eM from multipoint linkage analysis. 

A number of other automatic algorithms for the pedigree splitting problem have 

recently been proposed to simplify linkage analysis (see [17, 3, 36, 29, 5]). 

One of the most efficient algorithms for the pedigree breaking problem was pro­

vided by Falchi et al. [17]. Their algorithm is based on the maximum-cliques parti­

tioning algorithm in graph theory. In what follows, we will introduce their ideas. 
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In a pedigree, every individual can be represented as a vertex in a graph. The 

edge between every two individuals is weighted by the pairwise measure of relatedness, 

such as their kinship coefficient or the number of meiotic steps separating them. This 

algorithm firstly creats a subgroup of related individuals or cliques using a maximum 

clique partitioning algorithm. Cliques of maximum size are iteratively searched and 

deleted from the graph until there are no more vertices left. Finally, they reconstruct 

pedigrees through keeping a small pedigree size in each clique. · In the automatic 

pedigree breaking algorithm, the size and the structure of subpedigrees depend on 

a number of prespecified parameters: the maximum number of generation, the min­

imum clique size, the minimum kinship level and the maximum allowed number of 

non- genotyped subjects. 

An earlier work for reducing the complexity of the pedigree was provided by Agar­

wala et al. [2]. They used the algorithm of the Steiner tree problem in graph theory to 

obtain a subpedigree to minimize calculation burden. However, the algorithm could 

not handle large pedigrees; Loschner et al. [37] discussed a faster algorithm to handle 

large pedigrees. In this thesis, we investigate a better algorithm considering more 

genetic information in observed data. 

1.2 Introduction to graph theory 

In this section, we present some definitions in graph theory and known results which 

are going to be used in the rest of this thesis (see, e.g., [14, 52]). We also provide a 

short introduction to complexity of computer algorithms in this section. 

1.2.1 Definitions, in graph theory 

Definition 1.2.1 A directed graph can be defined as a pair (V, E), where Vis a finite 

nonempty set of vertices, and E is a finite set of arcs. The elements of E are ordered 
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pairs of vertices. 

Definition 1.2.2 The order of a graph G = (V, E), denoted by n = IVL is the 

number of vertices and the size denoted by m = lEI, is the number of arcs. An arc 

e = (v, w) is said to be incident with vertices v and w, where v is the source and w is 

the target of arc e. 

In a directed graph, a vertex has two degrees. One degree is the number of arcs 

coming into the vertex and the other is the number of arcs going out of the vertex. 

Definition 1.2.3 The indegree of a vertex v in a directed graph G = (V, E) is the 

number of arcs in G whose target is v, that is indeg( v) = I { ( u, v) I ( u, v ) E E} I· 
The out degree of a vertex v is the number of arcs in G whose source is v, that is 

outdeg(v) = l{(v,w)l(v,w) E E}l. 

Walks and paths in a graph are alternating sequences of vertices and arcs are such 

that each arc in the sequence is preceded by its source and followed by its target. 

Definition 1.2.4 A walk from vertex vi to vertex vi in a directed graph is an alter-

nating sequence [vi, ei+17 vi+1, ei+2, . .. , Vj_1, ei, vi] of vertices and arcs in the graph 

such that ek = (vk_1 , vk) fork= i+l, ... ,j. A path is a walk with no repeated vertices 

and repeated arcs. The length of a path is the number of arcs in the sequence. A path 

from u to vertex v is a shortest path if it has minimum length of any path from u to 

v. 

Definition 1.2.5 A path [vi, ei+I. Vi+J, ei+2 , ... , Vj- 1 , ei, vi] is said to be closed if vi= 

vi. A cycle is a closed path of length at least one. 

An undirected graph is the particular case of a directed graph in which for every 

arc (u, v) of the graph, the reversed arc (v, u) also belongs to the graph. 

Definition 1.2.6 A graph G = (V, E) is undirected if the elements of E are un­

ordered pairs of vertices. Two vertices x, y of G are adjacent if xy is an edge of 
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G. If all the vertices of G are pairwise adjacent, then G is complete. If a subgraph 

G' = (V', E') ~ G and G' contains all the edges xy E E with x, y E V', then G' is an 

induced subgraph of G. 

Definition 1.2. 7 A clique in an undirected graph G = (V, E) is a subset of the vertex 

set C ~ V, such that the subgraph induced by C is complete. 

An important graph theoretical notion is the connected graph. 

Definition 1.2.8 An undirected graph G = (V, E) is connected if for every pair of 

vertices v , w E E , there is a path between v and w . 

Definition 1.2.9 A directed graph is connected if the underlying undirected graph is 

connected. 

Definition 1.2.10 A connected directed graph G = (V, E) is said to be a tree if the 

underlying undirected graph has no cycles and there is a distinguished vertex r E V, 

called the root of the tree, such that for all vertices v E V, there is a path in G from 

the root r to vertex v . 

Theorem 1.2.1 IfT is a tree of order n , then T has n- 1 edges. 

The clique partition problem is defined as follows: Let G be a graph. A set 

S = {G1 , G2 , ... , Gk}, k 2:: 1 of subgraphs of G is called a covering of G if E(G) = 

Uf=1E(Gi)· If each element of Sis a clique, then Sis called a clique cover of G. Clique 

partition is a clique coverS in which each edge belongs to exactly one member of S. 

The clique partition problem asks whether a given graph G has a clique partition of 

size at most k. 

The Steiner tree problem in undirected graph is defined as follows: Given a undi­

rected graph G = (V, E) with a cost function con the edges, and a subset of vertices 

X ~ V (called terminals), the goal is to find a minimum cost tree that includes all 
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vertices in X. The cost of the tree is defined as the sum of the costs of the edges in 

the tree. 

The Steiner tree problem is one of most well known combinatorial optimization 

problems. It was studied in various applications, including very large-scale inte­

gration designs, optical and wireless communication networks and phylogenetic tree 

reconstruction in biology. A network routing problem is an application of the Steiner 

tree problem in network design. In this problem, a communication server has to dis­

tribute the same data from a central server to several nodes in a network by selecting 

a minimum cost se.t of edges that connect the server to all nodes. 

The Steiner tree problem has also been applied to reconstruct phylogenetic trees in 

biology. A phylogeny is a tree representing the evolutionary history. Reconstruction 

of a phylogenetic tree for a given set of species using protein sequences is a central 

problem in phylogeny. Each vertex of a phylogenetic tree represents a protein sequence 

for identifying the species. The protein sequence is identified with a vector from Am 

(A is a finite alphabet) . Edges represent mutations obtained from one sequence to 

another. Then, we have a graph G = (Am, E , c) where the cost function c is the 

Hamming distance between two sequences. The reconstruction of a phylogenetic tree 

aims to find a Steiner tree in G, where the set of given species corresponds to the set 

of terminals in the Steiner tree problem. 

The directed version of the Steiner tree problem is defined as follows: Given a 

directed weighted graph G = (V, A), a specified root r E V, and a set of terminals 

X ~ V (lXI = k), the objective is to find the minimum cost tree which is rooted at r 

and spans all the vertices in X (in other words, r should have a path to every vertex 

in X) . 

The all shortest paths Steiner tree is a Steiner tree on the all shortest paths graph 

with respect to a root r and a terminal set X, where the all shortest paths graph is 

a subgraph consisting only of those vertices and edges which from the shortest paths 

connecting r with elements of X. 
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1.2.2 Complexity of algorithms 

The complexity of algorithms is a way to measure the quality of algorithms. It 

is used to compare different algorithms for solving the same problem. Complexity 

theory studies an algorithm's time and memory space as a function of the size of the 

input data (see, e.g., [25, 54]). 

In computer science, time complexity of an algorithm quantifies the amount of 
. ' 

time by an algorithm to run as a function of the size of the input to the problem. 

Space complexity is defined as memory space with respect to the size of the input 

data that this algorithm needs to store during its execution. The complexity of an 

algorithm is commonly expressed using the big 0 notation, meaning that if there 

are two functions f(n), g(n) and a constant c > 0 such that f(n) ::; cg(n) for all 

sufficiently large n, then f(n) = O(g(n)). 

Note that it is common practice to measure the complexity of the worst possible 

case for a given size of the input data. Therefore, we can see that most of algorithms 

work very quickly in practice although these algorithms have exponential complexity. 

An algorithm is said to be polynomial time if its running time is upper bounded 

by a polynomial in the size of the input data for the algorithm. From a practical 

point of view, the polynomial algorithms have proved to be the most useful. If we 

have found a polynomial algorithm for a problem, we can say that this problem was 

well solved. Unfortunately, there is a very large class of problems which admits no 

known polynomial algorithm. Moreover, there are good reasons to believe that such a 

polynomial algorithm does not exist. We call that this class of problems NP- complete. 

Most problems arising in practice have a tendency to be NP-complete. 

A decision problem is a question whose solution is either 'yes' or 'no'. For example, 

the problem "given two numbers x .and y, does x evenly divide y?" is a decision 

problem. The answer can be either 'yes' or 'no'. We denote the class of all polynomial 

decision problems by P and the class of decision problems for which a 'yes' answer 

can be verified in polynomial time by NP. In fact , the question whether P = NP is an 
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outstanding question of complexity theory [18]. This problem has been recognized as 

one of the top three mathematical problems in the 21st century. It is also one of the 

most important open questions in computer science. 

The complexity class NP- complete is a class of problems having two properties: 

1. NP- complete problem is in NP. 

2. If the problem can be solved in polynomial time, then so can every problem in 

NP. 

We can see that if we could find a polynomial algorithm for such a NP- complete 

problem, we would prove P = NP. 

The Steiner tree problem is NP- complete [19] which means unless P=NP there 

can not exist a polynomial time approximation scheme for the Steiner tree problem. 

For NP-complete problems, computer scientists do not try to solve these problems 

exactly, instead, the problems are often addressed by using approximation algorithms. 

Approximation algorithms are algorithms used to find approximate solutions to op­

timization problems. An algorithm is called a polynomial time a- approximation 

algorithm for a NP- complete problem if given any instant I of the problem, this 

algorithm can give a solution with cost c(I) ~ O:Copt(I), where Copt(!) is the cost of 

an optimal solution of I, and the running time of this algorithm is bounded by a 

polynomial in the size of the input J . 

There exist many approximation algorithms for the Steiner tree problem, some of 

them are listed in Table 1.1. 

For the directed Steiner tree problem, a polynomial time approximation algorithm 

for an acyclic graph is due to Zelikovsky [58]. He gave an approximation algorithm 

with an approximation ratio of (2+lnk)i- Ikl /i for any i. Charikar et al. [11] presented 

a better approximation ratio i(i- l)k112 algorithm which runs in time O(nik2i) for 

any i > 0, where k is the number of terminals. 
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Year Approximation ratios References 

1980 2 Takahash and Matsuyama [48] 

1993 1.833 Zelikovsky [56] 

1994 1.746 Berman and Ramaiyer [6] 

1997 1.734 Borchers and Du [7] 

1996 1.693 Zelikovsky [57] 

1997 1.666 Promel and Steger [45] 

1997 1.644 Karpinski and Zelikovsky [27] 

1999 1.598 Hougardy and Promel [23] 

2005 1.55 Robins and Zelikovsky [46] 

Table 1.1: Some algorithms for Steiner tree problem [15]. 

1.3 Necessary background in statistical genetics 

Statistical analysis is used in many fields of genetic research. Many statistical and 

computational tools are developed to study genetics and molecular biology. In this 

section, we briefly introduce some elementary results from population genetics dis­

cussed in more detail in the references [10, 12, 16]. 

1.3.1 Preliminaries of statistical genetics 

There are 46 chromosomes, comprised of 23 pairs in the nucleus of each normal human 

cell. Two of these are sex chromosomes- two paired Xs for a female and an X and 

a Y for a male. The remaining 22 homologous pairs of chromosomes are termed 

autosomes. 

Each human chromosome has a short arm and long arm separated by a centromere. 

The ends of the chromosome are called telomeres. Each chromosome arm is divided 

into regions, or cytogenetic bands, that can be seen using a microscope and special 

stains. The cytogenetic bands are labeled p1, p2, q1, q2, etc., counting from the 
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centromere out toward the telomeres. At higher resolutions, sub-bands can be seen 

within the bands. The sub-bands are also numbered from the centromere out toward 

the telomere. For instance, the cytogenetic map location of a gene termed cystic 

fibrosis transmembrane conductance regulator (CFTR)(see, e.g., [41, 28]) is 7q31.2, 

which indicates that it is on chromosome 7, q arm, band 3, sub-band 1, and sub­

sub-band 2 (Figure 1.2). 

short arm p 

long arm q 

region II 3 

Example gene: 
CFTR 

1 Chromosomal location: 
7q31.2 

bond # 1 
~ sub-bond # 2 

Figure 1.2: The location of the gene CFTR. Source: 

http: / / ghr.nlm.nih.gov /handbook/illustrations/ chromosomallocation 

Any small segment of the DNA of the chromosome is known as a locus. Each 

locus can be occupied by one of several variants called alleles. Except for the sex 

chromosomes in males, it follows that there are two alleles at every locus. If one 

locus is related to a functional gene, the observable characteristic of the individual 

is the phenotype. For instance, a phenotype can be binary (affected or nonaffected) 

or quantitative (such as height or weight) . A genotype consists of the pair of alleles 

found at a given locus, one inherited from the father and one from the mother. For 
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example, the DNA which codes for the antigens that determine an individual's ABO 

blood type resides on the long arm of chromosome 9. There are three alleles, A, B, 

and 0. The genotype sets corresponding to these three alleles are AA, AO, BB, BO, 

00, and AB. 

Genotypes for which the two alleles are different, such as AO, BOor ABare known 

as heterozygous genotypes. If the two alleles are the same, such as AA, BB or 00 

in an individual, the individual is called homozygous at this locus. The phenotype A 

results from either the heterozygous genotype AO or the homozygous genotype AA; 

similarly, phenotype B results from either BO or BB. Alleles A and B both mask 

the presence of the 0 allele and are said to be dominant to it. Alternatively, 0 is 

recessive to A and B. Relative to one another, alleles A and B are codominant. 

A gamete's sequence of alleles along a chromosome constitutes a haplotype. For 

example, the first locus contains alleles A and a with three possible genotypes AA, 

Aa, and aa; the second locus containing alleles B and b again gives three possible 

genotypes BB, Bb, and bb. Therefore, for a given individual, there are nine possible 

configurations for the genotypes at these two loci, as shown in the Table 1.2 below, 

which shows the possible haplotypes that an individual may carry. 

AA A a a a 

BB AB/AB AB/aB aB/aB 

Bb AB/Ab AB/ab or Ab/aB aB/ab 

bb Ab/Ab Ab/ab ab/ab 

Table 1.2: Ten possible diplotypes. 

When a parent transmits a chromosome to a child, the phenomenon of recom­

bination can often be observed, meaning that the chromosome differs from both of 

the corresponding homologous parental chromosomes. For example, consider two loci 

on the same chromosome, there are alleles A, a at the first locus and B, b at the 
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second one. Suppose an individual has inherited a haplotype AB from the father and 

ab from the mother. A gamete receiving a haplotype Ab during the meiosis is said 

to be recombinant, meaning that the two alleles come from different parents. The 

haplotype aB is also recombinant while AB and ab are non- recombinant. 

Genetic loci which are physically close to one another on the chromosome tend to 

be transmitted together when passed on to offspring. Genes inherited in this way are 

said to be linked. For example, the genes in fruit flies affecting eye color and wing 

length are inherited together because they appear on the same chromosome. The 

recombination fraction ()is the probability that two loci become recombinant during 

meiosis. The recombination fraction is a measure of genetic linkage and is used in the 

creation of a genetic linkage map. Two loci are called linked when() < 0.5. Most loci 

on different chromosomes are unlinked, meaning that () = 0.5, and their segregation 

may be associated only if one modulates the transmission of the other. 

Recombination or linkage study is critical for identifying the location of genes 

that cause genetic diseases. A marker is simply a place on a chromosome with an 

identifiable physical location on a chromosome whose inheritance can be followed. 

Markers are often used as tools for tracking the inheritance pattern of a gene that 

has not yet been identified but whose approximate location is known. If some disease 

is often transmitted to offspring along with specific marker alleles, then it would be 

possible to conclude that the genes are responsible for the disease. 

The statistical estimate of whether two loci are likely to lie near each other on a 

chromosome and are therefore likely to be inherited together is called a LOD score. 

The LOD score is just a function of the likelihood ratio statistic for the hypothesis 

H0 : () = 0.5 vs H1 : () :f= 0.5, or a close variant of it, as we will see later. A LOD 

score of three or more is generally taken to indicate that the two loci are linked and 

are close to one another. 

A centimorgan (eM) is a way of measuring the distance between genes on a chro­

mosome. One eM is equal to a 1% chance that recombination will occur between two 
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loci. 

Two genes G1 and G2 are identical by descent (IBD) if one is a physical copy of 

the other or if they are both physical copies of the same ancestral gene. 

A nuclear family is a family group consisting of two parents and their common 

offspring. 

1.3.2 Two point linkage analysis in experimental crosses 

Linkage analysis critically relies on a pedigree in which both recombinant and non­

recombinant gamete types can be counted. A segregating pedigree comprising an F2 

population, initiated with two contrasting inbred lines, has proven to be a powerful 

and efficient tool for linkage analysis. 

Here, we describe the two point linkage analysis for F2 population, initiated with 

two contrasting unrelated inbred lines. In this model, parents P1 and P2 are homol­

ogous for two alleles of each gene. They mated to generate F1 individuals. Thus, all 

F1 individuals are heterozygous at all genes. The F1 individuals crossed with each 

other to generate the F2 generation. A diagram illustrating this crossing procedure 

is illustrated in Figure 1.3. 

pl 

ABIAB 

Ft: AB/ab 

X 

~ 
X 

~ 

~ 

p2 

ab/ab 

AB/ab 

F 2: AAIBB, AA/Bb, AAibb, Ab/BB, Aa!Bb, Aa1bB, Aalbb,aa!BB, aa!Bb, aaibb 

Figure 1.3: Two point linkage analysis of markers. 

Consider two markers, A with two alleles A and a, and B, with two alleles B 
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and b. Parents P1 and P2 are homozygous for these two alleles. Parent H generates 

haplotype AB during meioses, whereas parent P2 generates haplotype ab. These two 

haplotypes are combined to form the heterozygous F1. Then F1 will generate four 

different gametes, AB, ab, Ab and aB. The recombination fraction between the two 

genes is denoted by B. Thus, the nonrecombinant type has the frequency of (1- fJ)/2 

and the recombinant type has the frequency of () /2. The observed numbers of these 

nine genotypes can be arrayed as 

AA A a aa 

BB n22 n12 no2 

Bb n21 nu n01 

bb n2o nlO noo 

The genotype frequencies for these two markers A and B can be arrayed as follows 

AA A a a a 

BB H1 - e)2 ~()(1 - fJ) He? 

Bb ~()(1 - fJ) ~[(1- ())2 + ()2] ~() (1 - ()) 

bb He)2 ~()(1 - ()) H1 - e)2 

where the AaBb cell includes two haplotypes Aa/Bb and Aa/bB, then we have 

missing data z, which are the number of the haplotype Aa/Bb. The missing data 

z "' binomial(n11 , r/2), where r is the expected number of recombinants for the 

genotype AaBb. 

0 X ! X (1- fJ) 2 + 2 X ! X ()2 
r(fJ) _ 2 2 

- ~ X (1 - ())2 + ~ X ()2 

2(}2 

The likelihood function in the complete data is 
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where n is the total number of all genotypes and r = (n22, ... 'noo). 

The estimation of 0 can be obtained by implementing the EM algorithm. Let z 

be the missing data and n, n22, . . . , n00 be the observed data. 

The log likelihood function becomes 

1 1 
log L(Oir, z) = (n22 + noo) log[4(1- 0)] + (n12 + n21 + no1 + nw) log[

2
0(1 - 0)] 

1 2 [1 2 + (no2 + n2o) log( 40 ) + (nu + z) log 2(1- 0) ] 

1 + z log( 
2
o2

) + constant. 

In theE step of the EM algorithm, we take the expectation of logL(Oir, z) con­

ditional on the observed data r and the current parameter Om. It is obvious that 

E(niilr, Om) = nii, i = 0, 1, 2 and j = 0, 1, 2. 

Let 

Q(OIOm) = E[logL(O!r, z) lr = y , Om]· 

TheM step of the EM algorithm maximizes the Q(OIOm) function by replacing z by 

Zm. Setting the first derivative 

Q(OIO ) = n22 + noo n12 + n21 + nm + nw 2(no2 + n20) 
m 0 - 1 + 1-28 + 0 

8(1-8) 

equals to 0 provides the unique stationary point of Q(OIOm)· The solution of the 

resulting equations is 
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1 
em= -[n12 + n21 +no!+ nw + 2(no2 + n2o) + 2zml· 

2n 

This procedure is repeated until the estimate converges to a stable value 0. 

19 

The MLE of e can be used to determine the degree of linkage between the two 

markers. If 0=0, then there is evidence that the two markers are completely linked, 

in other words, heterozygous F1 produces only nonrecombinant gametes. If 0=0.5, 
there is evidence that there is no linkage between the two markers, in other words, 

F1 produces both recombinant and nonrecombinant haplotypes in equal proportions. 

The hypotheses are: 

{ 

Ho: 0 = 0.5 

H1: e < o.5. 

The test statistic used to detect linkage is the LOD score given by 

LOD score of three or more is generally considered to indicate that two markers are 

close to each other on a chromosome. 

Two point linkage analysis in F2 population derived from two inbred lines were 

described above. However, this analysis based on inbred line is not appropriate for 

outbred species. Outbred populations have two significant characteristics that make 

their two point linkage analysis different from those in inbred line crossed. One 

characteristic is that the number of alleles and the inheritance mode of markers vary 

from locus to locus. The other characteristic is the uncertainty about linkage phases 

between different loci [55]. For more details about two point linkage analysis based 

on outbred line, we refer the readers to Lu et al. [39] and Maliepaard et al. [40]. 



Chapter 2 

Human pedigrees within large 

genealogies and the Steiner tree 

problem in graph theory 

2.1 Problem formulation 

A pedigree is a set of individuals together with a full specification of all the relationship 

between them [50]. By examining a pedigree, the mode of inheritance of the disorder 

can be interpreted that allows a better understanding of the transmission of genes. 

A form of this specification is to identify each individual's father and mother. 

Individuals without parents in a pedigree are founders; other individuals are non­

founders. Individuals in a pedigree without offspring are referred to as final individ­

uals. Pedigree members with offspring are spouses. 

A standard diagram representation of a pedigree is shown in Figure 2.1. The 

diagram of representation of a pedigree makes it easier to visualize relationships within 

families, particularly in large extended genealogies. A pedigree can be expressed by a 

directed graph [33] , such as in Figure 2.2( a) where the nodes denote pedigree members, 

and the arcs connect individuals to their offspring. A pedigree can also be expressed 
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by a marriage node graph [49], such as in Figure 2.2(b). Note that Figure 2.2(b) has 

two kinds of nodes, individual and marriage nodes and two kinds of arcs, connecting 

an individual to his marriages and connecting a marriage to the offspring of that 

marriage. 

2 

15 13 14 

16 

Figure 2.1: A standard diagram representation of a pedigree. The representa­

tions of a simple pedigree of 16 individuals. Females are represented 

by circles and males by squares. All members of one generation are 

shown in a row, with preceding generations above and later genera­

tions below. Individuals 1, 2, 3, 4, 5 and 6 are founders, while 15 and 

16 are final individuals. 

A graph representing a pedigree is called a pedigree graph. Any directed pedigree 

graph is a special graph having the following properties. 

Firstly, suppose G = (V, A) is a directed pedigree graph, then for any founder v 

in this pedigree graph, the indegree of v is indeg(v) = 0. For any vertex w that is 

not a final individual, the outdegree of w is outdeg(w) which equals to the number of 
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2 

3 

s 6 

s 

(a) 

2 

(b) 

Figure 2.2: In (a), a representation of a pedigree with nodes and directed edges 

(arcs) connecting individuals to their offspring and in (b), a marriage 

node graph with two kinds on nodes {individual and marriage) and 

two kinds of edges (connection between an individual and a marriage 

and connection between a marriage and offspring from the marriage). 

22 



2.1 Problem formulation 23 

children of the individual w. We know that each individual must have two and only 

two biological parents, although one or both of them may be unknown. Thus, for any 

vertex u that is not a founder, the indegree of u is indeg(u) = 2. 

Secondly, a directed path p from an individual v to another individual u in a 

pedigree graph gives one way that u inherits genetic material from v. If there exists 

no directed path from v to u, then there is no way that u can inherit genetic material 

from u, and v is not an ancestor of u. For example, in Figure 2.2 (b), individual 

15 does not receive genetic material directly from individual 8, although they have 

a common ancestor. In any directed pedigree graph, the edges are directed from a 

parent to a child, and it is biologically impossible to have a cycle in a directed pedigree 

graph. Hence, any directed pedigree graph is acyclic. 

Finally, if incest is forbidden, no individual may marry his own sister or brother, 

then there can be no subgraph in the pedigree graph given in Figure 2.3(a). Also, 

no individual may marry one of his parents, thus there is no subgraph of the type 

represented in Figure 2.3(b) in a pedigree graph (see also [24]). 

For a given set of people X, the set of least common ancestors of X is the set of 

people A such that any individual in A is an ancestor of every individual in X and 

no individual in A has a descendant who is also an ancestor of every individual in X, 

i.e., individuals in A have no descendance in A. 

Parsimony is the principle that the simplest explanation that can explain the data 

is to be preferred. This principle is widely used in phylogenetic reconstruction. By 

this principle, ancestral relationships can be reconstructed by minimizing the total 

number of evolutionary steps to explain the given data. 

Our problem is to find a subpedigree that simplifies the complexity of an original 

pedigree. Moreover, this subpedigree should retain most relevant features of the 

pedigree. By the principle of parsimony, two hypotheses can be considered. One is to 

minimize the number of meioses in our problem. The other is that a disease-causing 

allele passes from one individual u to another individual v in all shortest paths from 
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(a) (b) 

Figure 2.3: (a) Brother-sister mating and (b) Child-parent mating. 

u to v. 

When we consider the first hypothesis, our problem is equivalent to the Steiner 

tree problem in graph theory. In this situation, the given pedigree graph is a directed 

weighted graph. In the corresponding directed weighted graph, a specified root can 

be one of the nearest common ancestors. Moreover, the set of terminals can be the 

set of all affected individuals or the set of the parents of all those affected individuals. 

Hence, minimizing the number of meioses is equivalent to minimizing the number of 

edges in a pedigree graph. By Theorem 1.2.1, any tree with m edges must have exactly 

m + 1 vertices. Thus, the problem is to find a Steiner tree in a pedigree graph where 

all edges have a weight of 1. By this way, the obtained Steiner tree has a minimal size 

set of parent-child links with the fewest possible number of meioses. Furthermore, 

this Steiner tree also retains paths such that each affected child is potentially identical 

by descent for an allele from the least common ancestor. 
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When we consider the second hypothesis, we get an all shortest paths pedigree 

graph. Then we try to find a Steiner tree in this all shortest paths pedigree graph. 

The obtained all shortest paths Steiner tree guarantees that the disease-causing allele 

is passed from the least common ancestor to all affected individuals in a shortest path. 

This also can be seen as a dimension reduction strategy: first we find the all shortest 

paths (something that can be done efficiently) and, subsequently, find the Steiner 

trees on these all shortest paths sub pedigrees. The overall "optimal" tree is selected 

amongst these Steiner trees. 

Any of the Steiner trees or the all shortest paths Steiner tree represents a possible 

descent tree in which an allele is passed from one common ancestor to a given set of 

individuals. Moreover, this descent tree has a smaller number of individuals than the 

original pedigree. Hence, these subpedigrees simplify the complexity of the original 

pedigree and they are fit for linkage analysis. 

To complete this setion, we give an example by showing all shortest paths Steiner 

trees and minimal Steiner trees in a complex pedigree. In 2003, Lamont et al. [31] 

gave a complete pedigree (see Figure 2.4) to study the Bowen- Conradi syndrome 

(BCS). As you can see, it is a very complex pedigree. To simplify this pedigree for 

linkage analysis, the authors computed an all shortest paths pedigree with respect to 

the terminal set and extracted a minimal Steiner tree via Miniped. For illustrat ion, 

we adopt those results here. Figure 2.5 shows a minimal Steiner tree with respect to 

one least common ancestor, and Figure 2.6 shows an all shortest path Steiner tree of 

the same least common ancestor couple. 

2.2 PedHunter and Miniped 

In 1998, Agarwala et al. [2] developed software called PedHunter to analyze a complex 

pedigree based on the Steiner tree problem in graph theory. They applied a branch 
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Bowen-Conradi Syndrome: 29 families In R.B. Lowry et al., AJMG 2003 

Darlusleut Schmiedeleut Lehrerleut 

Figure 2.4: The complete pedigree for studying Bowen- Conradi syndrome. Af­

fected individual are shown in color by subdivision on leut (red = 

Dariusleut, blue= Schmiedeleut, green= Lehrerleut). Source: Lowry 

et al. (38]. 

26 
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Figure 2.5: A minimal Steiner tree of affected individuals for whom there was 

genotype data. Source: Lamont et al. [31]. 

u 0 
(;\ t"' 

Figure 2.6: An all shortest path Steiner tree. Yellow symbols indicate individuals 

who are not in the minimal Steiner tree (see Figure 2.5). Source: 

Lamont et al. [31]. 

27 
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and bound algorithm to obtain Steiner trees and all shortest paths Steiner trees from 

an original large pedigree graph. 

The branch and bound algorithm is by far the most widely used technique for 

finding optimal solutions of various combinatorial optimization problems. Initially, 

the algorithm searches a solution space to find an initial solution as the current 

best solution. Then, the solution space is split into two or more smaller sets whose 

union covers· the solution space. For each of the smaller sets, it is checked whether 

the smaller set consists of a solution, in which case it is compared to the current 

best solution. If there is no solution in the smaller set, the bounding function for 

the smaller set will be calculated and compared to the current best solution. The 

recursion stops when the current solution is at least as good as any other solution. 

In the worst case, computation time of the algorithm is exponent ial in the number of 

edges of the input pedigree graph. 

PedHunter has been applied to reduce the complexity of a pedigree graph for 

genetic analysis. We will illustrate some applications of PedHunter in the next section. 

In 2004, Loschner et al. [37] also developed a software package called Miniped for 

finding the Steiner trees and all shortest paths Steiner trees from an original large 

complex pedigree. Miniped provides a fast heuristic to obtain exact solutions on all 

shortest paths pedigrees as well as approximate Steiner trees on the entire pedigree 
!.1 

graph. The algorith'ffi used in Miniped requires a small number of branching of the 

searched trees, so it is able to handle larger and more complex input pedigrees than 

PedHunter in much shorter time. The upper bound of the algorithm in Miniped for 

finding all shortest paths Steiner trees is 0(21VI x lXI x lEI). Table 2.1 shows the 

comparison between some results from Miniped and those from PedHunter [37]. 
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All shortest paths Steiner tree 

lVI ISteineri Time M/P 

1 146 95 0/67 

2 101 78 0/0 

3 148 105 0/0 

4 141 86 0/0 

5 142 95 0/90 

6 135 80 0/12700 

7 160 86 0/n.a. 

8 153 86 0/13 

9 141 80 0/22700 

10 158 88 0/>1 day 

11 142 89 0/30800 

Table 2.1: Miniped versus PedHunter. Column 2 and 3 show the numbers of ver­

tices in the starting graph and the Steiner tree, respectively. Column 

4 shows the computation times with Miniped (M) versus PedHunter 

(P) in seconds. Source: Loschner et al. [37]. 

2.3 Applications of algorithms to reduce the com­

plexi!Y_ of pedigrees in linkage analysis 

To extract the full available information from both parametric and nonparametric 

linkage analysis, geneticists increase the number of loci and the number of alleles 

per locus. In this situation, the slow running times become more severe. Therefore, 

simplifying the pedigree is necessary so that linkage analysis computations can be 

carried out within a reasonable amount of time. In fact, simplifying the pedigree is a 

very efficient tool for linkage analysis. In this section, we will give some applications 

of algorithms to reduce the complexity of pedigrees in linkage analysis which also 
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serve as the motivation of this thesis. 

To study the disorder Amish microcephaly (MCPHA), Rosenberg et al. [47] found 

an all shortest paths subpedigree using the software PedHunter in the Amish Geneal­

ogy Database. They concluded that MCPHA must be associated with another genetic 

locus and localized the gene MCPHA to the region of 3 eM or 2Mb on chromosome 

17q25. In 2000, Johnston et al. [26] implemented linkage analysis of nemaline my­

opathies (NM) among the Old Order Amish. In their study, 33 nuclear families were 

connected, and all shortest paths Steiner pedigrees were obtained by PedHunter. 

They identified an "'2 eM interval on chromosome region 19q13.4 that was homozy­

gous in all affected individuals. They also found the Amish nemaline myopathy (the 

unique form of NM observed in the Old Order Amish) is inherited in an autosomal 

recessive pattern. 

2.3.1 Bowen-Conradi syndrome 

Bowen-Conradi syndrome is a very rare inherited lethal autosomal recessive disor­

der, and it is characterized by intrauterine growth retardation, severe psychomotor 

retardation, micrognathia, microcephaly, flexion contractures, rockerbottom feet and 

low birth weight. The average life span of the affected infants is 13 months. Most 

affected infants died early within the first 2 years of life. Those children who survived 

longer showed extreme growth failure in height, weight and head circumference. The 

frequency of BCS in the Hutterite population is estimated to be 1 in 355 live births 

[38]. 

The Hutterite population is a genetically isolated population living on the North 

American prairies since the late 1800s [22]. The Hutterites immigrated to South 

Dakota in 1870s and formed three different branches of Hutterites: the Schmiedeleut, 

the Lehrerleut, and the Dariusleut. Approximately 40,000 descendents are from 89 

founders [42]. About 28,000 Hutterites live in Canada and about 12,000 live in the 

USA. The Hutterite population provides advantages for identification of a number of 
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genes. Over 30 autosomal recessive genetic disorders were recognized in this popula­

tion. 

In 2005, Lamont et al. [31] studied the genetic mapping of the Bowen- Conradi 

syndrome (BCS) through extracting less complex pedigrees, such as all shortest paths 

Steiner pedigrees. In the study, 14 BCS patients in nine nuclear families were di­

agnosed. In order to estimate the marker allele frequencies and define a disease-­

associated haplotype, blood samples were collected from 42 individuals including all 

18 parents, eight BCS patients, one grandparent and 15 unaffected children. 

Genealogical relationships among the families were used to increase the informa­

tion for linkage analysis. From a genealogical database of over 38,000 individuals, a 

pedigree of 647 individuals was obtained. In order to do two point linkage analysis 

on chromosomes 12 and 16, 17 and 13 markers, respectively, these 11 nuclear families 

were genotyped for the genome--scan markers. 

However, a complex pedigree of 647 individuals was computationally intractable. 

Firstly, 16 least common ancestors were identified by PedHunter. Moreover, the 

pedigree containing the all shortest paths between the least common ancestors and 

the set of 22 parents were obtained. The result showed that there were 11 all shortest 

paths pedigrees that ranged from 196 to 279 individuals in size. In order to further 

reduce complexity, a minimal pedigree for the 11 all shortest paths pedigrees was 

obtained using PedHunter and Miniped, although, PedHunter was unable to handle 

the subpedigrees with more than 10 terminals. Figure 2.6 and Figure 2.5 show an all 

shortest path Steiner tree and a minimal Steiner tree for the same common ancestors, 

respectively. 

Linkage analysis of the minimal pedigrees gave significant evidence for linkage to 

three adjacent chromosome 12 markers (D12S374, D12S391, and GATA91H01) while 

there was no significant evidence for linkage to markers on chromosome 16. Table 2.2 

shows LOD scores at zero recombination between BCS locus and D12S391 for all the 

Steiner tree pedigrees and all shortest paths pedigrees. 
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At least common lVI of ASP lVI of ST LOD scores at the marker position 

ancestors pedigrees pedigrees D12S374 D12S391 GATA91H01 

A orB 263 199 2.27 4.15 2.75 

CorD 196 166 2.99 4.97 2.38 

E or F 246 171 3.35 4.44 1.93 

G or H 239 171 2.27 4.38 2.60 

I or J 272 185 2.58 4.85 3.14 

K 254 190 3.15 4.65 2.87 

L 276 189 2.47 4.71 3.28 

M 263 201 2.64 3.82 2.48 

N 279 220 2.81 3.27 3.43 

0 or P 261/277 183 2.63 4.63 2.23 

Table 2.2: LOD scores at the marker position for all the minimal Steiner tree 

pedigrees (ST pedigrees) and all shortest paths pedigrees (ASP pedi­

grees). JVI denotes the number of people in a pedigree. 

Lamont et al. [31] also reported the mapping of the BCS locus in the Hutterite 

population to a 3.5 eM segment in chromosome region 12p13.3, under the assumption 

that all Hutterite BCS patients were homozygous for the same mutation inherited 

from a common ancestor. 



Chapter 3 

Optimal descent trees conditional 

on the observed data 

In this chapter, we will develop a new algorithm to find an optimal subpedigree from 

a large genealogy. This new algorithm has an additional benefit in that it uses more 

information from the given data. The improvement allows us to use more information 

from those affected individuals. In contrast to PedHunter and Miniped, where all 

- edges have the same weights, the directed weighted graph in our algorithm has a 

different weight for each edge. Through assigning a different weight to each edge of 

a pedigree graph in our algorithm, we can get a more reasonable subpedigree using a 

Steiner tree algorithm. 

Our aim is to find an optimal subpedigree from an original large complex genealogy 

to reduce the complexity of algorithms for genetic analysis. However, two questions 

exist under this ~im: (1) How to determine which subpedigree from the solutions is 

best? (2) What is the standard for the best subpedigree used in genetic analysis? 

In practice, we do not know the paths of the disease-causing allele that flows 

down from an original carrier to the affected individuals. This implies that the actual 

tree in which the disease-causing allele passes down from a founder to the affected 

individuals is not known. Furthermore, in a large genealogy, such as the Old Order 
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Amish, Hutterites or Iceland, more than one common ancestor who qualifies very well 

as the original carrier can be found. Therefore, we may not even know which founder 

is the actual original carrier. 

In a pedigree graph, some. individuals and edges would be much more likely in 

the subpedigree than others. For example, if an edge has a much larger portion in 

all possible descent trees than another alternative edge, then it is certainly preferable 

in the subpedigree. In other words, it is more reasonable to choose a descent tree 

that contains the paths in which the disease-causing allele most likely passes from a 

common ancestor to the affected individuals. 

In order to find the most likely descent tree, we want to assign different weights 

to the edges in an original pedigree graph. Each edge is weighted by the probability 

of this edge being in all possible descent trees. Therefore, the probability of each 

descent tree is a product of its edge weights. A most likely descent tree is a tree that 

has a maximized probability over the set of all possible descent trees. Now, it is easy 

to show that this problem is equivalent to the following combinational optimization 

problem: 

Let f(r, X) denote the set of all descent trees with the root r and the terminal 

set X . Each edge e in the pedigree graph is assigned a weight w(e) E [0, 1]. We try 

to find an optimal tree r;;// such that 

Pr(T~{) = arg maxTEf(r,X) IT w(e). (3.1) 
eET 

In this combinational optimization problem, we will meet two problems. One is 

how to find the weight of every edge in an original pedigree graph. In other words, we 

should know how to calculate the probability of each edge in all the possible descent 

trees. The other problem is how to solve the optimization problem given the weight 

of each edge in an original pedigree graph. 

Firstly, we will give a method to determine the weight of each edge in an original 

pedigree graph. As a concrete example, let us consider the original pedigree graph 
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with the affected individuals 15 and 16 in Figure 2.2(b). Figure 3.1 shows the seven 

possible descent trees of Figure 2.2(b). 

Given the affected individuals, what is the probability of an existing possible 

descent tree? Now, let us calculate the probability of each tree in the seven possible 

descent trees given the affected individuals 15 and 16 in Figure 3.1. Firstly, let us 

calculate the probability of tree T1 given the affected individuals 15 and 16, denoted 

by Pr(T1j{15, 16}). Given the individual 15 in the descent tree T1, then edge e5,15 

could not be in T1 since individual 5 is not a common ancestor. That means there is 

no path from individualS to the other affected individual16. Therefore, edge e9,15 has 

a probability of 1 in tree T1. Since a gene is inherited from the father or the mother 

with the same probabilities, then individual 9 may receive the gene from his mother 

or his father. So we deduce that edge e3,9 has a probability of~ in tree T1. Next, note 

that there exists only one path from individual 3 to the other affected individual 16. 

That implies each of these edges e3,10, e10,13 and e13,16 has a probability of 1 in tree 

T1. Thus, the probability of tree T1 given the individual 15 is equal to ~ · (1)4 = ~­

Using the same argument, we can get the probability of T1 given the individual 16 is 

equal to (!)3. Then 

In the similar manner, we can obtain the following probabilities: 

1 1 3 
Pr(T2j{15, 16}) = p(T5j{15, 16}) = (2)4 + (2)5 = 

32
. 

1 5 1 4 3 
Pr(T3j{15,16}) = p(T6 j{15,16})=(2) +(2) = 32· 

Pr(T4j{15, 16}) = p(T7j{15, 16}) = (~) 5 + (~)3 = :
2

. 



(b) T2 or Ts 

(c) T3 or T6 (d) T4 or T7 

Figure 3.1: The seven possible descent trees of Figure 2.2(b). In (b)- (d), six 

descent trees are presented. Three descent trees T2, T3 and T4 are 

exactly shown in (b)- (d). Other three descent trees, Ts, T6 and T7, 

can be obtained through replacing the root, individual 1 by individual 

2 in trees T2, T3 and T4, respectively. 
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3.1 An algorithm to obtain the weight of each edge 

in a pedigree graph 

In this section, we will give a Monte Carlo algorithm to calculate (or properly said 

to estimate with pre-specified degree of precision) the weight for every edge in an 

original pedigree graph. Let R be the set of common ancestors and I be the set of 

individuals who are founders but not common ancestors. For example, in Figure 3.1, 

R = {1,2,3} and I= {4,5,6}. For any individual v, we use P1(v) to denote the 

mother of v and P2 ( v) to denote the father of v . . c( v) denotes the set of all children 

of the individual v. V denotes the set of all individuals in a pedigree graph and let 

M = V - X, where X is the terminal set. 

Algorithm 1 

Step 1: Initialize by letting d(v) = 0 and n(vt) = 0 for any individual v and any 

terminal t. 

Step 2: Pick up one terminal t from X, and set X = X\ { t}. 

Step 3: Pick up an individual v from M, and let M = M\ { v}. 

Step 4: Pick up a child u from c(v), and set c(v) = c(v)\{u}. 

Step 5: If there exists a path from u tot, then let n(vt) = n(vt) + 1 and 

c'(v) = c'(v) U {u}. 

Step 6: If c(v) =/:- 0, return to Step 4. 

Else if M =f:. 0, return to Step 2. 

Else if X=/:- 0, return to Step 1. 

Else stop. 

The purpose of the algorithm 1 is to get the values of n( vt) and c' ( v). These two 

values will be used in our main algorithms. 

Main algorithms (Calculating the weight of each edge) 

Step 1: Randomly pick up one terminal from X, and denote a as this chosen 

terminal. Let X= X\{a} and X' = X\{a}. 
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Step 2: Initialize by letting v =a and S~a) = { v }, i = 1, P = 0. 

Step 3: If P1(v) E I or P2(v) E I, suppose P1(v) E I, then w(e~~12 (v)) = 1. 

Let sfa> = Sja> U {P2(v)} with a E Sja>, j = 0, ... ,i -1,i = i + 1. 

Set P = P U {P2(v)}. 

El ( (a) ) ( (a) ) 1 
seW ev,Pl(v) = W ev,i>2(v) = 2· 

Then let Si(a) = SJa) U {P1(v)} with a E Sjal, j = 0, ... ,i -1,i = i+ 1. 

Let s;a) = sjal U {P2 (v)} with a E Sja>, j = 0, ... ,i -1,i = i + 1. 

Set P = P U {P1(v), P2(v)}. 

Step 4: If P =I= 0, then pick up one element from P . 

Let u denote this element and P = P\ { u}. 

If u E R, return to Step 4. 

Else set u = v and return to Step 2. 

Else go to Step 5. 

Step 5: Randomly pick up one terminal from X'. Lett denote this terminal and 

X' = X'\{t}. 

Step 6: Pick up a root from R, and let m' denote this root. Set R = R\ { m'} 

and B~~ = {m'}, m = m', h = 1, Q = 0. 

Step 7: Pick up a child q from c'(m). Let d(m) = d(m)\ { q}, w(e~~q,t) = n(~t), 

Bh~l = Bj~l U { q}, m' E Bj~l, j = 0, ... , h -1, h = h + 1 and Q = Q U { q}. 

Step 8: If d(m) =I= 0, then return to Step 7. 

Else go to Step 9. 

Step 9: If Q n { t} =I= { t}, then pick up one element p =I= t from Q. 

Let Q = Q\{p}, m = p and return to s·tep 7. 

Else If R =I= 0, then return to Step 6. 

Else If X' =I= 0, then return to Step 5. 

Else If X =I= 0, then return to Step 1. 

Else output sf a), Bf.~l and w( e~~~) . 

From the algorithms, for a root r and a terminal t, we can obtain the values of 
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s;a), Bi.~> and w( e~~~) , where u and v are two individuals, and a is a terminal that 

has been picked up in Step 1 of the Main algorithms. Before giving a formula to 

calculate the probability of every edge, we firstly introduce some notations. Let 

N~~~r be the number of s;a> satisfying uv, r E s;a), 
N;,~> be the number of B;~> satisfying t, r E B;,~>, 

n~~ r t be the number of Bi~> satisfying uv, t, r E Bi~>, 
t' ' ' 

and N;a> be the number of s;a> satisfying r E s;a). 
For any edge eu,v, u is the parent of v, we denote the probability of edge eu,v in 

all possible descent trees as w(eu,v)· Now, we give the formula to calculate w(eu,v)· 

w(eu,v) = L)w(e~~~) X (l:)N~~~r X II N;,~))] 
aET rER tET- {a} 

+ L (w(e~~.t)[L(n~~.r,t X N;a) X II (3.2) 
tET - {a} r ER t' ET - {a,t} 

In the concrete example in Figure 3.1, we can get the weights of all edges in a 

pedigree graph using the formula (3.2) as follows: 

( ) 
_ lx(l+3+3)+1x(l+3+3) _ 1 w e15,9 - 2x7 - . 

w( els,s) = 2e7 = 0. 

( ) 
_ ! x l+lxl _ .1.. 

w e9,3 - 2x7 - 28" 

( ) 
_ !x{3+3)+1x(3+3) _ J1.. 

W e9,7 - 2x7 - 14· 

( ) 
_ lxl+jxl _ .1.. 

we10,J- 2x7 -28 " 

In the similar way, we can calculate the weights of the remaining. They turn out 

to be 
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w(e13,11) = w(e12,s) = w(eu,s) = w(ew,7) = w(el6,14) = 1
3
4. 

w(es,l) = w(el4,12) = w(es,2) = ~· 
w(e12,4) = w(eu,4) = w(el4,6) = 0. 

w(e1,1) = w(e1,2) = ~!· 
w( e13,10) = is. 
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From these results, we can see that w(e15,9) = 1, meaning that edge e15,9 has a 

probability of 1 in all possible descent trees. In other words, any possible descent tree 

must contain edge e15,g. Again, since edge e9,3 has a smaller weight than edge e9,7 , 

then edge e9,7 is more possible in an optimal descent tree than edge e9,3. 

3.2 An approximation algorithm to find optimal 

trees given a set of terminals and a root 

In this section, we will focus on solving the optimization problem (3.1) for a pedigree 

graph with the given edge weights. This optimization problem (3.1) will be reformu­

lated into the Steiner tree problem through a transformation. Firstly, we take the 

logarithm of the weight of each edge. Since the weight of each edge is greater than 

zero, let us define log(O) = lim log(x) = -oo. Hence we can minimize the sum of the 
:r:-tO 

negative value of the logarithm instead of maximizing the product in problem (3.1). 

Now, the optimization problem (3.1) is equivalent to the following one: 

Pr(T;p7) = min L -logw(e). 
TEr(r,X) 

eET 

(3.3) 

Obviously, optimization problem (3.3) is a directed Steiner tree problem in graph 

theory. We can see that -logw(e) is the cost of edge e in the directed Steiner tree 
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problem. Thus we can solve this optimization problem using a directed graph Steiner 

tree algorithm. By now, just a few algorithms for the directed Steiner tree problem 

have been developed. Fortunately, we can use the approximation algorithm provided 

by Charikar et al. [11] to solve the directed Steiner tree problem for our purpose. 

The time complexity of this approximation algorithm is O(!VIi ·IXI2i), where i is the 

number of generations in a pedigree graph. In what follows, we will describe the main 

idea of this approximation algorithm. 

Without loss of generality, we can assume that for every pair of vertices u and v, 

there exists an edge eu,v with a cost that equals to the shortest path distance from u 

to v in an original pedigree graph. We call such a graph as a transitive graph. Let 

c(T) denote the cost of a tree T and k(T) denote the number of terminals in T. 

Definition 3.2.1 The density of a tree T , denoted by d(T), is the ratio of the cost 

of the tree to the number of terminals in T. In other words, d(T) = c(T)/k(T). 

The density of a tree can be interpreted as the average cost of connecting a terminal 

to the root. 

Definition 3.2.2 An l-lever tree is a tree where no leaf is more than l edges away 

from the root, where l is a positive integer. 

From the Definition 3.2.2, we can see that the pedigree graph with i generations 

is an i- lever tree. 

Approximation algorithm (Finding a Steiner tree in a pedigree graph.) A(k, r, X) 

Output: A tree T rooted at r spanning k(T) terminals which has the minimum cost 

in a pedigree graph. 

Step 1. T t- 0. 

Step 2. While k > 0 

(a) TBEST f- 0; 

(b) For each vertex v E V, and each k', 1 ~ k' ~ k 

(1) T' f- Ai-I(k',v,X) U {(r,v)}; 
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(2) If d(TBEST) > d(T') then TBEST +- T'. 

(c) T +- T u TBEST; k +- k -IX n V(TBEsr)l; X+- X- V(TBEsr). 

Step 3. Return T. 

A1(k,v,X) is .to find k terminals which are closest to the root and connect them 

to the root using shortest paths. Ai (k, v, X) repeatedly finds a vertex v and a number 

k' with 1 ~ k' < k such that the density of tree 1j_1(k',v ,X) U {r,v} is the least 

among all trees of this form. 

3.3 An example to execute the approximation al­

gorithm 

In this section, we will execute the approximation algorithm to find Steiner trees in 

a directed weighted pedigree graph. As a result, a Steiner tree will be found through 

the execution of the approximation algorithm in Figure 2.2(a) with the affected in­

dividuals 15 and 16. Let us use W to denote the costs of edges in Problem (3.3). 

Therefore, we can get all the costs of edges in Figure 2.2(a) as follows: 

W(eiJ,u) = W(e12,s) = W(eu,s) = W(ew,7) = W(ei6,I4) =- log 1
3
4. 

W(es,t) :== W(el4,12) = W(es,2) = -log~· 

W(e12,4) = W(en,4) = W(e14,6) =- logO = oo. 

W(e1,1) = W(e1,2) = - log~! . 

W(el6,13) = -log;~. W(e13,10) = - log is · 
In the approximation algorithm, we have an assumption that every graph is a transi­

tive graph. Thus, we firstly find the transitive graph corresponding to Figure 2.2(a). 

3.3.1 The transitive graph corresponding to Figure 2.2(a) 

To construct the transitive graph corresponding to Figure 2.2(a), for every pair of 

vertices u and v, we need to obtain a cost that equals the shortest path distance 
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between u and v in the original pedigree graph. For example, for the vertices 1 and 

13, there exist two paths P1 (1 -+ 8 -+ 11 -+ 13) and P2 (1 -+ 7 -+ 10 -+ 13). We 

then calculate the costs of these two paths as follows: 

The cost of path P1 is equal to 

3 3 2 9 
W(e13,11) + W(eu,8) + W(e8,1) =- log 

14 
-log 

14 
- log 7 =-log 

686
. 

The cost of path P2 is equal to 

9 3 11 297 
W(ei3,IO) + W(e10,7) + W(e7,I) = -log 28 -log 14 -log 14 =-log 5488. 

Since -log 5
2i8~ < -log 6~6 , we have W(e13,1) = -log ;ii8 • In the similar way, we 

can obtain the costs of other pairs of vertices. They turn out to be 

W(e9,1) = W(e9,2) =- log 1
9:6. W(e10,I) = W(e10,2) =-log 1

3:6. 

W(en,1) = W(eu,2) = -log l9 . W(e12,1) = W(e12,2) =- log k 
W(ei3,I) = W(e13,2) =- log 5

2i878. W(ei4,1) = W(ei4,2) =- log 3~3 . 

W(ei5,1) = W(e1s,2) = -log {i6 . W(e16,1) = W(e16,2) =- log 1:~~~4 . 

W(e13,3) = -log 7~74 . W(e1s,3) =- log 2
3
8. W(e16,3) =- log 2t~~1 . 

W(e15,1) =- log 1
9
4. 

W ( e13,8) = -log 1~6 . 

W(el3,7) = -log 3
2;2. 

W( el4,8) = -log 4; . 

W(ei6,1D) =- log~~~· W(ei6,u) =-log 3~52 . 

W(el6,4) = W(e13,4 ) = W(e16,4) = W(e16,6) = oo. 

W(ei6,7) = -log ~~~*6 • 

W ( e16,8) = -log 5~3858 . 

W(e16,12) =-log 4
3
9. 

Figure 3.2 shows the transitive graph corresponding to Figure 2.2(a) with affected 

individuals 15 and 16. 

After finding the transitive graph, we then prune the transitive graph to decrease 

the complexity of the transitive graph. 

3.3.2 The pruned pedigree graph 

In order to decrease the complexity of the transitive graph, we will remove as many 

vertices and edges as possible without changing the size of a Steiner tree in the original 

graph. 
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Figure 3.2: The transitive graph corresponding to Figure 2.2(a). All edges are 

added into Figure 2.2(a) by different colors. The edges from different 

generations are given different colors. Some edges that will be pruned 

are distinguished by different colors. 

44 
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Firstly, since individual 1 and individual 2 are founders and they are married, so if 

there is a Steiner tree T rooted at individual!, then tree T' obtained by replacing the 

individual 1 by individual 2 in T is also a Steiner tree. Thus, all the edges from vertex 

2 to any other vertex can be removed from the transitive graph. That means all green 

edges can be removed from Figure 3.2. Secondly, when we execute the approximation 

algorithm, we never choose any edge with a cost of oo since any tree which consists 

of this .kind of edge is not a Steiner tree. For example, in Figure 3.2, edges e14,4 , e13,4 , 

e16,4 and e16,6 have a cost of oo, then we delete these four edges from the transitive 

graph. Therefore, we remove all yellow edges from Figure 3.2. Figure 3.3 shows the 

final pruned transitive graph in which the approximation algorithm will be executed. 

Figure 3.3: The final pruned transitive graph. 
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3.3.3 The implementation of the approximation algorithm in 

the pruned transitive graph 

The approximation algorithm Ai(k, r, X) mentioned in Section 3.2 outputs a tree T 

rooted at r spanning terminals X which has the minimum cost. In Figure 3.3, the 

approximation algorithm Ai(2, 1, {15, 16}) will give a Steiner tree rooted at individual 

1 with the terminals {15, 16}. 

• For every vertex and every k', 0 < k' < 3, the Step 2 (b) of the approximation 

algorithm is iterated until a tree TBEST is presented. After the implementation 

of the process in Figure 3.3, we have that d(TBEST) = -log 1
9i6 . Figure 3.4(a) 

shows the T8Esr obtained in this process. 

• After the iteration (b) in Step 2, the algorithm moves to (c) of Step 2. Then, 

the approximation algorithm Ai(l, 1, {16}) will be executed. After the imple­

mentation ~f the algorith~ Ai( l , 1, {16} ), we have that d(TBEST) = -log ~~~~~4 • 
Figure 3.4(b) shows the TBEST obtained in this process. 

• After the implementation of the whole approximation algorithm, we obtain a 

Steiner tree rooted at individual! spanning the terminals {15, 16}. The Steiner 

tree obtained from the algorithm is shown in Figure 3.l(b). 

By these steps, we get the Steiner tree T2 or Ts (Figure 3.1(b)) which is rooted 

at individual 1 with affected individuals 15 and 16. In· addition, there exists exactly 

only one tree T1 (Figure 3.1(a)) rooted at individual 3 with affected individuals 15 

and 16. At last, let us compare the costs of these two trees with different roots. 

The cost of tree T1 is equal to 

W(T1) = W(eis,9) + W(e9,3) + W(ew,3) + W(el3,w) + W(e16,I3) 
3 3 9 15 1215 

=- log 1-log 28 -log 28 -log 28 -log 28 =- log 614656 . 
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(a) (b) 

Figure 3.4: TsEST obtained from the approximation algorithm. 

The cost of tree T2 or tree T5 is equal to 

W(T2 or Ts) = W(els,g) + W(e9,7) + W(e1,1) + W(ew,7) + W(el3,10) + W(e16,13) 
9 11 3 9 15 

=- log 1 -log 
14 

- log 
14 

- log 
14 

-log 
28 

- log 
28 

- l 40095 
- - og 2151296 

Since - log 6~~~~6 > - log 21~~~6 , tree T1 has more costs than those for tree T2 or tree 

Ts. 



Chapter 4 

Conclusions and future work 

This chapter presents the main conclusions of this thesis and the possible future 

work. First, we summarize the main results. Then we suggest some future research 

directions. 

4.1 Research summary 

A powerful approach for identifying genes is to study genetically isolated populations. 

Well characterized isolates provide excellent study samples for linkage mapping. The 

utility of population isolates eliminates the possible confounding effects of genetic 

background and the impacts of environmental heterogeneity. Therefore, we focused 

our study on developing a new approach from a large and complex genealogy. The 

new approach is to maximize the genealogical information for linkage analysis while 

minimizing the computational burden. In this thesis, we investigated an approach 

to construct an optimal subpedigree from an original large pedigree based on the 

Steiner tree problem in graph theory. Firstly, we presented an algorithm to find the 

probability of each edge among all possible descent trees. Then we assigned the weight 

of the probability obtained from this algorithm to each edge. Last, we provided an 

approximation algorithm to solve the directed Steiner tree problem. The results in 
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this thesis can be used to find a most likely tree through the information that the 

affected individuals are known. 

4.2 Future work 

Strewn throughout this thesis there are many natural questions which arise and war­

rant consideration. In this section, we discuss these possible directions. 

4.2.1 Using more information from the observed data 

The observed data from a complete large genealogy provide information about the 

genetic relatedness of individuals in a pedigree, their medical records, the pattern of 

inheritance of a genetic disorder and the number of meiotic steps separating them. 

The more information that can be used in statistical analysis, more reasonable sub­

pedigrees can be found. In 2004, Falchi et al. [17] investigated an approach that 

reconstructed sets of subpedigrees by the use of clique partitioning algorithms. They 

assigned a weight to each edge on the basis of the pairwise measure of biological re­

lationship between two individuals, such as their kinship coefficient or the number of 

meiotic steps separating them. Their study enables us to assign a weight as kinship 

coefficient or the number of meiotic steps to each edge. Then we can use a directed 

Steiner tree algorithm to get a subpedigree. If we can do that, more information 

would be considered in constructing the subpedigrees. 

4.2.2 Using special properties of a pedigree graph 

Since the Steiner tree problem in graph theory is NP-complete and no algorithm for 

any NP-complete problem is known to run in polynomial time, we provided a good 

approximation algorithm to a previously intractable problem. However, a pedigree 

graph has some special properties as a graph. 
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If an individual is a founder in a directed pedigree graph, then the indegree of 

this individual is zero. If an individual is not a founder, then the indegree of this 

individual is two because any individual has two parents. In addition, it is biologically 

impossible to have a cycle in a directed pedigree graph. Hence, any directed pedigree 

graph is a connected acyclic graph. These special properties of a pedigree graph 

enable us to find a better algorithm to solve the directed Steiner tree problem in a 

special graph. We believe that these special properties of a pedigree graph can help 

us find a better algorithm with low time complexity. As a result, we can handle larger 

and more complex pedigrees. 
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