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Abstract 

This thesis focuses on the design of a new computational model for a class of free 

surface flows with a moving circular cylinder based on a viscous incompressible two

fluid model. The method of solution is based on a finite volume discretization of the 

two-dimensional continuity and unsteady Navier-Stokes equations in their pressur -

velocity formulation on a fixed Cartesian grid. The displacement of the free surface 

is tracked by using the volume of fluid method. The positions of both the free surface 

and fluid-body interfaces are determined at each time step by using the piecewise lin

ear interface calculat2on algorithm. The advection of the reconstructed free urface 

with local velocity field is performed by the geometrical area preserving volum of fluid 

advection algorithm. The fractional area/volume obstacle r presentation method is 

combined with the cut cell method to improve the accuracy of the spatial discretiza

tion of a fluid-body interface. Discrete pressure and velocity fields corresponding to 

the successive time instants are obtained as a result of solution of a coupled sparse lin

ear system in primitive variables using a generalized minimal residual method. This 

is done by making use of the Trilinos numerical solver library. The accuracy checks 

indicate that the resulting method is of second-order in space and first-order in tim . 

The numerical algorithm is applied to the problem of unsteady, laminar , two

dimensional flow of a viscous incompressible fluid past a circular cylinder undergoing 

forced o cillations .in streamwise direction in the presence of the fre surface. This is 

the first numerical study conducted on this problem to date. The validation of the 

method is presented in special cases and good comparison with previou xperimental 

and numerical results are obtained. 
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Nomenclature 

A fractional area open to flow 

A area open to flow (area aperture) 

~ 

A; dimensional fractional area porosity function in x* -direction 

~ 

A~ dimensional fractional area porosity function in y* -direction 

a acceleration of non-inertial frame of reference, X, ( = ( a1 , a2 , 0)) 

A forcing amplitude of the recti-linear cylinder oscillation ( = A* I d) 

Aa forcing amplitude of t he rotational cylinder oscillation (= A~ld) 

C L lift coefficient ( = 2£ I pU2 d) 

maximum lift coefficient 

minimum lift coefficient 

mean lift coefficient 

RMS lift coefficient 

drag coefficient ( = 2D I pU2d) 

CD,max maximum drag coefficient 

CD,min minimum drag coefficient 

mean drag coefficient 

CD,rms RMS drag coefficient 

d cylinder diameter 

line distance from the origin in equation (3.57) 
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D drag force per unit length 

f forcing frequency of the recti-linear cylinder o cillation ( = df* IU) 

fa forcing frequency of th rotational cylinder oscillation (= df~IU) 

fo natural vortex shedding frequency 

in the absence of a free surface ( = df0 IU) 

fiJs natural vortex shedding frequency 

in the presence of a free surface ( = df* IJsiU) 

Fr Froude number ( = U I v'd?) 

FriL local Froude number ( = U I Jh*IL g*) 

Fn
1 

fraction of the fluid in the region r21 in a computational cell (VOF function) 

Fn
2 

fraction of the fluid in the region r22 in a computational cell 

Fb fraction of the body in a computational cell 

F* dimensional external surface force s 

F* dim nsional external force ( = ( F1 *, F2 *, 0)) 

9* dimensional gravitational acceleration in inertial 

frame of reference, X, ( = (0, g* , 0)) 

h d pth of cylinder submergence ( = h* I d) 

b.h spatial uniform grid step size 

h height of the fluid at the outflow boundary 

hiL local free surface height 
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H Heaviside unit step function 

ll length of a fluid-body interface open to flow 

L lift force per unit length 

n outward unit normal vector ( = ( n1 , n2, 0)) 

P fluid property 

p fluid pressure 

Po surface pressure 

Ph hydrostatic pressure 

op hydrodynamic pressure 

p~ dimensional constant atmospheric pressure 

R Reynolds number ( = pU d/ p,) 

S control volume boundary 

t time ( = t* U /d) 

b..t time step 

T period of forced cylinder oscillation ( = 1/ f) 

T0 period of natural vortex shedding in the absence of a free surface ( = 1/ fo) 

u fluid velocity(= (u,v,O)) 

U uniform flow velocity 

u maximum u-velocity of the fluid in the region directly above the cylinder 

U average u-velocity of the fluid in the region directly above the cylinder 
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v 

V(t) 

~ 

V* 

8V(t) 

v~ 
J 

normal fluid velocity 

velocity of a fluid-body interface 

fractional volume open to flow 

control volume 

material volume 

volume open to flow (volume aperture) 

dimensional fractional volume porosity function 

material volume boundary 

dimensional velocity of an arbitrary time dependent fluid domain n(t) 

velocity of non-inertial frame of reference, X, ( = ( v1 , v2 , 0)) 

x vector of spatial coordinates in inertial frame of reference, X, ( = ( x y, 0)) 

X inertial frame of reference ( = {X* , t*}) 

X non-inertial frame of reference ( = {x--;., ?} ) 

X frame of reference which moves with the uniform flow 

Greek Sy mbols 

a(t) angular displacement of the cylinder 

8 Dirac delta function 

( vorticity 

(max maximum vorticity 
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1. Introduction 

Flow induced forces play an important role in the design of variety of engineering 

structures. Control of vortex shedding leads to reduction in the un teady forces act

ing on the bluff body and can reduce its vibrations. Flow control may be accomplished 

by controlling the boundary layer separation and/or the structure of shear layer in 

the wake. Gad-el-Hak and Bushnell (1991) review various techniques that are em

ployed for separation control. A significant control on the structure of the wake can 

be achieved by subjecting the cylinder to harmonic oscillations. In this thesis, the 

u 
A y* I 

II!* x* 
- -------- - • I ~ - ------- --- ~ 

Figure 1.1: Schematic of the problem. 

problem of uniform viscous incompressible flow past an oscillating horizontal rigid 

circular cylinder of infinite length located beneath a free surface is considered. The 

flow is assumed to be two-dimensional in the (x*, y*)-plane. A basic schematic that 

illustrates the problem is shown in Figure 1.1. In this figure , the cylinder of diameter 

1 
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d is submerged in the fluid in n2 at the dimensional distance h* below undisturbed 

free surface; g* is the dimensional acceleration due to gravity,§* = (0, g*, 0) ; U is the 

uniform stream velocity; f* is the dimensional oscillating frequency of the cylinder. 

At timet* = 0 (t* is the dimensional time), the cylinder is abruptly forced to perform 

recti-linear oscillations in the in-line direction to that of uniform flow. The imposed 

translational oscillatory motion of the center of the cylinder along the translation axis 

is assigned by 

x*(t*) =A* cos(2-rrj*t*), (1.1) 

where A* is the dimensional forcing amplitude of the cylinder o cillation. The gov

erning equations and boundary conditions which describe the problem are presented 

in Chapter 2. 

In what follows, a brief discussion of flow past a stationary cylinder and an oscillating 

cylinder in the absence of a free surface is presented due to its relevance to the problem 

under consideration. 

1.1 Problem background and literature review 

Karman (1911, 1912) experimentally observed that the wake of a stationary bluff body 

in an unbounded uniform free stream in the absence of a free surface has a natural 

self sustained instability resul ting in formation of the double rows of vortices being 

shed alternately from either side of the body as shown in Figure 1.2. Earli r , Strouhal 

(1878) observed this type of the vortex formation and shedding while examining the 
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Figure 1.2: Karman vortex street downstream of a circular cylinder at R = 140. 
Retrieved from http:/ / hmf.enseeiht.fr/ on October 2, 2007. 

frequency response of wind blowing over a wire or a string in an Aeolian harp. This 

type of vortex shedding, called the Karman vortex street, is widely observed both in 

the laboratory and in nature for a wide range of Reynolds numbers, R. In the case 

of a stationary circular cylinder , R = pU d/ J..L (p is the density of the fluid ; J..L is the 

dynamic viscosity of the fluid) the vortex shedding only occurs when the Reynolds 

number exceeds a critical value, which is somewhere between 40 and 50. Benard 

(1908a,b) was the first to sketch the alternate procession of eddies observed behind a 

towed circular cylinder in water. The vortex street remains periodic and essentially 

two-dimensional for the Reynolds number of 180 rv 200. The vortices are shed with 

the dimensionless natural Karman vortex shedding frequency, fo = df0 /U (!0 is the 

dimensional natural vortex shedding frequency), or the Strouhal number, So(= f 0 ). 

A regular vortex shedding from the cylinder excites a periodic resulting force on its 

surface with transverse and in-line components known as lift and drag forces, respec-

tively. For the stationary cylinder, the lift force oscillates with the Karman vortex 
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shedding frequency, f0 , and the drag force oscillates with twice the Karman vortex 

shedding frequency, 2f0 . The variations of regimes of the wake of a circular cylinder 

and fluid forces with the Reynolds number have been reviewed extensively [see, for 

example, Norberg (2003) , Thompson et al. (2001), Posdziech and Grundmann (2001), 

Henderson (1995) , Kravchenko et al. (1999), Park et al. (1998), Anagnostopoulos 

(1997) , Zdravkovich (1997), Gerrard (1997), Sumer and Freds!Zle (1997), Williamson 

(1996) , Wu et al. (1996) , Zhang and Dalton (1998), Braza et al. (1986) and Farell 

(1981 )] . 

When the cylinder is subject to forced oscillations in a uniform flow, there might b 

a situation when the dimensionless oscillatory frequency of the cylinder, f = df* IU, 

passes through fo or 2f0 , i.e., f I fo ~ 1 or f I fo ~ 2. At these conditions the vor

tex shedding becomes locked-on to the cylinder motion depending on the oscillation 

type and may result in a noise and even a structural failure. A striking example 

is the Cormorant-Sullom Voe oil line in the orth Sea which surfaced in 1975 after 

losing 60% of its concrete coating. The lock-on has been recognized as the respons 

to oscillatory cylinder motions in the absence of a free surface. The conditions of 

lock-on have been studied previously in hundreds of papers [see, for example, Al

Mdallal et al. (2007) , Sarpkaya (2004) , Anagnostopoulos (2002), Cetiner and Rock

well (2001) , Meneghini and Bearman (1995), Griffin and Hall (1991), Ongoren and 

Rockwell (1988a, 1988b), Williamson and Roshko (1988) and Bearman (19 4)]. For 

transverse or rotational oscillations of the cy Iinder, the range near f I fo ~ 1 con

stitutes the fundamental lock-on regime; for in-line oscillations of the cylinder the 

lock-on is observed at f I fo ~ 2. The classical defini tion of the lock-on is based on 

the existence of a'strong spectral peak of the wake frequency. However , lock-on phe-
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nomenon cannot be identified, clearly, from the spectral analysis in all the types of 

motions (for example, in-line oscillations case). In this case, lock-on can be defined 

through the Lissajous trajectories , i. e., the phase diagrams of the lift and drag fore s 

versus the displacement of the cylinder [see, for example, Al-Mdallal et al. (2007) 

and Cetiner and Rockwell (2001)] . The bounds of lock-on generally include all the 

cases where the dominant frequency becomes close to the Karman vortex shedding 

frequency, fo. 

The general form of the vortices shed into the near wake of the cylinder is often de

scribed in terms of the mode of vortex shedding. Williamson and Roshko ( 1988) classi

fied the modes of vortex shedding for the case of transversely oscillating cylinder in the 

absence of a free surface. The extensive mapping of Williamson and Roshko (1988), 

shown in Figure 1.3, is obtained over the range of Reynolds numbers, 300 < R < 103 , 

in the range of amplitude of the cylinder oscillation, 0 < A(= A* I d) ~ 1.8, for the 

frequency ratios f I fo ~ 0.3. The wavelength ratio is defined as >..I d = UT* I d 

(T*( = 11 f*) is the dimensional period of cylinder oscillation). It should be noted , that 

the Reynolds number, R , is never held fixed and the observed vortex locked-on modes 

are expected to persist over the range of Reynolds numbers beyond 300 < R < 103 

and for different types of cylinder oscillations. 

The vortex locked-on modes observed by Williamson and Roshko (1988) are hown 

in Figure 1.4. The most commonly observed modes near the fundamental lock-on 

region are 28, 2P and P+8. For the 28 mode, two single vortices of opposite sign 

are shed per the dimensionless period of natural vortex shedding, T0 ( = 11 f0 ) , forming 

the classical von Karman street. The 2P mode corresponds to the shedding of two 
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Figure 1.3: A map of the vort~x locked-on modes in the wavelength-amplitude plane 
near the fundamental lock-on region as observed by Williamson and Roshko (1988). 
The critical curve marks the transition from one mode of vortex formation to another. 

counter-rotating pairs per T0 . For the P+S mode, one single and a pair of co-rotating 

vortices are shed per To. The patterns marked as P and 2P* take the appearance of a 

jet ra ther than a wake. For P mode, a single pair of co-rotating vortices are shed from 

the one side of the cylinder. Mode 2P* is similar to 2P except that vortex pairs in 

one half of period of vortex shedding convect downstream of cylinder wake. Finally, 

2P + 2S mode comprises two vortex pairs forming at both sides of the cylinder as 

in 2P mode, but with the inclusion of single vortices between each vortex pair. The 

most interesting mode of vortex shedding is a coalescenc (or merging) of vortices. 

Williamson and Roshko (1988) denote the two modes as C(2S) and C(P+S) . In 
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by Williamson and Roshko (1988) in t he map in Figure 1.3. Each mode is defin d 
by the number of pairs and single vortices formed per T0 ; - -- - encircles the vortices 
shed in a complete cycle. 
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C(28) mode, the smaller vortices coalesce either immediately behind the cylinder 

forming 28 mode near the cylinder or 28 mode persists near the cylinder but smaller 

vortices coalesce in the downstream of the cylinder. Similarly, in C(P+ 8) mode th 

smaller vortices coalesce either immediately behind the cylinder forming P+8 mode 

near cylinder or P+8 mode persists near the cylinder but smaller vortices coalesce in 

the downstream of the cylinder. Figure 1.4 shows examples of the vortex coalescence 

phenomenon. 

One of the mechanisms which affects the Karman instability is the presence of a free 

surface. When the flow past a cylinder is bounded in part by the free surface, both 

the structure of the near wake and the hydrodynamic forces on the cylinder can be 

significantly altered. For this type of flow two important controlling parameters are 

the dimensionless cylinder submergence depth below a free surface, h = h* /d, and 

the Froude number , Fr = U / vg*d, which vary the level of free surface deformation. 

1.1.1 Fluid boundary tracking/ capturing methods 

In nature, a fluid boundary represents an interface between two fluids of different 

physical properties. The special type of the fluid boundary which separates two 

homogeneous fluids , for example water and the air in the Earth's atmosphere, is known 

as a free surface. A comprehensive introduction to free surface flows can be found for 

example, in Floryan and Rasmussen (1989), Rood (1995) and Sarpkaya (1996). The 

free surface is free to deform during the interaction with vortices and thus, its position 

in space evolves with time. The deformation of the free surface is characterized by a 
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surface curvature, /'\, = 1/r (r is the radius of curvature). Hence, the free surface can 

actually be viewed as the fluid boundary which contains the vorticity field; the effect 

of the dynamic evolution of the fluid on the external side of the surface is negligible. 

The free surface has a major impact on the fluid interactions since its deformation 

results in the generation and flux of secondary vorticity and produces gravity and 

capillary waves. This secondary vorticity interacts with the initial vorticity field to 

produce complex flows. The generation of the secondary vorticity near the free surfac 

interface is due to two important effects: free surface curvature, /'\, 1 and surface tension 

gradients, 'V e5 ( e5 is the surface tension coefficient) [see Rood ( 1995) and Sarpkaya 

(1996) for details]. The curvature induced secondary vorticity depends on the radius 

of curvature, r. In some cases, vortices rising toward the free surface can induce a 

secondary vorticity which is larger than their own vorticity. Longuet-Higgins (1992) 

has shown that for a steady viscous flow case in which the tangential stress vanishes 

(no surface tension gradients) the vorticity at the free surface, (18, is given by 

(1.2) 

where q is the tangential velocity of a fluid particle. On the other hand, surface tension 

gradients drive a flow that tends to diminish concentration gradient. Sarpkaya (1996) 

has shown that for the free surface of negligible curvature the secondary vorticity 

induced by the presence of surface tension gradients is given by 

1 0(5 
(Js = P,ax· ( 1.3) 

The free surface can also be deformed (and generate secondary vorticity) by an irro

tational (potential) flow. The free surface deforms to satisfy stress balance condition 

which is usually split into normal stress and tangential stress conditions. In Cartesian 
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coordinates, the free surface normal and tangential stress conditions are 

( 
ou* (ou* ov*) ov*) 

2p n] n] ox* + n] n2 oy* + ox* + n2n2 oy* = p* - p~ + (JI'i,, (1.4) 

(1.5) 

respectively [see, for example, Griebel et al. (1998)]. Here, p* is the dimensional fluid 

pressure; p~ is the constant atmospheric pressure; U* = ( u*, v*, 0) is the dimensional 

fluid velocity; ii = ( n 1 , n 2 , 0) and f = ( T1 , T2 , 0) are the outward unit normal and 

tangential vectors, respectively; X" = (x*, y*, 0) is the vector of spatial coordinates. 

It is noted that the kinematic motion of the fluid interface has to match the fluid 

velocity field and thus, in addition to the boundary conditions (1.4) and (1.5), the 

continuity of the velocity needs to be satisfied at the free surface intreface. For 

small deformations of the free surface, the term CJK, does not play an important role; 

however, it becomes critical as wave steepness increases. The free surface is free to 

move due to its interaction with the initial vorticity field and its position unknown a 

priori is a function of the fluid itself. 

The modeling of the free surface is a challenging task. In the past decades, there 

has been a growing interest in developing accurate and robust numerical methods for 

solving the free surface flows. A number of numerical methods have been proposed 

in an effort to study the dynamics of the fluid interface. Basically, these methods can 

be classified in three categories: Lagrangian methods, Eulerian methods and arbi

trary Lagrangian-Eulerian methods. In the Lagrangian methods (also known as the 

interface tracking techniques), the grid moves together with the fluid particles and 

thus conforms to the shape of the free surface interface. The Lagrangian methods 
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maintain the interface as a discontinuity and explicitly track its evolution. The main 

advantage of these schemes is that the boundary conditions can be applied at the 

exact position of the free surface interface. However, these methods are not suitabl 

for the problems where moving boundaries can have large deformations and topolog

ical changes as it is dictated by the dynamics of the fluid. This is mainly due to the 

break down of the structured grid arrangement and the need for redistribution of the 

grid points and values of the field variables in the neighbourhood of the interface for 

unstructured grid. Therefore, the Lagrangian methods found their wide application 

in the problems with non-deforming boundaries. The Eulerian methods (also known 

as the interface capturing techniques) employ a fixed grid formulation. In these meth

ods, the free surface interface is not explicitly tracked but is reconstructed from the 

properties of the appropriate field variables. In these schemes, the solution of an 

advection equation is required to satisfy boundary conditions at the fr e surface since 

the position of the free surface interface is not known a priori. The advection equation 

governs the evolution of an interface function that marks the location of the inter

face. This leads to smearing of boundary information, and thus the detailed physical 

features may not be fully captured. On the other hand, the Eulerian methods have 

an advantage in handling the topological changes of the fluid domain automatically. 

Recently, the advantages of both the Eulerian and Lagrangian methods have be n 

utilized in so called arbitrary Lagrangian-Eulerian technique, in which computational 

grid moves independently of the fluid motion. These methods are particularly suitable 

for solution to free surface problems assuming that free surface does not break up. A 

number of moving boundary methods under the broad categories of the Lagrangian 

and Eulerian schemes have been developed by the researches so far. A comprehensive 
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review of the methods can be found in the book by Shyy et al. (1996). 

According to their abilities, the Eulerian methods are of more interest in free surface 

modeling, especially when complex interface topologies such as wave breaking are 

included. In this thesis, the Eulerian method is used to model the free surface due to 

the specifications of the physical problem under current consideration. In the context 

of general free surface flow problems, the popular Eulerian free surface modeling 

techniques include the level set methods and the volume of fluid (VOF) methods. In 

the original level set method [Osher and Sethian (1988)], a level set function, ¢(X*, t*), 

is introduced to define the distance from the point X* to the initial interface location. 

Therefore, the interface can be represented by the contour, ¢ = 0, at any time, which 

is evolved in time by 

;:. + ~IV¢1 = o, (1.6) 

where~ is the dimensional normal velocity to the interface. The level set methods are 

capable to handle large free surface distortions and topology changes. However , these 

methods have serious problems with respect to the mass conservation. Recently, the 

level set method by Osher and Sethian (1988) is combined with the VOF method in 

order to overcome the problem with the mass conservation [see, for example, Sussman 

and Puckett (2000)] . Reviews of the level set methods can be found in Sethian and 

Smereka (2003) and Osher and Fedkiw (2003). 

The VOF method is an interface capturing algorithm that has proven to be a robust 

tool since its development [Hirt and ichols (1981)]. This method is incorporated in 

the commercial CFD packages FLOW-3D (Flow Science, Inc.) and Fluent which are 

applicable to a broad range of industrial problems including the simulation of fr 
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surface flows. The VOF algorithm has been applied to solve the complex interfacial 

phenomena, including green water loading [Fekken (2004)], tank sloshing [Akyildiz 

and Unal (2006)], capillary motion [Taha and Cui (2004)], hydrodynamic stability 

[Pan et al. (2006)] and many others. The VOF method is an example of volume 

fraction methods. The essential features of this method are as follows. First, a VOF 

function, Frh (with values between zero and one), is computed from the known fluid 

interface geometry. The VOF function indicates the fractional volume of the compu

tational cell that is filled with the fluid in 0 2 . It is noted that the computational cell 

is defined as a two-dimensional object that represents an element of a computational 

grid. Second, the fluid interface is subsequently "captured" by evolving Fn2 in time 

with the solution of the advection equation 

8Fn
2 

_ 

at* + u · \1 Fn2 = 0. (1.7) 

Equation (1.7) states the conservation of the volume fraction in the computational 

cell. The exact location of the fluid interface is not known and is reconstructed from 

the local Fn2 data at any time step. The interface location is then used to compute 

the convective fluxes necessary for the convective term in the advection equation. 

Based on the features of the interface reconstruction algorithm and the advection of 

the interface, the different VOF methods can be distinguished. For the interface re

construction two main methods are the simple line interface calculation (SLIC) [ oh 

and Woodward (1976)] and the piecewise linear interface calculation (PLIC) [Youngs 

(1987)]. In the two-dimensional Cartesian grid geometry, the SLIC approximates the 

fluid interface in the computational cell by a segment aligned with one of the coor-

dinate axes [see, for example, Hirt and Nichols (1981), Kothe and Mjolsness (1992)]. 
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On the other hand, the PLIC represents the fluid interface in the computational cell 

by a portion of the straight line defined as 

fi. i+d= 0, (1. ) 

where d is the line distance from the origin [see, for example, Pilliod and Puckett 

(2004), Scardovelli and Zaleski (2003)]. The PLIC algorithms are more accurate 

since they reconstruct interface more exactly and, in particular, do not produce "flot

sam" and "jetsam" which appear in the SLIC techniques. The flotsam and the jetsam 

represent small bits of material (about the size of the grid spacing) separated from 

the main body of the fluid. The accuracy of the PLIC method depends on a precise 

choice of the normal vector. The normal vector to the interface, n, can be calculated 

using Fn2 data in the neighbour computational cells while the line distance, d, is 

determined , using the calculated normal vector, n, and the Fn2 data in the computa

tional cell under consideration. A number of numerical methods have been developed 

to compute the normal vector to the interface, n, and the line distance, d [see, for 

example, Pilliod and Puckett (2004), Gerrits (2001), Sussman and Puckett (2000), 

Rider and Kothe (1998)] . 

The advection of the fluid interface requires the calculation of computational cell 

boundary fluxes necessary for the convective term in ( 1. 7). For the calculation of 

fluxes, a number of different methods exist. Some methods are Lagrangian in the 

sense that the fluid interface is advected by means of markers placed on the recon

structed interface [Aulisa et al. (2003a), Biausser et al. (2004)]. In other methods, 

the fluid is not advected at all and thus the redistribution algorithms are us d to con

serve the mass in the computational cell [Rider and Kothe (199 ) , Harvie and Fletcher 

(2000)]. The VOF advection methods compute the fluxes geometrically based on th 
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reconstructed fluid interface. That is, the amount of fluid that should be advected 

is calculated geometrically by defining a region for each computational cell boundary 

from which the fluid is fluxed through the boundary. The strength of the geomet

rical VOF advection methods is that the natural sharpnes of the fluid interface is 

preserved. The VOF advection techniques are mainly divided in two categories: one

dimensional (operator split) and multi-dimensional (unsplit) schemes. In the operator 

split schemes, the advection is done independently along each coordinate direction 

[Rider and Kothe (1998), Pilliod and Puckett (2004), Scardovelli and Zaleski (2003)] 

while the unsplit methods perform the advection in all coordinate directions simulta

neously [Harvie and Fletcher (2000), Aulisa et al. (2003b)]. The main disadvantage 

of the VOF advection schemes is that the mass is not always conserved in the com

putational cell and as a result the volume fractions do not satisfy 0 ~ Fn2 ~ 1. This 

leads to the generation of litt le holes in the fluid body, so-called "wisp" . The wisp 

should not be confused with the flotsam or the jetsam, which are bigger in nature and 

mainly due to low-order reconstruction algorithms. Recently Aulisa et al. (2003b) 

developed the advection scheme that amounts to piecewise linear, area preserving 

mappings of tessellations of the plane. Aulisa et al. 's work demonstrated that their 

advection algorithm preserves the mass exactly for two-dimensional incompre ible 

flows on a Cartesian grid. 

The strength of the VOF methods is that the large distortions of the free surface can 

be easily handled. Moreover, comparing to the level set methods, the VOF methods 

do not have serious problems with respect to the mass conservation. The most striking 

disadvantage of the VOF method is that it cannot be treated with precision. This 

is mainly due to considerable logical and algorithmic complexity reconstruction and 
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advection of the free surface interface. Comprehensive reviews of the modern VOF 

methods are given in Rider and Kothe (1998) and Rudman (1997). The VOF method 

forms a basis for the computational method presented in this thesis. 

In the numerical modeling of free surface flows, the main computational difficulty 

arises from the implementation of the boundary conditions at the free surface in

terface. In general, there are two models which can be used to satisfy boundary 

conditions at the free surface: the single-phase flow approach and the two-phase flow 

approach. In the single-phase flow method, the fluid in 0 1 is assumed to be much 

lighter than the fluid in 0 2 . Thus, the fluid in 0 1 can be neglected , and the governing 

equations are solved in the region 0 2 only. Consequently, the free surface is modeled 

explicitly as the computational boundary, i.e., the free surface boundary condition 

(1.4) and (1.5) are solved. A potential constraint in this case is that the free surface 

may form a breaking wave at high Froude numbers and the single-phase flow meth

ods may have computational difficulties. Therefore, these methods are very limited 

to certain types of fluids where the free surface does not break up. A number of 

numerical schemes have been developed to discretize the boundary conditions at the 

free surface [see, for example, Gubanov (2006), Kleefsman (2005), Fekken (2004) and 

Gerrits (2001)]. 

In the two-phase flow methods , one set of governing equations is solved for the whole 

domain treating different fluid phases as one fluid with variable material propert i s 

such asp and f-L. Interfacial terms are accounted for by adding the appropriate sources 

as Delta functions at the phase boundary. Al though efforts to compute the motion 

of two-phase flows are as old as CFD, the difficulty in solving the continuity and 
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Navier-Stokes equations in the presence of a deforming phase boundary has proven 

to be considerably more difficult. The main challenge in using these methods is the 

maintenance of a sharp boundary between the phases and the computation of the 

terms concentrated at the interface such as surface tension. A number of recent 

developments are summarized in the books by Prosperetti and Tryggvason (2007) 

and Levy (1999). The most popular approach for computing two-phase flows is to 

capture the phase boundary on a Cartesian grid and then identify the different phase 

by markers or a marker function. The VOF method is the best known example. 

The VOF method determines the degree of mixing between the phases using the 

VOF fractions of each of the phases in the computational cell. The other methods 

include the marker and cell method of Harlow and Welsh (1965), the level set method 

of Sussman and Puckett (2000), the constrained interpolated propagation method 

of Takewaki and Yabe (1987) and the phase field method of Jacqmin (1999). The 

attraction of the two-phase flow methods on a Cartesian grid is due to their simplicity 

and efficiency. However, in these methods the interface is represented on the grid as 

a rapid change in the material properties and has a finite width in the order of the 

grid size. Consequently, the formal accuracy of these methods is generally limited to 

first-order. 

In this thesis, the two-phase flow approach is used. The reason is that the single

phase flow model, although being more computationally appealing, is shown to have 

numerical difficulties which arise due to complexity of application of boundary condi

tions at the fre surface on the non-boundary-fitted Cartesian grid [Gubanov (2006)]. 

The two-phase flow model enables implicit application of boundary conditions at the 

free surface, which makes numerical simulations of free surface flows more accurate 
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even in the case of large deformations of the free surface [Reichl (2001)] . 

1.1.2 Fluid-body interface methods 

There are two types of interfaces in the present problem: the fre urface and the 

fluid-body interface. The choice of the fluid-body boundary modeling method de

pends on the choice of the numerical grid. Basically, a computational grid has two 

characteristics: the grid is either structured or unstructured. In addition, the struc

tured/unstructured grid can be either boundary-fitted or non-boundary-fitted . In 

the structured grid , grid cells have the same shape and size. The grid is called un

structured, otherwise. In the boundary-fitted grid, the boundary of the flow domain 

coincides with the cell faces of the grid. The grid is called non-boundary-fitted , oth

erwise. The structured non-boundary-fitted grid is commonly called a Cartesian grid. 

There are two important advantages in using the boundary-fitted grids: the ability 

to generate grids for very complex shaped flow domains and direct application of the 

boundary conditions at the boundary of the flow domain. However, it is extremely 

difficult to generate this type of grid for flow domains which undergo topological 

changes. In the latter case, a constant remeshing is required at every time step to 

conform the shape of the computational domain , which involves considerable logical 

and algorithmic complexity and is often more time consuming than the flow simula

tion itself. In contrast, the use of the non-boundary-fitted grids takes negligible time 

with respect to the flow simulation time. The non-boundary-fitted grids are easy to 

generate and there is no need to remesh the grid. In this thesis, the VOF method is 

chosen to capture the free surface. Since the VOF reconstruction and advection algo-
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rithms are based on the geometrical procedures, the Cartesian grid is more practical 

for this type of simulation. 

The popular fluid-body interface modeling techniques which allow modeling interface 

on Cartesian grids include the immersed boundary method, the fictitious domain 

method, the cut cell method and the fractional area/volume representation (FAVOR) 

method. In the original immersed boundary method [Peskin (2002)], the fluid-body 

interface is represented by a set of markers. The interface force which acts on the 

markers is incorporated in the Navier-Stokes equations by means of an integral source 

term. The Heaviside step function and the Dirac delta function which will be intro

duced in Chapter 2 are used to smooth the distribution of the fluid properties over 

the fluid-body interface and to spread the interface force to the nearby grid points, re

spectively. As a result , the fluid-body interface has a finite thickness which is usually 

of the same order as the local grid spacing. The advection of the fluid-body interface 

is performed by displacing the markers following 

(1.9) 

where f::lt* is the dimensional time step. The improved immersed boundary methods 

are given, for example, in Tseng and Ferziger (2003) and Kim et al. (2001). Glowinski 

et al. (1997) developed the fictitious domain method also known as the domain 

embedding method. The idea behind the fictitious domain method is to extend the 

solution inside the solid body, i.e., the complete computational domain is assumed 

to be filled with the fluid and the influence of the fluid-body interface is acquired by 

the body forces. The fictitious domain method utilizes the boundary or distributed 

Lagrange multipliers to force the solid body motion. The many modifications of this 
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method have been also developed [see, for example, Glowinski and Kuznetsov (2007) , 

Ramiere et al. (2007), Veeramani et al. (2007) and Wan and Threk (2007)] . 

The above mentioned type of immersed boundary methods as well as fictitious domain 

methods represent the diffuse interface techniques. In the diffuse interface methods, 

the interface is treated as a special region in one fluid , which occupies the entire 

computational domain, and the discontinuities across the interface are somewhat 

smoothed. Th influence of the boundary in these methods is transmitted to the 

fluid through source terms in the Navier-Stokes equations. The main problem with 

the diffusive interface techniques is that the fluid-body boundary i represented as the 

diffuse interface of a finite thickness. In the convection dominated flow, like the on 

considered in this thesis, the interface between the solid body and the fluid should be 

treated as a sharp interface without smearing the information in the neigbourhood 

of the interface. The popular sharp interface methods are the cut cell method by 

Udaykumar et al. (1997) and the FAVOR method by Hirt and Sicilian (1985). In 

these methods, the fluid-body boundary is represented either explicitly as curves or 

as level sets and remains sharp irrespective of the grid resolution. As a result, the 

interface clearly divides two regions in the computational domain and retains th 

jumps in fluid properties as sharp discontinuities. 

In the cut cell method [Udaykumar et al. (1997)], the solid boundary is represented 

by marker particles. The geometry of the solid body cuts through the Cartesian 

grid cells and the intersections with the grid are determined. R ctangular cells that 

are cut by the fluid-body interface are reshaped by discarding the part occupied by 

the solid body. The fluid-body interface is assumed to be built of piecewise linear 
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segments. Cut cells for which enters are located in the olid body are merged with 

neighbouring cells to form trapezoidal shap d control volumes. This way, small cut 

cells are avoided and the global second-order accuracy of the flow solver i pr serv d 

when evaluating mass, convective and diffusive fluxes , and the pressure on the edge 

of the trapezoidal cells with the sufficient accuracy [see Udaykumar et al. (1997) and 

Udaykumar et al. (2001), for details]. The modifications of cut cell m thod can be 

found, for example, in Lin (2007), Hu et al. (2006) , Fekken (2004), Kirkpatrick et al. 

(2003) and Udaykumar et al. (2001). 

The FAVOR method is used in the commercial CFD package FLOW-3D developed 

by Flow Science, Inc. The FAVOR method is an another example of volume fraction 

methods. In this method, solid boundaries are accounted for by a porosity func

tion (Heaviside function) which changes abruptly from unity to zero aero the solid 

boundary. The numerical representation of the variable poro ity function is defined 

in terms of fractional areas and volumes op n to flow in the computational cell . 

These numerical values represent volumetric averages of the quantities in cells that 

are partially occupied by the solid body, and are retained for ach flow variable such 

as pressure and velocity in these cells. The same technique used in the VOF m thod 

can be used to define solid boundaries that cut the computational grid. This is th 

fraction of the body, Fb , (with valu s between zero and one) which indicates the vol

ume of the cell that is occupied by the body. For cells with 0 < Fb < 1, areas and 

volum s op n to flow are computed and the fluid-body interface is reconstructed as 

a piecewise linear segment. 

In this thesis, the FAVOR method has been initially cho en due to its simplicity 
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as well as the easy programming features. It is noted that the formulation of the 

FAVOR method assumes that there are no special considerations that are needed at 

the solid boundary. However, the preliminary experiments have shown that when a 

finite volume discretization is used, the method results in low accuracy. In the present 

computational model, it is found effective to combine the FAVOR method and the 

cut cell method. It is shown that the resulting method is of second-order accuracy. 

1.1.3 Review of previous studies on free surface flows w it h a 

circular cy Iinder 

The circular cylinder and other similar geometries are common both in nature and 

in engineering structures and the study of flow past a circular cylinder is of obvious 

practical significance. The large body of literature is attributed to the features of 

uniform flow past the cylinder placed in a fluid flow of an infinite extent. The prac

tical significance of this problem has led to a large number of fundamental studies, 

many of which are discussed in the comprehensive reviews of King (1977), Bearman 

(1984), Griffin and Hall (1991) , Williamson (1996) , Rockwell (1998) Williamson and 

Govardhan (2004), Sarpkaya (2004) and in book chapters by Naudascher and Rock

well (1993) , Sumer and Freds0e (1997) , Zdravkovich (1997) , Anagnostopoulos (2002). 

To the author's knowledge little research has been undertaken to d termine effects 

of the presence of a free surface on the development of vortex shedding modes. This 

problem has been principally investigated in the experimental studies by Carberry et 

al. (2004), Carberry (2002), Carberry et al. (2001) , Cetiner and Rockwell (2001), 

Zhu et al. (2000) and Sheridan et al. (1997). 
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The case of steady viscous flow past a stationary cylinder beneath the free surface 

is addressed in the experimental studies by Carberry et al. (2004), Carberry (2002), 

Carberry et al. (2001) and Sheridan et al. (1997). Quantitativ particle image 

velocimetry measurements by Carberry et al. (2004), Carberry (2002) and Carberry 

et al. (2001) identified three possible wake states in the range of cylinder submergence 

depths 0.079 < h < 3.0. These studies reported (i) the suppression of vortex shedding 

at h < 0.125; (ii) the formation of a jet flow at 0.125 ~ h ~ 0.5 and (iii) the modified 

von Karman vortex street at 0.5 < h ~ 3.0 when the Reynolds and Froude numbers 

are fixed at R = 2100 and Fr = 0.166, respectively. 

Sheridan et al. (1997) studied the possible states of the near wake and corre

sponding distortions of the free surface for 0 < h ~ 0.75, 5990 ~ R ~ 9120 and 

0.47 ~ Fr ~ 0.72. The particle image velocimetry measurements by Sheridan et al. 

(1997) identified two distinctly different wake states which occur when the cylinder 

is close to the free surface: (i) a jet-like flow at h ~ 0.16 and (ii) a jet flow at 

0.16 < h ~ 0.75 for the considered ranges of the Reynolds and Froude numbers. Such 

possibilities are foreshadowed by the observation of Sheridan et al. (1995), who char

acterized a structure of the near wake for a single set of parameters. Sheridan et al. 

(1997) describe the jet-like flow as the flow formed by a vorticity layer from the free 

surface which is adjacent to a layer from the surface of the cylinder. The vorticity 

layer from the free surface is generated due to the localized separation (in the form 

of small scale breaking of a free surface wave) or complete separation from the free 

surface. On the other hand , in the jet flow the well defined layers of positive and 

negative vorticity from the free surface and top surface of the cylinder merge with 

the positive layer from the lower surface of the cylinder. In the work by Sheridan 
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et al. (1997) , the significant surface deformations are reported at Froude numbers 

0.47 ~ Fr ~ 0.72. 

The vortex shedding modes near the fundamental lock-on region and the result ing 

fluid forces for the case of an oscillating circular cylinder beneath the free surface 

have been addressed in the experimental works by Carberry et al. (2004), Carberry 

et al. (2001), Cetiner and Rockwell (2001 ) and Zhu et al. (2000). Carberry et al. 

(2004) and Carberry et al. (2001) considered transverse oscillations of the cylinder in 

a steady flow at R = 2100, Fr = 0.166, A= 0.5, 0.76 ~ f I fo ~ 1.05 and h = 3116, 

318. It is shown that the presence of a free surface appears to inhibit , but not 

eliminate, periodic vortex shedding from the oscillating cylinder. For both h = 3116 

and h = 318 the near wake structure is reported as 2S. However , the vortices shed into 

the wake appear to be less well defined and the vorticity is more widely distributed 

throughout the wake when compared to the corresponding case of a transversely 

oscillating cylinder in the absence of a free surface. 

In the work by Cetiner and Rockwell (2001), the uniform flow past the cylinder 

subject to in-line oscillations is considered at R = 917, 2075, Fr = 0.07, 0.158, 

A = 0.96, f I fo = 0.44, 1.0 and h = 0.06, 0.19, 11.23. It is shown that the effect of 

the free surface is to generate distinctly different pat terns of vor ticity in the near wake 

from those corresponding to the classical case of the Karman vortex formation from 

a transversely oscillating cylinder. Moreover , the observed patterns are shown to be 

different from the ordered patterns of vortex formation from a cylinder undergoing in

line oscillations in the absence of a free surface. Cetiner and Rockwell (2001) showed 

that the presence of an adjacent free surface provides the possibility for locked-on 
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vortex formation not only from the cylinder but also from the free surface at locations 

both upstream and downstream of the cylinder. It was shown that in the case when 

a finite gap exists between the cylinder and the free surface (h = 0.19), jet-like 

flow through the gap acts to destabilize such locked-on states by inducing a negative 

vortex from the cylinder surface. In the work by Cetiner and Rockwell (2001) , the 

experiments have been conducted over more than a hundred cylinder oscillation cycles 

and it was observed that for certain cases the flow is locked-on over several cycles of 

cylinder oscillation and then the transition to the non-locked state occurs. It was also 

shown that localized distortions of the free surface appear due to vortical structures 

shed from both the cylinder and the free surface. 

Zhu et al. (2000) investigated the effect of cylinder submergence depth on the vortex 

shedding modes and streamline topology for a cylinder undergoing combined transla

tory and vertically-accelerating motion at R = 1041 , where the Reynolds number is 

based on the maximum velocity of the cylinder, A= 0.4 and h = 0.76, 4.23. Zhu et 

al. (2000) have shown that the proximity of the free surface speeds up the process of 

vortex shedding from the upper surface of the cylinder. As a consequence, the shed 

vorticity exhibits a remarkable distribution of the vorticity in the near wake. The 

end consequence of this is substantially larger magnitudes of the negative lift force 

and the drag force relative to the case when the free surface is absent. 

There are only a few numerical studies which consider the viscous free surface flows 

with a circular cylinder. To the author's knowledge, only four numerical studies [Re

ichl et al. (2005), Reichl et al. (2003), Reichl (2001) and Warburton and Karniadaki 

(1997)] and two numerical studies [Gubanov (2006) and Yan (2000)] di cuss tationary 
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and oscillating circular cylinders, respectively. Reichl et al. (2005) and Reichl (2001) 

numerically investigated the level of free surface deformations, the structure of the 

near wake and the variation of the Strouhal number for the stationary cylinder case 

at R = 180, 0 :::;; F r:::;; 0.7 and 0.1 :::;; h :::;; 0.5. The two-dimensional flow is calculated 

using the computational fluid dynamics commercial software package FLUENT 5. The 

method of solution is based on a fini te volume discretization of the continuity and 

Navier-Stokes equations which are solved on an unstructured boundary-fitted grid. 

The two-phase flow model is chosen to capture the free surface using the modified 

VOF method as incorporated within FLUENT 5. The spatial discretization is performed 

by a quadratic upstream interpolation for convective kinematics method of Leonard 

(1979) . The discretization scheme used produces results which are second-order accu

rate in space and first-order accurate in time. The system setup simply involves the 

two fluid phases (the fluids in the regions n l and n 2) entering into the domain with 

a uniform velocity at the inlet and leaving through the outlet boundary where the 

pressure gradient is prescribed. The properties of the two phases are set as follows: 

density ratio p2/ p1 = 100 and viscosity ratio p..2/ p..1 = 100 ( vd v1 = 1). Here, p1 is 

the density of the fluid in D 1 ; p2 is the density of the fluid in D2; p.. 1 is the dynamic 

viscosity of the fluid in n l; J.l.-2 is the dynamic viscosity of t he fl uid in n2 ; //] is the 

kinematic viscosity of the A uid in n 1 ; v2 is the kinematic vi cosi ty of the fluid in 

D2 . It is shown that at low values of the Froude number (Fr < 0.3) the free surface 

shares many features with the case of flow past cylinder close to the non-deformabl 

surface. However , for moderate values of the Froude numbers (0.3:::;; Fr:::;; 0.4) , the 

free surface deformation becomes substantial which leads to localized free surface 

sharpening and wave breaking. The free surface vorticity diffuses and then convects 
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to the main flow, altering the development of Strouhal vortices from the top shear 

layer, affecting wake skewness and suppressing the absolute instability. At larger 

Froude numbers (Fr > 0.4), there is a suppression of the absolute instability in th 

wake. At very small cylinder submergence depths (0.1 ~ h ~ 0.2), shedding ceases 

and the flow becomes more two-dimensional. The results for the case of flow past 

a stationary cylinder submerged under the free surface at R = 180, Fr = 0.0, 0.2, 

0.1 ~ h ~ 0.5 and Fr = 0.55, h = 0.4 are addressed in the numerical study by Reichl 

et al. (2003). Reichl et al. 's work demonstrated that for Fr = 0.0, 0.2 a weak form of 

shedding is still observed down to h = 0.16 (no shedding observed at small r depths 

of submergence) while a jet flow is observed for Fr = 0.55, h = 0.4. 

Warburton and Karniadakis (1997) studied the vorticity generation mechanisms for 

the case of flow past a circular cylinder close to the free surface at R = 100, Fr = 0.3 

and h = 0.3, 1. The flow is sustained by moving the bottom boundary of the compu

tational domain with a constant velocity U. The motion starts impulsively and the 

Reynolds number is defined by R = pU d/ J..i,. The full incompressible continuity and 

Navier-Stokes equations in primitive variables are formulated in their variational form. 

This is done following the work by Ho (1989). To this end, the test functions, ~' are 

defined in the space where all functions and their derivatives are square-integrable, 

i.e., ;j;i E H 1[D(t*)]. Here, D(t*) is a time-dependent domain, where the governing 

equations are stated. Next, the Navier-Stokes equations are multiplied by the test 

functions and then integration by parts is performed. The reference system on which 

time differentiation takes place is defined by use of the Reynolds transport theorem 
~ 

and using the fact that the test function ¢i follows the material points and its time 
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derivative is zero in the same reference frame, i.e., 

defy ~ ~ 
_t = cPi t• + v~ cPi 3· = 0 
dt• ' J ' ' 

28 

(1.10) 

where vj is the dimensional velocity of the time-dependent domain D(t*). The gov

erning equations are solved in space using the spectral discretization which is based 

on the arbitrary triangulizations and a hybrid Lagrangian-Eulerian scheme. Follow

ing the work by Karniadakis et al. (1991), the governing equations are discretized in 

time using a splitting scheme and stiffly stable integration of third-order. The free 

surface is modeled explicitly by solving the stress balance conditions (1.4) and (1.5). 

These equations are discretized using an arbitrary Lagrangian-Eulerian scheme. The 

periodic conditions are assumed at the inflow and outflow boundaries while sliding 

plate conditions are applied to the bottom boundary of the computational domain. 

The no-slip conditions are imposed on the surface of a cylinder. Warburton and Kar

niadakis's work demonstrated that at h = 0.3 the free surface is strongly influenced 

by the vorticity generated at the cylinder even at the start up. At a later time, a steep 

cusp is generated on the free surface with large concentrations of opposite vorticity 

around the cusp. The magnitude of the vorticity around the cusp is as large as the 

maximum positive vorticity shed off the lower side of the cylinder. This study also 

showed that when h = 1.0 the mean drag has increased somewhat compared to the 

case when the free surface is absent. Moreover, the mean lift becomes non-zero with 

its direction towards the bottom wall. 

Yan (2000) investigated the influence of imposed steady current on the resulting 

steady streaming due to either recti-linear oscillations or purely orbital motion of a 

circular cylinder. In Yan's work, the vorticity /stream function formulation of the 
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continuity and the Navier-Stokes equations is employed . These equations are solved 

in a frame ofreference fixed to the moving cylinder , with the polar coordinate system. 

The computational grid of a hybrid type is used. In the neighbourhood of the cylinder, 

the grid is based on polar coordinates, elsewhere the grid is based on Cartesian 

coordinates. The numerical scheme employs a fully implicit Crank-Nicholson scheme 

of second-order and, in the overlap domain, flow variables are interpolated between the 

grids using techniques that maintain second-order accuracy. The method of solut ion is 

based on a perturbation scheme in which the magnitude of the steady current is chosen 

as 0(<:), where<:= A* /a« 1 and the Reynolds number, Rb = a2w* jv, i 50. Here, a 

is the cylinder radius and w* ( = 21r f) is the dimensional cylinder oscillation frequency. 

The inviscid flow solutions are used to provide boundary condi t ions at the free surface, 

and the inlet and outlet boundaries, for the viscous flow calculation . The inviscid 

flow solutions are obtained by expanding the velocity potential in powers of<:. Each 

term of the velocity expansion satisfies Laplace's equation, with the appropriate free 

surface boundary conditions derived from equations (1.4) and (1.5). The boundary 

element method is then used to calculate the unknown velocity potentials by following 

the works of Yan (1998) and Yan and Riley (1996). It is demonstrated that when 

the magnitude of the steady current is relatively large, the induced steady streaming 

for recti-linear oscillations is largely independent of the type of oscillations. On the 

other hand , for small magnitudes of steady current , the Reynolds stresses, produced 

by the oscillation become significant in the neighbourhood of the cylind r and hence 

the induced steady streaming has a classic four-cell structure. It is interesting to note 

that when t he cylinder performs uniform orbital motion, the circulation around th 

cylinder is almost independent of the magnitude of t he steady curT nt . 



1.1. Problem background and literature review 30 

The work of Gubanov (2006) is the first comprehensive numerical study conducted on 

the uniform two-dimensional flow past a transversely oscillating circular cylinder in 

the presence of a free surface. The numerical simulations are conduct d a t the lock-on 

conditions for the circular cylinder placed in unbounded fluid at R = 200, A = 0.25, 

0.5 and f / fo = 0.95, 1.0, 2.0 , 3.0, 4.0. The depth of cylinder submerg nee is fixed at 

h = 1.25 and the Froude number is fixed at 0.3. In Gubanov's work, the integral form 

of the governing equations is used to solve the incompressible viscous free surface flow 

problems using the pressure-velocity form of the unsteady incompressible continuity 

and the Navier-Stokes equations on a fixed Cartesian grid . In his work, the motion of 

the fluid in 0 1 is neglected and the effect of the ambient pressure exerted on the fluid 

in D1 by the fluid in 0 2 is taken into consideration . At the free surface, the boundary 

conditions (1.4) and (1.5) are solved after making use of the fact that in gravity 

dominated flows viscous and surface tension effects play a minor role and thus the 

terms 2p, ~~, CJ K and fJa) ax in (1.4) and (1.5) can be ignored . This is done following 

the works of Gerrits (2001) and Fekken (2004). The free surface is captured by use of 

the VOF method. The PLIC algorithm of Gerrits (2001) is utilized at each time step 

for determining the position of both the free surface and flu id-body interfaces. Th 

reconstructed free surface is then advected using computed local velocity field based 

on the geometrical area preserving VOF advection algorithm of Aulisa et al. (2003b). 

Well-posed boundary conditions due to Gresho and Sani (1998) are used at the inflow 

and outflow boundaries. The no-slip boundary conditions are prescribed at the surface 

of the cylinder. For the treatment of the no-slip boundary, the cut cell method of 

Gerrits (2001) and Fekken (2004) is used. Gubanov's work demonst rated that for 

small amplitude oscillation, A = 0.25, the presence of a free surface has a slight 
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effect on the dynamics of vortex shedding process. However, at A = 0.5 the effect 

of transverse oscillation becomes significant which leads to pronounced disturbance 

of the free surface and a change over from one mode of vortex formation to another 

is observed as f / fo increases from 0.95 to 4.0. The observed vortex shedding modes 

are 2S per T , C( 4S) per 5T, C(2S) per 3T and C( 4S) per 4T when h = 1.25. 

In the vortex shedding mode C ( 2S) , per 3T, the cylinder alternately sheds a single 

vortex from each side over 3T, in which the development of each vortex is a result of 

coalescence of two weak vortices in the shear layer. Similarly, in the vortex shedding 

modes C( 4S) , per 4T, and C( 4S) , per 5T, the cylinder alternately sheds a single 

vortex from each side over 4T and 5T, respectively, in which the developm nt of each 

vortex is a result of coalescence of two weak vortices in the shear layer. It is al o 

shown that the presence of a free surface has a great influence on the unsteady and 

mean fluid forces acting on the cylinder as well as the mechanical en rgy transfer. 

1.2 Scope of the thesis 

In this thesis, an accurate computational method is presented for the solut ion of the 

problem of uniform flow of a viscous incompressible fluid past an oscillating horizontal 

rigid circular cylinder of infinite length located beneath the free surface. The method 

of solution is based on a finite volume discretization of the special integral form of the 

two-dimensional unsteady continuity and Navier-Stokes equations in their pressure

velocity formulation on a fixed Cartesian grid. The two-phase fluid model based 

VOF method is used to discretize the free surface interface. The combined FAVOR 
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and cut cell method is used to approximate the fluid-body interface on the Cartesian 

grid. The computational model is implemented into computer program written in 

C++ programming language. The method is applied to study the probl m of unsteady, 

laminar, two-dimensional flow of a viscous incompressible fluid past a cylinder subject 

to recti-linear oscillations in the in-line direction to that of uniform flow in the presence 

of a free surface. 

The content of the remainder of this thesis is organized as follows . In Chapter 2, 

the detailed derivation of governing equations for the numerical simulation of the 

present viscous flow with a moving solid body is given. A special integral form of 

the governing equations is derived by extending the Reynolds transport theorem and 

then applying it to control volumes containing a fluid-body interface. This is done 

by utilizing, mainly, generalized differentiation. In this derivation , the Heaviside unit 

step function (defined as zero within the solid body and one within the fluid) is used 

to represent the fluid property over entire control volume (computational cell ). The 

integration of the Heaviside unit step function over the computational c 11 occupied 

by the solid body geometry results in the introduction of the areas and volume open 

to flow in this cell. This allows one to represent the fluid-body interface within the 

grid by computing the areas and volume open to flow for each computational cell 

occupied by the static or moving solid body. 

In Chapter 3, the computational model and method are presented. The governing 

equations derived in Chapter 2 are discretized using a finite volum approximation 

on a staggered grid. The no-slip conditions are implemented on the surface of the 

cylinder. Well-posed boundary conditions are enforced at the inflow and outflow 
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boundaries since they ensure correct physical development of the flow near the com

putational domain boundaries. The free slip boundaries are assumed at the top and 

the bottom of the computational domain. The free surface boundary conditions are 

applied implicitly using the two-phase flow technique which treats the fluids in re

gions D1 and D2 as one fluid with variable material properties. The free surface is 

discretized with the VOF method in which the volume fraction is used to distinguish 

between two different phases, t he fluid in nl and the fluid in n2, in the computa

tional domain. The positions of both the free surface and fluid-body interfaces are 

determined at each time step using the PLIC algorithm. The advection of the re

constructed free surface with local velocity field is performed by the geometrical area 

preserving VOF advection algorithm. The combination of the FAVOR and cut cell 

methods is used to model the motion of the fluid-body interface. 

In Chapter 4, the ability of the present numerical model to approximate free surface 

flows with moving bluff bodies and other relevant viscous flows is discussed. Specifi

cally, the test problems are restricted to the two-dimensional, unsteady, laminar flow 

of a viscous incompressible fluid around circular cylinders. The validation of nu

merical algorithm is presented for uniform flow past (i) a stationary cylinder; (ii) a 

cylinder undergoing forced recti-linear oscillations (oscillations at an angle ry = 60° 

with respect to the free stream, transverse, in-line oscillation ); (iii) a cylinder under

going forced combined transverse and rotational, and combined in-line and rotational 

oscillations; (iv) a steadily rotating cylinder in the absence of a free surface. The 

validation of the present numerical model is also presented for uniform flow past (i) 

a stationary cylinder and (ii) a cylinder undergoing forced translational oscillations 

in the in-line direction in the presence of a free surface. 
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In Chapter 5, the present computational method is applied to study the problem 

of unsteady, laminar, two-dimensional flow of a viscous incompressible fluid past a 

cylinder subject to recti-linear oscillations in the in-line direction to that of uniform 

flow in the presence of a free surface. The fluid flow is calculated at the Reynolds 

number of R = 200 and the forcing amplitude A = 0.13 for the range of frequency 

ratios 1.0 ~ f / fo ~ 4.0. The flow characteristics for the Froude numbers Fr = 0.0, 

0.2, 0.4 and for the depths of cylinder submergence h = 0.25, 0.5, 0.75 are examined. 

The results are analyzed by means of equivorticity patterns, streamlines and pressure 

contours in the near wake region as well as the fluid forces. The PSD analysis of the 

lift coefficient, the near wake vorticity contours and the Lissajous patterns of the lift 

coefficient are used to define the lock-on modes. The Lissajous representations of the 

lift and drag coefficients are also used to demonstrate the mechanism of mechanical 

energy transfer between the fluid and the cylinder, degree of phase-locking or a loss 

of lock-on and associated phase shift. The effect of the free surface on the mechanical 

energy transfer is also explained using the energy transfer equation. For selected 

cases, POD analysis of the vorticity field is used to interpret unsteady near wake 

structures in terms of POD eigen-modes. 

Summary and conclusions, and recommendations for future work can be found in 

Chapter 6. 



2. Viscous incompressible free surface 

flow model with a moving solid body 

In this chapter, the detailed derivation of governing equations for the numerical simu

lation of viscous free surface flow with a moving solid body and appropriate boundary 

conditions are presented. A special integral form of the governing equations is de

rived by extending the Reynolds transport theorem and then applying it to control 

volumes containing a fluid-body interface. This is done following the works by Hirt 

and Sicilian (1985) and Farassat (1996) and by utilizing, mainly, generalized differ

entiation. The resulting governing equations are the integral form of the well-known 

FAVOR equations. The FAVOR equations were originally introduced in the works 

of Hirt (1992) and Hirt (1993). Their derivation is based on the FAVOR technique 

of Hirt and Sicilian (1985). In the work by Hirt and Sicilian (1985) , a grid porosity 

technique for computing flows bounded by complicated geometric shapes is described. 

Solid bodies are defined within a grid composed of rectangular control volumes (com

putational cells) with a porosity value between zero and one as the solid body fills 

in the control volumes. The grid porosity value is zero within solid bodies and one 

for cells without the solid body. Cells only partially fi lled with a solid body have a 

value between zero and one, based on the percent volume that is solid. Therefore, the 

solid body interface is defined by cells within the grid that have a porosity between 

zero and one. The location of the solid body interface in each cell is defined as a 

straight line in two dimensions and a plane in three dimensions and is determined 

by the points where the solid body intersects the cell faces. The slicing plane not 

35 



36 

only defines the volume fraction that can contain fluid but also determines the area 

fraction on each cell surface through which flux (fluid flow) can occur. Geometries 

are embedded in the mesh by setting the area fractions on the control volume faces 

along with the volume fraction open to flow. This makes the geometry and th grid 

completely independent of each other, and, as a result, complex solid body can be 

generated. Geometry of the solid body is defined within the fluid grid by computing 

the fractional areas and volumes of each element that is blocked by static or moving 

solid body. Thus, this technique is known as the FAVOR method (also known as fluid 

flow aperture technique). The differential form of the FAVOR equations for treating 

two-dimensional incompressible Newtonian viscous fluid flows with solid bodies of 

arbitrary configuration can be written in a Cartesian coordinate system as follows . 

The two-dimensional porosity equations, 

8H ( -) - + "V · Hu = 0 
8t* ' 

(2.1) 

8(Hi.i*) 1 -
--- + "V · (Hi.i*i?) = --H"Vp* + v"V · H"Vi? + HF* 

8t* p ' 
(2.2) 

can be reformulated using fractional area and volume porosity functions based on the 

FAVOR method as 
av· o(u*A*) o(v*A* ) -- + X + y = 0 
8t* 8x* 8y* ' 

(2.3) 

8u* 1 ( . -;:.8u* .-;: . 8u*) F * lop* n 2 * -+- Ulil.-+Vlil.- = - --+vv u 
8t* V* X OX* y Oy* l P OX* > 

(2.4) 

- + :=;:-- U lil. - + V lil. - = ---+II v V 
8v* 1 ( * -;: * 8v* * -;: * 8v*) F.* 1 8p* n 2 * 
8t* V* x 8x* Y 8y* 2 p 8y* 

(2.5) 

[see, for example, Hirt (1992) , Hirt (1993) , Tsukiyama et al. (1993) and Zhu and 

Wu (2004) , Hirt and Sicilian (1985) , Troch et al. (2002)]. In equations (2.1 )-(2.5) , 
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H(X* ) is the porosity (Heaviside) function t hat is equal to unity if X* is in the fluid 

region and zero if X* is in the solid body; \l = (!, :y, 0) ; F* = (F1 *, F2 *, 0) is 

the dimensional external force; V* is the fractional volume (fractional volume porosity 

function) open to flow within the computational cell , V*; .A; and .A; are the fractional 

areas (fractional area porosity functions) open to flow within the computational cell , 
~ 

V*, in x*- and y* -directions, respectively. It is noted that V* and A;, A; are located 

in the centre and in face centers of the boundaries of each computational cell , respec-

tively, as shown in Figure 2. 1(c). They are defined as the limit of the average of the 

porosity function over the computational cell itself, V*, and th computational cell 

boundary, S*, 

where 

v· = lim V*, 
V *-+0 

V* = ~JH dV* V* , 
v· 

A*= 2_JH dS* 
X S* ) 

X s· :t 

Here, V* and A.;, A.; are the fractional volume and areas, respectively, open to flow 

within the computational cell , V* [see Hirt and Sicilian (1985) for details]. Equations 

(2.3)-(2.5) are known as the different ial form of the FAVOR equations. These equa-

tions are ident ical to the special differential form of the continuity and Navier-Stokes 

equations (when a solid body is present) . Figure 2.2 summarizes the derivation of 

the differential and integral forms of the FAVOR equations. In Appendix A, their 

derivation is presented. 

In what follows, the special integral form of governing equations for two-dimensional 

flow of an incompressible Newtonian fluid with moving solid bodies of arbitrary config-
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X 

V* x* - ~ 

A* 2 
A* y 

(a) (b) (c) 

Figure 2.1: (a) Typical solid body surface within a Cartesian grid, (b) typical com
putational cell , V*, which includes areas Ai (i = 0, 1, 2, 3) and volume, V*, open to 
flow within V*, (c) location of A.;, A~ and V* within the computational cell , V* . The 
solid body is shown in gray. 

uration is presented. The governing equations are derived by extending the Reynolds 

transport theorem and then applying it to control volumes containing a fluid-body 

interface. In the process, a new model for a class of flows including free surface flows 

with moving bodies is constructed based on the FAVOR technique and the general

ized functions theory. The properties of the generalized functions used in deriving 

these equations are given in Appendix B. 

2.1 Governing equations of viscous fluid dynamics 

Many numerical models developed for the study of viscous fluid flow dynamics are 

based on the differential form of the continuity and Navier-Stokes equations. The 

general differential form of governing equations can be stated as 

fJp + \l . pU* = 0 
at* ' 

(2.6) 
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8~ -ot* + (pu · \7) u: = - \7p* + \7. (11\lu) + pF*, (2.7) 

where equations (2.6) and (2.7) represent the conservation of mass and momentum, 

respectively; p = p(p, t , T 0
), where T 0 is the absolute temperature of the fluid. It 

is noted that for incompressible Newtonian fluid (p is constant), equations (2.6) and 

(2. 7) coincide with the porosity equations (2.1) and (2.2) when no solid body is 

present. In a finit volume discretization , the conservation laws are transformed into 

discrete conservation laws. Therefore, the integral form of the governing equations 

of viscous fluid flow dynamics yields advantages with respect to conservation of the 

analytical properties and forms a basis for the discretization used in the present 

thesis. The conservation of mass (also known as the continuity equation), considering 

an arbitrary control volume, V*, with boundary s•, can be written in the integral 

form as 

j :; dV* + j (pu. n) dS* = o. (2.8) 

v· s· 

T he conservation of momentum (also known as the Navier-Stokes equations) , with 

respect to control volume, V*, takes the form 

j o;t~ dV* + j ~ (u · n) dS* =- j p*n dS* + j 11\lu · n dS* + j pF* dV*. 

v· s· s· s· v· 
(2.9) 

Here , the control volume, V*, is defined as an imaginary boundary used to identify 

the system and in particular locate all the inlets, outlets and energy sources. It is 

noted that the differential equations (2.6) and (2. 7) can be derived from the integral 

equations (2.8) and (2.9) by making use of the divergence theorem [see, for example, 

Versteeg and Malalasekera (1995)]. 



Differential form of FAVOR equations: 

av• a(u*A*) a(v*A*) + X + y -0 
Ot* ax* ay* -

-+=- u - +v - = - -- + v u au* 1 ( *A*au* ·A;au* ) F* lap* \12 * 
at* V* X ax* ay* 1 pax* 

av* 1 ( • A\. av* • A; av*) F • 1 ap* \12 • - +=- u -+v - = 2 ---+v v 
at* V* X ax* ay* pay* 

* = limv·~o __!_ J H dV* 
~ 1 
Ai = lims; _,o S* f Hi dS* , i = 

v· v· i s; 

Hirt and Sicilian's porosity equations: 

aH ( "'*) - + \1· H u = 0 
at* 

a(Hii*) 1 -+ \1 · (H i1*i1*) = - -H\lp* + v\1· H\lii* + HF* 
at* P 

Multiplication by the Heaviside function , H 

Differential form of continuity and momentum equations: 

ap + \1 . pu"'* = o 
at* 

apii* -
/Jt* + (pii* . \1) i1* = - \lp* + J.L \1271* + pF* 

x,y 

Integral form of FAVOR equations: 

dVd : + f ( ii · i1*) dS* = 0 
t A• 

!!:.._ f i1* d V* + f ( ii · i1* )ii* dS* 
dt* v• A· 

= -~ J p*n dS* + v J n. \lii* dS* + f f • dV* 
P A·un· A·un· v· 

Generalized transport theorem 

and the FAVOR method 

Integral form of continuity and momentum equations: 

d 

!!:.._ f p dV* = 0 
dt* v• (t•) 

J pi1* dV* = J pF* dV* + J a· n dS* 
dt* v•(t•) v• (t• ) av·(t•) 

Figure 2.2: The derivation of the differential and integral forms of the FAVOR equations: Hirt and Sicilian (1985), 
Hirt (1992), Hirt (1993), Tsukiyama et al. (1993), Zhu and Wu (2004), Troch et al. (2002) (left) and present 
thesis (right). 
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Equations (2.8) and (2.9) can be derived by applying the Reynolds transport theorem 

to the law of conservation of mass and Newton's second law of motion, respectively 

[see, for example, White (1998)]. The Reynolds transport theorem states that at 

t* = t0 the time rate of change of the continuously differentiable fluid property, P 

(such as p and pii), within the material volume, V *(t*) , equals the sum of the time 

rate of change of this property within the control volume, V*, and its flux through 

the control volume boundary, S*, 

d~* J P dV* =a~* J P dV* + J P(ii* · n) dS*, (2.10) 

v·~·) v· s· 
where the material volume, V*(t*), is defined as the time dependent volume of fluid 

consisting of identical fluid particles. The Reynolds transport theorem (2.10) only 

holds for the control volume which contains no fluid-body interface. In this thesis, 

the governing equations are discretized using a non-boundary-fitted Cartesian grid. 

Consequently, to be able to model the problems with a stationary or moving solid 

body using this type of the grid , it is necessary to extend the Reynolds transport 

theorem over the control volume containing a fluid-body interface. 

2.2 Integral form of the FAVOR equations 

In this section, the integral form of the continuity and Navier-Stokes equations when 

a solid body is present are derived based on the FAVOR technique and the generaliz d 

function theory after making use of the generalized Reynolds transport theorem. 
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2.2.1 Generalized Reynolds transport theorem 

A typical rectangular control volume, V*, which is partly occupied with t he fluid i 

considered as shown in Figure 2.3. The material volume, V*(t*) , is the part of an 

arbitrary material volume, n, which consists of all the fluid particles located within 

control volume, V*, at t* = t0. Since the material volume, V*(t*), is moving, at 

v· 

Figure 2.3: Control volume containing a fluid-body interface. 

t* = t0 + 6.t* it occupies another region A' B~ C' BbA' as hown in Figure 2.4. The 

determination of how the fluid property, P , changes with time within the material 

volume, V*(t*), is of interest. In order to calculate the time rate of change of fluid 

property, P , within the material volume, V*(t*), 

_:!:__ J P dV* 
dt* ' 

(2. 11) 
v•(t•) 

only very small values of 6.t* are considered , so that the topology of the control 

volume boundary, oV* ( t*), is not changed. The boundary of the material volume, 

oV* ( t*), is piecewise smooth and consists of two parts: S; ( = AB1 C) is the part 

which coincides with the control volume boundary; 52(= AB2C) is the fluid-body 

boundary located within the control volume, V*(t*). Farassat (1996) has shown that 
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c 

Figure 2.4: Regions AB1CB2A and A'B~C'B~A' denote material volumes at t* = t0 
and t* = t0 + D.t* , respectively. 

<P( X*) 

x* 

80 = <P = 0 
y* 

\-+--~ 

Figure 2.5: Level set function representation. 

any arbitrary domain 0 with the boundary 80 can be conveniently represented by 

the level set function ¢(X*) as shown in Figure 2.5, whose zero level set coincides with 

the domain boundary, 80. The function ¢(X*) can be chosen such that 

> o, X* E o, 

<P(X*) = < 0, X* rt 0 , (2.12) 

= 0, X* E 80, 
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and 

V¢(X*) = ii, (2.13) 

where ii denotes an inward unit normal vector. Following the work of Farassat (1996), 

the boundaries sl and s2 are represented by the level set functions ¢1 (X") and ¢2 (X")' 

respectively. The Heaviside unit step function, H(¢) , is used to represent the fluid 

property, P , over three-dimensional real space, JR., as 

where 

<I> = H(¢(X*) ) P, 

{ 

1, ¢ > 0, 
H(¢) = 

0, ¢ < 0 
and <I> = { 

(2.14) 

P, X" E D, 
(2.15) 

0, 

It is noted that <I> = 0 at all X" ~ n since ¢(£") < 0 (H(¢) = 0) at all X" ~ n. 
Consequently, the fluid property, P , can b represented as an integral of <I> over JR. 

by 

J P dV* = J <I> dV* = J H (¢(X*)) P dV*. (2.16) 

n IR IR 

The time rate of change of the fluid property, P , within material volume can be then 

expressed as 

d~* J P dV* = d~* J H(¢I)H(¢2)P dV*. (2.17) 

v•(t• ) JR 

d 
Since <I> is a discontinuous function, dt* represents the generalized time derivative in 

the integral on the right hand side of equation (2.17). Equation (2 .17) can be written 

as 

d~* J H(¢I)H(¢2)P dV* = J d~* ( H (¢1)H(¢2)P) dV*, (2 .18) 
IR IR 
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after making use of the fact that the generalized time derivative, dd , can be moved 
t* 

inside the integral over R It is noted that since H(¢1) and H(¢2) are discontinuous 

in different points then its generalized derivative can be calculated by 

J d~* (H(¢1)H(¢2)P) dV* = J H(</>1 (t~)) d~*H(¢2)P dV* 
R R 

+ J H(¢2(t~))P(t~) d~*H(¢1) dV*. 

(2.19) 

R 

Consider the integrals on the right hand side of equation (2.19). In the first integral, 
d 

H ( ¢ 1 ( t0)) is constant and the generalized t ime derivative, dt* , can be taken outside 

the integral directly since IR is independent of time. Thus, 

J H(¢1(t~)) d~*H(</>2) P dV* = d~* J H(</>1 (t~))H(¢2)P dV*. (2.20) 
R R 

The product H( </>1(t0))H(</>2) in the above integrand is not zero at all i* E V* n n, 

which is the part of the control volume open to flow. Following the work of Hirt and 

Sicilian (1985), the volume open to flow is defined, for arbitrary V*, as 

(2.21) 

v· 
A typical example of the volume open to flow, V*, within the computational cell is 

shown in Figure 2.1(b) . The fluid property, P , is a continuously differentiable function 

in V* and H(</>1(t0))H(</>2) = 1 at all i* E V*. Thus, equation (2.20) can be written 

as 

d~* J H(¢1(t~))H(¢2)P dV* = d~* J P dV*, 
R ~ 

where dd is the time derivative. 
t* 

(2.22) 
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The generalized time derivative of H(</h) = H (</>J(x*(t*))) is 

dH(¢1) = dH(¢1) (8¢1 dX* ) 
dt* d¢1 ax• dt* ' 
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(2.23) 

where the time rate of change of a fluid particle at point X*, dX*, is the fluid velocity 
dt* 

. ~-· at pomt x , uc, 1.e., 

(2.24) 

In addition , 

(2.25) 

where 6 is the Dirac function. Thus, the second integral on the right hand side of 

equation (2.19) can be written as 

j H (¢2(t0 ))P(t0) d~* H(¢1) dV* = j H(¢2(t0))P (t0)(fi · u)b(¢1) dV*, (2.26) 

R R 

after making use of equations (2.23), (2.24) and (2.25). The integral on the right 

hand side of equation (2.26) can be written as 

J H(¢2(t0))P(t0)(fi · u )b(¢1) dV* = J P(t0)(fi · u) dS* , (2.27) 

R A• 

after making use of equation (B.5) and the fact that H (¢2 (t0)) is not zero at all X* En 
and H (¢2 (t0)) = 1 at all X* E V*. Here, 

(2.28) 

is defined as the area open to flow across the computational cell boundary S*. The 

areas A0 (left ), Ai (right), A2 (bottom) and Aj (top) are either completely open to 

flow within a computational cell or blocked as are the right , Aj, and bottom, A2, 

areas shown in Figure 2.1. It is noted that in the present thesis the values of V* and 

A* are not normalized unlike in the study by Hirt and Sicilian (1985). This greatly 
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simplifies the discretization of the governing equations as will be shown later. 

Finally, equation (2.17) can be rewritten as 

d~* J P dV* = d~* J P dV* + J (ii · ii*)P dS*, (2.29) 
v·(t•) v · A· 

after making use of equations (2.18)-(2.20), (2.22), (2.26) and (2.27) . This yields th 

generalized form of the Reynolds transport theorem which states that at t* = t0 the 

rate of change of the fluid property, P, within the material volume, V* (t *), equals 

the sum of the rate of change of this property within the part of the control volume 

open to flow , V*, and its flux through the control volume boundary open to flow , A*. 

The flu id is assumed to be incompressible and Newtonian in the subsequent sections. 

2.2.2 Continuity equation 

The conservation of mass, 

d~* J p dV* = 0, (2.30) 

v· (c) 

states that the mass of material volume, V *(t*) , is constant if there are no sources or 

sinks of mass. Equation (2.30) can be written for the control volume, V* , containing 

a fluid-body interface as 

d~* j p dV* + j (pii* · ii) dS* = 0, (2.31) 

after making use of the generalized Reynolds transport theorem (2.29) and taking 

P = p. For the incompressible Newtonian fluid case (p is constant), the continuity 
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equation takes the form 

~.· + j(n. iZ*) dS* = o. (2.32) 

A• 

2.2.3 Navier-Stokes equations 

Newton's second law of motion states that the rate of change of momentum in the 

material volume, V*(t*) , is equal to the resulting external force acting on its boundary, 

V*(t*), i.e., 

d J piZ* dV* = F*. 
dt* 

v· (t•) 

(2.33) 

There are two types of external forces which act on the fluid particle in the material 

volume. The volume forces act on the material volume, V*(t*), and surface forces act 

on the boundary of the material volume, 8V*(t*), 

ff• = j pF* dV* + j a-. n dS*. (2.34) 

v•(t•) av•(t•) 

It is noted that at the considered moment of time, t = t0 , control volume V* coincides 

with the material volume V*(t*). Thus, equation (2.34) can be written as 

ff• = j pF* dV* + j a- . n dS*. 

v· s· 

(2.35) 

Equation (2.33) can be rewritten, after making use of equation (2.35) and applying 

the generalized Reynolds transport theorem (2.29) (where P = pU*) as 

d~* j piZ* dV* + j (n · U*)piZ* dS* = j pF* dV* + j a-· n dS*. (2.36) 

v· A' v· s· 
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For the Newtonian fluids the stress tensor, G-, has the form 

a- = -p* J + l.l ('VU" + ('VU"f). (2.37) 

For the continuous double differentiable velocity fields, the stress tensor, a, takes the 

form 

(2.38) 

as shown in Appendix C. The stress tensor form (2.38) is more convenient for numer-

ical approximation of the Navier-Stokes equations since it eliminates the unknowns 
ou* ov* 
~and~ from the x*- and y*-momentum equations, respectively, and thus greatly 
uy* ux* 
simplifies the discretization. 

Consider the integrals on the right hand side of equation (2.36). The volume integral 

can be rewritten as 

j pF* dV* = j pF* dV*. (2.39) 

v· v· 

Similarly, the surface integral can be rewritten as 

j a. n: dS* =- j p*n dS* + j n ·~.L'VU" dS* 

s· s· s· 

=- j p*n dS* + j n: ·~.L'VU" dS*, 
(2.40) 

A·un· A·un· 

after making use of equation (2.38). Here, JI* denotes the length of a fluid-body 

interface open to flow within the control volume, V* . Substitution of equations (2.39) 

and (2.40) into equation (2.36) yields the Navier-Stokes equations for the Newtonian 

fluids, formulated for the control volume containing a fluid-body interface 
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d~* j pi? dV*+ j (n ·i?)pi? dS* =- j p*fi dS*+ j fi·p.\li? dS*+ j pF* dV*. 
v· A· A·un· A·un· v· 

(2.41) 

Equation (2.41) can then be written as 

d~* j i? dV* + j (fi · i?)i? dS* = -~ J p*fi dS* + v j fi ·"Vi? dS* + j F * dV*, 
v· A· A·un· A·un· v· 

(2.42) 

after making use of the fact that incompressible fluid density, p , and dynamic fluid 

viscosity, Jl. , are constant. 

Equations (2.32) and (2.42) are the int gral form of the continuity and avier-Stoke 

equations: 

:: + j (n. U:) dS* = o, 
A• 

d~· J i? dV* + J (fi. i?)i? dS* = -~ J p*fi dS* + 1/ J fi. "Vi? dS* + J F* dV*' 
v• A· A·un• A·un· v· 

which are valid for control volumes containing a fluid-body interface. In this thesi , 

these equations are named as the integral form of the FAVOR equations. These 

equations are identical to the special integral form of the continuity and Navier-Stokes 

equations (when a solid body is present). It is important to note that quations (2.32) 

and (2.42) can be derived from the differential form of the FAVOR equations (2. 1) 

and (2.2) after making use of 

JV* dV* = V* 
v• ' !A* dS* = A0 

X so, (2 .43) 

v· s· 
This derivation is given in Appendix A. 

It is noted that two-phase avier-Stokes flow models generally include interface ef-
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fects such as surface tension. However, this study deals with the gravity dominat d 

flow in which surface tension plays a minor role and thus can be ignored [see, for 

example, Reichl et al. (2005) , Fekken (2004), Armenio (1997)]. The finite volume 

formulation of the governing equations (2.32) and (2.42) p rmits discontinuiti s in 

material properties and the fluids in 0 1 and 0 2 are assumed to be incompressible. 

Thus, the governing equations remain valid for the present two-phase flow model in 

which surface tension effects are ignored [see Prosperetti and Tryggvason (2007) for 

details]. 

2.3 Boundary conditions 

In this section, the boundary conditions for the problem under consideration are 

stated. These conditions are the no-slip of the fluid on the cylinder surface, the 

uniform stream at the inflow, the zero shear stress (free slip) at the top and bottom 

boundaries of the computational domain and the outflow boundary conditions based 

on the balance of surface forces (also known as the open boundary conditions [Gresho 

and Sani (1998)]). It is noted that in two-phase models there are no explicit boundary 

conditions at the free surface interface. Instead , a single set of the governing equations 

is solved in the flow domain 0 = D1 U 0 2 (see Figure 1.1). The free surface is then 

defined in the grid cells where a rapid change in density, p, and viscosity, J.l, occurs. 

Fluid-body interface 

At the surface of the cylinder , the no-slip boundary conditions for a viscous fluid , 

u* = u• c > * * v = vc, (2 .44) 

are applied. The no-slip conditions state that a solid boundary is impermeable and 
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the flow sticks to the surface of a solid body due to the viscous effects. 

Inflow and out flow 

Uniform flow conditions apply at the infinity. Due to the bounded computational 

domain , the following inflow and outflow boundary conditions have been chosen. At 

the inflow boundary, the uniform free stream conditions, 

u* = U, v* = 0 (2.45) 

are prescribed. 

The outflow part of the computational domain boundary is the hardest on to model 

since, due to the development of an unsteady cylinder wake, the non-uniform ve-

locity field at the outflow is expected. The most commonly used outflow boundary 

conditions are that of zero normal and tangential derivatives of fluid velocity, 

au~= 0 
on ' 

au;= 0 
on ' (2.46) 

which may be supplemented with prescribed pressure at the outflow [see, for exam-

ple, Versteeg and Malalasekera (1995)]. Gresho and Sani (1998) have shown that the 

boundary conditions (2.46) are mathematically ill posed. In their work, the open 

boundary conditions based on the balance of surface forces at the outflow are sug

gested. In what follows, the derivation of the open boundary conditions due to Gresho 

and Sani (1998) is given. 

The external surface force, F
8
*, acting on the outflow boundary is balanced by the 

fluid surface force 

Fs* = J n . a- dS*. (2.47) 

s· 
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Equation (2.47) can be written in the component form as 

F* = j ov* dS* 
s ,2 ox* ' (2 .48) 

s· 
after making use of the fact that the normal vector at the outflow boundary is 

n = (1 , 0, 0) . The normal component of external force, F:, 1 , includes the pressure 

which consists of the hydrostatic, P'h, and hydrodynamic, bp* , components 

p* = P'h + bp*. (2.49) 

The external force F:,1 can be represented as 

F:,1 + J P'h dS* = J ( - bp* + 11 ~~: ) dS* , (2.50) 

s· s· 
after making use of equation (2.49) . Equation (2.50) can be rewritten as 

Fs~l + J P'h dS* = 0. (2.51) 

s· 
This is done based on the fact that in equation (2 .50) the hydrostatic pressure is 

ou* 
dominant and the hydrodynamic pressure, bp* , and the viscous term, 11-;.:;-- , can be 

ux* 

ignored . The hydrostatic pressure, P'h, can be defined as 

P'h = pg*h,* , (2.52) 

where 11: is the height of the fluid at the outflow boundary. Substitution of equation 

(2.52) into equation (2.51) yields 

Fs*,l = - j pg*p'h dS*. (2.53) 

Finally, the normal velocity open boundary condition can be written as 

j ( - p* + 11 ~~: ) dS* = - j pg*h* dS*, (2.54) 

s· s· 
after making use of equations (2.48) and (2.53). Equation (2.54) can be then written 
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in the differential form as 
!:! * * uu *h-* p v-+g = -. 
ox* p 

(2 .55) 

This is done by making use of the fact that the incompressible fluid density, p, is 

constant. The tangential velocity boundary condition 

J ov* dS* = 0 
ox* 

s· 
(2.56) 

follows from equation (2.48) after making use of the fact that F
8
*,2 = 0. This equation 

can be written in the differential form as 

ov* 
ox* = o. (2.57) 

Thus, boundary conditions (2.55) and (2.57) are prescribed at the outflow. 

Free slip 

At the top and bottom boundaries of the computational domain , the free slip bound-

ary conditions which state that the shear stress is zero at the boundary, 

ou* 
~ = 0, v* = 0, 
ux* 

are prescribed. 

(2.58) 

2.4 Frame of reference and nondimensional pa-

rameters 

The preliminary numerical experiments conducted in the pres nt study show that 

when the cylinder moves through the fixed staggered grid, the pressure cell which 
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belongs to the cylinder at time t = tn may become the fluid cell at time t = tn+l. 

The continuity equation (2.32) needs to be discretized in this pressure cell. Since at 

time t = tn the velocities in the pressure cell do not satisfy the mass balance exactly, 

the pressure field has to do extra work to restore the mass balance in the pressure 

cell at time t = tn+l. This extra work seems to reflect as a spike in the pressure. 

Fekken (2004) and Kleefsman (2005) attempted to overcome this difficulty but they 

failed to eliminate these pressure spikes. In the present computational model, the 

pressure spikes are eliminated by using a non-inertial frame of reference (symbolically 

denoted by X) which translates with the cylinder. In Appendix D, it is shown that 

the governing equations (2.32) and (2.42) are invariant in the non-inertial frame of 

reference, X. 

The governing equations and boundary conditions for the problem under considera-

tion can be summarized as follows 

:.· + j(n. U:) dS* = o, (2.59) 

A• 

d~* J u: dV* + J (ii. U:)U: dS* = -~ J p*ii dS* + 1/ J ii. "Vii: dS* + J F* dV* 
v· A• A•un· A·un• v· 

and 

u* = 0, 

u* = U - v~, 

!::l * * uu *h- * p v-+g = - , 
ox* p 

ou* 
~=0, 
ux* 

v* = 0 

v* = -v; 

ov* 
-=0 
ox* 

* * v = -v2 

at the cylinder boundary, 

at the inflow boundary, 

at the outflow boundary, 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

at the top and the bottom boundaries. (2 .64) 
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It is noted that equations (2.59)-(2 .64) are stated in the non-inertial frame of reference, 

X; ~ = ( v;, v2, 0) is the dimensional velocity of the non-inertial frame of reference, 
~ 

X. 

All the quantities in equations (2.59)-(2.64) are stated in their dimensional form. The 

dimensionless counterparts of these quantities are given by 

x* 
X=d' 

y* 
y=d, 

u* 
U= U' 

v* 
V= U' 

t*U 
t=d, 

V* 
V= di ' 

A* 
A=d, 

S* 
S=d , 

V* 
V= df' 

A* 
A=d, 

where U and d are the unit characteristic parameters. The pre sure, p*, in equation 

(2.60) is divided by p1 when this equation is solved in the region D 1 and by p2 when 

this equation is solved in the region D2 . Thus, the dimensionless pressure, p, becomes 

{ ,, where E = 
1, 

p 
(2.65) 

where 1 = pi/ p2 . In this thesis, the fluid properties are set to pi/ P2 = 1/ 100 and 

J.Ld J.L2 = 1/100 or vifv2 = 1. This is done following the work of Reichl et al. (2005). 

Therefore, the Reynolds numbers in the fluids in D1 and D2 are the same and are 

defined by 

Finally, the Froude number is 
u 

Fr = ../di*. 

The governing equations in their dimensionless form become 

: + j ( u . n) dS = o 
A 

(2.66) 

(2 .67) 

(2.6 ) 
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:t j a dV + j (ii. u)u dS = -~ j pii dS + ~ j n. V'u dS + j f dV. (2.69) 

v A Aun Aun v 

In equation (2.69), c = p2/ p1 when this equation is solved for the fluid in n1 and c = 1 

when it is solved for the fluid in n2· The external force, F, is due to the dimensionless 

gravity force, §= (0, 1/Fr2 , 0) , and due to the dimensionless acceleration of the 

non-inertial frame of reference, X, a= (a!d/ U2
, a?_d/U2

, 0). This yield 

(2. 70) 

The dimensionless boundary conditions can be written as 

u = 0, v=O at the cylinder boundary, (2.71) 

U = 1 - VI, v = -v2 at the inflow boundary, (2 .72) 

1 au h av = 0 at the outflow boundary, (2. 73) Rax + Fr2 = p, ax 
au= 0 
ax , v = -v2 at the top and the bottom boundaries. (2.74) 

The corresponding dimensionless parameters of the problem shown in Figure 1.1 are 

given by 
h* 

h = 
d ' 

f*d 
f =--u· 

A* 
A= d, 

where T(= 1/ f) is the period of cylinder oscillation. 

T*U 
T = - d-, 



3. Computational model and method 

In this chapter, the computational method for the numerical simulation of viscous 

flows with both a moving solid body and a free surface is presented. The continuity 

and Navier-Stokes equations are discretized using a finite volume approximation on a 

fixed Cartesian grid. The computational domain boundary conditions are discretized 

using a finite difference approximation. The Cartesian grid in combination with the 

discretization of the solid body geometry results in the computational cells containing 

the fluid-body interface. The volume and area apertures are used to define the region 

of the computational cell which is not occupied by the solid body geometry. A 

labeling system is introduced to distinguish the cells of different type. Th free 

surface is discretized with the VOF method in which the volume fraction , Fn2 , is used 

to distinguish between two different phases, the fluid in nl and the fluid in n2' in the 

computational domain. At any time in the solution, the interface is reconstructed 

using the PLIC algorithm. The advection of the free surface in tim is performed 

after the new velocity field has been calculated from the governing quations, using 

area-preserving VOF unsplit advection algorithm of Aulisa et al. (2003b). 

3.1 Discretization of the governing equations 

The governing equations (2.68) and (2.69) are solved in the flow part of the compu

tational domain , n = D1 U D2 , shown in Figure 1.1. In this section, the di cretization 

of the governing equations is presented. The method of solution is based on a Carte-

58 
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sian grid finite volume scheme. A second-order accurate central-difference scheme 

is used to discretize the governing equations in space in conjunction with the first

order explicit forward Euler scheme to advance numerical solutions in time. A cell 

merging procedure is used to preserve a global second-order accuracy of the spatial 

discretization. That is, the velocity cells cut by the fluid-body interface are merged 

with the appropriate neighbour fluid cells to form trapezoidal cells near the surface of 

the cylinder. A combination of B-spline and polynomial interpolations is then used to 

evaluate convective and diffusive fluxes through the edges of the resulting trapezoidal 

cells. 

3.1.1 Computational domain geometry 

Computational grid 

The governing equations are discretized on a staggered grid introduced by Harlow 

and Welsh (1965). In the staggered grid arrangement , the values of the pressure ar 

stored at the centers of the pressure control volumes, while th values of the hori

zontal and vertical velocity components are stored at the center of the vertical and 

horizontal edges of the pressure control volumes, respectively ( ee Figure 3.1) . The 

staggered arrangement of the pressure and velocity knots is more complicated than 

the collocated arrangement, where the pressure and velocity values are stored at the 

centers of the pressure control volumes. However, it is shown that the straightfor

ward discretization on collocated grid leads to pressure spikes and wavy velocity field 

[see Patankar (1980) , Harlow and Welsh (1965) for details]. In contrast, in the stag-
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gered grid arrangement , the difference between adjacent knots is used for pressure 

and velocity discretizations. Thus, no pressure spikes and wavy velocity field occur. 

0 : K i+l ___ __ ___ __ !' _________ _ 
' ' 

-----· --- -------' 
' 

-----· ----' 
' 

KJ+l--~------+------+-V~i,-J+_l __ +------+---

Ko : ui,J : Pi,J ui+ 1 ,J : 
J ----------· ---------- -----· ---------- -----· -----

' ' 
' ' 

K J- t ---- --- --· --- --------
, 
' ' 

v ·. t,J 

----- · -----------
' ' ' 

----- · -----
' 

K ,l+l , 
, Ko 
: i+ l 

Figure 3.1: Staggered grid arrangement: Pi ,j pressure cell. 

In the staggered grid arrangement , the pressure knots, Pi ,j, are located at the centers 

of the pressure cells and are defined by the Cartesian coordinates (Kf, KJ), where 

i = 0, .. . , N - 1, j = 0, .. . , M- 1. Here, N and M denote the number of pres

sure knots in x- and y-directions, respectively. An example of the pressure cell Pi,J 

is shown in Figure 3.1. In this figure, Pi,J is shown by the solid rectangle. The ui,J 

and vi,J velocity knots are located at the centers of the corresponding velocity cells. 

The examples of ui,J and vi ,J velocity cells are shown in Figures 3.2(a) and 3.2(b) , 

respectively. In these figures, solid rectangles indicate pressure c lls; dashed rectan

gles indicate velocity cells. The u i,J knots are defined by the Cartesian coordinates 
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X 

Figure 3.2: Staggered grid arrangement: (a) ui,rvelocity cell, (b) vi,rvelocity cell. 

(Kl , KJ), where i = 0, ... , N, j = 0, ... , M - 1. Similarly, the v i,j knots are de

fined by the Cartesian coordinates (Kf, KJ), where i = 0, . . . , N- 1, j = 0, .. . , M. 

In addition , 

1 Ko 1 + K~ 1 
Ki = t-

2 
t, K1 = KJ, where i = 0, ... , N, j = 0, .. . , M- 1. (3. 1) 

2 KJ- 1 + KJ K . = __:!__:___.:!.._ 

J 2 , where i = 0, .. . , N - 1, j = 0, .. . , M . (3.2) 

It is noted that in equations (3.1) and (3.2), coordinates of the ghost pressure knots 

P- 1.1, PN,j, j = 0, ... , M - 1, and Pi,-1, Pi,M, i = 0, . . . , N - 1 are used. The coordinates 

of the ghost knots P- I ,j, PN,j are defined , respectively, by 

(3.3) 

Similarly, the coordinates of the ghost knots Pi,- l , Pi ,M, are defined , respectively, by 
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Geometry labeling 

For the definition of the geometry on the Cartesian grid, the volume, V, and the 

areas, A, open to flow (also called apertures) are used. It is recalled that the volume 

aperture, V, and the area apertures, A, indicate the part of the computational cell 

cut by the body geometry which is open to flow. In Figure 3.3, an example of the 

calculation of the apertures in the computational cell is given. In this figure, A0 , A1, 

Figure 3.3: An example of the calculation of the volume, V, and the area, A, apertures 
in the computational cell. The solid body is shown in gray. 

A2 and A3 define the left, right, top and bottom apertures in the computational cell , 

respectively. The apertures are computed geometrically for each computational cell 

from the solid body geometry. Based on the values of the volume apertures a cell 

labeling is introduced . The cell labeling is used to identify the cells in which (i) the 

governing equations are solved and (ii) the boundary conditions are sati fied. For 

pressure cells four different cell types are distinguished: 

F(luid) 

B (oundary) 

D (omain) 

Cells for which the fluid occupies more than a half cell. 

Cells located in the vicinity of fluid-body interface. 

Cells located at the computational domain boundary. 
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(e)X (cluded) : Cells occupied by the body. 

The labeling of pressure cells is performed in three steps. First , consider the pressure 

cell Pi ,J, where i = 0, . .. , N- 1,j = 0, .. . , M- 1. Let V = V/V be the fractional 

volume open to flow wit hin the computational cell (V is the volume of the cell ). If 

the fractional volume open to flow within the cell is greater than half, i.e., V ~ 0.5 , 

Pi,J is labeled as F . Otherwise, Pi,J is labeled as X . Second, consider pressure cell 

Pi,J> where i = 1, .. . , N- 2,j = 1, .. . , M- 2 which were labeled as X during the 

previous step. If at least one of the neighbour cells Pi-1,j, Pi+1,j, P i,j- 1, Pi,J+1 is F cell, 

Pi,J is labeled as B. Finally, cells P i,o, Pi,M - 1, Po,J, p N -1 ,J, where i = 0, ... , N - 1, 

j = 0, ... , M - 1 are labeled as D. 

D D D D D D 

D F F F F F 

f-D_ F F _E.-----r F 

D F F F ~ 
Vt( 

D F F F/ 
/ B X 

D F F f X X 

Figure 3.4: An example of the labeling of the pressure cells. The solid body is shown 
in dark gray. 

T he continuity equation is discretized in all the F cells. The value of pressure is set 

to zero in B , D and X knots. An example of pressure cells labeling is shown in Figure 
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3.4. Next, velocity cells are labeled in the following manner: the edge of pressure cell 

on which u- or v-velocity knot is located is labeled according to th types of pressur 

cells this edge belongs to. For example, the edge between two F cells is denoted as 

FF edge. As a result , seven types of velocity cells can be distinguished: FF, BF, 

BX, DF, BB, DD and XX. The Navier-Stokes equations are discretized in all the 

FF cells. The values of velocities BF, BB, BX and XX are set to zeros. D F and 

DD velocities are used to apply boundary conditions at the computation domain 

boundary. 

3.1.2 Discretization of the continuity equation 

Figure 3.5 shows an example of the pressure cell, Pi,j, in which the continui ty equation 

(2.68) is discretized. In the inertial frame of reference, X, the time rate of change of 

the volume aperture is not zero when body moves as this term becomes a source or 

sink of volume of the fluid displaced by the body in that cell. On the other hand, 

equation (2.68) is solved in the non-inertial frame of reference fixed to the cylinder, 

- ~·· X. Therefore, the rate of change of the volume aperture in the cell Pi,j , Tt, is 

identically zero. 

The convective term in equation (2.68) is written as the sum of convective fluxes, !Ak, 

through each edge aperture, Ak, 
3 J ii . u dS = L !Ak ' 

A k=O 

f Ak = J ii · u dS. 
Ak 

(3.5) 

In the finite volume discretization, u- and v-velocities are assumed to be constant 

and characteristic for the entire edges these velocities belong to. Thus, the convective 
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A3 

Vi,j+l ! A1 

Ao U · . 
Pi,j 

ui+l ,j t,J • 

.. .. 
v ·. t,J 

Figure 3.5: Discretization of the continuity equation. The solid body is shown in 
gray. 

flux through each of the edge apertures is approximated as the product of the normal 

component, the edge aperture and the corresponding velocity component as 

ho = - (ui,jAot+
1

, / Aq = (ui+l,jAlt+
1

, 

(3.6) 
!A2 = - (vi ,jA2t+

1
, / A3 = (vi,j+lA3t+

1
. 

Substitution of (3.6) into equation (2.68) yields the discrete continuity equation per 

pressure cell , Pi,j, 

3.1.3 Discretization of the Navier-Stokes equations 

Equation (2.69) can be rewritten in the componentwise form as 

:t j u dV + j (n · u)u dS = -~ j pn1 dS + ~ j n · \i'u dS + j F1 dV, (3.8) 
v A Aun Aun v 

:t j v d V + j ( n · u)v dS = - ~ j pn2 dS + ~ j n · \7 v dS + j F2 dV. ( 3. 9) 
v A Aun Aun v 
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In what follows , only the discretization of equation (3.8) is discussed; the di cretiza

tion of equation (3.9) follows a similar approach. If FF cell is not in the vicinity 

of the fluid-body interface, its neighbour velocity cells will be one of the following 

types: FF, DF or DD. In this situation, a standard discretization is used to dis

cretize equation (3.8) . The standard discretization of the momentum equation on a 

Cartesian grid approximates velocities and their normal derivatives at the edges of 

velocity cells by using a linear interpolation between fluid neighbour velocity knot 

which results in a second-order accurate approximation [see, for example, Versteeg 

and Malalasekera (1995)]. However, when FF cell borders at least one cell of BF 

type, it indicates that this FF knot is in the vicinity of the flu id-body interface. In 

this case, the neighbour velocity may be located in the region occupied by the solid 

body. For such FF cell the standard discretization of equation (3. ) will result in 

the loss of accuracy. The typical situation when FF cell borders BF cell is shown 

in Figure 3.6. Many studies exclude BF cells from consideration and apply the no

slip condition to calculate BF-velocity [see, for example, Gubanov (2006) , Kleefsman 

(2005) , Fekken (2004) and Gerrits (2001)]. This thesis deals with viscous flows at 

moderately high Reynolds numbers. In such flows, relatively thin boundary layers 

will form in the vicinity of the fluid-body interface. These boundary layers are not 

only regions of high gradients but they are also the most important features of t he 

flow field . Therefore, accurate discretization of the governing equations is important 

within the boundary layers. Obviously, in viscous flows ignoring BF cells will lead 

to inadequate resolution of boundary layers since these cells are locat d in the vicin

ity of the fluid-body interface. In fact, Gubanov (2006) pointed out that the loss of 

accuracy in the vicinity of the fluid-body interface due to excluding BF cells greatly 
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Figure 3.6: An example of the situation when FF cell borders BF cell. The solid 
body is shown in gray. 

affects computed hydrodynamic forces imposed on this interface. In this thesis, the 

cell merging technique is used to discretize the Navier-Stokes equations in such FF 

cells to ensure that global second-order accuracy is preserved. The algorithm of the 

cell merging is described below. In what follows, the BF cell is denoted as the "slave" 

cell. The "master" cell is the corresponding FF cell to which the slave cell is merged. 

Cell merging algorithm. In general, the BF cell can border more than one FF cell. 

For such BF cell, the master cell is chosen to be the neighbour FF cell with the 

largest common area aperture. It is noted that this choice of master cells guarantees 

that the slave cell may have only one master cell. On the other hand, each master 

cell can have from one to four slave cells. Let FF be the cell for which equation (3.8) 

is discretized. If this cell is the master cell for neighbouring BF cell , the slave cell 
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becomes attach d to this mast r c 11. This r sults in the r shaping of th master cell 

as shown in Figure 3.6. Depending on the location and the local orientation of the 

fluid-body interface, cells of a wide variety of shapes can be formed. 

Unsteady term. 

An example of u-cell in which equation (3.8) is discretized is shown in Figure 3. 7. 

The time derivative is approximated by using the midpoint rule as 

A 

Ui- 1 j •• U ·. 
• t ,J 

Ui,j-1 

B 

Ui+l ,j • 

Figure 3. 7: Discretization of the x-momentum equation. The solid body is shown in 
gray. 

d j ~ d (ui ,jVu; ,1) 
dt u dV ~ dt ' (3. 10) 

v 
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where, in general, 
N' 

v'Ui,j = vFF + L vBF , N' =0, . .. ,3. (3.11) 
i=O 

Here, VFF and VBF are the volume apertures of the master cell and the slave cell, 

respectively. The number of slaves merged with the master cell is denoted by N'. In 

Figure 3.7, the master cell is cut by the cylinder geometry. In addition , this cell has 

the only slave. Therefore, its total volume aperture can be calculated as the sum of 

volumes bounded by the polygons ABCDEG and GEF as 

"V u ;,j = "V ABC DEC+ "V GEF · (3.12) 

Finally, using an explicit forward Euler method, the temporal discretization of equa-

tion (3 .10) follows 

d ( Ui,j "V u;,j ) 

dt 

where ~t is the time step. 

Convection and diffusion . 

n+l ~m+l n ~rn 
u i]' "'u·. - uiJ' "'u·. 

~ I 1. 1J I t,J 

....., ~t (3. 13) 

A finite volume approximation of the convection and diffusion to the econd-ord r 

requires accurate evaluation of the integrands in convective and diffusive terms in 

equation (3.8). For FF cells which are away from the fluid-body interface, th ve-

locities, convective and diffusive fluxes can be approximated at each edge center to 

second-order accuracy in a straightforward manner by using the standard discretiza-

tion on a Cartesian grid [see, for example, Versteeg and Malalasekera (1995)]. This is 

not the case for FF cells which lie in the vicinity of the fluid-body interface and there

fore, they are either reshaped by merging with the neighbouring BF cells or cut by 
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the cylinder geometry. The key issue here is to perform the discretization separately 

for each edge of such FF cells: one has to define the edges to which the standard 

discretization can be applied and those which require a special consideration. 

The convective term in equation (3.8) is discretized on the Cartesian grid using the 

midpoint rule as 
N' J (ii. u)u dS = J u(niu + n2v) dS ~ L u~~l f~k' N = 2, . . . ) 8, 

A A k=O 

(3.14) 

where f"Ak is the convective flux through an edge Ak at time t = tn, N' denotes a 

number of edges of u-cell cell for which the velocity and convective flux are evaluated . 

It is noted t hat f "Ak is evaluated at time tn using known velocity field , u;\k . Thus, the 

discretization of the convective term yields a linear equation. Consider an example 

"master and slave" cell in Figure 3. 7. The edge A0 of this cell is composed of two 

pieces: AG and GF coming from the master cell and the slave cell , respectively. 

Consequently, the integration of the velocity and convective flux through this edge is 

decomposed as 

J u(n1u + n2v) dS = J u(n1u + n2v) dS + J u(n1u + n2v) dS, (3.15) 

Ao AG GF 

where the integrals are then approximated by 

J u(n1u + n2v) dS ~ u~-t;_} nc and J u(n1u + n2v) dS ~ u(;j/ fcF· (3.16) 

AG GF 

The next step is to check if the standard discretization is applicable to the edge under 

consideration. It is noted that the check is made separately for each edge AG and 

GF. If, for a considered edge, the u-cells at both sides of this edge are of FF type, 

and the pressure cell corresponding to the edge is not cut by the cylinder geometry, 

then the standard discretization at the edge can be performed. This is the case for 



3.1. Discretization of the governing equations 71 

the edge AG in Figure 3.7. Thus, the velocity u~!/ is approximated at the center of 

the edge AG by the linear interpolation as 

Un+1 = (1- a) Un+1 . +a Un+1 
AG t - 1,J t ,J ' 

where the linear interpolation factor a is defined by 

- K f-1- KL 1 
a= K1 - Kl 

t t - 1 

(3.17) 

(3.18) 

It is noted that in the case of a uniform grid equation (3.18) yields a = 1/2. The 

standard approximation of the convective flux through the edge AG results in 

n (1 - ) n - n UAG = - Q U · 1 . + Q U . t- ,] t ,J , (3 .19) 

where IAGi n denotes the length of the edge AG at time t = tn and the linear in

terpolation factor a is defined by equation (3.18). A second-order approximation 

to u0j;.1 and fcF is obtained by using a two-dimensional spline interpolating func

tion implemented in SINTEF multilevel B-spline approximation library [available at 

www. sintef. no] . The B-spline interpolation allows a second-order approximation of 

the velocity and convective flux from available neighbouring values. The algorithm 

of the B-spline interpolation is described below. This algorithm illustrates the u-

velocity interpolation. A similar algorithm is applied to interpolate the v-v locity. 

Algorithm of the B-spline interpolation. Let (x0 , y0 ) be the point at which the 

u-velocity must be interpolated. Consider a 3 x 3 block of the neighbouring cells as 

shown in Figure 3.8. In this figure , the points of intersection of the grid with the 

fluid-body interface denoted by letters from A to F are used to define the locations 

of the fluid-body interface velocities. The values of velocities at the points of inter-

section are calculated using the no-slip boundary condition: these velocities are et 

to the velocities of the cylinder calculated at points A , . .. , F . These interface veloc-
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Figure 3.8: Schematic of the B-spline interpolation for u-velocity. The solid body is 
shown in gray. 

ities together with the neighbouring FF velocities ( u1 , . .. , u 10 in an example cas m 

Figure 3.8) calculated at timet = tn are used to reconstruct the B-spline surface and 

then to calculate the value of the u-velocity in the point (x0 , y0 ). 

Using the algorithm of the B-spline interpolation, the velocity ucF is interpolated to 

the center of the edge GF. It is noted that since the velocities at timet = tn are used 

in the B-spline approximation , the discretization of the convective term at the edg 

GF at timet = tn+l becomes 

j u(n1u + n2v) dS ~ - IGFin uapucF· (3.20) 

GF 

A similar procedure is used to approximate the velocity at and convective flux through 

the edge A1 . For the situation shown in Figure 3. 7, the convective term at the edge 
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A1 is discretized at time t = tn+l by the B-spline approximation yielding 

j u(n1u + n2v) dS ~ IBGJn u3cusc· 

BC 
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(3.21) 

The approximation of the convective flux through the horizontal edges A2 and A3 

involves the interpolation of the v-velocity in the centers of the edge apertures. This 

is due to the fact that in a staggered grid arrangement v-cells are shifted with respect 

to the u-cells and thus, v-velocities are located at the corners of the u-cells. In Figure 

3. 7, the standard discretization for the edge A3 can be performed. Consequently, the 

discretization of the convective term for this edge becomes 

j u(n1u + n2v) dS ~ u~-+a1 !~8 , (3.22) 

AB 

where the velocity u~-+a1 is approximated at the center of the edge AB by the linear 

interpolation as 

K~+l - Kl 
un+l = (1 - a) un+l +a un+l . where a= ~ ~. (3.23) 

AB ~.J t+ l ,J' Kj+l - Kj 

The discretization of the convective flux through the edge A3 involves the evaluation 

of the v-velocity at time t = tn, 

(3.24) 

The linear interpolation is also used to approximate velocity vAB at the center of the 

edge AB 

n (1 - ) n + - n v AB = - a vi- l ,j + l a vi,j+l' where 
_ Kl - Kf_ 1 
a = K2 - K2 . 

\ \-1 

(3 .25) 

When the standard discretization for the horizontal edge is not possible the following 

two-step approach is used: 

1. First, the point (x0 , y0 ) is located at the center of the area aperture of the con-
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sidered edge. 

2. After that, the velocities u(x0 , y0 ), v(x0 , y0 ) are found from the known neigh-

bouring FF velocities using the B-spline interpolation. 

It is noted that in Figure 3. 7, there is no approximation of the convective term for 

the aperture A2 . This is due to the fact that the cell ui,j is merged with the cell ui,j- I 

and thus there is no convective flux through the edge common to both cells. 

The discretization of the diffusive term in equation (3.8) to second-order accuracy is 

somewhat more complicated as it requires an approximation of the velocity derivatives 

at the edges of u-cell and also at the fluid-body interface segments which lie in the 

cell. The diffusive term is decomposed into the integration over the edges of the cell 

and over the fluid-body interface, respectively, as 

2_ j n · \i'u dS = 2_ j n · \i'u dS + 2_ j n · \i'u dS (3.26) R R R . 
AUIT A IT 

A finite volume approximation of the diffusive term for the edges of the cell ui,j can 

be written as 
N' 

1 J _ 1 J fJu fJu 1 L -n+l - n ·Y'udS=- n1-+n2-dS:=:::!- J R R fJx fJy R Ak ' 
N' = 0, ... , 8. (3.27) 

A A k=O 

Here, 1~:1 indicates the diffusive flux through the aperture Ak at time t = t n+l. 

Again, for each edge of the cell ui,j it is first checked if the standard discretization 

is applicable. Since the aperture A0 in Figure 3. 7 is composed of edges AG and G F 

which come from the master cell and the slave cell, respectively, the diffusive term 

for this edge is decomposed into two parts as 

1 j fJu fJu 1 j fJu fJu 1 j fJu fJu - n1-+n2-dS= - n1 - +n2-dS+- n1-+n2-dS. 
R fJx fJy R fJx fJy R fJx fJy 

(3 .28) 

Ao AG GF 
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The standard discretization through the edge AG is performed since both u i- I ,J and 

u i,J cells are of FF type and Pi- I ,J is not cut by the cylinder geometry, i.e., 

~ ~ dS ~ - IAGin+l i,J i-1,J J 
!:} !:} un+l - un+1 

nl !:} + n2 !:} Kl - Kl . ux uy i i - 1 
AG 

(3.29) 

However, approximation such as (3.29) is not possible for the edge GF. The approach 

here is to express velocity derivative using the B-spline interpolation described above. 

The velocity derivative is approximated using the values of u-velocity at two points 

located at the line that passes through the center of the edge under consideration and 

is perpendicular to the edge. The values of u-velocity at these points are computed 

using the B-spline interpolation. The two points participating in this procedure are 

constructed differently in each of the two possible situations, as is described below. 

Consider the situation shown in Figure 3.9(a) . Reconstruct the line parallel to the 

I 
K f_l 

(a) 

\ 

Ui- l . ' 

I 
1 (x~ , YD 1.. ----

(b) 

Figure 3.9: Schematic of the discretization of the ~~ . The solid body is shown in 
gray. 

x-axis which passes through the point (x0 , y0 ) located at the center of the aperture 

Ak. Let the line intersect the fluid-body interface at the point (x1 , y1) . Then, the 
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distance between points (x0 , y0) and (x1 , y1) along the line is computed. If the distance 

between the points is less than half grid step, i.e., 

Ko - Ko 
6.h::;; t 

2 
t- l , where 6.h = x1 - x0, (3.30) 

then point (x1, y1) is reflected into point (x2,y2) with re pect to point (x0, y0) as 

shown in Figure 3.9(a). The B-spline interpolation is used to calculate u-velocity at 

point (x2 ,y2). The value of u-velocity at point (x1 ,yi) is set to the velocity of the 

cylinder at this point (from the no-slip condition) . Finally, the derivative of u-velocity 

at point (x0 , y0 ) is calculated by 

- ~ (3.31) OUI U1- U2 

O X (xo,yo) X I - X2 . 

In the case when the line described above does not intersect the fluid-body interface 

or the distance between points (x0 , y0 ) and (x1 , y1 ) is greater than half grid step , i.e., 

6.h > KP - Kf_l (3.32) 
2 

the points on the left and the right sides from the point (x0 , y0 ) which are located 

at the distance 6.h with respect to the reference point (x0 , y0 ) are used to calculat 

the velocity derivative. For the situation shown in Figure 3.9(b) points (x; , y~) and 

(x2 , y2 ) are used for the derivative approximation. The B-spline interpolation is used 

to calculate the velocities u 1 and u2 at points (x~ , YD and (x2 , y2 ), respectively, which 

leads to the following approximation of the velocity derivative at point (x0 , y0 ) 

- ~ (3.33) OUI U1 - U2 

OX (xo ,yo) X~ - X2 · 

Using the algorithm described above, the diffusive flux through the edge GF in Figure 

3. 7 is evaluated as 

(3.34) 
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where u1 is located at the center of the fluid-body interface denoted by EF. The value 

of u1 is computed using the no-slip condition at time t = tn+l; u2 is calculated at 

timet = tn+l by the B-spline interpolation. For the aperture A1 , a similar algorithm 

is used to approximate the diffusive flux. 

For the horizontal apertures A2 and A3 , the derivative ~~ should be evaluated. The 

standard discretization is straightforward. For example, for the aperture A3 shown 

in Figure 3. 7, the standard approximation of ~~ leads to the expression 

f) 

I 

n+l n+l 
u ,...._ ui,j+ 1 - ui,j 

- """ o o· 
fJy AB Kj+1 - Kj 

(3 .35) 

Thus, the diffusive flux through the edge AB is 
u~+l - un+l 

f-n+l ,...._ IABin+1 t ,J+ I t ,J 
AB """ Ko _ Ko · 

j+l j 

(3.36) 

In the situation when the standard discretization is not applicable the same idea 

as for the approximation of the derivative ~~ is utilized. Precisely, the point of 

intersection, (x1 , y1 ), of the vertical line passing through the edge center with the 

fluid-body interface is searched for along they-axis (see Figure 3.10). If the distance 

between points (x0 , y0 ) and (x1 , yi) is less than half grid step, i.e., 

K2 -K2 
tlh ~ 1 

2 
1

-
1, where tlh =Yo- Y1, (3.37) 

then an intersection point ( x1 , yi) is reflected into point ( x 2 , y2 ) with respect to point 

(x0 , y0 ) as shown in Figure 3.9(a) . The velocity u(x2 , y2 ) is calculated by the B-spline 

interpolation. The value of u(x1 , y1) is set to the velocity of the cylind r at the point 

(x 1, y1 ). This leads to the following approximation of ~~ at the point (x0 , y0 ) 

au I u2 - u1 
fJy (xo ,yo) ~ Y2 - Y1 . 

(3 .38) 
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Figure 3.10: Schematic of the discretization of the ~~. The solid body is shown in 
gray. 

Otherwise, points from the left and the right sides of the point (x0 , y0 ) which are 

located at the distance 6.h with respect to the reference point (x0 , y0 ) are used to 

calculate the velocity derivative. For the situation shown in Figure 3.10(b) points 

(x~, yi) and (x2 , y2 ) are used for the derivative approximation. The B-spline interpo

lation is used to calculate the velocities u1 and u2 in the points (x~, YD and (x2, y2), 

respectively, which leads to the following approximation of the velocity derivative at 

the point (xo, Yo) 

au I u2- U] 

fJy (xo,yo) ~ Y2 - Y~ . (3.39) 

It is noted that there is no diffusive flux through the edge G E shown in Figure 3. 7 as 

this edge is common to the master and slave cells. 

The approximation of the diffusive flux through the fluid-body interface segments to 
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second-order accuracy on the Cartesian grid requires the evaluation of the normal 

derivative at the center of a segment. For instance, the integral over the fluid-body 

interface in equation (3.26) can be written in terms of the normal derivative as 

1 j au au 1 j au 
R n1 ox + n2 oy dS = R on dS, (3.40) 

n n 
where n is the inward unit normal vector to the fluid-body interface. In general, 

there might be maximum two fluid-body interface segments in the considered ui ,j 

cell which come from the cells Pi- l,j and Pi,j, respectively. For example, in Figure 

3.7 the diffusive flux is approximated through the fluid-body interfaces CD and EF. 

For each segment of the fluid-body interface the algorithm of the normal derivative 

approximation is the following. 

Approximation of the normal derivative at the fluid-body interface. Let point 

A(x0 , y0 ) be located at the center of the fluid-body interface segment ll shown in 

Figure 3.11. The value of the velocity located at the point A, uA, is calculated from 

t:.h 

l 

c 

ou 
Figure 3.11: Schematic of the approximation of on on the fluid-body interface 

segment. The solid body is shown in gray. 

the no-slip condition. Points B and C are defined along the l-direction opposite to 
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the normal direction such that 

B = A - n l:lh and C = A - 2n l:lh, (3.41) 

where l:lh is the uniform grid step used in the vicinity of the cylinder. The velocities 

at the points B and C, u8 and uc , are calculated from the known neighbouring FF 

velocities using the B-spline interpolation. Next, the variation of velocity u along 

[-direction is expressed in terms of a quadratic function as 

u( l ) = al2 + bl + c. (3.42) 

The coefficients of the quadratic function (3.42) are found from the values of uA , ua 

and uc by 

b = uc + 3uA - 4ua 
26h ' 

(3.43) 

Thus, the normal derivative at a point (x0 , y0 ) is evaluated by 

au I = (2 l b) I = uc + 3uA- 4ua 
On a + l=O 2f':lh . 

(xo ,yo) 

(3.44) 

Finally, the discretization of the diffusive term at the fluid-body interface li yields 

- - dS ::::::: c A 8 nn+l 
1 J au un+l + 3un+l - 4un+l 

R an 2RI:lh · 
(3.45) 

n 

Here, velocities uA, u8 and uc are computed at time t = tn+I . 

The algorithm of the approximation of the convective and diffusive terms for the cell 

u i,j can be summarized as follows: 

1. Compute the number of segments which compose the edge under consideration. 

2. For each segment check to see if the standard approximation is applicable. 

3. Use standard approximation if applicable. 

4. Otherwise, use the B-spline interpolating function to discretize the convective 
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and diffusive terms at this segment. 

5. Approximate the diffusive flux through the fluid-body interface segments, if 

applicable. 

6. Add each contribution to the appropriate discretized equation. 

Pressure and volumetric force. 

For the approximation of the pressure and volumetric force no merging procedure is 

needed since BF cells are excluded from the consideration. 

The pressure term in equation (3.8) involves the integration of the x-component of 

the outward unit normal vector, ii, and can be decomposed in two parts as 

~ j pn1 dS = ~ j pn1 dS + ~ j pn1 dS. (3.46) 

Aun A n 

Since n 1 is zero at the horizontal edges of the ui ,j cell the discrete analog of the 

integral over the boundary of FF cell becomes 

_ pn dS ~ __ (p~+l . A,_n+l _ p~+ l A,_n+ l) . 1 J 1 
E: 1 cn+l ~+l,J 1 ~.J 0 (3.47) 

Aun 

In general, there are maximum two fluid-body interfaces in the u i,j cell coming from 

the cells Pi,j and Pi+I ,j, respectively. Thus, the integral over the fluid-body interface 

can be evaluated as 

1 j dS ~ 1 ( n+l 1rn+ l + n+l 1rn+ l ) e pn1 ~ E:n+1 Pi,j n nollo Pi- l ,jnHI Jl l ' (3.48) 

n 
where n80 and n n1 indica te the x-component of the uni t normal vector to the fluid-

body interface segments rr~+l and rr~+ l , respectively, calculated at time t = t n+ l . 

Consider an illustrative example in Figure 3.12. Gerrits (2001) has shown that the 
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Figure 3.12: Discretization of the pressure term. The solid body is shown in gray. 

x-component of the unit normal vector to the fluid-body interface segment is a cosine 

of the angle between this segment and the corresponding vertical edge. In Figure 

3.12, the cosines between the interface segments and the vertical edges are calculated 

as 
An+1 _ An+1 

nno = nn+l 1 and nnl 
0 

An+1 _ An+ l 
0 

This results in the following approximation of equation (3.46) 

- pnl dS ~ --An+l(pn+l - p':+ l .) . 1 J 1 
f: f:n+ 1 t,J 1-l ,J 

AUll 

(3.49) 

(3.50) 

This approximation indicates that discretization of the pressure term is independent of 

the exact location of the body interface. This fact greatly simplifies the programming 

of the Navier-Stokes equations. 

~ 

The volumetric force in the non-inertial frame of reference, X, is due to the gravity 

and the acceleration of the non-inertial frame of reference, X, 

J F1 dV = J ( ;r2 - a1) dV. (3.51) 

v v 
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This term is approximated by using the midpoint rule as 

(3.52) 

3.1.4 Averaging of the density 

In two-phase flow models, the free surface is defined in the computational cells where 

a rapid change in density, p, and viscosity, p, , occurs. In the present model, the ratio 

of the dynamic viSCOSity of the fluid in i11, J-LI, and the dynamic ViSCOSity of the fluid 

in i12 , P,2, is set to p,J/p,2 = 1/ 100 (i.e., vJ/v2 = 1). Thus, only the density in the 

vicinity of the phase interface, p', should be computed at t imet= tn+l . In this thesis, 

p' is calculated as the average of the densities p1 and p2 as 

F,n+ Ip + F,n+lp , n1 1 n2 2 

p = vn+1 ' (3.53) 

where F[{":-1 and Ff2: 1 are the fractions of the fluids in the regions i11 and i12, respec

tively, in the velocity cell (ui,j or Vi,j), and vn+l is the fractional volume aperture, 

computed at time t = tn+l. It is noted that Ff2;1 is calculated from the known 

fractions of the fluid in i12 , Ff2: 1
, and the body, Fbn+l, in the cell by 

(3.54) 

The dimensionless counterpart of the averaged density, p', can be written as 

(3.55) 

which is valid for all the cases. For example, when Ff2;1 = 0 (no fluid in the region 

nl in the cell), cn+l = 1 and equation (2.69) is discretiz d in the region i12; when 

Ff2:1 = 0 (no fluid in the region i12 in the cell), cn+l = 1 and quation (2.69) is 

discretized in the region nl. 
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3.2 Free surface interface capturing 

An accurate modeling of the free surface flow requires algorithms for the fluid interface 

kinematics which must address the discrete representation of the interface and its 

advection through the computational domain. In the present two-phase flow model, 

the free surface is discretized with the VOF method [Hirt and Nichols (1981)]. To 

capture the free surface, the known fluid interface geometry is used to compute fluid 

volume fraction, Fn2 , in each computational cell. The volume fraction, Fn2 , is used 

to distinguish between the fluids in the regions n1 and n2 . A value of zero, Fn2 = 0 

indicates cells completely occupied by the fluid in n1 or solid body and a value of one, 

Fn2 = 1, indicates cells completely occupied by the fluid in n2 . The value of volume 

fraction between zero and one, 0 ::;;; Fn2 ::;;; 1, indicate the presence of the phase 

interface in the cell and the value itself gives an indication of the relative proportion 

of the fluid in n2 and the fluid in n1 occupying the computational cell. At any time 

in the solution, the interface is reconstructed using the PLIC algorithm following 

the works by Gerrits (2001) and Rider and Kothe (1998). Since the free surface 

interface is free to move, its advection in time should be performed after the new 

velocity field has been calculated from the governing equations. Many different VOF 

advection algorithms exist [see, for example, Rider and Kothe (1998) , Pilliod and 

Puckett (2004), Scardovelli and Zaleski (2003), Harvie and Fletcher (2000), Aulisa 

et al. (2003b)]. However, in the published VOF advection methods th advection 

operations may result in various inconsistencies. For example, the interface advection 

algorithms may produce some systematic errors, such as volume fractions, Fn2 , that 

do not satisfy 0 ::;;; Fn2 ::;;; 1 and thus are inconsistent with their definition. These errors 
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occur randomly during the computation process and they introduce the inconsistency 

by generating little holes ("wisp") in the fluid region . In many cases, this results in 

the unphysical flow behaviour or numerical break downs. These inconsistencies a re 

very difficult to overcome as it is not obvious where the excess or missing mass should 

be disposed of, or retrieved. Recently, promising results have been obtained by Aulisa 

et al. (2003b ). In their work, a new advection algorithm that preserves m ass exactly 

for two-dimensional incompressible flows on the Cartesian mesh is developed. This 

advection scheme can be related to the VOF unsplit advection algorithms but is in 

fact more general. The idea behind the advection scheme due to Aulisa et al. (2003b) 

is as follows. Consider the tessellation of a plane (the two-dimensional computational 

domain) in the cells (the computational cells) with area A. Then , at timet= tn the 

area of the fluid in 0 2 in each of the cells can be written as FB.,i,JAi,J· Geometrically 

speaking, the conservation of mass in the plane means that the total area at each 

time step is conserved so that 

(3.56) 
i,j i ,j 

Unlike the other VOF advection methods, the scheme of Aulisa et al. (2003b) extends 

the geometrical interpretation to the whole advection as a linear mapping. That is, 

the advection equation (1.7) is satisfied explicit ly by introducing linear mappings IIx 

and Ily, in both coordinate directions. Then , the linear mapping IIxy = IIx + IIy is 

used to transform the fluid region at timet= tn into the fluid region at timet= t n+I . 

The mappings IIx and Ily are chosen such tha t (3 .56) is satisfied. Thus, the resulting 

advection algorithm is strictly mass conserving in two dimensions. In the present 

numerical algorithm, t he VOF advection method due to Aulisa et al. (2003b) is used 

to advect the free surface in t ime. 
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Free surface interface reconstruction 

The reconstruction of the free surface interface is not a unique process and depends 

on the assumed reconstruction algorithm. In this thesis, the PLIC algorithm due to 

Gerrits (2001) is utilized. In the PLIC methods, the phase interface is approximated 

in each computational cell with a linear interface defined as 

ii · x + d = 0. (3.57) 

As was mentioned earlier , d is the line distance from the origin. It is noted that 

any cell having volume fractions, Fn2 , between zero and one will possess the interface 

defined by equation (3.57). In this thesis, t he unit normal vector, ii, is chosen to point 

outward the fluid , hence (3.57) is positive for any point x lying withing the fluid , zero 

for any point x lying on the line, and negative for any point x lying outside of the 

fluid . In what follows , the algorithms for computation of the unit normal vector , ii, 

and the line distance from the origin , d, are explained. 

Computation of the normal vector. In general, the determination of the normal 

vector is not a unique process and the accuracy of the PLIC method depends on the 

precise choice of the normal vector. The exact location of the fluid interface is not 

known and is reconstructed from the local Fn2 data at any time in the solution. In 

the VOF methods, the normal vector to the free surface can be determined by the 

volume fraction gradient 

(3.58) 
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Comprehensive reviews of other methods can be found in Rider and Kothe (1998), 

Pilliod and Puckett (2004) and Scardovelli and Zaleski (2003). Following the work by 

Gerrits (2001), the free surface interface normal vector is approximated in each cell 

Pi,j having 0 < Ffh,i,j < 1 after the discretization of equation (3.58) with respect to 

eight neighbours surrounding the cell , 

Kf+1- K f 0 

K f+1 - K f KJ+ 1 - KJ Fn · 1 '+1 - Fn · · ><2,t+ ,J ><2,l,J 

0 K J+1 - K J Fn · · 1- Fn · · ><2 ,t,J+ "2.~.) 

(3.59) 
K 9 

1
- K 9 KJ+1 - K J ( :: ) ~- ~ 

Ko 1 - Ko 0 t - ~ 

Fn · 1 · 1 - Fn · · ><2 ,~- ,J+ ><2,t,J 

Fn · 1 · - Fn · · ><2,t- ,J "2.~.} 

Ko 1 - Ko 
~- ~ 

Ko 1 - K~ 
J - J 

0 Ko 1 - K~ 
J - J 

Kf+1 - Kf Ko 1 - K~ 
J - J Fn '+ 1 · 1 - Fn · · "2 .~ ,J - ><2,l,J 

as illustrated in Figure 3.13. The linear system of equations (E. 1) is then multiplied 

from both sides of equation with transpose matrix taken for the left matrix in equation 

(E.1). The resulting system of linear equations is solved by Cram r's rule. Finally, 

the calculated normal vector is normalized by 

~ \l Fn2 n = --=-JV Fn2 l. 
(3.60) 

Computation of the line distance. The computation of the line distance, d, is 

the most difficult reconstruction task because the value of dis constrained by mass 

conservation. In other words, the value of d is constrained such that the resulting 
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Figure 3.13: An approximation of the free surface normal vector. Th solid body is 
shown in gray. 

line passes through the computational cell with a truncation volume, V(d), equal to 

the cell volume aperture, V, so that 

V(d) - V = f(d), (3.61) 

where f(d) is a non-linear function. In order to determine the line distance, d, one 

has to invert (3.61). The inverse problem consists of finding d given the cell volume 

aperture, V. It is noted that in (3.61) V can vary linearly, quadratically, or cubically 

with d, depending upon the coordinate system and the shape of th polygon formed by 

the interface segment truncating the computational cell. Following the work by Rider 

and Kothe (1998), (3.61) is inverted iteratively in each cell Pi,j having 0 < Fn2 ,i,j < 1. 

The line distance, d, i declared "found" when the function f(d) becomes zero (to 

within some tolerance) . A number of algorithms can be u d to find the root of 
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the f(d) function. These include the bisection method , the secant method, Newton's 

method, Newton-Raphson method, Brent's method, etc [see, for example, Forsythe et 

al. (1977)]. In this thesis, Brent's algorithm [Brent (1973)] is used to find an optimal 

guess for d. In Brent's method, a combination of the bisection , the secant and the 

inverse quadratic interpolation methods is utilized. At every iteration, Brent's method 

decides which method out of these three is likely to perform best, and proceeds by 

doing a step according to that method. This yields a robust and fast algorithm for 

the root finding . The algorithm of the computation of the line distance due to Rider 

and Kothe (1998) can be summarized as follows . First , the truncation volume, V(d) , 

is found. Second, V(d) is compared to the cell volume aperture, V, to see if V(d) 

differs from V by some prescribed tolerance. Otherwise, Brent's algorithm is used to 

find the new guess for the line distance, d, in equation (3.61). 

Free surface interface advection 

Once the free surface is reconstructed, its motion must be modeled with a suitable 

advection algorithm. In this thesis, the free surface interface is advected in t ime using 

the geometrical area preserving VOF advection method of Aulisa et al. (2003b). The 

volume of the fluid contained in the cell Pi,j at timet = tn is advected onto the volume 

of the fluid at time t = tn+l with the linear mapping Ilxy = Ilx + Il y. The linear 

mapping in x-direction, Ilx : x' ---t x, defined by 

(3.62) 

where 

(3.63) 
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(3.64) 

maps the horizontal edges of pressure cells. Similarly, the linear mapping in y-

direction, IIy : y' ---+ y , is defined by 

(3.65) 

where 

(3.66) 

(3.67) 

The algorithm of the fluid mapping is illustrated in Figure 3.14, where the fluid is 

compressed in the x-direction and expands in the y-direction. Mapping IIx maps 

D" C" 
~ --------- ., 

I I 

I I 

I 1 I 

D' ID c: C' 
~------ -----

Vi ,j+l I 
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u· . I 
t ,J Ui+l ,j I 

~ --1 

V ·. 
I 

t ,J 
-------

____ _, 

A' :A l Bl 
I B' 

I I A" - - - - - - - - - - B" 

Figure 3.14: Fluid mapping algorithm. 

the horizontal edges of the pre-image of the pressure cell Pi ,J onto P i ,j cell. In other 
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words, the rectangle A' B' C' D' is mapped (compressed) onto the rectangle ABC D 

in x-direction. Similarly, mapping lly maps (expands) rectangle ABC D onto the 

rectangle A" B" C" D" in y-direction. Since ui,J > 0 and ui+l,j < 0, over time t = t::.t 

the fluid is transferred into the cell Pi,J from its left and right neighbour cells as 

illustrated in Figure 3.15(a). The contributions are defined as intersection of pre-

(a) (b) 

A' A B B' 

D' D C C' D 
V ·. 

t ,} 

c 

(c) 

A" B" 
~----~ 

A 1--------=_......-_ ::::::::;_-l--'1 B 

D f--+----1----l c 
D /1 L_L_ __ ___L__J 

C" 

Figure 3.15: Fluid advection algorithm: (a) advection of the convective fluxes along 
the x-coordinate, (b) mapping onto the image cell, (c) advection of the convective 
fluxes along the y-coordinate. 

image edge with region occupied by the fluid in the corresponding neighbour cell. 

However, vi,J < 0 and vi+ I ,J > 0. Consequently, the fluid is transferred from the cell 

Pi,J into its top and bottom neighbour cells as shown in Figure 3.15(b). Therefore, the 

total volume of the fluid in each of the neighbour cells is calculated at time t = tn+l 

as the sum of all the fluid contributions into this cell. Finally, Figure 3.15(c) shows 

the advected volume of fluid corresponding to the cell Pi,j at time t = tn+l . This 

volume of fluid results in contributions to the central cell Pi,j as well as to its top and 

bottom neighbours. 
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3.3 Discretization of the computat ional domain 

boundary conditions 

The computational domain is truncated by the inflow boundary from the left side, 

by the outflow boundary from the right side and by the free slip boundaries from 

the top and the bottom sides as shown in Figure 3.16. The computational domain 

boundary conditions (2.71)-(2.74) are solved in the appropriate D cells and are used 

to calculate the values of u and v velocities which are located on the border of the 

computational domain , but involved into the discretization of the governing equations. 

In what follows , the discretization of the computational domain boundary conditions 

is discussed. 

The computational domain size plays a key role for the accurate numerical simulation 

of unsteady flow when free surface effects are included. The numerical experiments 

indicate that the restricted computational domain may lead to an artificial alteration 

in the height of the free surface. One of the reasons is that when the free surface wave 

reaches inflow boundary, it should naturally propagate through this boundary. On 

the other hand , the inflow boundary conditions (2.45) prohibit the propagation of the 

free surface wave through the inflow boundary. This results in an artificial elevation 

of the height of the fluid in the region 0 2 at the inflow boundary and then, over a 

sufficient time interval , in the whole computational domain. The artificial changes in 

the height of the free surface affect the value of the lift force acting on the surface of 

the cylinder since the calculation of the lift force involves subtracting the buoyancy 

force. In Section 4, a number of computational domain sizes are tested to guarantee 
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that the computational domain boundary conditions are correct and the free surface 

flow quantities are accurately predicted . 

Inflow 

Free slip 
~---------------------------- - - ~ 

I 
;!: I 
01 

:Ell 
I 

I 

0 
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I ;!: 
I 0 
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I 
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L ______ _____ _______________ ____ I 

Free slip 

F igure 3.16: Computational domain boundary condit ions. 

The inflow boundary conditions state that the fluid enters t he computational domain 

with the uniform stream velocity, i. e, u = 1, v = 0. In the the non-inertial frame of 

reference , X, the inflow boundary conditions can be written as 

U = 1 - VJ , (3.68) 

The discret e analog of equations (3.68) takes the form 

unl+l + vnl + l - 1 = 0 
,J , V n+l + vn+ l = 0 where J. 1 M 1 O,J 2 > = > • • • > - > (3.69) 

after making use of the finite difference approximation. 

Out flow 

The outflow boundary conditions a re applied at t he right boundary of the compu-
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tational domain through which the flow leaves the domain. The outflow boundary 
~ 

conditions are invariant in the non-inertial frame of reference, X, i.e., 

av = 0 ax . 
Equations (3. 70) are discretized using the finite difference approximation as 

1 un+ l - un+l -hn+l 
_ N- l ,j N-2,j _ n+ l __ _ O 
R Kl - Kl PN-2,j + Fr2 - ' 

N - l N - 2 
where j = 1, ... , M - 2 

and 

vn+ l n+ l 0 
N - l ,j - VN-2,j = ' where j = 1, ... , M- 2, 

(3.70) 

(3.71) 

(3.72) 

respectively. It is noted that at time t = tn+ l the height of the fluid in the region D2 

at the outflow boundary, fin+ I , is computed from the actual height of the fluid in D2 

at the outflow. 

Free slip 

The free slip boundary conditions are used at the top and bottom boundaries of the 

computational domain. That is, it is assumed that the tangential velocity, u, does 

not change, i.e., ~~ = 0, and the normal velocity, v, is prescribed by v = 0. In the 

non-inertial frame of reference, X, the free slip boundary conditions can be written 

as 

au = 0 ax ) v = - v2 . (3.73) 

The finite difference approximation is used to discretize equations (3. 73). At the top 

boundary of the computational domain , t he discrete free slip boundary conditions 

can be written as 

n+l n+l 0 
u i,M - 1 - ui,M- 2 = ' where i = 1, .. . ,N- 2. (3.74) 
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Similarly, at the bottom boundary of the computational domain , the discrete free slip 

boundary conditions can be written as 

U n+ 1 - u~+ 1 = 0 v~+ 1 + vn+ 1 = 0 h · 1 N 2 , ,1 ,,o , , ,1 2 , w ere 2 = , .. . , - . (3.75) 

3.4 Calculation of the lift and drag forces , and the 

mechanical energy transfer 

Unsteady flow past the circular cylinder excites a periodic flow induced resultant 

force, ~· = (D , L , 0), acting on the surface of the cylinder, given by 

F* = ~ 12

11' a- . ii dO 
3 2 , 

0 

(3.76) 

where fi = (cosO, sinO, 0) is the outward unit normal vector to the cylinder surface; 

L and D are the dimensional lift and drag forces, respectively. The presence of the 

acceleration due to gravity in the Navier-Stokes equations (2.69) implies that ther 

is a buoyancy force acting on the cylinder. In other words, pres ure varies around 

cylind r asa consequence of the hydrostatic pressure, i.e., the resultant force acting on 

the surface of the cylinder includes a buoyancy term. This component is subtracted 

to calculate the flow induced resultant force acting on the surface of the cylinder [s e 

Reichl (2001) for details]. Thus, a periodic flow induced resultant force acting on the 

surface of the cylinder in the presence of the free surface can be calculated using 

- d { 211' - - d { 211' * -
F; = 2 lo a. n dO - 2 lo Ph n dO , (3.77) 
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where the dimensionless counterpart of I:• is given by 

- 2F* 
Fs = pU;d. 

The y-component of F8 , known as the lift coefficient, CL , yield 

1f 1 
CL = CL,p + CLJ- 2 Fr2 , 

where 
t 1r 

CL,p = l o psin e d8, 
1 t 7r 

c L,J = R J 0 fi . \l v d8 

(3.78) 

(3.79) 

(3.80) 

are the pressure and the viscous (friction) contributions to the lift co fficient respec

tively. The x-component of Fs results in the drag coefficient , CD, 

(3.81) 

where the pressure and the viscous contributions to the drag co fficient are 

( 2-rr 1 ( 2-rr 
CD,p = Jo pcos8 d8, CD.t = R l o fi · \lu d8 , (3.82) 

respectively. The interpolations of the discrete pressure and vorticity fields to the 

cylinder surface required for the implementation of equations (3.79) and (3.81) are 

performed using second-order B-splines. The mean lift and drag coefficients are 

calculated as 
--. 1 l t+kT 
CD = kT t CD dt , (3. 3) 

respectively, where k indicates a number of periods of oscillation. 

When the cylinder moves relative to the fluid there is an exchange of m chanical en-

ergy between the fluid and the cylinder. For the cylinder subject to in-line oscillations 

in uniform flow the total energy transfer over one period of oscillation, T *, can be 
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defined as 
r· 

E* = 1 D i:*(t*) dt* (3. 4) 

where the overdot indicates the differentiation by time [see, for example Blackburn 

and Henderson (1999)]. The dimensionless counterpart of E* can be written as 

2E* 
E = pU2d2. (3.85) 

It is noted that mechanical energy transf r , E, is positive when the energy is trans-

ferred from the fluid to the cylinder and negative, otherwise. 

3.5 Initial conditions 

In this thesis, the uniform flow is used as the initial condition, where the flow velocities 

at time t = 0 are defined by 

U i,j = 1 - v1 , where i = 0, ... , N , j = 0, . . . M - 1. 

v i,j = - v 2, where i = 0, .. . , - 1, j = 0, ... , M. 

(3. 6) 

(3. 7) 

It is as umed that at time t = 0, the fr e urface is undisturb d . It is noted that 

there is no initial condition for th pressure field . This is due to th fact that pressure 

is not involved into the discretization of the governing equations and the boundary 

conditions at explicit time level. 

3.6 Numerical simulation flowchart 

The numerical algorithm, described in this chapter, is implemented in the C++ Ian-

guage. Figure 3.17 illustrates the numerical simulation flowchart. The main steps of 
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the program are (i) the initialization of u?,j, v?,j, FR
2
,i,J• V?.,j and A?,j; and (ii) the 

t · 't t · h h 1 f · bl n+l n+I n+I F.n+I \\m+I d zme z era wn, w ere t e new va ues o vana es Pi,j , ui,J , vi,j , n
2

,i,j, "' i,j an 

A~r at the new time t = tn+l are calculated. 

At the initialization step, the velocities u?,J and v?,J are initialized, accordingly, using 

the uniform flow initial conditions (3.86) and (3.87). The initial values of FR
2

,i,j are 

calculated from the assumption that t he free surface is undisturbed at the ini tial time. 

The initial values of V?.,J and A?,J are calculated from the geometry of the body. 

The time iteration involves the following steps. First , the free surface is advected with 

the local velocity field i? = (uf.J• v~J• 0) and the new values of Ff::l.J are calculated. 

The fluid-body interface is advected based on the prescribed motion of the body. 

Second, the fluid and fluid-body interfaces are reconstructed from the values of F~:l.J· 

The values of Ff::f.J are used to label pressure cells and velocity knots. The geometry 

labeling is used to build a system of linear equations of the form Ax = b, where 

A = ( ai ,J ) is the matrix of this linear system, b is the vector of free terms and x is 

the vector of unknowns. Finally, the new values of u~r, v~r and p~r are calculated 

by iterative solution of the system of linear equations. This is done by making use 

of the Trilinos numerical solver library [Sala et al. (2004)]. At each time iteration, 

a preconditioned linear system PAx = Pb is solved using the generalized minimal 

residual method , where P is an incomplete LU preconditioner with a thre hold. The 

threshold parameter is chosen so as to minimize the amount of memory needed to 

store the precondi tioner and at the same time to maximize the rate of convergence of 

the iterative solver. The convergence criteria is liP Ax - Pbll ::::; 10- 6
. 

Figure 3.18 shows the structure of the matrix of the linear system, A. The matrix 
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START ( Initialization J -~ 

Set u?,1, 0 F~ .. 
Reconstruct free surface 

vi,j> 2,'l.,J and fluid-body interfaces 
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Figure 3.17: Numerical simulation flowchart. 
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Figure 3.18: The structure of the matrix of the linear syst m, A. 

A is a sparse matrix with a size 3 x N x M, where N and M d note the number of 

grid knots in the x- and y-directions, respectively. The structure of the matrix A can 

be divided into three horizontal blocks as shown by the dashed lin s in Figure 3.18. 

The upper block is built of the discrete continuity equations added for the pressure 

knots, Pi,j· It is noted that the pressure is not involved in the continuity equation and 

thus the part of the diagonal of matrix A lying in the upper block (line "1 ') has zero 

elements. On the other hand the nonzero elements on the lin "1" corre pond to the 

pressure knots which are located either in the cylinder or at th computational domain 

boundary. The four lines from the right hand side of the line "1" in the upper block 

correspond to the u· · (line "2") u· · (line "3") v· · (line "4") and v · · (line "5") t,J ' t+l,J ' t,J 1,J+l 

velocities which are involved in the discrete continuity equations. The middle and 

lower blocks of the matrix A correspond to ui,j and Vi,j velocitie , re pectively. Th se 
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blocks are built of the discrete momentum quations added for u i,j and vi,j knots, 

respectively. In the middle block, the u i,j knots constitute th part of the diagonal 

of matrix A which belongs to thi block (line "1"). The four lines from the left and 

right hand sides of the diagonal correspond to the four neighbour velocities, u i-1,j 

(1 . "2") (1' "3") (1' "4" ) d (1' "5") h ' h . 1 d me , ui+1,j me , ui,j-1 me an u i,j+1 me , w 1c are mvo ve 

in the discrete momentum equations for the knots u i,j. Two more lines from the 

left hand side of the diagonal correspond to the pressure knots, Pi- l ,j (line "6") and 

Pi,j (line "7"), which are involved in the discrete momentum equations for the knots 

u i,j . Similarly, in the lower block of the matrix A, the diagonal elements are vi,j (line 

"1") . The four lines from the left and right hand sides of the diagonal correspond 

to the four neighbour velocities, Vi- 1,j (line "2"), vi+1,j (line "3") , vi,j - 1 (line "4") 

and vi,J+1 (line "5"), which are involved in the discrete momentum quations for the 

knots v i,j. Two more lines from the left hand side of the diagonal correspond to the 

pressure knots Pi,j- l (line "6" ) and Pi,j (line '7"), which are involv din the di crete 

momentum equations for the knots vi ,j · 



4. Numerical algorithm validation 

In this chapter, the ability of the present numerical model to approximate free surface 

flows with moving bluff bodies and other relevant viscous flows is discussed . Specifi

cally, the test problems are restricted to the two-dimensional , unsteady, laminar flow 

of a viscous incompressible fluid around circular cylinders. The numerical algorithm 

is first tested to determine the accuracy of the patial and temporal discretizations. 

The numerical accuracy of the solution procedure also depends on the computational 

parameters such as the time step, f::lt, and grid geometry parameters, i.e., the prox

imity of the computational domain boundaries and the near wake grid resolution. A 

series of numerical experiments is conducted to determine the optimal values of the 

computational and grid geometry parameters. The set of computational and grid 

geometry parameters are chosen so that the difference between present and previous 

computed results varies within about 3.0%. 

In the subsections below, the validation of numerical algorithm is presented for uni

form flow past (i) a stationary cylinder; (ii) a cylinder undergoing forced recti-linear 

oscillations (oscillations at an angle 7J = 60° with respect to the free stream, trans

verse, in-line oscillations); (iii) a cylinder undergoing forced combined transverse and 

rotational , and combined in-line and rotational oscillations; (iv) a steadily rotating 

cylinder in the absence of a free surface. The validation of the present numerical 

model is also presented for uniform flow past (i) a stationary cylinder and (ii) a cylin

der undergoing forced translational oscillations in the in-line direction in the presence 

of a fr e surface. 

102 
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The present numerical simulations are performed on a cluster of four dual-core AMD 

Opteron 265 and twenty five dual-core AMD Opteron 2218 (IBM) computers located 

at the Department of Mathematics and Statistics, Memorial University of Newfound

land. Depending on the time step values and the time at which the calculations are 

terminated, it requires 120 to 240 hours to run the numerical code using the grid 

system 370 x 240 for the flow parameter ranges 100 ~ R ~ 103 , 0.13 ~ A ~ 0.5, 

0.5 ~ f / fo ~ 4.0. Hence, to calculate the behaviour of the flow for large values of the 

time up to t = 120 (when the time step b.t = 0.01, grid system 370 x 240) requires 

about 240 hours. 

4.1 Spatial and temporal accuracy tests 

Spatial and temporal accuracies of numerical method are typically checked by com-

paring the numerical solution to analytical one. Since exact analytical solut ions to 

Parameter Grid cells per cylinder diameter b.t 

Value 40 60 90 0.004 0.002 0.001 

llfi-PII 0.002677 0.001188 0.000538 0.000491 0.000243 0.000122 

llu- ull 0.021027 0.011165 0.005635 0.000575 0.000291 0.000147 

llv- vii 0.017875 0.008519 0.003980 0.000597 0.000295 0.000147 

Table 4.1: L2 norm of the relative errors of the pressure, p, and velocity components, 
u , v, as the time step and the number of grid cells per cylinder diameter vary for the 
stationary cylinder case in the absence of a free surface at R = 103 when t = 0.1. 
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the continuity and Navier-Stokes equations of unsteady flow past a circular cylinder 

are not available, the fully converged results obtained by the finest grid possible are 

used as the "exact" solutions [see, for example, Anderson and Reider (1996)]. 

Figure 4.1: An example of the computational grid (pressure cells) with 278 x 178 
elements. 

In this thesis, the spatial and temporal accuracies of the method are evaluated by 

solving the test problem of an initial flow past a stationary cylinder in the absence of 

a free surface. The Reynolds number of R = 103 is chosen for the accuracy tests. This 

Reynolds number is high enough to present the flow structure in detail, yet still low 

enough to allow for full resolution on fine grids. The relative errors in the predicted 

quantities are computed at t = 0.1 using the discrete L2 norm defined as 

II[ - ~II = 6h (I,)[i,j- ~i,j ) 2) 
112

, 

~.J 

( 4.1) 

where [is the analytical solution, ~ is the computed quantity and 6h is the uniform 
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spatial grid step. Since exact analytical solution to this problem is not available, the 

present numerical predictions obtained with the grid system of 120 cells per cylinder 

diameter are used for full resolution. Three uniform grid systems 90 x 90, 60 x 60 

and 40 x 40 are used for the spatial and temporal accuracy tests. The uniform spatial 

grid step values are 6.h = 1/90, 1/60, 1/40, respectively. 

Table 4.1 shows the calculated spatial and temporal relative errors of the pressure, 

p, and velocity components, u, v, at t = 0.1 as the near wake grid resolution and 

the time step vary. The results indicate that the present numerical algorithm has an 

accuracy of second-order in space and of first-order in time, as expected. 

4.2 Choice of the computational parameters 

The numerical calculations are carried out using an exponential staggered Cartesian 

grid as described in Gubanov (2006) . The grid system 20 x 30 x 30 with 278 x 178 

elements is illustrated in Figure 4.1. In this figure, only pressure computational cells 

are shown. In the work by Gubanov (2006), the exponential distribution of grid knots 

is defined as follows. Let N denote the number of knots. The exponential distribution 

of N knots, { xi}~1 , in the interval [xa, xb] can then be defined as 

ea'1 - 1 i - 1 
Xi=Xa+(xb-Xa) 

1
, i-N 

1
, i= l , ... , N , (4.2) 

ea- -

where ~i is the uniform distribution of N knots in the interval [0, 1]. The exponential 

grid parameter, a, is computed numerically by finding the root of the function 

ea/(N-1) _ 1 
f(a) = 6.h - (xb- Xa) . (4.3) 

ea- 1 
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This is done by making use of Brent's root finding algorithm [Brent (1973)]. It is 

noted that a is chosen so that the first grid step of the exponential grid in the grids 

overlap region equals to the uniform grid tep, 6h. 

Figure 4.2: Grid geometry parameters. The shaded region is the uniform grid region. 

The computational domain geometry is defined with respect to the mean position of 

the cylinder. In the vicinity of the mean cylinder position the grid has fine resolution 

and is uniform. Outside of the uniform grid region, the grid expands exponentially 

towards the four boundaries of the computational domain. The grid g ometry pa-

rameters are illustrated in Figure 4.2, where L1 , £ 2 , £ 3 define th locations of the 

computational domain boundaries with respect to the mean position of the cylinder. 

In this figure, the shaded region is the uniform grid region. 

Computational domain size. A number of computational domain sizes are tested 

to estimate the values of L1 , £ 2 , £ 3 sufficient for the full development of the flow field. 

The domain size tests are carried out for uniform flow past a stationary cylinder in 

the (i) absence of a free surface at R = 100 and (ii) presence of a free surface at 

R = 200: Fr = 0.3, h = 0.55. 
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Parameter L1 L2 £3 

Value 10 15 20 20 30 40 20 30 40 

fo 0.165 0.165 0.164 0.164 0.165 0.165 0.168 0.166 0.165 

CL,max 0.330 0.323 0.320 0.260 0.328 0.330 0.333 0.330 0.328 

CD,max 1.351 1.334 1.327 1.331 1.350 1.351 1.361 1.352 1.350 

_..._ 

Cn 1.341 1.324 1.317 1.322 1.339 1.341 1.351 1.343 1.339 

Table 4.2: The effect of the computational domain size on th_..._ maximum drag and 
lift coefficients, Cn,max and CL,max; the mean drag coefficient, Cn; the natural vortex 
shedding frequency, J0 , for the case of uniform flow past a stationary cylinder in the 
absence of a free surface at R = 100. 

Table 4.2 shows the comparisons of the predicted maximum drag and lift coefficients, 

Cn,max and CL,max; the mean drag coefficient, Co; the natural vortex shedding fre

quency, J0 , for the case of uniform flow past a stationary cylinder in the absence of 

a free surface at the Reynolds number of R = 100. This table indicates that the 

numerical grid with L1 = 10, L2 = 30, L3 = 30 predicts the computed quantities 

with the maximum error of order less than 1.8% when compared to the reference grid 

with the computational domain size 20 x 40 x 40. This level of accuracy is considered 

to be acceptable for the present investigations of uniform flow past the cylinder in 

the absence of a free surface. 

The computational domain size plays a key role for the accurate numerical simulation 

of unsteady flow when free surface effects are included. The numerical experiments 

indicate that the restricted computational domain may lead to an artificial alteration 

in the height of the free surface. This observation agrees with the one reported in 
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Parameter L1 £2 £3 

Value 15 20 30 20 30 40 30 40 60 

fiJs 0.198 0.200 0.203 0.196 0.200 0.200 0.205 0.200 0.200 

CL,rms 0.695 0.716 0.721 0.697 0.710 0.716 0.724 0.714 0.710 

CD,rms 1.576 1.594 1.630 1.562 1.595 1.594 1.632 1.608 1.595 

hiL,max 1.048 1.047 1.043 1.047 1.041 1.036 1.041 1.043 1.060 

hiL,min 0.948 0.897 0.874 0.897 0.879 0.879 0.875 0.884 0.947 

Table 4.3: The effect of the computational domain size on the maximum and mini
mum local heights of the free surface, hiL,max and hiL,min; the RMS value of the lift 
coefficient, CL,rms; the RMS value of the drag coefficient, CD,rms; the natural vortex 
shedding frequency, fiJs, for the case of uniform flow past a stationary cylinder in 
the presence of a free surface at R = 200: Fr = 0.3, h = 0.55. 

the work by Reichl (2001) . One of the reasons is that when the free surface wave 

reaches inflow boundary, it should naturally propagate through this boundary. On 

the other hand, the inflow boundary conditions (2.45) prohibit the propagation of the 

free surface wave through the inflow boundary. This results in an artificial elevation 

of the height of the fluid in fh at the inflow boundary and then , over a sufficient time 

interval, in the whole computational domain. The artificial changes in the height of 

the free surface affect the value of the lift force acting on the surface of the cylinder 

since the calculation of the lift force involves subtracting the buoyancy force. In 

order to ensure that the chosen values of £ 1, £ 2, £ 3 are sufficient to predict free 

surface flow quantities accurately further tests are conducted for uniform flow past a 

stationary cylinder in the presence of a free surface at R = 200: Fr = 0.3, h = 0.55. 
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The flow is simulated up to t = 120 and is quasi-periodic over this interval of time. 

Therefore, the root mean square (RMS) lift coefficient, CL,rms, and the RMS drag 

coefficient, Co,rms, are used to measure the magnitude of variations in the lift and 

the drag coefficients. Table 4.3 shows the effect of the computational domain size 

on the maximum and minimum local heights of the free surface, h iL,max and hiL,min; 

the RMS value of the lift coefficient, CL,rms; the RMS value of the drag coefficient, 

Co,rms; the natural vortex shedding frequency, fi Js, for the case of uniform flow past 

a stationary cylinder in the presence of a free surface at R = 200: Fr = 0.3, h = 0.55. 

The maximum and minimum local heights of the free surface are measured at the 

time when the lift coefficient reaches its maximum. Table 4.3 indicates that the grid 

with L1 = 20, L2 = 30, L3 = 40 yields results which are accurate to maximum 3% 

when compared to the reference grid with the computational domain size 30 x 40 x 60. 

This level of accuracy is assumed to be sufficient for the present study of uniform flow 

past a cylinder in the presence of a free surface. 

Grid resolution. The accuracy of calculation of the surface lift and drag forces 

is governed by the number of cells per cylinder diameter , i.e., by th near wake grid 

resolution. To examine the effect of the near wake grid resolution , three different grids 

with 90, 60 40 cells per cylinder diameter, having the same computational domain 

size, are used. The time step value, b.t = 0.005, is chosen for the grid resolution te ts. 

The grid resolution tests are carried out for uniform flow past a stationary cylinder 

in the (i) absence of a free surface at R = 100 and (ii) presence of a free surface at 

R = 200: Fr = 0.3, h = 0.7. 
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Parameter Grid cells per diameter t:.t 

Value 40 60 90 0.01 0.0075 0.005 

fo 0.168 0.168 0.168 0.166 0.167 0.168 

CL ,max 0.336 0.335 0.335 0.301 0.333 0.335 

CD ,max 1.376 1.363 1.362 1.352 1.360 1.363 

-
CD 1.367 1.354 1.353 1.343 1.351 1.354 

Table 4.4: The effects of the near wake grid resolution and the t ime step, t:.t , on the 
maximum drag and lift coefficients, C D,max and CL ,max; the mean drag coefficient , 

Co; the natural vortex shedding frequency, / 0 , for the case of uniform flow past a 
stationary cylinder in the absence of a free surface at R = 100. 

Table 4.4 shows the comparison between the three grids with different spatial res-

olutions for the case of uniform flow past a stationary cylinder in the absence of a 

free surface at R = 100. This table indicates that increasing the number of cells per 

cylinder diameter from 60 to 90 has a negligible effect on the computed quantities. 

The grid resolution of 40 cells per diameter gives the maximum error of order 1% in 

the computed quantities when compared to those with the grid resolut ion of 90 cells 

per diameter. The grid resolution of 60 cells per diameter is chosen fo r the current 

investigation of uniform flow past the cylinder in the absence of a free surface to 

capture the physical development of the flow in the boundary layer region accurately 

at large values of the Reynolds numbers. 

The comparisons of the predicted RMS values of the lift and drag coefficients, C L,rms 

and CD,rms ; the natural vortex shedding frequency, fiJs, for the case of uniform flow 

past a stationary cylinder in the presence of a free surface at R = 200: Fr = 0.3, 
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Parameter Grid cells per diameter C:::.t 

Value 40 60 90 0.01 0.0075 0.005 

f its 0.210 0.210 0.211 0.206 0.208 0.210 

CL,rms 0.693 0.707 0.723 0.711 0.711 0.707 

CD,rms 1.538 1.564 1.580 0.564 0.564 1.564 

Table 4.5: The effects of the near wake grid resolution and the time step, C:::. t, on 
the RMS value of the lift coefficient, CL,rms; the RMS value of the drag coefficient , 
CD,rms; the natural vortex shedding frequency, fits , for the case of uniform ftow past 
a stationary cylinder in the presence of a free surface at R = 200: Fr = 0.3 h = 0.7. 

h = 0.7 as number of grid cells per cylinder diameter varies are shown in Table 4.5. 

This table indicates that the grids with grid resolutions of 40 and 60 cells per diameter 

give the maximum errors of order 4.2% and 2.2%, respectively, in the computed 

quantities when compared to those with the grid resolution of 90 cells per diameter. 

Thus, the grid resolution of 60 cells per diameter is chosen for the current investigation 

of uniform ftow past the cylinder in the presence of a free surface. 

Time step. The sensitivity of the accuracy of computations to the value of the 

time step is tested using the same grid for three different values of the time steps, 

C:::.t = 0.005, 0.0075, 0.01. The grid resolution tests (the grid resolution is 60 cells per 

cylinder diameter) are carried out for uniform ftow past a stationary cylinder in the 

(i) absence of a free surface at R = 100 and (ii) presence of a free surface at R = 200: 

Fr = 0.3 , h = 0.7. 

Table 4.4 shows the comparisons between the results obtained with thre diff rent 
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time steps for the case of uniform flow past a stationary cylinder in the absence of a 

free surface at R = 100. It is seen that as the time step increases from b..t = 0.0075 

to b..t = 0.01 , the order of maximum error in the computed quantities increases from 

0.6% to 1.6%, respectively, when compared to the results obtained with the time step 

b..t = 0.005. 

The effect of the time step on the CL ,rms> CD,rms and fiJs• for the case of uniform 

flow past a stationary cylinder in the presence of a free surface at R = 200: Fr = 0.3, 

h = 0.7 is shown in Table 4.5. This table indicates that increasing the time step from 

b..t = 0.0075 to b..t = 0.01 has a negligible effect (the maximum error is 0.6%) on 

the computed quantities when compared to the results obtained with the time step 

b..t = 0.005. Thus, the time step b..t = 0.01 seems to be a good compromise between 

the accuracy of the calculations and the computational time required to perform th 

calculations. This time step value is used in the present thesis. 

4.3 Uniform flow past a stationary cylinder in the 

absence of a free surface 

The accuracy of the numerical algorithm is first checked by carrying out computa

tions for t he initial development of uniform flow past a stationary cylinder case at the 

Reynolds numbers of R = 500 and 103 . The Reynolds number values chosen allow 

comparison with the numerical results of Li et al. (2004) , Ploumhans and Winckel

mans (2000) and Anderson and Reider (1996). The development of the drag coeffi-
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cient, C0 , at R = 500 is compared with the numerical results of Li et al. (2004) and 

Ploumhans and Winckelmans (2000) in Figure 4.3. A kinetic-theory-based lattice

Boltzmann method is utilized in the work of Li et al. (2004) while Ploumhans and 

Winckelmans (2000) used a vortex method based on the particle strength exchange 

scheme for diffusion. The predicted drag coefficient shown in Figure 4.3 is in excellent 

agreement with the numerical results of Ploumhans and Winckelmans (2000) and in 

good agreement with the numerical results of Li et al. (2004). 
Co 

2~----~----~-----, 

1.5 

0.5 L___ ____ _.__ ____ --'-____ __J 

0 t 2 3 

Figure 4.3: The time evolution of the drag coefficient, C0 , for the stationary 
cylinder case in the absence of a free surface at R = 500: numerical results 
of Li et al. ( 2004) (dashed) and Ploumhans and Winckelmans ( 2000) (dash-dot); 
present results (solid). 

In Figures 4.4-4.6 , the computed results of several initial propertie uch as the drag 

coefficient , C0 ; the evolution of the maximum vorticity, (max; the surface pressure 

distribution , p0 ; the surface vorticity distribution, (0 , and the equivorticity lines and 

the streamlines from the present numerical scheme are compared with the numerical 

results of Anderson and Reider (1996). In the work of Anderson and Reider (1996) , 

the numerical model is based on the stream function/ vorticity formulation of the 
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Figure 4.4: The time evolution of the drag coefficient , CD , (left) and the maximum 
vorticity, (max, (right) for the stationary cylinder case in the ab ence of a free surface 
at R = 103 : numerical results of Anderson and Reider (1996) (dashed); pre ent results 
(solid). 

continuity and Navier-Stokes equations which are computed based on an explicit finite 

difference method of second-order (or fourth-order) accuracy in space and of fourth

order accuracy in time. Their numerical approach differs from other finite difference 

implementations (when using the vorticity formulation of the continuity and avier

Stokes equat ions) in their use of infinity boundary conditions for the stream function 

and their particular method for satisfying vorticity conditions. Ther are two main 

advantages in this approach. First, it allows one to easily obtain high accuracy in both 

the interior and boundary values of vorticity. Second, it allows one to implement time 

dependent conditions without any loss of time accuracy. In the present thesis, the 

primitive variables formulation of the governing equations is employed. The present 

computations have shown that the MatLab function curl(x,y,u,v) for computing the 

vorticity from the velocity field results in the same order of accuracy. In what follows , 
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Figure 4.5: The surface pressure distribution, p0 , (left) and the surface vorticity 
distribution , (0 , (right) for the stationary cylinder case in the absence of a free surface 
at R = 103 (from top to bottom: t = 0.5, 1.0, 1.5): numerical results of Anderson 
and Reider (1996) (dashed); present results (solid). 

the vorticity, (, is calculated by interpolating velocity components, u , v, into pressure 

knots and then taking the curl of the resulting vector field , curl(x,y,u , v), in MatLab. 
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(a) (b) (c) (d) 

Figure 4.6: The equivorticity lines ((a) , (b)) and the streamlines ((c), (d)) for the 
stationary cylinder case in the absence of a free surface at R = 103 (from top to 
bottom: t = 0.75, 1.0, 1.25 1.5): ((a), (c)) numerical results of Anderson and Rei
der (1996); ((b), (d)) present results. Red colours correspond to positive vorticity 
(counterclockwise rotation) and green colours indicate negative vorticity (clockwise 
rotation). From top to bottom the values of the streamlines are: 0.683, 0.5 6, 0.471, 
0.380, 0.280, 0.217, 0.144, 0.078, 0.008, -0.008; 0.748, 0.644, 0.538, 0.428, 0.320, 
0.220, 0.112, 0.007, -0.007, -0.006; 0.633, 0.518, 0.374, 0.1 1, 0.109, 0.042, 0.007, 
0.002, -0.080, -0.042, -0.007; 0.659, 0.556, 0.415, 0.315, 0.215, 0.148, 0.045, 0.007, 
-0.114, -0.074, -0.045, -0.005. 
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Figure 4. 7: The time evolution of the u-velocity of the fluid over two pe
riods of vortex shedding, tjT0 = 2, for the stationary cylinder case in the 
absence of a free surface at R = 106: experimental results of Anagnos
topoulos (1997) (circles); numerical results of Anagnostopoulos (1997) (dot
ted) and Al-Mdallal (2004) (dashed) ; present results (solid) at the loca
tions: (a) (x , y) = (2.7, 0.32), (b) (x , y) = (2.7, 0.43), (c) (x , y) = (4.9, 0.17), (d) 
(x, y) = (4.9, 0.33) , (e) (x, y) = (7.5, 0.5), (f) (x, y) = (7.5, 0.75). 
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Here, x and y are the spatial coordinates of the pressure knots in which vorticity is 

being computed. In Cartesian coordinates, the stream function, '1/J , is defined by 

[)'lj; 
u = fJy' (4.4) 

The stream function, '1/J, is computed by integrating (4.4) in the computational do-

main. Nevertheless, Figures 4.4-4.6 show excellent agreement between the results. 

The time evolution of the u-velocity of the fluid and the pressure distribution for 

uniform flow past a stationary cylinder at R = 106 are compared with the numerical 

results of Al-Mdallal (2004) and the numerical and experimental results of Anag

nostopoulos (1997). It is well known, if unaltered, any numerical method [see, for 

example, Braza et al. (1986)] produces symmetric vortices behind the cylinder for 

all the times, for the mathematical models used to describe these cases although the 

physical flows are asymmetric. This behaviour results from the fact that, at any 

instant, the total speed of the upper and lower parts of the cylinder (and thus the 

behaviour of the fluid in these regions) are exactly the same as a result of the sym-

metric boundary conditions imposed on the flow. However, physically realistic flows 

of this type are not symmetric and thus a velocity gradient must exist for the fluid on 

the cylinder surface. Taking this into account, an artificial perturbation in which a 

clockwise rotation of the circular cylinder is followed after a short period of time by a 

counterclockwise rotation can be imposed to break this perfect numerical symmetry 

[Al-Mdallal (2004), Justesen (1991), Braza et al. (1986)]. Following the work of Braza 

et al. (1986), the perturbation is implemented with the angular displacement given 
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Figure 4.8: The pressure distribution in the near wake region for the stationary 
cylinder case in the absence of a free surface at R = 106 (from top to bottom: 
t/T0 = 0, 1/ 8, 1/12 (To = 5.9)): numerical results of Anagnostopoulos (1997) (left) 
and Al-Mdallal ( 2004) (middle); present results (right). 
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by 

a(t) = 

0.3 , 1.45 ~ t ~ 2.1 , 

- 0.2, 2.15 ~ t ~ 3.0, 

0, otherwise. 

(4.5) 

In the works of Al-Mdallal (2004) and Anagnostopoulos (1997), the stream func

tion/ vorticity formulation of the continuity and Navier-Stokes equations is utilized. 

The Poisson equation is solved to calculate the pressure field. In the work by Al

Mdallal (2004) , the method of solution is based on spectral finite difference approxi

mations while Anagnostopoulos (1997) used the Galerkin fini te volume method in his 

calculations. Figure 4. 7 shows the comparison of the time evolution of u-velocity over 

the two periods of vortex shedding, t/T0 = 2, where the predicted period of vortex 

shedding is T0 = 5.9. The time, tjT0 = 0, corresponds to the time when the zero 

lift coefficient appears in the time history of CL over a shedding period . The time 

history of u-velocity of the fluid is depicted at six different locations in the near wake 

of the cylinder: (x, y) = (2 .7, 0.32) , (2.7, 0.43), (4.9, 0.17) , (4.9, 0.33) , (7.5, 0.5), 

(7.5 , 0.75) . It is noted that in the experimental work by Anagnostopoulos (1997), 

the time history of u-velocity of the fluid is captured for lightly higher Reynolds 

number , R = 115, than R = 106 which is used in his computations. This i due 

to the fact that in the numerical simulation the proximity of the domain boundaries 

induces the numerical diffusion. As a result , the effective Reynolds number becomes 

slightly higher than the theoretical one. The discrepancy between the present results 

and the results of Anagnostopoulos (1997) that appeared in the wake is smaller than 

that close to the cylinder. It is noted that the frequency of the velocity traces curves 

is exactly the same as the natural vortex shedding frequency, f 0 . 
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_...._ 

R Reference fo Co CL ,max 

Present 0.168 0.335 1.354 
Liu et al. (1998) 0.164 0.339 1.35 

100 Ku (1995) 0.1675 0.228 1.358 
Wen and Lin (2001)t 0.165-0.167 - -
Henderson (1995) t - - -

Present 0.1981 1.3399 0.70 
Poncet (2004) 0.199 1.3389 0.70 

200 Henderson (1997) 0.1972 1.3412 -

De Palma et al. (2006) 0.19 1.34 0.68 
Wen and Lin (2001)t - 1.30 -
Present 0.2100 1.3725 0.94 

300 Poncet (2004) 0.211 1.3820 0.96 
Henderson (1997) 0.2113 1.3769 -

Ye et al. (1999) 0.21 1.38 -

Present 0.2195 1.4110 1.08 

400 Poncet (2004) 0.2228 1.4080 1.08 
Henderson (1997) 0.2198 1.4142 -

He et al. (2000) 0.221 1.423 -

Present 0.2258 1.4400 1.20 
500 Poncet (2004) 0.230 1.4433 1.23 

Henderson (1997) 0.2254 1.4449 -

Present 0.242 1.40 1.462 
103 

Poncet (2004) 0.241 1.45 1.5264 
Henderson (1997) 0.2372 - -

Table 4.6: The comparison of the predicted natural vortex shed~ng frequency, f 0 ; the 
maximum lift coefficient, CL max; the mean drag coefficients, Co, with the previous 
numerical and experimental(t) results. 

The pressure distribution in the near wake of the stationary cylinder in the absence 

of a free surface at R = 106 is shown in Figure 4.8 . The snapshots are taken at 

the instants t/ T0 = 0, 1/8 , 1/ 12. The predicted profiles of the u-velocity of the 

fluid and the pressure distribution in the near wake region shown in Figures 4. 7 and 



4.4. Uniform flow past an oscillating cylinder in the absence of a free surface 122 

4.8, respectiv ly, are in good agreement with the results of Al-Mdallal (2004) and 

Anagnostopoulo ( 1997). 

The periodic propertie of uniform flow past a cylinder can be !early ob erved in 

time evolution of the surface hydrodynamic forces. A series of numerical experiments 

is conducted to ensure the accurate calculation of the lift and drag coefficients. The 

Karman frequency, f0 , is calculated using the Fourier analysis of the lift coefficient , 

CL· For the case of uniform flow past a stationary cylinder, the Fourier analysis 

yields the frequency spectra in which the dominant frequency is f 0 . In Table 4.6, t he 

predicted values of the maximum lift coefficient, CL max' the mean drag coefficient, 
' -CD, and the pr dieted natural shedding frequency, f 0 , are displayed at R = 100, 200, 

300, 400, 500, 103 . The predicted present results are in good agreement with previou 

numerical and experimental studies for the Reynolds number range 100 ~ R ~ 103
. 

4.4 Uniform flow past an oscillating cylinder in the 

absence of a free surface 

The initial flow simulations are conducted at R = 855 for uniform flow past an oscil

lating circular cylinder in the absence of a free surface. Two types of forced oscilla

tory motion: (i) combined rotational and transverse oscillation , and (ii) combined 

rotational and in-line oscillations are considered. The imposed translational and ro-

tational oscillatory motions of the cylinder are described as 

x(t) = y(t) = - A cos(21f ft) , (4.6) 

respectively. The amplit ude of the translational and rotational displacements , A , and 

A0 , ares t to 0.13 and 30°, resp ctively. The frequency of the translational oscilla-
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tion is the same as for the rotational oscillation, i.e., f = f a· In Figures 4.9-4.12, the 

computed results of several initial properties such as the surface pressure distribution, 

p0 ; the surface vorticity distribution , (0 ; the drag and lift coefficients, CD and CL, 

are shown in which the present results are compared with the analytical and numer

ical results of Al-Mdallal (2004) for the frequency ratio f / fo = 1 (!0 = 0.194) . In 

Al-Mdallal 's work, the near wake structure and fluid forces are generated by a circu

lar cylinder under combined recti-linear and rotational oscillation placed in a steady 

uniform flow. The governing equations in stream function / vorticity formulation are 

solved using a finite difference scheme which utilizes global condition of an integral 

character. A non-inertial coordinate transformation is used to conformally map the 

unbounded domain outside the cylinder to a rectangular domain which is discretized 

by a set of uniformly spaced grid points. Figures 4. 9 and 4. 10 show the initial t ime de

velopment of the surface vorticity and pressure distributions , (0 , and p0 , respectively, 

for the case R = 855: A = 0.13, Aa = 30°, f / fo = 1 when t = 0.05, 0.25, 0.5. The 

numerical and experimental results are in good agreement and excellent agreement 

between the numerical results is obtained at t = 0.5. The minor differences between 

the numerical results at t = 0.05 and 0.25 might be due to the fact that uniform 

flow solution is used as the initial condition in the present study unlike in the work 

by Al-Mdallal (2004) . The boundary-fitted grid is implemented and a spectral finite 

difference algorithm is used in Al-Mdallal 's work. On the other hand , in this thesis 

a non-boundary-fitted grid system is implemented in the numerical solut ion scheme 

and then SINTEF multilevel B-spline approximation library is used to interpolate the 

values of vorticity and pressure to the points on the cylinder surface. 

The initial time evolution of force coefficients is shown in Figures 4.11 and 4.12 for 
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Figure 4.9: The surface pressure distribution , p0 , (left) and the surface vorticity 
distribution, (0 , (right) for the combined rotational and transver e o cillation case 
in the absence of a free surface at R = 855: A = 0.13, Aa = 30°, f / fo = 1 (from 
top to bottom: t = 0.05, 0.25, 0.5): analytical results of Al-Mdallal (2004) (circles); 
numerical results of Al-Mdallal (2004) (dashed); present results (solid). 
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Figure 4.10: The surface pressure distribution , p0 , (left) and the surface vorticity 
distribution, ( 0 , (right) for the combined rotational and in-line oscillation case in 
the absence of a free surface at R = 855: A = 0.13, Aa- = 30°, f / fo = 1 (from 
top to bottom: t = 0.05, 0.25, 0.5): analytical results of Al-Mdallal (2004) (circles); 
numerical results of Al-Mdallal (2004) (dashed) ; present results (solid). 
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Figure 4.11: The lift coefficients, CL, CLJ and CL,p, (left) and the drag coefficients, 
C0 , Co,J and Co,p, (right) for the combined rotational and transverse oscillation case 
in the absence of a free surface at R = 855: A= 0.13, Aa = 30°, f / fo = 1 (from 
top to bottom: t = 0.05, 0.25, 0.5): analytical results of Al-Mdallal (2004) (circles) ; 
numerical results of Al-Mdallal ( 2004) (dashed); present results (solid). 
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Figure 4.12: The lift coefficients, CL, CL.J and CL,p, (left) and the drag coefficients, 
C0 , Co,J and Co,p, (right) for the combined rotational and in-line oscillation case 
in the absence of a free surface at R = 855: A = 0.13, Aa = 30°, f / fo = 1 (from 
top to bottom: t = 0.05, 0.25, 0.5): analytical results of Al-Mdallal (2004) (eire! s); 
numerical results of Al-Mdallal (2004) (dashed); present results (solid). 
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the case R = 855: A= 0.13, Aa = 30°, fIfo= 1 at t = 0.05, 0.25, 0.5, where CD.! 

and CL.J are coefficients due to the friction and CD,p and CL,p are coefficients due to 

the pressure. These figures show good agreement between the results. 

Reference Present Su et al. (2007) 

CL,max 0.92 0.97 

----CD 1.70 1.70 

Table 4.7: The comparison of the maximum lift coefficient, CL,max and the mean 

drag coefficient, Co, for the case of uniform flow past a cylinder subject to in-line 
oscillations in the absence of a free surface at R = 100: A = 0.14, f I fo = 2.0 with 
the numerical results of Su et al. (2007). 

To compare with the numerical findings of Su et al. (2007) , numerical simulations 

are performed at R = 100 for uniform flow past a circular cylinder subject to in-line 

oscillations in the absence of a free surface. The imposed translational in-line motion 

of the cylinder is described as 

x(t) = - A cos(2n-jt). (4.7) 

This flow is examined numerically by Su et al. (2007) at the in-line displacement 

amplitude of A = 0.14 and the frequency ratio, f I fo = 2 (!0 = 0.168). In this study 

the immersed boundary approach is utilized and a finite difference scheme is used 

to discretize the governing equations. The maximum lift coefficient, CL ,max> and th 

----mean drag coefficient, CD, for the in-line oscillation case at R = 100: A = 0.14, 

f I fo = 2 are compared with the results of Su et al. (2007) in Table 4. 7. The results 

show good agreement. 

The development of the vorticity over the one period of the vortex shedding, To = 2T, 
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is compared with the results of Su et al. (2007) in Figure 4.13 at R = 100. The 

numerical results are in good agreement in the near wake. 

Figure 4.13: The equivorticity lines for the case of uniform flow past a cylinder subject 
to in-line oscillations in the absence of a free surface at R = 100: A = 0.14, f / fo = 2 
(from top to bottom: tjT0 = 1/ 4, 1/ 2, 3/ 4, 1.0 (To = 5.91)): numerical results of Su et 
al. (2007) (left); present results (right) . Red colours correspond to posit ive vorticity 
(counterclockwise rotation) and green colours indicate negative vorticity (clockwise 
rotation) . 

The final set of the lift and drag forces verifications is made for the case of uniform 

flow past a cylinder subject to transverse oscillations in the absence of a free surface 
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at (i) R = 100: A= 0.2, fifo = 1 and (ii) R = 185: A= 0.2, fifo = 1.1. The 

---Reference CL,max CD ,max CD 

Present 0.270 1.620 1.526 

Karanth et al. (1995) 0.274 1.625 1.500 

Table 4.8: The comparison of the maximum lift coefficient, CL max; the maximum 
' 

drag coefficient, CD max; the mean drag coefficient, Co, for the case of uniform flow 
' 

past a cylinder subject to transverse oscillations in the absence of a free surface at 
R = 100: A= 0.2, f / fo = 1 with the numerical results of Karanth et al. (1995). 

imposed translational transverse motion of the cylinder is described by 

y(t) = - Acos(27rft) . (4.8) 

The predicted present results are compared with the numerical results of Karanth et 

al. (1995) and Guilmineau and Queutey (2002). In each of the studies, a finite dif-

Reference CL,rms CD,rms c; 

Present 0.895 1.431 1.422 

Guilmineau and Queutey (2002) 0.897 1.440 1.420 

Table 4.9: The comparison of the RMS lift coefficient, CL,rms; the RMS drag coef
ficient, CD,rms; the mean drag coefficient, Co, for the case of uniform flow past a 
cylinder subject to transverse oscillations in the absence of a free surface at R = 185: 
A= 0.2, f / fo = 1.1 with the numerical results of Guilmineau and Queut y (2002). 

ference scheme is used to discretize the governing equations. In the work of Karanth 

et al. (1995), the governing equations in their stream function/vorticity formulation 

are solved on the boundary-fitted grid while Guilmineau and Queutey (2002) used a 

coordinate transformation technique. Table 4.8 shows the comparisons of the max-
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imum lift coefficient, CL ,max; the maximum drag coefficient, CD,max; the mean drag 

coefficient , Co, for the transverse oscillation case at R = 100: A = 0.2, fIfo = 1 with 

the numerical results of Karanth et al. (1995). The present results and the numerical 

results of Karanth et al. (1995) are in good agreement. 

The comparisons of the RMS lift coefficient, CL,rms; the RMS drag coefficient, CD,,·ms; 

the mean drag coefficient, Co, for the transverse oscillation case at R = 185: A = 0.2 , 

fIfo = 1.1 (!0 = 0.214) with the numerical results of Guilmineau and Queutey (2002) 

are shown in Table 4.9. The results shown in Table 4.9 are in good agreement. It 

is noted that in the work by Guilmineau and Queutey (2002) , the reported value 

of CD,rms = 0.144 is inconsistent with the corresponding time history of the drag 

coefficient, CD [see Guilmineau and Queutey (2002) , Figure 10(d) , p . 786] . The RMS 

of the data extracted from Figure 10(d), [Guilmineau and Queutey (2002) , p . 786] 

results in CD,rms = 1.440. 

The next verifications are for the cases of uniform flow past a cylinder undergoing (i) 

recti-linear oscillations at an angle Tl = 60° and (ii) in-line oscillations at R = 855. 

The motion of the cylinder is defined as 

x(t) = - A cos(2n ft) , y(t) = - A cos(2nft) tan (T!)· (4.9) 

In Figures 4.14 and 4.15, the present predictions of the development of the flow in 

terms of the equivorticity lines at A = 0.13 for the frequency ratios fIfo= 0.5, 1.0, 

2.0, 3.0, 4.0 (!0 = 0.194) are compared with those obtained from the experimental 

study of Ongoren and Rockwell (1988) and the numerical results by Al-Mdallal (2004). 

The snapshots are taken at the instant corresponding to th maximum negative dis

placement of the cylinder. Following the work by Al-Mdallal (2004) , the present 
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computations are carried out over (i) 5T for f / fo = 0.5; (ii) 9T for f / fo = 1.0; (iii) 

20T for f / fo = 2.0 and (iv) 30T for f / fo = 3.0, 4.0. Figures 4.14 and 4.15 show rel

atively good qualitative agreement between the present equivorticity lines and those 

obtained in the works by Ongoren and Rockwell (1988) and Al-Mdallal (2004) . The 

differences between the results might be due to the following reasons. In Al-Mdallal's 

work, the governing equations are solved in their stream function / vorticity formula

tion using the boundary-fitted grid system 8 x 8 x 16 (when the time step is b..t = 0.01 , 

the uniform grid step is b..h = 0.025) while in the present thesis vorticity is computed 

from the velocity field . In order to accurately capture the development of the shear 

layer for the high Reynolds number R = 855, the present numerical calculations ar 

performed using the grid system 15 x 25 x 20 when the time step is b..t = 0.005 and the 

uniform grid step in the vicinity of the cylinder is b..h = 0.0125. It is also noted that 

the number of oscillation cycles for the experimental runs by Ongoren and Rockwell 

(1988) is considerably higher than that of the present case. 

4.5 Uniform flow past a steady rotating cylinder in 

the absence of a free surface 

As the final set of verifications in the absence of a free surface, the simulations for the 

case of uniform flow past a steadily rotating cylinder about its axis are carri d out 

at R = 200, 500 by setting the translational and rotational cylinder displac ments 

in (4.6) to x(t) = y(t) = 0 and a(t) = 1.0, 2.0, respectiv ly. The early development 

of the flow (t ~ 6) is compared with the numerical results of Takada and Tsutahara 

(1998) and Badr and Dennis (1985) at R = 500 and a(t) = 1.0 in Figure 4.16. 
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Figure 4.14: The equivorticity line for the cas of uniform flow past an o cillating 
cylinder at the angle 7J = 60° in the absence of a free surface at R = 55: A = 0.13 
(from top to bottom: f / fo = 0.5 , 1.0, 2.0, 3.0, 4.0) : experimental results of Ongoren 
and Rockwell (19 ) (left) ; numerical results of Al-Mdallal (2004) (middle); present 
results (right). Red colours correspond to positive vorticity (counterclockwise rota
tion) and gre n colours indicate negative vorticity (clockwise rotation). Th snapshots 
are taken at the instant corresponding to the maximum negative di placement of the 
cylinder. 
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Figure 4.15: The equivorticity lines for the case of uniform flow past a cylinder subject 
to in-line oscillations in the absence of a free surface at R = 855: A = 0.13 (from top to 
bottom: f / fo = 0.5, 1.0, 2.0, 3.0, 4.0): experimental results of Ongoren and Rockwell 
(1988) (left); numerical results of Al-Mdallal (2004) (middle); present results (right). 
Red colours correspond to positive vorticity (counterclockwise rotation) and green 
colours indicate negative vorticity (clockwise rotation) . The snapshots are taken at 
the instant corresponding to the maximum negative displacement of the cylinder. 
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Figure 4.16: The streamline patterns in the near wake region for impulsiv ly started 
steadily rotating cylinder in the absence of a free surface at R = 500: a(t) = 1.0 
(from top to bottom: t = 1.0, 1.5, 4.0, 5.0, 6.0): numerical results of Badr and 
Dennis (1985) (left) ; Takada and Tsutahara (1998) (middle) ; pr ent results (right). 
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Figure 4.17: The streamline patterns in the near wake region for impulsively started 
steadily rotating cylinder in the absence of a free surface at R = 200: a(t) = 2.0 
(from top to bottom: t = 2.0, 3.0, 4.0, 4.5, 6.5): experimental results of Coutanceau 
and Menard (1985) (left); numerical results of air et al. (1998) (middle); present 
results (right) . 



Figure 4.18: T he equivorticity lines and the free surface deformations for the case of uniform flow past a stationary 
cylinder in the presence of a free surface at R = 180, h = 0.55 (from top to bottom: Fr ~ 0.0 (t = 19.9), Fr = 0.3 
(t = 19) , 0.4 (t = 33.2), 0.6 (t = 20.2)): numerical results of Gubanov (2006) (left) ; Reichl et al. (2005) (middle) ; 
present results (right) . 
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Takada and Tsutahara (1998) implements the lattice-Boltzmann method to solve the 

problem of impulsively started flow past a circular cylinder wher as a spectral finit 

difference scheme is utilized in the work by Badr and Dennis to calculate the flow for 

both small and moderate values of the time. 

In Figure 4.17, the predicted streamline patterns are compared with the experimental 

results of Coutanceau and Menard (1985) and the numerical results of air et al. 

(1998) at relatively small values of time (2.0 ~ t ~ 6.5) at R = 200 and a(t) = 2.0. 

Nair et al. (1998) solved the governing equations in their stream function / vorticity 

formulation by using a third-order upwind scheme and an 0-type grid. For both 

Figures 4.16 and 4. 17, the compared results are in excellent agre ment. 

4.6 Uniform flow past a cylinder in the presence 

of a free surface 

In this section, the accuracy of the present numerical scheme is verified for the cases 

of the two-dimensional uniform flow past (i) a stationary cylinder and (ii) a cylinder 

subject to in-line oscillations in the presence of a free surface. For the stationary 

cylinder case the flow patterns are compared to the numerical r suit of Reichl et 

al. (2005) for the ranges of Froude numbers 0.0 ~ Fr ~ 0.6, and the cylinder 

submergence depths, 0.1 ~ h ~ 1.0, at R = 180. The numerical simulation for th 

case of uniform flow past the cylinder subject to in-line oscillations ar conducted at 

R = 917: f / fo = 1, A = 0.96, h = 11.23, Fr = 0.07. The resulting flow patterns ar 

compared with the experimental results of Cetiner and Rockwell (2001) . 
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In Tables 4.10 and 4.11, the effect of the submergence depth, h, on predicted val

ues of the local Froude number, FriL ; the frequency ratio, flJsl fo Uo = 0.191); the 

u-velocity at R = 180: Fr = 0.3, 0.1 ~ h ~ 1.0, and Fr = 0.4, 0.16 ~ h ~ 1.0, re

spectively, are compared with the numerical results of Reichl et al. (2005) . The 

Ref. Reichl et al. (2005) Present 

h FrlL flJ s/ fo u FrlL f lJs/ fo u 

0.10 1.09 - 0.70 1.09 - 0.71 

0.16 0.92 - 1.03 0.92 - 1.04 

0.22 0.82 0.73 1.10 0.82 0.73 1.09 

0.40 0.73 1.01 1.35 0.73 1.00 1.34 

0.55 0.66 1.07 1.41 0.66 1.07 1.41 

0.70 0.57 1.10 1.39 0.57 1.09 1.40 

1.00 0.47 1.09 1.33 0.46 1.08 1.33 

Table 4.10: The effect of the submergence depth, h, on the local Froude number, 
Fr!L ; the fr qu ncy ratio, fiJsl f0 ; the average u-velocity in th region directly abov 
the cylinder, u, for uniform flow past a stationary cylinder in the presence of a free 
surface at R = 180: Fr = 0.3 , 0.1 ~ h ~ 1.0. Comparison with th numerical result 
of Reichl et al. ( 2005). 

u-velocity is averaged based on the local free surface height, hlL, in the region di

rectly above the cylinder. This is undertaken for each Froud number, Fr , and the 

submergence depth, h, case considered in Tables 4.10 and 4.11 at the time when 

maximum lift occurs. For the cases when no vortex periodic shedding is observed, 

the average u-velocity is computed close to the point where maximum lift occurs. 
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Ref. Reichl et al. (2005) Present 

h FrjL fiJs/ fo 
~ 

FrjL fiJs l fo 
~ 

u u 

0.16 1.20 - - 1.19 - -

0.22 1.08 - 0.97 1.08 - 0.97 

0.40 0.90 0.94 1.22 0.90 0.96 1.22 

0.55 0.82 1.06 1.30 0.82 1.07 1.30 

0.70 0.76 1.10 1.34 0.75 1.10 1.34 

1.00 0.64 1.11 1.36 0.63 1.10 1.36 

Table 4.11: The effect of the submergence depth, h, on the local Froude number, 
FrJL ; the frequency ratio , flJsl f0 ; the average u-velocity in the region directly above 
the cylinder, u, for uniform flow past a stationary cylinder in the presence of a fre 
surface at R = 180: Fr = 0.4 , 0.16 ~ h ~ 1.0. Comparison with the numerical results 
of Reichl et al. (2005). 

The local Froude number , FrjL, is calculated based on the maximum dimensional 

u-velocity in the region directly above the cylinder, u*, at the time when the lift co-

efficient reaches its maximum and the dimensional local free surface height, h*JL, by 

using Fr jL = u* / j(g*h*j£). The predicted results are in excellent agreement with 

the numerical results of Reichl et al. (2005). 

Figure 4.18 shows the comparison of the near wake structures as well as free surface 

deformations between the present computational method and the numerical results of 

Reichl et al. (2005) and Gubanov (2006) at R = 180, 0.0 ~ Fr ~ 0.6, h = 0.55. It is 

seen that for small and moderate values of the Froude numbers, 0.0 ~ Fr ~ 0.3 , the 

results are in excellent agreement. For higher Froude numbers, Fr > 0.3, the surface 
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distortion becomes considerably larger than the cases for smaller values of the Froude 

number, Fr , due to the induced surface curvature. For this typ of flow the wake 

has much more asymmetric pattern than the Froude number cas s 0.0 ~ Fr ~ 0.3 

and the numerical simulation becomes very ensitive to the specific algorithm used 

for tracking the free surface. This can be clearly seen from the quivorticity plots 

displayed in Figure 4.18 at Fr = 0.4. As was stated earlier , the two-phase flow model 

is used in both the present study and the work by Reichl et al. (2005) unlike the 

investigation by Gubanov (2006). The present results and the numerical results of 

Reichl et al. (2005) are in excellent agreement. 

In Gubanov's work, the motion of the fluid in 0 1 is neglected and the free surface 

boundary conditions (1.4) and (1.5) are satisfied explicitly to track the free surface. 

This leads to the discrepancy between Gubanov's results and the other numerical 

results displayed in Figure 4.18. This figure shows relatively good agreement between 

the near wake structures of the present study and the numerical work by Reichl et al. 

(2005) at Fr = 0.6. It is noted that Reichl et al. (2005) exploits a egregated solver 

on an unstructured boundary-fi t ted grid with a prescribed pres ur at the ou tflow 

ap = o ax , 
ap 1 
ay Fr2 

(4.10) 

as implemented in FLUENT s , while in this study a coupled solver on a structured, non-

boundary-fitted grid with the open boundary conditions (2.55) and (2.57) is utilized. 

The further comparison of the near wake structures as well as free surface deformations 

between the present computational method and the numerical results of Reichl et al. 

(2005) at R = 180, 0 ~ Fr ~ 0.6, h = 0.16 is shown in Figure 4. 19. For small cylinder 

submergence depths, there is a strong interaction between vorticity from the cylinder 
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Figure 4.19: The equivorticity lines and the free surface deformations for the case of 
uniform flow past a stationary cylinder in the presence of a free surface at R = 180, 
h = 0.16 (from top to bottom: Fr ~ 0.0 (t = 61.3), Fr = 0.3 (t = 16) , 0.4 (t = 50.4), 
0.6 (i = 40)): numerical results of Reichl et al. (2005) (left); present results (right). 

and vorticity from the free surface. For Froude numbers Fr ~ 0.3 the closeness of the 

free surface induces large time-dependent surface curvature and thus a substantial 

vorticity near the free surface is expected. The substantial positive vorticity from the 
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Figure 4.20: The equivorticity lines for the case of uniform flow past the cylinder 
subject to in-line oscillations in the presence of a free surface at R = 917: f I f o = 1, 
A = 0.96, h = 11.23, Fr = 0.07: experimental results of Cetiner and Rockwell (2001) 
(left) ; present results (right) . 

free surface is clearly shown by the results obtained in this study unlike the results 

of Reichl et al. (2005) . On the other hand, the present results reveal an unphysical 

phenomena of the advection of the vorticity from the cylinder against the uniform 

stream. This is due to the limitation of present numerical algorithm at submergence 

depths h < 0.5. 

Finally, the near wake structures obtained in this study for the case of the cylinder 

subject to in-line oscillations in the presence of a free surface at R = 917: f I fo = 1, 

A = 0.96, h = 11.23, Fr = 0.07 are compared with the experimental results of 
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Cetiner and Rockwell (2001). The comparison is shown in Figure 4.20. The imposed 

translational in-line motion of the cylinder is defined by (4.7) . In Figure 4.20, the 

snapshots at the top are taken at the time when the lift coefficient, CL, reaches its 

minimum; the snapshots at the bottom are taken at the time when CL is zero. Bearing 

in mind that the number of cylinder oscillation cycles for the experimental runs by 

Cetiner and Rockwell (2001) is considerably larger than that of the present case, it 

may be noted that the results are in relatively good agreement. 



5. Forced in-line oscillations of a circular 

cylinder beneath a free surface: Locked-on 

modes and fluid forces 

In this chapter , the results for two-dimensional flow past a circular cylinder subject 

to fore d in-line oscillations beneath a free surface are presented. Th unsteady near 

wake structures and lock-on phenomena as well as fluid fore s are investigated at 

the Reynolds number of R = 200 when f / fo = 1.0, 2.0 3.0, 4.0 Uo = 0.19 ) 

and a fixed displacement amplitude, A = 0.13. The flow characteri t ic for Froude 

number , Fr ~ 0.0 (= 0.03) and Fr = 0.2, 0.4, and cylinder subm rgence depths , 

h = 0.25, 0.5 , 0.75, are examined. The numerical simulations are al o conducted 

for the case when the free surface is absent (symbolically represented by h = oo) 

under the same oscillation conditions. The results are analyzed using numerical flow 

visualization (equivorticity patterns, streamlines, pressure contours) as well as the 

fluid forces acting on the cylinder surface. The observed features are compared with 

the reference case h = oo to better understand the effect from the inclusion of the 

free surface. 

The classical defini t ion of the lock-on phenomena is based on the exist nee of a strong 

spectral peak in the power spectral density (PSD) of the lift coefficient. However, th 

determination of locked-on regimes of vortex shedding is not confin d in PSD spe -

trum. The other techniques used to determine lock-on modes include the repetition 

of th velocity traces [Anagnostopoulos (2000)], the repetition of vortex hedding in 
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the near wake region over an integer number of cylinder oscillation periods [Ongoren 

and Rockwell (1988)] and the repetition of the Lissajous patterns of the lift coefficient 

[Cetiner and Rockwell (2001)]. In this thesis, the near wake vorticity contours and 

Lissajous patterns of the lift coefficient are used to define the lock-on modes following 

partly the methodology of Ongoren and Rockwell (1988) and Cetin r and Rockwell 

(2001). The connection between vortex shedding modes and fluctuating fluid forces is 

also investigated using PSD of the lift and drag coefficients through Fourier analysis. 

The vortex shedding modes are classified following the terminology of Williamson and 

Roshko (1988) . The Lissajous representations of the lift and drag coefficients are also 

used to demonstrate the mechanism of mechanical energy transfer between the fluid 

and the cylinder , degree of phase-locking or a loss of lock-on and associated phase 

shift. The effect of the free surface on the mechanical energy transfer is also explained 

by using the energy transfer equation (3.84). For selected cases, proper orthogonal 

decomposition of the vorticity field is used to interpret unsteady near wake structures 

in terms of POD eigen-modes. 

The present numerical simulations are performed on a cluster of four dual-cor AMD 

Opteron 265 and twenty five dual-core AMD Opteron 2218 (IBM) computers located 

at the Department of Mathematics and Statistics, Memorial Univ rsity of ewfound

land. The unsteady flow calculations are conducted for the time up to t = 150 when 

h = oo and up tot= 100 when h = 0.25, 0.5, 0.75, using the grid system 20 x 30 x 40 

with 252 x 196 elements. This requires about 504 hours of computational time. 
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5.1 Vortex shedding modes and fl. uid forces in the 

absence of the free surface ( h = oo) 

The present numerical simulations in the absence of the free surface are conducted 

at R = 200: A = 0. 13, fIfo = 1.0, 2.0, 3.0, 4.0 (1.0 ~fIfo~ 4.0). Locked-on 

asymmetric mode of vortex formation is observed when f I fo = 2.0 unlike the other 

frequency ratio cases fIfo = 1.0, 3.0, 4.0. 

The time history of the fluctuating lift coefficient, CL, plotted with the cylinder 

displacement, x(t), the PSD of CL and the corresponding Lissajous patterns of CL at 

R = 200: A= 0.13, 1.0 ~ fIfo ~ 4.0, h = oo are shown in Figure 5.1. It is evident 

that when fIfo = 1.0, 3.0, 4.0, the CL t races exhibi t non-repeatable signatures. 

This obser ation is also suggested by the corresponding Lissajous patterns. It i 

clearly seen that the trajectories of CL(x) are non-congruent from cycle to cycle of 

cylinder oscillation. This indicates large phase variations between the fluctuating 

lift coefficient , CL, and the cylinder motion. On the other hand , at f I fo = 2.0, 

the CL trace exhibits repeatable persistent signatures every two cycles of cylinder 

oscillation, 2T. The repeatability of the CL patterns for fIfo = 2.0 indicates the 

lock-on between the cylinder motion and the fluctuating C£. The Lissajous traces of 

CL at fIfo= 2.0 have remarkably congruent shape. These observations suggest that 

when fIfo = 2.0 the vortex shedding in the near wake region is locked-on over two 

periods of the cylinder motion, 2T. It is noted that for each frequency ratio, f I f 0 , 

symmetrical shapes of CL(x) are attained in the upper and lower half plane . Th 

PSD corresponding to the signatures of CL suggest at least two well defined peaks: 
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Figure 5.1: The time variation of the lift coefficient , CL , (black) and the in-line 
displacement , x (t), (gray); PSD of CL; Lissajous patterns of CL at R = 200: A = 0.13, 
1.0 ~ f I fo ~ 4.0, h = oo. 

fo , f + fo when f I fo = 1.0, 2.0 , 3.0 and f 0 , f when f I fo = 4.0. It is also seen that 

one dominant peak develops in the PSD as f I fo increases. 

The time history of the fluctuating drag coefficient , CD , plotted with the cylind r 

displacement , x(t) , the PSD of CD and the corresponding Lissajous patterns of CD 

for 1.0 ~ f I f o ~ 4.0 are shown in Figure 5.2. It is seen that when f I fo = 2.0, 3.0, 4.0, 
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Figure 5.2: The time variation of the drag coefficient , C0 , (black) and the in-line 
displacement , x (t) , (gray) ; PSD of C0 ; Lissajous patterns of Co at R = 200: A = 0.13, 
1.0 ~ fIfo ~ 4.0, h = oo. 

the traces of C0 exhibit persistent repeatable signatures over one cycle of cylinder 

oscillation, T . The corresponding C0 (x ) traces show congruent shap s indicating the 

phase-locking between the fluctuating drag coefficient , C0 , and the cylinder motion. 

At f I fo = 1.0, the trace of Co exhibits almost repeatable but non-persistent signature 

over one cycle of cylinder oscillation, T. The corresponding Lissajous t rajectories are 

less congruent from cycle to cycle, which indicates that phase variations between the 
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fluctuating drag coefficient, C0 , and the cylinder motion increase. Figure 5.2 shows 

that at each of the frequency ratios, f I f 0 , the hysteresis loops of substantial extent 

occur in the upper half plane. Moreover, these loops shift towards the lower half 

plane as the ratio fIfo increases. It is noted that for the cylinder subject to in-line 

oscillations, the Lissajous trajectories of Co versus in-line cylinder displacement , x(t), 

can be related to the mechanical energy transfer between the fluid and the cylinder 

as follows. As it was mentioned earlier, the total energy transfer over one period of 

cylinder oscillation, T, can be defined as 

E = 1r Co x(t) dt, (5.1) 

where the overdot indicates the differentiation by time. The geometrical interpreta-

tion of (5 .1) is the signed area enclosed by hysteresis loops of C0 (x) where the sign 

is defined by a direction of the Lissajous trajectories [see, for example, Cetiner and 

Rockwell (2001)]. In all figures that follow, the directions of Lissajous trajectories, 

C0 (x), are indicated by arrows. In Figure 5.2, the directions of all C0 (x) traces are 

counterclockwise (E is negative) and thereby, t he energy transfer is from the cylinder 

to the fluid. The PSD of Co indicates the existence of one peak that occurs at the 

forcing frequency, f, for each of the frequency ratios, 1.0 ~ fIfo ~ 4.0. This indicat s 

that the drag coefficient, C0 , oscillates with f in all cases. 

Figure 5.3 displays the equivorticity and streamline patterns, and the pressure distri

bution in the near wake over two periods of cylinder oscillation, 2T, when f I fo = 2.0. 

All the snapshots that follow, at t = OT correspond to the instant when the cylinder 

reaches its maximum displacement, x(t ) = A. In all the equivorticity plots that fol

low, red colours correspond to positive vorticity (counterclockwise rotation) and blue 
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colours indicate negative vorticity (clockwise rotation). All the streamline pat terns 

that follow are plotted in the frame of reference (symbolically denoted by X) which 

moves with the uniform flow. The velocities in X and X frames of reference are related 

as 

u = u- 1, v = v, (5.2) 

where fi = (u, v, 0) and u = (u, v, 0) are the dimensionless fluid velocities in X 
and X frames of reference, respectively. In Figure 5.3, the snapshots at t = OT and 

t = 2T are almost identical. Therefore, the lock-on occurs over 2T. The vortex 

shedding mode at this frequency is the asymmetric 2S mode, per 2T, in which two 

vortices alternately shed from the upper and lower sides of the cylinder over on 

period of cylinder oscillation, T. The pressure distribution presented in the last 

column of Figure 5.3 indicates that the high (positive) pressure region is associated 

with the stagnation region (region where the uniform flow contacts the cylinder). 

This figure suggests that at t = OT the low (negative) pressure region develops at the 

lower side of the cylinder following the the development of the positive vortex in the 

lower vortex shedding layer. As the positive vortex develops, the high pressure region 

in stagnation seems to move in the counterclockwise direction up to time instant 

t = T. At the same time, OT :::;; t :::;; T, the low pressure region completely shifts to 

the upper side of the cylinder. Furthermore, the development of the negative vortex 

in the upper vortex shedding layer over T :::;; t :::;; 2T leads to the movement of the low 

pressure region from the upper side of the cylinder to the lower side of the cylinder. 

In addition, the high pressure region in stagnation move in the clockwise direction 

over T :::;; t :::;; 2T. Taking an overview of Figure 5.3, it can also be en that th 

pre sure decreases towards vortex centers, indicating the rotation of the fluid inside 
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Figure 5.3: The equivorticity patterns (left) , the streamline patterns (middle) and the 
pressure distribution in the near wake (right) over two periods of cylinder oscillation, 
2T, at R = 200: A = 0.13, f / fo = 2.0, h = oo (T ~ 2.525, 101 ~ L ~ 106). The 
locked-on 2S mode, per 2T, is observed. 
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Figure 5.4: The equivorticity patterns over ten periods of cylinder oscillation, lOT, 
at R = 200: A = 0.13, h = oo and (a) fIfo = 1.0 (T ~ 5.051, 80.8 ~ t ~ 131.3), (b) 
fIfo = 3.0 (T:::::: 1.684, 101 ~ t ~ 118) , (c) f I fo= 4.0 (T ~ 1.263, 127.5 ~ t ~ 138.9) 
(non-periodic state). 
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each vortex. Moreover , the absolute value of the pressure in the vortex center seem 

to decrease as the vortex propagates into the near wake of the cylinder. 

To support the claim that at fIfo = 1.0, 3.0, 4.0 the vortex shedding is not locked-on 

to the cylinder motion, a series of instantaneous equivorticity plots over ten periods 

of cylinder oscillation, lOT, is plotted in Figure 5.4. This figure clearly shows that 

the frequency of the vortex shedding is not locked-on to the frequency of cylinder 

oscillation. 

In the range of the frequency ratios fIfo ~ 3.0, the vortex shedding seems to be 

more complicated due to the strong interaction between the cylinder and the shed 

vortices. For these frequency ratios, the immediate coalescence or merging of co

rotating vortices is observed in the near wake region. A similar phenomenon for the 

combined transverse and in-line motion of the pivoting cylinder at R ~ 700 is report d 

in the experimental work by Flemming and Williamson (2005). In their work, a close 

up study of the vortex formation involving the vortex coalescence phenomenon is 

performed as follows: (i) the vortices being developed in the shear layers over the 

vortex shedding cycle, T0 , are subsequently marked as "1", "2", "3", etc.; (ii) the 

vortices which result from the coalescence of the smaller vortices are symbolically 

represented as the sum of the markers of the vortices which coalesce. For example, the 

vortex is designated as "1+2" if it results from the coalescence of the vortices marked 

as "1" and "2". In what follows , the methodology of Flemming and William on (2005) 

is adopted to describe the vortex coalescence phenomenon. 

Figure 5.5 displays the vortex coalescence phenomenon for f I fo = 4.0 over two periods 

of cylinder oscillation, 2T. In this figure, two negative vortices, "1" and "2", and two 
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Figure 5.5: The vortex coalescence phenomenon in the near wake of the cylinder over 
two periods of cylinder oscillation, 2T, at R = 200: A = 0.13, f / fo = 4.0 (T ~ 1.263, 
133.8 ~ t ~ 136.3) , h = oo (non-periodic state). 
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positive vortices, "3" and "4" , develop from the upper and lower sid s of the cylinder, 

respectively (OT ~ t ~ T /6). The two co-rotating vortices, "1" and ' 2", coalesce 

to form a single negative vortex, "1 + 2" ( t = T /3), while the n gative vortex "5" 

develops in the upper shear layer of the cylinder (T / 3 ~ t ~ 7T /6). At t = 4T /3, the 

vortex "5" coalesces with the vortex "1+2" to form a single negative vortex "5+1+2". 

On the other hand, the negative vortex "7" develops in the upper share layer of th 

cylinder. Similarly, the two vortices "3" and "4", coalesce to form a ingle positive 

vortex, '3+4" in the lower vortex shedding layer (t = 3T/ 2). Mor ov r , the positive 

vortices "6' and "8" develop over the time T / 3 ~ t ~ 2T and 4T /3 ~ t ~ 2T 

respectively. It is noted that over the time OT ~ t ~ 2T both "1 + 2" and "3 + 4" 

vortices remain detached. Thus, single negative vortices "5 + 1 + 2" and "7", and 

single positive vortices, "3 + 4", "6" and "8" , are being formed , respectively, in the 

upper and lower vortex shedding layers over this period of time. It i noted that the 

vortex coalescence phenomenon occurs when (i) one of the two co-rotating vortices is 

convected with a higher velocity than the other and thereby, th se vortices approach 

one another and (ii) one of the two co-rotating vortices is larger than the other [see 

Braza et al. (1986) for details]. 

5.2 Vortex shedding modes and fluid forces in the 

presence of the free surface at h = 0.25, 0.5, 0. 75 

The flow characteristics are examined for Froude numbers Fr ~ 0.0 and Fr = 0.2, 

0.4. It is well known that limiting cas s of Fr __... 0.0 , g __... oo and Fr __... oo, g __,.. 0.0 
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correspond to supergravity and microgravity flows , respectively. Thus, the limiting 

case of the Froude number Fr ~ 0.0 can be obtained by assuming that g---+ oo. Con

sequently, at Fr ~ 0.0, the free surface is expected to act similar to a non-deformable 

surface. The numerical experiments have shown that the pressure signal exhibits 

pronounced spikes for the case Fr ~ 0.0. Thus, the flow characteristics cannot be 

identified , clearly, using the fluctuating fluid forces information. 

5.2.1 Froude number Fr:::::::: 0.0 

The case for R = 200, A = 0.13 and h = 0.25 is considered first while the frequency 

ratio, f I f0 , varies from 1.0 to 4.0 by increments of 1.0. The observed flow behaviour 

is (i) non-periodic for f I fo ~ 3.0 and (ii) quasi-periodic, per 5T, for fIfo = 4.0. 

The typical equivorticity and streamline patterns over five periods of cylinder oscilla

tion , 5T, when f / fo = 4.0 are displayed in Figure 5.6. It is noted that in the presence 

of the free surface streamline patterns in the fluid region n1 correspond to the steady 

uniform stream case. In what follows, the streamline patterns in fluid region n2 are 

only presented (the streamline patterns in the region n1 are eliminated). In this 

figure, the negative vortex developed in the previous vortex shedding cycle becomes 

detached at t ~ T. On the other hand, three weak co-rotating vortices develop from 

the lower side of the cylinder, over OT ~ t ~ T , and then coalesce to form a single 

large vortex at the instant t ~ T. After this period of time, three weak co-rotating 

vortices are formed from the upper side of the cylinder which causes the shedding 

of a single positive vortex from the lower side of the cylinder at instant t ~ 7T 12. 
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Figure 5.6: The equivorticity patterns ((a), (c)) and the streamline patterns ((b), 
(d)) over five periods of cylinder oscillation, 5T, at R = 200: A = 0.13, f / fo = 4.0, 
h = 0.25, Fr ;:::::: 0.0 (T ;:::::: 1.263, 30.25 ~ t ~ 36.55). The quasi-locked-on C(2S) 
mode, per 5T, is observed. 

Similarly, three weak co-rotating vortices coalesce in the upper vortex shedding layer 

to form a single large vortex (OT ~ t ~ 3T) which is then shed at t ;:::::: T in the next 

vortex shedding cycle. In other words, the cylinder alternately sheds a single vortex 

from each side over 5T. It is noted that the development of each vortex is a result 

of coalescence of three weak vortices in the vortex shedding layer. Thus, this vortex 

shedding mode is designated as the quasi-locked-on C(2S) mode, per 5T, using the 

terminology of Williamson and Roshko (1988). It is seen that the presence of the free 

surface significantly weakens the negative vortex formed from the upper side of the 
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Figure 5.7: The equivorticity patterns ((a), (c)) and the streamline patterns ((b), 
(d)) over one period of cylinder oscillation, T, at R = 200: A = 0.13, fIfo= 1.0, 
Fr ~ 0.0, ((a),(b)) h = 0.5 (T ~ 5.051, 90.85 ~ t ~ 95.95); ((c),( d)) h = 0.75 
(T ~ 5.051, 65.65 ~ t ~ 70.65) . The locked-on 28 mode, perT, is observed. 

cylinder. It is also noted that negligible free surface deformations are observed which 

lead to the development of a litt le amount of oppositely signed vorticity near the free 

surface. Comparing the results shown in Figures 5.4 and 5.6, it can be seen that 

the effect of the limiting Froude numb r, Fr ~ 0.0, and the free surface presence at 

h = 0.25 is to stabilize the vortex shedding at fIfo = 4.0 to produce quasi-locked-on 

C(2S) mode, per 5T. On the other hand, the effect of Fr ~ 0.0 and h = 0.25 seems 

to destabilize lock-on state at f I fo = 2.0 when compared to the reference case h = 

For larger cylinder submergence depths, h = 0.5, 0.75, different vortex shedding 

modes and flow regimes result ing in significant changes in the near wake structure 

have been observed. It is noted that a similar phenomenon has been also reported in 
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the numerical work by Reichl et al. (2005) and the experimental work of Sheridan et 

al. (1995, 1997) for the case of uniform flow past a stationary cylinder in the presence 

of the free surface. In fact, the works of Reichl et al. (2005) (R = 180, 0:::;; Fr:::;; 0.7 

and 0.1:::;; h:::;; 0.5) and Sheridan et al. (1995, 1997) (0 < h:::;; 0.75, 5990:::;; R:::;; 9120 

and 0.47:::;; Fr:::;; 0.72) have shown that at certain Fr-h combinations, the presence 

of the free surface causes a switching between the near wake states. These stud

ies found that the near wake spontaneously changes from one state to another in a 

pseudo-periodic manner. The present numerical simulations indicate that the vor-

tex shedding becomes locked-on to the cylinder motion when fIfo :::;; 2.0. The ob

served locked-on asymmetric vortex shedding modes are 2S , perT, when fIfo = 1.0, 

h = 0.5 , 0.75; C(2S) , per 2T, and P+S, per 2T, when f I fo = 2.0, h = 0.5, 0.75 , re-

spectively. As the frequency ratio increases, f I fo ~ 3.0, the flow behaviour becomes 

more complicated. In fact , the present numerical simulations confirm the existence 

of two distinctly different flow regimes for f I fo = 3.0, 4.0, h = 0.5 and fIfo = 3.0, 

h = 0.75. It has been observed that the flow is quasi-periodic within a short period of 

time after the vortex shedding begins and then the transition of the flow into the non-

periodic state occurs. It is noted that a similar phenomenon is also reported in the 

experimental study by Cetiner and Rockwell (2001) for the case of cylinder subject to 

in-line oscillations in uniform flow in the presence of the free surface (R = 917, 2075, 

Fr = 0.07, 0.158, A = 0.96, fIfo= 0.44, 1.0 and h = 0.06, 0.19, 11.23). Their work 

has shown that for certain Fr-h combinations the vortex shedding exhibits locked-on 

(or quasi-locked-on) states at least over several cycles of cylinder oscillation and then 

the transition to the non-locked-on state occurs. In all cases that follow , when the 

transition of the flow from the quasi-periodic state into the non-periodic state is ob-
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served, the regime in which the flow is quasi-periodic is designated as "quasi-periodic"; 

the non-periodic flow state is designated as "non-periodic". Thus , in quasi-periodic 

state, the quasi-locked-on vortex shedding modes are designated as C(2S) , per 3T, 

when fIfo = 3.0, h = 0.5; 2P, per 4T, when fIfo = 4.0, h = 0.5 and C(P+S) , 

per 3T, when f I fo = 3.0, h = 0.75. At the highest frequency ratio, f I fo = 4.0, the 

locked-on C(P+S) , per 4T, mode is observed when h = 0.75. 

Figure 5. 7 shows the equivorticity and streamline patterns over one period of cylin-

der oscillation, T , when f I fo = 1.0, h = 0.5, 0.75. The vortex formations at this 

frequency ratio occur in the locked-on asymmetric 28 mode, perT, in which two vor-

tices are alternately shed from both sides of the cylinder over one period of cylinder 

oscillation. It is clearly seen that the near wake structures at h = 0.5 and 0.75 show 

almost the same behaviour. However, the decrease in the vortex formation length 

(~ 14.3%) is evident as the cylinder submergence depth is reduced from h = 0.75 

to 0.5. It is noted that the vortex formation length is defined as the length of the 

positive vortex developing in the lower vortex shedding layer and can be measured 

as the distance between the cylinder surface and the end of the re-circulation zone 

along the near wake centerline. Furthermore, as h is reduced to 0.5 , the proximity of 

the free surface tends to bring the vortices closer together as shown in Figure 5.7(a). 

The appearance of the opposite signed vorticity near the free surface suggests that for 

the limiting case Fr ~ 0.0, the free surface acts similar to a non-deformable surface. 

However, unlike the case of the non-deformable surface, the free surface allows a local 

surface acceleration which yields a diffusion of the vorticity across the free surface 

interface. 
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The typical equivorticity and streamline patterns over two periods of cylinder oscil-

lation, 2T, when fIfo = 2.0 and h = 0.5, 0.75 are displayed in Figure 5.8. The 

vortex shedding modes are the locked-on asymmetric C(2S) mode, per 2T, when 

h = 0.5 and the locked-on asymmetric P+S mode, per 2T, when h = 0.75. In Figure 

5.8(a,b) , two co-rotating vortices coalesce to form a single large positive vortex which 

is then shed in the downstream of the cylinder (OT:::;; t < 4TI5). On the other hand, 

a single negative vortex develops over OT :::;; t :::;; 6T 15 and then sheds at t = 7T 15. At 

h = 0.75, a pair of positive vortices developed in the previous vortex shedding cycle 

is shed into the near wake of the cylinder at t = 4T 15. Furthermore, the negative 

vortex develops in the upper vortex shedding layer over OT :::;; t :::;; 8T 15 and is then 

shed into the near wake of the cylinder ( t = 9T I 5). Taking an overview of Figure 

5.8, it is evident that the development of the negative vortex in the upper shedding 

layer is similar for both h = 0.5 and 0.75. However , the proximity of the free surface 

seems to affect the development of the positive vorticity from the lower side of the 

cylinder by inducing the coalescence of the small vortices. Moreover, the decrease of 

the cylinder submergence depth, h, is seen to speed up the vortex shedding process 

and the negative vortices propagate more rapidly into the downstream. Figure 5.8 

indicates that at both cylinder submergence depths, h = 0.5 and 0.75, the vortex 

formation length is approximately the same. 

In the case when f I fo = 3.0, two distinctly different near wake states are observed 

when h = 0.5, 0.75. At the smaller cylinder submergence depth , h = 0.5, the vortex 

shedding produces quasi-locked-on C(2S) mode, per 3T, within twelve periods of 

cylinder oscillation, 12T (quasi-periodic state). At t = 12T, a swi tchover in the flow 

behaviour is observed and the flow becomes non-periodic. Similarly, at h = 0.75, 
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Figure 5.8: The equivorticity patterns ((a), (c)) and the streamline patterns ((b), 
(d)) over two periods of cylinder oscillation, 2T, at R = 200: A = 0.13, f / fo = 2.0, 
Fr ~ 0.0, ((a) ,(b)) h = 0.5; ((c),(d) ) h = 0.75 (T ~ 2.525, 95.95 ~ t ~ 100.95). 
The locked-on C(2S) and P+S modes, per 2T, are observed when h = 0.5 , 0.75, 
respectively. 
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Figure 5.9: The equivorticity patterns ((a), (c)) and the streamline patterns ((b), 
(d)) over three periods of cylinder oscillation, 3T, at R = 200: A= 0.13, f / fo = 3.0, 
Fr;:::: 0.0, ((a) ,(b)) h = 0.5 (T;:::: 1.684, 21.85 :::;; t:::;; 26.85); ((c),( d)) h = 0.75 (T;:::: 1.684, 
57.15 :::;; t :::;; 62.25). The quasi-locked-on C(2S) and C(P+S) modes, per 3T, are observed 
within 12T and 24T when h = 0.5, 0.75, respectively. 
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Figure 5.10: The equivorticity patterns ((a), (c)) and the streamline patterns ((b) , (d)) over 
four periods of cylinder oscillation, 4T, at R = 200: A= 0.13, f / fo = 4.0, Fr:::::::: 0.0, ((a) ,(b)) 
h = 0.5 (T:::::::: 1.263, 40.35 ~ t ~ 45.45) ; ((c),(d)) h = 0.75 (T:::::::: 1.263, 78.25 ~ t ~ 83.25). 
The quasi-locked-on 2P mode, per 4T, is observed within 20T when h = 0.5. The locked-on 
C(P+S) mode, per 4T, is observed when h = 0.75. 
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the vortex shedding is quasi-locked-on to the motion of the cylinder in C(P+S) 

mode, per 3T, within 24T (quasi-periodic state) and then the transition of the flow 

into the non-periodic state is observed. Figure 5.9 displays the equivorticity and 

streamline patterns when fIfo = 3.0, h = 0.5, 0.75. At h = 0.5, a pair of small 

co-rotating vortices develops in the upper vortex shedding layer over OT ~ t ~ 3T 15. 

These vortices coalesce at t = 3T 15 to produce a large negative vortex which is shed 

immediately (t ~ 9TI10). Similarly, a pair of small co-rotating vortices coalesce to 

produce a single large positive vortex being shed into the downstream of the cylinder 

(3T 15 ~ t ~ 9T 15). On the other hand, in the quasi-locked-on C(P+S) mode, per 

3T, shown in Figure 5.9(c,d), a pair of negative vortices sheds at 3TI2 and two small 

vortices develop in the lower vortex shedding layer over 3T 12 ~ t ~ 12T 15. The 

two co-rotating vortices coalesce to form a single large positive vortex which becomes 

detached at t ~ 3T. As is seen from Figure 5.9, the near wake shows further signs of 

the influence of the free surface with the negative vortices propagating towards the free 

surface. At the larger cylinder submergence depth, h = 0.75, the shed vortices appear 

to be elongated in the transverse direction. As the cylinder submergence depth, h, 

is reduced to 0.5, the vortices become more oval shaped when propagating into the 

downstream of the cylinder. The proximity of the free surface at h = 0.5 seems to 

speed up the vortex shedding process when compared to the case of h = 0.75. It is 

interesting to note that at these depths of the cylinder submergence depth, h = 0.5, 

0. 75, a large portion of the opposite signed vorticity diffuses into both the free surface 

and the near wake. 

The last frequency ratio considered in this section is f I fo = 4.0. For this fre

quency ratio, when h = 0.5 the vortex shedding produces quasi-locked-on 2P mode, 
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per 4T, within 20T (quasi-periodic state) and the flow becomes non-periodic at 

20T < t <SOT whereas the locked-on C(P+S) mode, per 4T, is observed when 

h = 0. 75. The typical equivorticity and streamline patterns for f I fo = 4.0 when 

h = 0.5, 0.75 are displayed in Figure 5.10. This figure shows that at h = 0.5 , a pair of 

positive and a pair of negative vortices are shed in the near wake over OT < t ~ 6T 15 

and 6TI5 < t ~ 12TI5, respectively. When h = 0.75, a pair of negative vortices and 

the positive vortex (developed in the previous vortex shedding cycle) are shed over 

OT < t ~ 2T 15. Furthermore, a pair of small positive vortices develops in the low r 

vortex shedding layer (2TI5 < t ~ 8TI5). These positive vortices coalesce to form a 

single vortex which becomes detached at t = 2T 15 in the next vortex shedding cycle. 

As is seen from Figure 5.10, the affect of the decrease in the cylinder submergence 

depth, h, is to shorten(~ 45.6%) the vortex formation length. It is also interesting to 

note that the negative vortices tend to propagate upward the cylinder in both of the 

cases shown in Figure 5.10. The shed negative vortices become more oval shaped close 

to the free surface when h = 0.5. In contrast, at h = 0.75, the shed negative vortices 

appear to be elongated in the transverse direction. It is also seen that at h = 0.5, the 

shed vortices tend to be close to each other unlike the case when h = 0. 75. 

The effect of the free surface inclusion at Fr ~ 0.0, h = 0.25, 0.5 , 0.75 and the 

frequency ratio, f I f 0 , on flow regimes, vortex shedding modes and their periods, T0 , 

is summarized in Table 5. 1. This table indicates that the presence of the free surface 

at Fr ~ 0.0, h = 0.25 seems to break up the periodicity for f I fo = 2.0 when compared 

to the corresponding case in the absence of the free surface. Furthermore, at the high 

frequency ratio fIfo = 4.0, the effect of the free surface (Fr ~ 0.0) at h = 0.25 seems 

to stabilize the vortex shedding so that the quasi-locked-on C(2S) mode, per 5T, is 
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h = 0.25 h = 0.5 h = 0.75 h= 

f I fo Mode To Mode To Mode To Mode To 

1.0 non-locked - 2S T 2S T non-locked -

2.0 non-locked - C{2S) 2T P+S 2T 2S 2T 

3.0 non-locked -
C{2S)• (within 12T); 

3T 
C(P+S)• (within 24T); 

3T non-locked -
non-locked (12T < t < 60T) non-locked (24T < t < 60T) 

4.0 C{2St 5T 
2P• (within 20T); 

4T C{P+S) 4T non-locked -
non-locked (20T < t < BOT) 

Table 5.1: The effect of the free surface inclusion at Fr ;:::::: 0.0, h = 0.25, 0.5, 0.75 
and the frequency ratio, f I f 0 , on flow regimes, vortex shedding modes and their 
periods, T0 , at R = 200, A = 0.13, 1.0 ~ f I fo ~ 4.0. The superscript "*" denotes 
quasi-locked-on modes. 

attained unlike in the case h = oo. As the cylinder submergence depth, h, is increased , 

the presence of the free surface (Fr ~ 0.0) seems to stabilize the vortex shedding and 

the locked-on and quasi-locked-on states of vortex formations can be attained for the 

flows which are non-periodic in the absence of the free surface. As f I fo becomes 

greater than one, at h = 0.5, the near wake vorticity breaks up to produce distinctly 

different modes of vortex shedding when compared to those produced at h = 0. 75. 

The common observed modes of vortex shedding are the asymmetric 28 mode when 

h = 0.5 (!I fo ~ 3.0) and the asymmetric P+S mode when h = 0.75 (! I fo ~ 2.0) . It 

is also noted that the coalescence between the vortices in the vortex shedding layers 

appears at the high frequency ratios, f I fo = 2.0, 3.0 when h = 0.5 and f I fo = 3.0, 

4.0 when h = 0.75. 

Figure 5.11 summarizes the effect of the cylinder submergence depth , h ( = 0.25, 0.5, 

0.75), and the frequency ratio, f I fo ( = 1.0, 2.0, 3.0, 4.0), on the equivorticity patterns 

for the case R = 200, A = 0.13 when Fr ;:::::: 0.0. The reference case h = oo is also 
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h = 0.25 h = 0.5 h = 0.75 h= 00 

Figure 5.11: The effect of the cylinder submergence depth, h, and the frequency ratio, 
f / f 0 , on the equivorticity patterns at R = 200: A= 0.13, Fr ~ 0.0. All snapshots 
are taken at the instant x(t) = A. 

shown in this figure. The snapshots are taken at the instant x(t) =A. It is noted that 

for the periodic/quasi-periodic cases the snapshots are taken over the time interval 

in which the flow reaches to a periodic/ quasi-periodic state. For non-periodic cases, 

the commonly appearing equivorticity plots at x(t) = A (within the time interval 

0 < t ~ 100) are shown in Figure 5.11. Taking an overview of Figure 5.11, it is seen 

that in all the cases (h = 0.25, 0.5, 0.75), the free surface deformations are negligible 

which suggests that surface interface acts as a non-deformable surface irrespective of 

the values of h and f / f 0 . It can be noted from this figure that there is some diffusion 

of the opposite signed vorticity across the interface and the near wake seems to be 

more skew symmetric (centerline of the near wake is directed downwards slightly) as 

h decreases from oo to 0.5. A remarkable difference in the near wake structure is 

observed when the cylinder is located very close to the free surface (h = 0.25). At the 
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cylinder submergence depth, h = 0.25, the rapid diffusion of the negative vorticity 

across the interface is observed (due to a local surface acceleration) and thereby, the 

upper vortex shedding layer is largely dissipated into the downstream of the cylinder. 

Thus, the near wake becomes more controlled by positive vortex structures as the 

cylinder submergence depth, h, decreases from oo to 0.25. Figure 5.11 suggests that 

as the cylinder submergence depth, h, is reduced from oo to 0.25, the shape and the 

strength of the vortices become altered such that the vortices traveling downstream of 

the cylinder become more oval shaped with their major axis lying almost parallel to 

the free surface. It is also noted from this figure that as h decreases from 0. 75 to 0. 25, 

the vortex formation length seems to increase, in general, (maximum by ~ 66.7%) 

when fIfo ~ 2.0 and to decrease when f I fo = 1.0. Figure 5.11 also shows that for 

all cylinder submergence depths, h = 0.25, 0.5, 0.75, the flow behaviour becomes 

more complicated as fIfo increases. For fIfo = 1.0 the near wake behaviour is not 

too dissimilar to that from the reference case h = oo while a marked difference in 

the near wake behaviour is observed for larger frequency ratios, fIfo ~ 2.0, when 

compared to the case h = oo. When h = 0.25, 0.5 , 0.75, and f I fo ~ 2.0, the 

vortex formation length seems to increase, in general, (maximum by ~ 66.7%) when 

compared to the reference case h = oo. Moreover, as fIfo increases from 1.0 to 4.0 , 

the length of the upper vortex layer becomes enlarged so that this layer seems to be 

largely dissipated into the downstream of the cylinder. This is due to the fact that for 

the cases h = 0.25, 0.5, 0.75 , the increase in fIfo seems to speed up the diffusion of 

the negative vorticity across the free surface and the near wake becomes dominated 

by t he positive vorticity. This emphasizes the inhibiting influence of the frequency 

ratio, f I f 0 , on the near wake behaviour when the free surface is present. 
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5.2.2 Froude number Fr = 0.2 

In this section, t he case for R = 200, A= 0.13 and h = 0.25, 0.5, 0.75 is considered 

while the frequency ratio, f I f 0 , varies from 1.0 to 4.0 by increments of 1.0. The 

CL(t), x(t) PSD CL(x) 
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Figure 5.12: The time variation of the lift coefficient , CL, (black) and the in-line 
displacement, x(t) , (gray); PSD of CL; Lissajous patterns of CL at R = 200: A = 0.13, 
1.0 ~ fIfo ~ 4.0, Fr = 0.2, h = 0.25. 

observed flow behaviour is (i) non-periodic for 1.0 ~ f I fo ~ 4.0 at h = 0.25 and for 

fIfo ~ 3.0 at h = 0.5, 0.75 and (ii) quasi-periodic, perT, for f I fo = 1.0, and per 
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Figure 5.13: The time variation of the drag coefficient , CD, (black) and the in-line 
displacement, x(t ), (gray); PSD of CD; Lissajous patterns of CD at R = 200: A = 0.13, 
1.0 ~ fIfo ~ 4.0, Fr = 0.2, h = 0.25. 

2T, for f I fo= 2.0 at h = 0.5, 0.75. 

The time history of the lift coefficient , CL , the PSD of CL and the Lissajous pat

terns of CL for the case when Fr = 0.2, h = 0.25 are displayed in Figure 5.12. It 

is evident that neither of the CL curves shows a repetitive pattern which indicates 

locked-on states. The non-locked-on states of the near wake for this range of param-



- -------

5. 2. Vortex shedding modes and fluid forces in the presence of the free surface at 
h = 0.25, 0.5, 0.75 173 

eters are also confirmed by the corresponding traces of CL(x). At large frequency 

ratios, f I fo ;:;:: 3.0, the Lissajous patterns exhibit more congruent shapes than that 

off I fo ~ 2.0. In all cases shown in Figure 5.12, the t races of CL(x) show a definite 

decrease in repeatability due to the loss of phase-locking. At fIfo ~ 2.0, the free 

surface is seen to produce hysteresis loops lying largely in the lower half plane. On 

the other hand, when f I fo ;:;:: 3.0, the hysteresis loops shift towards the upper half 

plane. Considering the PSD plots in Figure 5.12, it is seen that the effect of the free 

surface is to destabilize the persistence of CL patterns when compared to the case 

when the free surface is absent (see Figure 5.1). The PSD of CL indicates that for 

f I fo ~ 2.0 the dominant peak occurs at fo whereas for the larger frequency ratios, 

f I fo ;:;:: 3.0, the dominant peak is observed at f. It is noted that at f I fo = 2.0, the 

interaction between the vortex shedding and the cylinder oscillations result in a fluc

tuating lift coefficient , CL, with a complex behaviour such that it cr ates a difficulty 

in calculating the PSD of CL as is shown in Figure 5.12. 

The time history of the drag coefficient, C0 , the PSD of Co and the Lissajous patterns 

of Co for the case Fr = 0.2, h = 0.25 are shown in Figure 5.13. This figure suggests 

that for each frequency ratio, 1.0 ~ fIfo ~ 4.0, the traces of Co are generally 

destabilized relative to the case when the free surface is absent (see Figure 5.2) . In 

all cases, the patterns of Co are non-repetitive. Spectra corresponding to the Co 

signatures show one dominant peak that occurs at f when 1.0 ~ f I fo ~ 4.0. Thus, it 

is evident that in all cases, C 0 oscillates with the forcing frequ ncy, f. The plots of 

C0 (x) again show non-congruent trajectories which indicate the loss of phase-locking 

between the cylinder motion and the fluctuating drag coefficient , Co. It is also seen 

that the hysteresis loops of CL(x) essentially confine in the upper half plane. The 
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effect off I fo seems to shift hysteresis loops further into both the upper and lower half 

planes. At all the considered frequency ratios, f I f 0 , the directions of the hysteresis 

loops of CD(x) are counterclockwise. This indicates that for each fr quency ratio 

f I f0 , the energy transfer is from the cylinder to the fluid . It is also noted that as 

f I fo increases, the area enclosed by C0 (x) traces becomes larger and thus the amount 

of the energy transferred from the cylinder to the fluid increases. 

At larger cylinder submergence depths, h = 0.5 , 0.75, the near wake vorticity breaks 

up to produce quasi-locked-on modes of the vortex formation at small frequency ratios 

f I fo ~ 2.0. The lock-on has not been observed at any other value of the frequency 

ratio, fIfo ;;::: 3.0 for the cases Fr = 0.2, h = 0.5, 0.75. Figures 5.14 and 5.15 show 

the time histories of the lift coefficient, CL, the PSD of CL and the Lissajous patterns 

of CL for h = 0.5, 0.75, respectively. At cylinder submergence depths h = 0.5, 

0.75 the traces of CL exhibit almost repeatable patterns, per T, when fIfo = 1.0 

and per 2T, when f I fo = 2.0. However, it is noted that the traces of CL are less 

persistent from cycle to cycle of cylinder oscillation and thereby, the increase in phase 

variations between CL and the cylinder motion is evident. The corresponding spectra 

and Lissajous trajectories indicate that the lift coefficient, CL , o ciliate at the natural 

vortex shedding frequency, f 0 , (dominant p ak in the PSD) when f I fo ~ 2.0. For 

f I fo ;;::: 3.0, neither of the CL trajectories shows the repeatable patterns. Moreover, 

the corresponding traces of CL(x) exhibit highly non-congruent shapes. Thus, it is 

concluded that when f I fo ;;::: 3.0, the vortex shedding frequency is not synchronized 

with the frequency of cylinder oscillation, f. At both cylinder subm rgence depths, 

h = 0.5, 0.75, the PSD analysis of CL for f I fo ;;::: 3.0 shows two well defined peaks, 

at approximately fo , f when f I fo = 3.0 and fo , 3fo when f I fo = 4.0. Moreover, at 
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Figure 5.14: The time variation of the lift coefficient, C L , (black) and the in-line 
displacement, x(t), (gray); PSD of CL; Lissajous patterns of CL at R = 200: A= 0.13, 
1.0 ~ fIfo ~ 4.0, Fr = 0.2, h = 0.5. 

h = 0.75, two dominant peaks, fo and f , develop when f I fo = 3.0. It is also seen 

that the effect of fo weakens as f I fo increases from 1.0 to 4.0. Considering the last 

columns in Figures 5.14 and 5. 15, it is seen that the hysteresis loops of CL(x) are 

confined in both upper and lower half planes. 

The plots of Figures 5.16 and 5.17 show that the signatures of C0 , for the cases 
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Figure 5.15: The time variation of the lift coefficient, CL, (black) and the in-line 
displacement, x(t), (gray); PSD of CL; Lissajous patterns of CL at R = 200: A= 0.13, 
1.0 ~ fIfo ~ 4.0, Fr = 0.2, h = 0.75. 

when h = 0.5, 0.75, are almost repeatable over one period of cylinder oscillation, 

T , and two periods of cylinder oscillation, 2T, for fIfo = 1.0 and 2.0, respectively. 

However, the shapes of Co traces are less persistent from cycle to cycle of cylinder 

oscillation. These observations are also confirmed by the corresponding Lissajous 

trajectories of C0 . The loops of C0 (x) exhibit less congruent shapes from cycle 

to cycle of cylinder oscillation and thereby, the fluctuating drag coefficient, C0 , is 
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Figure 5.16: The time variation of the drag coefficient, C 0 , (black) and the in-line 
displacement, x(t), (gray); PSD of C0 ; Lissajous patterns of Co at R = 200: A = 0.13, 
1.0 ~ fIfo ~ 4.0, Fr = 0.2, h = 0.5. 

quasi-phased-locked to the cylinder motion when fIfo ~ 2.0. On the other hand, 

at fIfo ~ 3.0, the trajectories of CD seem to be more persistent than those at 

smaller frequency ratios. The corresponding Lissajous trajectories, C0 (x), indicate 

the increase in phase-locking between Co and the cylinder motion. Thus, for the case 

Fr = 0.2, h = 0.5, 0.75, the effect of fIfo is seen to stabilize the fluctuating drag 

force, C0 . The signatures of Co are almost repetitive over one period of cylinder 
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oscillation, T , when fIfo ~ 3.0, h = 0.5 , 0. 75. These observations indicate that 

for the frequency ratios, f I fo = 3.0, 4.0, and cylinder submergence depths, h = 0.5, 

0.75 , the fluctuating drag coefficient, CD, is quasi-phase-locked, perT, to the cylinder 

motion. Considering the PSD of CD shown in Figures 5.16 and 5.17, it is evident 

that one dominant peak develops when fIfo = 1.0, 2.0, 3.0, 4.0. This peak occurs 

at f when fIfo = 1.0, 2.0, 3.0 while at 3/o when J I fo = 4.0. The hysteresis loops 
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Figure 5.17: The time variation of the drag coefficient, CD, (black) and the in-line 
displacement , x(t), (gray); PSD of CD; Lissajous patterns of CD at R = 200: A = 0.13, 
1.0:::;; f i fo:::;; 4.0, Fr = 0.2, h = 0.75. 
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Figure 5.18: The equivorticity patterns (left), the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over one period of cylinder os
cillation, T, at R = 200: A= 0.13, fIfo = 1.0, h = 0.5, Fr = 0.2 (T ~ 5.051, 
80.7 ~ t ~ 85.7). The quasi-locked-on 28 mode, perT, is observed. 

of CD(x) are essentially confined in the upper half plane and they shift towards the 

lower half plane as f / fo increases. Considering the area enclosed by the Lissajous 

trajectories, it is evident that the energy transfer between the cylinder and the fluid 

increases as fIfo increases. 

Figures 5.18 and 5.19 display the equivorticity patterns, the streamline patterns and 

the pressure distribution in the near wake of the cylinder over one period of cylinder 
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Figure 5.19: The equivorticity patterns (left), the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over one period of cylinder os
cillation, T , at R = 200: A= 0.13, f I fo= 1.0, h = 0.75, Fr = 0.2 (T ~ 5.051, 
80.7 ~ t ~ 85.7) . The quasi-locked-on 28 mode, perT, is observed. 

oscillation, T , for the case Fr = 0.2, h = 0.5 , 0.75, respectively, when fIfo = 1.0. 

At both cylinder submergence depths, h = 0.5, 0.75, the vortex shedding mode is the 

quasi-locked-on asymmetric 28 mode, per T. The pressure plots shown in Figures 

5.18 and 5.19 indicate that the low pressure region is generated at the upper side of the 

cylinder as the negative vortex develops (OT ~ t ~ Tl2). Moreover, the low pressure 

region seems to shift to the upper side of the cylinder completely at t ~ 3T I 4 and thus 

the negative vortex sheds. The high pressure in the stagnation area seems to move 
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in the counterclockwise direction up to t ~ T /2 when the negative vortex develops 

whereas it starts to move in the clockwise direction following the development of the 

positive vortex over T/2 ~ t ~ T . It is interesting to note that at h = 0.5, 0.75 there 

is a sufficiently high pressure near the free surface interface. For the smaller cylinder 

submergence depth, h = 0.5 , sufficiently high pressure region near the interface is 

observed approximately 6d downstream of the cylinder at the time when the fully 

developed positive vortex from the lower side of the cylinder approaches the interface 

and thus the free surface becomes sufficiently disturbed (t = OT, T). On the other 

hand, at h = 0.75, sufficiently high pressure region near the free surface is largely 

dissipated by approximately 6d downstream of the cylinder at the instants t = OT and 

t = T; sufficiently high pressure region is also observed approximately 6d downstream 

of the cylinder at the instants t = T/4, 3T/4 when h = 0.75. Figures 5.18 and 5.19 

also suggest that the development of the positive vorticity near the interface in the 

region above the cylinder seems to induce a significantly low pressure in this region. 

Taking an overview of Figures 5.18 and 5.19, it can be seen that near wake structure 

at h = 0.5 is similar to that obtained at h = 0. 75. However, there is a slight decrease 

in vortex formation length(~ 5%) ash decreases to 0.5. As the cylinder submergence 

depth, h, is reduced , the near wake is more influenced by the proximity of the free 

surface and thereby, the shed vortices become more oval shaped. It is noted that 

at Fr = 0.2 , the ability of the vortices to diffuse is more evident as the free surface 

curvature becomes more pronounced than that in the limiting case Fr ~ 0.0. Thus, 

as the cylinder approaches the free surface, the vorticity diffuses stronger across the 

interface and a larger amount of opposite signed vorticity is expected near the free 

surface. 
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Figure 5.20: The equivorticity patterns (left), the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over two periods of cylinder os
cillation, 2T, at R = 200: A = 0.13, f / fo = 2.0, Fr = 0.2, h = 0.5 (T ~ 2.525, 
80.7 ~ t ~ 85.7). The quasi-locked-on 2S mode, per 2T, is observed. 
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Figure 5.21: The equivorticity patterns (left), the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over two periods of cylinder os
cillation, 2T, at R = 200: A= 0.13, f / fo = 2.0, Fr = 0.2, h = 0.75 (T ~ 2.525, 
70.7 ~ t ~ 75.7). The quasi-locked-on P+S mode, per 2T, is observed. 
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For the frequency ratio f I fo = 2.0, the equivorticity and streamline patterns, and 

the pressure distribution in the near wake of the cylinder over two periods of cylind r 

oscillation, 2T, are plotted in Figures 5.20 and 5.21 when h = 0.5 , 0.75, respectively. 

The vortex shedding modes at this frequency are the quasi-locked-on asymmetric 2S 

mode, per 2T, when h = 0.5 and the quasi-locked-on asymmetric P+S mode, per 

2T, when h = 0.75. It can be seen from Figure 5.20 that the formation and shedding 

of the negative vortex is associated with the shift of the low pressure region from 

the upper to the lower side of the cylinder (t ~ 5TI4) . The reverse process leads 

to the development and shedding of the positive vortex (t ~ T l 4) . Moreover, the 

development of the positive vorticity near the free surface interface in the region above 

the cylinder seems to induce the local raise in the interface, resulting in the movement 

of the high pressure into the curved surface region. This situation is best illustrated 

by the pressure plots taken within the time interval 3T I 4 ~ t ~ 3T 12. As the level 

of interface curvature decreases, the high pressure seems to shift to the stagnation 

region. Figure 5.20 also indicates the existence of the significantly high pressure near 

the free surface as surface waves propagate into the downstream of the cylinder. At 

the larger cylinder submergence depth, h = 0.75, Figure 5.21 shows that a pair of 

positive vortices is shed into the downstream of the cylinder over OT ~ t ~ 3T I 4 due 

to the shift of the low pressure region to the lower side of the cylinder. A large vortex 

develops in the upper vortex shedding layer ( OT ~ t ~ 5T I 4) and becomes detached 

at t ~ 3T 12, following the shift of the low pressure region. Taking an overview of 

Figures 5.20 and 5.21, it is evident that both the distance between the vortices and the 

vortex formation length are decreased with the decrease in h. The observ d decrease 

in the vortex formation length is approximately 12.5%. The size of shed vortices 
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is larger at h = 0. 75 when compared to those at h = 0.5. Moreover, at the smaller 

cylinder submergence depth , h = 0.5, the form of the propagating vortices is oval while 

at h = 0. 75 these vortices appear to be elongated in the transverse direction. It is 

clearly seen from these figures that the negative vortices are restricted in their upward 

movement by the free surface and thereby, the reorientation of the shed vortices is 

observed. For example, at h = 0.5, the major axis of the shed vortices has a horizontal 

position with respect to the free surface while at the larger cylinder submergence 

depth, h = 0.75, the form of the vortices is very similar to the reference case of 

h = oo shown in Figure 5.3 with the major axis of the vortices lying perpendicular 

to the interface. It is also noted that the large amount of oppo ite signed vorticity 

near the interface is observed at h = 0.5 while this amount is significantly reduced 

as h increases. Comparison of the pressure plots shown in Figures 5.20 and 5.21 

indicates that the secondary vorticity from the free surface leads to the existence of 

the regions of the sufficiently high pressure near the interface at the smaller cylinder 

submergence depth , h = 0.5. Moreover , at h = 0.5, the high pressure region seems to 

switch over between the stagnation and curved surface region whereas at h = 0.75, 

the high pressure is always associated with the stagnation. 

Figure 5.22 summarizes the effect of the cylinder submergence depth, h ( = 0.25, 0.5, 

0.75), and the frequency ratio, f / fo ( = 1.0, 2.0, 3.0, 4.0), on the equivorticity patterns 

for the case R = 200, A = 0.13 when Fr = 0.2. The reference case h = oo is also 

shown in this figure. T he snapshots are taken at the instant x(t) = A. It is noted that 

for the periodic/quasi-periodic cases the snapshots are taken over the time interval 

in which the flow reaches to a periodic/quasi-periodic state. For non-periodic cases, 

the commonly appearing equivort icity plots at x(t) = A (within the t ime interval 
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h = 0.25 h = 0.5 h = 0.75 h = 00 

Figure 5.22: The effect of the cylinder submergence depth, h, and the frequency ratio, 
f I f 0 , on the equivorticity patterns at R = 200: A= 0.13, Fr = 0.2. All snapshots 
are taken at the instant x(t) = A. 

0 < t ~ 100) are shown in Figure 5.22. It is clearly seen that minimal free surface 

deformations occur for h = 0.25, 0.5, 0.75 and all fIfo shown in Figure 5.22. The 

surface curvature becomes more pronounced ash decreases to 0.25 for each frequency 

ratio, fIfo = 1.0, 2.0, 3.0, 4.0. As a result, the amount of secondary vorticity 

increases due to the increase in the radius of curvature as h decreases from 0.75 to 

0.5. For the case when h = 0.5, 0.75 the near wake shows a similar behaviour when 

compared to that at h = oo for each frequency ratio, f I f 0 . Moreover, as the cylinder 

submergence depth decreases to 0.5, there is some diffusion of the opposite signed 

vorticity across the interface and the near wake seems to be more skew symmetric. 

It is also seen that the vortex formation length remains almost the same for each 

frequency ratio, fIfo , shown in Figure 5.22 as h decreases from oo to 0.5. At the 

smallest cylinder submergence depth, h = 0.25, the near wake is very dissimilar to 
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the cases at larger cylinder submergence depths (h = 0.5, 0.75) . The first column 

in Figure 5.22 corresponding to the case when h = 0.25 clearly shows that for all 

cases, the negative vorticity on the upper side of the cylinder annihilates and diffuses 

due to a strong interaction with the free surface interface and the near wake becomes 

dominated by positive vortex structures. Figure 5.22 also shows that at h = 0.25, 

0.5, 0. 75 the positive vortices traveling downstream of the cylinder become more oval 

shaped while for the reference case h = oo the shed positive vortices are elongated 

in the transverse direction. Taking an overview of Figure 5.22, it can be seen that 

as fIfo increases from 2.0 to 4.0, the formation length seems to increase (maximum 

by~ 33.3%) for all cylinder submergence depths, h = 0.25, 0.5 , 0.75, oo. Moreover, 

it is evident that both the interface curvature and the amount of opposite signed 

vorticity near the free surface increase with the variations in the frequency ratio, 

f I f0 . An examination of the vorticity plots in Figure 5.11 indicates that for the 

highest frequency ratio, fIfo = 4.0, and the smallest cylinder submergence depth, 

h = 0.25, the free surface curvature becomes considerably pronounced and the induced 

interface curvature leads to a viscous transport of the opposite signed vorticity into 

the free surface. As a result, the local interface sharpening is observed. Furthermore, 

at h = 0.25, as fIfo increases from 1.0 to 4.0, the length of the upper vortex layer 

becomes enlarged so that this layer largely dissipates into the downstream of the 

cylinder (being removed from the fluid by diffusion and cross-annihilation) . Thus, it 

is clearly seen that, in general, the amount of negative vorticity decreases while the 

amount of positive vorticity increases as fIfo increases. This phenomenon is observed 

for the cases when h = 0.25. At larger cylinder submergence depths, h = 0.5, 0.75, 

the negative vortex traveling into the near wake seems to be lifted upward toward 
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to the free surface by the propagating large positive vortex as f I fo increases. This 

results in the r orientation of the negative vortices as they reach the free surface, i.e., 

they become elongated in the horizontal direction and weaken due to the interaction 

with the interface. 

The effect of the free surface inclusion at Fr = 0.2, h = 0.25, 0.5 , 0.75 and the 

frequency ratio, f I f 0 , on vortex shedding modes and their periods, T0 , the fluctuating 

fluid forces as well as the mechanical energy transfer is summarized in Tables 5.2-5.5. 

Table 5.2 shows that for the case Fr = 0.2, the presence of the free surface seems 

h = 0.25 h = 0.5 h = 0.75 h = 00 

fIfo Mode To Mode To Mode To Mode To 

1.0 non-locked - 28* T 28* T non-locked -

2.0 non-locked - 28* 2T (P+8) * 2T 28 2T 

3.0 non-locked - non-locked - non-locked - non-locked -

4.0 non-locked - non-locked - non-locked - non-locked -

Table 5.2: The effect of the free surface inclusion at Fr = 0.2, h = 0.25, 0.5, 0.75 
and the frequency ratio, f I f 0 , on vortex shedding modes and their periods, T0 , at 
R = 200: A = 0.13, 1.0 ~ f I fo ~ 4.0. The superscript "*" denotes quasi-locked-on 
modes. 

to break up the periodicity of the vortex shedding when h = 0.25 and fIfo = 2.0. 

On the other hand , at larger cylinder submergence depths, h = 0.5, 0. 75, the free 

surface is seen to stabilize the flow behaviour for f I fo = 1.0 when compared to the 

reference case h = oo. The vortex shedding frequency becomes quasi-locked-on to 

the forcing frequency of cylinder oscillation at this f I f 0 . Taking an overview of the 
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results obtained for fIfo = 2.0, it can be clearly seen that for this frequency ratio 

the near wake is destabilized at Fr = 0.2, h = 0.75 and the frequency of the vortex 

shedding becomes quasi-locked-on to the cylinder motion. The periods of the vortex 

shedding are T for fIfo = 1.0 and 2T for fIfo = 2.0 irrespective of the values of h. 

For fIfo = 2.0, a switchover in the vortex shedding modes is observed as h decreases 

from oo to 0.5. The 28 mode persists at h = 0.5, oo while at h = 0. 75 the effect of 

the free surface is to produce P + S mode. 

Tables 5.3 and 5.4 display the values of the mean and RMS values of the lift and drag 

coefficients, CL, CD, CL,rms and CD,rms· The corresponding values of CL, CD , CL,rms 

and CD,rms coefficients for the reference case of h = oo ar also presented in these 

tables. Comparison of the results shown in Table 5.3 indicates that for h = 0.25, 

CL CD 

f I !o I h 0.25 0.5 0.75 00 0.25 0.5 0.75 00 

1.0 -0.3501 0.1613 0.1686 -0.0028 1.4952 1.6843 1.5139 1.3442 

2.0 -0.5895 -0.0283 0.1855 -0.0012 1.5507 1. 527 1.8230 1.6464 

3.0 -0.7086 0.0037 0.1520 -0.0011 1.8846 1.7295 1.6229 1.3916 

4.0 -0.5359 0.0297 0.1409 -0.0028 1.6115 1.5816 1.5697 1.4064 

Table 5.3: The effect of the free surface inclusion at Fr = 0.2, h = 9_.25 , 0.5;. 0.75 
and the fr quency ratio , f I f0 , on the mean lift and drag coefficients, CL and CD, at 
R = 200: A = 0.13, 1.0 :::;; fIfo :::;; 4.0. 

0.5, 0.75 and all values off I f0 , the absolute values of the mean lift coefficient , CL, 

are increased significantly when compared to that at h = oo, except for the case 
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CL,rms Co,rms 

fIfo I h 0.25 0.5 0.75 00 0.25 0.5 0.75 00 

1.0 0.6654 0.9370 0.8011 0.5380 1.6387 1.7369 1.5670 1.3776 

2.0 0.7918 1.2119 1.2022 0.9284 2.3615 2.2469 2.1325 1.9074 

3.0 1.8715 1.1292 0.8259 0.4668 3.3958 3.0026 2.7560 2.6421 

4.0 1.9139 1.2689 0.9668 0.5015 3.5504 3.3247 3.4879 4.2629 

Table 5.4: The effect of the free surface inclusion at Fr = 0.2, h = 0.25, 0.5 , 0.75 and 
the frequency ratio, fIfo , on the RMS lift and drag coefficients, CL,rms and Co,rms, 
at R = 200: A = 0.13, 1.0 ~ fIfo ~ 4.0. 

f I fo = 3.0, h = 0.5. The mean lift coefficient , CL, varies in the interval between 

-0.7086 and 0.1855 when the free surface is present whereas the values of CL are 

nearly zero at h = oo, as expected. The maximum increase in the absolute values of 

CL is observed for the smallest cylinder depth, h = 0.25, when fIfo = 3.0. It is also 
~ 

seen that there is a switchover in the sign of the CL as h decreases from oo to 0.25. 

At h = oo, 0.25, the values of CL are negative. On the other hand, at h = 0.5, 0.75, 

CL takes positive values, except for the case f I fo = 2.0, h = 0.5. Furthermore, the 

effect of decreasing h from 0.75 to 0.25 is to decrease the values of CL such that the 

values of CL shift into the negative half plane. As fIfo increases from 1.0 to 4.0, CL 

seems to decrease, except for the cases f Ifo = 4.0, h = 0.25; fIfo = 3.0, 4.0, h = 0.5; 

f I fo = 2.0, h = 0.75. Taking an overview of Table 5.3, it is evident that the presence 

of the free surface has a slight effect on the values of the mean drag coefficient, Co , 

for all the values of the cylinder submergence depth , h, and th frequency ratio, f I f 0 . 

As h decreases from oo to 0.25, the values of 00 increase (by a maximum factor of 
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1.35) , except for the cases f I fo = 1.0, 2.0 when h = 0.25. On the other hand , as 

fIfo increases, the values of Co seem to increase for the cases h = oo, 0.25 (by a 

maximum factor of 1.26) , except for fIfo = 3.0, h = oo and fIfo = 4.0, h = 0.25; 

whereas the decrease in Co is observed at h = 0.5, 0.75 (by a maximum factor of 

1.17) , except for the case fifo= 2.0. 

Table 5.4 indicates that decreasing the value of the cylinder submergence depth , 

h, from oo to 0.25 seems to increase the values of the RMS lift coefficient, CL,rms , 

significantly, except for the cases f I fo = 1.0, 2.0 when h = 0.25. The maximum 

increase observed for CL,rms values is by a factor of 3.82. On the other hand , for 

f I fo ~ 3.0 the RMS drag coefficient, Co,rms, increases slightly as h decreases from 

oo to 0.25, except for the case f / fo = 1.0, h = 0.25. In fact , th maximum increase 

observed in C D,rms values is by a factor of 1.3. It is interesting to note that for the 

highest frequency ratio, f I fo = 4.0, Co,rms decreases as h is reduced from oo to 0.5 

and increases as h decreases from 0.5 to 0.25. Further, the increase in the frequency 

ratio, f I f 0 , leads to the increase in the values of the RMS lift coefficient, CL,rms , at 

h = 0.25, 0.5 , 0.75, oo (by a maximum factor of 2.85), except for the cases fIfo= 3.0, 

h = 0.5 , 0.75, oo. It is also seen that Cn,rms increases as f I fo increases for all values 

of h shown in Table 5.4. The maximum increase observed for Cn,rms values is by a 

factor of 3.1. 

Table 5.5 shows the effect of the cylinder submergence depth, h ( = 0.25, 0.5, 0.75) , 

and the frequency ratio, f Ifo (= 1.0, 2.0, 3.0, 4.0) , on the total mechanical energy 

transfer , E, for the case R = 200, A = 0.13 when Fr = 0.2. The reference case h = oo 

is also shown in this table. It can be seen that the total energy transfer , E, is negativ 
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f lfo h = 0.25 h = 0.5 h = 0.75 h = 00 

1.0 -0.4687 -0.2099 -0.3192 -0.2759 

2.0 -1.5237 -0.7640 -0.7021 -0.3718 

3.0 -2.5882 -1.6468 -1.3258 -0.6167 

4.0 -2.9833 -1.7942 -1.3448 -0.1008 

Table 5.5: The effect of the free surface inclusion at Fr = 0.2, h = 0.25, 0.5 , 0.75 and 
the frequency ratio, f I f 0 , on the total mechanical energy transfer, E, at R = 200: 
A = 0.13, 1.0 :::;; fIfo :::;; 4.0. 

irrespective of the values of h and f I f 0 . This indicates that for all cases shown in 

Table 5.5, the negative energy is delivered from the cylinder to the fluid. The physical 

meaning of the negative energy transfer is that the fluid produces a resistance against 

the forced motion of the cylinder, indicating that these forced oscillations could not 

occur due to flow-induced forces [see, for example, Carberry (2002)]. Taking an 

overview of Table 5.5, it is seen that, in general, decreasing the cylinder submergence 

depth, h, from oo to 0.25 and increasing the frequency ratio, f I f 0 , from 1.0 to 4.0 

seem to increase the absolute values of the energy transfer, E. In other words, the 

fluid resistance against the forced motion of the cylinder increases as h decreases and 

f I fo increases. 

5.2.3 Froude number Fr = 0.4 

This section deals with the near wake behaviour for the Froude number of 0.4. Reichl 

et al. (2005) have shown that at Froude numbers in excess of 0.3 ""' 0.4, the free surface 
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deformations become substantial and the localized interface sharpening and wave 

breaking occur. This yields to introduction of a substantial quantity of oppo ite signed 

vorticity from the free surface which interacts with the the upper vorticity shedding 

layer through diffusion and thereby, substantially changes the wake evolution. In 

order to examine the inhibiting influence of the free surface on the flow regimes, the 

near wake states, the fluctuating fluid forces as well as the total energy transfer, 

E , when Fr = 0.4, a series of the numerical simulations at h = 0.25, 0.5 , 0.75 

is considered. The present investigation confirms that for the considered range of 

parameters (R = 200, A = 0.13, 1.0 ~ f / fo ~ 4.0) , the free surface presence seems to 

produce different flow regimes. That is, the flow field is stabilized within a short period 

of time after the vortex shedding begins and then the near wake transition to the non

locked-on state is observed. It is noted that a similar phenomenon has been observed 

for the case of the non-deformable surface (Fr :::::::: 0.0). The present investigation 

also shows that for the Froude number of 0.4, it is possible to generate distinctly 

different patterns of the vortex formation then that of classical vortex shedding mode 

observed for a cylinder subject to transverse oscillations in uniform flow [Williamson 

and Roshko (1988)], provided that the cylinder is located sufficiently close to the 

free surface. Moreover , it is shown that the presence of the free surface provides 

the possibility for quasi-locked-on vortex formation not only from the cylinder but 

also from the free surface. In what follows, these new vortex formation modes are 

addressed and the mechanism that govern the flow is proposed . 

The case when the free surface is located at h = 0.25 is described first. The time 

evolution of the fluctuating lift coefficient, CL, the PSD of CL and the traces of CL(x) 
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Figure 5.23: The time variation of the lift coefficient, CL, (black) and the in-line displacement, x(t), (gray); PSD 
of CL; Lissajous patterns of CL at R = 200: A= 0.13, 1.0:::; f / fo :::; 4.0, Fr = 0.4, h = 0.25. 
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Figure 5.25: The equivorticity patterns (left), the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over four periods of cylinder os
cillation, 4T, at R = 200: A = 0.13, f / fo = 3.0, Fr = 0.4, h = 0.25 (T ~ 1.684, 
38.6 ~ t ~ 45.4). The quasi-locked-on C(2S) mode, per 4T, is observed within 20T. 



\ \\ 

5.2. Vortex shedding modes and fluid forces in the presence of the free surface at 
h = 0.25, 0.5, 0.75 197 

·-.~ 
T 

2T 

3T 

4T 

5T 

6T 

7T 

8T 

9T 

lOT 

Figure 5.26: The equivorticity patterns (left) , the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over ten periods of cylinder oscil
lation, lOT, at R = 200: A = 0.13, f / fo = 3.0, Fr = 0.4, h = 0.25 (T ~ 1.684, 
69 ~ t ~ 85.8) (non-periodic state). 
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Figure 5.27: The equivorticity patterns (left) , the streamline pattern (middle) and 
the pressure distribution in the near wake (right ) over five periods of cylinder os
cillation, 5T, at R = 200: A = 0.13, f / fo = 4.0, Fr = 0.4, h = 0.25 (T ~ 1.263, 
25.2 ~ t ~ 31.5). The quasi-locked-on C(2S) mode, per 5T, is observed within 20T. 
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for the case h = 0.25 are displayed in Figure 5.23. Thi figure clearly shows that 

when fIfo ~ 2.0, neither of the CL traces has a repetitive path which indicates lock

on states. Thus, it is concluded that the flow is non-periodic at these frequency ratios. 

Spectra of CL corresponding to fIfo ~ 2.0 indicate that the dominant peak occurs 

at the forcing frequency, f, at both of these frequencies (! = f o for fIfo = 1.0). 

The Lissajous trajectories exhibit highly non-congruent shapes and thus the loss of 

phase-locking between CL and the cylinder motion for fIfo ~ 2.0 becomes evident. 

For the higher frequency ratios, fIfo ~ 3.0, the signatures of the lift coefficient, CL, 

clearly indicate the transition of the flow from the quasi-periodic state to the non-

periodic state. The switchover is observed at approximately t = 42 and t = 60 for the 

frequency ratios off I fo = 3.0, 4.0, respectively. The traces of lift co fficient, CL , are 

almost repeatable over 4T and 5T for f Ifo = 3.0, 4.0 , respectiv ly (quasi-periodic 

state). It is noted that at fIfo = 4.0, the CL signatures are less repetitiv than thos 

obtained for fIfo = 3.0. This indicates that when h = 0.25 the lift coefficient, CL, 

is destabilized as fIfo increases from 3.0 to 4.0. As the switching time is reached, 

at both of these frequencies, f I fo = 3.0, 4.0, the traces of CL become highly non-

persistent and thereby, indicate the transition to the non-periodic state of the near 

wake. The PSD of C L (quasi-periodic state) shows the existence of one dominant 

peak for both f I fo = 3.0, 4.0. It is interesting to note that at higher frequency ratio, 

f I fo = 4.0, the dominant peak occurs at the natural vortex shedding frequency, fo, 

while at fIfo = 3.0 the dominant p ak develops at f. This indicates that for the case 

h = 0.25 when fIfo = 4.0 the effect of the forcing frequency, j, becomes very weak 

with respect to f 0 . In non-periodic state, th corresponding spectra show at least 

two well defined peaks, fo and j, for both f I fo = 3.0, 4.0. Thus, in this flow regim , 
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the oscillations of the lift coefficient, CL , are governed by the two frequencies , the 

natural vortex shedding frequency, f 0 , and the vortex shedding frequency, f. Taking 

an overview of the hysteresis loops of CL(x) when fIfo ~ 3.0, it can be seen that 

in quasi-periodic state, the hysteresis loops of CL(x) are less congruent from cycle to 

cycle of the cylinder oscillation, indicating the increase in phase variations between the 

cylinder motion and the fluctuating lift coefficient. The traces of CL(x ) shown in the 

last column of Figure 5.23 (non-periodic tate) indicate the complete loss ofthe phase

locking for fIfo = 3.0, 4.0. Comparing the Lissajous plots in Figure 5.23, it is evident 

that for each of the frequency ratios, fIfo = 1.0, 2.0 , 3.0, 4.0, a large fraction of the 

hysteresis loops confine in the lower half plane. This again indicates that the flow 

field is significantly affected by the presence of the free surface. More precisely, the 

free surface effect seems to break up the symmetry of the CL(x ) signatures obtained 

for the reference case of h = oo by shifting the hysteresis loops into the lower half 

plane. Finally, when the cylinder is close to the free surface, h = 0.25 , the signatures 

of C L are largely confined in the negative half plane. 

Time dependent variations of the drag coefficient , CD , the PSD of CD and the Lis

sajous patterns of CD for the case Fr = 0.4, h = 0.25 are presented in Figure 5.24. 

At small frequency ratios, fIfo ~ 2.0, the traces of CD exhibit non-repeatable ig

natures. On the other hand, when fIfo ~ 3.0, the form of the CD traces is alma t 

periodic over 4T and 5T, respectively, for fIfo = 3.0 and 4.0. Thus, variations in 

the frequency ratio, f I f 0 , seem to stabilize the patterns of the drag coefficient , CD . 

It is also seen that the effect off I fo is to increase the positive peaks of CD· Spectra 

of CD suggest that at each frequency ratio the fluctuations of CD occur at the domi

nant frequency equal to the forcing frequency, f. The signatures of CD(x ) are almost 
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congruent at fIfo ~ 3.0 (quasi-periodic state) and thereby, indicate that Cn is quasi-

phase-locked to the cylinder motion at these frequencies. On the other hand, when 

fIfo ~ 2.0 and also when a switchover is observed in the flow regime (fIfo ~ 3.0, 

non-periodic state), the shapes of Lissajous patterns are less congruent from cycle 

to cycle of cylinder oscillation, indicating increased phase variations. It is seen that 

the hysteresis loops are largely confined in the upper half plane and their direction 

is counterclockwise. Thus, there is a mechanical energy transfer from the cylinder to 

the fluid. It is also interesting to note that these loops have a generally similar form 

irrespective of the frequency ratio, f I f 0 , and the observed flow regimes. 

Figure 5.25 displays the equivorticity and streamline patterns , and the pr ssure dis-

tribution in the near wake over four periods of cylinder oscillation, 4T, for the case 

Fr = 0.4, h = 0.25 when fIfo= 3.0 (quasi-periodic state). The vortex shedding 

mode is the modified quasi-locked-on C(2S) mode, per 4T, within 20T. The flow 

becomes non-periodic at 20T < t < 60T. It is seen from Figure 5.25 that the positive 

vortex developed in the previous vortex shedding cycle sheds into the downstream 

of the cylinder at t ~ 2T 15. On the other hand, two co-rotating weak vortices de

velop from the lower side of the cylinder over OT ~ t ~ 4T 15 and then coalesce at 

t = 4T 15. The new weak vortex is being developed over 6T 15 ~ t ~ 8T 15 which 

then coalesces with the previously formed positive vortex to produce a single large 

vortex. In other words, three weak co-rotating vortices coalesce over OT ~ t ~ 8T /5 

to form a single positive vortex which becomes detached in the next vortex shed-

ding cycle at t ~ 2T /5, following the shift of the low pressur region to the lower 

side of the cylinder. An interesting aspect which should be addressed here is that 

the negative vortex sheds but, in fact, remains attached to negative vortex shedding 
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layer. Figure 5.25 shows that the negative vortex becomes detached at t = 12T /5 

by both the positive vortex being developed in the lower vortex shedding layer and 

by the positive vorticity being developed near the free surface. The corresponding 

pressure distribution shows that the shedding of the negative vortex is associated 

with the large size low pressure region concentrated at the front of the cylinder. It 

is also interesting to note that at t = 12T /5 the positive vortex at the lower side of 

the cylinder shows the region of the lowest pressure whereas the positive vorticity 

being developed near the free surface represents the high pressure region. The shed 

negative vortex immediately coalesces with the negative vortex shedding layer and 

then it propagates (being "pushed" by the propagating large positive vortex) into the 

near wake. Moreover, the "pushed" vortex becomes attached both to the negative 

vortex shedding layer and to the free surface. Finally, this vortex detaches and dif

fuses across the interface at the distance far away from the cylinder (approximately 

10 diameters of the cylinder, lOd). The equivorticity plots shown in Figure 5.25 sug

gest that at h = 0.25, the free surface curvature is significantly pronounced, giving 

rise to so called "surface scars" which represent regions where the interface curvature 

changes sign. It is seen that the surface scar becomes sharper approximately at the 

point of maximum lift, t = 4T / 5. Reichl et al. (2005) suggest that the sharpening 

of the interface is presumably due to the local Froude number in the region directly 

above the cylinder, FriL · It is recalled that the local Froude number, FriL, can be 

calculated based on the maximum dimensional u-velocity in the region directly above 

the cylinder, u* , at the time when the lift coefficient reaches its maximum and the 

dimensional local free surface height , h*l£, by using FriL = u• / J(g*h*i£). The local 

Froude number, FriL, generally becomes considerably higher than the global Froude 
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number , Fr, for the small cylinder submergence depth, h, and thereby, a sharpened 

scar occurs in the region where FriL ---+ 1. When this happens, the accelerated fluid 

in the scar region interacts with the slower fluid from above the positive vortices and 

thereby, a shift from the surface scar to the localized wave breaking phenomenon 

occurs. The wave breaking is observed at t = 8T /5 as shown in Figure 5.25. Reichl 

et al. 's work has shown that for small cylinder submergence depths, h, the negative 

vortices seem to decay rapidly into the downstream due to the viscous transport of the 

negative vorticity across the interface. Hence, the negative vorticity is being removed 

from the fluid by diffusion and cross-annihilation. This results in the near wake being 

dominated by the positive vortex structures. An examination of the vorticity plots 

in Figure 5.25 suggests that a similar phenomenon is also observed in the present 

numerical simulations for the case Fr = 0.4, h = 0.25 when f / fo = 3.0. In Figure 

5.25, the pressure plots clearly show that the positive vortices represent the regions 

of the lowest pressure and thereby, have the greatest impact in the near wake. It is 

also seen that the positive vortices move faster than the negative ones. This is due to 

the fact that the convective velocity of the negative vortices decreases as surface cur-

vature increases. The shed positive vortex seems to be lifted upward slightly by the 

downward movement of the fluid from the upper side of the cylinder. This resul ts in 

the transport of the slow fluid from the region just about the shed vortex close to the 

free surface, resulting in the interface rising at positions downstream of the cylinder 

(regions of high pressure) as shown by Figure 5.25. To better understand the eff ct 

of both the Froude number , Fr = 0.4 and the small cylinder submergence depth, 

h = 0.25, on the near wake evolution , a series of instantaneous snapshots over lOT is 

plotted for non-periodic state, in Figure 5.26, for the case Fr = 0.4, h = 0.25 when 
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fIfo = 3.0. Figure 5.26 shows that the flow is completely chaotic in the considered 

time interval. The main features of the flow are the stretching of the positive shear 

layer and the vortex roll-up delay. 

For fIfo = 4.0, the equivorticity patterns, the streamline patterns and the pressure 

distribution in the near wake over five periods of cylinder oscillation, 5T, for the 

case Fr = 0.4, h = 0.25 are shown in Figure 5.27 (quasi-periodic state). This fig-

ure indicates that the flow behaviour is very similar to the aforementioned case when 

fIfo= 3.0 and Fr = 0.4, h = 0.25. The observed mode of the vortex shedding forma

tion is classified as the modified quasi-locked-on C(2S) mode, per 5T, within 20T. It 

can be seen from this figure that the negative vortex developed in the previous vortex 

shedding cycle becomes detached at t ~ T 12. Further, three co-rotating weak vortices 

develop and then coalesce in the lower vortex shedding layer over OT ~ t ~ 2T. The 

coalescence of these vortices results in a single large positive vortex that sheds at 

t ::::::: 7T 12. The negative vortex develops over T 12 ~ t ~ 5T and becomes detached by 

both the positive vortex being developed in the lower vortex shedding layer and by 

the positive vorticity being developed near the free surface in th next vortex shed-

ding cycle ( t ::::::: T 12). It is interesting to note that the shed negative vortex dissipates 

near the free surface and tends to coalesce with the vortex being developed in the 

upper vortex shedding layer. An examination of the pressure plots indicates that 

again the positive vortices represent the regions of the lowest pressure and thus the 

near wake is controlled by the positive vortex structures. Moreover, the pronounced 

variations in the free surface level enhance the high and low pressure regions near 

the curved free surface interface. Furthermore, the highest pressure region associated 

with the stagnation seems to switch over between the rear of the cylinder and the 
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region directly above the cylinder when the free surface rises sufficiently this region. 

Figure 5.28 displays the time histories of the lift coefficient, CL, the PSD of CL and 

the Lissajous trajectories, CL(x), for the case Fr = 0.4, h = 0.5. It is evident that at 

each frequency ratio, the flow exhibits two regimes. The switching times are t ~ 52 

for fIfo = 1.0, 2.0, 4.0 and t ;:::::: 62 for f Ifo = 3.0. The corresponding spectra and 

the Lissajous trajectories are plotted for each of the flow regimes in Figure 5.28. In 

quasi-periodic state, all of CL traces exhibit segments of almost repeatable signature 

and thereby, indicate the quasi-locked-on wake states. The CL trace is quasi-locked-

on to the cylinder motion over T when fIfo = 1.0; over 2T when fIfo = 2.0; 

over 3T when fIfo = 3.0 and over 4T when f Ifo = 4.0. Corresponding spectra 

of CL suggest one well defined peak for fIfo = 1.0 at f 0 ; three well defined peaks 

for fIfo = 2.0 at fo , f and f + fo ; four well defined peaks for fIfo = 3.0 at fo, 

2fo, f and f + f0 ; two well defined peaks for fIfo = 4.0 at fo and f. Taking an 

overview of the PSD of CL, it is evident that the presence of the free surface seems 

to enhance the effect of the forcing frequency, f, relative to the case of h = oo when 

fIfo = 2.0, 3.0. For each of the frequency ratios, 1.0 ~ fIfo ~ 4.0, the dominant 

peak occurs at fo when h = 0.5, oo. Further representations of the lift coefficient, 

CL, are given by the Lissajous trajectories, CL(x), which exhibit congruent shapes for 

small frequency ratios, fIfo ~ 2.0; the less congruent hysteresis loops are observed 

for higher frequencies, fIfo ~ 3.0. Thus, the effect of varying th frequency ratio, 

fIfo, is to destabilize the flow by enhancing the phase shifts between the fluctuations 

of the lift coefficient, CL, and the cylinder motion. The pronounc d phase variations 

are seen in non-periodic state for all f I f 0 , indicating the complete loss of the phase

locking between C L and the cylinder motion. In all of the flow regimes for each 
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fIfo= 1.0, 2.0, 3.0 , 4.0, the hysteresis loops of CL(x) are largely shifted in the lower 

half plane comparing to those at h = oo. 

The corresponding time histories of the drag coefficient , CD, the PSD of CD and the 

Lissajous trajectories, CD(x), for the case Fr = 0.4, h = 0.5 are shown in Figure 

5.29. At fIfo = 1.0, less persistent patterns of CD are observed. As f Ifo increases, 

the traces of the drag coefficient, CD, exhibit more persistent shapes. Thus in quasi-

periodic state, CD is quasi-locked on to the cylinder motion overT when fIfo= 1.0, 

over 2T when fIfo = 2.0, over 3T when f I fo = 3.0 and over 4T when fIfo = 4.0. 

The PSD of CD suggest one peak, f, for fIfo = 1.0, 3.0, 4.0 and two well defined 

peaks, fo and f , for fIfo = 2.0. In all cases, the dominant peak occurs at the 

forcing frequency of cylinder oscillation, f , and the effect of fo is seen to weaken 

rapidly relative to f as fIfo increases. In the non-periodic state, CD is dominated 

by the forcing frequency of cylinder oscillation, f. The traces of CD(x) show less 

congruent shapes when fIfo = 1.0, 3.0. Thus, the flow is more destabilized at these 

frequency ratios, f I f 0 , relative to the cases f I fo = 2.0, 4.0. Larg phase variations 

and thereby, loss of the phase-locking are indicated by the last column in Figure 

5.29. The directions of the hysteresis loops of CD(x) suggest that the mechanical 

energy transfer is from the cylinder to the fluid irrespective of the presence of the 

free surface and the frequency ratio values, fIfo = 1.0, 2.0, 3.0, 4.0. The plots of 

CD ( x) also show that the hysteresis loops of large extent are essentially confined in 

the upper half plane. 

For the case off I fo = 1.0, the equivorticity patterns , the streamline patterns and the 

pressure distribution in the near wake over one period of cylinder oscillation, T , for 
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the case Fr = 0.4, h = 0.5 are displayed in Figure 5.30 (quasi-periodic state). The 

vortex shedding mode is designated as modified quasi-locked-on asymmetric C(2S) 

mode, per T , within 5T. It is clearly seen from Figure 5.30 that the large amount 

of positive vorticity (region of the low pressure) develops in the region above the 

cylinder close to the curved free surface. This vorticity grows over OT ~ t < T I 4 and 

then coalesces with the positive vortex being developed in the lower vortex shedding 

layer (t < Tl4). As a resul t, the vortex street becomes significantly altered such 

that the coalesced positive vortices from both the free surface and th lower side of 

cylinder envelop the negative vortex being developed in the upper vortex shedding 

layer. On the other hand , the growing negative vortex eventually cuts through the 

coalesced vortices ( t ~ T I 4) and thereby, a large positive vortex sheds into the near 

wake, following the shift of the low pressure region. It is interesting to note that the 

propagating positive vortex remains coalesced with the positive vorticity from the free 

surface. It is also noted that the negative vortex developing from the upper side of the 

cylinder becomes severely stretched over T l4 ~ t ~ 3TI4 such that it tends to decay 

shortly after shedding (after traveling roughly 3 rv 4d downstream). Moreover, the 

previously shed negative vortices seem to be lifted upward and thereby, rapidly defuse 

across the interface. The pressure plots indicate that the near wake is dominated by 

the positive vortices as the very low pressure is associated with the centers of the 

positive vortex structures. It is also noted that at t = T 12, sufficiently high pressure 

is induced in the region where the fully developed negative vortex interacts with the 

secondary vorticity from the free surface. 

Figure 5.31 shows the equivorticity patterns, the streamline patterns and the pressure 

distribution in the near wake over two periods of cylinder oscillation, 2T, for the 
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Figure 5.30: The equivorticity patterns (left) , the streamline patterns (middle) 
and the pressure distribution in the near wake (right) over one period of cylinder 
oscillation, T, at R = 200: A= 0.13, f Ifo= 1.0, Fr = 0.4, h = 0.5 (T ~ 5.051, 
35.3 ~ t ~ 40.4). The quasi-locked-on C(2S) mode, perT, is observed within ST. 

case Fr = 0.4, h = 0.5 when fIfo = 2.0 (quasi-periodic state). At this frequency 

ratio, the vortex formation becomes quasi-locked-on to the cylinder motion and the 

observed vortex shedding mode is designated as modified quasi-locked-on asymmetric 

C(2S) mode, per 2T, within 14T. The equivorticity plots indicate that a positive 

vortex from the lower side of the cylinder coalesces with the positive vortex from the 

free surface over T 12 < t < 3T I 4 and thereby, envelops the negative vortex which 

develops from the upper side of the cylinder. The corresponding pressure plots show 
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Figure 5.31: The equivorticity patterns (left), the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over two periods of cylinder os
cillation, 2T, at R = 200: A = 0.13, f / fo = 2.0, Fr = 0.4, h = 0.5 (T ~ 2.525, 
30.3:::; t:::; 35.3). The quasi-locked-on C(2S) mode, per 2T, is observed within 14T. 
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Eigenvalues ( x 103 ) 

Serial number (a) (b) (c) 

1 1.2532 1.1541 0.7939 

2 0.5201 0.5593 0.4724 

3 0.3526 0.2494 0.2697 

4 0.2600 0.1869 0.1732 

5 0.0539 0.0586 0.1249 

6 0.0430 0.0429 0.0883 

7 0.0245 0.0299 0.0690 

8 0.0203 0.0273 0.0539 

9 0.0188 0.0257 0.0496 

10 0.0051 0.0214 0.0444 

Table 5.6: Leading eigenvalues for (a) : h = oo, fIfo = 2.0, t = 100 to 150; (b): 
F r = 0.4, h = 0.5 , fifo= 2.0 t = 20 to 50 (quasi-periodic state); (c) : F r = 0.4 
h = 0.5, fIfo= 2.0, t = 60 to 100 (non-periodic state) at R = 200: A= 0.13. 

that the development of the positive vortex from the free surface in the region above 

the cylinder induces the low pressure in this region and the absolute value of the 

pressure associated with this vortex rapidly decreases as the vortex coalesces with 

the positive vortex from the lower side of the cylinder. Furthermore, it is clearly seen 

from Figure 5.31 that the pronouncedly stretched negative vortex sheds at t ~ 2T, 

following the shift of the lower pressure region, and is immediately broken up into two 



5.2. Vortex shedding modes and fluid forces in the presence of the free surface at 
h = 0.25, 0.5 , 0.75 213 

(a) (b) (c) 

Figure 5.32: POD eigen-modes for (a): h = oo, fIfo = 2.0, t = 100 to 150; (b): 
Fr = 0.4, h = 0.5, fifo = 2.0, t = 20 to 50 (quasi-periodic state); (c): Fr = 0.4, 
h = 0.5 , f I fo = 2.0, t = 60 to 100 (non-periodic state) at R = 200: A= 0.13. 

vortex structures, "small" and "large" negative vortices, in the next vortex shedding 

cycle by the growing layer of positive vorticity from the lower side of the cylinder. 

The developing positive vortex seems to lift the "small" negative vortex very close to 

the free interface, where this negative vorticity rapidly diffuses across the interface, 

and then the positive vortex sheds at t ~ 3T 12. It is also interesting to note that the 

"large" negative vortex follows the previously shed positive vortex in the downward 

direction far away from the free surface unlike the case off I fo = 1.0. Moreover, the 

negative vortex tends to catch the positive vortex such that the distance between the 

two is very short. In addition, the negative vortex remains stretched and is very small 
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in size relative to the size of the positive vortex while the positive vortex tends to be 

oval shaped. Taking an overview of the pressure plots shown in Figure 5.31 it can b 

seen that the highest pressure region associated with the stagnation seems to switch 

over between the rear of the cylinder and the region directly above the cylinder when 

the free surface is sufficiently curved (raised) in this region. It is also noted that th 

shedding of the negative vortex at t = 2T seems to induce a local free surface rising 

and thus leads to the appearance of the sufficiently high pressure region near the 

curved free surface interface. However, as the shed negative vortex propagates into 

the downstream of the cylinder, the absolute value of the positive pressure near the 

free surface seems to decrease. Finally, it is clearly seen that again the near wake 

is dominated by the presence of positive vorticity as the positive vortex structures 

represent the regions of the lowest pressure. 

Some physical aspects of the mechanism behind vortex shedding can also be addressed 

using a dynamical system approach based on the proper orthogonal decomposition 

(POD) technique [see, for example, Dipankar et al. (2007) and Deane and Mavriplis 

(1994)]. In Appendix E, the outline of the POD analysis is given. POD is a statistical 

technique which allows one to represent coherent structures as a low-description of 

the flow. In order to better understand the inhibiting influence of the presence of 

the free surface on the vortex formation and shedding, the POD analysis is employed 

for the case f / fo = 2.0 when (i) Fr = 0.4, h = 0.5 and (ii) h = oo. It is noted 

that these extreme cases represent a situation when the presence of the free surface 

breaks up the flow periodicity such that two flow regim s (the quasi-periodic and 

non-periodic near wake states) are observed. Following the work of Dipankar et al. 

(2007) , the vortex shedding is characterized using POD eigen-modes. The numerical 
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data is handled by POD over a large domain using the method of snapshots by 

Sirovich (1987) (see Appendix E for details). Dipankar et al. (2007) note that in 

order to produce the correct statistical picture, it is necessary to remove the effects 

of early transients. Thus, for the case h = oo, fIfo = 2.0 the data is taken from 

t = 100 to 150. For the case Fr = 0.4, h = 0.5, f Ifo = 2.0, two sets of data are 

considered with one set produced by taking data from t = 20 to 50 (quasi-periodic 

state), the other from t = 60 to 100 (non-periodic state) . Table 5.6 displays the first 

ten leading eigenvalues for the considered cases, which were obtained by taking fifty 

snapshots. The computed eigen-modes for the first four eigenvalues shown in Tab! 

5.6 are displayed in Figure 5.32. Taking an overview of this figure, it is seen that in all 

cases, the first two eigen-modes seem to accumulate most of the energy and thereby, 

are sufficient to characterize the vorticity distribution. These eigen-modes suggest 

that the vortex shedding begins from where the alternate signed vortex structures 

originate. Dipankar et al. (2007) note that when two modes carry most of the 

energy, the pattern of the vortex shedding can be defined by the phase shift between 

the eigen-modes. Thus, the vortex shedding begins due to the linear superposition 

and the pairwise coupling of these two eigen-modes. It is also noted that in the 

absence of the free surface, the lowest modes are almost symmetric about the near 

wake centerline as is clearly se n in Figure 5.32(a). For the higher modes, asymmetry 

about the near wake centerline is observed. On the other hand , Figures 5.32(b) and 

5.32(c) indicate that in the presence of the free surface the lowest modes seem to 

be to prominently asymmetric, i.e., the near wake is seen to be skew symmetric. 

These figures also show that the near wake is narrowed in the vertical direction when 

compared to that shown in Figures 5.32(a). These observations suggest that the 
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Figure 5.33: The equivorticity pattern (left) , the streamline patterns (mid
dle) and the pressure distribution in the near wake (right) over three periods 
of cylinder oscillation, 3T, at R = 200: A = 0.13, f / fo = 3.0, Fr = 0.4, h = 0.5 
(T ::::::: 1.684, 33.6 :( t :( 38.6). The quasi-locked-on C(P+S)+S mode, per 3T, 
is observed within 18T. 
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Figure 5.34: The equivorticity patterns (left), the streamline patterns (mid
dle) and the pressure distribution in the near wake (right) over four periods 
of cylinder oscillation, 4T, at R = 200: A = 0.13, f / fo = 4.0, Fr = 0.4, h = 0.5 
(T ~ 1.263, 17.6 ~ t ~ 22.7). The quasi-locked-on C(P+S)+S mode, per 4T, 
is observed within 28T. 
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Figure 5.35: The vortex coalescence phenomenon in the quasi-locked-on C(P+ S)+S 
mode over two periods of cylinder oscillation, 2T, at R = 200: A = 0.13, f / fo = 4.0, 
h = 0.5, Fr = 0.4 (T ~ 1.263, 20.15 ~ t ~ 22.7). 



CL(t), x(t) 
fifo= 4 .0 

20 .. "' 
II fo = 3.0 

~L-------~----~~----~~----~------_J 
0 "' .. .. .. 

I I fo = 2.o 

·2 

I I fo = !.O 

PSD 
Quasi-periodic state 

Quasi-periodic state 

f o 

Non-periodic state 

fo 

Quasi-periodic state 

Quasi-periodic state 

·2 

Non-periodic state 

PSD CL(x) 
Non-periodic state Non-periodic state 

/ o 

Non-periodic state 

fo 

·2 

02 

Figure 5.36: The time variation of the lift coefficient, CL, (black) and the in-line displacement, x(t), (gray) ; PSD 
of CL; Lissajous patterns of CL at R = 200: A= 0.13, 1.0 ~ f / fo ~ 4.0, Fr = 0.4, h = 0.75. 

"""· ;3 

s. 
Cl> 

'"l::3 
;;; 
en 
Cl> 
;3 
\) 
Cl> 

~ ..... 
;:J-' 
Cl> 

~ 
Cl> 
Cl> 

en 
~ 
.;t. 
p 
\) 
Cl> 

p 
~ ..... ._ 
~ 



Co(t) , x(t) PSD Co(x) P SD Co(x) 
10 10 

Quasi-periodic st~teA 1 Quasi-periodic state Non-periodic state • Non-periodic state 

/ 
f 

/ J 
.. .. 

L 
~ ~ 

02 0< 0.6 .. 1 42 02 0 02 o.• o• 0.1 03 42 02 

Quasi-periodic state Quasi-periodic state Non-periodic state Non-periodic state 

f / 
f , 

.. 
__..!\.._ 

.. 
" ~ ~ 

02 0< .. OA 1 .02 02 0 02 OA o• 0.1 1 .02 0.2 

! / fo = 2.0 Quasi-periodic state Quasi-periodic state Non-periodic state Non-periodic state 

' 

·WtMtMf~~~~~~ J¢? f 
f 

~ 
·2 ·2 

0 . . 
20 ., "' 10 100 0 02 o• 0.6 o• .02 o• 0.1 1 .02 02 

Non-periodic state Non-periodic state 

f 

0 
wvr .rv 

~ 
0 20 " "' .. 100 0 02 o• ,. .. 1 .02 02 

Figure 5.37: The time variation of the drag coefficient, C0 , (black) and the in-line displacement, x(t), (gray); 
PSD of C0 ; Lissajous patterns of Co at R = 200: A = 0.13, 1.0 ~ f / fo ~ 4.0, F r = 0.4, h = 0.75. 

;:r ~ 
II ~ 

0 
t-.:l ~ CJl 

;::t 
0 (l> 

CJl 
~ 

en 
0 

;:r 
(l> 

--J ~ 
CJl ~ .... 

;:3 
'-<::> 

~ 
0 
~ 
(l> 
en 
$;::) 
;:3 
~ 

~ 
~ .... 
~ 

'a> 
~ 
(l> 
en .... 
;:3 

..... 
;:r 
(l> 

'l:;j 

~ en 
(l> 

;:3 
\) 
(l> 

~ ..... 
;:r 
(l> 

'::r 
(l> 
(l> 

en 
~ 

~ 
$;::) 
\) 
(l> 

$;::) 
~ ..... 
~ 
C) 



5. 2. Vortex shedding modes and fluid forces in the presence of the free surface at 
h = 0.25, 0.5, 0.75 221 

presence of the free surface seems to bring control in the near wake vortical structures. 

The typical equivorticity and streamline patterns, and the pressure distribution in the 

near wake over three periods of cylinder oscillation, 3T, for the case Fr = 0.4, h = 0.5 

when fIfo = 3.0 are displayed in Figure 5.33 (quasi-periodic state). For this frequ ncy 

ratio, the vortex shedding mode is designated as quasi-locked-on C(P+S)+S mode, 

per 3T, within 18T. This mode is similar to the classical C(P+S) mode observed for 

the transversely oscillating cylinder in uniform flow with the only difference t hat one 

more vortex is shed from the free surface. Figure 5.33 shows that a pair of co-rotating 

vortices from the upper side of the cylinder and the elongated positive vortex from 

the free surface are shed over OT :::; t < 3T 15. On the other hand, the positive vortex 

shed from the free surface rapidly decays (3T 110 < t < 6T 15) . At the same time, a 

pair of the co-rotating vortices being developed in the positive vortex shedding layer 

coalesces to form a single large vortex which then lifts up the shed negative vortex 

close to the free surface where it coalesces with the negative vorticity from the free 

surface. This negative vortex remains attached to the free surface and tends to diffuse 

across the interface while propagating into the downstream of the cylinder with the 

free surface waves. Finally, the positive vortex from the lower side of the cylinder is 

shed at t ~ 9T 110. This vortex is immediately reoriented and becomes oval shaped 

with the major axis laying parallel to the free surface. An examination of the pres ure 

distribution suggests that the shedding of the positive vortex from the free surface is 

due to the shift of the low pressure into the region above the cylinder ( t ~ 3T I 10). 

After that, the region of the low pressure seems to shift in the clockwise direction, 

resulting in the formation of the positive vorticity from the free surface. Similar 

to the aforementioned case fIfo = 2.0, the highest pressure region associated with 
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the stagnation seems to switch over between the rear of the cylinder and the region 

directly above the cylinder. The shift of the highest pressure associated with th 

stagnation towards the free surface has been observed for the time instants when th 

pronounced free surface rising occurs in this region. It is also seen that the induced 

interface curvature enhances the regions of the sufficiently high pressure near the 

free surface. The lowest pressure is again associated with the centers of the positive 

vortices, indicating that the near wake is significantly influenced by the presence of 

the positive vertical structures. 

The snapshots in Figure 5.34 display the equivorticity patterns, the streamline pat-

terns and the pressure distribution in the near wake over four periods of cylinder 

oscillation, 4T, for t he case Fr = 0.4 , h = 0.5 when f / fo = 4.0 (quasi-periodic state). 

For this frequency ratio, the vortex shedding exhibi ts quasi-locked-on C(P+S)+S 

mode, per 4T, within 28T. Taking an overview of Figure 5.34, it can be seen that 

a pair of negative vortices and the positive vortex from the free surface are shed 

at t ~ 2T /5. The small positive vortex from the free surface rapidly decays over 

2T /5 < t < 6T / 5. Two co-rotating vortices develop in the lower vortex shedding 

layer over 2T /5 < t < 12T /5. The positive vorticity layer lifts up the shed negative 

vortex close to the free surface where it coalesces with the negative vorticity from 

the free surface. This negative vortex remains attached to the free surface and de-

cays after traveling approximately 3 "' 4d downstream of the cylinder. Furthermore, 

two co-rotating vortices being developed in the lower vortex shedding layer and the 

positive vortex from the free surface coale ce to form a single positive vortex which 

then envelops the negative vortex b ing develop d from the upper sid of the cylind r 

(t ~ 14T /5). At t ~ 16T /5, the negative vorticity layer cuts through the "envelope" 



-- -------------------------------~------------~ 

5.2. Vortex shedding modes and fluid forces in the presence of the free surface at 
h = 0.25, 0.5 , 0.75 223 

and thereby, the positive vortex is shed. The pressure distribution shows that the 

positive vortex from the free surface becomes shed at the time when the low pres

sure shifts into the region above the cylinder. Moreover, the further shift of the low 

pressure leads to generation of the secondary vorticity near the free surface interface. 

Sufficiently high pressure is seen near the free surface as the free surface waves prop-

agate downstream of the cylinder whereas the low pressure is seen to be associated 

with the shed positive vortices. 

Figure 5.35 illustrates the vortex coalescence phenomenon in the quasi-locked-on 

C(P+S)+S mode over two periods of cylinder oscillation, 2T, for the case h = 0.5, 

Fr = 0.4 when f / fo = 4.0. In this figure, the positive vortex "1" forms near th 

surface scar over 2T ~ t ~ 12T/5. Moreover, three positive, "2", "3' and "5', and 

one negative, "4", vortices develop from the lower and upper sides of the cylinder, 

respectively (2T ~ t ~ 11T /5). The co-rotating vortices "2" and "3" coalesce at 

t = 12T /5 to form a single positive vortex "2+3". At t = 13T /5, another positive 

vortex, "7", starts to develop from the free surface while the vortex "1" tends to 

coalesce with the vortex "2+3" over 13T /5 ~ t ~ 14T / 5. As a result, th negative 

vortex from the upper side of the cylinder becomes enveloped by the positive vortices 

"1" and "2+3". However, at t = 14Tj5, the negative vortex "6" starts to form in the 

upper shear layer. The vortex "6" pushes the vortex "4" and thereby, the positive 

vortex "2+3" speeds up and separates from the vortex "1" at t = 3T. At the next 

time instant, t = 16T /5, the positive vortex '2+3" sheds into the downstream of the 

cylinder. On the other hand, the vortex "1" being pushed by the negative vortex "4" 

catches the propagating positive vortex "2+3" over 16T / 5 ~ t ~ 18T / 5. This results 

in the coalescence between the co-rotating vortices "1" and "2+ 3" at the next time 
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instant , t = 19T 15, such that the large positive vortex "1+2+3" forms. It is inter

esting to note that at t = 19T 15, the negative vortices "4" and "6" seem to coalesce 

for a short period of time and they become separated by the growing positive vortex 

"5" at t = 4T. It is also noted that the positive vortex "7" remains attached to the 

vortex "1" over 17T 15 ~ t ~ 19T 15 and it becomes detached as the positive vortex 

"1" completely coalesced with the positive vortex "2+3" (t = 4T). 

Finally, the case h = 0.75 is considered. Figure 5.36 shows the time variation of 

the lift coefficient, CL, the PSD of CL and the Lissajous patterns of CL for the case 

Fr = 0.4, h = 0. 75. It is evident that for the smallest frequency ratio, f I fo = 1.0, the 

trace of the lift coefficient, CL, exhibits non-repeatable signatures. This observation 

is also suggested by the corresponding Lissajous patterns. It is clearly seen that the 

trajectories of CL(x) are non-congruent from cycle to cycle of cylinder oscillation. 

This indicates large phase variations between the fluctuating lift coefficient, CL, and 

the cylinder motion. Thus, the near wake frequency is not locked-on to the frequency 

of cylinder oscillation when f I fo = 1.0. On the other hand , for fIfo ~ 2.0 th 

signatures of CL suggest that the flow exhibits two regimes. The switching times are 

t ~ 42 for fIfo = 2.0, 3.0 and t ~ 37 for f I fo = 4.0. Figure 5.36 suggests that 

when fIfo ~ 2.0 (quasi-periodic state) the signatures of CL exhibit almost periodic 

patterns over 2T, 3T and 4T, respectively, for fIfo = 2.0, 3.0, 4.0. In all cases, these 

traces show persistent patterns. Thus, the vortex formation is quasi-locked-on to the 

cylinder motion when fIfo ~ 2.0. It is also seen that when th switching time is 

reached, the traces of CL become non-repeatable and thereby, show the transition of 

the wake into the non-periodic state. The corresponding spectra of th lift coefficient, 

PSD of CL, show one well defined peak, f0 , when f / fo = 1.0; three w 11 defined peaks, 
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fo, f and f + fo , when f I fo= 2.0; four well defined peaks, fo, 2fo, f and f + fo, when 

fIfo= 3.0 and three well defined peaks, fo, f and f+ fo, when f Ifo= 4.0. Comparing 

to the reference case in the absence of the free surface, h = oo, it is seen that the effect 

of the free surface is to enhance the additional frequency, f, when fIfo= 2.0, 3.0. For 

each of the frequency ratios, 1.0 ~ fIfo ~ 4.0, the dominant peak occurs at fo when 

h = 0.75, oo. Thus, the lift coefficient, CL, fluctuates with the dominant frequency 

equal to the natural vortex shedding frequency, f 0 , irrespective of the presence of the 

free surface. The Lissajous traces, CL(x), exhibit almost congruent shapes with a little 

shift from cycle to cycle of cylinder oscillation. These observations suggest that when 

fIfo ~ 2.0 the lift coefficient, CL, is quasi-phase-locked to the cylinder motion. In 

addition, at each frequency ratio, 1.0 ~ f I fo ~ 4.0, the hysteresis loops of CL(x) are 

essentially confined in the lower half plane again emphasizing the inhibiting influence 

of the free surface. Considering the last two columns in Figure 5.36, it is evident that 

in the non-periodic state the lift coefficient, CL, fluctuates with fo irrespective of th 

frequency ratio, f I f0 . In this regime, the traces of CL(x) show high phase variations 

from cycle to cycle of cylinder oscillation and thus indicate the loss of phase-locking 

between the cylinder motion and the fluctuating C£. 

The time history of the drag coefficient, C0 , the PSD of Co and the Lissajous patterns 

of Co for the case Fr = 0.4, h = 0. 75 are displayed in Figure 5.37. It is evident 

that at fIfo = 1.0, the signatures of Co are non-repeatable. On the other hand, 

when fIfo ~ 2.0, the traces of Co exhibit almost periodic patterns over 2T for 

f I fo = 2.0 and over T for f I fo = 3.0, 4.0. The traces of the drag coefficient, C0 , 

show persistent patterns when fIfo ~ 2.0. Thus, the varying of f I fo is seen to 

stabilize the fluctuations of C0 . It is al o seen that as f I fo increases, the magnitudes 
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of the positive and negative peaks of C0 become larger. Spectra of Co suggest the 

existence of one well defined peak, f , when f I fo= 1.0, 3.0, 4.0 and two well defined 

peaks, fo and f , when f I fo = 2.0. In all cases, the dominant peak occurs at f. 

Taking an overview of the PSD of Co in the non-periodic state, it is concluded that 

even in the non-periodic state, the drag coefficient , C0 , oscillates with the dominant 

frequency which equals to f irrespective off I f 0 . The traces of C0 (x) exhibit almost 

congruent shapes when fIfo ~ 2.0 and thereby, indicate the quasi-phase-locking 

between the fluctuation drag coefficient, C0 , and the cylinder motion. The hysteresis 

loops of C0 (x) are essentially confined in the upper half plane when 1.0 ~fIfo~ 4.0. 

Moreover, it is evident that as fIfo increases, these loops tend to shift towards the 

lower half plane. The last column in Figure 5.37 indicates the loss of the phase-locking 

between the cylinder and Co as the wake transition to the non-periodic state occurs. 

The directions of the hysteresis loops again suggest that in all cases the mechanical 

energy transfer is from the cylinder to the fluid . It is noted that the amount of 

transferred energy increases as fIfo increases. 

For the frequency ratio f I fo = 2.0, the equivorticity and streamline patterns, and 

the pressure distribution in the near wake over two periods of cylinder oscillation , 

2T, for the case Fr = 0.4, h = 0.75 are plotted in Figure 5.38 (quasi-periodic state). 

In this regime, the vortex shedding exhibits the quasi-locked-on P + S mode, per 2T, 

within 14T. In this figure, the positive vortex and negative vortex develop from the 

free surface and the upper vortex shedding layer, respectively, over OT ~ t < 3T 12. 

The negative vortex sheds at t ~ 3T 12 while the positive vortex from the free surface 

rapidly weakens due to viscous t ransport across the interface and thereby, annihilates 

by t ~ 3T 12. A pair of co-rotating vortices develops in the lower vortex shedding layer 
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Figure 5.38: The equivorticity patterns (left) , the streamline patterns (middle) and 
the pressure distribution in the near wake (right) over two periods of cylinder os
cillation, 2T, at R = 200: A = 0.13, f / fo = 2.0, Fr = 0.4, h = 0.75 (T ~ 2.525, 
17.6 ~ t ~ 22.8). The quasi-locked-on P+S mode, per 2T, is observed within 14T. 
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Figure 5.39: The equivorticity patterns (left), the streamline patterns (middle) 
and the pressure distribution in t he near wake (right ) over three periods of 
cylinder oscillation, 3T, at R = 200: A = 0.13, f / fa = 3.0, F r = 0.4, h = 0.75 
(T ::::; 1.684, 20.2 ::::;; t ::::;; 25.2) . The quasi-locked-on C(2S)+ S mode, per 3T, 
is observed within 18T. 
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Figure 5.40: The equivorticity patterns (left), the streamline patterns (mid
dle) and the pressure distribution in the near wake (right) over four periods 
of cylinder oscillation, 4T, at R = 200: A = 0.13, f / fo = 4.0, F r = 0.4, h = 0.75 
(T ~ 1.263, 22.7 ~ t ~ 27.7) . The quasi-locked-on C(2S)+S mode, per 4T, 
is observed within 12T. 
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over 3T 12 ~ t ~ 7T I 4 and then is shed into the downstream of the cylinder at t ;:::;::: 2T. 

It is interesting to note that both the negative and positive vortices propagating into 

the near wake of the cylinder are elongated in the transverse direction such that their 

shapes are similar to that observed at h = oo. This indicates that the effect of the 

free surface weakens as h increases, as expected. On the other hand, the pressure 

distribution indicates that even for the large cylinder submergence depth, h = 0.75, 

there are still visible regions of the sufficiently high pressure near the curved free 

surface interface. It is also seen that there is the low pressure region near the surface 

scar which leads to the development of the positive vorticity near the interface. Figure 

5.38 also suggests that the highest pressure in the stagnation seems to switch over 

between the rear of the cylinder and the region directly above the cylinder when the 

free surface rises sufficiently in this region. 

The plots of Figure 5.39 show the equivorticity patterns, the streamline patterns and 

the pressure distribution in the near wake over three periods of cylinder oscillation, 3T, 

for the case Fr = 0.4, h = 0.75 when fIfo = 3.0 (quasi-periodic state). The vortex 

shedding mode is designated as quasi-locked-on C(2S)+S mode, per 3T, within 18T. 

Taking an overview of the equivorticity plots in Figure 5.39, it is evident that a pair 

of positive vortices develops and coalesces over OT ~ t < 9T 110 to produce a single 

large vortex which then sheds at t;:::;::: 6T 15. At the same time, the positive vortex near 

the curved free surface interface is being developed. Moreover, the negative vortex 

from the upper side of the cylinder develops over OT ~ t ~ 9T 15 and then sheds 

at t;:::;::: 21TI 10. It is interesting to note that this negative vortex interacts with the 

positive vortex from the free surface and thereby, displaces this positive vortex. As a 

result, the small positive vortex sheds from the free surface followed by the shedding 
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of the negative vortex from the upper side of the cylinder (t ~ 27TI10). It is seen that 

both negative and positive vortices propagating into the near wake of the cylinder 

are elongated in the transverse direction. The pressure plots suggest that again the 

vortex shedding from the cylinder and from the free surface is due to the shift of the 

low pressure region . It is also seen that the formation of the positive vortex in the scar 

area induces sufficiently low pressure. The absolute value of the pressure in the scar 

region seems to decrease as the free surface is rising. The regions of sufficiently high 

pressure appear near the rising free surface as free surface waves propagate into the 

downstream of the cylinder. It can be seen that these regions are largely dissipated 

near the interface within approximately 2 rv 3d. An interesting aspect to address 

here is that, unlike the other cases, the highest pressure region seems to switch over 

between the stagnation area and front area of the cylinder. 

Finally, the equivorticity patterns, the streamline patterns and the pressure distri-

bution in the near wake over four periods of cylinder oscillation, 4T, for the case 

Fr = 0.4, h = 0. 75 when f I fo = 4.0 are displayed in Figure 5.40 (quasi-periodic 

state). For this frequency ratio, the vortex shedding mode is quasi-locked-on 

C(2S)+ S mode, per 4T, within 12T. This figure indicates that the positive vor

tex developed in the previous vortex shedding cycle sheds into the downstream of the 

cylinder at t ~ 2T 15. On the other hand, two co-rotating vortices develop in the upper 

vortex shedding layer and then coalesce to form a single large vortex ( OT ~ t ~ 8T I 5). 

It is seen that at fIfo = 4.0 the free surface exhibits pronounced deformations and a 

large amount of the opposite signed vorticity appears near the interface. The positive 

vortex from the free surface is shed followed by the development of the negative vor

tex in the upper vortex shedding layer. On the other hand , the small positive vortex 
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from the interface annihilates immediately after its shedding. Furthermore, the neg

ative vortex becomes detached at t ~ 12T 15. Similarly, a pair of co-rotating vortices 

develops in the lower vortex shedding layer and coalesces over 6T 15 ~ t ~ 12T 15 to 

form a single large vortex which is then shed into the near wake of the cylinder in th 

next vortex shedding cycle ( t ~ 2T I 5) . It is also noted that the propagating negative 

vortices tend to travel upward and they become more oval shaped as they approach 

the free surface. An examination of the pressure distribution shown in Figure 5.40 

suggests that similar to the aforementioned case f I fo = 3.0, the highest pressure 

region seems to switch over between the stagnation area and the front area of the 

cylinder. Moreover , it can be seen again that the formation and t he shedding of the 

positive vortex from the free surface is associated with the presence of the low pres-

sure region near the free surface. The regions of sufficiently high pressure near the 

curved interface are seen approximately 1 rv 2d as the free surface waves propagate 

into the downstream of the cylinder . 

h = 0.25 h = 0.5 " = 0.75 h =oo 

f Mode To Mode To Mode To Mode To To 
1.0 non-locked 

C{2S)" (within 5T ); 
T non-locked non-locked non-locked 5T < t < 20T 

2.0 non-locked C{2S)•(within !4T); 
2T (P + S)" (within 14T) 2T 2S 2T non-locked 14T < t < 40T non-locked l4T < t < 40T 

3.0 
C(2S)" (wit hin 20T); 

4T 
(C (P + S)+S]" (wit hin 1ST); 

3T 
(C{2S)+S]" (within 1ST ) 

3T non-locked 
non-locked 20T < t < 60T non-locked 1ST < t < 60T non-locked HiT < t < 60T 

4.0 
C {2S)• (within 20T); 

5T 
(C(P+ S)+ SJ• (wit hin 2ST) ; 

4T 
(C{2S)+S]" (within 12T) ; 

4T non-locked 
non-locked 20T < t < SOT non-locked 2ST < t < BOT non-locked 12T < t < SOT 

Table 5.7: The effect of the free surface inclusion at Fr = 0.4, h = 0. 25 , 0.5, 0.75, 
and the frequency ratio, f I f 0 , on flow regimes, vortex shedding modes and their 
periods, T0 , at R = 200, A = 0.13, 1.0 ~ f I fo ~ 4.0. The superscript "*" denote 
quasi-locked-on modes. 

Figure 5.41 summarizes the effect of the cylinder submergence depth, h (= 0.25, 

0.5, 0.75), and the frequency ratio, f i fo(= 1.0, 2.0, 3.0, 4.0) , on the equivortici ty 
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Figure 5.41: The effect of the cylinder submergence depth, h, and the frequency ratio, 
f / f 0 , on the equivorticity patterns at R = 200: A = 0.13, Fr = 0.4. All snapshots 
are taken at the instant x(t) =A. 

patterns for the case R = 200, A= 0.13 when Fr = 0.4. The reference case h = oo 

is also shown in this figure. The snapshots are taken at the instant .'E(L) = A. It 

is noted that for the periodic/quasi-periodic cases the snapshots are taken over the 

time interval in which the flow reaches to a periodic/quasi-periodic state. For non

periodic cases, the commonly appearing equivorticity plots at x(t) = A (within the 

time interval 0 < t ~ 100) are shown in Figure 5.41. Figure 5.41 shows that at 

h = 0.25, 0.5 , 0.75 the near wake structure is changed significantly when compared to 

the reference case h = oo. It can be seen that the interface curvature is considerably 

pronounced and thus, there is a diffusion of the opposite signed vorticity in both 

the free surface and the fluid flow. This leads to the appearance of the localized 

wave breaking for smaller cylinder submergence depths, h = 0.25, 0.5. Moreover, 

the secondary vorticity from the interface seems to be convected by the free surface 
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waves into the near wake for all the frequency ratios, f I fo = 1.0, 2.0, 3.0, 4.0, when 

h = 0.25, 0.5, 0.75. It is also seen that at h = 0.5, 0.75, the large amount of positive 

vorticity develops near the curved free surface. This vorticity tends to coalesce with 

the near wake vorticity. As a result, the vortex street becomes significantly altered. 

An interesting aspect to address here is that at h = 0.5, the coalesced positive vortices 

from both the free surface and the lower side of cylinder envelop the negative vortex 

being developed in the upper vortex shedding layer. It is also seen that the previously 

shed negative vortices seem to be lifted upward and thereby, rapidly defuse across 

the interface. When the cylinder submergence depth , h, is reduced up to 0.25, it 

is evident, again, that the negative vorticity annihilates due to a strong interaction 

with the free surface. It is also noted that the negative vortex developing from the 

upper side of the cylinder becomes severely stretched such that it tends to decay 

shortly after shedding. It is interesting to note that at h = 0.25, the significant 

amount of the positive vorticity is observed for each frequency ratio, f I f 0 , unlike the 

other cases shown in Figure 5.41. This indicates that at h = 0.25, the near wake 

is completely dominated by the presence of the positive vortical structures. Figure 

5.41 indicates that at each frequency ratio, f I fo = 1.0, 2.0 , 3.0, 4.0, the vortex 

formation length increases (maximum by~ 136.4%) ash decreases from 0.75 to 0.25. 

An examination of the equivorticity plots in Figure 5.41 sugg sts that increasing the 

frequency ratio, f I f0 , seems to increase the free surface curvature. As a result , with 

increase in f I f 0 , the positive vortices move faster than the negative ones. This is du 

to the fact that the convective velocity of the negative vortices decreases as surface 

curvature increases. Furthermore, the negative vortices seem to decay more rapidly 

into the downstream due to the viscous transport of the negative vorticity across 
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the interface as fIfo increases. Taking an overview of Figur 5.41 , it i also noted 

that incr asing fIfo from 2.0 to 4.0 seems to increase the vort x formation length 

(maximum by ~ 140%) when h = 0.25, 0.75 . It can also be seen from this figure 

that at the smallest cylinder submergence depth, h = 0.25, the upper vortex layer 

becomes largely dissipated as fIfo increases from 1.0 to 4.0. Moreover, at h = 0.25, 

the amount of positive vorticity seems to increase and thereby, the near wake becomes 

more dominated by the positive vortical structures as f I fo varies. 

Tables 5.7-5.12 summarize the effect of the free surface presence for the case Fr = 0.4, 

h = 0.25, 0.5, 0.75 when f I fo = 1.0, 2.0, 3.0, 4.0 on the flow regimes, the vortex 

shedding modes and their periods, T0 , the fluctuating fluid forces and the mechanical 

energy transfer, E. This investigation has shown that when Fr = 0.4, it is possible 

to generate distinctly different patterns of the vortex formation than that of classi-

cal vortex shedding modes observed for a cylinder subject to tran verse oscillations 

in uniform flow. It is confirmed that the presence of the free surface provides the 

possibility for quasi-locked-on vortex formation not only from the cylinder but also 

from the free surface. These new vortex shedding modes are classifi d based on the 

terminology of Williamson and Roshko (1988) and are shown in Table 5.7. In the 

quasi-periodic flow state, the commonly observed vortex shedding modes are C(2S) 

when h = 0.25; C(2S) , C(P+S)+S when h = 0.5 and C(2S)+S when h = 0.75. It 

is noted that the C(P+S)+S and C(2S)+S modes are similar, respectively, to the 

classical C(P+S) and C(2S) modes with the only exception that one more vortex 

(from the free surface) is shed downstream of the cylinder ov r the period of vortex 

shedding, T0 . Moreover, unlike the classical vortex shedding modes, the coalescence 

between the positive vortices from the lower side of the cylinder and the positive vor-
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ticity being developed near the curved free surface is observed in C(P+S)+S and 

C(2S)+S modes. 

Tables 5.8-5.11 show the values of the mean lift and drag coefficients, CL and CD, and 

the RMS lift and drag coefficients, CL,rms and CD,rms, for the case Fr = 0.4, h = 0.25, 

0.5 , 0. 75. The reference case h = oo is also displayed in these tables. In all the tables 

that follow, "~" indicates the change in the fluid characteristic as the transition of 

the fluid from the quasi-periodic state into the non-periodic stat occurs. Tables 

f I fa I h 0.25 0.5 0.75 00 

1.0 -0.7862 -0.2031 ~ -0.3323 -0. 1148 -0.0028 

2.0 -0.8080 -0.4088 ~ -0.4770 -0.2283 ~ -0.2972 -0.0012 

3.0 -0.8883 ~ -0.9725 -0.4542 ~ -0.4175 -0.1803 ~ -0.2487 -0.0011 

4.0 -0.8525 ~ -0.8613 -0.4005 ~ -0.3813 -0.1932 ~ -0.2459 -0.0028 

Table 5.8: The effect of the free surface inclusion at Fr = 0.4, h = 0.25, 0.5, 0.75 
and the frequency ratio, f I f0 , on the mean lift coefficient, CL, at R = 200: A= 0.13, 
1.0 ~fifo~ 4.0. 

5.8 and 5.9 indicate that the presence of the free surface has important consequences 
~ ~ 

for the values of the mean lift and drag coefficients, CL and CD · Comparison of the 

results shown in these tables indicates that for h = 0.25, 0.5, 0.75 and all values 

off I f 0 , the values of the mean lift coefficient , CL, are decreased significantly when 

compared to that at h = oo. The CL varies in the interval between - 0.9725 and 

- 0.1148 when the free surface is present whereas the values of CL are nearly zero at 

h = oo, as expected. It is interesting to note that CL is negative irrespective of the 
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f I fo I h 0.25 0.5 0.75 00 

1.0 1.4506 1. 7180 ---+ 1.5712 1.5645 1.3442 

2.0 1.4800 1.6714 ---+ 1.6583 1.8506 -+ 1.8390 1.6464 

3.0 1.4275 ---+ 1.5898 1.5531 ---+ 1.4783 1.6299 -+ 1.5290 1.3916 

4.0 1.4466 ---+ 1.5382 1.6092 -+ 1.5722 1.5721 -+ 1. 7117 1.4064 

Table 5.9: The effect of the free surface inclusion at Fr = 0.4, h = 0.25 , 0.5, 0.75 and 
the frequency ratio, f I f 0 , on the mean drag coefficient, C0 , at R = 200: A = 0. 13, 
1.0 ~ fIfo ~ 4.0. 

values of h and f I f 0 . As the cylinder submergence depth, h , decreases from 0.75 to 

0.25, the mean lift coefficient, CL, decreases (by a maximum factor of 6.85) for all 

frequency ratios, f I fo = 1.0, 2.0, 3.0, 4.0. Table 5.8 also suggests that the values of 

CL decrease slightly as the transition of the flow from the quasi-periodic tate to the 

non-periodic state occurs, except for the cases fIfo = 3.0, 4.0, h = 0.5. Furthermore, 

as f I fo increases from 0.1 to 0.4, CL seems to decrease (by a maximum factor of 2.14), 

except for the cases fIfo = 4.0, h = 0.25; fIfo = 4.0 and f I fo = 3.0 (non-periodic 

state), h = 0.5; fIfo = 3.0, h = 0.75. On the other hand, Table 5.9 suggests that 

the presence of the free surface has a slight effect on the values of the mean drag 

coefficient , C0 , for all the values of the cylinder submergence depth, h = 0.25, 0.5, 

0. 75 and the frequency ratio, f I fo = 1.0, 2.0, 3.0, 4.0. More precisely, the values of 

C0 increase by a maximum factor of 1.28 when compared to those at h = oo, except 

for the case fIfo = 2.0, h = 0.25. On the other hand, as h d creases from 0.75 
~ 

to 0.25, the values of Co decrease, in general. At the smallest cylinder submergenc 

depth, h = 0.25, the values of Co seem to increase slightly as the transition of the flow 
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from the quasi-periodic state to the non-periodic state occurs. In contrast, for larger 

cylinder submergence depths, h = 0.5, 0. 75, the values of C 0 are decreased slightly 

when the flow is in non-periodic state, except for the case f I fo = 4.0, h = 0.75. 

At the larger cylinder submergence depth, h = 0. 75, increasing the frequency ratio, 

f I j 0 , seems to increase Co as fIfo increases from 1.0 to 2.0 and to decrease Co as 

fIfo increases from 2.0 to 4.0, except fIfo = 4.0 (non-periodic state). On the other 

hand, at h = 0.5, Co decreases as fIfo increases from 1.0 to 3.0, except f I fo = 2.0 

(non-periodic state), and increases as fIfo increases from 3.0 to 4.0. Finally at the 

smallest submergence depth, h = 0.25, Co (i) increases as fIfo increases from 1.0 

to 2. 0, ( ii) decreases as f I fo increases from 2. 0 to 3. 0 (except for the non-periodic 

state) and (iii) increases as f Ifo increases from 3.0 to 4.0 (except for the non-periodic 

state) . 

fIfo I h 0.25 0.5 0.75 

1.0 0.8631 0.8012 -t 0.6878 0.6688 0.5380 

2.0 1.0579 0.9792 -t 0.9305 1.0783 -t 1.0 55 0.9284 

3.0 1.0513 -t 1.2245 0.7555 -t 0.6019 0.5593 -t 0.6756 0.4668 

4.0 0.9425 -t 1.0694 0.7027 -t 0.6170 0.6079 -t 0.6882 0.5015 

Table 5.10: The effect of the free surface inclusion at Fr = 0.4, h = 0.25, 0.5, 0. 75 and 
the frequency ratio, f I j 0 , on the RMS lift coefficient, CL,rms , at R = 200: A = 0.13, 
1.0 ~ fIfo ~ 4.0. 

Table 5.10 indicates that the presence of the free surface seems to increase the values 

of the RMS lift coefficient, CL,rms, by a maximum factor of 2.6. Decreasing the 
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fIfo I h 0.25 0.5 0.75 00 

1.0 1.5740 1. 7379 -t 1.6651 1.6106 1.3776 

2.0 1.6612 1.8481 -t 1.8723 2.0251 -t 2.0413 1.9074 

3.0 2.0951 -t 2.2552 2.3674 -t 2.3544 2.5240 -t 2.4739 2.6421 

4.0 3.2102 -t 3.2827 3.6797 -t 3.6867 3.8965 -t 3.9289 4.2629 

Table 5.11: The effect of the free surface inclusion at Fr = 0.4, h = 0.25, 0.5, 0. 75 and 
the frequency ratio, f I f0 , on the RMS drag coefficient, CD,rms , at R = 200: A = 0.13, 
1.0 ~ fIfo ~ 4.0. 

cylinder submergence depth, h, from 0.75 to 0.25 seems to increase CL,rms for the 

cases fIfo = 1.0, 3.0, 4.0, except fIfo = 3.0, 4.0 (non-periodic state) and h decreases 

from 0.75 to 0.5. On the other hand , for f Ifo = 2.0, the values of CL,rms decrease 

when h is reduced from 0. 75 to 0.5 and increase when h is decreased from 0.5 to 

0.25. It is noted that at h = 0.25, 0.75, the values of CL,rms seem to increase slightly 

as the transition of the flow from the quasi-periodic state to the non-periodic state 

occurs. However , at h = 0.5, the values of CL,rms decrease when the flow is in the 

non-periodic state. The increase in the frequency ratio, f I f 0 , seems to increase CL,rms 

when fIfo increases from 1.0 to 2.0 and to decrease CL,rms when fIfo increases from 

2.0 to 4.0, except for the cases fIfo= 3.0 (non-periodic state) , h = 0.25; f I fo = 4.0 

(non-periodic state), h = 0.5; fIfo = 4.0 , h = 0.75, oo. Furthermore, taking an 

overview of Table 5.11, it is evident that at h = 0.25, 0.5 , 0.75 and f I fo = 1.0 the 

values of the RMS drag coefficient, CD,rms, are increased when compared to those 

at h = oo. However, for fIfo ~ 2.0, CD,rms seems to decrease when compared to 

that at h = oo, except fIfo = 2.0, h = 0.75. Decreasing the cylinder submergence 
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fIfo h = 0.25 h = 0.5 h = 0.75 h = 00 

1.0 -0.6066 -0.1130 - -0.4302 -0.7746 -0.2759 

2.0 -0.5033 -0.3264 - -0.3732 -0.3602 - -0.3418 -0.3718 

3.0 -0.7763 - -0.7458 -0.5876 - -0.6314 -0.5607 - -0.5291 -0.6167 

4.0 -0.9557- -0.8964 -0.8168 - -0.8578 -0.8590 - -0.8196 -0.1008 

Table 5.12: The effect of the free surface inclusion at Fr = 0.4, h = 0.25, 0.5, 0. 75 
and the frequency ratio, f I f0 , on the total mechanical energy transfer, E, at R = 200: 
A = 0.13, 1.0 ::; fIfo ::; 4.0. 

depth, h, from 0.75 to 0.25 leads to the decrease in Co,rms for f I fo ~ 2.0. On the 

other hand, for fIfo = 1.0, the values of Co,rms are increased as h decreases from 

0. 75 to 0.5 and decreased as h reduces from 0.5 to 0.25. Table 5.11 also suggests that 

the values of Co,rms decrease slightly as the transition of the flow from the quasi

periodic state to the non-periodic state occurs, except for the cases fIfo = 3.0, 4.0, 

h = 0.25; f I fo = 2.0, 4.0, h = 0.5, 0.75. Finally, it is evident that increasing the 

frequency ratio, f I f0 , seems to increase the RMS drag coefficient , Co,rms for each 

cylinder submergence depth , h, shown in Table 5.11. 

Table 5.12 shows the effect of the cylinder submergence depth, h (= 0.25, 0.5, 0.75), 

and the frequency ratio, fIfo (= 1.0, 2.0, 3.0, 4.0), on the total mechanical energy 

transfer, E, for the case R = 200, A = 0.13 when Fr = 0.4. The reference case h = oo 

is also shown in Table 5.12. Taking an overview of Table 5.12, it can be seen that 

the total energy transfer, E, is negative irrespective of the values of h and f I fo and 

thereby, the work is always done on the fluid by the cylinder. It is interesting to note 
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that for the case fIfo = 1.0, h = 0.5 the absolute value of the total energy transfer, 

E, is increased by approximately a factor of 4.0 as the flow transition to the non

periodic state occurs. Thus, when fIfo = 1.0, h = 0.5 the fluid resistance against the 

forced motion of the cylinder increases by a factor of 4.0 when the transition of the 

flow to the non-periodic state occurs. Furthermore, for each of the frequency ratio, 

f I f 0 , shown in Table 5.12, at the smallest cylinder submergence depth, h = 0.25, the 

energy transfer increases (the absolute values of E are increased) when compared to 

that at h = oo, 0.75, 0.5, except fIfo = 1.0, h = 0.75. On the other hand, as h is 

reduced from 0.75 to 0.5 , the energy transfer, E, decreases, in general , indicating the 

loss in the fluid resistance against the forced motion of the cylinder , except when the 

flow is in the non-periodic state (!I fo ~ 2.0) and when fIfo = 3.0 (quasi-periodic 

state). Increasing the frequency ratio f I f 0 , seems to increase the absolute values of 

the energy transfer, E, except for the cases fifo= 2.0, h = 0.25 , 0.75; f i fo = 2.0 

(non-periodic state), h = 0.5. Thus, the effect of the varying frequency ratio, f I f 0 , 

seems to increase, in general , the fluid resistance against the forced motion of the 

cylinder. It is interesting to note that at h = 0.25, 0.75 , there is a slight energy 

loss as the flow transition to the non-periodic state occurs. On the other hand, at 

h = 0.5, the energy slightly increases in the non-periodic state when compared to 

that in quasi-periodic state for the case when f I fo ~ 2.0. 



6. Summary, conclusions and 

recommendations for future work 

In this thesis , an accurate computational method is presented for th solution of the 

problem of uniform viscous incompressible flow past an oscillating horizontal rigid 

circular cylinder of infinite length located beneath a free surface. The method of 

solution is based on a finite volume discretization of the special integral form of the 

two-dimensional unsteady cont inuity and Navier-Stokes equations (integral form of 

the FAVOR equations) in their pressure-velocity formulation on a fixed Cartesian 

grid. A special integral form of the governing equations is derived by extending 

the Reynolds transport theorem and then applying it to control volumes containing a 

fluid-body interface. This is done by utilizing, mainly, generalized differentiation. The 

governing equations are discretized using a finite volume approximation on a staggered 

grid. The no-slip condit ions are implemented on the surface of the cylinder. Well

posed boundary conditions are enforc d at the inflow and outflow boundaries since 

they ensure correct physical development of the flow near the computational domain 

boundaries. The free slip boundaries are assumed at the top and the bottom of the 

computational domain. The free surface boundary condit ions are applied implicitly 

by using the two-phase flow technique which t reats the fluids in different phases as 

one fluid with variable material properties. The free surface is discretized with the 

VOF method in which the volume fraction is used to distinguish between two different 

fluid phases in the computational domain. The positions of both the free surface and 

fluid-body interfaces are determined at each time step by using the PLIC algorithm. 
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The advection of the reconstructed free surface with local velocity field is performed 

by the geometrical area preserving VOF advection algorithm. The combination of the 

FAVOR and cut cell methods is used to model the motion of the fluid-body interface. 

Discrete pressure and velocity fields corresponding to the successive time instants 

are calculated by iterative solution of a preconditioned coupled sparse linear system 

using the generalized minimal residual method as implemented in Trilinos numerical 

solver library. The computational model is implemented into the computer program, 

written in the C++ programming language. 

The numerical scheme is verified by applying to the special cases of uniform flow past 

(i) a stationary cylinder; (ii) a cylinder undergoing forced recti-linear oscillation 

(oscillations at an angle rJ = 60° with respect to the free tream, transverse, in-line 

oscillations); (iii) a cylinder undergoing forced combined transverse and rotational, 

and combined in-line and rotational oscillations; (iv) a steadily rotating cylinder 

in the absence of the free surface. The validation of the present numerical model 

is also presented for uniform flow past (i) a stationary cylinder and (ii) a cylinder 

undergoing forced translational oscillations in the in-line direction in the presence of 

the free surface. The comparisons have shown to be in good agreement with previous 

analytical, experimental and numerical findings for stationary and oscillating circular 

cylinders in both the absence and presence of the free surface. 

The method is applied to study the problem of unsteady, laminar, two-dimensional 

flow of a viscous incompressible fluid past a cylinder subj ct to in-line oscillations in 

uniform flow in the presence of the free surface. The fluid flow i calculated at th 

Reynolds number of R = 200 and the forcing ampli tude A = 0. 13 for the range of 
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frequency ratios f / fo = 1.0, 2.0, 3.0, 4.0. The flow characterist ics for Froude numbers 

Fr ~ 0.0 and Fr = 0.2, 0.4 and for cylinder submergence depths h = 0.25, 0.5 , 0.75 

are examined. The numerical simulations are also conducted for the case when the free 

surface is absent ( h = oo) under the same oscillation conditions to better understand 

what differences result from the inclusion of the free surface. The main objectives of 

this study are (i) to address the alterations of the near wake region, in particular, 

the flow regimes and the locked-on vortex formation modes, due to the presence of 

the free surface and (ii) to determine the consequence of the cylinder submergence 

depth on the fluid forces acting on the cylinder surface. The results are analyzed by 

means of equivorticity patterns, streamlines and pressure contours in the near wake 

region as well as the fluid forces. The PSD analysis of the lift coefficient, t he near 

wake vorticity contours and the Lissajous patterns of the lift coefficient are used to 

define the lock-on modes. The vortex shedding modes are classified following the 

terminology of Williamson and Roshko (1988) . The Lissajous representations of the 

lift and drag coefficients are also used to demonstrate the mechanism of mechanical 

energy transfer between the fluid and t he cylinder , degree of phase-locking or a Jo s 

of lock-on and associated phase shift. The effect of the free surface on the mechanical 

energy transfer is also explained by using the energy transfer equation ( 5.1). For 

selected cases, POD analysis of the vorticity field is used to interpret unsteady near 

wake structures in terms of POD eigen-modes. 

In the view of the analysis and the results provided in Chapter 5, the effect of the 

Froude number , Fr, and the cylinder submergence depth, h, on the flow regimes, th 

vortex shedding modes and their periods, T0 , the fluctuating fluid forces as well as 

the total mechanical energy transfer will now be presented . 
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6.1 Effect of the Froude number, Fr, and the cylin-

der submergence depth, h, on flow regimes, 

vortex shedding modes and fluid forces 

It has been observed in Chapter 5 that the presence of the free surface at h = 0.25, 

0.5, 0.75 alters the flow behaviour in the near wake. Moreover , depending on the 

Froude number , Fr , and the cylinder submergence depth, h, the free surface leads to 

the breaking up of the near wake vorticity and thereby, the different flow regimes and 

modes of vortex shedding can be attained. 

Fr ~ 0.0 Fr = 0.2 Fr = 0.4 

h Mode To Mode To Mode To 

0.25 non-locked - non-locked - non-locked -

0.5 2S T 2S* T 
C(2S) * (within 5T); 

T non-locked (5T < t < 20T) 

0.75 2S T 2S* T non-locked -

00 non-locked - non-locked - non-locked -

Table 6.1: The effect of t he Froude number, Fr , and the cylinder submergence depth, 
h, on flow regimes, vortex shedding modes and their periods, T0 , at R = 200: A= 0.13, 
f I fo = 1.0. The superscript "*" denotes quasi-locked-on modes. 

Tables 6.1-6.4 show the effect of the Froude number, Fr (~ 0.0, 0.2, 0.4) and the cylin

der submergence depth, h (= 0.25, 0.5 , 0.75) , on the flow regimes, the vortex shedding 

modes and their periods, T0 , for the case R = 200, A = 0.13 when fIfo = 1.0, 2.0, 
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3.0, 4.0 , respectively. These tables also display the results obtained for the reference 

case h = oo. Table 6.1 indicates that when f I fo = 1.0 for smaller Froude number , 

Fr ~ 0.0 and Fr = 0.2, the effect of the presence of the free surface at h = 0.5, 

0.75 is to stabilize the vortex shedding to produce asymmetric locked-on and quasi

locked-on 2S mode, perT, respectively. For the highest Froude number, Fr = 0.4 

Fr ~ 0.0 Fr = 0.2 Fr = 0.4 

h Mode To Mode To Mode To 

0.25 non-locked - non-locked - non-locked -

0.5 C(2S) 2T 2S* 2T 
C(2S)* (within 14T) ; 

2T non-locked (14T < t < 40T) 

0.75 P+S 2T (P+S)* 2T 
(P+S)* (within 14T); 

2T non-locked (14T < t < 40T) 

00 2S 2T 2S 2T 2S 2T 

Table 6.2: The effect of the Froude number, Fr, and the cylinder subm rg need pth , 
h, on flow regimes, vortex shedding modes and their periods, T0 , at R = 200: A = 0.13, 
fIfo = 2.0. The superscript "*" denotes quasi-locked-on modes. 

(fIfo = 1.0) , two different flow regimes are observed when h = 0.5: the flow is 

quasi-periodic (C(2S) mode, perT) , within 5T and then, the flow transition to the 

non-periodic state occurs (5T < t < 20T) . 

For fIfo = 2.0, as h decreases from oo to 0.75, the vortex shedding mode changes 

from 2S mode, per 2T, to P+S mode, per 2T, when Fr ~ 0.0 and Fr = 0.2 as shown 

in Table 6.2. On the other hand, at these Froude numbers, Fr ~ 0.0 and Fr = 0.2, 

2S mode, per 2T, again persits as h is decreased from 0.75 to 0.5. Table 6.2 also 

indicates that increasing the Froude number to 0.4 results in two flow regimes for the 
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Fr ~ 0.0 Fr = 0.2 Fr = 0.4 

h Mode To Mode To Mode To 

0.25 non-locked non-locked 
C(2S) • (within 20T) ; 

4T - - non-locked (20T < t < 60T) 

0.5 
C(2S)' (within 12T); 

3T non-locked 
[C(P+ S)+S]• (wit hin IBT); 

3T 
non-locked (12T < t < 60T) -

non-locked (18T < t < 60T) 

0.75 
C(P+S)* (within 24T); 

3T non-locked 
[C(2S)+S]• (with in 18T); 

3T 
non-locked (24T < t < 60T) - non-locked ( IBT < t < 60T) 

non-locked - non-locked - non-locked -

Table 6.3: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h, on flow regimes, vortex shedding modes and their periods, T0 , at R = 200: A= 0.13, 
f I fo = 3.0. The superscript "*" denotes quasi-locked-on modes. 

smaller values of cylinder submergence depths, h = 0.5, 0. 75. 

Table 6.3 suggests that for the larger frequency ratio, f I fo = 3.0, and Fr ~ 0.0 

and Fr = 0.4 decreasing h from oo to 0.25 seems to stabilize the flow behaviour 

for a short period of time such t hat the near wake vorticity produces quasi-locked-on 

modes of vortex shedding and then, the transition of the near wake to the non-periodic 

state is observed, except h = 0.25, Fr ~ 0.0. An interesting aspect to address h re 

is that as Fr is increased to 0.4, different modes of vortex shedding, C(P+S)+S 

and C(2S)+S, persist in which an additional single positive vortex (from the free 

surface) is shed over 3T. Another interesting point to note is that at this frequency 

ratio, fIfo = 3.0, the effect of the smallest cylinder submergence depth, h = 0.25, 

and the highest Froude number , Fr = 0.4, is to produce two flow regimes: the vortex 

shedding exhibits quasi-locked-on C(2S) mode, per 4T , within 20T and then, the 

flow behaviour tends to be non-periodic (20T < t < 60T). This phenomenon is not 

observed for the smaller frequency ratios, f I fo :::;; 2.0. Table 6.3 also suggests for the 
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Fr::::: 0.0 Fr = 0.2 Fr = 0.4 

h Mode To Mode To Mode To 

0.25 C(2S)* 5T non-locked 
C(2S)• (within 20T); 

5T - non-locked (20T < t < BOT) 

0.5 
2P• (within 20T); 

4T non-locked 
[C(P+S)+S]• (within 2BT); 

4T non-locked (20T < t < BOT) - non-locked (2BT < t < BOT) 

0.75 C(P+S) 4T non-locked 
[C(2S)+S]• (within 12T); 

4T - non-locked (12T < t < BOT) 

00 non-locked - non-locked - non-locked -

Table 6.4: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h, on flow regimes, vortex shedding modes and their periods, T0 , at R = 200: A= 0.13, 
fIfo = 4.0. The superscript "*" denotes quasi-locked-on modes. 

case Fr = 0.2 , the flow is non-periodic irrespective of the presence of the free surface. 

For the higher frequency ratio, f I f = 4.0, the flow behaviour is very similar to the 

aforement ioned case f / fo = 3.0. Table 6.4 indicates that for the case Fr = 0.2 , the 

flow is non-periodic irrespective of the pr sence of the free surface. On the other 

hand , the presence of the free surface seems to produce two flow regimes, except for 

the cases h = 0.25, 0.75, Fr ~ 0.0. Furthermore, a period increase is observed for 

Froude numbers FT ~ 0.0 and Fr = 0.4 as h is decreased from 0.5 to 0.25. It is 

also noted that the increase in the Froude number, Fr , seems to begin the vortex 

shedding from the free surface. In fact, when h = 0.5, 0.75, Fr = 0.4 one more 

vortex (the positive vortex from the free surface) sheds into the downstream of the 

cylinder unlike the other cases shown in Table 6.4. Taking an overview of Table 6.4, 

the coalescence of vortices seems to be more pronounced as Fr increases. 

Figures 6. 1-6.4 summarize the effect of the Froude number, Fr (~ 0.0 and 0.2, 0.4) , 

and the cylinder submergence depth , h (= 0.25, 0.5 , 0.75), on the equivorticity pat-
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Fr ~ 0.0 Fr = 0.2 Fr = 0.4 

Figure 6.1: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h , on the equivorticity patterns at R = 200: A = 0.13 f Ifo = 1.0. All snapshots are 
taken at the instant x(t) =A. 

terns for the case R = 200, A = 0.13 when f / fo = 1.0, 2.0, 3.0, 4.0. The reference 

case h = oo is also shown in these figures. The snapshots are taken at the instant 

x(t) =A. For the periodic/quasi-periodic cases the snapshots are taken over the time 

interval in which the flow reaches to a periodic/quasi-periodic state. For non-periodic 

cases, the commonly appearing equivorticity plots at x(t) = A (within the time in

terval 0 < t ~ 100) are shown in Figures 6.1-6.4. Figure 6.1 corresponds to the case 

when fIfo = 1.0 and shows the changes in the near wake behaviour and the free 

surface evolution as Fr increases from 0.0 to 0.4 and h decreases from oo to 0.25. It 

is seen that at larger cylinder submergence depths, h = 0.5, 0.75, and smaller Froude 
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F r ~ 0.0 F r = 0.2 Fr = 0.4 

Figure 6.2: The effect of the Froude number, F r, and the cylinder submergence depth, 
h, on the equivorticity pat terns at R = 200: A= 0.13, f / f o = 2.0. All snapshots are 
taken at t he instant x(t) =A. 

numbers, Fr ~ 0.0 and Fr = 0.2, the near wake behaviour is not too dissimilar to 

that from the reference case h = oo. However, unlike the case when the free surface 

is absent, there is some diffusion of t he opposite signed vorticity across the interface 

and the near wake seems to be skew symmetric. On the other hand, when the cylin

der is submerged very close to the free surface, h = 0.25, the near wake is changed 

significantly. At thi cylinder submergence depth, h = 0.25, the rapid diffusion of 

the negative vort icity across the interface is observed and thereby, the near wake is 

dominated by positive vortex structures. It is also noted that for Froude numbers, 

Fr ~ 0.0 and F r = 0.2, only slight surface curvature is noted in Figure 6.1. For th 
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larger Froude number of 0.4, there is a marked difference in the near wake. Here, th 

free surface curvature appears to be considerably pronounced and the induced surface 

curvature leads to a viscous transport of the opposite signed vorticity in both the free 

surface and the fluid flow , with the localized wave breaking noted for smaller cylinder 

submergence depths, h = 0.25, 0.5. This secondary vorticity is then convected by the 

free surface waves into the downstream of the cylinder. Taking an overview of Figure 

6.1, it is seen that at h = 0.75 there is a decrease in the vortex formation length 

(maximum by 110%) as the Froude number, Fr, increases from 0.0 to 0.4. On the 

other hand, at h = 0.25, 0.5, the vortex formation length remains almost the same as 

Fr increases. 

The case when f / fo = 2.0 is displayed in Figure 6.2. This figure clearly shows the rise 

in the level of surface deformations when the Froude number, Fr, increases. It is seen 

that as h decreases from 0.75 to 0.5, the near wake shows a similar behaviour when 

compared to that at h = oo for each of the Froude numbers, Fr, displayed in Figure 

6.2. On the other hand, it is evident that the larger amount of the positive vorticity 

develops near the curved free surface as Fr increases. At the highest Froude number, 

Fr = 0.4, this secondary vorticity tends to coalesce with the near wake vorticity, 

causing the wake to become much more asymmetric downstream. A remarkable 

difference in the near wake behaviour is noted when the cylinder becomes close to the 

free surface interface (h = 0.25). At this cylinder submergence depth , h = 0.25 the 

near wake is very dissimilar to that observed at larger cylinder submergence depths, 

h = 0.5, 0.75. Again it is seen that the negative vorticity annihilates due to a strong 

interaction with the free surface and the near wake becomes dominated by the positive 

vorticity. It is also seen that as h decreases from 0.75 to 0.5 , the vortex formation 
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length remains almost the same for all Froude numbers, Fr ::::::: 0.0 and Fr = 0.2, 0.4. 

However, there is a significant increase in the vortex formation length (maximum by 

166.7%) ash decreases from 0.5 to 0.25 for each Froude number, Fr , shown in Figure 

6.2. On the other hand, at h = 0.25, the vortex formation length remains almost the 

same irrespective of the Froude number, FT. 

Fr::::::: 0.0 Fr = 0.2 Fr = 0.4 
h = 0.25 

~h =0.75 =========:, , ~ =========: 

L____h=oo _II'------
Figure 6.3: The effect of the Froude number, Fr , and the cylinder submergence depth, 
h, on the equivorticity patterns at R = 200: A = 0.13, f I fo = 3.0. All snapshots are 
taken at the instant x(t) = A. 

The plots in Figure 6.3 correspond to the case f I fo = 3.0. At this frequency ratio, 

f I fo = 3.0, the near wake is considerably different from the previous cases, showing 

a complex flow behaviour. Here, surface distortion becomes substantial and, when 
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Fr = 0.4, the upper vortex shedding layer seems to dissipate largely downstream of 

the cylinder. As the cylinder submergence depth, h, is reduced from oo to 0.25, the 

shape and the strength of the vortices become altered such that the positive vortices 

traveling downstream of the cylinder become more oval shaped with their major axis 

lying almost parallel to the free surface. On the other hand, the negative vortices seem 

to be reoriented and elongated such that their major axis is lying under a sufficiently 

large angle with respect to the free surface. As the F'roude number, Fr, increases, 

the vortex formation length seems to decrease (:::::: 90%) when h = 0.75 and increase 

(~ 14.3%) when h = 0.5. The small scale wave breaking is noted at the highest 

Froude number, Fr = 0.4, as the cylinder approaches the free surface (h = 0.25, 0.5). 

Figure 6.4 indicates significant deformations of the free surface when fIfo = 4.0. For 

this frequency ratio, fIfo = 4.0, the localized wave breaking occurs even for smaller 

Froude number, Fr = 0.2, unlike the previous cases. This situation is best illustrated 

by the equivorticity plot taken for Fr = 0.2, h = 0.25. It is also seen that for 

each F'roude number, Fr, the vortex formation length seems to increase (maximum 

by :::::: 146.15%), in general, as the cylinder submergence depth , h, decreases from 

0.75 to 0.25. Moreover, the larger amount of the positive vorticity develops near the 

curved free surface as Fr increases and h decreases. At the highest F'roude number, 

Fr = 0.4, this secondary vorticity tends to coalesce with the near wake vorticity and 

thereby, causes the asymmetry of the near wake downstream. At the smallest cylinder 

submergence d pth, h = 0.25, there is a marked difference in the downstream wake, 

comparing to the cases of larger cylinder submergence depth , h = 0.5, 0.75. Again it 

is seen that the negative vorticity annihilates due to a strong interaction with the free 

surface and the near wake becomes dominated by the positive vorticity. Moreover, 
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similar to the aforementioned case when f / fo = 3.0, at h = 0.25, the upper vortex 

shedding layer tends to dissipate largely downstream of the cylinder as Fr increases. 

Fr ~ 0.0 Fr = 0.2 Fr = 0.4 
h = 0 .25 

I , = •• 

Figure 6.4: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h , on the equivorticity patterns at R = 200: A= 0.13, f I fo = 4.0. All snapshots are 
taken at the instant x(t) =A. 

Tables 6.5 and 6.6 summarize the effect of the Froude number, Fr (= 0.2, 0.4) , 

and the cylinder submergence depth, h (= 0.25, 0.5, 0.75) , on the mean lift and 

drag coefficients, CL and Cn , for the case R = 200, A = 0.13 when 1.0 ~ fIfo ~ 4.0. 

The results for the reference case h = oo are also displayed in these tables. It 

can be seen that in all cases shown in Table 6.5 the presence of the free surface 

has a significant effect on the mean lift coefficient, CL· At the smallest cylinder 
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Fr = 0.2 F1· = 0.4 

I I !o I h 0.25 0.5 0.75 0.25 0.5 0.75 

1.0 -0.003 -0.350 0.161 0.167 -0.786 -0.203 -+ -0.332 -0.115 

2.0 -0.001 -0.590 -0.028 0.186 -0.808 -0.409 -+ -0.477 -0.228 -+ -0.297 

3.0 -0.001 -0.709 0.004 0.152 -0.888 -+ -0.973 -0.454 -+ -0.418 -0.180 -+ -0.249 

4.0 -0.003 -0.536 0.030 0.141 -0.853 -+ -0.861 -0.401 -+ -0.381 -0.193 -+ -0.246 

Table 6.5: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h, on the mean lift coefficient, CL, at R = 200: A= 0.13, 1.0 ~ f I fo ~ 4.0. 

submergence depth, h = 0.25, the values of CL decrease (by a maximum factor of 

2.0) as the Froude number, Fr , increases. It is also seen that at h = 0.25 , CL is 

negative irrespective of the values of Fr. For t he larger cylinder submergence depth, 

h = 0.5, the increase in Fr seems to change the sign of CL from positive to negative, 

except for the case fIfo= 2.0. Moreover, at h = 0.5, Fr = 0.4 the absolute values of 

CLare increased significantly when compared to those obtained at the smaller Froude 

number , Fr = 0.2. It should be noted that the increasing of the Froude number, Fr 

dramatically affects CL for the case fIfo = 3.0, h = 0.5 by shifting its value from 

0.004 to - 0.454 in the quasi-periodic state and to - 0.418 in the non-periodic state. 

Further, at the largest cylinder submergence depth, h = 0.75, the values of CL seem 

to change the sign from positive to negative as the Froude number, Fr , increases from 

0.2 to 0.4. Comparing the results for h = 0.75, Fr = 0.2 and h = 0.75, Fr = 0.4 

it is seen that the absolute values of CL increase slightly as Fr increases , except for 

the smallest frequency ratio, f I fo = 1.0. Table 6.5 also shows that decreasing th 

cylinder submergence depth, h, from 0.75 to 0.25leads to the decrease in CL for each 

of Froude numbers, Fr = 0.2, 0.4. Taking an overview of Table 6.6 , it is evident 
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F r = 0.2 Fr = 0.4 

f I fo I h 00 0.25 0.5 0.75 0.25 0.5 0.75 

1.0 1.344 1.495 1.684 1.514 1.451 1. 718 --+ 1.571 1.565 

2.0 1.646 1.551 1.853 1.823 1.480 1.671 --+ 1.658 1.851 --+ 1.839 

3.0 1.392 1.885 1.730 1.623 1.42 --+ 1.590 1.553 --+ 1.478 1.630 --+ 1.529 

4.0 1.406 1.612 1.582 1.570 1.447 --+ 1.539 1.610 --+ 1.573 1.573 --+ 1.712 

Table 6.6: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h, on the mean drag coefficient, CD, at R = 200: A = 0.13, 1.0::;;; fIfo::;;; 4.0. 

that the presence of the free surface has a slight effect on the mean drag coefficient , 
~ 

CD, when compared to the reference case h = oo. Increasing the Froude number, 

Fr , seems to decrease slightly the values of CD (by a maximum factor of 1.31) when 

h = 0.25. On the other hand, for the larger cylinder submergence depth, h = 0.5 , 

the increase in the Froude number, Fr, seems to (i) decrease the values of CD for 

f I fo = 2.0, 3.0; (ii) increase the values of CD for f I fo = 1.0, 4.0 when the flow is in 

the quasi-periodic state and (iii) decrease the values of CD for f I fo = 1.0, 4.0 when 

the transition of the flow into the non-periodic state occurs. For the largest depth of 

the cylinder submergence, h = 0.75, the values of CD seem to be increased, except 

for the case f I fo = 3.0 (non-periodic state), as Fr increases. As h decreases, for the 

smallest frequency ratio, f I fo = 1.0, CD increases ash decreases from 0.75 to 0.5 and 

decreases as his reduced from 0.5 to 0.25 for each of Froude numbers, Fr = 0.2, 0.4. 

For f I fo = 2.0 and Fr = 0.2, 0.4, the effect of the decrease in h (from 0.75 to 0.25) is 

to decrease the values of CD, except for the case Fr = 0.2 ash reduces from 0.75 to 

0.5. Furthermore, for f I fo = 3.0, 4.0 , the mean drag coefficient , CD, increases when 

Fr = 0.2 and decreases, in general, when Fr = 0.4. 
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Tables 6.7 and 6.8 show the effect of the Froude number , F r (= 0.2, 0.4), and the 

cylinder submergence depth, h ( = 0.25, 0.5 , 0.75) , on the RMS lift and drag coeffi

cients, CL,rms and Co,rms, for the case R = 200, A = 0.13 when 1.0 ~fIfo~ 4.0. The 

results for the reference case h = oo are also displayed in these tables. It is clear that 

F r = 0.2 Fr = 0.4 

f I fa I h 00 0.25 0.5 0.75 0.25 0.5 0.75 

1.0 0.538 0.665 0.937 0.801 0.863 0.801 _, 0.688 0.669 

2.0 0.928 0.792 1.212 1.202 1.058 0.979 --+ 0.931 1.078 --+ 1.086 

3.0 0.467 1.872 1.129 0.826 1.051 --+ 1.225 0.756 --+ 0.602 0.559 _, 0.676 

4.0 0.502 1.914 1.269 0.967 0.943 --+ 1.069 0.703 _, 0.617 0.608 --+ 0.688 

Table 6.7: The effect of the Froude number, Fr , and the cylinder submergence depth, 
h, on the RMS lift coefficient, CL,rms, at R = 200: A= 0.13, 1.0 ~fifo~ 4.0. 

for all Froude numbers shown in Table 6.7, the RMS lift coefficient , CL,rms , increases 

when compared to that observed at h = oo, except for the case f I fo = 2.0, h = 0.25. 

This table also indicates that as the Froude number increases from 0.2 to 0.4 , the 

values of CL,rms decrease at h = 0.5, 0.75. On the other hand , CL,rms increases for 

f I fo = 1.0, 2.0 and decreases for fIfo= 3.0, 4.0 when h = 0.25 as Fr increases. For 

the smallest frequency ratio, fIfo = 1.0, decreasing the cylinder submergence depth, 

h, from 0.75 to 0.25 seems to increase the values of CL,rms when Fr = 0.2, 0.4, except 

for the case when Fr = 0.2 and his reduced from 0.5 to 0.25. An interesting trend in 

the CL,rms behaviour is observed for fIfo = 2.0. It is seen that when Fr = 0.2 , CL,rm s 

increases as h decreases from 0.75 to 0.5 and decreases as h is reduced from 0.5 to 

0.25. In contrast, when Fr = 0.4, CL,rms decreases ash reduces from 0.75 to 0.5 and 

increases as h decreases from 0.5 to 0.25. For the larger frequency ratios, f I fo = 3.0, 
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4.0, the values of CL,rms seem to increase for each of Froude numbers, Fr = 0.2, 0.4, 

ash decreases from 0.75 to 0.25, except for the case Fr = 0.4 (non-periodic state) and 

h reduces from 0.75 to 0.5. Taking an overview of Table 6.8, it can be seen that the 

Fr = 0.2 Fr = 0.4 

J I fa I h ()() 0.25 0.5 0.75 0.25 0.5 0.75 

1.0 1.378 1.639 1.737 1.567 1.574 1. 738 -+ 1. 665 1.611 

2.0 1.907 2.362 2.247 2.133 1.661 1.848 -+ 1. 72 2.025 ---+ 2.041 

3.0 2.642 3.396 3.003 2.756 2.095 ---+ 2.255 2.367 ---+ 2.354 2.524 -+ 2.474 

4.0 4.263 3.550 3.325 3.488 3.210 ---+ 3.283 3.680 ---+ 3.687 3.897 -+ 3.929 

Table 6.8: The effect of the Froude number, Fr, and the cylinder submergence depth, 
h, on the RMS drag coefficient, CD,rms , at R = 200: A= 0.13, 1.0 ~fIfo~ 4.0. 

RMS drag coefficient, CD,rms, varies significantly when compared to the case h = oo. 

More precisely, the values of CD,rms (i) increase for fIfo = 1.0, 2.0, 3.0, h = 0.25, 

0.5, 0.75 , Fr = 0.2; (ii) decrease for f I fo = 4.0, h = 0.25, 0.5, 0.75, Fr = 0.2; (iii) 

increase for fIfo = 1.0, h = 0.25, 0.5 , 0.75, Fr = 0.4; (iv) decrease for fIfo = 2.0, 

h = 0.25, 0.5, Fr = 0.4; (v) increase for f I fo = 2.0 h = 0.75, F r = 0.4; (vi) d creas 

for fIfo = 3.0, 4.0, h = 0.25 0.5 , 0.75, Fr = 0.4. This table indicates that as Fr 

increases, the values of CD,rms decrease at the smallest cylinder submergence depth, 

h = 0.25. For larger cylinder submergence depths, h = 0.5 , 0.75, CD,rms increases 

for fIfo = 1.0, 4.0 , except for the case f I fo = 1.0, h = 0.5 , Fr = 0.4 (non-periodic 

state) as Fr increases. In contrast, for f I fo = 2.0, 3.0, h = 0.5, 0.75 , the values of 

CD,rms decrease as Fr increases. Furthermore, for f I fo = 1.0, the values of CD,rms 

seem to increase as h decreases from 0.75 to 0.5 and to decrease as h reduces from 

0.5 to 0.25 for each of Froude numbers, Fr = 0.2, 0.4. An interesting trend in the 
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F r = 0.2 Fr = 0 .4 

I I Ia I h 00 0.25 0.5 0.75 0.25 0.5 0.75 

1.0 -0.276 -0.469 -0.210 -0.319 -0.607 -0.113 -+ -0.430 -0.775 

2.0 -0.372 -1.524 -0.764 -0.702 -0.503 -0.326 -+ -0.373 -0.360 -+ -0.342 

3.0 -0.617 -2.588 -1.647 -1.326 -0.776-+ -0.746 -0.588 -+ -0.631 -0.561 -+ -0.530 

4.0 -0.101 -2.983 -1.794 -1.345 -0.956 -+ -0.896 -0.818 -+ -0.85 -0.859 -+ -0.820 

Table 6.9: The effect of the Froude number, F r, and the cylinder submergence depth, 
h, on the total mechanical energy transfer , E , at R = 200: A = 0.13, 1.0 ~ fIfo~ 4.0 

CD,rms behaviour is observed for the higher frequency ratios, fIfo = 2.0, 3.0. It is 

evident that for f I fo = 2.0, 3.0 , CD,rms increases when Fr = 0.2 and decreases when 

Fr = 0.4 as h reduces from 0. 75 to 0.25. Finally, for f I fo = 4.0, the decrease in h 

leads to the (i) decrease in C D,rms when Fr = 0.2 and h reduces from 0.75 to 0.5; (ii) 

increase in CD,rms when F r = 0.2 and h reduces from 0.5 to 0.25 and (iii) decrease 

in CD,rm s when Fr = 0.4 and h reduces from 0.75 to 0.25. 

Table 6.9 shows the effect of the Froude number, Fr (= 0.2, 0.4), and the cylinder 

submergence depth, h (= 0.25, 0.5 , 0.75) , on the total mechanical energy transfer , E , 

for the case R = 200, A = 0.13 when 1.0 ~ fI fo ~ 4.0. The reference case h = oo i 

also shown in this t able. It is clearly seen that the overall energy transfer , E, is always 

negative. Therefore, for all cases, the negative energy is delivered from the cylinder to 

the fluid and thereby, the fluid produces a resis tance against the forced motion of the 

cylinder. Taking an overview of Table 6.9, it is seen that the effect of the increasing 

F r from 0.2 to 0.4 is to increase the total energy transfer, E , (i.e. , to increase the 

absolute values of E) when f I fo = 1.0, except for the case F r = 0.4, h = 0.5 

(quasi-periodic st ate) , and to decrease t he energy transfer, E when fIfo ~ 2.0. This 
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indicates that for the smallest frequency ratio, fIfo = 1.0, the fluid resistance against 

the forced motion of the cylinder increases (by a maximum factor of 2.0) as Fr varies. 

In contrast, for the higher frequency ratios, f I fo ~ 2.0, the fluid resistance against 

the forced motion of the cylinder seems to decrease (by a maximum factor of 3.0) as 

Fr varies. Table 6.9 also indicates that for Fr = 0.2 the absolute values of the total 

energy transfer, E, significantly increase, except for the case fIfo = 1.0 h = 0.5 as h 

decreases from oo to 0.25. On the other hand , for the higher Froude number of 0.4, 

the absolute values of the total energy transfer, E, decrease as h decreases from oo 

to 0.75, except f I fo= 1.0, 4.0, and increase ash decreases further to 0.25, except for 

the cases fIfo = 1.0, f I fo = 2.0 (quasi-periodic state) , f I fo = 4.0 (quasi-periodic 

state) when h = 0.5. 

6.2 Overview of distinctive flow features and vor

tex shedding modes 

In this thesis, the numerical simulations of unsteady, laminar two-dimensional flow of 

a viscous incompressible fluid past a cylinder subject to in-line oscillations in uniform 

flow in the presence of the free surface are performed for the first time. Overall, this 

investigation has shown that when the free surface is present, both the near wake 

structure and the free surface deformations are very sensitive to the Froude number, 

Fr , and to the cylinder submergence depth, h. For smaller Froude numbers, Fr ~ 0.0 

and Fr = 0.2, the surface deformations are minimal and they become substantial as 

Fr increases. As Fr increases to 0.4 and h decreases to 0.25, the localized interface 
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sharpening and wave breaking occur. This yields to introduction of a substantial 

quantity of opposite signed vorticity from the free surface which interacts with the 

upper vorticity shedding layer through diffusion and thereby, substant ially changes 

the wake evolution. These findings are in accord with that of Reichl et al. (2005) 

for uniform flow past the cylinder in the presence of the free surface for the case 

R = 180, 0 :s:; Fr :s:; 0.7 and 0.1 :s:; h :s:; 0.5. Reichl et al. (2005) suggest that 

the sharpening of the interface is presumably due to the local Froude number in th 

region directly above the cylinder , FriL· The local Froude number, FriL , generally 

becomes considerably higher than the global Froude number, Fr , for the small cylin

der submergence depth, h, and thereby, a sharpened scar occurs in the region where 

Fr iL -t 1. When this happens, the accelerated fluid in a scar region interacts with 

the slower fluid from above the positive vortices and thereby, a shift from a surface 

scar to a localized wave breaking occurs. Moreover, it has also been observed that for 

small depths of the cylinder submergence, h = 0.25, 0.5, t he negative vortices seem 

to decay rapidly into the downstream due to the viscous transport of the negative 

vorticity across the interface. Hence, the negative vorticity is being removed from 

the fluid by diffusion and cross-annihilation. Furthermore, this inv stigation shows 

that the upper vortex shedding layer from the cylinder surface induces a strong time

dependant surface curvature, which, in turn , introduces substantial positive vorticity 

near the curved interface. This vorticity interacts with th upper vortex shedding 

layer through diffusion and cross-annihilation and thereby, significantly alters the 

near wake evolution. Moreover, th induced surface curvature allows easier entry of 

the secondary vorticity appearing near the free surface into the near wake. As a con

sequence, the upper vortex shedding layer becomes weaker as it contains less vorticity 
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than the lower vortex shedding layer and thus the wake evolution is being dominated 

by the positive vortex structures. This results in an asymmetry in the near wake and 

thereby, the absolute instability is being at least partially suppressed. As a result, 

the vortex formation and shedding become weaker over subsequent cycles and thus at 

certain Fr-h combinations the transition of the near wake from the quasi-locked-on 

state to the non-locked-on state occurs. It is noted that similar phenomena have 

been reported in the numerical work by Reichl et al. (2005) and the experimental 

work of Sheridan et al. (1995, 1997) for the case of uniform flow past a stationary 

cylinder in the presence of the free surface, and the experimental study by Cetiner 

and Rockwell (2001) for the case of cylinder subject to in-line oscillations in uniform 

flow in the presence of the free surface. In fact, the works of Reichl et al. (2005) and 

Sheridan et al. (1995, 1997) (0 < h:::;; 0.75, 5990:::;; R :::;; 9120 and 0.47:::;; Fr:::;; 0.72) 

have shown that at certain Fr-h combinations, the presence of th free surface causes 

a switching between the near wake states. These studies found that the near wake 

spontaneously changes from one state to another in a pseudo-periodic manner. In 

the work by Cetiner and Rockwell (2001) , the uniform flow past th cylinder subject 

to in-line oscillations is considered at R = 917, 2075, Fr ~ 0.07, 0.158, A = 0.96, 

f / fo = 0.44, 1.0 and h = 0.06, 0.19, 11.23. It has been observed that for certain 

Fr-h combinations the vortex shedding exhibits locked-on (or quasi-locked-on) states 

at least over several cycles of cylinder oscillations and then, the transition to the 

non-locked-on state occurs. 

One of the most interesting findings of this thesis is that it seems to be possible to 

generate distinctly different patterns of the vortex formation than that of classical 

vortex shedding modes observed for a cylinder subject to transverse oscillations in 
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uniform flow, provided that the cylinder is located sufficiently close to the free surface 

and the Froude number is high . Moreover, it is shown that the presence of the free 

surface provides the possibility for quasi-locked-on vortex formation not only from 

the cylinder but also from the free surface. These observations agree with that of 

Cetiner and Rockwell (2001) . In Table 6.10, these new vortex formation modes are 

briefly summarized. 

Mode Description 

Similar to the classical C(P+S) mode with the only difference that 
C(P+S)+S one more single vortex is shed from the free surface over the period 

of vortex shedding, T0 

Similar to the classical C(2S) mode with the only difference that 
C(2S)+S one more single vortex is shed from the free surface over the period 

of vortex shedding, T0 

Table 6.10: The new vortex shedding modes (and their descript ions) observed in the 
present thesis. 

The quasi-locked-on C(P+S)+S and C(2S)+S modes shown in Table 6.10 have 

been observed for f I fo = 3.0 over 3T (within 18T ) and for f I fo = 4.0 over 4T 

(within 28T and 12T) at h = 0.5 , 0.75, respectively, when Fr = 0.4. The other 

observed vortex shedding modes are as follows. For the limiting case Fr ;::::j 0.0, three 

basic quasi-locked-on asymmetric vortex shedding modes, 2S, 2P and P + S, and two 

locked-on asymmetric vortex shedding modes, 2S and P + S have been observed. T he 

quasi-locked-on asymmetric 2S mode occurs over 5T, for f I fo = 4.0 at h = 0.25 and 

over 3T (within 12T) for f I fo = 3.0 at h = 0.5 when Fr ;::::j 0.0. The quasi-locked

on asymmetric 2P mode occurs over 4T (wit hin 20T) for fIfo = 4.0 at h = 0.5, 

Fr ;::::j 0.0. The quasi-locked-on asymmetric P + S mode occurs over 3T (within 24T) 
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for fIfo = 3.0 at h = 0.75 when Fr ~ 0.0. On the other hand , the lock d-on 

asymmetric 2S mode occurs overT, for fIfo= 1.0 at h = 0.5, 0.75 and over 2T, for 

fIfo= 2.0 at h = 0.5 when Fr ~ 0.0. The locked-on asymmetric P +S mode occurs 

over 2T for fIfo= 2.0 and over 4T for fIfo= 4.0 when h = 0.75, Fr ~ 0.0. It is also 

noted that for this Froude number, Fr ~ 0.0, the coalescence between the vortices in 

the vortex shedding layers appears for the high frequency ratios, fIfo = 2.0 at h = 0.5; 

fifo = 3.0 at h = 0.5, 0.75 and fifo= 4.0 at h = 0.25, 0.75. Further , at moderate 

Froude number of 0.2, the vortex shedding exhibits quasi-locked-on asymmetric 2S 

mode overT for fIfo= 1.0, h = 0.5, 0.75, and over 2T for f Ifo= 2.0, h = 0.5. The 

quasi-locked-on asymmetric P + S mode over 2T has been observed for fIfo = 2.0, 

h = 0.75 , Fr = 0.2. Finally, at the highest Froude number Fr = 0.4, the vortex 

shedding modes are the quasi-locked-on asymmetric 2S mode over 4T (within 20T) 

and over 5T (within 20T) , respectively, for fIfo = 3.0, 4.0 at h = 0.25; over T 

(within 5T) and over 2T (within 14T) , respectively, for f I fo = 1.0, 2.0 at h = 0.5 

and quasi-locked-on asymmetric P+S mode over 2T (within 14T) for fIfo= 2.0 at 

h = 0.75. At this Froude number, Fr = 4.0, the coalescence between the vortices in 

the vortex shedding layers appears for f I fo = 3.0, 4.0 at h = 0.25 and fIfo = 1.0, 

2.0 at h = 0.5. 

6.3 Practical significance of the present results 

Flow induced forces play an important role in the design of variety of engineering 

structures. Representative structures having a cylindrical shape include towing cables 
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inclined at a shallow angle with respect to the free surface and thereby approximat

ing a horizontal orientation. Rapidly deployable cable systems with instrumentation 

dropped from an aircraft through a free surface may be oriented horizontally beneath 

the free surface during the initial stages of deployment. Furthermore, many offshore 

platforms have horizontal , cylindrically shaped members. The unsteady forces acting 

on all of these configurations can be approximated by a horizontal cylinder placed in 

a steady uniform stream in the presence of the free surface. 

Control of vortex shedding leads to reduction in the unsteady forces acting on the 

bluff body and can reduce its vibrations. Flow control may be accomplished by 

controlling the boundary layer separation and/or the structure of shear layer in the 

wake. In this thesis, the separation control is achieved by subjecting the cylinder 

to harmonic oscillations. Precisely, the problem of uniform viscous incompressible 

flow past an oscillating horizontal rigid circular cylinder of infinite length located 

beneath a free surface is considered. The present investigation has shown that for the 

cylindrical structures, the presence of t he free surface markedly influences the mean 

values of both the lift and drag forces. Moreover, the presence of the free surface 

seems to destabilize, in general, the locked-on state of the vortex shedding. These 

observations suggest that the free surface could be used to bring control in the near 

wake vortical structures. Specifically, the free surface alters the nature of the forcing 

function associated with self-excited vibration and thus the conditions for onset of 

self-excited vibration can be altered as well. The important consequence of this is 

that for the cylindrical configurations submerged under the free surface, the design 

criteria based on the cylinder in the absence of the free surface will be, in general, in 

error. 
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6.4 Future work 

One area of future work is in implementation of a higher order scheme for the temporal 

discretization. It is hoped that the temporal accuracy of the VOF methods could 

be improved by using multi-step methods such as Adams-Bashford method, Adams

Moulton method, Gear's method and others. Promising results have already obtained 

by other researchers for simple flows [see, for example, Li et al. (2004)]. 

Another area of future work is in reducing computational time required to perform 

simulations. Reducing computational time is necessary as the large time simulations 

of free surface flows with moving rigid bodies are computationally very expensive. 

Computation time can be greatly reduced by parallelizing the code so that it can be 

run on a distributed-memory high performance cluster of parallel processors. The 

parallelization of the code can be implemented without the need for any fundamental 

changes to the structure of the code. This is due to the fact that the code is written 

in modular form with extensive use of array algebra and other parallel data structures 

such as Trilinos library. It is noted that running the code in parallel will also allow 

using high resolution grids which will improve stability of computations as the free 

surface will be resolved more accurately. 

Finally, an interesting direction would be to implement surface tension and test the 

ability of the method to model micro gravity flows . The mod ling of surface tension 

in numerical simulation of interfacial flows is a big challenge. One of th issues in th 

numerical modeling of urface tension is the production of unphysical vortical flows 

so-called "spurious" or "parasitic" currents which are due to the imbalance between 
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stresses in the interfacial region. The main source for the occurrence of the currents is 

the discretization errors such as those used to calculate the interface curvatures. The 

currents cause the vibration of a phase interface, producing unphysical results and 

solver breakdowns. In this thesis, an attempt to model surface tension has been made. 

The relatively simple approaches such as described in Gerrits (2001) and Prosperetti 

and Tryggvason (2007) have been used to model surface tension. In all of the cases, 

vibration of the free surface and thus a numerical breakdown are observ d. It i b -

lieved that more sophisticated approaches involving spline interpolants must be used 

to compute interface curvatures accurately. In this regard, the method of Ginzburg 

and Wittum (2001) seems to be a promising technique for a future development. 
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A. Integral form of the FAVOR 

equations versus differential form of the 

FAVOR equations 

Figure 2.2 summarizes derivation of th cliff rential and integral forms of the FAVOR 

equations. 

Differential form of the FAVOR equations: 

Step 1. Consider the general continuity and Navier-Stokes equations in their differ-

entia! form 

op " -.. o -+ v ·pu = 
at· ' 

(A.l) 

~~ -
at• + (~ · "V)U: = - \lp* + "V· (J.L"VU:) + pF*. (A.2) 

Step 2. Equations (A. l ) and (A.2) can be extended to the entire control volume, V*, 

by multiplying these equations with the Heaviside unit step function as follows 

Hop + H\l · pU: = 0 (A.3) 
at· ' 

8 "'* 
H :. + H (p~ · \l) U: = - H\lp* + H\l · (J.L"V~) + H pF* (A.4) 

where the Heaviside unit step function is defined as 

{ 

1, 
H = 

0, 

in t he fluid , 
(A.5) 

in the solid body. 

Step 3. Th H aviside unit step function is moved into the time and spatial derivative 
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in equations (A.l) and (A.2) to yield Hirt and Sicilian's porosity equations 

~~ + \l · (HU*) = 0, (A.6) 

a(Hil*) 1 -

0 
+ "V· (HU*U*) = --H\lp* + v\l· H\JU* + HF*, (A.7) 

t* p 

after making use of the fact that the incompressible Newtonian fluid density, p, is 

constant. 

y* 

A* :/ X 

v· / x* 
~ 

A* y 

Figure A.l: Location of .A;, A~ and V* within the computational cell , V*. The solid 
body is shown in gray. 

Step 4. Equations (A.6) and (A.7) can be reformulated using fractional area and 

volume porosity functions based on the FAVOR method to yield th differential form 

of the FAVOR equations 

ev· a(u*A*) a(v*A*) -+ X+ y = 0 
at* ox* oy* 

(A. ) 

au* 1 ( .;:.au* .;:.au* ) F * lop* " 2 • -+-:;;:-- u~-+v~ - = 1 - - -+vvu 
Ot* V* X OX* y oy* P OX* 

1 (A.9) 

ov* 1 ( *A* ov* *A* ov* ) D * 1 op* "2 * - +-:;;:-- u ~ - + v ~ - = £2 - - - + 1/ v v . 
Ot* V* X OX* y oy* P oy* 

(A. lO) 
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~ ~ 

The fractional areas in x*- and y*-directions, A; and A;, and the fractional volume, 

V*, open to flow within the computational cell , V*, are defined as unknown variables. 
~ 

The fractional volume, V, is located in the center of the computational cell , V*, and 

the fractional areas A;, A; are located in the face centers of the computational cell 

boundaries, s; and s;, respectively, as shown in Figure A.l. They are defined by 

V* = lim v·, 
v•_,o 

A.;= lim A;, 
S;->O 

where 

V* = _2.._ JH dV* V* , A* = _!_ j H dS* 
X S* , 

X v· s· X 

A* = _!_ J H dS* 
v S* 

Y s· 
y 

(A.ll) 

(A.12) 

and the Heaviside unit step function, H , is defined by equation (A.5). It is noted that 

in equation (A.12) , V* and A;, A; are the fractional volume and areas, respectively, 

open to flow within the computational cell , V* [see Hirt and Sicilian (1985) for details] . 

Integral form of the FAVOR equations: 

Step 1. Consider the law of conservation of mass and the Newton's second law of 

motion , 

d~* J pdV* = 0, (A.13) 

v· (t") 

and 

d~* j pU* d V * = j pF* d V* + j a . n dS*, (A.14) 

v•(t•) v· s· 

respectively. 

Step 2. Equations (A.13) and (A.14) can be written for an arbitrary rectangular 

control volume, V*, with the surface, S*, containing a fluid-body interface (see Figur 
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A.2) by using the generalized transport theorem, 

d~* J P dV* = d~* J P dV* + j (n · u)P dS*. (A. 15) 

v•(t") v· A· 

It is noted that a control volume boundary, S*, is composed of left, S~, right , s;, top, 

Sj , and bottom, S0, pieces, i.e. , S* = S0 us; us; u Sj as shown in Figure A.2(a). 

The volume and areas open to flow are defined as 

V* = J H dV*, A*= J H dS*, (A.l6) 

v· s· 
respectively (see Figure A.2(b)) , where the Heaviside unit step function , H, is defined 

by equation (A.5) . 

S* 0 

S* 3 

V* 

s; 
(a) 

s~ A* 0 

A* 2 

V* 

.. .. 

A* 3 

(b) 

Figure A.2: Typical computational cell, V*, containing a fluid-body interface (b) 
typical computational cell , V*, which includes areas, Ai ( i = 0, 1, 2, 3) and volume, 
V*, open to flow within V* . The solid body is shown in gray. 

Step 3. Step 2 yields the integral form of the continuity and Navier-Stokes equations 

which are valid for a control volume containing a fluid-body interface (integral form 



286 

of the FAVOR equations), in the form 

d~* j p dV* + !(pi?· ii) dS* = 0, (A.17) 

v· A· 

d~* j pii* dV* + j (n·U*)pii* dS* = - j p*ii dS* + j fi . J.L"Vii* dS* + j pF* dV* , 

v· A· A·un• A· un· v· 
(A.l 8) 

respectively. For the two-dimensional flow of incompressibl Newtonian fluid , the 

integral form of the FAVOR equations can be written as 

:: + j (n . U*) dS* = o, (A.19) 

A• 

and 

d~* j U* dV* + j(n · ii*)U* dS* = -~ j p*iidS*+v j n ·"Vii* dS*+ j F* dV*, 
v· A· A·un· A·un· v· 

(A.20) 

respectively. 

Integral form of the FAVOR equations (2.32) and (2.42) can be derived from the 

differential form of the FAVOR equations (2.3)-(2.5) as follows. Equation (2.3) can 

be rewritten as 

ev· a(u*A*) o(v*A*) av· ~ 
+ x + Y + n ( * 11. *) ~ -~---';o.;.... ~ =~ v · Ul"'i>., 

ut* ux* uy* ut* 
(A.21) 

--------+ 

where (u*A*) = (u*A.; ,v•A.; ,o) . Integration of equation (A.21) over the computa-

tional cell , V*, shown in Figures A.2 and A.l , yields 
~ 

j ~~· dV* + j '\1 · (u*A*) dV* = o. (A.22) 

v· v· 
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The first integral on the left hand side of equation (Ao22) can be rewritten as 

J 
of!* dV* = ~fv* dV* = ~JH dV* = dV* 
at* dt* dt* dt* 

(Ao23) 

v· v· v· 
after making use of equation (Aoll)o The second integral on the left hand side of 

equation (Ao22) can be rewritten as 

j \l 0 (u*A*) dV* = j fi 0 ~ dS* 

v· s· 

= j uH dS* - j uH dS* + j vH dS* - j vH dS* 

So S j S:i Sj 

= j u dS* - j u dS* + j v dS* - j v dS* 

A(i Ai A2 Aj 

= j fi 0 ii* dS*, 
A• 

after making use of equation (Aoll) (see Figures Ao2 and Aol)o Thus, 

j ~~· d V* + j \l 0 ~ d V* = :: + j fi 0 ii* dS* 0 
v· v· A· 

Equation (A o25) coincides with equation (2032)0 

The momentum equations (2.4) and (205) can be rewritten, respectively, as 

v.fJu* + (u*A*) 0 \lu* = V* F* - V* op* + V*v\l2u* 
ot• 1 p ox* ' 

(Ao24) 

(Ao25) 

(Ao26) 

(Ao27) 

Integration of equation (Ao26) over the computational cell , V* , shown in Figures Ao2 
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and A.l , yields 

J
VJ)u* dV*+ ] ~-'Vu* dV* = J v*F* dV*-1 V* ap* dV*+ ] V*v'V2u* dV*. 

a~ I p ax* 
v· v · v · v· v· 

(A.28) 

Consider the integrals on the left hand side of equation (A.28). The unsteady term 

can be written as 

J V* au* dV* = J aV*u* dV* - J u* aV* dV* 
at* at* at* 

v· v· v· 

= ~ J v*u* dV* - j u·iV· dV* 
at* dt* 

v· v· (A.29) 

= ~ J Hu* dV*- J u*dV* dV* 
at* dt* 

v· v· 
~ 

= _:!:_ J u* dV*- J u*dV* dV* 
&* d~ , 

v· v· 
after making use of equation ( A.ll) . 

The convection term in equation (A.28) can be rewritten as follows 

j (u*A*) · 'Vu* dV* = j 'V · u*(u*A*) dV*- j u*'V · (u*A*) dV*. (A.30) 

v· v· 
On the other hand , 

~ 

( *A*) dV* 'V. u 1\\ = --
dt* ' 

(A.31) 

where equation (A.31) follows from the continuity equation (A.21 ). Thus, equation 

(A.30) can be written as 
~ 

j (u*A*) · 'Vu* dV* = j 'V · u*~ dV* + j u*~~: dV*. (A.32) 

v· v· v· 
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The first integral on the right hand side of equation (A.32) can be written as 

j \7 · u*(u*A*) dV* = j n · u*~ dS* 

v· s· 

= J u*u*H dS*- J u*u*H dS* 

80 Sj 

+ J u*v* H dS* - J u*v* H dS* 

Si Sj 

= J u*u* dS* - J u*u* dS* + J u*v* dS* - J u*v* dS* 

A0 Aj A2 Aj 

= j (n · U*)u* dS*. 

A• 
(A.33) 

ow, consider the integrals on the right hand side of equation (A.28). The volumetri 

force can be represented as 

J V*Ft dV* = J HFt dV* = J Fl* dV* . (A.34) 

v· v · v· 
The pressure and diffusive terms become 

J V* fJp* dV* = ~ J HfJp* dV* 
p fJx* p fJx* ' 

(A.35) 

v· v· 
and 

J V*v\72u* dV* = v J H\72u* dV* , (A.36) 

v· v· 

respect ively. F inally, substitution of equations (A.29) , (A.32)-(A.36) into equation 

(A.28) yields 

d~* J u* dV* + j (n · U*)u* dS* = J Ft dV* - ~ J H;~: dV* + v J H\7
2
u* dV* . 

v· A· v· v· v· 
(A.37) 
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Similarly, equation (A.28) can be integrated over the computational cell , V*, shown 

in Figures A.2 and A.l , to yield the form 

d~* J v* dV* + j (n · u)v* dS* = J F; dV*- ~ J H~~: dV* + v J H\l
2
v* dV*. 

v· A· v· v· v· 
(A.38) 

Equations (A.37) and (A.38) can be written in the vector form as 

d~* j u dV*+ j cn·u)u dS* = -~ j H\lp* dV*+v j H'l· ('lu) dV*+ j F* dV*. 
v· A· v· v· v· 

(A.39) 

The pressure term in equation (A.39) can be rewritten as 

~ J H\lp* dV* = ~ J \lHp* dV*- ~ J p*'JH dV* 
v· v• v· 

= ~ J H p*fi dS* + ~ j p*fi[J dV* 
s· v· 

= ~ j p*fi dS* + ~ j p*fi dS* ~ j H\lp* dV* 

(A.40) 

A· n· v· 

= ~ j p*fi dS*, 
A•un· 

after making use of equation (2.25). Similarly, the diffusion term in quation (A.39) 

can be writ ten as 

v J H\l· (\lu) dV* = v J 'l· (H\lu) dV*- v J 'JH · \lu dV* 
v· v · v· 

= v J fi · (H\lu) dS* + v J fi[J · \lu dV* 
s· v· 

= v j n. \lu dS* + v j n. \lu dV* 
(A.41) 

A· n· 

= v J n. 'lu dV* 

A· un· 
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after making use of equation (2.25). Substitution of equations (A.40) and (A.41) into 

equation (A.39) yields the form 

d~* j it' dV*+ j cn·U')U' dS* = -~ j p*ndS*+v j n ·'lit' dS*+ j F* dV* . 
v· A· A·un· A· un· v· 

(A.42) 

Equation (A.42) coincides with equation (2.42). 



B. Generalized functions and generalized 

differentiation 

The underlying concept of Schwartz's theory of distributions (or generalized func

tions) is to consider only values of pecific operations of symbolic or ideal functions 

on certain classes of functions but never values of the function it lf. For example, 

Dirac (1947) introduced the delta function o(x*) by its shifting property 
00 

j ¢(x*)o(x*) dx* = ¢(0) (B.1) 

-00 

in which o is regarded as a symbol representing an integration, defined at least for all 

functions ¢(x*), continuous on a neighbourhood of origin, which maps each ¢(x*) into 

the value ¢(0). Symbols such as o when regarded as specifying operations on certain 

classes of functions (rather than as standing for pointwise specified function o ( x*)) 

are referred as a generalized function. The properties of generalized functions are 

established rigorously in Schwartz (1950, 1951 ). It is shown from classical Lebesgue 

integration theory that the Dirac o function cannot be an ordinary function. Here, a 

locally Lebesgue integrable function J(x*) is considered as an ordinary function that 

has a finite integral over any bounded region 0 E JRn where JRn is th n-dimensional 

real space 

j f( x* ) dx* ~ j IJ(x*)l dx*. (B.2) 

n n 

Thus, to include the Dirac delta function in mathematics, one must think of an 

ordinary function J(x*) differently. Conventionally, one can think of ordinary or 

generalized function J(x*) as a set of ordered pairs (x* , J(x*)). These numbers are 
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produced by 
00 

F[cP] = j f (x* )cP(x* ) dx*, (B.3) 

-00 

where the function cP(x*) is a test function . The test function space D E !Rn is a 

space of all infinitely differentiable functions with bounded support. The support of 

a function cP(x* ) is the closure of the set on which cP(x*) =J 0 

(B.4) 

For a fixed function J(x*), equation (B.3) is a mapping of the test function space 

into real or complex numbers. Such a mapping is called a functional which is denoted 

by square brackets (e.g., F[cP] and o[¢]). Therefore, a function f(x*) can now be 

described by a number of its functional values over a given space of test functions. 

For any given ordinary function J(x* ), the functional F [cP] is linear and cont inuous. 

Schwartz noted that not all continuous linear functionals on space D are generated 

by ordinary functions through equation (B.3). For example, the continuous and lin

ear functional o[¢'] = cP(O) on space D cannot be generated by an ordinary function. 

However, this functional has the shifting property that the Dirac 0 function requires 

and no ordinary function has the shifting property, given by equation (B.l). There

fore, this approach introduces the 0 function rigorously into mathematics. Thus, the 

generalized functions can be viewed as continuous linear functionals on space D. This 

means that the ordinary functions can be seen as the regular generalized functions, 

whereas all other generalized functions (such as the Dirac 0 function) are seen as sin

gular generalized functions. In general, singular generalized functions are not defined 

pointwise but they define a functional when they are multiplied by a test funct ion and 

appear under an integral sign. Thus, when a singular generalized function appears in 
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an expression, it is always in an intermediate stage in the solution of a real physical 

problem. In what follows , one of the properties of the Dirac o function is stated. The 

concept of generalized differentiation is also introduced. Generalized differentiation 

is the most important concept in generalized function theory and the extention of the 

Reynolds transport theorem utilizes mainly this concept. 

Property of the Dirac o function . The most powerful property of the Dirac o 
function is that the integration of the product of any regular generalized function 

f (X*) and o(¢) over lR reduces to the integration of f(X*) over the boundary of the 

region, <P = 0, 

j f(X*)o( ¢) dV* = j f (X*) dS* (B.5) 

R ~=0 

[see Farassat (1996) for details]. 

Generalized differentiation. Let f (x* ) be a piecewise smooth singular generalized 

function defined on the interval [a, b] with the discontinuity at x0 E [a, b] and a jump 

at this point defined by C::.f = f(x0J- f (x0_). Let¢ E D and x0 E ¢(x*). IfF[¢] is 

the functional representing f (x* ) given by equation (B.3) , then supp ¢ = [a, b], and 

the generalized derivative can be defined as 

F'[¢] = -F[¢'] = -1b f(x*)¢' dx* = 1b J'(x*)¢(x* ) dx* + t::.f¢(x~) . (B.6) 



C. Surface force term in the 

incompressible Navier-Stokes equations 

In continuum mechanics, surface forces acting on a material volum V*(t*) are mod

eled with stress tensor a. External surface force~· acting on V*(t*) is computed as 

the surface integral over the boundary of a material volume, oV*(t* ), as 

~· = j a . n: dS*. 

v· (t•) 

(C.l) 

For Newtonian fluids , stress tensor consists of the pressure and viscous contribution 

a = -p* J + J.L ('Vu + ('Vuf). (C.2) 

However, majority of fluid mechanics textbooks utilize the diff rential form of the 

incompressible avier-Stokes equations, in which surface fore s are repre ented by 

a'= -p* I+ J.L \lu. (C.3) 

Equation (C.3) can be deduced from equation (C.2) in the following manner. First, 

equation (C.l) is rewritten as 

(C.4) 

after making use of the divergence theorem. ext, the divergence of the stress tensor 

is calculated as 

\7 . a= -'Vp* + (\7. j.t'Vu + 'V(\1· u)). (C.5) 
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This is done by making use of equation (C.2). The last term in quation (C.5) contains 

the velocity divergence, \1 · ii* , which is zero for incompressible fluids. Thus, 

\1· a- = -\lp* + \1· J.L\lil* . (C.6) 

Substitution of equation (C.6) into equation (C.4) yields 

~* = J (- \lp* + \1 · J.L\lii*) dV*. (C.7) 

V• (t• ) 

Finally, the divergence theorem is used to express equation (C.7) in the form 

~· = j ( -p*] + J.L\lil*) · n dS* = j G-' · n dS*. (C. ) 

av•(t•) v· (t• ) 



D. Invariance of the governing equations 

in non-inertial frame of reference 

The incompressible continuity and Navier-Stokes equations satisfy a special invari

ance in the non-inertial frame of reference, X= {x--:. , t*} , that is moving in the x *-

and y* -directions (but is not rotating) with respect to the inertial frame of refer

ence, X= {X*, t*}, [see, for example, Panton (1996)]. Here, X* = (x*, y *, 0) , 

if* = (X* , fj* , 0) and the origin of the non-inertial frame of reference, X, moves 

with an arbitrary velocity v--;. = ( v~, v~, 0). The spatial coordinates and velocities in 

inertial, X, and non-inertial , X, frames of reference are related as 
t• 

x--;. = x - j v--;.(t') dt' , F = t*. (D.1) 

0 

The partial derivatives in inertial, X, and non-inertial, X, frames of reference can be 

related as follows 
a a a a ~ a 

----V*-
at*- a? ax-;. ' 

(D.2) = 
ax* ax-;.' 

after making use of the fact that ~ is constant in space and using equation (D .1). 

Equations (2.32) and (2.42) coincide with equations (2.8) and (2.9) in the fluid. Thus, 

it is sufficient to show that equations (2 .8) and (2.9) are invariant in the non-inertial 

frame of reference, X. Consider the differential form of equations (2.8) and (2 .9) , 

ap + '1 . pu = o (D.3) 
at* ' 

~u ~ 
at* + (pu · '1) u = - 'Vp* + '1. (1_~,\lu) + pF* (D.4) 
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Equation (D.3) can be rewritten in the non-inertial frame of reference, X, as 

8p 8u* 8v* 8p - 8p 8 (U* + vn 8 (V* + v2) 
-+-+-=--V*-+ + (D.5) 
ot* ox* oy* a? ax-:. ox* ofl* · 

This is done after making use of equation (D.2). For Newtonian fluid (p is constant) 

equation (D.5) can be rewritten as 

8p 8u* 8v* 8p 8U* 8V* 
-+-+-=-+-+-=0 
ot* ox* oy* at:· ox* ofl* · 

It is seen that equation (D.3) coincides with equation (D.6). 

(D.6) 

Consider the momentum equation (D.4). This equation can be written in the com-

ponentwise form as 

8pu* * 8pu* * 8pu* op* (82
u* 82u* ) * --+u --+v --=--+t-L --+-- +pF 

ot* ox* oy* ox* 8x*2 8y*2 1 
, 

(D.7) 

8pv* * 8pv* * 8pv* - - op* ( 82v* 82v*) * 
f)t + u 8 + v 8 - 8 + f-L 8 2 + 8 2 + pF2 . * x* y* y* x* y* 

(D.8) 

In what follows , only equation (D. 7) is considered. Equation (D.8) follows a similar 

approach. The unsteady, convective, pressure and diffusive terms in equation (D.7) 

can rewritten in the non-inertial frame of reference, X , as 

opu* opU* opvT • orJU* • opU* 
--=-=-+-=--V ---v --
ot* ot* ot* 1 ox* 2 ofl* ' 

* 8pu* ~. 8pU* * 8pU* 
u -8 = u a~ + vl a~ , x* x* x* 

op* 
ox* 

8p* 
ox*' 

02u* 02U* 
8x*2 - fJX*2, 

(D.9) 

(D.lO) 

(D.ll) 

after making use of equations (D.l) and (D.2). Substitution of equations (D.9)-(D.11) 

into (D.7) yields 

(D.12) 
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where 

-F * F* * 1 = 1 - a1, (D.13) 

Similarly, equation (D.8) takes the form 

fJpV* ~* fJpV* - fJpV* [)p* [J2fj* [J2fj* ---; 

fJt* + u fJx* + v a? = - fJx* + 1-l fJx*2 + fJft2 + pF2 , (D.14) 

where 

* fJv~ 
a2 = --=-· 

fJt* 
(D.15) 

Here, ai and a2 are the x*- and y* -components of the acceleration of the non-inertial 

frame of reference, X, fi* = (ai,a2,0), re pectively. It is seen that quations (D.7) 

and (D.8) coincide with equations (D.l2) and (D.l4). 



E. Proper orthogonal decomposition 

In this appendix, the outline of the proper orthogonal decomposition (POD) anal

ysis is given. In POD method, the sampled data (for example, vorticity field , () is 

represented as a vector-valued function 

(1 (x\) (2(x1) (M (xl) 

(= 
(1(£'2) ( 2(i2) (M(X2) 

(E. l ) 

(1 (XN) (2(i2) (M(XN) 
using a time series, (t(i), obtained from a numerical simulation or an experiment. 

Here, t i time; x denotes a position in space; N is the number of positions in the 

spatial domain and M is the number of sample taken in time. A uitable POD basis 

<P = (<p1 , .. ,<pN) can be obtained by solving the eigenvalue problem 

C<P = .-\<P . (E.2) 

Then, the solution (t(i) can be expressed by a linear combination of the eigenfunctions 

as 
K 

(k(x) = L ak(t)<pk(x), K < N (E.3) 
k= l 

using the POD modes. Here, C(x, x' ) = (((x), ((x)') is the t ime-averag d correlation 

matrix; K is the number of modes used for t runcation and ak are modal coefficients 

that can be determined by projection of the ensemble of data onto the POD modes. 

Sirovich (1987) has shown that when the number of collected t ime amples is smaller 

than the space discretization, the eigenfunctions can be repr sented as linear combi-
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nations of the snapshots by 
M 

cp(x) = 2.: bi( i (x). (E.4) 
i=l 

Substituting equation (E.4) into equation (E.2) results in 
N 

CB = >.B , where Ci,j = ~ L (i (xk)(1(xk). (E.5) 
k= l 

Hence, the POD eigenvalue problem (E.5) is solved and the POD eigenfunction ar 

determined as a combination of eigenvectors and the snapshot . Th coefficients of 

POD eigenfunctions are calculated by conducting the orthogonal proj ction of th 

data onto the set of POD basis functions. 










