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Abstract 

This study addresses the biophysical factors that influence population connectivity during 

the early life history of Atlantic cod (Gadus morhua) in coastal Newfoundland. In 

Chapter 1, I review how connectivity is regulated by biophysical proce ses and should be 

a central consideration in spatially-oriented management and conservation. The econd 

chapter illustrates connectivity as ociated with a known source of pelagic eggs (Smith 

SOLmd). Dispersal patterns did not vary over the spring and summer period of egg 

production, with a net export estimated at 13%/day. Data suggests that connectivity i 

limited to Trinity Bay. The final chapter addresses larval behavioural contributions to 

cmmectivity. Concomitant increase in spatial heterogeneity with the transition to an 

inertial swimming environment and spatial association with upstream optimal nursery 

habitats suggest that swimming influences dispersal and connectivity. This study 

demonstrates how a better understanding of connectivity is better achieved through 

synergistic study of biophysical interactions. 
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Introduction and Overview 

Marine fisheries literature of the Twentieth First Century has increasingly focused on 

con ervation, sustainability, and potential productivity. Globally, fisheries resources 

account for - 20% of world animal protein consumption and provide primary 

employment to over 200 million people globally (Botsford et al. 1997). Despite their 

value, many ocean fisheries resources are in peril. Globally fisheries are yielding 

progressively lower catches, despite constant or increasing fishing effort (Watson and 

Pauly 2001). Commercial fishing can reduce community biomas by approximately 80% 

within 15 years of exploitation. It is estimated only 10% of the pre-industrial large 

predatory fish stocks currently remain, the decline of which is largely due to fishing 

activities (Myers and Worm 2003). Disturbing results like these have spurred new 

research that focus on determining the primary factors that maintain marine population 

structure and how these factors can help to conserve natural populations. 

In order to apply conservation strategies effectively, it is impo1tant to understand what 

factors influence the spatial dynamics of the population of interest (Panteleev et al. 2004; 

Bradbury et al. 2008; Snelgrove et al. 2008). Connectivity defines the degree of exchange 

of individuals between two discrete sources, which is mediated by dispersal during the 

early life history (i.e., egg and larvae stages of an organism; (hereon in ELH) (Cowen et 

al. 2007). Understanding the linkages and spatial dynamics of population during all 

ontogenetic stages of an organism is essential to understanding connectivity. Connectivity 

influences not only spatial structure but the large-scale temporal stability of a population 

(Hastings and Botsford 2006). During ELH, connectivity is strongly driven by the 
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physical environment (Bradbury et al. 2003). The physical environment influences gg 

stage development (Pepin et al. 1997), dispersal potential ( deYoung and Rose 1993), 

both egg (Parada et al. 2003) and larval bouyancy (Saborido-Rey et al. 2003), larval 

growth (Guan et al. 2008; Bodchadsky et a!. 2008)), and the swimming environment 

around the developing larvae (Fuiman 1997). Biological-physical interaction drive the 

successful tran port of early life stages in critical habitat (Cushing 1990; deY oung and 

Rose 1993; Snelgrove et al. 2008). For the population as a whole, the successful 

transition from the early life history stages to the juvenile stage (recruitment) is vitally 

important (Smedbol eta!. 1998). Despite the overwhelming evidence that dispersal is a 

key factor in defining population stmcture, published estimates of dispersal in the marine 

realm are few (Levin 2006). 

My thesis addre es spatial stmcture and connectivity in a single bay, within the context 

of the physical environment. My first chapter provides a comprehen ive literature review 

of the linkages between the physical environment, dispersal, and connectivity, with a 

particular focus on fish species. It also highlights key biological-physical interactions and, 

in so doing, lays the groundwork for the next two chapters. My second chapter illustrates 

the temporal and spatial patterns of eggs and larvae within a source region and radiating 

out from it. Various models, created in Matlab and used in conjunction with field data, 

provide a basis for estimates of dispersal and connectivity from Smith Sound in Trinity 

Bay, NL. The establishment of spatial pattern through ontological development during 

ELH are then examined from the Smith Sound point source. Thi model framework is 

then used in analyses to determine what factors influence connective or di persive 
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patterns from cod originating m Smith Sound. Temporal variation is addressed both 

seasonally and annually, in a comprehensive examination of dispersal during the entire 

spawning period. The applicability of this model is then tested empirically using 

ichthyoplankton data obtained from four surveys within Trinity Bay. The final chapter 

addresses the degree to which active behaviour (e.g. swimming) influences connectivity. 

This topic is addressed by combining hydrodynamic theory, laboratory swimming 

experiments (data from Guan et al. 2008), and field observations. Again empha is i 

placed on the overarching theme of how the physical environment provides the structure 

for the biological pattern. 
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Chapter 1. Connectivity of the early life history stages of larval fishes: Evaluating 
the roles of the physical environment. 

1.1 Introduction 

"The deepest sin against the human mind is to believe in things without evidence" 
Thomas Huxley. 

For many aquatic species life is spent immer ed in fluid, and not surprisingly the physical 

properties that characterize this fluid environment govern many of the biological 

processes we observe. In the marine realm, organisms have developed life history 

strategies that are tuned to this environment, enabling populations to disperse into 

favourable habitats and exchange individuals with other spatially extant population . 

Dispersal is one of the most impmtant life history traits in terms of its influence on 

evolutionary processes and population persistence (Mora and Sale 2002). For many 

marine organisms, dispersal occurs primarily in the planktonic environment during their 

early life history (egg and larval stages). Through circulation and CUITent pattern , the 

pelagic environment provides a potential oppoltlmity for extensive movement of 

propagules within and among populations (Cowen 2000). Survival in the pelagic zone is 

inherently variable as a result of the spatial patchiness of both predators (McGurk 1986) 

and food resources (Cushing 1990). Researchers have infened that the pelagic dispersive 

stage provides a selective advantage through exchange of individuals among populations 

(Barlow 1981) while hedging against a pelagic environment that can be variable in its 

suitability for larval survival (Dohe1ty et a!. 1985). 

6 



For the most part, the pelagic dispersal phase is structured by the physical environment 

encountered by the organism during this dispersive stage (e.g., Baumann et a!. 2003). 

Oceanographic currents, for example, have the potential to disper e passive eggs and 

early stage (i.e., limited motility) larvae over large distance (Cowen 2000; Bradbury and 

Snelgrove 2001). The duration of this pelagic dispersive stage is largely dependent on 

temperature which, in turn, dictates the extent of dispersal (Bradbury et al. 2003 ). Larval 

swimming ability has been acknowledged to be sufficiently strong to influence dispersal 

patterns in reef fish (Wolanski et al. 1997) and, more recently, in cold water fishes (Guan 

et a!. 2008). The physical environment encOlmtered by these small organisms can 

profoundly influence the potential contribution of swimming behaviour (von Herbing 

2002). Because it influences almost all facets of dispersal, the physical environment 

provides a useful framework in which to examine connectivity, defined as the degree to 

which populations are reproductively linked. 

The data gaps on marine population structure and function are particularly striking for 

early life history stages. The limited connectivity data available for early life history 

stages represents a significant ob tacle to understanding population structure (Cowen et 

al. 2007) and succes ful implementation of marine management and conservation goal 

(Hastings and Botsford 2003). The following review summarizes research on marine 

connectivity and how it might be used as a tool in management of marine species. 

My review also aims to demonstrate the influence of the physical environment in defining 

population stmcture through its effects on dispersion and connectivity of pelagic early life 
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history tages of marine fishes . The tandem assessment of physical and biological 

processes in early life history stages is nece sary to evaluate connectivity and its role in 

structuring marine populations. 

1.2 Modelling marine populations in a fragmented world 

"The metapopulation concept is here to stay in marine ecology. Science demands it, 

fisheries management needs it, and it is the last hope for marine conservation. " 

Joan Roughgarden 

The orientation of individuals, in both space and time, defines the tructure within and 

among populations. One key issue in understanding how or what might influence the 

persistence of a species in a given environment is the evaluation of the population 

tructure. Defining the mo t appropriate tructure to apply to a marine ystem is often 

debated and is largely dependent on cale (Bradbury et al. 2000), which can differ 

significantly among populations and specie . Maintaining the integrity of population 

structure is essential for the long-term persistence and sustainability of population 

(Tilman and Downing 1994). A conceptual model that describe population structure and 

function can provide invaluable information about the factor that influence patial 

persistence, and provide a defensible basis for many conservation and management 

decisions. 
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Research has demonstrated that marine ecosystems are comprised of a heterogeneou 

landscape of environmental conditions that determine key population parameters such as 

survival and persistence (Cowen et al. 2006). Thi heterogeneity, coupled with human 

activity (e.g., fishing disturbance), has fragmented critical habitat for many marine 

species and tructured population into a framework of discrete patches (Casagrandi and 

Gatto 2006). This concern is particularly relevant in light of evidence that fi hing 

pressures can select against large-scale natural dispersal (Baskett et al. 2007), thereby 

promoting higher local retention. Recent genetic work ha hown that population of 

highly mobile and abundant specie uch as Atlantic cod (Gadus morhua), which were 

once thought to be relatively panmictic, actually exhibit sub tantial spatial tructure 

(Ruzzante et al. 1996, 2000, 2001). In light of such findings, the concept of marine 

metapopulation ha become increasingly accepted as a widely-applicable model to 

describe marine populations (Kritzer and Sale 2004). The metapopulation concept hold 

promise for use in conceptual models that provide a holistic under tanding of what factor 

mediate population structure, and allow conservation biologi ts and fisheries manager to 

make more informed and robust decisions on threatened or commercially-valuable 

species (Hutchings 1996; Smedbol and Wroblew ki 2002). 

Defining marine metapopulations 

Historically, a metapopulation was described as a " population of populations", consisting 

of discrete population units with some degree of exchange of individuals, or connectivity, 

and probability of extinction (Levin 1969). Levins (1969) work was originally applied to 

tenestrial insect populations, but the utility of this model for describing fragmented 
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populations has led to its use in the manne realm (Smedbol and Wroblewski 2002; 

Kritzer and Sale 2006). These studies have frequently applied the metapopulation concept 

in the absence of empirical data (Grimm et al. 2003), while others have done so without 

clearly defining what is meant by metapopulation (e.g., Smedbol and Wroblewski 2002). 

Two schools of thought stmound the application of Levins ( 1969) conceptual model to 

marine systems and these schools are divided on whether to incorporate differences in 

extinction probability when defining spatial heterogeneity (Kritzer and Sale 2004). 

Smedbol and Wrobleski (2002) and Grimm et al. (2003) argue that a marine 

metapopulation is comprised of a set of semi-independent populations of which at least 

one must have some probability of extinction as that metapopulation persists. The focus 

on extinction probability links to the observation that environmental conditions must vary 

among sub-population units so that they are truly independent in the absence of any 

connective processes (Grimm et al. 2003). Other authors use a more simplistic view in 

which a metapopulation is defined as a set of semi-independent breeding units with 

limited exchange of individuals (Hanski and Gaggiotti 2004; Kritzer and Sale 2004, 

2006). The more relaxed definition emphasizes the importance of metapopulation 

stmcture in defining linkages between local- and regional-scale processes (Kritzer and 

Sale 2004), and offers a method to study and analyze a wider variety of fragmented 

marine populations. 

When the original tenets of Levins' model are relaxed and the focus is placed on defining 

linkages, it is possible to model a wide variety of possible spatial population structures 

within a metapopulation framework (Kritzer and Sale 2004). For example, mixed 
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metapopulations illu trate a situation where a few subpopulations are very closely linked 

and provide dispersers to more isolated subpopulations (e.g., Atlantic cod, Smedbol and 

Wroblewski 2002). Source-sink models refer to a ystem consisting of subpopulations 

with positive growth (sources), which provide individuals to subpopulations with 

negative growth (sinks) (Crowder et al. 2000). Mainland-island models describe 

populations where one large, temporally-persistent subpopulation (the mainland) provides 

individuals to much smaller and less persistent satellite subpopulations (islands) 

(Freckleton and Watkinson 2002). These frameworks demonstrate the flexibility of 

metapopulation models and exemplify how connectivity fundamentally underpins their 

use. Once applied, these models can highlight processes that are vital to spatial 

persistence, therefore directing marine management and conservation initiatives (Gaines 

et al. 2007). 

Conservation and marine metapopulations 

Marine conservation initiatives typically focus on maintaining a particular species or 

feature (e.g., habitat) through the removal of human pressures such as fishing (Mun·ay et 

al. 1999; Botsford et a!. 2001). These areas are often referred to as marine reserves or 

marine protected areas (Cowen et al. 2007), and in the absence of fishing pressure may 

become sanctuaries where population can increase in abundances to a level where they 

can self-seed and also seed adjacent unprotected areas (spillover), thereby offsetting the 

cost of lost access. This design offers fishery managers some insurance against 

overexploitation (Murray et a!. 1999) that is relatively cheap to implement (Halpern 

2003). This conservation tool can be utilized singularly or within a network. Marine 
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reserve networks not only supplement mean population levels but can also conserve some 

aspects of spatially-distributed metapopulations, so that the sum effect is greater than the 

parts. The shift in embracing biological spatial data into the design of marine reserve 

networks meshes conservation goals with patially-oriented management that utilizes 

metapopulation models to describe marine populations (Hastings and Botsford 2003). 

Successful design and implementation of marine reserves or networks often hinge on 

knowledge of connectivity and dispersal. Connectivity considerations can influence 

decisions on the size of a reserve. Large re erves may not export sufficient propagules to 

suitable non-managed areas. In contra t, small reserves might not self-recruit, potentially 

leading to local extinction within the reserve (Botsford et a!. 2001; Alpine and Hobday 

2007). Metapopulation models highlight the critical linkages that underlay population 

structure and provide the baseline data needed for successful marine reserve network 

design (Gaines et a!. 2007). Connectivity can mediate survival in adjacent areas (termed 

the 'rescue effect', Brown and Kodric-Brown 1997), and can maintain population 

structure in the presence of local extinctions. In addition to size, appropriate spacing is 

needed to ensure that propagules can disperse between and within the spatial network. 

Lack of empirical data on dispersal processes can also lead to ineffective placement of 

marine reserves, often leading to reduced recruitment or population levels (Fogarty 2000). 

Baskett et a!. (2007) suggest that marine reserves that are too large might select for short 

dispersal, because survival probability often decreases outside the reserve (e.g., Halpern 

2003) declining the utility of a single large reserve, versus a network of mailer reserve , 
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design. Clearly, connectivity must be considered as a guiding factor in the de ign of 

marine reserves and networks. 

Crucial gaps in understanding marine metapopulations 

Despite a clear need for better ocean management, there little empirical data on 

connectivity to use in design of effective marine reserves (Botsford et al. 2003; Cowen et 

al. 2006; Fogarty and Botsford 2007). Many marine reserves have been designed and 

implemented based on political or societal pressures rather than relevant biological data 

(Sala et al. 2002; Grimm et al. 2003; Halpern 2003). Several reviews have summarized 

strong evidence that marine re erves can meet the goals of increasing mean population 

levels in and outside management boundaries (Hastings and Botsford 2003; Halpern 

2003; Palumbi 2004), however, designs that do not incorporate an understanding of 

connectivity may never attain management and conservation objectives. Despite the 

theoretical appeal of metapopulation models, a lack of quantitative information on 

connectivity during early life histories generates uncertainty about their efficacy for 

marine management and conservation goals (Fogarty and Botsford 2007). 

1.3 The role of biological-physical linkages in defining connectivity 

"Fluid is the skeleton fleshed out in biological design" 
Steven Vogel 

The scale and extent of connectivity in linking populations is dependent on the exchange 

of individuals which, for many marine organisms, is primarily accompli hed through 

pelagic dispersal during their early life history (Cowen et al. 2007). Dispersal is 
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inherently a product of biological-physical processes that regulate species responses at 

large and small scales (Gawarkiewicz et al. 2007). These processes, driven by either 

passive drift or active swimming, fall within the bounds of the mechanical constraints of 

the fluid environment in which they occur. In this sense the phy ical environment is the 

driving mechanism for the dispersive processes that influence large-scale population 

characteristics (Mann and Lazier 2006). Many authors have examined the role of the 

physical environment in dispersal and recruitment of organisms with pelagic dispersal 

stages. Research on temperature and egg development (Bradbury et al. 2001), egg 

urvival (Pepin 1991), oceanographic forcing (deYoung and Rose 1993, Vander veer et 

al. 1998), upwelling (Ings et al. 1997), larval swimming (von Herbing 2002; Guan et al. 

2008), salinity (Nissling and Westin 1991), and even buoyancy of eggs (Parada et al. 

2003) and larvae (Saborido-Rey et al. 2003) have been implicated in recruitment 

variability. The relationship between the physical environment and production has been 

shown to differ among species with different spawning strategies, with a suggested 

'tuning' of spawning to optimal developmental environments (Snelgrove et al. 2008). A 

better understanding of spatial and temporal variability in dispersal during the early life 

history is essential to effective implementation of conservation trategies uch as marine 

reserves (James et al. 2002; Palumbi 2004; Apline and Hobday 2007), metapopulation 

models (Kritzer and Sale 2006), and our understanding of key influences on local 

population dynamics (Gaines et al. 2007). 

Biological-physical interactions and passive dispersal 
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Passive dispersal predominates in egg and early larval development stages where there is 

little or no behavioural contribution to patial patterns (Hjort 1914). Thus, pelagic life 

history stages are often considered to be passive patticles whose patial pattern is dictated 

primarily by local circulation features. The movement and development of these particle 

is crucial to understanding how connectivity and large-scale proce ses regulate population 

dynamics. The importance of this passive dispersive stage was highlighted by Harden­

Jones (1968), who suggested the "migration triangle hypothesis" in which population 

spatial patterns are the product of circulation patterns that link spawning grounds to 

nursery habitats, thus regulating connectivity during the early life history. 

The interplay between the physical environment and spawning bioma s is fundamental to 

understanding recruitment variability in marine organisms (Harden-Jones 1968; Begg and 

Marteinsdottir 2002). Variables such as survivorship and recruitment are inherently 

linked to population stability (Bradbury et al. 200 1) and spatial persistence (Botsford and 

Hastings 2006). Linkages between the physical environment and recruitment variability 

are numerous (e.g., Bradbury et al. 2003; Miller et al. 2006). Given the constraints 

imposed by the physical environment on dispersal (e.g. , circulation and seasonal 

temperatures) timing of spawning in the context of circulation, development, and 

spawning strategy is vital in order to place eggs in a suitable environment for survival and 

recruitment (Snelgrove et al. 2008). Increased mortality rates are associated with a 

spatial/temporal mismatch with resources or suitable environments, leading to spawning 

propagules not reaching appropriate settlement s ites (McCormick 1999), growing into or 

escaping prey fields of dominant local predators (Paradis et al. 1999), or prolonged 
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passive periods susceptible to heightened predation (Dahlberg 1979; Meekan and Fortier 

1996). The timing and placement of spawning propagules into circulation patterns that 

facilitate retention or movement to optimal nursery areas has been formalized as the 

'match-mismatch' hypothesis (Cushing 1990). Cushing (1990) suggested that overall 

abU11dance of fish larvae is regulated by concentration, where total larval abundance in a 

patch is limited by food resources. Bochdansky et al. (2008) provide an example of thi 

relationship concluding that environmental conditions which increa ed predator-prey 

encounter rates were positively related to increased larval growth and survival of radiated 

shanny ( Ulvaria subbifurcata). De Young and Rose ( 1993) suggested that tuning 

spawning to optimal physical variables as the 'right site' hypothesis. Specifically, they 

argued that Atlantic cod (Gadus morhua) spawn in areas where circulation patterns 

facilitate dispersal to optimal habitats or contribute to shorter pelagic durations. Iles and 

Sinclair (1982) coined the 'member-vagrant hypothesis', which suggested that 

recruitment variability is defined by oceanographic processes where vagrants, or 

"members" placed in unfavourable environments, had decreased probability of survival. 

The overall abundance in a patch in this case is not food limited but instead defined by 

the scale of the oceanographic processes that create spatial structure. Bakun (1996) 

proposed the 'ocean triad ' hypothesis where enrichment, concentration processes, and 

retention mechanisms facilitate suitable nursery habitats. Bakun' triad places a particular 

focus on circulation as a key element in retention (Miller et al. 2006), and has been used 

to describe sub-population structure in European anchovy (Agostini and Bakun 2002). 

The "stable ocean hypothesis" (Lasker 1978), suggests that larval survival rates are 

positively related with vertical ' tratification, which increases prey abundance around 
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pynoclines and thus enhance larval survival rates. The stable ocean hypothesis focuses on 

processes similar to the second tenet of Bakun's (1996) ocean triad hypothesis, 

emphasizing the physical environmental link between recruitment and spatial 

heterogeneity in marine systems. Both predator and prey are often subject to the same 

oceanographic conditions leading to divergent or convergent processes impacting 

survival. These oceanographic conditions can place larvae to optimal food conditions but 

might too also converge with predators leading to decreased larval survival (see Pepin et 

al. 2002; 2003). These diverse hypotheses and findings clearly illustrate the importance of 

biological-physical interactions in regulating recruitment processes which, in turn, impact 

realized connectivity and spatial heterogeneity. 

The influence of the physical environment on the scale of passive egg dispersal 

Circulation is intrinsically related to the movement of passive particles through space and 

time which, in turn, can determine scales of connectivity. Circulation pattems dictate the 

spatial scale at which observed population structure operates (e.g., local bays, coastal 

areas, broad shelf). Indeed, circulation can define spatial structure and dispersal during 

the early life history of organisms (Laprise and Pepin 1995; Cowen et al. 2006), acting as 

a dispersal pathway or barrier (Gaines et al. 2007). It has long been acknowledged that 

understanding dispersal requires information on local circulation patterns (reviewed by 

Brickman et al. 2007). Detailed circulation models give researchers estimates of ambient 

flow conditions, which can be used to forecast patterns of eggs and larvae through space 

and in some cases time (Panteleev eta!. 2004). 
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Circulation models can be applied to passive drift studies on a spectrum of spatial cates. 

On large (lOO's of km) scales, variability in year class strength of plaice (Pleuronectes 

plates sa L.) has been linked to variable circulation in the southern North Sea (Van der 

Veer et al. 1998), and mesoscale physical processes in the central Cantabrian Sea have 

been shown to strongly influence larval fish retention and survival (Gonzalez-Quir6s et 

al. 2004). Davidson and de Young (1995) suggested that inshore branches of the Labrador 

current transport eggs and larvae spawned offshore in the north into southern, inshore 

embayments, thereby acting as a possible transport vector between spawning stocks and 

suitable nursery areas. Discrete spatial structure of Atlantic hen·ing stocks are maintained 

by a combination of optimal spawning time, which results in shorter or longer pelagic 

larval durations, and transport by eastern Atlantic currents (Iles and Sinclair 1982). 

Several studies of Georges Bank have linked specific oceanographic features to retention 

or advective loss of cod and haddock eggs and larvae (Page et al. 1999; Lough et al. 

2006). Kloppmann et al. (2001) determined that the spatial persistence of a population of 

European blue whiting (Micromesistius poutassou) was facilitated by spatially and 

temporally persistent Taylor column formations in the waters over Georges Bank, which 

enhanced egg retention. In Alaska's Shelikof Strait, persistent circulation pattern 

contribute to the fragmented spatial structure of the early life history stages of walleye 

pollock (Theragra chalcogramma) (Stabeno et al. 1996). These examples of large-scale 

circulation patterns underpin how physical processes can be vital to connectivity among 

spatially extant populations, especially for the passive early life history stages of marine 

organtsms. 
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On small scales ( <1 00 km) many tudies have I inked local circulation patterns and egg 

and larval spatial patterns. For example, James et al. (2002) demonstrated that circulation 

over the Great Barrier Reef flushed many of the spawned eggs, leading to les self 

recruitment than was suggested by Cowen et al. (2000) for Caribbean reefs. Appropriate 

temporal and spatial placement of propagules can lead to retention to nursery habitat 

within Placentia Bay, Newfoundland, however, mean circulation can flu h larvae from 

the bay if the spatial/temporal optima are mismatched (Bradbury et al. 2000; 2003). Pepin 

et al. ( 1995) noted that the influence of physical processes on mortality and flushing from 

Conception Bay, Newfoundland wa variable and recommended cautious interpretation of 

the role of physical transport. Similarly modelling work by Helbig and Pepin (1998 a,b) 

further highlighted the importance of interactions between the scale of sampling and 

oceanographic processes in the interpretation of key factors influencing cmmectivity such 

as mortality. As with the large-scale proces es described earlier, these examples of local 

processes demonstrate how even small-scale (<100km) physical proce se can play a 

s ignificant tructuring role in ob erved biological patterns. 

The spectrum of scales over which dispersal and connectivity occur ha ramifications for 

the application of metapopulation concepts (Karlson 2006; Gaines et al. 2007). As 

connectivity increases, the spatial structure of a metapopulation decrease (Hanski 1989). 

For example, connectivity among multiple coastal "bay" subpopulations might be 

sufficiently strong that the populations respond and function as one autonomous unit. In 

this case, a metapopulation framework is inappropriate, at least at the spatial scale of the 

"bay" (Grimm et al. 2003). In terms of persistence, the "openness" of a population is 
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critical to how much self-recruitment occurs relative to dispersal to other population , 

thus determining the degree to which a population is panmictic and resilient to local 

extinction (Hanski 1989). Full evaluation of connectivity and spatial heterogeneity of 

adult populations will help to identify the ecologically-relevant scales at which disper al 

offsets mortality associated with local environmental conditions (Cowen et al. 2006, 

2007) and, therefore, how subpopulations link to a larger metapopulation. 

The biological-physical linkages regulating active dispersal 

The larval dispersal phase is a crucial element in recruitment variability and has the 

potential to contribute to connectivity among spatially-distinct population . Laboratory 

studies (Bell wood and Fisher 2001; Clark et al. 2005, Guan et al. 2008), and field 

analy es (Bradbury et al. 2003; present study Chapter 3) uggest that larval swimming 

behaviour has the potential to influence dispersal trajectories significantly. Even simple 

behaviours can influence dispersal, producing patterns that differ drastically from those 

predicted by a passive null model (Gawarkiewicz et al. 2007). In a review of the 

published literature, Cowen et al. (2006) argued that the early onset of active larval 

movement has a major influence on the dispersal potential of reef fish. Several studies 

have demonstrated that pre-settlement fishes are competent swimmers (Stobutzki and 

Bellwood 1997) and exhibit strong swimming directionality (Leis et al. 2007) that can 

facilitate retention on reef systems (Leis et al. 1996, Wolanski et al. 1997). Bradbury and 

Snelgrove (2001) reviewed the broad topic of larval disper al and concluded that active 

swimming behaviour could play a significant role in dispersal. Stabeno et al. (1996) 

argued, in their analysis of larval Alaskan walleye pollock patch dynamics, that larvae 
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maintain spatial structure by active swimming at 5-6 weeks post hatch. Determining when 

and to what degree larval behaviour influences dispersal has the potential to increase 

accuracy of dispersal predictions relevant to population models. 

In addition to passive processes, the physical environment has a significant structuring 

role in how behaviour can mediate dispersal. When a larval fish swims, it interacts with 

the fluid medium around it and is therefore bound to the mechanical principles defined by 

that fluid environment. To understand how the shape and motion of larvae impacts 

swimming performance, information is needed on how the fluid environment influences 

thrust and drag forces (Webb 1984; McHenry et al. 2003). Of particular relevance to 

larvae is how ontogeny relates to the hydrodynamic environment, in that size and shape 

are critically important to how the fluid environment defines physical boundaries to 

swimming (McHenry and Launder 2006). Reynolds number (Re), the ratio of inertial to 

viscous forces, is a dimensionless metric that has been u ed to quantify the physical 

environment or hydrodynamic regime around a swimming organism (Vogel 2003). Re 

values less than 20 characterize an environment where viscous drag places large 

physiological demands on swimming (von Herbing 2002), whereas Re value that exceed 

300 characterize a swimming environment where inertial forces dominate and swimming 

is much more efficient (Fuiman and Batty 1997). Thus, the physical interaction between 

the fluid and the swimming organism limits swimming capability in low (Re < 20) or 

transitional (Re < 300) swimming environments (Gillis 2003). 
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During ontogeny, as larvae transition these hydrodynamic regrmes, morphological 

changes occur that often drastically change swimming ability (Gillis 2003 ; McHenry and 

Lauder 2006). Within this context Webb and Weihs (1986), suggested that for multiple 

species of fish and assuming uniform physical limitations, growth in size reflects the 

hydrodynamic environment; larvae grow faster along the longitudinal axis relative to the 

body as a whole in order to minimize viscous drag and therefore expedite their tran ition 

into an inertial environment. This idea was only partially confirmed by Muller and 

Videler (1996), whose meta-analysis of published data suggested that, although most 

species at least partially conform to this general hypothesis and adapt directly to the larval 

fluid environment, others such as Atlantic cod seem to grow in a manner that optimizes 

shape for the inertial fluid environments they will encounter later in development (Koehl, 

1996). In any case, these examples demonstrate the significant role that the aqueous 

environment plays in regulating behavioural limitations of swimming larvae, and suggest 

that the interaction between the fluid environment and the organism should be a major 

focus in further analysis. 

Temperature, and therefore viscosity, vanes both spatially and temporally. Therefore, 

swimming efficiency and growth may also vary accordingly. Von Herbing (2002) 

suggested that the impact of temperature on the fluid environment might be greater in 

cold ocean systems because cold temperatures result in higher kinematic viscosities, 

which in tum mean more viscous, lower Reynolds number environments around 

swimming larvae (Leis 2007). Larval swimming experiments carried out at temperatures 

above 15 °C suggest that the hydrodynamic environment has little or no influence on 
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swimming ability because even the smallest larvae operate in largely ine1tial 

environments (Wieser and Kaufmmm 1998). Thus, temperature has a strong influence on 

the hydrodynamic environment and swimming capability, but this effect is much greater 

in cold water. Temperature has been shown to influence wimming performance (von 

Herbing 2002; Peck et al. 2006), escape responses (Batty and Blaxter 1992), and 

wimming-relevant growth trajectories (Green and Fisher 2004; Guan et al. 2008). These 

results highlight the biological-physical interplay in larval swimming and emphasize the 

need to address larval behaviour within a physical-hydrodynamic perspective, especially 

in cold ocean systems. 

1.4 Partitioning the roles of passive and active dispersal in the field 

"A mechanistic understanding of marine population connectivity requires resolution 
of the biological and physical processes involved in larval dispersal and transport" 

Robert Cowen 

Biophysical modelling 

The difficulty in modelling marine population dynamics lies partially in the disciplinary 

separation that often divides biology from physical oceanography. In order to represent 

marine systems accurately, models must acknowledge the network of connections 

between biological and physical parameters (Santos et al. 2007). This acknowledgement 

is especially important for early life history dispersal, which has widely been accepted a 

a biophysical process (Fogarty and Botsford 2007; Gawarkiewicz et al. 2007; Pineda et 

al. 2007). Individual-based model (IBMs) take parameters from the biological 

environment (i.e., pelagic larval duration, mortality, swimming and swimming ability) 

and marry them with physical information (i.e., circulation and temperature). IBM's have 
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been useful in addressing a variety of ecological question that are pertinent to dispersal 

and connectivity in the marine realm (Bartsch et al. 2004a,b, Miller et al. 2006). The IBM 

approach is particularly attractive because it accounts for individual variability and 

therefore provides realistic models of marine biological systems (Thygesen et al. 2007). 

IBM's can provide a wealth of information but they are only as strong as the data on 

which they are based (Peck et al. 2006). The inclusion of relationships between physical 

and biological environments can produce more accurate dispersal models that better 

represent field conditions (Leis 2007). 

When does passive dispersal become active? 

Models that test dispersal and connective processes are limited by the data that they 

include. The increa ed appreciation for the degree to which larval behaviour can 

influence dispersal (Gawarkiewicz et al. 2007) punctuates the need to determine when 

and to what degree larval behaviour can influence connectivity (Leis 2007) when 

developing connectivity models. In laboratory experiments, researcher can test 

quantitatively how an environmental variable - often temperature - affects swtmmmg 

efficiency of developing larvae (Peck et al. 2006; Guan et al. 2008), but these 

experiments lack a strong connection to the physically dynamic fluid environment that 

larvae experience in the field (Leis and Stobutzki 1997). Empirical data derived from 

ichthyoplankton studies illustrate how spatial heterogeneity changes as a function of 

larval length (McGurk 1987; MatsuiTa and Hewitt 1995; Stabeno et al. 1996; Bradbury et 

al. 2003; Maynou et al. 2006), and this information has been used to infer that swimming 

behaviour is responsible for deviations from passive predictions. The transition from 
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viscous to inertial swimming environments might play a role in dictating when behaviour 

begins to mediate dispersal, and regional and seasonal temperature differences might play 

a key role in this transition (Leis 2007). The increasing body of re earch and discour e 

sutTOLmding active larval behaviour suggests an active component to larval dispersal at 

some point in development, but assessing this possibility With an interdisciplinary 

approach that utilizes the methodologies discussed above may represent our best chance 

at predicting the transition from passive plankton to active nekton. 

1.5 Summary and study objectives 

"This work illuminates how empirical studies can be used to test hydrodynamic theory 
and explore the physical world of organisms at low or transitional Re" 

Gary Gillis 

Fisheries management and conservation biology share the mutual goal of understanding 

population persistence in a spatially heterogeneous habitat landscape. Metapopulation 

biology, combined with research in connectivity, offer fisheries managers and 

conservation biologists a mechanistic approach to understanding the processes that 

underlie population spatial structure and persistence (Hastings and Bot ·ford 2006). The 

use of a metapopulation framework to identify key connective processes (Gaines et al. 

2007), in tandem with mea urements of connectivity within a biological-physical 

perspective, provide an invaluable opportunity to address many issues facing marine 

conservation and fisheries management today. 
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Atlantic cod (Gadus morhua) represents a major fishing resource for Atlantic Canadian 

and world markets (Hutchings and Myers 1994). However, overfishing in Atlantic 

Canada led to its collapse and the establishment of a fishing moratorium in 1992. Since 

then, despite a greatly reduced fishing pressure, the once great northern cod stock has 

shown little sign of rebound (Rose et al. 2000; DFO 2008) contrary to initial optimi tic 

predictions (Myers et al. 1997). In the early 1990's a large overwintering population of 

Atlantic cod was discovered in Smith Sound, Trinity Bay (Rose 1996). The discovery of 

this large aggregation of Atlantic cod garnered interest in whether an inshore population 

of Atlantic cod could contribute to the recovery of offshore populations. Smedbol et al. 

(1998) attempted to address this que tion in Trinity Bay, and found no detectable increase 

in age 0 cod as a result of increased spawning biomass in Smith Sound. Continuing 

research in Smith Sound has noted significant annual spawning activity from this large 

aggregated biomass (Rose 2003), which was recently estimated at 14,000 tonnes (DFO 

2008). Given its temporal persistence, increased understanding of egg and larval 

transport from the sound is of great interest, and might help explain the counterintuitive 

findings of Smedbol et al. (1998). Documentation of connectivity of Smith Sound cod 

with adjacent waters will also provide important insight into the larger-scale population 

structure of inshore (and perhaps offshore) Atlantic cod. 

The dynamic physical environment into which propagules are spawned has the potential 

to greatly influence connectivity and dispersal (Bradbury et al. 2001, 2003). To address 

this influence, data are needed to characterize the physical and biological processes that 

impact the study system. Moreover, there is a specific need for empirical data to confirm 
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the accuracy of dispersal model . For the passive dispersal phase, this type of data i 

necessary for quantifying biological parameters such as pelagic stage duration and 

mortality. Much re earch on active dispersal has been focused on laboratory tudies and 

on tropical coral reef systems. For cold ocean species, there are limited field data from 

which to infer behavioural contributions to dispersal and connectivity. Complementary 

studies that consider the spatial and temporal movement of spawning propagules and 

associated local environmental conditions are needed to illustrate connectivity accurately 

and understand its possible role in larger-scale questions on population level proces es. 

Chapters 2 and 3 address key issues indentified in this chapter by modeling dispersal from 

the Smith Sound spawning aggregation with empirical field data. Chapter 2 addresses the 

influence of spatial and temporal placement of propagules in the Smith Sound ystem and 

models their movement as they are flushed into the larger Trinity Bay ystem. Chapter 2 

provides empirical evidence that illustrates the movement of eggs and larvae and 

addresses how connectivity and Smith Sound may contribute to fragmented inshore and 

offshore systems. Chapter 3 specifically addresses the potential role of larval behaviom in 

dispersal, and evaluates relationships between the physical environment and active 

swimming in light of field distribution data. Both chapters address connectivity with 

empirical catch data and field ob ervations on physical variables. Collectively, the e 

chapters address the interplay between the physical environment, swimming, and 

dispersal, and the relevance of spawning from Smith Sound to larger spatial population 

dynamics. 
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Chapter 2 Scales of Connectivity for Atlantic Cod Spawning in Trinity Bay, 
Newfoundland 

2.1 Introduction 

Atlantic cod, was the mainstay of the economy and culture of the Northwest Atlantic for 

over 350 years before overfishing pushed the northern stocks of this species to near 

eradication by the early 1990s (Rose 2007). In a time span of less than 35 years the 

2J3KL cod stock, which represented the core of the northern cod population, was reduced 

from 3 million tonnes to less than 80,000 tonnes (Sinclair, 1996). The drastic collapse in 

cod stock biomass spuned the implementation of a fishing moratorium in 1992 (Lear and 

Parsons 1993) in an attempt to allow the dwindling population to rebuild. However, even 

with a 16-year absence of directed fishing effort, there has been no clear sign of recovery 

to the offshore stocks (Rose et al. 2000; DFO 2008), despite optimistic predictions to the 

contrary (e.g. Myers et al. 1997). 

With the cod stock at crisis levels, considerable research effort has been directed towards 

understanding the structure and function of current cod stock so that effective 

management frameworks can be established (Taggart 1997). In the late 1990s surveys 

indicated that offshore 2J3KL stocks remained at extremely low levels, < 8%, (DFO, 

1998) and much of the remaining bio·mass of cod was distributed within coastal bay 

habitats (Rose 1992, Smedbol and Wroblewski 1997). Traditionally the northwest 

Atlantic cod complex was viewed as a mixture of offshore and inshore components 

(Hutchings et al. 1993) where cod overwintered and spawned offshore and circulation 

patterns delivered eggs and larvae into nursery areas in coastal embayments (deYoung 
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and Ro e 1993; Pepin and Helbig 1997). During the summer many offshore cod would 

migrate to coastal areas in search of capelin, thus mixing with the smaller resident inshore 

cod population (Pinhorn 1984). As a result of this mixing the two stocks were often 

combined in management scenarios, with priority consideration for the main offshore 

resource (Wroblewski eta!. 2005). 

In the mid 1990s, a large spawning aggregation of approximately 17,000 tonnes (DFO 

1998), was located in Smith Sound on the westem side of Trinity Bay Newfoundland 

(Wroblewski et a!. 1994, Rose 1996, Smedbol et a!. 1998). The observation that this 

overwintering aggregation remained inshore year round and represented the majority of 

the remaining 2K3KL cod biomass (Rose 1996), sparked interest in the potential role that 

inshore spawning events might play in any recovery of offshore stocks (e.g Smedbol and 

Wroblewski 1998, Wroblewski eta!. 2005). Moreover, new genetic data at the time, that 

demonstrated spatial structure in the remaining stock (e.g. Ruzzante et a!. 2000, 2001). 

Collectively, this evidence underscores the need for spatially-oriented conservation and 

management strategies (e.g. Fogarty and Botsford 2007) in order to facilitate long-term 

recovery of offshore stocks and sustain the remaining inshore population (Smedbol and 

Wroblewski 1998). 

The use of marine metapopulation models offers great promise for better understanding of 

population spatial structure and its application for marine management (e.g. Cowen et a!. 

2007, Gaines et a!. 2007). The heterogeneous mosaic of sub-populations within and 

between bays in coa tal Newfoundland (Ruzzante 2000, 200 1) is maintained through 
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dispersal, the magnitude of which i defined as connectivity (Bradbury et a!. 2008). The 

egg and larval dispersive stages represent an opportunity for connectivity between 

spatially extant population sub-units (Cowen et a!. 2006) and is often the defining life 

history stage for population structure (Harden-Jones 1968; Cowen eta!. 2000). 

Several studies have considered the function of inshore populations, particularly Smith 

Sound, to the 2J3KL cod stock complex. Wroblewski et a!. (2005) suggested that the 

coastal environment might represent a "heattland" where outmigration from the optimal 

coastal habitat to offshore habitats was dependent on cod density inshore; at some 

threshold density, a subset of individuals would begin to migrate to offshore 

overwintering and spawning grounds, similar to what Rose (1996) suggested earlier. A 

comprehensive understanding of connectivity from the inshore stock complex during the 

early life history is fundamental to any metapopulation model and its application to 

understanding how the inshore population might contribute to any offshore recovery. 

Smith Sound represents a unique opportunity to explore connectivity of eat·ly life history 

stages of Atlantic cod that originate from a discrete inshore spawning event in a spatially 

distinct area. Smith Sound fjord is relatively small ( -36 km2
) and geographically bounded 

by land on three sides, resulting in a natural system in which eggs and larvae disperse 

from a defined point source (Smedbol eta!. 1998). Although Smith Sound supports the 

largest known remaining aggregation of Atlantic cod in the 2J3KL stock complex (Rose 

2003), previous work in the area did not detect any significant signal of increased age 0 

cod settlement or linkage between early life history densities and the Smith Sound 
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biomass spawners (Smedbol et al. 1998). These results bring into question the biological­

physical linkages that define connectivity of Smith Sound with surrounding Trinity Bay 

and the larger scale 2J3KL population. 

My study addresses two questions relating to dispersal and connectivity within and 

beyond the Trinity Bay system: 1) What are the dispersal characteristics of eggs and 

larvae spawned from Smith Sound and how might this vary easonally? 2) How might the 

early life history of Atlantic cod play a role in the relationship between the Smith Sound 

aggregation and the larger 2J3KL stock complex? I address these questions through a 

derivation of dispersal with empirical data fitted to a variety of biophysical model 

scenarios. The results from this study offer insight into the possible linkages between 

inshore and offshore stocks as well as a better understanding of linkages that define the 

cuiTent 2J3KL inshore stock. 

2.2 Methods 

Study Area 

Trinity Bay (48° 2'N, 53° 25'W) is a coastal embayment on the northeast coast of 

Newfoundland with an approximate surface area of 3870 km2 (Figure 2.la). The bay 

widens to -29 km wide at the mouth, with a length of 100 km along the longest axis 

which is oriented 30 degrees east of north. A trench on the western side and a sill on the 

eastern side of the bay are 350 m and 150 m deep respectively. Circulation modelling by 

Yao (1986) and Titten ·or et al. (2001; 2002) illustrates that circulation patterns are 

strongly influenced by an inshore branch of the Labrador Current. Cunent meter 
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observations indicate that the mean flow direction is typically equal to the vanance 

(Tittensor eta!. 2001; 2002). Nonetheless, there is a clear pattern of water entering on the 

west and exiting on the eastern coast is evident. Flow variability, primarily driven by 

wind stress (Davidson et a!. 2001), produces complex patters of current response 

dominated by a complex upwelling-downwelling cycle and a Kelvin wave response. A 

counter clockwise gyre can also be observed near the mouth of Smith Sound, exhibiting 

some strong flow (Figure 2.2, from Tittensor et a!. 2002). Passive residency times in 

Trinity Bay, based upon particle tracking calculations using the Candie model (Davidson 

et a!. 2001), are on the scale of days to weeks (B. deYoung, personal communication, 

Department of Physics and Physical Oceanography Memorial University of 

Newfoundland, St. John's NL, AIC 5S7). 

Smith Sound is one of two fjords that border Random Island, a large island on the western 

ide of Trinity Bay, 40 km from its mouth. The ound is approximately 1.8 km side and 

20 km long, with trenches in excess of 350 m depth and sills as shallow as 150 m. Smith 

Sound is of particular relevance because it is the overwintering location for the largest 

known spawning aggregation of Atlantic cod in the NAFO 2J3KL cod complex (Rose 

1996, 2003). 

Biological sampling 

To estimate temporal characteristics of egg release by spawning cod, high-frequency 

ichthyoplankton samples (- bi-weekly) were obtained from ring net surveys at six stations 

in Smith Sound (Figure 2.lc) from April to June in 2006 and from March to August in 
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2007. This timing was chosen to capture the majority of spawning activity from the Smith 

Sound cod aggregation and provide information needed to forecast developmental 

trajectories. lchthyoplankton samples were obtained with a 1-m diameter by 3-m long 

ring net fitted with 333 11m mesh. Sample volumes were calculated from a General 

Oceanic flowmeter (Model 2030R) secured in the centre of the ring net mouth. Ring nets 

were towed at the surface at approximately 3.7 km·h-1 (2 knots) for 20 minutes towed at 

the surface. Vertical distributions of CHW eggs have been shown to vary as a function of 

water density, egg density and developmental stages (Anderson and deYoung 1994; 

1995). Salinity data for the surface layer was not collected concurrently with ring net 

samples because of logistical constraints, however, data on salinity collected during 

Tucker trawl surveys (described below) show that salinity does not varies less than 0.1 

among all surveys. Because variability in salinity is low, I do not expect the catchability 

of any egg stages to change within and among sample surveys. 

In addition to ring net surveys in Smith Sound synoptic ichthyoplankton surveys of 

Trinity Bay provided a basis to infer dispersal trajectory and spatial pattern of propagules 

produced by spawning events in Smith Sound. During the spring (May of 2004 and 2006) 

and summer (July 2004) ichthyoplankton was collected from the CCGS Shamook over a 

grid of twenty stations. These surveys were performed in duplicate for spring surveys and 

triplicate for the summer survey. The sampling grid was comprised of three stations 

within Smith Sound and three concentric rings that radiated outward from Smith Sound 

with radii of approximately 5, 10, 20 and 30 km from the mouth of the sound (Figure 

2.lb). Double oblique tows were carried out using a 2.0 m by 2.0 m Tucker trawl fitted 
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with decreasing mesh size of 1000, 570, and 333 !Jill progressing from the front of the 

net to the cod end. The trawl was lowered to a maximum depth of 40 m and towed at 

-3.7 knots for 20 minutes. Volumes sampled were calculated using the maximum sample 

volume recorded by either of the two General Oceanic flowmeters (Model 2030R) 

mounted at the mouth of the net. The maximum value obtained from the flowmeters wa 

used because it is much more likely that flowmeter rotations will be underestimated (e.g. 

tangling, twisting, jamming) than overestimated; other than some additional rotations 

during deployment it is difficult to envision how an overestimate it po sible. The upper 

40-m depth range has been shown to encompass >95% of the ichthyoplankton species by 

several studies in coastal Newfoundland (deYoung and Rose 1993; Laprise and Pepin 

1995) and is occupied by positively buoyant fertilized eggs of Atlantic cod (Saborido-Rey 

et al. 2003). Tucker trawls are effective samplers of egg and larval life history stages from 

a multitude of fishes, and produce much less sample variability compared to other 

ichthyoplankton sampling gears (Pepin and Shears 1997). 

All ichthyoplankton samples were preserved in 4% formalin in buffered sea water. In the 

laboratory, all fish eggs and larvae were removed and identified except where egg stage 

and larval abundances for a given taxon exceeded 300 individuals, in which case they 

were sub-sampled using a Motodo plankton splitter. Eggs of all species were grouped 

into four taxonomic development stages (Table 2.1.) adapted from methods outlined in 

Markle and Frost ( 1985). Eggs identified as the "CHW" complex could represent Atlantic 

cod (Gadus morhua), haddock (Melanogramus aeglefinus), or witch flounder 

(Glyptocephalus cynoglossus) because these pecies are indistinguishable based on 
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morphology during the initial egg stages. Previous work in the area assigned all of the 

CHW eggs to Atlantic cod (Smedbol et al. 1998), which is reasonable given low 

abundances of late egg stages and larvae of both haddock and witch flounder relative to 

cod, and the large spawning aggregation of Atlantic cod that occurs in Smith Sound. The 

majority of CHW eggs were therefore assumed to be from Atlantic cod with small 

undetermined proportion of haddock or witch flounder eggs. Samples from May 2006 

were also processed for zooplankton abundances (St. Germain 2007) following sub­

sampling protocols outlined for the CHW eggs according to the lowest taxonomic level 

identifiable. 

Physical observations 

Temperature was the key linking variable in modelling scenarios for biological 

observations in the field. Continuous temperature data for Smith Sound was derived from 

temperature loggers secured at depths ranging from 10 - 40 m collected during the spring 

and summer from 2004-2007 (Figure 2.1c). Vertical CTD casts for conductivity, 

temperature, and depth (SeaBird Electronics SBE 19) were collected with each 

ichthyoplankton tow during the Trinity Bay Tucker Trawl surveys, providing physical 

data on the surface and mixed layers for Smith Sound and Trinity Bay. Measurements 

were divided and compared among eastern and western Trinity Bay as described above 

for the biological measurements. 
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Data analysis 

Egg number collected at each station was standardized by sample volume and expressed 

as CHW eggs• lOOO m-3. Spatial distributions of total concentrations of egg and larvae as 

well as different stages were plotted using linear kriging in Surfer® 8 to interpolate total 

concentrations between sample stations. Linear kriging provides a spatial estimate of 

bioma s using data interpolated from all stations ampled. This method removes spatial 

bias that might result from the closer spacing of sample stations with increasing proximity 

to Smith Sound and is therefore more appropriate than other contouring methods 

available (Papritz and Stein 1999). Kriging output for Trinity Bay were divided into 

eastern and western groupings based on output GPS coordinate that split the bay down 

the central axis. Statistical comparisons between eastern and western Trinity Bay were 

based on the General Linear Model (GLM) analysis of variance in SPSS 16.0. 

Spatially referenced kriging data were also utilized to calculate the "centre of mass" 

(COM) of each egg stage within a particular survey according to: 

(1) 
"CD Z .) 

COM = L.. I I 

z I<D;) 

where COMz is the calculated centre of mass along either the latitudinal or longitudinal 

axis for a given latitude or longitude Z;, for station i, and D; i the observed concentration 

at the i'" station. Output from linear kriging analyses provided a mechanism to avoid or at 

least minimize spatial bias associated with the expanding circle sampling array by 

reducing the relative impact of closely-spaced stations (Figure 2.lb). 
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Distances between COMs of each egg stage were used to infer passive transport rates. 

According to the following equation: 

(2) 
d 

v=-
t 

where v is the estimated transport rate, d is the distance, determined VIa great-circle 

calculation, between centre of mass estimate and t is the difference in duration between 

CHW egg stages 1-2 and 3-4 according to temperature dependent stage duration 

equations derived from Bradbury et al. (2001). Temperature data used in this analysis was 

derived from survey average CTD cast data, at the surface (10 m) and mixed layer depths 

( 40 m). To account for variability in the calculation of mean at depth temperature, and 

therefore passive pelagic duration, 1000 Monte Carlo randomizations were performed in 

Matlab using the maximum and minimum observed temperatures as boundaries. These 

lOOO randomized mean temperatures were then used to calculate the variability of 

possible transpmt distances given observed data. These estimates of error enable a 

realistic comparison of transport distance variability ba ed on real data and are 

independent of any specific statistical en·or structure. 

Egg concentration is expected to decrease as a function of distance from Smith Sound as 

a result of both mortality and diffusion. To account for the effect of diffu ion, egg 

concentration was calculated according to: 

(3) N=CDA 

where N is the number of eggs, C is the observed concentration of eggs, D is the mixed 

layer depth ( - 40 m) and A is the radial surface area. Radial surface area is calculated 
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based on the surface area of an arc sector increasing in diameter at 1 km distance interval 

radiating out from a vertex at the mouth of Smith Sound (53.54 °W 48.22 °N). The 

boundaries of the sector arc were taken as the station locations that were furthest north­

west and south east (approximately 53.20 °W 48.35 °N and 53.56 °W 47.97 °N, 

respectively). Mean egg concentration and variance in egg number could then be 

calculated as a function of distance from Smith Sound. The great-circle distance 

calculation was used to calculate distance between GPS coordinates and associated 

concentration estimates; the great-circle provides the best e timate of distance between 

two points taking advantage of the known radius of the Earth (6371 km). 

Modelling 

To estimate parameters of spawning and dispersal from Smith Sound, I created a two-box 

model in Matlab. The primary model considered only data from Smith Sound (Figure 2.3 

a). Eggs are released, experience mortality, and progress through egg stages each time 

step (daily). In the primary model, which represents Smith Sound alone, mortality is the 

combined effect of loss due to death and loss due to advection from the system. For each 

day, the model output dictates the numbers for each egg stage that are present in the 

Sound based on modelling scenarios. The secondary model, which adds Trinity Bay to 

the primary model, estimates dispersal from Smith Sound to Trinity Bay (Figure 2.3 b). 

The loss component from the primary model (i.e. Smith Sound) is used as an input into 

the Trinity Bay system. Thus, the eggs that exit Smith Sound are an output of the primary 

model, and enter Trinity Bay, which is represented by the secondary model. In all 

modelling scenarios, daily output of the relative frequency of each egg stage was 
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compared to available data from the system to determine the model fit and to estimate 

parameters. The secondary model used only data from western Trinity Bay stations 

(Figure 2.1 b). 

To model potential spawning dispersal from Smith Sound I created a three-vector Leslie 

matrix in Matlab: 

(4) ~ = [i,j, k] 

Where ~ is the three-dimensional matrix that represents Smith Sound, i is the vector 

tracking the cohmt released over the 144 days over which egg production is infetTed to 

have occuiTed,j is the vector that tracks day 1-144 and k track the egg stage (Stage 1-4 

and larvae). Eggs are released on each day according to the different spawning scenarios 

where protraction of spawning and thus height of spawning peak is changed. Each day, 

eggs progress through a percentage of an egg stage according to the cumulative egg 

development durations developed from Bradbmy et al. (2001): 

(5) 
(6) 
(7) 
(8) 

Stage 1 = e[2.36+T(-O.I 2)J 
Stage 2 = el3.12+T(-O.I7)J 
Stage 3 = e[J.45+T(-O.IS)J 
Stage 4 = efJ.65+T(-O.I2)J 

where T is the temperature observed on the/'' day. Each day j; the cohort completes a 

percentage of a stage as defined in equations 5-8. Once a cohort has completed 100% of a 

stage, it is lost from the preceding stage and begins the subsequent stage on the next day 

ji+l· Eggs are tracked and experience mortality collectively as cohorts. Daily cohorts 

include the previous day's cohmt minus mortality loss for that stage. Temperature data 
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for egg durations were derived from CTD ca ·ts utilizing both mean surface (<lOrn) and 

mixed layer depth ( <40m). 

Net mortality is accumulated in daily time ·teps according to: 

(9) Mnet =D + L 

where M,e1 i the net mortality, D, the product of natural mortality from egg death and Lis 

declines resulting from transition out of the k1
h stage or passive diffusion out of Smith 

Sound. The Mortality1oss term from the Smith Sound model wa sub equently u ed as in 

input term into the adjacent zone, Trinity Baywest (Figure 2.lb). Several hypotheses could 

then be explored with the model by varying model inputs and comparing predictions 

against empirical data derived from Smith Sound and Trinity Bay empirical surveys. 

What temporal spawning pattern best fits observed Smith Sound data ? What i the best 

estimate of net mortality in Smith Sound? Spawning temporal characteristics were 

modelled using several theoretical Gaussian spawning scenarios, and an empirically­

derived spawning model based on observed temporal patterns in egg abundance. This 

model compared a total of six normalized Gaussian spawning scenarios that varied in 

degrees of protraction (Figure 2.4). The peak egg abundance predicted by the Gaussian 

curves was set to coincide with the peak mean abundance observed in the Smith Sound 

surveys. All spawning scenarios encompassed the observed spawning activity from 

March 30th to August 20th. The Smith Sound model was run with spawning scenarios as 

variab le inputs of eggs over the spawning period. Within each spawning scenario, model 

run net mortality was also varied from 0-100%. During a model run, the final output is a 
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distribution of egg stage counts for each of the daily time steps during the designated 

period (March 30th to August 201h). Because egg numbers could not be reasonably 

estimated given the data limitations, the model output was presented as the relative 

frequency of each egg stage per day. The model output was truncated to days where 

Smith Sound survey data was available. 

To account for variability from ichthyoplankton surveys in Smith Sound ( 5 stations, 

Figure 2.1 c), a Monte Carlo randomization, using mean egg stage concentration± 1 

standard deviation as limits, was used to compute 1000 mean abundances of each egg 

stage on each sample day. The survey randomization data was then transformed into 

relative frequencies of each egg stage on a given day. Model output was compared to 

survey data individually for each egg tage. The relative frequency of an egg stage for 

each day sampled was regressed against model output for the observed days, producing a 

coefficient of determination (r2
). The fit of the model was determined by calculating the 

mean r2 minus the variance in r2 for a given spawning scenario treatment and mortality 

rate. This method maximized the model fit to all egg stages, and avoided erroneous 

parameter estimates confounded by trong fits to some stages and weak fits to others . 

When the model finished all petmutations each model treatment was left with a 1000 

estimated model fits. The total model fit was assigned to each model treatment (given 

spawning scenario and mortality) using the same algorithm stated above using the 

calculated model fits (1000). Total model fit was then plotted against mortality treatment 

for each spawning treatment (Figure 2.5). The spawning treatment, and corresponding net 
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mortality, with the highest model fits represent the best estimation of Smith Sound data. 

The analysis was repeated using observed surface (10m) and mixed-layer (40 m) 

temperatures. Although the mixed layer has been shown to contain -95% of the 

ichthyoplankton (deYoung and Rose 1993; Laprise and Pepin 1995) some evidence 

suggests that the positive buoyancy of eggs can lead to higher abundances at the surface 

(Pepin et al. 2005; Pepin et al. 2007). The utilization of both surface and mixed-layer 

temperature provides a mechanism to account for any predicted vertical structure. 

Does variable mortality for each egg stage improve model j£t? 

To determine whether the probability of loss is stage-dependent, and noting that the 

longer an egg remains in Smith Sound and develops to later stages, the greater the 

likelihood of advective loss, mortality et was broken down into components 

mmtalitYNatural and mortalitYLoss· In this simulation the mortalitYLoss term was broken down 

into the sum loss of all egg stages which, in turn, is equal to the difference between total 

mortalitYNet, estimated as: 

(10) M L.oss =MNct - Moeath 

L =Stage 1 Loss +Stage 2 Loss +Stage 3 Loss +Stage 4 Loss 

Loss rates for each term were created based on a multiplication factor (increasing 

probability of loss as eggs progress through stages) from the estimated loss of the 

previous stage so that the likelihood of egg stage loss increases with pelagic duration. 

Thus: 

(11) 
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where L; is the loss rate for the associated stage and 'a' is the multiplication factor. A 

string of multiplication factors (0.0 1-1) were tested in consecutive model loops. These 

multiplication factors were set as numerical parameters to augment the lo s of an egg 

stage relative to the previous stage (i.e for a a of 1 and stage 1 loss set at 0.05 the 

mortality preceding three stages would equal 0 .1 , 0.2, and 0.4 respectively). Resulting 

model fit scores were recorded after each loop and compared to the single loss rate (L) to 

determine whether varying the loss rate for each egg tage improved the fit for the 

estimate of Smith Sound net mortality in Smith Sound .. 

What is the best estimate of daily egg loss from Smith Sound? MortalitYLoss (L) can be 

inferred from difference between mortalitYNet (Mnet). estimated as described above, and 

mortalitYNatmal (D) derived from empirical data according to the equation: 

(12) 

In( zt ) 
D= __ ....;;o;....._ 

(tt -to) 

where N0 and N 1 are the combined mean survey abundances for consecutive stages and !0 

and t 1 are the predicted egg stage durations. To account for variability in abundances 

among Trinity Bay stations, abundance and temperature data from each survey were 

bootstrapped 1000 times to estimate a mean mortality rate and a standard deviation. 

MortalitYNatural estimates were also derived from the literature and ranged from 0.1/day to 

0 .3/day (Campana et al. 1989; Sundby et al. 1989; Heath 1992; Bradbury et al. 2001; 

Panteleev et al. 2004; Mountain et al. 2008). 
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Survey data from western Trinity Bay (Figure 2.1) stations offered a means to compare 

estimated loss rates with real observations in the field. Because survey data from Trinity 

Bay was collected with Tucker trawl gear and Smith Sound survey data was collected 

with ring nets, absolute concentrations could not be compared. Instead, as with previous 

simulations, data was transformed into relative frequencies of each egg stage. In order to 

estimate egg loss from Smith Sound, the model was run with varying degree (1 % 

increments) of loss up to and including the total net mortality estimated for Smith Sound. 

Each treatment loop was compared to data from Trinity Bay Tucker trawl 

ichthyoplankton surveys. Estimates of loss rates were ranked individually for each survey 

and survey round by minimizing the sum of squares difference among relative frequency 

of each eggs stage. The ichthyoplankton surveys from 2004 provided sufficient temporal 

data to fit a sea onal loss rate. Coefficients of determination values and model fits were 

calculated between truncated 2004 ichthyoplankton sample and model data for respective 

sample days, using the same spawning scenario fits described above. 

Ichtyoplankton data can be extremely variable in that even small-scale processe can 

greatly impact egg abundances in the field (Helbig and Pepin 1998 a,b; 2002). To 

account for the variability in Trinity Bay egg concentrations, relative frequencies and 

mean abundance were calculated from 1000 randomizations for each loss treatment. As in 

the simulations described above, the highest mean r2 for each egg stage minus the 

variance for the 1000 randomization loops was deemed the best model fit for each 

treatment and the best estimate of loss from Smith Sound to Trinity Bay. Model results 

can be represented by the following (8,n, 1 000) matrix: 
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(13) ~ = fi,j, k] 

where i denotes the individual survey rounds (7 rounds total) plus the combination of all 

survey rounds in 2004 is the number of mortality treatments defined by re ults in question 

2 (n=mortalitYNet* 1 00), j is the number of mortality treatments defined by results in the 

analysis of daily egg lo s (n=mortalitYNet* 100), and k represents 1000 model fits 

estimated from the data randomizations. For each survey (i) and conesponding mortality 

(j), 1000 model fits were calculated. As in previous models, the total model fit was 

computed from the 1000 Monte Carlo randomizations according to the mean model fit 

minus the variance observed in the randomizations. The most appropriate loss rate can 

then be considered the best total model fit for a given survey (Figure 2.6). 

2.3 Results 

Field observations 

Mean concentrations of stage 1 CHW eggs were highest in Smith Sound during early 

summer (particularly early July 2007). Increases in egg concentrations through June and 

July also coincided with increases in mixed-layer temperatures (Figure 2.7). Abundances 

of stage L CHW eggs, relative to all other stages, in Smith Sotmd were negatively 

conelated with mixed-layer temperature among sample years (Pearson con·elation = -

0.368, p=0.041, n=29; controlled for year). 

The highest concentrations of early CHW egg stages (1-2) were closely a sociated with 

Smith Sound, the assumed natal ource. Late stage CHW eggs (3-4) were typically most 

abundant in the western inner portion of Trinity Bay, as would be predicted from mean 
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southerly transport once eggs are flushed from Smith Sound. The observation for stage 1 

eggs was consistent among all surveys whereas the spatial locations of late stages, 

particularly stage 4, were much for variable (see Figures 2.8-2.10 for May 2004, July 

2004 and May 2006 respectively). Egg concentrations from the July 2004 survey were the 

highest observed among all Trinity Bay Tucker trawl surveys, which wa con istent with 

temporal spawning data from Smith Sound. In all surveys, the western side of Trinity Bay 

had significantly greater concentrations of egg stages (GLM egg density, side of bay, 

surveycovariate. egg stagecovariate. F= 34.743, 16.306, 3.433, 84.490; df=3 ,1,1,1; p= <0.0001 , 

<0.0001, 0.064, <0.0001) Larvae were also significantly more abundant on the western 

side of Trinity Bay (based on 95% confidence intervals, Figure 2.11). 

Egg numbers were unrelated to distance from Smith Sound. Regression analysis 

demonstrated that egg number was effectively constant (slope =0.021, f=ll.048, r2 = 

0.062, p = 0.001, dfr01 = 167) as a function of distance from Smith Sound for all surveys 

where egg stage was a significant covariate. Overall there is a large degree of variability 

in egg number as a function of distance from Smith Sound and no con istent pattern was 

observed among all surveys. There was also no significant trend in distance from Smith 

Sound and variance in egg concentrations (f=0.225, p=0.636, df101=167) for individual or 

pooled surveys. 

Evidence of upwelling was observed on the western side of Trinity Bay north of Random 

Island (Figure 2.12), during all of the sampling periods in spring and summer, which was 

consistent with previous studies in the area (Yao 1986; Schillinger et al. 2000; Davidson 
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et al. 2001; Tittensor eta!. 2001, 2002; Baumann et al. 2003). This upwelling region wa 

also characterised by significantly higher primary productivity levels (fluorescence) and 

zooplankton abundance (Table 2.2). 

Centre of mass (COM) calculations indicate a general south-easterly progression between 

early (1-2) and late (3-4) CHW egg stages (Figure 2.13). The longest observed distance 

between early to late COM calculations was in May 2006 with a mean distance of 7.6 km 

(s .d. = 0.3). Distances were less for July 2004 (2.8 km, s.d. = 0.5) and May 2004 (3.0 km, 

s.d. = 2.4) respectively. The shortest COM distance was in the first survey of July (0.2 

km) but subsequent survey rounds during the same cruise produced a mean distance of 

4.4 km (s.d. = 0.3). Centre of mass calculations tend to be conservative because variance 

for weighted mean latitude and longitude calculations are not calculated and ymmetrical 

bidirectional dispersion will be artificially masked by the calculation. However 

observations of spatial data (Figures 2.8-2.10) and COM locations do not suggest such an 

underlying pattem. Despite the conservative approach this calculation offers, I believe the 

pattems explained from these data sufficiently explain the mean conditions in the field. 

Estimates of passive transport distances were made based on calculated Euclidian 

distances between centre of mass and development rates predicted from average 

temperature readings during the same survey. Based on 1000 bootstrapped mean 

temperatures, the estimated mean passive tran port among all surveys was significantly 

greater using mixed-layer temperatures (0.43 km•dai1 ,s.d. = 0.25) than estimates based 

on surface temperatures (0.32 km•dai 1
, s.d. = 0.18) ([GLM, p<0.0001 , F=l020, 
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df101=13999 J). This finding was expected given warmer surface temperatures and 

projected faster development rates. Both distances are consistent with the limited data on 

mean currents in Trinity Bay (see Tittensor 2001, 2002). 

Model results 

What temporal spawning pattern best fits observed Smith Sound data? Model simulation 

indicated that the most protracted spawning scenarios produced the best fit (mean -

variance) for the 1000 randomizations of survey data for both mixed-layer and surface­

layer temperatures (Figure 2.14). The weakest predictive capability in both temperature 

treatments (smface and mixed-layer) was the empirically derived bi-modal distribution. 

When comparing mean field data for all stages, the Gaussian 25 (mixed) distribution 

produced the overall best predictive capacity, explaining 73% of the variance in the 

model. The Gaussian 25 (mixed) distribution was therefore used for the remainder of the 

modelling analyses. 

What is the best estimate of net mortality in Smith Sound? Does variable mortality for 

each egg stage improve model fit? Net mortality in Smith Sound was estimated to be 

27%, and explained 73% percent of the variance for relative frequencies of each stage on 

different daysobs· The model fit was improved when a multiplication factor ('a') was u ed 

therefore increasing the probability of advective loss for sequential egg stages. The 

improvement in model fit continued until the multiplication until 'a' approached 1.2. The 

best model fit for all eggs stages was obtained when 'a' was set at 0.55, which explained 

79% of the variance in Smith Sound data. Based on these results, a stage 4 CHW egg was 
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-4 times more likely to have been flushed from the Smith Sound system compared to a 

stage l egg. Even though there were differences in egg stage mortality (largely based on 

their relative durations) the overall net mortality in Smith Sound remained at 

approximately 27% . 

What is the best estimate of daily egg loss from Smith Sound? Natural mortality estimated 

from field egg stage abundance data estimates daily natural mortality (death) at -0.07 

(s.d. = 0.01) based on lOOO bootstrap iterations of equation 9. In contrast with the 

mortality estimate above, models compared with Smith Sound ring net survey data 

sugge ted that net mortality within the sound was approximately 0 .27, explaining 

approximately 73% of the variance in the data among stages (Figure 2.15). With this 

estimate of net mortality the daily loss from Smith Sound would be -20% (MortalitYLoss = 

MortalitYNet - MortalitYNatural). 

Loss rates estimated from westem Trinity Bay data ranged from 2-15%/day for individual 

surveys and were significantly positively correlated with day of year (GLM, f=64.689, 

p<O.OOOl, df101 =6999) (Figure 2.16). The average loss rate estimated from all individual 

survey estimates was 10.3%/day (s.d. = 7 .7%). Standard deviation associated with mean 

estimates of loss demonstrated no significant trend with day of year (GLM, f=4.616, 

p=0.084, df101 =6). In 2004, there were sufficient sample days to estimate the parameters 

for among stage model fitting that were utilized in the first and second simulations. The 

2004 spawning season regression model estimated the daily loss rate from Smith Sound 

13%, with higher variability (s.d. = 11 %) than that found for individual surveys. Based 
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on all estimates of loss, derived from individual survey and annual data, the mean los 

rate from Smith Sound was estimated at 9% (s.d. = 7.5%). 

2.4 Discussion 

Nearly all facets of marine ecology, conservation, and management require orne 

understanding of how populations are structured and which biological processes maintain 

this structure. For many marine species, the early life history is a key component that sets 

the foundation for this structure (Harden-Jones 1967; Fogary and Botsford 2007). 

Connectivity offers an approach to understanding the role of passive dispersal potential 

during the early life history in structuring populations. For cod in the Northwest Atlantic, 

there has been much interest in population structure, how it is maintained, and what role 

inshore populations might play in any future recovery of depleted offshore fishing stocks 

(Hutchings and Myers 1994; Wroblewski et al. 2005). In recent years, there has been 

particular interest in the relationship between the large annual spawning/overwintering 

aggregation observed in Smith Sound (Rose 2003; DFO 2008) and the larger 2J3KL cod 

stock complex (Smedbol et al. 1998; Ruzzante et al. 2000; Bradbury et al. 2001; 

Bradbury et al. 2008). Previous work has found no link between recruitment and 

spawning from Smith Sound (Smedbol et al. 1998). 

Much work has focussed on behavioural (Smedbol and Wroblewski 1997; Rose et al. 

2000; Rose et al. 2003) and physiological (Rideout et al. 2000; Rideout et al. 2005; 

Rideout and Rose 2006) aspects of adult and spawning Atlantic cod in Smith Sound. 
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However, there is little detailed information about dispersal and connectivity of egg and 

larval stages dispersing from the Smith Sound, like that produced for offshore stocks 

(deYoung and Rose 1993) and nearby Placentia and Conception Bays (Bradbury et al. 

2000 and Laprise and Pepin 1995 respectively). Empirical information about disper al 

from Smith Sound will represent invaluable information about how this aggregation is 

sustained, what role it plays for cod in Trinity Bay, and how it might contribute to the 

broader scale 2J3KL cod stock complex. 

Biological observations of dispersal 

Observations from Smith Sound ichthyoplankton surveys in 2006 and 2007 indicate a bi­

modal protracted spawning pattern that spans from March until August and peaks weakly 

in late May and more strongly in mid to late-July. Increases in egg production coincided 

with increases in temperature in late July exposing the majority of egg development to the 

highest expected annual temperatures (July and August). Model simulations are 

consistent with strong temperature dependency and protracted rather than discrete 

spawning scenarios. Specifically the most protracted scenario, Gaussian (s.d.= 25), 

provided the best fits to the empirical data. These results are similar to previous studies 

that have documented extended spawning in Atlantic cod (Pinsent and Methven 1997; 

Brander 2005) and inferred timing of Trinity Bay cod spawning from ichthyoplankton 

surveys (Smedbol and Wroblewski 1997). Both modelling and field data show that stage 

1 CHW egg abundance is strongly and positively related to temperature (see Figure 2.7). 

The temperature dependence observed in this study follows previous results that sugge t 

spawning in Smith Sound (Smedbol and Wroblewski 1997) and Conception Bay (Laprise 
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and Pepin 1995) is environmentally driven and related to temperature (but see Bradbury 

et al. 2000 regarding nearby Placentia Bay cod). Regional variation in timing of cod 

spawning has been observed by other studies (e.g. Myers et al. 1993; Brander 1994), and 

has been linked to temperature and other regional differences. 

The discrete spatial nature of Atlantic cod spawning in Trinity Bay is not unique and has 

been noted by many authors for other cod populations (e.g. Lawson and Rose 2000; Begg 

and Martiensdottir 2002; Lough et al. 2006; Bradbury et al. 2008). The persistence of the 

Smith Sound aggregation for more than 15 years (Rose 1996; DFO 2008) raises the 

question of how this stability is maintained and what is the source of new recruits. For 

Atlantic cod the regional differences in how temperature and spawning are linked has led 

to suggestions that spawning patterns might be tuned to local feature such as optimal 

food conditions (Cushing 1990; Brander 1994), retention into specific nursery habitats 

(Bradbury et al. 2001, 2008; Miller et al 2006), or some combination of these factors 

(Sundby 2000). 

Evidence presented here and elsewhere (Smedbol and Wrobleski 1997) suggests that 

spawning in Smith Sound is likely temperature driven, with peak spawning occulTing 

when temperatures are warmest. Spawning in warmer waters and the associated reduction 

in development time results in shorter pelagic durations (Pepin et. al. 1997) and therefore 

generally shorter transport distances and likely increased local retention (Bradbury et al. 

2001). This trend is generally validated with transpmt distance, estimated from COM 

calculations of Euclidian distances, and temperature. Specifically, the longest transport 
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distance estimated among all surveys corresponded with the coldest mean temperatures 

(Figure 2.13). As noted earlier, centre of mass calculations are particularly conservative 

and prone to bias, however, the centre of rna s calculations agree with the trend of 

significantly more eggs on the western side of Trinity Bay and higher abundances of later 

stages futther from Smith Sound (Figures 2.8-2.10). Although the inherent conservative 

nature of the center of mass calculations might diminish the utility of absolute measures 

of transport distance, the estimates nonetheless confirm observed trends in the field and 

predictions based on known relationships between temperatures, mortality and transport. 

These results indicate that the timing of Smith Sound spawning may favour a high level 

of retention. Presence of late eggs stages and larvae in and near Smith Sound are 

consistent with this hypothesis, suggesting that the majority of spawning activity occurs 

at times that decrease pelagic egg durations and therefore increase retention in and around 

Smith Sound. 

Oceanographic conditions in Trinity Bay may also help to retain egg and larvae near 

Smith Sound. Upwelling and other oceanographic features, such as gyres, have been 

shown to impact spatial patterns of pelagic propagules of species ranging from Chilean 

hake (Vargas and Castro 2001) to rockfishes (Bjorkstedt et al. 2002) to Atlantic cod 

(Munk et al. 1995; Munk 2007). Mean flow conditions in Trinity Bay are strongly 

influenced by an inshore, southerly flowing branch of the Labrador CutTent that enters the 

western side of Trinity Bay and exits on the eastern side (Yao 1986; Tittensor 

2001,2002). There are two circulation features in Trinity Bay that are particularly 

relevant. A spatially and temporally consistent upwelling occurs north of Random Island 
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and at the mouth of Smith Sound (Schillinger et al. 2000; Tittensor et al. 2001,2002; 

Baumann et al. 2003; this study). A second feature is a cyclonic gyre that spans the width 

of the bay near the mouth of Smith SOLmd (Yao 1986; Tittensor et al. 2001,2002; Dalley 

et al. 2002; Figure 2.2). Dalley et al. (2002) suggested that the presence of oceanographic 

gyres likely lead to retention of larval capelin (Mallotus villosus) in Trinity Bay. The 

ichthyoplankton data here show a general association of all stages of eggs and larvae with 

the western side of Trinity Bay (Figures 2.8-2.11). The known development rates for eggs 

at ambient mixed-later temperatures in Trinity Bay from spawning to stage 4 would 

require at least 26-33 days (Pepin et al. 1997; Bradbury et al. 2001). Mean passive flow 

condition estimated from flow modelling (Yao 1986; Baumann et al. 2003) and ADCP 

data (Tittensor 2001, 2002) could move eggs beyond the sampling spatial window in as 

few as 5 days, based on mean flow estimates of 10 cm•s-1 and Euclidian movement. 

Passive flow rates inferred from ichthyoplankon data of 0.32 km•dai1 for mixed-layer 

temperatures and 0.43 km•dai 1 for surface temperatures represent less than 5% of 

estimated mean flow in Trinity Bay, further suggesting a strong role for the upwelling and 

gyre features. As with transport distance there are some issues with utilizing the centre of 

mass calculation, however, given that my estimates of centre of mas agree with spatial 

patterns of egg stage concentration I believe they offer some utility in describing 

transport. Even if the estimation of -5% of expected flow rates is extremely conservative, 

the concurrent observation of spatial patterns does not suggest that dispersal is operating 

at the mean cuiTent rates estimating in the area. In addition, egg numbers were not 

consistently related to distance from Smith Sound, despite an expected decrease in 

number as a result of diffusion and cumulative mortality. Overall there is a high degree of 
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variance m the response of egg number to distance from Smith Sound, the expected 

source. This variability among surveys and survey seasons further negates a simple 

Euclidian dispersal interpretation. Furthermore, stage 1 eggs are consistently associated 

with the assumed natal source of Smith Sound, whereas stage 4 eggs are far more variable 

spatially among surveys. Collectively these results clearly suggest that some 

oceanographic feature influences egg dispersal trajectories and thus affects estimates of 

passive dispersal distances from ichthyoplankton spatial data. These results are also 

consistent with previous research in Trinity Bay that have found that oceanographic 

processes play a significant role in the spatial pattern of ichthyoplankton (Dalley et al. 

2002). 

Given the constraints that the phy ical environment imparts on dispersal (i.e. circulation 

and seasonal temperatmes), timing of spawning in the context of circulation, 

development, and spawning strategy is vital in order to place eggs in a suitable 

environment (Gawarkiewicz et al. 2007; Snelgrove et al. 2008). Evidence from 

ichthyoplankton data in Smith Sound and Trinity Bay suggests that a combination of 

spawning strategy and oceanographic processes might result in a highly retentive system. 

Success of a spawning strategy is usually constrained by the placement of passive 

propagules into water masses that have favourable food conditions (Cushing 1990). The 

observation of significantly higher primary productivity, as indicated by fluorescence, and 

zooplankton abundance on the western coast of Trinity Bay uggest that this region of bay 

provides a favourable feeding environment, possibly leading to higher survival and 

recruitment to juvenile stages. 
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The protracted nature of cod spawning and the expected seasonal changes in 

environmental conditions lead to the prediction that seasonal variation in spawning will 

influence recruitment success (Bradbury et al. 2001). Previous work on the relationship 

between spawning strategy and environmental variation suggests that recruitment might 

be largely environmentally driven and that sea onal- patial variation in recruitment 

patterns might therefore be expected. Temperature has been shown to play a pivotal role 

in pelagic egg mortality exhibiting both negative (Dahlberg 1979) and positive (Houde 

1989; Pepin 1991) correlations depending on what process is driving the mortality 

measured. In particular, pawning in colder temperatures is expected to extend pelagic 

durations and result in prolonged exposure to high mortality rates that characterize 

pelagic egg stages (Dahlberg 1979) and possible flushing from inshore nursery areas 

(Bradbury et al. 2001; Dalley eta!. 2002). Data presented in this study uggest otherwise. 

Spatial patterns of egg stages suggest limited dispersal, with a mean transport of only 0.43 

km•day" 1 (s.d. = 0.25). The ratio of peak stage 1 to stage 4 egg abundances does not vary 

seasonally despite approximately a 1 week longer in development times (based on mean 

mixed layer temperatures), indicating that survival of the egg stage likely does not vary 

significantly among seasons. The absence of seasonal variation in spatial patterns 

suggests that oceanographic processes that facilitate retention persist through the 

spawning period. 

Smith Sound the source 
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The data presented here suggests that Smith Sound represents the major source of CHW 

eggs in the Trinity Bay system. The highest abundance of stage 1 CHW eggs i 

consi tently associated with the westem side of Trinity Bay near the mouth of Smith 

Sound from spring through summer and from one year to the next (Figures 2.8-2.10). 

Only during one survey in mid-July 2004 was there any suggestion of significant 

movement towards the mouth of Trinity Bay. Given that the Smith Sound stock has been 

acknowledged as the largest remaining spawning biomass in the 2J3KL complex (DFO 

2008), detecting any outside recruitment input would be difficult, because any signal 

would be drowned relative to output from Smith Sound. Focussing on spatial distributions 

alone, spatial analysis clearly illustrates the importance of the Smith Sound spawning 

aggregation on the Trinity Bay system, but suggests, at least anecdotally, that the 

movement of early life history stages to the broader 2J3KL system is small relative to the 

retention within. 

Despite a long time series of acoustic estimates of cod bioma s from 1995 to the present 

(Rose 1996; Rose 2003; DFO 2000-2008), and numerous studies on behaviour and 

physiology of spawning cod from the area (e.g. Wroblew ki et al. 1994; Rideout and 

Rose 2006), there have been few estimates of source-sink dynamics in Trinity Bay 

(Smedbol and Wroblewski 1997). One key piece of information to this question i the 

estimate of egg loss from Smith Sound to the larger Trinity Bay system. 

My model simulations estimated that daily net mortality in Smith Sound was 

approximately 27%. This mortality rate is similar to the 28% daily net mortality rates 
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estimated by Panteleev et al. (2008) for silver hake (Merluccius bininearis) on the Scotian 

Shelf in a similar numerical simulation of egg and larval dispersal from a geographic 

location. Daily net mmtality is the sum of natural mortality and mortality resulting from 

advective loss from the system. Model simulations that incorporate data variability 

suggest that daily loss from the Smith Sound system is between 2-15% with a mean of 

13% for 2004 and -9% for all surveys combined. These results also demonstrate a 

positive association with estimated survey loss rates and day of year. The seasonal 

variation in estimated loss rates might reflect differences in spawning output during the 

protracted spawning season. A four-fold increase in spawning (estimated from Smith 

Sound surveys) in July within a two to three week period would result in spike in the 

relative frequency of stage 1 eggs and drive the seasonal model of loss rates. Trinity Bay 

ichthyoplankton data demonstrates an increase in the relative frequency of stage 1 eggs 

near the July pawning peak relative to May surveys, as would be predicted from the 

model estimates of loss. The 13% daily loss estimate from 2004 is likely the best measure 

because it incorporates seasonal differences in spawning and temperature. 

Another approach to interpreting the loss rates from Smith Sound is to reverse the 

equation and estimate natural mortality loss from Smith Sound. E timates of mortality 

derived from empirical data indicate natural mortality is between 0.06 to 0.08/day. This 

range is slightly lower than previous estimates of natural mortality, which range between 

0.1/day to 0.3/day (Campana et al. 1989; Sundby et al. 1989; Heath 1992; Bradbury et al. 

2001; Panteleev et al. 2004; Mountain et al. 2008). Pepin et al. (1995) demonstrated that 

physical forcing confounds estimates of mortality and this effect is scale dependent. To 
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account for this Pepin et al. (1995) suggest a correction factor or Area-112 be applied. 

Given that physical forcing often drives spatial patterns in ichthyplankton (Dalley et al. 

2002; this study) a correction factor seemed appropriate in this case_ With the correction 

factor accounting for the influence of local physical forcing on the estimates of morality 

(Pepin et al. 1995), the estimates of 0.09/day (all years) and 0.13/day (2004 only) are 

within the range of published daily mortality rates_ These results again reiterate that 

oceanographic features have a strong influence on distributions of eggs near the mouth of 

Smith Sound. 

The predictive value of the loss estimate from Smith Sound was improved (- 6% of the 

variance) with the inclusion of a multiplication factor for individual stage mortality. This 

dependency on differences in egg stage mortality, albeit weak, might be a product of 

vertical mixing in Smith Sound. An underlying assumption in this model is that spawning 

is uniform throughout the Sound and that eggs are completely mixed. Because the 

probability of an egg leaving Smith Sound increases as a function of ontogenetic 

development, the assumption of uniform spawning and mixing is reasonable; the longer 

the duration of each egg stage in the system, the more likely an individual egg is to be 

advected from the system. This result provides support for the suitability of the model in 

estimating spawning pattern and mortality. 

Summary 

The data and model simulations presented here suggest that timing of spawning acts in 

concert with oceanographic features to retain larvae near or within Smith Sound where 
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food conditions are generally favourable. Contrary to studie in other systems (Bradbury 

et al. 2001), there is little evidence for seasonal differences in the retention of 

reproductive propagules. The results from analysis of spatio-temporal patterns of early 

life history stages of Atlantic cod suggest that connectivity potential from spawning 

events in Smith Sound decreases as a ftmction of distance from Smith Sound. Daily loss 

rates from Smith Sound are predicted to range between 8-13% daily. Given the highly 

retentive nature of the Trinity Bay-Smith Sound system, the density-dependent 

emigration theory, proposed by Rose (1996), could still be applied but only when 

recruitment success triggers density dependent movement of spawners from Trinity Bay. 

There is some evidence that adults in spawning condition do move from Smith Sound into 

Trinity Bay and beyond (C. Mon·is, personnel communication, Department of Fisheries 

and Oceans, Notth-west Atlantic Fi heries Centre, St. John's, NL, AlC 5Xl Canada), but 

the contribution this could provide to connectivity is unknown. The potential for inshore 

spawners to contribute significantly to the recovery of offshore stocks (Hutchings and 

Myers 1994; Rose 1996) may only really come to fruition if density dependent inshore­

offshore spillover occurs among adults. Evidence from my study suggests that 

connectivity dming the early life history of Atlantic cod is limited in this system and 

likely plays a significant structuring role only on smaller (bay-sized) spatial scales. 

The effects of wind forcing and circulation could not be directly measured becau e of 

data limitations, however, the parameters and observations presented in this study are 

consi tent with and build on existing data on dispersal and connectivity in Trinity Bay. 
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This study illustrates processes that regulate dispersal from one of the largest remaining 

pawning aggregation from the diminished 2J3KL cod stock complex. 
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Table 2.1 Key for identifying taxonomic stages of cod-haddock-witch flounder (CHW) 
eggs according to methods outlined in (Markle and Frost 1985). 

Stage 

I 
II 

Description 
From fertilization until formation of embryonic axis 

From end of stage one until embryo pigmentation begins 

III 

IV 

From stage two until embryo wraps completely around yolk sac and defined 
pigment patterns are present 

From Stage three until hatch 

Table 2.2 Results for General Linear Model Analysis of Variance comparing physical 
and biological parameters between sides Trinity Bay (Fluorescence) and between survey 
average and upwelling (stations within 7krn of Bonaventure Head). 

v . bl ana e F t ac or df F -va ue p-va ue 
Side of bay 1 10.420 0.002 

Fluorescence Survey 6 3.957 0.001 
Interaction 6 3.699 0.002 

Bonaventure Head 1 12.166 0.001 
Mixed Layer Temperature Survey 6 32.927 <0.0001 

Interaction 6 0.322 0.925 

Bonaventure Head 1 6.901 0.013 
Zooplankton* Survey 6 8.866 0.005 

Interaction 6 0.694 0.410 
* zooplankton data only available for 2006 surveys 
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during daily time steps. Source terms secondary model (b) Box 2 are los terms from Box 
1 derived as a component of the daily mortality term. "o" symbols refer to sample 
stations. " *" refers to Bonaventure Head. 

90 



0.10 

5 
0.08 

c 
0.06 0 

·.;:; 
v 
::J 
"0 
0 10 ~ 

a.. 
:::R 0 

0.04 

0.02 

0.00 

80 100 120 140 160 180 200 220 240 

Day of year 

Figure 2.4 Temporal spawning treatments: Bi-modal treatment derived from survey data 
and Gaussian curves derived with varying degrees of protraction (denoted by numerals 5-
25). 

91 



Smith Sound Primary Model 

Spawning Treatments 

[x 100] 

Model output 

Relative frequency 
of egg stage 

s observed 

Model Fit = mean(R2
)- variance (R2

) 

[x 600000] 

c 
<lJ 
en 
ttl 
+-' 
Vl 

4-
0::: 
-
<lJ ... "'0 
0 
~ 

I 

Smith Sound data 

Relative frequency 
of egg stage 
(5 stations] 

Randomization [x 1 000] 
~~ 

Relative frequency 
of egg stage 

Days observed 
I 

Stage 1 R' 

~.,,,,, 
f.::g•JW 

/ ''" ' 

Observed Rf stagen 

Figure 2.5 Flow diagram detailing how the ~rimary model estimates both spawning 
scenario and net mortality in Smith Sound. r is the coefficient of determination and Rf is 
the relative frequency of a particular egg stage. 

92 



Smith Sound Primary Model Trin ity Bay West data 

Relative frequency 
of egg stage 

'oil [1 0 stations] 

I I Mortality 
Randomization x 1000 

0 - Mortality net ~~ 

~~ Relative frequency 

Model output I 
-- 2004 

I of egg stage 
. . ........ . 2006 

Days observed Relative frequency .................................... 
of egg stage 

Stage 1 R' 

c ~,,,,, Days observed Q) 
O'l 
ro ..... 
Vl ~go3R' "-

0:: 

Q) / ''" ' "'0 

.................................. +. .................................. 0 
~ 

Model Fit= Min[ ( Rf - Rf )2 ] ~~ •••• : 
model observed : ................................................................... ·' 

Observed Rf stag en 

! 
I Model Fit = mean(R2

)- variance (R2
) I 

Figure 2.6 Flow diagram detailing how the primary and secondary models were 
integrated to estimate a mean daily loss from Smith Sound. r2 is the coefficient of 
determination and Rf is the relative frequency of a particular egg stage. 

93 



2000 .---------------------------------------------. 3 

1: 
0 
0 
0 .-

1500 

-;;, 1000 
Ol 
Ol 
QJ 

~ 
:r: 
u 500 

0 

3000 

2500 

M 

E 2000 
0 
0 
0 
.-
-;;, 1500 
Ol 
Ol 
QJ 

~ 1000 
u 

500 

0 

2006 

••• 

2 $: 

0 

X 
ro 
a.. 
Ql 
'< ro 

...... 

.-T 
ro 
3 
"0 
ro ...... 
Ql 
.-T 
c ...... 
ro 
0 

-1 D 

~---r----~---r----.----.----~--~----~----+-2 

2007 

• • 
60 80 100 120 140 160 180 200 220 240 

Day of year 

8 

6 $: 
x· 
ro 
a.. 
Ql 
'< 

4 ~ 

2 

0 

.-T 
ro 
3 
"0 
ro ...... 
Ql 
.-T 
c ...... 
ro -0 

Figure 2.7 Mean stage 1 CHW egg density± standard error sampled in Smith Sound 
during 2006-2007 ring net surveys. Solid line indicates mean mixed-layer temperature 
(<40 m). 

94 



Round 1 Round 2 
CHW eggs/ 1 OOOm' 

0 10 20 30 40 50 60 70 80 90 ..... ~ ,,c ,'1-tl ..._'?t::J .... ~,">~ ... ~ 0 10 20 30 40 50 60 70 80 90 ,r§J ,,c .... ~,...,(;} -..."'0"<-,f::) .... ~ 

/ 

Longitude (0W) 
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Chapter 3. Connectivity during the early life history of coastal Newfoundland 
fishes: Does active behaviour play a role? 

3.1 Introduction 

Many marine organisms have eggs and larvae that are transported during a pelagic 

dispersive stage, through an interaction between passive oceanographic processes (e.g., 

Karasiova and Zezera 2005; Bradbury et a!. 2003) and active behaviour (e.g., Leis et al. 

1996). In spatially structured marine populations the degree of dispersal among local 

populations is defined as connectivity. These connective processes are essential to the 

maintenance of spatial structure (Bode et a!. 2006) and the stability of marine population 

(Hastings and Botsford 2003). The success of the dispersal phase is rooted in the 

placement of propagules into suitable nursery habitat, greatly increasing probability of 

survival. Elucidation of the passive and active contributions to larval dispersal has been of 

particular interest to marine ecologists and fisheries biologists for the past century 

(Harden-Jones 1968; Bradbury and Snelgrove 2001). Passive contributions have been 

addressed using a variety of techniques including direct observation with passive drifters 

(Panteleev et al. 2004) or neutrally buoyant particles (Taggart et al. 2006), and 

numerically models of drift based on circulation data (Davidson and deYoung 1995). 

These techniques have led to models that simulate drift at relatively fine spatial scales 

(Laprise and Pepin 1995). 

The sw1mmmg ability of larvae has been hypothesized to be a critical factor in the 

success or failure of the dispersal phase (Fisher and Bellwood 2002). Laboratory studies 
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represent a useful approach to illu trate the possible contributions of swimming to spatial 

and temporal patterns observed in the field. Laboratory observations on the swimming 

reef fish have suggested that larvae have a diverse range of swimming and behavioural 

capabilities (Stobutzki and Bellwood 1997; Leis 2007a,b). Much of this work has focused 

on larvae of coral reef fish. However, recent laboratory swimming experiments by Guan 

et al. (2008) demonstrated similar, though weaker, swimming capabilities in several cold 

ocean species including Atlantic cod (Gadus morhua). Data from these studies, both from 

warm and cold ocean systems, suggest that larvae have the potential to mediate their own 

spatial distributions through active behaviour over vertical and horizontal scales, 

potentially enhancing their capacity to select suitable habitat that can be vitally important 

to recruitment. 

Any definitive demonstration of whether swimming influences spatial structure in the 

field is difficult without direct observation. Studies of coral reef systems (Leis et al. 

2007a,b) have included direct observations of larvae in the field and have determined that 

swimming behaviour actively mediates spatial distributions. In cold ocean systems, this 

type of observation is much more difficult because visibility is often limited and larval 

concentrations are typically very low. Studies by Bradbury et al. (2003) and Methven et 

al. (2003) have elucidated aspect of swimming ability through interpretations of 

observed field spatial patterns. Spatial distributions of marine organisms are rarely 

uniform and are often patchy. The causes of patchy spatial distributions of fish larvae are 

numerous and include passive oceanographic mechanisms (Karasiova 2005; Stabeno et 

al. 1996), predation (Hewitt 1981 ), and active behaviour by the organi m (McGurk 1987; 
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Mattsurra and Hewitt 1995). The observation that patchiness change from highly patchy 

to dispersed to highly patchy as a function of larval size, in a roughly consistent "U' 

haped pattern (Bradbury et al. 2003), suggests that passive processes alone cannot 

explain spatial distribution. Swimming capacity in larvae increases as they grow larger 

(Williams et al. 1996; Guan et al. 2008). Therefore, it has been argued, through analysis 

ontogentic changes in spatial structure, that active behaviour could drive at least orne 

aspects of the spatial heterogeneity observed in marine systems (Hewitt 1981; Matt ura 

and Hewitt 1995; Stabeno et al. 1996; Methven et al. 2003) 

One component not addressed in these patchiness studies is the role of the hydrodynamic 

environment and how it might provide another framework on which to present swimming 

as a calculable influence on spatial heterogeneity during the larval period. Many papers 

have applied the concepts of functional morphology to swimming and the hydrodynamic 

environment (e.g. Webb 1984; Webb and Weihs 1986; Muller and Videler 1996). 

Functional morphology addresses the relationship between structure, function, and the 

mechanical principles that define the interaction (Webb and Weih 1986). Allometric 

analysis provides a framework to assess functional relationships by illustrating how an 

organism changes shape as it grows. By comparing the relative growth of parts of an 

organism to an overall growth index, it is possible to determine how the geometry of an 

organism changes through ontogeny, which in turn has a direct relationship to function. 

The physical environment around the organism defines the efficiency of structure to its 

function, especially in small swimming organisms (Webb and Weihs 1986). The ratio of 

viscous (decreases swimming efficiency) to inertial (increases swimming efficiency) 
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forces defines the hydrodynamic environment around an organism. Small, slow-moving 

larvae typically exist in an environment where viscous drag dominates and swimming is 

inefficient relative to larger, faster larvae in the inertial hydrodynamic environment 

(Fuiman and Batty 1997; Hunt vonHerbing 2002). Many pelagic larvae hatch at small 

sizes, and the majority of their pelagic duration is therefore considered passive (Davidson 

and deY oung 1995). The onset of detectable swimming ability should occur where larvae 

make the transition from a flow environment where is swimming is inefficient to one 

more conducive to swimming. In addition to reducing or enhancing swimming ability, the 

hydrodynamic environment has been shown to influence growth patterns (Muller and 

Videler 1996). For example, larvae which grow faster along the longitudinal axis (i.e. , 

length) escape the viscosity often experienced by newly hatched larvae at an earlier age 

than larvae that grow longer more slowly. Larval morphology is intrinsically linked to 

locomotion, especially in fluid environments where the morphology of the organism can 

have profound ramifications for the interaction with the fluid environment (Fuiman and 

Batty 1997). The examination of morphological and allometric growth relationships 

within a hydromechanical perspective can lead to insights on how the hydrodynamic 

environment influences growth (McHenry and Lauder 2006). 

Recent studies in coastal Newfoundland suggest that swimming plays a significant role in 

dispersal and thus connectivity (Bradbury et al. 2003). The critical analysis of the spatial 

structure and environmental conditions provided by Bradbury et al. (2003), adds 

additional evidence that larval swimming plays a role in dispersal processes in coastal 

Newfoundland. It also answers questions posed by Leis (2007 a) regarding the differences 
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in onset of swimming ability in cold ocean species and how this might be intuitively 

linked to the hydrodynamic swimming environment experienced by larvae. My tudy 

builds upon the argument presented by Bradbury et al. (2003) and others by illustrating 

the relative influence of the physical environment on swimming. Smith Sound, Trinity 

Bay supports a large, persistent inshore spawning aggregation of Atlantic cod (Rose 

1996). This aggregation provides a potential discrete, natal source of larvae to evaluate 

the potential contribution of larval swimming behaviour to cod dispersal through spatial 

and morphological analysis of field specimens. Trinity Bay i also characterized by high 

abundances of larvae of several other families, including Scorpaenidae, Stichaeidea, and 

Osmerida, providing additional tests of potential swimming contributions to spatial 

heterogeneity. The objective of this chapter is to evaluate possible active behavioural 

contributions by fish larvae to dispersal and connectivity through a combination of 

laboratory experiments, field observations, and hydromechanical principles. Specifically, 

I will address two main questions. First, could larval behaviour play a role in dispersal 

and therefore connectivity of Trinity Bay populations? Second, at what point during 

larval development does this contribution begin? I will address these questions utilizing 

the physical environment as a mechanistic framework in which to assess biological 

processes. 

3.2 Methods 

Sampling Protocol 

Larval and egg data were derived from ichthyoplankton Tucker Trawl surveys conducted 

in Trinity Bay, Newfoundland during the spring of 2004 and 2006, and during the 
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summer of 2004. A total of 20 ichthyoplankton stations were sampled in a "bullseye" 

pattern radiating out from Smith Sound on the western side of Trinity Bay (Figure 3. L) in 

oblique hauls to -40 m depth, thus encompassing the mixed layer (Laprise and Pepin 

1995; Bradbury et al. 2001). The Tucker trawl was utilized because it has been shown to 

minimize the variability in catch estimates relative to other ichthyoplankton gear types 

(Pepin and Shears 1997). Although size and species-specific net avoidance could not be 

directly measured, the large sample volume collected by the Tucker trawl is designed to 

minimize any possible bias associated with net avoidance. Larvae were sampled and 

preserved in a buffered seawater and 4% formalin solution. Each sample was processed in 

its entirety for larvae and identified to species according to identification keys outlined in 

Fahay (2007). Once picked, larvae were stored in a 5% ethanol solution for further 

process mg. 

Allometric analysis 

To test the hypothesis that larval growth trajectories reflect some optimization within the 

mechanical constraints placed by the fluid environment, I performed an allometric 

analysis on data obtained from a detailed library of larval Atlantic cod (Gadus morhua) 

images produced from larvae reared at the Joe Brown Aquaculture Research Facility of 

Memorial University (Guan Lu, unpublished data). Morphological data were recorded 

from the image library using a pixel/mm calibration in Image J image analysis software. 

Several morphological parameters were measured to the nearest 0.01 mm in each image. 

Total length was defined as the measurement from the most anterior tip of the body to the 

midlateral posterior edge of the hypural plate and was chosen as the prefe1Ted body size 
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index. Compari ons of growth of different body segments relative to the body size index 

can provide insight into possible functional relationships between morphology and larval 

development. The body area was taken as the entire surface area of the larval fish 

excluding the fins. Physiological and thrust areas were defined as the total surface area 

anterior or posterior to the distal portion of the gut, respectively (Figure 3.2). The 

physiological area was defined as the pmtion of body surface area from the anterior tip of 

the body to the distal portion of the gut. Physiological area was chosen for its utility as a 

possible metric to de cribe physiological development. The thrust area wa defined as the 

area around the midlateral line extending anterior from the distal portion of the gut to the 

posterior edge of the hypural plate. Thrust area provides a useful metric to describe the 

functional surface area associated with swimming because the amount of water 

accelerated during tail undulation will be proportional to this surface area. Caudal height 

and body depth were defined as the minimum (at the caudal peduncle) and maximum 

heights of the fish respectively (Figure 3.2). Caudal height and body depth are useful 

metrics to describe streamlining, and therefore drag reduction of the larval morphology. 

Standard length was used as an index of overall growth and regressed against several 

other growth parameters to detail how body shape changes throughout ontogeny. Shape 

changes were quantified by calculating exponential linear scaling factors according to the 

equation: 

(1) 
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Where y is the dependent variable, a is a scaling constant, X is the independent variable 

(standard length) and b is the exponential scaling factor. Using log10 transformed data, the 

scaling factor b was calculated according to the equation: 

(2) log10 (y) = b log10(L) + log1 o (a) 

Once calculated, b can be compared to the isometric growth scaling factor b0. The null 

hypothesis, isometry, assumes proportional growth among the morphometric factors 

being compared. When total length (L) is used as a body size index, expected isometric 

growth rates (b) would be linear and squared functions for length and surface area body 

parameters respectively. I used reduced major axis (RMA) regression so that a realistic 

model of the data could be constructed, acknowledging that random enor can be 

associated with each of the variables, X and Y (Rayner 1985; McArdle 1988, 2003). 

RMA regressions were performed according to Sokal and Rohlf (1981). Estimates of b 

were then statistically compared to bo using 95% confidence intervals. [f bo fell above or 

below the 95% confidence interval, then the parameter y was infened to represent 

negative or positive allometric growth relative to body length, respectively. Allometric 

analyses illustrate changes in larval geometry throughout ontogeny. Given the expected 

changes in larval behaviour (Fisher et al. 2000) and interaction with the fluid environment 

(McHenry and Lauder 2006), the allometric analyses might also provide some insight as 

to the functional relationship between biological processes (i.e. swimming), morphology, 

and fluid interactions. 
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Using the image library provided by Guan et al. (2008), I determined direct 

morphological-kinematic relationships. Morphological parameters were regressed against 

critical swim speed and sustained swimming time (Guan et al. 2008), thus providing 

information needed to proved a more detailed morphometric-kinematic analysis, building 

upon basic models provided by Guan et al. (2008). The coefficient of determination (R2
) 

gives a quantitative measure of the variance explained in a statistical model. Each 

morphometric-kinematic model provides a unique v:alue for R2
, however, enor bars or 

statistical comparisons are not possible without further analysis. A bootstrapping 

algorithm developed in Minitab® 15, was used to create 1000 randomizations of R2 

estimates. This distribution was then utilized to generate error bars about the estimated 

R2 developed from the morphometric-kinematic models . These estimates of error enable a 

realistic comparison of model predictive ability based on real data and are independent of 

any specific statistical enor structure. 

Observed Patchiness 

Larvae obtained in the ichthyoplankton surveys, were identified to species and imaged at 

the Ocean Science Centre's Image Data Analysis Facility (IDAF). For each species, a 

maximum of 100 length measurements were derived from each station. Samples with an 

excess of 100 individuals of a single species were sub-sampled using a Motoda plankton 

splitter. Length was calculated from the images and a pixel per mm calibration using 

Image J® image analy is software, measured to the nearest 0.1 mm. Standard length was 

defined as the measurement from the anterior tip of the body to the midlateral posterior 
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edge of the hypural plate. Specimens were then separated into 1 mm size bins and 

displayed as size frequency distributions for each station. 

Samples from May 2006 were also processed for zooplankton abundances. Specimen 

were identified to species where possible and sub-sampled to a minimum count of 300 

individuals per sample using a Motoda plankton splitter. Linear kriging was utilized to 

increase the spatial resolution of sampling surveys by estimating total biomass between 

sample stations in Surfer® 8. The linear kriging method is advantageous as it provides a 

spatial estimate of biomass using data interpolated from all stations sampled (Papritz and 

Stein 1999). Preliminary examination of plots suggested strong differences between the 

eastern and western sides of the bay. Therefore, interpolated data from the kriging 

analysis divided into western and eastern Trinity Bay using associated GPS coordinates 

and Microsoft Excel. Mean abundances for east and west were plotted with 95% 

confidence limits to demonstrate spatial heterogeneity punctuated with a spatial bias to 

the eastern or western coasts of Trinity Bay. 

Lloyd's ( 1967) index of mean crowding was used to determine spatial heterogeneity of 

larvae of different size classes in the sample grid (Figure 3.1 ). Lloyd's index (P) i 

defined as: 

(3) 2 -

P = 1+ a- x 
- 2 
X 
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where ~ is the mean number of individuals and if is the population variance for the 

organisms counted in the size class. Lloyd's index provides a mechanism to determine the 

patchine s of a particular taxon, or in this case, size classes of a given taxon. Lloyd' · 

index explains quantitatively how more frequently an individual occurs in a given sample 

relative to an individual from a randomly distributed population with the same mean 

density (Lloyd 1967). Because the calculation is independent of larval concentration, it is 

useful for comparing among years, areas, or even developmental stages. This flexibility 

and ease of interpretation of Lloyd's index has contributed to its use in studies on 

patchiness in the marine environment (MatsuiTa and Hewitt 1995; Stabeno et al. 1996; 

Methven et al. 2003; Bradbury et al. 2003) 

The calculation of Lloyd index requires an estimate of population variance when the use 

of sample variance might not be appropriate. Several authors have estimated population 

variance by applying a negative binomial distribution to ichthyoplankton data (Lloyd 

1967, Stabeno et al. 1996; Matsurra and Hewitt 1995) according to methods outlined by 

Bliss and Fisher (1953). The approach outlined in this chapter utilizes a negative 

binomial distribution to apply a maximum likelihood expression to the station count data, 

thereby allowing calculation of a dispersion parameter k. An iterative solution for k was 

then determined through the following equation: 

(4) 
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Where N is the number of samples, (Xi) represents the sample mean and, .f(Xt") is the 

observed frequency of samples containing X individuals (Blis and Fi her 1953). When 

necessary, data were pooled between surveys and size bins in order to obtain sufficient 

samples sizes (Bradbury et al. 2003). The dispersion parameter k was solved for using the 

Excel solver tool and equation (4). Because the Excel solver tool tends to remain on local 

minima, the initial estimate of k2 (second moment of dispersion) was derived from 

according to the following equation: 

(5) 

where S2 is the sample variance and Xi represents the mean larval count for the specified 

size bin (Bliss and Fisher 1953). This initial estimate was used as a start point from which 

solver then calculated an estimate of k according to equation (4). The effectiveness of this 

estimation method was verified using data from MatswTa and Hewitt ( 1995) and wa · 

consistent with their calculated estimates values of kin all comparisons. 

The estimate of k was then incorporated into Lloyd's index of patchine s (Maynou et a!. 

2006; Bradbury et al. 2003; Methven et al. 2003), simplifying Lloyds index equation to: 

(6) t 
P= l+­

k 

where P is an estimate of patchiness and k is the dispersion parameter e timated by excel 

solver with the maximum likelihood approach (equation 4). An estimate of P = l 
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indicates the crowdedness of the population is equal to the mean density. Estimate of P 

greater than 1 denote how many more times crowded an individual is than a random 

distribution (Lloyd 1967). Standard error was estimated with k2 according to equation (5) 

based on the number of 0 counts according to the following equation: 

(7) 
(1- R)-k - (1 + kR) 

N[ -ln(1- R) - R f 

where R is derived according to equation (8) 

(8) 

-

X 
R=---

k+x 

N is the number of samples, x is the sample mean and k is the dispersion estimate. 

Hydrodynamic environment 

The fluid environment around a particular larval fish was characterized by calculating the 

Reynolds number (Re) based on the formula outlined in (Brett 1964); 

(9) 
Re = U..,;, !:_ 

v 

where U crit = critical swim speed (rn/s), L equals tandard length in meters, coiTesponding 

the length of the fish parallel the flow of water moving past the body and v is the 
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kinematic viscosity of seawater (m2/s) . Total length (L), defined as the mean size within 

a l mm size bin, was used to calculate patchiness for a particular species (i.e. 0.00055 m 

for the 5-5.9 mm size bin). This mean length was also applied to the swimming parameter 

(Ucrit) of the Reynolds number equation. Guan et al. (2008) defined critical swim peed 

(Ucrit) as the potential swimming performance of the test subject. Larval fish at varying 

stages of development were placed in a swim tunnel and allowed to acclimate for 10-15 

minutes under static conditions. Once acclimated, the current velocity was incrementally 

increased until the fish was no longer able to wim against the current and maintain 

position. The critical swim speed was then calculated following methods outlined in 

(Brett 1964): 

(10) t ucrir = u + (- )U; 
t ; 

where U is the penultimate speed, Ui is the velocity increment (set at L.O cm/s), t is the 

time at the maximum sustained velocity increment, and t ; is the time interval for each 

increment (set at 120 seconds). 

Critical swim speeds for Atlantic cod were derived from length-dependent wimming 

curves derived from image analysis and swim data reported in Guan eta!. (2008). 

Guan et al. (2008) developed a statistically significant multispecies model for swimming 

ability using total length as the predictive variable (R2=0.90). The morphometric 
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kinematic equation of Guan et al. (2008) was then applied to estimate the length­

dependent swimming ability of larvae of all other species. 

(11) Multispeciesucrit(cm/s) = 0.79(L)-2.03 

Where L is the tandard length of the larvae measured in em. Measurements of average 

surface (upper 5 m) and mixed layer (upper 40 m) temperatme, salinity, and fluorometry 

were obtained from vertical CTD casts taken concunently with each ichthyoplankton 

survey, with the exception of 2007 where the inner most tations were not able to be 

sampled. CTD casts were processed for the mixed layer (top 40 m) and analysed for 

spatial pattern using linear kriging analysis in Surfer® 8 and compared with spatial 

pattems of larvae throughout ontogeny. Kinematic viscosity (v) was calculated using a 

standard curve predicting kinematic viscosity of sea water for a given temperature derived 

from Fuiman and Batty (1997) (Figure 3.3). Average mixed layer temperature wa 

utilized to calculate the kinematic viscosity of the ocean water during a given survey 

(Figure 3.4). Kinematic viscosity also changes as a function of salinity, however, average 

salinity differences among survey seasons were negligible, maximum difference of 0.7, 

and were therefore not considered (Figure 3.5). 

The estimated swimming velocities from the morphometric kinematic relationships and 

average kinematic viscosities (described above) were then used to estimate Reynolds 

number for a specific a size range of larvae. Reynolds numbers calculated to be below 20 

were infetTed to represent a viscous environment (Gillis 2003), Re between 20 and 300 
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represented a transitional environment, and Re greater than 300 represented an inertial 

environment (Fuiman and Batty 1997, but see Discussion and Leis 2007). 

Both Lloyd's index and Reynolds numbers were then estimated for larvae measured from 

the field using length as the linking factor in all equations. Overlaying the hydrodynamic 

environment information on patchiness data illustrates the linkages between the 

hydrodynamic environment and patial heterogeneity in the field. These results support 

the hypothesis of this exercise that increased spatial patchiness is expected for late larval 

sizes concomitant with the transition to an inertial swimming environment more 

conducive to active behaviour (Re>300) (Figure 3.6). 

To visualize observed spatial pattern as a function of larval ontogeny contour plots were 

created in Surfer® 8 using the linear kriging function. For each contour plot only one 

survey was utilized to demonstrate the pattern whereas Lloyds index calculation were 

based on combinations of survey rounds (i.e. multiple surveys collected at one time) 

Concentrations of larvae were binned into early middle and late using length as a proxy 

for larval development. Data from kriging analy i was divided two eastern and western 

Trinity Bay and presented as a mean± standard deviation in order to illustrate how spatial 

association changes as a function on larval development. 
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3.3 Results 

Allometric analysis 

Allometric relationships determined from RMA regression indicated that two kinematic 

parameters - total body surface area and thrust area - exhibited positive allometric 

growth (slope > 2) relative to total length for larval cod (Figure 3.7 a,b). Physiological 

area and body depth exhibited isometric growth relative to total length (Figure 3.7 c,d). 

All models were significant (a < 0.0 1) and demonstrated good fit in data with over 80% 

of the variance explained by the model parameters (Table 1). 

Morphometric kinematic analyses also indicated strong relationships. For both kinematic 

parameters, models created using total length as a body size index demonstrated the 

strongest relationships, with coefficient of determination values of 0.97 and 0.91 for 

critical swim speed and sustained swimming respectively (Figure 3.8). Morphological 

parameters along the longitudinal axis (total length, thrust length, and physiological 

length) produced the highest predictive capacity for critical swim speed (Figure 3.9 a, 

summarized in Table. 3.2). Sustained swimming was best predicted by total length and 

parameters associated with the head and gills . Body depth and physiological area best 

predicted sustained swimming ability (Figure 3.9 b summarized in Table. 3.3). Models 

developed with caudal height had the lowest coefficients of determination with only 23 

and 66% of explained variability for sustained swimming and critical swim speed 

respectively (Tables 3.2 and 3.3). Bootstrapping analysis of 1000 randomizations 

demonstrate s ignificant overlap (R2 ±1 standard deviation) in the predictive ability of 
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morphological parameters, however, there was increasing variability in the relationship as 

the predictive capacity decreased (Figure 3.9 a,b). 

Field observations 

Temperature observations, both in the surface and mixed layers, indicate strong seasonal 

differences in temperature with an observed 8 °C difference between May and July of 

2004. Mixed layer temperatures within a year demonstrated markedly less seasonal 

warming, with only a 2 °C difference between May and July of 2004. lnterannual 

differences exhibited similar patterns with a 2.5 °C and 2 °C maximum difference 

between surveys in May 2004, 2006, and 2007, for the surface and mixed layer 

respectively (Figure 3.4). 

Data from all year and seasons indicate the presence of colder water associated with the 

western side of Trinity Bay in the vicinity of Bonaventure Head. On average, a 0.5 °C 

difference was observed between the area immediately suiTounding Bonaventure Head 

and the survey average for both surface and mixed layer measurements (Figures 3.l0 and 

3.11). 

Variability in salinity indicated a near constant salinity among seasons and years. 

Seasonally a -0.08 and 0.15 difference in salinity was observed between May and July 

2004 for the surface and mixed layers respectively. No consistent salinity gradient was 
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observed between the eastern and western portions of Trinity Bay, which did not differ in 

salinity by more than 0.07 during any survey (Figure 3.12). 

Fluorometric measurements of chlorophyll A concentrations were, on average, 0.4 ~tg/L 

higher on the western side of Trinity Bay compared to the eastern side. In all surveys 

except May 2007, the highest fluorescence values were associated with the area 

immediately surrounding Bonaventure Head where the coldest surface waters also 

OCCUlTed (Figure 3.13). 

For the May 2006 survey which was processed for zooplankton in addition to 

ichthyoplankton, there was a high spatial association (Figure 3.14) of total zooplankton 

abundance (#of individuals per tow) with the western side of the bay in the vicinity of the 

cold upwelling. Acknowledging that the zooplankton data is limited to this survey alone, 

there are associations of peak zooplankton abundance with cold water upwelling (Figures 

3.10 and 3.11) and increased fluorescence (Figure 3.13), which were features also 

observed in the 2004 sample surveys. 

Observed Patchiness 

Spatial analysis of Lloyd's index, as a function of ontogenetic development, was limited 

in that only Atlantic cod, Gadus rnorhua, had sufficient numbers of eggs to perform 

patchiness analysis that included the egg stages. Nonetheless, comparisons of patterns in 

larvae for multiple species indicated a general 'U' -shaped pattern in patchiness through 
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larval ontogeny (Figures 3.15 and 3.16). Patchiness was highest for the smallest and 

largest larval sizes collected in the ichthyoplankton surveys. Generally the patchiness 

pattern decreased at intermediate larval sizes. For Atlantic cod, patchiness of early larvae 

was similar to patchiness in egg stages. Only in radiated shanny (Vivaria subbifurcata) 

and Atlantic seasnail (Liparus at/anticus) was there was no pronounced increase in 

patchiness for the largest size grouping. The standard error estimated about each mean 

varied from 0.05 in witch flounder (Glyptocephalus cynog/ossus) to 3.2 in Atlantic 

seasnail. The effect of zero counts (stations where no larvae of any size were caught) had 

mixed effects depending on the species in question, either exaggerating patchiness 

estimates for species with large numbers of larvae (i.e capelin) or reducing the estimates 

for larvae with lower numbers of larvae (i.e.redfish). Despite the variability in direction 

of patchiness estimate change, the overall pattern with size was similar irrespective of 

whether zero values were included. To be consistent with other authors who have used 

this method (e.g. Stabeno et al. 1996; Bradbury et al. 2003; Maynou et at. 2006), and to 

account for different responses depending on the species, all zero stations were removed 

from the analyses presented here. 

The spatial heterogeneity as a function of larval ontogeny, for 8 species of larvae show 

that, as would be expected in the patchiness analysis (Figures 3.15 and 3.16), spatial 

patterns suggest that early and late larval stages are more defined and visually patchier 

than intermediate stages. An axis was drawn down the center of the sampling grid to 

divide Trinity Bay into eastern and westem regions. Redfish (Sebastes spp.), radiated 

shanny, and witch flounder were all significantly more abundant on the eastern side of 
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Trinity Bay throughout larval ontogeny. Arctic shanny (Stichaeus puntatus.) and Atlantic 

seasnail shifted between the east and west divide during the latest defined stage. The 

remainder of the species were significantly more abundant on the western side of Trinity 

Bay throughout ontogeny (Figures 3.17 and 3. L8). Larger individuals of Atlantic cod, 

American sandlance (Ammodytes americanus), capelin (Mallotus villosus), redfish, and 

Atlantic seasnail were associated with the western side of Trinity Bay near Bonaventure 

Head, which is characterized by upwelling (Figures 3.10 and 3.11 ), elevated fluorescence 

(Figure 3.L3) and greater zooplankton abundance (Figure 3.14) relative to other areas 

sampled in the bay. 

Kriging data provided a useful mechanism to smooth out bias in the sampling grid, such 

as highly clustered station near the natal source of cod larvae in Smith Sound. However, 

the kriging process uses all available data to estimate values for spatial locations where 

samples were not taken. This procedure provides a reasonable estimate of mean egg 

concentration but provides an unreliable estimate of variance for each side of the bay 

because variance estimates for the east and west side of the bay are not independent. To 

determine if this statistical violation impacted the spatial interpretation, raw data on 

Atlantic cod and American sand lance (figure 3 .17), was divided into east and west 

stations and kriged individually. This manner of kriging provided a mechanism to 

compare means without the problem of non-independent variance. In all tests, the means 

and variances changed by less than 5% and in no cases did the interpretation of the results 

change. Although the analyses presented defy the assumption of independent variance, 

this secondary comparison suggests that the results are meaningful and provide a 
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reasonable mechanism to address spatial patterns despite a spatial bias in distribution of 

sampling stations. 

Hydrodynamic environment 

Total length demonstrated the greatest predictive capacity for kinematic potential of all 

morphometric variables available for the analysis (Figures 3.9). This finding is consistent 

with previous studies (e.g. Muller and Yideler 1996; Guan et al. 2008) and lends 

confidence to the use of length as a linking parameter between field length distribution 

data and hydrodynamic theory. The Reynolds number, as calculated from equation 9, is a 

product of the swimming speed, length, and the kinematic viscosity of water. Critical 

swim speeds (Ucrit) for Atlantic cod larvae of a given length (TL) were calculated 

according to: 

(12,) Ucrit (cm/s)= l6.273(LogiOTL(mm))- 10.262 

Unfortunately swim data and corresponding images for larvae of other species obtained in 

the ichthyoplankton survey were not available. To estimate the swimming capacity of 

these larvae, a multi-species morphometric kinematic model ba, ed on larval length and 

measured swimming speeds (from Guan et al. 2008) was utilized, based on equation 11. 

The only unresolved component of the Reynolds number calculation is the kinematic 

viscosity of water. The kinematic viscosity is the molecular viscosity of seawater which 
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ha a well-known temperature dependence (Fuiman and Batty 1997). The viscosity of 

seawater varies from l.79x 10·6 m2/s at 0 °C to 1.40x10·6 m2/s at 10 °C (Figure 3.3). 

Larval counts did not yield sufficient numbers to estimate patchiness reliably for 

individual surveys. This limitation necessitated the pooling of survey data, including the 

temperature data derived from CTD casts (see Figure 3.4). The mean temperature for the 

mixed layer (top 40 m) at all stations during all surveys was utilized to calculate the 

kinematic viscosity for all surveys according to the standard curve (Figure 3.3). Clearly, 

this method ignores between-survey variability (Figure 3.4), however, if the extreme high 

and low temperatures are used from the field, the estimate of Re changes by only -3.5%, 

and therefore has no substantive impact on data interpretation. Mean temperature among 

surveys yielded an average kinematic viscosity of 1.714 x 10·6 m2/s (s.d. = 0.138). 

Data from equations 11 and 12 were used with binned mean lengths to predict Reynolds 

numbers according to equation 9. An iterative solution for the length at which Reynolds 

numbers would equal 20 and 300 was used to determine the boundaries of hydrodynamic 

regimes (Fuiman and Batty 1997). For Atlantic cod the transition between the viscous 

(Re<20) and the intermediate (20<Re<300) flow regimes occurs at 4.5 mm total length. 

The transition into the ine1tial flow regime occurs at 9.3 mm total length. For all other 

species of larvae collected, the transition from the viscous environment was estimated to 

occur at 3.7 mm and into an inertial environment at 9.5 mm (Figures 3.15 and 3.16). 

Several consistent patterns are apparent with respect to patchiness in the context of 

hydrodynamic environmental transitions (Figures 3.15 and 3.16). For all species except 
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Atlantic seasnail, a rise in patchiness occurred leading up to or at the transition to the 

inertial environment (Re>300). Variability in the estimate of patchiness also decreased in 

general after this critical transition (Figures 3.15 and 3.16). Estimates of patchines for 

the Atlantic seasnail decreased throughout ontogeny with later sizes approaching random 

or uniform distribution (Lioyds index= 1). 

3.4 Discussion 

The role of dispersal during the larval phase in structuring the c01mectivity of populations 

has been at the forefront of many marine ecological studies (e.g. James et al. 2002; Levin 

2006). Population connectivity has particular importance in fisheries management 

approaches (Yao 1986; Schillinger et al. 2000; Baumann et al. 2003; Swearer et al. 1999; 

Crowder et al. 2000) and marine conservation design (Cowen et al. 2000, 2006). 

Increasingly, researchers have examined the role of active swimming as a form of 

behaviourally-mediated dispersal rather than as a simple passive advective process 

(Wolanski et al. 1997; Cowen et al. 2000; Leis et al. 2007b). Partitioning the role of 

active and passive processes is required for robust predictive population models 

(Bradbury et al. 2003). An analysis of larval swimming ability is needed in order to 

evaluate the potential importance of active behaviour to larger-scale dispersal and 

connective processes (Guan et al. 2008). Laboratory studies can provide useful insight 

into this question but fall short of direct applicability to the dynamic environmental 

conditions observed in the field (Leis and Stobutzki 1997). Hydromechanical theory 

provides a bridge between laboratory studies and field observations. This bridge can shed 
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clarity on the applicability of laboratory studies to field-based predictions in the ab ence 

of any actual field measurements of directed movements. 

Morphological and kinematic considerations 

The effects of morphology can have implications for the movement of organisms and can 

therefore have pronounced ecological consequences (Koehl 1996). The relationship 

between morphology, sw1mmmg, and the hydrodynamic environment has been 

highlighted by several authors (e.g. Webb and Weihs 1986; Fuiman and Batty 1997; 

McHenry and Lauder 2006). Given that the hydrodynamic environment plays a 

significant role in limiting the swimming ability of this life history stage, it was 

hypothesized that individuals would exhibit positive allometric growth associated with 

the longitudinal axis in greater proportion to the rest of the body, in order to escape the 

viscous flow environment (Webb and Weihs 1986). However, the allometric growth 

patterns suggested by Webb and Weihs (1986) were not found in my analysis for Atlantic 

cod. Total body surface area and thrust area both scale positively with total length 

(RMAslopc 2.29 and 2.10 respectively), whereas physiological area and body depth scaled 

isometrically with total length (RMAslope 2.17 and 1.03 respectively). These patterns do 

not fit the hydrodynamic prediction of Webb and Weihs (1986) but are generally 

consistent with observations of Muller and Videler (1996), who found that growth m 

gadiform volume was positively allometric compared to total length. 

McHenry and Lauder (2006) suggested that the transition between hydrodynamic 

environments might take place on a time scale that does not permit the concomitant 
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change in body geometry to conform to the cenario outlined by Webb and Weihs ( 1986). 

They suggested instead that early larvae might exhibit morphologies which are not 

optimized for the viscous regime but instead are optimized for later stages of larvae which 

actively swim in the inertial environment. Koehl (1996) reiterated the ame concept, 

acknowledging that often the smallest organisms exhibit the greatest array of 

morphologie , many of which might play a novel role in processes such as locomotion in 

different hydrodynamic environments. This argument is supported by my results 

considering that the thrust producing posterior two thirds of the body (thrust surface area) 

grows proportionally faster than total length (RMAsiope=2.10). This morphological growth 

pattern suggests that a larva enters the inertial fluid environment with larger proportional 

thrust-producing surface areas, relative to length, despite the fact that this morphology 

adds viscous drag to the animal at that point of its development. The concurrent isometric 

growth trends associated with body depth and physiological area relative to total 

Jength,could be involved with drag reduction, which is particularly important in the 

viscous swimming environment. McHenry and Lauder (2006) note that viscous drag is 

related to skin surface area. Many fishes are streamlined to minimize drag associated 

with smface area. A simple morphometric model for streamlining is the ratio of total 

length to maximum body depth. (Webb and Weihs 1986). We find an absence of any 

allometric growth trajectory associated with these body parameters is likely related to 

streamlining growth trajectories expected in small swimming organisms such as larval 

fish. This observation suggests a compensation for the positive allometry associated with 

the thrust area. Though length does exhibit positive allometric growth, as suggested by 

Webb and Weihs ( 1986), the growth trajectories observed for Atlantic cod fit theory 
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based on pre-optimization for hydrodynamic environments encountered later in 

development. These results agree with recommendations from previous authors (Webb 

and Weihs 1986; Fuiman and Batty 1997; McHenery and Lauder 2006) that 

morphological growth trajectories should be closely linked to the local hydrodynamic 

environment. 

Locomotion is intrinsically related to organism morphology. Morphometric kinematic 

analysis demonstrated that total length was the best predictor of sustained swimming 

ability and critical swim speed in agreement with work presented by previous authors 

including Muller and Videler (1996). Given that total length is the best predictor of both 

swimming endurance (by proxy, sustained swimming) and maximum swimming 

performance (critical swim speed), its usage in spatial analysis is well founded. The 

morphometric kinematic analyses for sustained sw1mmmg yielded body component 

associated with the anterior extremities, physiological area, and body depth of the larvae 

have the next highest predictive capacities. This result is not surprising given that larval 

swimming endurance is mediated by the physiological capacity (Leis and Clark 2005). 

The morphological association of body depth and physiological surface area with the 

respiratory and digestive systems of larval fish makes them good proxies for 

physiological ability, explaining their predictive association with sustained swimming. 

Critical swimming ability was be t defined by the linear measurements of total length, 

thrust length, and physiological length. This is not unexpected given that the fastest 

possible swimming ability should be related to the maximum tail amplitude (Webb and 

Weihs 1986) which in turn will be defined by linear measures such as thrust length. 
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These analyses provide useful insight into the relationship between morphology and 

kinematics. They also demonstrate that total length is a very useful morphometric for 

illustrating swimming abilities and swimming-related processes. 

Spatial heterogeneity in the field 

The analysis of spatial heterogeneity as a function of larval length suggests that 

swimming ability may play an increasingly important role through ontogeny. Estimates of 

patchiness, with the exception of Atlantic seasnail, demonstrated an increase in spatial 

patchiness as larvae grew. The characteristic U-shaped pattern described by several 

authors (Stabeno et al. 1996 and others) is clearly evident in seven of the eight abundant 

species collected during ichthyoplankton surveys in Trinity Bay. High spatial patchiness 

at small sizes is consistent with the assertion that small larvae experience a viscous 

environment and like eggs, act essentially as passive particles (Fisher and Bellwood 2000; 

Bradbury et al. 2003). This trend is clearly seen in Atlantic cod, where patchiness in 

early stages of larvae is very similar to that for egg stages. However, if passive processes 

alone dictated spatial pattern, there would be no reason to expect the consistent high 

patchiness at early and late size ranges and low patchiness during intermediate sizes 

across species observed in my study. 

Contour plots of field data provide a method to spatially interpret patchiness patterns. 

These plots demonstrate how the larval spatial distributions change as a function of larval 

development, by proxy size of the larvae. For multiple species a consistent trend of lower 

patchiness for intermediate, relative to ·mall and large size ranges, was observed. 
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Bradbury et al. (2003) noted that the late larval stages of several species were associated 

with localized areas of heightened productivity and were counterintuitive with a passive 

model given the ambient flow conditions in Placentia Bay. Bradbury et al. (2003) argued 

that because these larvae were associated 'upstream' of their predicted location, active 

behavioural modification of passive drift was necessary to explain spatial pattern. In my 

study, Atlantic cod, American sandlance, capelin, and Atlantic seasnail were associated 

with the western side of Trinity Bay throughout larval ontogeny. Redfish and Arctic 

shanny both show increased mean abundance associated with the western side of Trinity 

Bay as a function of size. Only witch flounder and radiated shanny lack any evidence of 

increased mean abundances associated with western Trinity Bay. The consistent 

association of witch flounder with the east coast of Trinity Bay, in contrast, shows no 

evidence of any net movement. 

All of these observations are inconsistent with a passive explanation given the mean bay­

scale cunent conditions. Circulation modelling by Yao ( 1986) and Tittensor et al. (200 l; 

2002) illustrate that circulation patterns are strongly influenced by an inshore branch of 

the Labrador Current. Cunent meter observations indicate that the mean flow direction is 

typically equal to the variance (Tittensor et al. 200 l; 2002). There is, nonetheless, a clear 

pattern of water entering on the west and exiting on the eastern coast. Flow variability, 

primarily driven by wind stress (Davidson et al. 2001), produces complex patters of 

cunent response that is dominated by a complex upwelling-downwelling cycle and a 

Kelvin wave. A counter clockwise gyre can also be observed near the mouth of Smith 

Sound, which exhibits some of the strongest flow measurements known or the Trinily 
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Bay (Figure 2.2, from Tittensor et a!. 2002). Passive residency time in Trinity Bay, 

based upon particle tracking calculations made using the Candie model (Davidson et al. 

2001), in Trinity Bay are on the scale of days to weeks (B. deYoung, personal 

communication, Department of Physics and Physical Oceanography Memorial University 

of Newfoundland, St. John's NL, AlC 5S7). Larvae of all species, with the exception of 

radiated shanny and witch flounder, occur in locations that are "upstream" of where they 

would occur if passive processes alone dictated spatial pattern. The static spatial 

distribution of witch flounder is also inconsistent with a passive model. Swimming ability 

has been shown to scale positively with length for numerous fish ·pecies (e.g. Williams et 

al. 1996). The upstream spatial association of larger larvae, who are likely better 

swimmers, leads to the parsimonious conclusion that active larval behaviour might 

influence spatial pattern. 

Hydro-mechanical considerations 

The hydrodynamic environment dictates the physical boundaries placed by fluids around 

an organism and, for small organisms, can place major restrictions on its locomotor 

abilities (Fuiman and Batty 1997). Integration of the morphometric, kinematic, and spatial 

analyses allows interpretation of field observations in light of the hydromechanical 

constraints experienced by larvae. This approach is particularly useful in infen·ing 

whether swimming influences the spatial heterogeneity observed in many field situations. 

Low Reynolds numbers (Re <20) characterize environments where swimming is limited 

by viscous drag (Fuiman and Batty 1997). The point at which an organism operates in a 

clearly inertial zone (Re >300) has generated debate. Early estimates set the transition 
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point at a Re number of 200 (e.g. Webb and Weihs 1986), however, more recent 

observations and modeling set theRe transition at 300 (Fuiman and Batty 1997) or 1000 

(McHenry and Lauder 2005). The transition estimate of Fuiman and Batty ( 1997) and a 

lower limit estimate by McHenry and Lauder (2005) was used in this analysis. Using the 

field data and morphometric kinematic models, Re values for the viscous and inertial 

transitions were estimated for each species and then overlaid onto the estimates of spatial 

patchiness . Generally in cold ocean species larvae hatch into a viscous environment 

(Re<20) and transition (20<Re<300) into an inertial hydrodynamic environment 

(Re>300), where swimming becomes efficient (Guan et al. 2008). The pattern in spatial 

heterogeneity, provided by Lloyd' indices, indicates an increase in patchiness associated 

with the transition into the inertial hydrodynamic environment, suggesting that spatial 

distributions of larvae in the field are a result of swimming behaviour. The transition to 

the inertial flow environment was a sociated with an increase in spatial patchiness for all 

species except Atlantic seasnail. For Atlantic cod, capelin, redfish and Arctic shanny the 

transition into a viscous environment coincided with a 3-8 fold increase in patchiness. For 

these species a strong spatial association with the western side of the bay is clearly 

evident. American sandlance and radiated shanny did not demonstrate the marked 

increase in patchiness associated with the transition to the inertial environment but 

patchiness increased after the transition, as predicted with active swunmmg. Atlantic 

seasnail patchiness was nearly uniform (Lloyds index of L), suggesting that behavioural 

contributions are less important or vary less with development, or that the multispecies 

model for predicting maximum swim speed is inappropriate for this species and the 

transition to the inertial flow environment had not yet occurred. 
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Results from the hydrodynamic spatial pattern analysis were strikingly similar to 

conclusions from other studies on spatial patchiness and critical swimming development 

points during larval development. Frank and Leggett (1982) looked at dispersal of larval 

capelin and estimated that 10 mm total length represented a critical developmental stage 

at which larval capelin would be able to migrate vertically and potentially use vertical 

shear to influence their dispersal. Stabeno et al. (1996) demonstrated a minimum larval 

size of 10 mm was necessary to maintain observed patch sizes for walleye pollock 

(Theragra chalcogramma). More recently, Bradbury et a!. (2003) estimated the 

minimum larval size required to maintain patch sizes observed in Placentia Bay was also 

10 mm. Guan et al. (2008) found that shorthorn sculpin (Myoxocephalus scorpius) larvae 

were significantly better swimmers at hatch than Atlantic cod. This difference was 

partially explained by the larger hatch size of shorthorn sculpin (10.84 mm) compared to 

that of cod (5.25 mm). At the larger hatch size, shorthorn sculpin were swimming in a 

near-inertial environment, whereas cod only achieved comparable swim speeds at a 

minimum length of 10 mm. The present analyses suggest that the tran ition into an 

inertial environment was estimated as a total length of 9.3 mm for Atlantic cod and 9.5 

mm for the other species examined. The 10 mm threshold (Frank and Leggett 1982; 

Bradbury et al. 2003) might be partially explained by the critical hydrodynamic shift 

suggested by this study. The earlier onset, 5-8 mm length, suggested by Leis (2007a) can 

be explained by an earlier transition to the inertial swimming environment due to warmer 

water temperatures and therefore lower kinematic viscosities ( -45% decrease with a 15 

°C increase in temperature). The swimming comparison between different size at hatch 

among species from Guan et al. (2008) and the present study of field spatial distributions 

135 



provide compelling evidence that swtmmmg abi li ty within the context of the 

hydrodynamic environment could contribute substantially to larger-scale population 

structure. 

Patchiness: Does active behaviour play a role? 

Morphometric, kinematic, hydrodynamic, and field spatial data support the hypothesis 

that swimming influences spatial patchiness during the early life history of larval fish. 

Patchiness, in a broad sense, is usually a product of the spatial patchiness of elements of 

the fish's environment such as food resources, predators, or passive influences such as 

oceanographic features (Lloyd 1967). It is unlikely that larval patchiness is simply a 

product of passive processes, given that field distributions are inconsistent with 

expectation based on passive drift. 

How are these spatial patterns produced? Given that passive circulation alone cannot 

explain spatial pattern, there are three other like I y biological processes that could explain 

the data. Active swimming is one possibility, but differential mortality could also occur, 

either as a result of spatially heterogeneous predation patterns or as are ·ult of differences 

in avai labi lity of food resources. In order to partition the role that active swimming cou ld 

play in explaining patchiness patterns, predation and food availability must both be 

addressed. 

Predation could cause heterogeneous distributions of larvae because it can directly 

influence spatial patterns in ichthyoplankton abundances. Size-dependent predation is 
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particularly relevant to this analysi because this study analyzes spatial heterogeneity as a 

function of ontogeny. Bradbury et al. (2003), Baumann et al. (2003), and Pepin et al. 

(2002, 2003) examined spatial patterns of ichthyoplankton larvae in Newfoundland 

embayments. All of these studies noted that juvenile or adult capelin (Mallotus villosus) 

were likely the most dominant planktivorous fish in their re pective systems. Baumann et 

al. (2003) carried out acoustic surveys in Trinity Bay to identify the spatial distribution of 

capelin, and their survey noted a temporally-consistent and strong spatial association of 

juvenile and adult capelin with the western side of Trinity Bay. These distributions are 

very similar to the patterns ob erved for larvae of several of the dominant species 

reported here. The assumption concerning the effect of predators and patchiness is that 

predators might influence prey distribution by feeding and lowering prey concentrations 

in areas where the predator are most abundant, therefore influencing spatial 

heterogeneity. If this were true, then higher larval densities would be expected away from 

a likely source of predators and the anecdotal evidence provided by Baumann et al. 

(2003) does not show this. Likewise, neither Baumann et al. (2003) nor Bradbury et al. 

(2003) detected any evidence of size-dependent mortality in their respective study 

systems. If size-dependent mortality is not a major factor, then the U-shaped pattern in 

patchiness is less likely to be solely a product of mortality and predation. In addition, the 

ontogenetic shift in spatial distribution to areas previously unoccupied for multiple 

species included in this analysis, is inconsistent with the hypothesis that predation alone 

produces spatial heterogeneity in the field data. Although predation cannot be fully 

dismissed, several pieces of evidence from this thesis suggest that swimming is a greater 

contributor to heterogeneous distributions of larvae. 

137 



Food resources are a fundamental component of any population or community. Several 

authors have formalized hypotheses that highlight the role of food resources in structuring 

marine pelagic larval distribution including the "stable ocean" (Lasker 1978), "member 

vagrant" (lies and Sinclair, 1982), "match mismatch" (Cushing 1990), " right site" 

(deYoung and Rose 1993), and "ocean triad" hypotheses (Bakun 1996). This anay of 

frameworks that draw on multiple biological and oceanographic fields are all linked by 

food availability and demonstrate the integral role spatial heterogeneity of food resources 

plays in larval survival. In terms of contributions to spatial heterogeneity, abundant food 

resources can concentrate organisms into patches (Lloyd 1967) or food-limited areas can 

lead to mortality. Pepin and Penny (2000) demonstrated in an adjacent Newfoundland 

bay, Conception Bay, that larval fish consume less than 0.1 % of available 

microzooplankton, suggesting that starvation is extremely unlikely to contribute to spatial 

heterogeneity. Bochdansky et al. (2008) concluded that environmental factors regulating 

predator-prey encounter rates has a direct positive relationship with larval growth and 

survival. The western side of Trinity Bay near Bonaventure Head is characterized by 

persistent upwelling observed in my study as well as several others from past years (Yao 

1986; Schillinger et a!. 2000; Tittensor et a!. 2001,2002; Baumann et al. 2003). 

Associated with this upwelling feature was heightened chlorophyll concentrations and 

zooplankton abundances. The primary food ource for these fish larvae is likely 

microzooplankton (Pepin and Penny 2000) which was not directly sampled with the 

Tucker trawl. However microzooplankton are often associated with increased 

productivity and larger zooplankton are associated with areas of microzooplankton. 
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Moreover, the eggs of copepods that are sampled effectively with the Tucker trawl are an 

important potential food source for larval fish. Therefore, Although the upwelling region 

where late stage larvae were most abundant might represent a region of optimal habitat in 

Trinity Bay for pelagic larvae. 

This prospect raises the question of whether larvae can actively swim and mediate their 

geographic locale. Larval fish have increasing sensory capabilities as they progres 

through ontogeny (e.g. Kingsford et a!. 2002). Work on reef fish behaviour has 

demonstrated that larvae have directional swimming abilities that may allow them to cue 

in on features lO's to lOO's of meters away (Leis and Carson-Ewmt 1999, 2003). These 

examples, along with the evidence provided by laboratory and field data, illustrate that 

the spatial heterogeneity observed in larval fish in Trinity Bay may reflect an active 

swimming contribution from the larvae to take advantage of favourable local conditions. 

Summary 

Morphometric kinematic analysis of larval cod suggests a growth pattern that optimizes 

swimming efficiency as larvae enter an inertial hydrodynamic environment (Muller and 

Videler 1996). In my study, total length was the best morphometric predictor of 

swimming ability of Atlantic cod for critical swimming speed and sustained swimming 

ability. Spatial analysis that used total length as a proxy for ontological development 

revealed U-shaped patchiness estimates that are consistent with high patchiness in early 

and late stage larvae and juveniles as has been repmted in previous studies (e.g. Stabeno 

eta!. 1996; Methven et al. 2003; Bradbury et al. 2003). The peak in patchiness associated 
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with the most developed larvae collected in my samples coincided with the onset of the 

inertial swimming environment. 

Field distributions demonstrated a spatial association of larval fishes with western Trinity 

Bay throughout ontogeny and, in some cases, an east-west shift from early to late stage 

larvae. Both of these patterns were inconsistent with predictions based on passive 

transport within the predominant circulation within the bay, therefore suggesting that 

patterns were not a result of passive physical processes. Persistent upwelling on the 

western side of Trinity Bay was noted on multiple occasions, and was characterized by 

elevated fluorescence and zooplankton biomass that characterize favourable habitat for 

larval fish. 

Larval behaviour has been shown to mediate large-scale processes such as dispersal and 

connectivity in coral reef systems (e.g. Leis et al. 2007a). The concomitant presence of 

late-stage larvae and upwelling that coincide with the transi tion into an inettial 

hydrodynamic environment suggests that active swimming behaviour by larval fish as 

small as 15 mm or less can influence exhibited dispersal patterns and thus potentially 

contribute to population connectivity. Results from this study suggest that the onset of 

active contributions to spatial pattern coincided with the transition from vi cous to inertial 

flow environments. This analysis is particularly relevant for cold ocean species where 

hydrodynamic constraints associated with the fluid environment are potentially strongest. 
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Table 3.1 Allometic growth comparisons larval Atlantic cod (Gadus morhua). Reduced major axis regression equations 
presented as: Log10 (dependent variable)= bRMA log10 (total length)+ log10 (a)/. B0 is the isometric scaling rate. b lower and 
b upper represent 95% confidence intervals to.o1,n-1 

Dependent variable bRMA blower bupper Bo a I p n Allometric relationship 
Body area 2.29 2.13 2.47 2 -0.23 0.93 0.00 135 Positive 

Thrust area 2.10 2.04 2.60 2 -0.30 0.81 0.00 135 Positive 
Physiological area 2.17 1.98 2.36 2 -0.23 0.90 0.00 134 Isometric 

Body depth 1.03 0.89 1.14 1 -0.12 0.80 0.00 173 Negative 
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Table 3.2 Ordinary least squares regression analysis for critical wim ·peed and 
morphological parameter on Atlantic cod (Gadus morhua). Regression equations 
follow: Independent variable= bois (Metric)+ a. Coefficient of determination (I ) values 
are presented with ± 1 bootstrapped standard deviation. 

Independent variable bois a I p n 
Total Length 0.74 - 1.71 0.81 (± 0.03) 0.00 94 
Thrust length 1.77 -3.11 0.80 (± 0.03) 0.00 71 

Physiological length 1.48 0.73 0. 78 (± 0.04) 0.00 71 
Body area 0.37 2.19 0.75 (± 0.04) 0.00 71 

Physiological area 0.56 2.05 0.73 (± 0.05) 0.00 71 
Thru t area 1.00 2.52 0.71 (±0.04) 0.00 71 
Body depth 3.90 -1.72 0.67 (± 0.04) 0.00 94 

Caudal Height 10.19 1.54 0.66 (± 0.04) 0.00 71 

Table 3.3 Ordinary least squares regression analysis for weekly means sustained 
swimming and morphological parameters on Atlantic cod (Gadus morhua). Regression 
eq_uations follow: Independent variable= b 01s (Metric)+ a. Coefficient of determination 
(r ) values are pre ented with ± 1 bootstrapped standard deviation. 

Independent variable bois a I p n 
Total Length 4.87 -37.1 0.91 (± 0.04) 0.00 5 
Body depth 28.9 -35.3 0.9 1 (± 0.05) 0.00 5 

Physiological area 4.56 -9.94 0.89 (± 0.06) 0.00 5 
Thrust length 11.1 -35.9 0.88 (± 0.1) 0.00 5 

Body area 3.51 -10.9 0.81 (± 0.07) 0.00 5 
Thrust area 12.3 -10.5 0.79 (± O.lO) 0.00 5 

Physiological length 12.0 -33.2 0.73 (± 0.13) 0.00 5 
Caudal Height 32.1 -3.26 0.23 (± 0.25) 0.00 5 
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Figure 3.2 Image depicting larval morphological analysis. A) Morphometric parameters used in allometric and kinematic 
analysis' where CH =caudal height, ThL = thrust length, PL = physiological length, BD =body depth and total length= 
TL+PL. B) Body area defined as the total surface area of the larva excluding the fins (both shaded areas). Dashed line polygon 
defines the physiological area and solid lined polygon defines the thrust area. Refer to Methods (Section 3.2) for a breakdown 
of morphological boundaries for image analysis. 
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Figure 3.6 Conceptual design for interactions between larval size, hydrodynamic 
environment, spatial patchiness (Solid line), and swimming ability (dashed line). 
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Figure 3.18 Spatially contoured species size abundance binned into early, middle and late 
larval development sizes. Side bars represent mean larval abundance for western (W, 
black bar) and eastern (E, white bar) regions of Trinity Bay. Dashed line represents the 
boundary between the sample regions and dots represent sample stations. 
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Summary and Conclusions 

The literature review presented in Chapter 1 ill ustrates the importance of understanding 

linkages when developing conservation and management strategies for spatially 

distributed populations . Metapopulation biology, in conjunction with management and 

conservation efforts, offers a powerful tool that utilizes these linkages to maintain not 

only population number but population function (Fogarty and Botsford 2007). The 

linkages that maintain population connectivity and structure are often particularly 

important during the early life history of marine organisms where dispersal and 

recruitment processes define settlement areas over broad geographic areas (Harden-Jones 

1968; Cowen et al. 2000). Chapter 1 illustrates the interactions between the physical 

environment and dispersal processes. The tandem assessment of both physical and 

biological data is needed to gain a comprehensive understanding of the factors that define 

connectivity and the maintenance of spatial structure. 

The potential role of the Newfoundland inshore environment in any recovery of depleted 

offshore cod stocks is of great interest to scientists and managers alike. Smith Sound has 

the largest recorded spawning aggregation in the 2J 3KL cod stock complex and has 

persisted in Smith Sound for over 15 years. Dispersal estimates suggest that the Smith 

Sound, Trinity Bay system is highly retentive. The presence of late stage eggs and larvae 

in the Sound suggests res idency could exceed 30 days. Larvae and eggs of all stages are 

strongly associated with the west coast of Trinity Bay near the mouth of Smith Sound. 

This spatial association does not appear to change fundamentally even during periods 
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when temperatures are colder, which typically leads to longer passive residency times. 

Though available data was limited, several lines of evidence point to the presence of 

oceanographic features that might contribute to the retention observed to the west coa t. 

A spatially-consistent upwelling feature near the mouth of Smith Sound was observed in 

all years of the study and in previous years by other authors. Flow modelling from 

previous years indicated a consistent gyre feature near this coastal upwelling (Yao 1986; 

Tittensor et al. 200 I; 2002) and proposed as a mechanism for within-bay scale retention 

of other species of larval fish (Dalley et a!. 2002). These two features combined with the 

majority of spawning coinciding with warmer temperatures might play a significant role 

in sustaining the Smith Sound aggregation. Overall contributions to the larger 2J 3KL cod 

stock complex from Smith Sound might be limited and connective processes likely 

operate on bay sized spatial scales. 

Dispersal during the early life history is both passive and active. Traditionally the 

capacity to evaluate the active component was limited by logistics and the view that 

larvae were too small and not behaviourally capable of influencing dispersal to any 

measurable degree (e.g., Miller eta!. 1998; Fisher et al. 2000). Spatial analysis of several 

species of larval fishes suggests changes in spatial pattern throughout ontogeny that do 

not fit passive flow conditions. Increases in spatial patchiness later in ontogeny were 

concomitant with the transition to an inertial flow environment. These aggregations were 

also associated with areas where food conditions were favourable. Through these lines of 

evidence, I propose that active swimming behaviour significantly impacts spatial pattern 

and therefore dispersal. The point at which this contribution begins likely depends on the 
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fluid environment around the organism which defines the point of transition to the inertial 

flow environment. 

The role of the physical environment m structuring biological processes cannot be 

ignored. For the Smith Sound spawning aggregation, a combination of local circulation 

features and timing of spawning creates a highly retentive system, which limits dispersal 

outside of Trinity Bay. Temperature and coastal upwelling contribute to favourable areas 

in terms of food conditions, which likely play a large role in the spatial pattern of larvae 

and subsequent recruitment pattems. Overall these results highlight how local physical 

features might have broad-scale biological consequence . From a management 

perspective, understanding the spatial structure of a population will best be achieved 

through a comprehensive study of local phy ical features and their role in defini ng 

connectivity among spatially separate sub-population units. 
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