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It is demonstrated how the visualization tool facilitates deeper insight into the fun-
damental principles that underlic bea  lormer design.

With a firm understanding of the underlying principles « beamformers, it is
possible to perform useful comparisons and contrasts between sophisticated modern
design methods and see their relationshi  to tl - widely known narrowband tech-
niques.

Much of the beamformin  literature makes si Hlifying assumptions about the
physical array geometry to be used. With an understanding of the underlying prin-
ciples, a basis is given for choos  array geometries and understar 7 g the perfor-
mance that can be achieved for on geometry.

The contributions of this thesis inc 1de a visualization tool for beamformer anal-
ysis, a guide for sclecting and evaluating ¢ ay geometries, and direct comparison of
several broadband design techniques. These contributions provide a foundation for

the successful design of broad  1d ac stic beamfc  ers.
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Chapter 1

Introduction

A beamiformer is the combir ion of an a1 v of transducers with signal processing
to produce a directional transdu  system. Beamformers are used to achieve greater
performance than would be possible at the level of an individual transducer.
Transducers are characteriz by many parameters. such as gain or scusitivity,
bandwidth, efficiency, frequency response, and radiation pattern. e radiation pat-
tern of a transducer is the " ectional dependence of the amplitude of the radiation
transmitted or received by the tra:  lucer. Di ivity is a property of the radiation
pattern. Directivity is defined as “the ratio of the radiation intensity in a given
direction from the [source] to the radiation intensity averaged over all directions[1].”
For a single transducer, the radiation 1 :tern can be controlled by the design
of the transducer itself, or by the use of reflectors. horns and waveg =~ les. When
the gain. directivity or implementation details make a single transducer inadequate.
sometimes a beamformer using an array of transducers can meet the design require-
ments. Beamformers can be based on arrays of directional elements to improve upon
the characteristics of the underlying trai wcer. They can even be made with simple

isotropic elements for reasons of cost or s city.






To address this, and to learn more about the fundamental principles of beamformer
design, [ found it useful to build a softw ¢ tool to visualize the performance of generic
beamformers. which allowed dire  an sid comparisons between multiple design
techniques. This tool uses a numerical simulation approach that — sily accomodates
arbitrarv beamformer configurations and computes the beamformer power output
directly without the necessity tor e small angle approximations. This 1s important
because analytical expressior  [or the beamn  ttern and other characteristics of arrays
arc usually limited to specific array geou  ries, and also sometimes rely on far-
field assumptions — that is:  ll-a1 "¢ approximations arce assumed in deriving the
beanmipattern.

The use of this visualization tool led to greater insight into the body of literature
and an understanding of some underlying physical principles whicli guide thie design
of broadband beamformers.

This thesis addresses the lack of tutorial information on the design of broadband
beamformers, in particular the func nental relationship between array geometry
and the potential perforn 1ce evable for a  “ven design problem. The contri-
butions of the thesis are a summary of the basics of broadband beamformer design;
the development of a software tool to compare performance of  ious beamform
examination of the relationship between ar 7 geometry and potential beamformer
performance, and the comparison the results of several published broadband beam-

former design methods.


















of clements needed. . ..e output of each subarray is combined to produce a total
beamformer output that has an acceptable variation over the entire design band-
width.

Another early technique uses multiple pencil beams added together, cach steered
slightly off-axis to compensate for the natural narrowing of = » m ~ lobe with in-
creasing [requency [47, 48, 49, 50].

Other  authors  propose curved or  twisted arravs to produce constant
beamwidth [51, 52]. which rely on directionality in individual elements to maintain

mainlobe width at higher frequencies.

1.2.7 Generalized or¢ dband Array Design

A key element in broadband . 1y des _ is ensuring that the chosen array geometry
adequately samples the array aperture over the entire frequency range of interest.
Perhaps because experts in the  ld consider this to be obvious, there is very little
discussion in the literature of the ninimal requirements for array geometries. Doles
and Benedict [53] give perhaps the first . ription of the minimum spacit  for el-
enents in a discrete linear broadband array, although Ward et al. [54] provide «
clearer description and Van der Wal et . 5] demonstrated the impleientation of
microphone and loudspeaker arrays according to the theory. Understanding mini-
mun requirements for element placement is a very useful tool for analyzing arrays,
and will be discussed further in C1 Hter 4.

In a method related to the narrowband synthesis techniques already referenced,
Haykin and Kessler [56] showed that a two-dimensional Fourier transform relation-
ship exists between clement gains and beampattern of a broadband beamformer.

This result can be used to synthesize element gaing but only when the array consists









1.3 Scope and Outline c 1esis

In this chapter [ have given some background and motivation for the thesis, and
reviewed a portion of the extensive literature on beamformer analysis and synthesis.

In the remainder of the thesis [ will address the analysis and design of broadband
acoustic beamformers. While tt  principles of beamformer design are conunon across
application domains, the design examples  esented are either explicitly or implicitly
based on acoustic design problems. Addit unally, the focus of the thesis is on static
(or data-independent) beamformers. Adaptive (data-dependent) beamformer design
is bevond the scope of this tl is.

The analysis and design of broadbaud beamformers based on oue-diniensional
linear arrays of discrete elements provides enough to study, so two- and three-
dimensional arrays and continuous apertures are briefly mentioned but not exhaus-
tively explored.

Chapter 2 will present the basic coucepts of analysis, with illustrations and ex-
amples. This includes the various v ys of understanding beamfort  performauce,
including the beampattern, as well as directivity.

A numerical simulation method for a itrary beamformers 1 the BeamVisu-
a1 tool are discw: d in Chapter 3. BeamVisualizer is a M [LADB tool which
I developed to understand and compare various beamformer designs. BeamVisu-
alizer allows a designer to visualize the broadband characte * ics of a beamformer
design, compare the characteristics of several different beamformers, and quickly see
the results of adjusting the des 1 parameters for a particular synthesis technique.

BeamVisualizer was used to prodice nearly all the figures used throughout the thesis.



Chapter 4 introduces beamformer design with background on the essent  clas-
sical narrowband techniques of uniform 1car arrays, as well as the Taylor and
Dolph-Chebychev aperture weightin . The basic and widely used broadband design
technique of harmonic no  ing is introduced. Another niajor contribution of this the-
sis is the analysis of the relationship between the geometry ar ~ performance of the
harmonic nesting technique, and then the introduction of optimal broadband array
spacing. At the end of Chapter 4 implementation details for several othier broadband
tecl " jues are presented.

Chapter 5 presents the results of applying the design techniques from Chapter 4
to several broadband problems. Many of the examples are taken [rom the published
examples of the various broadband design techniques presented in Chapter 4. The
various plots and graphs produced by BeamVisualizer are used to compare the per-
formance of beamformers des by the various techniques. This chapter includes
discussion of these comparisons and the s ificance for other broadbaud designs.

Chapter 6 presents conclusions for this 1esis and summari:  some design guide-
lines for broadband acoustic bei  formers using linear arrays ol discrete clements.

The thesis concludes with recommendations for further work.

13



Chapter 2

Background

A Dbeamformer can be seen as a spatial filter, where the response to the signal di-
rection of propagation is analogous to the frequency response of a classical filter.
Similar to filter design, beamformer design has two complimen y parts: analysis
and synthesis. The analysis t < is to characterize important aspects of beamformer
performance, such as the dependance of response with direction. The directional
response of an beammformer is often called the beampattern, and usually the primary
characteristic of interest. .u.e beampatte is related to the directivity, which is &
meastre of the array gain for cor  ated signals. Another important aspect of a bean-
former performance is the whi  noise ga  which is a measure of the beamformer
response to uncorrelated noise.

If the bandwidth of operation of  beamformer is small relative to the center
frequency, the beamformer is considered © owband. By definition the directional
respouse of a narrowband beamformer at the center frequency is representat  of
the performance over the ent  bandwidth. When the bandwidth of the beamformer
is » relative to the centre frequency it is considered broadband. Visualizing the

beampattern ol a broadb 1 beamformer requires one additional dimension beyond

11









formed by summing the output of all transducers is
r(w. .8) ettt on) (2.1)

The magnitude and phase of the array output are readily calculated. and the instan-
tancous value of r(w,t,8) is simply the real part of Equation 2.1.

It is conventional in the literature to - it the time and frequency dependence
for notational clarity. This is the bean attern of the array, also known as the array
factor in antenna literature.

!\" !
r(d) = L IO (2.2)
n=0

The beampattern of an array with = isotropic elements, equi v spaced at A/2,
with uniform gains is shown in Figure 2.2, The same plot in polar coordinates is
shown in Figure 2.3. The largest respounse «  the beamfc  1er is to plane wave signals
arriving in phase at all clements, that is {1 n the direction 90 degrees from the axis
of the arrayv. This direction is called b adside, and the response lobe centered here
is called the mainlobe. The other  aller  bes are called minor lobes or sidelobes,
and decay with an approximate sine x enr Hpe. The direction along the array axis
1s known as endfire.

If the array element spacing is less than A/2 then spatial aliasing is possible wider
certain conditions. When this happens the  campattern will exhibit sidelobes at the
same level as the mainlobe. These alia g lobes are sometimes referred to as grating
lobes.

In the special case of equally spaced array elements the phase shift between cach

17
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Figure 2.2: The beampattern of a 21-el 1ent linear array with A/2-spacing and
uniform gains, plotted as amplitude vs. 6.

00 s
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L.gure 2.3: .ue be  Dattern of a 21-el  1ent linear array with uniform gains.
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sucessive clement is constant.  Wking the frst clement as the relerence point, the
phase shift in the far-field becomes ¢, = 1dcosf. Let @ be the phase shift from
onc clement to the next, such that & ¢ kdcosf. We adjust the sununation

indices appropriately and the beampa -rn simplifies to

N-1
)= e (23)
I .
r@) -

JND/2 JN®/2 - jND/2

= o ey (2.4)
eI /2 eI/2 _ o=jb)2
sin(N®/2)
sin(P/2)

The response of a continuous sensor « 1 be considered the limiting case of an
infinite number of array elemen  where the summation becomes integration. In this
casc the array can be thought of as an aperture as in optics or antennas. Assum-
ing that the continuous sensor extenc for a distance L/2 from the origin in both
directions, the beam pattern is given by

L

1(9) /21 pjk‘“"’sgd;r (25)

where kr cosd is the phase contribution to the far-field beampattern at observation

angle 6 from the portion of t]  aperture at distance r alor  the sensor.

19



In the simple case of uniforin sensitivity along the array aperture, the beampat-

tern 1s

() = /ze €030 (2.6)

2
(,jk% cosf (,jjk{;‘cos()

= 2.7
Jkcost (27
sinl1kL cos )
k5 cos 6
) L
Lsinc 7 €08 ) (2.9)

In both the continuous and discrete « se the beampattern has the forin of a
sinc function. The uniform gain across the aperture in both cases is equivalent
to a rectangle function. Thus, we can see that the beampattern is the continuous
Fourier transform or discrete time Fourier transform (DTFEFT) of the aperture function
transform in the continuous and discrete array cases, respectively, at least for a
uniform aperture.

The remainder of the thesis will focus on discrete arrays.

2.1.2 Three Dimensior | Arrays

For arbitrary three-dimensional arrays and signals arriving fronm arbitrary dircctions
it is convenient to use a spherical coordir e system, with the I tion of a source
represented by range, zenith and  zimuth ¢ ile, r, 0, ¢ respectively. An array element
represented in spherical coordinates is shown in . .gurc 2.4 and the conversions to

cartesian coordinates are

20



Figure 2.4: The location of an array element in spherical coordinates.

—~
A

rsin cos ¢
rsin @ sin ¢ (2.10)

~cosd.

If two array elements are exactly on the z-axis, the distance each wavefront travels

between one element and the next is dcosé, where d is the distance between the

elements, and 6 is zenith angle of the propagating wave as shown in Figure 2.5.

=

Similarly, the distance between the origin and a wavefront passing through a given

array element is z cos #, where z is the element’s position on the z-axis. The phase of

21
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Figure 2.5: A vector in tI  direction of propagating wave.
the signal at the array element relative the origin is then 27”: cosf or kzcosf, where
k= %\1 is the circular wavenumt This is equivalent to the lincar array case already
discussed.

The distance between the origin and a wavefront passing through a given array
element can also be thought of as the projection of the position vector for that array
elenient onto a unit vector in the direction of wave propagation. T is simiply the
dot product. If k is a unit vector in the direction of wave propagation, and I, is
the position of the nth array element, then the distance between the origin and a

wavefront passing through that array clement is & - ¥, = |r,|cos) where ¢ is the

[\]






the array which is correlated at all clements of the array - is often called the direc-
tivity, and is a measure of the spatial or directional selectivity of the beampattern.
This definition is compatible with the definition of antenna gain and directivity given
above.

Array gain against uncorrelated noise + nietimes called spatially white noise) is
cal  the “white noise gain”. White noise gain is commonly used to measure the
tolerance or sensitivity of the array to gi 1 errors, sensor sclf-noise, aud clement
position errors. ..is can be thought of as simply the output power of the array for
the desired signal, relative to the output power for a single omnidirectional element,
at unity gain.

Two arrays with the same directivity may have very different white noise gain.
Directivity is a measure of the output power of the desired signal relative to signals
from other directions. White noise gain is the output power of the desired signal rel-
ative to an external reference. An ¢ which attenuates signals from all directions,
but attentuates signals ou  de the desired direction much more than the desired
direction may have acceptable di — tivity but poor white noise  in.

In the following discussion the frequency variable is omitted for simplicity, as-
suming a constant vatue for k. In r ity, the peak responsce and beampattern of
m beamformers both change with freq mncy. so directivity 1id white noise gain
arc often frequency dependent.

The directivity of an array is a meas e of the spatial selectivity of the ¢ ay
geometry and element gains. An : 1y v h a high directivity will have relatively
h 1 output power for signals from a spe ic point, arca or direction in space, and
relatively low output power for noise signals from other points or directions.

Thinking of dircctivity as a signal to v se ratio, directivity can be defined as the

24




signal power divided by the noise power. More specifically, directivity is the ratio of
power per unit solid angle in a specific direction to the power per unit solid angle

for an isotropic transducer. The general case is [6]

(o0 (
Iy Ir(p. ®)|°dA

8]

—

S
—_

where A is the surface arca of the entire unit sphere, dA is the unit solid angle, and
o, o are the azimuth and elevation of the maximum response of the beampattern.

For the two-dimensional case, if the response of the array to a signal from direction
g is given by r(f) then t  directivity [67]

2mr(6y)r*(8y)
f_r‘ﬂ r(8)r*(8)do

G (2.13)

where 6y is the angle of the maximum response of the beampattern, and * represents
complex conjugation.

The analysis method described in this chapter can be used to calculate the ¢y
output from the desired signal — ction, as well as an arbitrary nuiber of additional
directions. If the array beam; ternis caleula by a regular sampling of all possible
angles fromm —7 to 7w radians, t© 1 the int  and in the denominator of Equation 2.13
can be approximated with the trapezoidal rule with a scaling factor based on the
number of sampling points. The numerator can be calculated — rectly.

Alternatively, array gain can be defined as [71]

G = (2.14)
wreLrwe

where w is a column »  tor of the weights, or gains of cach sensor element, d is a



vector of phase delays to align the seusor  itputs with the desired signal direction,
and @ is the normalized cross power spectral density matrix of the noise. @ = E{axa*)

if r is a column vector of the instantaneous noise output at each scnsor.

2.3 White Noise wain

In the analysis method described in  is chapter, the signal level received at cach
sensor is calculated based on spherical spreading loss before the beamforming caleu-
lations arc performed. The output of a s 3le omnidirectional element would then
simply be the signal level after the spreading loss calculation. The array element
gains should either be normal d to be less than or equal to unity, or the gain of
the single omnidirectional element should be equal to the imaximum gain used in the
array. The white noise gain is simply calculated by dividing the output power of the
array in the desired signal direct 1 by 10 output power of the single omnidirectional
element.

Alternatively, the white noise gain can ¢ calculated using 2.14. by realizii  that

with uncorrelated noise at  1ch element, the noise cross power spectral density matrix

becomes the identity matrix 7, and the w  te noise " 1is de” »d as
|w*d|?
G=——"AM (2.15)
wo

where A/ is the number of seusors [72].






on the beam is constant at all frequencies. Tl  can be implemented as a variable
phase shift at each element that is a linear function of frequency, but this thesis will
always describe a steered beam using time delays. The phase « ot of a titne delay
at a specific frequency is found by multiplying by ¢ and the wavenumber 4.

If each element of an: 1y has an arbitrary time delay added, then Equation 2.16

becomes
N
r(0) =N gnel@nthtac) (2.19)
Equation 2.17 becomes
N
(k) = Zgncj(k-m?lkmt')’ (2.20)
and Equation 2.18 becomes
L/2 _
7(0) / p(.‘lf)ejk('rC050+T(z)“)d;l‘, (221>
~L/2

where ¢ is the propagation speed, and t,, or 7(x) are the time delays for the nth array
clement and at position x alor  the continuous aperture, respectively.

In practical implementations of digital systems, the steering delays are con-
strained to integer multiples of the system sample rate, unless time interpolation
is used .3]. This is a significant cor  de  tion . J] particularly if t©  system is to
be used for direction estimation and source locating, but these topies will not be
addressed further in order to focus ¢  the basic theoretical aspects of broadband

beamformer design.
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2.5 Array weometry

Since a beamformer consists of both a physical array of transducers and some signal
processing applied to the signals from the transducers, both analysis and synthesis
should consist of two distinet but closely related parts: one for the array geometry
and the other for the appl [ signal processi

In much of the literature both analysis and synthesis focus primarily on the signal
processing at the expense of the array geo ietry. This can be attributed to several
factors: carly applications were often narrowband designs with simpler geometry
requircients, practical implementatic issues often drastically restrict the geometry
choices, aud certain regular geometries are required for some analvtical analysis and
synthesis approaches.

Once the physical array geometry is fixed in the synthesis process, it is possible
and in fact usual to analyze the entire beamformer as one system with no distinet
consideration of the array geometry specifically.  Analyzing an array geometry in
isolation does not neces  ly gi - insight into the synthesis process for that array.
However, for effective synthesis — beamformer designer needs to have a good under-
standing of the fundamental possibilitics 1 limitations of a gi 1 array geomelry

before or in concert with — the of the associated signal processing.

2.5.1 Symmetry in Beampat' rns

The simplest array geometry is a lincar array, where all transduce  are arranged on a
single axis. For linear arrays the spatial r¢ Honse is axially symmn  rie (as long as the
transducers are omnidirectional), since there is no difference in the array geometry

regardless of which reference plane containing the array axis is chosen. This is a very
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Figure 2.6: The normalized three-dimensional response of a lincar array on the
z-axis, steered to 45 degrees away from the array axis, at one frequency.

Figure 2.7: The normalized three-d’ jonal response of a planar array oun the
xy-plane, steered to 45 degrees away from the axis normal to the xy-plane, at one
frequency.
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signal arriving from the opposite direction along the array axis. Beampatterns of
arrays with A/2 spacing red to endfi  clearly show the spatial aliasing lobe at
the negative Nvquist frequencey. This is why endfire arrays are sometinies designed
wi  higher spatial sampling frequencies, such as elements spaced at A/4d, to avoid
aliasing [14].

However, if no steering is intended or required, then sar Hling at lower than
the Nvquist rate can be acceptable. A beamformer with no time-¢  ay steering is
analogous to a low pass filter. When interpreted as analog {requency. the frequency
response of a discrete filter is periodic with repetitions at multiples of the sample
rate. Only when the spatial :  pling ra  drops to A will the periodic repetition
of the filter response become ph  rally visible along the array axis. The physical
explanation is a signal exactly . the « sired frequency will app:  in phase at cach
element whether it arrived from a direction normal to the array axis or along the array
axis. This suggests why some authors have found that the optimum element spacing
for a broadside array is actually between A, and A, since for the same nunber of
elements, a wider spacing gives a larger o all aperture, narrower mainlobe width

and higher directivity.

2.6 Summary

This chapter has introduced the terminole  of beamformers and explained the ba-
sic principles of beamformer operation. The main beamforiner characteristics are
beampattern, directivity and white noise ¢ n. The main synthesis paranieters are
array geometry, array element gain, and time delay applied to ¢ h element for beam

steern
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cach element, x,, yr, zr, Tn, Yn, 2. arc the x, y, and z coordinates of the current
observation point and the nth array element, respectively. The time delay applied
to the nth array element is ¢,.

The limitations of vis'  izing a beam  tern usi Iy determine the choice of hy-
pothetical source locations. As alrcady discussed, when studyving broadband beam-
formers, one display axis is required for frequency, which only allows two dimensional
slices of the beampattern to be displaved at any one time. This is adequate for beain-
formers based on lincar arrays with rotational symmetry about the arrayv axis, which
is the main type of beamformer I will consider in this thesis. The observation points
are usually oriented in a circle about the array, to allow casy plotting of the beain-
former response.

Each observation point can represent a sound source or a receiver. I, for exann-
ple, the beamformer is based on a loudspeaker array, the fuuctie  evaluated at the
observation point represc s ¢ sound intensity from the array heard at that ob-
servation point. For a microphone array, the function evaluated . the observation
point represents the electrical outpnt of the array due to a source located at the
observation point.

The formulation in Equation 3.1 is very cneral. In contrast with analytical
formulations for the beampattern of specific apert-  functions. such as Equation 2.4,
this numerical approach has tl  advantage of avoiding plane v ¢ assumptions and
small-angle approximations. T stance from cach source to each array element
is separately computed, i1 ead of ass aing parallel wavefronts and caleulating an
offset based on the angle of incidence and the separation of array elements. This 1s
iportant because it canmot be assumed that the observation point will be in the far

ficld for very low frequencies with long wavelengths. It wusical acoustic applications,
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over a wide [requency range is diflicult. Since this thesis primar -+ locuses on lincar
arrays, the visual portion ol the software is based on displaying two dinensional
slices of a beampattern. This is because linear arravs have rotational symuetry
about their axis, as explained in Section 2.5.1.

To aid with understanding d...crent synthesis methods and comparing resulting
designs, BeamVisualizer also displays several other attributes of the beamformer
such as frequency-dependent gain of cach element, directivity, wlite noise gain, [re-
quency response of the beamformer for a chosen look angle and a polar plot of the
beampattern at a chosen frequency.

An additional dropdown menu is added to the standard menus provided by MAT-
LAB. Called Options, it allows any of the plots to take over the entire display, and
the options panels to be hidden. In this chapter the «  ire GUI is shown with screen
captures, but in subsequent chapters I will — ost often 1clude just the relevant plots.
Most of the figures in this tI (s are produced diree - from BeamVisualizer using
standard MATLAB graphics export commands along with the individual plot high-
lighting and user interface suppression options in the Options menu.

The code for beam visualizer is available from the author on request.

3.2.1 Main Beampattern Display

Figure 3.1 shows the main display of the BeamVisualizer software. The m: plot
is the simulated beampattern, and there are six secondary plots: array element
filter display, beamformer polar respon ¢ ctive aperture size, frequency v onse,
directivity and white noise gain. The  are two user-interface optious panels: the
display options panel and array design options panel.

The beampattern plot is a pscudo-three-dimensional mesh that occupies most
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Figure 3.3: Element weights for brx
Figure 3.2.

Iband, constant beamwidth array shown in
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must be modified in order to implement synthesis methods that require other pa-
rameters besides those already existing in the interface.

The final editboxes are des™ 1 para  ters specific to only a few beamformer
types. Several types of synthesis methods accept a sidelobe specification, notably
the Taylor and Dolph-Chebyshev weight: s, Nbar is an input to the calculation of
Tavlor weightings and the design distance  an input to the Mo i Analysis Synthesis

(MAS) method.

3.2.4 Relative Apert1 @ Size

As discussed in Section 2.5.2, t  criteria for choosing an element spacing depends
somewhat on the intended appli  ion of the array. However, most authors choose
to use A/2 to satisfy the requirements of the sampling theoren.

[ was unable to find any quantitative method for evaluatii — or comparing array
geonmetrics in the literature. As a tool for evaluating some of the broadband arrav
designs in subsequent chapters I decided to produce a plot « el tive array aperture
(in wavelengths) over all the ¢ red frequencies. The criteria 1 used to determine
the effective array aperture at any given frequency was the ext - of the array which
was sampled at a density greater or € 1al to A/2.

For linear arvays designed for broadba | beamformers, the tvpical configuration
consists of a symetrical arranger 1t of clements with the most cle v spaced el-
ements in the middle, and more wide - spaced elements occurring as clements are
placed further from the center of the array.

I only evaluate arrays on this criteria when the array has elements with uniformly
increasing element separations. I have not attempted to implement an algorithm to

evalinate arrays that may have multyp -, separate regions of high density sampling
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separated by sections of low density sampling. This would have heen mnnecessarily
complex since most arrays of interest meet the criteria above.  Additionally, it is
unclear how to best quantify the aperture size for an array with more than one
section of high clement density. The [ aer these sections are ap:  the more cach
may appear like an independent beamformer.

I have also only designed this to evaluate linear arrays and have not attempte
to extend this to two- or three-dimensional arrays. The algorithmic complexity
of determining arcas or volumes that are sampled at or above a particular spatial
frequency given an arbitrary distribution of array elements is beyond the scope of

this thesis.

3.3 Summary

This chapter described methods and too  for the numerical computa m of an ar-
bitrary beamformer. The MATLAB tool which implements t s beampatte s

ulation technique is d  ribed. T wnVist izer provides a convenient display which
shows many useful characteristics of a bea  “rmer simultancously.  The software
allows the designer to interactively modify the various displayvs, as well as switeh
nearly instantancously between d - rent heamformers designed with the same design
p meters. This instantaneous comparison provides quicker fee Hack and more re-
warding insight than that obtained by painstaking comparison of publis — d results in

books and papers, which invarie v use d - erent plot types, scales ad view poits.
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summarized and illustrated.

4.1 Beamformer Steering

To st the “bee ofal  nf or the output of each 1y element must be
time delayed separately so that a signal arriving from the desired direction will sum
coherently at the final output of the beamformer processing system. To calculate the
required time delay, we take an arbitrary reference point. For convenience we choose
the origin as a reference point.

If the choice of reference point results in a negative delay, it is trivial to apply a
constant delay to all array elements large enough to make all delays positive.

The required steering delay for an individual element is calculated by considering
the distance travelled by a wavefront between passing throv 1 the array element
and passing through the reference pc . This distan  is divided by the propagation
speed in the medim, ¢, to ¢ the time of propagation for the wavefront from the
array element to the reference, and thus, the require time delay for the element.

If the source can be considered to be infinitely distant, then the wavefront will be

approximately a plane. If the  erence is the origin, then the distance the wavefrout

will travel from the ith element to the re | the distance of that array clement
from a planc normal to the direction of propagation and p. y through the origin.
This distance is the dot product of the e nt’s position vector and a unit vector

normal to the plane.
Under the assumption of p wes 1d farfield sources, the required steering
delays are the projection of each  2ment position vector onto the unit vector in the

direction of the wavefront. This projection is equivalent to the dot product of the



position vectors and the steering vector.

where t; is the required time delay and 7; is the position vector for the ith clement,
and k is the unit vector opposite to the direction of travel of the plane wave. In
other words, k is a unit vector in the direction of the infinitely-distant source, which
is equivalent to the desired look direr  on, or steering direction.

Note that if the array is one-dimnensional along the x-axis and the analysis is
restricted to the zy-plane then Equation 4.1 reduces to the following expression,

which is geometrically intuitive:

1
t; = ;(ﬂ" s+ YiYk) (4.2)
or equivalently
1
t,  —(xiec >+ yicosd) (4.3)
C
or in polar coordinates
1
t; = —(ricos(t; — &) (4.4)
¢

where z; and y; are  and y components of the position vector of the ith array

clement, @ and y are the x and y components of k.

4.2 Narrow rand eamformers

Conceptually, a narrowband beamforiner has a single design frequency. As a rule of

thumb, an array that ope es over a bandwidth that is a small fraction of the desigu















Figure 4.2: Beampattern of an 11-element Dolph-C' yshev aperture beamformer.

4.2.3 Taylor

Taylor [22] showed that the aperture distribution forms a Fourier transform pair
with the array beampattern. This leads directly to synthesis techniques, when the
array geometry is uniformly spaced in each dimension. Although Taylor weighting
functions have been derived for planar arrays, 1 will only consi ' the application to
linear arrays.

The Taylor method reduc o all sidelobe energy by allowing sidelobes further
from the mainlobe to decre e in amplitude. The tradeoft is that for unrealistic
sidelobe specifications some sidelobes can exceed the specificatic  and the mainlobe
is wider than the equivalent Dolph-Chebyshev design.

There have been many papers on implementation details of synthesis using Tay-
lor aperture distributions, such as adapting the Taylor distribution for continuous

apertures to discrete arrays [24], or dete iining weights {or non-uniformly spaced
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arrays [26]. The cquations implemented for this the —are taken from Hansen [6].

The gains for elements of the Taylor distribution are computed as

gp, A n)=1+2> F(n,A n)cosnp 4.10
2.

where p is the position along the aperture, between —m and 7, A is the sidelobe
ately the sidelobe

specification, 7 is the number of sidelobes to keep at approx
to the natural sine envelope for the sidelobe amplitude,

specification before returni

and
9 n—1 o
_ [(n— 1)1 1—n°
F(n,An) = 1.11
(n, A, 7) ‘ 1+ n)l(n- 1—n)!;!~—211 =2 (11)
with
‘ 2
p =1 - (4.12)
A+ (i )
and finally
cash™ 11035
(4.13)

A=
™

where S is the desired sidelobe ratio, in 3.
When the array clements are evenly spaced, the gains computed by Equation 4.10

miform spacings the values need to be adjusted

can be used directly, howe  for no

by a space-weighting factor to compensate for the unequal sampling of the total
aperture. This is an essential step to make imaximum use of an nnequally spar— array

in a broadband beamformer des” ied by frequency decompositions, to be discussed

in Section 4.3.1.
ings is shown in Figure 4.3. T ° beain-

An 1l-element array with ..ylor weig
specification of -25dDB, with a resulting

fo 1 s designed with 72 = 3 and sidelol



Figure 4.3: Beam) :tern of an 11-element Taylor aperture beamformer.

mainlobe width of 11.5 degress. Further comparisons of uniform, Dolph-Chebychev

and Taylor beamformers are in Section 5.1.

4.3 Broadband Beamfo1 aers

The theoretical work of Dolph-C ebyschev and Taylor forms the foundation for most
of the field of narrowband beamformer synthesis. Wl e much 1 arch was done on
implementations, fundamentally these early results form the key standards of what
can be achieved with aperture weighting in narrowband arrays. Most applica Hns
either seek to minimize both sidelobe level and mainlobe width, or else maximum
directivity and white noise gain, don 1 se criteria the previously discussed nar-

rowband techniques are optimal.









and MSD synthesis methods, as well as the SRC method for some limited cases.

4.3.1 Frequency Decomposition
Harmonically Nested Arrays

Several papers on harmonically nested broadband arrays are referenced in Sec-
tion 1.2.6. The technique is to combine an array designed for one frequency with
another designed for a multiple of the fir — frequency. Proper choice of the number
of array elements and the scaling factor allow many of the array element positions
to coincide, which reduces the total number of elements neede

For example, for an array of n cleinents, where n is odd, scaling the array positions
by a factor of one half to formy  new array at twice the design frequency of the original
array will yield a new array ~ h (n—1)/2 element positions overlapping the original
array.

Intuitively one might 1ess that for an ¢ 1y with an odd number of elements
the most overlap between sul rs « o for ascale factor of 2 or 1/2. This was
verified by computing the sca 1 positions and nuinber of overlapping clements for
all reasonable scaling factors, for e dle 7 fracti with m crators up to 20.
Correspondingly, for arrays with even numbers of elements the maximum overlap
between subarrays happens for scale . tors of 3 or 1/3. Most published designs are
based on scale factors ol 2, however Pirz [43] gives an exain) : of a harmonically
nested array with a scale factor of 3.

To get a true broadband design, early designers used analog filters to sum the
output of two narrowband 1 mformers to achieve a smooth transition between the

beampatterns at each frequency [41, 43]. With the availability of DS power, this












is used [54] throughout the discussion in Chapter 5. This ensures that signals from
the central portion of the array are not too heavily weighted in the beamformer
summation. Other des” 1 techniques scussed later such as MAS and MSD explicitly
allow arbitrary array geometries.

«.e example of Figure 4.4 shows that expanding the array aperture by adding
pairs of elements spaced to keep the overall aperture a constant multiple of A will pro-
duce the optimun array in terms of most equal spatial resolution over the frequency
range of the beamformer for a given number of array elements.

The following formulation for optimal array element spacing was independently
derived, and then found to be . ially the same as given by Ward et al. [54] with a
small adjustment for a symmetrical array centered on the origin (Ward et al. initially
consider just the case of the half-array on the positive z-axis). While Ward et al.
mention the optimality of the f metry, this is not the central point of that paper.

Assuming an element spacing of A/2 and a discrete array on the a-axis centered

on the origin, let

= m— (4.14)

where ), is wavelength at the ith design f |uency, A, is the ler  h of the active por-
tion of the array at A, and m is an integer nummber of  df-wavelengths characterizing
the overall aperture size. At the upper design frequency f,, and shortest wavelength
Ay, there will need to be n, 1 elements spaced by A, /2.

Now consider frequencies just below the upper design frequency. At some lower

frequency it will become true that a ling a pair of elements spaced by \,;/2 will
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exactly increase the array size back > the multiple of wavelength given in Equa-

tion 4.14, so we can write another constraint on the elements

A, A+ A (4.15)
and from there we find \
mé’ mE=! + A
(1.16)
/\‘i = \i—l'
m— 2

The expansion of Equation 4.15 can be repealed as many times as necessary Lo
reach the desired lowest effective frequency and thus the desired bandwidth. Atter §

repetitions the lowest effective avelength of the array is

Jj
— 4.17
A (m—Q) Au ( )

and the total number of elements is

n=mn,+2j (4.18)
1

n=(m+1)-+2j

Define the scale factor S % and bandwidth ratio 8 = A\;/\, and rearranging

Fquation 4.17 we can state

(4.19)
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The position of the ith element is given by

+ 0<i<m/2
- (4.20)
4 (S m/2 < i< m/24 ]

Note that the size of the aperture in terms of wavelengths determines the maxi-
mun spatial resolution of the resulting bre  {band be  former. If we define P = m/2
as the size of the aperture in - zelengths, then we can rewrite Equation 4.20 as

+ide 0<i< P

o (4.21)
wpy STy P<i< P4
and if we rewrite Equation 4.19 and ¢ ibine with Equation 1.17 we find the required

number of iterations to be
lno i1

A (—12.,)

log £

and thus the total number of required clements becomes

. log k
n (2F 1 2[—=2u] (4.23)
l()gﬁj

which is equivalent to the or mal result [54] except for the difference between a

single-sided array and a symnetri  arrav about the origin.

This is a systenr of two equations in four unknowns, a1 the {our unknowns are
the design parameters 3, n, j, 1 (or equivalently P). The design process is to
decide which two parameters will be chosen by the designer, then choose values for

those two parameters. and finally compute the other two parameters.
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For example, to design a broadband beamformn  with a mainlobe of approxi-
niately 12 degrees covering a decade in frequency we immediately know that 3 = 10.
Analytical formulac exist to compute the beamwidth for various n - wband aper-
ture functions, but it is.  y to use BeamVisualizer to find that an 11-clement Tavlor
beamformer with an aperture of 5A has  mainlobe of approximately 12.5 degrees.
So, choosing I = 5 implies § = 5/4. and we find from Eqgnatic that j = 11
and from Equation 4.18 that n = 33.

As another example. it is shown i ction 5.1 that a five-clement array with
Dolph-Chebyshev weighting and -25dB  delobes has a mainlobe width of about
26 degrees. Since that beamformer assumes A/2 spacing, five elements unplies m = 4,
P =2 and § = 2. If we choose to ex  ad the array u four steps (adding a total of 8
elements), j = 4 and by Equation 4.19 4 2" 16. d n = 13. This tells us that a
broadband beamformer capable of forming beams with spatial resolution equivalent
to the five-clement narrowband beamnformer can effectively cover a frequeney ratio
of 16:1 with n = 13 elements. Since § = 2 we can inler that this is equivalent to

simple harmonic nesting as previously di ribed.

General Harmonic Nesting

The final example in the previous seetion is a case of simple 2:1 harmoic nesting,
designed using the equations for an optimal array spacing. . .is suggests there is a
generalization that can include both harmonic nesting geometr:  as well as optimally
spaced geometries.

To fully parameterize the array element placement rules  Hm the previous section.
we note that array clements may be  laced at a spacing other than A/2, and that

subarrayvs at lower frequeneies may add more than ¢ pair of elenients at a time.
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If the element spacing at a given frequency is an arbitrary fraction of wavelength,

then the equation for the desired aperture at any frequency becomes

A=mdA

(4.24)

where A is the relative aperture size for wavelength A, ¢ is the element spacing in

fractions of a wavelength, ¢

1mis tl  spacing multiple.

At the highest frequency f, t! ar v still needs n, = m+1 elements now spaced

by dX,. Adding one element at each end of
20; for some intermediate [requency f;.

could be added at each expansion step, which I will call the e

The total array size is

and

Now the scale [actor is

and

Al A,'_l + 2.7‘(;/\1'

A =md_; + 2rd A,

T
A= ——A
=2
X m

Aill m—2x

™m
S
m — 2r
F
F—u
P
j= ’
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1e array will increase the aperture size by

ywever, an arbitrary number of elements

wnsion increment, .

.

(4.26)



and

| = 4.29
J=1 g & I (4.29)
and
n=2P+1)+2xcj. (4.30)
Two new design parameters are add : § and x, however ¢ is independent of

the other parameters, so it can be [y chosen. It is we -known that for an un-
steered linear array. spatial aliasing does not occur until the element spacing reaches
A [54]. Careful inspection of the di  tivity plots for classical narrowband beam-
formers without delay steering (that is, steered to broadside) shows that maximnm
directivity occurs not when tl element spacing is A/2, but at just less than A.
Therefore, if it is known that a beamformer will not be electronically steered off-axis
it is advantageous to choose a Hacing larger than A/2, that is, 0.5 < § < 1.

The other new parameter x+ 1be thought of as a tuning | ameter, allowing the
desiguer to trade off between tlie subarray scaling ratio S and the overall beamformer
bandwidth ratio J, for const:  values of n. Large values of & result in larger values
of S but smaller 3. In other words, larger juimps between subarray design frequeincies
result in more frequency variation in be  patterns, but larger overall beamformer

bandwidth. This will be illustrated in & ;n examples in Section 5.2

4.3.2 Modal Analysis Synthe is

As already explained, MAS [..; decomposes a beampattern into a set of elementary
beampattern modes, which a  orthogonal basis functions for the set of possible
beampatterns. Each mode has a cor ponding elementary aperture function. Any

O R .

realizable beampattern is a linear combination of the elementary modes. and thus



its corresponding beamformer parameters can be found by a line - combination of
the respective elementary aperture functions.

The MAS method allows the designer to compute the required gain for cach array
element at a given frequency to best appror  nate a desired pattern in a MMSE sense.
By iterating this procedure over several frequencies a frequency-domain beamforiner
is designed. The method given by Abhayapala [67] is summarized below.

Any signal received by an array sensor must be a solution to the classical wave
equation. Since the output of a beamformer is a linear combination of the sensor
inputs, it too must be a selution of the wave equation. The modal analysis technique
takes advantage of the fact that solutions to the wave equation can be decomposed
into modes which are orthogonal nctions of spatial coordinates. Using the modal
decomposition of the output of a linear, co  inuous aperture beamformer, it is shown

that the aperture weighting function p,.(z: &) can be written as

,,,k i 4 A) ny Rn((\’),l\f) . ,l\'”) -l 31)
p(“' ) ¢ n( ' ) =i anxﬁ‘}”( = ( ’
where
k) = / b0 k)P sH)siv 6 (4.32)
2 JO
R.(r k) re* R (kr) (4.33)

POGkr) = /;:_—erfl)%(A-r) (4.34)

b.(0,k) is the beampattern, j, is the s) erical Bessel function of the first kind.
P, is the associated Legend  function, H,, is the hall odd integer order Hankel

function of the second kind, & is the wa unber and » is the range from the array



at which the desired beampattern is to be realized. Note that this expression for the
aperture weighting function is defined in terms of the desired beampattern. This
possible because of the Fourier transform  lationsh  betwe  a beampattern and
the aperture weighting function. For the full derivation see Abhayapala [67].

Given a continuous aperture sensor, the final output of a frequencyv-domain beain-
former (the Fourier transform of the time-:  ies output) in the frequency-domain can

be written as
o

Z(k) S(zk)pr(zik)dz (4.35)
-
where S(z: &) is the Fourier transform of the received signal | a point = on the
continuous sensor and p.(z; k) is the aperture - ghting function.

Using trapezoidal integration [54] the final output of a continuous sensor given

in Equation 4.35 can be approximated by a discrete set of array elenients by

Q@
-~ _

») S(z k) 9upr(24: K) (4.36)

/
g=-Q

where z, is a set of 20 1 discrete sensors and g, . a spatial weighting term to
account for the possibly non-nniform ser v loce s in the approximation of the

integration. For trapezoid atl

(Mo

2ot — 2 if|g] <
7 (q%l /] 1) |1' Q (437)

(20— ) iflgl=Q.

o=

In the case of the continuous sensor or aperture it is natural to think of p.(z; &)
primarily as a function of position along the sensor, however in the case of a discrete

sensor it is lielpful to think of p,(z,; &) primarily as a function of frequency. The









The design example given by Abhayapala is discussed in Section 5.3.

4.3.3 Modal Subspace Decomposition

The Modal Subspace Decomposition (MSD) method [70] is designed to calculate the
required FIR taps for a time-domain beamformer with NMSE  lative to a desired
beampattern. It presmnes a beamformer based on a digitally sampled, discrete-time
signal processing system. It is 1 .urally suited to broadband array designs, which
are often implemented with FIR filters at each array element. For frequency-domain
implementations. the filter taps for cach  ray element can be transformed into a
discrete filter response.

In this method, the array geometry is defined by four coordinates for each array
element: a three-dimensional position and a time-delay. This convention for specify-
ing the array geometry is quite general and can handle irregular geowmetries, as well
as sensors that move in time re  ive to tI rest of the array.

If each tap of an FIR filter at ched to 1 array sensor is considered a separate
space-time sample point, then o entire be  forn  can be seen as a large vector
of gain values, or weights, for  ch space-time sample. The dimensionality of this
space is the munnber of array elements multiplied by the munber of taps in each FIR
filter.

Given there are A7 spac ime samples 1 the weight for cach sample may be
complex-valued, define the Al-dimensional complex vector space S as the space of

all finite energy weight vectors,

S { :|w| < oo} (4.43)



based on the inner product
M1
<w7 y>5 = Z U'my:n- (4-1())

m=0

where * denotes the complex conjugate, and associated norm

lwls  V{(w.y)s. (4.47)

Each weighting vector w & has a unic e mapping to an achievable beampattern

according to

M—1
Woen(k, @) w, e K1t rm cos(Om=0)] (4.48)
m=u
so we define W as the space of wable] wm  Lterns, with a mapping to S defined

by the invertible linear operator A: S — W.

Given A* exists [70. 73], e M eigenvectors of A* A denoted w, form a complete
orthonormal basis for S, and the Af eigenfunctions of AA* denoted U, (K. ¢) form a
complete orthonormal basis for W.

The desired beampattern is Wyes(k, ¢) and F is  fined as the space of desired

beampatterns with finite energy over the  sign ranges of & 16,

F 2 {(Waes(h.0) 1 [Wes| 7 < o0}, (1.49)
based on the inner product

ko "
(W,Y) 5 = / / W(k,0)Y*(k, &)kdpdh. (4.50)
k1 -7



and associated norin

Wir= v o)z (451)

Since F is an infinite dimensional, seperable, Hilbert space [70, 75] and W is a
finite space, W is a subspace of . . Given the desired beampattern Wy (k, @) € F,
the projection of Wye(k, @) onto the subspace W minimizes the mean square error
(MSE) between Wys(k, @) and W, (K, ¢)[75]. Having found the best achievable
beampattern, the corresponding weight vector can be compnted numerically.

The steps of the method are:

1. Calculate the Al x Al matrix Z according to

k2
Zm,m’ = 277-/ (?Jk(‘(f'”’*tm)JO(}CHmm - mm’”)kdk, (452)
k

1

where x,, is the position vector of the mth sensor, and ¢,, is the time delay of

the mth sensor.

o)

Calculate the eigenvectors u,, and eigenvalues A, that solve the matrix eigen-

vector equation

“uw, MNupflorn 0,....M—1, (4.53)
Order the real, non-negative eigemv ues to form a ni “onically decreasing

series A\g > Ay > ... > Ay—p and then calculate

< u (,jk[r'tm tom cos(0m ~ o) (4 54)
n,m . .
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methods. The SRC method is included in this thesis because it played a role in the
early development of this thesis, for both the computational efficiencies of the method
as well as the application domain Berger and Silverman studied. It was later decided
that the effort to implement an additional stochastie technique for comparison would
be prohibitive.

The cost function that Berger and Silv. nan chose to mininize is the maximum
value of the noise power in a forbidden zone, assumed to be where noise sources
would be located, while holding beamformer ontput coustar  lor sources at a target
location directly in front of the i 1y. The noise power for a source at each position
in the forbidden zone is averaged across the design frequency band before finding the
maximum value of the noise power. Berger and Silverman called their cost function
the extended power spectral distribution (PSDX). This func o is deseribed in detail
by Silverman in an earlier paper [77].

To successfully apply the SRC method, the cost function should meet the follow-

ing conditions [™~ 76]:

1. the function has a small i Her of  ge valleys, with perhaps a large number

of small valleys superimposed on th

o

the function has a strong global minimum;
3. the number of independent +  iables is relatively small (less than 100):

4. any variables which are quantized have a relatively large nmumber of distinet

possible values;

the desired wncertainty for a variable  small relative to the scarch range of

(2}

that variable.



The SRC method operates by gradually reducing e search range ol each inde-
pendent variable. At each iteration ¢ lidate solutions are randomly chosen from
the solution space. The ¢ function is evalnated for cach candidate solution. and
only solutions which are better than the mean of the previous iteration are kept.

Once a suflicient number of new candidates have been found that are potentially
better solutions, the size of the solution ¢ ce is updated. To update the solution
space the best solutions are selected from the current set of candidate solutions.
The number of solutions selected at this point is an internal parameter of the SRC
algorithm.

The range of cach independc  variable is updated to ouly i lude the best solu-
tions found so far, plus a small marginal zone. This usually results in a contraction
of the solution space. It is possible for the region to occasionally expand if a good
candidate solution is subsequently found — the marginal region. In no case is the
solution space allowed to expand beyond the initial bounds.

« e mean fitness of the best candidates is stored for use in the next iteration. Any
existing candidate solutions that are better than the mean arc automatically kept to
the next iteration. This process is repeated until the stopping condition is met. The
stopping condition can be either a specified value fi the st function, a specific
volume of the solution space.  a number of iterations. Formal presentations
of the SRC algorithin can be found in [62] and [76].  xamples of designs using the

SRC method are discussed in Sections 5.4 and 5.6.
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4.4 Summary

This chapter described computation of time delayvs fo - beam stec g, the classical
narrowband beamformers. and several broadband design techiniques. Particular at-
tention was paid to the impact of  Tay g¢  aetry on broadband performance. Botl
the fairly well-known harmonically nested approached to 1 Hadl 1l array geome-
tries, as well as the less well known optimal spacing were explained. . .ce novel ex-
tc  “on to the optimal spacing method was presented, which generalizes tlie method
to iclude harmonic ™ -1 ed geometries. Finally, in general terms. the implemen-
tation of three broadband techniques was described. These methods are evaluated

and compared in the design exa Hles of Chapter 5.






The final example will analyze the design given by the anthors of the SRC method.
This problem will show how visualization of beampatterns helps a designer to ad-
dress the true underlying design problemn instead of optimizing based on erroneous
assumptions. While the SRC method may find the global optimum for the cost func-
tion given by the authors, I will show a design that is more suiti  le to the example
problem, which also perforins better according to their objective cost function.

Codes to reproduce the des”  examples are available from the anthor upon re-

quest.

5.1 Narrowband ™ eamformei._

This design example will illustrate the use of BeamVisualizer to compare the perfor-
mance of a simple classical narrowband design problem.

To compare the uniform, Taylor-weighted and Dolph-Chebychev-weighted nar-
rowband beamformers. consic - the problem of desi; ing a beamformer with five
elements. to operate in water (nominally ¢ = 1500m/s) at a design frequency of
750 Hz. Assume that this array may be clectronically steered and the element spac-
ing is fixed at A/2, or 1m.

Given that the geometry is fixed, the only task is to con  ute the element gains
for each of the candidate aperture functions and compare the results.

The beampattern for a uniform-weighted beamformer using this geowmetry is
shown in Figure 5.1. The display shows the beampattern from hall to twice the
design frequency (375 Hz to 1500 Hz). The polar plot is selected to be the design
frequency. 750 Hz. and highlighted by » blue line in the main beampattern plot.

As expected the sidelobes are at -13dB, the white noise gain is 5 at all  quencies,
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Figure 5.7: Closeup of the mainlobe of the optimally spaced beamformer.

most important criterion, then Table 5.2 shows the total number of array clements

required to achieve 3 4.

! 15

81 | 4.03
85 | 4.17
91 | 4.08

20195 | 3.99
oanl a7 I 4920

Table 5.2: The number of elements requi for an optimal bean rmer to achieve
3 = 4 for various values of P.

Another approach is to consi ues 1 between 1 (optin  spacing) and 10
(simple 2:1 harmonic nesting). In Table 5 values of § are gi 1 for combinations
of P and x while holding the total nu der of elen 1its constant. From this table
several reasonable alternatives to either the simple harmonic nested geometry and the

optimal geometry are obvious. If maximum bandwidth is impor 1t, an aperture of
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a scven-clement Dolph-Chebychev beamformer with a -25dB sidelobe specification
as in Figure 5.8. The be:  »att  resulting from the application of the MAS method
is shown in Figure 5.9, using the first 16 modes to ap; Hximate the complete solution
to the wave equation, that is,  ng n = 13. This somewhat matches the figure given
by Abhayapala. however notice the sidelobes seem lower than the specification, at
around -30dI3.

Although the author asserts that 161 Hdes are suflicic  to achieve the desired
beampattern, and the results confirm this, it is instructive to see what hiappens by
using higher values of n to include more modes in the approximation of the modal
decomposition. With n 21, as shown in Figure 5.10 the resulting beampattern
shows an increase in the uniformity of the beampattern over frequency, as well as
a significant. reduction in sidelobe lev This is a logical result, since the equations
for choosing the array geometry are designed to produce a geometry that can realize
any beampattern than can be approx ated by the chosen munber of modes. For
22 modes the technique requires a la. munber of array clements: 67 instead of
49. Mathematically, increasing the number of modes used in an approximation, and
plysically, increasing the number of  ray elements and overall aperture size of an
array, would both be expected to allow greater beampattern detail and preeision.

A designer approaching this problem wi  out using the MAS technique would first
consider the array geo  etry. The optimally spaced a 1w de ed in Section 4.3.1
presents a starting point. A sever  cment Dolph-Chebychev beamformer wi have
an aperture of 3\ assuming A, spacing. Therefore = 3, m = 6, S = 1.5 and
the bandwidth ratio is £ = 10. From Eq  tion 4.22 we find that j = 6 and from

Equation 4.18, n = 19.
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Figure 5.8: The beampattern of a sevi  element beamloriner with a -25dB sidelobe
Dolph-Chebychev aperture weighting.

2
1

|(X108

Figure 5.9: The beampattern designed by the MA  method using 16 modes.
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F" 1re 5.11: The beampattern of a 19-element array optim vy spaced for a 3\
aperture over 300 Hz to 3000 Hz using a -25dB Taylor aperture weighting.
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5.4.3 Directivity and White Noise Gain Comparisons

A comparison of the directivity and white noise gain of all the described beamformers
for this array is shown in Figure 5.21. These plots are all computed at a simulation
distance of 1000m, and there are some artifacts of this simulation distance. For
instance, the roll-oft scen in the white ni e gain for the uniform full array is due
to the fact that at the upper end of the frequency band there  a significant phase
difference hetween the same wavefront arriving at the closely spaced elements of the
array and it arriving at the distant, 37.5m spaced elements.

In general it is scen that a reduction in directivity is often i ored by a reduction
in white noise gain. Unsurprisingly, the u  ormily-weighted bear  rmers display the
best directivity and white noise gain performance. With a narrower mainlobe and
larger sidelobes, the resulting beamformer may detect signals originating far from
the desired array steering direction.

We can see that the MSD n hod is t ' only method that shows an appreciable
mcrease in directivity throughout the id-frequency region, even though both MAS
and MSD produce beampatterns with Hticably more niform mainlobes within their
design band. The increase in directivity comes from the use of superdirectivity, at the
expensc of white noise gain. The MNSD beamformer has by far the worst white noise
gain, making this beamformer especially susceptible to uncorrelated noise at each
sensor (for example. flow noise in the case «  an underwater hydrophone array). Other
types of crrors and imperfection  that lead to uncorrelated notse include amy  fier
gain mis-matches, element position errors and sensor self-noise. In contrast, the only
area that MAS shows an im_  vement over the MSD beamformer is in white noise

gain.
























1 Figure 5.24 we can find the relationship between steering, le, design frequency

aud apparent desigu frequency,  follows

sinf = //\\—II‘ (5.1a)
/i
— 5.1b
/. (5:10)

where 0 is the steering angle, A, f;, A, and [, are the design wavelength, frequency,
apparent wavelength and frequency, respectively.

To test the hypothesis [ implemented this shift of the active frequency range for
each subarray proportional to the steering angle, according to Equation 5.1. The
effect of this is that at any frequency and steering angle, the portion of the arrayv
that is used is the widest part of the array where the element spacing projected onto
the plane perpendicular to the s i1 direction is A\/2 or less. The result of this is
shown in Figure 5.25.

Of course at the lowest portion of the [  uency range there are no additional
array eclements that can be brought into the acti+ portion of the array, so the
mainlobe will widen at the bottom of the beampattern the same as without the
steering compensation. In the mid- and upper-frequency areas the technique appears
to work quite well - the mainlobe ze and shape is now the same as when steered to
broadside, varying between 3.0 and 6.0 degrees. However, spatial aliasing is clearly
occurring. As the active range of each 1barray is shif higher, for any given
frequency there comes a point at which the beampattern is not formed using the
higher-frequency neighborii  subarray (whose clements are spaced closer than A/2
for the ven frequency) but rather using the lower-frequency neighboring subarray

whose elements are spaced too far apart.
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form expression is based on an analytical solution to an integral with 500 Hz and
6000 Hz frequencies as integration bov  daries. ™ periments showed that a frequency
resolution of 10 Hz is adequate to approximate the closed form PSDX.

BeamVisualizer is by default configured to produce the far field beampattern for
sources in a full circle around the a .y center. This design problem is based on
considering wanted and unwanted sources along a specific line in space, in the near
field of the array. I had to modify BeamV  alizer slightly to produce the response of
each candidate beamformer to sources along the line of both wanted and unwanted
sources. In particular, the polar plots arc modified to only display the angles from
26 degrees to 154 degrees, which is the range of angles covered by the forbidden zone,
from the perspective of the i  y center.

The beampattern of the nine-element array is shown in b jure 5.29. The first
thing to note is that the sidelobes reach levels significantly higher than the PSDX
value of -12.2dB relative to the peak ma obe response. This is because the PSDX
is an average over all freqi cies for one source location. Another important thing
to note is that the ma™ "be 1 ows quite dramatically at the high cnd of the
frequency range. In fact Figure 5.30 illustrates this very well by highlighting the
polar pattern of the beainformer at the highest frequency, and the {requency response

of the beampattern corresponding to a source location just 0.1 m left of the desirc

Sp”'"""“' e fDL}A\UB)
5 0.Uro, u.11Y -8.12
7 0.149, 0.103, 0.058 -10.45
91 0.175, 0.147, 0.064, 0.0°9 -12

Table 5.4: Calculated array spacings and  SDX values for the SRC design problen.









Figure 5.31: The PSDX of the optimum beamformer for the SRC design problem.

close to A, as discussed in Section 5.2, This is confirmed by « 1sidering the Berger
and Silverman SRC optimization results [6: for arrays sizes with odd numbers of
elements up to 31 elements total. In all cases the center portion of the resulting
array has scveral elements spaced by approximately 4 or 5cm, which is just below
the wavelength of the highest frequency of interest, 6 kHz.

With this information it  possible to apply the principles of the generalized
harmonically nested beamfc to hypothesize an alternative array geometry. The
center of the array is chosen to  »th  clements at 5.6 cm spacing, which is the
wavelength at the highest design frequency. For a nine-clemnent array, there caun be
th-  additional steps of 1dii  pairs of clewents to the array, meaning j = 3. The
desired bandwidth ratio, 3, is 6000/500 = 12. According to Equation 4.19, the scale
factor between design frequencic is 2 ). This leads to an ¢ 1wy with positions 0,
5.6, 13.0, 29.7 and 68.0cm, with symmietrical positions on the negative side of the

origin. Note that the three elements  the center of the array have a spacing of 2\





















than blind optimization of a synthetic cost function. The general d harmonic
nesting equations give the designer the tools to quickly compare the range of possible
geonietries given the constraints, and BeamVisualizer allows the designer to quickly
investigate the performance of the various candidate geometries.

Insights gleaned into broadband acoustic beamformer design are collected in a set
of guidelines in Chapter 6 to assist the designer in successfully designing broadband

beamforers.



Chapter 6

Conclusions

6.1 Summary of __.es

In Chapter 1 the topic of beamfo  ng in general, and broadband beamformer design
specifically, is introduced. The motivation and apprc h for this thesis is given. In
Chapter 2 background on beamformer theory, terminology and performance metrics
1s provided.

In Chapter 3 the siinple equations that can be used to  nulate arbitrary three-
dimensional discrete aperture beamformers are described, and the BeamVisualizer
MATLAB tool presented. B Jisualizer 7 ws a designer to quickly inspect the
broadband characteristics of a beamformer based on a linear array, and compare the
results of various synthes techniques using the same or s i - input parameters.
This tool 1s one of the main contributions of this thesis.

In Chapter 4 the main classical narrowband synthesis techi  1es are summarized.
along with several more recent broadband design techniques. The discussion of array
geometry and element spacing for broadband designs is another main contribution

of the thesis.
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However this is clearly not entirely true since beamformers do not asymptotically
approach an isotropic sensor 1en st ed to endfire, even though the projected
aperture size goes to zero. It would scem that the beampattern ¢ an endfire array
may be fundamental in the same way as the sinc beampattern of a uniform linear
array at broadside, and that the beampattern of a steered array gradually transitions
betv 1 these two extremes.

It would be interesting to study if it is possible to decompose the beampattern of
a stecred lincar array into orthogonal broadside and endfire components, determined
solely by the array geometry. If the beampattern at any steering angle can be ex-
pressed as a linear combination of these two basis beampatterns, this may suggest an
interesting method for evaluatii  planar and volumetric array geometries. Specifi-
cally, is it possible to project ar  elements onto two or more lanes to determine
some characteristic basis functions of the beampatterns possible w 1 that geometry?
Further, if that is possible, could such a decomposition be use 1 in designing two-
and three-dimensional array geometr

..ese are just a few of the poten  areas for future work in the rich fiel of

broadband beamformer design.
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