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also talk about the motion model and the measurement model used in the experi-
ments. The image-based localization experiments are done in order to compare the
performance of image matching techniques in different situations.

Chapter 4 details our system architecture for topological map building and navi-
gation. Different parts of the system, such as - exploration strategies, homing mecha-
nism, rotation est” ation, path plan1 3, vision-based avigation, obstacle avoidance,
etc. are described in this chapter.

Chapter 5 provides the experimental results obta d using a real robot. Limita-
tions of our method are also discusse here.

Chapter 6 presents our concll ¢ and directions for possible future research.




















































Chapter 3

Image Mat hin

3.1 Introduction

A sound image comparison technique is an essential part of a vision-based exploration
and navigation system. Image matcl g techniques can be broadly categorized into

two areas:

1. Global image comparison techniques

2. Local image comparison techn  .cs

In global image comparison techniques, characteristics of the whole image are
collectively used to describe a view. On the other hand, local image comparison
techniques identify visually salient features in the image. The primary advantages of
global techniques over feature-based techniques are that global techniques are simple
and computationally fast; but they m - perform poorly in the presence of occlusions.
On the other hand, local techniques can be made robust against occlusions. Time

complexity is a major disadvant ¢ of local techniques.
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method, each omnidirectional image was represented by the Fourier ¢« ficients of the
low frequency components of its panoramic conversion. Image similarity between two
images was calculated using the the L1 norin of the Fourier measure of the images.
However, all the test were done in simulations, mobile robots were not used to carry
out their experiments. Stricker ef al.  oposed a method bhased on the Fourier-Mellin
transform to compare images in [53]. Yagi et al. [67] also used a Fourier-based method
for developing a route navigation sc  ne for a mobile robot; omnid :ctional image
sensor was used in their work. Omnidirectional images were represented by a series of
two dimensional Fourier power spectra; image similarity was found by comparing the
principal axis of inertia of the current position of the robot with that of the memorized
Fourier power spectra. The assumption of their method was that the robot motion

was constant and linear.

3.2.2 Local Image Comp: son Techniques

There has been a great deal of work on local image comparison techniques. Local
techniques are based on the detection of local features such as corners, doors, land-
marks, certain types of artificial markers specified by the author, ete. Harris and
Stephens [27] developed an algorithi  to detect corners and edges in an image, which
is a widely used algorithm for local ‘ature detection in the field of robotics. Their
algorithm is based on the local autocorrelation function, it detects the locations where
the signal changes quickly in one direction (an edge), or in all directions (a corner).
Schmid and Mohr [49] used the method of detecting local gray value invariants which

was proposed by Koenderink and Doorn [29]. Interest points are automatically de-
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tected from the image using the Harris corner detector [27], then differential invariants
are calculated. A multiscale approach is used in order to obtain robustness against
scale changes. They performed experiments with different conditions (such as - par-
tial visibility, extrancous features, image rotation and scaling, and small perspective
deformations) to demonstrate the robustness of their method. In a of these cases,
their method was able to retrieve im s properly from a database of more than 1,000
images.

Baumberg [4] proposed a scheme for detecting features to cope with local affine
image transformations. In other words, they tried to detect the same features in
identical images that are taken from different viewpoints. Using a multi-scale Harris
feature detcctor [27], thein  est points were first determined; then each interest point
was characterized using affine texture invariants. These descriptors are calculated by
normalizing for pliotometric intensity changes and removing stretch, skew and rota-
tion effects. However, their method  not computationally efficient. Recently, Lowe
[38] proposed the Scale Invariant ure Transform (SIFT) approach for detecting
features invariant to image scale and rotation. The author claims that the features are
partially invariant to illumination ¢ 1ges and affine distortions an robust against
changes in 3D viewpoints for non-pl  ir surfaces. In this method, interest points in-
variant to scale and orientation were detected using difference-of-Gaussian function;
then keypoint descriptors were generated containing location, scale and orientation
information. Descriptors over a wide range of scale are detected in SIFT algorithm.
Thus small and highly occluded obj s can be identified using simnall local features;
on the other hand, large features ¢ be used to identify the objects from images

distorted by noise.
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Figure 3.5 Experimental image setup for image comparison with all four global
techniques. Black plus sign at (1,0) refer to the test image and all the 10 black plus
signs refer to the training images (30 cm apart). Images arc from the image sequence

original_1.

calculated from these dissimilarity v 1es.

3.5 Image Comparis Experiments and Results

3.5.1 Image database

In our experiments, an image database was used which was created from the images

captured in the robotics laboratory of Biclefeld University. This image database is
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previous node and the homed node; in this way >des in the top« >gical map are
connected. This also serves the purpose of loop closing. Then the robot continues
exploring the environment according to the remaining exploration directions of the
homed node which were stored when 2 node was created in the topological map. But
the exploration direction  based on e heading of the robot when the node was first
created, not based on the current heading of the robot. For this reason, it is necessary
to find the difference in angle between the current heading and the previous heading
of the homed node. This is done using a visual compass algorithm based on gradient
descent in image distances of the two images; the description of this algorithm can
be found in section 4.4. this algorithm gives the angle difference between the
current heading and the he: " g of the robot when this node was created, the robot
is turned according to this angle; 1 the robot takes the next best exploration
direction remaining for this homed 1 le, turns to that angle and starts exploration
again. However, if there no more :ploration direction remaining for the homed
node, then path planning is activated.

In path planning, first the topological map is checked to see if there is any ex-
ploration direction left for any node.  no exploration direction exists in the current
topological map, then the robot has nished the exploration, so path planning state
is stopped and the system is in the 'END OF EXPLORATION’ state; now since
the exploration is complete the robc can perform navigation tasks. On the other
hand, if exploration directions still exist for any of the nodes, then the path planning
state is continued. The nearest node (with remaining unexplored direction) is cho-
sen using Dijkstra’s shortest path algorithm. Then the robot continucs exploring the

environment according to the remaining exploration direction of the nearest node.
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rithm was modified such that if the continuous open angle segment was smaller than
an experimentally determined threshold, then it would not be chos as a potential

exploration direction for that node.

4.3 Visual Homing

When the current view image is similar to any known node of the topological map,
we want to move the robot to the si ilar node and continue exploration from there.
This can be done by visual homing methods. Visual homing can be defined as the
ability to return to a goal location by 2rforming some kind of matcl 1g between the
current view image and the goal image.

There have been quite a lot of research works on visual homing. We have used the
homing algorithm developed by Chi chill and Vardy [12]; their algorithm is based
on the scale invariant feature transform (also known as SIFT) algorithm developed
by Lowe [38]. Lowe [38] developed an algorithm to e: act keypoints from an image
which are invariant to image rotation and scale; an robust to a certain extent against
affine distortion, addition of noise, ch  ge in 3D viewpoints and illumination changes.
According to the author, the main advantage of these features is that they are highly
distinctive, for this reason a single feature can be properly matched with high prob-
ability against a large database of f ures. The generation of SIFT feature points
can be divided into four stages: scale-space extrema detection, keypoint localization,
orientation assignment and keypoint descriptor. 1 the first stage, a difference-of-
Gaussian function is applic to detect 1e scale-space extrema; the search is carried

out over all scales and image locatic . The locations of keypoints are determined in
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,SS

®CV

Figure 4.5: Robot pose diagram. Courtesy: Churchill and Vi 1y [12].

other hand, the distance from the robot to feature B will decrease; and this condition
is truc for all features on the same side of feature B. The assumption of the homing
algorithm is that this change in distance will beref 't in a corresponding change in
the scale parameter of the SIFT feature vector; the scale factor betw 1 two adjacent
images differs by the multiplicative « a constant. Clearly the image features can be
divided into two groups - expanding and contracting. If there are enough features
distributed cvenly on either side of e perpendicular bisector of the line joining SS

and CV, then approximately half of them should experience expansion; while the other
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to the size of the feature in the image.

Figure 4.6 shows the SIFT mat. =d correspondences between CV (above) and
SS (below). In the first part of figure 4.6, red lines refer to the features that have
contracted from SS to CV and green lines refer to the features that have expanded
from SS to CV, regions of the image are shown more intuitively when vectors are
mapped onto a single image. It can be observed om the figure that the matches
on the left side show that the size of the features has decreased from SS to CV (the
chair scems to be larger in SS and much smaller in CV). Conversely, the matches on

the right side show that the size of the features has increased from SS to CV (the

computers look smaller in SS and much larger in CV). Since the area near the chair
refers to the region of contraction in CV, this is the home direction the robot should
move to get to the goal location.

The home direction @p,pming can be obtained as follows,

9/1.07)1‘1:719 = aian?(?, E) (43)

where,
S = Myl sin(€ 4 [ Meg|(sin(pneqy) + (4.4)
T = |Mpos|cos(C ) + |Megl(cos(Oneg) + ) (4.5)

In the above equations, M,,; .d M,., denote the SIFT matched correspondence
features which are divided into these two groups based on the contracting and ex-

panding features respectively; 6,,, an  6,,., denote the center of the region M, and
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Chapter 5

Experimental Resi Its

5.1 Image processing

All experiments were done using a Pioneer 3AT mobile robot equipped with a SICK
laser range finder and an omnidirectional camera system. The camera was a catadiop-
tric system consisting of an upward looking camera with a hyperbolic mirror mounted
above it. The hyperbolic mirror ex; 1ded the camera’s field of view to allow the cap-
ture of omnidirectional images. All explorations were autonomous i.c. there was
no manual control of the robot. The exploration and navigation «  eriments were
done in an office environment, in the Intelligent Systems Lab within the Faculty of
Enginecring and Applied Science at Memorial U rersity of Newfoundland.

In our system, omnidirectio. ¢ red images of the environme  were captured
and converted to gray level image as can be seen from figure 5.1. Then the gray level
omnidirectional images were hyperbolically mapped to produce panorarmic images.

An image unfolding procedure was ¢ plied which finds the projection ¢ the original
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