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Abstract 

This thesis presents an online autonomous mobile robot exploration and naviga­

tion strategy. An appropriate environmental representation is an essential part of 

an efficient navigation system. We choose a topological map representation, where 

the world is represented by a set of omnidirectional images captured at each node 

with edges joining the nodes. Topological maps are memory-efficient and enable fast 

and simple path planning towards a specified goal. Using a laser range finder and 

an omnidirectional camera, an online topological representation of the environment 

is developed; although the navigation process relies only on the omnidirectional cam­

era. We choose to use an omnidirectional camera, because it gives a 360 horizontal 

field-of-view and offers other advantages, such as increased robustness to occlusion, 

rich information content, etc. A view classifier based on global image comparison 

technique is used in order to avoid the possibility of creating a node in the sa.me or 

nearby location where another node was created in the topological map. 

A robot navigation system is presented which is based on visual information only. 

The visual homing mechanism is used to move the robot from one node to another 

in t he topological map. Visual homing can be defined as the ability to return to a 

goal location by performing some kind of matching between the image taken while 

at the goal and the current view image. Path planning algorithm is implemented 

for successful vision-based navigation. All the experiments are done in an office 

environment using a Pioneer 3AT mobile robot. The topological map is built in real 

time on board the robot, thus making the system autonomous. 
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Chapter 1 

Introduction 

1.1 Introduction 

In recent times, mobile robots are being used to perform various tasks in many sectors, 

including the automobile industry, health care, domestic households, office environ­

ments, underwater experiments, research laboratories, etc [5, 20, 33]. They are also 

used as tour guides in museums [6]. Mobile robots are a good choice for those tasks 

which are considered dangerous for humans, such as - working in coal mines, nu­

clear reactors, volcanos, etc [3, 59]. Navigation is important for these mobile robots, 

because many tasks involve going from one location to another or moving some mate­

rial to a certain place in the environment . An appropriate map representation of the 

environment is a prerequisite for successful navigation of mobile agents. The most 

common method of representing the environment is by building a geometric map. In 

geometric maps, the environment is mapped by recording the distances and angles of 

all perceivable objects in the global reference frame. On the other hand , topological 
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maps represent the environment with a graph, with nodes representing significant 

places in the environment and edges representing traversable paths between nodes. 

The exact geometric location of a node is not required for this type of mapping. 

Our main focus is to build a map that facilitates proper navigation; precise ge­

ometric estimate of position is not required for our approach. We choose to use a 

topological map, where the world is repre ented by a set of omnidirectional images 

captured at each node with edges joining the nodes. In our approach , the map is 

built autonomously using both laser and visual information. Laser data is used to 

find promising directions for exploration. On the other hand, vision is used to distin­

guish between different places in the environment. 

Mobile robot navigation is a vast area of research; a number of different approaches 

have been taken to solve the problem. We choose to use visual navigation in our 

system. Visual navigation schemes can be seen in different species in nature. Be and 

ants are able to go to their food sources and then return to their home despite having 

a very small brain; they can navigate long distances using only visual information 

[65]. Visual navigation therefore provides a number of biological examples; different 

ideas and techniques for robot navigation can be drawn from them. 

We use an omnidirectional camera for our system. The main reason behind the 

use of omnidirectional vision is that of obtaining a wide field-of-view; this makes the 

system robust to small changes in the environment [66]. An omnidirectional system 

provides rotational invariance in the field of view, i.e. the same area of the environ­

ment is captured independent of the orientation of the camera [62]. Another great 

advantage is that an image, captured at a certain location with an omnidirectional 

camera, contains enough information to distinguish it from another omnidirectional 
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image captured from a nearby location. On the other hand, images captured with a 

conventional camera can not provide a 360° view, so the matching between a certain 

image and all the other database images becomes difficult , sometimes it may result 

into erroneous matching. 

1.2 Research Objectives 

Exploration and navigation are two very active areas of research in mobile robotics. 

Our main objective in this research work is to build a topological map using a mobile 

robot without any intervention by a human operator i.e. an autonomous exploration 

system. In other words, we want to determine whether an autonomous robot can 

actually form (i.e. learn) a topological map of its environment - especially when 

the environment is ambiguous and contains loops. Specifically, we want to build a 

topological map that satisfies the following requirements: (a) simple and easy to build, 

(b) can be built online in realtime, (c) does not utilize a large amount of memory and 

(d) uses only laser data and visual information. We also want to determine if such 

a map can be used for vision-based navigation, i.e. movement to arbitrary locations 

within the topological map. 

1.3 Contribution 

In our system, the robot performs collision free exploration and topological map 

construction, path planning and navigation. Our approach does not depend on any 

artificial markers or any modifications to the environment, instead our system is 
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able to perform in unmodified office environments. The specific contributions of this 

research work are as follows: 

1. We have been able to build an autonomous exploration system with a topological 

environmental representation , using a mobile robot without any manual control. 

We have successfully implemented visual homing process in order to build an 

efficient topological map where it is guaranteed that another node will not be 

created on the same or nearby location where a previous node was created. A 

solution to the loop closing problem is also provided. 

2. We have developed an algorithm for finding promising exploration directions in 

the environment. 

3. We have shown successful path planning and vision-based navigation with our 

topological map. 

Some preliminary results of this research work have appeared in [19]. 

1.4 Organization 

Chapter 2 provides the background knowledge necessary for the research work per­

formed in this thesis. We review different environmental representations, various 

image matching techniques, both global and local, in this chapter. Discussions on 

visual homing, path planning and topological navigation are also provided. 

Chapter 3 details some image matching techniques used in the image-based lo­

calization experiments. A discrete Bayes filter is used in the localization scheme, we 
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also talk about the motion model and the measurement model used in the experi­

ments. The image-based localization experiments are done in order to compare the 

performance of image matching techniques in different situations. 

Chapter 4 details our system architecture for topological map building and navi­

gation. Different parts of the system, such as- exploration strategies, homing mecha­

nism, rotation estimation, path planning, vision-based navigation, obstacle avoidance, 

etc. are described in this chapter. 

Chapter 5 provides the experimental results obtained using a real robot. Limita­

tions of our method are also discussed here. 

Chapter 6 presents our conclusions and directions for possible future research. 
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Chapter 2 

Background 

Mobile robotics is a vast area of research; there are many directions to explore, such 

as robot localization, navigation, map building, cognitive robotics, egomotion, simul­

taneous localization and mapping (SLAM) , etc. However, in this research work, we 

focus on developing a topological representation of the environment and performing 

efficient navigation using the topological map. 

In this chapter, we review basic components of a mobile robot exploration and 

navigation system. Different types of map representations are discussed in section 2.1. 

Section 2.2 is about various visual homing mechanisms; we review some path planning 

methods in section 2.3. Different topological navigation algorithms are discussed in 

section 2.4. 

2.1 Environmental Representation 

The ability of a mobile agent to navigate depends to a great extent upon its appro­

priate environmental representation. Environmental representation can be defined as 
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the map or model created by a mobile agent to interpret the environment around it. 

Generally, an environment is represented in one of the three ways given below, 

1. Geometric Maps 

2. Topological Maps 

3. Hybrid Maps 

There have been a lot of research works in mobile robotics and artificial intelli­

gence systems using the above representations to map an environment. A review of 

some research works is provided below, which includes works on geometric map and 

topological maps; research works that use hybrid maps to represent the environment 

are also reviewed. 

2.1.1 Geometric M aps 

Geometric maps represent the environment with metric information and landmarks; 

the environment is mapped based on the objects and the distances among them. The 

representation is based on a global frame of reference, the positions and orientations of 

all objects (including the robot) are given in this global reference frame. A variety of 

sensors are used to calculate the distances and angles from the robot to the objects in 

the world ; thus this type of mapping depends on the accuracy of sensory observations 

i.e. erroneous sensory data. may result in an erroneous geometric map [58]. Most of the 

earlier research work on robotics used geometric maps to represent the environment. 

Occupancy grid maps can be referred to as a classical representation of geometric maps 

[58]. In this type of mapping, the environment is modeled as a grid in which each 
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position or cell in the grid is assigned as either free space or occupied. Probabilistic 

models can also be used instead of binary values to represenL uncertainties. Moravec 

[43] built a probabilistic, occupancy grid map from integrated sonar and vision data. 

Each cell in the grid contained the probability value of the space being occupied. ',I'he 

probability value of each cell was based on the accumulated sensor readings. Elfes 

[18] used a similar approach to generate a probabilistic grid map in unknown and 

un tructured surroundings using sonar sensors. Elfes implemented a robust method 

to interpret the sensory observations in such a way that the uncertainties and errors 

in the data could be reduced properly. 

Thrun et al. [57] used geometric maps to solve the problem of concurrent map 

building and localization (this problem is also known as Simultaneous Localization 

and Mapping or SLAM). They implemented a practical maximum likelihood algo­

rithm for generating the most probable map from the data; i.e. the algorithm alter­

nates between localization and mapping and thus refines both the robot's location and 

the object locations in the map. Location of the robot is estimated in the E-step based 

on the currently available map and the M-step estimates a maximum likelihood map 

based on the locations computed in the E-step. In a later work, Thrun [55] presented 

a probabilistic approach for building geometric maps online; in this approach a team 

of robots was used to build the map. The maps were generated using a fast maximum 

likelihood approach under the most recent sensor measurement. To reduce the error 

in pose estimation, Thrun proposed a second estimator, i.e. Monte Carlo localization 

was implemented. The author claimed that by combining these two methods, the 

resulting algorithm could cope with large odometry errors typically found when map­

ping an environment wjth cycles. A method for developing three-dimensional maps 
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was also presented. Davison and Murray [15] developed a vision-based SLAM process 

based on the extended Kalman Filter (EKF). Visual landmarks were detected using 

the Harris corner detector [27] with a high-performance stereo head. An autonomous 

real-time implementation in a complex environment was presented. Castellanos et 

al. [9] presented a different SLAM implementation which was based on a multisensor 

system composed of a 2D laser range finder and a camera. Landmarks were detected 

using the laser range finder and then vision was used to obtain additional information 

about those landmarks. Se et al. [51] also developed a vision-based SLAM process 

which used scale-invariant image features as landmarks. Using a trinocular stereo 

system, 3D landmarks were obtained; then they are used for concurrent robot pose 

estimation and 3D map building. SLAM is a huge research area, a significant amount 

of work has been done in the past and research works are still being done in this field; 

as a result, it is not possible to present an exhaustive review on SLAM in the limited 

frame work of this thesis. Further knowledge on SLAM can be gathered from the 

book by Thrun et al. [58]. 

2.1.2 Topological Maps 

A different representation from the geometric one is the topological map, which is less 

concerned with the exact geometry of the environment. Topological representation 

can be thought of as a coarse graph-like representation, where nodes correspond to 

significant places in the environment; these nodes are interconnected by traversable 

paths or edges [64, 21, 34]. An edge between two nodes is created only if the path is 

traversable i.e. if the robot can move from one node to the other one. Kuipers [34] 
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was one of the pioneer researchers in using the topological repres ntations in the field 

of artificial intelligence. He developed a model called TOUR model which was based 

on the cognitive mapping humans use. Using the TOUR model, the author showed 

how spatial knowledge is stored in cognitive maps, how new information is integrated, 

how routes from one place to another can be found and how all the information can 

be used to solve various other problems. Later, Kuipers and Byun [36, 37] developed 

a deterministic topological model which contained distinctive places and edges con­

necting them; they used a hill-climbing search algorithm to select distinctive places or 

landmarks. In their model, each distinctive place contained local metrical information 

in order to facilitate the navigation process. Their assumption was that the current 

state could be determined from local information or the distance traversed from the 

previous state; as a result , the performance of their method was not satisfactory in 

cases where multiple actions were required to determine robot's current state. Instead 

of using a real mobile agent they performed the experiments with a simulated robot 

in a variety of 2-D environments, their model was able to build an accurate map of 

an unknown environment even in the presence of sensory error. 

Koenig and Simmons [30 , 31] came up with a different approach for building 

topological map . In their method, the robot was provided with some topological 

constraints that are easily obtainable by humans; then the robot would learn other 

necessary information while performing navigation or other tasks. Shatkay and Kael­

bling [52] extended the approach of Koenig and Simmons [30]. However, they did not 

provide the robot with any local topological information beforehand , instead, they 

used local odometry information to build the map by applying an extended version of 

the Baum-Welch algorithm; local landmark observations were us d to disambiguate 
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different locations. They used hidden Markov models (HMMs) for robot navigation. 

Franz et al. [21] developed a topological representation of the environment using 

only a visual sensor. Their work extends the view graph approach of Scholkopf and 

Mallot [50] where they presented a vision-based scheme for building view graphs con­

taining information on the topological and directional structure of the world. Franz 

et al. [21] implemented a simple view classifier which was used to select snapshot 

images or significant places to create nodes of the topological map. The view classi­

fier was also used to check if the current view image was similar to any known node 

image of the topological map; therefore preventing the creation of another node in 

the same or nearby location of a node. In the case of the robot arriving at a nearby 

location of an already created node, a scene-based homing strategy was used to move 

the robot to that known node. Similarly, Goedeme et al. [24] generated a topological 

map using only an omnidirectional camera as the visual sensor. The map was built 

from a sequence of training images captured by manually driving the mobile agent 

around the environment. They implemented an image comparison technique which 

is a combination of two wide baseline features, namely a rotation reduced and color 

enhanced form of SIFT features [38] and the invariant column segment features [25]. 

They also implemented loop closing which was based on Dempster-Shafer probability 

theory. Winters [66] developed a topological map for mobile robot navigation using 

omnidirectional vision. However, the nodes within the environment were specified by 

a human operator. As a result, the robot was not completely autonomous. 

Choset and Nagatani [11] implemented a topological SLAM proc ss which was 

able to localize the robot with a partially explored map. The assumption of th 

mapping strategy was that the obstacles in the environment were planar extrusions 
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into three-dimensions. The mapping strategy used in their work was the generalized 

Voronoi graph (GVG), which was a map embedded in the robots free space. The 

intent of the GVG is to capture the topologically salient features of the free space. 

They presented some low-level control laws to generate the GVG edges and nodes 

using line-of-sight range data. Rybski et al. [48] used an appearance-based approach 

to SLAM implementation for very small, resource-limited robots having poor sensory 

information; the robot used in their work was equipped with a single monocular cam­

era. Images were captured using a monocular camera and the Lucas-Kanade-Tomasi 

(KLT) feature tracker was used to find the best match between two images. The 

iterated form of the Extended Kalman Filter (IEKF) was used to estimate the coor­

dinates of image locations; they tested their algorithm with simulated and real world 

data. Porta and Krose [45] developed a system that was able to perform SLAM using 

a multi-hypotheses tracker. The map was represented by a set of Gaussian mixtures 

with associated image features. The assumption in the mapping strategy was that the 

robot would move repetitively in the same environment. The map was constructed 

online and it was continuously refined as the robot moved through the environment 

which improved the localization of the mobile robot. Gross et al. [26] presented 

an omnivision-based SLAM approach which was able to localize a mobile robot in 

complex and dynamic environments. In their method, the current observation was 

described with a distributed coding, which used a set of the most similar reference 

observations. A generalized scheme for fusion of localization hypotheses from sev­

eral state estimators with different levels of certainty was used. Several real-world 

localization experiments were performed to test their method. 
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2.1.3 H ybrid Maps 

Both geometric and topological maps have some advantages, for this reason a number 

of researchers implemented an integrated hybrid map using aspect of both strategies. 

Among the earliest research works using the integrated map is an approach by Chatila 

and Laumond [10]. In their method, objects were denoted by polyhedra in a global 

coordinate frame; the free-space was decomposed into a small number of cells that 

correspond to rooms, doors , corridors, etc. They used a multisensory system to solve 

the inaccuracies introduced by the sensors; the approch was based on selecting the 

data collected by t he more accurate sensor in a given situation; the data was s -

lected based on averaging of different but consistent measurements of the same entity 

weighted with their associated uncertainties. Thrun and Buecken [56, 54] integrated 

grid-based and topological maps for the purposes of navigation. An integration of 

artificial neural networks with a Bayesian algorithm was implemented to build the 

grid map; topological maps were generated on top of the grid-based maps. 

2.1.4 Comparing Geometric, Topological and Hybrid Ap­

proaches 

All three environmental representations have some advantages as well as some short­

comings. Geometric maps require a large memory space, they are also computation­

ally expensiv . On the other hand, Topological maps require less memory space in 

comparison with the geometric maps. Also t he computational cost of path planning 

can be reduced by using topological maps [54]. As the robot performs navigation 

from one node to another, there is no possibility of accumulation of global error, 

13 



which is a problem in geometric maps. However , topological mapping may become 

inefficient in case of environments with periodical structures [54], for example, an 

office environment where all the doors in a corridor are similar in color and texture 

and are regularly spaced; then place recognition by using a topological map becomes 

very difficult . 

Topological maps in robotics may have some relation to human navigation. In 

order to go from one specific location to another, humans do not necessarily need 

to remember the goal location according to any precise metric information. It ap­

pears easier for humans to remember a place according to some recognizable scenes 

(distinctive landmarks) where specific actions are performed, such as turning right 

from a landing, entering a door, etc. Topological maps are constructed using nodes 

corresponding to significant places, and edges between them. Thus, this type of map­

ping may be easier for humans to use in comparison with the geometric maps. One 

major dissimilarity between metric map and topological map is that the robot's po­

sition must be detected accurately in metric map; but accurate metric position is not 

required for topological mapping. Hybrid representations contain the advantages of 

both paradigms. However, since metric mapping is based on local odometry infor­

mation, so in case of erroneous data, the whole hybrid mapping system can become 

erroneous as the topological map is usually built on top of the metric map. Moreover, 

a large amount of memory space is required for hybrid maps, because both the metric 

and topological map are being built; even if the metric map is deleted after building 

the topological map, memory requirement is still large as both maps may be present 

together for sometime. 

In our system, the environment is represented with a topological map. Motivation 
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for choosing such a representation mainly came from the technique humans use to 

remember a place. Tolman [60] first introduced the idea that internally humans 

represent the world environment as a cognitive map. Cognitive map can be defined 

as the spatial knowledge built up by observations acquired by a human being while 

traveling around in the world environment [34]. In our approach , we are less concerned 

with the geometry of the environment, rather the main importance is given to the fact 

whether the robot can reach a certain goal node in the environment from a differ nt 

node; i.e. the geometric locations of the two places or nodes are not important in this 

case. In our system, the coordinates of a node are not stored in the map as they are 

not required. Each node in the topological map is represented with an image of that 

location. Any node in the topological map can be used as a start position or a goal 

destination for the navigation process. 

2.2 Visual Homing 

Visual homing can be defined as the method to reach a previously visited location 

using the stored image taken from that location. In order to return to the goal 

location, some kind of matching is performed between the current view image and 

the goal image. It can be observed that the current view image and the goal image 

are the basic requirements of a visual homing mechanism. The primary motivation of 

researches in visual homing of mobile robots came from the navigation behaviors in 

animals and insects. Biologists have done a lot of research works about visual homing 

techniques of insect navigation. The snapshot model of Cartwright and Collett [7 , ] 

is a well-known model for visual homing in bees. They developed the snapshot model 
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in order to detect how bees use landmarks to return back to their food sources. Collett 

[13] suggested that bees recognize places by performing some kind of image matching; 

they are able to return to a previously visited goal location by matching the current 

view as seen by them, with the stored representation of the goal location. According 

to [13], bees try to match features such as position and orientation of edges, their 

speed of motion, their color, etc. 

Franz et al. [21, 22] developed a scene-based homing method which is one of the 

most highly cited methods for visual homing. In their method, the home vector is 

computed from the whole image, one-dimensional panoramic images were used. In 

order to find the home direction toward a goal location, the current view image is 

warped according to three parameters - the direction in which the robot has moved 

away from the goal, the change in the sensor orientation, and the ratio between the 

distance from the goal and the average landmark distance. The warped image can 

be thought of as the predicted goal image based on these three parameters. They 

constructed a matched filter that predicts the displacement field of landmarks; the 

selection criteria for the filter is based on the minimum image distance between the 

current view image and the goal image; the direction was calculated based on that spe­

cific matched filter. Relative to the robot's current position, these parameters specify 

a supposed goal position. The home direction is calculated by searching through the 

parameter space for the warped image that best matches the stored goal image. Their 

method includes orientation in its search space and therefore has the advantage of not 

requiring a compass. However, their assumption was that all the landmarks were ap­

proximately at equal distance from the location of the goal image. Most of the time, 

this assumption will be violated in natural environments, this makes their method 
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limited. Moreover, most of the works were tested in simulations; an experiment was 

done with a mobile robot using an artificial toy house environment; thus their method 

was not tested in natural environment. Zeil et al. [68] developed a view-based homing 
I 

strategy using simple gradient descent methods. They investigated the behavior of 

root mean square (RMS) pixel differences between a reference image and a database 

of images, with the image distance and they found out that the home direction can be 

computed from the root mean square (RMS) pixel differences. The authors claimed 

that their method performed well even with transient illumination changes. Details 

of their view-based homing strategy can be found in section 4.4. 

Vardy and Moller [64] investigated the performance of different optical flow tech-

niques for the purpose of visual homing. They implemented the block matching 

method, two simple variants of block matching - intensity and gradient matching, 

and two differential techniques for homing. In block matching, a block of pixels are 

taken from one image and the matching pixels are detected in the other image; in 

intensity matching, a single pixel is taken instead of a block of pixels and gradient 

matching searches for the best-matching gradient between the two images. The au-

thors used omnidirectional images for the experiments, they tested their methods 

using three different indoor environments. Results were compared with Franz et al. 's 

[21] homing method; their flow-based methods performed better than the ref renee 

method. The authors claim that their methods are able to perform even with some 

incorrect feature correspondences. Their analysis showed that matching between low-

frequency image features is sufficient for homing. Recently, Churchill and Vardy [12] 

developed an algorithm for finding home vector, their method is based on Scale In-

variant Feature Transform (SIFT) approach. In order to find the home direction from 
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a current location towards a goal location, first landmark correspondences are com­

puted between the current view image and the goal image using SIFT. Based on the 

change in scale parameter of these correspondence vectors, a region of contraction and 

a region of expansion are detected in the current view image. According to [12] , the 

home direction is aligned with the center of the region of contraction. However , the 

assumption of their method is that the objects are distributed uniformly throughout 

the environment. Details of their homing strategy can be found in section 4.3. 

2.3 Path Planning 

In a navigation system, after the robot has built a map (or the map can be given 

to the robot), it can start performing a navigational task such as moving from an 

arbitrary start position to some goal position. But, a proper path planning scheme 

must be employed in order to assure an efficient navigation process. Path planning 

provides the robot with a course of actions to reach a certain goal location, given the 

current location. A number of different techniques exist in the literature to comput 

a path in order to reach a goal position. One of the most famous strategies of path 

planning is Dijkstra's shortest path algorithm [16]; this algorithm has been used in 

numerous robotics research works [24, 35, 32]. Dijkstra's algorithm must be applied 

on a graph. It can be used on geometric maps also, but requires the space to be 

discretized. In this algorithm, a path from a source vertex to a target vertex is 

said to be the shortest path if its total cost (or some other measur can be used) 

is minimum among all the paths. The assumptions are that all the edge costs are 

non-negative. In this algorithm, the source must be a single vertex, but the target 
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can be all other vertices. The edges can be weighted or unweighted depending on the 

preference of the user. 

Mataric [40] used a simple breadth-first earch for path planning. Each landmark 

was given a weight according to its physical length, thus ensuring the computation of 

physically shortest path in the graph. In this method, a call propagates from the goal 

node in all directions of the graph and finds the current node, then the length of all 

the landmarks from the goal node to the current node is summed up, in this way the 

shortest path is computed. Lumelsky and Stepanov [39] proposed a different strategy 

for path planning where the shape and locations of the obstacles were not known by 

the mobile agent , in other words, no map was used for path planning. The robot 

would acquire the local information on its immediate surroundings from a sensor; its 

current location and the goal location would also be given. By designing a method 

for nonheuristic motion planning, they showed that this information was enough to 

reach the goal location. 

Donnart and Meyer [17] presented a hierarchical classifier system for path planning 

and navigation. In order to reach a certain goal, the system plans a path using both 

both reactive and planning rules; salient states are defined in the path which can 

be referred to as intermediate goal locations, thus the robot reaches the goal while 

avoiding obstacles. Their system was tested with a simulated and a real robot. 
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2.4 Topological Navigation 

Different strategies of topological map building were reviewed in section 2. 1.2, here 

in this section, we will review different navigation methods in mobile robotics that 

use topological maps. Topological navigation can be defined as the process of go­

ing from one node to another goal node in the topological map. Crowley [14] was 

among t he earliest successful researchers to develop a navigation system using topo­

logical representation. The author constructed a dynamically maintained model of 

the local environment called the composite local model. When the robot moved in the 

environment, the model integrated information from the rotating range sensor, the 

robot 's touch sensor and a pre-learned global model. A network of places contained 

in the model, was used in path planning and navigation processes. Mataric [40] devel­

oped a topological navigation system on a reactive, subsumption-based mobile robot 

named Toto that was equipped with a ring of sonar sensors and a compass. Ulrich 

and Nourbakhsh [62] came up with an appearance-based place recognition system 

using an omnidirectional visual sensor. Their image classifier was based on nearest­

neighbor learning algorithm, image histogram matching and a simple voting scheme. 

Their system was tested in four different environments, including indoor and outdoor; 

however, their method was not implemented and tested on a real mobile agent. 

Fu et al. [23] implemented a passive mapper strategy that used sensor readings 

to create a topological representation of the world consisting of distinctive places 

and connecting edges. Their assumption was t hat the environment was structured 
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with known organization, but unknown specifications. However, they only tested 

their system in simulations. Kosaka and Pan developed two different methods for 

vision-based robot navigation in indoor environments. Their first approach named 

FINALE is based on a vision-based metric map and Kalman filtering. The second 

approach named FUZZY-NAV was based on a strategy integrating fuzzy logic and 

neural networks; topological representation of the environment was implemented for 

this approach. They used fuzzy logic to deal with the uncertainty in the visual 

data; the captured images were first processed by the neural network. The authors 

claimed that their system was able to navigate while avoiding both static and dynamic 

obstacles. 

Goedeme et al. [24] developed a robot navigation system using topological rep­

resentation. An omnidirectional vision system was used in their approach. A prob­

abilistic approach was taken in order to perform image-based localization. Thus the 

location of the robot was obtained and using path planning methods, a path was 

computed to reach a certain goal position; the path was defined by a set of prototype 

images of places. To move the robot from one node towards the next node of the 

computed path, correspondences between the current image and the next node image 

were obtained; then using epipolar geometry, a homing vector was computed. 
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Chapter 3 

Image Matching 

3.1 Introduction 

A sound image comparison technique is an essential part of a vision-based exploration 

and navigation system. Image matching techniques can be broadly categorized into 

two areas: 

1. Global image comparison techniques 

2. Local image comparison techniques 

In global image comparison techniques, characteristics of the whole image are 

collectively used to describe a view. On the other hand, local image comparison 

techniques identify visually salient features in the image. The primary advantages of 

global techniques over feature-based techniques are that global techniques are simple 

and computationally fast; but they may perform poorly in the presence of occlusions. 

On the other hand , local techniques can be made robust against occlusions. Time 

complexity is a major disadvantage of local techniques. 
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3.2 Related Work 

3.2.1 Global Image Comparison Techniques 

Ulrich and Nourbakhsh used histogram-based matching technique for the purpose of 

place recognition for topological localization in [62]. Histogram-based matching is a 

well known method among the global techniques of image matching; advantages of 

histograms include less memory consumption, reduced computational effort (so that 

real-time experiments are possible with histograms), and invariance to image rotation. 

Ulrich and Nourbakhsh [62] used color panoramic images for their experiments; they 

argue that different places in an environment can easily be distinguished by their 

color appearance, which reduces the requirement of using range data from additional 

sensors such as stereo, sonar or a laser rangefinder for distinguishing different places. 

They used histogram matching to recognize the current location in the environment 

by comparing the current view image with the stored images taken at the currently 

believed location and its immediate neighbors. They also developed an adjacency 

relationship scheme that limits the number of reference images used in the comparison, 

thus their method does not need to compare the current view image with all the imag s 

in the database. But the main flaw of their method is that a single wrong matching 

can lead to an incorrect localization i.e. the robot will believe its in a certain location 

in the environment , but in reality it is in some other place. The authors performed 

eight cross-sequence tests in four unmodified environments, including both indoor 

and outdoor environments. 

Aihara et al. [1] used eigenspace methods for imag -based localization. Auto­

correlation images (see figure 3.1) , invariant against the rotation of the sensor, were 
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Figure 3.1: (a) and (b): Omnidirectional panoramic images taken at the same location 

with rotating the sensor 120-degrees, (c) and (d): Autocorrelation images transformed 

from (a) and (b), respectively. Image courtesy: Aihara et al. [1] . 

generated from omnidirectional images and the similarity of autocorrelation images 

was evaluated in low dimensional eigenspace. The authors claimed that their m thod 

could perform localization even with low dimensional images. However, their system 

was not implemented on a real mobile robot. Jogan and Leonardis [28] also used 

eigenspace decomposition technique for t he purpose of spatial localization. They 

implemented the approach known as Zero Phase Representation (ZPR) which was 

proposed by Pajdla and Hlavac [44]. It provides a representation where many iden-

tical, but randomly oriented images, have the same ZPR, they referred to it as the 

solution of one-to-many mapping problem. 

Menegatti et al. [41] used Fourier transforms for image-based localization. In their 
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method, each omnidirectional image was represented by the Fourier coefficients of the 

low frequency components of its panoramic conversion. Image similarity between two 

images was calculated using the the 1 1 norm of the Fourier measure of the images. 

However, all the test were done in simulations, mobile robots were not used to carry 

out their experiments. Stricker et al. proposed a method based on the Fourier-Mellin 

transform to compare images in [53) . Yagi et al. [67) also used a Fourier-based method 

for developing a route navigation scheme for a mobile robot; omnidirectional image 

sensor was used in their work. Omnidirectional images were represented by a series of 

two dimensional Fourier power spectra; image similarity was found by comparing the 

principal axis of inertia of the current position of the robot with that of the memorized 

Fourier power spectra. The assumption of their method was that the robot motion 

was constant and linear. 

3.2 .2 Local Image Comparison Techniques 

There has been a great deal of work on local image comparison techniques. Local 

techniques are based on the detection of local features such as corners, doors, land­

marks, certain types of artificial markers specified by the author, etc. Harris and 

Stephens [27] developed an algorithm to detect corners and edges in an image, which 

is a widely used algorithm for local feature detection in the field of robotics. Their 

algorithm is based on the local autocorrelation function, it detects the locations where 

the signal changes quickly in one direction (an edge), or in all directions (a corner). 

Schmid and Mohr [49] used the method of detecting local gray value invariants which 

was proposed by Koenderink and Doorn [29]. Interest points are automatically de-
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tected from the image using the Harris corner detector [27] , then differential invariants 

are calculated. A multiscale approach is used in order to obtain robustness against 

scale changes. They performed experiments with different conditions (such as- par­

tial visibility, extraneous features, image rotation and scaling, and small perspective 

deformations) to demonstrate the robustness of their method. In all of these cases, 

their method was able to retrieve images properly from a database of more than 1,000 

1m ages. 

Baumberg [4] proposed a scheme for detecting features to cope with local affine 

image transformations. In other words, they tried to detect the same features in 

identical images that are taken from different viewpoints. Using a multi-scale Harris 

feature detector [27], the interest points were first determined; then each interest point 

was characterized using affine texture invariants. These descriptors are calculated by 

normalizing for photometric intensity changes and removing stretch, skew and rota­

tion effects. However, their method is not computationally efficient. Recently, Lowe 

[38] proposed the Scale Invariant Feature Transform (SIFT) approach for detecting 

features invariant to image scale and rotation. The author claims that the features are 

partially invariant to illumination changes and affine distortions and robust against 

changes in 3D viewpoints for non-planar surfaces. In this method, interest points in­

variant to scale and orientation were detected using difference-of-Gaussian function; 

then keypoint descriptors were generated containing location, scale and orientation 

information. Descriptors over a wide range of scale are detected in SIFT algorithm. 

T hus small and highly occluded objects can be identified using small local features; 

on the other hand, large features can be used to identify the objects from images 

distorted by noise. 
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3.3 Implemented Global Image Comparison Tech-

. n1ques 

While exploring the environment, the robot may arrive at the same location or at a. 

nearby location where another node was created previously. But we do not want to 

create a node at or very close to the same position where another node was created 

previously. So there must be some kind of mechanism in our system to recognize 

a. previously visited place. Global image matching techniques can be used for this 

purpose. The method compares the current view image taken by the robot, with all 

the stored node images; then gives the decision whether a node should be created 

or not at the current location. In this section, we will describe all the global image 

comparison techniques which have been implemented in this thesis. 

A sound image comparison technique is very important for an image-based ex-

ploration system. The aim is to determine a dissimilarity measure for each pair of 

images, which gives a measure of how visually analogous the two images are. We 

have used two global techniques for image comparison: 

• Histogram-based techniques 

• Fourier transform 

The images used for the image comparison method are captured using an om-

nidirectional camera system. The most important advantage of the omnidirectional 

camera over a normal perspective camera is rotational invariance i.e. the same area 

of the environment is captured independent of the cam ra's orientation. Another 
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Figure 3.2: (a) A sample image, (b) Image histogram of figure (a) . 

advantage is the large field of view; this also makes the system robust against small 

changes in the environment. 

3.3.1 Histogram-based techniques 

For an image-based localization system, one of the major problems is to store a 

large number of images in the memory database, which takes a large amount of 

space. Histograms are good solutions for this problem; they require very little memory 
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space. In our experiments, a color omnidirectional image requires approximately 

2.25 MB memory space, a gray level panoramic image requires approximately 20 

KB memory space, whereas the image histogram of the gray level panoramic image 

requires approximately 1 KB memory space. As a result, the amount of memory 

required to store an image can be reduced. The image histogram of an omnidirectional 

image is rotationally invariant. In other words, if two omnidirectional images are 

captured at a certain location of the environment with different orientations, then the 

image histograms of these two images will be identical. Figure 3.2 shows a sample 

image and its image histogram. 

In order to determine how well two image histograms match , three histogram 

matching techniques have been used in this research work, they are given below: 

• Jeffrey divergence method 

• x2 statistics method 

• Sum of absolute difference method 

A good overview of different histogram matching techniques is given in [47]. The 

Jeffrey divergence method is numerically stable and robust with respect to size of 

histogram bins [46]. The dissimilarity measure in this method is defined as: 

hik hjk 
dJ(Hi, Hj) = L,(hik log-+ hjk log-) 

k mk mk 
(3.1) 

where, mk = h;k;hik and ~k and hjk are the histogram entries of the two image 

histograms Hi and Hj respectively. 
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The x2 statistics method was also used in [62]. The dissimilarity measure in this 

method is defined as: 

dx2(Hi , Hi) = L (hik- mk)2 
k mk 

(3.2) 

where again, mk = h;k~hik and ~k and hik are the histogram entries of the two image 

histograms Hi and Hj respectively. 

The last image comparison method is a straightforward one, the dissimilarity 

measure is obtained by the sum of the absolute differences of the two image histogram 

entries: 

ds(Hi, Hj) = L lhik- hikl 
k 

(3.3) 

where, ~k and hjk are the histogram entries of the two image histograms Hi and Hi 

respectively. 

The following example gives an overview on the three histogram methods used in 

this work: a reference histogram is shown in figure 3.3 and two other histograms are 

given in figur 3.4. The objective is to calculate the dissimilarity measure measure 

between the reference histogram and other histograms. The histogram entries are {6, 

26, 37, 26, 3, 2} , {3, 25, 38, 25, 8 1} and {34, 36, 4, 14, 10, 2} for the reference 

histogram, histogram! and histogram2 re pectively. It can be observed from figures 

3.3 and 3.4 that the resemblance between the reference histogram and histogram! 

is higher than the resemblance between the reference histogram and histogram2. As 

a result the dissimilarity measure betw en the reference histogram and histogram! 

should be lower than the dissimilarity measure between the reference histogram and 
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Figure 3.3: Reference histogram 

histogram2. The dissimilarity measures found using equations 3.1, 3.2 and 3.3 also 

verify the above observations. The results are given in table 3.1. 

3.3.2 Fourier transform 

Similar to image histograms, the magnitude of the one-dimensional Fourier transform 

of the rows of an omnidirectional image is invariant to the rotation of the image 

around the optical axis. The panoramic image is transformed row by row via the 

Fourier transform. 

m - 1 n - 1 

dF(h Ij) = L L \Fik(l) - Fjk(l)\ (3.4) 
k=O l= O 
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Figure 3.4: (a) Histogram! , (b) Histogram2. 

Dissimilarity measure Reference Histogram and Histogram! Reference Histogram and Histogram2 

J effrey d ivergence 0.8187 13.3570 

x2 statistics 1.8293 27.5716 

Sum of a bsolute difference 12 90 

Table 3.1 : Dissimilarity measures usmg the reference histogram, histogram! and 

histogram2. 

where, Ii and 11 are the two panoramic images, each having m rows. Fik(l) and F1k(l) 

are the Fourier coefficients of the ~h frequency of the kfh row of images Ji and 11 

respectively. This method was also used in [41]. 

The Fourier coefficients of the low frequency components of the panoramic image 

are stored to represent the image. In our experiments, we took the first 30 frequency 

components, because the later frequency components have very small values and thus 

can be neglected in the calculation of the dissimilarity measure. 
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3.4 Image Based Localization 

Image-based localization consists of matching the current view image experienced 

by the mobile robot with training images stored in the memory of the robot. In 

a new environment, the mobile robot is lead along a route and training images are 

captured. Then if a new test image is captured, it is compared with all the training 

images and an hypothesis is formed about the current location of the mobile robot. 

This hypothesis is refined using the discrete Bayes filter as soon as the robot starts 

to move and new test images are captured. So the output of image-based localization 

system is a location which refers to one of the training images. 

In this work, our experiments were done for two types of localization problems, 

namely local localization and global localization. When a mobile robot first starts 

to localize, it has no knowledge of its location in the environment; this is known 

as global localization. In the case of local localization, the initial location of the 

robot is known by the mobile robot. Global localization is more difficult than local 

localization, because at the beginning there is no knowledge about the location of the 

robot, so the algorithm starts with equal probability given to each t raining image. 

Our image-based localization system is able to perform both types of localization. 

A probabilistic approach is used in this work i.e. we will represent the robot's belief 

of its location as a probability distribution. There are a number of ways to represent 

probability distributions: continuous or discrete, single or multiple hypothesis. In 

this work, we used a discrete Bayes filter, with probability distribution approximated 

by an array of possible locations (i.e. training images). 
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3.4.1 Bayes filter 

In the Bayes filter algorithm, the probability distributions are calculated from mea­

surement and control data. Bayes filter utilizes the Markov assumption , or the com­

plete state assumption. According to this assumption, the past and future data are 

independent if one knows the current state [58] . Bayes filter is recursive i.e. the robot's 

belief bel(Xt) at time t is calculated from the belief bel(Xt- 1) at time t-1; where, Xt; is 

the robot 's state at time t. The input for Bayes filter is the belief bel(Xt- 1) at time 

t-1, the most recent control input Ut and the most recent sensor measurement zt ; the 

output of the algorithm is the robot 's belief bel(Xt) at time t. 

The general form of the Bayes filter is given below: 

(3.5) 

(3.6) 

where, bel(xt) is the predicted belief and TJ is a normalizing factor. A belief distribu­

tion assigns a probability to each possible hypothesis with regards to the true state 

[58]. Belief distributions are posterior probabilities over state variables conditioned 

on the available data. It predicts the state at time t based on the previous state 

posterior , before incorporating the measurement at t ime t. 

Equation 3.5 updates the belief to account for the robot 's motion. This g ner­

ates the prediction bel(xt )· Equation 3.6 achieves the measurement update. It 

incorporates the sensor values and combines this information with the prediction to 

update the belief. 
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In this work, we used a discrete Bayes filter which is given by equations 3.5 and 

3.6, with the exception that the integration is replaced by summation. In order to 

localize the mobile robot , a probability distribution is maintained over all the nodes 

of the graph. So the output of the discrete Bayes filter is a probability distribution 

over all the nodes of the graph. The node with the highest probability value refers to 

the probable location of the mobile robot in the environment. 

3.4.2 Motion Model 

The motion model p(xtlut, Xt- 1) gives the probability of a transition from position 

Xt-l to Xt· Generally motion models are based on odometry information. The motion 

model of a differentially driven robot was used in [2]. 

If a mobile robot is at a certain location in the environment and it makes a forward 

motion, it is very probable that it will move to a neighbor location in the next time 

instant; the probability of moving to a. place far from its current location is very 

low. As a result the motion model can be represented using a. Gaussian probabili ty 

distribution, as used in [24]. The motion model is defined as: 

(3.7) 

In the above equation , the function dist(xt, Xt- 1 ) refers to a measurement of the 

distance between the two places Xt- 1 and Xt; and ax is the standard deviation of the 

distances. In our experiment , the robot moves from the current node to the next one 

in each t ime instant, we assumed the distance between two adjacent places or nodes 

to be 1 unit. In our experiments, t he robot can either move one step forward or stay 
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at the same place in case of no movement; thus a value of CJx = 1 is reasonable. 

3.4.3 Measurement Model 

The measurement model p(ztlxt) gives the probability of acquiring sensory observation 

zt under t he assumption that the robot is positioned at Xt · 

In mobile robotics, different types of sensors are used to acquire sensory observa-

tions, such as laser range finders, ultrasonic sensors, camera, etc. The measurement 

model in [61] is composed of some discrete and continuous measurements: node de-

gree, node equidistance, edge travel distance and feature map landmark location. 

Goedeme et al. [24] used a Gaussian probability distribution to represent the mea-

surement model and we have adopted this approach. As mentioned in [24], there 

exists a low probability of acquiring an image at a certain location that differs sub-

stantially from the training image taken at that location. The measurement model is 

defined as: 

(3.8) 

In the above equation, the function dif f(h1 , h2 ) is obtained by image comparison 

methods described in section 3.3, and CJz is the standard deviation measured on the 

data. In our experiments, the value of CJz is obtained using the current test image 

and the current sequence of training images. For example, for each test image and 

the training images of sequence originaLl , first the dissimilarity value between the 

test image and each training image of the sequence are obtained using the image 

comparison techniques described in section 3.3. Then the standard deviation CJz is 
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Figure 3.5: Experimental image setup for image comparison with all four global 

techniques. Black plus sign at (1, 0) refer to the test image and all the 10 black plus 

signs refer to the training images (30 em apart). Images are from the image sequence 

originaL1. 

calculated from these dissimilarity values. 

3.5 Image Comparison Experiments and Results 

3.5.1 Image database 

In our experiments, an image database was used which was created from the images 

captured in the robotics laboratory of Bielefeld University. This image database is 
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Figure 3.6: Image comparison with (a) Jeffrey divergence (b) x2 statistics (c) Sum 

of absolute difference method and (d) Fourier transform. The test image is the first 

image of the image sequence originaLl positioned at (0,0) and the training images 

are the first 10 images from the image sequence original_l. 

publicly available at www. ti. uni-bielefeld. dejhtmljresearch/ avardy. Images were col-

lected by a camera mounted on a pioneer mobile robot. The camera was a catadioptric 

system consisting of an upward looking camera with a hyperbolic mirror mounted over 

it. The hyperbolic mirror expanded the camera's field of view to allow the capture 

of omnidirectional images. A detailed description of the image databases and the 

catadioptric vision system can be found in [64]. 

Figure 3.6 shows the dissimilarity measure using both histogram and Fourier trans-

form methods. The image setup for all the image comparison methods are shown in 

figure 3.5. Here, the black plus sign at (1 , 0) refer to the test image and all the 10 

38 



15 

14 

12 

10 

8 

6 

4 

2 

0 

-2 
·2 

. 

. 

. 

. 

. 

. 
0 

~ 
~-
,e. 
0 

+ + 
+ + 
+ + 
+ + 
+ + 

+ 
+ + 
+ + 
+ + 

+ 
+ + 
+ + 
+ + 
+ + 
+ + 
+ + 

2 

~ ~ 
~- 15· 
,e. I~ ..... 

. 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 
+ + + + 

I 

4 6 8 10 

~ ~ ~ ~ 
~- ~- ~- ~-
,e. ,e. ,e. ,e. 
w -+:.. ljo 0\ 

Figure 3. 7: Experimental image setup for image-based localization. Black dots refer 

to test images (90 em apart) and black plus signs refer to training images (30 em 

apart) . The image sequences are 30 em apart from each other. 

black plus signs refer to the training images (30 em apart). Images are from the 

image s quence originaL1. The dissimilarity function behaves as expected in all four 

cases. The dissimilarity function is 0 when the test image and the training image are 

the same (for image position (1 , 0)) as can be seen from figure 3.6, then the value of 

the dissimilarity function increases for other images. In other words, the dissimilarity 

function increases with spatial distance and after reaching a certain distance it will 

saturate. The reason of such behavior is that in case of two images taken from com-

pletely different place in the environment , there is no correlation at all between the 
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two images. 

3.5.2 Experiment-!: With distant test and training images 

We want to compare the performance of the four global image matching techniques in 

order to find the one that is best to use in our online exploration and navigation sys­

tem. For this reason, we performed two experiments using the image database stated 

before. Figure 3.7 shows the experimental image setup for image-based localization 

system. Black dots refer to training images (90 em apart) and black plus signs refer 

to test images (30 em apart) . There are 6 images in the sequence of training images 

and 16 images in the sequence of test images, as can be seen from figure 3.7. The 

image sequences are 30 em apart from each other. 

Our image-based localization system is able to perform both local and global 

localization. Global localization is performed by initializing the system with uniform 

probability distribution; while for local localization, the initial location of the mobile 

robot was given. The task is to determine which training image the robot is closer to 

for a certain test image. If, for example, the location where the test image is captured 

is closer to the second training image, then the second training image should have the 

highest probability value. Figure 3.8 demonstrates image-based global localization. 

Black dots refer to training images (90 em apart) and the black plus sign refers to 

the current image (i.e. test image). In figure 3.8(a), the system is initialized with 

uniform probability distribution, so each training image has the same probability 

value (depicted by equal sized circles around the black dots). When the robot moves 

forward, the first training image obtains the highest probability value, as this training 
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Figure 3.8: Demonstration of image-based global localization. 
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Figure 3.9: Sample images from image database originaL1, images are 30cm apart. 

The distance between the sequence of test images and that of training images is 0, 

30, 60, 90, 120, 150 and 180 em respectively. 

42 



Test image database Training image database J effrey divergence x2 statistics Sum of difference Fourier Transform 

OriginaLO OriginaLO 100% 100% 100% 100% 

Origina LO OriginaL! 100% 100% 100% 100% 

OriginaLO OriginaL2 93.75% 81.25% 75% 81.25% 

OriginaLO Original..3 81.25% 75% 56.25% 75% 

OriginaLO OriginaL4 75% 56.25% 37.5% 62.5% 

OriginaLO OriginaLS 25% 18.75% 18.75% 56.25% 

OriginaLO OriginaL6 12.5% 12.5% 12.5% 31.25% 

Table 3.2: Image-based Mobile Robot Localization Results (With distant test and 

training images) 

image is the closest to the current test image; the training image with the highest 

probability value is depicted by a large circle and the training image with the second 

highest probability value is depicted by a small circle. 

Figure 3.9 shows the sample images used in this experiment. The images ar 

from the image database originaL1. For the first experiment, the distances between 

the sequence of tra ining images and that of test images were kept at 0, 30, 60, 90, 

120, 150 and 180 em respectively. The comparison is based on the ratio of successful 

localizations; for example, if the number of test images is 16 and the number of 

successful localization is 15, then the result is 93.75%. 

The results of experiment-1 are summarized in table 3.2. It can be observed from 

the table that for all four methods, the ratio of successful localizations was almost 80% 

even when there was 60 em distance between the training and test images (for test 

database originaLO and training database originaL2); afterward, the ratio decreased 

as the distance between the training and test images was increased. The ratio of 

successful localizations was 100% for training databases original_O and original_l 

for all four methods. In this experiment, the Jeffrey divergence method performed 
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the best among all the methods; the ratio of successful localizations was 75% even 

when there was 120 em distance between the training and test image databases (for 

test database originaLO and training database originaL4 ) . The performance of the 

Fourier transform method was also satisfactory; the ratio of successful localizations 

decreased gradually in this method. It should be noted that the Fourier transform 

method performed better than the the Jeffrey divergence method in case of the highest 

distance between the training and test image databases (for test database original_O 

and training database originaL6). The performance of the x2 statistics and the Sum 

of absolute difference method was good when the distance between the training and 

test image databases was lower; but they did not perform as well as the Jeffrey 

divergence and the Fourier transform method when the distance was increased. 

3.5.3 Experiment-2: With modified environments and illu­

mination changes 

For the second experiment, the sequence of test images and that of training images 

was 30 em apart; but the environment was modified, four different training image 

databases were used. There were also some illumination changes in different image 

databases. Fig. 3.10 shows sample images from the image databases: o·riginal, night, 

twilight and winlit. Image database original refers to the standard or default condition 

of the room, with the curtains and door closed. Images of the database night were 

captured at night with the curtains and door open. Images of the database twilight 

were captured just after the sunset, at that time the room was still receiving plenty of 

daylight , the curtains and door were kept open. In the images of the database winlit, 
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(a) 

(b) 

(c.) 

(d) 

Figure 3.10: Sample images from 4 image databases: (a) Original, (b) Night, (c) 

Twilight, (d) Winlit. Image position (1,2). 

only the two lights near the window were kept on. 

The results of thi experiment are summarized in table 3.3. It can be observed 

from the table that our image-based localization system was able to perform well 

even with modified environments and illumination changes. The ratio of successful 

localization was 100% for training image database originaL! for all the four methods. 

The ratio of successful localizations was above 75% for the training databases night_J 

and twilight_!; although it was above 93.75% for the Jeffrey div rgence and the Fourier 
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Test image database Training image database J effrey divergence x2 statistics Sum of difference Fourier Transform 

OriginaLO OriginaL! 100% 100% 100% 100% 

Origina LO Night_l 93.75% 87.5% 81.25% 100% 

OriginaLO TwilighU 93.75% 81.25% 75% 93.75% 

OriginaLO Winlit-1 18.75% 6.25% 6.25% 37.5% 

Table 3.3: Image-based Mobile Robot Localization Results (With modified environ­

ments and illumination changes.) 

transform method. It should be noted that no method performed well when the test 

images were taken from the image database winliLl; because only two lights in the 

room were kept on for the images in t he database winlit, o the room was really dark 

as can be seen from figure 3.10( d). This image database has significant illumination 

change from all the other databases, we intend to look further into this illumination 

change problem in our future works. 

It can be observed from the tables 3.2 and 3.3, that both the Jeffrey divergence 

method and the Fourier transform method performed well in our experiments; we 

chose the Jeffrey divergence method to use in the image comparison of our online 

exploration and navigation system. The main reason for our choice was that the 

topological map was built in real time on-board the mobile robot in our system, so 

we wanted an image matching technique that was robust as well as computationally 

fast. The Jeffrey divergence method is simpler and presumably more efficient. We 

performed a simple test to test the running time of all four methods. We took 

two images and computed the dissimilarity value using all the four methods and 

recorded the time taken by each method. The recorded t imes were 0.014 sec, 0.006 

sec, 0.005 sec and 0.034 sec for Jeffrey divergence method, x2 statist ics method, sum 
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of absolute difference method and Fourier transform method respectively. Although 

the x2 statistics method and sum of absolute difference method took less time to 

compute the result, our experimental results from the tables 3.2 and 3.3 show that 

the performance of Jeffrey divergence method Fourier transform method are better 

than them. As the Jeffrey divergence method took less time to compute the result 

than the Fourier transform method, we chose the Jeffrey divergence method for the 

purpose of image matching in our online exploration and navigation system. 

47 



Chapter 4 

System Architecture 

4.1 Introduction 

Our system uses an omnidirectional camera system and a laser range finder for per­

forming the exploration and navigation task properly; although the navigation process 

relies only on the omnidirectional camera. The overall system architecture is shown 

in figure 4. 1. Specially made artificial environment is not a requirement for our sys­

tem which is able to perform exploration and navigation in natural environments. As 

stated before, a topological approach has been used to map the environment. In our 

system, a node is represented by an omnidirectional image captured at that location 

of the environment; no geometric information is used to represent the nodes in our 

system. When the robot is in a new environment, it starts to explore the environ­

ment. The laser is used for finding the best exploration direction; for each node, the 

best four exploration directions are stored. Our exploration algori thm is described 

in section 4.2. The robot turns according to the best exploration direction and then 
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moves forward. The robot keeps moving until a certain distance is reached, then it 

checks if the current view is similar to any known node of the topological map; since 

we do not want to create a node at or very close to the same position where another 

node was created previously. Otherwise, two nodes will be created in the topological 

map which represent the same or nearby location in the world environment, thus 

making the topological map inefficient. To get rid of this problem, we have used an 

image matching technique. The method compares the current view with all the stored 

images corresponding to each node; then gives the decision whether a node should 

be created or not for the current position. So in our system, only visual information 

is used to check the similarity of the current view image with the node images. The 

comparison is done by histogram matching, details of the image matching technique 

can be found in chapter 3. 

If the current view is not similar to any known node, then a new node is created; 

an image is captured and stored to this new node and the 360° laser data is also 

obtained for that node. In our system, an edge is automatically created between the 

new node and the previous node. Then the robot should start exploration again for 

the new node, it chooses the best exploration direction obtained from the laser data 

as described before and moves forward. In this way the robot explores the whole 

environment. 

On the other hand , if the current view is similar to any known node, then the 

robot starts homing back to that node; this ensures that a new node is not created 

on the same or near location of a previously crenated node. Homing is done using 

only the images stored at each node. The homing algorithm used in our system is 

described in section 4.3. After reaching the node an edge is created between the 
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previous node and the homed node; in this way nodes in the topological map are 

connected. This also serves the purpose of loop closing. Then the robot continues 

exploring the environment according to the remaining exploration directions of t he 

homed node which were stored when the node was created in the topological map. But 

the exploration direction is based on the heading of the robot when the node was first 

created, not based on the current heading of the robot. For this reason, it is necessary 

to find the difference in angle between the current heading and the previous heading 

of the homed node. This is done using a visual compass algorithm based on gradient 

descent in image distances of the two images; the description of this algorithm can 

be found in section 4.4. So this algorithm gives the angle difference between the 

current heading and the heading of the robot when this node was created, the robot 

is turned according to this angle; then the robot takes the next best exploration 

direction remaining for this homed node, turns to that angle and starts exploration 

again. However , if there is no more exploration direction remaining for the homed 

node, then path planning is activated . 

In path planning, first the topological map is checked to see if t here is any ex­

ploration direction left for any node. If no exploration direction exists in the current 

topological map, then the robot has finished the exploration , so path planning state 

is stopped and the system is in the 'END OF EXPLORATION' state; now since 

the exploration is complete the robot can perform navigation tasks. On the other 

hand, if exploration directions still exist for any of the nodes, then the path planning 

state is continued. The nearest node (with remaining unexplored direction) is cho­

sen using Dijkstra's shortest path algorithm. Then the robot continues exploring the 

environment according to the remaining exploration direction of the nearest node. 
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4.2 Finding D irections for Exploration 

We need a strategy to explore the environment from any node of the topological map. 

In our system, a laser range finder is used to find the exploration directions. The laser 

range finder can sense objects in distances of up to 40 to 60 meters, depending on 

the object's reflectivity. The objective is to drive the robot towards the largest open 

space in the environment. 

Outline of the Exploration Direction A lgorithm: 

• Filter laser data 

• Find continuous open angle segments 

• Sort the open angle segments 

• Find the starting index of each continuous open angle segment 

• Calculate the exploration directions for each continuous open angle segment 

Figure 4.2 shows a 360° laser data plot, the data was taken in an office environ­

ment. As can be seen from the figure that sometimes few laser data can be erroneous; 

in our experiments , some distances were often found to be almost 32m while the lab 

was 10m x 12m. On the other hand, some recorded distances were very close to Om 

which is not possible since the obstacle avoidance system will not let the robot to be 

so near to any obstacle. For this reason, the first step in our exploration direction 

algorithm is to filter the laser data, any data smaller than 10m was filtered out; simi­

larly, any data greater than 15m was filtered out. Figure 4.3 shows a plot of the laser 

data of figure 4.2 after filtering. 
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Figure 4.2: Plot from unmodified laser data 

As can be seen from figure 4.3 that there can be a number of exploration directions 

from a node in the map. In our method , the exploration directions are calculated 

based on the largest open angle segments. In order to explain our exploration direction 

algorithm properly, we have used a sample laser data plot as can be seen from figure 

4.4. It can be observed from this figure that there are three potential exploration 

directions for this particular location in the environment , which are shown by the 

three continuous open angle segments (shown by the blue arc) . First, the maximum 

range data is obtained from the 360° laser data and then the continuous open angle 

segments are calculated for that particular set of laser data . Based on this maximum 

range data, an interval is defined to select the continuous open angle segments; all 

the laser data in each segment must be within this interval. It should be noted that 
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Figure 4.3: Plot from modified laser data 

we are selecting open angle segments which are continuous, the reason is that the 

environment may contain some open places that has sharp edges or obstacles in the 

middle; in this case, the robot will not be able to move the required distance to 

distinguish the current view image from the previous node images. So the open angle 

segment must be continuous to ensure proper exploration. 

We want to store the best three exploration directions at each node. For this 

reason , the continuous open angle segments are sorted in a descending order and 

the first three segments are taken for calculating the exploration directions. In our 

algorithm, the exploration directions are calculated in angles, these angles must be 

calculated with respect to some reference point in the laser data plot. For this reason, 

it is necessary to find the starting index of each continuous open angle segment; each 
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Figure 4.4: Modified laser data plot with continuous open angle segments shown. 

starting index is calculated with respect to the reference point in the laser data plot. 

Then the exploration angle is calculat d for each continuous open angle segment using 

equation 4. 1: 

l 
B=x+-

2 
(4.1) 

where, e is the exploration direction, x starting index of the continuous open angle 

segment and l is the length of the continuous open angle segment. 

There can be some long narrow spaces in the environment which result in large 

distances from t he robot, but in reality the space may be too narrow for the robot to 

explore that space. In order to get rid of this kind of misleading laser data, the algo-
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rithm was modified such that if the continuous open angle segment was smaller than 

an experimentally determined threshold, then it would not be chosen as a potential 

exploration direction for that node. 

4.3 Visual Homing 

When the current view image is similar to any known node of the topological map, 

we want to move the robot to the similar node and continue exploration from there. 

This can be done by visual homing methods. Visual homing can be defined as the 

ability to return to a goal location by performing some kind of matching between the 

current view image and the goal image. 

There have been quite a lot of research works on visual homing. We have used the 

homing algorithm developed by Churchill and Vardy [12]; their algorithm is based 

on the scale invariant feature transform (also known as SIFT) algorithm developed 

by Lowe [38]. Lowe [38] developed an algorithm to extract keypoints from an image 

which are invariant to image rotation and scale; and robust to a certain extent against 

affine distortion, addition of noise, change in 3D viewpoints and illumination changes. 

According to the author, the main advantage of these features is that they are highly 

distinctive, for this reason a single feature can be properly matched with high prob­

ability against a large database of features. The generation of SIFT feature points 

can be divided into four stages: scale-space extrema detection, keypoint localization, 

orientation assignment and keypoint descriptor. In the first stage, a difference-of­

Gaussian function is applied to detect the scale-space extrema; the search is carried 

out over all scales and image locations. The locations of keypoints are determined in 
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the second stage. A measure of stability is used to select the keypoints. Based on the 

local image gradient directions, each keypoint is provided with an orientation in the 

third stage. In the fourth or last stage, a descriptor for each keypoint is constructed. 

Each keypoint contains the (x, y) coordinate of the features in the image, scale a-, 

orientation p and also the keypoint descriptor vector. Thus, a SIFT keypoint f can 

be denoted as follows, 

(4.2) 

The homing algorithm developed by Churchill and Vardy [12] is briefly described 

below: 

The current view image and the goal image are given as input to the visual homing 

algorithm; the home direction is then computed from these two images. The SIFT 

algorithm is able to extract features from an image which are invariant to image 

rotation and scale. The matched features are found between the current view image 

and the goal image using the SIFT algorithm. Based on t hese SIFT features, two 

regions can be found in an image: a region of expansion and a region of contraction. 

According to this homing algorithm, the home direction will be aligned with the center 

of the region of contraction in the current view image. The above algorithm can be 

described in detail using figure 4.5. In this figure, CV refers to the image taken by 

the robot at its current position and SS refers to the image taken at the goal position. 

If the robot moves from position SS to position CV, the distance from the robot to 

feature A will increase; actually the distance from the robot to any feature on the same 

side of the perpendicular bisector of the line joining SS and CV will increase. On the 
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Figure 4.5: Robot pose diagram. Courtesy: Churchill and Vardy [12]. 

other hand, the distance from the robot to feature B will decrease; and this condition 

is true for all features on the same side of feature B. The assumption of the homing 

algorithm is that this change in distance will be reflected in a corr sponding change in 

the scale parameter of the SIFT feature vector; the scale factor between two adjacent 

images differs by the multiplicative of a constant. Clearly the image features can be 

divided into two groups - expanding and contracting. If ther are enough features 

distributed evenly on either side of the perpendicular bisector of the line joining SS 

and CV, then approximately half of them should experience expansion; while the other 
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Figure 4.6: SIFT matched correspondences between CV (above) and SS (below), red 

lines refer to the feature that have contracted from SS to CV and green lines refer 

to the feature that have expanded from SS to CV. Above, regions of the image are 

shown more intuitively when vectors are mapped onto a. single image. Courtesy: Dav 

Churchill and Andrew Vardy [12]. 

half should experience contraction; as a result there will be two regions - a region of 

contraction and a. region of expansion. According to [12], the home direction will be 

aligned with the center of the region of contraction (on the assumption of the features 

being distributed uniformly throughout the environment). 

In order to obtain the home direction, the center of the region of contraction or 

expansion from SS to CV with respect to CV must be calculated fir t . According to 

[12], in order to find the center of the region of contraction or expansion, the change 

in the feature size from SS to CV must be detected first i.e. whether a feature ha 

shrunk or becom larger from SS to CV. It can be observed from equation 4.2 that 

along with other information, each SIFT feature vector give th information of seal 

a at which it was detected; the magnitude of the scale paramet r is directly related 
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to the size of the feature in the image. 

Figure 4.6 shows the SIFT matched correspondences between CV (above) and 

SS (below). In the first part of figure 4.6 , red lines refer to the features that have 

contracted from SS to CV and green lines refer to the features that have expanded 

from SS to CV, regions of the image are shown more intuitively when vectors are 

mapped onto a single image. It can be observed from the figure that the matches 

on the left side show that the size of the features has decreased from SS to CV (the 

chair seems to be larger in SS and much smaller in CV). Conversely, the matches on 

the right side show that the size of the features has increased from SS to CV (the 

computers look smaller in SS and much larger in CV). Since the area near the chair 

refers to the region of contraction in CV, this is the home direction the robot should 

move to get to the goal location. 

The home direction Bhoming can be obtained as follows , 

ehoming = atan2(s, c) (4.3) 

where, 

(4.4) 

(4.5) 

In the above equations, Mpos and Mneg denote the SIFT matched correspond nee 

features which are divided into these two groups based on the contracting and ex­

panding features respectively; Bpos and Bneg denote the center of the region Mpos and 

60 



Mneg respectively. The value of (}homing denotes the home direction with respect to 

the robot reference frame; the robot should be moved to this home direction to get 

to the goal location. 

4.4 Rotation Estimation 

In our exploration system, when the robot homes back to a previously created node, 

it continues to explore from this node using the remaining exploration directions of 

this node. But the exploration directions are calculated based on the heading of the 

robot when the node was first created , not based on the current heading of the robot. 

So in order to use the remaining exploration directions properly, we must find out 

the angular difference between the current heading and the previous heading of the 

node. We have used the method developed by Zeil et al. [68] to estimate the angle 

difference. 

Zeil et al. [68] introduced a simple homing algorithm based on gradient descent. 

The method was derived from the observation that the difference between the current 

view and the snapshot image gradually increases with spatial distance; further, they 

demonstrated that a compass estimate can be obtained from a simple correlation of 

images. In their method , the home direction was determined from the gradient of 

the root mean square (RMS) difference between the current image and the snapshot; 

the orientation or rotation information was derived from the minimum of a rotational 

RMS function. 

In order to calculate the root mean square (RMS) difference value, first the pixel­

by-pixel differences between the two images are squared. Then the root of the mean 
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squared difference is obtained which gives the the RMS value for that image pair. One 

image is specified as the reference or snapshot image, then a number of images are 

taken from different positions surrounding the snapshot image position and the RMS 

difference value is calculated for each case. By plotting the RMS difference values, 

Zeil et al. [68] showed that the image differences change smoothly with physical 

distance from a reference position. Further they showed that if a snapshot image and 

the current view image have the same orientation, then the RMS pixel difference will 

be minimum. 

In our system, rectangular panoramic images (fig.5.2) are used to compute the 

rotation angle. The value of a pixel at column i and row j of an image I is indicated 

by I(i,j). The width and height of the image are denoted by wand h respectively. If 

two planar images are taken at the same position with different orientations, then the 

difference in their orientation can be expressed by a horizontal shift. Let 18 denote the 

image captured at a certain position with orientation e, then I8 (i,j) = Ie+t.e(i+k,j). 

The rotation angle tJ.e corresponds to a shift of k pixels. The relationship between 

tJ.e and k is given below: 

tJ.e = -k 
2

7r 
w 

(4.6) 

We have used the notations in this section from the paper [63] which is also on 

visual compass. The rotation angles are measured counter-clockwise from the robot's 

forward heading, but image indices increase from left to right; for this reason the 

negative sign is used in equation 4.6. 

Let S denote the image captured at the goal position and C denote the current 
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view image. Then the root mean square (RMS) difference between the current view 

image and the snapshot image, for a rotation by k pixels, can be obtained as: 

SD(i,j, k) = [C(i + k,j)- S(i , j)f (4.7) 

The sum of all values in SD is used to calculate the image distance function for 

shift k , 

ssd(k) = L L SD(i, j , k) 
j 

( 4. ) 

According to [68] , the value of horizontal shift k' that minimize ssd is considered 

as the angle difference (in pixels) betw en the current view image and the snapshot 

image, 

k' = arg min ssd(k) 
kE[O,w- 1] 

(4.9) 

In this way, the angle difference between the current heading and the previous 

heading of any node is obtained; the robot turns according to this angle and then 

continues exploring the rest of the environment using the remaining exploration di-

rections of the node. 

4.5 Path Planning 

While exploring the environment, there may occur situations where the robot homes 

to a node with no more exploration directions i.e. all its exploration directions are 

already explored by the robot; but other nodes with unexplor d directions still exist 
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in the map. Path planning is used in such a situation so that the robot can find the 

nearest node with unexplored direction and then plans a path from the current node 

to that node. There can be a number of paths from one node to anther one, one path 

may be longer than the other one; so it is important to find out the shortest path to 

make the system efficient. In our method the shortest path is determined by using 

Dijkstra's shortest path algorithm [16], which is a well known algorithm for finding 

the shortest path between two nodes. According to this algorithm, a path from a 

source vertex v to a target vertex u is said to be the shortest path if its total cost is 

minimum among all v-to-u paths. In this algorithm, the shortest path is generated 

based on the edges of the nodes; in other words, the already visited routes of the 

topological map. Weights of all edges are equal in our system. 

Our path planning strategy is described as follows: first, paths from the current 

node to all the other nodes are calculated using Dijkstra's shortest path algorithm. 

Then the nodes are sorted in an array starting from the node with the shortest path 

from the current node. Next, the first node in the array is checked to see if any 

unexplored direction exists in it. If the node contains unexplored direction, then it 

is chosen as the node to be homed from the current node. On the other hand, if all 

the directions are explored for the first node in the array, then the next nodes are 

gradually checked and the first node with unexplored direction is chosen as the node 

to be homed from the current node. The path from the current node to this nearest 

node (with unexplored direction) is already planned using Dijkstra's shortest path 

algorithm. Finally, visual homing is used to home to each node along the path in 

sequence. 
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4.6 Navigating between places 

In this section we describe our strategy to navigate from any node to a goal node in 

the topological map. No geometric information is used for the navigation purpose. 

In our system, topological navigation is performed using visual information only. So 

the robot has no idea about the distance from the starting node to the goal node. 

One method to find the distance is by finding corresponding features in three or more 

images; this is a very common technique in t he field of visual servoing [42]. But the 

method is not efficient in case of dynamic environments as it becomes very difficult to 

find stable correspondences among three images. Instead we used Dijkstra's shortest 

path algorithm [16] to calculate the distance or path between the starting node and 

the goal node. All edges in the graph are assumed equal in their distances. In the 

navigation state, the user first inputs the goal node; our strategy is that any node 

in the map can be chosen as the goal node. Then the starting node and goal node 

are given as the input to Dijkstra's algorithm. The algorithm calculates all the paths 

from the starting node to the goal node (if there exists more than one path from the 

starting node to the goal node); then the shortest path is given as the output of the 

algorithm. 

Our navigation strategy directs the mobile agent towards one node at a time i.e. 

the robot performs homing to reach the next node in the path given by Dijkstra's 

algorithm, this intermediate node can be referred to as a subgoal on the path to the 

goal node. After reaching the current subgoal, the robot tries to home to the next 

subgoal from the current one; in this way, it reaches the goal node which indicates the 

completion of the navigation process. The homing method used to reach the subgoal 
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as well as the goal node is described in detail in section 4.3. 

4.7 Robot Control and Obstacle Avoidance 

We used the built-in obstacle avoidance system of the pioneer robot which uses the 

laser range finder to detect obstacles. If an obstacle is detected at less than 20 

em distance, the robot would turn 15° away from the obstacle's bearing as decided 

by the obstacle avoidance system; in this way, the mobile agent is able to avoid 

obstacles in the environment. The pioneer robot was controlled using a software 

named ARIA - an object-oriented, robot cont rol applications-programming interface 

for intelligent mobile robots. ARIA provides the higher-level action system. Actions 

are individual objects that independently provide motion requests which are evaluated 

and then combined each cycle to produce a final set of movement commands. Actions 

are evaluated by t he robot's action resolver in descending order of priority (highest 

priority first, lowest priority last). Actions can be created according to the users 

requirements. In our system, we created the exploration action and the navigation 

action in order to achieve the research objectives properly. The obstacle avoidance 

action was given the highest priority; the exploration action and the navigation action 

were given low priority. 
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Chapter 5 

Experimental Results 

5.1 Image processing 

All experiments were done using a Pioneer 3AT mobile robot equipped with a SICK 

laser range finder and an omnidirectional camera system. The camera was a catadiop­

tric system consisting of an upward looking camera with a hyperbolic mirror mounted 

above it. The hyperbolic mirror expanded the camera's field of view to allow the cap­

ture of omnidirectional images. All explorations were autonomous i.e. there was 

no manual control of the robot . The exploration and navigation exp riments were 

done in an office environment, in the Intelligent Systems Lab within the Faculty of 

Engineering and Applied Science at Memorial University of Newfoundland. 

In our system, omnidirectional colored images of the environment were captured 

and converted to gray level image as can be seen from figure 5.1. Then the gray level 

omnidirectional images were hyperbolically mapped to produce panoramic images. 

An image unfolding procedure was applied which finds the projection of the original 

67 



Figure 5.1: Sample omnidirectional gray scale image. 

image onto a sphere centered at the upper focus of the hyperbola. Pixels from the 

original gray level omnidirectional image are mapped to a rectangular output image 

which has rows and columns corresponding to the elevation (vertical angle) and az­

imuth (horizontal angle) of the spherical projection. The unfolded panoramic image 

is shown in figure 5.2. The gray level panoramic image was stored at each node. 
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Figure 5. 2: unfolded panoramic image obtained by hyperbolically mapping figure 5.1. 

5.2 Exploration Results 

5.2.1 Parameters Varied 

Different topological maps of the environment were obtained with various settings of 

two key parameters, namely - joTward_distance and hisLthreshold. In our exploration 

system, after turning according to the exploration direction, the next task of the 

mobile robot is to move forward (see section 4.1 for details); the amount of the forward 

distance moved by the robot is controlled by the parameter forward_distance. The 

second parameter hisLthreshold is used in the image matching state of our exploration 

system. We have used the dissimilarity measure to compare the images as described 

in chapter 3; a dissimilarity value of zero means that the two images are perfectly 

similar; as the value of the dissimilarity measure increases, the images are becoming 

more dissimilar from each other. The parameter hisLthreshold refers to the threshold 

dissimilarity value for which the images will be considered as similar enough i.e. their 

locations in the environment are close to each other. The topological map of figure 5.3 

was obtained with a forward_distance of 2 m and hisUhreshold of 600. So for figure 

5.3, if the dissimilarity value is smaller than or equal to 600, then the two images will 

be considered visually similar. 
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Figure 5.3: Topological map of the environment, forward_distance 2 m and 

hisLthreshold 600 

5.2.2 Topological M aps 

The purpose of our experiments is to verify the performance of the implemented 

exploration and navigation system. In order to test our system properly, we per-

formed the experiments with a mobile agent in an office environment. The topological 

maps were built with different sets of values of the parameters forward_distance and 

hisUhreshold. As stated earlier, the topological map of figure 5.3 was obtained with 

a forward_distance of 2 m and hisLthreshold of 600. This topological map contains 

9 nodes and 13 edges. In this figure, the black squares refer to all the tables, book 

shelves and file cabinets in the office; the circles refer to chairs in the offic . The red 

dots refer to the nodes of the topological map; solid lines refer to the edges between 
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Figure 5.4: Laser data for node 0 of the topological map of figure 5.3. Exploration 

directions are 83 and -22.5(in degrees). 

the nodes and the dotted lines refer to the homing attempts between the nodes. All 

the nodes in the map are represented with numbers and the numbers with a H re-

fer to the places where the homing state was activated. Differ nt states, nodes and 

dissimilarity value of this mapping run are shown in detail in table 5.1. The full 

description of the exploration run for figure 5.3 is given below: 

The robot was placed at the lower left corner of the environment as can be seen 

from figure 5.3, the exploration started from that location; so at the beginning there 

was no topological map stored in the memory of the robot. First the robot created the 

first node (node 0) of the topological map; at each node, the exploration directions 

and a snapshot at the current location were stored. So the 360 degree laser data from 
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Figure 5.5: Laser data for node 1 of the topological map of figur 5.3. Exploration 

directions are 32.5, -58.5 and -102.5(in degrees). 

the current location was taken and an exploration direction list was cr ated from the 

laser data; figure 5.4 shows the laser data for node 0, exploration directions were 

calculated according to the exploration strategy described in section 4.1. The best 

four exploration directions are stored at each node (less if th re are fewer than four 

exploration directions from that node). Two exploration directions were calculated 

for node 0 by our exploration algorithm, they were 83 and -22.5 (in degrees). Th 

robot turned according to the first exploration direction star d at node 0; then it 

moved forward 2 m, after that the robot checked if the curr nt view was similar to 

any known node; the output was negative which means the current view was not 

similar to any known node, so a. new node (node 1) was created. 
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(t) 

Figure 5.6: (a) ode image 0, (b) Node image 1, (c) Node image 2, (d) Node image 

3, (e) Node image 4, (f) Current view after moving forward 2m from node 4 of the 

topological map of figure 5.3. Value of dissimilarity measure is 1354.18, 1396.63, 

707.94, 218.215 and 949.953 with node image 0, 1, 2, 3 and 4 respectively. 

As before, a snapshot was taken at the current location and 360 degree laser data 

was taken for this location, then exploration directions were obtained from the laser 

data. Figure 5.5 shows the laser data for node 1 of the topological map of figure 

5.3; exploration directions were 32.5, -58.5 and -102.5 (in degrees). Our exploration 

algorithm automatically creates an edge between the current node and the previous 

node; the edges of our map are bidirectional i.e. if there is an edge between nodes 

0 and 1, then the robot can traverse the path from node 0 to 1 and similarly from 
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node 1 to 0. So an edge was created between node 0 and 1; then the robot turned 

according to the first exploration direction stored at node 1 and moved forward 2 m; 

the image similarity was checked and the output was negative, so node 2 was created. 

Exploration directions for node 2 were 7 and -106 (in degrees); an edge was created 

between nodes 1 and 2. Similarly, node 3 was created with exploration directions 

-102, 73, 14.5, 111 and -71.5 (in degrees) and an edge was created between nodes 

2 and 3. After that the robot continued exploring the environment from node 3 by 

turning according to the first exploration direction stored at this node. After moving 

forward 2m, the output of the image similarity method was negative; so node 4 was 

created, exploration directions were -63 and -145 , and an edge was created between 

nodes 3 and 4. 

When the image similarity was checked after the robot moved forward 2 m from 

node 4, the output was positive and the the current view was similar to node 3, the 

dissimilarity value was 218.215. Figure 5.6 shows all the five node images of the 

topological map (currently the map consists of these five nodes) and also the current 

view. It can be observed from figure 5.6(d) and figure 5.6(f) that the current view 

is quite similar to the node image 3; which justifies our image similarity algorithm. 

According to our algorithm, the robot would not create a node at this location, instead 

it would home back to the similar node from the current location; so the homing state 

began and the robot homed back to node 3 from node 4; this means that the path 

between node 4 and 3 is traversable. Now the robot should continue exploration from 

the current node 3 with the next best exploration direction stored at this node, but 

the exploration directions stored at node 3 are based on the previous heading of this 

node and the current heading could be different from the previous heading; so the 
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State Node Dissimilarity value 

Exploration 0 - 1 -

Exploration 1-2 -

Exploration 2-3 -

Exploration 3-4 -

Exploration(Homing) 4-3 218.215 

Exploration 3 - 5 -

Exploration(Homing) 5-3 141.214 

Exploration 3 - 6 -

Exploration (Homing) 6-3 144.173 

Exploration(Homing) 3 - 5 193.405 

Exploration(Homing) 5-6 400.385 

Exploration 6-7 -

Exploration (Homing) 7-1 292.413 

Exploration (Homing) 1- 0 501.859 

Exploration (Homing) 0 - 7 380.358 

Exploration(Homing) 7 - 6 220.192 

Path planning 6-3 -

Exploration(Homing) 3 - 2 250.419 

Exploration 2 - 8 -

Exploration (Hom in g) 8 - 1 296.851 

Explorat ion(Homing) 1 - 0 193.297 

Path planning 0 - 1 - 8 -

Exploration(L-loming) 8- 2 344.907 

Path pla nning 2 - 4 -

Exploration(Homing) 4 - 2 222.561 

EXPLORATION DONE - -

Table 5.1: Different states, nodes and dissimilarity values of the mapping run with 

forward_distance 2m and hisLthreshold 600. 
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angle difference between the current heading and the previous heading of this node 

was calculated using the current view image and the node image 3; and the robot 

turned to this angle. Then the robot continued exploration from node 3 with the 

next best exploration direction stored at this node. 

After moving forward from node 3, the image similarity was checked and the 

output was negative, so node 5 was created with exploration directions -66.5 and 8.5; 

an edge was created between node 3 and 5. When it moved forward from node 5, the 

current view was found similar to node 3, the dissimilarity value was 141.214; so the 

homing state began and the robot homed back to node 3; the angle difference between 

the current heading and the previous heading of this node was calculated as before 

and the robot was turned according to this angle. Then it continued exploration 

from node 3 with the next best exploration direction stored at this node. Then node 

6 was created with exploration directions -123 and 9, an edge was created between 

node 6 and 3. After moving forward from node 6, the current view was found similar 

to node 3, the dissimilarity value was 144.173; so the robot homed back to node 3 

and the angle difference was calculated and the robot was turned according to the 

angle. After moving forward from node 3, homing state began as the current view was 

found similar to node 5; then after performing remaining states and moving forward, 

the current view was found similar to node 6, so homing state began once again; 

remaining states followed. When the image similarity was checked after the robot 

moved forward 2 m from node 6, the output was negative. 

So node 7 was created with exploration directions -11.5 and -80; an edge was 

created between node 7 and 6. The current view was found similar to node 1 after 

moving froward from node 7, the dissimilarity value was 292.413; so it homed back 
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to node 1. Three homing states followed after that: the robot homed from node 1 

to node 0, then from node 0 to node 7 and from node 7 to node 6 afterwards; the 

dissimilarity values are given in table 5.1. ow the robot should cont inue exploration 

from the current node 6 with the next best exploration direction stored at this node, 

but there was no more exploration dir ction remaining at node 6, o the robot checked 

if there was any exploration direction remaining at any node of the map and the 

output was positive i.e. exploration direction still existed at other node of the map; 

so now the robot should find the node whose exploration direction still existed and 

then home to that node. Path planning state began to perform this task. By using 

Dijkstra's shortest path algorithm, the nearest node (with exploration direction) to 

node 6 was found to be node 3 and the path was 6 - 3; the robot then went to 

node 3 by homing (The homing attempts for path planing are not shown in figure 

5.3 to keep it less obstructed with lines). Then it explored from node 3 with the last 

exploration direction stored at node 3; the current view was found similar to node 

2 with dissimilarity value of 250.419. It then explored from node 2 and node 8 was 

created with exploration directions 178 and -56.5. After moving forward from node 

8, the current view was found similar to node 1, the dissimilarity value was 296.851; 

so it homed to node 1. Homing state began again after moving forward from node 1 

as the current view was found similar to node 0 with dissimilarity value of 193.297. 

As there was no more exploration direction remaining at node 0, the robot checked 

if there was any exploration direction remaining at any node of the map and t he out­

put was positive; so path planning began again. The nearest node (with exploration 

direction) to node 0 was found to be node 8 and the path executed was 0- 1 - 8. 

Then it explored from node 8 with the last exploration direction stored at node 8, th 
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Figure 5. 7: Topological map of the environment, f orward_distance 2m and 

hisLthreshold 500 

current view was found similar to node 2. As there was no more exploration direction 

remaining at node 2, path planning state began and the nearest node was found to be 

node 4 and the path was 2 - 4, the robot homed to node 4 and continued exploration 

from node 4; then the current view was found similar to node 2 with dissimilarity 

value of 222.561; it homed back to node 2. As there was no more exploration direc­

tion remaining at node 2, the robot ch eked if t here was any xploration direction 

remaining at any node of the map and the output was negative indicating the end of 

exploration. In this way, the exploration was done using a laser range finder and an 

omnidirectional camera; and a topological map of the environment was created. 

The topological map of figure 5. 7 was obtained with the forward_distance of 2m 
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State Node Dissimilarity value 

Exploration 0 -1 -

Exploration 1 -2 -
Exploration 2-3 -

Exploration(Homing) 3-1 271.613 

Exploration 1 - 4 -

Exploration(Homing) 4 - 1 223.302 

Exploration 1- 5 -

Exploration(Homing) 5 - 1 210.528 

Exploration(Homing) 1 -4 462.229 

Exploration 4 -6 -

Exploration 6-7 -
Ex ploration(Homing) 7 -5 201.305 

Exploration (Homing) 5-7 134.912 

Exploration 7-8 -
Exploration (Homing) 8-2 256.461 

Exploration 2-9 -

Exploration (Homing) 9 - 2 411.596 

Exploration (Homing) 2-8 169.943 

Path planning 8-7-6 -

Exploration (Homing) 6-1 355.416 

Path planning 1 -3 -

Exploration (Homing) 3 - 9 409.22 

Exploration (Homing) 9-8 274.245 

Exploration (Homing) 8-7 251.64 

Path planning 7 -5- 0 -

Exploration(I-Ioming) 0 -5 327.59 

EXPLORATION DONE - -

Table 5.2: Different states, nodes and dissimilarity values of the mapping run with 

forward_distance 2m and hisUhreshold 500. 
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State Node Dissimilarity value 

Exploration 0-1 -

Exploration 1-2 -

Exploration 2-3 -

Exploration (Homing) 3-2 144.945 

Exploration 2-4 -

Exploration( Homing) 4-2 205.025 

Path planning 2-1 -
Exploration (Homing) 1-0 302.578 

Exploration 0-5 -

Exploration(Homing) 5-1 289.07 

Path planning 1-0 -

Exploration 0 - 6 -

Exploration(Homing) 6-0 299.044 

Path planning 0-5 -

Exploration 5-7 -

Exploration(Homing) 7-6 291.696 

Exploration 6-8 -

Exploration 8-9 -

Exploration(Homing) 9 - 4 322.546 

Exploration (Homing) 4-9 345.34 

Exploration (Homing) 9 - 8 187.398 

Exploration (Homing) 8-7 255.66 

Exploration (Homing) 7-8 290.314 

Path planning 8-9-4 -

EXPLORATION DONE - -

Table 5.3: Different states, nodes and dissimilarity values of the mapping run with 

forward_distance 1.5m and hisLthreshold 500. 
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Figure 5.8: Topological map of the environment, forward_distance 1.5m and 

hisLthreshold 500. 

and the hisLthreshold in the image comparison method was 500; the exploration run 

was successful and a complete topological map of the environment was created. The 

main difference of this map with the previous map of figure 5.3 is that the threshold of 

dissimilarity measure is less for the current map; as a result the exploration algorithm 

will create a new node if the value of the dissimilarity measure is greater than 500; so 

nodes will be closer to each other as compared to the previous map. Different states, 

nodes and dissimilarity values of this map are shown in detail in table 5.2. This map 

contains 10 nodes and 15 edges. The starting position of this map was in the lower 

right corner of the room which is different from that of the map of figure 5.3; as a 

result, the exploration paths are also different. 
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State Node Dissimilarity value 

Exploration 0 - 1 -

Exploration 1 - 2 -
Exploration 2-3 -

Exploration 3 - 4 -

Exploration(Homing) 4 - 3 191.394 

Exploration 3 - 5 -

Exploration(Homing) 5-3 234.894 

Exploration 3 - 6 -

Exploration(Homing) 6-4 291.058 

Exploration 4 - 7 -

Exploration(Homing) 7-6 184 .638 

Exploration 6 - 8 -

Exploration(Homing) 8-4 341.646 

Pa th planning 4 - 7 -

Exploration 7 - 9 -

Exploration (Homing) 9- 0 359.473 

Exploration(Homing) 0 -9 335.91 

Path plann ing 9 - 7-8 -

Exploration 8 - 6 -

Path planning 6 - 3 - 5 -

Exploration(Homing) 5-2 402.11 

Exploration(Homing) 2 - 1 276.45 

Exploration(Homing) 1 - 0 356.432 

EXPLO RATION DONE - -

Table 5.4: Different states, nodes and dissimilarity values of t he mapping run with 

forward_distance 1.5m and hisLthreshold 400. 
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Figure 5.9: Topological map of the environment, forward_distance 1.5m and 

hisLthreshold 400. 

The topological map of figure 5.8 was obtained with the forward_distance of 1.5m 

and t he hisLthreshold was 500; the exploration run was completed properly and a 

topological map of the environment was created. The forward_distance for this map 

is lower than t he previous two maps, so the condition whether the current view is 

similar to known node is checked more frequently in this map t han the previous maps. 

hisUhreshold values more than 500 were not used for the forward_distance of 1.5m, 

because if the value of hisUhreshold was increased to 600 or higher, then most of the 

times the current view was found similar to the previous node after moving forward 

1.5m; The states , nodes and dissimilarity values of this run are shown in detail in 

table 5.3. Thi map contains 10 nodes and 14 edges. The starting position for this 
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run was the lower right corner of the room. 

The topological map of figure 5.9 was obtained with the forward_distance of 1.5m 

and the hisLthreshold in the image comparison method was 400; the exploration 

run completed properly and a topological map of the environment was created. The 

hisLthreshold for this map is lower than the previous maps. The states, nodes and 

dissimilarity values of this run are shown in detail in table 5.4. This map contains 10 

nodes and 14 edges. The starting position of this map was the lower left corner of the 

room. It can be observed from figure 5.9 that nodes 7 and 8 were created very close 

to each other; this happened because the hisLthreshold is only 400 for this map, so if 

the dissimilarity value is even slightly above 400, another node will be created. For 

this reason node 8 was created very close to node 7 instead of homing back to node 

7. 

5.2.3 Limitations 

Like other methods, our exploration system has some limitations too. One limitation 

is that the image comparison method which is based on histograms, may denote 

that the current view is similar to a node image, but in reality the current view 

may be similar to some other node image. Such a situation occurred in the case of 

the topological map of figure 5.10. The topological map of figure 5.10 was obtained 

with the forward_distance of 2m and the hisLthreshold 400. The states, nodes and 

dissimilarity values of this run are shown in table 5.6. 

It can be observed from figure 5.10 that during the exploration, after creating 

node 8, when the robot moved forward and image comparison was done to check 
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Figure 5.10: Topological map of the environment, forward_distance 2m and 

hisLthreshold 400 

the similarity of the current view with any of the created nodes, the output of the 

image comparison method was that the current view was similar to node image 3; but 

actually the robot was much closer to node 7 than to node 3. The reason was that 

nodes 3 and 7 were created at two opposite side of an obstacle (the obstacle, placed 

in the middle of the room, was a study table) as can be seen from figure 5.10; as a 

result the images of node 3 and 7 had a lot of similarity; the images of node 3 and 

7 are shown in figure 5 .11. The dissimilarity measure for node image 3 was 397.597 

and for node 7 it was 466.611 (see table 5.5); so the dissimilarity measures were also 

close. One solution to this problem is to use color histogram instead of gray level 

histograms; which may prevent some mismatches of this type. The Fourier transform 
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(a) 

(b) 

Figure 5.11: (a)node image 3 and (b) node image 7 of the topological mao with 

forward_distance 2m and hisLthreshold 400 

may be another solution for this problem. In the calculation of image dissimilarity of 

two omnidirectional images in the Fourier transform method, the magnitude of the 

rows of each image is taken; this is invariant to the rotation of the image around the 

optical axis. Thus, the Fourier transform method may be more robust against similar 

problems like the one stated above. 

5. 3 Navigation Results 

When the exploration is complete and a topological map of the environment is built, 

then the robot can perform navigation to any node in the map. The user can input 

the goal node, any node in the map can be chosen as the goal node; then the robot 

will perform visual homing to reach the goal node. If the goal node is far from the 

current position of the robot, it performs homing to intermediate nodes along the 

path until it reaches the goal node. 

Figure 5.12 shows a navigation run using the topological map with forward_distance 
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Node Dissimilarity measure 

0 944.223 

1 695.344 

2 713.68 

3 397.597 

4 1399.32 

5 757.153 

6 1786.98 

7 466.611 

8 869.829 

Table 5.5: Dissimilarity measure - 2m 400 

of 2m and the hisLthreshold of 600 (the topological map is shown in figure 5.3). In 

figure 5.12, the goal node was given as node 2; the current node was node 6. First 

the system planned the path using the path planning algorithm, the shortest path 

between the current node and the goal node was given as 6- 3- 2. So node 3 was 

the subgoal on the path to the goal node and the robot performed visual homing to 

home to the subgoal from the current node 6; after reaching the subgoal, it homed to 

the goal node (which was node 2) from the current node (which was node 3) using 

visual homing. The blue line indicates the navigation path in figure 5.12. Figure 5.13 

shows a navigation run using the topological map with forward_distance of 1.5m and 

hisLthreshold of 500 (the topological map is shown in figure 5.8). In figure 5.13, the 

goal node was given as node 8; the current node was node 4. The output of the path 

planning algorithm was 4 - 9 - 8; the robot performed visual homing to reach the 
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State Node Dissimilarity value 

Exploration 0-1 -

Exploration 1-2 -

Exploration(Homing) 2 - 1 390.121 

Exploration 1-3 -

Exploration(Homing) 3- 1 246.624 

Exploration 1 -4 -
Path planning 4-1 - 0 -

Exploration 0 - 5 -

Exploration (Homing) 5 - 1 228.322 

Path planning 1 - 0 -

Exploration 0 - 6 -

Path planning 6-1 - 2 -

Exploration 2 - 7 -

Exploration 7- 8 -

Exploration(I-Ioming) 8-3 397.597 

Table 5.6: Different states, nodes and dissimilarity values of the mapping run with 

forward_distance 2m and hisLthreshold 400. 

goal node as before. 

State Node 

Navigation 6 - 3 

Navigation 3 - 2 

NAVIGATION DONE -

Table 5. 7: Different states and nodes of the navigation run for the topological map 

with forward_distance 2m and hisLthreshold 600. 
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Figure 5.12: Navigation of the mobile robot using the topological map with for-

ward_distance 2m and hisLthreshold 600. The robot navigated from node 6 to node 

2. Blue line shows the navigation path. 

State Node 

avigation 4-9 

Navigation 9 - 8 

A VIGATION DO E -

Table 5.8: Differ nt states and nodes of the navigation run for the topological map 

with forward_distance 1.5m and hisLthreshold 500. 

89 



25 

4 

20 

15 

8 

10 

5 

0 c__ __ _._ __ _ 

0 5 10 15 20 25 

Figure 5.13: Navigation of the mobile robot using the topological map with for­

ward_distance 1.5m and hisUhreshold 500. The robot navigated from node 4 to node 

8. Blue line shows the navigation path. 
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Chapter 6 

Conclusion 

We have presented a complete implementation of an autonomous exploration and 

navigation system in this thesis. An important contribution of this work was to 

develop a novel autonomous robot exploration and navigation system, using a topo­

logical representation of the environment. We have demonstrated that exploration 

and navigation can be done without storing precise metric information. A laser range 

finder and an omnidirectional camera were used to build the topological represen­

tation of the environment. We were able to build a topological map that satisfied 

the following requirements: (a) simple and easy to build, (b) can be built online in 

realtime, (c) does not utilize a large amount of memory and (d) uses only laser data 

and visual information. The time required for a mobile robot exploration depends on 

the size of the environment; in our autonomous exploration and navigation system, 

each iteration of the map building process required approximately 5-10 seconds. 

A global image comparison technique was used to distinguish between different 

places. We compared the performance of four different global image comparison 
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techniques - three different histogram methods and the Fourier transform method. 

Two different experiments were done using a database of real images. It was observed 

that both the Fourier transform method and the Jeffrey divergence method, which 

is a histogram-based technique, performed well in the experiments. We chose to use 

the Jeffrey divergence met hod in the image matching section of the exploration and 

navigation system because of its simplicity and realtime computability. 

We used only an omnidirectional camera for the navigation process. Once the map 

was built, the robot was able to navigate from its current node to any other node of 

the topological map. A visual homing mechanism was implemented in order to move 

the robot from one node to the next node. Our exploration and navigation system 

was implemented and t ested on a Pioneer 3AT mobile robot; all the experiments were 

performed in an unmodified office environment. We were able to build an autonomous 

topological map online. Later when the map was completed, we tested our navigation 

method; the mobile robot was able to navigate to a goal node properly. 

6.1 Future Work 

One obvious future extension of this work is to test the whole system in outdoor 

environments; since all the biological navigations are happening in open air. The 

exploration strategy and the visual homing method may need some modifications in 

order to use them outdoor. Another extension can be the implementation of the nav­

igation process in presence of illumination changes in the environment. Other future 

extensions include testing t he system in more complex environments and solving the 

problem of perceptual aliasing in topological maps. 
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