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Abstract

A bivariate binary observation is traditionally classified into one of the
two possible groups under the assumption that the cell counts follow a suit-
able multinomial distribution. But. in the traditional approach. the joint
probability for each of these cell counts is unknown. Consequently it is not
clear, how the traditional approach takes into account the correlation that
may exist between two 2-dimensional binary observations. In this thesis.
following Prentice [27] (Biometrics, 1988), we model the cell probabilities
by a suitable bivariate binary distribution and examine the effect of this
tvpe of modelling in classifying a new correlated bivariate binary observa-

tion. The of the usual opti i i dure based

on the d modelling of the cell probabilities are then d with

the model-free existing procedure. This is done through a simulation. by

the probabilities of mi i ion for the two for

various sample sizes and selected values of the marginal probabilities as well

as correlation parameter between the two binary observations. We illustrate

the use of the joint ili delling in classification by analyzing a com-
bined data set from two epidemiological surveys of 6-11 vears old children

conducted in Connecticut, the New Heaven Child Survey (NHCS) and the

Eastern Connecticut Child Survey (ECCS).
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Chapter 1

Introduction

1.1 Motivation of the Problem

Since R. A. Fisher’s pioneering work (cf. Fisher [11]) in the thirties in the
area of classification or discriminant analysis. there has been extensive work
on this topic, mainly for variables of a continuous nature. This classification
problem is quite important in practice. For example, in clinical studies. it
may be very important to classify an incoming patient into a suspected dis-
ease group or into a non-disease group. Here. in this type of problem. it is
customary to study the behavior of patients from both the disease and the
non-disease groups and then base the classification of the new patient on the
information available from these two groups. Similar problems frequently

arise in other biomedical, social. natural, and physical sciences.

As mentioned earlier, most of the theory of discrimination and investigation

of robustness properties for classification criterion are based on the normal
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and other continuous distributions. In practice, there are many situations
where the information may be binary or discrete. For example. consider a
study in which information on rating of child’s mental health status were col-

lected from a parent and also from a child's teacher. This rating is 2 measure

of ional and “i izing” di: obtained by di the

corresponding scale score at the clinical “border-line” range. Here, it may
be of interest from certain ‘investigation’ point of view to determine the sex
of a child in question based on the information provided by both the teacher
and the parent. It is clear that this is a classification problem for a bivariate

binary observation.

The problem of discrimination with binary data is. however, not adequately
addressed in the literature. There are some approaches suggested in the
literature (cf. Seber {29] and the references there in) to deal with discrete
data. Problems arise when the binary data are dependent. In our example.
it is also reasonable to assume that the parents’ and teachers’ ratings are
positively correlated as they are rating on the same child. Sometimes it is
not easy to consider the pattern of dependency among the binary variables.
This situation is noticed in the previous studies by Bahadur [5], Martin [24],

Ott [26], Goldstein [16], Lachenbruch [22], McLachlan [25], and others. Con-

ly, in the existing li this type of binary data have

been classified based on a suitable multinomial distribution for the counts in

each of the four cells, without modelling the probability structure in terms
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of a correlation parameter. This observation motivated us to model the cell
probabilities in the bivariate binary case by a suitable probability model tak-
ing the correlation into account in a natural way and to examine the effect
of such modelling in classifying a bivariate binary observation into one of the

two groups.

Furthermore, in practice, we may have correlated binary data with a set of
covariates for each of the individuals in the study. In the thesis, we have
also included this case and discussed the classification of a bivariate binary

observation when covariates for individuals are available.

1.2 Objective of the Thesis

The main objectives of this thesis is to examine the effect of the modelling of
the cell probabilities for a bivariate binary data set in classifying a new obser-

vation into one of the two groups. The specific plan of the thesis is as follows.

In chapter 2, we provide detail background of the classification problem for

variables of a continuous and discrete nature.

Chapter 3 concentrates on the description of classification with correlated
binary data by using an appropriate probability model. More specifically, in
Section 3.1, we propose a joint probability model for correlated binary data

as a function of marginal probabilities and the structural correlation param-
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eter. Section 3.2 is dedicated to develop the optimum classification criterion

based on the where the cell bilities of the four cells

of the bivariate binary data set are modelled in terms of the marginal prob-
abilities and the correlation parameter. Also in the same Section 3.2, we

compare and contrast the existing classi i dure with the d

procedure, where in the existing approaches, these do not have any specific
probability structure for the cell counts under investigation. In Section 3.3,
we have shown, using simulated correlated binary data, how our suggested
probability modelling performs better as compared to the situation where
the cell probabilities are not modelled by using any probability distribution.

And finally in Section 3.4 we illustrate our method by a suitable example.

Chapter 4 is d with the ification of binary data with

covariates. The estimating equation for the regression parameters as well

as the correlation parameter are d based on the i ion of the

covariates.

We conclude the thesis in chapter 5 with some remarks about the impor-

tance of modelling the cell probability in classifying a new bivariate binary

observation into one of the two groups. In the same chapter, we have also

discussed the possibilities of some future research in this area.



Chapter 2

Background of Classification
Problems

The problem of classification arises when an investigator makes a number
of measurements on an individual and wishes to classify the individual into
one of several categories on the basis of these measurements. In brief. one
may state the problem as follows: Given an individual with certain measure-
ments; if several population exist from which this individual may have come.

the question is. from which population did it arise?

2.1 Classification under Certain Continuous
Distribution: Parametric Approach

There is a vast literature on discrimination for this case. In order to classify

an observation into one of the p i Fisher [11] as a ba-
sis of classification decisions the use of a discriminant function linear in the

components of the observations. Other bases for classification have included

3
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likelihood ratio tests (cf. Anderson [4]), information theory (Kullback [21]),
and Bayesian techniques (cf. Geisser [13]). In all cases, sampling theories

have been idered under the ion that the ions involved are

multivariate normal. The problem of classification has also been studied for
other continuous distributions. See, for example, Kariya [20]. and Sutradhar
{32] for discrimination analysis under general elliptical or ¢ distribution set

up.

2.2 Classification for Continuous or Discrete
Data: Non-parametric Approach

In the continuous set up, there exist some other approaches where robust dis-
crimination criteria are used to classify a new observation into one of the two

lassificati d are not di on any

or more groups. These
particular distribution. For example, Chen and Muirhead [8] constructed a
discriminant procedure by deriving robust discriminant functions using pro-

jection pursuit criteria. Projection pursuit, a computer-intensive methodol-

ogy, was first ly impl d on the by Friedman and
Tukey [14], atd thorough reviews have been given by Huber [18] and Jones
and Sibson [19]. In order to evaluate the robustness and the performance
of their discriminant rules under various distributional situations, Chen and
Muirhead [8] (see also Chen [7]) did a Monte Carlo simulation based on the

bivariate normal, Cauchy, log-normal, and contaminated normal distribu-
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tions, which are continuous. There also exist similar but different (than the

projection pursuit method) P i il i in the

literature. For example, we refer to the references in McLachlan (chap 9)
[25] for details. Among these approaches, the so-called kernel discriminant
analysis is widely used in non-parametric classification analysis. The kernel
density estimator, originally suggested by Fix and Hodges [13], can be used
to estimate the density of both continuous and discrete feature data. The

kernel method may be described in brief as follows:

Let y; be the g-dimensional /th (! = 1,--- , n;) observation in the ith group
Gi(i = 1,--- .g). For a continuous ¢g-dimensional feature vector Y, a non-
parametric estimate, f*’(y), of the ith group density f;(y) provided by the

kernel method is

om=(2) () Sr (52) 221
= *

where K is a kernel function that integrates to one, and k; is a smoothing

The hi h; is known also as the bandwidth

or window width which is a function of the ith group-sample size n;. With
most applications, the kernel K is fixed and the smoothing parameter h; is
specified as a function of the data. Usually, but not always, the kernel K, is
required to be nonnegative and symmetric, that is,

Ky(y) 20, and Ko(y)=K,(-y) yeR

If the above condition holds, the kernel density estimate can be interpreted
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as a mixture of n; component densities in equal proportions.

By virtue of its definition, the kernel density approach to estimation is resis-
tant to the effect of outliers. This is because Kg[(y — yu)/hi:] must become
small if y; is far from y. For computational aspects of kernel density estima-
tion we refer to Silverman (section 3.5) [30]. Now the problem is to choose
the kernel function in the definition (2.2.1) of the kernel density estimator.
Epanechnikov [10] and Deheuvels [9] used an asymptotic argument to show
that there is very little to choose between different kernel functions. Among
the various kernels considered by Cacoullos [6] was the so-called product
kernel,

.
Koy) =[] &),

where K is a univariate probability density function. This yields

g

o Q@) e

=1 j=1

A common choice for the univariate kernel K;(y) is the univariate standard
normal density function. With this choice, f*(y) is estimated by a spherical

normal kernel,

n

B ooy ces [ L G 5
7 (y)—(n')‘g;o(y Va0, M), (223)
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where M; = h?I,, and 6(x:p,T) denotes the multivariate normal density
with mean g and covariance matrix £. The analogue of (2.2.1) for a discrete
feature vector is considered in Section 2.2.1 in the context of a special mul-

tivariate binary data.

2.2.1 Kernel Discriminant Analysis: A Non-parametric
Approach for Multivariate Binary Data

The classification problem based on binary data may arise in many biomed-

ical situations. For an example of this type of problem we refer to Anderson

et al. (1972) (3] where the condition keratoconjunctivities sicca, or dry eyes,

is studied. The study refers to 10 symptoms (redness, itchiness, soreness or

pain, burning, etc.) that are iated with this diti Each sy

is either present or absent in each individual, and they are expected to be
correlated to one another. For a given vector it is of interest to make a diag-
nosis (yes-no) for the disease. A training sample of 40 diseased patients and
37 non-diseased patients was available for use in diagnosis. Since the mul-
tivariate binary density is not known, one may give a special concentration

towards kernel discriminant analysis in the context of this type of binary data.

Following Aitchison and Aitken (1] 2 binomial kernel may be used, whereby

one estimates fi(y) as
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) = LS Kely vy ) 2.4

where

-z
Koy : ¥ ) = B4 (1 = )

with } < h; < 1. and

& =1y —yall® = (v = v’y = yu)
If we put h; = 1. then f¥)(y) reduces to the multinomial estimate n(y)/n;,

where n;(y) is the number of sample points with y = y; foralll =1.--- .n;.

As h; decreases from one. the ing of the 1ti ial esti in-
creases. so that at h; = 1/2. it puts equal mass 1/2 at possible realizations

of Y.

Once the density of the i-th group G; (i = 1.2) is estimated by using the

binomial kernel. the new observation Y may be classified to G, provided

O > £9)
Ott and Kronmal [26] also introduced a non-parametric method of density es-
timation for multivariate binary data which is based on orthogonal expansion

of the density in terms of a discrete Fourier series. Liang and Krishnaiah [23]
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used the same approach, only with different coefficients. Both papers discuss

the ication of these di to the classil ion problem. Chen et
al. (7] further extended his work, and Stoffer [31] expanded the discussion to

binary time-series data.

‘We note here that this kind of classification problem for binary data has
been studied in the literature using the semi-parametric approach. We now
discuss this approach in the context of bivariate binary data in the following

section.

2.3 Classification Rule for Bivariate Binary
Data: Semi-parametric Approach

2.3.1 Basic Multinomial Approach

Suppose that y' = (y1,y2) is a vector of two binary variables, each taking
the value 1 or 0 and it may arise from G; for i = 1,2. For j = 1.2. now let
y; = 1 with probability p;;, and y; = 0 with probability ¢; = 1 — py;, if y
comes from G; (i = 1,2). Then y’ can assume value of one of the following

four multinomial cells
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Let 8y be the probability that the random vector y falls in the multinomial
cell k (k =1,2,3,4) and m; be the proportion of the i-th group in the whole
population P of two groups G; and G,. Now if an observation y falls into
cell k, then the optimal classification rule is: Assign y to G, if

L) _ur 7 i
BY) " Oax T (2.3.3)

Note here that although we assume that 6, be the multinomial cell prob-

ability, no specific form of this probability is assumed here. Consequently,

the h i here is a i i Now the cell
probabilities f(;x's have to be estimated from the sample data. Without
any loss of generality, let us assume that the y;'s are correlated. rather than
independent. Also, suppose that we have a random sample of size n (fixed)
from the population P, of which n; come from Gj, so that n = n; + np. Out
of these n; observations, let n) fall into cell k so that n; = 3=, ngx. Now,

since

Pl(yincellk)n(y €G:)] = Plyincellkly € Gi|Ply € Gi|

= fupm,
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the likelihood function based on the so-called mixture sampling approach (cf.

Seber [29], Section 6.4.2) is given by

4
L0, mly) = P[ng cell frequencies and y € Gi

2 4
= [ITI@wemyo

pg
2
s g
= [I=r 16w (2:36)
i=l k=1

The maximum likelihood estimates of f(i)k and =; are obtained by maximiz-

ing the likelihood with respect to fi, and 7; respectively. The estimates

are:

é(,,k =Dk g = =
ny n
these esti in the opti i ion rule (2.3.5) gives

the simple rule. for cell k, as follows: Assign y to G if

Dk o D@k g _1234  when m=m (23.7)
m O m

which reduces to

nuk > new k=1,2,34 when m #m (2.3.8)
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2.3.2 Log-linear Repr: ion in Basic M
Approach

The cell probability involved in the multinomial model, for bivariate binary
data, can be represented by a log-linear model for better understanding of the
association between the two correlated binary variables. In this approach,

though, the cell ility is not i d to have any ic model.

the log of any i cell ility is as a linear function of

the main effects and interaction of the two variables. See equation (2.3.9)

below for the specific relationship. But again. as there is no specific form

for the cell ility, the h s still i asa i ic

approach.

Let Y’ = (Y1, Y2) be the 2x 1 random vector of two correlated binary variables

Y} are Y, with joint probability function given by

T,
T,
o1,
o0,

flynv2)

. Note that in terms of the notation of the

where moo + mo1 + Mo + 1L =

previous section, by omitting the suffix for group, we have

my =0, mo=0;, my =03 and m =04

These probabilities may be represented in the form of the foilowing (2 x 2}
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table:
Y2
u 0 1 Total
0 Too Mo Too + o1
1 Tio T Mo + Tu
Total | mp +mip s + M1 |
where the ility m,; ds to the cell d by i and j where

these i and j are the possible values of y; and y,.

Further, note that in general in log-linear models (see Agresti (1990)) for two
dimensions. the log of the cell mean is expressed as a linear function of the
parameters. Let m;; be the mean of the (i.j)th cell. As my; (= n#y) is the
constant multiple of the corresponding cell probability ;. one may like to
express log m;; instead of log my; as a linear function of the parameters. Let

Hij = log m; and

_ Mo+ _ Hoj FHy
U—n.—_z y M= 3
+ por + 1o +

d p=p — Koo I-‘ﬂl4“ln K

Here ;2 denotes the overall mean of the {log7;}. Then the log of 7; may be

expressed in the form of linear function given by

log myy = 4+ At + AP 4 Mz, (23.9)
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where
AM' = p —p s the ith row effect of yi,
A# = p;—p is the jth column effect of yp,
and Af,‘”’ = hj — g — p; + 4 is the interaction between y; and ys.

The notation in (2.3.9) is similar to that for the usual two-way analysis of
variance. The row and the column effects {\{"} and {){*}, respectively, are

defined so that they are deviations about the mean and hence
MM =0 = AM=-2
MW =0 = A=-A (2.3.10)

Thus there is one i row effect say up = A" and one

independent column effect parameter, say u; = A§’. Also we have one inde-

pendent association parameter, say uj2 = Ajy"? as

NN =0, MM =

= MR =M =AY =M = un (2.3.11)

Writing u for 4 and using (2.3.10) and (2.3.11) one obtains from (2.3.9) that
log moo = u — ) — ug + U2,
logmoy = u — w1 +up — U2,
log ™o = u +u; — us — w2,

logmyy = u + up + Uy + Upa- (2.3.12)
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In the above approach, the model given by (2.3.9) yielding four equations

(2.3.12), is known as the log-li model for the i ial cell

Note that as mentioned before u; and u, in equation (2.3.12) are known as

the main effects and u,, is known as the interaction effect and they can be

expressed as
1 1 T
w = 7(~ log 7o — log oy + logmio + logm1) = 7 log 7:”:
iy L o My —Nog i logris ) o AL
2= g Moo g oL g 710 8 1L T gﬂmﬂm
1 1, mum
wiz = +(log o0 — log oy — log w10 + log m1) = — log T2
4 1" mumo

It is clear that if the last odds ratio is unity then u;, = 0 indicating that y;

and y, are independent.

Therefore the log linear representation helps to interpret the association be-
tween y, and y, without specific assumption about the joint cell probability
of y; and yp. This representation for the association, however, may not be
meaningful, if the exact joint probability structure does not permit log-linear

representation.
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2.3.2.1 Classification Rule for Bivariate Binary Data
The log-linear representation in (2.3.12) can be rewritten, in general, for
appropriate values of y; and y,, as
log f(y1,42) = logmyy,
= u—w(l = 2y1) — up(1 — 2un) + w12(1 — 241) (1 — 24)
= (u—u1 — Uy +urg) +2(ug — ur2)ys +
+2(uz — ur2)yz + durayrys

= o+ Bivi+Boe + Blawiye,  say. (2.3.13)

Now suppose that Y € G;, then one may write
log fi(y1, y2) = Blayo + Blapt + Blaatie + Blayatave (2.3.14)

Then we have

log % = bBo+ Buys + Bavz + Bravrys (2:3.15)
where
Bo = Bl — By B = By — Blay
B2 =By = Blays  and Pz = By — Biaya
Therefore, ding to the opti lassification rule (2.3.5), assign an

individual with measurement y to G, if

5 [M Bo+ Bivn + Bava + Bratitin > 0. (23.16)

o, v2
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In practice these 3 parameters are not known and must be estimated from

the sample data. If we use the well-known conditional sampling and estimate

the 3 parameters based on the posterior likelihood (see Seber 2

6.4.2) then we obtain the classification rule as

ne > e K 3.4 123.173

Now to verify the classification rule (2.3.17) for the unknown parameter case

we rewrite the likelihood function in (2.3.6) as

LB =:iy) =

L}

i2.3.18)

where 0k = 761 — T2021-

Note that quite often inference is made based on L. rather than L.L; (see

Seber [20]. section 6.4.2). We. in this section, follow this and observe that

L, can be explicitly written as

2
Le=T[Tair)e )"

where = is an indicator variable defined as
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L=d 1 fynsG
71 0 otherwise
with y;);; as the I-th observation of the j-th binary variable in the i-th group

G; and for given vector Y = Y, the posterior distribution of G, is defined

as

ai(Yo) = P(Gi|Y =Yo)
P(Y = Yo|G)P(Gy)
P(Y = Yol|G1)P(G1) + P(Y = YolG2) P(G3)
Silys ya)m
filvr-yadmi = falyr.y
Yo'3

since by  (23.15)  fi(yi.y2) = folys. ya)e ¥

4:(Yo) =1 - qi(Yo)

Now to estimate the J parameters. we rewrite L., as

2 moves A ) .
Ly =vo = III (—1 3 Ey,,-,) (-—‘ +em)

Fry
exp(T S (3o + i = By + Jnvaua)]
T2 T2 (1 + expl3 + Aiou + BYa + Iovsyuvina])

The log of this L. is given by
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2 n
(3 = ZZyx(Sn + S + By + Seywuyma)

=1 =1

2
= Z Z log(1 + exp[do + gy + Sy + Breyeyicral)

i=1 =1

n
= Z (3o + Sy + Baywu + Sy uveu)

% i
=3 log(1 +expldo + iy + By + Savniial)
Pt

m n m
= mb+56t Z v + B2 Z Y + S Z Yauyaa
=1 =1 I=1

=37 " log(1 + explBo + By + Bty + Fravinatioal)

=t =1
Now the posterior likelihood estimates for 3, 31, 3, and 3,2 may be ob-

tained by solving the following likelihood estimati; ions derived from

the above log likelihood function. The likelihood estimating equations are:

a(8) Z Z expls + Sy + Saywn + Beyauyn]  _ 0
550 (1 +exp(Bo + Sy + B2y + Jzyayuya])

=1 (=1

dL(3) Zy . Z  yyu explfo + Siyu + taywa + Jyeuywa] _
96 O™ 2o £ (T explBy + Buyiau + Bavion + Fravomviol)

B2
B _ ¢
B (gx: Yu¥mz

2 a3
5 z": Yuyy explfo + By + Bay + Broyuyinl _
(1 + exp[Bo + Biygeyu + Beira + Breyeyuyeia])

— (1 +exp[Bo + By + Soyrz + Sreyuyeral)

i=l =l

8L(B) iy(m‘ B Z Z Yz explfo + Buywu + Baywa + Brayouveal _

0
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Let 3o, 31, 3, and 3y, be the solutions of the above estimating equations
for 3o, 31, 3, and 3y, respectively. Then. in terms of n, the above four

equations reduce to

(nay +n@ae® | (rap + ngays)eter

nap + vz Frws s =

1+edo 1+ edotdr
(nqy + ngp)edorh ("fm + oy )eHordi+
1 + edo+br 1 + efo+Biréariz i
e (mapt naya)e O PRGOS ngay JedorBirietdi
w1tz = 1+ chothi 1+ edordirdarin
e = (ngays + i) | (nan + ngay Jeordirirtdi
e 1+ ehotla 1+ edorbirbattiz
(R +ngay Jefo+Bitrti
and nay 1) -

14 ehords

respectively.

Solving these equations for 3’s. we get

5 n

b = lag[ (m}
on

B L T

5 = [ (2 (2)4}
22714

Py Rt T

Y = log[ s (2)4]
n@3n

R T AT

b = log[ {ORLIL YR ""] (23.19)
naRRAR s

Consequently, by using the above B's in the classification criteria

g [ = do+ B + Bt + Bravina 2 0,
Foy, )
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we obtain
nuk Znex k=1,2,3,4
as the classification criteria for the unknown parameter to classify an obser-

vation (y;, y2) of cell k to G;.

Note that the value of 81, computed by (2.3.19) helps one to understand the
association between y; and y,, provided the linearity assumption is valid. We
further note here that for d (> 2) binary variables case, if higher order inter-

section are omitted from the log-linear ion, then the

rule will be different than that found in the basic multinomial approach.

Remark that although, in general, the multinomial approach discussed in
Section 2.3.1 and 2.3.2 is not parametric for correlated binary data. it is
however parametric in the independent set-up as in the latter set-up, the
joint probability directly depends on the marginal probabilities. We discuss

this independent case in brief, as follows.

2.3.3 Independent Binary case: A Parametric Ap-
proach

In the independent set-up ¥’ = (y1,¥2) is a vector of independent binary

variables, each taking the value 1 or 0. It then follows that for given y € Gi,

the probability distribution of y is given by



CHAPTER 2. BACKGROUND OF CLASSIFICATION 24

Cell | 1 2 3 1
= L) 10 ©On ©0
f) [papiz pingiz g g

allowing one to express the cell probability 6 as a function of piy and p;2
as
ok = fiy) =Pl (1 — pa) ¥l (1 - p2)' ™%,

for y in cell k (k =1,2,3,4).

Clearly as we can express each cell probability as a parametric function, it
can be treated as parametric model for independent binary data and the

classification criterion (2.3.5) can be simplified by replacing fi(y) with 6.

So far we have discussed in general the ic or i ic
classification rule for binary data, though independent binary is a special case
of the parametric approach. Note, however, that an allocation procedure can
not be distribution-free in a literal sense (cf. T. W. Anderson [2]). For if it
were, then its error rates would not depend on the group distributions of the
feature vector and would be constant even when all the group distributions
were identical (by a continuity argument). Therefore a parametric approach,

if we know the model, is always a better approach.
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It is clear that the classification criterion discussed above does not take into
account the specific nature of the correlation coefficient. It is, however, known
that correlated binary data can well be modelled as a function of the struc-
tural correlation parameter. Bahadur (5] suggested modelling binary data
based on the adjustment factor on the correlation structure. Prentice [27]
and Sutradhar and Das [33] have also analyzed correlated binary data. If the
data really follows this distribution then naturally one would be able to do
efficient analysis as compared to the ordinary (without considering correla-
tion parameter) method. The purpose of the thesis is to examine the effect of

the specific correlation structure over the classification when no distribution

lving correlation is



Chapter 3

Classification of A Bivariate
Binary Observation: A Model
Based Approach

In the non-parametric approach, kernel methods are used to classify a mul-
tivariate binary observation into one of the two groups. In this approach. a
kernel measures the distances of a given observation from sample observa-
tions of group 1 as well as of group 2 and classifies the given observation to
a group based on the minimum distance. In the semi-parametric approach.
however, this classification problem is formulated in a multinomial set-up.
More specifically, for a d-dimensional binary data, it is assumed that an ob-

servation falls into one of the 2%-cells with a certain multinomial probability

which is ified in general. As di d in the previous chapter in the
context of bivariate binary data, the classification decision is made by com-

paring the corresponding cell probabilities of the two populations.

26
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The non-parametric or semi-parametric approaches, mentioned above, are
traditionally considered as suitable classification approach when one encoun-
ters difficulty in modelling the specific joint probability for the bivariate or
multivariate binary observations. But, as bivariate binary data analysis is
quite an important topic and as there exists suitable probability modelling
for the case, in this thesis, we propose to classify a bivariate binary observa-

tion based on such probability modelling.

For bivariate binary probability modelling we refer, for example, to the prob-
ability model considered by Prentice [27], and Sutradhar and Das [33] and
describe the modelling of bivariate binary case in section 3.1. This model

will be exploited to classify a given bivariate binary observation in subsequent

delli

sections. The advantage of the joint probability as 1 to

the semi-parametric ch, will be di ated through a

study in section 3.4. This will be done by comparing the misclassification
probability of such model based classification criteria with that based on

semi-parametric approach.

3.1 Joint Probability Model

Suppose that y = (y1,¥»)’ is a pair of correlated binary variables each taking
the values 1 or 0. Let y; = 1 with probability p;; and y; = 0 with probability
¢ij = 1 — pyj, if y comes from group G; (i,j = 1,2). Assume that y, and

1y, have a common correlation ¢ in both the groups G and G. Following
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Prentice [27] (1988. pl037: see also Sutradhar and Das [33]), one may then

use the joint probability density of y; and y, for the ith (i = 1.2) group as

Fn0alGi) = pialT " plal ™ [1+m(y1 pir)(y2 = pia) @11

It is interesting to observe that this joint probability vields . as expected. the
proper binary marginal densities for y; and y,. Also the parameter o is the
proper correlation coefficient between y; and y,, which is. however. restricted

by

i 3 b i
e ~ [mm}:‘_ [qu%z}’ S iE [pﬂqn]"' ) [pnq.z]* (31.2)
%4 pupa pag] " [poga

Note here that this restriction on o. derived from the joint probability dis-
tribution (3.1.1), is necessary for (3.1.1) to be a proper joint density.

To verify the binary marginal density, we compute

.
FwiG) = Y fynwlG)

oPtaly —Pu) oPdalin — pit)

= o™ [(Piz +ai2) — ]
VPil¢Pi2%iz VPirGiPiaGiz
1 gl-vt
= Pada

which is the probability density of the binary variable y;. Similarly we can
show that

F(wlGi) =™
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Thus y; and y, are marginally binary random variables with
B(ylG) =py i=1,2 j=1,2
and Var(y|Gi) = pigi; i=1,2 j=1,2

To verify whether ¢ is the proper correlation coefficient, we compute the

covariance between y; and y; as

Coul(y ~pa)lyz = pa)lG] = El —pu) 2 = PG

PirPiz
- g |1+ p——e—
PuPﬂ'Zu%z[ ¢ Pﬂqﬂpﬂqﬁ]
PirGiz
= it [
L [ ¢\/Fﬂl]{l?ﬁ2‘1ﬂ]
9iPi2
—gapi R
lInP:an'hz[ ¢ ’—_pgqﬂpmq‘-z]
Gi19i2
+i19i29:19: 1+¢—}
i [ VPirgirPiadiz
Pi2i14i:
= %4@{%2 +patia + Gapiz + G gz
BUBVELE

VPiGaPiagizdlpi (Piz + G2) + g (Piz + Gi2)]
VPiGaPadd(pia + gi) + (Piz + giz)]
= ¢v/PadaPiatiz,

yielding the correlation

Covl(yr — pur) (y2 — pi2)]

Prsalos = ¥ ar ]GV ar (alCr)

between y; and y,. This correlation parameter is usually referred to as the

structural correlation parameter.
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The bivariate binary density (3.1.1) has its natural generalization to the
multivariate case (cf. Bahadur [5]) where as compared to (3.1.2), it becomes
necessary to put severe restrictions on the higher order correlation and inter-
action. The analysis based on this type multinomial binary case is. however.

beyond the scope of this thesis.

3.2 Classification Criterion

The random vector }” = (};,}3) of two correlated binary variables }1 and
Y> can take the four possible values (1.1), (1.0), (0.1), and (0.0). Therefore
given y € G,y falls in the multinomial cell k with certain probability. say,
By (k = 1.2.3.4) which is determined from the joint probability function

defined by (3.1.1) for the specific cell.

Thus if an observation y to be classified. belongs to cell . then the optimum
classification rule, due to Welch (1939), that minimizes the total probability

of misclassification is the following: Assign y to Gy if

L) _ Bax

3.2.2
hY) B~ m @22)

and to G, otherwise, where 7, is the proportion in G; and m2(= 1—m) is the

inGyina ion P with only two groups. Since

Bk for i = 1,2 is defined following (3.1.1), for m = m, this rule (3.2.2
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classifies an observation with y = (y1, 1) to G, if
e )nﬂ/z - s
- [P ples™ - PliaiT" Pl ] (3.23)

w —

where w; = \/pigaPads for i=1.2.

In practice. the parameters py1, P12, pa1, P22 and o are usually not known and
have to be estimated from the sample data. These parameters may how-

ever be estimated either by the traditional maximum likelihood estimation

method or by using the well-k marginal estimating equation
The estimation of these parameters by these two methods is discussed in the

following section.
3.2.1 Estimation of Parameters

Suppose that we have n, observations from group G, and n, observations
from group G, so that in total we have n = n; + n, observations. Of these
n; observations that come from G;(i = 1.2), let ny fall into cell k. that is.
n; = i ng. Let y;; be the Ith observation of the j-th variable in the
i-th group G;. Then the likelihood function, based on the mixture sampling
approach, is given by

pir) (Yiat — Pin)

L(pa,p2,0) = HH LH,] Yot g~ yul} [1+og‘.“_';m_._]

2

1 gl Wi = paa) (Vi -P:z)]
= HH [,H ] [l O hatapata

=1i=1

[l

when == % (3.24)
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Equation (3.2.4) is an important special case (when 7, = 7 = 4} which may

be re-written as

L(pir. pi2. 0) = (3.2.3)
where following (3.1.1). f’s (k = 1.2.3.4) are given by
/G192
Bin = Pubo + ov/Pagubata = pubo [1 ~oy ;ﬁ
o _ - /g1piz
2 = Pagi2 — 0VPiguPidi2 = pagi |1 — O\ St
G2
s = Gube — oVPuguPuda = qupa [1 -o :‘;;‘:
11
P - [Pab
i1 = quge + ov/Pagupude = quge |1+ o\/ Coia
3
Following (3.2.5) the i ikelihood estimating it for p;y. Pia

and o are given by

ol fop = MLTRE2 Mo TRen i vVaude
apa “* Pa dn 2udn Lovinge ~ Vinbe

ni2v/Ginbiz _ MV N eV @ndiz
oViubi + Vhudz  ovhada+Viuba oyPiba ~ Vindal

lu=a

Fhgs _ Reptnes 0 [ n1Vande
(23 i2 Loviguge — Vbabn
N2V @i biz . Ny3vPiagiz sV die J

P2

- — + —— = - =
oVauba + Vbada  ovhiGe + Vuba  oVPuba + Viada

= Xz: nonViade <~ nwevaabe

O0V@nde + VPabi2 15 oVdubu — VPadi2

i Z nuavbide " sV

o, i = e -

=1 ovPndia +Vgubn I oVbabn + Vinde

it
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respectively, where ! denotes the log of the likelihood function given in (3.2.5)
and g = (p11. pi2, Pa1. pn. 6)'. It is clear from the above derivatives that
the likelihood estimates of p;;. piz and o do not have any closed form. To
obtain these estimates. one needs to solve the above three equations by using
a complicated iteration technique. which we do not pursue in the thesis. We
rather estimate these parameters by using the well-known estimating equa-

tions approach which we discuss in the following section.

3.2.1.1 Marginal Estimating Equation (MEE) Approach

Since the marginal distributions of y; and y, are binary. in order to estimate
Ppar and piy. we can use the marginal estimating equation. based on the sample

from the i-th group G, (i = 1.2). given by

nt Z DSy (3:2:6)
=
where
Su = [yiu — E(yi)- v = EQuiar)]’ = [ous = pir- yout — Pu2]’-
foralll=1 --.n; and V; is the covariance matrix defined by

— ( Var(yir) Cvl'(ym-y.u))

Cov(yar. yiu)  Var(y)

_ ( Pada oyFatuPada
OV/PirGi1Pi2giz Pi2Gi2
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and D; is the matrix of first derivatives

dpu Spia

D= [ WBa) _ (1 0

T \ew @a ) T \O 1)
Gpiz Bpiz

Note that in the present case this V; matrix does not depend on the indi-

viduals. This makes the estimation much easier as in such cases the MEE
reduces to the moments equations. A remark is that this simplicity will not
hold if the binary logistic regression case is considered where the covariates

may be different for different individuals (I =1,2,--- ,ny, for i = 1,2).

Turning back to the solutions for p;; and pi, we obtain from (3.2.6) that

S NG+ NGy Al i + Nz
P ™ and po = P

for i=1,2, (3.2.7)
with G =1—py and Gip =1~ pia.

Note that these esti of the inal probabilities are in fact the same

as their maximum likelihood estimates based on the basic multinomial ap-
proach discussed in section (3.2.1). More specially, in the basic multinomial

h, the cell probabilities are esti by using the maximum like-

lihood method which sub 1 d the inal probability given

by (3.2.7). As mentioned in the previous chapter, the cell probability in such
cases, however, does not have a specific form based on the association param-
eter involved. The estimate of the association parameter under the present
approach is given below, which in turn, will yield the cell probabilities cor-

responding to the four cells.
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Temporarily we denote the correlation for the ith (i = 1,2) group by ¢;
(i =1,2) and estimate this correlation parameter ¢; assuming p;; (i, = 1,2)
are known, by using the method of moments as
3 1 SN (= pa) (Y2 = pa)
i T
i = V/Var(ya)Var(yzi)
1 [n(m _nan+ "(z)(ip _ nen +nap
VPidabats | ni T n

Next, since it has been assumed that the two groups have common correlation

Piz + Pul-‘iz]

¢ we esti this lati fficient by pooling the information collected

from two samples, as

é = 1| (= pu) (geu — pi2) g i (Y121 — p21) (Y220 — Po)
mtn | \WVarlyn)Vaerlys) S VVaru)Var(ya)
ot - i~
=3 m[ﬂxlﬁ‘ + n20s). (3.2.8)

1t is easy to see that for known pij (i, j = 1,2) this ¢ is an unbiased estimate
of ¢ as
n
) g gl )
i = Var(ya)Ver(ya)
= Var(pa)Var(ys)
= ¢
Jielding
E[g)

=¢ by (328) as h=¢:=0.
This moment estimate @ is also consistent for ¢. Following (3.1.2), this é

should satisfy the restriction

h<dp<d
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where

S et L
e 7[]’:1?12]’ _[q.an]z and
Gndi] ' Pipiz

o Tk bt
iy o= g [p«z'ln] e [Pﬂl]ﬂ] i
b padia] [Pl

3.2.2 Performance of the Proposed Estimates: A Sim-
ulation Experiment

To examine the performance of the proposed estimates of the marginal prob-

abilities pi1, pi2, P21, and pgp, and the structural correlation parameter ¢

(discussed in the previous section), we conducted a simulation study as in

the following.

Using the proposed density (3.1.1) for the i-th group Gj, we have the condi-

tional distribution of y;, given y;; = 0 as

fyir, yi2) [ PirGiz
ialyip = 0) = IR =y 1] — g, [T 3.2.9
falyn =0) = g2y =pa L=y [0 (3:2.9)
Similarly
f i, yi2) [ Gtz
aly = 1) = 2RI — ) |1 4 g, |22 3.2.10
fslia =1 = o oy =P L H Y o 210k

In generating a correlated binary sample of size n; from group G; we use the

following steps:
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. Generate binary y;; with probability pi1.

9

. If y1 = 0. then generate binary y;, with probability given in (3.2.9) for
agiven 0 and if y;y = 1, then generate binary y;» with probability given

in (3.2.10) for the same o.

[

Continue step 1-2 n; times.

For various choices of py1, p12 and pa1, p22, as well as ¢, we generate two bivari-
ate samples of sizes n; and n, respectively. More specifically we have selected
four different combinations of (n1,n2) ={(25,20),(40.30),(50,40), (100.100)}
and three different choices of ¢ satisfying (3.1.2) under each of the three
combinations of (p11.pia) ={(0.10,0.10), (0.10,0.70), (0.50,0.30)} and two
different combinations of (pa1, p22) ={(0.50,0.70), (0.10,0.30)}.

We carry out 5000 simulati Under each simulati we estimate the

parameters p; (i,j = 1,2) using the formula (3.2.7) and the structural cor-
relation parameter ¢ by (3.2.8) and finally we compute the values for the

the 5000 si d esti The results are shown

in Table 3.1- 3.6. Note that in each table we have also shown an effective

number of simulation size, which we i based on the number of suc-

cessful si i i ding on the ion of dz To be more specific,

the calculation for ¢ fails if either pi; =0orp;; = 1. Any simulation yield-
ing these estimated parameters is referred to as an unsuccessful simulation.

The effective number of simulations is then the difference between the total
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attempted simulations and the number of unsuccessful simulations. The es-
timates based on the effective simulation size are consequently reported in
the second row for each 6. The results shown under 5000 simulations were
computed by replacing p;; = 0 and p;; = 1 with p;; = 0.02 and p;; = 0.98.

respectively.

It is clear from Table 3.1- 3.6 that as the sample size increases, the marginal
probability estimates as well as ¢ estimate get very close to the true param-
eter values. More specifically, the large sample sizes yield significant gain in
the estimation of ¢. For example, when n, = 25, ny = 20 in Table 3.1 the
absolute bias in estimating ¢ = 0.25 is 0.0175 where for n; = 100, n, = 100
the absolute bias is 0.0006 which is very smaller. Also the standard errors
estimates are found to be small and are not reported in the table. In the next
section, these parameter estimates are used in the appropriate classification

with

function in order to compare the mi: i ion rate of this

that of the basic multinomial approach.
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Table 3.1: Si Estimates of the I probabilities and correl
parameter for py = 0.10, pi2 = 0.10, pyy = 0.50, p2 = 0.70.
(n1,n2) ¢ # _pu Pr2 P2 b %
(25,200 -0.10 5000 01013 0.1011 0.4985 0.7002 -0.0903
4303 01069 0.1070 0.5021 0.6945 -0.0908
0.25 5000 0.1013 0.1016 0.4985 0.6996 0.2325
4343 01094 0.1095 05034 0.6967 0.2330
0.55 5000 0.1013 0.1020 04985 0.6984 0.5054
4408 01099 0.1108 05037 0.7014 0.5435
(40,30)  -0.10 5000 01005 0.1002 04991 0.6985 -0.0927
4849 01016 0.1011 05000 0.6976 -0.0929
0.25 5000 01005 0.1011 0.4991 0.6979 0.2443
14850 01021 0.1027 0.5003 0.6974 0.2490
0.55 5000 0.1005 0.1008 0.4991 0.6997 0.5261
4855 01024 0.1027 0.5006 0.7005 0.5352
(50,40)  -0.10 5000 01006 0.1007 0.4994 0.6985 -0.0931
4957 01010 0.1009 0.4996 0.6983 -0.0931
0.25 5000 01006 0.1010 04994 06984 0.2457
4954 01011 0.1014 04998 0.6982 0.2470
0.35 5000 01006 0.1011 0.4994 0.7000 0.5365
4953 01011 0.1018 0.4998 0.7002 0.5393
(100,100) -0.10 5000 01001 0.1001 0.4993 0.6987 -0.0957
5000 01001 0.1001 0.4993 0.6987 -0.0957
0.25 5000 0.1001 0.1004 04993 0.6989 0.2494
5000 01001 0.1004 0.4993 0.6989 0.2494
0.55 5000 01001 0.1001 0.4993 0.7000 0.5451
5000 01001 0.1001 0.4993 0.7000 0.5451
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Table 3.2: Simulated estimates of the marginal probabilities and correlation
parameter for py; = 0.10, piz = 0.70, pay = 0.50, pp = 0.70.

0.10 0.70 _ 0.50 0.70

(nun2) @ # _ Pu P P P ]
(25,20) -0.40 5000 0.1013 0.7015 0.4985 0.6993 -0.3796
4635 0.1077 0.6966 0.5027 0.6974 -0.3831
-0.25 5000 0.1013 0.7010 0.4985 0.6992 -0.2469
4635 0.1077 0.6981 0.5027 0.6980 -0.2461
0.10 5000 0.1013 0.6994 0.4985 0.6996 0.0797
4635 0.1077 0.7005 0.5027 0.6999 0.0929
(40, 30) -0.40 3000 0.1005 0.6999 0.4991 0.6991 -0.3861
4920 0.1018 0.6990 0.5001 0.6989 -0.3871
-0.25 5000 0.1005 0.6997 04991 0.6988 -0.2447
4920 0.1018 0.6993 0.5001 0.6987 -0.2446
0.10 5000 0.1005 0.6988 0.4991 0.6975 0.0920
4920 0.1018 0.6993 0.5001 0.6977 0.0949
(50, 40) -0.40 5000 0.1006 0.6989 0.4994 0.6986 -0.3893
4976 0.1010 0.6987 0.4997 0.6986 -0.3895
-0.25 5000 0.1006 0.6990 0.4994 0.6985 -0.2469
4976 0.1010 0.6989 0.4997 0.6985 -0.2469
0.10 5000 0.1006 0.6986 0.4994 0.6981 0.0958
4976 0.1010 0.6988 0.4997 0.6982 0.0966
(100,100) -0.40 5000 0.1001 0.6993 0.4993 0.6985 -0.3964
5000 0.1001 0.6993 0.4993 0.6985 -0.3964
-0.25 5000 0.1001 0.6992 0.4993 0.6987 -0.2489
5000 0.1001 0.6992 0.4993 0.6987 -0.2489
0.10 5000 0.1001 0.6983 0.4993 0.6983 0.0988
5000 0.1001 0.6983 0.4993 0.6983 0.0988
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Table 3.3: Simulated estimates of the marginal probabilities and correlation
parameter for p;; = 0.50, p12 = 0.30, pa; = 0.50, pae = 0.70.

Parameters 0.50 0.30 0.50 0.70

(n,m2) & 1 # bu D2 b P [
(25,20) -0.55 5000 0.4973 0.3021 0.4985 0.7012 -0.5259
5000 0.4973 0.3021 0.4985 0.7012 -0.5259
0.25 5000 0.4973 0.2999 0.4985 0.6996 0.2479
5000 0.4973 0.2999 0.4985 0.6996 0.2479
0.55 5000 0.4973 0.2986 0.4985 0.6984 0.5268
5000 0.4973 0.2986 0.4985 0.6984 0.5268
(40, 30) -0.55 5000 0.4984 0.3007 0.4991 0.7014 -0.5351
5000 0.4984 0.3007 0.4991 0.7014 -0.5351
0.25 5000 0.4984 0.3008 0.4991 0.6979 0.2497
5000 0.4984 0.3008 0.4991 0.6979 0.2497
0.55 5000 0.4984 0.2984 0.4991 0.6997 0.5351
5000 0.4984 0.2984 0.4991 0.6997 0.5351
(50, 40) -0.55 5000 0.4994 0.2995 0.4994 0.7012 -0.5386
5000 0.4994 0.2995 0.4994 0.7012 -0.5386
0.25 5000 0.4994 0.3012 0.4994 0.6984 0.2498
5000 0.4994 0.3012 0.4994 0.6984 0.2498
0.55 5000 0.4994 0.2991 0.4994 0.7000 0.5390
5000 0.4994 0.2991 0.4994 0.7000 0.5390
(100,100) -0.55 5000 0.4993 0.3000 0.4993 0.7018 -0.5456
5000 0.4993 0.3000 0.4993 0.7018 -0.5456
0.25 5000 0.4993 0.3013 0.4993 0.6989 0.2512
5000 0.4993 0.3013 0.4993 0.6989 0.2512
0.55 5000 0.4993 0.2982 0.4993 0.7000 0.5456
5000 0.4993 0.2982 0.4993 0.7000 0.5456
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Table 3.4: Simulated estimates of the marginal probabilities and correlation
parameter for p11 = 0.10. p12 = 0.10. py; = 0.10, pz2 = 0.30.

Parameters 0.10 0.10 0.10 0.30

(n,n) o ion #  pu P2 23} J223 g
(25,20) -0.10 5000 0.1013 0.1011 0.1029 0.3005 -0.0840
4069 0.1102 0.1070 0.1138 0.3044 -0.0884
0.30 3000 0.1013 0.1015 0.1029 0.2993 0.2538
4121 0.1126 0.1105 0.1161 0.3085 0.2967
0.50 5000 0.1013 0.1019 0.1029 0.2994 0.4213
4170 0.1131 0.1121 0.1164 0.3140 0.4890
( 40.30) -0.10 5000 0.1005 0.1002 0.1017 0.3021 -0.0872
4709 0.1034 0.1010 0.1053 0.3022 -0.0884
0.30 5000 0.1005 0.1014 0.1017 0.3013 0.2804
4706 0.1041 0.1036 0.1061 0.3037 0.2931
0.30 5000 0.1005 0.1009 0.1017 0.3015 0.4543
4723 0.1041 0.1037 0.1060 0.3038 0.4734
(50.40) -0.10 3000 0.1006 0.1007 0.1007 0.3019 -0.0886
4915 0.1016 0.1008 0.1018 0.30I7 -0.0889
0.30 5000 0.1006 0.1009 0.1007 0.3009 0.2864
4912 0.1018 0.1016 0.1020 0.3015 0.2902
0.50 5000 0.1006 0.1012 0.1007 0.3012 0.4683
4905 0.1018 0.1023 0.1020 0.3025 0.4738
(100,100) -0.10 5000 0.1001 0.1001 0.1001 0.3017 -0.0940
5000 0.1001 0.1001 0.1001 0.3017 -0.0940
0.30 5000 0.1001 0.1003 0.1001 0.3007 0.2956
5000 0.1001 0.1003 0.1001 0.3007 0.2956
0.50 5000 0.1001 0.1000 0.1001 0.3009 0.4823
4999 0.1001 0.1000 0.1001 0.3009 0.4824
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Table 3.5: Simulated estimates of the marginal probabilities and correlation
parameter for py; = 0.10. py2 = 0.70. p5; = 0.10. p22 = 0.30.

F 0.10 0.70 0.10 0.30

(n1.12) o Simulation #  pn P2 P Pn o
(25.20) -0.20 5000 0.1013 0.7008 0.1029 0.3002 -0.1861
4384 0.1110 0.6964 0.1144 0.2966 -0.1890
0.10 5000 0.1013 0.6994 0.1029 0.2998 0.0716
4386 0.1110 0.7003 0.1145 0.3024 0.0955
0.20 3000 0.1013 0.6997 0.1029 0.2995 0.1538
4385 0.1110 0.7023 0.1145 0.3043 0.1863
(40.30) -0.20 3000 0.1005 0.6998 0.1017 0.3017 -0.1852
4780 0.1036 0.6990 0.1055 0.3001 -0.1878
0.10 3000 0.1005 0.6988 0.1017 0.3017 0.0896
4780 0.1036 0.6996 0.1055 0.3022 0.0968
0.20 5000 0.1005 0.6988 0.1017 0.3014 0.1767
4780 0.1036 0.7001 0.1055 0.3027 0.1863
(30.40) -0.20 3000 0.1006 0.6990 0.1007 0.3016 -0.1879
4934 0.1016 0.6989 0.1018 0.3010 -0.1888
0.10 3000 0.1006 0.6986 0.1007 0.3012 0.0936
4934 0.1016 0.6991 0.1018 0.3012 0.0956
0.20 5000 0.1006 0.6988 0.1007 0.3011 0.1842
4934 0.1016 0.6994 0.1018 0.3014 0.1872
(100.100) -0.20 5000 0.1001 0.6992 0.1001 0.3015 -0.1924
5000 0.1001 0.6992 0.1001 0.3015 -0.1924
0.10 5000 0.1001 0.6983 0.1001 0.3015 0.0980
5000 0.1001 0.6983 0.1001 0.3015 0.0980
0.20 5000 0.1001 0.6984 0.1001 0.3008 0.1924
3000 0.1001 0.6984 0.1001 0.3008 0.1924
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Table 3.6: Simulated estimates of the marginal probabilities and correlation
parameter for py; = 0.30, pi2 = 0.30, pa; = 0.10, p2 = 0.30.

P 0.50 0.30 0.10 0.30

(ny, n2) ¢ Simulation #  py P12 P P 9
(25,20) -0.20 5000 0.4973 0.3000 0.1029 0.3002 -0.1845
4384 0.5031 0.2998 0.1144 0.2966 -0.1889
0.30 3000 0.4973 0.2997 0.1029 0.2993 0.2748
4384 0.5031 0.3023 0.1145 0.3062 0.2945
0.50 5000 0.4973 0.2979 0.1029 0.2994 0.4446
4387 0.5031 0.3007 0.1145 0.3105 0.4722
(40, 30) -0.20 5000 0.4984 0.3016 0.1017 0.3017 -0.1887
4780 0.5005 0.3012 0.1055 0.3001 -0.1902
0.30 5000 0.4984 0.3008 0.1017 0.3013 0.2881
4780 0.5005 0.3012 0.1055 0.3033 0.2953
0.50 5000 0.4984 0.2983 0.1017 0.3015 0.4654
4780 0.5005 0.2991 0.1055 0.3050 0.4753
(50, 40) -0.20 3000 0.4994 0.3019 0.1007 0.3016 -0.1895
4934 0.5002 0.3016 0.1018 0.3010 -0.1900
0.30 5000 0.4994 0.3013 0.1007 0.3009 0.2921
4934 0.5002 0.3013 0.1018 0.3013 0.2941
0.50 5000 0.4994 0.2991 0.1007 0.3012 0.4731
4934 0.5002 0.2997 0.1018 0.3021 0.4764
(100,100) -0.20 5000 0.4993 0.3014 0.1001 0.3015 -0.1941
5000 0.4993 0.3014 0.1001 0.3015 -0.1941
0.30 5000 0.4993 0.3015 0.1001 0.3007 0.2982
5000 0.4993 0.3015 0.1001 0.3007 0.2982
0.50 5000 0.4993 0.2981 0.1001 0.3009 0.4837
5000 0.4993 0.2981 0.1001 0.3009 0.4837
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3.3 Performance of The Classification Rules:
A Simulation Study:

As mentioned in chapter 2, in classification context, the basic multinomial
approach uses the so-called optimum classification criteria which appears
to be a function of only the cell counts irrespective of the model for the
data. The purposes of the simulation study is to generate data, based on the
model 3.1.1 and compare the performance of the basic multinomial approach
(BMA) with that of the model based approach (MBA), where in the latter
case, the classification criteria depends on the estimates of the parameters of

the model including the structural correlation parameter.

To be more specific, for the cases with unknown parameters, the MBA clas-
sification rule (3.2.3) is given as: classify a given observation y = (y1,,) into
the group G if

i (—1)unte

o s T
T PG PR — Pl ] (3:3.11)
= W2

Or equivalently, if an observation y belongs to cell k (k = 1,2,3,4), then
the optimum classification rule is to assign y to Gy if
By > O k=1,2,3,4 (3.3.12)

where 9(% is the estimated cell probability under model (3.1.1) for i = 1,2.

For example for k£ = 1, we have

O = Pubiz + 6/ DG Padia
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for the ith (i = 1, 2) group under the model (3.1.1).

In BMA. the classification rule is to assign y to G, if
By > Oy k=1.2.3.4 (3.3.13)

Boy being the maximum likelihood estimate of the multinomial cell proba-
bility 6(;)¢, where unlike in the proposed approach, ;) does not have any
specific structure, mainly in terms of marginal probabilities of y; and y, and

their correlation.

It is now clear that to examine the performance of the classification rules
(3.3.11) and (3.3.13) in classifying an individual with two correlated binary
measurements y, and y» into one of the two groups, one needs to derive the

distributions of these which is

Consequently, we have chosen to examine their performances empirically as

follows.

For a given set of p11, P12, pa1, P2, and o, we first compute all the cell prob-
abilities under each group using model (3.1.1) and compare the respective
cell probabilities of the two groups to determine the classification criterion
to classify a new observation belonging to that cell, into any of the two
groups Gy and G,. For example, for a particular choice of parameters, say,

¢ =10.2, and py; = 0.5, p12 = 0.7, and pyy = 0.3, py, = 0.3, we obtain the cell
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probabilities for the first group as
By =013, By =0.17, Gy = 0.17, Oye = 0.53
and the cell probabilities for the second group as
B = 039, Oy = 0.11, Bays = 0.31, Brzjq = 0.19.
vielding
B < Beys Oz 2 02, B < Omas O 2 Bz

Now, according to the classification rule (3.2.3), any new observation that
belongs to the cell (1.1) is to be assigned into group G2, as 8y < by
Similarly as 6(1)2 > f(2)2, the same classification rule (3.2.3) leads to classify
any new observation that belongs to the cell (1,0) into group Gi. The classi-
fication of the observation belonging to the other two cells may be similarly

interpreted.

Next to compare the performance of the proposed Model-Based Approach

(MBA) as to the Basic Multinomial Approach (BMA) we may
generate two bivariate correlated binary samples of sizes n, and n, follow-
ing the proposed model (3.1.1) and then compare the performance of the
estimated classification rules under both the approaches in classifying the
selected observation into the correct group. To be more specific, suppose
that we generate two samples of sizes n, and n, based on the above selection

of the parameters (py, = 0.5, piz = 0.7, and pa1 = 0.3, pz = 0.3). We then
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estimate (1) and O for k = 1.2.3.4 by MBA and BMA and examine. for
example, whether the conditions 5(”; < é(zn and é(m < g(z)| for cell 1 are
satisfied. If any of the two methods fails to satisfy this condition, then the
individual in question (with value (1,1)) will not be classified into G leading
to misclassification due to the method of estimation. Now, if this behavior
of classification is repeatedly tested for say R times, the proportion of un-
successful cases will lead to the probability of misclassification due to that

particular method. Note that although the data is to

the bivariate binary distribution in (3.1.1) with 1 ion param-

eter ¢, the classification rule based on BMA does not require the estimation
of the ¢ parameter whereas the the classification rule based on MBA does

require the estimation of this ¢ parameter.

As mentioned above, to check the classification performance of the two ap-
proaches, we carry out a Monte-Carlo experiment based on R = 5000 sim-
ulations. In each of the simulations, we generate two samples of correlated
bivariate binary observations of sizes (n;, n,) = {(100, 100), (200. 200)}
and 3 to 5 different choices of 6 depending on the restriction in (3.1.2) under
each of the several combinations of (p1;, pi2) and two different combinations
of (pu1, p2) = {(0.50, 0.70), (0.10, 0.30)}. Under each simulation, we
estimate the parameters pi1, pi2, P21, P2, and ¢ and hence O (i = 1,2;
k =1,2,3,4) based on MBA and we estimate 6k (i = 1,2; k = 1,2,3,4)

by maximum likelihood method based on BMA. Next we compute the sim-
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ulated probability of misclassification for each method on the basis of the
estimated classification criteria in terms of these estimated cell probabilities
Bk (i = 1.2 k = 1,2.3,4) and fu (i = 1.2 k = 1,2,3.4). The results

are shown in Table 3.7-3.33 below. In all the Tables 3.7-3.33, columns 4 to 7

contain the number of mi i ion cases for a new i
to cells 1, 2, 3, and 4 respectively by both methods. The number in the 8th
column represents the total of columns from 4 to 7 on that row and the last
column exhibits the total probability of misclassification obtained by divid-

ing the figure in the 8th column by 3000, the total number of simulations.

It is clear from these tables that in almost all cases the MBA is found to
be better than the BMA in terms of probability of misclassification. Here
one method is considered to be superior to the other when the probability of
misclassification (PM) due to this particular method is less than that of the
other method. For some specific combinations (see Table 3.11, Table 3.12,
Table 3.16, Table 3.17, Table 3.21), the MBA is substantially better than
BMA as the PM is considerably higher for the latter method. For example,
when n, = n, = 100 and ¢ = 0.40 in Table 3.12, the probability of mis-
classification based on MBA and BMA are 0.0498 and 0.1236 respectively
indicating that MBA is far superior to the BMA in classifying a new ob-

servation to the correct group. Note that as the sample size increases, the

of mi: i ion generally for both the methods. But

the probability of misclassification still remains higher for BMA as compared
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to MBA. For example, when n, = n, = 200 and ¢ = 0.40 it is clear from the
same Table 3.12 that the probability of misclassification is 4.78% higher for

BMA as compared to MBA.

Remark that when the cell probability of bivariate binary observations under
any group is close to zero, or when the relative difference between the two
corresponding cell probabilities of the two groups are negligible, the prob-
ability of misclassification is generally higher under both approaches. This
is obvious as the performance of any classification rule depends on the fact
about whether the two groups, into which an observation is to be classified,
are well-separated. In these types of unusual situations, even the PM based

on MBA can be worse as compared to that of BMA.
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Table 3.7: Probability of misclassification (PM) for py; = 0.10, p;2 = 0.10,

P21 = 0.50, pa» = 0.70 based on MBA and BMA

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
0.10 100 MBA 0 485 0 0 485  0.0970
BMA 0 614 0 0 614 0.1228

200 MBA 0 184 0 0 184  0.0368
BMA 0 308 0 0 308 0.0616

0.20 100 MBA 0 855 0 0 85 01710
BMA 0 903 0 0 903  0.1806

200 MBA 0 480 0 0 480  0.0960
BMA 0 622 0 0 622 0.1244

0.30 100 MBA 0 1411 0 0 1411 0.2822
BMA 0 1318 0 0 1318  0.2636

200 MBA 0 1088 0 0 1088  0.2176
BMA 0 1119 0 0 1119  0.2238
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Table 3.8: Probability of misclassification (PM) for py,
P21 = 0.50, p22 = 0.70 based on MBA and BMA

52

= 0.10. pr2 = 0.30.

® n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
-0.10 100 MBA 0 30 531 0 361 0.1122
BMA 0 109 575 0 684 0.1368
-0.10 200 MBA 0 1 179 0 180  0.0360
BMA 0 12 216 0 228 0.0456
0.10 100 MBA 0 4 809 0 83 0.1766
BMA 0 166 850 0 1016  0.2032
0.10 200 MBA 0 1 79 0 380  0.0760
BMA 0 31 453 0 484  0.0968
0.20 100 MBA 0 101 886 0 987  0.1974
BMA 0 T 946 0 1018  0.2036
0.20 200 MBA 0 10 469 0 479  0.0958
BMA 0 9 575 0 384 0.1168
0.30 100 MBA 0 150 1016 0 1166  0.2332
BMA ) 64 1067 0 1131  0.2262
0.30 200 MBA 0 19 380 0 599 0.1198
BMA 0 8 713 0 721  0.1442
0.40 100 MBA 0 194 1164 0 1358 02716
BMA 0 30 1254 0 1284  0.2568
0.40 200 MBA 0 30 745 0 775  0.1550
BMA 0 0 889 0 89 01778
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Table 3.9: Probability of misclassification (PM) for pyy = 0.10, ps2 = 0.50,

pa1 = 0.50, poz = 0.70 based on MBA and BMA

)

-0.20

-0.20

-0.10

-0.10

0.10

0.10

0.20

0.20

n  Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
100 MBA 0 0 283 0 283  0.0566
BMA 0 23 305 0 328  0.0656
200 MBA 0 0 66 0 66  0.0132
BMA 0 Q 87 0 87  0.0174
100 MBA 0 2! 212 0 213  0.0426
BMA 0 45 217 0 262 0.0524
200 MBA (1] (1] 44 0 44 0.0088
BMA 0 2 55 0 57 0.0114
100 MBA 0 5 293 0 298  0.0596
BMA 0 1 365 0 366 0.0732
200 MBA 0 0 62 0 62 0.0124
BMA 0 0 98 0 98  0.0196
100 MBA 0 4 217 0 221 0.0442
BMA 0 0 314 0 314 0.0628
200 MBA 0 0 32 0 32 0.0064
BMA 0 0 76 0 76 0.0152
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Table 3.10: Probability of misclassification (PM) for pi1 = 0.10, p1z = 0.90.

P21 = 0.50, pp2 = 0.70 based on MBA and BMA

& n Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
-0.30 100 MBA 0 0 0 1207 1207  0.2414
BMA 0 0 0 973 973 0.1946

-0.30 200 MBA 0 0 0 799 799  0.1598
BMA 0 Q 0 699 699  0.1398

-0.20 100 MBA 0 0 0 657 657  0.1314
BMA 0 0 0 360 360  0.1120

-0.20 200 MBA 0 0 0 249 249 0.0498
BMA 0 0 0 267 267  0.0534

-0.10 100 MBA [ 0 0 286 286  0.0572
BMA 0 0 0 317 317 0.0634

-0.10 200 MBA 0 0 0 70 K 0.0140
BMA 0 0 0 97 97  0.0194
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Table 3.11: Probability of misclassification (PM) for pyy = 0.30, piz = 0.30.
p21 = 0.50, py2 = 0.70 based on MBA and BMA

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.30 100 MBA 0 361 21 0 382 0.1164
BMA 0 729 7 0 806 0.1612
-0.30 200 MBA 0 194 0 0 194 0.0388
BMA 0 342 3 0 345  0.0690
-0.20 100 MBA 0 315 36 0 351  0.1102
BMA 0 718 100 0 818 0.1636
-0.20 200 MBA 0 163 1; 0 164 0.0328
BMA 0 365 5 0 370 00740
0.20 100 MBA 0 262 32 0 294 0.0588
BMA 0 437 104 0 361 0.1122
0.20 200 MBA 0 30 1 0 31 0.0102
BMA 0 167 10 0 177 0.0354
0.40 100 MBA 0 9 8 0 99  0.0198
BMA 0 38 68 0 126  0.0252
0.40 200 MBA 0 4 0 0 4 0.0008
BMA 0 6 3 0 9  0.0018
0.50 100 MBA 0 10 0 0 10 0.0020
BMA 0 29 1 0 30  0.0060
0.50 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0  0.0000
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Table 3.12: Probability of misclassification (PM) for py; = 0.30, p12 = 0.70,

P21 = 0.50, pyz = 0.70 based on MBA and BMA

)

-0.50

-0.50

-0.40

-0.40

-0.10

-0.10

0.20

0.30

0.30

n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
100 MBA 0 67 3 0 70 0.0140
BMA 0 112 6 0 118  0.0236
200 MBA 0 0 0 0 0 0.0000
BMA 0 10 0 0 10 0.0020
100 MBA 0 155 9 85 249  0.0498
BMA 51 565 2 0 618 0.1236
200 MBA 0 13 0 6 19 0.0038
BMA 5 253 0 0 258  0.0516
100 MBA a a a a 0 0.0000
BMA 0 12 0 0 12 0.0024
200 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 0 0 0.0000
100 MBA 0 0 0 25 25 0.0050
BMA 0 0 0 60 60  0.0120
200 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 8 8  0.0016
100 MBA 0 0 0 97 97  0.0194
BMA i 0 0 108 109  0.0218
200 MBA 0 0 0 10 10 0.0020
BMA 0 0 0 28 28 0.0056
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Table 3.13: Probability of misclassification (PM) for py; = 0.30, pi2 = 0.90,

par = 0.50, paz = 0.70 based on MBA and BMA

¢ n  Model Cell-l Cell-2 Cell-3 Cell-4 Total PM
-0.40 100 MBA 489 0 0 26 515 0.1030
BMA 594 0 0 41 635  0.1270
-0.40 200 MBA 155 0 0 1 156 0.0312
BMA 201 0 0 3 274 0.0548
-0.30 100 MBA 325 0 0 8 333  0.0666
BMA 397 0 0 41 438  0.0876
-0.30 200 MBA 9 0 0 0 79 0.0158
BMA 144 0 0 1 145  0.0290
-0.20 100 MBA 213 0 0 3 216 0.0432
BMA 281 0 0 35 316  0.0632
-0.20 200 MBA 40 0 0 0 40  0.0080
BMA 78 0 0 4 82  0.0164
-0.10 100 MBA 138 0 0 3 141  0.0282
BMA 208 0 0 36 244 0.0488
-0.10 200 MBA 17 0 0 0 17 0.0034
BMA 42 0 0 2 44 0.0088
0.10 100 MBA 46 0 0 I} 47 0.0094
BMA 72 0 0 Uy 89  0.0178
0.10 200 MBA 3 0 0 0 3 0.0006
BMA 7 0 0 0 7 0.0014
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Table 3.14: Probability of misclassification (PM) for pyy = 0.50. p12 = 0.50.
Ppa1 = 0.30, p2 = 0.70 based on MBA and BMA

o n_ Model Cell-l1 Cell-2 Cell-3 Cell-4 Total PM
-0.50 100 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0 0.0000

-0.50 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0  0.0000

-0.40 100 MBA 6 6 6 6 24 0.0048
BMA 190 190 0 0 380 0.0760

-0.40 200 MBA 0 0 0 0 0  0.0000
BMA 36 36 0 0 72 0.0144

0.10 100 MBA 10 10 10 10 40  0.0080
BMA 0 0 282 282 364  0.1128

0.10 200 MBA 1 1 1 1 4 0.0008
BMA 0 0 T4 T4 148 0.0296

0.40 100 MBA 3 3 3 12 0.0024
BMA 0 0 187 187 374 0.0748

0.40 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 39 39 78 0.0156

0.50 100 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0  0.0000

0.50 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0  0.0000
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Table 3.15: Probability of misclassification (PM) for py = 0.70. p» = 0.30.
a1 = 0.50, pzz = 0.70 based on MBA and BMA

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.50 100 MBA 15 0 0 119 134  0.0268
BMA 27 0 1 8 113 0.0226

-0.50 200 MBA 0 0 0 12 12 0.0024
BMA 2 0 0 10 12 0.0024

-0.40 100 MBA 11 0 0 200 211 0.0422
BMA 69 0 0 229 298 0.0596

-0.40 200 MBA 0 0 0 24 24 0.0048
BMA 5 0 0 51 36  0.0112

-0.10 100 MBA 121 0 1) 640 761  0.1522
BMA 121 0 0 614 735  0.1470

-0.10 200 MBA 11 0 0 258 269  0.0538
BMA 16 0 0 270 286  0.0572

0.20 100 MBA 141 ¢ ) 962 1103  0.2206

BMA 138 a 0 949 1087  0.2174

0.20 200 MBA 15 1} 0 545 360 0.1120

BMA 15 0 0 536 571 0.1142

0.30 100 MBA 144 Q 0 1054 1198  0.2396

BMA 123 Q 0 1054 1177  0.2354

0.30 200 MBA 19 [ 0 646 665  0.1330

BMA




CHAPTER 3. CLASSIFICATION: MODEL BASED APPROACH 60

Table 3.16: Probability of misclassification (PM) for py; = 0.70, piz = 0.70,
P21 = 0.50, poz = 0.70 based on MBA and BMA

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.30 100 MBA 10 664 112 12 798  0.1596
BMA 70 749 173 145 1137 0.2274

-0.30 200 MBA 0! 286 13 1301 0.0602
BMA 4 404 15 26 449  0.0898
-0.20 100 MBA 18 468 95 24 605  0.1210
BMA 90 656 157 276 1179 0.2358
-0.20 200 MBA 2 148 10 1 161 0.0322
BMA 9 337 19 72 437 0.0874

0.20 100 MBA 140 42 17 257 456 0.0912
BMA 183 268 99 563 1113 0.2226

0.20 200 MBA 17 2 2 33 54 0.0108
BMA 27 75 8 243 353  0.0706
0.40 100 MBA 252 59 11 488 810  0.1620
BMA 232 101 56 629 1018  0.2036

0.40 200 MBA 29 4 0 158 191  0.0382
BMA 33 11 6 287 337 0.0674

0.50 100 MBA 301 85 18 637 1041  0.2082
BMA 265 47 56 680 1048  0.2096

0.50 200 MBA 54 6 0 265 325  0.0650
BMA 46 3 3 323 375 0.0750
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Table 3.17: Probability of misclassification for py; = 0.70, p1z = 0.90, pa1 =
0.50, p22 = 0.70 based on MBA and BMA

) n__ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.10 100 MBA 0 10 584 0 594 0.1188
BMA 0 85 601 3 689 01378
-0.10 200 MBA 0 0 217 0 217  0.0434
BMA 0 6 n 0 277  0.0554
0.10 100 MBA 0 17 765 0 782  0.1564
BMA 1 101 828 13 943 0.1886
0.10 200 MBA 0 0 364 0 364 0.0728
BMA 0 12 dd4 0 456  0.0912
0.20 100 MBA 1 8 905 0 914 0.1828
BMA 2 121 934 13 1070  0.2140
0.20 200 MBA 0 0 454 0 434  0.0908
BMA 0 31 544 0 375 0.1150
0.30 100 MBA 5 22 1017 0 1044  0.2088
BMA 1 119 1077 4 1211 0.2422
0.30 200 MBA 0 0 564 0 364 0.1128
BMA 0 19 688 0 707 0.1414
0.40 100 MBA 7 68 1171 1 1247 0.2494
BMA 4 100 1230 14 1348 0.2696
0.40 200 MBA 1 5 746 0 752  0.1504
BMA 1 15 867 0 83 0.1766
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Table 3.18: Probability of misclassification for p;; = 0.90, p12 = 0.30. ps; =
0.30, py; = 0.70 based on MBA and BMA

) n Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.40 100 MBA 1180 0 0 262 1442
BMA 1287 0 0 165 1452
-0.40 200 MBA 718 0 0 62 780
BMA 862 0 0 31 893
-0.30 100 MBA 993 0 0 218 1211
BMA 1119 0 0 191 1310
-0.30 200 MBA 363 0 0 37 600
BMA 706 0 0 45 751
-0.20 100 MBA 862 0 0 189 1051
BMA 991 0 0 189 1180
-0.20 200 MBA 448 0 0 26 474
BMA 553 0 0 44 397
-0.10 100 MBA 869 0 0 147 1016
BMA 862 0 0 188 1050
-0.10 200 MBA 412 0 0 24 436
BMA 453 0 0 33 486
0.10 100 MBA 627 [} a 100 727
BMA 376 0 0 146 722
0.10 200 MBA 226 0 0 7 0233
BMA 241 0 0 26 267
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Table 3.19: Probability of misclassification for py; = 0.90. p12 = 0.50, psy

0.50, py2 = 0.70 based on MBA and BMA

63

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
-0.20 100 MBA 235 0 0 10 245 0.0490
BMA 323 1 0 25 349  0.0698

-0.20 200 MBA 40 0 0 0 40 0.0080
BMA 90 1) (U L g1 0.0182

-0.10 100 MBA 306 0 0 9 315 0.0630
BMA 384 0 0 33 417 0.0834

-0.10 200 MBA 69 [ 0 0 69  0.0138
BMA 118 Q 0 1 119 0.0238

0.10 100 MBA 354 0 0 5 359 00718
BMA 361 Q 0 51 412 0.0824

0.10 200 MBA 7 0 0 0 79 0.0138
BMA 103 0 0 3 106 0.0212

0.20 100 MBA 475 Q 0 8 483  0.0966
BMA 473 0 0 49 522 0.1044

0.20 200 MBA 142 Q 0 0 142  0.0284
BMA 161 0 0 4 165  0.0330
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Table 3.20: Probability of misclassification for py; = 0.90, pi2 = 0.90, pa;
0.30, p22 = 0.70 based on MBA and BMA

64

¢ n_ Model Cell-l1 Cell-2 Cell-3 Cell-4 Total PM
0.10 100 MBA 0 263 0 0 263 0.0526
BMA 0 376 0 0 376 0.0752

0.10 200 MBA 0 42 0 0 42 0.0084
BMA 0 47 0 0 147  0.0294

0.20 100 MBA 0 573 0 0 5373 0.1146
BMA 0 650 0 0 650  0.1300

0.20 200 MBA 0 208 0 0 208 0.0416
BMA 0 340 0 0 340  0.0680

0.30 100 MBA 0 122 0 0 1220 0.2440
BMA 0 1079 0 0 1079  0.2158

0.30 200 MBA a 9T ) a 797  0.1594
BMA 0 827 0 0 827 0.1654
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Table 3.21: Probability of misclassification for py; = 0.10, p1p = 0.10, py; =

0.10, pap = 0.30 based on MBA and BMA

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
0.20 100 MBA 0 0 0 0 0 0.0000
BMA 600 600 0 0 1200  0.2400
0.20 200 MBA 0 0 0 0 0 0.0000
BMA 300 300 0 0 600  0.1200
0.40 100 MBA 0 0 0 0 0 0.0000
BMA 203 203 0 0 406  0.0812
0.40 200 MBA 0 0 0 0 0 0.0000
BMA 45 45 0 0 90  0.0180
0.50 100 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 0 0 0.0000
0.50 200 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 0 0 0.0000
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Table 3.22: Probability of misclassification for py; = 0.10, p1z = 0.70. par
0.10, p2 = 0.30 based on MBA and BMA

66

© n_ Model Cell-1 Cell-2 Cell-3 Cell4 Total PM
-0.20 100 MBA 39 39 59 39 236 0.0472
BMA 0 0 86 86 172 0.0344

-0.20 200 MBA 2 2 2 2 8  0.0016
BMA 0 0 10 10 20  0.0040

-0.10 100 MBA 46 46 46 46 184  0.0368
BMA 0 0 80 80 160  0.0320

-0.10 200 MBA 2 2 2 2 8  0.0016
BMA 0 0 8 8 16 0.0032

0.10 100 MBA 0 0 0 0 0 0.0000
BMA 942 942 0 0 1884  0.3768

0.10 200 MBA 0 0 0 0 0 0.0000
BMA 641 641 0 0 1282  0.2564

0.20 100 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 0 0  0.0000

0.20 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0  0.0000

0.30 100 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 0 0  0.0000

0.30 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 0 0 0  0.0000
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Table 3.23: Probability of Misclassification for p;; = 0.10, p12 = 0.90, pa;

0.10, pz2 = 0.30 based on MBA and BMA

67

¢ n_ Model Cell-l1 Cell-2 Cell-3 Cell-4 Total PM
-0.20 100 MBA 0 0 0 0 0 0.0000
BMA i 1 0 0 2 0.0004

-0.20 200 MBA 0 0 0 0 0 0.0000
BMA 0 0 0 0 0 0.0000

-0.10 100 MBA 0 0 0 0 0 0.0000
BMA 44 44 0 0 88  0.0176

-0.10 200 MBA 0 0 0 () 0 0.0000
BMA 3 3 0 0 6  0.0012

0.10 100 MBA 0 0 0 0 0  0.0000
BMA 212 212 0 0 424 0.0848

0.10 200 MBA 0 0 0 0 0  0.0000
BMA 50 50 0 0 100  0.0200
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Table 3.24: Probability of Misclassification for p;; = 0.30. p12 = 0.30. pay
0.10, pzz = 0.30 based on MBA and BMA

68

¢ n Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.20 100 MBA 0 0 194 0 194 0.0388
BMA [1] a 187 0 187 0.0374

-0.20 200 MBA 0 0 37 0 37 0.0074
BMA 0 0 42 0 42 0.0084

-0.10 100 MBA 0 0 25 0 25 0.0050
BMA 0 0 39 a 59 00118

-0.10 200 MBA 0 0 0 0 0  0.0000
BMA 0 0 2 0 2 0.0004

0.20 100 MBA 0 0 33 3 56  0.0112
BMA 136 6 0 0 142 0.0284

0.20 200 MBA 0 0 3 0 3 0.0006
BMA 25 0 0 0 25 0.0050

0.40 100 MBA 0 0 6 35 41 0.0082
BMA 20 0 0 9 29  0.0058

0.40 200 MBA 0 0 0 2 2 0.0004
BMA 1 0 0 0 1 0.0002

0.50 100 MBA 0 0 0 70 0 0.0140
BMA 15 0 0 25 40 0.0080

0.50 200 MBA 0 0 0 2 2 0.0004
BMA 1 0 0 1 2 0.0004
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Table 3.25: Probability of Misclassification for py; = 0.30, pjz = 0.50, poy =
0.10, p22 = 0.30 based on MBA and BMA

¢ n_ Model Cell-l1 Cell-2 Cell-3 Cell-4 Total PM

-0.20 100 MBA 0 3 410 0 413  0.0826
BMA 0 9 564 0 573  0.1146

-0.20 200 MBA 0 0 133 0 133  0.0266
BMA 0 1 227 0 228  0.0456

-0.10 100 MBA 0 5 488 0 493  0.0986
BMA 0 17 657 0 674 0.1348

-0.10 200 MBA 0 0 158 0 158  0.0316
BMA 0 3 287 0 288  0.0576

0.20 100 MBA 0 7 366 0 373 0.0746
BMA 0 12 218 0 230 0.0460

0.20 200 MBA 0 0 104 0 104 0.0208
BMA 0 1 62 0 63 0.0126

0.40 100 MBA 0 27 557 0 584 0.1168
BMA 0 0 425 0 425  0.0850

0.40 200 MBA 0 1 215 0 216 0.0432
BMA 0 0 182 0 182  0.0364

0.50 100 MBA 0 31 690 0 721 01442
BMA a (0] 632 0 632 0.1264

0.50 200 MBA 0 0 317 0 317  0.0634
BMA 0 0 300 0 300 0.0600
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Table 3.26: Probability of Misclassification for py; = 0.30. p12 = 0.70. px

0.10, pe2 = 0.30 based on MBA and BMA

70

@ n_ Model Cell-1 Cell-2 Cell-3 Cell4 Total PM
-0.20 100 MBA 0 570 1 0 0.1142
BMA 0 TH 3 0 0.1494

-0.20 200 MBA 0 224 0 0 0.0448
BMA 0 442 0 0 0.0884

-0.10 100 MBA 0 ] 3 0 780  0.1560
BMA 0 1006 10 0 1016  0.2032

-0.10 200 MBA 0 403 0 0 403  0.0806
BMA 0 23 0 0 723 0.1446

0.20 100 MBA 0 1966 ) 0 1975  0.3950
BMA 0 1705 20 0 1725  0.3450

0.20 200 MBA 0 1826 0 0 1826  0.3652
BMA 0 1636 1 0 1637  0.3274
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Table 3.27: Probability of Misclassification for p;; = 0.30. py; = 0.90. p5 =

0.10, p2; = 0.30 based on MBA and BMA

o n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
-0.20 100 MBA 0 280 0 0 280 0.0560
BMA 0 459 0 0 439 0.0918

-0.20 200 MBA 0 34 0 0 54 0.0108
BAMA 0 189 0 0 189 0.0378

-0.10 100 MBA 0 208 0 0 208 0.0416
BMA 0 512 0 0 512 0.1024

-0.10 200 MBA 0 23 0 0 23 0.0046
BMA 0 221 0 0 221 0.0442

0.10 160  MBA [ 94 o 0 94  0.0188
BMA 0 203 0 0 205 0.0410

0.10 200 MBA 0 8 0 0 8  0.0016
BMA 0 4 0 0 44 0.0088
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Table 3.28: Probability of Misclassification for py, = 0.50. py = 0.10, pat

0.10, p22 = 0.30 based on MBA and BMA

72

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
-0.20 100 MBA 205 0 0 1 206 0.0412
BMA 0 0 0 3 3 0.0006

-0.20 200 MBA 35 0 0 0 35 0.0070
BMA 0 0 0 0 0 0.0000

-0.10 100 MBA 359 0 0 1 360 0.0720
BMA 475 0 0 3 478  0.0956

-0.10 200 MBA 98 0 0 0 98  0.0196
BMA 250 a a 6 250 0.0500

0.10 100 MBA 682 0 0 5 687 0.1374
BMA 927 0 0 8 935 0.1870

0.10 200 MBA 264 0 0 0 264 0.0528
BMA 615 0 0 0 615 0.1230

0.20 100 MBA 798 0 0 8 806 0.1612
BMA 1144 0 0 6 1150  0.2300

0.20 200 MBA 388 0 0 0 38 0.0776
BMA 863 0 0 0 83 0.1726

0.30 100 MBA 884 0 0 10 894 0.1788
BMA 178 0 0 13 1191  0.2382

0.30 200 MBA 488 0 0 0 488  0.0976
BMA 920 0 0 1 921  0.1842
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Table 3.29: Probability of Misclassification for py; = 0.50. pyz = 0.50. pay =
0.10, py2 = 0.30 based on MBA and BMA

¢ n Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.10 100 MBA 0 0 2136 0 2136 0.4272
BMA 0 0 2090 0 2090 0.4180
-0.10 200 MBA 0 0 2069 0 2069  0.4138
BMA 0 0 2075 0 2075  0.4150
0.20 100 MBA 0 0 833 0 833 0.1666
BMA [0 0 648 0 648 0.1296
0.20 200 MBA 0 0 430 0 430  0.0860
BMA 0 0 297 0 297  0.0594
0.40 100 MBA 0 0 228 0 228  0.0456
BMA 0 0 116 0 116 0.0232
0.40 200 MBA 0 0 36 0 36  0.0072
BMA 0 0 10 0 10 0.0020
0.50 100 MBA 0 0 63 0 63  0.0126
BMA 0 0 18 0 18 0.0036
0.50 200 MBA 0 0 4 0 4 0.0008
BMA 0 0 3 0 3 0.0006
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Table 3.30: Probability of Misclassification for p1 = 0.50. pia = 0.70. pa
0.10, p2 = 0.30 based on MBA and BMA

4

@ n__ Model Cell-1 Cell-2 Cell-3 Cell4 Total PM
-0.20 100 MBA 0 29 411 0 440 0.0880
BMA 0 61 461 0 322 0.1044

-0.20 200 MBA 0 1 107 0 108 0.0216
BMA 0 3 137 0 142 0.0284

-0.10 100 MBA 0 30 531 0 361 0.1122
BMA 0 109 375 0 684 0.1368

-0.10 200 MBA 0 1 179 0 180  0.0360
BMA 0 12 216 0 228 0.0456

0.20 100 MBA 0 101 886 0 987 0.1974
BMA 0 2 946 0 1018  0.2036

0.20 200 MBA 0 10 469 0 479  0.0958
BMA 0 9 375 0 384 0.1168

0.30 100 MBA 0 150 1016 0 1166  0.2332
BMA 0 64 1067 0 1131 0.2262

0.30 200 MBA 0 19 380 0 399  0.1198
BMA 0 8 713 0 721 0.1442

0.40 100 MBA 0 194 1164 0 1358  0.2716
BMA 0 30 1254 0 1284  0.2568

0.40 200 MBA 0 30 745 0 775 0.1550
BMA 0 0 889 0 89 01778




CHAPTER 3. CLASSIFICATION: MODEL BASED APPROACH 73

Table 3.31: Probability of Misclassification for py, = 0.50, py = 0.90, pn =
0.10, p22 = 0.30 based on MBA and BMA

¢ n  Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.20 100 MBA 0 1450 6 0 1456  0.2912
BMA 0 1393 6 0 1399  0.2798
-0.20 200 MBA 0 1074 1 0 1075  0.2150
BMA 0 1160 0 0 1160  0.2320
-0.10 100 MBA 0 1304 7 0 1311  0.2622
BMA 0 1383 8 0 1391  0.2782
-0.10 200 MBA 0 907 1 0 908 0.1816
BMA 0 1096 1 0 1097  0.2194
0.10 100 MBA 0 946 12 0 958  0.1916
BMA 0 949 26 0 975  0.1950
0.10 200 MBA 0 524 0 0 524 0.1048
BMA 0 682 0 0 682 0.1364
0.20 100 MBA [ 748 12 0 760 01520
BMA 0 357 24 0 381 0.1162
0.20 200 MBA 0 320 1 0 321  0.0642
BMA 0 270 2 0 272 0.0544
0.30 100 MBA 0 559 15 0 574 0.1148
BMA 0 147 35 0 182 0.0364
0.30 200 MBA 0 174 0 174  0.0348
BMA 0 41 Z 0 43 0.0086
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Table 3.32: Probability of Misclassification for p;; = 0.70, p1z = 0.10, py

0.10, p22 = 0.30 based on MBA and BMA

6

¢ n_ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM
-0.20 100 MBA 31 0 0 0 31 0.0062
BMA 23 0 0 0 23 0.0046

-0.20 200 MBA 0 0 0 0 0 0.0000
BMA 0 q a a ¢ 0.0000

-0.10 100 MBA 65 0 0 0 65  0.0130
BMA 200 0 0 0 200 0.0400

-0.10 200 MBA 3 0 0 0 3 0.0006
BMA 42 0 0 0 42 0.0084

0.10 100 MBA 283 0 0 0 283 0.0566
BMA 521 0 0 0 521 01042

0.10 200 MBA 63 0 0 0 63 0.0126
BMA 225 0 0 0 225  0.0450
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Table 3.33: Probability of Misclassification for pyy = 0.70. pia = 0.70, pa; =
0.10, py, = 0.30 based on MBA and BMA

¢ n__ Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM

-0.20 100 MBA 0 17 1234 0 1251  0.2502
BMA 0 20 1140 0 1160  0.2320
-0.20 200 MBA () 0 817 0 817 0.1634
BMA 0 0 821 0 81 0.1642
-0.10 100 MBA 0 11 1051 0 1062 0.2124
BMA 0 14 981 0 995  0.1990
-0.10 200 MBA 0 0 660 0 660 0.1320
BMA 0 0 649 0 649  0.1298
0.20 100 MBA 0 3 474 0 479  0.0958
BMA 0 3 519 0 324 0.1048
0.20 200 MBA 0 0 169 0 169  0.0338
BMA 0 0 215 0 215 0.0430
0.40 100 MBA 0 1 156 0 157  0.0314
BMA 0 1 120 0 121  0.0242
0.40 200 MBA 0 0 23 0 23 0.0046
BMA 0 0 24 0 24 0.0048
0.50 100 MBA 0 0 47 0 47 0.0094
BMA 0 0 63 0 63  0.0126
0.50 200 MBA 0 0 2 0 2 0.0004
BMA 0 0 4 0 4 0.0008
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3.4 An Ilustration: Connecticut Child Sur-
vey data (CCSD)

In this section we illustrate the methods described in the previous section
using an epidemiologic survey data on the school children of ages 6 to 11.

This particular data set was collected in C icut through two

logic surveys namely, the New Haven Child Survey (NHCS) and the Eastern
Connecticut Child Survey (ECCS). For original sources of the data, we refer
to Zahner et al [17] and Fitmaurice et al [12]. In both surveys emotional
and behavioral information on each child was obtained from a parent or pri-
mary care-giver, and also from the child’s teacher. By design, there was no
overlap of children within families or within teachers. The child’s emotional
and behavioral problems were assessed using a standardized scale ccmpleted
by both the parents and teachers. Altogether 2,501 children of both sexes
participated in the survey. In addition to their emotional status (determined
by their parent or teacher), a covariate measuring the parental dissatisfaction
with family life was also recorded. In this illustration however, we ignore the
covariate for simplicity. Our main objective is to see the difference between
the behavior of male and female children. Considering the sex as a covari-

ate and parental

as a second iate, Fitmaurice et al [12]
mainly studied the effect of these covariates on the emotional pattern of the

child.

Of the 2,501 children about which information was collected in the two stud-
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ies, we have considered only 1,428 with complete information. For each of
these 1, 428 children, both parents and teachers provided information on emo-
tional status measured by the scale mentioned above. Note that information
on each child given by either the parent or teacher was in a dichotomized
form obtained from the corresponding scale score at the “clinical-borderline”
range. More specifically, if either parent or teacher rated the child as emo-
tionally disturbed, then this status was symbolized as ‘1’, a binary outcome.
Otherwise, the status was indicated by ‘0’. Further note that the binary
information (0 or 1) referred by the teacher would be positively correlated
with the binary information (0 or 1) rated by the parent as they are rating
on same child. This correlation would be denoted by ¢; for male children

and ¢, for female children.

3.4.1 Classifying Parent-Teacher Information into Male
or Female Group

In order to ill our i in the previous section,

we now formulate the above CCSD problem as follows. Suppose that the
ratings of both the teacher and parent is available as (y1, %) = {(1, 1),
(1, 0), (0, 1), (0, 0)}. The question, based on some sample information, is
whether it is possible to recognize a new bivariate information (y10, ¥20), say,
arises from a male or from a female child? To answer this, we first exhibit

the sample information collected by the CCSD as below.
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Table 3.34: Cross-classification of Parent and Teacher Ratings of Male and
Female.

Male Children Female Children
Parent Parent

Teacher | 0 1 | Total Teacher | 0 1 | Total

0 [ 440|116 556 0 |516] 86 | 602

1 96 | 50 | 146 1 91 | 33 | 124

Total | 536 | 166 | 702 Total | 607 | 119 | 726

Next based on both BMA and MBA as discussed in the previous section we

estimate their respective parameter estimation performance as follows.

Estimation of Parameter by BMA

In order to develop the classification we have to estimate the unknown pa-
rameter in both the groups (1=Male and 2=Female). For group i, if ny is
the cell count for the kth (k= 1,---,4) cell out of n; observations, then the

likelihood esti of kth cell probability in ith (i = 1, 2) group

is given by
5 n
B =% for k=1,---,4
By using the data from the Table 3.34, we obtain the likelihood estimates as

follows.
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For Male Group:
By = 00712 6y, = 0.1368

Grys = 0.1652 By = 0.6268
For Female Group:

By = 0.0455 Gzy2 = 0.1253

G = 0.1185  Gayq = 0.7107

Estimation of Parameters by MBA

For Male Group:

s nayttraps
n

=0.2080 pra

. n + n, -
pu= (”‘TI“B =0.2365 and

O S -
—— — pupra) = 0.1276
vhuqupizdz ™ Y

=
For Female Group:

5 T + )2 5, = MALERER _ () 16ag ong
na

P = "R 01708 g

20N _ 5 Bm) = 0.1257

Thus we have the pooled estimate of the correlation coefficient as

5 Mo+ nade

=0.1266
¢ nyL+n
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Therefore. ituting these esti in the formula. we can

estimate the cell probability for each group for the proposed model as given

below:

For Male Group:
B = Pubre + 0v/Pridubradiz = 0.0710.
B2 = Budiz — 0/pridubradie = 0.1370.
by = dubrz — 0y/Pridnbradu = 0.1655.
By = dudz + 0v/Buidubradiz = 0.6265.
For Female Group:
bon = Pubn + 0v/Prdnbrin = 0.0436.
bayz = b — OV/BrGubrads = 0.1252.
B3 = Guube — 0\/PriGuibrader = 0.1183.

b3 = G2 + 0V/Pordubradn = 0.7109.

Classification Criterion:

Now following the classification rule (3.3.12), it is readily seen that any new

observation belonging to cell

(1.1) will be classified to the Male group as 611 > fay.
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Similarly, any new observation that belongs to cell
(1.0) will be classified to the Male group as f12 > bz,

(0.1) will be classified to the Male group as fi3 > 65, and

(0.0) will be classified to the Female group as fyy < 6as.

3.4.2 A CCSD Based Simulation Study to Examine
the Performance of BMA and MBA for Classifi-
cation

As the sample sizes n, = 702 and np = 726 are sufficiently large the param-
eter estimates can be considered to be very close to the population values.

iscl we consid-

In order to compute the iri ility of
ered two hypothetical groups G; and G,. Under Gy let py, = 0.2080 and
P12 = 0.2365 and correlation coefficient 0 = 0.1266. Similarly, under G let
P21 = 0.1708 and pap = 0.1639 and same correlation coefficient o = 0.1266.
These parameters are exactly the same as the corresponding estimates ob-
tained for the CCSD data. The steps involved in the simulations are as

follows:

1 Using the same procedure as discussed in section 3.2.2. a bivariate bi-
nary random sample of size n; = 702 is generated from group G, (Male)
with marginal probabilities py; = 0.2080 and p;; = 0.2365 and correla-

tion parameter ¢ = 0.1266 and on the basis of this generated sample
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the quaitities p, P, and &, are calculated by using the formulae given

in section (3.2.1.1).

o

Similarly a bivariate binary random sample of size n, = 726 is gener-
ated from group G (Female) with marginal probabilities p;; = 0.1708
and pys = 0.1369 and the same correlation parameter ¢ = 0.1266 and

the quantities pa1, P2, and ¢, are calculated.

w

Using ¢; and ¢,, we calculate the pooled estimate & by (3.2.8). And
finally we calculate the cell probabilities é(,)k based on MBA and 9(.);;

based on BMA. Ci ing these esti d cell probabilities for the two

groups (Male and Female) we check whether there is misclassification

in each of the two approaches and record it.

S

Continue step 1-3 5000 times and then we compute the probability
of misclassification for both the approaches MBA and BMA and the

results are shown below.

For MBA

Probability of misclassification = 0.0214.

For BMA

Probability of misclassification = 0.0574.
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The above results indicate that the probability of misclassification based
on BMA is 3.6% higher than that of MBA. This clearly demonstrates the
advantage of modelling the correlated binary data using the joint probability
function given in (3.1.1), in classifying a new bivariate binary observation

into one of the two groups.



Chapter 4

Classification of A Correlated

Binary Observation With

Covariates: A Model Based
Approach

Let Yy = [ym, ]’ be the 2 x 1 vector of two correlated binary variables

for the th (I

(itn, =+ Titus

= L.--

- .n;) subject in the ith group Gi.

Also let Xy

- .Zap)' be the corresponding p x 1 vector of covariates. A

layout for data of this type, for the ith group Gi. is given below.

Table 4.1: Data for Correlated Binary Model with p covariates.

Observation | 1 2 1 2 u b
Yin o ¥az | Tin Zaz Titu ZLitp

2 Yor Y | Tal Ti Tiou Tizp

1 vin  Yaz | T Tz Titu Zap

n Yingl  Yin2 | Tingt  Tini2 ZLiniu Zinip

86
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4.1 Covariates Based Joint Probability Model

Recall that for the ith group G; the bivariate binary variables Yi; and Yiz
are jointly distributed as

(i — pin) (v

Flyin, vl Gi) = Pl aiir ™ Pl ain™ |1+ 0

as in (3.1.1), where p;; be the probability for yin = 1 and pyz be the prob-
ability for yy, = 1. In the present case. however, the marginal probabilities
pin and py, will be modelled as functions of covariates zy. More specifically
we use a binary logistic function to model these probabilities as follows:
eXudn
pi; = h(XuBy) = T oxa

fori=1,2; [=1,---.n;and j = 1.2. Herefor j = 1.2. 3 = [Bij1.*-* - Jupl’

is the p-di ional vector of

4.1.1 Estimation of Par s: An Esti ing Equa-
tion (EE) Approach

For the ith (i = 1,2) group G; and for known 6. we first estimate the
8i; = [Biji, -+ . Bijpl' for j = 1,2, by using the estimating equation approach
discussed by Prentice and Zhao (28], and other authors. More specifically

Bi = (B4, BL)" is the root of the quasi-likelihood estimating equations

n
wrt YOOV S =0 =12 (4.1.2)
=
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where Sy = Yu— E(Ya) = [y1 —Pir. Yuz—Pasa]'’. Vi is the variance-covariance
matrix defined as
( Var(ym)  Cov(ya, y.:z))
Cov(yin, yin)  Var(yu)

Pingin @ ‘/P-uqmpunqxnz)

Ov/PirGin Pz PizGitz
By oooam 0o 0
Dy = 0 0 e Spiz.
Ben T By
(d&‘x e diy dif e d}&)
Gy e dp AR A

with
Xlidim
ZWEHm forw=m: w=12%

P —
din = B T (peXatmy
0 forw#m

The solution for 3;; for j = 1,2 may be obtained from ({.1.2) by using the

well-known Newton-Rapson method. This is, however, equivalent to use the

iterative equation given by

Gt +1) = (t)+(ED'V,,’D,, ZD Vii'Sa), (4.1.3)
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where J;(¢) is the tth iteration value of 3 and the expression (-), denotes
that the quantities within the brackets are evaluated at §(t).
Now at the (¢ + L)-th iteration the probabilities py; and py, are estimated as

. eXudn(t+)
Bt +1) = ——F=ees
1+

and

N eXidialtr1)

Pie(t+1)= 15 odamn for I=1.---.n;
respectively.

For convenience, let ¢ computed from the ith group be denoted by o;. Now
to estimate ¢, that is to obtain &(t + 1) from B(t + 1) and hence from

Puj(t + 1), we use the method of moment and compute

(4.14)

St+1) = nz A(yxu —ﬁ.n_“ + 1)){1{-12 ‘ﬁ:lz(f‘*’ 1))
= Vo (t+ D (t+ 1)pua(t + 1)Gualt + 1)
This new value of d;(¢+ 1) is thea used in (4.1.3) to obtain 3(¢ +2) which
in turn produces ;(t +2) by (4.1.4). This cycle of iteration continues until
convergence. Let the final estimates be 3, and ¢;. Next as we have as-
sumed common correlation in (4.1.1), we estimate this common correlation
parameter ¢ by pooling ¢; and @; as

Mgy + gy

6=
n +ny
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We remark here that one could also estimate the ¢; (i = 1,2) and eventually
the ¢ parameter by the EE approach. This approach, however. will require
the computations for the third and fourth order moments of the joint binary
probability distribution, which appears to be complicated. Alternatively. as
the probability model of the correlated binary variables is known by (4.1.1),
one may also use the likelihood method to estimate ¢;. But the computations

for this type of likelihood estimates also appear to be complicated.

4.2 Covariates Based Classification Criterion

In classifying a new correlated binary observation with covariates into one of
the two groups G, and Ga, we use the same classification rule (3.2.3). That
is, classify a new yo = (y10, Y20) into Gy if

(Eryrete o0 L-yo _ ovio 1-yiopyo 1=y 5
6> o = [P PR - P Plaaf] . (425)

where X, is the covariate associated with the new observation y with

&Nl
Pilok = m i=12 j=12,
and
i = \/Pito1GiotPitozBiaz (i =1,2)
When the are unk we use the il ion rule (4.2.5) after

replacing the 8 and ¢ with their esti: The i ion rule
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(4.2.5) then reduces to:

5o (L0 g Al-vio s sl-ya _ smo sl-vio s sl-vo 5
6> o [P il Pt — Al Pindid”] . (426)

to classify yo in Gy.

Note that for the two cases whether i are i with

or not, the classification rule appears quite similar. The difference lies only
in the estimation of the parameters 3’s and ¢. [n the first case, when there is
no covariate, the estimating equation (3.2.6) for p;1, and p, i = 1., 2 does not
involve the variance covariance matrix as it is constant for both groups G
and G, whereas in the second case the variance covariance matrix plays an
important role as shown in (4.1.2). As there is no extra burden in computing
the classification rule in the second case (as compared to the first one without
considering any covariates) except this difference in estimation, we do not

pursue further simulation for the classification problem with covariates.



Chapter 5

Concluding Remarks

Classi ion of a multi-di ional observation into one of two groups is an

important practical problem. For the cases, when a multi-dimensional obser-
vation follows a Gaussian or a continuous distribution, there exits numerous
studies (cf. McLachlan [25] and Seber [29]) for this type of classification prob-
lem. But in certain specific situations, for example, in biomedical applica-
tions the multi-dimensional observation may be discrete or, more specifically,
it may follow the multivariate binary distribution. In a further specialized
but important situation, one may even deal with the classification of a bivari-
ate binary observation. For example, we refer to the CCSD data discussed

in chapter 3.

Unlike in the continuous case, this type of classification problems for bivari-
ate binary data are dealt with by using a suitable distribution-free approach
or a certain semi-parameter approach such as BMA discussed in the thesis.

In the BMA, the joint probabilities under two groups are estimated by using

92
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the multi ial based i likelihood estimation i This is

mainly done as there is no joint probability model known (or available) for
the bivariate binary observation that may belong to any of the four cells. It
is, therefore, not clear how the correlation between the two correlated binary
data is taken into account in such a basic multinomial approach. Alterna-
tively, in higher dimensional cases. a certain log-linear approach is used to
interpret the association of the variables. But as shown in chapter 2, under
some conditions, this approach is basically the same as the BMA in classify-

ing a bivariate binary observation.

As argued in the thesis. we have chosen to model the joint probability of a
correlated bivariate binary variables by following the idea of Prentice [27] (see
also Sutradhar and Das [33]). This modelling takes the correlation between
the two binary variables into account in a natural way. It is shown in this
thesis that for the large sample case, the parameter of the model including
the correlation parameter (¢) may be estimated with sufficient accuracy. We
have then used these estimates to estimate the joint probability under each
group and used the optimum classification rule to classify a new observation,

based on the itude of the esti babilities in the

cells of the two groups. We have conducted a Monte Carlo experiment with

5,000 simulations to examine the perfc of this new in clas-

sifying a correlated bivariate binary abservation as compared to the BMA,

where no model is known or available. It has been shown that in general, the
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delling of the cell probability has a signi effect in classifving such
an observation into one of the two groups. More specifically it was found

that the probability of mi: i ion is less if i ion is based on the

proper modelling.

We remark, however. that although there is an immediate generalization of

the bivariate binary to the ivariate binary dis-
tribution, this type of generalization puts severe restrictions on the possible
values of the correlation parameters. Therefore. it may be better to search
for a new approach to model such higher dimensional binary distributions.
Alternatively, we may examine the performance of the distribution-free ap-

proach or kernel approach to classify such observations. This is. however.

beyond the scope of the present thesis.
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