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Abstract 

.A bi\ariate binarv ohsenation is traditionally classed into one of the 

two panible p u p s  under the assumption that the e l l  counts follow a ruir- 

able muitinamial distribution. But. in the traditional approach. the joint 

probability for each of these mil munts is unh-. Consequently it is not 

clear, how the traditional app-h takes into acmunr the correlation that 

may exist between two Z-dimensional binan' observations. In chis rhesis. 

following Prentiee [ Z i ]  (Biometries, 1988). we model the cell pmhabiliries 

by a suitable bivariare hinap dinribution and d n e  the deer of this 

tppe of modelling in clarsi&ing a new mrrelatd bivariate bin- obrena- 

tian. The performme of the usual optimum elasPitation procedure based 

ao the proposed modelling of the cell probabilities are then mmpared with 

the modei-free existing procedure. This is done through a simulation. hv 

comparing rhe probabilities of miscl~ificaearion for the two approaches. for 

Mnous sample sizes and ~eleeted valuer of the marginal probabilities as veil 

as correlation parameter between the two biw obbenarions. \Ve tllwtrare 

the use af the joint probability modelling in dasi6cation by analping a corn- 

bind data set fmm two epidemiological s u n w ~  of 6 1 1  ?ears old children 

conducted in Coaoeerieut, the Sew Heawn Child Sun? (NHCS) and the 

Eatern Connecticut Chiid S u e ?  (ECCS). 
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Chapter 1 

Introduction 

1.1 Motivation of the Problem 

Since R. A. Fisher's pioneering work (ef. Fisher [Ill) in rhe thirties in the 

area of elsrsifieation or discriminent anal.wk, there bas been e.xtentive mrk 

on this topic, mainly far variable of a continuous nature. This classification 

problem is quite imponant io practice. For example. in clinical studies. it 

may he very impanant to classify an incoming patiern bra a $uspeered dis 

ease gmup or into a noo-disease group. Here. in this r p e  of pmblem. ir is 

euscomav to study the behavior of patients kom both the diseae and che 

non-disease gmup and then b a e  the elassi6catian of the new patient on the 

infarmarion available Imm these two p p b .  Similar problem frequently 

arise in ocher biomedical, social. natural, and phpical reiences. 

.h mentioned earlier, most of the theory of discrimination and bvmigat?on 

of robustness properties for elaaif,eatioo criterion are b a d  on rhe normal 



and other continuous diitributions. In practice. there are many situations 

where the information may be binary or discrete. For example. consider a 

study in which information on rating of child's mental health status n- col- 

lected fmm a parent and also from a child's teacher. This rating is a measure 

of emotional and interoalizin' disturbance. obtained by dichotomizing the 

corresponding r a l e  -re at the clinical .*border-line" range. Here. rt ma? 

be of interst from certain .investigation' point of view to determine the sex 

of a child in question bared on the information provided by both the teacher 

and the parent. It is clear that t h i  is a elagsikation pmblem for a bivariate 

b i n q  obsemtion. 

The pmblem of dismmination with binary data is. however, not adequately 

addressed in the literature. There are rome approaches suggested in the 

literature (e t  Seber (29) and the references then in) to deal with discrete 

data. Problems m k e  when the binary data are dependent. In our example. 

it is also reasonable to m e  that the parents' and teachers' racings are 

pmitiwly correlated ar they are rating on the same child. Sametimes it 1s 

not eilPy to consider the pattern af dependena amoog the binary variables. 

Thls situation is noticed in the previous studies by Bahadur [j],  M m h  [24], 

Ott [26]. Goidstein [16], Lachenbruch [22]. MeLaehlan [25]. and others. Con- 

squentl2: in the &sting literatwe, this type of correlated binary data have 

bee& elassiLed based on a saltable multinomial distribution for the count$ in 

each of the four cells, without modelling the pmbability smcture in t e r n  
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of a mrrelatlon parameter T ~ M  obmatlon motrwted us to model the cell 

pro- m thebumate bmary cam by a sutable probabkty model tak- 

mg the mrrelat~on rnta ~ccount m a naturel wag and to examme the effect 

of auch mod- m c h m f y w  a btwmue &pry observat~on lnta one of the 

two SWW. 

huthemy~re, m praEt~ce, we may have mndated bumy data mth a set of 

cownates for each of the mdmdmk m the stody In the t h m ,  we have 

a h  mdrnled th~4  w 81K1 dmw& the o b & ~ Q ~ n  of B blmate  bm?q 

obmaCon when cm&Mm for ur&idmk are d b  

1.2 Objective of the Thesis 

The msm obp%~ues of thki them a to ensrmne the effect oi tbe moddbngaf 

thecell pmbabd~taes fa B buVBnate tanmy data aet tn daarsfylng &new o b  

V a W  UltO 0- ofthe k 0  @OUp The &penfie plan of the the4M LS 88 f h  

In &apt- 2, me pmv~de detad bdqround of the d&catm problem for 

wrrabla of r mntmuw and dmete  nature 

Cbapter 3 concentrstsr on the d q t l o n  of d d ~ l l w  mth mrrelated 

bmary data by uslug an appropate probabdlty model More speafirdy, ~ r n  

Senturn 3 I, me pmpoee a )ant nrobabrfitr model fa c ( ~ n L a M d  bmary data 

as a functbn of m@ probablhCm and the atructurd m l a t r o n  param- 
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em. Section 3.2 is dedicated to develop the optimum elassificatioo criterion 

b& on the prop& approach arbere the cell probabilities of the four eelk 

of the bivariate binary data set are modelled in berms of the marginal prob- 

abilities and the eomlatiao parameter. .Also in the same Section 3.2. we 

eompm and cootran the e d s t i g  classification procedure e t h  the p m p d  

procedure, where in the existing appmafhes, these do not have aoy spedfie 

probability structure for the cell eouots under investigation. In Section 3.3, 

we have shorn, using simulated correlated binary data, how our suggested 

probability modelling performs better as compared to the situation where 

the cell pmbahilities are not modelled hy wing any probability distribution. 

And hally in Section 3.4 we illustrate our method by a slutable example. 

Chapter 4 is mncerned with the darsifieatian of mmlated binary data with 

covariaten. The estimating eguarion for the regresioo parameters a well 

as the comlatroo parameter are computed based om rhe informatiom of rbe 

C d ~ t e 6 .  

We mclude the thesis in chapter 5 with some remarks about the impor- 

tance of modelling the cell probability in clabsifjing a new bivariate binary 

obeervation into one of the two gmup. In the same chapter, we have also 

dweussed the pmibilities ofwme future research in this ma.  



Chapter 2 

Background of Classification 
Problems 

The problem of e M c s t i o n  ariser when an inmigator maker a number 

of measurements on an individd and wishes to elassif? the indi>~dual into 

one of sweral categories on the basis of t h e  mearurernencs. In brief. one 

may state rhe problem as loll-: Given an individual with certain m e m e -  

ments: if several population exist from which this indi%idual ma). have come. 

the question is. from which population did it arise? 

Classi6cation under Certain Continuous 
Distribution: Parametric Approach 

Them is a vast literature on direrimination for this erne. In order to elarsih. 

an observation into one of the populatioos, Fisher Ill] suggested as a ba- 

sis of clarsification decisions the use ofa discriminant funnion linear in the 

mmpnents of the observations. Other bases for e l d c ~ t i o n  have included 
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likelihood ratio tests (ef. Anderson 141). information theory (KuUbaek [211), 

and Bayesian tehnique~ (cf. Geisrer 1161). In all =ma. sampling theories 

have been considered under the wumptioo that the populations involved are 

multivariate normal. The problem of el-&cation hss slso been studied for 

other continuous diitributioos. See, for example, Kariya 1201. and Sutradhar 

1321 for discrimination anal.wis uoder general elliptical or t distribution set 

UP- 

2.2 Classification for Continuous or Discrete 
Data: Non-parametric Approach 

In the continuous set up, there c+t some other approaches where robust dis- 

crimination criteria are wad to classify a new observation into one of the rwo 

or more group. T h e  clauification procedures are oor dependent en any 

panieular distribution. For example. Chen and Muirhead 181 coonrueted a 

d'wriminant procedure by deriving robust discriminant functions using p n t  

jection purruit criteria. Projection p-"it, a computer-intensive methodol- 

ogy, was first suecesfully implemented on the computer by Friedman aod 

Tukey 1141, and thorough review have been given by Huber [18] and Jan- 

and Sibson 1191. In order to waluate the robustness and the performance 

of their diseriminaot rules under -us diitributional situations, Chen and 

Muirhead [8] (see dso Chen 17)) did a Monte Carlo simulation based an the 

hivariate normal. Cauehy, lognormal, and contaminated normal distribu- 
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tions, which are mntinuous. There a h  edst similar hut diBerent (than the 

projection pursuit method) non-parametric clasi&ation approaches in the 

literature. For example, we refer to the references in bleLaehlan (chap 9) 

1251 for det&. Among t h e  approachs. the wa l l ed  kernel discriminant 

analpis is widely used in non-parametric d d c a t i o n  a d p i s .  The kernel 

density estimator, originally suggested by Fix and Hodges [13], can be wed 

to estimate the demity of bath eoothuous and discrete feature data. The 

kernel method may be described in brief ar follows: 

Let yd he the q-dimensional Ith (1 = 1:. . ,R)  observation in the a h  p u p  

G,(t = 1;. - .PI. For a eontinuom q-dimensional featearurn -tor Y. a nan- 

parametric estimate, f!"'(y). of the ith p u p  density f.(y) provided by the 

b e l  method is 

( y )  = ($1 ($1 K ( )  (2.2.1, 

whew K, is a loemel fumetion that integrates to one, aod h, is a rmwthing 

parameter. The smoothing parameter h, is horn also ar the bandwidth 

or window width which is a function of the ith groupsample she n,. With 

mast applications, the kernel K, is Gred and the smoothing parameter h is 

specified sr a function of the data. Usual13 hut not &wan, rhe kmel K, is 

required to he nonnqegatiw and symmetric, that is, 

K ~ Y )  2 0. and Kdy) = K,(-y) y 6 F 

If the ahow mnditioo hold., the kernel density estimate can be interpreted 
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as a mixture of n, eompooeot dermties in equal pmportlons 

By virtue of its dekition, the kernel density approach to estimation is resirr 

rant to the e6wt of outliers. This is because Kq[(y - ya)/hl must become 

small if y,, is far from y. For mmputariooal aspects of kernel density m i m e  

tion we refer to Silverman (&ion 3.5) [SO]. 4- the problem is to chmse 

the kernel function in the definition (2.2.1) of the kernel density estimator. 

Epanechoikov [lo] and Deheuwis [9] used an -ptotie argument to show 

that there is \pry tittle to eheose herween different kernel hnnions. . b o n g  

the various Lernels considered by CamuUo. [6) laas the -called pmduct 

kernel, 

K ~ Y I  = ~ I K L ( Y , ) ,  
,=I 

where Kt is a univariste prohbility density hnnioo. This yields 

A common choice for the univariate kernel is the univariate nandard 

normal density function. Wth  this choice, fK'(y) is estimated by &spherical 

normal kernel, 
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where M. = h:I,, and d(x: p. E) denotes the multivariate normal deosig 

with mean p and covariance matrix B The analogue of (2.2.1) for a discrete 

feature vector is considered in Section 2.2.1 in the cooten of a spcial mul- 

tivariate binan data. 

2.2.1 Kernel Discriminant Analysis: A Non-parametric 
Approach for Multivariate Binary Data 

The el854Seation problem based on binary data may arise in many biomed- 

ical situations. For an example of chis type d problem we refer to Anderson 

a al. (1972) 131 where the condition keratoeonjuncrinties sicca. or dry e . ~ .  

is nudied. The nudy refer. to 10 symptoms (redness. itchmew. soreness or 

~ o .  burning, ete.) that are associated with this mndition. E d  symptom 

is either present or absent in eaeh individual, and they are expected to be 

correlated to one another. for a given -tor it is of interest to make a diag- 

nasis ( y ~ a o )  for the &ern. A training sample of M disearxd patient. and 

37 noo-&wed patients was available for me in diagnosis. Since the mul- 

tivariate binary density is not Imm, one may give a special concentration 

towards kernel discriminant analysis in the contm d th i s  type of binwdata. 

FoUaaring .Aitchisoo and .4ithn [I] a binomial kernel may be used, whereby 

one estimates I.(=) as 
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&(y : y*, h,) = h ~ - ~ ( 1  - k)6 

wi th+Sh .< l . and  

4 = IIY - y.r1r2 = (Y - Y*Y(Y - Y,,J 
Kwe put h. = I. then j!K'(y) reduces to the rnultimomialcsrimste n,(y)/s, 

where ~ ( y )  is the number of sample points with y -- yd for dl I = 1.. . . . ni. 
.As h deerease fmm one. the smoothing of the multinomid estimates in- 

c r e w .  ro chat at k = I/?. ir puts equal m a s  112. at possible realiations 

of Y 

Onee the density of the i-th group G, ( i  = I.?) 1s mimared by wing the 

binomial krmei. the n m  obemt ion  Y may be eias~fied to GI provided 

il'K'(~) > fiK'(Y1 

Ott and Kmnrnal [ZE] also introduced a non-parametric method of density e+ 

timation lor multivariate b i n w  data which is b a d  on orthogonal emansion 

of the density in re- of a d i i f e  Fourier series. Liang and K r i a h n d  [23j 
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urad the same approach. only with difIewnt mefficients. Both papers d k m  

the application of there procedurer to the e l d a t i o n  problem. Chen et 

al. 17) further enended his mrk, and Staffer [31] expanded the dimuion to 

binary timeserier data. 

We no* here that this kind of e l ~ f i c a t i o n  problem for binary data has 

been studied in the literature using the semi-parametric appmach. Vie now 

discus this approach in the mnten of bivariate b i i  data in the foUoaing 

-ion. 

2.3 Classification Rule for Bivariate Binary 
Data: Semi-parametric Approach 

2.3.1 Basic Multinomial Approach 

Suppme that yl = (y,, B) is a m o r  of two b i n w  rariabler. each taking 

the value 1 or 0 and it may arise fmm G. for I = 1.2. For J = 1.2. now let 

y, = 1 with pmbabiicy pi,, and y, = 0 nilh probsbilicy p, = 1 - p,, if y 

comer fmm G, (i = 1.2). Then y' can armme value of one of the following 

four mvltinomial -Us 
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Let q,,k be the pmbabilicy that the random -tory falls in the multinomial 

cell k ( k  = 1.2.3.4) and ii, be the proponion of the I-th p u p  in the whole 

population P of two p u p s  G,  and Gz. ZTow if an observation y falk into 

cell k, then the optimal efassifieatioo rule w: .&go y to GI if 

a=&,% (2.3.5) 
f d ~ )  @12lt 

Yore here that although we assume that qSlt be the rnultinomial cell p m b  

ability, no specsf form of this probability is assumed here. Coosquently, 

the approach considered here is a semi-parametric appmaeh. ZTow the cell 

pmbabilitier Llc,lt's have M be ~ t i m a t e d  from the sample data. Without 

any lass of generality, let us amrme that the y,'s are mrrelated. rather than 

independent. Also, suppose that we have a random sample of size n (fued) 

t om the population P, of which R come from G,, ~o that n = n, Cnz. Out 

of these n, observations, let nIip fall into d l  k so that n. = x,n(.)r. Xow, 

since 
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the l ihl ibad function baned an the mailed minure sampling appmach (cf. 

Seber 1291, Seetion 6.4.2) is awn by 

2 4 

L(@!.I,,T,~Y) = n n ~ [ n ~ , ~  cell frequencies and y E G.1 
,=I L=l 

2 4 

= JJncec,ler,r~~~. 
,=I L=l 

2 1 

= nlc nc.1 (9.3.6) 
,=I *=, 

The madmum likelihood estimates of q i ) k  and li, are obtained by maximiz- 

ing the likelihood with r e ~ p e t  to and z8 repetiwly.  The estimates 

are: 

81.1k = %!! and +, = 5 

Substituting these estimates in the optimum flasihatian rule (2.3.5) giver 

the simple rule. for cell k ,  as follows: Aaign y ta GI if 

% k=1.2,3,4 when r ,=u  (2.3.i) 
nt n, 

which reduces to 

~ ( ~ ) t  > n(2)h k = 1.?,3,4 when nl # lil (2.3.8) 
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2.3.2 Log-linear Representation in Basic Multinomial 
Approach 

The eel1 probability involved in the multinornial model, for bivariate b i a y  

data, can be r e p m t e d  by a log-linear model for better undemanding of the 

arroeiation bet- the two correlated binary variable. In this approach. 

though, the cell probability is not cansidered to haw any parametric model. 

the log of any panieulm eel1 probability is exp& ar a linear function of 

the main effects and interaction of the ~wo variables. See equation (2.3.9) 

below for the specific relatioarhip. But again. at there is no specific form 

for the ell probability, the approach is still coosidered ar a semi-parametric 

approach. 

Let Y' = (Y,, Y,) be the 2x 1 random veeror of two correlated binar?, variables 

Y, are & with joint probability function giwn by 

where rrm + re, + r,, + rr , ,  = 1. Note that in t e r n  of the notation of the 

previom section, by omitting the sulfu for gmup, we haw 

r,, = 8,. rr,, = h, ;ro, = h, and rrm = 84. 

These probah~lities may be represented in the form of the following (2 x 21 



table: 

where the probability r,, cornponds la the cell reprepend by I and 1 where 

thee 1 and j are the pcssible values of y, and yz. 

Further, note that in general in lag-linear models (see .Agresti (1990)) for two 

diensioas. the log of the cell mean k e x p d  as a l i a r  function of the 

parameters. Let m, be the mean of the (t.j)th cell. .b m, (= nn,,) is the 

cornant multiple of the corresponding cell probability ii,. one ma? lik ro 

exp- bgn, Instead of logm, as a linear fuoetion of che parameters. Ler 

p,, = log n,, and 

Total It 

Here p denotes rhe overall mean of the (logx,,}. Then the log of r,, ma? be 

express& in the fonn of linear function given by 

0 I TOO ro t  I vm + TO,  

M 
0 1 
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where 

A:' = a. - M  is the rth mweKcct dy,. 

A? = p ,  - P is the lth mlumn effect of yl, 

d A:" = p., - p.. -fit + p is the interaction betweep y, and yl. 

The notation in (2.3.9) is similar to that for the usual rwo-way analysis of 

mximee. The raw and the column e&ms (A:') and (A?], rerpcctivel~ are 

defined w, that they are deviations about the mean and hence 

Thus there is one independent ma, effxt parameter. ray u, = A:' and one 

independent mlumn eKeet parameter. say ur = bn. Also we haw one inde- 

pendent asmiation parameter. say u s  =A$= as 

Writing u for p and using (2.3.10) and (2.3.11) one obtains from (2.3.9) that 
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In the a b m  approach, the model given by (2.3.9) fielding four equations 

(2.3.12). is known ss the log-linear model for the multinornraleell pmbabilitv. 

h t e  that as mentioned before ul and ur in equation (2.3.12) are known as 

the main effects and ut2 is knom as the interanion effect and they can be 

e x p d  as 

w = ~ ( - I ~ ~ ~ ~ ~ + I ~ ~ ~ ~ ~  - ~ ~ g i i , ~ + ~ o g r r ~ ~ ) =  LIOg- 
4 Iltiliim 

"$2 = +(logtim - logirot - logam + logs,,) = l o g e  
4 ilO,T,O 

It is clear that if the last odds ratio is unity then u,? = 0 indicating that y, 

and y, are independent. 

Therefore the log linear repmentation helps m interpret the aaweiation be- 

tween y, and y, without specific aaumption about the joint cell pmhahilin. 

of y, and n. This represemtation far the ssodation, however. may not be 

meaoingful, ifthe enact joint pmbabitity structure does not permit log-linear 

reprematton. 



CHAPTER 2 BACKGROUNLI OF CLASSlFICATION A 
2.8.2.1 Classfiation Rule for Bivariate Binary Data 

The log-lmem repr-tatlon m (2 3.12) can be rewritten, in general, for 

approwate durn  of yr and a, as 

Now suppose that Y € G', thm ona mey write 

log = 6 + A&+ &a + &,%~y, (2.3.15) 

where 

6 = firp - &PP; A = 8t)c - @s11 

A = a;,, - B;,,, and A1 = @,]a - BEn)a 

Thanfore, ~emrdmg to the optimum W e a t r o n  rule (2 3 5), %wga aa 

u1Lvidusl mth measmeat  y to GI d 



In practice rhese 3 parametem are not k n m  and rnusr be mimared b r n  

the sample data. If we use the d - l m m  conditional sampling and enimare 

the 3 parameters bared an the pastenor IiLelihood isec Seber :Zj. -,on 

6.12) rhen ae obrain rhe eiarsi6earion rule as 

Soa to  verif? che e l d a c i o a  rule ('2.3.171 for rhe d m  parameter else 

ne revxire the likelihood function in 12.3.61 iu 

Sore thar quae often inference is made bared on LC rarher than L.Lo ,see 

Seber '291. sffrion 6.4.21. K. in this ucrion. follow this and o h ?  rhar 

L. ean be explieirly mitten aa 



1 a yr.l,, B G, ' = { 0 othenrire 

e t h  y~.br a the Czh obsenatioo of rhe j-rh binary rariable in rbe t-tb group 

G, and for dven wetor Y = Yo the pmrerior disrriburion of G: is debed 

as 

ql(Yn) = P(GtIY =Yo) 
PiY YolG,)P(G,) - 

P(Y = Y o I G ~ P ~ G I )  - P(Y = YoIGdP(G2) 
f,i~,,!J21.1 - 

f,iar,.u2iii, -f2iyr.Y2)m 
iileY"J 

= - since @ 12-3-15) fi(y,.y4 = f2(y,. y?)cY0" 
r,eY.'3 -z2 

eYo'3 
= -  l +  eyo,3 for r , = 7 2  

nich Yk = i l . ~ , . ) t t , y i . ~ u , ~ ~ , ~ o y ~ , ~ ~ )  and 3 = i$.3,, &,A2)' and 

q;(Yo) = 1 - 9;lYa) 

Sow co mimare rhe 3 paramerer.. .ae remite L.. ar 

? ". YO'$ *-I 

~ ~ ( 3 1 ~  = y e )  = nn (-)" (-) 
.=I , = I  

- ewIXLL XYL, ytl& - Ayr,~e A A Y ~ ~ I ? ~  - h ~ ~ i . ~ i l ~ i s ~ u i i  
nl, n Z L ( l  +w[$ 7 3LVlr)~ 7 h~(?l?1 h?~ll!l,Y13~l) 

The log of this LC is gipiien h? 
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1 .. -CClog(l + ~ k %  + J,Y~,I,I + &Y~,IZ + 3i2~(tl~~~lqz~) 
I=, ,=I 

Xow the pmteriar likelihood estimate for 30, 31, 32, and 3,s may be o C  

tamed by salving the following l ikel ihd estimating equations derived fmm 

the above log likelihood hmet~on. The Urelihaod enimating equationn are: 
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La &. 8,. $, and $* be the solutions of the above estimating equations 

for 30. 3,. A, and 3 , ~ .  rqecrively. Then. in terms of n~,),, the above four 

equstioos reduce to 

Solving these equations for 3's. we get 

Consequently, by using the above @s in the clsEeatiom crireria 

=& +j ,y ,  +&y, +&2y,y2 h 0. 
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we obtain 

n(t)r > nn,b k = 1.2.3.4 

ar the elarsification criteria for the u n k n m  pameter to elarrify an obser- 

vation (y,. n )  af cell k to GI. 

Note that the value of computed by (2.3.19) helps one to understand the 

modation between y, and n ,  provlded the linearity assumption is valid. We 

further oote here that ford (> 2) binary variables care, if higher order inter- 

seetion are omitted from the log-linear representation, then the elarrifieation 

rule will be different than that found in the bssie multinomial sppmaeh. 

Remark that although, in general, the multinomial approach direused in 

Seetion 2.3.1 and 2.3.2 is not pawnettic for mrrelated binary data. it is 

however parametric in the independent set-up as in the latter set-up. the 

joint probability directly depends on the marginal probabilities. W e  discus 

this independent case in brief, as foU0~1. 

2.3.3 Independent Binary case: A Parametric A p  
proach 

In the independent ret-up y' = (I,,&) is a vector of independent b i m  

variables, each taking the value 1 or 0. It then follorss that for given y E G., 

the probability distribution of y is given by 
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all-g one to m p w  the eell probamty as a fundton of W, and pil 

as 

e,,,l. = fdu) =$(I -Ul)'"&(l -Pa)'-*, 

forymeellk(k=1,2.3.4) 

Qesrly as we can exprm 4 probabibty as a parametric fun-, ~t 

asn be tmted as p+ma~tm model for eedepdent bmpry data and the 

dasslfrcatme dtenon (2 3.5)  an be 8 u n p W  by rsplsung f.(y) m h  8(9, 

So far we bve diseuesed m genaal the non-psrametnc or aarm-parametric 

chfiestlanmle for bmmy data, though independent hnary m a specla1 case 

of the parametric approach Note, however, that sn &ahon proeedue can 

not be dmtnbututn-free ee m hteral sense (d T W Andenan 121) For lf ~t 

-, then ~ t s  errw rates would not d e w d  on th 
deatlue vector and would be canst& ewn when all the poup drntnbuhons 

were ~dentsal (by a contnu~ty s p n e n t )  Therefore a m e t n c  sppmaeh, 

d m  how t h ~  madel, m 81- B bettez approach 
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It is clear that the elacdifiestion criterion discussed ahwe does not take into 

aemunt thespe ib  oaturnof the correlation coefficient. It is, however, l m m  

that comlated binary data can well be modelled an a function of the struc- 

tural correlation parameter. Bahdur [5] suggeaed modelling binary data 

based on the djuameot factor on the correlation structure. Preotice 1271 

and Sutradhar and Das [33) have a h  anal& correlated binary datb If the 

data nally follows this diiributioo then naturally one would be able to do 

efficient analysis a~ compared to the ordinary (without considering correla- 

tion parameter) method. The purpose of the thesis is to %mine the effect of 

the s p d e  correlation structure wer the elsgsifiestion when no distribution 

involving correlation parameter is considered. 



Chapter 3 

Classification of A Bivariate 
Binary Observation: A Model 
Based Approach 

In the oon-parametric approach. kernel mechods are used to clasnfy a mu!- 

tivariate binary obsemtion into one of the nao groups. In chis approach. a 

kernel me- the distances of a own observation fmm sample obsem- 

tiow of p u p  1 s well as of group 2 and c i d e r  the given ohervaciao to 

a gmap bared on the minimum distance. In the semi-parametric approach, 

however, this classification problem is formulated in a m u l t i n o d  &up. 

More speeifiedy, for a d-dimensional binary data, it is aaumed that an a C  

 emt ti on falls into one of the 2 " e U s  mth a certain multinomial Probabilitv 

which is wpeeified in general. .As d i s d  in the previous chapter in the 

m n t m  of hivariate bmary data, the dassifieation decision is made by cam- 

paring the corresponding eel1 probabilities of the two populations. 
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The nrm-par& or semrpamnetrie approach€%, mentwned abwe, are 

tredrwonaUy mmdered as suitable ch&ntnon spproach d e n  one encoun- 

tern ddimlty m modelllug the 8peafie jomt probab~bty for the b~wlate or 

multi-te bnary o h t m n s  But, as hvanate b~nary data analywp ts 

quite an unportsot @LC and as there ensts a table  probsbhty modelling 

far the ease, m thrs them8 we pmpose to efarsrfy a brmate b- 0- 

&on based on such pmbabd%ty modelling 

For bzvsnste b- pmbb&ty modelk@ we &r, for example, to the pmb- 

abhty model amaidered by Rent~oe [27], and Sutradhar and Dae [33] and 

descnbe the d e l l m g  of hmmate b- ease m aeet~on 3 1 Thrs model 

d be @@*tad to efarsrfy a oveo blmrmte bmaty obmvc&~n m subs=q"ent 

-0118 % advantage of modehg Ula tomt pbsb&ty  arr compared to 

the serm-panmetnc approach, will be demo&& thmugb a mub&on 

study m aeetlon 3.4 The linll be done by comparing the d c a t ~ o n  

pmhsbfity of such model bssed damfieatton nku mtb that based on 

serm-paametm approach 

3.1 Joint Probability Model 

Suppase that y = (yl, y2)' 1s a pair of correlated b m q  variablw eacb tahng 

thenl~tesloro Ldy,=lmthpmbaMtypllandyf=O~tbpbsb&ty 

q , , = l - p l l , ~ f y m m ~ h m m g k W p G ,  (1,1=1,2) A88~methsty~and 

y2 have a conanon carrelation Q in both the pups G, and 0 2  Fdlmmg 

i . ' .  I , '  
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Prentice (271 (1988. ~1031: see also Sutradhar and Da. [331), one map then 

use the joint pmbability deosir of y, and y, for the zrh (i = 1.2) p u p  as 

It is interesting to o h m e  that this joint prohabiliw pelds . ss e-red. the 

proper bin= marginal dens~ties for y, and m. .Uso the parameter o is the 

propereorrelation coefficient be-n y, and y,, which w. however. restricted 

bp 

Ziote here that this restriction an o. derived from rhe joint probability die 

tribution (3.1.1), is necenran. for (3.1.1) to be a proper joint densiv. 

To wri* the binary marginal density. we compute 

which is the pmbabiit)i demity of the binary variable y,. Similarly we can 

show that 

flvzlG') =eq2' 
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Thm yl and a are margtdy b- random mables wrth 

and Var(yjlGi) = MPU z =  1,2, 1 = 1,2 

To verify whether Q a the pmper conelUion d c ~ a t ,  we compute the 

e w w m c e  &ween yl and a as 

yleldlng the comhtron 

hnta = CW[(A -%)On -m)l _ 
4vm(nlGr)Var(alQ.j 

k twea  n aad l'h correbtran p"amter is nsually d m e d  to aa the 

StMctaral mmktioe parameter 
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The bivaMte binary density (3.1.1) has its natural generalization ro the 

multivariate- (d Bahadlu [q) where es m m p d  to (3.1.21, it becomes 

o-ary to put **re restrictions an the higher order correlation and inter- 

action. The anal!sis based on this rme multinomial binw- ease is. h o w x ~ r .  

b w n d  the r o p e  of this thesis. 

3.2 Classification Criterion 

The random mcror 1" = (Y,. F;) of two mrrelared binan- ~ariables Fi and 

Y2 ran rake the four pwibledaluer (1.1). (1.01, (O.I),and (0.0). Therefore 

given y E G.. y falls in the multinomid cell k with cenam probability. %y, 

(k = 1.2.3.4) which is deiermined from the joint probabilit?- function 

defined by (3.1.1) for che n p d c  cell. 

Thus if an ohemtion y to be classified. belongs ro ell k. then rhe oprimum 

clanri6cstion rule. due to Welch (19391, that minimizes the total probability 

of mirelarriihation is che following: .Ass@ y to GI if 

hbJ='&,? 
h l v l  a,, 7, 

(3:2:2) 

and to G2 orhemkc. where q is the proponion in GI and m(= 1 -a,) a the 

remaining propanion in G2 in a population P with only two pups. Sine 

el,,, for i = 1.2 is dellned following (3.1.1). for r, = rr2, this rule (3.2.2) 
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ciasifies an observatioll with y = (yl.yz) to GI if 

(-,)"xi- 
@>- ,, - , [&:q:;"p"n~k" - P%P~;~'&P; ;* ] .  (3.2.3) 

where lo, = $ZZGZG for i = I. 2. 

14 practice. the parameters p u , f i 2 , ~ , .  hz and o are usually not known and 

haw to be estimated from the sample data. These parmeten may how- 

ever be estimated either by the traditional madmum liheiihwd enimatioa 

method or by using the mil-knom marginal estimating equation appmach. 

The estimation of these parameters by these two methods is discussed in the 

following rwnon. 

3.2.1 Estimation of Parameters 

Suppose thac we have n, obematious from group GI and n, ohsenations 

from. group G2 ~1 that in total we have n = n, + n2 obsen-ations. Of these 

nt ohsenations that come from G.(I = 1.2). let q , ) r  fall into e l l  k. rhar is. 

n, = EL, nlXw Lec y,,, he the lth ohsenation of the 1-ch variable in the 

I-th group G,. Then the iikrlihoad hetion,  haxd on rhe mimure sampling 

appmach, is given by 
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Equation (3.2.4) is ao irnponanr special easc (when 7, = z? = f i  which may 

be re-*ma as 
2 1 

L, , , , , . o I  = trine:;;* 13.2.5) 
- .=, t l  

=here following 13.1.1). B r L I t ~ s  (k = 1.2.3.1) are $rxn by 

@,.I, = P.IR> - O..IGZZ = PI,P,~ 

el.,, = RIP, - O- 
[I - "\I 7 KG 

0 1 ~ 1 s  = PhR2 - o"%ziGG = q,,m 

5.14 = P . l P a + o ~ = q , , P a  

Fol lmng (3 2 5) the appropriate I~kebhood enunarmg cqusnons foi p,, p* 

aod o are sr-o b 
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mspmtiuelp, ahere I denotes the log of the likeliked hrnnion given in (3.2,s) 

and p = (p,,. p n ,  -1. m. my. It h dear h m  the above derisariver rhar 

the Likelihood mimates of p,,. n, and o do not haw any el& form. To 

obtain there &hates. om oeeds tomlw the abwe rhree equarions bu uring 

a complicated nteratioo t d q u e .  which we do nor p-e in the rb-. W e  

rather mimate these parameters b vdog the mu-h- mimaring q u k  

[ions appmaeh which we direus in the fdloaiog &ion. 

3.2.1.1 Marginal E s t h t i n g  Equation (MEE) Approach 

Since the rnmginal distributions of y, and y, are binarc in order to esrimare 

p,, and p s .  we can use the marginalmimating eqwatio. b& am the sample 

from the i-tb soup  G. ( i  = 1.2). gi%o b? 

n ; 'C~r ; - l s ,  = o, ,=I.? (3.2.6) 
I=, 

where 

for d l  1 = 1.2. - - - . R and 1; b the m\xianee mat* d&ed k 
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and Di is the matrix of h t  derimtiw 

D F ( Z  f )=( ;  :) 
Note that m the present m e  thm Vi matm dws not depend on the lo&- 

vlduals Thrs makes the estunatlon much - w ul mch chea the MEE 

reduees to the moments equatmns A m k  ur that t h ~  sunpLaty d not 

hold d the h a r y  lo@c regression ease 1s mnsldered where the ewanates 

may be ddwent far Merent lndivlduds (1 = 1,2, , m, f a  9 = I ,  2) 

.r\rrrung back ta the solut~ena for pn a d  pa, we ohtan from (3 2 6) that 

&,=wL!w a n d , d P B = w ? ! w f m , = 1 , 2 ,  (327) 
m V i  

mth &,=I-&, and & = I - &  

No* that t h w  estunates of the reargnal mbabIt~ea are 1n fact the eame 

as them mmmm & h h d  estrmatss based on the k c  mulmormal sp 

pronrb dLpeussed ln &Ion (3 2 1) More spaally, m the bnmc multmond 

appmach, the cell probabrl~trar are eat~msted by -g the maxunum h b  

h h o d  method wbcb subsequently produces the mgmal probsb1ty sven 

by (3 2 7) An mentlQned m the pmou11&pter, the eeU pmW1ty m such 

cases, howem, does not haw a @ form rm the amcbtion param- 

etsr lnyolved The &mate of the -clatmn pawnee ander the present 

awmach m e n  below, wh& m turn, d yield the cell pmhabthtm wr- 

mpadmg to the four cells 
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T ~ m p n d y  are d a t e  the mrrelat~on for the $th (% = 1,2) gmup by 4, 

(r = 1,2) and estmate tbcorrelat~on parameter * sssurmngp,, (1.3 = 1,2) 

we Lnown, by ustng the method of mnmente as 

Next, mneeit has been m e d  that the tao groupe ha- 

$ we .emate t b  mmbtlon m&ment by poohrigthe mfomatronfdleded 

horn taro LUUnples, ,as 

yleldlns 

~ l a = 4  by(328) ss 41=A=4, 

Thla moment &,mate ) s dsa cmwtent far 4 FoUavnng (3 1 2), th!a 4 

shod4 satrsfy the restndlon 

A<,<& 
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3.2.2 Performance of the Proposed Estimate: A Sim- 
ulation Experiment 

To examme the &a- of the p r o p d  &matas of the rn~~walprob- 

abdttle pal, ar, m, sod m, and the strunural correlatron parameter 4 

(dwwsd m the pmmous 8ectlon), we conducted a mulatvm Btudy as m 

the follanng. 

Us- the prop& density (3 1  1) for the t-th p u p  Gr, we have the condl- 

tlonal dmtnbntton of yd gwn yil = 0 aa 

S d a r l y  

f ( t k r t w = l ) = w = p i l [ l + ~ ~  f (F" = 1) (3210) 

I n ~ ~ s c o ~ b ~ ~ ~ l y a p l e o f ~ ~ h ~ u p G ~ w e ~ t h e  

f o ~ s t e p n  
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1. Generate binary y,, with pmhahility &I. 

2. If A, = 0, then generate bioary s2 with probability given in (3.2.9) for 

a given 4 and By,, = 1. then wera te  binary with probability given 

in (3.2.10) for the same 4. 

3. Continue step 1-2 n, times. 

For variou~choics of p , , , ~ , ~  and m1.rnh? as well ss 4, en generate tam hivar- 

ate samples of sizes n, and R? respectively. Morespecifically we have relened 

four Merent combinations of (nl,n2) ={(25,20),(40.30).(50,40), (lM),lOD)} 

and t h e  Merent choices of 4 ratkfying (3.1.2) under each of the three 

combinations d (p,,,p,,) -{(0.10.0.10), (0.10,O.~). (0.30,0.30)} and two 

different combinations of (P21.m) ={(0.50.0.70). (0.10,0.30)}- 

We carry out 5000 simulations. Under each simulation. we estimate the 

parameters pi, ( s , ~  = 1.2) using the formula (3 2.i) and the structural cor- 

relation parameter m by (3.2.8) and finally we compute the values for the 

parameters averaping the 3000 simulated estimates. The results are shown 

in Table 3.1- 3.6. Yote that in eafh table we have also shown an effetive 

number of simulation size, which we calculated based on the number of sue- 

e d  simulations depending on the computation of d. To he more specific, 

the calculation far 4 fails if either A, = 0 or #,, = 1. .Any rimulatioo yield- 

ing these estimated parameters b r e f e d  ta as an m u m d  simulation. 

The effective number of simulktions is then the di&erence between the total 
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attempted simulations and the number of m a n s f u l  simulations. The e s  

timates based on the effective simulation size are consequently reported in 

the second mw for each @. The results s h m  under 5000 simulations were 

computed by replacing p,, = 0 and fij = 1 with $,, = 0.02 and 8 ,  = 0.98, 

respectively. 

It is clear fmm Table 3.1- 3.6 that m the rvnple size i n c r m ,  the marginal 

probability estimatep ar neU rn 4 mimate get mry elme to the true param- 

eter values. More specifically, the large sample sizes yield significant gain in 

the estimation of 4. For example, when nl = 25. n2 = M in Table 3.1 the 

absolute biar in estimating 14 = 0.25 is 0.0175 whem for n, = LOO. m = 100 

the a h l u t e  biar is O.WO6 which is very smaller. .Use the standard erran 

estimates are found to be small and are mot reported in the table. lo the next 

section, these parmeter estimates are used in the appropriate elmification 

function in order to compare the misel&slfication rate of this pmcedure with 

that of the basic multinomial approach. 
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Table 3.1: Simulated Mimate  of the marginal ~rnbabilitieo and mmlation 
parameter for pu = 0.10, = 0.10, mt = 0.50, pn = 0.70. 
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Table 3.2: Simulated estimates of the marginal probabilities and correlation 
parameter lor p,, = 0.10, po = 0.70, h r  = 0.50, pm = 0.70. 

Parameten 0.10 0.70 0.50 0.70 

(n,,nz) Q Simulation # PIC PI? hl h Q 
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Tsble 3 3 Smuhted eatmates of the mqmal pmbabhhe and c o ~ t i o n  
p e r & f o , m l = 0 5 0 , m ~ = O M , p , = 0 . ~ , ~ = 0 7 0  

( 25,20) -055 5WO 
5WO 

0.25 SOW 
5WO 

095 swo 
5WO 

(40, SO) -0.55 5WO 
SOW 

0.25 SOW 
sWO 

0.65 SOW 
5M)(I 

( 5 0 , M ) )  -055 SOW 0499402995 04994 07012 -05586 
SOW 04994 o m 5  04994 o mia a53m 

025 5WO 04994 03012 04994 06984 02498 
5000 04994 03012 04994 06984 02498 

055 5W0 04994 02981 04994 07MO 05390 
SOW 04994 OZ991 0 4 W  Q70W OS3cJO 

(lW,lW) -0 65 SOW 04993 03cW 04993 0.7618 66456 
5WO 0 4993 03MO 048913 0 7018 4 5456 

0 25 SOW 0 4993 0.3015 0.4895 0 6989 0 2512 
SOW 04993 03013 04993 06WS 02512 

055 5WO 04993 O Z W  08993 07WO 05456 
5000 04893 Oa982 04993 07WO 05456 
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Table 3.k Simulated estimates of the marginal probabilities and correlation 
parameter for ml = 0.10. pa = 0.10, h~ = 0.10, pn = 0.30. 



Table 3.5 Simulated estimates of the marginal probabilities and mmlation 
parameter for p,, = 0.10. pn = 0.70. = 0.10. pn = 0.30. 

parameters 0.10 0.70 0.10 0.30 
(n,. m) m Simulation # Pci ht ht h 0 

( 25. 20) 6.20 5000 0,1013 0.7008 0.1029 0.3WZ 6.1861 
4384 0.1110 0 .6W 0.11U 0.2966 -0.1890 

0.10 5OW 0,1013 0.6994 0.1029 0.2998 0.0716 
4386 0.1110 0.7003 0.1145 0.3024 0.0955 

0:20 6OW 0.1013 0.6997 0.1029 0.2995 0.1538 
4383 0.1110 0.7023 0.1115 0.3023 0.1863 
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Table 3.6: Simulated estimates of the marginal probabilities and correlation 
parameter for p,, = 020, p12 = 0.30, -1 = 0.10, pl = 0.30. 

Parameters 0.50 0.30 0.10 0.30 
(n,,n.) @ Simulation # $,I $,  h, & m 
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3.3 Performance of The Classification Rules: 
A Simulation Study: 

As mentioned m chapter 2, m classlficat~on conk&, the k c  multlnomtal 

approach wea the d l e d  optlmum cl&catEon mtena whch sppenta 

to be a funet~an of only the cell counts lrrespectlve of the model for the 

data The pup- of the stmulat~on study ts to generate data, based on the 

model 3 1 1 and compare the performance of the bsple mult~nomial appro& 

(BMA) mth that of the model based appro& (MBA), where m tba latter 

m, the dasslficat~on a t m a  d e p e d  on the estunates of the parameters of 

the model mdud~ng the h c t u r a l  oorrelatlon parameter 

To be more spec&=, for the cases wlth & o m  parametem, the MBA e b  

SlfieatEon rule (3 2 3) a oven as clssslfy a om a h t w n  y = (m,yn) mto 

the group GI d 

(-1)~~tn 4 > 8 - 8 (3 3 11) 

Or eqwvalently, d an obwvahon y belongs to cell k (k = 1,2,3,(), then 

the optunum dass~fiuttm mle a to assign y t o  GI d 

d(,g>&q k=1,2,3,4 (3 3 12) 

where a the wtlmated eell probahlty under nrodel (3 1 1) for 1 = 1,2 

Forarsmplefork=l,wehavs 

C =ade+6&G3Z, 
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far the ith (i = 1, 2) p u p  under the model (3.1.1). 

in BMA. the classification rule is to assign y to 0, if 

$,p being the madmum m ti ha ad eaimate of the multinomial cell probs- 

hility BIzlt, where unlike in the p m p d  approach. el.,t doer nor have any 

specific structure, mainly in terms of marginal probabilities of yl and y, and 

their correlatioo. 

It m now clear that to examine the performaoce of the elaJrificat~on ruler 

(3.3.11) and (3.3.13) in e l m s i m  an individual ~ i t h  two correlated binsr). 

measurements y, and y, into one of the two gmup. one needs to derive the 

dintibutiaosafthese elamfieacion funnioos. which is extremely eompliested. 

Coosequentl?, we have chosen to examine their performaoeer empirically as 

rollom. 

For a given set ofpll. p~., m,, gn, and 9. ae fmt mmpure all the cell prob 

abilities under eaeh p u p  using model (3.1.1) and compare the respective 

cell prababititier of the two group to determine the dasibation mitetion 

to clmify a om oboemation belonging to that cell, into any of rhe rwo 

groups GI and G2. For exampie, tor a partieular choice of parameters. sa?, 

@=0.2,andp,, =0.5,p, ,=O.Zand~, =0-3.&=0.3,weobtain thecell 
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pmbabilitis for the Bnt group ar 

and the cell probabilities for the m o d  group 81 

elgl 5 e1211r e ~ , , ~  t e(212. ~ ( I ) s  5 elf13. e(,), t e(~).. 

Now, according to the e l ~ f i ~ t i o o  rule (3.2.3), any new observation that 

belongs to the cell (1.1) is to be assigned into group G2, ar eItl1 5 e(211. 
Similarly ar e(1)2 2 e(2)2, the same classification rule (3.2.3) leads to classify 

any new observation that belongs to the cell (1.0) into p u p  GI. The elarri- 

fieation of the observation belonging to the other tua eeUs may be similarly 

intemeted. 

Y a t  to compare the performance of the proposed Model-Bared Approach 

(MBA) ar compared to the Baric )rlultinomial Approach (B41A) we may 

generate two bi-te correlated binary samples of sizes nl and rn follow- 

ing the propmed model (3.1.1) and then compare the performance of the 

estimated clrwif~eation rules under both the appmaeher in c-g the 

selected observation into the comet group. To be more specitie, suppose 

that we generate two samples of sizes n, and rn based on the abwe selection 

of the parameters (p,, = 0.5, pt2 = 0.7, and h, = 0.3, pz = 0.3). We then 
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estimate and eI2)~ for C = 1.2.3.1 by MBA and BM.4 and eramine. for 

example, whether the conditions 8,qL < a,,), and #lilt 5 8,21L for cell 1 are 

satis6ed. If any of the two methods f& to satisfy this modition. then the 

individual in question (with value (1.1)) dl not be classified into G2 leading 

to mirlassifieation due to the method of estimation. Vow. if this behawor 

of elandfieation is repeatedly tested for say R times, the proponioo of uo- 

sueceshr( c- will lead to the probability of misclasnificatiao due to that 

particular method. Vote that although the data IS generated arrordmg to 

the bivariate binary distrihut~on in (3.1.1) with structural correlation param- 

eter d, the cl~il icat ioo rule based on BMA does not -"ire the estimation 

of the 4 pmmeter whereas the the c ~ e a t i o n  mle k d  an SIB.4 d m  

require the mimation of this m parameter. 

.&s mentioned above, to cheek the das4i6ration performance of the two a p  

prmhes, we carry out a Monte-Cario -riment bared on R = 3OW sin- 

ulations. In each of the simulations, we generate two samples of correlated 

bivariate binary obsem-acions of sizes (n,, m) I ((LOO, 100). (200. 2W)) 

and 3 to 5 different choica of 6 depending on the restriction in (3.1.2) under 

each of the several combinations of (p,,, p,?) and two different combinations 

of (p,,, pt2) I ((0.50, Q.TJ), (0.10. 0.30)). Under each simulation, we 

estimate the parametem pit, p12. a,, pp, and d and henee (I  = 1.2; 

k = 1.2.3.4) bared on MBA and we mimate B[,lr (i = 1.2; k = 1.2,3,4) 

by m%ximum likelihood method b a d  on BMA. Next we compute the sim- 
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ulated probability of mklmification for each method an the besk of the 

estimated dasfieation eritena in terms of these estimated cell probabilities 

8(,)* (i = 1.2: k = 1.2.3.4) and (I = 1.2: k = 1.2.3.4). The results 

are show in Table 3.i-3.33 below. lo all the Table 3.7-3.33. columns 4 to 7 

mntain the number of miselassi6cation cases for a new individual belonging 

to cells 1, 2, 3. and 4 respectively by both methods. The number in the 8th 

m l m  represents the total of columar from 4 to 7 on that row and the last 

mlumn erhibitr the total probability of m i s e ~ ~ a t i o n  obtained b? divid- 

ing the figure in the 8th mlumn b? 5000, the total number of simulations. 

It b clear from thee tables that in almost all cses the MB.4 is found to 

be better than the BMA in terms of probability of miselasi6eation. Here 

ooe method is considered to be superior to the ocher when the probability or 

misclmihcation (PM) due to this particular method is 1 s  than that or the 

other method. For some spmi6c combinations (see Table 3.11, Table 3.12. 

Table 3.16. Table 3.17. Table 3.211, the YEA is substantially better than 

BMA as the PM is considerably higher for the latter method. For example, 

when n, = nz = 100 and @ = 0.40 in Tble 3.12, the pmbabilicy of m b  

elasi&acion based on YBA a d  BMA are 0.0498 and 0.1236 rerpmtively 

indicating that MBA is far superior to the BMA in elasi+g a new oC 

senation to the e o m t  gmup. Vote that as the sample size increases, the 

pmbabilityof mixldcatioogenerally deereases for both the methods. But 

the probability of mixlassi6cation still remains higher for BMA sr compared 
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to MBA. For example, when n, = n2 = 2W and 4 = 0.40 it is clear from the 

same Table 3.12 that the probability of miseWea t ion  is 4.78% higher for 

BMh a. wmoared to MBA. 

Remark that when the e l l  probability of bivariate binary obsenafions under 

any group is clme to zero, or aben the relative difference between the two 

corresponding rrll pmbabilitie of the two groups an negligible, the pmb- 

ability of mkclaJsificatioo is generally higher under both approache. This 

is obvious a s  the performance of aqv c W e a t i o n  rule depends on the fan 

about whether the two p u p ,  into which an observation is to be el=Ied. 

an well-separated. In these t pos  of unusual situations, even the PZI bared 

on MBA can be worse as compared to that of BMA. 
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Table 3 7 Pmbsbd~ty of d a ~ s l f i e a t ~ o n  (PM) for = 0 10, = 0 10, 
-1 = 0 50, pn = 0 70 based on MBA and BMA 

4 n Model Cell-1 Cell-2 Cell-3 Cell-4 TOW PM 

010 lW MBA 
BMA 

2W MBA 
BMA 

0.20 lW MBA 
BMA 

2Cnl MBA 
BMA 

030 1W MBA 
BMA 

200 MBA 
BMA 
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Table 3.8: Probability of rniselass~fieation (PMI for PIC = 0.10. p,z = 0.30. 
ht = 0.50, pa = 0.70 b d  on 41BA and BM.4 

4 n Yodel Cell-1 CeU-2 Cell-3 Cell4 Total P41 

-0.10 100 MBA 0 30 531 0 561 0.1122 
BMA 0 109 5i5 0 684 0.1368 

-0.10 200 MBA 0 1 I79 0 180 0.0380 
BMA 0 12 216 0 228 0.0456 

0.10 100 MBA 
BM A 

0.10 200 MBA 
BM A 

0:20 100 YBA 
BMA 

0.20 200 .MBA 
BMA 

0.30 1W .MU4 
BMA 

0.30 2W 4 1 8  0 19 580 0 599 0.1198 
BMA 0 8 713 0 721 0.1442 

0.40 100 MBA 0 194 1184 0 1358 0.2'116 
BMA 0 30 1254 0 1284 0.2568 

0.40 mo MBA o 30 745 o 775 0.1550 
BMA 0 0 889 0 889 0.1778 
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Table 3 9 Probabhty of mmlasdcatlon (PM) for = 0 10, h? = 0 50, 
pn = 0 50, pa = 0 70 b d  on MBA and BMA 

& n Model Cell-1 Cell-2 (241-3 Cell-4 Total PM 

-0.20 100 MBA 0 0 283 0 283 0.0586 
BMA 0 23 305 0 328 0.0656 

6 2 0 2 0 0  MBA 0 0 66 0 66 00132 
BMA 0 0 87 0 87 0.0174 

-0 10 100 MBA 0 1 212 0 213 0 . W  
BMA 0 45 217 0 262 0.0524 

-0 10 m MBA 0 0 44 0 44 0 . m  
BMA 0 2 55 0 57 0.5114 

0 10 1W MBA 0 5 293 0 298 0.0% 
BMA 0 1 365 0 366 0.BTSZ 

0 10 2W MBA 0 0 62 0 62 0.0124 
BMA 0 0 98 0 98 QSlFXl 

0 20 100 MBA 0 4 217 0 221 00442 
BMA 0 0 314 0 314 0 0B28 

0 2 0 2 0 0  MBA 0 0 32 0 %2 00064 
BMA o o 76 o m oolsz 
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Table 3.10: Probability of rmselar~i6catian (PM) for p,, = 0.10. p12 = 0.90. 
hi = 0.50, m = 0.70 bsred on 4IBA and BMA 

d n Model Cell-1 Cell-2 Cell-3 Cell-4 Total P41 
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Table 3.11: Probability of mirclasifieatioa (PY) form = 0.30. pcz = 0.30. 
hl = 0.50, pm = 0.70 based on SlBA and BMA 

O n blodel Cell-1 CelC2 CelC3 Cell4 Total PSI 

-0.30 100 MBA 0 561 21 0 582 O.ll&L 
BMA 0 729 77 0 806 0.1612 

-0.30 200 MBA 0 194 0 0 194 0.0388 
BMA 0 342 3 0 345 0.0690 

-0.20 100 kIBA 0 515 36 0 551 0.1102 
BM.4 0 718 100 0 818 0.1636 

-0.20 200 418.4 0 163 1 0 164 0.0328 
BMA 0 365 5 0 370 0.0740 

0.20 100 MBA 0 262 39 0 294 0.0588 
BllilA 0 8 7  104 0 561 0.1122 

0.20 200 MBA 0 50 1 0 51 0.0102 
BMA 0 167 10 0 177 0.0354 

0.10 100 MBA 0 91 8 0 99 0.0198 
BMA 0 58 68 0 126 0.0252 

0.40 200 MBA 0 4 0 0 1 0.0008 
BMA 0 6 3 0 9 0.0018 

0.50 100 MBA 0 10 0 0 10 0.0020 
BMA 0 29 1 0 30 O.0W 

0.50 200 MBA 0 0 0 0 0 O.OWO 
BMA 0 0 0 0 0 0.0000 
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Table 3 12 Probabdlty of d d a t i o n  (PM) for a, = 0 30, pa = 0 70, 
a, = 0 50, pn = 0 70 based on MBA and BMA 

O n Madel Cell-1 CeU-2 Cell3 Cell-4 Total 

-0 50 100 MBA 0 67 3 0 70 
BMA 0 112 6 0 118 

-050 200 MBA 0 0 0 0 0 
BMA 0 10 0 0 10 

-0 40 1W MBA 0 155 9 85 249 
BMA 51 565 2 0 618 

-0402W MBA 0 13 0 6 19 
BMA 5 253 0 0 258 

-0.1Q 1W MBA 0 0 0 0 0 
BMA 0 12 0 0 12 

4.10 2GU MBA 0 0 0 0 0 Q.OCtW 
BMA 0 0 0 0 0 O.OWO 

020 100 MBA 0 0 0 25 25 0,WS 
BMA 0 0 0 M) 60 OOl20 

020 ZOO MBA 0 0 0 0 0 OODW 
BMA 0 0 0 8 8 0 D O l B  

030 1W MBA 0 0 0 97 $7 0.0194 
BMA 1 0 0 108 1OQ 00218 

030 200 MBA 0 0 0 10 10 00020 
BMA 0 0 0 28 %3 OW56 
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nble 3 13 Probabhty of rm8~ks6mttlon (PM) fa = 0 30, m. = 0 90, 
a, = 0 50, az = 0.70 based on MBA and BMA 

4 n Model CBal Cell-2 Cell-3 CeW W PM 

-0.40 1W MBA 489 0 0 Sb a15 0.lm 
BMA 694 0 0 41 635 0.1270 

640 2MI MBA 155 0 0 1 166 00312 
BMA 271 0 0 3 a74 00648 

-030 100 

-030 2W 

-0ao loo 

-020 200 

-0 10 1 W  

-0 10 200 

010 100 

010 2W 

MBA 
BMA 

MBA 
BMA 

MBA 
BMA 

MBA 
BMA 

MBA 
BMA 

MBA 
BMA 

MBA 
BMA 

MBA 
BMA 

0 0 8  
0 0 41 

0 0 0  
0 0 1  

0 0 3  
0 0 35 

0 0 0 
0 0 4 

0 0 3  
0 0 36 

0 0 0  
o o a  

0 0 1 
0 0 17 

0 0 0  
0 0 0 
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Table 3.14: Probability of rniselasi6catioo (P411 for ptl = 0.50. n2 = 0.50. 
hl = 0.50. pn = 0.70 bared on SIBA and BMA 

o n Model Cell-1 Cell-? Cell-3 Cell-4 Total P\l 

-0.50 100 21BA 0 0 0 0 0 0.0000 
EM.& 0 0 0 0 0 0.0000 

-0.50 200 MBA 0 0 0 0 0 0.0000 
BMI 0 0 0 0 0 0.0000 

-0.U) 100 YEA 6 6 6 6 24 0.0018 
EM.& 190 190 0 0 380 O.Oi60 

-0.40 200 MBA 0 0 0 0 0 0.0000 
BMA 36 36 0 0 72 0.0144 

0.10 1W YE.& 10 10 10 LO 40 0.0080 
BMI 0 0 282 282 564 0.1128 

0.10 204 YEA 1 1 1 I I O.WO8 
EM.& 0 0 74 74 148 0.0296 

0.40 100 MBA 3 3 3 3 12 O.LM2.L 
BMA 0 0 187 187 374 0.0748 

0.40 200 418.4 0 0 0 0 0 0.0000 
BMA 0 0 39 39 78 0.0156 

0.50 100 YEA 0 0 0 0 0 0.0000 
BMA 0 0 0 0 0 0.0000 

0 . 3  200 MBA 0 0 0 0 0 0.0000 
BMA 0 0 0 0 0 0.0000 
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Table 3.13: Probability of mblarsi6eatioo (P41) for ptl = O.iO. pIz = 0.30. 
a, = 0.33, rn = 0.m bed on SIBI and BbIA 

4 n Yodel CelCl Cell-2 Cell-3 Cell4 Total PI.[ 

-0.60 lW MBA 15 0 0 119 134 0.0268 
BMA 27 0 1 85 113 0.@226 

-0.50 2W YBA 0 0 0 12 12 0.0024 
BMA 2 0 0 10 12 0.0024 

-0.40 100 YBA 11 0 0 200 211 0.0422 
BMh 69 0 0 229 298 0.0596 

-0.40 200 MB.4 0 0 0 24 24 0.00118 
BMA 5 0 0 51 56 0.0112 

-0.10 100 MBA 121 0 0 640 761 0.1322 
BM.4 121 0 0 6 U  735 O.lAi0 

-0.10 2W YBA 11 0 0 258 269 0.0338 
BMA 16 0 0 270 286 0.05i2 

0.m 100 MB.4 141 0 0 962 1103 0.2206 
B Y I  138 0 0 9119 108i 0.2li4 

0.20 200 41BA 15 0 0 545 560 0.1120 
BM.4 15 0 0 %56 571 0.1142 

0.30 100 YB.4 144 0 0 1054 1198 0.2396 
BMI 123 0 0 1054 1177 0.2354 

0.30 200 MB.4 19 0 0 646 665 00.330 
BhL4 
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3 16 Pmbabhty of medws6catmn (PM) for h, = 0 70, pr2 = 0 70, 
Pn = o 50, pu = 0 70 based on MBA and BMA 

4 n Model Cell-1 Cell-2 Cell-3 CW-4 Tatd PM 

6.30 1 W  MBA 10 664 112 12 798 0 1596 
BMA 70 749 173 145 1137 0 2274 

-030 200 MBA 1 186 13 1 3lJl 0.W2 
BMA 4 404 15 26 1149 O W  

6.20 100 MBA 18 468 '83 24 MU 0 1210 
BMA 90 666 157 276 1178 0.2358 

6 2 0  2M MBA 
BMA 

020 100 MBA 
BMA 

0.20 2M MBA 
BMA 

040 1W MBA 
BMA 

040 200 MBA 
BMA 

050 1 M  MBA 
BMA 

0.50 200 MBA 
BMA 
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Table 3.17: Probability of mirlassiftatioo for pu = 0.70, p12 = 0.90. = 

0.50, pa = 0.70 based on 41BA and BMA 

m n Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM 

-0.10 100 MBA 0 10 584 0 594 0.1188 
BM.4 0 85 601 3 689 0.1378 

-0.10 200 MBA 0 0 217 0 217 0.0434 
BMA 0 6 271 0 277 0.0554 

0.10 1W MBA 0 17 765 0 782 0.1564 
BMA 1 101 828 13 943 0.1886 

0.10 200 MBA 0 0 364 0 364 0.0728 
BMA 0 12 444 0 466 0.0912 

0.20 100 MBA 1 8 905 0 914 0.1828 
BMA 2 121 934 13 1070 0.2140 

0.20 200 MBA 0 0 4.54 0 454 0.0908 
BMA 0 31 544 0 575 0.1150 

0.30 1W MBA 6 22 1017 0 1044 0.2088 
BMA 1 119 1077 14 1211 0.2422 

0.30 200 MBA 0 0 564 0 564 0.1128 
BMA 0 19 688 0 707 0.1414 

0.40 100 MBA 7 68 1171 1 1247 0.2494 
BMA 4 100 1230 14 1348 0.2696 

0.40 200 MB.4 1 5 746 0 752 0.1504 
BM.4 1 15 867 0 883 0.1766 
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Table 3.18: Probabiliw of miclavifieatlon for ptl = 0.90. p12 = 0.30. at = 
0.50, p, = 0.70 bmed oo MBA and BM.4 

4 n Model Cell-1 Cell-2 Cell-3 Cell-4 Total PM 

-0.40 100 MBA 1180 0 0 262 1442 0.2884 
BMA 1287 0 0 165 1452 0.2904 

-0.40 200 MB.4 718 0 0 62 780 0.1560 
BMA 862 0 0 31 893 0.1785 

4.30 100 YBA 993 0 0 218 1211 0.2422 
B.LI.4 1119 0 0 191 1310 02620 

4.30 200 MBA 563 0 0 37 6W 0.1200 
BMA 706 0 0 45 751 0 1502 

-0.20 100 MBA 862 0 0 189 1051 0.2102 
BMA 991 0 0 189 1180 0.2360 

4.20 200 MB.4 148 0 0 26 47Z 0.0948 
BMA 553 0 0 44 597 0.1194 

-0.10 100 41B.4 869 0 0 147 1016 0.2032 
BMA 862 0 0 188 1050 0.2100 

-0.10 200 XBA 412 0 0 24 436 0.0872 
BMA 453 0 0 33 486 0.0972 

0.10 100 MBA 627 0 0 100 727 0.1464 
BMA 576 0 0 146 722 0.1444 

0.10 200 MBA 226 0 0 7 233 0.0466 
BMA 211 0 0 26 267 0.0534 
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Table 3.19: Probability of miselas~fication for pit = 0.90. h 2  = 0.50. s, = 
0.50, hr = 0.70 based on YB.4 and BLIA 

Yodel Cell-1 Cell-2 Cell-3 Cell4 Total 

41BA 235 0 0 10 245 
BMA 323 1 0 25 349 

MBA 40 0 0 0 10 
BMA 90 0 0 I 91 

PIBA 306 0 0 9 315 
BSIA 384 0 0 33 417 

SIBA 69 0 0 0 69 
B41A 118 0 0 1 119 

SIB.4 354 0 0 5 359 
BMA 361 0 0 51 412 

I i 9  0 0 0 79 
BM.4 103 0 0 3 106 

4lBA 475 0 0 8 483 
B M I  473 0 0 49 522 

41BA 142 0 0 0 142 
BMA 161 0 0 4 165 
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Table 3.20: Probability of rniselassi6caeion for pu = 0.90. ptz = 0.90, = 
0.50, pn = O.iO b d  on YBA and BMA 

4 n Model Cell-l Cell-2 Cell-3 Cell-.I 

0.10 100 4IBA 0 263 0 0 
BMA 0 376 0 0 

0.10200 Y B A  0 42 0 0 
B U b  0 147 0 0 

0.20 100 418.1 0 573 0 0 
BMA 0 650 0 0 

0.20 200 .MBA 0 208 0 0 
BMA 0 340 0 0 

0.30 1W 41BA 0 1220 0 0 
BY.% 0 1079 0 0 

0.30 200 4186 0 i 9T  0 0 
BM.A 0 827 0 0 

- 
Total - 

263 
376 

42 
147 

573 
650 

208 
340 

1220 
1079 

797 
827 
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Table 3 21 Pmbsb&ty of mlsdm1ficat10n for = 0 10, m =  0 10, fi, = 
O1O,az=OsObssedonMBAandBMA 

4 n Modal Cell-1 Cell-2 Cell-3 Cell-4 Tbtd PM 

0.20 100 MBA 
BMA 

020 200 MBA 
BMA 

040 1W MBA 
BMA 

040 2W MBA 
BMA 

0.50 1W MBA 
BMA 

050 2W MBA 
BMA 
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Table 3.22: Probability of misflaslf8eation for prl = 0.10, p12 = 0.70. h t  = 
0.10, = 0.30 bsed on MB.4 and BMA 

p n Yodel Cell-1 Cell-2 Cell3 Cell4 Total P>1 

YBA 
BMA 

MBA 
BMA 

YBA 
BMA 

SIB* 
BMA 

YBA 
BMA 

YB.4 
BMA 

YBA 
BMA 

MBA 
BMA 

MBA 
BMA 

YBA 
BMA 
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Table 3 23 PmbsbiLtg of ~ f i e a t r o n  for p,, = 0 10, = 0 90, pn = 
0 10, rns = 0 30 b d  on MBA md BMA 

9 n Model Cell-1 Cell-2 Cell-3 CeU4 Total PM 

-0.20 100 MBA 0 0 0 0 0 0 . W  
BMA 1 1 0 0 2 0 . m  

4 2 0  2W MBA 
BMA 

-010 100 MBA 
BMA 

4.10 2W MBA 
BMA 

0.10 100 MBA 
BMA 

0.10 200 MBA 
BMA 

0 OWW 
0 OWW 

0 OMXn 
88 0.0176 

0 o m  
6 00012 

0 om 
424 O W 8  

0 o m  
I00 o m  
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Table 3.24: Pmbabrlity of )l'hlassificarion far hr = 0.30. hl = 0.33. hl = 
0.10, p, = 0.30 b d  on MBA and BSI.4 

4 n Yodel Cell-1 Cell-2 Cell-3 Cell4 Total PSI 

SLB.4 
B4I.i 

SIBI 
BY.1 

SIBA 
BM.4 

YB A 
BSl.1 

SLBA 
B11.i 

XIBA 
8411 

YB.4 
641.4 

UB.l 
BSL.4 

SIBI 
BSIA 

MBI 
BM.4 
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'Ihble 5.25: Probability al  .klasd6catrun lor p,, = 0 30, pll = 0 50, hi = 
0.10, = 0.30 based on YBA and BMA 

9 n Model Cell-1 Cell-2 Cell-3 CeM W PM 

-0 20 100 MBA 0 3 410 0 418 DO826 
BMA 0 9 564 0 573 0.1146 

620 200 MBA 0 0 133 0 135 0.W 
BMA o 1 zn o m a m  

dl0 lW MBA 0 5 488 0 493 O A W M  
BMA 0 17 667 0 674 6.1848 

-010 Zk3 MBA 0 0 158 0 158 08316 
BMA 0 1 287 0 288 00626 

o a o i m  MBA o 7 a66 o 373 om& 
BMA 0 12 218 0 230 O.!I460 

0.N 204 MBA 0 0 104 0 104 0.02C4 
BMA 0 1 62 0 63 O.Ole6 

0 40 1W MBA 0 27 557 0 584 O l l B B  
BMA 0 0 425 0 425 &OW 

o 40 am MBA o 1 215 o 216 0 . w  
BMA 0 0 182 0 182 0.9964 

050 1W MBA 0 31 690 0 T2l 01442 
BMA 0 0 632 0 sS8 0.1264 

0.50 ZW MBA 0 0 317 0 $17 0.0634 
BMA 0 0 3W 0 $00 006W 
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Table 3.26: Probability of Yklasi6eation for p,, = 0.30. pnz = 0.70. ml = 
0.10, pp = 0.30 b d  01% 4lB.4 and BM.4 

p n Model Cell-1 Cell-2 Cell-3 Cell4 Total PXI 
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Table 3.27 Pmbabi1rt)- of \Liwla=sifieatioo for pll = 0.30. p12 = 0.90. hl = 
0.10. = 0.30 b a d  on SIBA and BXA 

o n Model Cell-1 CeU-2 Cell-3 Cell4 Totd PSI 

-0.20 100 YEA 0 280 
BUA 0 459 

-0.20 200 S I B I  0 3 
1 . 4  0 189 

4.10 100 Y B h  0 208 
BUA 0 512 

4.10 204 SIB.4 0 23 
BSL* 0 221 

0.10 1W SfB.4 0 94 
BSIA 0 205 

0.10 2W .MBA 0 8 
BSIA 0 44 
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rable 3.28: Pmbability of 41ireIsifieatian for p t ~  = 0.50. nz = 0.10, prr = 
0.10. p, = 0.30 based on IvlBA and BMA 

Q n Modd Cell-1 Cell-2 Cell-3 Cell-4 Total P41 

IvlB.4 
Bb1.4 

MBA 
BMA 

MBA 
BMA 

YBA 
BM.4 

MBA 
BM.1 

MBA 
BMA 

MB.4 
BMA 

.MBA 
BM.4 

YBA 
BMA 

MBA 
BMA 
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Table 3.29: Probabilin; of 4li3Elasificati.m f ~ r p , ~  = 0.50. prl = 0.50. m, = 
0.10, pp = 0.30 baoed oo MBA and BblA 

@ n Yodel Cell-1 CeU-2 Cell-3 CelM Toal P M  

-0.10 100 MBA 0 0 2136 0 2136 0.4272 
BMA 0 0 2090 0 2090 0.4180 

-0.10 200 MB.4 0 0 2069 0 2069 0.4138 
BMA 0 0 2073 0 2075 0.4160 

0.m loo MBA o o 833 o 833 0.1666 
BMA 0 0 648 0 648 0.1296 

0.20 200 MBA 0 0 430 0 430 0.0860 
BMA 0 0 297 0 297 0.0594 

0.40 100 Y B A  0 0 228 0 228 0.0456 
BMA 0 0 116 0 116 0.0232 

0.40 2W MBA 0 0 36 0 36 0.0072 
BMA 0 0 10 0 10 0.0020 

0.50 100 YB.4 0 0 63 0 63 0.0126 
BMA 0 0 18 0 18 0.0036 

0.50 200 MB.4 0 0 4 0 4 0.0008 
BMA 0 0 3 0 3 0.0006 
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Table 3.30: Probability of Miscksilieatioo for nl = 0.50. p , ~  = 0.70. h t  = 
0.10. p, = 0.30 based on UBA and BM.4 

p n Model Cell-1 Cell-2 Cell3 Cell4 Wtal P41 

-0.20 100 YBA 0 29 411 0 440 0.0880 
BMA 0 61 161 0 522 0.1044 

-0.20 200 MBA 0 1 107 0 108 0.0216 
BMA 0 5 137 0 142 0.0284 

-0.10 100 SIBA 0 30 531 0 561 0.1122 
BhilA 0 109 575 0 684 0.1368 

-0.10 200 SIB!. 0 1 l i 9  0 180 0.0360 
BMA 0 12 216 0 228 0.0456 

0.20 100 MBA 0 101 886 0 987 0.1974 
BMA 0 72 946 0 1018 0.2036 

0.20 200 MBA 0 10 469 0 479 0.0958 
BMA 0 9 575 0 584 0.1168 

0.30 1W MB.4 0 150 1016 0 1166 0.2332 
BMA 0 64 1067 0 1131 0.2262 

0.30 200 YBA 0 19 580 0 599 0.1198 
BMA 0 8 713 0 721 0.1442 

0.40 100 YBA 0 194 1164 0 1358 0.2716 
BbIA 0 30 1254 0 1284 0.2568 

0.40 200 MBA 0 30 745 0 775 0.1550 
BMA 0 0 889 0 889 0.1778 
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Table 3.31: Probability of M~lauIee t ion  for prl = 0.50, p,t = 0.90, at = 
0.10, = 0.30 based on MBA and BY.% 

4 n Model Cell-1 Cell-2 CeU3 CelM Total P41 

-0.20 100 MBA 0 1450 6 0 1456 0.2912 
BM.4 0 1393 6 0 1399 0.2798 

-0.20 200 MBA 0 1074 1 0 1075 0.2110 
BMA 0 1160 0 0 1160 0.2320 

-0.10 100 MBA 0 1304 7 0 1311 0.2622 
BMA 0 1383 8 0 1391 0.2782 

-0.10 2W MBA 0 907 1 0 908 0.1816 
BMA 0 1096 1 0 1097 0.2194 

0.10 100 MBA 0 946 12 0 958 0.1916 
BMA 0 949 26 0 975 0.1950 

0.10 200 MBA 0 524 0 0 524 0.1048 
BM.4 0 682 0 0 682 0.1364 

0.20 1W MBA 0 748 12 0 760 0.1520 
BMA 0 557 24 0 581 0.1162 

0.20 200 Y B I  0 320 1 0 321 0.0642 
BWA 0 270 2 0 272 0.0544 

0.30 100 YB.% 0 559 15 0 571 0.1148 
BMA 0 I47 35 0 182 0.0364 

0.32 2W MBA 0 174 0 0 174 0.0348 
BMA 0 41 2 0 43 0.0086 
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Table 3.32: Probability of Yiselasiicatlon for p,, = 0.70, PC, = 0.10, RI = 
0.10. m = 0.30 b& on 4lBA and BMA 

d n Yodel Cell-l Cell-? Ce11-3 Cell4 Total P"vl 

-0.M 100 YBA 31 0 0 0 31 
BM.4 23 0 0 0 23 
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Table 3.33: Pmbsbility of 4lmlasriIieation for p,, = O.iO. pt, = 0.X. mt = 
0.10. = 0.30 baaed on MBA and BM.4 

4 n Yodel Cell-1 Cell-2 Cell-3 Cell4 Total PSI 

MBA 
BMA 

MBA 
BMA 

4IBA 
BU.4 

blBA 
BMA 

YBA 
BM.4 

YBA 
BbI.4 

41BA 
BbIA 

IMBA 
BblA 

MBA 
BMA 

MBA 
BMA 
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3.4 An Illustration: C O M ~ ~ ~ C U ~  Child Sur- 
vey data (CCSD) 

In this section we illustrate the methods described in the pre\ious section 

wing ao epidemiologic s m y  data oo the school children of ages 6 to 11. 

This partienlar data set was collected in Connecticut through two epidemi* 

logic surveys namely, the New Haven Child Survey (hiCS) and the Emem 

Connecticut Child Survey (ECCS). For original sources of the data. we refer 

to Zahner et al [17] and Fitmauriee et al [12]. In both surveys emotional 

and behavioral information oo each chiid war obtained from a p e n t  or pri- 

mary caregiver, and also fmm the chiid's teacher. By d&gn, there ms no 

overlap of children within families or within teacherr. The child's emotional 

and behavioral problems were a r r e ~ d  using a standardized scale completed 

by both the parents and teaches. .Utogether 2.501 children of both sexes 

participated in the survey. In addition to their emotional status (determined 

by their parent or teacher), a mvariate measuring the parental dissatiafacfioo 

arith family life war also worded. in thk iilunration however, we ignore the 

covariate for simplicity. Our main objective is to pee the dilferenee between 

the behavior of male and female children. Considering the J ~ Y  as a cmwi- 

ate and parental disratisfaetion as a mond mvariate. Fitmanrice et al [I?] 

mainly studied the effect of these mvariates on the emotional pattern of the 

child. 

Of the 2,501 children about which information war collected in t h e m  stud- 
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i s ,  we have considered only 1,128 with complete information. For each of 

these 1.428 children, both parents and teacherr provided information on em* 

tionalstatus mesurd  by the scale mentioned above. Note that information 

on each child even by either the parent or teeher was in a dichotomized 

hm obtained fmm the corresponding d e  smre at the ZIinieaCborderlme" 

range. More specifically, if either parent or teacher rated the child as em* 

tionally disturbed, then this status ara symbolized as 'l', a b m w  outmme. 

Otherwise, the a a t w  was indicated by '0'. Funher note that the b i n w  

information (0 or I) referred by the teacher would be pasitively correlated 

with the binary information (0 or 1) rated by the parent ar they are rating 

on same child. This correlation would be denoted by 41 for male children 

and 6 far female children. 

3.4.1 Classifying Parent-Teacher Information into Male 
or Female Group 

In order to illustrate our methadologiff developed in the previous section. 

rse now formulate the above CCSD problem as fallows. Suppme that the 

ratings of both the teacher and parent is available as (y,. R) I {(I. 11, 

(1. O), (0, 1). (0, 0)). The queian, based on some sample information. is 

whether it in possible to recognize a new bivariate information (yt,, m), say, 

arises fmm a male or fmm a female ehild? To m r  this, we first exhibit 

the sample information collected by the CCSD as below. 
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Table 3.W: Cms-elasification of Parent and Teacher Ratings 01 Male and 
Female. 

Male Children Female Children 

440 116 556 
96 50 146 91 33 124 

Total 607 119 726 

N m  based on bosh BMA and MBA as &d in the preview section we 

estimate their respfftiw parameter estimation performance ar loll-. 

Estimation of Parameter by BMA 

In order to dewlop the darribation we have to ertimate the unknown pa- 

rameter in both the p u p s  (l=Male and 2=Female). For gmup i ,  if"(,), is 

the cell count lor the kth ( b  = I, - . - ,4) cell out 01 P. observations, then the 

maximum likelihood eszimam of Pth cell probability in ith (I  = 1, 2) group 

is given by 

a,,&=: f o r k = l  ..... 4 

By using the data Imm the Table 3.34, we obtain the likelihood estimata, s 

blloas. 
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For Hale Group: 

& l l L  = 0.0712 hL12 = 0.1368 

For Female Gmup: 

81qL = 0.0455 hi2 = 0.1253 

Estimation of Parameters by MBA 

For Male Gmup: 

B,, = n'L" = O,mso hz = nol+n(1)3 = 0,2365 and 
"1 

,j, = l ( w - h  . 
d5iGZx2 n! 

,h2) = 0.1276 

For Female Group: 

&, - nr2rl + nlz12 - 0.1i08 = n(2'L+n(,,r = 0.1639 and 
"2 

6. = L ( n ( 2 1 1  = 0.1257 .JEzaz n2 

Thus we have the pooled estimate of the correlation coefficient as  



Therefore. substituting these estimates in the mrresponding formula. we can 

asrimate che cell pmbabiit)- for each group for the proposed model as gir-n 

below: 

For Yale Gmup: 

q,,, = P,,P,, + Ov'?GZZ = 0.OilO. 

4,,2 =PI,@,. - i s  = o.lsm. 

e,t13 = @,,h2 - OdZGGG= 0.1655. 

e l , , ,  = 6rh2 + 0-= 0.6265. 

For Female Group: 

e,,,, =*,& i o s  = 0.M56. 

Rlqlz - 0- = 0.121?. 

el,,, =&I& - = 0.1183. 

&2), = &,& i = 0.7109. 

Classlcation Criterion: 

Sow following rhe r l d e a r i a n  rule (3.3.12), it is readily reen char any new 

obsemtlon belonging to all 

(1.1) will be e l d e d  to the Male p u p  as 41 t Ez. 
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Similarly, any new obsemtion that belongs to cell 

(1.0) wiil be classified to the Yale goup ar i,. 2 &. 

(0.1) wiil be classified to the 5Iale p u p  as 8,, 2 &. and 

(0.0) will be elasified to the Female gmup as 5 a?,. 

3.4.2 A CCSD Based Simulation Study to Examine 
the Performance of BMA and MBA for Classifi- 
cation 

.As the uunple shes n, = i02 and n2 = i26 sre sufficren~ly I w e  rhe param- 

eter estimates an be considered to be ver). close to the population \dues. 

In order to compute rhe cmp~ricd probahilit). of mi5clasi6eation we eonsid- 

ered rw, hypothetical p u p s  GI aod G2. Under GI lec p , ,  = 0.2080 and 

p12 = 0.2365 and correlation coefficient o = 0.1266. Similarl?. under G2 let 

h, = O.liO8 and hr = 0.1639 and same correlation meffieienr o = 0.1266. 

These parameters are exactly rhe same as the eormpooding estimates o b  

rained for the CCSD data. The steps involved in the simulations are as 

follows: 

1 Using the uune p m d m  as d i s d  in wtron 3.2.2. a bi-are hi- 

nap random sample of 5be n, = i02 is generated from gmup G, (%ale] 

with mar+nal probabilitie. pu = 0.2080 and p,, = 0.2365 and conela- 

tion parameter 4 = 0.1266 and on the basis of this geoented sample 
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theqMlitit~es#~~, &, and 61 are CalculaLed by oslng the formulae ~ v e n  

xn sectlon (3 2 1 1) 

2 S.mLarly a b~vanate b- random sample of sue nl = 726 r Zener- 

ated b m  group G2 (Femde) mth marginal pmbkdhties 1x1 = 0 1708 

and h2 = 0 1369 and the aaole oorrelatlon pwc&er + = 0 1266 and 

the quanctlm &I, &, and h are caloulsted 

3 Usmg 3, and A, we ealeulste the pooled estlmatc 6 hy (3.2 8) And 

M y  we csl~ulate the cell pmbabhw M on M M  and 

beal rm BMA C o m m  t h e  &mated cell pmbah~h&&I the twm 

groups (W and &male) we c h d  whether then m r6?ad&6cataon 

lo each ofthe tvm s p p r d e a  and remrd lt 

4 Continue step 1-3 SWO timap and then we compute the pmbEb%kQ 

of miscbdcat~on for both the sppmadres MBA and BMA aud the 

nsults are ahmm helm 

E!xmA 
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The a h  lasults m&eate that the pcoW&y of nusd888dcatfon based 

on BkM 1. 3 6% hlgber than that of MBA % dearly demonstrates the 

sdrant%ge of modelhug the correlated b m w h  s e q  the jomt probabhty 

hctm grven m (3 1 I), m dasslfylng a new bimrkde b m q  obaemtmn 

mto one of the two p u p s  



Chapter 4 

Classification of A Correlated 
Binary Observation With 
Covariates: A Model Based 
Approach 

Let Y,, = [y,,.ydr be the 2 x 1 vector of two eomlated binan' r-ables 

for the Ith (1 = 1. ... .n.) subject m the ith group G.. A h  let .Y,, = 

(a,,, ... ,rd.. ... .r4)' be the corresponding p x 1 vector of covariate. A 

laput for data of this w e ,  for the ~ t h  p u p  G.. is given below. 

Table 11: Data for Correlated Binary Model with p mvariater 

... OboervationI 1 2 1  1 2 ... rn 
1 
2 

Y.,, 11.12 

Y i p  
"111 =.l? ... =I,. ". l i t .  

2.2, =am ... z.1- ' - - 9 2 p  . . . .  . . . . . . .  . . . .  . . . .  : 
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4.1 Covariates Based Joint Probability Model 

Recall that for the a h  p u p  G* the bivariste binary mab les  LII and Ya 

are jointly distributed as 

as in (3.1.1), where p i d l  be the probability for = 1 and pi l l  be the prob- 

ability for y,. = 1. In the p e n t  care. hawewr, the marginal probabilities 

h(, aod rn will be modelled as functioos of eovariates zd. More spmi6eally 

m use a binary logistic function to model t h e  probabilities as loibws: 

w =*(.'LIP,>) = 
-% 

for~=1.2:I=l.~.-.~:and~=1.2.Hereforj=1.2.J,~=[J,,1,~~~.3,,d, 

b the pdimensiooal vector of regression parameten. 

4.1.1 Estimation of Parameters: An Estimating Equa- 
tion (EE) Approach 

For the tth (I = 1.2) p u p  G. and lor hewn m. we first estimate the 

A, = [[PI,. . . - . Rlpjl for j = 1.2. by using the estimating equation approach 

discussed by Prentice and Zhm 1281, aod other authors. >lore specifid? 

= (A,, 4)' is the root of the quari-likelihood mimating equations 



ahere & = Yd -E(Y;,) = [v*, -w,. v,t2-p,mJ'. Vd is the variancamvariance 

matrix defined as 

f o r w = m :  ru=l.?:m=1.2 

for w  # m 

The solution for 8, for J = 1,2 may be obtained from (4.1.2) by' wing the 

well-lmawn Vewtoo-Rapson method. This is, however, equiuialent to use the 

iterative quatian given by 
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where A(;)  is the fth iteration value of 4 and the expresion (.), denotes 

that the qnantities within the braeLee are evaluated at &(t) .  

b w  at  the (t + I)-th iteration the pmhabilitis and p, are estimated as 

~:,>.,lc+l, 
A,,(t+lJ = --- for 1 = 1, ... .n., 

1 + $is,e+u 
and 

ex:,,irlt+ll 
kz(t+l)=- 1 + ex:,&ll+l) for '=I.... . * 

For convenience, let O computed from the i th  gmup be denoted by 0,. X m  

to mimate A, rhet is to obtain 4(t + 1) from &(t + 1) and hence from 

h,( t  + 1). we use the method of moment aod mmpute 

This new railre of d,(t + 1) is cheo wed in (4.1.3) to obtain j,(t + 2) which 

in turn produces A(t  + 2) by (1.1.4). This cycle of iteration con thus  until 

emwrgence Let the k a l  estimates be 3, and A. Y e s  s rn have ar 

rumed common correlation In (4.1.1), we estimate this common correlation 

parameter 0 by pooling 41 and aq 
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We remark here that one could also estimate the 0, (i = 1,2) and eventually 

the rn parameter by the EE a p p m h .  This appmaeh. however. will require 

the computations for the third and fourth order moments of the joint binary 

probability distribution. which appears to be complicated. Alternativelv. as 

the probability model of the correlated binary variables is known by (4.1.1), 

one may also use the likelihood method to estimate mi. But the mmputacions 

for this type of likelihood estimate a h  appear to be mmplicated. 

4.2 Covariates Based Classification Criterion 

In classifying a new correlated binary observation with ca-ter into one of 

the two soups GI and G2, we use the same classificatioo mle (3.2.3). That 

b, clssify a new y. = (yla, $90) into GI if 

where ,Y,. is the covariate me iaced  with the new ohmat ion  yo with 

"'"'=-. 1=1,2; 3=1.2,  

aod 

w, = J ~ , r . ~ ~ . ~ ~ ~ z q u ~ ~  ( i  = 1.2) 

When the parameters are unknown, we we  the dassification rule (4.2.5) after 

replacing the 0 and 4 parameters with their eaimats. The elassifieatioo rule 
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(4.2.:) then reduma to: 

. (-1)D"- 
4 > [ S ; $ G ~ Y ~ ~ ~ ~ ~ F  - 8&6;iYG26:iF] . (4.2.6) 

to classify yo in GI. 

Note that for the two c- whether mvariates are mcia ted  with responses 

or not, the elssificatian nrle appears quite similar. The differene lies only 

in the estimation of the parameters J's and m. In the first -. when them is 

no eovariate, the estimating equation (3.2.6) for*,, and p,, r = 1.2 does not 

involve the variance cwariance matrix as it is mnstant for both pups GI 

and G, wheress in the -nd care cbe variance cowviance matrix p1a.w an 

imponant role as shown in (4.1.2). .&there is oo extra burden in computing 

the elasification rule in the second e a  (as compared to the first one without 

considering any mvariates) except this difference in estimation, we do oat 

pursue further simulation for the clarsihatian problem with cwariates. 



Chapter 5 

Concluding Remarks 

C h f i c a t ~ o n  of a m u l ~ e n s l o n a l  o h t ~ o n  mto one of twa p u p s  1s an 

tmpartant prmtzeal pmblem For the cam, when a multt dmemonal obser- 

W o n  fo l lm a Gaussian or a mntlnuow &stnbut~on, there ests nurmvous 

studlea (d McLachlan [2q and Seber [29]) for t b  type of d&u~honpmb 

lam But m &am speelfie mtustroan, for example, m bmmedkal appbc- 

trons the multl-dunmonal obsemtwn may be or, m o r e s p d d y ,  

lt may follow the mult~wrlate b~nary btnbuhon In a hutha ewaalud  

but l~llpmtat mtuat~on, onemay even deal mth the cl&aI~onofa h- 

ate bmsry obsemt~on For example, we refer to the CCSD data dnrussad 

m chapter 3 

UnWre in the ~ ~ ~ ~ L D U O U S  csse, tlue type of da~~16mtion d l a n s  for btm- 

etabusy data are dealt mth by by a atable bleWfte+ a p p d  

M B & ~~rm-psrmetm # meh a8 BMA m the t h  

In the BMA, theloht probamt~w under twa groupsere estimated by usw 
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the multinomjd based madmum likelihwd estimation technique. This is 

mainly done as there i. oo joint pmhabiity model h o w  (or available) for 

the bivariate binary obeervatian that may belong to any of the four cells. It 

is, therefore. not dear bow the correlation between the two correlated binary 

data is taken into account in such a b k c  multioomial approach. Alterna- 

tively, in higher dimensional -. a certain log-linear approach is used to 

interpret rhe -ciatior, of the Mliabls. But ar s b m  in chapter 2, mder 

some moditions, this apprnach is basically the same as the BMA in classify- 

ing a bivariate binary observation. 

.h arped in the thesis. w have chosen to model the joint probability of a 

correlated bivariate binary variable. by following the idea of Prentiee [2?j (see 

alw Sutredhar and Das l3.31). Thir modelling t& the correlatioo between 

the two binary variables into account in a natural my. It is rhom in this 

thesis that for the large sample care, the parameter of che model ineluding 

the codation parameter (q) may beertimated mth suf6cient 8eewae1: We 

haw then used there estimates to estimate the joint probability under each 

group and used the optimum darrifieation rnle to d s i f y  a new ohrematron. 

based on the magnit.de af the estimated pmhabilitier in the rormpwdiog 

cells of the two gmups. We have conducted a Monte Carlo experiment with 

5,000 simulations to namine the performance of this new modelling in el= 

sifging a mmlated bivariate binary ohsemtion a~ compared to the BMA, 

where no model is h m  or adab le .  It has been shown that in general, the 
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modeKing of the cell probability h s  a sipifieaor etfet in cl-ing such 

an observation into one of rhe tm g o u p .  Yore rpeeifieally ir WBS found 

that the probability of mblassi6cation is less if e l ~ f i c a t i o n  b based on the 

p r o p  modelling. 

We remark. h m r .  that although there is an immediate generalization of 

the bivariate b i n q  probabilit). distribution to the multivariate b i  dip, 

trihution, this W e  of generalization puts revere mtriniow on the pasible 

value5 of the mrrelation parmeterr. Therefore. it may be better to rearch 

for a new approach to model such higher dimensional hinarp distributions. 

Aitemattrply, rse mqv eramine the performance of the distribution-free ap- 

proach or Lamel approach to elasri€y such observations. Thii in. however. 

beyond the scope of the present rh-. 
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