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Abstract 

The steady tip vortex flow of a marine propeller governed by R ynolds-Averaged 

Navier Stok s (RANS) equations was numerically simulated. The RANS equations 

were solved by a commercial RA S code, A SYS-CFX. The k - E turbulence 

model and the shear stress transport (SST) turbulence model were applied in the 

computation. A spiral-like computational domain was set up as one blade-to-blade 

passage with two side/periodic boundaries. The grid was formed by following the 

inlet flow angle so that the clustered grid can be aligned with the tip vortex. 

Validation studies had been carried out for a uniform flow past the rotating 

David Taylor propeller model. In the computation, the effect of grid resolution was 

first investigat d . Three computational grids with different minimum Jacobian, 

minimum volume and minimum sk w angle were used. Th /,; - E and the SST 

turbulence models were then applied. The numerical results were validated by 

comparing with the experimental results and other numerical solutions. It has 

been demonstrated that the CFX RANS solver with two-equation turbulence 

models is able to predict the viscous tip vortex flow accurately. The effect of 

the k - E and the SST turbulence models on the solution is insignificant. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

The propeller cavitation is of major concern for ships in terms of reduced 

performan e, erosion and passenger comfort due to cavitation induced vibrations 

and noise. Large efforts on experimental and numerical studies have been made 

on t he investigation of cavitation inception and the accurate prediction of the 

cavitation behavior of a propeller to avoid or control the tip vortex cavitation. 

Experimental studies can explore many detailed features of the tip vortex 

flow around a marine propeller configuration using advanced flow visualization 

and non-intrusive measurement techniques. However, due to the limitation of 

experimental measurements, some physical measurements such as the pressure 

Figure 1-1: Cavitation flow of a propeller (DGA-DCE) 
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field in the tip vortex core, which is crucial to the prediction of cavitation inception, 

still remains relatively unknown. Numerical studies should be considered for 

predicting the tip vortex flow field. 

In early years, numerical studies were not extensively utilized due to the 

limitations of computational resources. With the development of computer 

technology, computational methods are paid more attention. In this decade, 

numerical simulation approaches, such as direct numerical simulations (DNS) and 

large eddy simulations (LES) , have been applied in the analysis of flow. The 

computational fluid dynamics (CFD) methods which solve the Reynolds Averaged 

Navier Stok s (RANS) equations are most appealing. 

It is well known that the geometry of a marine propeller is very complex 

with variable section profiles, chord lengths and pitch angles. Meanwhile, to 

reduce the cavitation and pressure pulses on the ship's stern, higher skewness 

is usually applied in the design for the propeller at high rotation speed . All 

aspects mentioned above make the numerical simulation challenging, especially 

in gridding the computational domain. Appropriate grids have to be created to 

obtain accurate prediction for the propeller tip vortex flow. The complex geometry 

also causes a strong non-equilibrium boundary layer near the blade wall. This 

makes the turbulence modeling another challenge for numerical simulation of the 

propeller tip vortex flow. 

1.2 Literature Review 

Many numerical studies have been performed to predict the propeller cavitation 

by solving the RANS equations. Remarkable progress has been achieved in RANS 

research. Abdel-Maksoud and Heinke (2002) predicted the velocity distribution 

in the gap region of a ducted propeller using the commercial RANS code, 

CFX-TASCflow. Abdel-Maksoud et al. (2004) analyzed the effect of the hub 

cap shape on propeller performance using th same code. Wang et al. (2003) 

presented an analysis of the 3D viscous flow field around an axisymmetric body 

with an integra ted ducted propulsor. Simonsen and Stern (2005) computed the 
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hull-rudder-propeller interaction by coupling RANS and potential codes. However , 

the computation of tip vortex flow of open marine propellers is limited. Hsiao and 

Pauley (1999) computed the steady-state tip vortex flow using NASA's RANS code 

INS3D-UP. Rhee and Joshi (2003) presented the computations of marine propeller 

flow using the commercial RA S code, FLUENT. Qiu et al. (2003) computed the 

tip vortex flows of various propellers using INS3D-UP. These studies showed the 

feasibility and advantage of the CFD method for marine propeller flow. 

The complexity in the mesh generation is one of the main obst acles for 

numerical simulations. In order to accurately trace the tip vortices over a distance, 

such regions need high grid resolution. Inaccuracy of the predict ed flow field is 

often attributed to inadequate discretization of the computation domain . Both 

structured and unstructured grids were used for the tip vortex flow in previous 

studies. Hsiao and Pauley (1999) and Qiu et al. (2003) employed an H-type 

structured grid to compute the tip vortex flow of the DTMB 5168 propeller with 

grid concentration a t the vortex core. About two million grids were used in the 

computation domain of one blade to blade passage for the open-water condition. 

The general charact eristics of the propeller flow were well predicted although an 

overly diffusive and dissipa tive tip vortex was obtained in computation. Rhee and 

Joshi (2003) used hybrid unstructured grids for the same propeller where prismatic 

cells were us d in the boundary layer and t etrahedral cells were distributed in the 

computational domain far from solid boundaries. A good agreement was found 

for axial and tangential velocity components behind the propeller. While the 

predicted radial velocity component was less accurate. 

Another challenge for numerical simulations is turbulence modeling. The flows 

off the propeller blades are dominated by strong rotation in the vicini ty of the tip 

vortices. The strong non-equilibrium boundary layer in the propeller flow requires 

the turbulence models to have the ability to handle the turbulence in t he tip 

vortex region. The algebraic turbulence models based on isotropic eddy viscosity 

are inadequate to treat such flows since t he algebraic equation us d to compu te 

the turbulent viscosity no longer works for the high non-isotropic boundary layer 
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in the tip vortex region. Some one-equation and two-equation models, which have 

higher order of complexity and the ability to model the tip vortex flow, have been 

tested in previous studies. Hsiao and Pauley (1999) and Qiu et al. (2003) applied 

a one-equation algebraic turbulence model on fine grids to compute the tip vortex 

flow of a marine propeller. The discrepancy between the computational results and 

experimental data indicated that viscosity within the tip vortex was over predicted 

and it led to an overly diffusive and dissipative tip vortex. Kim and Rhee (2004) 

computed the tip vortex flow of a finite-span wing with Spalart-Allmaras one 

equation model, k - t: model, k - w model and Reynolds stress transportation 

model. The Spalart-Allmaras model and Reynolds stress transportation model 

gave better predictions than the two equation eddy-viscosity models for wing tip 

vortex flow. Studies on the impact of various turbulence models have not been 

carried out for the tip vortex flow of marine propellers. 

1.3 Thesis Contents 

In this thesis, the uniform flow past a rotating marine propeller was computed 

by solving the RANS equations. The DTMB 5168 propeller was selected for 

the present study. Based on the work of Qiu et al. (2003), a structured grid 

was generated in one blade-to-blade passage computational domain for the tip 

vortex computation. A commercial RANS code, ANSYS-CFX was used with the 

k - E turbulence model and the shear stress transport (SST) turbulence model. 

Computational results were analyzed and validated against the experimental data 

measured by Chesnakas and Jessup (1998), the numerical results of Hsiao and 

Pauley (1999), and the results computed by Qiu et al. (2003). The impact of the 

k - t: and the SST turbulence models on the solution was also discussed for the 

tip vortex flow of marine propeller. 

The thesis is organized as follows: Chapter 2 outlines the grid generation 

method. In Chapter 3, the governing equations for propeller tip vortex flow are 

presented and the turbulence models are briefly described. Boundary conditions 

applied in the computation are also explained in this chapter. The numerical 
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results of tip vortex flow filed around the propeller are presented in Chapter 4. 

Conclusions and the future work are given in Chapter 5. 
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Chapter 2 

Grid Generation 

The grid quality is very important in the computation of the turbulent flow 

around propellers. Grids of poor quality can introduce errors and cause serious 

difficulties in convergence. Due to the complexity of tip vortex flow generated by 

marine prop llers, the following issues have to be considered in the grid generation. 

Firstly, it is n c ssary to have a fine grid to adequately resolve the tip vortex. Hsiao 

and Pauley (1999) suggested that at I ast 15 grid points across the tip vortex core 

should b u eel to obtain a reliable near-field tip vortex for a marine propeller. 

Hally and Watt (2002) investigated the effect of grid density on the evolution 

of a laminar vortex. They found that the computed results tend d to match 

the th oretical solutions as the number of cells across the vortex core increased. 

Secondly, the grid density on the propeller blade surface must be sufficient so that 

boundary layer effects can be well predicted. Thirdly, grids must be smooth 

throughout the computational domain. Finally, the grid generator has to be 

computationally efficient for routine applications. A gird gen ration program, 

PropGrid, developed by Qiu et al. (2003) based on the work of Hsiao and Pauley 

(1999) , is summarized in this Chapter. 
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YJl--x 

Figure 2-1 : Computational domain for propeller 

2.1 Computational Domain for Propellers 

Since the intersection of the hub and the blade root area of the propeller blade is 

overly complicated , some geometry simplifications are made in the grid generation. 

The blade flange, root fillers and a root trailing edge cut-out are ignored. Propeller 

blades are assumed to be mounted on a cylindrica l hub with constant radius. 

Based on the work of Hsiao and Pauley (1999) and Qiu et al. (2003) , the 

computational domain is set up as one spiral-like blade-to-blade passage with 

two periodic boundaries by following the inlet flow angle. This two periodic 

boundaries contain the suction side of a blade and the pressur side of the next 

blade. As shown in Figure 2-1, the other boundaries for this computational 

domain includ the inlet boundary upstream, the outlet botmdary downstream, 

the inner boundary located on the hub surface and the outer boundary in the 

spanwise direction. The advantage of this kind of computational domain is that 

the cluster d grid can be easily aligned with the tip vortex and the flow across the 

periodic boundaries can be minimized. 
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Figure 2-2: Carte ia n coordinate system 

The grid is first generated on t he blad and hub surfaces with clusters at blade 

tip and root as well as leading and trailing edges. On th periodic boundary, 

grids are created in three regions: the region above the t ip from th leading edge 

to th trailing edge, the region from the inlet boundary to the leading edge, and 

the region from the trailing edge to the outlet boundary. A two-dimensional grid 

between th blades is then created on constant radius surfaces based on t he blade 

surface grid. Each two-dimensional grid is generated using an alg braic scheme 

and an elliptic smoothing routin . T he t hree-dimensional initial grid is set up by 

st acking all the two-dimensional grids . An ellipt ic smoot hing rout ine is applied to 

smooth the three-dimensional initial grid finally. 

2.2 Coordinate System 

A cartesian coordinate system, oxyz , is applied on t he propeller with the 

positive x-axis defined as downstream direction and y-axis located at any desired 

angular orientation relative to t h key blade. The z-coordinate is det rmined by 

the right-hand cl syst em (see Figure 2-2) . 

A cylindrical syst em is defined with the angle e measured clockwise from the 

z-axis wh n viewed in the direction of posit ive x-axis. The radial oordinate, r , is 



y y 

0~----------~~ x 

Figure 2-3: Cylindrical coordinate system 

give by 

r = Jy2 + z2 (2.1) 

A projected view of a blade form upstream is shown in Figure 2-3. In the figure, 

rH is the hub radius, ()is the skew angle measured from the z-axis at radius r·. 

The geometry informa tion of the propeller, i.e. leading edge, t railing edge and 

blade section surface, can be describ d mathematically both in th Cartesian and 

Cylindrical coordinate systems. T he leading and trailing edges of blade can be 

constructed by passing a helix of pitch angel, <P(r), t hrough the mid-chord line. If 

the expanded chord length of blade s ction is c( r), the leading and trailing edge 

coordinates can be described as 

Xt ,t = Xm =f ~sin ¢(r) (2.2) 

c 
()l t = ()m =f -

2 
COS¢( r) , r (2.3) 

Yt,, = r sin e,,t (2.4) 

Zt,t = T 0 ()l,t (2.5) 

where the sub 'Cfipts l and t denote the leading and trailing edge , respectively. 

As shown in Figure 2-4, the blade section surface is defined by the funct ions 
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t,(s) 

Figure 2-4: Blade section surface 

ts ( s) and tp( ) for the suction side and th pressure side of the blade, respectively. 

In the functions , s is a nondimensional chordwise coordinat ,which is zero at 

the leading edge and one at the trailing edge. The function t 8 (s) and tp(s) are 

measured in a cylindrical surface of radius r in a direction normal to the helical 

coordinate. 

A blade index angle 8k is defined to g neralize the results to all blades other 

than the key blade: 

27r(k- 1) 
8k= K ,k = 1,2,···, K (2.6) 

where K is the number of blades and k is the index of any blade. The key blade 

is defined by the k = 1. The coordinates of a point on the pressure and suction 

surface of a section on kth blade can be written as 

1 . 
Xs,p = Xm + c(s - 2)sm¢- ts,pcos¢ (2.7) 

1 cos¢ sin¢ 
Bs,p = Bm + c(s- 2)-r-- ts,p_r_ + 8k (2.8) 

Ys,p = rsinBs,p (2.9) 

Zs,p = rcosBs,p (2.10) 

where the subscripts sand p denote the suction side and the pressure side surfaces, 

respectively. ts,p is the section surfac as shown in Figure 2-4. 

Th prop ller blade surface can then be written in terms of a set of organized 

points. This set of organized points can be obtained by a parametric representation 

of blade surfac (Qiu et al., 2003). 
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2.3 Grid Generation on the Blade 

The computational domain in Figure 2-1 starts with the generation of the 

surface grid on the blade. The grids on the blade surface can be distributed based 

on the set of organized points. The grids shrink into a point at the blade tip. This 

type of grid is called an 0-type grid, which is not desirable for the computation. 

A redistribution process has been developed to generate H-type grids on the blade 

surface. F igure 2-5 demonstrates the difference between 0-type and H -type grids. 

In the H-type grid, the grid lines are curvilinear, approaching a set of horizontal 

and vertical lines in a pseudo-orthogonal configuration, with a topology that can 

be associated to the letter H. 

To maintain the accuracy of the geometry definition, the number of the 0-type 

gird points on the blade has to be increased from the original input geometry before 

the H-type grid is created. The number of refined grid points are set as 251 in 

spanwise and 141 in chordwise in the grid generation program. The procedure for 

creating an H-type grid from an 0-type grid on the blade surface is illustrated in 

Figure 2-6. The H -type grid is obtained by redistributing the grid points in the 

tip region. 

In order to simulate the tip vortex flow, it is desirable to distribute an H-type 

grid on the blade surface with clusters at tip and root, as well as the leading 

edge and the trailing edge. In PropGrid, the distribution of the H-type grid is 

controlled by the number of grid points in the spanwise and chordwise directions 

as well as the distribution functions. 

The controlling function for grid points concentrated at two ends m the 

spa.nwise or chordwise direction is defined by 

(2a + ,6)[(,6 + 1)/(,6- 1)](~-a)/( 1 -a) + 2a- ,6 
¢(0 = (2a + 1){1 + [(,6 + 1)/(,6- 1 )](~-a)/( 1 -al} 

(2a + ,6)[(,6 + 1)/(,6- 1)] ((- a)/(1- a) + 2a- ,6 
?j;(() = (2a + 1){1 + [(,6 + 1)/(,6- 1)]((- a)/(1- a)} 

(2.11) 

(2.12) 

where a and ,6 are the gird distribution factor and stretching factor , respectively. 
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(a) 0 - type grid 

(b) H- typc grid 

Figure 2-5: 0-type a nd J-1-type grids 
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(a) 0 - type panel points 

(b) Intermediate grid tn the tip region 

(c) Redistributed H-type panel 

Figure 2-6: Redistribut ing the 0 -type panel points around the tip region (Qiu et al. ,2003) 
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When a= 0.5, the grid will cluster evenly at both the tip and root regions in the 

spanwise direction or the leading and trailing edges in the chordwise direction. 

The stretching factor, {3, should be greater than one. The larger the value, the 

less concentration of grid points at end edge will be achieved. In another words, 

the grid will be more uniformly distributed. The intermediate variables, ¢ and 1/J, 

are defined on the unit intervals,~ and(. In the program, ~ = ~~11 and ( = ~~11 , 

where I or J is the order of the point in the chordwise direction or the spanwise 

direction, N or M is the total number of points in the chordwise direction or the 

spanwise direction. The location of a grid point on the surface can be controlled 

by adjusting the single valued function ¢(~) in the chordwise direction or 1/J(() in 

the spanwise direction. 

The controlling function for grid points concentrated at one end in the spanwise 

or chordwise direction is defined by 

¢(~) = ({3 + 1) - ({3 - 1)[({3 + 1)/({3- 1)]1-( 
[ (f3 + 1) 1 (f3 - 1) ]1- ( + 1 

1/J (() = ({3 + 1) - ({3- 1)[({3 + 1)/({3- 1)p- ( 
[({3 + 1)/({3- 1)jl -( + 1 

(2.13) 

(2.14) 

For the grid distribution on the blade surface, there are three types of clusters 

are provided by the program in the spanwise direction: 

Type 1. Grid concentrated at the tip 

Type 2. Grid concentrated at both the tip and the root 

Type 3. In the spanwise direction, the blade surface is subdivided into two 

regions. In each region, one-end or two-end controlling function is 

applied 

In the chordwise direction, two types of grid clusters are provided : 

Type 1. Grid concentrated on both the leading edge and the trailing edge 

Type 2. In the chordwise direction, the blade surface is subdivided into two 

regions. In each region, one-end or two-end controlling function is 

applied 
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Figure 2-7: Grid distribution on the blade surface 

Figure 2-7 presents the grid on the blade surface grid distribution using Type 3 

and Type 2 grid distribution mentioned above in the spanwise and chordwise 

directions, respectively. In this figure, the total number of grid point in the 

spanwise direction and the chordwise direction are set as 81 and 101. The blade 

surface is subdivided into two regions in the spanwise direction. The first region 

is from s = 0 (root) to s = 0.9, where s is the non-dimensional arclength. The 

two-end grid distribution is applied in this region. The second region is from 

s = 0.9 to s = 1 (tip) , where the one-end grid concentration is set. The distribution 

factor, ex, and the stretch factor, /3, are set as 0.68 and 1.05, respectively. The grid 

stretch factor in the second region is 1.13. In the chordwise direction, two regions 

are divided at s = 0.45 from the leading edge. In the region close to the leading 

edge, the number of grid points is 40 , ex and /3 are set as 0.68 and 1.48. In the 

other chordwise region, the one-end stretch factor is 1.68. 
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(a) Region l (b) Region 2 

(c) Region 3 

Figure 2-8: Grid generation on the periodic boundary 
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2.4 Grid Generation on the Periodic Boundaries 

After the surface grid generation on the blades, the grid is generated on the 

periodic boundaries containing the suction side of one blade and the pressure side 

of the next blade. The procedure to generate the periodic boundary is illustrated 

in Figure 2-8. As shown in the figure , grids have to be created in three regions: 

the region above the tip from the leading edge to the trailing edge (Region 1), 

the region from the inlet boundary to the leading edge (Region 2), and the region 

from the trailing edge to the outlet boundary (Region 3). 

The grids in Region 1 are generated based on the grids at the propeller tip. 

The coordinate, e, keeps constant at each station in the chordwise direction and 

the r is increased from the radius at the tip to the outer boundary. In Regions 2 

and 3, the coordinates of grid are computed based on the grid information at the 

leading edge and trailing edge. The rotation speed of propeller and free stream 

velocity are also employed to generate the grid following the inlet flow angle. 

To generate the grids in the Region 1, the following equation is used: 

x(i,k) = x(i,KTIPNUM) 

r(i , k) = Ttip(i) + </J(k) Tjar- Ttip(i) 
Ttip-ja1· 

8(i, k) = 8(i, KTIPNU M) 

y(i , k) = r(i, k)sin[8(i , k)] 

z(i , k) = r(i, k)cos[8(i, k) ] 

(2.15) 

where, k = KTIPNUM + 1, KMAX ; i = ILE,ITE. In the equation 2.15, ILE 

and IT E are the indices of grid points on the leading edge and the trailing edge, 

respectively, KT I P NU M is the number of grid points on the blade surface in the 

spanwise direction, K MAX is the total number of grid points on the boundary 

in the span wise direction, ¢( k) is the controlling function in the radial direction, 

x(i, KTIPNUM) , 8(i , KTIPNUM) and rtip(i) are the x, e and r-coordinates at 

the tip. 
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To generate the grids in the Region 2, the following equation is used: 

x(i, k) = x(ILE, k)- ¢d(i) [x(I LE, k)- XLE] 
LE 

(k) [ (ILE k) ]
27rr' ( k )n 

ro = x ' . - XLE Uoo 

8(i k) = 8(1 LE k) + ¢(i) ro(k) 
' ' dLE r'(k) 

(2.16) 

y(i, k) = r(i, k)sin[8(i, k)] 

z(i, k) = r(i, k)cos[8(i, k)] 

where, i = ILE -1,1,-1; k = 1, KMAX. In the equation 2.16, ¢(i) is the 

controlling function in the helix line direction, dLE is the distance from the inlet 

boundary to the leading edge on the tip, XLE is the x-coordinate of the inlet 

boundary, U00 is the inflow velocity, n is the RPS of the propeller, r' (k) is the radius 

of the grid on the line a (see Figure 2-8), x (I LE, k), 8(1 LE, k) and r(I LE, k) are 

the x, 8 and r-coordinates on the leading edge. 

For the Region 3, the following equation is used: 

. ¢(i) 
x(~ , k) = x(ITE, k) + -d [xrE- x(ITE, k)] 

TE 

21rr' (k)n 
ro(k) = [xrE- x(ITE, k)]-__:__..:.

Uoo 

8(i k) = 8(ITE k) + ¢(i) ro(k) 
' ' drE r'(k) 

y(i, k) = r(i, k)sin[8(i, k)] 

z (i, k) = r(i, k)cos[8(i, k)] 

(2.17) 

where, i = IT E + 1, I MAX; k = 1, ](MAX. In the equation 2.17, ¢ (i) is again 

the controlling function in the helix line direction, drE is the distance from the 

trailing edge to the outlet boundary on the tip, XrE is the x-coordinate of outlet 

boundary, r' ( k) is the radius of the grid on the line {3 (see Figure 2-8) , x(IT E , k), 
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Figure 2-9: Cubic Bezier curve 

B(ITE,k) and r(ITE,k) are the x,B and r -coordinates on the trailing edge. 

2.5 Initial Grid Generation 

After the grid generation on the blade surfaces and periodic boundaries is 

completed, a two-dimensional grid between the blades is then created on each 

constant radius surface based on the blade surface grid and the first grid spacings. 

On each const ant radius surface, a Bezier curve (Faux and Prat t , 1979) is 

used to define a grid line between two boundaries. The cubic Bezier curve in 

three-dimensional is applied in the program. 

(2.18) 

where 0 :S t :S 1. The curve starts at P 0 t oward P 1 , and arrives at P 3 coming 

from the direction of P 2 as shown in Figure 2-9. 

The points on the Bezier curve are distributed by using the two-end controlling 

function. The application of Bezier curves assures that the grid is normal 

to the blade surface where the boundary condition of zero normal pressure 

gradient is applied. After creating t he grid on each constant radius surface, 

each two-dimensional grid is smoothed by applying a two-dimensional ellipt ic 

smoothing routine. 
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2.6 Elliptic smoothing Technique 

An elliptic smoothing routine is used to smooth the gird which is generated 

by using linear internal interpolation. The elliptic smoothing routine generates 

grids by solving a set coupled Poisson elliptic partial different ial equations. The 

equations are given below for the three-dimensional case which can be simplified 

to a two-dimensional case: 

~xx + ~yy + ~zz = P(~, TJ , () 

'r/x:c + 'r/yy + 'r/zz = Q(~, TJ , () (2.19) 

( xx + (yy + ( zz = R(~ , TJ, () 

In RA S solvers, the RA S equations on structured grids are usually 

t ransformed in to generalized coordinates by 

~ = ~(x,y,z) 

rJ = rJ(x,y,z) (2.20) 

( = ((x y,z) 

T he J acobian of the transformation is computed by 

- I 

~x ~y ~z 

J = det a(~, TJ , () = 
a( ) 'rlx 'r/y TJz x,y,z 

(2.21) 

h ·t= -!!S. _ax t w e1 e '>x - ax, x{ - 8{ , e c. 
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The metric t erms are calculated as 

(2.22) 

(
(xl ~ y~zTJ - YryZ~ ~ (/13) 
(y = J XryZ~- X~Zry = J /23 

(z X~YTJ - XryY~ /33 
Using the J acobian of the t ransformation above, Equation 2.19 can be 

transformed into 

with 

r ~ ( : ) 

3 

O:i ,j = L /mi/mj 1 i = 1, 2, 3; j = 1, 2, 3 
m=l 

The SOR (Successive Overrelaxation) algorithm is chosen to solve those equations. 

The grid distribution can be controlled by the forcing functions P, Q and R. 

If P = Q = R = 0, the Poisson equations reduce to Laplace equations. Based on 

the work by Sorenson(1989), both the first grid spacing and angel to the boundary 

can be specified. The forcing funt ions used in the present program are defined as 
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Q(~, TJ, () = q(~, ()e- 077 

R(~ , 7] , () = r(~ , ()e-al) 

(2.24) 

where a is a positive constant which determines the decay rate of the grid 

clustering and p, q and r will be determined by specifying the first grid spacing 

and angle to the boundary. The forcing functions must satisfy the desired spacing 

and orthogonality which have been specified by the initial grid distribution. 

Before determining the forcing function in Equation 2.23, t he part ial derivatives 

of r with respect to ~ ' 7] and (at t he boundary, i.e. at 7] = 0, need to be determined 

first. From Equation 2.23, the partial derivatives of r = xi + yj + zk can be 

expressed as 

or ox . oy . {)z 
a~ = a~ I + a~J + a~ k 

Or ox . oy . oz k 
07] = 07] I + O'T]J + 07] 

or ox . oy . oz 
ac = ac I + acJ + ac k 

(2.25) 

That desired spacing and orthogonality can be specified by the three relations 

(2.26) 

where s is the first grid spacing at the boundary. Equation 2.26 is expanded as 

(2.27) 

The first equation and t he third equation in Equation (2.27) are first solved as 
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follows: 

Cramer 's rule is applied to get the solut ion for x.,., and y,,., . 

-z'1(x{z( - x<z~;) -Z1J"f22 
y!)= = 

-(X(Y{ - X{Yd - 1'32 

Substituting x'1 and y'1 into the second equation in Equation 2.27 gives 

S"(32 
z - ---;;::::;:;::::==:::::::~=::::;;:= 
1)- /2 2 2 

v 1'12 + 1'22 + 1'32 

S')' t2 
X'1 = -.--= 12=====2==:;:::2 

v 1'12 + 1'22 + 1'32 

S"f22 
y'1 = . I 2 2 2 

v 1'12 + 1'22 + 1'32 

(2.28) 

Solutions x '1 , y'1 and z'1 give t he first derivative r '1 . The second derivatives r '1'1 

can be derived from the Taylor series: 

(2.29) 

where j is the index in the 'TJ direction. 

To determine the values for p, q and r, Equation 3.30 is rewritten at TJ = 0 as 

(2.30) 

where 
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h = ( ~:) = -J2 [<>nr« + <>,r., + <>33r(( + 2(<>,r,, + <>13r« + ""r,,)] 

This system can be solved by Cramer's rule to obtain 

p =(hi/'ll+ h2/'2I + h3/'31)/ J 

q = (hi/'I2 + h2/'22 + h3/'32)/J 

r = (hi T'I3 + h21'23 + h3')'33) I J 

(2.31) 

Based on the elliptic grid scheme described above, a two-dimensional elliptic 

smoothing routine has been developed to smooth the two-dimensional initial grid . 

2. 7 Computational Grid Generation 

The three-dimensional computational grid is set up by stacking all the 

two-dimensional initial grids, but the grid generated using linear internal 

interpolation is usually not smooth. An elliptic smoothing routine is used to 

smooth the computational gird. It first smooths the grid in the whole domain 

except the boundary layer region since the desired spacing and orthogonality have 

been assured in the computational grid generation. If there are grid cells which 

do not satisfy the criteria, the routine will list the information about those cells. 

The final spiral-like computation domain is shown in Figure 2-10. 

The last step of the program is to output the grid file in the format of the 

A SYS-CFX. Not only the coordinates of grid but also the element information 

has to be contained in the grid file for the ANSYS-CFX. To apply the boundary 

conditions in the ANSYS-CFX, the location of each boundary is also needed to be 

specified in the grid file. The whole process of the gird generation for a propeller 

is shown in Figure 2-11. 
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F igure 2-10: A spiral-like computational domain 
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Figure 2-ll: Flow chart of the grid genera tion for a propeller 
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Chapter 3 

Mathematical Formulation 

3.1 Governing Equation 

The Navier-Stokes (N-S) equations are the basic mathematical models to 

describe viscous flows around propellers in the CFD method. They are composed 

of the continuity equation and the momentum equations, containing variables of 

pressure and velocities. To numerically simulate the propeller tip vortex flow, the 

RANS equations, derived from t he N-S equations by introducing averaged and 

fluctuating components for those variables, are used: 

ap - + \l · (pU) = 0 at (3.1) 

apV r 2 __ 
~+\l · (pU®U) = -\lp+'V ·{pv[\JV+ ('VV ) --8\7 -U]}+\l ·(- pu ® u ) (3.2) 

ut 3 

where 8 is the Kronecker delta funcion, pu ® u are the Reynolds stresses, which 

have to be modeled to enclose the governing equations, ® is the tensor product of 

two vectors, U ® V is defined as, 

[u.v. UxVy u.v.l 
U ® V = UyVx UyVy UyVz 

UzV-c UzVy UzVz 
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3.2 Turbulence Models 

It is well known that the RANS equations cannot be solved without information 

about the Reynolds stress terms. The turbulence models must be involved to 

enclose the governing equations in the computation. In the past four decades, 

many turbulence models have been specifically developed by CFD researchers to 

account the effects of turbulence. In general, those turbulence models can be 

divided into two types: eddy viscosity models and Reynolds stress models. 

The eddy viscosity models mean that the Reynolds stresses are assumed to be 

related to the velocity gradients and turbulence viscosity by the gradient diffusion 

hypothesis (Boussinesq, 1877) : 

-pu ® u = pvt[\7U + (\7Uf]- ~ <5p(k + Vt\7 · U) (3.3) 

where <5 is the Kronecker's delta , Vt is the turbulence viscosity, which has to be 

modeled . 

1\1rbulence models which are based on the turbulence viscosity are all called 

eddy viscosity models, such as the Cebeci-Smith model (Smith and Cebeci, 

1967) and the Baldwin-Lomax model (Baldwin and Lomax, 1978) , which are 

algebraic zero-equation models that give turbulence viscosity as a function of the 

local boundary layer velocity profile. The Baldwin-Barth model (Baldwin and 

Barth, 1990) and the Spalart-Allmaras model (Spalart and Allmaras, 1992) are 

one-equation models that solve a transport equation for a viscous variable. The 

k - E model (Jones and Launder , 1973) and the k- w model (Wilcox, 1988) are 

two-equation models that include two extra. transport equations to represent the 

turbulent properties of the flow. 

The Reynolds stress models are different from the eddy viscosity models. These 

models do not use the eddy viscosity hypothesis, but solve an equation for the 

transport of Reynolds stress. Algebraic Reynolds stress models solve algebraic 

equations for the Reynolds stress, whereas different ial Reynolds stress models 

solve differential transpor t equations for Reynolds stress. In general, there are 
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three varieties of the standard Reynolds stress models (the LRR-IP, the LRR-QI 

and the SSG) and two varieties of Omega-Based Reynolds St ress Models (the 

Omega and the Baseline) . The LRR-IP and LRR-QI models were developed by 

Launder et al. (1975). "IP" st ands for Isotropization of Production , and "QI" 

stands for Quasi-Isotropic. In these models, the pressure-stain correlations are 

linear. The SSG model, developed by Speziale et al. (1991), uses a quadratic 

relation for the pressure-st ain correlation. The Omega Reynolds stress model and 

the Baseline (BSL) Reynolds stress are all based on thew-equation , which allows 

for a more accurate near wall t reatment. 

This section presents a brief description of the k - E model, the k - w model 

and the Shear St ress Transport (SST) model, which were used in the present 

computation. 

3.2.1 k - E model 

The k - E model is one of the most common two-equation turbulence models. 

It includes two extra transport equations for k and E, where k is the turbulent 

kinetic energy, and E is the turbulent dissipation rat e. The turbulent viscosity Vt 

is computed from 

(3.4) 

the values of k and E are solved from the different ial t ransport equations as below. 

8k v 
-
8 

+ \1 · (Uk) = \1· [(v + _..!... )\lk] + vtPk - E (3.5) 
t ~k 

where the constant coefficients cJL = 0.09, c,1 = 1.44, c,2 = 1.92, ~k = 1.0 and 

~, = 1.3. Pk is the turbulence production which is modeled as 

(3.7) 
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For low-Reynolds number computations, the k-E model would typically require 

a near wall resolution of y+ < 0.2. While the k- w model, which will be described 

in the next section, would require at least y+ < 2. It leads the advantage of 

the k- w for near wall treatment under low-Reynolds number. Note that y+ is 

non-dimensional wall distance 

+ uTy 
y = 

v 
(3.8) 

where the frictional velocity on the wall, U 7 = (rwfp)4, pis the fluid density, Tw 

is the shear stress on the wall, Tw = vau j fJy. 

3.2.2 k - w model 

The k-E model assumes that the turbulence viscosity is linked to the turbulence 

kinetic energy, k, and turbulence frequency w, via the relation: 

k 
Vt = 

w 

The two transport equations for the k and w are : 

ak ~ . 
~ + \1· (Uk) = \1· [(v + - )\lk] + VtPk- (J kw 
ut ak 

OW Vt W 2 - + \1 · (Uw) = \1 · [(v + - )\lw] + a-vtPk- (Jw at aw k 

(3.9) 

(3.10) 

(3.11) 

with a= 5/9, (J = 0.075, (J' = 0.09, ak = 2 and aw = 2, and Pk is calculated as in 

the k - f. model. 

3.2.3 Shear Stress Transport (SST) Model 

It is well known that k - w model have strong sensitivity to freestream conditions 

(Menter, 1993). Depending on the value specified for w at the inlet, a significant 

variation in the results of the model can be obtained, which is undesirable. In 

order to solve the problem, a blending between the k - w model near the wall 
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surface and the k- E model in the outer region was developed by Menter (1994). 

SST model combines the advantage of the k - w model and k - E model by 

blending function F1 . The equations of k - w model are multiplied by function 

F 1, the transformed k - E equations by a function 1 - F1 . F1 is equal to 1 near the 

surface and switches over to zero in side the boundary layer. In the SST model, 

the turbulence viscosity Vt is formulated by 

a 1k 
Vt = -----'----

max(alw, SF2) 
(3.12) 

where F2 is again a blending function similar to F1 , S is an invariant measure of 

the strain rate defined by 

(3.13) 

"th S I (au ~) 
WI ij = 2 ~ + ox; . 

Two transport equations are given as 

Ok Vt I 

~ + \7 · (Uk) = 'V[(v + -)'Vk] + vtPk- (3 kw 
ut CJk3 

(3. 14) 

where, a 1 = 5/9, a2 = 0.44, fJ1 = 0.075, fJ2 = 0.0828, (3' = 0.09, CJk1 = 2, 

CJk2 = 1, CJwl = 2, CJw2 = 1/ 0.856, a3 = F1a1 + (1- F1)a2 , {33 = F1{31 + (1- F1)fJ2 , 

CJk3 = F1CJk1 + (1- Fl)CJk2 and CJw3 = F1CJw1 + (1- F 1)CJw2· 

The two blending functions are critical to the success of the method, which 

are given below are based on the distance to the nearest surface and on the flow 

variables: 

(3.16) 

with 
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. Jk 5001.1) 4pk 
t1 = mm[max( {3'wd , .nw , C 2 ] u- Dkwaw2d 

where d is the distance to the nearest wall, z; is the kinematic viscosity, p is the 

density of flow, and CDkw = max(2p\lk"Vw/aw2w, 1.0 x 10- 10) . 

F2 = tanh(tD (3.17) 

with 

3.3 Numerical Met hod 

A commercial RA S code, ANSYS-CFX, was applied to solve the propeller tip 

vortex flow in this work. The brief description of ANSYS-CFX solver is presented 

below. 

ANSYS-CFX solver uses a unique hybrid finite-element/ finite-volume approach 

to discretize RANS equations. As a finite volume method, it satisfies strict 

global conservation by enforcing local conservation over control volumes that are 

constructed around each mesh vertex or node. The fini te element methodology is 

used to describe the solution variation (needed for various surface fluxes and source 

terms) within each element. Advection fluxes are evaluated using a high-resolution 

scheme that is essentially second-order accurate and bounded. For transient flows, 

an implicit second order accurate time differencing scheme is used. 

In this thesis, the computations are conducted on a rotating frame. The 

Rotating Frames of Reference (RFR) is used to specify the computational domain 

that is rotating about an axis. The right-hand rule is used to determine the 

direction of the rotation. When the computational domain with a rotating 

frame is specified, the ANSYS CFX solver computes the appropriate Coriolis and 

centrifugal momentum terms, and solves a rotating frame total energy equat ion. 

For the boundary conditions, inlets, outlets, openings, walls and symmetry 

planes are needed to be specified in ANSYS-CFX. Since the grid generation of 
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propeller only considered one blade-to-blade passage computational domain, a 

rotational periodic boundary condition is needed to account the influence of the 

other blades. The Fluid-Fluid Interface Modeling in ANSYS-CFX allows users 

to create the periodic interface boundaries. M anwhile, ANSYS-CFX also offers 

various turbulence models such as the k - E model, the k - w model and the SST 

model. 
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Chapter 4 

Numerical Results and 

Discussions 

The DTMB 5168 propeller at the advance coefficient J = 1.1 was selected 

in the present study. The ANSYS-CFX with the k - E turbulence model and 

the SST turbulence model was used to compute the flow field . The computed 

velocity components in the flow field and around tip vortex core were compared 

with the experimental results and solutions by other numerical methods. The 

original geometry of t he suction side and the pressure side of DTMB 5168 propeller 

was provided in terms of three dimensional points on 51 radial s tations and 17 

chord fractions at each st ation. Table 4.1 summarizes the model geometry and 

operational conditions for the steady state situation. 

Table 4.1: DTMB 5168 Propeller Part iculars 

Designation Values 

Diameter (inch) 15.856 
Inflow velocity (inch/ s) 421.44 

Chord length a t 0.7 R (inch) 6.897 
Advance coefficient 1.1 

Rotation speed (RPS) 24.163 
Combined velocity at 0.7 R (inch/ s) 942. 12 

Reynolds number 4.2 x 106 

In the computations , t he water density and viscosity are given as Pwater 
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Figure 4-1: Boundary conditions of the computation 

997kg/m3 and f.Lwater = 8.89 X 10- 4kgm- 1s - 1, respectively. 

4.1 Boundary Conditions 

The boundary conditions on each of the boundaries are specified as follows: 

no-slip wall condition is applied on the blades and the hub surfaces (denoted by 

black in the Figure 4-1). Freestream condition is applied on the inlet boundary 

and the outer surface in the spanwise direction (denoted by green in the Figure 

4-1) . The flow rate is specified at the outlet boundary (denoted by blue in the 

Figure 4-1). Rotational periodic conditions is applied on the periodic boundaries 

by the Fluid-Fluid Interface Modeling (denoted by red in the Figure 4-1). 

4.2 Primary /Secondary Coordinate System 

To better describe the tip vortex structure, a primary /secondary coordinates 

system (see Figure 4-2) is used. The the primary velocity, V, , i defined in 
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Figure 4-2: The primary/secondary coordinate system (Hsiao and Pauley, 1999) 

the axial-tangential x - t plane at the propeller pitch angle, ¢. The secondary 

velocities, th tangential velocity Vc and the radial velocity V,., are then on the 

secondary-flow plane which is normal to the primary velocity. Since the pitch 

angle varies in the radial direction, th velocity components in this coordinate 

system were calculated at each radial-station by 

Vs = Vx sin(¢(r)) +Vi cos(¢(r)) (4.1) 

Vc = -Vx cos(¢(r)) + Visin(¢('r)) (4.2) 

v,. = v,. (4.3) 

In this coordinate system, the tip vortex axis is normal to the s condary-fl.ow 

plane so that the structure of vortex core can be well defin d. 
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Figure 4-3: Computational domain for DTMB 5168 (Qiu t al.,2003) 

4.3 Effect of the Grid Resolution 

In this section, three computational grids, Grid I, Grid II and Grid III, were 

used to investigate the effect of the grid resolution. As shown in Figure 4-3, all 

the computational domains in the present study were created by etting the inlet 

boundary at Xin = F LE x D = - 0.5D upstream, and the outlet boundary X out = 

BTEx D = l.OD downstream, where Dis propeller diameter. The outer boundary 

in the radial direction is located at one propeller diameters (FARBC= l.O). The 

detailed grid information of these different computational domains is listed in the 

Table 4.2. 

For Grid I, the first grid spacing was 3.6 x 10- 4 inches and 1.236 x 10- 3 inches, 

corresponding to y+ = 7.5, on both the blade and the hub surfaces. The total 

points in Grid I is about 1.92 million. For Grid II, the first grid spacing was 

1.0 x 10- 4 inches and 4.0 x 10- 4 inches, corresponding toy+ = 2.08 and 2.43, on 

the blad surface and the hub surface, respectively. The total points in Grid II is 

about 2.37 million. For Grid III, the first grid spacing was 4.8 x 10- 5 inches and 
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Table 4.2: Grids with Different Resolutions 

IMAX 
JMAX 
KMAX 

ILE 
ITE 

KTIP UM 
Minimum Jacobian 

Minimum Volume(inch3) 

Minimum Skew Angle( degree) 

Grid I Grid II 

171 211 
101 101 
111 111 
25 40 

125 140 
81 81 

3.13 4.64 
7.78x 1o- 10 4.49 x 10- 12 

0.13 0.017 

Grid III 

231 
111 
121 
40 
150 
81 

6.99 
5.63x 10- 12 

0.015 

1.648 x 10- 4 inches, corresponding to y+ = 1.0, on both the blade and the hub 

surfaces. The total points in Grid III is about 3.10 million. Note that a small 

first grid spacing may lead to grid cells with negative Jacobian values which will 

cause the ANSYS-CFX solver not convergent . The value of the first grid spacing 

can be increased to overcome the problem. The grid quality, in terms of Jacobian, 

volume and skew angel, can influence the accuracy of results and the convergency. 

The line plots of velocities Vx, vt and \1;. , which cross the tip vortex center on 

the tangential direction at the station x = 0.2386R (R is the propeller radius), 

were compared with experimental data measured by Chesnakas and Jessup (1998) 

to show the effect of the grid resolution (Figures 4-4 to 4-5) . The center of the 

vortex core is defined at the location with minimum Vs and is specified at e = 0 in 

the plots. As shown in these figures, the first valley of Vx and vt corresponds to the 

wake and the second valley is associated with the tip vortex. In th experiment of 

Chesnakas and Jessup, a fiber-optic laser doppler velocimeter (LDV) system was 

used to obtain coincident measurement. The uncertainty within the vortex core 

was less than 3% of Uin for all measured components of the mean velocity. 

All the numerical and experimental results and coordinates are 

nondim nsionalized. The velocity components in cylinder coordinate system 

are nondim nsionalized by the inflow velocity in the st a tionary frame, Uin , as 

follows: 
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Figure 4-4: The line plot Vx, Vt , Vr across the Lip vorLex center in the tangential direcLion a t 
xj R = 0.2386 with the k- t turbulence model 
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Figure 4-5: The line plot If., V11 V,. across the tip vortex center in the tangent ial direction at 
x / R = 0.2386 with the SST turbulence model 
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(4.4) 

The spatial coordinates are nondimensionalized by the radius of the propeller , R 

(4.5) 

In the plots of Vx, 1/t and v;. with the k - E turbulence model (Figure 4-4), 

the numerical results with Grid I gave better predictions than those with Grid 

II and Grid III. The same situation happened to the computed results with the 

SST turbulence model (Figure 4-5). Although the number of total points in Grid 

I was the least and the first gird spacing was the biggest as shown in Table 4.2, 

the values of the minimum volume and the minimum skew angle in Grid I were 

much bigger than the others. Note that the value of the minimum Jacobian in 

Grid I was the same order of magnitude with those in Grid II and Grid III. It 

can be observed that the quality of the grid, in terms of volume, skew angle and 

Jacobian, has major effect on the solution. Based on the studies above, Grid I is 

chosen for the following computations. 

4.4 Validation Studies 

In this section, the CFX numerical results with the k- E turbulence model and 

the SST turbulence model are discussed. The contour of three computed velocity 

components, Vx , 1/t and V,. at xj R = 0.2386 were compared with the experimental 

data in Figures 4-6 to 4-8. 

From Figures 4-6 to 4-8, the computed velocity components by k - E and the 

SST turbulence models are in good agreement with the experimental data. There 

are no significant difference between the results by the k- E and the SST models. 

Only a very small difference occurs in the area near the hub for Vr (Figure 4-8). 

Visually, t he SST model seems to give a better solution by comparing with the 

experimental results. An important issue in turbulence modeling is the numerical 

treatment of t he equations in regions close to walls. The near-wall formulation 
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determine the accuracy of the wall sh ar stress predictions. As mentioned in 

the previous chapter, the SST model combined the advantage of k - E model 

and the k - w model. For the SST turbulence model, the new wall boundary 

treatm nt exploits the simple and robust near-wall formulation of the k- w model 

and switches automatically from a low-Reynolds number formulation to a wall 

function treatm nt based on grid density. 

The primary velocity Vs at xj R = 0.2386 were compared with the experimental 

data measured by Chesnakas and J essup (1998) in Figure 4-9. The close-up view 

of the tip vortex core region in the primary coordinate system is given in Figure 

4-10. There ar about 15 x 20 grid points used in the tip vortex. Th primary 

velocity V8 in the primary /secondary coordinate is non-dimensionalized by the 

inflow velocity in the rotating frame, Utota( 

(4.6) 

where n is the rotation speed of the propeller, and r = Jy2 + z2 . 

F1:om Figures 4-9 to 4-10, it is seen that the current numerical results in general 

agree with the experimental data. Th di crepancy between the FX numerical 

results and the experimental data is likely caused by the grid resolution in the 

vortex core, the large first gird spacings, and the turbulence models employed. 

Further study on the domain size, grid resolution and effects of the turbulence 

models will b carried out in the next stage. 

To g t better quantitative comparison, the line plots of velocitie V1:, 1ft 

and Vr , which cross the tip vortex center on the tangential direction at the 

station x = 0.23 6R, were compared with experimental data and other numerical 

results by I S3D-UP in Figure 4-11. In the work of Hsiao and Pauley 

(1999) , the computations were carried out using I S3D-UP with a one-equation 

Baldwin-Barth turbulence model, and the total grids of the whole computational 

domain are about 2.36 million. In the work of Qiu et al. (2003), I S3D-UP with 

the san1e turbulence model was appli d and about 1.92 million gri Is were used. 

As shown in Figure 4-11, all numeri al results gave reasonable pr di tion for the 
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tip vort x flow. 

In the plot of Vx, the numerical results by ANSYS-CFX with the k - E and 

SST turbulence models gave better predictions of the vall y shape at the vortex 

location, and the SST turbulence model gave relatively high values comparing 

with the k - E turbulence model. At the wake location of Vx, Hsiao and Pauley 

(1999) presented very good predictions of shape and values, while the predictions 

by Qiu et al. (2003) were a little lower than the experimental data. The differences 

of computational values between the results of Qiu et al. (2003) and Hsiao and 

Pauley (1999) are mainly due to the less number of grids and larger first grid 

spacings employed in the work of Qiu et al. (2003). Note that th first grid 

spacings of 1 x 10- 5 inches and 1 x 10- 4 inches on the blade surface and the hub 

surface wer u ed in the work of Hsiao and Pauley (1999), and 2.4 x 10- 4 inches 

and 8.24 x 10- 4 inches on the blade surface and the hub surface were used in the 

work of Qiu et al. (2003). There were about 16 x 20 grid points used within the 

tip vortex core in the work of Hsiao and Pauley (1999) and Qiu ct al. (2003) . The 

numerical results by A SYS-CFX with the k - E and SST turbulence models gave 

very similar solutions at the wake location, and they were both agree well with 

the value of experimental data. 

In the plot of v;, the results by AI SYS-CFX with the SST and k - E turbulence 

models gave the best prediction of the tip vortex center, and the SST turbulence 

mod l gave r latively more accurate solutions than the k - E turbulence model. 

The results by Qiu et al. (2003) and Hsiao and Pauley (1999) also agreed well 

with the experimental data. For V,. , all the numerical predictions in generally 

agree with the xperimental data. 

From all the comparison in this section, it can be concluded that the choice 

of turbul nee model and the grid resolution has impact on th the prediction 

of tip vortex flow. All the turbulenc models, the Baldwin-Barth turbulence 

model, the k - E turbulence model and the SST turbulence mod l involved 

in the computations, fall into th class of ddy viscosity models, which relate 

th Reynolds stresses to the velocity gradients via the isotropic turbulent 
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viscosity. Since the non-isotropic effects are important in simulating the strong 

non-equilibrium boundary layer in the t ip vortex flow , the Reynolds stresses 

turbulence model::; with an equation for the transport of Reynolds stress instead 

of using the eddy viscosity hypothesis should be considered in the future work. 
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Chapter 5 

Conclusions 

The viscous flow around rotating marine propellers govern d by the 

Reynold -Average avier Stok s equation (RA S) was comput d by the 

commercial code, ANSYS-CFX. In the computation, the SST and k - E turbulence 

models wer employed. A spiral-like computational grid was gen rated between 

two blades with two sides boundaries form d by following the local inlet flow angle 

at each radian section. 

The study of the effect of the grid resolution was first carried out to investigate 

the quality of the control volumes, such as the minimum volume, the minimum 

skew angle and the minimum J acobian, in the computational grid. It has been 

shown that the prediction of tip vortex flow depends on the grid quality. The grid 

with larger values of the minimum volume and the minimum skew angle leads to 

a better prediction of the tip vort x flow around the propeller. 

The effect of the SST and the k - E turbulence models on the solution was also 

discussed. There was no significant differ nee between the predictions by the k - E 

and the SST models . However, in comparison with solutions by I S3D- P with 

the one-equation model and diff rent grid resolutions, it can be observed that 

the choice of turbulence model and the grid resolution hav impact on t he the 

prediction of tip vortex flow. From the line plots of velocities, AN 'YS-CFX with 

the two-equation turbulence models gave better predictions of the valley shapes of 

wake and tip vortex core than INS3D-UP with the one-equation Baldwin-Barth 
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turbulence model. 

Validation studies have been carried out for a David Taylor propeller model 

5168. Velocity fields were computed and compared with experimental results and 

other numerical results. The solutions by A SYS-CFX are generally in a good 

agreement with them. It has been demonstrated that the CFX RANS solver is 

able to predict viscous tip vortex flow problem based on the structured grid. 

For future work, the Reynolds str ss turbulence models should be considered in 

the computabon. More studies should be carried out to investigate the interplay 

between the turbulence modeling and the grid resolution. The computation should 

also be extend d to unsteady cases. 
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