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Nomenclatur-

B Bezier curve function

D diameter of propeller

k turbulent kinetic energy
P pressure

R radius of propeller

T radial coordinate

S strain rate

U velocity vector

U, inflow velocity in the stationary frame

Uit 10w velocity in the rot.  ng frame

V. sccondary velocity

Vi primary velocity

yt  non-dimensional wall mnee
) grid distribution factor

Ié] grid stretching factor
Ok index angle of blade

€ turl  ent dissipation rate

viil



Uy

turbulence viscosity
specific dissipation rate/turbulence frequency
water density

shear stress on the wall



Acronyms

BSL

CFD

DNS

LDV

LES

RANS

RPS

SST

Bascline
Computational i d dynamics
rect numerical mulation
Laser doppler velocim
Large eddy siny  ion
eynolds ave: Navier Stokes
Revolution per s |

Shear stress tr. port



Chapter 1

Introc uction

1.1 Background and Motivation

The propeller cavitation is of major concern for ships in terms of reduced
performance, crosion and passenger comfort due to cavitation induced vibrations
and noise. Large cfforts on experimental and numerical studies have been made
on the investigation of cavitation inception and the accurate prediction of the
cavitation behavior of a propeller to avoid or control the tip vortex cavitation.

Experimental studies can explore many detailed features of the tip vortex
flow around a marine propeller configuration using advanced flow visualization
and non-intrusive measurement techniques. However, due to the limitation of

experiment: measurements, some physical measurements such as the = ssure

Figure 1  Cavit on How of a propeller (DGA-DCE)













results of tip vortex flow filed around the propeller are presented in Chapter 4.

Conclusions and the future work given in Chapter 5.

































(a) Region | (b) Region 2

(c) Region 3

Figure 2 d neration on the periodic boundary

16












2.6 Ellipt smoothi -hnique

An elliptic smoothing routine 1 d to smooth the gird which is generated
by using lincar internal interpolation. The elliptic smoothing routine generates
grids by solving a set coupled oisson elliptic partial differential ecquations.  he
equations are given below for the three-dimensional case which can be simplified

to a two-dimensional case:

P&, Q)

Eor + &gy +&u:
Her f + .2 = G(£~ 7, C) (21())
Crr +C + (= ﬁ(& IR C)

In RANS solvers, the RAY  equations on structured grids are usually

transformed in to generalized co wtes by
£=0 "y
ooy, z) (2.20)
C=Clr.y.2)

The Jacobian of the transformation is computed by

& &y & Te Xy d¢

A& n.C)
J = det ————— = |};. ol = | ye . 2.21
0(1_‘ ,I/ ,).l ’/.. y\ ,l/l) .l/( ( )
C.'r Cy Cz 3 :l[ =
where &, — :—é, Te = é, ete.




The metric terms are calcu € as

& i ¢ Yoy Tt
& | = |aczm —azc| =7 [
£ | ¥ Ty Va1
- -
M ¢~ Yex N2
ny | =J [zeze —acze| =J | 122 (2.22)
UE | Ye T el Y32
e Sy~ YnTe Vi3
G| = ze—wezy| =] s
Cz Un — -7‘1;’.1/5_ V33
Using the Jacobian of the sformation above, Equation 2.19 cau be

transformed into
¢ _] %) ey ) Y.
allr55+a22r,,,,+(133rcg+2(m~2r5,,-1—0131'5(+(123rn<) = je \PI‘5+QI',)+RI'<) (223)

with

w =y . i=123y 123

m=1
The SOR (Succes 2 Overrelaxation) algo  hm is chosen to solve those equations.
The grid distribution can be ¢ :rolled by the forcing functions P, Q and R.
If P=0Q = R = 0, the Poisson ons reduce to Laplace equations. Based on
the work by Sorenson(1989). bot first grid spacing and angel to the boundary

can be specified. The forcing funtior  used in the present program are defined as

P(&,1.¢) = D(E, Qe







follows:

.

Te T — 23

R IR I B (2.28)
I_.’l?c Y ' —Zlely

Cramer’s rule is applied to get the solution for r,, and y,

o l - ché) Ay
n - -
TelYe — TcYe — V32
— e —reze) e
yr] = - - =
Teyc) — V32
Substituting x, and ¥, into ¢ d equation in Equation 2.27 gives

. ST32
~1 3 32 2
Vet et Y

s S ‘QA”l.Z
= Z oz
Vi T V3

QAAa
Yn = =

V2 V5 T+ Vi

Solutions ., ¥, and z, give t st derivative r,. The sccond derivatives r,,

can be derived from the Taylor s os:

—7el e 8rfmy —xl e 3l (2.29)
VAN K AY] -

Ton =

where j is the index in the 7 directi

To determine the values for p. ¢ 1 7. unation 3.30 is rewritten at 1 = 0 as

pre +qr, +rre =h (2.30)

where
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Fig e 2-11: Flow chart . the grid generation for a propeller




C. ap.er 3

Mathe natical F rrmulation

3.1 Governing Equati

The Navier-Stokes (N-S) e ons e the basic mathematical models to
describe viscous flows around propellers in the CED method. They are composed
of the continuity equation and e momentum equations, containing variables of
pressure and velocities. To nun lly simulate the propeller tip vortex flow, the
RANS equations, derived fror the N-S equations by introducing averaged and

fluctnating components for th  variables, are used:

RV (pU) =0 (3.1)

Ut

opU -2 -
gt +V-(pUs 1) = =Vp+V-{pr[VU+(VU)’ —3—(‘, . U4V (—pu®u) (3.2)
where § is the Kronecker delta don, pu @ u are the Reynolds stresses, which
have to be modeled to enclose the erning equations, ® is the tensor product of

two vectors, U ® V is defined as,

Um VI U.’L‘ ‘/y U & V;
UsV=UV. UV, UV
U.V, UV, U.V:
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three varieties of the standard I mnolds stress models (the LRR-IP, the LI -QI
and the SSG) and two varieties of O: :ga-Based Reynolds Stress Models (the
Omega and the Baseline). The LRR-IP and LRR-QI models were developed by
Launder et al. (1975). “IP” stands for Isotropization of Production, and “QI”
stan  for Quasi-Isotropic. In these 1odels, the pressure-stain correlations are
linear. The SSG model, devi.  ad by Speziale et al. (1991), uses a quadratic
relation for the pressure-stain correlation. The Omega Reynolds stress model and
the Baseline (BSL) Reynolds stress are all based on the w-equation, which allows
for a more accurate near wall treatment.

This section presents a brief description of the &k — ¢ model, the & — w model
and the Shear Stress Transport (SST) 1odel, which were used in the present

computation.

3.2.1 L — ¢ model

The k — ¢ model is one of the most common two-cquation turbulence models.
It includes two extra transport € tons for & and ¢, where £ is the turby  mt
kinetic energy, and ¢ is the turbr  t dissipation rate. The turbulent viscosity »,
is computed from
k‘?'

V= G (3

the values of & and ¢ are solved fi o the differential transport equations as below.

Ok
TV (UE) v D)V P e (3.5)
Ot O'k

0 T (Ue) = V- [0+ Ve + (i Ph — con) (3.6)

ot 1o IS

where the constant coefficients ¢, = 0.09, ¢ = 1.4, ¢, = 1.92, 0 = 1.0 and

o, = 1.3. P, is the turbulence production which is modeled as

P, - . U- (VU + VU (3.7)






surface and the k& — € model in the ¢ er region was developed by Menter (1994).

SST model combines the ad 1t f the & — w model and k — € model by
blending function F;. The equatior k — w model are multiplied by function
F, the tran wmed & — € equations by a function 1 — Fy. F) is equal to 1 near the
surface and switches over to zero in side the houndary layer. In the SST model,
the turbulence viscosity v, is f il »d by

O(I,Ii',

(3.12)

I D ———————————————————
. max(mqw, SF,)

where F5 is again a blending function similar to £}, S is an invariant measure of

the strain rate defined by

OV, (3.13)

Two transport equations are given as

Ik ,
O 9 (Uk) = V(v + ZL)Vk] Py — & ko (3.14)
ot O3

() ViV
2LV (Uw) = V[ + ==, o] +2(1 = F)—

ot T3 T

+ a;;l/t%Pk — Byt (3.15)

where, a; = 5/9, ap = 0.¢ ; = 0075 f, = 0.0828, 3 = 0.09, oy = 2,
e =1, 0,1 =2, guo = 1/0.856, cvy = Fraq + (1 — Fy)eew, By = B30+ (1 — Fi)is,
ory = Fiop + (1 — Fl)ow and o3 = . 001 + (1 — « | )0ws.

The two blending functions are critical to the success of the method, which
are given below are based on 2 distance to the nearest surface and on the flow

variables:

F = wh(t}) (3.106)

with

31






propeller only considered one b le-to-blade passage computational don  n. a
rot: onal periodic boundary condition is needed to account the influence of the
other blades. The Fluid-Fluid 1ite ce Modeling in ANSYS-CFX allows users
to create the periodic interface 1 1 es. Meanwhile, ANSYS-CFX also offers
various turbulence models su  as the & — e model, the £ —w model . 1 the SST

model.
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Figure 1-2: The primaryv/sec  lary coordinate svstem (Hsiao and Pauley, 1999
(=] o “ S .

the axial-tangential x — ¢ plane at ¢ propeller pitch angle. ¢. The secondary
velocities, the tangential velocity V. and the radial velocity V., are then on the
secondary-flow plane which is  wmal to the primary velocity. Since the pitch
angle varies in the radial direction, the velocity components in this coordinate

system were calculated at each rad  station by

Vi = Vesin(¢(r)) + Vicos(o(r)) (4.1)
V.= - .cos(o(r)) + Visin(g(r)) (4.2)
-V (4.3)

In this coordinate system, the tip vortex axis is normal to the secondaryv-flow

e so that the structure of vortex core can be well defined.
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viscosity. Since the non-isotropic effects are important in simulating tlie strong
non-equilibrium boundary layer in o tip vortex flow, the Reynolds stresses
turbulence models with an ec ation v the transport of Reynolds stress instead

of using the ed - viscosity hypothesis ¢ uld be considered in the future work.







turbulence model.

Validation studies have been carried out for a David Taylor prope =r model
5168. Velocity  Ids were computed and compared with experimental results and
other nunierical results. The solutions by ANSYS-CFX are generally in a good
agreement with them. It has been demonstrated that the CEFX RANS solver is
able to predict viscous tip vortex flow = Hblem based on the structured grid.

For future work, the Reynolds stress turbulence models shiould be considered in
the computation. More studies should be carried out to investigate the interplay
between the turbulence mode 1g and the grid resolution. The computation  puld

also be extended to unsteady ¢ .

























