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Abstract

Let (M,g) be a smooth compact < n-dimensional Riemannian manifold, G' be
a subgroup of the isometry group Is(M,g). Assume that [ is the minimum orbit
dimension of G. For 1 < p < n/k with k € N, let p* = np/(n — kp), and p* =
p(n—1)/(n—kp);and for 1 <p < (n—1)/k with k € N, let ¢ = (n —)p/(n—1— kp),
and § = ¢ "7 Onone hand, if (M, g) is without boundary, under some specific

[P

conditions, we find the best constants for the inequalities
P P P k.
”f“Lp"(M) <4 HA’\',gf”Lp(M) + B ||f”Lp(M) for all f € W*P (A1),

P r P k, ;

11 L& (M) < AljAggf] L(M) + B Hf”],PG(M) for all f € W5’ (M),
where A, B € R, and Ay,f V,f, tmce(ng) if Kk =1, k> 1, respectively. On
the other hand, if (M,g) is with b ndary, we establish the best constants for the

inequality

”f“;ﬁ‘(aM) <A ||Ak,gf“2p(1\1) +B ||f||‘17,7>((‘)M) for all f € W*” (M).

Furthermore, if (M, g) is a G-invar 1t under the action of G, then we determine the

best constants for the inequality

r p p rk.p
”f“Lg(aM) <4 ”Ak,ngLg,(M) +B ||f||Lg(31\1) fora feWg"(M).

The proofs of our results are based on the arg  ents used in [24], the techniques

applied in [9]-[10], and the methods taken in [30].

Key words: Best constants, Sobc r spaces/ inequalities/ trace inequalities, Rie-

mannian manifolds.
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Introduction

The best constants in Sobolev inequalities as well as Sobolev trace inequalities, of first
and second orders, on Riemannian manifolds have been extensively studied by many
authors. They are of vast scope and utility due to their powerful role in dealing with
many significant problems arising in such parts of 1alysis as partial differential equa-
tions. In this work, we establish these best constants of higher-order on Riemannian

manifolds under some certain conditions.

The thesis is organized as follows:

In Chapter 1, we introduce some necessary definitions and basic results concerning

our work, which play an important role in proving our results.

In Chapter 2, we review some known results about the best constar 3 in Sobolev

inequalities as well as in Sobolev trace inequalities on compact Riemannian manifolds.

In Chapter 3, we find the best constants in higher-order for Sobolev inequali-
ties on 3 < n-dimensional smooth compact Riemannian manifolds, with or without
boundary, under some specific conditions. More precisely, let (A, g) be a compact

3 < n-dimensional Rier anian m¢  1d. Suppose that 1 < p < n/k withn >k €N,



















Furthermore, If 1 < p < oo, then the equality holds only if there are non-negative

constants o and O such that af = Bg a.e. on Q.

Theorem 1.1.5 ([23] Fubini’s thecorem). Let f: R® x R™ — [0,00). If f(x,y) >0

or f(z,y) € L' (R™ x R"), then

J{ [reva)a=[{ [rew]e

R® R
1.2 Sobolev spaces

We now introduce the Sobolev spaces W*P on open sets of R", which were first
used by S. Sobolev. The importance of these spaces lies in the fact that solutions
of partial differential equations are naturally in Sobolev spaces rather than in the
classical spaces of continuous functions, and with the derivatives understood in the
classical scnse. In order to be able to define the Sobolev spaces, we need to start by

introducing the following definitio

Definition 1.2.1 ([27]). Let f € L},.(Q). For a given n-inder a, a function g €

L} () is called the o't weak derivative of f if for all ¢ € C®(Q),

/mmwmm:vuw/ﬂmw%mmw
Q

Q

where o = (a1, g, ..., a), and




It is clear that the ot weak derivative of f is uniquely determined a.e., if it exists,

then we write g = 9° f.

Definition 1.2.2 ([27]). For any function f : Q@ C R® — R, we say that f is a
Hélder continuous function with en nent 0 < a <1 if there exists a constant C such

that

[f(z) = f)] < Clz—y|®
forallxz, y € Q.

Similarly, for any f € C*(€)), we say that f € C**(Q2)  h exponent 0 < a <1

if there exists C € R such that

@ Nz) @ HW| < le—yl®
for all z, y € Q.

Definition 1.2.3 ([1]). Fork € N and 1 < p < 0o, we denote by WHP(Q)), Whr(Q)
the k" -order Sobolev spaces of C®(2), C= (Q), respectively such that ‘80f| € LP(Q))

with the norm

ey = | [ S l0"Paa ) =3

Q lal<k la|<k

" f

Lr() for 1 <p <.

For p = 00, the Sobolev spaces W5 (Q), WE=(Q) are defined to be the Holder spaces

CH-11(Q), Ck11\u.), respectively.
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1.3 Riemannian manifolds

A manifold M of dimension n is a topological space in which every point of A
possesses a neighborhood homeomorphic to the Euclidean space R™. Throughout
this section, we assume that M is a Hausdorff, a second countable, and a connected
topological space. The principal object of this section is to introduce some basic facts

concerning Riemannian manifolds.

Definition 1.3.1 ([15]). We say-that M s a C™ n-dimensional manifold if and only
if there exists an open cover {Ua}ael on M and homeomorphisms xq : Uy — 24(Uy)

onto open subsets of R™ such that for any o, 3 € 1,
To O mgl s 25U NUg) = 2o (Us N U)
is a C™ diffeomorphism whenever U, NUz # ¢.

For y € U,, the coordinators of z,(y) in R" are said to be the coordinators of y in
(U, Zo). The pair (Uy, T4) is called a chart, and the collection of charts {(Us, #4) }4e;

such that M = |J U, is called an & s.

ael

It is easy to check that any subset U C R"™ is a C® n-dimensional manifold
with a single chart (U, 1y). Furthermore, the unit sphere S*~! of R", and the torus
T™ are considered classical examples of smooth manifolds. The following theorem

demonstrates that S""! is  smooth (n — 1)-dimensional manifold.

Theorem 1.3.2 ([15]). Let f : U C R™ — R be a C™ function, and ¢ € R be a

regular value, that is, V f(x) # 0, for allz € f~'{c}. Then f~}(c) is a C™ manifold.
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—1/n
”f“Lp-(M) <A “ng”Lp(M) + (VOI(M_g)> ||f”Ln(M)

for any f € WP (M).

Concerning the best constants in ];, for k = 2 (see [2], [12], an [18]), the same
—2p/n
approaches used in [’ | [29] implies that A’ (M) equals (Volw‘g)> " On the

other hand, it is found in [10] that B (M) = I"(n,p), where

1 . ||A2f||L1>(]Rn)
— = n T
wp)  resr® N0} || f[l o gy

for any f € F*? (M) or f - WhP (M)NW?2?(M).
Theorem 2.1.4 ([10}). . (M, g) be a smooth compact 3 < n-dimensional Rieman-

nian manifold, with or wii  ut boundary, and 1 < p < n/2. Then for anye > 0 there

exists a real constant B = B, ,, = such that

”f”m‘(m) <B “f”Ln(M) + (« (n.p) + 5) HAZ‘gf”Ln(M) (2.1.3)

for any f € F*? (M) or f € WP (M)NW?P (M). Purthermore, I"(n,p) s the best

constant such that the inequality (2.1.3) holds.

Subsequently, [10] applied the >ove result to solve the following equation: For any

given a, b, ¢ € C°(M), if M has no boundary, [10] found solutions to the following

equation:
Ag (lAgflpvz Agf) — diyg (a(m) v gf|p—2 Vyf) +b(z)|f, 2 f

=cla)|f"°f in M. (P1)
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Theorem 2.2.5 ([30]). Let (M,g) be a compact 3 < n-dimensional Riemannian
manifold without boundary, and let G be a compact subgroup G of the isometry group
Is(M. g) that possesses at least one finite orbit. Let N = min Card(OF). Then there

TEM

exists B € R such that for any f € W5 (M)

2

K (n,

N?/'n ||v f

2 2
Ilf]quc(M) s .[f||L2G(M) T L( (M)

where 1/qg=1/2 —1/n.
In addition, [24] found the exp it value of K(n,p) as follows:

Theorem 2.2.6 ([24]). Let (M,g) be a 3 < n-dimensional compact Riemannian
manifold without boundary, and G be a subgroup of the isometry group [s(M,g).
Let | be the minimum bt dimension of G, V the minimum volume of orbits of
dimension | (if G has finite orbits, then { = 0 and V = i_réi[‘r} Card(OF) ). Assume
that 1 <p < (n—1) andq:;(T—i—_———kl_)’;. Then

(a) For any € > 0, there exists a real constant B, such that for any f € W’é’p (M),

P K"(’n —1 n) .

”f”/" (My = < B. ”f”[}’(/\/) "‘W L, T TE “ng”ué(‘\/)v

where
K( ) n—11 n—-n 1/p|: I'(n+1) Jl/n
n.p) =
n—p | mp-—1j] I'(n/p (n+1—=n/plw,
I/n
forl<p<(n—=1), and K(n,1) = = L"’"ﬂ .
b A is the best constant such that the above inequality holds for any f €
L y

WL (M),
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asymptotically sharp inequality (2.3.2) in solving the following equations for given a,

b, c, d € CO(M):
Apf+a(z) Pt =c(x)f!, f>0 onM fl,,=0, (P1)
Un — 1 mn -1
<p<n-—lI, q:u
n n—I[—p
and
A f +a(z)ff P =c(@)f", f>0 onM,
pﬁ‘zaf p—1 __ g7y, ,d-1 P
IV fl o +b(z) fP7 =d(z)u on OM, (P2)
n
dn-l) L _n=lp o n-lp
n—I[l—p n—I0l—p

where A, f = —div, ([ng|p_2 V,f) is the p— L lacian operator.

Concerning the second best constant jl:,(M ), [9] established
- —1/n
Ay = (Vol,,,,)

In view of the results on Sobolev inequalities and Sobolev trace inequalities on
compact Riemannian manifolds, a question arises naturally. For any f € W*? (Af),
can we obtain the best constants for any smooth compact 3 < n-dimensional Rieman-
nian manifold under cert = conditions? Positively, we obtain an & rmative answer

to this question.
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In view of the results on the first and second orders in Sobolev inequalities, we
conjecture that we can establish the best constants in higher-order Sobolev inequal-
ities on compact Riemannian manifolds under some certain conditions. In fact, we

obtain an affirmative answer to this conjecture in the next sections.

3.1 Establishir the lest constant BZ(M)

The purpose of this section is to find the best constant B;;(]W) for any f € F* (M)
under some specific conditions, and to prove some lemmas used in the sequel. In

particular, the following theorem is the main result of this section.

Theorem 3.1.1. Let (M, g) be a compact 3 < n-dimensional Riemannian manifold,

and let 1 < p < n/k with k € N. Assume that

“f”LT"(Bd,) S K(ﬂ,p) ||Akgf| (311)

L¥(By)
for any f € W*? (Bs), where By = B(xo,0') is a geodesic ball with radius &', and &'

1s a small number > 0. Then

BL(M) = K (n.p)

P

for any f € F*# (M).

In order to prove Theorem 3.1.1, following [10], it suffices to prove the following

two lemmas.

Lemma 3.1.2. Let (M,g) be a compact 3 < n-dimensional Riemannian manifold,
(3.1.1) be true, and 1 < p < n/k with k € N. Let A, B be two real constants such

that
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1o ary < AN Noary + B 1Ak g f ooany (3.1.2)
for all f € F*? (M). Then B > K"(n,p).
Proof. Suppose by contradiction that for any f € F*? (M), there exist real nuinbers
A, B with B < K"(n,p) such that (3.1.2) holds. Fix zo € M \ M. Given ¢, > 0,

let B(xzg,d) be a geodesic ball of  lius § < 8 and center zy such that in normal

coordinators of B(xzg,d) we have

k
s=1

1-¢; <yfdeti ) <1+e; and |If| <ey, (3.1.4)

where (6"**) is the identity matrix.

gids — 5" ey forallk=1,2,...,n—1, (3.1.3)

For any f € C®(B,), and e; 1all enough, two real numbers A, B exist with

B < K'(n,p) such that

17 e,y < AN niyy + (L4 22)B Uk Fll s (3.1.5)

where e, =0 (e1), and B, the E lidean ball with radius ¢ and center 0.

For o > 0 and integer m greater than 1, using the following inequa ies:

/Iam.ﬂpdx < Cn,p/lAmflpdaj, (316)
35 85

[lmipar < o flomgpacc,, [17rde, (317)
Bb' Bo‘ Bé



40

plus the elementary inequality
(z+y) <(1+e3)a” + Copy, (3.1.8)

where €5 =O(gy) and C_ , =O(0 "), implies that there exists B’ < K"(n, p) such

that

I/

14 » r
IL"'(B.s) < B | Axfl Lr(By) + Cl,6 ”f”LV(BJ) :

Using Holder’s inequality, we ;. that

A

r 14 k P
1wz < B UM iaay + Coa (1B 1 s,)

/
p
1A s,y

IN

1- Chs 1B,
Choosing ¢ small enough such that < C, | <|35|k”/"> < 1 is small enough, we obtain
a real number B} < K”(n, p) such that
P ’ P
1 iy < By i,
For any f € C®(R"), define f* = " f(uz). Then

I

m
Lp‘(]Rn) = ”f”LF' (Rﬂ) a'nd “Akf |Lp(1Rn) = ”A"f“],l’(]R“) -

Hence, choosing u large enough such that f* € C> (B,), implies that

P ’ p
Hf”u'*(uen) < Bl HAkf”Ln(R") )

contradicting the fact that fC(n, p) is the best constant for the Sobolev inequality in
R™.

This finishes the proof of = lemn 0
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Using (3.1.1), (3.1.6), (3.1.7), and (3.1.8) yields that

o
1/p Y / ’ 1/p P
= d’U
(281 . o | dvlg)
M
&
i

< (1+ El)p/p* / gpj/pf dz

B

J

< (1+€ )’Cp A (Lp]/p ) P _+_C' L)01/,, r
> 2 k.9 5 LP(B]) €1,8 j LP(BJ)
< 1 - ’C;p A 1/p r C P
< (1+¢3) kg (LP] f) H”(M) + Cers I oiary »

where g5 =0 (g1) and e3 =0 (g1). Using (3.1.8) again, we obtain
k-1

P 14 o P
|1f”LP‘(M) < (1 + 54) ,Cp ”Ak'gf”Lp(M) + CEn,s (Z ”A‘i‘nyLn(/\,z)
i=2

P v
+ “vfl]fHLP(M) + ”f”[,p(/\,[)) 3
where €4 =0 (g,). With ¢, and 4, sufficiently small, we have

k-1
» ) € P P
Hf“Lp"(M) < (}C7 + 5) “Ak,gf”LP(M) + dElaJ Z HAiygf“Lp(M)
i=2

14 P
+ dflvé ([ yf“Lp(M) + dfl,a llf”Lp(M) . (3-1-9)

The LP-theory of linear elliptic operations, (see for example {27]), gives that

/ ‘82 (W;n) f) "d < / |A219 ( o f)
Bj

B.
J

P
dx

P C P v b4
— (”AQ,gf”Lp(M) + Hv_(l)f“Lp(M) + Hf”LP(M)) '

1—61
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Hence,
P »
”f”LD‘(M) < ( ) ”Al\ yfl LP(M) Ckf2.el,uk_2,5 “Ak‘—l,ngLn(M)
+
»
< ( ) 1A, yf”Lp My T k- ICk Lep.ag_ 1.6 ”Ak,ngLp(M)
+ Cey oo 1 2ogan

Choosing ai_) small enough such that ay_; < E/(2(:’,c l'EIM_M) yields
”fHLV‘(M < (’C + 5) ||Akgf||m m+B ”f”LP(M
for all f € F*?(M). a

As an immediate consequence of Lemmas 3.1.2 and 3.1.3, we obtain Theorem 3.1.1.

Therefore, the best constant B:;(M) is K" (n, p).

3.2 Establishing the best con.tant A (M)

The main goal of this section is to establish the best constant A (M) for any f €

WHhP (M). Indeed, we will prove the following theoren:

Theorem 3.2.1. Let (M,g) be a 3 ~ n-dimensional compact Riemannian manifold

without boundary, and let 1 < p < n/k withn >k € N. Then

—pk/n

Ay = (vol,, )

for any f € F*P (M).
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obtain that f;  — hin L? (M). Thus, f;,, — hin L? (M) N L' (A). Furthermore,

1 1
(= g— [ o) < |gm—| | [ havta)

(M,g) M (M,g) M

1
Vol

(M, g)

(A

/ =yl dvg) + | |1, dule)

M n

— 0 as j, — oo.

Moreover,

”h”;[)‘p(ﬂl) - Ilf]"m sz([\[) S ”h - fj'm Il)lﬁ([\,])

— 0 as ju — .

So,
1~

Lr(A) = ||fjm ”Lz:(M) =1

therefore, h € H*? (M). Consequently,

. r P
inf )||Ak,g eoary 2 1Akghll o ap > 0.

fenkr(M
This completes the proof of the le; na. O
. . » . —pk/n
Proof of Theorem 3.2.1. Setting = 1 in (I,) gives that A > (Volw’q)) .

—pk/n »
Therefore, A (M) > (Vol(M‘g)) " On one hand, if [|[Axgf[l sy = 0, then, by

Holder’s inequality, we acquire

p —pk/n »
Ilf”LV‘(M) < (VOZ(M,Q)) ”fHLP(M) :
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On the other hand, if ||Ak‘gf||2,,(M) > 0, then Hélder’s inequality is used again to

imply that

1/p*

H(f)u“Lp‘(M) = vol //fdv dv(g)
(M.g)

A M

1/p*~1/p
< (Vol(l\l.y)) ”f”LP(M)

= (V"lwg )“’“/" I F 1l Loary - (3.2.3)

Lemmas 3.1.3 and 3.2.2 give that

”f - (f)M”Ln‘ . S A Hf \r”[p(,\]) + B HAk gflle(M

C ||AA',gf”Lp(M) . (324)

IN

Minkowski's inequality with (3.2.3) and (3.2.4) implies that

”f”LP‘(M) S ||f \1HLP M)+ f)M”LP M)

S C Ak,gf”[,r(/\]) + (V()l(‘\y,;,)) ||f”LP({\.I) . (325)

Consequently, for any € > 0,t. ¢ s B &R ich that

11

r —pk/ﬂ b P
ron < ((Volw) T 2 I ian + BllAko W ingan
This finishes the proof of Theorem 3.2.1. Therefore, we conclude that the best con-
—pk/n

stant .A;(A’f) Is (VOI(M,;;)>



Chapter 4

Best constan.s n Sobolev
inequalities in he g resence of
symmetries on co.afp ¢

Riemannian m nifolc's

This chapter is devoted to finding the best constants in higher order for Sobolev
inequalities in the presence of symmetries on compact Riemannian manifolds.

Let (M, g) be a smooth compact 3 < n-dimensional Riemannian manifold without
boundary, and G be a subgroup of the isometry group Is(Al,g). Assume that [ is

the minimum orbit dimension of G, and V is the minimum of the volume of the

[-dimensional orbits. Let 1 <p < (n —1)/k with k € N and ¢ = 7f'_',__“‘k’;) Set

a;(l\f) =inf{A € R: thereexists B € Rsucht .t the inequality (2.2.1) holds}

48
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and
[)’;(Af‘[) =inf {B € R : there exists A € R such that the inequality (2.2.1) holds}.

In this chapter, we establish the best constants a;:(]\f) and 6;(]\1) under some specific

conditions.

4.1 Finding the best constar 5£(M)

To achieve our results, we need the following important lemma that was proved by

Faget [24].

Lemma 4.1.1 ([24]). Let (M, g) be a compact 3 < n-dimensional Riemannian man-
ifold without boundary, and G be a compact subgroup of the isometry group Is(M.g).
Let © be in M with orbit of dimension N < n. Then there exists a chart (Q2, V)
around x such that the following properties are valid:
(1) V(Q) = Uy x Uy, where Uy € RY and U, € RV,
(2) U =V, x Uy and ¥y, Uy can be chosen in the following way:
U, = &,0v0T', v defined from a neighborhood of Id in G to OFf, and yoI'1(Q2) =
V.. where V, is an open neighborhood of x in OF.
Uy, = &y 0y with ['y(Q) = W, where W, ts a submanifold of dimension n — N
orthogonal to Of at x.
(3) (Q,¥) is a normal chart of M around z, (V,, ®1) is a normal chart around x of

the submanifold OF, (W, ®,) is a geodesic normal chart around z of the submani-






The techniques used in the proc  of [29, Lemma 9.4] and 1, Lemma 2] play
a fundamental role in proving our results. In fact, the following lemmas are needed

to obtain Theorem 4.1.2.

Lemma 4.1.3. Let (M, g) and G be as in the above theorem, | be the minimum orbit
dimension of G, and V' be the minimum of the volume of the [-dimensional orbits.
Assume that for any 1 < p < (n —1)/k with k € N there exist real numbers A and B

such that for all f € WE? (M),
P o’ »
”f“Lg(M) <A “L'é(M) + B HAk,ngL'é(M) : (4.1.1)
Then B > K.

Proof. The proof of this lemma is nilar to the proof of Lemma 3.1.2. Assume by
contradiction that there exist real numbers A, B with B < K¢ such that (4.1.1) holds
for any f € W’é"’(]\/[). Fix g € M. Given €; > 0; let B(xg,d) be a geodesic ball of
radius 6 < & and center zo such t!  in normal coordinators of B(xo,6), (3.1.3) and
(3.1.4) are satisfied.

As we did in Lemma 3.1.3, cho ng e; and J small enough, we get a real nuiber

B' < K'(n I,p) such that for any f € C* (B,),
“ :ﬂ(Bé) S Bl ”AkfI,I[‘,P(Bé) s (412)

where B; is the Euclidean ball with radius ¢ and center 0.
For any f € C(R™), define f* = 7" f(2/v). Then, choosing v small enough

such that f* € C>(B,), we get that

— B'[[AS]

<D ||./\ka

Iz

”f“/}'(mnfl) = |

Lq(Rn—I) Lp(]Rn—l) LV(]R“‘I) )
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which contradicts the definition of K(n —, p). a

Lemma 4.1.4. Let (M, g) and G be as in Lemma 1.4.2. Suppose that | is the mini-
mum orbit dimension of G, and V 1s the minimum of the volume of the l-dimensional
orbits. Then for any e > 0 there erists real constant A = A, p;, such that for any

1<p<(n—1)/k with k € N,

» 14 P »
“f”L‘c’;(M) “f |L§'.(}\I) + (’CG + 5) ”Ak,ng/}(';(M)

for any f € Wg"’ (M).

Proof. The proof of Lemma 4.1.4 « ends on the proof of {24, Theorem 1] and the
approaches used in [32]. Given ¢ > 0. Let § > 0 be taken as small as we wish. Fix
x € M; let OF be its G-orbit, and (2, ¥) be a chart around x such that the above
prope cs are satisfied. Let y € O%, 0 € G be such that o(z) = y. and (o(R2), Yoo ')
be a chart around y isor  ic to (  W¥). Then, Of is covered by such charts. From
that and due to the com  :tnessol %, we say that {Q,}7 is a finite extract covering.

Choose 4, depending on € and x, ¢ all enough such that
(0z)s = {y € M | dy(y. Og) < 8}

1s covered by {Q,,,}f, and (O%), is a submanifold of A/ with boundary. Obviously.

the manifold M is covered by |J (Of),; therefore, by the compactness of Af, therc
€M

exists a finite extra. cover; say {(Ofw)“\}lj Assume that (n;) is a  rtition of unitv

relative to (OF),, such that n, € CF ((OF),,) for any i. Hence, n;f has a compact

support in (O%),, for any f € WAP(M).
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Furthermore, for each m we let «,, = M, where (3, € C>*(Uyn,) and
Z (,Bmo\pm)

m=1
Bm 2 0. Thus, (o) is a partition of unity relative to €2,,’s, which covers (Of%) ,.
Notice that 3, is a function, defined on U,,, x U,,,,, depending only on Uy,, variables;

therefore, o, o ¥ ! depend only on U, variables.

For any integer 1 <4 < J, and for any u € W'~ (O%), ;) we have that

/udv(g) Z /amudv(g) = Z / \/ det(gi)amu o W dady

A m g2 m U x Uz

Ii

< (1+4¢) 2. / amuo ¥ ldrdy

m Ulm X Uz,

= (1+£)Z /amo\IJ;lldr/uo\Il;lldy. (4.1.3)

Ul1u U'.Zm

-1

- » which is independent

For simplicity, we assume for each m that oy, = a,, 0 ¥

of Uy, variables, and ua,, uwo ¥ ! which is independent of Uy,,, variables.

Y
As u is G-invariant, and as ({,,, ¥,,) are isometric to each other, we conclude

that [ wus does not depend on m. From this statement and the inequality (4.1.3),
U21n



o4

we obtain that

/udv(g) < (1+e¢) /quyZ /almda:

M m U117L
S 1+5 /UZdyZ 1_€/alm\/det’ qv.] dx
Ulm
1 + € -
= /quyZ /almo¢>1mdv(g)
U2
14 <
= d m © ®1,,du(g). 4.1.4
[ty [ 3 o @imiv(@ (414)
Us o ™
Therefore,
/ud'u(g) < (1+ sl)Vol(Of;)/ugdy, (4.1.5)
M U2

where £, =0 (¢). Similarly, we show that

/udv(g) = T: / v/ det{gij)au o U, tdxdy

M " Ulmxu'hn
> (1—5)/quyZ /almdaj
U2 m Ulm
>

1 —
E/uzdy/v Q1 © P1rmdv(g).



Thus,

/|u|p dv(g) > C/|u2\pdy. (4.1.6)
M Us

The techniques used in Section 3.1 and in [5], imply that for any hy € W5* (Us),
P d P P
1h2llLay) < (’CI (n—1p)+ 5) HAkhQ”Ln(Uz) +C ||h2“u»(u2) : (4.1.7)

For any f € Wcl”(f((Og)M) we have that

Vol(O%) Ak followy < (1+€2)Z/almo(plmdv(g)/l/\kf2m|pdy

m .
Olc Uam

= (1+€2) Z/ almo(plmdv(g) / |Akf2m|pdy

m Vz UZ-m

< (1+€3)Z/ Otlde/lAA-f!Po\P;zldy,

m Ulm U2-m
where £, =0 (¢) and ¢3 = O (g). Applying what we did in Lemma 3.2.1, we get that

Vol(Og)HAkfﬂl’,:,,(Uz) < (1+54)Z/ almda:/|Ak'gf|Po\I/;ldy

m
Uim Uzm

+ CEZ/ almdr/lﬂpo\llfnldy, (4.1.8)

m
Utm Uzm
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where e, =0 (g). S1 stituting the value of ay,, in (4.1.8), we obtain that

Vol(Og) [|Ax /2|

vy < (e N / o g fIP 0 U5 dedy

m
Uy x Uz

+ C ) / e [P o U dady

m
Ui xUzp,

IA

1+¢4 - ) .
1—¢ Z / \/ det(g;})am |ApgfI” o0, drdy

m
Upm x U2m

(.
2 [ faelapan il o vildedy

m 4. N
Uren xUzm

IA

+ 55) ”Akv.‘]f”[,'é(/\l) + CE f“L'(",(/\I) s (419)

where 5 = O (¢). From the above and due to (4.1.5)-(4.1.7) we conclude that

I e oy < (1+€6) (VOl(OE) || foll Loy
G

< (X ) MLl o + C 1ol
14 P
< (X +e6) 1A Lollpowyy + C I iz any
(X +77) n p
Vouu&_) ||A1~:,gf”Lg(M) +C Hf”l,g(/\/) »

where X = (Vol(O5)P"K’(n—1 ,e=0_ . ande; =0(e).

On one hand, if (O%) is of mi  aum dimension V, then

1 7s sy < (KG + &) 1Ak S mary + Ce I g cary - (4.1.10)

In the same manner as (4.1.6), we rive

/ AP du(g) = C / Aeol? dy. (4.1.11)
Al Us




On the other hand, if (O%) is of minimum dimension V* > V, then let U, be an

(n=V)p
n—V—kp’

(n=V")p >

open set of dimension n — V*. Since V* > V, we get that iy

The compactness of the embedding W*?(U,) C L%(Us) plus the inequalities (4.1.5),

(4.1.6), and (4.1.11) leads that for any g7 > 0 there exist C;,Cs € R such that

p/q p/q

|£1” dv(g) < Cf [ 1fl"dy
/ !

IA

¢ | / Awfal” dy + Cy / P dy
Ug U

INA

eoC [ |AxfI"du(g) + Co [ |fI"dv(g)
/ /

A

IN

eoC [ |Awgfl" dv(g) +C [ [f["du(g).
/ /

Choose gg small enough such that

4 P P 14
1Ny cary < (Kg +¢) [8kgf 12 ary + C NNz, an) (4.1.12)

for any f € ché’ ((0%):is). To end the proof of this lemma, it is sufficient to prove

the following proposition:

Proposition 4.1.5. Let (M, g) be a compact 3 < n-dimensional Riemannian mani-
fold without boundary, and (O;,m;)  a partition of unity of M. Assume that for any

e WEP(M), [n:|'P £ is in Wf(‘;’(Ol) Sup e that there exists C* such that for any
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1 there exists C; such that

r x b »
Hf”Lg(M) <C ”Ak,ngLg(M) +C; ”f”LrC‘;(M) ) (4-1-13)

where p and q are as in the above | ma, then for any € > 0 there ezists real constant

C. such that

(4.1.14)

p « P D
”f“L”C(M) <(C* +e) |Akgf] Leon t Ce llf] LE(M)

Proof. For any f € Wél‘p(M), Minkowski’s inequality with (4.1.13) yields that

q/p ¢
f I”) du(g)

4 p/p
||f”L‘5(M) = /(Zm

M 1

IN

S )]

t M

R

1/ v
P
n; f ‘

LE (M)

< v(C‘ Ao(n;”" f) +Ci|n" f )

LE(M) LP(M)

1

In the manner used in Lemma 3.1.3, we obtain that for any eg > 0
14 * n b
”f“L"G(M) <(C"+eo+e) ”Ak,gf”Ll(’;(A.[) +C ”f”LE,(M) :
Choosing ¢y < £/2, we achieve the inequality (4.1.14). O

With Proposition 4.1.5, and d°  to Ler s 4.1.3 and 4.1.4, we finish the proof

of the Theorem 4.1.2. Therefore, we conclude

K"(n —1,p)

/6;(]\4—) = ’CPG = Vpk/(n—l)
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4.2 Finding the best consta: ; aZ(M)

In this section, we establish the best constant a:;(]\f ). In fact, we prove the following:

Theorem 4.2.1. Let (M, g) be a compact 3 < n-dimensional Riemannian manifold
without boundary, and G be a subgroup of the isometry group I1s(M,g). Let | be the
minimum orbit dimension of G, V' be the minimum of the volume of the l-dimensional

orbits, and 1 < p < (n—1)/k with k € N. Then for any f € WEP (M),

M,g)

) —ph/(n—1)
a, (M) (Vol( ) .
Proof. Theorem 4.2.1 can be proved in the same manner as Theorem 3.2.1. On one

hand, using Minkowski’s inequality, Holder’s ine 1ality, Lemma 3.2.2, and Lemma

4.1.4, we obtain that

||f||LqG(M) < |If - (f)MHL'é(I\I) + H(f)M”Lg.(M)

A ”f - (f)M”Lg(M) + B “Ak',gf LY(M) + ”(f)M“L‘é(M)
1/g-1/p

Clltwa ligon + (Vo) Ifllipan

—k/(n—1})
CllAk gl any + (Voliy,) P (4.2.1)

IN

IN

IN

Therefore, for any € > 0, there exists B, € R such that

—pk/(n—{)

“ae) 0

P B 14 P
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—pk/(n—1)
On the other hand, setting f = 1in the inequality (2.2.1) gives that A > (Vol(ny)> .

Hence,

(4.2.3)

(Af.g)

a;(f\I) > (V()l )—pk/(n—l)‘

, —pk/(n=1)
By (4.2.2) and (4.2.3), we obtain that the best constant o (1) is (V()lw‘g)> .

a




Chapter 5

Best constants n .oobolev trace
inequalities in smoot 1 compact

Rieman: ian mr~nifolds

The focus of this chapter is to establish the best constants in higher order for Sobolev
trace inequalities, in the presence of symmetries or not, on compact Riemannian

manifolds under some certain conditions.

Let (M, g) be a compact 3 n ensional Riemannian manifol with boundary.
If 1 < p < n, the Sobolev trace embeddings W (M) C L (0M) are compact for
any 7 € [1,5%), where pf = p(n — 1)/(n — p). However, the embeddings W*? (M) C

L?" (OM) are only continuous for any 1 < p < n/k and p* = p(n — 1)/(n — kp).

61
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Therefore, there exist real constants A;, B; such that for any f € WP (M),

1 1/p 1/p

/p"
1 ds() ) <A [1fPdute) |+ B [ 1Ak fIP dule)
/ / /

oA M

For all f € WkP (M) there exists C' > 0 such that

13 14 r
1 Wncary < € (U W mionny + WAkoWinary) -

Hence, we conclude that there are real numbers fi, B such that

P e 14 = 14 o
F”L"“‘(B}U) S A F”LP(BAI) +B ”Akygf”[,ﬂ([\]) . (]p,gen)

5.1 Determining the best cc stant BZ(M )

The inequality (i; ) is the main focus of our interest in this chapter. In fact, we

»gen

find the best constant B;(J\/I) in e Sobolev trace inequalities under some certain

conditions. More specifically, we prove the following:

Theorem 5.1.1. Let (M, g) be a compact 3 < n-dimensional Riemannian manifold
with boundary. Suppc that 1 <p n/k withn >k €N, and

- . ||Akf||IP{ID”\
1/K(n,p) = inf - . (5.1.1)
feLr  m\o}, Acferr(Ry) I HLe (aRy)

Assume
”f”Lﬁ‘(BJI) S ’C(n7p) HAk,gf”Lp(BJ/) (512)

for any f € WEP(B,,), where B,, is a geodesic ball with radius &', and &' is a small

number > 0. Then By (M) = K"(n,p) for all f € W5? (M),
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In the rest of this chapter, we denote Ié(n,p) by K.
In order to show that K" is the best constant B, (M) for the inequality (.f:’gm), it

is enough to prove the following lemmas:

Lemma 5.1.2. Let (M, g) be a 3 < n-dimensional compact Riemannian manifold
with boundary, (5.1.2) be true, and 1 < p < n/k with k € N. If there exist real

constants A, B such that for any f € WkP (M),

P p g
||f”1;ﬁ*(8M) <A ”f“z;p(a/u) + B HAk‘.gfl LP(A) - (5-1-3)
(A1)

Then B > K'(n,p).

Proof. The proof of our result is | ed on the arguments used in [9, Theorem 1]
and in [10]; and on the techniques 1 d in Chapter 3. Suppose by contradiction that
there exist constants 4, B €  with B < K" such that (5.1.3) is satisfied for any
f € WrP(M). Fix 1o € OM. Given g; > 0, let B(0,6) = B, C R? be the image
through a chart of M of a convex neighborhood centered in g such that in B; we
have

cisls

gl — 6 <g forall k=1,2,...,n—1,

:

s=1

1-— €1 S \/det(gzj) < 1+€1 and IFiJ‘ < €.
Following what we did in the proof of Lemima 3.1.2, we conclude that there exist real

constants A;, By, C,, with B; < 7 such that for any f € C* (B,) and &, small
1.6 c ]

enough,

p p p p
1f 1z om,) < Al Tonan,) + BrllAcf o,y + Cus 1 o, (5.1.4)
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where C, ; =0 (d™"). Thereby, using Hélder’s inequality and (5.1.4) we get

» kp—1)/(n—1 »
1 omy < A (1B £ e )

+(Bl+ C K |Bél“"”")”"“’> ||Akf||2,,(36), (5.1.5)

Choosing & small enough, we derive that there exists B’ < K" such that

1z o8,y < B' 1A i,y -
/A
For any f € C% (Ri), let fA = fr(l:/)/g_. In choosing A small enough such that

fr e C&(B;), we get that
p ; p
||f||ur(3m1) <B HAk-fHLp(Rg)
contradicting the definition of K. O

Lemma 5.1.3. Lete >0, 1 < p <n/k with k € N, and (M, g) be a compact 3 < n-
dimensional Riemannian manifold with boundary. If (5.1.2) is true, then there exists

A= AM‘M € R such that

1 P oty 4]
WU onry € AN wgany + (K7 + 2) IAwgf|

o) (5.1.6)

for any f € WkP (M),

Proof. We apply the same >proaches that we used in Lemma 3.1.3 toa ieve Lemma
5.1.3. Given €, > 0, we choose a finite covering of M by geodesic balls B, = B (y,) of
radius § < ¢’ and center y, such that: ify € M\9M, then B, C M\OM and B is a

normal geodesic neighborh  d with normal geodesic coordinates xy, g, -+ ,xy; and if



y, € OM, then B, is a Fermi neighborhood with Fermi coordinates zy, o, -+, 2,-1,t.

For £; small enough, we have in these B,’s

gisjal o 6i.s]s

“g forallk=1,2,...,n—1,

1 —¢e; < 4/det(g;;) <1+¢; and lFﬁj| < e;.

Let {i,} be a partition of unity associated to the covering {B,} such that gp;/p €
C’C"'(Bj). Using arguments similar to those used in the proof of Lemma 3.1.3, and the

inequality (5.1.2) plus the elementary inequality
(z+y)" <(1+4€)2"+ Coy”,

where ¢’ =0 (e;), we obtain that

P 1/p r 1/p r
- < VH < g ”
”f”LP (oM) — f‘p] L*(9M) —(1+ 2); f(’DJ ]j,'(aBJ)
J
< 1+ B (A (o clfl;
< (1) KN ([|Avalre >L,,(B])+ 120,
J
< (1 K’ A v’ clfly
< (0 )R Y [Aautre) M), C N N
J
k—1
~ P p
< (1+e) K Avgfllpan +C {Z||Ai»gf||u’w)
1=2

+ HV;fHZP(M) + ”f”’L”(M)} ’

where ¢,, =0(¢e;) for m = 2,3,4,5.
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Following the same technique used in Lemma 3.1.3, we get

1 P 4 P
”vﬂfHu'(m < aC, s Moo fllpan + Copys 1 logary » (5.1.7)

and for i = 2,--- ,k — 1 we have

P
“Airgflllﬂ’(f\l) S aicl,zl.n,,é HAH'l-Qf

» p
wiany T Copn s 1l aary - (5.1.8)

where £; and «;’s are sufficiently small. Thus,

P ~p £ P P r
”f”Lﬁ*(aM) < (’CT + 5) ”Ak,gf”/,p(M) + Cl ”Ak—l,gf LP(M) + C‘Z Hf LP(AD)

. £ P =~ 14 .
(K7 + 2) Ik f 1 ary + @51 C 1k F s gary + Callf |

IN

»
LP(M)

We finish the proof of this Lemma by choosing ax_; small enough such that

ax-1 < e/(2C). Therefore, we obtain

I/

IZ,ﬁ‘(am) < (,i-r‘ + E) ”Ak,ngZ,p(M) +B ||fH’1:v(M)
for all f € WkP (A1). O

Theorem 5.1.4 ( Concentration-compactness princij : for ma folds with
boundary). For 1 < p < n/k with n > k € N, let p* = np/(n — kp) and p* =
p(n—1)/(n — kp), and let K(n.p), K be as above. Suppose that (M, g) is a compact

Riemannian n-manifold with boundary and let f; — f in WP (M) satisfy
Aiofil dulg) = p.

|fi

1 ds(g) — 7

”'dv(g) -,
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P P ~
10 onry < Al Wimionny + (K7 +€) MAeg Fmian (5.1.9)

for any f € WhP (M),

Proof. Supposc by contradiction that there exists eo > 0 such that for any 4 > 0 we

can find f € W*P (M) with

P ~p P -~ »
W0 onry > (K + 20) Mk oy + AN Winionry

This means that there exists £g > 0 such that for any A > 0 wecanfi 1 f € W*? (A[)

with the property

g 4
_ Allflloanny + ||Ak.af“u»(1u) - 1

'] i = .
L. L oan) K" + &0

A

(5.1.10)

For any A > 1 define
1

I, = inf J, < = .
' K? + ¢go

= n
O fewkr(An\{0}

(5.1.11)
As the quotient J, is homogeneous, for any fixed A we can take a minimizing sequence
. . . »
f; € WHP (M) satisfying I fill Lo gary = 1- As
P P . .
A ”fjl|m>(a;\l) + “Ak,gfjHLp(‘\/) - I_q? (‘)'1'12)

we conclude that Ay, f; is bounded in L*(Af), and f; is bounded in LP(9M). Thereby,
{f;} is bounded in W*? (Al). So we may assume, up to a subsequence, that f; — f

in Wh? (M) and f; — f in LP(M) as well as in LP(OM). 1 particular, we have for
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some bounded, non-negative measures p, v, 7 that
kg fl dulg) —
£i7 ds(g) — (5.1.13)
S dulg) = v,
Now, we are going to show that f; — f in "7 (OM) and [|f|\pL,~,-(6M) = 1. To

achieve this result, we follow the manner [9] applied in the proof of Theorein 4.

Define g : W*? (M) — R by

p/p*

/
o(f) = / I dste)) (5.1.14)
\31\]
and also define G : M — R by
» A P
G(h = AZ Ao T dulg) + ; 4 11 ds(g), (5.1.15)

where

M= {feWrP(M):g(f)=1}.

The tangent space, TfJ M, consists exactly of those functi s ¢ such that Dg(f;)p =
0. Therefore, we obtain that [ |f]~|ﬂ._2 fipds(g) = 0. So, we can write
aM
WP (M) =T, M & (f;).
Thus, for any ¢ € WP (M), write

b= ) ET, Ma (f), (5.1.16)
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where
v= [1017 fudsta)
oM
Take z, € M in the support of the singular parts of 41, v, and 7. Let ¢ € C* (M)

satisfying suppy C Ba(z,), ¢ = 1 on B, (z,), . 1 |Aggp| < 2/e, 'V;cp’ < 2/e for

As ¢f; is bounded in W*? (A1), we have

G = W—/\fjlp.

oM

cpds(g)J i€ TJJM

is a bounded sequence in W*? (Af). On one hand, following the manner used in [9,

Theorem 4], we get

. p—2 p-2
tim [ i sl gpdele) | +4 [ 1517 frodsia) = 0. (5017
A oM
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Writing L = [ |fj[ﬁ‘ @wds(g), we have that
M

]ILn;O (/lAkvng,p Z(Ak,gfj)/\k.g(@fj)dv(g)) /|f]| i (ef) ds(g)

M [shv}

= hm ( ’Akgf] Akjf])Akq(Cj+Lf])dv( )) /|f]| f] C]+ij)d‘5( )

oM
= llm (/|Akgf] (Akgfi) Ak gCidv(g ) +A/]fJ fi¢ds(g)
EXY;
+11rn |f]| npds ) [ Ak, /il du(g +A/ |jJ "ds(g
(8% / OA!

Therefore, by (5.1.16)-(5.1.17),

Jlggo( [ sl (o) he (o)l >+A S 5 en)dsto

oM

= llm (/ngfj (Akgf) Ak G dv(g) ) +A/'f] [iGds(g)

oM
+1, lim (/|fj| wds( ))
Jj—oc

N

= IA/L[)dTF. (5.1.18)

oM



On the other hand,

llIIl (/iAkgf] (AA Jf])Aky(‘Pf] dv > +A/ lf] " ’ ‘Pf] dS( )

A anl

= hm/lAkngp 2(Akgfjr) [(Akng 90"“'2( )V fJ V‘P

T fi(Arg)] du(g) + A / I wds(g)

225

= hm /]f] wds(g /c,od,quZT

oM

= 1 wdm,

A

oM

k p-2 -1 1 .
T, = (§) 10l M) (905 Vi) doto) o =
M

T, = /|/\k,gfj|”—2 (Akgfi) fi(Argp)du(g).
A
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With p* =np/(n — kp), s =np/(n—p), r = %, and ¢ = 2, we obtain that

J—oo

lim Y, =~ = ]1Lnolo/|Ak,yfj|p_ (Akgfi) fi(Agp)du(g)
M

. p-1
< lim / Aol 13l 1Ak gl du(g)
M
1/p
v 7. p—1 » »
< Clim Mol | [ 1A el @l
B2E(Ik)\Bs(‘rk)
< C i s ptan 1157 wssl]
< lim gl il e j .9 ,
jooo IR AD [T e B e 1159 e (Baete 0B (2, )
1/p*
. p-1 p‘
< Clim Wil | [ 167 dvla)
325(3:,\-)\8:(1,\-)
k/n
n/k
x [Agwl dv(g)
Bae(z, )\B, (z,)

- 1 k/n
< Clim { T Vol(Ba(z,) \ B, (ﬁ))} ”fj||Lp‘(32€(zk_)\gf(rk)) :

j—oo | g”
Therefore,
lim Y, —0ase—0.
J—oo

Similarly, we derive that






p/p* S (pe /P . .
Since I, < EIT, we get that (%) > /C('z/' ), v ich yields
A
1

As p1is a bounded measure, the nor.  -o terms of 3; are only finite numbers. Morcover,
if 3; # 0 for some j € N, then : obtain that

1 ]
= > — 1>1
K (’Cp+50>

A

13
LP(AD)

P p )
AN Vmionsy + kg flwary + S 5,

Zﬁj > p > I(1,”

p
= JIH?O( “fj”u’(a,u) + Ak fil

v

v

which is a contradiction. Therefore, 3; = 0 for all 7 € N; hence, y; = 0 for all j € N,

which follows that

fi — fin L (OM) and || f

onny = L. (5.1.21)

Indeed, we have that

Allf

» P 4 . »

Lrarny T llAk,gf”Ln(M) < A ||f||Lp(aM) + I‘Jnllogf |IAA‘\gfj|lL1)(,\I)

liminf (A £
j—o0

= I

AT

A

14 v
LP(OM) + “Ahgfj”u»(m)

(5.1.22)

In fact, (5.1.11) with (5.1.22) implies that f is a minimizing of I .
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For any A > 0, let f, € WHP (M) satisfies ||fA||II:,,-(3Av,) =1 and

1

< (5.1.23)
K’ + e

14 §
I, = A “fA”[,n(c')l\I) + “Ak,gf,\”u»(g\/)

On one hand, following the same a iments as above, we obtain the boundedness of
f, in WEP(M). So, we can assume, up to a subsequence, that f, — f in WhP (AI),
and f, — fin LP(M) as well as in LP(OM). On the other hand, Letting A — oo in
(5.1.23), we conclude

f=0 ondM. (5.1.24)
For any f € W7 (M), [9] proved that
Vof, = Vof ae on M. (5.1.25)

Since V,f, € W12 (M), we can assume, up to a subsequence, that Vyf, — hin
Wk=Lr (M), and V,f, — h in LP(A) for some h € W*='7 (Af). Hence, there exists

a subsequence {f, } C {f,} such that
Vofi., = hae, (5.1.26)
where h = V,f a.e. Similarly, for i =1,.... k we get

Vi f, —h in L”(M) and V.f, —h ae.,



where h, = V f a.e. Thus,

”Akwngs — Miof HLP(M)

< HA""ngs — Mg f HLP(M) + HfA., - f “LT’(M)

k.
< CZ ”v:;f,as - V;f ||LP(M)
i=0
k .
< CZ Vo fay =R won T |h = Vi f HLV(M) — 0.
i=0

Therefore, there is a subsequence {f, } of {f, } such that

Lemma 5.1.3 plus [14, Tl

1
K +¢eo

- (5,9

1

2

for any ¢ > 0.

=1, that
Ly=(9M])

H A 5,

which is a contradiction.

> 1,2 A S

(H fo, —

Take 0 < € < g¢ and let A, — oc, we find, by using (5.1.24) and

KM + ¢

Apg fa, = Migf ae., on M.

yrem 1] gives that

P

Asi || Lo (M)

P

+ o(1
LP(AL) (1)

p

LP™(9AT)

fAsl - f

€

P
+ of(1
LT’(1\1)> ( )

1 - 1
Kl +e  K'4e’

f € W*P(M). This completes the proof of Lemma 5.1.5.

Theorem 5.1.1 is obtained by a direct consequence of Lemimas 5.1.2 and 5.1.5.
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Consequently, the inequality (5.1.9) is satisfied for any

O
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5.2 Determining the best constant BZ(M)

In this section, under some specific conditions, we find the best constants in higher-
order Sobolev trace inequalities on Riemannian manifolds with boundary in the pres-
ence of symmetries.

Let (M, g) be a smooth compact 3 < n-dimensional Riemannian manifold with
boundary, G-invariant under the action of a subgroup G of the isometry group
Is(M,g). Assume that [ is the minimum orbit dimension of G, and V is the mini-

mum of the volume of the [-dimensional orbits. If 1 <p < (n —1)/k with £ € N, and

q= (2:5:2)”, the embedding WP (M) C L7(OM) is continuous. Thus, there exist

real constants fll, Bl such that

P ~ P ~ 14 )
HfHL’g;(aM) <A ”fHL’é(aM) + By ”Ak‘gf LE(M) ( ;,g]en,G)

for any f € WP (M). Let

dZ(]W) = inf {/3.1 € R : there exists B; € R such that I

pgen,G 18 satisﬁed} )

and
B;(M) = inf {B’l € R : there exists A; € R such that f:,gen,G is satisﬁed} .

Then we have the following:

Theorem 5.2.1. Let (M,g) be a smooth compact 3 < n-dimensional Riemannian
manifold with boundary, G-invariant under the action of a subgroup G of the isometry

group Is(M,g). Assume that | is the minimum orbit dimension of G, and V' is the
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minimum of the volume of the |-dimensional orbits. Let 1 <p < (n—1)/k withk € N,

and ¢ = %. Then for any € > 0 there exists real constant A such that
» P /Cp(n - l, n) P
1122 onry € AN Lz onry + ('V—(k;'—_l)/(_— . +€> 1Ak g fll Ly ar) (5.2.1)

for any f € WP (M).

>R
~ vl . . . .
Moreover, the constant /Cz(’; = ,E"(n‘f’,)_,l) is the best constant for this inequality.
, DT

Following arguments similar to thosc used in the proofs of Lemmas 4.1.3 and 5.1.2,

we obtain that if there exist real constants A and B such that for any f € W(}Ep (M),

11y < Ao oy + B 1w g (5:22)
then K, > B.

To prove the validity of (5.2.1), we need the following propositions which the first

three can be established via the arguments used in [17].

Proposition 5.2.2. Let (M,g), G, I, V be as above. Let 1 < p < (n —1)/k with

k € N. Then for any € > 0 there exists real constant A = A.p g ar ¢ h that

”f”[',g(aM) <A ||J L, (A1) + (ICE' + 5) “Ak,gf||y(';(M) (5-2-3)
for any f € W5 (M).

Proposition 5.2.3. Let (M, g) be a smooth compact 3 < n-dimensional Riemannian

manifold with boundary, and let O; = {y € M | dy(y, O) < 8}. Then for any € >
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0 there exists a positive constant ¢ such that the following are valid for any v €
W&P(0, N AM) such that v > 0:

(1) (1 —ceo)V; [ vads(3) < [ vds(g) < (1+ ceo)V; [ vads(g),
8N oM ON

(1) 1=ce)V; [ wdy < [ vds(g) < (1+ceo)V; [ wody,
aRT am oR,
where V; = Vol(O;), va =vo ¥~ and (N,g) 1s a compact submanifold of (M, g) of

dimension n — | as in [17, Theorem 3.2)].

Proposition 5.2.4. Let (M,g), O;, N, vy, and V; be as above. Then for anye > 0
there erists a positive constant ¢ such that the following are valid:

() (1- CEO)VJ']{ lAk,§U2|p dv(g) < 1{ I/\k,g’U'p du(g) < (1 + 050)‘/3'7{ |Ak,gU2|de(§)

(i) (L—ce)V; [ |Asva|” dy'dt < [Apol du(g) < (1+ceo)Vy [ |Axvsl dy'dt.
M

R R
for any v € Wg‘p(Oj N M) with v > 0.

Proposition 5.2.5 ([25]). Let (M,g) be a smooth compact 3 < n-dimensional Rie-
mannian manifold, and G be a compact subgroup of the isometry group of M. Then

there exists an orbit of minimum dimension l, and of minimum volume.

Proof of Theorem 5.2.1. Assume by contradiction that there exists g5 > 0 such that

for any A > 0 we can find f € Wé’p (M) such that

7 A ||f“Ué(8M) + HA/\‘,gf“LI(’;(M) - 1
¢ - P Tan :
: ”f”L‘g;({?M) Ke + €0

(5.2.4)
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Let, for any A > 1,

- ~ 1
I, = inf J,< .
FeWEr(M\{0} K+ o

(5.2.5)

As the quotient J, is homogencous, for any fixed A > 0 we can take a minimizing
p

= 1 such that

sequence {f;} C WE” (M) satisfying f; LiM)
q

P P

—1,. (5.2.6)

Allf;

oo

L (¢ LT (M)

Following the same manner use in the proof of Lemma 5.1.5, we derive that

~ N r
fi = f in LE(OM), HfHL‘Ci,,(aM) =1,

and
p P ~ .
A ”f”Lf,;(aM) + ”Ak.gf“LE(M) = ]A‘ (5-2-7)
Morcover, we obtain that for any A > 0 there exists a function f, Wg&? (M) such
P
that ’ ) =1 and
L LL(OM) .
- - » - » 1
b :A‘ +HA’ < 5.2.8
o= A2 oy * A5, (528

LY, (M) (K:E; —{—_50) .

Furthermore, we find that there is a subscquence {f, } of {f,} such that Ag, f, €
L2(M) and

Ak,g fA, —’Ak,gf a.e., on M.
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N
Let O € |J O, such that for all j =1,..., N,

i=1
Vol(O) = minVol(0,) = V.
Assume that f;s, € Wg’p(O). As the best constant of the Sobolev trace inequality in

M has the same value with the best constant in the Sobolev trace inequality of the

manifold O ( c.f. Proposition 5.2.5), then by using propositions 5.2.3 and 5.2.4, we

obtain
- P _ »
2 1798 [ v
— R T s (1) VT
’f*‘“r La(OM)
N I3l N D
A’ + ‘A. |
f2yAs, L7(8N) k’gfz,A,,-T. LP(N)
- P s
faa, LI(8N)
where N is a submanifold of M of dimension n — [ as above. Therefore,
N P _ P
A { fz,,;sl Lr(om) + ’Ak,gfz,Ag,_ 1 y 1
P Kg+eo yiia
24 || LNy
- 1
- kp-1 kp—1
1 1
< . (5.2.9)

Vkagl——ll}@é - /C”(n —1,p)



83

which contradicts what we did in Lemma 5.1.5. Consequently, the inequality (5.2.4)

is false, and then Theorem 5.2.1 is proved.
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