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Abstract 

Let (M, g) be a smooth compact 3 :::; n-dimensional Riemannian manifold, G be 

a subgroup of the isometry group I s(M , g). Assume that l is the minimum orbit 

dimension of G. For 1 < p < n/k with k E N, let p* = np/(n- kp), and p* = 
p(n - 1)/(n- kp) ; and for 1 < p < (n - l) /k with kEN, let q = (n -l)p/(n - l - kp) , 

and q = (~:=;:=!: . On one hand, if ( M, g) is without boundary, under some specific 

conditions, we find the best constants for the inequalities 

llfll~p*(M) :::; A I IAk,g/ II ~"(M) + B IIJII~P(M) for all f E w k,p (M)' 

llfii~~(M) :::; A IIAk,g/ I I~~(M) + B l lfii ~~(M) for all f E w~·P (M)' 

where A, B E JR., and Ak,g f = \19 f , trace(\1;!) if k = 1, k > 1, respectively. On 

the other hand, if (M, g) is with boundary, we establish the best constants for the 

inequality 

Furthermore, if (M, g) is a G-invariant under the action of G, then we determine the 

best constants for the inequality 

The proofs of our results are based on the arguments used in [24] , the techniques 

applied in [9]-[10], and the methods taken in [30] . 

Key words: Best constants, Sobolev spaces/ inequalities/ trace inequalities, Rie­

mannian manifolds. 
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Introduction 

The best constants in Sobolev inequalities as well as Sobolev trace inequali ties, of first 

and second orders, on Riemannian manifolds have been extensively studied by many 

authors. They are of vast scope and utility due to their powerful role in dealing with 

many significant problems arising in such parts of analysis as partial differential equa­

tions. In this work, we establish these best constants of higher-order on Riemannian 

manifolds under some certain conditions. 

The thesis is organized as follows: 

In Chapter 1, we introduce some necessary definit ions and basic results concerning 

our work, which play an important role in proving our results. 

In Chapter 2, we review some known results about the best constants in Sobolev 

inequalities as well as in Sobolev trace inequalities on compact Riemannian manifolds. 

In Chapter 3, we find the best constants in higher-order for Sobolev inequali­

ties on 3 ~ n-dimensional smooth compact Riemannian manifolds, with or without 

boundary, under some specific conditions. More precisely, let (M, g) be a compact 

3 ~ n-dimensional Riemannian manifold. Suppose that 1 < p < n/k with n > kEN, 

1 



.-----------------------------------------------

and p* = npj(n- kp) . Consider the space 

Let 

{ 
Wk·P(M) 

pk,P (M) = 
Wck,p (M) 

if M has no boundary, 

if M has a boundary. 

1/ K(n,p) = inf IIAdiiLP(JRn), 
/E£k.v(JRn)\{O} 11/IILv*(JRn) 

where Ek ,p (IRn) is the completion of cr: (IRn) with respect to the norm 

1 

llflle•·'(R"I = (i IA>fl' dx)' , 

2 

and Akf = "\1 f, trace("\lk f) if k = 1, k > 1, respectively. We prove that for any c: > 0 

there exists A E lR such that for all f E pk,p ( M), 

P ( ( ) -pk/n ) P " 11/IIL"*(M) ::; Vol(M,g) + c 11/IIL"(M) +A IIAk,g / II LP(M), (1) 

and if for all f E w;.v ( Bc5'), 

where B 8, = B(x0 , 6') is a geodesic ball with radius 6', and 6' is a small number > 0, 

then there exists B E lR such that 

(2) 

for any f E pk,p (M) . Moreover, we show that ( Vol (M,g) ) - vk/n is the best constant 

such that the inequality (1) holds for any f E p k,p (M), and if the inequali ty (2) holds 

for all f E pk,p (M), then K" ( n, p) is the best constant. 
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In Chapter 4, under some certain conditions, we establish the best constants 

in higher-order for Sobolev inequalities in the presence of symmetries on compact 

Riemannian manifolds without boundary. Specifically, assume that (M g) is a smooth 

compact 3 :::; n-dimensional Riemannian manifold without boundary, and G is a 

subgroup of the isometry group I s(M, g). Suppose that l is the minimum orbit 

dimension of G, and Vis the minimum of the volume of the l-dimensional orbits. Let 

1 < p < (n- l) /k with k EN and q = ~~~~fp · Then we prove that for any c > 0, 

there are two real constants A1 and B1 such that for all f E W~·P (M), 

(3) 

and 

(4) 

( ) 

- pk/ (n- l ) 
Furthermore, V ol(M,g ) is the best constant such that the inequality (3) i 

. fi d f J Wk,p (M) d K." (n- t ,p) sat1s e or any E c , an v"k/(n- l) is the best constant when the inequality 

(4) holds for any f E W~·P (M) . 

In Chapter 5, we determine, under some certain conditions, the best constants for 

Sobolev inequalities in the presence of symmetries on compact Riemannian manifolds. 

In particular, let (M,g) be a compact 3:::; n-dimensional Riemannian manifold with 

boundary, 1 < p < n/k with n >kEN, p* = p(n - 1)/(n- kp), and 

I
- ( ) 0 I I AkfiiLP(IR~j_) 

1 K n,p = mf . 
! ELP" ( 81Ri- )\{0} , AkfEL"(IR+ ) II f II LP" (81Ri-) 
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then for any c > 0 there exists C E lR such that for all f E Wk,p (M), 

In addition, suppose that (M g) is a G-invariant under the action of a subgroup G 

of the isometry group Is(M, g), and l, V are as above. Let 1 < p < (n -l)/k with 

k E N, and ij = (~=::=:!: . Then for any c > 0 there exists a real constant C such that 

(6) 

for any f E W~·P (M). Further, the constants Kp(n,p), v<k~:\)j(,~~l- I ) are the best 

constants for the inequalities (5), (6) , respectively. 



Chapter 1 

Preliminaries 

The purpose of this chapter is to present some necessary definitions and basic results 

concerning our work. Throughout this section, S1 denotes an open subset of !Rn. 

1.1 V spaces 

In this section we review some facts that will be used in the proofs of our results. 

Also, we present some inequalities that play a powerful role in the sequel. We begin 

with the following definitions: 

Definition 1.1.1 ([1]). For 1 ~ p ~ oo, let LP (0) be the class of all real valued 

measurable functions that satisfy 

j lf(x)IP dx < oo for 1 ~ p < oo, 

n 

5 
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and 

esssup if(x)l = inf {K: lf(x)l ~ K a.e. x E 0} < oo for p = oo. 
xE!1 

For 1 ~ p ~ oo, the space V (0 ) is a Banach space with re pect to th norm 

11/IIL,(n) = { 

1 

( llf(x)jP dx ) ;;, 1 ~ p < oo, 

esssup if(x)l, p = oo. 
xE!1 

Definition 1.1.2 ([23]) . For 1 ~ p ~ , we say that a real valued measurable 

function f E Lfoc (0) if and only if f E V (V) for each open V CC 0 . 

The following three theorems are well-known. 

Theorem 1.1.3 ([27] Holder 's in quality) . Let p and p' be non-negative extended 

1 1 
real numbers with-+ - = 1. Iff E V(O) and g E V'(D.) , then fg E L1(0) with 

p p' 

j If (x) g (x)l dx ~ llfiiLP(!1) ll9llu' (n) · 
n 

Moreover1 the equality holds if and only if, for some non-zero constants A and B , we 

have A lfiP = B lgl p' a. e. on 0. 

Theorem 1.1.4 ([43) Minkowski's inequality) . Iff and g are in LP(f'l) with 1 ~ p ~ 

oo, then so is f + g and 
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Furthermore, If 1 < p < oo, then the equality holds only if there are non-negative 

constants a and {3 such that af = {Jg a. e. on st. 

Theorem 1.1.5 ([23] Fubini 's theorem) . Let f: IRn x IRm- [0, oo). Iff (x, y) ~ 0 

or f(x , y) E L1 (IRm x IRn), then 

j (1 f( x, y)dx) dy ~ 1 (i f(x,y)dy) dx. 

1.2 Sobolev spaces 

We now introduce the Sobolev spaces Wk,p on open sets of !Rn, which were first 

used by S. Sobolev. The importance of these spaces lies in the fact that solutions 

of partial differential equations are naturally in Sobolev spaces rather than in the 

classical spaces of continuous functions , and with the derivatives understood in the 

classical sense. In order to be able to define the Sobolev spaces, we need to start by 

introducing the following definitions: 

Definition 1.2.1 ([27]). Let f E Lloc (0) . For a given n-index a, a function g E 

Lloc (st) is called the ath weak derivative off if for all cp E Cg"(O) , 

j cp(x)g(x)dx = ( - l) lal j f( x) (aa cp)(x )dx, 

n n 

a aO.J ao.2 ao.n 
(a cp)(x) = a a l a ,0.2 • . • a an cp(x ). 

x l x2 xn 
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It is clear that the ath weak derivative off is uniquely determined a. e., if it exists, 

then we write g = ff f . 

D efinition 1.2.2 ([27]) . For any function f : 0 ~ !Rn ---t IR, we say that f is a 

Holder continuous function with exponent 0 < a ::; 1 if there exists a constant C such 

that 

/f (x ) - f (y) / ::; C /x- Y/0 

for all x, y E 0 . 

Similarly, for any f E Ck(O), we say t hat f E Ck,a(O) with exponent 0 < a ::; 1 

if there exists C E lR such that 

for all x, y E 0 . 

D efinition 1.2.3 ([1]). For k E N and 1 ::; p ::; oo, we denote by W k,P(O), w ;,P(O) 

the kth _order Sobolev spaces of C00 (0), cc: (0 ), respectively such that let ! I E V (O) 

with the norm 

l 

1/f ll wk,p(n) = ( j L let !IP dx) ;; ~ L 118'' ! II LP(O) for 1 ::; p < oo. 
n lal9 lal~k 

For p = oo, the Sobolev spaces W k,oo(O), Wck,oo(O) are defined to be the Holder spaces 

ck- 1,1 (0 )' c~-1 > 1 (0 )) respectively. 
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Similarly, for 1 ~ p < oo and k E N, the kth_order Sobolev spaces of C 00 (V) such 

that 

w· f I E £P (V) for each open v c c 0 (1.2.1) 

is denoted by H-!~:(0), and W1:~00 (0) is defined to be the Holder spaces c k-1•1(0 ). 

Our next goal is to approximate a Sobolev function by a continuous function. To 

achieve this, we make the following definition: 

Definition 1.2.4 ([23]). For X E 01 f E Lloc (0)1 and 0 < E < dist(x, 80)1 the 

regularization off 1 denoted by f 1 is defined by 

{(x) = ('fl. * f)(x ) = J 'fl. (x- y)f(y)dy 1 

n 

where 'fl. (x) = c~ ry(x/c) is the standard mollifier, 

{ 

cexp (W,) 
ry(x) = 

0 

and c is chosen so that J ry(x)dx = 1. 
n 

for lxl < 1, 

for lxl ~ 1, 

It is easy to prove that for 0 < c < dist(x, 80), f E C00 (V) for any open V CC 0. 

Let us use mollification to approximate Sobolev functions by continuous functions. 

Theorem 1.2.5 ([27]). For 1 ~ p < oo, let f E Lfoc(O ), LP(O), W1: : (0) , W k,p (0). 

Then f converges to f in Lfoc(0)1 LP(O), W1~: (0) , W1~: (0) , respectively. 

The following theorem describes the interaction of weak derivatives and mollifiers. 
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Theorem 1.2.6 ([1]) . Suppose that f E Lfoc( D), a is a multi-index, and ao f exists. 

Then if 0 < c < dist(x , an), we have 

(1.2.2) 

The previous two theorems tell us that if f E W 1·P (D), then ao f goes to 8o f 

when c approaches 0. This fact derives a global approximation result . 

Theorem 1.2. 7 ([27]). Let f E Wk,p (D) for 1 ~ p < oo. Then there exists a 

sequence {fj} ~ c Wk,p (0) n coo (D) such that 

j j ---t j in Wk,p (D) . 

Namely, Wk ,p (D) n C 00 (0) is dense in Wk,p (0 ). 

We are now going to use Whitney's Extension Theorem (see [23]) to show that 

if f is a Sobolev function, then it equals a C 1 function, j, except on a small set. In 

fact , we use the following theorem to reach our target. 

Theorem 1.2.8 ([23]). Let f E W 1·P (IRn) fo r some 1 ~ p < oo. Then for each 

c > 0, there exists a Lipschitz function f : IRn~ IR such that 

.en { x J f (x) =J f (x) or \7 f(x) =J \lf(x) } ~ £ 

and 

II I - Yllwl.P(JR") ~ c, 

where .en is the n-Lebesgue measure, and \7 f ( x) = ( Jt, .. . , /!;,) . 
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Theorem 1.2.9 ([23]). Let f E W 1·P(JRn) for 1 ~ p < oo . Then for any E > 0 there 

exists a C 1 function 1 : JRn ~ lR such that 

;:_n { X I f (X) f= 1 (X) or \1 f ( x) f= \71 (X) } ~ E 

and 

llf-111 <t:. W l ,P(lR") -

In view of the above facts, we can approximate Sobolev functions by smooth 

functions, and consequently we can verify that some of the calculus rules hold for 

weak derivatives. For example, in general, if f and g are absolutely continuous 

functions, then the composition f o g does not need to be absolutely continuou . 

However, a function f is absolutely continuous if and only if f is continuous , of 

bounded variation, and has the property £n(f(E) ) = 0 whenever £n(E) = 0. So the 

problem t hat prevents f og from being absolutely continuous is that fog does not 

need to be of bounded variation. In fact, f o g is absolutely continuous if and only if 

(f' o g) · g' is integrable (see for instance [27]) . Next, we consider the case when the 

outer function, f , is Lipschitz. 

Theorem 1.2.10 ([27]). Let f : lR ~ lR be a Lipschitz function and g E W 1
·P (0 ) 

with p ~ 1. Iff o g E V (0) , then fog E W 1
·P (0). Moreover, 

8 (f 0 g) (x) = f' [g(x )]· og(x) 

for almost all X E 0 . 
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1.3 Riemannian manifolds 

A manifold M of dimension n is a topological space in which every point of M 

possesses a neighborhood homeomorphic to the Euclidean space !Rn. Throughout 

this section, we assume t hat M is a Hausdorff, a second countable, and a connected 

topological space. T he principal object of this section is to introduce some basic facts 

concerning Riemannian manifolds. 

Definition 1.3.1 ([15]) . We say-that M is a em n-dimensional manifold if and only 

if there exists an open cover { U a.} a.EI on M and homeomorphisms X a. : U a ___. X a ( U a.) 

onto open subsets of !Rn such that for any a , {3 E J, 

is a em diffeomorphism whenever Ua. n U13 =/= ¢ . 

For y E Uo:, the coordinators of xa.(Y) in !Rn are said to be the coordinators of yin 

(Ua., X0 ). The pair (Ua., xa.) is called a chart, and the collection of charts { (Ua, Xa )} a.EI 

such t hat M = U U a is called an atlas. 
aEI 

It is easy to check that any subset U ~ !Rn is a c oo n-dimensional manifold 

with a single chart (U, lu ). Furthermore, the unit sphere §n-1 of !Rn, and the torus 

'II'n are considered classical examples of smooth manifolds. The following theorem 

demonstrates that §n-I is a smooth (n- I)-dimensional manifold. 

Theorem 1.3.2 ([15]) . Let f : U ~ !Rn ___. lR be a em function, and c E lR be a 

regular value, that is, \7 f(x) =I= 0, for all X E f - 1 {c}. Then f-1(c) is a em manifold. 
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Applying this theorem to f(x) = llx ll 2 and c = 1, we obtain that §n-l is a smooth 

(n- I)-dimensional manifold. 

The preceding analysis tends to shed some light on the following: 

Definition 1.3.3 ([35]). (i) Let mE M. We say that a linear map (: C00 (M) ~ lR 

is a tangent vector at m if and only if 

((!g) = f(m)((g) + ((J)g(m) 

for all f, g E C00 (M). The vector space of all tangent vectors at m is denote by Mm . 

(ii) The disjoint union of the tangent spaces is called a tangent bundle of M, and it 

is denoted by TM = U Mm . 
mEM 

For any open set U ~ JRn and m E U, it is easy to check that Um is canonically 

isomorphic to ]Rn via 

v f = dfm(v) 

for any v E JRn. Moreover, for any f : D ~ JRn ~ JR, let E = f-1 { c} be a regular set 

of f. Then Em is a linear subspace of Dm ~ JRn. In fact, 

(1.3.1) 

Next, we define how to differentiate maps between manifolds. 

Definition 1.3.4 ([15]). For a smooth map of manifolds¢: M --+ N, the tangent 

map d¢m : Mm --+ Nq,(m) at m E M is the linear map defined by 

d¢m(()f = ~(J O ¢) 

for any~ E Mm and f E C00 (N). 
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D efinition 1.3.5 ([15]). A linear map X : C00 (M) ---t C00 (M) such that 

X(jg) = f(Xg) + g(XJ) 

is called a vector field. 

A useful geometry arises if we provide each tangent space, Mm, with an inner 

product. This procedure leads us to define Riemannian manifolds. In particular, 

with Riemannian metric g, a real differentiable manifold M, in which each tangent 

space is equipped with an inner product g, in a manner which varies smoothly from 

point to point, is called a Riemannian manifold (M, g). In fact, the following is the 

definition of Riemannian manifold. 

D efinition 1.3.6 ([11]) . A Riemannian metric g on M is an inner product gm on 

each Mm such that for all vector fi elds X and Y , the function 

is smooth. The pair (M, g) is called Riemannian manifold. 

In particular , any open set n ~ JR.n is a Riemannian manifold. Indeed, for any 

m E n ~ JR.n and for any v , v E Dm, define a Riemannian metric by 

gm(v, v ) = (v, v), 

where (-, ·) is the usual metric on JR.n . In addition, §n-1 C JR.n is also Riemannian 

manifold. To see this, use (1.3.1) to get that §~-1 ~ m.l.. c JR.n. Therefore, for any 

V,'U E §n-l 

gm(v, v) = (v, v) 
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defines a Riemannian metric. 

Let us say a few words about the gradients of smooth functions. 

Definition 1.3. 7 ( [30]). For any smooth function f : M -t IR, we denote the gradient 

off by the vector field \l 9 f such that 

g(\l 9 j, Y) = Y f 

for any vector field Y on M. 

By simple calculations, we can prove that if (U, x) is a chart, and 81, ... , On are the 

corresponding vector fields on that chart, then 

'Vgf = L9i1(8d)aj. (1.3.2) 
i,j 

where (gii) is the matrix inverse to (%) and 9iJ = g( 8i, 81) . Similarly, the divergence 

of any vector field X , denote by div9X E coo ( M) , is defined by 

div,x = ~ ( a,x, + ~ r;,x,) , 

where Christoffel symbols rt ~ '£ l 1(8i9Jl + OJ9li - Ot9iJ) · Therefore, for any 
l 

We quickly reviewed some information regarding the derivatives on Riemannian 

manifolds. Let us go over the integration concept on Riemannian manifolds. 
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Definition 1.3.8 ([35]). Let (M, g) be a Riemannian manifold and (U, x) be a chart. 

Suppose that f : U ~ JR. is a measurable function. If (M, g) has a canonical measure 

dv(g) , then we define 

j fdv(g) = j (f o x-1)Jdet(gij)dx. 

U x(U) 

It is easy to observe, by using the change of variables formula, that this integral 

is well defined on the inter ection of any two charts. 

Since M is a second countable and locally compact space, then any open cover of 

M admits a locally finite refinement, which has a partition of unity. Therefore, we 

can define a global measure. 

Definition 1.3.9 ([35]). Let (M, g) be a Riemannian manifold of dimension n, and 

let f : M ~ JR. be a measurable function. Choose an appropriate locally finite cover 

of M by charts { (U0 , x0 )} and a partition of unity {¢a} for {Ua}, then we define 

j fdv(g) = 2::::: j <i>a fdv(g). 

M 0 Uo 

This definition , of course, is independent of all choices. Recall that M is connected, 

and so it is path connected. Thus, we can join any two elements x andy in M with 

a piece-wise C 1 path. Hence, we can define the distance between any two points on 

M. 

Definition 1.3.10 ([21]). Let x, y E M . Then the distance between x andy is 

defined by 

d9 (x, y) = inf {L('y) : 'Y : [a, b] ~ M is a path with 'Y(a) = x, 'Y(b) = y}, 
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b 

where L(T) = J I (!fit) I dt is the the length of the path T 
a 

For a given smooth Riemannian manifold (M, g), and its Levi-Civita connection 

D t, a smooth curve 1 : [a, b] ---+ M is said to be geodesic if for all t E [a, b], 

where Dt(X) = ((!fifr1 
D9)flt X, X: [a, b]-+ TM is a map such that X(t) E M -y(t) 

for all t E [a, b], B1 is a vector field on [a, b], and (!fit ) -l D9 is the pull-back of D9 by 

!fit (see for instance [15]). 

remark 1.3.11. The Einstein summation convention is needed joT expressions with 

indices. More precisely, if in any single term an index variable appears twice, once 

in an upper position and once in a lower position, it implies that term is assumed to 

be summed over all of its possible values of that index. 

We finish this section by presenting the Ricci curvature. The components of the 

Ricci curvature Rc(M,g} of Misgiven by 

where 

In fact, for any chart, we can check that 
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1.4 Sobolev embeddings 

The main object of this section is to introduce Sobolev spaces on Riemannian man-

ifolds, and to study the Sobolev embeddings on Riemannian manifolds as well as on 

open sets of ffi.n . In fact, if (M, g) is Riemannian manifold, then for any given non-

negative integer k, and for any p ~ 1, the space Cf(M) equals the space C00 (M), 

where 

Gl(M) = { f E C
00(M). j<Yr each i = 0, ... ' k, ! Ia;! I' dv(g) < 00}' 

o;f denotes the ith covariant derivative of f (see for example [29]). We define the 

Sobolev spaces on compact Riemannian manifolds as: 

D efinition 1.4.1 ([30]) . Let (M, g) be a smooth compact 3 ::; n-dimensional R ie­

mannian manifold. Fork E N and p ~ 1, the kth_order Sobolev spaces Wk,p (M) , 

W ck,p ( M) are defin ed as the completion of coo ( M), C~ ( M ), respectively with respect 

to the norm 

I 

llfllw•·'(M) = ( [ t, IB;JI' dv(g)) ', 

where dv(g) = yfdet(gij) dx, and dx is the Lebesgue's volume element of rii!.n . 

Let us look at the space W ck ,p (M) from another side. Indeed , it is the closure of 

c~ (M) in wk,p (M). 

For the Euclidean space fii!.n, it is well known that W ck,p (W!.n) = Wk,p (W!.n); however, 

this fact can not be extended to all Riemannian manifolds. In fact , some assumptions 
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are needed on manifolds to satisfy that fact . Indeed, [3) show d that if (M, g) is a 

complete 3 ~ n-dimensional Riemannian manifold , then for any p :::: 1, W1·P (M) = 

W 1
·P (M) (see also [30]). 

ow, let us discuss Sobolev embeddings. For any two real numbers p and q 

with 1 ~ p < q, and for any two integers k and m with 0 ~ m < k. If 1/q = 

1/p - (k- m)/n, then Wk,p (M) c w m,q (M) is continuous; it means that a positive 

constant C = C(M,p, q, m, k) exists such that for any f E Wk,p (M), 

This result is referred to as the Sobolev embedding theorem as these embeddings 

were first proved by Sobolev for lRn. This result is extendable to compact Riemannian 

manifolds. 

Sobolev [38) applied a difficult lemma to prove that the Sobolev embeddings are 

valid for lRn . Later, [26) and [37) proved the validity of these embeddings in a simple 

way as follows: 

Theorem 1.4 .2 ([37]) . For any f E C': (JRn), 

(i IJ(x)ln/n-1 dx) (n - 1)/ n < ~ l] (i I!~, I dx) 1/ n 

With this result , they proved the validity of Sobolev embeddings for lRn . In fact, 

they proved the following: 
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Theorem 1.4.3 ([37]). Let 1 ~ p < n and f E W 1·P (!Rn). Then 

where q = npl (n-p) . In particular, for any real numbers 1 ~ p < q, and any integers 

o ~ m < k satisfying 1 I q = 1 I p - ( k - m) In, the embeddings wk,p (IRn) c w m,q (IRn) 

are continuous. 

We present Sobolev embeddings for complete Riemannian n-manifolds as: 

Theorem 1.4.4 ([30]) . Let (M, g) be a complete 3 ~ n-dimensional R iemannian 

manifold. Suppose that W1•1 (M) C Ln/(n-l) (M) is valid. Then, for any real numbers 

1 ~ p < q and any integers 0 ~ m < k satisfying 1l q = 1l p- (k- m)ln, the 

embeddings Wk,p (M) c wm,q (M) are continuous. 

Therefore , by Theorem 1.4.3, such embeddings W k,p (IRn) c wm,q (IRn) hold for 

the Euclidean space; however, for complete Riemannian manifolds, such embeddings 

Wk,p (M) c wm,q (M) hold if the embeddings W1•1 (M ) c Ln/(n-l)(M) are valid . 

More precisely, the following is a counterexample that the above embeddings are 

generally not true for complete Riemannian n-manifolds. 

Proposit ion 1.4.5 ([29]) . For any integer n 2: 2, there exist smooth complete n­

Riemannian manifolds (M, g) such that for any 1 ~ p < n , 

wher·e q = npl (n- p). 
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Our work focuses on the Sobolev embeddings when (M, g) is a compact Rieman­

nian n-manifold. The following theorem plays an important role in the sequel. 

Theorem 1.4.6 ([30]). Let (M, g) be a compact Riemannian n-manifold. For any 

real numbers 1 :::; p < q and any integer numbers 0 :::; m < k satisfying 1/q 

1/p- (k- m)jn, the embeddings W k,p (M) c wm,q (M) are continuous. 

Let us now present the Rellich-Kondrakov theorem when (M, g) is compact , and 

Vol(M,g) is finite. For any p1 < p2 , J?2 (M) C £P1 (M). Therefore we can use Theorem 

1.4.6 to get that for any integers j 2: 0 and m 2: 1, and for any real numbers p and 

q such that 1 :::; q < npj(n- mp), W J+m,p (M) is embedding in Wj,q (M). The 

Rellich-Kondrakov theorem can be stated as follows (see for instance [29]): 

Theorem 1.4.7 ([29]). Let (M, g) be a compact Riemannian n-manifold, n 2: 3. For 

any integers j 2: 0, k 2: 1; any real numbers p 2: 1; and any real number q such that 

1 :::; q < npj(n- kp), the embedding of WJ+k,p (M) in W),q (M) is compact. 

In Theorem 1.4.7, take j = 0 and k = 1, we obtain the following corollary. 

Corollary 1.4.8 ([29]) . Let (M, g) be a compact Riemannian n-manifold, n 2: 3. 

For any q 2: 1 and 1 :::; p < n such that 1/q > 1/p- 1/n, the embedding of W 1
·P (M) 

in Lq ( M) is compact. 

Bellow is the well-known Poincare embedding theorem. 

Theorem 1.4.9 ([27]). Let (M, g) be a compact Riemannian n-manifold, n 2: 3, and 
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1 ~ p < n. Then there exists C = C(M, g, p) such that for any f E W 1·P(M), 

1 I 

(!I!- 71' dv(g) ) ' S C (! 117 ,!I' dv(g) ) ' 

where f = va/ J fdv(g). 
(M,g) M 

A combination of the t he Poincare inequalities and the Sobolev inequalities related 

to the embeddings W 1·P(M) c Lq(M) yields the Sobolev-Poincare inequalities. 

Theorem 1.4.10 ([29]) . Let (M, g) be a compact 3 ~ n-dimensional Riemannian 

manifold. Let 1 ~ p < n and 1/q = 1/p- 1/n. Then there exists C = C(M, g, p) 

such that 

for any f E W 1·P(M). 



Chapter 2 

Best constants in Sobolev 

inequalities on Riemannian 

manifolds 

This chapter presents some known results about the best constants in Sobolev in­

equalities on compact Riemannian manifolds, which are related to our work. Best 

constants in Sobolev inequalities on Riemannian manifolds play an important role 

in many fields such as analysis and partial differential equations (see [9], [10], [16], 

[17], and [18]). They have been extensively studied by many mathematicians. We 

refer the readers to [3], [4], [6], [29], and [30] for its history and significance, and 

[25], [36], [40], [41], and [42] for recent developments in this area. 

23 
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2.1 Best constants in Sobolev inequalities on com-

pact Riemannian manifolds 

Let (M, g) be a smooth compact 3:::; n-dimensional Riemannian manifold. Fork EN 

and 1 :::; p < n/k, we denote by Ek,p (ll~n) the completion of C': (JR.n) with respect to 

the norm 

11/lle•·'(R"I = (i IA.JI' dx) *, 

where Akf = \l f , trace(\lk f) if k = 1, k > 1, respectively. Consider the space 

{ 

wk,p (M) 
pk,p (M) = 

Wck,p (M) 

if M has no boundary, 

if M has a boundary. 

For any f E pk,p (M) and p* = npj(n - kp), the embedding pk,p (M) c [j (M) 

is compact for any p E [1,p*); however, the embedding pk,p (M) C u· (M) is only 

continuous. Hence, real constants A1 , B1 exist such that 

( ) 

1/ p• ( ) 1/ p ( ) 1/ p ! If( dv(g) <: A, ! I !I' dv(g) + B, ! IA,,,JI' dv(g) , 

where A1,9 f = \l 9f, and Ak,gf = trace(\l~J) if k > 1 (see for example [15] and [35]). 

This is equivalent to the existence of constants Ap and Bp such that the following 
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inequality holds for any f E pk.p ( M) 

pjp• 

( J If( dv(g) ) ~ Ap J lf lp dv(g) + Bp J IAk,gfiP dv(g) . u:) 
M M M 

For s E { 1, p}, set 

A~( M) = inf {As E R : there exists Bs E R such that I; is satisfied} (2.1.1) 

and 

s ;(fvf) = inf { Bs E R : there exists As E R such that I; is satisfied} . (2.1 .2) 

If the best constant A~(M) is attained, then there exists Bs such that 

for any f E pk.p (M) . Similarly, if the best constant B~(M) is attained, then there 

exists As such that for any f E pk,p ( M), 

It is obvious, by using the elementary inequality (a+ b) 1
/P :::; a11P + b11P for any 

p ~ 1, that the existence of Bp, Ap implies the existence of B 1 , A1 , respectively. 

Therefore, the validity of U;,opt) implies the validity of (!;,opt), and the validity of 

(J;,opt) implies the validity of (J;,opt) . However , [19] proved that the converse is 

generally not true. In fact, [19] proved the following theorem: 
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Theorem 2.1.1 ([19]) . Let (M, g) be a smooth compact R iemannian 2::; n-manifold, 

and let 2 < p < n with p2 < n. Assume that the scalar curvature of g is positive some-

where on M. Then the inequality (!;,opt) fo r k = 1 is false on ( M, g). Furthermore, 

if (M, g) is of non-negative Ricci curvature, (!;,opt) is not valid as soon asp > 4, 

p2 < n, and g is not fiat. 

On the other hand, [33] showed that the inequality (!~,opt) is true on the standard 

n-sphere (:!~;;n-1, h). Consequently, on (§n-I, h), (!~,opt) is true while (!:,opt) is false (at 

least when p2 < n). 

For the the best constant B;(I~n) in 1; , [4] proved that B;(IRn) equals :JP(n,p), 

where 

1 . f ll\7 /ll ~v(IR" l 
:J(n,p) - fELP* (JRn)\{~},V'fELP(!R") 11/ I I~P* (IR"). 

In addition, when f E W 1
·P (M), 1 ::; p < n, and (M, g) is a compact 3 :S n-

dimensional Riemannian manifold without boundary, then the best constant B~(M) 

in I~ is the same as the best constant for the Sobolev embedding for IR.n under the 

Euclidean metric. Independently, [3] and [39] explicitly computed that 

:J(n, 1) = 
1 

n-1 1 / n > 
n n wn- 1 

p-1 ( n-p )
1/p( r (n + 1) )l/n 

:J(n, p) = n- p n(p - 1) wn_1 f(n/p)f(n + 1- (n/p) ) ' 

where wn_1 is the volume of the unit sphere in IR.n. The same result is still true for any 

I E w;·P (M), and (M, g) has a boundary. Furthermore, [16] established that the best 

constant B~(M) equals 21/n :J(n,p) iff E W 1·P (M), and the compact Riemannian 

n-manifold (M, g) has a boundary. More precisely, [16] proved the following: 
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Theorem 2.1.2 ([16]). Let (M, g) be a compact 3 < n-dimensional Riemannian 

manifold with boundary. Then 

(a) For any E: > 0 there exists a real constant A" such that 

for 1 < p < n. 

(b) 21/ n .J(n,p) is the best constant such that the above inequality holds for any f E 

On one hand, for p = 2, k = 1, and (M, g) is without boundary, [30] proved the 

validity of 1;,opt for any smooth compact Riemannian n-manifold with n ~ 3. On the 

other hand, [20] obtained that the 1;,opt is valid for any smooth compact Riemannian 

2-manifold with 1 :::; p < 2. 

For any compact 3:::; n-dimensional Riemannian manifold (M, g), with or without 

boundary, [30] proved the validity of (J;,opt)· Moreover, [30] found that ~(M) = 

VoC 11
n for any f E W 1·P (M). Further, [30] showed that A p

1 
(M) mainly depends 

(M,g) 

on an upper bound for the diameter, a lower bound for the Ricci curvature, and the 

lower bound for the volume. 

Proposition 2.1.3 ([30]). Let (M, g) be a compact 3 :::; n-dimensional Riemannian 

manifold. Suppose that its Ricci curvature, volume, and diameter satisfy 

R c(M,g) ~ kg, Vol(M,g) ~ v, and diam(M,g) :::; d, 

where k, v, and d are positive real numbers. Then there exists a positive constant 

A = An,p,k,d,v such that 
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for any f E W 1·P (M). 

Concerning the best constants in 1; for k = 2 (see [2], [12], and [18]) , the same 

approaches used in [7] and [29] implies that A;(M) equals (vol(M,gl ) -
2
p/n. On the 

other hand, it is found in [10] that B;(M) = I v(n,p), where 

1 
I(n , p) 

for any f E F 2·P (M) or f E Wcl,p (M) n W 2·P (M). 

Theorem 2.1.4 ([10]). Let (M, g) be a smooth compact 3 :::; n-dimensional Rieman-

nian manifold, with or without boundary, and 1 < p < n/ 2. Then for any c > 0 there 

exists a real constant B = B.,M,g such that 

(2.1.3) 

for any f E F 2 ·P (M) or f E Wc1·P (M) n W 2·P (M). Furthermore, I p (n ,p) is the best 

constant such that the inequality (2.1.3) holds. 

Subsequently, [10] applied the above result to solve the following equation: For any 

given a, b, c E C0 (M), if M has no boundary, [10] found solutions to the following 

equation: 

= c(x) lflp·-2 f in M . (P l ) 



29 

If, however, M has a boundary, [10] determined solutions to the Dirichlet problem: 

6.9 (l6.9flp-2 6.9!)- div9 (a(x) IV'9flp-2 V'9f) + b(x) lflp-2 f 

= c(x) lflp·- 2 f in M , 

on8M, 

and to the Navier problem 

6.9 (l6.9flp-2 6.9!)- div9 (a(x) IV'9 f lp- 2 V'9f) + b(x) lflp-2 f 

= c(x) lflp•-2 f in M , 

on oM. 

(P 2) 

(P3) 

2.2 Best constants in Sobolev inequalities in the 

presence of symmetries 

The goal of this section is to show that Sobolev embeddings can be improved in 

the presence of symmetries. We devote this section to discus the best constants in 

Sobolev inequalities in the presence of symmetries, and to indicate some elementary 

definitions as well as results related to this concept. 

In our work, we use the isometry group; it is the set of all isometries from the 

metric space onto itself, with the function composition as group operation. 

In this section, let (M, g) be a 3 :S: n-dimensional smooth compact Riemannian 

manifold without boundary. For any point x in M, and any compact subgroup G of 
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the isometry group Is(M,g), denote by 

0(; = {O"(x), O" E G} 

the C-orbit of x under the action of G, and 

S(; = { () E G I () (X) = X} 

the isotropy group of x . We now recall some standard results related to the action 

of compact subgroups of the C-orbit of I s(M, g). The C-orbit of x, 0(; , is smooth 

compact submanifold of M ; the isotropy group of x, S(;, is a Lie subgroup of G; and 

the quotient manifold G/S(; exists. Moreover, the canonical map <I>x : G/S(; ~ 0(; 

is diffeomorphism. 

Definition 2.2.1 ([24]) . Let x be an element in a group G. A homomorphism map 

Wx : G ~ G defined by Wx(Y) = xyx-1 is called conjugate by x. Moreover, we say 

that G conjugates to G. 

Definition 2.2 .2 ([25]) . A C-orbit 0(; is said to be principal if and only if for any 

y E M , Sb possesses a subgroup that conjugates to S(;. 

Theorem 2 .2.3 ([13]) . Let D be the union of all principal orbits in M. Then D is 

a dense open subset of M. 

For any subgroup G of the isometry group Is(M,g) , let CG'(M) be the set of all 

functions f E C00 (M) for which f o O" = f for all O" E G. Similarly, for p ;:: 1 and 

kEN, let 

w~·P ( M) = { f E wk,p ( M) I f 0 () = f for all () E G} 
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be the subspace of W k,P(M ) of all G-invariant functions. 

Suppose that l is the minimum orbit dimension of G, V is t he minimum of the 

volume of the [-dimensional orbits, q = ~:~~):P, and 1 < p < ( n - l) / k with k E N. 

Similarly to what we have done above, for any f E w~·P (M) , and q = t~~fp, the 

continuity of the embedding W~·P (M) c U (M) implies that there exist two real 

numbers A and B such that 

(2.2.1) 

for any f E W~'P(M) . 

The aim of this section is to introduce some results that have been worked in 

finding t he best constants in Sobolev inequalities in the presence of symmetries. For 

k = 1, [30] established the following: 

Theorem 2.2.4 ([30]). Let (M, g) be a compact 3 ~ n-dimensional R iemannian 

manifold without boundary, and let G be a compact subgroup of the isometry group 

I s(M, g). Let N = inf Card(O(;). Then for any c; > 0, there exists BE IR such that 
xEM 

for any f E Wd:P(M) with 1 ~ p < n, 

(2.2.2) 

where 1/q = 1/p- 1/n and K.v (Y) = 0 zf N = oo. Moreover K.P(n,p) 
Npn '~ is the best 

constant such that the inequality (2.2.2) holds for any f E Wd:P(M). 

Furthermore, under some conditions, [30] showed that for p = 2 the inequality 

(2.2.2) is still true if c: = 0. Specifically, [30] proved the following: 
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Theorem 2.2.5 ([30]). Let (M, g) be a compact 3 ::; n-dimensional Riemannian 

manifold without boundary and let G be a compact subgroup G of the isometry group 

I s(M g) that possesses at least one finite orbit. Let N = minCard(O(;.). Then there 
xEM 

exists B E lR such that for any f E Wb'2 (M) 

where 1/q = 1/2- 1/n. 

In addition, [24] found the explicit value of K(n, p) as follows: 

Theorem 2.2.6 ([24]) . Let (M, g) be a 3 ::; n-dimensional compact Riemannian 

manifold without boundary, and G be a subgroup of the isometry group I s(M,g). 

Let l be the minimum orbit dimension of G, V the minimum volume of orbits of 

dimension l (if G has finite orbits, then l = 0 and V = min Card( 0 (;) ) . Assume 
xEM 

that 1 ::; p < ( n - l) and q = ~n_~~~. Then 

(a) For any c > 0, there exists a real constant BE such that for any f E Wd-·P (M), 

where 

p-1 [ n - p ]
1/P[ r(n + 1) ]

1
/n 

K(n ,p) = --
n- p n(p- 1) r (n/p)r(n + 1 - n jp)wn- 1 

[ ] 

1/ n 
for 1 < p < (n- l) , and K(n, 1) = l _n_ . 

n Wn - 1 

(b) ~P)(-;:1 ·{{) is the best constant such that the above inequality holds for any f E 

Wb'P(M). 
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2.3 Best constants in Sobolev trace inequalities 

The best constants in Sobolev trace inequalities are fundamental in the study of 

non-linear partial differential equations on manifolds, and they have received much 

attention from many authors (see for example [9), [17), [22), [28), [34), and [36]) . In 

this section, we present some results in the best constants in Sobolev trace inequalities 

on Riemannian manifolds with boundary. 

Let (M, g) be a 3::::; n-dimensional compact Riemannian manifold with boundary, 

and let 1 < p < n/k with n >kEN. For any f E Wk·P(M) and p* = p(n-

1)/(n- kp), the Sobolev trace embedding Wk,p (M) c Ld (8M) is compact for any 

1 ::::; d < p*; nevertheless, the Sobolev trace embedding Wk,p (M) c IF (8M) is only 

continuous. Therefore, there exist two real constants A, B such that 

( ) 

1/ p* ( ) 1/ p ( ) 1/p L It( ds(g) S: A [ l/1' dv(g) + B [ IA,,,JI' dv(g) 

For all f E Wk ,p ( M) there exists C > 0 such that 

(2.3.1) 

Thus, we conclude that there are two real numbers A, B such that 

for any f E Wk,p (M). Set 

A;(M) = inf {A E JR. : there exists B E JR. such that j;,gen holds} 
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and 

B;(M) = inf { B E lR : there exists A E lR such that 1;,gen holds}. 

In a similar method to what we have said in Sections 2.2.1 and 2.2.2, we denote 

u;,gen) by u;,opt) if the best constant A;(J\1!) is achieved. However, if the best constant 

f3;(M) is attained, then we denote (i;,gen) by (J;,opt)· 

Easily, we can prove that the validity of (i;,opt) implies the validity of (l;,opt), and 

the validity of ( 1;,opt) yields the validity of ( 1;,opt) . In general, [9] showed that the 

converse is not true. Indeed, [9] proved the following: 

Theorem 2.3.1 ([9]). Let (M, g) be a 3:::; n-dimensional compact Riemannian man­

ifold with boundary, and let 1 < p < n. Then (J~.opt) is valid with 

_ 1 ( )-1/n 
AP(M) = Vol(aM.al , 

where g = 9/aM. Furthermore, (J;,opt) is valid if and only if n = 2 and 1 < p < 2, or 

if n ~ 3 and 1 < p :::; 2. 

Consequently, for any compact 3 :::; n-dimensional Riemannian manifold with bound-

ary with 2 < p < n, the validity of ( J~,opt) is satisfied while the validity of (J;,opt) is 

not. 

Many mathematicians have studied the best constants in Sobolev trace inequal­

ities. For example, [34] found that the best constant B~(M) in Sobolev trace em­

bedding for the Euclidean half-space JR~ = {(x' ,t) : x' E JRn-1, t > 0} equals j(n,p), 

where 

1 . IIY' fii~"(IR~P 
_ - mf , . 

J(n , p) !ELi>. (81R4-)\{0}, 'V /EL"(IR+) IIJIILri.(BIR+) 
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For any 3 ::::; n-dimensional smooth compact Riemannian manifold with boundary, 

and f E W 1•P (M) with 1 < p < n , [9] proved that the result of [34] still remains 

true. In fact, [9] established the following theorem: 

Theorem 2.3.2 ([9]). Let (M, g) be a compact 3 ::::; n-dimensional Riemannian man-

ifold with boundary, and 1 < p < n. Then for any E: > 0 there exists A = Ae:,M,g E IR 

such that 

for any f E W 1
·P (M). Moreover, if ther-e exist real number-s A , B such that for any 

f E W 1
·P (M), 

Independently, [8] and [22] explicitly computed that 

- 2 
J(n 2) = 

> ( _ 2) 1/(n - 1} · 
n wn-1 

However, the problem to compute j ( n, p) for p =I 2 remains still open. 

Under the same conditions of [9], [17] showed that if (M, g) is a G-invariant under 

the action of a subgroup G of the isometry group I s(M, g ), then for any E: > 0, there 

exists a positive constant Be: depending on p, G, and the geometry (M, g) such that 

(2.3.2) 

where V is the minimum of the volume of the [-dimensional orbits, l is the minimum 

orbit dimension of G, q' = (:-=!1-::_1;P, and 1 < p < n - l . Moreover, [17] applied the 
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asymptotically sharp inequality (2.3.2) in solving the following equations for given a, 

b, c, dE C0 (M): 

and 

2(n -l) 
-'---'- < p < n -l, 

n 
(n- l)p 

q = -'----'--
n -l- p 

fip j + a(x)fP-1 = c(x)r-I, f > 0 on M, 

l\7 flp- 2 of + b(x)JP- 1 = d(x)uii- 1 on oM, 
9 on 

2(n -l) --'------'- < p < n -l, 
n 

q= 
(n- l)p 

n -l- p' 

_ (n- l)p 
q = 

n -l- p ' 

where fipj = -div9 (l\7 9 flp- 2 \7 9 f) is the p- Laplacian operator. 

Concerning the second best constant ~(M), [9] established 

_ 1 ( )-1/n 
Ap(M) = Vol(aM,§) . 

(P2) 

In view of the results on Sobolev inequalities and Sobolev trace inequalities on 

compact Riemannian manifolds, a question arises naturally. For any f E W k,p (M), 

can we obtain the best constants for any smooth compact 3 ::; n-dimensional Rieman-

nian manifold under certain conditions? Positively, we obtain an affirmative answer 

to this question. 



Chapter 3 

Best constants in higher-order 

Sobolev inequalities on smooth 

compact Riemannian manifolds 

In this chapter, we find the best constants in higher order for Sobolev inequalities 

on smooth compact 3 :::; n-dimensional Riemannian manifolds under some specific 

conditions. 

Let (M, g) be a 3 :::; n-dimensional smooth compact Riemannian manifold. For 

1 :::; p < n/k, n > kEN, and p* = npj(n- kp), the embedding pk,p (M) c If (M) 

is continuous. Thus, there exist two constants Ap, Bp E lR such that for any f E 

pk,p (M), 

( j If( dv(g) ) , /,. SA, j Ill' dv(g) + B, j IA,,,fl' dv(g). (I;) 

M M M 

37 
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In view of the results on the first and second orders in Sobolev inequalities, we 

conjecture that we can establish the best constants in higher-order Sobolev inequal­

it ies on compact Riemannian manifolds under some certain conditions. In fact, we 

obtain an affirmative answer to this conjecture in the next sections. 

3.1 Establishing the best constant B;(M) 

The purpose of this section is to find the best constant s; ( M) for any f E p k,p ( M) 

under some specific conditions, and to prove some lemmas used in the sequel. In 

particular, the following theorem is the main result of this section. 

Theorem 3.1.1. Let (M, g) be a compact 3 ~ n-dimensional Riemannian manifold, 

and let 1 < p < n/k with kEN. Assume that 

(3.1.1) 

for any f E W ck,p (B,, ), where B,, = B(x0 , o') is a geodesic ball with radius o', and o' 

is a small number> 0. Then 

for any f E pk,p (M) . 

In order to prove Theorem 3.1.1 , following [10], it suffices to prove the following 

two lemmas. 

Lemma 3 .1.2. Let (M, g) be a compact 3 ~ n-dimensional Riemannian manifold, 

(3.1.1) be true, and 1 < p < n /k with k E N. Let A, B be two real constants such 

that 
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(3.1.2) 

for all f E pk,p (M). Then B ~ !C (n,p). 

Proof. Suppose by contradiction that for any f E pk,p (M), there exist real numbers 

A , B with B < IC (n , p) such that (3.1.2) holds. Fix x0 E M \ 8M. Given c1 > 0, 

let B(x0 , <5) be a geodesic ball of radius <5 < <5' and center x0 such that in normal 

coordinators of B(x0 , <5) we have 

k 

II lgisJs - t sis I ~ Cl for all k = 1, 2, ... , n- 1, (3.1.3) 
s=l 

(3.1.4) 

where ( oisis ) is the identity matrix. 

For any f E C': (Bo), and c1 small enough, two real numbers A, B exist with 

B < KP(n, p) such that 

(3.1.5) 

where c2 = 0 (c1), and B 6 is the Euclidean ball with radius <5 and center 0. 

For a > 0 and integer m greater than 1, using the following inequalities: 

Cn,p j IAmfiP dx, (3.1.6) 

Bo 

a j j(Jffi JIP dx + Co,o j IJIP dx, (3.1. 7) 

Bo Bo 
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plus the elementary inequality 

(3.1.8) 

where t:3 = O(t: I) and Co. ,o = 0 (8-v), implies that there exists B' < K.p(n,p) such 

that 

Using Holder 's inequality, we get that 

I IJII ~P.(Bo) < B'I IAdii~P(B6) + c!,O (IB.Ikp/n l lf ii~P.(B6)) 

< 1 _ C BI'B lkp/n I I Adii~P(B0 ) · 

1,6 8 

Choosing 8 small enough such that 0 < C1•6 (IB6 Ikp/n) < 1 is small enough, we obtain 

a real number B~ < K.v ( n, p) such that 

For any f E C~ (IRn), definer = J-Ln;v· f (J-Lx). T hen 

Hence, choosing J-L large enough such that r E C~ (B6 ), implies that 

contradicting the fact that K. (n,p) is the best constant for the Sobolev inequality in 

This finishes the proof of the lemma. 0 
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Lemma 3.1.3. Let (M,g) be a compact 3::; n-dimensional Riemannian manifold, 

c > 0, and 1 < p < njk. If (3.1.1) is true, then there exists A = AM.g,< E IR such that 

lp p ( p ) p llfl LP"(M) ::; A llfllu'(M) + K (n,p) + c IIAk,gfiiLv(M) 

for all f E pk,p (M). 

Proof. Throughout the proof of this lemma, we denote r:_P ( n, p) by KP. 

Let c > 0 be given. For some <5 < <5' small enough as we need, choose a finite covering 

of M by { Bi } ;,, , where Bi is geodesic ball of radius <5 such that in normal geodesic 

coordinates of BJ 's, and with any fixed c1 > 0, 

k 

II lgisJs - <5is]s l ::; C} for all k = 1, 2, ... , n- 1, 
s=l 

For each j, let { cpi } ;:, be a partition of unity associated to the covering { B,} such 

that cpt E c:(Bj)· Minkowski's inequality gives that 

( ( )

p' / p ) fo 
11/II~,.(MI ~ [ ~10;'' lfl" dv(g) 
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Using (3 .1.1) , (3.1.6) , (3.1.7), and (3. 1.8) yields that 

II~";~' !I[,. (M) ~ (!I~";~' !I'. dv(g) r 
< (1 + oJ}';,. (£ 110;1' !I'' dx) f. 

< (1 + C2) f( p IIAk,g ( 4?; /p J) I[P(B) + Cct0811 4?;/P i [ P(B ) 
J J 

where c:2 = O (c:I) and c:3 = 0(.:: 1). Using (3.1.8) again, we obtain 

11/ I I~,.(M) ,; (1 + o,) K.' IIA,,,JII ~,(M) + c"·• (~ IIA,,,JII~, ( MJ 

where c:4 = 0 ( c:1 ). With c:1 and 0, sufficiently small, we have 

k- 1 

llfii~P*(M) ~ ( f(T' + ~) IIAk,gf ii~P(M) + dC1o8 L IIAi,gfii~P(M) 
i=2 

The V-theory of linear elliptic operations, (see for example [27]) , gives that 

j 182 ( 4?;
1
p J) IP dx < C6 j IA2,9 ( 4?;

1
p J) IP dx 

Bi Bi 

(3.1.9) 
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The in quality 

(3.1.10) 

and (3.1. 7) for m = 2 imply that 

where a 1 is as small as we want, and c5 = 0 ( c: I). Thus, 

where c:6 = 0(c:1). Choosing c1 and a 1, sufficiently small, impli s 

(3.1.11) 

Following the arguments we used above with the equivalence norm 

I 

llfllw2.v(M) ~ (IIJ\2 ,g fii~P{M} + llfii~P(M) ) ;; > 

we conclude 

where a 2 is chosen small enough. Similarly, for any positive a/s with i = 3, · · · , k - 1, 



.--------------------------------~--~-

Hence, 

llfll~p*(M) < ( K,P + ~) l li\k ,gfll~P(M) + Ck-2.< 1 ,ak_2 ,6 lli\k- 1 ,gf l l ~P(M) 

+ cq ,ak_2 ,6 llf l l~P(M) 

< ( Kp + ~) l lAk,gfll~r'(M) + ak-1 6 k- l,q ,ak_1 ,6 JJAk,gfll~~' (M) 

+ C , l •"'k- 1•6 l l f l l~P (M). 

Choosing ak-1 small enough such that ak- 1 ~ c/ (2Ck- l.q ,ak_ , .6) yields 

for all f E p k ,p (M) . 
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0 

As an immediate consequence of Lemmas 3.1.2 and 3.1.3, we obtain Theorem 3.1.1. 

Therefore, the best constant B;(M) is KP(n,p) . 

3.2 Establishing the best constant A;(M) 

The main goal of this secti'on is to establish the best constant A;(M ) for any f E 

Wk,p (M). Indeed, we will prove the following theorem: 

Theorem 3.2.1. Let (M,g) be a 3 ~ n-dimensional compact Riemannian manif old 

without boundary, and let 1 < p < n / k with n > k E N . Then 

P ( ) - pk/ n 
AP(M) = Vol(M,y) 

for any f E pk,p (M) . 
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The proof of Theorem 3.2.1 is similar to that proof of [30, Proposition 4.1] . 

More precisely, the proof is based on the following lemma: 

Lemma 3.2.2. Let (M, g) be a 3 ::; n-dimensional Riemannian manifold without 

boundary, and let 1 < p < n/ k with k E N. Then there exists C E IR such that for 

any f E Wk,p (M) with IIAk,9fiiLP(M) ~ 0 one has 

(3 .2.1) 

where (J)M = v/ J fdv(g). 
(M,g) M 

Throughout this section, the letter C denotes a positive constant that may vary 

at each occurrence, and does not depend on the essential variables. 

Proof. To prove the inequality (3.2.1), it is enough to show 

(3.2.2) 

where 

Let {fj} C H k,p ( M) be such that 

For p > 1, the Sobolev space Wk,p (M) is reflexive. Hence, there is a subsequence 

{!Jm } of {fj}, which converges weakly to h in Wk,p (M) . 

Using Rellich-Kondrakov Theorem with j = 0 and q = 1, we get that h n --t h 

in £ 1 (M). Applying Rellich-Kondrakov Theorem again with j = 0 and p = q, we 
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obtain that Jim ----7 h in LP (M) . Thus, h, ----7 h in LP (M) n L1 (M). Furthermore, 

(h)M = Vol! j hdv(g) < 
(M,g) M 

1 j hdv (g) 

M 
Vol ,M,g) 

< 
1 

Vol(M,g) 

----7 0 as j m ----7 00 . 

Moreover, 

----7 0 as j m ----7 00 . 

So, 

therefore, hE f{k,p (M). Consequently, 

This completes the proof of the lemma. D 

Proof of Theorem 3.2.1. Setting f = 1 in (I;) gives that A~ (vol (M.gl ) - pk/n. 

( ) 
- pk/n P 

Therefore, A;(M) ~ Vol ,M,g) . On one hand, if IIAk,9 fiiLP(M) = 0, then, by 

Holder 's inequality, we acquire 

P ( ) -pk/n P 

IIJIILP.(M)::; Vol ,M,y) llflb(M) · 
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On the other hand, if 11Ak ,9 fii ~P(M) > 0, then Holder 's inequality is used again to 

imply that 

_1 (i 
Vol (M,gJ 

f fdv(g) ,. dv(g) ) 1/P" 

( )

1/ p*-1/ p 

< Vol (M,gJ IIJIILP(M) 

( ) 

-k/n 

Vol(M,gJ IIJ IILP(M) · 

Lemmas 3.1.3 and 3.2.2 give that 

II!- (f )M IILP*(M) < A II!- (f)M IILP(M) + B IIAk,g !II LP(M) 

< c IIAk,gfiiLP(M). 

Minkowski 's inequality with (3.2.3) and (3.2.4) implies that 

II!IILP*(M) < II!- (f)MIILP* (M) + ll(f)M ib·(M) 

< C IIAk,gfllu'(M) + ( Vol (M,gJ ) -k/n IIJIILP(M) · 

Consequently, for any c: > 0, there exists B E ~ such that 

P ( ( ) -pk/n ) P " IIJIIL"*(M) ~ Vol (M,gJ + c: IIJIIL"(M) + B IIAk,gf iiLr(M) · 

(3.2.3) 

(3.2.4) 

(3.2.5) 

This finishes the proof of Theorem 3.2.1. Therefore, we conclude that the best con-

( ) 

-pk/n 

stant A;(M) is Vol (M,gJ . 



Chapter 4 

Best constants in Sobolev 

inequalities in the presence of 

symmetries on compact 

Riemannian manifolds 

This chapter is devoted to finding the best constants in higher order for Sobolev 

inequalities in the presence of symmetries on compact Riemannian manifolds. 

Let (M, g) be a smooth compact 3 ~ n-dimensional Riemannian manifold without 

boundary, and G be a subgroup of the isometry group I s(M,g). Assume that l is 

the minimum orbit dimension of G, and V is the minimum of the volume of the 

[-dimensional orbits. Let 1 < p < (n - l )/k with k EN and q = ~:~~);P . Set 

a;(M) = inf {A E lR : there exists B E lR such that the inequality (2.2.1) holds} 

48 
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and 

f3;(M) = inf {BE lR : there exists A E lR such that the inequality (2.2.1) holds}. 

In this chapter, we establish the best constants a; ( M) and /3; ( M) under some specific 

conditions. 

4.1 Finding the best constant {3;(M) 

To achieve our results, we need the following important lemma that was proved by 

Faget [24]. 

Lemma 4 .1.1 ([24]) . Let (M, g) be a compact 3 :::; n-dimensional Riemannian man­

ifold without boundary, and G be a compact subgroup of the isometry group I s(M, g) . 

Let x be in M with orbit of dimension N < n. Then there exists a chart (0, w) 

around x such that the following properties are valid: 

(1) 'li(O) = U1 X U2, where U1 E JRN and U2 E ]Rn-N. 

(2) W = W1 X W2 and W1 , W2 can be chosen in the following way: 

w 1 = <I> 1 o "Yo r 1, "Y defined from a neighborhood of I d in G to 0 0, and "Yo r 1 (0) = 

Vx, where Vx is an open neighborhood of x in 0 0. 

'l12 = <I>2 o f 2 with f2(D) = Wx, where Wx is a submanifold of dimension n- N 

orthogonal to Of; at x. 

(3) (0, w) is a normal chart of M around x, (Vx, <I> 1) is a normal chart around x of 

the submanifold Of;, (Wx, <I>2 ) is a geodesic normal chart aro·und x of the submani-
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fold W x. In particular, for any c > 0, (D, 'II) can be chosen such that: 

1 - c ::; J det(9ij) ::; 1 + c on n, for 1 ::; i, j ::; n, 

1 - c::; Jdet(giJ)::; 1 + c on Vx, for 1::; i,j::; N, 

where g denotes the metric induced by g on 0 (;. 

Furthermore, (1-c)J;i ::; 9iJ::; (1 +c)6ii as bilinear forms, where 6ii is the identity 

matrix. 

(4) For any f E C(f, f o w-1 depends only on U2 variables. 

Following the argument that [24] used in proving the above lemma, we get the 

same result plus the following properties: 

(i) U2 can be chosen as small as we want, 

( ii) 
m 

II lgis}s - c/•is I ::; c for all m = 1, 2, ... ) n- 1 and lrL I ::; c. 
s=l 

With this result, we have 

Theorem 4 .1.2 . Let (M,g) be a compact 3 ::; n-dimensional Riemannian manifold 

without boundary, and G be a subgroup of the isometry group I s( M, g). Let l be 

the minimum orbit dimension of G , and V be the minimum of the volume of the 

[-dimensional orbits (if G has finite orbits, then l = 0 and V = min Card( 0 (;) ) . Let 
xEM 

1 < p < (n - l) /k with kEN, and q = ~~~~):P. If (3 .1.1) is true, then 

for any f E W~,p (M). 
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The techniques used in the proofs of [29 , Lemma 9.4] and [24, Lemma 2] play 

a fundamental role in proving our results. In fact , the following lemmas are needed 

to obtain Theorem 4.1.2. 

Lemma 4. 1.3. Let (M, g) and G be as in the above theorem, l be the minimum orbit 

dimension of G, and V be the minimum of the volume of the [-dimensional orbits. 

Assume that for any 1 < p < ( n - l) / k with k E N there exist real numbers A and B 

such that for all f E w~·P ( M) I 

(4.1. 1) 

Then B 2: K~. 

Proof. The proof of this lemma is similar to the proof of Lemma 3.1.2. Assume by 

contradiction that there exist real numbers A, B with B < K~ such that ( 4.1.1) holds 

for any f E w~·p (M). Fix Xo E M . Given CJ > 0; let B(xo, o) b a geodesic ball of 

radius o < o' and center x0 such that in normal coordinators of B (x0 , o), (3.1.3) and 

(3.1.4) are satisfied. 

As we did in Lemma 3.1.3, choosing c1 and o small enough, we get a real number 

B' < KP(n -l,p) such that for any f E C::O (B6 ), 

(4.1.2) 

where B6 is the Euclidean ball with radius o and center 0. 

For any f E C::O(IRn-l), define j" = v(l- n)fq f( xjv). Then, choosing v small enough 

such that j" E C::O (B6 ), we get that 
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which contradicts the definition of K(n -l,p) . 0 

Lemma 4 .1.4 . Let (M,g) and G be as in Lemma 1.4.2. Suppose that lis the mini-

mum orbit dimension of G, and V is the minimum of the volume of the [-dimensional 

orbits. Then for any c > 0 there exists real constant A = A~,M,g such that for any 

1 < p < (n- l)/k with k EN, 

for any f E W~·P (M). 

Proof. The proof of Lemma 4.1.4 depends on the proof of [24, Theorem 1] and the 

approaches used in [32] . Given c > 0. Let r5 > 0 be taken as small as we wish. Fix 

x E M; let 0 (; be its G-orbit, and (D, w) be a chart around x such that the above 

properties are satisfied. Let y E 0(; , o- E G be such that o- ( x) = y, and ( o-( n), \ll o u - 1
) 

be a chart around y isometric to (D, \ll). Then, 0(; is covered by such charts. From 

that and due to the compactness of 0(;, we say that {Dm}f is a finite extract covering. 

Choose 15, depending on c and x, small enough such that 

(0(;). = {y EM I dg(y , 0(;) < 15} 

is covered by {Dm}f, and (0(;) 6 is a submanifold of M with boundary. Obviously, 

the manifold M is covered by U (0(;) 6 ; therefore, by the compactness of M , there 
x EM 

exists a finite extract cover; say {(0(;), .• } : . Assume that (rJi ) is a partition of uni ty 

relative to (O(;) ;,o such that rJi E C(f ((0(;),,6 ) for any i . Hence, rJd has a compact 

support in (O(;) i,o for any f E W~·P(M). 
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Furthermore, for each m we let O:'m f3moWm 
L > where fJm E C~(Uim) and 
L (f3mOWm) 

m.= l 

fJm 2:: 0. Thus, (am) is a partition of unity relative to Dm's, which covers (0(;.).,6 . 

otice that f3m is a function , defined on U1m x U2m, depending only on U1m variables; 

therefore, am ow;:;/ depend only on U1m variables. 

For any integer 1 ~ i ~ J, and for any u E Wckg((0(;) ; 6 ) we have that 
' . 

J udv(g) 

M 

L J O:'mudv(g) = L J J det(%)0:'mU 0 w:;;/dxdy 
m Om m U1mXU2m 

(1 +c) I: f O:'m o w~1dx f u o w~1 dy. 
m U1m U2m 

(4.1.3) 

For simplicity, we assume for each m that a 1m = am o w; 1
, which is independent 

of U2m variables, and u2m = u o w; 1
, which is independent of U1m variables. 

As u is G-invariant, and as (Dm, Wm) are isometric to each other, we conclude 

that J u2 does not depend on m. From this statement and the inequality (4.1.3) , 
U2m 



we obtain that 

Therefore, 

/ udv(g) < 
M 

(1 +c) / u2dy L / a1mdx 
U2 m U1m 

< (1 +c) / u2dy L 1 ~ c / alm)det(gij)dx 
U2 m U1m 

/ udv(g) :S (1 + c1) Vol(O(;.) / u2dy, 

M u2 

where c1 =O(c) . Similarly, we show that 

/ udv(g) 
M 

> (1-c)/ u2dy L / a1mdx 
U2 m U1m 

54 

(4.1.4) 

(4.1.5) 
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Thus, 

j iuiP dv(g) 2: C j lu2IP dy . (4.1.6) 

A1 u2 

The techniques used in Section 3.1 and in [5), imply that for any h2 E W~·P (U2), 

For any f E W~~((0(;) ;,6 ) we have that 

Vol(O(;) I IAkhll~r>(U2 ) ~ (1 + c2) 2:::: j a1m o <I>1mdv(g) j IAkhmiP dy 
m 0(; U2m 

= (1 + c2) L j a1m o <I>lmdv(g) j IAd2miP dy 

m V., U2m 

~ (1 + CJ) 2:::: J almdX J IAkflp 0 w;;t1dy, 
m U1m U2m 

where .::2 = 0(.::) and .::3 = 0(.::). Applying what we did in Lemma 3.2.1, we get that 

Vol(O(;) IIAkhll~r>(U2) ~ (1 + C4 ) L J almdX J IAk,gflP 0 W~1dy 
m U1m U2m 

+ cf: L J almdx J IJIP 0 W~1 dy, (4.1. ) 

m U1m U2m 
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where c4 = 0 (c). Substituting the value of a 1m in (4.1.8), we obtain that 

Vol (Oc) IIAkh ii~P(U2) ::; (1 + C4) ~ J Um IAk,g f lp 0 w;;/dxdy 
U1mXU2m 

+ 
1 

C:: c ~ J Jdet(gfj)am IJIP o IJ!~1 dxdy 
U 1mXU2m 

< (1 + cs) I I Ak,9 fii~~(M) + CE l lf i i ~~(M), (4. 1.9) 

where c5 = 0 (c) . From the above and due to (4.1.5)-(4.1.7) we conclude that 

l l f ii~:!;(M) < (1 + c5) (Vol(Oc))q/p l lhii~Q(U2 ) 

< (X + C6) IIAkhi i ~P(U2) + c llhii~I'(U2) 

< (X + c5) 1 1Akf21 1 ~v(u2 ) + C l l fi i ~6(M) 
(X+ c7) " v 

< V ol(O(;) IIAk,g/ IIL&CM) + C II!IIL&CM), 

where X = (Vol(O(;))p/q K/' (n - l ,p), c6 = 0 (c), and c7 = 0 (c). 

On one hand, if (0 (;) is of minimum dimension V, then 

In the same manner as (4.1.6), we derive 

j IAdiP dv(g) 2: C j IAd2IP dy. 
M u2 

(4.1.10) 

(4.1. 11) 
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On the other hand, if (0 (;.) is of minimum dimension V* > V, then let U2 be an 

open set of dimension n- V* . Since V* > V, we get that ~~~~~~P > ~~~~fp· 

The compactness of the embedding Wk·P(U2 ) C U(U2) plus the inequali ties (4.1.5), 

( 4.1.6), and ( 4. 1.11) leads that for any co > 0 there exist C1, C2 E lR such that 

( r [I! I' dv(g) < ( r c ilhl'dy 

< c ( ' • j IA,J,I' dy + c1 j lhl' dy) 
u2 u2 

< coG J IAkf lp dv(g) + c2 J lf lp dv(g) 
M M 

< coG J IAk,9 fiP dv(g) + C J IJIP dv (g). 
M M 

Choose co small enough such that 

(4. 1.12) 

for any f E w;,3 ( ( 0 (;. )i,5 ) . To end the proof of this lemma, it is sufficient to prove 

the following proposition: 

Proposition 4.1.5. Let (M, g) be a compact 3 ~ n -dimensional Riemannian mani-

fold without boundary, and (Oi, 'r/i) be a partition of unity of M . Assume that for any 

f E W~·P(M), lrtill/p f is in w;,3(0i)· Suppose that there exists C* such that for any 
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i there exists ci such that 

(4.1.13) 

where p and q are as in the above lemma, then f or any E: > 0 there exists r·eal constant 

CE: such that 

(4.1.14) 

Proof. For any f E W~·P (M) , Minkowski 's inequali ty with (4.1.13) yields that 

([ (~~;"Il l') q/v dv(g)) i 

1!. 

< ~ (! [ ( ~:'' IJI)'t' dv(g )) ' 

L ll 77t !I[~(M) 
t 

In the manner used in Lemma 3.1.3, we obtain that for any E:o > 0 

Choosing E:o ::::; c/2, we achieve the inequality (4.1.14) . 0 

With Proposition 4.1.5, and due to Lemmas 4. 1.3 and 4.1.4, we finish the proof 

of the Theorem 4.1.2. Therefore, we conclude 

(Jv(M) = Kp = Kp(n -l,p) 
p G V pkf(n-1) 
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0 

4.2 Finding the best constant a;(M) 

In this sect ion, we establish the best constant a~(M) . In fact, we prove the following: 

Theorem 4.2.1. Let (M, g) be a compact 3 ::; n-dimensional Riemannian manifold 

without boundary, and G be a subgroup of the isometry group I s(M,g). Let l be the 

m inimum orbit dimension of G, V be the minimum of the volume of the l-dimensional 

or·bits, and 1 < p < (n- l) /k with k EN. Then for any f E W~·P (M), 

P ( ) -pk/(n-l) 
ap(M) = Vol (M,g) . 

Proof. Theorem 4.2 .1 can be proved in the same manner as Theorem 3.2.1. On one 

hand, using Minkowski 's inequality, Holder's inequality, Lemma 3.2.2, and Lemma 

4. 1.4, we obtain t hat 

(4.2.1) 

Therefore, for any c > 0, there exists B 1 E IR such that 

(4.2.2) 
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( ) 

- pkf (n- l) 

On the other hand, setting f = 1 in the inequality (2.2.1) gives that A ~ Vol (M,gl . 

Hence, 

( ) 

-pkf(n - l) 

a;(M) ~ Vol (M,g) . (4.2.3) 

( ) 

- pkf(n-l) 

By ( 4.2.2) and ( 4.2.3) , we obtain that the best constant a;(M) is Vol (M,g) . 

0 



Chapter 5 

Best constants in Sobolev trace 

inequalities in smooth compact 

Riemannian manifolds 

The focus of this chapter is to establish the best constants in higher order for Sobolev 

trace inequalities, in the presence of symmetries or not, on compact Riemannian 

manifolds under some certain conditions. 

Let (M, g) be a compact 3 ~ n-dimensional Riemannian manifold with boundary. 

If 1 < p < n, the Sobolev trace embeddings W 1
·P (M) c U (8M) are compact for 

any r E [1,.Pi), where .Pi= p(n- 1)/ (n- p). However, the embeddings Wk,p (M ) c 

Lii* (8M) are only continuous for any 1 < p < n/ k and .P* = p(n- 1)/ (n- kp). 
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Therefore, there exist real constants A1, B 1 such that for any f E l,Vk,p (M), 

( ) 

lW ( ) 1/ p ( ) 1/ p L If( ds(g) :0 A, [ IJIP dv(g) + B, [ IA,,9 JIP dv(g) 

For all f E Wk,p (M) there exists C > 0 such that 

p ( p p ) llfiiLP(M) ~ C llfii£P(8M) + IIAk,gfllu'(M) · 

Hence, we conclude that there are real numbers A, B such that 

5.1 Determining the best constant B~ ( M) 

The inequality (l;,gen) is the main focus of our interest in this chapter. In fact, we 

find the best constant s;(M) in the Sobolev trace inequalities under some certain 

conditions. More specifically, we prove the following: 

Theorem 5.1.1. Let (M, g) be a compact 3 ~ n-dimensional Riemannian manifold 

with boundary. Suppose that 1 < p < n/k with n >kEN, and 

(5.1.1) 

Assume 

(5.1.2) 

for any f E w:·P(B
6
,), where B

6
, is a geodesic ball with radius 6', and 6' is a small 

number> 0. Then s;(M) = JCP(n,p) for all f E Wk,p (M). 
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In the rest of this chapter, we denote K(n, p) by fC. 

In order to show that j(P is the best constant s;(M) for the inequality (l;,gen), it 

is enough to prove the following lemmas: 

Lemma 5 .1.2. Let (M, g) be a 3 ::; n-dimensional compact Riemannian manifold 

with boundary, (5.1.2) be true, and 1 < p < n/k with k E N. If there exist real 

constants A, B such that for any f E W k,p (M), 

(5.1.3) 

Proof. The proof of our result is based on the arguments used in [9, Theorem 1] 

and in [10] ; and on the techniques used in Chapter 3. Suppose by cont radiction that 

there exist constants A, B E JR. with B < fCP such that (5 .1.3) is satisfied for any 

f E W k,p (M) . Fix x0 E 8M. Given c-1 > 0, let B (O, J) = E li C JR.~ be the image 

through a chart of M of a convex neighborhood centered in x0 such that in E li we 

have 
k 

II lgisjs - t •is I ::; C } for all k = 1, 2, ... ) n- 1, 
s= l 

Following what we did in the proof of Lemma 3.1.2, we conclude that there exist real 

enough, 

(5. 1.4) 
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where C1,6 = 0 (6-" ). Thereby, using Holder's inequality and (5.1.4) we get 

(5.1.5) 

Choosing 6 small enough, we derive that there exists B' < Kv such that 

llfll~fi*(8B6) :::; B' IIAkfii~P (B6) . 

f(x/ >.) . 
For any f E C':' (IR~), let F' = ).(n- l) fp• . In choosmg >.small enough such that 

J>' E C':' (B6 ), we get that 

contradicting the definition of K. 0 

Lemma 5.1.3. Let c > 0, 1 < p < n/k with kEN, and (M,g) be a compact 3:::; n-

dimensional Riemannian manifold with boundary. If (5.1.2) is true, then there exists 

A = AM.a.• E lR such that 

llfii~P*(8M) :::; A llfii~P(M) + ( Kp + f:) IIAk ,gfii~P(M) 

for any f E Wk,p (M). 

(5.1.6) 

Proof. We apply the same approaches that we used in Lemma 3.1.3 to achieve Lemma 

5.1.3. Given c1 > 0, we choose a finite covering of M by geodesic ball Bi = B; (yi) of 

radius 6 < f/ and center Y; such that: ifyi E M\8M, then Bi c M\8M and B; is a 

normal geodesic neighborhood with normal geodesic coordinates x1 , x2 , · · · , xn; and if 
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yi E 8M, then Bi is a Fermi neighborhood with Fermi coordinates x1 , x2, · · · , Xn- I, t. 

For s1 small enough, we have in these Bi 's 

k 

II lgis)s - 6isis I ~ Cl for all k = 1, 2, . .. 'n - 1, 
s=l 

Let { c.pi } be a partition of unity associated to the covering { Bi } such that c.pt E 

c:(BJ . Using arguments similar to those used in the proof of Lemma 3.1.3, and the 

inequality (5 .1.2) plus the elementary inequality 

where s ' = 0(s 1), we obtain that 

< (1 + €3) KP L ( 11Ak,g(fc.p;1P) [P(Bj) + C I I JII~r(Bi)) 
J 

< (1 + C4) kp L 11Ak,g(fc.p;1
p) I[P(M) + c llfii~P(M) 

J 

where em = 0 (s1) for m = 2, 3, 4, 5. 
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Following the same technique used in Lemma 3.1.3, we get 

(5.1. 7) 

and for i = 2, · · · , k - 1 we have 

(5.1.8) 

where c:1 and a/s are sufficiently small. Thus, 

//f// ~P" (8M) < ( R:_r> + ~) 1/J\k ,g f//~r(M} + C1 1/J\k- I ,gf // ~P(M) + C2 1/f //~P ( M) 

< (!Cr> + ~) 1/J\k ,g f//~r(M) + ak- 16 1/J\k ,g f//~P(M} + C3 1/f// ~P(M} · 

We finish the proof of this Lemma by choosing ak_1 small enough such that 

ak- 1 ::::; c: / (2C) . Therefore, we obtain 

for all f E W k,p (M) . 0 

Theorem 5.1.4 ( Concentration-compactness principle for manifolds with 

boundary). For 1 < p < n/k with n > k E N, let p* = npj(n- kp) and p* = 

p(n - 1)/(n - kp), and let K(n ,p) , fC be as above. Suppose that (M, g) is a compact 

Riemannian n -manifold with boundary and let f j ~ f in Wk ,p (M) satisfy 

/Ak,9fl dv(g) ~ p,, 

/fj / p" dv(g) ~ v, 

p" 
/fj/ ds(g) ~ 1r . 
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where p,, v , 1r are non-negative m easures. Then there exist at most a countable set J , 

{x } c M , and positive numbers {o:} , {/3
3
. } , { ""~ . } such that 

J jEJ J jEJ jEJ IJ jEJ 

with 

P, 2: IAk,gfiP dv(g) + ~ f3j6xj, 
jEJ 

V If( dv(g) + ~ o:j 6xj, 
jE J 

7r If ( ds(g) + ~ Tj6xj 
jEJ 

""1./p-· - 1/ 
I < K/3 . P. 

] ] 

Proof. Following the standard argument of Lions used in [34) , and using the inequal-

ities 

llfii~P.(M) :SA llf ii~P(M) + (KP(n ,p) +c) IIAk,gfi i ~P(M), 

l l fii ~P. (8M) :::; B l lfi i~P(M) + ( j(P +c) I I Ak,gf ii ~P(M), 

we obtain Theorem 5.1.4. 

Next lemma completes the proof of Theorem 5.1.1. 

0 

Lemma 5.1.5. Let (M , g) be a compact 3 :::; n -dimensional Riemannian manifold 

with boundary, and let 1 < p < n/ k with n > k E N . Then for an y c > 0 there exists 

A = A M,g ,e E JR. such that 



llfii~P.(c9M) ::; A llfii~P(c9M) + ( iCP +c) IIAk,g/II~P (M) 

for any f E Wk,p (M). 

6 

(5.1.9) 

Proof. Suppose by contradiction that there exists co > 0 such that for any A > 0 we 

can find f E Wk,p (M) with 

This means that there exists co > 0 such that for any A > 0 we can find f E Wk ,p ( M) 

with the property 

JA = A llfii~P(c9M) p+ IIAk,g/ II~P(M) < - 1 
II!IILP.(c9M) Kf +co 

(5.1.10) 

For any A > 1 define 

1 
I = inf J < ...,_--

A / EWk·P(M)\{0} A K/ +co 
(5.1.11) 

As the quotient JA is homogeneous, for any fixed A we can take a minimizing sequence 

fJ E Wk,p (M) satisfying llfJ II~P.(oM) = 1. As 

(5.1.12) 

we conclude that Ak,gfJ is bounded in .V(M) , and fJ is bounded in £P(8M) . Thereby, 

{ fJ} is bounded in Wk,p ( M). So we may assume, up to a subsequence, that fJ ----' f 

in Wk,p (M) and fJ ---+ f in .V(M) as well as in LP(8M). In particular, we have for 



some bounded, non-negative measures J.L , v, 1r that 

li\k,9 fl dv(g) ---' J.L, 

lfi lii. ds(g) ---' 1r, 

I fJ lp• dv(g) ---' v. 
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(5.1.13) 

Now, we are going to show that fj - f in u· (oM) and I I JII~l;•(aM) = 1. To 

achieve this result, we follow the manner [9] applied in the proof of Theorem 4. 

Define g : Wk,p ( M) - 1R by 

g(f) = (i III'' ds(g) ) v/v', (5 .1.14) 

and also define G : M - lR by 

1! p A! p G(J) = p li\k,9 f l dv(g) + p lfl ds(g), (5.1.15) 

M 8M 

where 

M = {f E Wk·P(M): g(J) = 1}. 

The tangent space, T
1 

M, consists exactly of those functions c.p such that Dg(Ji) c.p = 
J 

0. Therefore, we obtain that J IIJ( -2 fic.p ds(g) = 0. So, we can write 
8M 

Thus, for any 'lj; E Wk ,p (M), write 

(5.1.16) 
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where 

1 = j l!l. -2 Jj 'I/Jds(g) . 

8M 

Take xk E Min the support of the singular parts of p,, v, and 1f. Let c.p E C': (M) 

satisfying suppc.p c B 2c(xk), c.p = 1 on B,(xk), and jAk,9c.p j < 2/c, 1\i':c.pl < 2/c for 

i = 1, .. . , k- 1. 

As c.p Jj is bounded in Wk,p ( M), we have 

is a bounded sequence in Wk,p (M). On one hand, following the manner used in [9, 

Theorem 4], we get 

}~~ ( J jAk,91J(-
2 

(Ak,gfj)Ak,9c.pdv(g) ) +A J ifl-
2 

fJc.pds(g) ~ 0. (5.1.17) 

M 8M 



Writing L = J IJj( r.pds(g), we have that 
8M 
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= }~~ ( j IAk,9!l-
2 

(Ak,9 fJ)Ak,9((j + LiJ )dv(g) ) +A j liJ(-
2 

Jj((J + LiJ)ds(g) 
M 8M 

+ }~~ ( j lfl. r.pds(g) ) [ j IAk,9 fl dv(g) +A j lfl ds(g) ] . 
8M M 8M 

Therefore, by (5.1.16)-(5.1.17), 

}~m ( J IAk,9 fJ ip-
2 

(Ak,gfj)Ak,9 (r.pfj)dv(g) ) +A J lfl-
2 

fj (r.pfj) ds(g) 
M 8M 

= IA J r.pdrr. 
8M 

(5.1.1 ) 



On the other hand , 

}~~ ( j JAk,9 fJ( -
2 

(Ak,gfJ) Ak,9 (r.pfJ)dv(g) ) +A j lfJI"-
2 

fJ (r.pfJ) ds(g) 
M &M 

+ fJ(Ak ,9 r.p) ] dv(g) + A j lfl r.pds(g) 
&M 

k 

= }~m (A j Ill r.pds(g) + j r.pdJ.t + I::ri,J ) 
&M M t=l 

= IA J r.pdrr , 
&M 

where 

Y i,j - (~) j IAk,9 fl -
2 

(Ak ,9! 1) ( v;-i !1 · v:rp) dv(g) for i = 1, · · · , k- 1, 

M 

Y k,j J JAk,9 fJ I"-
2 

(Ak ,9 fJ )fJ( Ak,9 r.p)dv(g). 
M 
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With p* = np/(n- kp), s = np/(n- p), r = ~, and t = ~, we obtain that 

lim Yk . 
j->oo ,J 

lim j IAk,g f j(-
2 

(Ak,gfj)fj(Ak,9 'P)dv(g) 
J--->00 

M 

< lim j IAk,9fJ(-
1 

lfji iAk,9 'PI dv(g) 
J--->00 

M 
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1/p 1/ p 

< C }~~ IIAk,gfj ~~~~~M) II1Jlll£r(B2,(xk)\B,(xk)) IIIAk,g'P( llu'(B2,(xk) \B, (xk)) 

Therefore , 

lim Y k . -+ 0 as c -+ 0. 
j -+oo ,J 

Similarly, we derive that 
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}~~ Y ,,, = (~) }~~ j IAk,9iJ(-
2 

(Ak,9 f j) ( \7;-i fj · \i'~<p) dv(g) 
M 

< C }~~ J IAk,gfj(-
1 1\7;-i fJ · V'~<p~ dv(g) 

M 

1/ • 

< C]~~IIAk,9 iJII~~;M) ( j 1\7;-·h ~ · dv(g) ) 
B2, (xk )\8, (xk) 

which approaches to 0 when c goes to 0. Hence, sending c to 0, we obtain that 

(5.1.19) 

which leads to 



1 ( 1 )pjp' - (r>2 /lj') 
Since IA < KP' we get that 1A > K , which yields 

1 
fJJ· > -:::- . 

fCP 
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(5. 1.20) 

Asp, is a bounded measure, the nonzero terms of fJJ are only fini te numbers. Moreover, 

if fJJ =!= 0 for some j E N, then we obtain that 

1 1 
- > ( ) > I A 

fCP K}' +co 

}~~ (A ll f j II:P(8M) + IIAk,gfJ II ~P(M) ) 

> A IIJII~v(8M) + I I Ak,gfii~P(M) + ~ {Jj 

1 
> ~ fJj '2:. fJj > K/ , 

which is a contradiction. Therefore, fJJ = 0 for all j E N; hence, 'YJ = 0 for all j E N, 

which follows that 

p 

fJ -+ fin LP' (8M) and ll fl lp•(8M) = 1. (5.1.21) 

Ind ed, we have that 

A IIJII:P(8M) + liminf IIAk,gfJ II~P(M) 
J---00 

< li~inf (A llfJII:P(aM) + II Ak,gfJII~P(M)) 

(5 .1.22) 

In fact , (5.1.11) with (5.1.22) implies that f is a minimizing of IA. 
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For any A> 0, let fA E Wk·P(M) satisfies llfAII ~v·(aM) = 1 and 

(5. 1.23) 

On one hand, following the same arguments as above, we obtain the boundedness of 

fA in Wk,p (M). So, we can assume, up to a subsequence, that f A ___, fin Wk,p (M) , 

and fA ~ f in LP(M) as well as in LP(8M) . On the other hand, Letting A~ oo in 

(5.1.23), we conclude 

f = O on8M. (5.1.24) 

For any f E W 1·P (M), [9] proved that 

(5.1.25) 

Since \l9 fA E wk- l ,p (M), we can assume, up to a subsequence, that \l 9 fA ___, h in 

wk- l ,p (M), and \l9 f A ~ h in LP(M) for some hE Wk- l ,p (M). Hence, there exists 

a subsequence {!Am } C {!A} such that 

\l9 fA ~ h a.e., 
'H'' 

(5.1.26) 

where h = \l9 f a.e. Similarly, fori = 1, ... , k we get 
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where h; = \l~f a.e. Thus, 

k 

< ci:: ll \l~fAs- \l~f IILP(M) 
i=O 

k 

< ci:: ll\l~fA.- hiiiLP(M) +II hi - \l~f IILP(M) ~ o. 
i=O 

Therefore, there is a subsequence {!As } of {!As} such that 
' 

Lemma 5.1.3 plus [14, Theorem 1] gives that 

1 
> JA ~ IIAk,g JAs; [P(M) 

> IIAk,g ( JAs; - J) [P{M) + o(1) 

> fCP ~ c (II JAs; - JI[,.(8M)- C. II JAs, - J[P(MJ + o( 1) 

for any c > 0. Take 0 < c < co and let As; ~ oo, we find, by using (5.1.24) and 

II JAs; 11:P*{8M) = 1' that 

1 1 
---> ) 
f(P + CQ f(P + C 

which is a contradiction. Consequently, the inequality (5.1.9) is satisfied for any 

f E Wk·P(M). This completes the proof of Lemma 5.1.5. 0 

Theorem 5.1.1 is obtained by a direct consequence of Lemmas 5.1.2 and 5.1.5. 
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5. 2 Determining the best constant /3; ( M) 

In this section, under some specific conditions, we find the best constants in higher-

order Sobolev trace inequalities on Riemannian manifolds with boundary in the pres-

ence of symmetries. 

Let (M, g) be a smooth compact 3 :::; n-dimensional Riemannian manifold with 

boundary, G-invariant under the action of a subgroup G of the isometry group 

I s(M, g). Assume that l is the minimum orbit dimension of G, and V is the mini-

mum of the volume of the [-dimensional orbits. If 1 < p < (n -l)/k with kEN, and 

q- = (n-t- l )p the embedding Wk,p (M) c Lii (oM) is continuous. Thus, there exist 
n - l-kp ' 

real constants A1, Fh such that 

(J;,gen,c) 

for any f E Wk ,p (M). Let 

a;(M) = inf { A1 E ~ : there exists B1 E ~ such that 1;,gen,G is satisfied}, 

and 

tJ; ( M) = inf { B1 E ~ : there exists A1 E ~ such that 1;,gen,G is satisfied} . 

Then we have the following: 

Theorem 5.2.1. Let (M, g) be a smooth compact 3 :::; n-dimensional Riemannian 

manifold with boundary, G-invariant 'under the action of a subgroup G of the isometry 

group I s(M, g). Assume that l is the minimum orbit dimension of G, and V is the 
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minimum of the volume of the l-dimensional orbits. Let 1 < p < (n-l) / k with kEN, 

and - -- (n-l-I)v Th fi 0 h . t l A h h q - en or any c: > t ere exzs s rea constant sue t at n-l -kp · 

(5 .2.1) 

for any f E W~,p (M) . 

M th t t yP fCP (n-l,p) · h b r h · · z oreover, e cons an ''-c = (kp-l)/ (n - t - l J zs t e est constant Jor t zs m equa ity. v 

Following arguments similar to those used in the proofs of Lemmas 4.1. 3 and 5 .1. 2, 

we obtain that if t here exist real constants A and B such that for any f E W~,p ( M), 

(5.2.2) 

then fC; 2: B . 

To prove the validity of (5.2. 1), we need the following proposit ions which the first 

three can be established via the arguments used in [1 7]. 

Proposition 5.2.2. Let (M,g) , G , l, V be as above. Let 1 < p < (n -l)/k with 

k E N. Then for any c: > 0 there exists real constant A = A c:,p,G,M such that 

l lfii ~~(8M) ~A llfii~~(M) + ( !C; + c: ) II Ak,gfii~~(M) 

for any f E W~,p (M). 

(5.2.3) 

Proposition 5.2.3. Let (M, g) be a smooth compact 3 ~ n-dimensional R iemannian 

manifold with boundary, and let oj = {y E M I dg(y, 0(;) < <5}. Then for any c: > 
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0 there exists a positive constant c such that the following are valid for any v E 

W~'P(Qj n 8M) such that V 2:: 0: 

(i) (1- C£0 )Vj J v2ds(g) ~ J vds(g) ~ (1 + cco)Vj J v2ds(g), 
8N 8M 8N 

(ii) (1- cc0)Vj J v 2dy' ~ J vds(g) ~ (1 + cc0)Vj J v2dy' , 
81R~- l 8M 81R~- l 

where Vj = Vol(01), v2 = vo \ll -1, and (N,g) is a compact submanifold of(M, g) of 

dimension n -l as in {17, Theorem 3 . 2}. 

Proposition 5.2.4 . Let (M, g) , 0 1, N, v2 , and Vj be as above. Then for any c > 0 

there exists a positive constant c such that the following are valid: 

(i) (1 - Cco)Vj J IAk ,gvl dv(g) ~ J IAk,9 v ( dv(g) ~ (1 + cco)Vj J IAk,9v2IP dv(g) 
N M N 

(ii) (1 -C£o)Vj J IAkvl dy'dt ~ J IAk,9 viP dv(g) ~ (1 + cco)Vj J IAkvl' dy'dt. 
IR~- l M IR~-l 

for any v E w~·P(Qj n M) with v 2:: 0. 

Proposit ion 5.2.5 ([25]). Let (M, g) be a smooth compact 3 ~ n-dimensional R ie-

mannian manifold, and G be a compact subgroup of the isometry group of M . Then 

there exists an orbit of minimum dimension l, and of minimum volume. 

Proof of Theorem 5. 2. 1. Assume by contradiction that there exists co > 0 such that 

for any A > 0 we can find f E W~·P ( M) such that 

(5.2.4) 
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Let, for any A> 1, 

- - 1 
IA = inf JA < --==-,.----

/EW~·P(M)\{0} J(~ +co 
(5 .2.5) 

As the quotient JA is homogeneous, for any fixed A > 0 we can take a minimizing 

sequence {jj} c W~·P (M) satisfying IIJ1IIp = 1 such that 
Lii(8M) 

(5 .2.6) 

Following the same manner used in the proof of Lemma 5.1.5, we derive that 

- - p 

iJ - f in L~(fJM) , IIJ IIL~ (8M) = 1, 

and 

(5.2 .7) 

Moreover , we obtain that for any A > 0 there exists a function fA E W~·P (M) such 

that IliA liP _ = 1 and 
L'b(8M) 

(5 .2.8) 

Furthermore, we find that there is a subsequence {fA. } of {jA} such that Ak,g fA •. E 
' ' 

L~(M) and 
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Let 0 E U Oi such that for all j = 1, . . . , N, 
j=l 

Vol(O) =min Vol(Oi ) = V. 
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Assume that lAs E w~·P(O). As the best constant of the Sobolev trace inequality in 
' 

M has the same value with the best constant in the Sobolev trace inequality of the 

manifold 0 ( c.f. Proposition 5.2.5), then by using propositions 5.2.3 and 5.2.4, we 

obtain 

A II JAsi I[P(8M) + IIAk,gjAsi [P(M) 

ll iA.i I[Q(8M) 
> (1 - Ceo) v :H-\ 

where N is a submanifold of M of dimension n - l as above. Therefore, 

A II J2,A8i I[P(8N) + IIAk,gJ2,As; I[P(N) 

IIJ2,Asi I[Q(8N) 

1 1 
< X ..!=.!... !CS + c:o v "C.::£-1 

1 
..!=.!... ..!=.!... 

v n- l""' l !CS + v n=r-r c:o 

1 1 
- ' (5.2.9) 

K,P(n - l ,p) 
< 
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which contradicts what we did in Lemma 5. 1.5. Consequently, the inequality (5.2.4) 

is false, and then Theorem 5.2.1 is proved . 
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