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Abstract 

Vision feedback is a competent control technique for a large class of applications 

but they suffer from several imperfections. The well-known image-based visual servo 

(IBVS) methods regulate error in the image space i.e. the controller compar s the 

current view of the target against the reference view and generates an error signal at 

the sampling rate of the vision system. 

Contrary to position-based visual servo (PBVS), which regulates error in Cartesian 

space, IBVS ensures a local stability and convergence in the presence of modeling error 

and noise perturbations since the control loop is directly closed in the image space. 

However, sometimes (and specifically) when the initial and desired configurations 

are distant, the camera trajectory induced by IBVS is neither physically valid nor 

optimal due to the nonlinearity and singularities in the relation from image space to 

the workspace which can cause the target to leave the field of view. Furthermore, 

introducing constraints such that the target remains in the camera field of view and/ or 

such that the robot avoids its joint limits during servoing is not trivial in classical 

PBVS and IBVS control techniques. When the displacement to realize is large, this 

incapability leads to the failure of servoing process. 

This research presents a method to resolve the problems associated with classical 

servo control. Visual servoing control solutions are local feedback control schemes and 

thus require the definition of intermediate subgoals at the task planning level. This 

work introduces and details a trajectory planning scheme in order to achieve more ro­

bust visual servoing through the introduction of subgoal images. This ensures that th 

error signal is kept small since the current measurement always remains close to the 

desired value so that one can exploit the local stability of the IBVS control solution. 

The proposed method is based on Probabilistic Roadmaps (PRM) and its flexible 



platform is used to introduce desired constraints such as visibility constraint, joint 

limit constraint, obstacle avoidance constraint, and occlusion avoidance constraint 

to the generated path at the task planning level. It is noteworthy that visibili ty 

constraint is intended to keep the target in the camera field of view (FOV). Joint 

limit constraint restricts the manipulator to avoid its joint limits. Obstacle avoidance 

and occlusion avoidance constraints ensure that the generated path is collision- and 

occlusion-free. One of the advantages of the proposed method is that t argets arc 

not required to have 3D models. However the method requires a 3D model of the 

obstacles to avoid obstacle collision and occlusion. 

The proposed method plans the camera trajectory using PRM and then deduces 

the corresponding trajectories in the image plane which is a discrete geometric t ra­

jectory of the target in the image plane. A continuous and differentiable cubic spline 

presentation of the feature trajectories in the image plane is computed to be us d 

as a time-varying reference to pure IBVS loop. Off-line path planning is perform d 

using the kinematics of a 5-DOF robot arm to confirm the validity of the approach. 

Simulation of different IBVS scenarios is provided to demonstrate the performance of 

the proposed method . 
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Chapter 1 

Introduction 

About this chapter: This chapter introduces the problem addressed in this thesis. 

A list of contributions of the thesis to path planning for visual s rvoing is provided. 

Finally, thesis organization is detailed . 

1.1 Introduction 

During recent years, the number of robots operating in manufacturing sites and fac­

tories has astonishingly increased. Robot systems are employed for a variety of tasks 

ranging from performing medical surgery to the task of assembling a car. Until r -

cently, use of robot manipulators has had shortcomings wh re th work environment 

and object placement had to be controlled accurately. This limitation was due to the 

inherent lack of sensory capabilities of the robot systems. The significant motivation 

to improve autonomy for robot systems has led researchers to investigate the integra­

tion of vision system into robotic systems. Although sensor integration has long been 

acknowledged to be fundamental to increasing the versatility and capabilities of the 

robotic systems, specialized and costly hardware required to carry out video captur-
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ing and image processing has been prohibitive. With the advent of n w technologies, 

this barrier has b en removed and has resulted in various commercial robot systems 

equipped with off-the-shelf hardware. 

Vision is a beneficial robotic sensor since it mimics the human sen e of vision and 

allows for non-contact measurement of the environment; e.g. integration of vision 

with robotic systems makes manipulation of objects easier without the exact and/or 

prior knowledge of the model of the environment and object. Robot control using 

visual information has been an active research field for decades. Visual sensing and 

manipulation were combined in an open-loop fashion (i. e. look then move) in th 

early works to correct the position of a robot to increase task accuracy [1]. The 

accuracy of this operation depends directly on the accuracy of the visual sensor and 

the robot end- ffector. Machine vision can provide closed-loop position control for 

a robot end-effector which is referred to as visual servoing. [1]. Visual servoing is 

the fusion of results from many basic areas including high-speed image processing, 

kinematics, dynamics, control theory, and real-time computing. A task in visual 

servoing is to control a robot to manipulate its environment using vision as opposed 

to just observing the environment performed in active vision, motion from motion 

and structure from motion. 

Vision-based robot control using an eye-in-hand system can be classified into two 

groups: position-based visual servo (PBVS) and image-based visual servo (IBVS) 

systems [2], [3], [4], [5]. In a PBVS control system, the input is computed in the 

three-dimensional (3-D) workspace [6], which makes the cam ra a virtual 3D Car te­

sian sensor (for this reason, this approach is sometimes called 3-D visual servoing) . 

The pose of the target with respect to the camera is estimated from image features 

corresponding to the perspective projection of the target in the image. Numerous 

methods exist to recover the pose of an object which are all based on the knowledge 
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of a perfect geometric model of the object and necessitate a calibrated camera to ob­

tain unbiased results (e.g. [7]). On the other hand, in an image-based control system, 

the input is comput din the 2-D image space [8]. IBVS controllers have gained more 

popularity due to the shortcomings of the PBVS method. Any error in calibration of 

the lens camera system causes errors in 3D reconstruction and thus leads to erratic 

task execution. In addition , since the control law for PBVS is expressed in workspace, 

there is no mechanism to regulate the error in the image space and the target features 

may exit the field of view (FOV). 

1.2 Problem state m ent 

Although the IBVS approach reduces computational d lay and eliminates errors due 

to sensor modeling and camera calibration [3], it poses a significant difficulty on 

controller design since the overall plant is nonlinear and highly coupled leading to non 

convergence issues of the controller [9]. The introduction of kinematic and dynamic 

constraints on the induced image and camera trajectories is also nontrivial [10] . The 

following is a description of the problems associated with IBVS : 

• Sometimes when the camera displacement to realize is large, camera trajectory 

induced by IBVS is physically invalid and/ or non-optimal due to the nonlin­

earity and potential singularities in the relation form the image spac to th 

workspace [11, 12]. 

• Introducing constraints such that the target remains in the camera FOV and/or 

such that the robot avoids its joint limits during servoing is not trivial in classical 

PBVS and IBVS control techniques [10, 11] . 

• During visual servo , feature correspondences may be lost due to occlusion in 

3 



Initial Image 

Desired Image 

.1'(/) 

1.1.1: Classical approach to image-based visual 
servoing 

Trajecto<y 
Planning 

s(t) 

Control law 

1.1.2: Proposed image-based visual servoing using a path planning 
scheme 

Figure 1.1: Comparison of classical IBVS and proposed method for robust IBVS using 
path planning 

the image space which leads to the failure of the visual servoing process. 

This research will focus on the development of a method to provide more robust-

ness to visual servoing task. It describes a flexible and extendible path planning 

scheme that provides the possibility to control the camera motion with different con-

straints so that the target does not exit FOV. The visual servoing task is carried out 

using a tracker control scheme where a trajectory generator is developed to form a 

path between the initial and desired poses. Additionally, this thesis entails the devel-

opment of a method to avoid obstacles and occlusion during visual servo which ar 

two problems in classical visual servo aside from the convergence problems. Figure 

1.1 illustrates the difference between the classical IBVS and the proposed method. 
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1.3 Research objectives 

The main focus of this research is to develop an off-line path planning scheme to 

achieve more robust visual servoing. Furthermore, introduction of constraints into 

the camera and image trajectories induced by visual servo control law is not a trivial 

task. Thus the purpose of the trajectory planning for visual servoing is to find a 

series of intermediate feature images that takes the initial image to the goal image 

while taking the required constraints into account, namely visibility constraint and 

occlusion avoidance constraint, avoiding the obstacle and robot joint limits. The main 

focus of this research is to design a traj ectory-generator such that 

• keeps target features in FOV all the time, 

• robot avoids its joint limits, and 

• the generated path is not in collision and not occluded with any obstacles in 

the workspace. 

Additionally, the developed path planning scheme is intended to be flexible and 

easily extendable to accommodate other kinematic and dynamic constraints. A de­

ta iled explanation of the requirements and the problem is presented in Chapter 3, 

Section 3.1.2. 

1.4 Contributions of the thesis 

The proposed method builds aft xible platform using probabilistic roadmaps for path 

planning for visual servoing by generating a trajectory that is further fed into a tra­

jectory following visual servo controller. This thesis develops the requir d constraints 

for probabilistic roadmap to impose on the generated path. One of the advantages 

5 



of the method is that it does not require a 3D model of the target. Vision-based 

occlusion avoidance, obstacle avoidance and circumvention will be provided with the 

aid of visual information available from th ey -in-hand configuration. 

The resulting contributions of this thesis can be highlighted as follows: 

1. Development of a visual path planning scheme using probabilistic roadmaps 

that makes classical visual servoing robust that relies only on two given initial 

and desired images. 

2. Development and implementation of two constraints for PRM vi ual path plan­

mng : 

Visibility Constraint This constraint will force the target features to remain 

in FOV of the camera. 

Occlusion Constraint Visual occlu ion avoidance algorithm is developed in 

PRM framework that avoids occlusion of the featur s by any obstacles. 

3. Successfu l results are demonstrated to validate the propo ed path planning 

scheme. 

1. 5 Thesis organization 

Chapter 2 provides the fundamental concepts necessary for the research performed 

in this thesis . This chapter reviews manipulator kinematics, IBVS control and some 

topics from computer vision. 

Chapter 3 develops the machin ry r quired for path planning and then describ s 

the proposed PRM-based path planning sch m designed using the tools developed 

earlier. 
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Chapter 4 shows the off-line experiments conducted to verify the proposed method. 

Advantages and disadvantages of the method are also discussed in this chapter. 

Chapter 5 provides concluding discussion about this research and presents some 

future works. 
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Chapter 2 

Background 

About this chapter: This chapter will first review some basic concepts from 

computer vision and robot kinematics. Then the fundamentals of image-based visual 

servoing (IBVS) are introduced. A discussion on the performance of different IBVS 

control schemes is presented. 

2.1 Fundamentals and concepts 

This section presents an overview of some of the fundamentals of computer vision. A 

brief explanation of the kinematics of CatalystS robot arm used in this research will 

follow. 

2.1.1 Lens and camera modeling 

To control the robot using visual information, it is mandatory to understand the 

geometric aspects of the imaging process. Each camera is equipped with a lens that 

forms a 2D projection of the scene on the image plane where the sensor is located. 

Among several projection models for vision system modeling, perspective projec-
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Image Plane 

Figure 2.1: Camera coordinate system and image plane 

tion is employed to model the projective geometry of the camera as it is widely used 

in visual servoing. A camera coordinate syst em is assigned such that the x-axis and 

y-axis form a basis for the image plane. The z-axis is considered perpendicular to the 

image plane along the optic axis. The origin of the image plane is located at distance 

A behind the camera coordinate system , where A is the focal length of the camera 

lens (Figure 2.1) . 

Using the perspective projection model, a point M = [M 1]T = [X Y Z 1]T 

whose coordinates are expressed with respect to the camera coordinate system, will 

be projected onto t he image plane with coordinates m = [x y 1]T = [ ~ ~ 1]T. The 

corresponding coordinates in pixel on t he image plane will be denoted p = [p 1 JT = 

[u v 1]T, which will be related to each other through 
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X 
u 

y 
v = C (2. 1) 

z 
s 

1 

where 

- A.Ku 0 uo 0 

C = 0 - A.Kv vo 0 (2.2) 

0 0 1 0 

The points such that S = 0 are called points at infinity of the image plane. If 

S f 0, then u = ~ and v = ~ . By expressing the quantities X, Y, Z and A. in 

meters and u and v in pixel units, then the equations 

U X 
(2.3) u S = - A.Ku Z +uo 

v y 
(2 .4) v - = - A.K- +vo s vz 

show that K u and Kv are expressed in pixel x m - 1
. The quantities 1/ Ku and 1/ Kv can 

be interpret ed as the size of the horizontal and vertical pixels in meters, respectively. 

The parameters u0 and v0 are the pixel coordinates of the principle point. 

Matrix C is a nonsingular matrix containing the intrinsic parameters of the camera 

lens system and can be rewritten as 

C = (2.5) 

0 0 1 

where au = - A.Ku and av = - A.Kv are expressed in pixels. These parameters can 
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be interpreted as the focal length in horizontal and vertical directions, r spectively. 

According to this projection matrix, equation (2.1) can be expressed as 

p = Crn (2.6) 

2.1.2 Manipulator kinematics 

A serial manipula tor consists of a series of links connected by mean of kinematic 

pairs or joints. The whole structur forms an open kinematic chain where one end 

of it is constrained to a base and an end-effector is connected to the other end of it . 

The aim of this section is to derive t h f orward kinematics i.e. compute t he posit ion 

and orientation of the end-effector with respect to the manipula tor base as a function 

of the joint variables. 

Denavit-Hartenberg (D-H) conv ntion [13] is adopted to define a11d compute the 

coordinate t ransformation between the links of a manipulator with fiv revolu te joints. 

T he coordinate t ransformation between i- th coordinate frame and (i- 1)-th for two 

successive joints i given by 

c()i - ca.is()i sa.is()i aic()i 

i - J r, -
s()i -ca.ic()i -sa.~c()i ats()i 

(2.7) t-

0 a., ca.i d, 

0 0 0 1 

where c and s d note, respectively, cos and sin of the specified angles. Using the 

coordinate systems established in figure 2.2, the corresponding D-H link parameters 

are listed in tabl 2.1 where a2 = a3 = d1 = 254 and d2 = 50. . 

T he transformation matrices of robot links are obtained using D-H transformation 
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Figure 2.2: Coordinate System of Catalyst 5-DOF manipulator 

Table 2.1: D-H parameters of Catalyst 5-DOF manipulator 
Joints ai ai di ()i 

1 7r /2 0 dl ()1 

2 0 a2 0 ()2 
3 0 a3 0 ()3 
4 7r /2 0 0 ()4 
5 0 0 d2 Bs 

matrix (2. 7) and are then used to compute the overall transformation matrix between 

the base coordinate system Fb and th coordinate system of the cam ra attached to 

the end-effector Fe or simply 

(2.8) 

5T c is transformation matrix between the 5th frame and the camera coordinate 

system which should be obtained through an eye-hand calibration procedure. In the 

rest of the thesis, the following notations will be used to denote forward and invers 
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kinematics. 

{ 

(R , t) = FORWARDKINEMATICS(q) = FK (q) 

q = lNVERSEKINEMATICS(R , t) = lK(R , t) 
(2.9) 

where q is the joint angle vector (81 , 82 , 83 , 84 , 85 ). R and t denote, respectively, the 

rotational and translational components of 0T c corresponding to q . 

2.1.3 Projective homography 

There exists an analytic transformation from one image frame coordinates to the other 

image frame coordinates, if the tokens on the image plane that have correspondences 

are produced by visual features situated in a plane. This analytic transformation is 

a collineation between the two image planes considered as projective planes and is a 

function of the rotation and translation of the plane parameters between two image 

frames [14] . 

Figure 2.3 illustrates the geometry of the constraint between two images. The 

origin of the camera at its initial position is at Fi in figure 2.3. The position and 

orientation of the second camera position with respect to th first one is defined by 

the translation vector it * and the rotation matrix iR *. 

Let M = [M If' = [X Y Z lf' be a point on a plane IT. The coordinates M 1 and 

M 2 of M in the two coordinate systems of the camera ar related by 

(2.10) 

where iH * denotes the Euclidean homography. 

Since the Euclidean position of M in two camera frames cannot be directly mea-

sured, equation (2. 10) has to be related to the measurable image-space coordinates 
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n 

; R.; t • 

Figure 2.3: Geometry of the homography looking at a plane 

m = [x y l]r, given by 

(2.11) 

z1 
where a = z

2 
is the depth ratio of M between the first and the second camera 

coordinate systems. Using equation (2.6) and substituting 

(2.12) 

into equation (2.11) , the homography relationship can be expressed as 

(2.13) 

where iG* E JR3 x 3 , given by 

(2.14) 
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denotes the projective homography. 

In practice, i G * is computed from the target feature correspondences. If the targ t 

is planar, iG * can be estimated solving a linear system using at least four points of this 

plane [15, 16]. On the other hand, if the target is non-planar, the estimation of iG * 

becomes a nonlinear problem. Then thr e points can be used to define plane II and 

five supplementary points not belonging to II are needed to estimate tG *. Linearized 

algorithm presented in [16] can be used to estimat e the homography matrix in real-

time. Classical lineariz d methods for computing the camera displacement based on 

the epipolar geometry can be found in [17] and [18] but near the convergence of the 

visual servo control where the current and desired images become similar , the epipolar 

base line becomes smaller and thus the epipolar geometry becomes degenerate and 

the estimate of the partial pose between the two views is biased with error [11] . 

Using equation (2.14) , the Euclidean homography iH * of plane II is obtained from 

(2.15) 

and can be decomposed into a rotation matrix and a rank-1 matrix [14 15] of the 

form 

(2. 16) 

where plane II is defined by its normal n * expressed in the coordinate system of F * 

and its distance d* to the origin of F *. 

2.2 Image-based visual servoing 

Visual servo control refers to the use of computer vision data to control the motion of 

a robot. The vision data is usually acquired from a camera that is mounted dir ctly 
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on a robot manipulator where motion of the robot induces camera motion , or the 

camera can be fixed in the workspace. The mathematical underpinning of all these 

different configurations is similar and in this review the focu is primarily on th 

former , so-called eye-in-hand case. 

Visual servo control relies on techniques from several research fields such as image 

processing, computer vision, control theory, kinematics and dynamics, mainly. Since 

the main purpose of this work is to develop a robust path planning t echnique for IBVS, 

this section will focus primarily on issues related to control and stability issues that 

are uniquely relevant to the study of IBVS control schemes. IBVS control solution 

regulate error in the image space and thus ensure a local stability and convergence in 

the presence of modeling error and noise perturbations. A r view of classical image­

based visual servo will be given and a brief discussion on the performance of IBVS is 

provided . 

2.2.1 B ackground 

The purpose of IBVS control schemes is to minimize an error e (t), which is defined 

by 

e(t) = s(t ) - s* (t) (2.17) 

s(t) corresponds to visual features obtained from image measurements. For a fiducial 

point t arget, s(t ) represents the image coordinat s of inter st points or for a circular 

t arget , s(t ) contains the image coordinates of the centroid of the object. These 

calculations ar performed with some additional knowledge about the syst em such as 

coarse camera intrinsic parameters. The vector s* ( t) contains the desired values of 

t he features. In case of a fixed desired pose, s* ( t) is a fixed vector , denoted as s*. For 

a camera mounted on a manipulator end-effector (eye-in-hand configuration) changes 
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in s(t) depend only on camera motion , if the target is assumed motionless. 

To design an IBVS controller, the relationship between sand the camera velocity is 

required. Let s = ( u, v) be the current value of visual features observed by the camera 

and s* be the desired value of s to be reached in the image space and r = [v r , wTJT 
represent the camera velocity with vr being the instantaneous linear velocity of the 

origin of the camera frame and wr being the instantaneous angular velocity of the 

camera frame. This relationship is given by 

s = ~: (s, Z, C) r = I(s , Z, C) r (2 .18) 

in which I E JR2n x 6 is the inter-action matrix or image Jacobian associated with s for 

n features and can be derived [1] by using the perspective lens camera model and 

motion dynamics for a mounted camera as 

I(s, z, C) = [ au 0 ] [ - ~ 
0 av 0 

where x and y are given by 

0 

1 
z 

X 

z 
y 

z 

xy 

1 + y2 

X - 0 U- Uo 

r 1 r

1 

1r 1 y ~· :. v- Vo 

In case of eye-to-hand configuration, I = - I. 

(2.19) 
- x y 

(2.20) 

Using equations (2.17) and (2.18), the relationship between camera velocity and 

the t ime variation of the error is derived as 

. . ( ) . * ( ) I . oe os* ( t) e = st - s t = r + ----ot at (2.21) 
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where the term ~; is the time variation of e due to target motion and as;?) denotes 

the t ime-varying reference image features. 

The existing control schemes compute the camera velocity ent to the robot con-

troller [9 19, 20] with the form 

or r = f (I+ (s - s*)) (2.22) 

since most of th commercial robotic systems accept velocity inpu t. If joint limits 

avoidance and ingularity avoidance is required the robot J acobian is used to map 

the camera velocity directly to the robot joints velocity. In equation (2.22) , function 

f can be any cont rol scheme from a simp! proportional gain [21] to optimal control 

in state space [22] or nonlinear control [23]. 

In order to ensure an exponential decoupled decrease in error (e .g. e = - K:e) and 

using (2.22) (assuming that the target is motionless), the control law is expressed as 

(2.23) 

where I+ represents the Moore-P enrose ps udoinverse of I and r denotes the input to 

the robot controller. 

In real vi ual rvo systems, I or I+ annot be perfectly det rmined . So an ap-

proximation or an estimation of one of th se two matrices mu t be realized. In th 

sequel, both the pseudoinverse of the approximation of the interaction matrix and 

the approximation of the pseudoinverse of t he interaction matrix will be denoted by 

i+. Using this notation , the control law is in fact: 

(2.24) 
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There are s veral choices available for constructing I + : 

• I+ = I + ( t): In this case, the interaction matrix is num rically estimated using 

either an off-line learning step or an on-line estimation tep during visual ser­

voing without using the analytical form given by (2.19). eural networks have 

been u ed to perform the estimation [24]. The Broyden update rul can be used 

for on-line iterative estimation of I + [25]. The main advantage of using such 

numerical estimations is that it avoids all the modeling of camera and robot. 

It is particularly useful when using features whose interaction matrix is not 

available in analytical form . 

• I + = I +( Z, C): In this case the interaction matrix is updated at each iteration 

using the depth information Z of ach feature point [10, 22]. Depth information 

plays an important role in the convergence of the control scheme. Z can be 

obtained either from the 3D model of the target or the camera motion. Although 

the image trajectories of point ar straight, camera motion is hown to be far 

from straight due to the condition number of I + leading to local minima and 

approaching of visual servo task singularities. 

• I+ = l+(s*, V, C): I+ is constant and is equal to I + at s* where e = 0 [9,26]. In 

this case, no time-variant 3D parameter including depth e timation is performed 

during visual servo. It is shown that this method provid s more satisfactory 

results than using the previous method. However the behavior of the control 

schem (com put d camera velocity and the 3-D trajectory of the camera) could 

be inad quat when the camera di placement to realize is quite larg , although 

it might converge [27]. 

• I + = 1/2 (l+(s, Z, C) + l +(s*, V, C)) : It is reported that this choice provid s 
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good performance in practice [27, 28]. In this case, the camera velocity compo­

nents do not include large oscillations and provide a smooth trajectory both in 

the image and in 3-D. However since i +(s, Z, C) is involved in this m thod, the 

current depth of the features must be estimat ed. 

The velocity screw of the camera r obtained from equation (2.24) is expressed in 

the coordinate system of the camera . The equivalent velocity screw in base coordi-

nates of the robot arm is obtained [13] by 

(2.25) 

where t x is a skew-symmetric matrix opera tor obtained from 

t x = (2.26) 

IBVS is known to perform satisfactory in the presence of important intrinsic and 

extrinsic parameter calibra tion errors. However it is known that it suffers from st a­

bility and convergence problems [9, 10]. I and thus i + may become singular leading 

to an unstable behavior. In addition, due to the existence of unrealizable image 

motions, local minima may be reached. In [9] , it is shown that th control scheme 

employing i +(s, Z, C) may reach local minima, while employing J +(s*, V, C) allows 

the system to avoid local minima if it computes image motions which arc not unreal­

izable. Therefore J+(s*, V, C) is sometimes more interesting to use than i +(s , Z, C), 

specifically when visual servoing is performed in the vicinity of desired robot po c 

although there is no proof. 
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A simpl simulation demonstrates this issue. Figures 2.4 and 2.5 show, resp c­

tively, the convergence of the visual servoing task using I+ ( s, Z, C) and I+ ( s*, V, C). 

The simulation of visual servo using l +(s, Z, C) converges in virtue of the assumption 

of a wide FOV. It i important to note the boundary of FOV (dash-dott d line) of 

the camera in Figure 2.4.4. It is obvious that the visual servo using l +(s, Z, C) does 

not converge in real world since the target exits FOV. However visual servoing with 

l +(s, Z, C) converges and results in a smoother performance. 

This property is used to develop a path planning scheme in Chapter 3 by intro­

ducing subgoal images to the visual servoing control scheme using l +(s* V, C) at 

each subgoal o that it takes the initial imag to the desired one such that the error 

remains small all the time. 

2.2.2 Local stability analysis 

This section reviews the stability of the closed-loop visual servo y terns using L ra­

punov analysi [27]. Let's choose the squared error norm as the candidate Lyapunov 

function defined by£.= 1/2Jje(t)jj2 whose derivative is given by 

(2.27) 

Therefore a sufficient condition to nsure the global stability is given by 

II+ > 0 (2.28) 

In practice, for most of visual servo control schemes condition (2.28) can never be 

ensured since II+ E IR2n x 2n is at most a matrix of rank 6 i.e. II+ has a null spa 

that cannot be asily determined. 
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Figure 2.4: Visual Servoing using P(s, Z, C) 
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Figure 2.5: Visual Servoing using i +(s*, V, C) 
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Using control law (2.24), each component of e is ensured a exponential decrease 

with the same convergence speed, causing straight-line trajectories to be realized in 

the image space. It is however reported that the error reached may not be exactly 

zero, and it is obvious that the system has been attracted to a local minimum far 

away from the desired configuration. To guarantee the local asymptotic stabili ty, a 

new error e' = i +e is defined. Taking derivative from both sides and using (2.21), 

the following equation is obtained 

e' = i +e + i +e = (i+I + O)r (2.29) 

where 0 E IR6 x 6 is zero when e = 0 independent of i+. Substi tuting the control 

scheme (2.24) , equation (2.29) is rewri t ten as 

e' = - K:(J+J + O)e' (2.30) 

which is known to be locally asymptotically stable in a neighborhood of e = e* = 0 

if condition (2.28) is ensured. Since the local asymptotic stability is of interest, only 

the linearized system e' = - K:J+Ie' has to be considered. If i+ and I are of rank 6 

and the approximation involved in i+ is not coarse then condit ion (2.28) is ensured . 

In order to end the demonstration of local stabili ty, it has to be shown that there 

does not exist any configurat ion e =I e* such that e E Keri+ in a small neighborhood 

of e* and its corresponding pose r * . 

Configurations where r = 0 and e =I e* correspond to local minima. If such a 

pose r would exist , it is possible t o restrict the neighborhood around r * so that th re 

exists a camera velocity r to reach r * from r which would imply a variation of the 

error e = I r. However , such a varia tion cannot belong to Ker i+ since Ii+ > 0. 

24 



Therefore, r = 0 if and only if e = 0 which implies e = e*, in a neighborhood of r*. 

Even though local asymptotic stability can be ensured when n > 6, global asymp­

totic stability cannot be guaranteed. There may exist local minima corresponding 

to configura tions where e E Ker I+ which is outside of the stability neighborhood 

mentioned above. Although the convergence neighborhood is quite large in practice, 

there is no mechanism to determine th size of it . 

Singularities of the Jacobian will force the system to induce unexpected robot 

trajectories which might be due to the singularities in the interaction matrix or the 

robot Jacobian. 

2.2.3 Kinematic visual feedback control 

The control law (2.24) produces a pose rate control signal that , for a position­

cont rolled robot, must be integra ted to determine the robot joint angle cont rol signal. 

The integra tion can be performed in joint space or workspace. 

The Cartesian velocity cont rol signal can be resolv d to joint velocity control 

signal and integra ted 

(2.31) 

where J+ denotes the generalized inverse of the robot J acobian J. 

The resolved velocity control is less robust since numerical errors in the computed 

robot Jacobian result in a workspace velocity slightly different from that demanded, 

causing the robot 's pose to drift slowly with time. Since the performance of strong 

kinematic control using inverse kinematics overweighs that of t he above resolved-rate 

control through robot Jacobian (i.e. weak kinematic control) due to the mentioned 

incapabili ty, integration in workspace is preferred [29]. In t his control technique 

desired workspace velocity is integrated and the corresponding joint positions are 
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obtained using inverse kinematics 

q = IK( j r dt) (2.32) 

2.3 Summary 

Some fundamental concepts from vision system modeling are presented. The pro­

jective homography i.e. relation between the correspondences in different views is 

studied. The formulation to compute and decompose this relation into camera trans­

formation is reviewed. The basics of IBVS control are presented in this chapter and 

various choices of the interaction matrix for IBVS with a brief discussion on the ad­

vantages and disadvantages of each method is provided and it is shown that visual 

servoing using a constant interaction matrix at the desired pose sometimes provides 

more robustness to control solution. This chapter also reviews the proof of the local 

stability of IBVS which holds when the error to regulate is small. It is also explained 

that integration of the v locity screw in workspace rather than in joint space provides 

a stronger kinematic control. 
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Chapter 3 

Path-planning for visual servoing 

About this chapter: This chapter introduces a path planning technique to im­

prove the robu tness of the pure image-based visual servoing (IBVS) control scheme. 

A thorough review of the state-of-the-art t chniques used for robust IBVS contr 1 

and robot motion planning using sampling-based methods will b presented. First 

the definitions and the formulation for partia l target recon truction and occlusion 

avoidance arc d veloped which will then be used to design a visual crvoing trajectory 

planner based on probabilistic roadmaps (PRM). 

3.1 Introduction 

IBVS is a popular vision feedback control loop technique which measures the error 

signal directly in s n or space and maps to workspace. Since the error is regulated 

directly in imag space, stability and convergence in the presence of modeling error 

and noise perturbations is ensured locally [26]. However, sometimes (and pecifically) 

when the initial and desired configurations arc distant, the camera trajectory induced 

by IBVS control scheme is neither phy ically valid nor optimal due to the nonlinearity 
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and singulari t ies in the relation from image space to the workspace expr ssed in 

equation (2.18) [9]. More precisely, the control scheme can cause excessive control 

action and transient response which can cause the target to leave the FOV. Visual 

servoing control solutions are local feedback control schemes and thus require the 

definition of intermediate subgoals in the sensor space at the task planning level [11]. 

Therefore, this chapter proposes a path planning solution that uses the local stabili ty 

of IBVS (discussed in Chapter 2) by specifying sufficient trajectories to be follow d 

in the image space. If the initial error is too large, a reference t rajectory including 

a sequence of images can be design d. The initial error is sampled so that at each 

itera tion of the control scheme, the error to regulate remains small; thus exploiting 

the local stabili ty of IBVS. In other words, the approach uses the path to improve 

the robustness of pure IBVS such that the error is small enough for the local stability 

to hold. One of the other shortcomings associated with classical PBVS and IBVS 

control techniques is the nontriviality of accommodating con traints such that the 

ta rget remains in the camera FOV (i .e. visibility constraint) or such that the robot 

avoids its joint limits during servoing. When the displacement to realize is large, t his 

incapability leads to the failure of servoing process [10, 11] . The proposed method 

utiliz s the fl exible platform provided by PRM to introduce visibili ty, joint limit, 

obstacle avoidance and occlusion constraints. 

3.1.1 Related Work 

In the following, a detailed review of the state-of- the-ar t techniques used to improv 

the performance and robustness of IBVS is provided. Th n, a review on the applica­

tion of the sampling-based methods (e.g. PRM) to manipulation planning and robot 

motion is presented. 
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Robust visual servoing 

Visual servo control system design is one of the methods used to enhance the pure 

IBVS by partitioning the visual servo dynamics or by exploiting the advantages of 

IBVS and PBVS to inv stigate hybrid approaches. Most of these strategies ensure the 

local stability of the controller and fail when the displacement is large. Introducing 

subgoals to the visual servo controller using path planning schemes leads to more ro­

bust results by using an IBVS control scheme as a local controller. Potential function 

approach has been extensively utilized to perform trajectory planning in image space. 

Homography interpolation is another method that some researchers have investigat d 

with som reported benefits. 

In IBVS, the control loop is directly closed in the image space which ensures a local 

stability and convergence. Although the method regulates the error in the presence 

of modelling error and noise perturbations, the control scheme may yield excessive 

control action and t ransient response which can cause the target to leave the FOV 

and cause unspecified behavior . 

Different characteristics of IBVS and PBVS have motivated several researchers 

to investigate hybrid approaches to improve the global stability of the control solu­

tion . Malis et al. [30] have proposed a homography-based globally stabilizing control 

scheme called 2 ~-D visual servoing. This method decomposes the translational and 

rotational components of homography matrix and therefore performs the partial re­

construction of the target to extract the Cartesian component of the error function. 

It employs some advantages of IBVS and PBVS approach s to d velop a control 

scheme that does not require the accurate geometric model of the environment or 

the target. The potential singularities in the interaction matrix are also eliminated 

since the image Jacobian matrix is design d to be t riangular for homography-based 
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visual servo. Motivated by the advantages of the homography-based technique, vari­

ous error regulation controllers for robot manipulators have been developed which ar 

intended to improve the behavior of basic IBVS and PBVS. In [31] a Lyapunov-based 

homography-based adaptive control strategy is employed to actively compensate for 

the lack of unknown depth measurements in order for a robot end- ffector to track 

a desired workspace trajectory as determined by a sequence of images for camera-in­

hand and fixed-camera configurations. A visual servo tracking controller is developed 

for a monocular camera system mounted on a Unmanned Aerial Vehicl (UAV) to 

track a l ading UAV with a fixed relative position and orientation [32]. In this work, 

reference desired feature points on the leading UAV are provided from a prerecorded 

desired image set. An iterative learning control scheme for robot planar motion visual 

servo with an arbitrarily mounted camera i presented in [33] which is , however, valid 

when the image plane and the motion plane are parallel with a constant but unknown 

image Jacobian matrix and uses an iterative learning control law with a Nussbaum 

learning gain to perform trajectory tracking in the pres nee of camera calibration 

errors. In another similar work [34], a visual servo tracking controller is developed 

for an underactuated wheeled mobile robot (WMR) subject to nonholonomic motion 

constraints with a monocular camera system mounted on it. Again , a prerecorded 

image sequence (e.g. , a video) of three target points is used to define a desired traj c­

tory for the WMR which is compared with the live features to create the error vector. 

While homography-bas d approaches exploit the benefits of IBVS and PBVS, a com­

mon problem with all the aforementioned approaches is the inability to achieve the 

control objective while nsuring a specific constraint. Introducing constraints in th 

realized trajectory such that the target remains in the cam ra FOV or such that th 

robot avoids its joint limits is not trivial. Without appropriate measur s to account 

for these constraints, the object can exit the FOV or the robot may reach its joint 
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limits [11] . 

In IBVS control solution, where control is effected with resp ct to the image, 

there is no direct control over the Cartesian velocities of the robot end-effector. As a 

result , the robot executes trajectories that are desirable in the image, but which can 

be contorted in Cartesian space. To overcome this problem, Corke and Hutchinson 

[35] have proposed a method which decouples the z-axis rotational and translational 

components of the control from the remaining degrees of freedom. In [36] , a m thod 

is proposed to avoid the joint limits by using a shortest-path approach which is 

predict able and its generated minimized straight line trajectory avoids trying to move 

outside the robot workspace in most cases, although there is no direct control on it. 

In [37], Gans and Hutchinson developed a stra tegy that switches between an IBVS 

and a PBVS controller to ensure asymptotic stability of the position and orientation 

(i.e. pose) in the Euclidean and image space. There is the possibility of feature 

points leaving the image plane in all hybrid schemes and a dir ct solution is required 

to keep the target in the FOV. However , for 6-DOF visual servoing, Malis et al. [38] 

guarantee that a single feature point remains within the FOV. Morel et al. [39] extend 

this idea by decoupling the translational motion of a custom-designed feature vector , 

a circle containing all the feature points, from the rotational motion of t he camera to 

guarantee that all feature points remain within the FOV. However , in addition to the 

mentioned imperfections, partitioning of the control often cau es the Cartesian path 

to become more complex, which might result in operation close to th joint limits. 

When the displacement to realize is large, the aforementioned deficiencies often lead 

to the failure of the servoing process [32]. 

To address the issues mentioned above to improve the global stability of visual 

servo, a definition of intermediate subgoals in the sensor spac at the task-planning 

level is required. For instance, in [34], a prerecorded sequence of subgoal features 
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in the image plane is manually provided to the control scheme which regulates the 

changing error while the object is moving towards the desired goal. In [20, 40] , the 

null space of the Jacobian is exploited to introduce other constraints such as joint 

limit avoidanc and visibility constraints . However, if all the robot degrees of fr edam 

are used to realiz the task, the null space can not be exploited to perform s condary 

tasks and therefore this method is not beneficial. An alignment task using interme­

diate views of an object is presented in [41] which employs image morphing. A path 

planning for a straight-line robot translation observed by an uncalibrated stereo-rig 

system is performed in [42] using interpolation and homography. 

Several recent papers use potential functions and navigation functions for path 

planning to basically introduce constraints and address the FOV problem. In [35], 

keeping the target in FOV is considered as a collision avoidance problem in image 

space and employs potential field techniques to repel the feature points from th 

image plane boundary. Mezouar et al. [43] use the approach of image-based path 

planning and local visual servoing along the intermediate subgoals on the path to 

avoid mechanical limits and visibility obstacles. In another work, Mezouar et al. 

[11 , 44] developed a trajectory planning scheme which generates subgoal features for 

a basic visual ervo control solut ion to follow. Potential functions are employed to 

perform the path planning and to introduce visibility and joint limit constraints . The 

proposed method does not require the 3D model of the target and an exact camera­

intrinsic parameters. 

Local minima associated with t radi tional potent ial functions may exist [45]. A 

basic strategy to take out of potential local minima is to execute a random motion 

by favoring the repulsive force. Obviously, reaching the global minimum is not guar­

anteed. To ensure such a property, specialized potential functions free of stable local 

minima called navigation functions (NF) are constructed which is originally proposed 
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by Koditschek and Rimon [46,47]. 

In a series of papers [48- 50], Cowan et al. employ navigation functions to in­

troduce attractive or repulsive potential to th desired pose, objects and obstacl s 

accordingly. In [48], a globally stabilizing method using navigation function is pro­

posed that guarantees visibility. A trajectory planner is described in [51] for ster o 

vision system using navigation functions and applied to obstacle avoidance. For 

nonholonomic mobile robots, Zhang and Ostrowski [52] adopt path planning to find 

kinematic trajectories that keep features within th FOV. In [53], Cowan et al. devel­

oped a hybrid position/image-space controller that forces a manipulator to a desired 

pose while ensuring the object to remain visible through navigation functions and by 

avoiding pitfalls such as self-occlusion. An image-space based follow-the-leader appli­

cation for mobile robots was developed in [54] that exploits an image space navigation 

function. 81 cifically, an input/ output feedback linearization technique is applied to 

the mobile robot kinematic model. An NF-based approach to the follow-the- leader 

problem for a group of fully actuated holonomic mobil robots is considered in [55] 

where configuration-based constraints are developed to ensure the robot edges remain 

in the sight of an omnidirectional camera. A Lyapunov-based analysis is provid d 

in [55] to ensure that the NF decreases to the goal position. 

Potential and navigation functions, are path planning techniques that incremen­

tally explore free space while searching for a path. These path planning algorithms 

maneuver through free space without constructing the configuration spac and can be 

applied to a large class of robots since they apply to a more general class of configura­

tion spaces, including those that are multidimensional and non-Euclidean. However 

navigation planners based on this technique have disadvantages. Navigation functions 

do not suffer from the local minima problem associated with potential functions and 

provide the machinery to apply potential functions to second-order plants, while still 
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ensuring obstacle avoidance with convergence guarantees and no need for intermediate 

trajectories. However, constructing such a navigation function requires the complete 

knowledge of the space topology and the object model, and many advantages of the 

approaches based on potential functions such as robustness with respect to modeling 

errors and application to an object with an unknown CAD model will be lost [11]. 

In [56], a trajectory generator for a visual servoing system using stereo vision 

1s proposed to make the system accomplish obstacle avoidance tasks in unknown 

environments. U ing the epipolar constraint, the proposed scheme can generate tra­

jectories for the visual servoing system on the 2D image planes to avoid obstacles 

without reconstructing 3D geometry. 

Sampling-based path planning for manipulators 

Different roadmap based planners such as visibility graphs and Gen ralized Voronoi 

Diagrams (GVD) build maps in the free configuration space. Each of these methods 

relies on an explicit r presentation of the geometry of the configuration space. There­

fore these planners become impractical as the dimension of th configuration spac 

increases [57]. 

In recent years, a number of sampling-based motion planning algori thms such 

as probabilistic roadmap planners (PRMs) [58,59], Randomized Path Planner (RPP) 

[60,61], and Rapidly-exploring Random Trees (RRTs) [62] have b en introduced which 

have had considerable success in solving motion planning problems, specifically with 

many degrees of freedom (DOFs) [58, 63]. Path planning methods can be categorized 

either as single query planning or multiple query planning methods. Single query 

planning methods compute one path for the environment fast and without prepro­

cessing. However multiple query planning methods compute many paths for the same 

environment and thus the environment model can be preprocessed. PRM is one of 
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the most pow rful and capable multiple query planning methods. Sampling-bas d 

methods utilize a variety of strategies to generate samples (i.e. collision-free config­

urations of the robot) and then connect the samples with paths to obtain solutions 

to path-planning problems [58]. Unlike earlier planners which rely on the explicit 

representation of the obstacle boundary in the configuration spac , sampling-based 

methods use a collision detector as they search the configuration space. Sampling­

based methods are used to address problems that extend beyond the classic path 

planning where dimensionality is an issue. Sampling-based methods have been ap­

plied to various research fields ranging from computer animation of human figures , 

centralized and decoupled planning of multiple robots to manipulation planning and 

assembly planning [57]. 

PRM checks if a single robot configuration is in collision-free space, Qfree, achieved 

through collision detection. A configuration q is collision-free, if the robot placed at q 

has null intersection with the obstacles in the workspace. The free space QJ1·ee is the 

set of free configurations. PRM uses collision-free configurations to cr ate a roadmap 

in Qfree · After the roadmap has been generated, planning queries can be answered 

by connecting the user-defined initial and goal configurations to the roadmap, and by 

using the roadmap to solve the path-planning problem at hand [58] . 

PRM planners are capable of dealing with robots with many degrees of freedom 

and with many different constraints despite their simplicity. In [64], a sampling-based 

planner is d v loped that imposes kinodynamic constraints on the path. In [65, 66] , a 

path planner for closed kinematic chains is presented that takes closed-loop kinematics 

into account. A fast planner is designed for vertically-climbing robots in [67] which 

relies on an efficient test of the quasi-static equilibrium of the robot . A sampling-based 

planner is us d to perform reconfiguration planning of self-configuring modules using 

appropriate reconfigurable constraints for reconfigurable robots [68, 69]. Lamiraux et 
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al. describe a path planning scheme for elastic objects under energy constraints using 

the principles of elasticity theory [70] . In [71], a planner is d veloped that ensures the 

planned path to be compliant to a desired contact constraint . In [59, 72], the shortest 

path for the robot is designed using a visibility constraint such that each point on 

boundary of the workspace is visible from some point on the path . In this thesis, 

however, visibility constraint is meant to keep the target in FOV. 

Motion planning for manipulators typically involves the finding of a collision-free 

path from an initial configuration of the robot to a goal configuration of the robot. The 

multiple movers problem deals with path planning for many robots [73]. A collision­

free path in this case implies tha t at every step , t here is no collision between a robot 

and an obst acle or between any two robots. Centralized planning is a solution to this 

problem that considers the different robots as a single multi-body robot and represents 

C-space, Q, as the Cartesian product of the configuration spaces of all th robots 

where the dimensionali ty of Q is equal to the total number of degrees of freedom of 

all the robots. It is obvious that the curse of dimensionality caus s some difficulty due 

to the high dimensionality of Q. Coordination of the robots is trivially achieved since 

a collision-free configuration in Q describes the configuration of each individual robot 

and ensures that no robot is in collision with some obstacle or some other robot. This 

solution is applied to a workspace where six robots cooperate on a welding task [7 4]. 

Another solution is a two-phase decoupled planning where collision-free paths are 

initially computed for each robot individually, without taking into account the other 

robots but simply considering the obstacles of the workspace. In the second stage, 

coordination is achieved by computing the relative velocities of the robots along their 

individual paths that will avoid collision among them [73] . Decoupled planning does 

not increase the dimensionality of the configuration space but it is incomplete, even 

when the algorithms used in both of its stages are complete [57]. 
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In [75], the preprocessing stage creates a representation of the configuration space 

that can be easily modified in real time to account for changes in the environment 

which facilitates real-time planning. The mapping from workspace cells to the graph 

is encoded so that when the environment changes, appropriate modifications to the 

graph is made, and plans can be generated by searching the modified graph. In 

another work, a path planner for robots operating in dynamically changing envi­

ronments with both static and moving obstacles is developed [76]. It combines the 

lazy-evaluation mechanisms with a single-query technique as local planner in order 

to rapidly update the roadmap according to the dynamic changes. 

As mentioned previously, an important feature of sampling-based planners is that 

they do not attempt to explicitly construct the boundaries of the configuration space 

obstacles. Instead, they check whether a given configuration of the robot is in collision 

with the obstacles or not. Efficient collision detection procedures ease the implemen­

tation of sampling-based planners and increase the range of their applicability. 

Collision Checking in 2-D Workspace The 2D workspace allows for very fast 

collision checking techniques. Collision checking in 2D workspace in case of a 

multi-link robot is performed by precomputing a C-obstacle bitmap represent­

ing the obstacle in the 3D configuration space for each link [58, 59, 77]. Since 

each link is free to translate and rotate, C-obstacle bitmap constitutes a 3D 

space. Then planner checks each link against its C-space bitmap. Since the 

computation of any bitmaps needed for collision checking is performed only 

once prior to the learning phase, the collision checking is fast. If the link and 

the obstacles are modeled as collections of possibly overlapping convex poly­

gons, the construction of a 2D bitmap can be done [78]. Each 2D bitmap may 

also be computed using the FFT-based method whose complexity depends only 
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on the size of the bitmap. Apparently this technique requires the construction 

of a 6D bitmap for 3D workspaces which renders this t echnique impractical for 

3D workspaces. 

Collision Checking in 3-D Workspace There are many existing libraries and tech­

niques (e.g. GJK, SOLID V-Clip , !-Collide and V-Collide) for collision detec­

tion and measurement. A fundamental and effective method represents objects 

by hierarchy of objects of simple shapes (e.g., spheres, parallelepipeds) and 

eventually reduces collision detection to collision checking/distance computa­

tion b tween two objects of basic shape (e .g., two convex polyhedra) [79, OJ. 

The principles are as follows: 

1. Triangulate the boundary of each object. 

2. Represent each object by a binary tree of spheres, such that: 

• The sphere at each node contains the spheres at each of the two chil­

dren of it. 

• The tree is approximately balanced. 

3. To check for collision or compute the distance between two objects , tra­

verse their sphere trees concurrently. When leaf nodes are reached, ch ck 

collision or compute distance between two triangles. 

Collision detection is performed in the preprocessing or query phase of the path 

planning and discards the configurations with collisions. 

3.1.2 Objective 

The main purpose of the trajectory planning for visual servoing is to find a sencs 

of feature images that takes the initial image to the goal image. This is achieved 
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through occlusion detection and introducing visibility constraint by eliminating th 

milestones (configurations) with occlusion and the configurations with features ou t 

of FOV. 

This work investigates path planning problem for robust vi ual servoing in PRM 

framework. In this proposal, visual servo path planning will be accessible with the 

existence of obstacles. Vision-based occlusion avoidance, obstacl avoidance and cir-

cumvention will be provided with th aid of visual information available from the 

eye-in-hand configuration. 

The aim of this research is to d sign a trajectory-generator that generates a con­

tinuous and differentiable curve s* ( t) = lP(t) ... fi(t)] between the init ial feature ' 

si = [pJ ... Pi] and the desired features s* = [p! . . . p~] such that s* (0) = st and 

s* ( t f ) = s* where t0 and t f denote inibal and final times, respectively. First , a dis­

crete sequence of I< intermediate cam ra poses r = { (~ , ti ) I i E 1 ... I<} and the 

robot trajectory in the joint space 8 = { qi I i E 1 .. . I<} are generated using a PRM 

planner. Then the discrete object trajectory in the image Y = { si I i E 1 ... K } is 

obtained from f . Finally, a continuou and different iable geometric path in the image 

is generated to be tracked using an IBVS control law. 

3. 2 Scaled partial 3D reconstruction 

Using th homography concept introduced in Section 2. 1.3 of Chapter 2, the resul ting 

image points P1 in the ini t ial camera fram F 1 of a point M i on a plane TI , are related 

to the corresponding image points p~ in the desired camera frame F . , by a projective 

homography such that 

(3.1) 
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Figure 3.1: Geometry of the homography between views 

where a1 is a positive scaling factor. Figure 3.1 illustrates the geometry of the con-

straint between different camera frames. 

The homography between initial and current camera poses k H i can be expressed 

and written in terms of the known parameters as 

(3.2) 

where plane II is expressed with the normal n i in the coordinate system of Fi , and 

its distance di to the origin of F i· The rotation matrix kR and the t ranslation vector 

k t i denote the position and orientation of the initial camera pose with respect to the 

current one. It is important to not ice t hat r = di / d* = det(H) [30]. 
. . zj 

The distances d~ and d* are unknown, but t he ratio flL = d: can easily be esti-

mated using the method developed in [16,81]. Taking note of n i = iR *n * [30], depth 
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ratio at frame Fk is obtained as 

(3 .3) 

Computing this ratio can be easily extended for targets not on l1 i.e. nonplanar 

targets [16, 30]. These parameters are used in the design of the control scheme and 

the path planning scheme. 

3.3 Target trajectory in image space 

The homography matrix kGi of plane l1 relating the current and desired images 

can be computed from the transformation matrix obtained from the current robot 

configuration qk using forward kinematics. 

The current camera position corresponding to robot configuration qk with respect 

to the initial camera pose i.e. kTi = (kR , kti ) is obtained from 

(3.4) 

where bR f and bRr are given by forward kinematics using the known init ial and 

current robot configura tions, respectively. 

Using equations (3.2), (3 .4) and (2.14), the projective homography is implemented 

as 

(3.5) 

Using equations (3 .1) and (3.5), the image coordinates of the points M J of the 
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target at configuration qk are given by 

. . . . . . . k . 

afcp{ = [afcu{ afcvL a{] = G iJJI (3.6) 

At each robot configuration qk , p{ is computed using equations (3.5) and (3 .6); 

thus the target is partially reconstructed in the image plane. This useful feature is 

used to design the path planner. 

3.4 Visual occlusion avoidance 

In order to ensure occlusion in trajectory planning for visual servoing, a collision 

detection is p rformed in the image plane b tween the reconstructed visual target 

(see details in Section 3.3) and projected obstacles. 

To project an obstacle onto the image plane in different frames, the geometry of 

the obstacle should be known. As the complexity of the geometry of the obstacle 

increases, more points on the obstacle need sampling and projecting such that the 

projection represents the object properly in the image plane. This task is not t rivial 

and requires complex algorithms to calculate the necessary points according to the 

camera point of view. 

To alleviate the problems associated with sampling, the bounding volume concept 

is borrowed from computational geometry. In computer graphics, bounding volum s 

are used in ray-intersection tests, and in many rendering algorithms, they are used for 

viewing frustum t ests. If the ray or viewing frustum does not intersect t he bounding 

volume, it cannot intersect the object contained in the volume. These intersection 

tests produce a list of objects tha t must be rendered . In collision detection , when two 

bounding volumes do not intersect , then the contained objects cannot collide, either. 
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Testing against a bounding volume is typically much fas ter than testing against th 

object itself, because of the bounding volume's simpler geometry. This is because 

an object is typically composed of polygons or data structures that are reduced to 

polygonal approximations. In either case, it is computationally wasteful to test each 

polygon for collision detection if the objects are not colliding. 

To obtain bounding volumes of complex objects, a common way is to break the 

objects down using bounding volume hierarchies e.g. OBB-trees [ 0, 82]. T he basic 

idea behind this is to organize a object in a tree-like structure where the root comprises 

the whole object and each leaf contains a smaller subpart. There are various convex 

bounding volumes, among which a bounding box appears beneficial to this work. A 

bounding box is a cuboid containing the object. In dynamical simulation, bounding 

boxes are preferred to other shapes of bounding volume such as bounding sphere 

or cylinders for objects that a re roughly cuboid in shape when the intersection test 

needs to be fairly accurate. The benefit is obvious, for example, for objects that rest 

upon other , such as an object resting on the ground; a bounding sphere would show 

the object as possibly intersecting with the ground, which then would need to be 

rejected by a more expensive test of the actual model of the object ; a bounding box 

immediately shows the object as not intersecting with t he ground, saving the mor 

expensive t est. 

In many applications, the bounding box is a ligned with the axes of the co-ordinate 

system , and it is known as an axis-aligned bounding box (AABB) . To distinguish the 

general case from an AABB , an arbitrary bounding box is called an oriented bounding 

box (OBB) . AABBs are much simpler to test for intersection than OBBs, but have 

the disadvantage that when the model is rota ted they cannot b e simply rotated with 

it, but need to be recomputed. In an ideal case, the OBB would be oriented such t hat 

it encloses an object as tightly as possible. In other words, the bounding box is the 
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(a)AABB (b} OBB 

Figure 3.2: Difference between AABB and OBB 

smallest possible bounding box of arbitrary orienta tion that can enclose the geometry 

in question. When compared with AABBs, OBBs generally allow geometries to be 

bounded more t ightly with a fewer number of boxes. The difference between AABB 

and OBB is illustrated in figure 3.2. 

Let M~ be a vertex of the formed OBB of the obstacle expressed in the coordinate 

system of the obstacle Fa· Given the transformation matrix from the base frame Fb 

to the obstacle frame Fa, projection of vertex M~ can b easily achieved through 

reformulation of the t ransformation matrix between t he obstacle frame Fa and Fk> 

frame attached to the camera at the current pose. Let bT a = (bR a, bta) b th 

transformation matrix between Fb and Fa. The mechanics of the problem is depicted 

in figure 3.3. The transformation matrix kT a with kR a and kta representing the 

rotation and translation components between Fa and Fk is given by 

(3.7) 
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Figure 3.3: Computing the obstacle projections in different camera frames 

governing the relation 

(3.8) 

where M{ are the coordinates of M~ expressed in Fk. 

To perform occlusion avoidance, the vertices of the obstacle OBB, M~ with j E 

{1..8} are projected on the image plane at frame Fk· The projection is obtained 

using the classical assumption that the camera performs a perfect perspective trans-

formation with respect to the camera optical center (pinhole model). Using kinematic 

relations (3.7) and (3.8), p{ is easily obtained from 

(3.9) 

by dividing r{p{ by the last component r{ The target is projected on the image plane 

through scaled 3D reconstruction explained in Section 3.3. Since the proj ctions 
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of the target and the obstacle are set of points on the image plane, the problem 

narrows down to collision checking of two convex hulls formed by these two sets. In 

mathematics, the convex hull or convex envelope for a compact1 set of points C is 

the minimal convex set2 containing C. In other words, any subs t C of the vector 

space is contained within a smallest convex set (called the convex hull of C), nam ly 

the intersection of all convex sets containing C. In computational geometry, it is 

common to use the term convex hull for the boundary of the minimal convex set 

containing a given non-empty finite set of points in the plane. The implementation 

of the Quickhull Algorithm3 in MATLAB is used to form the convex hulls of the set 

of projection points [82,83] . Let Cj with j E {0, 1} be the convex sets, respectively of 

the target and obstacle projection points on the image plane, with vertices (V/)~~ 1 

ordered counterclockwise. It is important to note that N1 = 8 x (number of obstacles) 

and N0 = n . In the sequel, two fast tests for nonintersection of convex hulls ar 

presented which are used to ensure occlusion avoidance. 

3.4 .1 Method 1: Separating axis theorem 

For objects lying in a 2-dimensional space, if there exists a line for which the intervals 

of projection of the two objects onto that line do not intersect, then the objects do 

not intersect. Such a line is called a separating line or, more commonly, a separating 

axis. T he translation of a separating line is also a separating line, so it is sufficient 

to consider lines that contain the origin. Given a line with unit-length direction B 

passing through the origin, the projection of a convex set C onto the line is the 

1 A set is compact if it is closed and bounded. To illustrate in one dimension , t he interval [0, 1] is 
closed and bounded, so it is compact. The interval [0, 1) is not compact since it is is bounded, but 
not closed. The interval [0, ) is closed, but not bounded, so it is not compact. 

2A set is convex if given any two points P and Q in the set, t he line segment (l - t)P + tQ for 
t E [0, 1] is also in the set. 

3Qhull , ht tp:/ j www.qhull.org 
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interval 

I = [>.min(B) , Amax(B)] = [min{B · V: V E C} , max{B · V: V E C}] (3.10) 

Two compact convex sets C 0 and C 1 are separated if there exists a direction B 

such that the projection intervals ! 0 and ! 1 do not intersect. Sp ifically, they do not 

intersect wh n 

(3.11) 

The superscript corresponds to the ind x of the convex set. The comparison results 

are invariant to changes in length of th vector since 

Amin(tB) = tAmin(B) and Amax(tB) = tAmax(B) fortE lR (3.12) 

and similarly th boolean value of the pair of comparisons is also invariant when B 

i replaced by th opposite direction - B (t = - 1). When B i not unit 1 ngth, th 

intervals obtained for the separating axi tests are not the projections of th object 

onto the lin , rather they are constant scaled versions of th projection intervals. 

The Normal direction vector- denotes the perpendicular direction to the separating 

axis, a direction that is not necessarily unit length. Given an edge ( u, v), an outward 

pointing normal direction is obtained from (u, v).L = (v, -u). Figure 3.4 shows two 

nonintersecting polygons that are separat d along a normal direction vector. The 

corresponding edge to the normal direction vector is annotated. It is obvious that 

the direction of the annotated edge is the separating axis. 

For a pair of convex polygons in 2D, only a finite set of s parating axis needs to 

be considered for separation tests. That set includes the normal direction vectors to 

the edges of both polygons. Since th number of vertices is limit d to a definite small 
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Figure 3.4: Nonintersecting convex hulls: obstacle projection and reconstructed target 

number (:::; 8m + n for m obstacles) , the direct implementation will be employed 

in which for a separation test for direction B computes the extreme values of the 

projection and compares them. That is, compute 

>.~in(B) 

>-tnax(B ) 

mino:::;i<Nj-1 {B · V/} 

maxo:::;i<Nj- 1 {B · V/} 

(3.13) 

(3.14) 

and test the inequalities in Equation (3.11). If there exists a direction for which the 

intervals of projection of the target and the obstacle onto that line do not overlap, 

then it is simply concluded that there is no occlusion at configuration qk . 

3.4.2 Method 2: Geometric verification 

If it is of interest to check whether target features are inside the obstacle projection 

convex hull regardless of the geometry of the target , geometric verification is used. It 

is important to note that the previous method tests whether the convex hull of the 
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target is overlapping the obstacle convex hull in image plane. But this method checks 

only for the intersection of the target features with the obstacle convex hull in the 

image plane regardless of the target geometry (convex hull) . 

A simple concept from geometry is used to perform the intersection detection. 

Given any three points on the plane (xo, Yo), (x1, Yt) , and (x2, Y2) , the area of the 

triangle determined by them is given by 

Xo Yo 1 
1 

Area= 2 xl Y1 1 (3.15) 

X2 Y2 1 

and is positive if the three points are taken in a counter-clockwise orientation, and 

negative otherwise. Figure 3.5 illustrates the concept for a target feature, V:0
. The 

convex hull formed by the obstacle projection, C 1 is the blue area. For a target feature 

V:0 to be inside the obstacle convex hull C 1 in image plane, the computed area should 

be positive for all the triangles formed by any two successive vertices of C 1 and V:0 as 

one traces around in a counter-clockwise direction from V0
1 to V~1 _ 1 and back to V0

1 

of the obstacle convex set. To check whether C0 is in collision with C 1
, all vertices 

of C0 , { V:,0 I i = 0 · · · N0 }, are tested for collision using the same procedure. 

3.5 Probabilistic Roadmaps 

PRM is a powerful and versatile sampling-based planner which can be used to solve 

high-dimensional problems. PRM divides the planning task into two phases: the 

preprocessing or learning phase, during which a roadmap is constructed in Q; and 

the query phase, during which user-defined query configurations are connected with 

the roadmap precomputed in the previous phase. In this section, PRM is utilized as 
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Figure 3.5: Geometric verification for nonintersection of convex sets (A)Target feature 
resides in 0 1 : All areas> 0 (B,C)Target feature is outside 0 1 : All areas> 0 (e.g. purpl region in 
B) except one area (i.e. Orange region in C) 

the path planning scheme for visual servoing. PRM will find a path from the initial 

configuration to the desired configuration so that the target is always in the FOV of 

the vision system mounted on the robot arm. In the following, a brief introduction 

to the two phases of PRM path planning is provided. 

3.5.1 Roadmap construction 

The PRM algorithm first constructs a roadmap in a probabilistic way for a giVen 

configuration space. A set of collision-free robot configurations V is chosen by a 

method over Q. The generation of these configurations is basically performed ran-

domly from a uniform distribution. The roadmap is represented by an undirected 

graph G = (V, E). The edges in E correspond to paths between nodes in V; an edge 

( q', q") corresponds to a collision-free path connecting configurations q' and q". These 

paths, which are referred to as local paths, are computed by a local planner. In its 

simplest form, the local planner connects two configurations by the straight line in 

Q, if such a line exists. Since the construction of the roadmap is computationally 

expensive, roadmap is build and stored in the preprocessing phase to be used in the 

query phase. 
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Initially, the graph G = (V, E) is empty; then, repeat dly, a configuration is sam­

pled from Q. The sampling is performed according to a uniform random distribution 

on Q. The nodes of the roadmap con titute a uniform random sampling of Q. To 

obtain a configuration, each rotational degree of freedom of the robot is ampled 

from th interval of allowed values of the corresponding degree of freedom (i. e. joint 

limits of the manipulator) using the uniform probability distribution over this inter­

val. If the configuration is collision-free, it is added to the roadmap. The process 

is repeated until N collision-free configurations have been sampled. For every node 

q E V , according to the metric distance function explained in Section 3.5.2 a set NNq 

of k closest neighbors to the configuration q is chosen from V. In order to determine 

the set NNq of nearest neighbors to a configuration q, many data structures have 

been proposed in the field of computational geometry that d al with the problem of 

efficiently calculating the closest neighbors to a point in a d-dimensional space. A 

capable and efficient method is the kd-tree data structure [82] (See Appendix A). 

The local planner is called to connect q to each node q' E NNq . Whenever the local 

planner succeeds in connecting q to q' , the edge ( q, q') is added to the road map. The 

algorithm to construct the roadmap is outlin d in Algorithm 1. 

Algorithm 1 checks each configuration for collision rather than applying lazy 

collision-checking strategy proposed in [7 4, 84] where it postpones collision tests along 

connections in the roadmap until they are absolutely needed. Ther are several rea­

sons to postpone collision tests. Checking collision consumes a lot of computations 

and most connections is not included in the final path and furthermore the collision 

test for a connection is the most expensive when there is no collision; and finally 

the probability that a short connection is collision-free is large [ 4] . However visi­

bility and occlusion avoidance constraints are computationally expensive, thus some 

of the computational burden is carried to the preprocessing phase by performing the 
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Algorithm 1 CONSTRUCTROADMAP(N, k, D) 
Require: number of nodes to put in the roadmap: N, 

number of closest neighbors to examine for each configuration: k, 
maximum search range: D 

Ensure: A roadmap G = (V, E). 

1: v f- 0 
2: E f- 0 
3: while lVI < N do 
4: repeat 
5: q f- a random configuration from Q 
6: until q is collision-free 
7: Vf--VU{q} 
8: end while 
9: for all q E V do 

10: NNq f- k nearest neighbors of q in range D queried from kd-tree 
11: for all q' E NNq do 
12: Ef--EU{(q,q')} 
13: end for 
14: end for 

collision checking in the preprocessing phase, despite the obvious advantages of lazy 

collision-checking strategy. 

In the query phase, the roadmap is used to solve user-specified queries. Given 

an initial configuration Qinit and a goal configuration Qgoal , th m thod first tries to 

calculate the k closest neighbors for the query points; Lhe local planner then attempts 

to connect Qinit and Qgoal to them. Assume that Qinit and q9oal are connected to 

only two nodes q' and q" , respectively, in V. As soon as they are conn cted to 

the same component, A* algori thm is run to search the graph G for a sequence 

of edges in E connecting q' and q". Finally, t he planner transforms this sequence 

into a feasible path for the robot by recomputing the corresponding local paths and 

concatenating th m. Local paths can be stored in the roadmap but this would increase 

the storage requirements of the roadmap. If the local planner is very fast, local 

paths can be calculated in the query phase without the need for storing them in 
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the pr processing phase. The roadmap can be further augmented to capture the 

connectivity of Q. Although the preprocessing phase is usually performed before any 

path-planning query, the two phases can also be interwoven [57]. It is reasonable to 

spend a considerable amount of time in the learning phase if the roadmap will be used 

to solv many queri s. More application specific details will be provided in Section 

3.6. 

Sampling strategy: uniform sampling 

Several node-sampling strategies have been developed over the years for PRM. For 

many path-planning problems, a surprisingly large number of general sampling schemes 

will provide reasonable results [57]. 

The uniform random sampling used in early work in PRM is the easiest sampling 

scheme to implement [58]. As a random sampling method, it has the advantage that, 

in theory, a malicious opponent cannot defeat the planner by constructing carefully 

crafted inputs. It has the disadvantage, however , that, in difficult planning example , 

the running time of PRM might vary across different runs. evertheless, random 

sampling works well in many practical cases involving robots with a large number of 

degrees of freedom. 

For orne difficult problems, uniform random sampling shows poor performanc 

and proves inappropriate as in the case of narrow passage problem [57]; thus more 

robust and efficient sampling strategy has to adopted [85, 6]. 

In this work, the choices for the sampling and connection strategies of PRM are 

reduced to a minimum to concentrate on the main purpose of the r search. The 

emphasis here is to describe a planner that is easy to implement and works well for 

visual path planning. Further implementation of more advanced sampling techniques 

and sophisticated collision detection methods is easily achievable. 
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3.5 .2 Configuration space and its m etric 

The configuration of a robot system is a complete specification of the position of every 

point of that robot system. The config7.lration space, or C-space, of the robot system is 

the space of all possible configurations of the system. Thus a configuration is simply 

a point in this abstract configuration space. Q and q denote, respectively, C-space 

and a configuration in C-space. The number of degrees of freedom of a robot system 

is the dimension of the C-space, or the minimum number of parameters needed to 

specify a configuration. 

A rigid robot manipulator with five joints has five degrees of freedom. Therefore 

its C-space is fully defined by five parameters q = (81, 82 , 83 , 84, 85 ) . Each joint angle 

ei corresponds to a point on the unit circle S 1 , and thus the C-space is S 1 x S 1 x S 1 x 

S 1 x S 1 = 'lr5 which is a five-dimensional torus. It is common to picture a torus as its 

surface since a 'lr5 torus has a natural embedding in JR6 as a circle S 1 has a natural 

embedding in JR2 . By cutting this five-dimensional torus along the 81 = 0, 82 = 0, 

83 = 0, 84 = 0 and 85 = 0 curves, one can flatten the torus onto the hyperplane in 

JR6 . The points on S 1 are ident ified by points in the interval [0 , 2n) C lR using this 

hyperplanar representation. Although this representation covers all points in S 1
, the 

interval [0, 2n ), being a subset of the real line, does not naturally wrap around like 

S 1 , so there is a discontinuity in the representa tion since S 1 is topologically different 

from any interval of R 

A metric has to be defined for the C-space manifold. The workspace region swept 

by the robot can be defined as a measure of metric. Intuitively, minimizing the swept 

volume will minimize the chance of collision with the obstacles. An exact computation 

of swept areas or volumes is disreputably difficult , which is why heuristic metrics 

generally attempt to approximat e the swept-volume metric [57, 62, 87]. 
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The technique proposed in [77] is employed and instead of the expensive theoretical 

calculation of the swept-region, an approximate method can be constructed as follows. 

Since 1!'5 can be embedded in Euclidean JR6
, th robot 's configurations Qn and Qm can 

be mapped to points in a Euclidean space and the Euclidean distance D Q(qn, Qm) in 

C-space between them can be used, 

(3. 16) 

where w is a weight vector that gives higher weights to the joints closer to the rol ot 

base since they have more effect on the motion range of the robot end-effector [59]. 

Considering the swept-volume metric, it is noteworthy that the embedding does not 

take into account obstacles. So ven when two configurations are close to one anoth r, 

connecting them may be impossible due to obstacles. 

3.5 .3 Local planner 

In order to find a collision-free path between nodes in V, a local planner is used that 

tests the path betw en configurations for collision and other constraints and associate 

the path with corresponding edge in E, if appropriate. 

Let ll be the local planner t hat takes two inputs q' and q" and returns either a 

collision-free path from q' to q" or NIL, if it cannot find such a path . 

The Local plann r has a significant role in preprocessing and query phas . Whil 

constructing the roadmap in the preprocessing phase, the local plann r tri s to con-

nect two neighbor nodes in V with a path and checks it for collision and adds the 

edge betw en them to E. The choice of t he local planner also affects the query phase. 

It is imJ ortant to be able to conn ct any given Qinit and Qgoal configurations to the 

roadmap or to detect very quickly that no such connection is possible. T his requires 
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that the roadmap be dense enough in order to easily connect qinit and q9oal to it . 

There is a tradeoff between the time spent in each individual call of the planner and 

the number of calls. 

Since 6. is a deterministic local planner, it will always return the arne path 

between two configurations and the roadmap does not have to store the local path 

between two configurations in the corresponding edge. The path can be r computed 

if needed in the query phase. On the other hand, if a nondeterministic local planner 

was used , the roadmap would have to store the local path computed by 6. with each 

edge which th n would have increased th storage requir ments of the roadmap. 

A simpl and popular planner connects any two given configura tions by a straight­

line segment in Q fr ee and checks this line segment for collision. Kavraki et al. [59, 77] 

introduce a fast and efficient local planner for articulated robots which can be easily 

implemented but it is beneficial to use a workspace planner in this work for two 

reasons: 

V is ibility constraint In order to take the visibili ty constraint into account during 

path planning, straight lines in the workspace are required . If the target is 

visible on two nodes of G, q' and q" , then the target will be within FOV on the 

straight line connecting q' to q" ; i.e. to ensure that the target remains in FOV, 

a path between q' and q" in workspace is required. 

D ifferentiable traj ectory Visual servoing control scheme requires the first deriva­

tive of the path to be tracked . To generate a C 2 pa th in image pace, a 3D 

path should be designed such that the control points on the path are equidis­

tant (i.e. th distance between two discrete intermediate camera poses r~ and 

r~+l should be constant) which requires the capability to measure distances in 

workspace. S ction 3. 7 introduces the generation of C2 trajectory in detail. 
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q' 

q" 

Figure 3.6: Subdivision collision checking in W 

The designed local planner ~ is a deterministic and symmetric workspace plan­

ner. It is noteworthy that the planning in the workspace requires more time than 

configuration space planning and that PRM construction is performed in C-space, 

however PRM local planning is carried out in workspace. 

Given any two configurations q' and q" , local planner ~ will connect them by a 

straight-line segment in workspace W using the metric introduced in next subsection. 

This line segment is a discretized line constructed with o configurations { q1 · · · qt, } 

where q' = q1 and q" = q6. The subdivision collision-checking algorithm is then used 

to test the line segment for collision [57]. Subdivision collision checking cuts down 

the length of the local path. In subdivision collision checking, the middle point Qm 

of the discretized line in W between q' and q" is first checked for collision. Then the 

algorithm recurses on the discretized lines between ( q', Qm) and ( Qm, q"). The r cursion 

halts when a collision is found. If none of the intermediate configurations yields 

collision, the path is considered collision-free [57]. Figure 3.6 depicts the subdivision 

collision checking algorithm for a sample path in W. 

The number of discretizations over the straight line betw en q' and q" is deter­

mined by a parameter, o, in discretization algorithm explained in the next subsection. 

In general, the value of o needs to be large enough to guarantee that all collisions 
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are found. Although o is assumed constant for simplicity, it is also possible to use 

an adaptive subdivision collision-checking algorithm that dynamically adjusts o [74]. 

Furthermore, the method proposed in [74] always finds a collision when a collision 

exists, whereas the above discretization technique may miss a collisi n if o is small. 

This value is dependent on the size of the obstacle in workspac . More precisely the 

distance between any two consecutive configurations in { q1 · · · qk} should be less than 

the size of the obstacle in every dim nsion. 

3.5.4 Workspace distance metric 

An articulated robot arm moves in a thre -dimensional Euclidean space IR3 which i 

referred to as the workspace W . The different physical locations of the end-effector 

as a rigid body lie in a non-Euclidean 6-manifold due to topological nontriviality. 

The Euclidean space is simply-connected by virtue of the sh'rinkability property. The 

robot workspace is, on the other hand, multiply-connected becau e of the existence 

of non-shrinkable loops [88]. There are thre dimensions (degrees of freedom) in the 

position of the center of gravity and thr e more in the rotational orientation of th 

body. Thus workspace metric cannot be expressed using Euclidean geometry. 

It is known that in SE(3) th re i no Ad-invariant Riemannian metric, which 

implies that there is no natural way of transporting vector fields between points of 

SE(3) and that there is no natural concept of distance on SE(3) [ 9] . T he two most 

common approaches to tackle this obstru t ion are 

• Ad-invariant pseudo-Riemannian structure 

• Double geodesic. 

Figure 3.7 illustrates the two po ible metrics for SE(3). Either choice ha ad­

vantages and disadvantages, according to the t ask in mind. In th left-hand side 

58 



Configuration nrfold SE(3l 

Riemanniann Metrlic oo SE(3) 

Dual Geodesic 

Riemannian Metric of S0(3) 

Euclidean Metric ofJR1 Screw Motion 

Figure 3.7: Metric structures for 5E(3): Dual geodesics and Ad-invariant pseudo­
Riemannian structure 

case, the group structure of 5E(3) is considered the Cartesian product of two dis­

tinct groups (rotations and translations) 50(3) x JR3 . However the right-hand case 

consists in choosing an inner product which is non-degenerate but can assume both 

negative and positive values. This corresponds to having curves with both negative 

and positive energy and gives as geodesics the so-called screw motions. 

The local planner in this research is based on the dual geodesic approach where 

the group structure of 5E(3) is considered separately by hi-invariant metric of 50(3) 

and the Euclidean metric of JR3 . Every configuration qk in V is mapped to bTk = 

(bR k, bt k) using forward kinematics. Therefore the workspace distance between any 

two configuration can be obtained using a weighted metric [90] given by 

(3.17) 

where the translation component ll tn- tmll is obtained using a standard Euclidean 

norm, and the posit ive scalar function J(Rn, Rm) gives an approximate measure of the 

distance between the rotations Rn, Rm E 50(3). Due to the incapabilities of Euler 
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angles to represent rotational components, unit quaternions are used to represent 

rotations. The rotation distance is scaled relative to the translation distance via 

the weights Wt and W 1.. Determining the proper weight values is a difficulty of this 

method. It is shown that the relative importance of the rotation compon nt decreases 

as the planning queries become harder [87]. 

There are multiple sets of Euler angles which can yield the same rotation cau ing 

ambiguity due to the interdependence of the rotations. In addition , when the ax s 

of two of the three Euler angles needed to compensate for rotations in three dimen-

sional space are driven to the same direction, a degree of freedom will be lost. This 

problem is called gimbal lock. More importantly, Euler angles have serious problems 

in rotation presentation in the context of path planning, namely, in interpolation and 

distance metrics. The measure of distance between Euler angles does not correctly 

handle multiple representations of th same rotation. Two sets of Eul r angles with 

relatively large differences in individual angle values may actually map to very similar 

or identical rotations in 50(3). The implication is a relatively large swept-volume due 

to the wrong interpolated values. These problems along with the difficul ty in defin-

ing metrics generally makes Euler angles a poor choice for representing the rotation 

component of SE(3) in path planning applications. 

Quaternions are us d to parameterize rotations in three dimensions, inspired by 

axis-angle parameterization of 3D rotations. Any arbitrary orientation in three di­

mensions could be achieved by a single rotation a about an axis v = (vx, vy, vz)· The 

corresponding unit quaternion is given by 

(3. 18) 

with the property that IIQII = 1. 
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In the context of path planning, unit quaternions are an excellent choice for rep­

resenting rotations since it is relatively easy to define methods for interpolation , and 

distance measure between quaternion rotations. Unlike Euler angles, it is possible 

to derive a geodesic metric for unit quaternion representations of S0(3) . The great 

circle arc on the 4D unit sphere between two unit quaternions defines a geodesic path 

for interpolating two rotations [90] . Given two unit quaternions Qn = (wn, Xn,Yn ,Zn) 

and Qm = (wm, Xm, Ym ,zm), the weighted rotation distance component of (3. 17) is 

given by 

(3 .19) 

where Qn · Qm = WnWm +xnXm +YnYm +znZm is the inner product of two quaternions. 

The angle formed by this pair of quaternions is related to the inner product by its 

cosine 

(3.20) 

The ability to smoothly interpola te between two rotations Qn and Qm in S0(3) 

along th great-circle arc is one of the great advantages of using quaternions. The 

geodesic for a 4D unit sphere is the great-circle arc. Points along this curve are the 

smoothly-varying intermediate rotations in S0(3) that connect the two rotations Qn 

and Qm· These intermediate rotations can easily be obtained by linearly interpolating 

two unit quaternions as points in JR4 and projecting the generated quaternions onto 

the 4D unit sphere. Spherical linear interpolation is used to perform interpolation 

between two unit quaternions [90], illustrated in Algori thm 2. First the inn r product 

is computed for two unit quaternions; if the rota tions are very close (f(Rn, Rm) < c:), 

then linear interpolation is performed . Otherwise, spherical linear interpolation is 

used to compute evenly-distributed intermediate points along the geodesic arc. Fi­

nally, the intermediate quaternions are normalized to prevent numerical drift result ing 
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Algorithm 2 PATHDISCRETIZE(q' , q" , 0) 
R equire : q': start configuration 

q": end configuration 
0: the number of discretizations 

Ensure: Discretized straight path ~ between q' and q" in W 

1: (Q' , t') f- FORWARDKINEMATICS(q') 

2: ( Q" , t") f- FORWARDKINEMATICS( q") 
3: TJ = Q' 0 Q" 
4: if rJ < 0 then 
5: Q' = - Q' ) TJ = - TJ 
6: end if 

1 
7: for i= 0 to 1 with increments of b do 

8: if 11 - rJI < E then 
9: r = 1 - i, s = i 

10: else 
11: cp = arccos(rJ) , T = sin

1
('P) 

12: r=sin ((1 -i)*cp)*T 
13: s = sin( i * cp) * T 

14: end if 
15: Q = rQ' + sQ" {rotational component} 
16: Q = rr§rr 
17: t = (1 - i )t' +it " {translational component} 
18: ~ f- ~ u ( Q, t ) 
19: end for 

from floating-point approximation errors. A step size parameter , 0, determines the 

density of the genera ted intermediate rotations in spherical linear interpolation al­

gorithm. Formula tions of angle-axis and unit quaternions [91] are us d to convert 

rotation matrix to and from unit quaternions. 

3.6 Queries and postprocessing queries 

The main purpose of the trajectory planning for visual servoing is to find a series of 

feature images that takes the initial image to the goal image without any occlusion 

by obstacles or collision of the robot with ob tacles. 
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Sine the initial con figuration of the robot and thus qi (i. e. the configuration cor­

responding to Fi) is known, q* (i .e. the configuration corresponding to desired image) 

can be computed using the obtained camera displacement information in Chapter 2, 

Section 2.1.3. PRM is employed t hen to find a path from Qi to q* such that it is 

collision-free, occlusion-free and such that the target remains in FOV. 

During the query phase, path between arbitrary input configurations Qinit = qi 

and q9oal = q* is searched using the roadmap constructed in the preprocessing phas . 

Algorithm 3 illustrates this process. A fast and inexpensiv algorithm is required to 

connect Qinit and Qgoal to the roadmap. The same strategy employed in Algorithm 

1 is used to connect Qinit to the roadmap. k nearest nodes in the roadmap in order 

of increasing distance from Qinu, is obtained using kd-tre (See Appendix A, Algo­

rithms 6 and 7) and local planner ~ tries to connect q.init to each of them until one 

connection succeeds. The same procedure is used to connect Qgoal to the roadmap. 

If the connection of Qinit and q9oal to the roadmap is successful, the shortest path 

between Qinit and Qgoal is found on the roadmap using the constrained A*, detailed in 

Algorithm 4. 

The number of closest neighbors (k) and maximum search range (D) considered 

in Algorithm 1 can be different from the one in Algorithm 3. Subroutine FINDPATil 

in this algorithm requires more explanation. A concise illustration of the details of 

this function is provided in Algorithm 4. 

3.6. 1 A* graph search 

A* is a best-first , graph search algorithm that finds th least-cost path from a given 

initial nod to goal nod in a graph. The input for A* is a graph G, the initial and 

goal nodes. The nodes correspond to the robot configurations and edges correspond 
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Algorithm 3 QUERYROADMAP(qinit, Qgoal, k, D , G) 
Require : Qini( the initial configuration 

Qgoal : the goal configuration 
k: the number of closest neighbors 
D: maximum search range 
G = (V, E) : the constructed roadmap 

Ensure: A path from Qinit to Qgon.l or failure. 

1: NNq,n;, - k closest neighbors of qinit from V in range D queried from kd-tree 
2: NNq

9 0
,.

1 
- k closest neighbors of Qgoal from V in range D queried from kd-tre 

3: V - { Qinit, Qgoat} U V. 
4: for all q E { Qinit> q90at} do 
5: q' - the clo est neighbor of q in NNq . 
6: repeat 
7: if PRMCONSTRAINT(q, q' ) then 
8: E - { ( q, q')} U E 

else 9: 

10: 
11: 

q' - next closest neighbor of q in NNq 
end if 

12: until a connection was successful or the set NNq is empty 
13: end for 
14: P - FINDPATH(qinit, Qgoal, G) 
15: if P is not empty then 
16: return P 
17: else 
18: return 0 
19: end if 

to adjacent nodes and have values corresponding to the cost required to traverse 

between the adjacent nodes. Here A* is used in the query phase of th path planning 

to return the shortest path. 

Algori thm 4 explains the details of the subroutine FINDPATH (i.e. A* search 

algorithm used in Algorithm 3 to find the shortest path). Th explicit path through 

the graph is represented by a series of back pointers. A back pointer represents the 

immediate history of the expansion process. Thus the outpu t of the A* algorithm is 

a back-point r path, which is a sequence of nodes starting from the goal and going 

back t o the start. 
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The A* search has a priority queue which contains a list of nodes sorted by priority 

denoted 0 in Algorithm 4, which is det rmined by the sum of the distance traveled in 

the graph thus far from the start node, and the heuristic. The proc ssed nodes in 0 are 

put in a closed set C. The set of nodes adjacent to current node xis d noted STAR(x). 

The length of edge connecting nodes x 1 and x2 , d(x1 , x2 ), is obtained from equation 

(3.17). The path-cost function , g(x), computes the total length of a backpointer path 

from current node x to Qinit. The heuristic-cost function, h( x), provides the estimated 

cost of straight-line path from current node x to goal node Qgoat· Since h(x) must be 

an admissible heuristic, it must not overestimate the distance to the goal. Finally 

f(x) = g(x) + h(x) is the estimated cost of shortest path from q~mt to Qgoal via x. 

The order in which the search visits nodes in the graph is determined by f(x). If 

f(x) = h(x), then the search becomes a greedy search since the algori thm is only 

considering what it believes is the best path to the goal from the current node. When 

f(x) = g(x), the algorithm becomes Dijkstra's algorithm becaus it is not using any 

heuristic function and grows a path that is shortest from the start until it encounters 

the goal [57]. 

A* is complete in the sense that it will always find a solution if there is one. 

In order to nsure optimality, all acyclic paths are explored to guarantee that the 

lowest cost path is found. This searching technique makes A* also optimal. A* 

will produce an optimal path if its heuristic is optimistic. The returned path may 

not be a smooth, short and efficient path and thus can be improved by running a 

postprocessing algorithm [45, 57]. 
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Algorithm 4 FINDPATH(Qinit, Qgoal, G) 
Require: Qinit: t he initial configuration 

Qgoal: the goal configuration 
G = (V, E): t he roadmap 

Ensure: A path from Qinit to q9 oal or failure. 

1: 0 f-- Qinit , C f-- 0, g f-- 0, J f-- 0 
2: repeat 

----- ---

3: nbest f-- the node in 0 with lowest f score 
4: if nbest = Qgoal then 
5: return constructed path 
6: end if 
7: 0 f-- 0 - { nbesd 

8: c f-- c u { nbest} 

9: Sf-- STAR(nbest) - STAR(nbest) n C 
10: for all x E S do 
11: 

12: 

13: 

14: 

15: 

16: 

17: 

if P R MCONSTRAINT(x, nbest) = PASSED then 
if x ~ 0 then 

Of--OU{x} 
else if g(nbest) + d(nbest, x) < g(x ) then 

Update x's backpointer to point to nbest 

end if 
end if 

18: end for 
19: until 0 is empty 

3.6.2 Visibility and occlusion avoidance constraints 

While algorithm 4 is checking the neighborhood of a configuration for possible low­

cost path, it also checks the local path for visibili ty constraint and performs obstacle 

detection using subroutine PRMCONSTRA1NT(q1 , q2 ) which employs the formulation 

developed in Sections 3.2, 3.3 and 3.4. This subroutine checks the input configura-

tions for visibility and obstacle occlusion constraints. Algorithm 5 illustrates this 

subroutin in detail. 

To ensure that the path between (Rm, t m) and (Rn, tn ) is collision-fre and occlusion­

free, another requirement is added to the local planner in Section 3.5.3. At each step, 
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Algorithm 5 PRMCONSTRAINT(qm, Qn) 

R equire : Qm., qn: two configurations 
Ensure: Ch ck for Visibility, Collision and Occlusion: PASSED or FAILURE. 

1: (Rm, tm. ) f- FORWARDKINEMATICS(qm) 

2: (Rn, t n) f- FORWARDKINEMATICS(qn) 

3: Compute pfn and p~ using equation (3.6) 
4: if (plm and p~ E FOV) then 
5: if path between (Rm, t m) and (Rn, t n) is collision-free and occlusion-fr e 

then 
6: return PASSED 
7: end if 
8: end if 
9: return FAILURE 

local planner checks for occlusion in addition to collision detection. More precisely, 

the local planner 6. will connect Qm to Qn by a straight-line segment in workspace 

W . The subdivision collision-checking algorithm is then used to test the line seg-

ment for obstacle occlusion in addition to collision detection. Figure 3.6 depicts the 

subdivision occlusion checking algorithm for the path between Qm and Qn in W for 

one of the features of the target. First , the middle point q' of the di cretized line 

in W between Qm and Qn is checked for occlusion using the machinery developed in 

Section 3.4. Then the algorithm recurses on th discretized lines between (qm, q' ) and 

( q' , qn) . The recursion halts when an occlusion is found . If none of the intermediate 

configurations yields occlusion , the path is considered occlusion-free. 

3 . 7 C2 trajectory planning in image space 

In the previous sections, a discrete image trajectory is generated for each of the target 

features. Cubic B-spline interpolation [92] i used in this section to design continuous 

and C2 differentiable image trajectories, as a requirement of the visual servoing control 

solution (sec equation (2.21)). 
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qm 

Figure 3.8: Subdivision occlusion detection for a feature in W 

The path generated by the query to PRM is reported by 8' = { Qi I i E 1 ... L} 

in the joint space which is used to computer' = {(Ri,ti) I i E 1 ... L} using 

forward kinematics. The corresponding discrete object trajectory in the image space 

is denoted Y' = { si I i E 1 . . . L}. 

The step parameter 6 in local planner in Algorithm 2 is chosen differently while 

performing the path planning than while generating final trajectory. The local planner 

requires a step value that ensures that there is no obstacle between the steps and 

so that the constraints are checked flawlessly. This will reduce the computations 

required to carry out primary path planning. However during feature trajectory 

generation, a sufficiently large 6 is used so that the camera poses are dense enough to 

ensure that the local minima are not reached between two camera poses. These local 
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minima correspond to physically invalid camera positions [11]. Using this method, 

new discrete s ts 8 = { qi I i E 1 ... K} in the joint space and corresponding path 

in workspace r = { (~ , ti) I i E 1 ... K} are generated wh re J( is larger than L 

depending on the value of step parameter. The discrete object trajectory in the image 

plane y = { Si I i E 1 . .. K} is computed from r . 

The distance between any successive camera positions (~ , ti) and (~+ 1 , ti+I) is 

not a constant value. To compensate for distance variation between configurations, 

a constant dist ance parameter ( is introduced. The distance between any successiv 

configura tions on the designed path is computed using the metric function in equation 

(3.17) in Section 3.5.4. The distance parameter ( is used to subdivide this distance 

in order to obtain a specific step parameter 6 for the path between camera posit ions 

(~ , ti) and (~+' , ti+1). This step parameter is denoted i6i+l and is given by 

(3.21) 

where qi and Qi+l are the joint space configurations from 8 = { Qi I i E 1 .. . K} 

corresponding to (~ , ti) and (Ri+1, t i+1 ) from r = { (~ ,ti) I i E 1 ... K}. It i 

important to note that there is bijective relation between r and 8 . Th number of 

elements in the new sets I< is given by 

L - 1 

I< = -z= i6i+l + 1 (3.22) 
i=l 

A decrease in ( will make camera poses in the final trajectory denser. It is worth 

mentioning that 6 is variable in final trajectory generation and constant in t he primary 

discrete path planning in Section 3. 5. 3. Although the distance between r i and r i+ 1 

is constant, the points in image space Y i and 1 i+1 are not equidistant. 
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Giv n the discrete data points T = { si I i E 1 .. . K} and the t iming parameters 

T = {ti I i E 1 . .. K}, a cubic B-spline s*(t) is computed such that s*(ti) = 

si. Obviously, the timing param ter set T is not provided in practice. In order to 

efficiently control the camera velocity, the time values are chosen spaced proportional 

to ( which is the distance between camera positions in r ; thu the time between 

two following image features in Y (i.e. ti+1 - ti) is constant. This difference 6.t = 

ti+l - ti = T can be chosen as the sampling rate T of the vision system [11]. 

The desired image trajectory of the features s*(t) has the property that s*(O) = st 

and s* (t I) = s*. Since there is no information about the end point derivatives, not-a­

knot condition is used which makes the first and the last interior knots inactive [93]. 

The B-spline interpolation equation for C2 function s* ( t) is given by 

(3.23) 

for the interval (i- 1)T ~ t ~ iT. Ai, Bi, ci and Di are 2n X 2n diagonal spline 

coefficient matrices obtained from T and T . 

The depth ratio set of features \II is estimated using scaled partial reconstruction 

and image features using equation (3.3) at each node of the path. Similarly, a contin­

uous function \ll(t) should be computed for the depth information, given the discrete 

set \II = {f?{lj = 1 · · · n , k = 1 · · · K} (with n and K being, respectively, the number 

of features and the number of intermediate camera poses) and the timing parameter 

set T. The B-spline interpolation function \II ( t) is given by 

(3.24) 

for the interval (i - l)T ~ t ~ iT. Ei, Fi, Gi and Hi are n x n diagonal spline 
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coefficient matrices obtained from T and Ill. 

3.8 Feature trajectory tracking 

The feature trajectories s* ( t) that take the initial configuration to the desired pos 

while ensuring the desired constraints, are computed using the path planning solution 

in the previous sections using spline interpolation. 

When the induced error s - s* is large, modeling errors may have greater effect on 

the performance and even the robustness of the visual servo. Coupling path planning 

with trajectory following improves the robustness of the visual servo significantly with 

respect to modeling errors and incapacity of the control scheme. 

Once the intermediate sub goal image trajectory s* ( t) is designed, the visual servo 

control scheme introduced in Chapter 2 is modified to take into account for the 

time-varying reference feature set so that the error s (t) - s*(t) remains small during 

visual servo. It is noteworthy that the interaction matrix (relat ion 2.19 in Chapter 

2) depends on the estimated parameter d* through homography formulations and on 

the depth of the target Z. 

A depth vector Z for the features on the designed trajectory is required but cannot 
. zJ 

be computed explicitly. Instead the depth ratio p~ = ___.!s.. will be used to rewrite the 
d* 

dynamics of the visual servo. The interaction matrix (2 .19) is rewritten to take this 

ratio into account: 

I (s*(t), w(t) , C, J'*) = [ au O l [.:. A(s*(t) , w(t)) B (s*(t))] 
0 CXv d* 

(3.25) 

Ill ( t) is the depth ratio function , computed using Ill and T by spline interpolation 
~ 

in the previous section. C and d* are the estimated value of C and d*, respectively. 
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A and B are two 2n x 3 matrices given by 

1 x1 
0 _!E. 

A = fJk fJk 
1 Yi 0 j ~ Pk 

(3.26) 

[ xklf. 
·2 

y( 1 - 1 - XJ 

B = 
k 

·2 -x{Yi 1 + Yi -XJ 
k 

(3.27) 

To track the image trajectories using an image-based control scheme, the error 

term of the visual servo control scheme (2.21) is 

. . . 8s* 
e = s = lr --

8t 
(3.28) 

assuming that the target is motionless. An exponential decoupled decay of e to zero 

(e.g. e = -K;e) is desired; thus the corresponding control law is obtained using 

equation (3.28) 
~ ~ 8s* r = -!); J+ e + J+ -

8t 
(3.29) 

~ 8s* 8s* 
where J+ ot compensates for the tracking error. It is noteworthy that ot is easily 

computed from equation (3.23) as 

8s* 
- = 3At2 + 2B·t + C 8t t t t 

(3.30) 

for the interval (i - 1)T :::; t:::; iT. 
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3.9 Summary 

The path planning algorithm, presented in this chapter , is a flexible PRM-based 

planning method which fulfills the necessary requirements of a visual path planner. 

A sampling-bas d (Probabilistic Roadmap) planning method is used to perform visu­

ally constrained path planning for manipulators. The algori thm is using a visibility 

constraint to keep the target features in t he camera FOV. An occlusion avoidance con­

straint is developed and used by the path generator to design occlusion-free paths. 

PRM also helps to generate a path such that the robot joint t rajectories are within 

kinematic range of the joints. The algorithm also ensures that the generated path is 

not in collision with the environment. Since it is assumed that the target does not 

have a 3D model, a homography bas d method is used to part ially reconstruct the 

target . If the target model is provided , the path planning can be easily performed 

by projecting the target on the image plane, similar to obstacl projection. Cubic 

B-splines are used to generate differentiable image t rajectories which are used for 

the visual servo as a time-varying reference in the image plane. T he classical IBVS 

control law is modified to be able to track the generated path. As will be shown in 

the next chapter, the control law is robust with respect to modeling errors and noise 

perturbations since the designed path int roduces subgoal image features and keeps 

the error small such that the local stability of the visual servo control holds. 

73 



Chapter 4 

Results 

About this chapter: This chapter describes the simulation results to validate the 

proposed path planning scheme. A brief discussion on the equipment used to carry 

out the simulations and off-line experiments is provided. This follows the description 

and analysis of the results obtained from various simulations. 

4.1 Robot and Vision System 

The CRS A255 articulated arms (Catalyst 5) is used world-wide in applications rang­

ing from automated laboratory tasks, automotive assembly and repetitive product 

testing. The robot arm is supported by the C500C controller and the RAPL3 pro­

gramming language for task planning and coordination. The fixed architecture con­

troller assures proper operation while it prevents one from implementing other dy­

namics and kinematics feedback controllers. In order to benefit an open architecture 

controller, the MultiQ ISA board interfaces the robot and the C500C amplifiers to PC. 

WinCon software allows one to run customized controllers using Simulink diagrams. 

One switch allows to take over the fixed control strategy. 
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A general review of the features of equipment is as follows: 

Robot & C500C Controller Articulated 5 DOF robot . Encoder feedback , servo 

motors, servo gripper , ± 0.05mm repeatability. Controller with 6 P \iVM servo 

amplifiers and processors which incorporate all the control algorithms required 

to perform the desired tasks. 

R APL-3 Programming language for continuous path , joint interpolation , point-to­

point relative motions. A straight-line plus on-line path planner to blend com­

manded motions in joint or straight-line mode. 

WinCon Client/ Server realt ime control from Simulink diagram and via the INTER­

NET. Standalone control with control panels. Realtime tuning and plot ting. 1 

kHz sampling rate for 5DOF system 

MultiQ board 8 A/ D, 8 D/ A, 8 Encoder inputs, 8 DIO, 3 Clocks. 

4.1.1 Vision System 

A Pantex Al02fc camera equipped with a monofocal iris lens is mounted on the end­

effector of the robot manipulator using a custom made bracket (see Figure 4.2) . The 

calibration of the int rinsic parameters of the camera is performed using standard 

camera calibration techniques1
. 

Eye-Hand Calibration 

Robot eye-to-hand calibration is the process of determining the transformation be­

tween the end-effector coordinat e system and the camera coordinate system . Gen­

erally, a number of movements of the robot arm and the corresponding changes in 

1 MATLAB toolbox for camera calibration , ht tp:/ / www.vision.caltech .edu/bouguetj f calibdoc/ 
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d 

CAT5 Wrist Flange 

Figure 4.1: Details of camera mounting (coordinate systems) 

image plane coordinates of a fixed object are required. Tsai 's method relies on use of 

the planar calibration target, for instance. An algorithm is then applied to determine 

the camera transformation [29]. 

Instead of p rforming the tedious calibration task, a more pragmatic approach is 

used to determine the transformation from the known geometry of the camera, l n 

(figure 4.3) and robot arm. The location of the CCD sensor plane within the cam ra 

is not directly measurable. However the lens manufacturer's data shows that the focal 

point of the lens is 17.526 mm behind the mating surface depicted in figure 4.3. This 

distance is called the Flange Focal Distance (FFD) and has the same value for C­

Mount lenses. The plane of an equivalent simple lens will be lo ated the focal length 

in front of the photo-sensitive surface of the sensor. From this data, the distance d 

in figure 4.1 can be inferred as 77.424 + .X. 

The coordinate frame of the camera is also shown in figure 4.1. The transformation 
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Figure 4.2: Camera mounting bracket 

can be expressed in terms of rotations and translations as 

0 -1 0 0 

1 0 0 0 

0 0 1 77.424 + A 

1 0 0 1 

l 
¢381 

l 
i'i':JtO? 

j 

(4.1) 

where A is the focal length and is determined by the camera intrinsic parameter 

calibration. The rotation component is the direction cosine representation of the 

rotation between the fifth frame and the camera frame. 
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sensor lens Mating 
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Figure 4.3: Details of camera, lens and CCD sensor location 

4.2 Tests and simulations 

The proposed method has been tested using the parameters of the 5-DOF eye-in-

hand CRS robot. Since image processing is not of interest, a simple black rectangle 

on a white background is used as a target in test s. Four corners of this target are 

extracted and tracked in the image space as visual features. Various researchers has 

thoroughly studied the application of visual servoing cont rol schemes to real objects 

and environments [94- 96] . The proposed method can be directly applied to real 

objects if matched points in the initial and desired images are available and can then 

be tracked. Due to the nature of the path planning scheme, visibility constraint needs 

to be taken into account as the fundamental constraint to generate appropriate paths 

for visual servoing. This constraint is the basic constraint that provides necessary 

modifications to PRM in order to generate visual paths. Joint limits constraint is also 

considered during preprocessing phase of PRM construction and therefore visibility 

and joint limits constraints are imposed on the basic queried path. Visual occlusion 

and obstacle avoidance are other constraints that make PRM capable to generate 
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Table 4.1: Preprocessing time for roadmap construction 
N Preprocessing (min) 

5000 34.3 
7000 62.6 
10000 108.1 
50000 613.9 

more flexible visual paths. The path planner is designed to gen rate trajectories for 

target of unknown CAD model. 

Test and simulations performed to validate the proposed path planning method 

are presented in th following subsections. 

Part A The results regarding probabilistic roadmap con truction are presented. 

Part B : Visibility constraint and joint limits constraint are taken into account 

in this series of simulations. A gcn ral off-line path planning is performed to 

confirm the extended robustness provided with the m thod with respect to 

modeling error and noises. 

Part C : In these set of off-line experiments, visual occlusion constraint and visibility 

constraint are studied in more detail in path planning and visual servoing. 

4 .2.1 Part A 

Probabilisti Roadmaps are constructed in MATLAB using mex-files EML (Emb d-

ded Matlab) features to run extensive computations faster. Table 4. 1 summarizes the 

computational details of probabilistic roadmap construction algorithm implemented 

in C-Mex. 

ote that joint limits constra int i · considered during preprocessing phase of PR ti 

construction. T he sampling is performed on the allowable kinematic range of m -
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Tabl 4.2: PRM preprocessing and query parameters 
Parameter 

N 
DQ 

umber of neighbors k (prepro.) 
umber of neighbors k (query) 

Joint weight wi 

Value 

50000 
10 
30 
20 

[1, 0.8, 0.8, 0.35, 0.2] 

tion of ach joint. Therefore the queried paths will be generated with imposed joints 

limit constraint. There is a trade-off between postproce sing and query durations 

with respect to obstacle avoidance detection. If the obstacle avoidance is postponed 

to be performed during query phase, the preprocessing will be much faster but the 

query time will increase. Since visibility and occlusion avoidance constraint are com-

putationally expensive tasks to perform at every configuration, the obstacle collision 

detection is performed in t h PRM preprocessing phase. Table 4.2 list all the param-

eters employed to construct the PRM. 

Previous research has suggested that the relative importance of the rotation com­

ponent in equation (3.17) decreases as the planning queries become hard r [90] ; tlm 

Wt and Wr arc chosen 0. 7 and 0.3. 

4 .2 .2 Part B 

In this section, it is shown that planning a trajectory for visual servoing is of general 

interest. U ing a designed time-varying reference s*(t) rather than a constant refer-

ence s* improves the performance of a classical visual rvo. The robustness of the 

classical visual servo is tested against coarse calibration of the cam ra. Path planning 

is also performed to demonstrate the improved performance of the visual servo. Three 

different scenarios are simulated: 
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1. Classical visual servo is carried out with correct calibration of intrinsic param­

eters. A constant reference s* is used. 

2. A 50% error is introduced in the intrinsic parameters and the same constant 

reference s* is used to perform the test once more. 

3. An image trajectory is designed for the tracking controller to t rack; thus time­

varying s* ( t) is used. A 50% error is introduced in the intrinsic parameters. 

The results of the above scenarios arc depicted in Figures 4.4, 4.5 and 4.6, respec­

tively. The feature trajectories are straight as expected with correct calibration pa­

rameters (Figure 4.4). However with modeling errors the trajectories are not straight 

lines in the image plane (Figure 4.5). T he motion of the camera is not predictable 

and the features may exit the field of view. As depicted in Figure 4.6, introducing 

time-varying reference s*(t) improves t he performance of the visual servo and th 

expected trajectories are obtained even when an important calibra tion error exists. 

It is important to note the differences of the feature errors in image space in Figures 

4.4, 4.5 and 4.6. 

As it can be seen, the error signals in Figure 4.6, decreases smoothly towards 

zero. Using the path planning for visual servoing thus makes the feature trajectories 

in image spac predictable as straight lines and provides better performance than 

merely controller-induced mot ion and significantly improves the robustness of the 

visual servo with respect to modeling errors. 

4.2.3 Part C 

One of the benefits of the proposed method is that it does not requir th model 

of the target . In all of the simulations the path planning is performed for a target 
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4.4.1: Target trajectory s(t) in image space 

10 

4.4.2: Error trajectory (s(t) - s*) in pixels in image space 

Figure 4.4: Visual Servoing using i+ ( s*, V , C) with correct intrinsic paramet rs 

with an unknown model. In these sets of off-line experiments, visibility and joint 

limits constraints are considered in the path planning. The joint limits constraint 

is considered during preprocessing phase of PRM construction due to the sampling 

method. Several set of simulations are pres nted to validate the performance of the 

proposed trajectory generator. 

In these tests, queries are made to the constructed PRM; the returned paths are 
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4.5.1: Target trajectory s(t) in image space 

10 

4.5.2: Error trajectory (s(t) - s*) in pixels in image spa e 

Figure 4.5: Visual Servoing using i +(s*, V , C) with 50o/c error in calibration 

post-proces ed and used to generate a cubic spline representation that is employ d a 

the reference for the visual servo tracking controller. 

Simulation of visibility constraint 

The visibility constraint developed in Chapter 3 is the primary con traint that should 

be used to g nerate visual paths for a visual tracker to follow. Th performance of 
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4.6.2: Error trajectory (s(t) - s*) in pixels in image space 

Figure 4.6: Visual Servoing using i+(s*(t), 'll(t), C, :f*) with 50% error in calibration 

the trajectory planning system is examined by performing ben hmarking simulations. 

The following simulation is not convergent with classical IBVS. The system accom-

plishes t he task with good results. The initial and desired imag s us d to design 

the path are depi ted in Figure 4.7. The fiducial features are the four orners of the 

rectangular target (shown with small gr en circles). 

The postprocessed camera trajectory in workspace for this enario is depi t d 
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4.7.1: Initial image si 4.7.2: Desired images* 

Figure 4.7: Original initial and desired images (with binary threshold) 

m Figure 4.8. The grey rectangle shown in Figure 4.8.1 repres nts the unknown 

planar target. The four corners of the rectangle are the features to be tracked. ( 

is chosen as 0.1 thus resulting 8 = 400 for this example. Figure 4.9.1 shows the 

tracked feature trajectories by the IBVS controller (see Chapter 3, Section 3.8). As 

it can be seen in Figure 4.9.2, the tracking error does not exceed 10 pixels. The 

exponential decrease of the error terms (s(t) - s*(t)) is shown in Figure 4.9.3 whi h 

is also depicted alternatively in Figure 4.9.4. Since the path is generated using the 

joint limits constraint, all the joint po itions are within limits during visual servo. 

To facilitate the illustration of the joint positions on one plot, joint positions are 

normalized into [- 1; 1] where - 1 and 1 represent the joint limits (see Figur 4.9.5). 

Figure 4.9.6 depicts the induced camera velocities or in other words computed 

control law. ote that the integration of angular velocity about x-axis, Wx, provides 

extra information and is not used in inverse kinematics of the 5-DOF robot arm; 

however, the corresponding computed control law decreases to zero. The correspond­

ing joint position displacement between the desired and the initial camera frames is 

large ( i.e. ( - 7.5, 0, 0, - 7.2, - 14.32) -7 (7.5, - 90, - 10, 16.8, 25.06) ). It is important 

to note that, as mentioned previously, classical IBVS fails in this case. 
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Figure 4.9: Visual servoing using the designed path in Figure 4.8 

87 



In the experiment whose results are reported in Figure 4.9, the intrinsic parameters 

given by the camera manufacturer are used. The same test is performed to examine 

the robustness of the system to noise and calibration errors. Figure 4.10 shows the 

performance of the system with 20% noise in the calibration parameters which is 

considered a coarse calibration. Figure 4.11 shows the performance of the system 

with 45% noise in the calibration parameters i.e. a bad calibration. 

It is important to note the high performance of the tracker in Figure 4.11. It is 

obvious that the visual servo task is performed successfully while the joint positions 

are within their kinematic ranges, as expected. One of the other benefits of path 

planning and tracking the trajectory is that the computed control signal is kept at 

a level which will not cause severe excitation of the joint motors, even though some 

filtering may be carried out. 

Simulation of visual occlusion avoidance 

In this section, the visual occlusion avoidance algorithm is activated and an obstacle 

with known model is added to the workspace. In this cas the path planner will 

attempt to circumvent the obstacle. Classical IBVS and PBVS cannot achieve visual 

servo tasks when there is an occlusion in the induced feature trajectories. The initial 

and desired images used to design the path are depicted in Figure 4.12. 

Figure 4.13 depicts the camera trajectory directly from the PRM planner. The 

obstacle is illustrated as a blue block in Figure 4.13.1. To further smooth the path, 

A* search is performed once more on the returned path. Furthermore the path 

postprocessing algorithm explained in [57] is used to improve the path. Figure 4.14 

shows the postprocessed version of the path shown in Figure 4.13. The trajectories are 

designed such that the target remains in the FOV while visual servo control solution 

takes the initial image to the desired one. It also ensures that joint positions are 

88 



100 900 

100 

200 

300 

500 

4.10.1: 'Itack d image plane trajectories s(t) 

4.10.3: Error (s(t) - s*) 

1 ---------- - -- - - - --------------- -- ---

-02 

-0.4 . § 
- 1 ------·----------·----------- - ------

-0.6 

-0.8 

~ ~ ~ 200 ~ 300 ~ ~ ~ 500 

4. 10.5: ormalized trajectories in joint space 

-10~o --:~7----:1oo=----:1~=---=200=---=.~~--:300:!::----:~:!::---:~:!::---:~:!::---:500~ 

4. 10.2: 'Itacking error (s(t) - s*(t)) 

-1~,----...,.,~----300~---=-200:!::---_7.100::------!-----::!100 

4.10.4: Error trajectory (s (t) - s*) in image 
space (pixels) 

0.4,--.-~-~---.---r--.---.---,...--~--n 

4.10.6: Camera velocities (m/s and rad/ ) 

Figure 4.10: Visual servoing using the designed path in Figure 4. with 20% noise 
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Figure 4.11: Visual servoing using the d signed path in Figure 4.8 with 45% noise 

90 



4.12.1: Initial image si 4.12.2: D sired images* 

Figure 4.12: Original initial and desired images (with binary threshold) 

always within limits and that visual occlusion is performed properly. The visual servo 

controller has accomplished performing the task. Figure 4.15 shows the convergent 

results of visual servo of the post processed path shown in Figure 4.14. As it is shown in 

Figure 4.15.2, the tracking error is not more than 4 pixels. The visual servo converges 

with an error of less than 1 pixel. The break point in image trajectory causes a corner 

in joint trajectory (e.g. see Figure 4.15.5). The same path in Figure 4.8 is thus further 

smoothed in the spline interpolation phase such that the break point is removed (see 

Figure 4.16.1 and 4.16.5). Although smoothing the path will provide a better velocity 

and acceleration profiles for joints, the generated path should be checked for occlusion, 

specifically in smoothing regions. If there is any occlusion, the path will be rejected. 

The simulation results of the visual servo using the smoothed path are depicted in 

Figure 4.16. It is important to note the difference in the computed control law betw en 

the smoothed path (see Figure 4.16.6) and the postprocessed path (see Figure 4.15.6). 

To show that the system is not sensitive to modeling errors, a 40% camera calibration 

is introduced into the system. It is obvious that the system is robust to errors and 

perturbations (see Figure 4.17). 
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4.14.3: Planned image plan trajectories s*(t) 

Figure 4.14: Postproc ssed camera and feature trajectorie in Figure 4.13 

4.3 Limitations and discussion 

A set of parameters influence the conv rgence of the proposed syst m. This section 

discusses the effect of these parameter on th convergence and performance of the 

proposed system. 
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Figure 4.15: Visual servoing using the designed path in Figure 4.14 
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PRM method is known to b probabilistically complete [57]. Several general 

paramet rs control the construction and query of the probabilistic roadmap which arc 

application sp cific. For instance, as the number of milestones N in PRM increases, 

the probability of finding a path increases and a more optimal path i expected if 

any. 

Although it is shown that the method is robust to camera calibration errors, sti­

mation of the depth of the target to the origin of the camera frame at the desired pose, 

d*, plays an important role in th conv rgencc of the system. Coar approximation 

of d* will caus the biased approximation of t * using homography decompo ition. It 

is noteworthy that the approximation of R * is exact; therefore the designed path will 

t ake the init ial image to the desired image with respect to the rota tional component . 

Then a control solution such as the classical visual servo has to ompensatc for the 

erroneous translational part which requires visual servo of three degrees of freedom 

instead of six. A switching controller may b used to take cont rol after t h design d 

path has been followed. 

To evaluate th system performance, an error of 20% is inl roduced in d*. In 

this case, th estima ted t * is biased (t * = [477.6210, 0, 460.3918] in tead of t * = 

[502.7589, 0, 484.6230]) . The results of this simulation arc shown in Figures 4.18 

and 4.19. The tracking control solution will take the initial imag to the estimat d 

pose whose results are hown in Figure 4. 1 ; then a pure IBVS controller will regulat 

the remaining t ran la tional error (t * - t *) in image space (see deta ils in Figure 4.19). 

In other words, the t racking control olution regulates the rotational component of 

the workspace rror . Since the magnitude of the computed control law of the con­

trollers is not compatible, the response of the controllers are depi ted separately. As 

shown in Figure 4. 19.5, the angular velocity of the camera frame is zero with pure 

IBVS control! r due to the complete regulation of the rotational error by the t racking 
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controller. 

It is obvious that the error in image space is not regulated completely due to th 

coarse estimation of d* (see Figures 4.18.3 4.18.4, 4.19.2 and 4.19.3) although the 

trajectory tracker has accomplished the tracking with les than 1 pixel final error. 
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Figure 4.1 : Tracking of the d signed path using rroncous d* 
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Chapter 5 

Conclusion 

The main goal of this thesis is to investigate a path planning sch me for visual servo­

ing. The designed path takes the initial pose to the desired po e such that the indue d 

camera and imag f ature trajectories are collision-free and such that the trajectories 

are not occluded with any obstacles and the features are retained in FOV. The vis­

ibility constraint and visual occlusion avoidance constraint are developed which arc 

integrated with a probabilistic roadmap to perform the visual path planning. Th 

visibility constraint ensures that the target features remain in FOV and the occlu­

sion avoidance constraint guarantees that the generated path is occlusion-free. Joint 

limit constraint and obstacle avoidance are implemented in the preprocessing phase 

of PRM path planning. Probabilistic roadmap uses a workspace metric in the query 

of the paths and a C-space based met ric for the preprocessing. 

Once the relation between the known initial and desired poses are computed using 

the projective homography between initial and desired images, a path is designed 

that connects the known init ial and computed desired poses in a PRM framework. 

It is noteworthy that the proposed method does not require a model of the target. 

Since the generated path is a discrete set of intermediate poses in the workspace and 
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points in the image plane, cubic spline interpolation is used to find a continuous and 

differentiable trajectory. A visual servo control solution th n tracks the generated 

path so that the error remains small and thus the local stability of the controll r 

holds . 

A seri s of simulations and off-line path planning is performed to validate the 

method. It is demonstrated that path planning makes visual servoing more robust by 

performing obstacle avoidance and occlusion detection. It is observed that the method 

has minimal sensitivity to the calibration errors , although there is an unpleasant 

dependence on th estimation of the depth of the target at the desired pose. 

5.1 Future Work 

During this research the following areas were identified to have possible future research 

potential: 

Visual Path Planning in a Dynamic Environment Th dynamic planning 

is path planning in dynamic environment. In the research of this thesis , the target 

and obstacle arc static. In case of dynamic planning, the implications of the moving 

obstacles and target in the designed constraints and the visual servo controller ar 

n cessary to be studied. 

Optimal Path Planning The current research results provide a path planning 

scheme in the workspace; thus the generated paths are optimal in the workspace. 

One possible extension is to integrate joint space and image space in probabilistic 

roadmap with some p rformance index to generate paths so that workspace and image 

trajectories arc optimal. In this case, the interaction of the planning components of 

the integrated planner requires an investigation. 

Eye-to-hand Visual Path Planning This research investigates the eye-in-hand 
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path planning. St udy of a path planning scheme for eye-to-hand visual requires a 

slight modifi ation to the PRM structure and constraints. Similarly, in this case ev ry 

mileston corr sponds to a point in th feat ure space. The vi ual servo controller will 

be the same but a negative sign will appear in the control law. 
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Appendix A 

K-nearest neighbor query 

Kd-tree is an orthogonal range query technique used to perform an efficient search in 

terms of space and time in a d-dimensional data structure to find k nearest neigh­

bors. A d-dimensional kd-tree takes as input a set of N points in d dimensions and 

constructs a binary tree that decomposes space into cells along the d dimensions such 

that no cell contains too many points. 

In the 5-dimensional case, each point is characterized with five values. In order 

to construct the kd-tree, at the root the set V of N points is split with a vertical 

hyperplane £ perpendicular to the first dimension x 1 into two subsets of roughly equal 

size. The splitting hyperplane is stored at the root. Vleft, the subset of points to the 

left or on the splitting hyperplane, is stored in the left subtree, and Vright, the subset 

to the right of it , is stored in the right subtree. At the left child of the root, Vleft 

is split into two subsets with another hyperplane which is this time perpendicular to 

the second dimension x 2 ; the points to the left or on it are stored in the left subtree 

of the left child, and the points to the right are stored in the right subtree. The left 

child itself stores the splitting hyperplane. Similarly, at the right child of the root, 

the set Vright is split with the hyperplane perpendicular to x 2 into two subsets, which 
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-------- x, 
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' ---------------- · Xs 

I ------------------ x, 

-------------- X 2 

Figure A.l: An exampl of a binary tree for a kd-tr e 

are stored in the left and right subtree of the right child. At the grandchildren of the 

root, the points are split with the hyp rplane perpendicular to x3 into two subsets 

at each of the four children of the root. The splitting is performed ontinuously with 

hyperplanes of x 4 then x 5 . This process cycles using hyperplanes of x 1 to x5 , until a 

point remains on the branches. Figur A.l illustrates how the binary tree looks like. 

A tree like this is called a kd-tree. 

The kd-tree is constructed with the recursive proce lure outlined below. Thi 

procedure has thre parameters: a set of points V , the current d pth depth and th 

number of dimensions d. The fir t parameter is the set for which th kd-tree has to 

be built ; initially this is the set V . The second parameter is depth of re ursion or in 

other words, the depth of the root of the subtree that th recur ive call constru ts. 

The depth parameter is zero at the first call. The third parameter is the number 

of dimension of the configuration space. The procedure returns th root of the kd­

tree. Nodes in a d-dimensional kd-tree correspond to regions of the d-dimensional 

configuration space. 

A kd-tree for a set of N points u es O(N) storage and an be constructed m 
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Algorithm 6 BUJLDKDTREE(V, depth, d) 
Require: A set of points V, t he current depth depth and the number of dimensions 

d. 
Ensure: The root of a kd-tree storing V. 

1: if PV contains only one point then 
2: return a leaf storing this point 
3: else 
4 : for i = 1 to d do 
5: Split P into two subsets with a hyperplane £ through the median xt-

coordinate of the points in V . 
6: \11 f-- set of points to the negative of £ or on £ . 
7: v2 f-- set of points to the positive of £. 
8: Vteft f-- BUILDKDTREE(Vj, depth+ 1) 

9: Vright f-- BUILDKDTREE(V2, depth+ 1) 
10: Create a node v storing £ , make Vteft the left child of v, and make vri ght 

the right child of v. 
11: return v 
12: end for 
13: end if 

O(N log N) time, considering that d is constant. Nodes in a d-dimensional kd-tree 

correspond to regions. The query algorithm visits tho e nodes whose regions ar 

properly intersected by the query range, and traverses subtrees (to report the points 

stored in the leaves) that are rooted at nodes whose region is fully contained in th 

query range. It can be shown that the query time is bounded by O(Nl - l/d+k) wh -re 

k is the number of the reported neighbors [82]. The query algorithm is explained in 

the following, which takes the root of the kd-tree and a rangeD and lc(v) and rc(v) 

denote the left and right child of a node v, respectively. 

Finding the nearest neighbor NNq to a given target point q not in the tree, is based 

on the ability to discard large portions of the tree by performing a simple test. The 

tree is s arched in a depth-first fashion and at each stage it makes an approximation 

to the nearest distance. When the algorithm decides that there cannot possibly be a 

closer point it terminates, giving the nearest neighbor. 
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Algorithm 7 SEARCI-IKDTREE(v, D) 
Require: The root of (a subtree of) a kd-tree, and a range D. 
Ensure: All points at leaves below 1.1 that lie in the range. 

1: if 1.1 is a leaf then 
2: return the point stored at 1.1 if it lies in D 
3: else 
4 : if r gion spanned by lc( 1.1) lies fully in D then 
5: return all the leafs stored in lc(v) 
6: else if region spanned by lc(v) intersects D then 
7: SEARCI-IKDTREE(lc(v), D) 
8: end if 
9: else 

10: if region spanned by rc( 1.1) lies fully in D then 
11: return all the leafs stored in rc( 1.1) 

12: else if region spanned by lc(v) intersects D then 
13: SEARCHKDTREE(rc(v) , D ) 
14: end if 
15: end if 
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