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Abstract

V  on feedback is a competent control technique for a large class of applications
but they suffer from several imperfections. The well-known image-based visual servo
(IBVS) methods regulate error in the image space i.e. the controller compares the
current view of the target against the reference view and generates an error signal at
the sampling rate of the vision 87 .em.

Contrary to position-based visual servo (PBVS), which regulates error in Cartesian
space, IBVS cnsures a local stability and convergence in the presence of modeling error
and noise perturbations since the control loop is directly closed in the image space.
However, sometimes (and specifically) when the initial and desired configurations
arc distant, the camera trajectory induced by VS is neither physically valid nor
optimal due to the nonlincarity and singularities in the relation from image space to

1¢c workspace which can cause the target to leave the field of view. Furthermore,
introducing constraints such that the target remains in the camera ficld of view and/or
such that the robot avoids its joint limits during servoing is not trivial in classical
PBVS and IBVS control techniques. When the displacement to realize is large, this
icapability leads to the failure of servoing process.

This research presents a method to resolve the problems associated with classical

servo control. Visual servoing control solutions are local feedback coutrol schiemes and
s require the definition of intermediate subgoals at the task planning level. This
work introduces and details a trajectory planning scheme in order to achieve more ro-
ust visual servoing through the introduction of subgoal images. This ensures that the
error signal is kept small since the current measurement always remains close to the
desired value so that one can exp” 't :local s Hility of 7 : 77 7/S cor ol solution.

The proposed method is b 1 Probabilistic Roadmaps (PRM)  d its flexible



platform is used to introduce desired coustraints such as visibility constraint, joint
limit constraint, obstacle avoic ace constraint, and occlusion avoidance constraint
to the generated path at the task planning level. It is noteworthy that visibility
constraint is intended to keep the target in the camera field of view (FOV). Joint
limit constraint restricts the manipulator to avoi its joint limits. Obstacle avoidance
and occlusion avoidance constraints ensure that the generated path is collision- and
occlusion-free.  One of the advantages of the prop  :d method is that targets are
not required to have 3D models. However the method requires a 3D model of the
obstacles to avoid obstacle collision and occlusion.

The proposed method plans the camera trajo tory using PRM and then deduces
the corresponding trajectories in the image plane which is a discrete geometric tra-
Jectory of the target in the image plane. A continuous and differentiable cubie spline

resentation of the feature trajectories in the image plane is computed to be used
5 a time-varying reference to pure 1BVS loop. Off-line path planning is performed
using the kinematics of a 5-DOF robot arm to confirm the validity of the approach.
Simulation of different IBVS scenarios is provided to demonstrate the erformance of

1¢ proposed method.
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Chapter 1

Introduction

About this chapter: This chapter introduces the problem addressed in this thesis.
A list of contributions of the thesis to path planning for visual servoing is provided.

Finally, thesis organization is detailed.

1.1 Introduction

During recent years, the number of robots operating in manufacturing sites and fac-
tories has astonishingly increased. Robot systems are employed for a variety of tasks
ranging from performing medical surgery to the task of assembling a car. Until re-
cently, use of robot manipulators has had shortcomings where the work enviromment
and ¢ ject placement had to be controlled accurately. This limitatio  was due to the
imherent lack of sensory capabilities of the robot systems. The significant motivation
to improve autonomy for robot systems has led researchers to investigate the integra-
tion of vision system into robotic systems. Although sensor integration has loug been
acknowledged to be fundamental to increasing the versatility and capabilities of the

robotic systems. specialized and costly hardware required to carry out video captur-



ing and image processing has been prohibitive. With the advent of new technologies,
this barrier has been removed and has resulted in various commercial robot systeims
cquipped with off-the-shelf hardware.

Vision is a beneficial robotic sensor since it mimics the human sense of vision and
allows for non-contact measurcment of the environment; c.g. integration of vision
with robotic systems makes manipulation of objects casier without the exact and/or
prior knowledge of the model of the environment and object. Robot control using
visual information has been an active rescarch field for decades. Visual sensing and
nianipulation were combined in an open-loop fashion (i.e. look then move) in the
carly works to correct the position of a robot to increase task accuracy [1]. The
accuracy of this operation depends directly on the accuracy of the visual sensor and
the robot end-effector. Machine vision can provide closed-loop position control for
a robot cnd-effector which is referred to as visual servoing. [1]. Visual servoing is
the fusion of results fromr many basic arcas ine 1ding high-speed image processing,
kinematics, dynamics, control theory, and real-time computing. A task in visual
servoing is to control a robot to manipulate its environment using vision as opposcd
to just observing tlie environment performed in active vision, motion from motion
and structure from motion.

Vision-based robot control using an eve-in-hand system can be classified into two
groups: position-based visual servo (PBVS) and image-based visual servo (IBVS)
systems (2], [3], [4], [5]. In a PBVS control system, the input is computed in the
thiree-dimensional (3-D) workspace [6]. which makes the camera a virtual 3D Carte-
sian sensor (for this reason, this approach is sometimes called 3-D visual servoing).
The pose of the target with respect to the camera is estimated from image features
correspol g to the perspective projection of the target in the image. Numerous

methods exist to recover the pose of an object which are all based on the knowledge



of a perfect geometric model of the object and necessitate a calibrated camera to ob-
tain unbiased results (e.g. [7]). On the other hand, in an image-based control system,
the input is computed in the 2-D image space [8]. IBVS controllers have gained more
popularity duc to the shortcomings of the PBVS method. Any error in calibration of
the lens camera system causes errors in 3D reconstruction and thus leads to erratic
task execution. In addition, since the control law for PBVS is expressed in workspace,
there is no mechanism to regulate the error in the image space and the target features

may exit the field of view (FOV).

1.2 Problem statement

Although the IBVS approach reduces computational delay and eliminates errors due
to sensor modeling and camera calibration [3], it poses a significant difliculty on
controller design since the overall plant is nonlinear and highly coupled leading to non
convergence issues of the controller [9]. The in - Hduction of kinematic and dynamie
constraints on the induced image and camera trajectories is also noi  ivial [10]. The

following is a description of the problems associated with IBVS -

e Sonictimes when the camera displacement to realize is large, camera trajectory
induced by IBVS is physically invalid and/or non-optimal due to the nonlin-
carity and potential singularities in the relation form the image space to the

workspace [11,12].

e Introducing constraints such that the target remains in the camera FOV and/or
such that the robot avoids its joint himits during serv is not trivial in classical

PBVS and IBVS control t¢ * * 1es [10, ]

oI 1g visual servo, feature correspondences may be lost due to ocelusion in






1.3 Research objectives

The main focus of this rescarch is to develop 1 off-line path plar ing scheme to
achleve more robust visual servoing. Furthermore, introduction of constraints into
the camera and image trajector  induced by visual servo control law is not a trivial
task. Thus the purpose of the trajectory ple 11 for visual servoing is to find a
series of intermediate feature es that takes the initial image to the goal image
while taking the required cons ints into account, namely visibility constraint and
occlusion avoidance constraint, roiding the obstacle and robot joint Imits. The main

focus of this research is to design a trajectory-generator such that
e keeps target features in FOV all the time,
e robot avoids i joint limits, and

e the generated path is not in collision and not occluded with any obstacles in

the workspace.

Additionally. the developed path planning scheme is intended to be flexible and
casily extendable to accommodate other kinematic and dynamic constraints. A de-
tailed explanation of the requirements and the problem is presented i Chapter 3,

Section 3.1.2.

1.4 Contribution of the thesis

The proposed method builds a flexible platforin using probabilistic roadmaps for path
planning for visual servoing by  nerating a trajectory that is further fed into a tra-
jectory following visual servo controller. This thesis develops the required constraints

for probabilistic roadmap to 1 pose on the generated pa”  One of the advantages

[



of the method is that it does not require a 3D model of the target. Vision-based

occlusion avoidance, obstacle avoidance and circummvention will be provided with the

aid of visual information available from the eye-in-hand configuration.

The resulting contributions of this thesis can be highlighted as follows:

1.

o

Developnment of a visual path planning scheme using probabilistic roadnaps
that makes classical visual servoing robust that relies only on two given initial

and desired images.
Development and implementation of two constraints for PRM visual path plan-
ning :

Visibility Constraint This constraint will force the target features to remain

m FOV of the camc

Occlusion Constraint Visual occlusion avoidance algorithm is developed in

PRM framework th:  avoids occlusion of the features by any obstacles.

Successful results are demonstrated to validate the proposed path planning

scheme.

1.5 Thesis organizatic..

Chapter 2 provides the fundamental concepts necessary for the rescarch performed

in this thesis. This chapter reviews manipulator kinematics, IBVS control and some

topics from computer vision.

Chapter 3 develops the machinery required for path plas * g and then describes

the proposed PRNM-based path planning scheme designed usit - the tools developed

carlier.



Chapter 4 shows the off-linc experiments conducted to verify the proposed method.
Advantages and disadvantages of the method are also discussed in this chapter.
Chapter 5 provides concludit  discussion about this research and presents some

future works.



Chapter °

background

About this chapter:  This chapter will first review some basic concepts from
computer vision and robot kinematics. Then the fundamentals of image-based visual
servoing (IBVS) are introduced. A @ ‘ussion on the performance of different IBVS

control schemes is presented.

2.1 rundamentals and conc pts

This scction presents an overview of some of the fundamentals of computer vision. A
brief explanation of the kincimatics of Catalystb robot armi used in this rescarch will

follow.

2.1.1 Lens and camera modeling

To control the robot using visual information, it is mandatory to understand the
geometric aspects of the in 11 process. Each camera is equipped with a lens that
forms a 2D projection of tl ‘ene on the image plane where the sensor is located.

Among several projection models for vision sys  n modeling, perspective projec-
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Figure 2.1: Can ra coordinate system and image plane

tion is employed to model the projective geometry of the camera as it is widely used
in visual servoing. A camera coordinate system is assigned such that the z-axis and
y-axis form a basis for the image plane. The z-axis is considered perpendicular to the
image plane along the optic axis. The origin of the image plane is located at  stance
A behind the camera coordinate system, where A is the focal length of the camera
lens (Figure 2.1).

Using the perspective projection model, a point M = [M 1T = [X Y Z 1]”
whose coordinates are expres | with respect to the camera coordinate system, will
be projected onto the image plane with coordinates m = [z y 1]" = [ % 1]". The
corresponding coordinates in  xel on the image | me will be denoted p [p 1]" =

[w v 1]", which will be related to each other through
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U
v |=C (2.1)
A
S
- 1

where
—MK, 0 uy 0

i

I
]

|
S
=
=
[
p—

Ug 0

0 0 1 0

The points such that S 0 arc called points at infinity of the image plane. If
U v . :
S # 0, then u = 3 and v = By expressing the quantities X, Y, Z and X in
h)

meters and w and v in pixel units, then the equations

U . X 5
u = § - —/\[\u? + uy (.23)
V LY
Vo= § = —/\1\,,2 + 1y (24)

show that I, and K,, are expressed in pizel xm™}. The quantities 1/K,, and 1/K, can
be interpreted as the size of the horizontal and vertical pixels in nicters, respectively.
The parame 1y and vy are the pixel coordin  «  of the principle point.

Matrix Cisanor ngular matrix containing the * trinsic parameters of the camera

lens system and can be ro itten as

y, 0 Uy

C = 0 G, Uy (25)
0 0 1
where «, = —AA, and a, = —AK, a ¢ _ “essed in pixels. These paramceters can
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be interpreted as the focal length in horizontal and vertical directions, respectively.

According to this projection nu -ix, equation (2.1) can be expressed as

p Cm (2.6)

2.1.2 Manipulator kinematics

A scrial manipulator consists «  a series of links connected by means of kinematic
pairs or joints. The whole structure forms an open kinematic chain where one end
of it is constrained to a base an end-cffector is connected to the other end of it.
The aim of this section is to derive the forward nematics i.c. compute the position
and orientation of the end-effector with respect to the manipulator base as a function
of the joint variables.

Denavit-Hartenberg (D-H) convention [13] is adopted to define and compute the
coordinate transformation between the links of a manipulator with five revolute joints.
The coordinate transformation between i-th coordinate frame and (i — 1)-th for two

successive joints is given by

;i —caist;  saysl; g,
st;, —cocl, —sa,cl; a,s0,

0 sqQ, C0x, d,

0 0 0 1 |

where ¢ and s denote, respectively, cos and sin of the specified a1 “es. Using the
coordinate systems established in figure = 2, the corresponding D-H link parameters
are listed in table 2.1 where as a3y dy 254 and d;  50.8.

The transformation matrices of robot links ¢ obtained using D-11 transformation
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kinematics.

(R, t) = FORWARDKINEMATICS(q) = FK(q) (29)

¢ INVERSEKINEMATICS(R,t) ZK(R,t)

where ¢ is the joint angle vector (6, 65.65,6,.65). R and t denote, respectively, the

rotational and translational components of YT, corresponding to ¢ .

2.1.3 Projective homography

There exists an analytic transformation from one image frame coordinates to the other
image frame coordinates, it the tokens on the image plane that have correspondences
arce produced by visual features situated in a plane. This analytic transformation is
a collineatron between the two image planes considered as projective planes and is a
function of the rotation and translation of the plane paramcters between two image
franies [14].

Figure 2.3 illustrates the geometry of the constraint between two images. The
origin of the camera at its initial position is at F; in figure 2.3. The position and
orientation of the second camera position with respect to the first one is defined by
the translation vector 't, and the rotation matrix 'R.,.

Let M= [M 1)7 = [X Y Z 1]" be a point on a plane I1. The coordinates M, and

M; of M in the two coordinate systems of the camera are related by
M, 'H.,M, (2.10)

where "H, denotes the Euclidean homography.
Since the Euclidean position of M in two camera frames cannot be directly mea-

sured, cquation (2.10) has to be related to the measurable image-space coordinates
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p ‘r )&/
Figure 2.3: Geometry of the homography looking at a plane

m=[ry ,given by

om; = ‘H,m, (2.11)

A
where &« = — is the depth ratio of M between the first and the second camera

Zy
coordinate systems. Using equation (2.6) and substituting

pi Cm,;, pz =Cmy (2.12)
into equation (2.11), the homography relationship can be expressed as
apy = iG*p2 (213)

where G, ~ R3*3, given by
‘G, = C'H,C" (2.14)



denotes the projective homography.

In practice, *G, is computed from the target feature correspondences. If the target
is planar, ‘G, can be estimated solving a lincar systemn using at least four points of this
plane [15,16]. On the other hand, if the target is non-planar, the estimation of ‘G,
becomes a nonlinear problem. Then three points can be used to define plane IT and
five supplementary points not belonging to 11 are needed to estimate 'G,. Lincarized
algorithm presented in [16] can be used to estimate the homography matrix in real-
time. Classical lincarized methods for computing the camera displacement based on
the epipolar gcometry can be found in [17] and [18] but near the convergence of the
visual servo control where the current and desired images become similar, the epipolar
base line becomes smaller and thus the epipo geometry becomes degenerate and
the estimate of the partial pose between the two views is biased with error [11].

Using equation (2.14). the Euclidean homography "H, of plane 1T is obtained from

'H, C''G.C (2.15)
and can be decomposed into a rotation matrix and a rank-1 mat ¢ [1415] of the
form

‘ it 7
’H,, == IR,., + 1— (21())
(,*

where plane I is defined by its normal n* expressed in the coordinate system of F,.

and its distance d* to the origin of F,.

2.2 Image-based visual servo...g

Visual servo control refers to the use of compu data to control the nic on of

a robot. The vision data is usually acquired from a camera that is mounted directly



on a robot manipulator wlere motion of the robot induces camera motion, or the
camera can be fixed in the workspace. The mathematical underpinning of all these
different configurations is similar and in this review the focus is primarily on the
former, so-called eye-in-hand case.

Visual servo control relies on techuiques from several rescarch fields such as image
processing, computer vision, control theory, kinematics and dynamics, mainly. Since
the main purpose of this work is to develop a robust path planning technique for IBVS.,
this section will focus primarily on issues related to control and stability issues that
are uniquely relevant to the study of IBVS control schemes. IBVS control solutions
regulate error in the image space and thus ensure a local stability and convergence in
the presence of modeling error and noise perturbations. A review of classical image-
based visual servo will be given and a brief discussion on the performance of IBVS is

provided.

2.2.1 Background

The purpose of IBVS control schemes is to minimize an error e(f), which is defined

by
e(t) = s(t) —s™(t) (2.17)

s(t) corresponds to visual features obtained from image measurcements. For a fiducial
point target, s(f) represents the image coordinates of interest points or for a circular
target, s(f) contains the image coordinates ¢ the centroid of the objeet. These
calculations are performed with some additional knowledge about the system such as
coarse camera intrinsic parameters. The vector s*(t) contains the desired values of
the features. In case of a fixed desired pose. s*(#) is a fixed vector, denoted as s*. . or

a camera mounted on a manipulator end-cffector (eye-in-hand configuration) changes
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in s(t) depend only on camera motion, if the target is assumed motionless.

To design an IBVS controller, the relationship between s and the  nera velocity is
required. Let s = (u,v) be the current value of visual features observed by the camera
and s* be e desired value of s to be reached  the image space and ¥ = [v!, w’]"
represent the camera velocity with v? being the instantaneous lincar velocity of the
origin of the camera frame and w’ being the instantancous angular velocity of the

camera frame. This relatic  hip is given by

é:?(s,Z,C)i‘:I(S,Z,C)i‘ (2.18)
r

in which I € R?"*0 is the interaction matriz or image Jacobian associated witl s for
n features and can be derived [1] by using the perspective lens camera model and

motion dynamics for a mounted camera as

x
= 0 = vy —1—a% y
I(s,7,C) = | @ 0 z |z (2.19)
0 o 0 - Z 1+y? —ry -
4 4
where = and y are given by
1
T - 0 U g
= R 1 (220)
Yy 0 — v — g
ty
In casc of eye-to-hand configuration, I  —L

Using cquations (2.17) and (2.18), the relationship between camera veloc 7 and

the time variation of the ror is derived as

Oe  0s™(t)
ot at

¢ s(t)y—s'(t)=1Ir+



e . . : As* ()
where the term is the time variation of e duce to target motion and denotes
Jt Jgt
the time-varying reference image features.
The existing control schemes compute the camera velocity sent to the robot con-

troller [9,19,20] with the form
r=1I"e¢ or r= f(I" (s —s")) (2.22)

since most of the commercial robotic systems aceept velocity input. If joint limits
avoidance and singularity avoidance is required, the robot Jacobian is used to map
the camera velocity directly to the robot joints velocity. In equations (2.22). function
f can be any control scheme from a simple pre ortional gain [21] to optimal control
in state space [22] or nonlinear control [23].

In order to ensure an exponential decoupled decrcase in error (e.g. € = —&e) and

using (2.22) (assuming that the target is motionless), the control law is expressed as
r=-xl'e (2.23)

where I7 represents the Moore-Penrose pscudoinverse of T and r denotes the input to
the robot controller.

In real visual servo systems, I or ITT cannot be perfectly determined. So an ap-
proximation or an estimation of one of these two matrices must be realized. In the
sequel, both the pseudoinverse of the approximation of the interaction matrix and
the approximation of the psceudoinverse of the interaction matrix will be denoted by

I*. Using this notation, the control law is in fact:
r —-«xlTe (2.2.1)
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There are several choices available for constructing I :

o It = “(t): In this case. the interaction matrix is numerically estimated using
cither an off-line learning step or an on-line estimation step during visual ser-
voing without using the analytical form given by (2.19). Neural networks have
heen used to perform the estimation {24]. The Broyden update rule can be used
for on-line iterative estimation of It 5], The main advantage of using such
nunmerical estimations is that it avoids a the modeling of camera and robot.
It is  articularly useful when using features whose interaction matrix is not

available in analytical form.

o I =T (s. Z, 6‘) In this case the interaction matrix is updated at each iteration
using the depth information Z of cach feature point [10,22]. Depth information
plays an important role in the convergence of the control scheme. 7 can be
obtained either from the 3D model of the target or the camera motion. Although
the image trajectories of points are straight, camera motion is shown to be far
from straight due to the condition number of T, leading to local minima and
approaching of visual servo task singularities.

o~

o It =T+ (s", 7+, C): T* is constant and is cqual to Tt at s* where e = 0 [9,26]. In
this case, no time-variant 3D parameter including depth estimation is performed
during visual servo. It is shown that this method provides more satisfactory
results than using the previous method. However the behavior of the control
scheme (computed camera velocity and the 3-D trajectory of the camera) could
be inadequate when the camera displaceinent to realize is quite large, although

it might converge [27].

o IT =1/2 (f’ O+ T (s 7, C‘)) It is reported that this choice provides
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good performance in practice [27,28]. 1n this case, the camera velocity compo-
nents do not include large oscillations and provide a smooth trajectory both in
the image and in 3-D. However since I'*(s, Z, C) is involved in this method, the

current depth of the features must be estimated.

The velocity screw of the camera r obtained from equation (2.24) is expressed in
the coordinate system of the camera. The equivalent velocity screw in base coordi-

nates of the robot arm is obtained [13] by

bvb bR(- —bR,(;thX CV(.

b W 0 b Rc CLU(-

0 —t, t,
tx=1| t, 0 —t, (2.26)
—t, t, O

IBVS is known to perform ¢ isfactory in the presence of important intrinsic and
extrinsic parameter calibration errors. However it is known that it suffers from sta-
bility and convergence problems [9,10]. T and thus I* may become singular leading
to an unstable behavior. In addition, due to the existence of unrealizable image
motions, local minima may be reached. In [9], it is shown that the control scheme
employing /I\*(s, 7, 6) may reach local minima, while employing T (s*, Zr é) allows
the system Lo avoid local minima if it computes image motions which are not unreal-
izable. Thercfore T+(S*. Z*, 6) is sometimes niore mteresting to use than T (s, Z, 6)
specifically when visual servoing is performed in the vicinity of desired robot pose

although there is no proof.
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A simple simulation demonstrates this issue. Figures 2.4 and 2.5 show, respec-
tively, the convergence of the visual servoing task using f*(s, Z, 6‘) a ]f*(s*, 7z, C).
The simulation of visual servo using i*(s, Z, é) converges in virtue of the assumption
of a wide FOV. It is important to note the boundary of FOV (das  dotted line) of
the camera in Figure 2.4.4. It is obvious that the visual servo using i*(s. Z, 6) does
not converge in real world since the target exits FOV. However visual servoing with
T* (s, Z,C) converges and results in a smoother performance.

This property is used to develop a path planning scheme in Chapter 3 by mtro-
ducing subgoal images to the visual servoing control schenie using f*(s", /Z\*, é) at
cach subgoal so that it takes the initial image to the desired one such that the error

remalus small all the time.

2.2.2 Local stability analysis

This section reviews the stability of the closed-loop visual servo systems using Lya-
punov analysis {27]. Let’s choose the squared error norm as the candi ite Lyapunov

function defined by £ = 1/2]Je(¢)]|> whose derivative is given by

“=ele=—re'Il'e (2.27)

Therefore a sufficient condition to ensure the global stability is “ven by
IT" >0 (2.28)

In practice, for most of visual servo control sc emes condition (2.28) can never be
. = ) . - e = -
ens  ad since . [T € L s at most a matrix of rank 6 e IT a null Hace

that cannot be casily determined.
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Using control law (2.24), each component of e is ensured a exponential decrease
with the samne convergence speed, causing straight-line trajectories to be realized in
the image space. It is however reported that the error reached may not be exactly
zero, and it is obvious that the system has been attracted to a local minimum far
away from the desired configuration. To guarantce the local asymptotic stability, a
new error € = ITe is defined. Taking derivative from both sides and using (2.21),

the following equation is obtained
¢ =Tté+Ite = (T'I+O)i (2.29)

where O € RY*9 is zero when e = 0 independent of T Substituting the control

scheme (2.24), equation (2.29) is rewritten as
¢ = —w(I"I+ O)e’ (2.30)

which is known to be locally asymptotically stable in a neighborhood of e = ¢* = ()
if condition (2.28) is ensured. Since the local asymptotic stability is of interest, only
the lincarized system & = —kI*Te’ Las to be considered. 1f T+ and T arc of rank 6
and the approximation involved in T* is not coarse then condition (2.28) is ensured.

In order to end the demonstration of local stability, it has to be shown that there
does not exist any configuration e € such that e € Ker T+ in a small neighborhood
of e* and its corresponding pose r*.

Configurations where r = 0 and e # e* correspond to local minima. If such a
posc r would exist, it is possible to restrict the neighborhood around r* so that there
exists a camera velocity ¥ to reach r* from r which would imply a variation of the

crror € = I'r. However, such a variation cannot belong to Ker I since ITT > 0.
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Thercfore, r = 0 if and only if € = 0 which implies e = e*, in a neighborhood of r*.

Even though local asymptotic stability can be ensured when n > 6, global asymp-
totic stability cannot be guaranteed. There may exist local minima correspouding
to configurations where e € Ker T+ which is outside of the stability neigliborhood
mentioned above. Although the convergence neighborhood is quite large in practice,
there is no mechanism to determine the size of it.

Singularities of the Jacobian will force the system to induce unexpected robot
trajectorics which might be due to the singularities in the interaction matrix or the

robot Jacobian.

2.2.3 Kinematic visual feedback control

The control law (2.24) produc a posc rate control signal that, for a position-
controlled robot, must be integrated to determine the robot joint angle control signal.
The integration can be performed in joint space or workspace.

The Cartesian velocity control signal can be resolved to joint velocity control

signal and integrated

q= /J+(r) dt (2.31)

where J* denotes the generalized inverse of the robot Jacobian J.

e resolved velocity control is less robust since numerical errors  the computed
robot Jacobian result in a workspace velocity slightly different from that demanded,
causing the robot’s pose to drift slowly with time. Since the performance of strong
kinematic control using inverse kinematics overweighs that of the above resolved-rate
control through robot Jacobian (i.e. weak kinematic control) due to the mentioned
incapability. integration in workspace is preferred [29]. In this control technique.

desired workspace velocity is integrated and the corresponding joint positions arce
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obtained using inverse kinematics

q= I/C(/ P dt) (2.32)

2.3 Summ-~-y

Some fundamental concepts from vision system modeling are presented. The pro-

jeetive homography i.c. relation between the correspondences in different views is

studied. The formulation to con | 1te and decompose this relation into camera trans-
formation is reviewed. The basics of IBVS control are presented in this chapter and
various choices of the interaction matrix for IBVS with a brief disct  ion on the ad-
vantages and disadvantages of each method is provided and it is shown that visual
servoing using a constant interaction matrix at the desired pose sometines provides
more robustness to control solution. This chapter also reviews the | of of the local
stability of IBVS which holds when the error to regulate is small. It is also explained
that integration of the velocity = 7 in workspace rather I 11n job  space provides

a stronger kinematic control.
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Chapter 3

Path-plannine for vis*ral scrvoing

About this chapter: This chapter introduces a path planning technique to im-
prove the robustness of the pure image-based visnal servoing (IBVS) control sclieme.
A thorough review of the state-of-the-art techniques used for robust IBVS control
and robot motion planning using sampling-based methods will be presented. First
the definitions and the formulations for partial target reconstruction and occlusion
avoidance are developed which will then be used > design a visual servoing trajectory

planner based on probabilistic roadmaps (PRM).

3.1 Introduction

IBVS is a popular vision feedback control loop technique which measures the ervor
signal directly in sensor space and maps to workspace. Since the ¢ oris regulated
directly in image space, stability and convergence in the presence of modeling error
and noise perturbations is ensured locally [26]. However, sometimes (and specifically)
when the initial and ¢ red cor rations are distan  the camera trajectory induced

by IBVS control scheme is neither physically valid nor optimal due to the nonlinearity
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and singularities in the relation from image space to the workspace expressed in
cquation (2.18) [9]. More preciscly, the control scheme can cause excessive control
action and transient response which can cause the target to leave the FOV. Visual
servoing control solutions are local feedback control schemes and thus require the
definition of intermediate subgoals in the sensor space at the task planning level [11].
Therefore, this chapter proposes a path planning solution that uses the local stability
of IBVS (discussed in Chapter 2) by specifying sufficient trajectories to be followed
in the image space. 1f the initial error is too large, a reference trajectory including
a sequence of images can be designed. The initial error is sampled so that at cach
iteration of the control scheme, the error to regulate remains small; thus exploiting
the local stability of IBVS. In other words, the approach uses the path to improve
the robustness of purc IBVS such that the error is small enough for the local stability
to hold. One of the other shortcomings associated with classical PBVS and 1BVS
control techniques is the nontriviality of accommodating constraints such that the
target remains in the camera FOV (i.e. visibility constraint) or such that the robot
avoids its joint linits during servoing. When the displacement to realize is large, this
incapability leads to the failure of servoing process [10,11]. The proposed method
utilizes the flexible platform provided by PRM to introduce visibility, joint limit,

obstacle avoidance and occlusion constraints.

3.1.1 Related Work

In the following, a detailed review of the state-of-the-art techniques used to unprove
the performance and robustness of IBVS is provided. Then, a review on the applica-
tion of the sampling-based methods (e.g. PRM) to manipulation planning and robot

motion is pres  ed.
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Robust visual servoing

Visual servo control system design is one of the methods used to enhance the pure
IBVS by partitioning the visual servo dynamics or by exploiting the advantages of
IBVS and PBVS to investigate hiybrid approaches. Most of these strategies ensure the
local stability of the controller and fail when the displacement is large. Introducing
subgoals to the visual servo controller using path planning schemes leads to more ro-
bust results by using an IBVS control scheme as a local controller. Potential function
approach has been extensively utilized to perform trajectory planning in hmage space.
[Tomography interpolation is another method that some rescarchers have investigated
with some reported benefits.

In IBVS, the control loop is directly closed in the image space which ensures a local
stability and convergence. Although the method regulates the error in the presence
of modeclling error and noise perturbations, the control scheme may yield excessive
control action and transient response which can cause the target to leave the FOV
and cause unspecified behavior.

Different characteristics of IBVS and PBVS lave motivated several rescarchers
to investigate hybrid approaches to improve the global stability of the control solu-
tion. Malis et al. [30] have proposed a homography-based globally stabilizing control
scheme called 2 4-D visual servoing. This method decomposes the translational and
rotational components of homography matrix and thercfore performms the partial re-
construction of the target to extract the Cartesian component of the error function.
[t employs some advantages of IBVS and PBVS approaches to develop a control
scheme that does not require the accurate geonietric model of the environment or
the target. The potential singn ities in the interaction  trix are = > 7 ated

since the image Jacobian matrix is designed to be triangular for home aphy-based



visual servo. Notivated by the advantages of the homography-based technique, vari-
ous error regulation controllers for robot manipulators have been developed which are
intended to improve the behavior of basic IBVS and PBVS. In [31], a Lyapunov-based
homography-based adaptive control strategy is employed to actively compensate for
the lack of unknown depth measurements in order for a robot end-effector to track
a desired workspace trajectory as determined by a sequence of images for camera-in-
hand and fixed-camera configurations. A visual servo tracking controller is developed
for a monocular camera system mounted on a Unmanned Aerial Velicle (UAV) to
track a leading UAV with a fixed relative position and orientation [32]. In this work,
reference desired feature points on the leading UAV are provided from a prerecorded
desired image set. An iterative learning control schieme for robot planar motion visual
servo with an arbitrarily mounted camera is presented in [33] which is, however, valid
when the image plane and the motion plane are parallel with a constant. but unknown
image Jacobiann matrix and uses an tterative learning control law with a Nussbaum
learning gain to perform trajectory tracking in the presence of camera calibration
errors. In another similar work [34], a visual servo tracking controller is developed
for an underactuated wheeled mobile robot (\WNMR) subject to nonholonomic motion
constraints with a monocular camera system mounted on it. Again, a prerecorded
image sequence (e.g., a video) of three target po  ts is used to define a desired trajece-
tory for the WMR which is compared  hthel feat s to create the error vector.
While homography-based approaches exploit the benefits of IBVS an PBVS, a com-
mon problem with all the aforementioned approaches is the inability to achieve the
control objective while ensuring a specific constraint. Introducing constraints in the
realized trajectory such that the target remains in the camera FOV or such that the
robot avoids its jomt limits  not trivial. Without >propriate measures to account

for these constraints, the object can exit the FOV or the robot may reach its joint
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limits [11].

In IBVS control solution, where control is effected with respect to the nmage,
there is no direct control over the Cartesian velocities of the robot end-effector. As a
result, the robot exccutes trajectories that are desirable in the iimage. but which can
be contorted in Cartesian space. To overcome this problem, Corke and Hut son
[35] have proposed a method which decouples the z-axis rotational and translational
components of the control from the remainin — degrees of freedom. In [36]. a method
is proposed to avoid the joint limits by using a shortest-path approaclhi which is
predictable and its generated minimized straight line trajectory avoids trying to move
outside the robot workspace in most cases, although there is no direct control on it.
In [37], Gans and Hutchinson developed a strategy that switches between an IBVS
and a PBVS controller to ensure asymptotic sti ility of the position and orientation
(i.e. pose) in the Euclidean and imé¢ - space. There is the possibility of feature
points leaving the image plane in all hybrid schiemes and a direct solution is required
to keep the target in the FOV. However, for 6-DOF visual servoing. Malis et al. [38]
guarantee that a single feature point reimains within the FOV. Morel et al. [39] extend
this idea by decoupling the translational motion of a custom-designed feature vector,
a circle containing all the feature points, from the rotational motion of the camera to
guarantee that all feature points remain within the FOV. However, in addition to the
nmentioned imperfections, partitioning of the control often causes the Cartesii path
to become more complex, which might result in operation close to e joint limits.
When the displacement to realize is large, the aforementioned deficiencies often lead
to the failure of the servoing process [32].

To address the issues mentioned above to improve the global stability of visual
servo, a definition of intermediate subgoals in the sensor space at the task-planning

level is required.  For instance, in [34], a prerecorded sequence of sul al features
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in the immage plane is manually provided to the control scheme which regulates the
changing crror while the object is moving towards the desired goal. In [20,40], the
null space of the Jacobian is exploited to introduce other constraints such as joint
limit avoidance and visibility constraints. However, if all the robot degrees of freedom
are used to realize the task, the null space can not be exploited to perform secondary
tasks and therefore this method is not beneficial. An aligninent task using interme-
diate views of an object is presented in [11] which employs image morphing. A path
planning for a straight-line robot translation observed by an uncalibrated sterco-rig
system is performed in [42] usit  interpolation and homography:.

Several recent. papers use potential functions and navigation functions for path
planning to basically introduce constraints and address the FOV problem. In [35],
keeping the target in FOV is considered as a collision avoidance problem m image
space and employs potential field techniques to repel the feature points from the
immage plane boundary. Mezouar et al. [43] use the approachi of image-based path
planning and local visual servoing along the intermediate subgoals on the path to
avoid mechanical limits and visibility obstacles. In another work, I >zouar ct al.
[11,44] developed a trajectory planning scheme which generates subgoal features for
a basic visual servo control solution to follow. Potential functions are employed to
perform the path planning and to introduce visibility and joint limit constraints. The
proposcd miethod does not require the 3D mod — of the target and an exact camera-
intrinsic parameters.

Local minima associated with traditional potential functions may exist [45]. A
basic strategy to take out of potential local minima is to execute a random motion

by favoring the repulsive force. Obviously, reaching the global minimum is not guar-

anteed. To ensure such a proj 7, speciali: 1 potential functions free of stable local
minima called navigation functions (NF) are constructed whicliis or  1ally proposed
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by Koditschek and Rimon [46,47).

In a series of papers [48 50], Cowan ct al. cimploy navigation functions to in-
troduce attractive or repulsive potential to the desired pose, objects and obstacles
accordingly. In [48], a globally stabilizing method using navigation mction is pro-
posed that guarantees visibility. A trajectory planner is described in [51] for sterco
vision system using navigation functions and applied to obstacle avoidance.  For
nonholonomic mobile robots, Zhar  and Ostrowski [52] adopt path planning to find
kinematic trajectories that keep features within the FOV. In [53], Cowan ct al. devel-
oped a hiybrid position/image-space controller that forces a manipulator to a desired
pose while ensuring the object to remain visible through navigation functions and by
avoiding pitfalls such as self-occlusion. An image-space based follow-the-leader appli-
cation for mobile robots was developed in [54] that exploits an Iimage space navigation
function. Specifically, an input/output feedback lincarization technique is applied to
the mobile robot kinematic model. An NF-based approach to the follow-the-leader
problem for a group of fully actuated holonomic mobile robots is considered in [55]
where configuration-based const:  nts are developed to ensure the robot edges renain
in the sight of an onmmidirectional camera. A Lyapunov-based analysis is provided
in [55] to ensure that the NF decreases to the goal position.

Potential and navigation functions, arc path planning techniques that incremen-
tally explore free space while scarching for a path. These path planning algorithis
mancuver through free space without constructing the configuration space and can be
applied to a large class of robots since they apply to a more general class of configura-
tion spaces, including those that arce multidimensional and non-Euclidean. However
navigation planners based on this technique have disadvantages. Nav' ation functions
do not suffer from the local minima problem associated with potential functions and

provide the machinery to apply potential functions to second-order plants, while still
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ensuring obstacle avoidance with convergence guarantees and no need for intermediate
trajectorics. However, constructing such a navigation function requires the complete
knowledge of the space topology and the object model, and many advantages of the
approaches based on potential functions such as robustness with respect to modeling
errors and application to an object with an un »wn CAD model w  be lost [11].
In [56], a trajectory generator for a visual servoing svstem using stereo vision
is proposed to make the | stem accomiplish obstacle avoidance tasks in unknown
environments. Using the epipolar constraint, the proposed scheme can generate tra-
jectories for the visual servoing system on the 2D image planes to avoid obstacles

without reconstructing 3D geometry.

Sampling-based path planning for manipulators

Different roadmap based plannc  such as visibility graphs and Generalized Voronot
Diagrams (GVD) build maps in the free configuration space. Each ¢ these methods
relies on an explicit representatic  of the geonietry of the configuration space. There-
fore these planners become impractical as the diniension of the configuration space
increases [57].

In recent years, a number of sampling-based motion planning algorithms such
as probabilistic roadmap planners (PRMs) {58,59], Randomized Path Planner (RPP)
[60,61], and Rapidly-explot  Rar " m Trees (I Ts) [62] have been introduced which
have had considerable success in solving motion planning problems, specifically with
many degrees of freedom (DOFs) [58,63]. Path planning methods can be categorized
cither as single query planning or multiple query planning methods.  Single query
planning methods compute one path for the environment fast and without prepro-
cessing. However multiple query planning nmiethods compute many paths for the same

environment and thus the environment model can be preprocessed. PRM is one of
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the most powerful and capable multiple query planning methods.  Sampling-based
methods utilize a variety of strategies to generate samples (i.e. collision-free config-
urations of the robot) and then connect the samples with paths to obtain solutions
to path-planning problems [58]. Unlike carlier planners which rely on the explicit
representation of the obstacle boundary in the configuration space, sampling-based
methods use a collision detector as they search the configuration space. Sampling-
based methods are used to address problems that extend beyond the classic path
planning where dimensionality is an issue. Sampling-based methods have been ap-
plied to various rescarch fields ranging from computer animation of human figures,
centralized and decoupled planning of multiple robots to manipulation planning and
assembly planning [57].

PRM checks if a single robot configuration is in collision-free space, Q.. achieved
through collision detection. A configuration ¢ is collision-free, if the robot placed at g
has null intersection with the obstacles in the workspace. The free space Q. is the
sct of free configurations. PRM uses collision-free configurations to create a roadmap
in Q. After the roadinap ho been generated, planning queries can be answered
by connecting the user-defined initial and goal configurations to the roadmap, and by
using the roadmap to Hlve the path-planning prob  n at hand [58].

PRM planners are capable of dea™ ; with robots with m. _ degrees of freedom
and with many different constraints de | te their simplicity. In [64].  sampling-based
planner is developed that imposes kinodynamic constraints on the path. T [65.606]. a
path planner for closed kinematic chiains is presented that takes closed-loop kinematics
into account. A fast planner is designed for vertically-climbing robots in [67] which
relies on an efficient test of the quasi-static equilibrium of the robot. A sampling-based
planner is used to perform recc ™ aration plar i1 of self-configur 5 modules using

appropriate reconfigurable constraints for rece ible robots [68, ). Lamiraux ct



al. describe a path planning scheme for elastic objects under energy constraints using
the principles of elasticity theory . J]. In [71], a planner is developed that ensures the
planned path to be compliant to a desired contact constraint. In [59,72]. the shortest
path for the robot is designed using a visibility constraint such that cach point on
boundary of the workspace is visible from some point on the path. In this thesis,
however, visibility constraint is meant to keep the target in FOV.

Motion planning for manipulators typically involves the finding of a collision-frece
path from an initial configuration of the robot to a goal configuration of the robot. The
multiple movers problem deals with path plann g for many robots [73]. A collision-
free path in this case implies that at every step, there is no collision between a robot
and an obstacle or between any two robots. Centralized planning is a solution to this
problem that considers the different robots as a single multi-body robr  and represents
C-space, @, as the Cartesian product of the configuration spaces of all the robots
where the dimensionality of Q is equal to the total number of degrees of freedom of
all the robots. It is obvious that the curse of dimensionality causes some difficulty due
to the high dimensionality of @. Coordination of the robots is trivially achicved since
a collision-free configuration in @ describes the configuration of cach individual robot
and ensures that no robot is in collision with some obstacle or sonie other robot. This
solution is applied to a workspace where six robots cooperate on a welding task [74].
Another solution is a two-phase decoupled planning where collision-free paths are
initially computed for each robot individually, without taking into account the other
robots but simply considering the obstacles of the workspace. In the second stage,
coordination is achieved by computing the relative velocitics of the robots along their
individual paths that will avoid collision among them [73]. Decoupled planning does
not increase the diniensionality of the configuration space but it is inconmplete, cven

v ' onthe algorithms used in both of its stages are complete [57].

36



In [75], the preprocessing stage creates a representation of the configuration space
that can be easily modified in real time to account for changes in the environment
which facilitates real-time planning. The mapping from workspace cells to the graph
is encoded so that when the environment changes, appropriate modifications to the
graph is made, and plans can be generated by scarching the modified graph. In
another work, a path planner for robots operating in dynamically changing envi-
ronments with hoth static and moving obstacles is developed [76]. .+ combines the
lazy-cvaluation mechanisms with a single-query technique as local plauner in order
to rapidly update the roadmap according to the dynamic changes.

As mientioned previously, an important feature of sampling-based planners is that
they do not attempt to explicitly construct the boundaries of the configuration space
obstacles. Instead, they check whether a given configuration of the robot is in collision
with the obstacles or not. Efficient collision det  :ion procedures case tlie impleimnen-

tation of sampling-based planners and increase the range of their applicability.

Collision Che«™ " 1n 2 7 Workspace The "D workspace allows for very fast
collision checking techniques. Collision checking in 2D workspace in case of a
multi-link robot is performed by precomputing a C-obstacle bitmap represent-
ing the obstacle in the 3D configuration space for each link [53,59,77]. Since
each link is free to translate and rotate, < obstacle bitmap constitutes a 3D
space. Then planner checks cach link against its C-space bitmap. Sinece the
computation of any bitmaps ed for collision checking is  orformed only
once prior to the learning phase, the collision checking is fast. If the link and
the obstacles arc modeled 5 collections of possibly o lapping convex poly-
gons, the construction of a 2D bitmap can be done (. o). Each 2D bitmap may

also be computed using the FFT-based method whose complexity depends only
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on the size of the bitmap. Apparently this technique requires the construction
of a 6D bitmap for 3D workspaces which renders this technique impractical for

3D workspaces.

Collision _aecking in 3-D Workspace There are many existing libraries and tech-
niques (e.g. GJK, SOLID, V-Clip, 1-Collide and V-Collide) for collision detec-
tion and measurement. A fundamental ar  effective method represents objects
by hicrarchy of objects of simple shapes (c.g., spheres, parallelepipeds) and
eventually reduces collision detection to collision checking/distance computa-
tion between two objects of basic shape (e.g., two convex polyhedra) [79.80).
The principles are as follows:

1. Triangulate the boundary of cach object.
2. Represent. cach object by a binary tree of spheres, such that:
e The sphere at each node contains the spheres at cach of the two chil-
dren of it.
e The tree is approximately balanced.

3. To check for collision or compute the distance between two objects, tra-
verse their sphere trees concurrently. When leaf nodes are reached. check

collision or compute distance between two triangles.

Collision detection is performed in the preprocessing or querv phase of the path

planning and discards the coni  rations with collisions.

3.1.2 Objective

The main purpose of the trajectory planning for visual servoing is to find a series

of feature images that takes the initial image to the goal = e, This  achieved
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through occlusion detection and introducing visibility constraint by eliminating the
milestones (configurations) with occlusion and the configurations with features out
of FOV.

This work investigates path planning proble  for robust visual servoing in PRM
framework. In this proposal, visual servo path planning will be aceessible with the
existence of obstacles. Vision-based occlusion avoidance, obstacle avoidance and cir-
cumvention will be provided with the aid of visnal information available from the
eye-in-hand configuration.

The aim of this rescarch is to design a trajectory-generator that generates a con-
tinuous and differentiable curve s*(t) = []3(1,) . /32‘”] between the initial features

. o1

st = [p/ ... pt| and the desired features s* = [p} ... p?] such that s*(0) = s' and

s*(t;) = s* where ¢y and t; denote initial and final times, respectively. First, a dis-

crete sequence of A intermediate camera poses I' = {(R;, ¢;) | i €1 ... K} and the
robot trajectory in the joint space {q; |+ €1... K} arc generated using a PRM
planner. Then, the discrete object trajectory in the image ¥ = {s; | ie 1 ... K} is

obtained from I'. Finally, a continuous and differentiable geometric path in the mmage

is generated to be tracked using an IBVS control law.

3.2 Scaled partial 3D reconstructic..

Using the homography concept introduced in Section 2.1.3 of Chapter 2, the resulting
image points p’ in the initial camera frame F, of a point M, on a plane I1, are related
to the corresponding image points p! in the desired camera frame F,, by a projective
homography such that

o'pl ='G, (3.1)
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Figure 3.1: Geometry of the homography between views

where « is a positive scaling factor. Figure 3.1 illustrates the geometry of the con-
straint between different camera frames.
The homography between initial and current camera poses ¥H; can be expressed

and written in terms of the knov  parameters as

L ktiiR*n*7

*H; = "R + ————
- d*det(H*)

(3.2)

where plane IT is expressed with the normal n' in the coordinate system of F;. and
. 1

its distance d* to the origin of F;. The rotation matrix *R; and the translation vector
*t; denote the position and orientation of the initial camnera pose with respect to the
current one. It is important to notice that r = d*/d* = det(H) [30].

A J
The distances d* and d* are unknown, but the ratio g, = l—i‘ can casily be esti-
C

— e -

mated using the method developed in [16,81] ;note of n* = ,n* [30], depth
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ratio at frame F, is obtained as

i

Zi _ 1+nTRIR( o+

d* n*T"RT*R'm;, (3-3)

Computing this ratio can be easily extended for targets not on Il i.c. nonplanar
targets [16,30]. These parameters are used in the design of the control scheme and

the path planning scheme.

3.3 Target trajectory in image space

The honiography matrix *G; of plane II relating the current and desired images
can be computed from the transformation matrix obtained from the current robot
configuration ¢, using forward kinematics.
The current camera position corresponding to robot configuration g, with respect
to the initial camera pose i.c. ¥T; = (*R,, *t;) is obtained from
kR, = "RI'R7

| (3.4)
kti — ()R'I{'(bti _ htk)

where "R} and "R} arc given by forward kinematics using the known initial and
current robot configurations, respectively.

Using equations (3.2), (3.4) and (2.14), the projective homography is implemented

kt;iR@n*T
a~det(H*)

*G, = C(*R, )C* (3.5)

Using cquations (3.1) and (3.5), the image coordinates of the points MY of the
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target at configuration g, are given by
Jod g d a1 kv 0
Py = oy exvy ] ="Gipy (3.6)
At cach robot configuration gy, p; is computed using equations (3.5) and (3.6);

thus the target is partially reconstructed in the i1 ge plane. This use 1l feature is

used to design the path planner.

3.4 Visual occlusion avoidance

In order to ensure occlusion in trajectory planning for visual servoing, a collision
detection is performed in the image plane between the reconstructed visual target
(sce details in Section 3.3) and projected obstacles.

To project. an obstacle onto the image plane in different frames, the geometry of
the obstacle should be known. As the complexity of the geometry of the obstacle
increases, more points on the obstacle need sampling and projecting such that the
projection represents the object properly in the mmage planc. This task is not trivial
and requires complex algorithms to calculate the necessary points according to the
camera point of view.

To alleviate the problems associated with sampling, the bounding volume concept
is borrowed from coniputational geometry. In computer graphics, bounding volumes

¢ used in ray-intersection tests, and in many rendering algorithms, they are used for
vicwing frustum tests. 1f the ray or viewing frustum does not intersect the bounding
volume, it cannot intersect the object contained in the volume. These intersection
tests produce a list of objects that must be rendered. In collision detection, when two

bounding volumes do not intersect, then the contained objects cannot collide, either.




Testing against a bounding volume is typically much faster than testing against the
object itself, because of the bounding volume’s simpler geonietry. This is because
an object 1s typically composed of polygons or data : uctures that are reduced to
polygonal approximations. In either case, it is computationally wasteful to test cach
polygon for collision detection if the objects are not colliding,.

To obtain bounding volumes of complex objects, a connmon way is to break the
objects down using bounding volume hierarchies e.g. OBDB-trees [80,82]. The basic
idea behind this is to organize a object in a tree-like structure where the root comprises
the whole object and cach leaf contains a smaller subpart. There are various convex
bounding volumes, among which a bounding box appcars beneficial to this work. A
bounding box is a cuboid containing the object. In dynamical simulation, bounding
boxes are preferred to other shapes of bounding volume such as bounding spheres
or cylinders for objects that are roughly cuboid in shape when the intersection test

eds to be fairly accurate. The bencfit is obvious, for example, for objects that rest
upon other, such as an object resting on the ground; a bounding sphere would show

o object as possibly intersecting with the ground, which then wor 1 need to be
rejected by a more expensive test of the actual model of the object; a bounding box
inmediately shows the object as not intersecting with the ground, saving the more
expensive test.

[n many applications, the bounding box is aligned with the axes of the co-ordinate
svstenn, and it is known as an axis-aligned bounding box (AABB). To distinguish the
general case from an AABB. an arbitrary bounding box is called an oriented bounding
box (OBB). AABBs arc much simpler to test for intersection than OBBs, but have
the disadvantage that when the model is rotated they cannot be simply rotated with
it, but need to be recomputed. In an ideal case, the C.o.3 would be oriented such that

encloses an object as tightly as possible. In other words, the bounding box is the
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Figure 3.2: Difference between AABB and OBB

smallest possible bounding box of  bitrary orienn  tion that can enclose the geometry
1 question. When compared with AABBs, OBBs gencrally allow geometries to be
ounded more tightly with a fewer number of boxes. The difference between AABI3
and OBDB is illustrated in figure 3.2.

Let M/ be a vertex of the formed OBB of the obstacle expressed in the coordinate
system of the obstacle F,. Given the transformation matrix from the base frame Fy
to the obstacle frame F,, projection of vertex 12 can be casily achieved through
reformulation of the transformation matrix between the obstacle frame F, and Fy,
frame attached to the camera at the current pose. Let *T, = ("R,,,"ta) be the
transformation matrix between . , and F,. The mechanics of the problem is depicted
in figure 3.3. The transformation matrix *T, with *R, and *t, representing the
rotation and translation compor 1ts between F, and Fj is given by

"R, °R, ‘R,

, (3.7)
kto = _ber(btk —b to)



Figure 3.3: Computing the obstacle projections in different camera frames

governing the relation

M = [X] Y. ZI|" = ['R, *t,) M 3.8)
k k k o

where Mi are the coordinates of M{) expressed in Fy.

To perform occlusion avoidance, the vertices of the obstacle OBB, M with j €
{1..8} are projected on the image planc at frame Fi. The projection is obtained
using the classical assumption that the camera performs a perfect perspective trans-
formation with respect to the ce  >ra optical center (pinhole model). Using kinematic

relations (3.7) and (3.8), pl, is easily obtained from

7ipi [’iui "‘ivi nJY = C[l 0 ktO]Mi (3.9)

by dividing Iipi by the last component 'ri. target is projected on the image planc

through scaled 3D reconstruction explained in Section 3.3. Since the projections
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of the target and the obstacle are set of points on the image plane, the problem
narrows down to collision checking of two convex hulls formed by these two sets. In
mathematics, the convex hull or convex envelope for a compact! set « points C is
the minimal convex sct? containing C. In other words, any subsct C of the vector
space is contained within a smallest convex set (called the convex hull of C7), namely
the intersection of all convex sets containing €. In computational geometry, it is
common to use the term conver hull for the boundary of the minimal convex set
containing a given non-empty finite set of points in the plane. The implementation
of the Quickhull Algorithm?® in MATLAB is used to form the convex hulls of the set
« projection points [82,83]. Let C; with j € {0,1} be > convex sets, respectively of

siZVN;
! )1:(]

the target and obstacle projection points on the image plane, with vertices (1
ordercd counterclockwise. It is important to note that Ny = 8x (number of obstacles)
and Ny = n. In the sequel, two fast tests for nonintersection of convex hulls are

presented which are used to ensure ocelusion avoidance.

3.4.1 Method 1: Separating axis theorem

For objects lying in a 2-dimensional space, if there exists a line for which the intervals
of projection of the two objects onto that line do not intersect, then the objects do
not intersect. Such a line is called a separating line or, more commonly, a separating
vis. The translation of a separating line is also a separating line, so it is sufficient
y consider lines that contain the origin. Given a line with unit-length direction B

passing through the origin, the projection of a cc ex set € onto the line is the

'A set is compact if it is closed and bounded. To illustrate in one dimension, the interval [0, 1] is
closed and bounded, so it is compact. The interval [0, 1) is not compact since it is is bounded, but
not closed. The interval [0, 00) is closed, but not bounded. so it is not compact.

ZA set is convex if given any two points  and Q in the set, the line segment (1 = £)P + tQ for
t0,1] is also in the set.

SQhull, http://w ghull.org

46



interval

[=[Xin(B), M (B)] = min{B -V : Ve C}, max{B-V:V eC}j (3.10)

Two compact convex sets C? and C' are separated if there exists a direction B
s h that the projection intervals [, and [; do not intersect. Specifically, they do not
intersect when

A (B)> AL (B) or A% (B) <AL (B) (3.11)

TaLr ma.xr mn

The superscript corresponds to the index of the convex set. The comparison results

arc invariant to changes in length of the vector s e

Ain(IB) = tA,(B) and A, (tB) = tA,.(B) for t € R (3.12)

and similarly the boolean value of the pair of comparisons is also invariant when B
is replaced by the opposite direction —B (¢ = —1). When B is not unit length, the
intervals obtained for the separating axis tests are not the projections of the object
onto the line, rather they are constant scaled versions of the projection intervals.
The Normal direction vector denotes the perpendicular direction to the separating
axis, a direction that is not necessarily unit length. Given an edge (u, v), an outward
pointing normal direction is obt " ied from (u, v)* = (v, —u). Figurce 3.4 shows two
nonintersecting polygons that are separated along a normal direction vector. The
corresponding edge to the normal direction vector is annotated. It is obvious that
the direction of the annotated eC » s the separating axis.

For a pair of convex polygons in 2D, only a finite set of separating axis needs to
be considered for separation tes That set ine  des the normal direction vectors to

the edges of both polygons. Since the number of vertices is limited to a definite small
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Figure 3.4: Nonintersecting convex hulls: obstacle projection and reconstructed target

number (< 8m + n for m obstacles), the direct implementation will be employed
in which for a separation test for direction B computes the extreme values of the

projection and compares them. That is, compute

Nin(B) = mingcicn,-1{B-V/} (3.13)
Npor(B) = maxocien, 1{B-V/} (3.14)

and test the inequalities in Equation (3.11). If there exists a direction for which the
intervals of projection of the target and the obstacle onto that line do not ove  ap,

then it is simply concluded that there is no occlusion at configuration g.

3.4.2 Method 2: Geometric verification

If it is of interest to check whether target features are inside the obstacle projection
convex hull regardless of the geometry of the target, geometric verification is used. It

is important to note that the previous method tests whether the convex hull of the
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target is overlapping the obstacle convex hull in image plane. But this method checks
only for the intersection of the target features with the obstacle convex hull in the
i1 ge plane regardless of the target geo  2try (convex hull).

A simple concept from geometry is used to perform the intersection detection.
( en any three points on the plane (zg,40), (z1,71). and (z2.y2), the area of the

triangle determined by them is given by

To Yo 1
1 o -
A'reu=§ oy 1 (3 9)
r2 Y2 1

and is positive if the three points are taken in a counter-clockwise orientation, and
negative otherwise. Figure 3.5 illustrates the concept for a target feature, V. The
convex hull formed by the obstacle projection, C? is the blue arca. For a target feature
VY to be inside the obstacle convex hull C! in image plane, the computed arca should
he positive for all the triangles formed by any two successive vertices of C! and V! as
one traces around in a counter-clockwise direction from V' to Vi _; and back to v,

of the obstacle convex set. To check whether CU is in collision with C1, all vertices

of C" {VP®|i=0---Ny}, are tested for collision using the same procedure.

3.5 Probabi istic Roadmaps

PRM is a powerful and versatile sampling-based planner which can be used to solve
high-dimensional problems. PRM divides the planning task into t phases: the
preprocessing or learning phase, during which a roadmap is constructed in @; and
the query phase, during which user-defined que | configurations are connected with

the roa’ p precomputed in the previous phase. In this section, PRM is utilized as
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B
Figure 3.5: Geometric verification for noninterse on of convex sets (A)Target feature

resides in C': All areas> 0  (B,C)Target feature is outside C': All areas> 0 (e.g. purple region in
except one area (i.e. Orange region in C)

the path planning scheme for visual servoing. PRM will find a path from the initial
configuration to the desired configuration so that the target is always in the FOV of
the vision system m¢  ted on the robot arm. In the following, a brief introduction

to the two phases of PRM path planning is provided.

3.5.1 Roadmap construction

The PRM algorithm 5t con 'ts a roadmap in a probabilistic way for a given
configuration space. A set of collision-free robot configurations V' is chosen by a
method over Q. The generation of these configurations is basically performed ran-
domly from a uniform distribution. The roadmap is represented by an undirected
graph G = (V, F). The edges in E correspond to paths between nodes in V; an edge
(q',q") corresponds to a collision-free path connecting configurations — and ¢”. These
paths, which are referred to as local paths, are computed by a local planner. In its
simplest form, the local planner connects two configurations by the straight line in
Q, if such a line exists. Since the construction of the roadmap is computationally
expensive, roadmap is build and ored in the preprocessing phase to be used in the

query phase.
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Initially, the graph G = (V, E) is empty; then, repeatedly, a configuration is sam-
pled from Q. The sampling is performed  ccording to a uniform random distribution
on Q. The nodes of the roadmap constitute a uniform random sampl g of @. To
obtain a configuration. cach rotational degree of freedom of the robot is sampled
from the interval of allowed values of the corresponding degree of freedom (i.e. joint
limits of the manipulator) using the uniform probability distribution over this inter-
val. If the configuration is collision-free, it is added to tlie roadmap. The process
is repeated until NV ocollision-free configurations have been sampled. For every node
q € V. according to the metrie distance function explained in Section 3.5.2, a set NN,
of & closest neighbors to the configuration ¢ is chosen from V. In order to determine
the set NN, of nearest neighbors to a configuration ¢, many data structures have
heen proposed in the field of computational geometry that deal with the problem of
efficiently calculating the clo:  t neighbors to a point in a d-dinensional space. A
capable and efficient method is the kd-tree data structure [82] (See Appendix A).
The local planner is called to connect q to cach node ¢° € NN,. Whenever the local
planner succeeds in connecting ¢ to ¢/, the edge (q,¢') is added to the roadmap. The
algoritlin to construct the roadmap is outlined in Algorithm 1.

Algorithin 1 checks cach configuration for collision rather than applying lazy
collision-checking strategy proposed in . .,84] where it pc  pones collision tests along
connections in the roadmap until they are absolutely needed. There are several rea-
sons to postpone collision tests. Checking collision consumes a lot. of computations
and most conncctions is not included in the final path and furthiermore the collision
test for a conncction is the most expensive when there is no collision; and finally
the probability that a short connection is collision-free is large [84]. However visi-

ility and occlusion avoidance constraints are cc  putationally expensive, thus some

of the computational burden is carried to the | eprocessing phase by performing the






the preprocessing phase. The roadmap can be further angmented to capture the
co nectivity of Q. Although the preprocessing  ase is usually performed before any
path-planning query, the two phases can also be interwoven [57]. It is reasonable to
spend a considerable amount of time in the learning phase if the roadmap will be used

to solve many queries. More application specific details will be provided in Section

3.6.

{ mpling strategy: uniform mpling

' veral node-sampling strategies have been developed over the years for PRN. For
many path-planning problems, a surprisingly large number of general sampling schemes
will provide reasonable results [57].

The uniform random sampling used in early work in PRM is the casiest sampling
scheme to implement [58]. As a random sampling method, it has the advantage that.,
in theory, a nalicious opponent. cannot defeat the planner by constructing carefully
crafted inputs. It has the disadvantage, however, that, in difficult planning examples,

1c running time of PRM might vary across different runs. Nevertheless, random
sampling works well in many practical cases involving robots with a large number of
degrees of freedom.

For some difficult problems, unifo  random sampling shows poor performance
and proves inappropriate as in the case of narrow passage problem [57]: thus niore
robust and efficient sampling strategy has to adopted [85, 86].

In this work, the choices for the sampling and connection strategies of PRN are
reduced to a minimum to concentrate on the main purpose of the research. The
emphasis here is to describe a planner that is casy to  plement and works well for
visual path planning. Further implementation of more advanced san  ling techniques

and sophisticated collision detection methods — casily achicvable.
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3.5.2 Configuration space and its metric

The configuration of a robot system is a complete specification of the po ion of every
point of that robot system. The configuration space, or C-space, of the robot system is
the space of all possible configurations of the system. Thus a configur: on is simply
a point in this abstract configuration space. ~ and ¢ denote, respectively, C-space
and a configuration in C-space. The number of degrees of freedom of a robot system
is the dimension of the C-space, or the minimum number of parameters needed to
specify a configuration.

A rigid robot manipulator with five joints has five degrees of freedoni. Thercfore
its C-space is fully defined by five parameters g = (01, 6, 64,04, 65). Each joint angle
g, corresponds to a point on the unit circle S?, and thus the C-space is STx S x S x
S x S = T which is a five-dimensional torus. It is common to picture a torus as its
surface since a T® torus has a natural embedding in R® as a circle S' has a natural
cmbedding in R?. By cutting this five-dimensio 1} torus along the 6, = 0, 0, = 0,
B, =0,8, =0and 6; 0 curves, one can flatten the torus onto the hyperplane in

5. The points on S! are identil 1 by points in the interval [0,27) C R using this
hyperplanar representation. Although this representation covers all points in S| the
interval [0, 27), being a subset of the real line, does not naturally wrap around like
S1. so there is a discontinuity in the representation since S! is topologically different
from any interval of R.

A metric has to be defined for the C-space manifold. The workspace region swept
by the robot can be defined as a measure of metric. Intuitively, minimizing the swept
volume will minimize the chance of collision with the obstacles. An exact computation
of  »pt arcas or volumes is disreputably difficult, which is why heuristic metries

generally attempt to approximate the swo - -volume metric [57,62,87).



The technique proposed in [77] is employed and instead of the expensive theoretical
calculation of the swept-region, an approximate method can be constructed as follows.
S ce T can be embedded in Euclidean RS, the robot’s configurations ¢, and g, can
be mapped to points in a Euclidean space and the Euclidean distance Dg(q,, ¢ ) In

C-space between them can be used,

5 1/2

DQ (qn, (]m,) = Z “yi ’qiz - (1:71 I"Z (‘; j)

i=1
where w is a weight vector that gives higher weights to the joints closer to the robot
base since they have more effect on the motion range of the robot e1 - effector [59).
Considering the swept-volume metric, it is noteworthy that the embedding does not
take into account obstacles. So even when two configurations are close to one another,

connecting thenm may be impossible due to obstacles.

3.5.3 Local planner

1 order to find a collision-free path between nodes in V| a local planner is used that
ssts the path between configurations for collision and other constraints and associate
the path with corresponding edge in F, if appropriate.

Let. * be the local planner that takes two inputs ¢’ and ¢” and returns cither a
collision-free path from ¢’ to ¢” or NIL, if it cannot find such a path.

The Local planmer has a significant role in preprocessing and query phase. While
constructing the roadmap in the preprocessing phase, the local planner tries to con-
nect two neighbor nodes in V- with a path and checks it for collision and adds the
edge between them to £, The choice of the local planner also affects the query phase.
It is important to be able to connect any given ¢, and ¢, configurations to the

roadmap or to detect very quickly that no such connection is possible. . .is requires

o
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that the roadmap be dense enough in order to « ily connect @i and ggow to it.
T ere is a tradeoff between the time spent in cach individual call of the planner and
t  number of calls.

Since A is a deterministic local planuer, it will always return the same path
between two configurations and the roadmap does not have to store the local path
between two configurations in the corresponding edge. The path can be recomputed
if needed in the query phase. On the other hand, if a nondeterministic local planner
was used, the roadmap would have to store the local path computed by * with cach
edge which then would have increased the storage requirements of the roadmap.

A simple and popular planner connects any two given configurations by a straight-

ne segment in Q... and checks this line segment for collision. Kavraki et al. {59, 77
introduce a fast and cfficient local planner for articulated robots which can be casily
implemented but it is beneficial to use a workspace planner in this work for two

reasons:

Visibility constraint In order to take the visibility constraint into account during
path planning, straight lines in the workspace are required. If the target is
visible on two nodes of GG, ¢ and ¢”, then the target will be within FOV on the
straight line connecting ¢’ to ¢”: i.c. to cnsure that the ta ot remains in FOV,

a path between ¢ and ¢ in workspace 1s required.

Differentiable trajectory Visual servoing control scheme requires the first deriva-
) |
tive of the path to be tracked. To generate a C? path in image space, a 3D
I &
path should be designed such that the control points on the path are equidis-
tant (i.c. the distance between two diserete intermediate camera poses TY and
%, should be constant) which requires the capability to m sure distances in

workspace. Section 3.7 introduces the generation of C? trajectory in detail.
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Figure 3.6: Subdivision collision checking in W

The designed local planner A is a deterministic and symmetric workspace plan-
ner. It is noteworthy that the | nning in the workspace requires more time than
configuration space planning and that PRM construction is performed in C-space,
however PRM local planning is « :ried out in workspace.

Given any two configurations ¢’ and ¢”, local planner A will connect thiem by a
straight-line segment in workspace W using the metric introduced in next subsection.
. uis line segment is a d  ret ¢ constrt  »:d with § configurations {q, - - - ¢s}
where ¢ = ¢q; and ¢” = g5. The 1bdivision collision-checking algorithni is then used
to test the line segment for collision [57]. Subdivision collision checking cuts down
the length of the local path. In subdivision collision checking, the middle pomnt g,
of the discretized line in W between ¢’ and ¢” is first checked for collision. Then the
algorithm recurses on the discretized lines between (¢, q,,) and (¢, ¢"). The recursion
halts when a collision is found. If none of the intermediate configurations yields
collision, the path is considered collision-free [57]. Figure 3.6 depicts the subdivision
collision checking algorithm for a sample path in W.

The number of discretizations over the s ight line between ¢’ and ¢ is deter-
mined by a par:  ster, 4, ind retization algorithm explained in the next subsection.

In general, the value of § needs to be large enough to guarantee that all collisions



arc found. Although ¢ is assumed constant for simplicity, it is also possible to use
an adaptive subdivision collision-checking algorith — that dynamically adjusts § [74].
Furthermore, the method proposed in [74] always finds a collision when a collision
exists, wlicreas the above discretization technique may miss a collision if 4 is small.
This value is dependent on the size of the obstacle in workspace. More precisely, the
distance between any two consecutive configurations in {¢; - - - ¢ } should be less than

the size of the obstacle in every dimension.

5.4 Workspace distance metric

An articulated robot armi moves in a three-dimensional Euclidean space R* which is
referred to as the workspace W. The different physical locations of the end-effector
as a rigid body lie in a non-Euclidean G-manifold due to topological nontriviality.
The Euclidean space is simply-connected by virtue of the shrinkability property. The
robot workspace is, on the other hand, multiply-connected because of the existence
of non-shrinkable loops [88]. There are three dimensions (degrees of freedom) in the
position of the center of gravity and three more in the rotational orientation of the
body. Thus workspace metric cannot be expressed using Euclidean geometry.

It is known that in SF(3) there is no Ad-invariant Riemannian metrie, which
implies that there is no natural way of transporting vector fields hetween points of
SE(3) and that there is 1o natural concept of distance on SE(3) [89]. The two most

common approaches to tackle this obstruction are
o Ad-invariant pscudo-Riemannian structure
e Double geodesic.

Figure 3., illustrates the two por ble metrics for SE(3). Lither choice has ad-

antages and disadvantages, according to the task in mind. In the left-hand side
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al es to represent rotational components, unit quaternions are used to represent
rotations. The rotation distance is scaled relative to the translation distance via
tl  weights w; and w,. Determining the proper weight values is a difficulty of this
method. It is shown that the relative importance of the rotation component. decrcases
as the planning queries become harder [87].

There are multiple sets of Euler angles which can yield the se > rotation causing
ambiguity due to the interdependence of the rotations. In addition, when the axes
of two of the three Euler angles needed to compensate for rotations in three dimen-
sional space are driven to the same direction, a degree of freedom will be lost. This
probleni is called ginbal lock. More importantly, Euler angles have serious problems
i rotation presentation in the context of path planning, namely, in interpolation and
distance metrics. The measure of distance between Euler angles does not correctly
handle nltiple representations of the same rotation. Two sets of Buler angles with
relatively large differences in individual angle values may actually map to very stmilar
or identical rotations in SO(3). The implication is a relatively large swept-volume due
to the wrong interpolated values. These problems along with the dificulty in defin-
ing metries generally niakes Euler angles a poor choice for representing the rotation
component of SE(3) in path plauning applications.

Quaternions are used to parameterize rotations in three dimensions. inspired by
axis-angle parameterization of 3D rotations. Any arbitrary orientation in three di-
mensions could be achieved by a single rotation « about an axis v = (v,, v, v;). The
correspolding unit quaternion is given by

Q= (w,r,yz)= (("os(ﬂ), Vy cos(%), v, cos(%), v, cos((—r)> (3.18)

2

with the property that |[Q]] 1.
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In the context of path planning, unit quaternions are an excellent choice for rep-
resenting rotations since it is relatively casy to define methods for interpolation, and
distance measure between quaternion rotations. Unlike Euler angles, it is possible
to derive a geodesic metric for unit quaternion representations of SO(3). The great
cirele arc on the 4D unit sphere between two unit quaternions defines a geodesic path
for interpolating two rotations [90]. Given two unit quaternions Q, = (W, Ty, Y. )
and Q. = (W' Ty Yoy 2w ), the weighted rotation distance component of (3.17) is
given by

f(R'n' Rm.) =1- ”Qu . Qm” (319)

voere Q- Q= Wt F 0T+ YnYm + 202 18 the inner product of two quaternions.
The angle formed by this pair of quaternions is related to the inner product by its
cosine

@ = arccos(Q, - Q) {3.20)

The ability to smoothly interpolate between two rotations Q,, and @, in SO(3)
¢ mg the great-circle arc is one of the great advantages of using quaternions. The
geodesic for a 1D unit sphere is the g u-circle are. Points along this curve are the
smoothly-varying intermediate rotations in SO(3) that connect the two rotations @,
and Q,,,. These intermediate rotations can easily be obtained by linearly interpolating
two unit quaternions as points in R* and projecting the generated quaternions onto
the 4D unit sphere. Spherical linear interpolation is used to perforin interpolation
between two unit quaternions [90], illustrated in Algorithm 2. First the inner product
is computed for two unit quaternions; if the rotations are very close (f(R,,. R,,) < ).
then linear interpolation is performed. Otherwise, spherical linear interpolation is
used to ¢ pute evenly-distributed intermediate points al _ the geodesic are. Fi-

nally, the intermediate quaternions are normalized to prevent numerical drift resulting
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Since the initial configuration of the robot and thus ¢, (i.c. the configuration cor-
responding to F;) is known, g, (i.c. the configuration corresponding to desired image)
c:  be computed using the obtained camera displacement information in Chapter 2,
S tion 2.1.3. PRM is cmployed then to find a path from ¢; to g, such that it is
collision-free, occlusion-free and such that the target remains in FOV.

During the query phase, patli between arbitrary input configurations ¢, = @
and qgoqr = ¢« 15 scarched usi - the roadmap constructed in the preprocessing phase.
Algorithm 3 illustrates this process. A fast and inexpensive algorithm is required to
connect @y and @geq to the roadmap. The same strategy emploved 1 Algorithim
1 is used to connect ¢;,; to the roadmmap. & nearest nodes in the roadmap in or »r
of increasing distance from ¢, 1s obtained using kd-tree (See Appendix A, Algo-
rouns 6 and 7) and local planner A tries to connect ¢, to cach of them until one
counection succeeds. The same procedure is used to connect qgoq to the roadmap.
If the connection of ¢ny and @geq to the roadmap is successful, the shortest path
between ¢y and qgeq 15 found on the roadmap using the constra™ d A*, detailed in
Algorithm -1.

The number of closest neighbors (&) and maximum scarch range (') considered
in Algorithin 1 can be different {from the one in Algorithm 3. Subroutine IFINDPATH
in this algorithm requires more explanation. A concise illustration of the details of

is function is provided in Algorithm 4.

6.1 A* graph search

is a best-first, graph scarch a’ Hrithim that finds the least-cost path from a give
A* is a best-first, graph scarch a° rithm that finds the least-cost path from a given
mitial node to goal node in a -aph. The input for A* is a graph GG, ¢ initial and

goal nodes. The nodes correspond to the robot cont  1rations and edges correspond
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Algorithm 3 QUERYROADMAP(qinir, qeei- k. D7)

Require: ¢;,;;: the initial configuration
Jgoar: the goal configuration
k: the number of closest neighbors
D: max” um scarch range
G = (V, E): the constructed roadmap
Ensure: A path from ¢, to ¢ or failure.

: NN

Grrret

«— k closest neighbors of ¢, from V' in range D queried from kd-tree
NN, « k closest neighbors of g e from 1 in range D queried from kd-tree.
: Vo= {init s goat } U V.

. for all g € {Ginit, Qyou} dO

¢« the closest neighbor of ¢ in NN,

6: repecat

7: if PRNMCONSTRAINT(gq,q") then

8 E—{(g.qd)}VE

9: else

10: ¢« next closest neighbor of ¢ in NN,
11 end if

12: until a connection was successful or the set NN, is empty
13: end for

L P —FINDPATI(Ginit, Gyoat, G)

15: if P is not empty then

16: return P
17: else
18: return 0

19: end if

to adjacent nodes and have values corresponding to the cost required to traverse
between the adjacent nodes. Here A* is used in the query phase of the path planning
to return the shortest path.

Algorithm 4 cxplains the details of the subroutine FINDPATH (i.c. A* scarch
algorithm uscd in Algorithm 3 to find the shortest path). The explicit path through
the graph is represented by a series of back pointers. A back pointer represents the
immediate history of the expansion process. Thus the output of the A* algorithm is
a back-pointer path, which is a sequence of nodes starting from the goal and going

back to the start.
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The A* scarch has a priority queue wh 1 contains a list of nodes sorted by priority
denoted O in Algorithin 4, which is determined by 2 sum of the distance traveled in
the graph thus far from the start node, and the heuristic. The processed nodes in O are
put in a closed set C'. The set of nodes adjacent to current node .« is denoted STAR(r).
The length of edge connecting nodes &y and xp, d(x),x2), is obtained from equation
(3.17). The path-cost function, g(r), computes the total length of a backpointer path
from current node x to ¢, The heuristic-cost. function, h(x), provides the estimated
cost of straight-line path from current node = to goal node g oq. Since h(x) must he
an admissible heuristic, it must not overestimate the distance to the goal. Finally
f(ay = g(o) + h{r) is the estimated cost of shortest path from g, Ggour Via 1.
The order in which the search visits nodes in the graph is determined by f(r). If
; r) = h{x), then the search becomes a greedy search since the algorithm is only
considering what it believes is the best path to the goal from the current node. When
f(x) = g(x), the algorithm becomes Dijkstra’s algorithm because it is not using any
heuristic function and grows a path that is shorte:  from the start until it encounters
the goal [57].

A* is complete in the sense that it will always find a solution if there is one.

order to ensure optimality, all acyclic paths are explored to guarantee that the
lowest. cost path is found. This searching technique makes A* also optimal. A*
will produce an optimal path if its heuristic is optimistic. The returned path may
not be a smooth, short and efficient path and thus can bhe improved by running a

postprocessing algorithm [45, 57].
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Figure 3.8: Subdivision occlusion detection for a feature in W

The path generated by the query to PRM is reported by ©  {q; |1 €1 ... L}
in the joint space which is used to compute I = {(R;,¢;) | ¢ € 1 ... L} using
forward kinematics. The corresponding discrete object trajectory in the image space
is denoted Y = {s, |i €1 ... L}.

The step parameter § in local planner in Algorithm 2 is chosen differently while
performing the path planning tI 1 while generating final trajectory. The local planner
requires a step value that ensures that there is no obstacle between the steps and
so that the constraints are checked flawlessly. This will reduce the computations
required to carry out primary path planning. However during feature trajectory

neration, a s ly large & used so that the  nera poses are dense enough to

ensure that the local minima are not reached between two camera pc s. These local
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n 1ima correspond to physically invalid camera positions [11]. Using this method,

new discrete sets © = {q; | 1 € 1 ... I{'} in the joint spacc and corresponding path
in workspace I' = {(R;,t;) | 1 € 1 ... K} arc generated where K is larger than L

depending on the value of step parameter. The discrete object trajectory in the image
plane T ={s, | i € 1 ... K} is computed from I,

The distance between any successive canicra positions (R, ;) and (R, tiy) 18
not a constant value. To compensate for distance variation between configurations,
a constant distance parameter ¢ is introduced. The distance between any successive
configurations on the designed path is computed using the metric function in equation
(3.17) in Section 3.5.4. The distance parameter ¢ is used to subdivide this distance
in order to obtain a specific step parameter ¢ for the path between camera positions

R t;) and (R, 1, t;+1). This step parameter is denoted 6,4, and is given by
F P } 8 !

. D ;. q;
W = M (3.21)
¢
where ¢; and ¢4, arc the joint space configurations from © = {q, | i € 1 ... K}
corresponding to (R, t;) and (Ryyy. tipy) from T = {(R,4;) | i€ 1 ... N} 1tis

iportant to note that there is bijective relation between I' and ©. The number of

clements in the new sets A is g 1 by

L-1

K Z’&,H +1 (3.22)

7=
A decrease in ¢ will make camera poses in the final trajectory denser. It is worth
mentioning that § is variable in final trajectory generation and constant in the primary

discrete path planning in Section 3.5.3. Althot © the distance between ', and T,y

Is constant, the points in »space T and T4 are not equidistant.

69



Given the discrete data points ¥ = {s; [ € 1 ... K} and the timing parameters
T = {t, | i € 1 ... N}, acubic B-spline s*(¢) is computed such that s*(t;) =
s;. Obviously, the timing parameter set 7 is not provided in practice. In order to
¢ ciently control the camera velocity, the time values are chosen spaced proportional
to ¢ which is the distance between camera positions in I'; thus the time between
1 following image features in T (i.c. f4, — t;) is constant. This difference At =
tiv1 — t; = T can be chosen as the sampling rate T of the vision system [11].

The desired image trajectory of the features s*(t) has the property that s*(0) = s
and s*(t;) = s". Since there is no information about the end point derivatives, not-a-
knot condition is used which makes the first and the last interior knots inactive [93)].

The B-spline interpolation equation for C* function s*(t) is given by

S*(t) = flq'ts + Blf? + CYIL + le (323)

for the interval (i — DT < ¢t <iT. A,, B;, C; and D, are 2n x 2n diagonal spline
coefiicient matrices obtained from 7 and T.
The depth ratio set of features W is estimated using scaled partial reconstruction
and image features using equation (3.3) at cach node of the path. Similarly, a contin-
s function ¥(t) should be ¢ Huted for the depth information, given the diserete
set ¥ = {/){_|j l-oon k=1--- } (with n and K being, respectively, the number
features and the munber of intermediate camera poses) and the timing parameter

sct 7. The B-spline interpolation function W(¢) is given by

U(t) = Et* + Fit* + Git + Hpt (3.24)
for the interval (7 — DT < ¢ < 4T . Fi, G, and H; are n x n diagonal spline
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coefficient matrices obtained from 7 and V.

3.8 Feature trajectory tracking

The feature trajectories s*(£) that take the initial configuration to the desired pose
v ile ensuring the desired constraints, are computed using the path planning solution
i the previous sections using splite interpolation.

When the induced error 8 —s* is large, modeling errors may have greater effect on
{  performance and even the robustuess of the visual servo. Coupling path planning
with trajectory following imiproves the robustness ¢ the visual servo significantly with
respect to modeling errors and incapacity of the control scheme.

Once the intermediate subgoal image trajectory s*(¢) is designed, the visual servo
control scheme introduced in Chapter 2 is modified to take into account for the
time-varying reference feature set so that the error s(t) — s*(¢) remains small during
visual servo. It is noteworthy that the interaction matrix (relation 2.19 in Chapter
2) depends on the estimated parameter d* through homography formulations and ou
the depth of the target Z.

A depth vector Z for the features on the designed trajectory is required but cannot

. A .
be computed explicitly. Instead the depth ratio pf = (—i*& will be used to rewrite the
dynamics of the visual servo. The interaction matrix "~ 19) is rewritten to take this

ratio 1mmto account:

Is' (), (1), C, ) = | ® Y iA(s*(t),q/(m B(s*(t)) (3.25)

0 o« d*

() is the depth ratio function, computed using ¥ and 7 by | ine interpolation

in the previous section. C and d* are the estimated value of C and d*, respectively.
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A and B are two 21 x 3 matrices given by

A=| & P (3.26)

0 —=
Pr Pi
dyl  —1-a
B = ) - | (3.27)
Loy —my 1

To track the image trajectories using an ime -based control scheme, the error
term of the visual servo control scheme (2.21) is
L . 08
e:S:II'—(— (328)
ot
assuming that the target is motionless. An exponential decoupled decay of e to zero
(c.g. € = —ne) is desired; thus the corresponding control law is obtained using
cquation (3.28)
*

~ ~ )
F=—nltet It ;F (3.29)

* ¥

= . . S .
where T o compensates for the tracking crror. It is noteworthy that o is casily

computed from cquation (3.23) as

o 3A;t* + 2Bt + C; (3.30)

for the interval (i — 1)T <t <4T.



3.9 Summary

The path planning algorithm, presented in this chapter, is a flexible PRM-based
planning method which fulfills the necessary requirements of a visual path planner.
A sampling-based (Probabilistic Roadimap) planning method is used to perforn visu-
a 7 constrained path planning for manipulators. The algorithm is using a visibility
constraint to keep the target featuw  in the camera FOV. An occlusion avoidance con-
straint is developed and used by the path generator to design occlusion-free paths.
[ M also helps to generate a path such that the robot joint trajectories are within
kinematic range of the joints. The algorithm also ensures that the generated path is
not. in collision with the environment. Since it is assumed that the target does not
have a 3D model, a homography based method is used to partially reconstruct the
target. If the target model is provided, the path planning can be easily performed
by projecting the target on the image plane, similar to obstacle projection. Cubic
B-splines are used to generate differentiable image trajectories which are used for
the visual servo as a time-varving reference in the mmage plane. The classical IBVS
control law is modified to be able to track the generated path. As will be shown in

e next chapter, the control law is robust with respect to modeling errors and noise
perturbations since the designed path introduces subgoal image features and keeps

the error small such that the local stability of the visual servo control holds.



Chapter “

Results

About this chapter: This chapter describes the simulation results to validate the
proposed path planning scheme. A brief discussion on the equipment used to carry
out the simulations and off-line experiments is provided. This follows the description

¢ d analysis of the results obtained from various simulations.

.1 Robot and \.sion System

The CRS A255 articulated arms (Catalyst 5) is used world-wide in applications rang-
ing from automated laboratory t s, automotive a  nbly and rep:  tive product

sting. The robot arm is supported by the C500C con  ller and the RAPL3 pro-
graniming language for task planning and coordination. The fixed architecture con-
troller assures proper operation while it prevents one from implementing other dy-
nanics and kinematics feedback controllers. In order to benefit an open architecture
controller, the MultiQ ISA board interfaces the robot and the C500C amplifiers to PC.
WinCon software allows one to run customized controllers using Simulink diagrams.

Omne switch allows to take over the fixed control strategy.
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A general review of the features of equipment is as follows:

Robot & C500C Controller Articulated 5 DOF robot. Encoder fc  back, scrvo
motors, servo gripper, £0.05mm repeatability. Controller with 6 PWM servo
amplifiers and processors which incorporate all the control algorithms required

to perform the desired tasks.

RAPL-3 Programming language for continuous path, joint interpolation, point-to-
point relative motions. A straight ' = plus: -line path planner to blend com-

manded motions in joint or straight-line nmode.

WinCon Client/Server realtime control from Simulink diagram and via the INTER-
NET. Standalone control with control panels. Realtime tuning and plotting. 1

kHz sampling rate for 5DOF system

MultiQ board 8 A/D, 8 D/A, 8 Encoder inputs, 8 DIO, 3 Clocks.

4.1.1 Vision System

A Pantex A102fc camera equipped with a monofocal iris lens is mounted on the end-
effector of the robot manipulator using a custom made bracket (sce Figure 4.2). The
calibration of the intrinsic paramecters of the canicra is performed using standard

camera calibration techniques?.

Eye-Hand Calibration

Robot eye-to-hand calibration is the process of determining the transformation be-
tween the end-effector coordinate system and the camera coordinate system. Gen-

erally, a number of movements of the robot arm and the correspondit  changes in

*MALTLAB toolbox for camera calibration, http://www.vision.caltech.edu/bouguetj/calibdoc/



\
/ Camera Bracket
cal ge

Figure 4.1: Details of camera mounting (coordinate systeis)

image plane coordinates of a fixed object are required. Tsai's method relies on use of
e planar calibration target, for instance. An algorithm is then applied to determine
> camera transformation [29].
Instead of performing the tedious calibration task, a more pragmatic approach is
ed to determine the transformation from the known geometry of the camera, leus
(figure 4.3) and robot arm. The location of the CCD sensor plance within the camera
is not directly measurable. However the lens manufacturer’s data shows that the focal
point of the lens is 17.526 mm behind the mating surface depicted in figure 4.3. This
distance is called the Flange Focal — stance (FFD) and has the same value for C-
Mount lenses. The plane of an equivalent simple lens will be located the focal length
in front of the photo-sensitive surface of the sensor. From this data, the distance d
in figure 4.1 can be inferred as 77.424 + \.

The coordinate frame of the camera is also shown in figure 4.1. The transformation
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Figure 4.3: Details of camera, lens and CCD sensor location

4.2 Tests and simulations

The proposed metliod has been tested using the parameters of the 5-DOF eye-in-
hand CRS robot. Since image processing is not of interest, a simple black rectangle
on a white background is used as a target in tests. Four corners of this target are
extracted and tracked in the image space as visual features. Various researchers has
thoroughly studied the application of visual servoit control schemes to real objects
and environments [94 96]. The proposed method can be directly applied to real
objects if matched points in the initial and desired images are available and can then
be tracked. Due to the nature of the path planning scheme, visibility constraint nceds
to be taken into account as the fundamental constraint to generate appropriate paths
for visual servoing. This constraint is the basic constraint that provides necessary
niodifications to PRM in order to generate visual paths. Joint limits constraint is also
considered during preprocessing phase of PRM construction and therefore visibility
and joint limits constraints are = posed on the basic queried path. Visual occlusion

and obstacle avoidance are other constraints that make PRM capable to generate
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Table 4.1: Preprocescine tinge for roadman construction

N I"reprocessing (min) .
5000 34.3 )
7000 62.6
10000 108.1

50000 613.9

more flexible visual paths. The path planner is designed to generate trajectories for
target of unknown CAD model.
Test and simulations performed to validate the proposed path planning method

arc presented in the following subsections.
Part A : The results regarding probabilistic roadmap construction are presented.

Part B : Visibility constraint and joint limits constraint are taken ito account
in this series of simulations. A general off-line path plauning is performed to
confirm the extended robustness provided with the method with respect to

modehng error and noises.

Part C : In these set of off-line experiments. visual ocelusion constraint and visibility

constraint are studied in more detail in path planning and visual servoing,.

4.2.1 Part A

Probabilistic Roadmaps are constructed in MATLAB using mex-files. EML (Embed-
ded Matlab) features to run extensive computations faster. Table 4.1 summarizes the
computational details of probabilistic roadmap construction algorithm uplemented
in C-Mex.

No that joint limits constr: = = considered d  1g preprocessing | 1ase of PRM

construction. The sampling is performed on the allowable kinematic range of mo-






1. Classical visual servo is carried out with correct calibration of intrinsic param-

*

eters. A constant reference s* is used.

2. A 50% crror is introduced in the intrinsic parameters and the same constant

*

reference s* is used to pi >rin the test once more.

3. An image trajectory is designed for the trar  ng controller to track; thus time-

varying s™(#) is used. A 50% crror is introduced in the intrinsic paramecters.

The results of the above scenarios are depicted in Figures 1.4, 1.5 d 4.6, respec-
tively. The feature trajectories are straight as expected with correct calibration pa-
rameters (Figure 4.4). However with modeling errors the trajectories are not straight

nes in the image plane (Figure 4.5). The motion of the camera is not predictable
and the features may exit the field of view. As depicted in Figure 6, introducing
tinme-varying reference s*(t) improves the performance of the visual servo and the
expected trajectories are obtained even when an important calibration error exists.
It is important to note the differences of the feature errors in image space in Figures
4.4, 4.5 and 4.6.

As it can be scen, the error signals in Figure 4.6, decrcases smoothly towards
zero. Usii  the path 17 ‘ng for- " 1al sc 1 thus makes the fea” trajectories
in image space predictab  as straight lines and provides ' er performance than
nierely controller-induced motion and significantly improves the robustness of the

visual servo with respect to modeling crrors.

4.2.3 Part C

Omne of the benefits of the proposed method is tl it does not require the model

of the target. In all of the snnulations, the path planning is performed for a target
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4.4.1: Target trajectory s(t) in image space
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Figure 4.4: Visual Servoing using I*(s*, Z*, C) with correct intrinsic parameters

with an unknown model. In these sets of off-line experiments, visibility and joint
limits constraints arc considered in the path planning. The joint limits constraint
is considered during preprocessing phase of PRM construction due to the sampling
method. Several set of simulations are presented to validate the performance of the
proposed trajectory ger  ator.

In these tests, queries are made to the constructed . AM; the returned paths are
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4.6.1: Target trajectory s(t) in image space

4.6.2: Error trajectory (s{t) —s*) in pixels in image space
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Figure 4.6: Visual Servoing using TJF(S*(t), U(t), C. d*) with 50% crror in calibration

the trajectory planning system is examined by performing benchmarking simulations.
The following simulation is not convergent with classical IBVS. The system acconi-
plishes the task with good results. The initial and desired images used to design
the path are depicted in Figure 4.7. The fiducial features are the four coruers of the
rectangular target 10own with small | en circl

The postprocessed camera trajectory in workspace for this scenario is depicted
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4.7.1: Initial image s* 4.7.2: Desired image s*

Figure 4.7: Original initial and desired images (with binary threshold)

in Figure 4.8. The grey rectangle shown in Figure 4.8.1 represents the unknown
planar target. The four corners of the rectangle are the features to be tracked. ¢
is chosen as (.1 thus resulting 6 = 400 for this example. Figure 4.9.1 shows the
tracked feature trajectories by the IBVS controller (sec Chapter 3, Section 3.8). As
it can be scen in Figure 4.9.2, the tracking crror does not exceed 10 pixels. The
exponential decrease of the error terms (s(t) — s*(¢)) is shown in Figure 4.9.3 which
is also depicted alternatively in Figure 4.9.4. Since the path is generated using the
joint limits constraint, all the joint positions are within limits during visual servo.
To facilitate the illustration of the joint positions on onc plot, joint positions are
normalized into [—1; 1] where —1 and 1 represent the joint limits (see Figure 4.9.5).
Figure 4.9.6 depicts the induced camera velocities or in other words computed
control law. Note that the integration of angular velocity about z-axis, w,, provides
extra information and is not used in inverse kinematics of the  JOF robot arm;
however, the corresponding computed control law decreases to zero. The correspond-
ing joint position displacement between the desired and the initial camera frames is
large (i.c. (—=7.5,0,0,-7.2, —14.32) — (7.5,—90, — 10, 16.8,25.06)). It is important

to note that, as mentioned previously, classical IBVS fails in this case.
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In the experiment whose results are reported in Figure 4.9, the intrinsic parameters

ven by the camera manufacturer are used. The same test is perforined to examine
the robustness of the system to noisc and calibration errors. Figure 10 shows the

erformance of the system with 20% noise in the calibration parameters which is

ynsidered a coarse calibration. Figure 4.11 shows the performance of the system
with 45% noise in the calibration parameters i.c. a bad calibration.

[t is important to note the h 1 performance of the tracker in Figure 4.11. It is
obvious that the visual servo task is performed successfully while the joint positions
are within their kinematic ranges, as expected. One of the other benefits of path
planning and tracking the trajectory is that the computed control signal is kept at
a level which will not cause severe excitation of the joint motors, even though some

filtering may be carried out.

Simulation of visual occlusion avoidance

In this section, the visual occlusion avoidance algorithm is activated and an obstacle
with known model is added to the workspace. In this case the path planner will
attempt to circumvent the obstacle. Classical IBVS and PBVS cannot achieve visual
servo tasks when there is an occlusion in the induced feature trajectories. The initial
and desired images used to design the path are depicted in Figure 12.

Figure 4.13 depicts the camera trajectory directly from the PRM planner. The
obstacle is illustrated as a blue block in Figure 4.13.1. To further smooth the path,
A* search is performmed once more on the returned path. Furthermore the path
postprocessing algorithm explained in [57] is used to improve the ath. Figure 4.14
shows the postpro. ssed version of the path shown in Figure 4.13. The trajectories are

designed such that the ta :t remains in the FOV while visual servo control solution

takes the initial image to the desired one. It also ensures that joint positions arc
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4.12.1: Initial image s* 4.12.2: Desired image s*

Figure 4.12: Original initial and desired images (with binary threshold)

always within limits and that visual occlusion is  erformed properly. The visual servo
controller has accomplished performing the task. Figure 4.15 shows the convergent
results of visual servo of the postprocessed path shown in Figure 4.14. As it is shown in
Figure 4.15.2, the tracking error is not more than 4 pixels. The visual servo converges
with an error of less than 1 pixel. The break point in inmage trajectory causes a corner
in joint trajectory (e.g. sce Figure 4.15.5). The same path in Figure 4.8 is thus further
smoothed in the spline interpolation phase such that the break point is removed (see
Figure 4.16.1 and 4.16.5). Although smoothing the path will provide a better velocity
and acceleration profiles for joints, the generated path should be che  »d for occlusion,
specifically in smoothing regions. If there is any occlusion, the path will be rejected.
The simulation results of the visual servo using the smoothed path are depicted in
Figure 4.16. It is important to note the difference in the computed control law between
the smoothed path (see Figure 4.16.6) and the postprocessed path ¢ Figure -1.15.6).
To show that the system is not sensitive to modeling errors, a 40% camera calibration
is introduced into the system. It is obvious that the system is robust to errors and

perturbations (sce Fig  4.17).
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4.13.2: Magnified camera trajectory

4.13.3: Planned image planc trajectories s*(¢)

Figure 4.13: Planned camera and feature trajectories without postprocessing
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4.14.3: Planned image plane trajectories s*(t)

Figure 4.14: Postprocessed camera and feature trajectories in Figure 4.13
4.3 Limitations and discussion

A set of parameters influence the convergence of the proposed system. This section
discusses the effe  of these | eters the convergence and performance of the

proposed syst«

93












PRM method is known to be probabilistically complete [57].  Several general
paramecters control the construction and query of the probabilistic roadmap which are
application specific. For instance, as the number of milestones N in PRM increases,

¢ probahility of finding a path increases and a more optimal path is expected, if
any.

Although it 1s shown that the method is robust to camera calibration errors, esti-
mation of the depth of the target to the origin of the camera frame at the desired pose,
d*, plays an important role in the convergence of the systen. Coarse approximations
of d* will cause the biased approximation of t* using homography decomposition. It
is noteworthy that the approximation of R* is exact; therefore the designed path will
take the initial image to the desired in - 3e with respect to the rotational component.
Then a control solution such as the classical visual servo has to cc pensate for the
crroncous translational part which requires visual servo of three degrees of freedom
instead of six. A switching controller may be used to take control after the designed
path has been followed.

To cevaluate the system performance, an crror of 20% is introduced in d*. In
this case, the estimated t* is biased (t* = [477.6210, 0, 460.3918] instead of t* =
[502.. 589, 0, 181.6230]). The results of this simulation arc shov  in Figures 4.18
and 4.19. The tracking control solution will take the initial image to the estimated
pose whose results are shown in Figure 4.18; then a pure IBVS controller will regulate
the remaining translational error (t* —t*) in image space (see details in Figure 4.19).
In other words, the tracking control solution regulates the rotatic 1 compouent of
the workspace error. Since the magnitude of the computed control law of the con-
trollers 1s not. conmpatible, the response of the controllers are depicted separately. As
shown in Figure 4.19.5, the ar 1lar velocity of the camera frame is zero with pure

IBVS controller due to the complete regulation of the rotational error by the tracking
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controller.
It 1s obvious that the error in image space is not regulated compl ly due to the
coarse estimation of d* (see Figures 4.18.3, 4.18.4, 4.19.2 and 4.19.3) although the

yjectory tracker has accomplished the tracking with less than 1 pixel final error.









Chapter 5

—onclusion

The main goal of this thesis is to investigate a path planning scheme for visual servo-
ing. The designed path takes the initial pose to the desired pose such at the induced
camera and image feature trajectories are collision-free and such that the trajectories
arc not occluded with any obstacles and the features are retained in FOV. The vis-
ibility constraint. and visual occlusion avoidance constraint are developed which are
integrated with a probabilistic roadmap to perform the visual pa  planning. The
visibility constraint ensures that the target features remain in FOV and the occlu-
sion avoidance constraint guarantees that the generated path is occlusion-free. Joints
limit constraint and obstacle avoidance are implemented in the preprocessing phase
of PRM path planning. Probabilistic roadinap uses a workspace 1 e in the query
of the paths and a C-space based metric for the preprocessing.

Once the relation between the known initial and desired poses are conmputed using
the projective homography bet i initial and desired images, a path is designed
that connccts the known initial and computed d - red poses in a PRM framework.
It 1s noteworthy that the proj I method ¢ s not require a model of the target.

Since the generated path is a discrete set of intermediate poses in the workspace and
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points 1 the image plane, cubic spline interpolation is used to find a ¢ tinuous and
differentiable trajectory. A visual servo control solution then tracks the generated
path so that the error remains small and thus the local stability of the controller
holds.

A series of simulations and off-line path planning is performed to validate the
method. It is demonstrated that path planning makes visual servoing more robust by
performing obstacle avoidance and occlusion detection. It is observed  at the method
has minimal sensitivity to the calibration errors, although there is an unpleasant

dependence on the estimation of the depth of the target at the desived pose.

5.1 Future Work

During this rescarch the following arcas were identified to have possible future rescarch
potential:

Visual Path Planning in a Dynamic Environment The dynamic planning
is path planning in dynamic environment. In the research of this thesis, the target
and obstacle are static. In case of dynamic planning, the implications of the moving
obstacles and target in the designed constraints and the visual scervo controller are
necessary to be studied.

Optimal Path Planning The current rescarch results provide a path planning
scheme in the workspace; thus the generated paths are optimal in the workspace.
One possible extension is to integrate joint space and image space  probabilistic
roadmap with some performance index to generate paths so that workspace and image
trajectories are optimal. In this case, the interaction of the planning components of
the integrated planner requires an investigation.

wyt 0o-hand \ ual Path Planning ™ s research investigates the eye-in-hand
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path planning. Study of a path planning scheme for eye-to-hand visual requires a
slight modification to the PRM structure and constraints. Similarly, in this case every
milestone corresponds to a point in the feature space. The visual s o controller will

be the same but a negative sign will appear in the control law.
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App_ndix "

K-nearest neighbor query

Kd-trec is an orthogonal range query technique used to perform an efficient search in
terms of space and time in a d-dimensional data structure to find A nearest neigh-
bors. A d-dimensional kd-tree takes as input a set of NV points in d dimensions and
constructs a binary tree that decomposes space into cells along the  dimensions such
that no ccll contains too many points.

In the 5-dimensional case, cach point is characterized with five values. In order
to construct the kd-tree, at the root the set V of N points is split with a vertical
hyperplane £ perpendicular to the first dimension z; into two subsets of roughly equal
size. The splitting hyperplane  stored at the root. Vi, the subset of points to the
left or on the splitting hyperplane, is stored in the left subtree, and V;, ., the subset
to the right of it, is stored in the right subtree. At the left child of the root, Vi
is split into two subsets with another hyperplane which is this time perpendicular to
the second dimension z,; the points to the left or on it are stored in the left subtree
of the left child, and the points to the right are stored in the right subtree. The left
child itself stores the splitting hyperplane. Similarly, at the right child of the root,

the set Vigne 1s split with the hyperplane pery dicular to 2, into two subsets, which
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Figure A.1: An example of a binary tree for a kd-tree

are stored in the left and right subtree of the right child. At the grandchildren of the
root, the points are split with the hyperplane perpendicular to «y into two subsets
at cach of the four children of the root. The splitting is performed continuously with
hyperplanes of .y then s, This process eyceles using hyperplanes of & to @5, until a
point remains on the branches. Figure A.1 illustrates how the binary tree looks like.
A tree like this is called a kd-tree.

The kd-tree is constructed with the recursive procedure outlined below.  This
procedure has three parameters: a set of points V, the current depth depth and the
number of dimensions d. The first parameter is the set for which the kd-tree has to
be built; initially this is ~ »set V. The second parameter is depth of recursio  or, in
other words. the depth of the root of the subtree that the recursive call constructs.
The depth parameter is zero at the first call. The third parameter is the number
of dimension of the configuration space. The procedure returns - root of the kd-
tree. Nodes in a d-dimensional kd-tree correspond to regions of the d-dimensional
configuration space.

A kd-tree for a set of N points uses O(N) storage and can be constructed in



Algorithm 6 Bui.nKnTRER(V. deoth. d)
Require: A sct ot pous v, tne current depen depth and the number of dimensions

d.

Ensure: The root of a kd-tree storing V.

1. PV contains only one point then

2: return a leaf storing this point

3: else

A fori=1toddo

5: Split P into two subsets with a hyperplane £ through the median r,-
coordinate of the points in V.

6: Vi « sct of points to the negative of £ or on L.

7 Vy «— set of points to the positive of L.

8: Viest < BUILDKDTREE(V), depth + 1)

9: Vyight < BUILDKDTREE(Va, depth -+ 1)

10: Create a node v storing £, make vy, the left child of v, and make v,
the right child of v.

11: return »

12: end for

13: end if

O(Nlog N) time, considering that d is constant. Nodes in a d-dimensional kd-tree
correspond to regions. The query algorithm visits those nodes whose regions are
properly intersected by the query range, and traverses subtrees (to report the points
stored in the leaves) that are rooted at nodes whose region is fully contained in the
query range. It can be shown that the query time is bounded by ¢ N'=Y4 4 &) where
k is the number of the reported neighbors [82]. The query algorithin is explained in
the following, which takes the root of the kd-tree and a range D and le(v) and re(v)
denote the left and right child of a node v, respectively.

Finding the nearest neighbor NN, to a given target point g not in the tree, is based
on the ability to discard large portions of the tree by performing a simple test. The
tree is scarched in a depth-first fashion and at each stage it makes an approximation
to the nearest distance. When the algorithm decides that there cannot possibly be a

closer point it terminates, giving the nearest neighbor.
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WEE(r, D)

Require: The root of (a subtree of) a kd-tree, and a range D.
Ensure: All points at leaves below v that lie in the range.

1: if v is a lcaf then

2: return the point stored at v if it lies in D

3: else

1 if region spanned by le(v) lies fully in D then

5: return all the leafs stored in le(v)

G: else if region spanned by l¢(v) intersects D then
SEARCHKDTREE(lc(v), D)

8: end if

9: else

10: if region spanne by re(r) lies fully in D then

11: return all the leafs stored in re(v)

12: elsc if region spanned by le¢(v) interseets D then

13: SEARCHKL . REE(rc(v), D)

L4 end if

15: end if
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