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Abstract 

This thesis describes a parametric study of vortex induced vibration (VIV) on a marine 

riser, subjected to uniform and sheared flow. Raman-Nair and Baddour (2003), has 

developed a program that simulates the riser dynamics based on a time domain analysis. 

A parametric study was carried out, taking the code as a bench mark. The riser was 

simulated using lumped masses, connected by springs that model the riser' s properties. 

This study proceeds by validating the code against the analytical proof and the 

experimental results. 

Force coefficients, drag and lift force primarily, were taken as the important parameters 

to study their effect upon the riser structural responses in terms of maximum bending 

moment, tension, tensile stress, and displacements. Other factors such as internal fluid 

flow and movement of riser top-end were also considered for the case where riser was 

subject to sheared flow. A certain configuration of riser was chosen with certain material 

properties. A steel catenary riser with an un-stretched length of 3000 meters was pinned 

at both ends and immersed in 2500 meters water depth with an outer and inner diameter 

of 0.5m and 0.4 m respectively. 

Design of Experiment (DOE) methodology was adopted for this parametric study. Full 

factorial and half fractional factorial designs were carried out for uniform and sheared 

flow respectively. Studies showed the drag force coefficients affected the in-line 

displacement and the lift force coefficient affected the cross-flow displacement. The 

maximum tension and maximum tensile stress on riser segments, all were affected by the 

internal fluid flow. The change in the position of the top end of riser reduced the bending 

moment and increased the tension and tensile stress. After identifying the significant 

parameters, magnitudes of the parameters were changed within the expected ranges, to 

determine if responses of the riser were varied by significant amount which would help in 

the riser analysis and design. 
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Chapter 1 

Introduction and Overview 

1.1 Introduction 

A major aim of the oi l and gas industry is to deliver fluids from subterranean sources to 

the surface at the lowest costs while remaining compatible with the constraints imposed 

by technology and the environment. Despite many continuing developments, these 

constraints are somewhat related, which leads to the need of addressing complex and 

poorly understood problems. Those problems have direct and/or indirect effects on the 

design of the structures and the effective cost of the whole operating system. 

One of the challenges of the offshore industry has been identified in underwater and riser 

systems. The most important challenges are to effectively predict the dynamical response 

of offshore marine-risers and under-sea pipelines to fluid dynamic forces. These slender 

structures experience both current flow and top-end vessel motion, and the internal flu id 

carried by the pipe. The flow-structure relative motion produces oscillatory drag and lift 

forces on the structures. When the frequency of vortex shedding approaches the structural 

natural frequency of the risers (this synchronization of frequencies is called 'lock-in' ), 

vortex-induced vibration occurs with possible high dangerous amplitudes that may lead 

to the failure of the risers. For a fixed rigid circular cylinder, the vo11ex shedding 

frequency is a function of the Reynolds number only. For a flexible and/or moving 

cylinder like a marine riser, the fluid interacts strongly with the riser motion, and the 

vortex shedding frequency is controlled by the body frequency over a wider range of flow 

speed [Bearman, I 984]. 

Marine risers are widely used in various offshore activities such as ocean thermal energy 

conversion (OTEC), deep-sea exploration, and oil exploration and production. As the 

ocean resource developments are moving toward much deeper seas, the dynamics of a 

long slender marine riser is now becoming more important than ever. These slender and 



long marine risers for ultra-deep water developments may be highly flexible due to the 

increased length to diameter ratio, so their dynamic motions induced by various external 

loads become more complex. Thus it is necessary to carry out more exact dynamic 

analyses and experiments for understanding the behavior of a long flexible marine riser. 

Vortex-induced vibration of marine risers has been receiving increasing interest from 

industry and academics. Due to the large demand for crude oil in the world, offshore oil 

and gas exploration has been moving into deeper water regions. This requires greater 

length of marine risers. As a result, they encounter a complex enviro1m1ent of high 

velocity and non-uniform currents, large and non-uniform tension forces and vortex 

induced vibration caused by the current forces and high tension. In addition, VIV of a 

structure is one of the most important dynamic responses caused by the flow past it, and 

results in wide dynamic behaviors [Panton, 1996]. This underlines the importance of 

understanding vortex dynan1ics that give rise to the different body responses. Regular 

vortices are formed in the wake, which interact with the cylinder motion and form the 

main sources causing cylinders (elastically mounted) to vibrate due to vortex dynamics, 

when shed from the cylinder. 

Deepwater risers are especially susceptible to VIV for the following reasons: 

1) Currents can be higher in deepwater areas than the shallower areas 

2) Natural frequency is lowered with the increase in the length of the riser, which in 

turn reduces the magnitude of current required for VIV 

3) Deepwater platforms are usually floating, so there are no other structures adjacent 

to the riser to which it could be clamped (figure 1.2 a). 

Since deepwater currents usually change their magnitude and direction with depth, a 

possibility may exist that multiple modes of riser can be excited into VIV. This makes 

deepwater riser prediction more complex than that of the short riser spans, typical of 

fixed platforms in shallow water. 
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1.2 Vortex-induced vibration prediction 

An accurate estimation of the fatigue life of a deepwater riser experiencing vortex 

induced vibration depends critically upon an accurate estimation of the response 

amplitude and frequencies (or mode numbers). Accurate estimations of the response 

amplitude and mode numbers are, in turn, dependent upon several ' basic ' parameters, 

which include: 

a) the current profile, both magnitude and shape variation with depth 

b) the frequency and magnitude of the lift force imparted to the riser by vortex 

shedding 

c) the excitation and correlation length (defined below) of the lift forces and vortex 

shedding 

d) the hydrodynamic damping and 

e) the structural properties of the riser including damping, mass, tension, bending 

stiffness and the cross sectional geometry (including surface roughness) 

These parameters, in turn, define other useful parameters including the vortex shedding 

frequency (defined asf. = u;s , where f. is the vortex shedding frequency, U is the 

local current velocity, D is the riser outside diameter, and S is a proportionality constant 

called the Strouhal number which is dependent upon other parameters but is generally 

U*D 
about 0.2). Other parameter includes the Reynolds number (defined as Re =-- where 

v 

u 
v is the kinematic viscosity) and the reduced velocity (V,. = where /,, is the 

!,, * D 

Strouhal natural frequency). Basic parameters are in turn, affected by each other. For 

example, the lift force is dependent upon parameters such as Re, the free stream 

turbulence, the correlation of the vortex shedding, and the surface roughness. Vortex 

shedding in the turbulent wake regime (i.e. Re>200) occurs in cells along the length of 

the cylinder. Shedding does not occur uniformly along the length of the cylinder, but 
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rather in cells as shown in figure 1.1. Consequently, the maximum resultant force (as 

cells along the length of the cylinder are out of phase) acting on the cylinder over its total 

length may be smaller (or larger depending upon location of cell) than the force acting on 

the cylinder over the length of a single cell [Fredsoe and Sumer, 1997]. The average 

length of the cells may be termed the correlation length. The lift force is highly 

dependent upon the cylinder amplitude and mode(s) of response, making VTV prediction 

a non-linear process requiring iteration between the lift force description and the 

response. 

Figure 1.1: Formation of shedding in a cell in turbulent wake 

VIV is perhaps more sensitive to the current profile than any other parameter [Allen, 

1998]. For short riser spans, the current magnitude determines whether or not VIV will 

occur (including other factors such as reduced mass, damping and structural frequency) 

and determines whether the response is in-line or transverse to the flow direction (or 

both). For deepwater risers, a very low cuiTent will at least theoretically produce some 

VIV due to the low natural frequency of the riser in bending. The variation of the cutTent 

along the riser span (i.e. with the depth) then detem1ines which modes will be present in 

the response. In general, current profile is varied during the analysis to determine the 

sensitivity of the results to current profile shape. It is possible that even if numerous 

modes are potentially excited by a current profile (typically of a deepwater riser in a 

significant current), a single mode (or a small number of modes) can dominate the 

response due to ' lock-in ' in which the vortex shedding tends to adjust to the vibration 

frequency within certain limits (dependent upon mass ratio and Reynolds number). Allen 

(1998) discovered that even in a highly sheared current, it is possible for a single mode 

(or small number of modes) to dominate the response. 

The hydrodynamic damping, which is of course dependent upon the current profile, c:m 

be very large, relative to the structural damping, for a deepwater riser. This is especially 
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true when the excitation length is only a fraction of the riser length. Accurate estimation 

of hydrodynamic damping (and for that matter, added mass) for VIV analysis is quite 

difficult. This is partly due to the fact that lift forces are coupled to the amplitude and 

frequency of vibration. 

Damping computations are also complicated by the difficulty in determining where along 

the riser damping is present. There are regions where it is obvious that either excitation or 

damping must be present (e.g., near the bottom, the current may be negligible so that still 

water damping is most probably present), and there are also significant regions where it is 

unclear [Allen, 1 998]. 

The riser structural properties determine the set of natural frequencies and mode shapes 

of the riser in bending. The natural frequencies are typically proportional to the tension 

and bending stiffness while inversely proportional to mass and length. The mode shape is 

affected by the variation in tension along the riser length, which is due to the submerged 

weight, with the node-to-node spacing being larger in high-tension regions. This means 

that if a negatively buoyant (heavier than water) riser has a constant VIV amplitude with 

depth, the highest curvature will be near the bottom of riser (because the node-to-node 

spacing is shorter in this area, illustrated by figure 1.2 (b)). For deepwater risers, the 

structural damping is usually small relative to the hydrodynamic damping and therefore 

does not usually significantly influence the response. Even risers known to have large 

structural dan1ping, such as risers made of flexible pipe, can still experience substantial 

VIV despite the minimal consequences of VIV on these types of risers. 

The riser cross-section is another parameter that affects the lift force. since the boundary 

layers are affected by even small changes in the cross section, such as the presence of 

marine growth. It should be noted that most practical marine risers are rough enough to 

cause a significant increase in the drag coefficient. 
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a) b) 

Figure 1.2: a) Deepwater riser exposed to sheared current b) Mode shape .for a riser 

heavier than water 

The flow in the wake of a vibrating cylinder is a system that depends strongly on the 

frequency and amplitude of the oscillation. This flow has been the subject of many 

papers, far too many to cite here [refer to review articles by arpkaya (2004), Bearman 

(1984) and Williamson and Govardhan (2004)]. Despite the large volume of such 

experimental data, a systematic investigation that relates the variation of the 

hydrodynamic forces to the flow pattern in the wake is missing. Numerical investigation 

of the flow past an oscillating cylinder at low Reynolds number has been done by, among 

others. Blackburn and Henderson ( 1999), Anagnostopoulos (2000), Baek (200 1 ), 

Blackburn (2001) and Guilmineau and Queutey (2002), but for a very limited number of 

frequencies and amplitudes of oscillation, not sufficient to offer a picture of the 

dependence of the forces on these parameters. 

The fluctuating lift is dominated by the actions from the periodic phenomenon call d 

vortex shedding, which is the principal source of cross-stream flow-induced vibration and 

acoustic emission [Blake, 1986]. The fluctuating lift is mainly due to the fluctuating 
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pressures acting on the surface of the cylinder [Drescher, 1956; Kwon and Choi, 1996]. 

Except for the rearmost part of the cylinder, the pressure fluctuation energy is 

concentrated in a band around the mean shedding frequency f. [Sonnevi1le, 1976; 

Norberg, 1986]. The alternate periodic shedding causes pressure fluctuations at around f. 

to be essentially out-of-phase between the upper and lower side of the cylinder [Gerrard, 

1961; Ferguson and Parkinson, 1967], i.e. , the lift fluctuation energy is concentrated in a 

band around f.. The amplitudes of fluctuating drag, which are significantly smaller than 

the fluctuating lift [Bouak and Lemay, 1998; Posdziech and Grundmann, 2000], are 

dominated by fluctuating pressures that are in-phase between the upper and lower side of 

the cylinder, which in turn, are concentrated at very low frequencies and a band around 

two times f. [Sonneville, 1976]. Mainly due to vortex shedding, (basically as an effect of 

frictional forces), the cylinder also experiences a fluctuating torque around its axis. Even 

for relatively low Reynolds numbers in the laminar shedding regime (Re ~:4 7 to 190), the 

fluctuating torque appears to be of minor importance [Jordan and Fromm, 1972; Lecointe 

and Piquet, 1989]. 

The very first measurement of fluctuating lift on a circular cylinder in a continuous fluid 

stream was carried out by Drescher (1956), who recorded the sectional wall pressure 

distribution around the cylinder as a function of time in a flow of water for Re 1.1 x 105
. 

Since this pioneering work, a vast amount of quantitative data has been reported and 

numerous compilation graphs on the variation of lift-related coefficients with Reynolds 

number have been presented, e.g. [Blevins, 1990], [Ribeiro, 1992], [West and Apelt, 

1993] and [Blackburn and Melbourne, 1996]. Despite these efforts, there has been no real 

consensus on fluctuating forces with respect to the Reynolds number. This gap of 

knowledge reflects basic difficulties encountered in numerical simulations and 

experiments. This has created a problem in riser design and experiments. 
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1.3 Objectives of the thesis 

During the literature review, only a very few papers were found that discuss the force 

coefficients for risers. Since VIV leads to alternating lift forces and drag force, 

understanding these forces is really important for the design and its analysis. Researchers 

have come to different conclusions for the magnitudes of force coefficients, depending 

upon their setups in the experiment and the assumptions made during the analysis. So, 

this creates a problem for riser designers to make a proper selection of the force 

coefficients magnitudes for analysis. Questions may arise, if selection of the magnitudes 

of force coefficients affects the structural behavior and design of the riser. This research 

is an effort to answer effectively whether or not force coefficients have a significant 

effect on the riser responses during VIV. It tries to characterize the fluid-structure 

phenomenon with the help of force coefficients, and reveal their effect upon the riser 

responses during the VIV, without carrying out a computational fluid dynamics (CFD) 

analysis. CFD uses numerical methods and algorithms to solve and analyze problems that 

involve fluid flows. The fundamental basis of any CFD problem is the Navier-Stokes 

equations, which define any single-phase fluid flow. The most fundamental consideration 

in CFD is how one treats a continuous fluid in a discretized fashion on a computer. One 

method is to discretize the spatial domain into small cells to form a volume mesh or grid, 

and then apply a suitable algorithm to solve the equations of motion (Euler equations for 

inviscid, and Navier-Stokes equations for viscous flow). 

It is costly and often not feasible to perform a full -scale experiment on marine risers. 

Therefore, most researchers have put their effort into the numerical simulation to 

calculate the vibrational effects. Many programs have been created to simulate VIV, most 

use the modal analysis method where the measured vibration is separated into different 

frequency modes. However, there is a considerable error between the predictions of 

marine riser VIV fatigue damage by computer models and observed damage, by orders of 

magnitude [Trim, 2005]. In this work a simulation was carried out for this paran1etric 

study of VIV on a marine riser of typical configurations, subjected to uniform flow and 

sheared flow. The equations of the three dimensional motion of a marine riser undergoing 
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large elastic deformations were formulated usmg Kane' s formalism [Raman-Nair and 

Baddour, 2003]. The equations were olved using a robust implementation of the Runge­

Kutta method provided in MATLAB. Riser responses were mea ured from the 

simulation, which were further analyzed using the Design of Experiment methodology, 

which determines the significant factors to affect the riser responses. Once the significant 

factors were identified in affecting the ri er responses, parameters were changed over an 

expected range to see if any ratable changes existed in the riser responses. Riser 

responses were measured in terms of maximum bending moment, maximum tension and 

tensile stress, cross-flow and in-line displacements. Ranges of selected parameters were 

described as low level and high level. 

1.4 Layout of the thesis 

The first chapter gives an introduction to the concepts and terminologies relevant to the 

present work. Chapter two describes the physics of vortex-induced vibration and the 

forces on a cylinder. Chapter three gives the description of the riser model used in the 

code. It also describes the methods to validate the code. Time domain analysis was 

adopted to address the non-linearities (because of the drag forces along the riser length) 

of the VIV. Chapter four describes the Design of Experiment methodology, for 

identifying the significant parameters affecting the riser responses. Chapter five discusses 

the results and di cussions from the analysis, and presents the summary of riser response 

with the variation of the parameters within the expected ranges. Conclusions and 

recommendations are given in chapter six. 
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Chapter 2 

Vortex-Induced Vibration 

2. 1 Introduction 

Vortex-induced vibration (VIV) of structures is of practical interest to many fields of 

engineering, such as heat exchanger tubes, riser tubes that carry oil from the seabed to the 

surface, civil engineering designs (as in bridges, chimney stacks), as well as design of 

marine and land vehicles. 

As the fluid speed past a cylindrical section is increased, the flow changes from un­

separated laminar flow to turbulent vortex flow. In a fluid current, alternating vortices 

will develop on the circular cylinder, at a certain frequency, called the vortex shedding 

frequency, which can excite the structure in one or more of its natural frequencies. When 

the vortices are not formed symmetrically around the body (with respect to its midplane), 

different lift forces develop on each side of the body, thus leading to a motion which is 

transverse to the flow. This motion changes the nature of the vo11ex formation in such a 

way as to lead a limited motion amplitude (differently, then from what would be expected 

in a typical case of resonance). Due to the 'lock-in' effect, the correlation length (may 

increase depending on setup) and vortex strength increases. 

A non-dimensional quantity describing the flow around a smooth circular cylinder 

depends on the cylinder Reynolds number, defined as: 

Re = D * U , where D- diameter of the cylinder 
u 

U -velocity of the fluid 

u - kinematic viscosity 
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Figure 2.1: Vibrations of a cylinder submitted to vortex shedding 

The flow undergoes tremendous changes as the Reynolds number increases. The flow 

pattern around a stationary cylinder has been investigated by several researchers [Bloor, 

1964; Gerrard, 1978; Schewe, 1983; and Willian1son, 1988] using flow visualization 

techniques. Figure 2.2 shows schematically the flow pattern for some flow regimes for 

smooth circular cylinders. Effects, such as the surface roughness, the cross-sectional 

shape, the incoming turbulence, and the shear in the incoming flow, influence the flow. 

For the range of the Reynolds number 40<Re<200, the vortex street is laminar. The 

shedding is essentially two-dimensional , i.e. it does not vary in a span wise direction, 

[Williamson, 1989]. With further increase in Re, transition to turbulence occurs in the 

wake region (for Re>300). The region of transition to turbulence moves towards the 

cylinder as Re is increased in the range of 200<300 [Bloor, 1964]. Bloor (1964) reports 

that at Re=400, the vortices, once formed, are turbulent. Gerrard (1978) and Williamson 

(1988) state that the two-dimensional feature of the vortex shedding becomes distinctly 

three-dimensional for the regimes of Re>300. However, except for very small Reynolds 

numbers (Re:S40) there is one feature of the flow which is common to all the flow 

regimes, namely the vortex shedding. In the narrow Re band 3x105<3.5x105 (called the 

critical regime) the boundary layer becomes turbulent at one side of the cylinder and 

laminar at the other side, which causes a non-zero mean lift on the cylinder (figure2.2). 

The side at which the separation is turbulent switches from one side to the other 
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occasionally [Schewe, 1983). Therefore the lift changes direction as the one-sided 

transition to turbulence changes side, shifting from one side to the other. 

laminar fl ow 

Drag force 

Lift force because of 
pressure differences at 
two faces of cylinder 

Skin fri ctio n 

Figure 2.2: Formation of drag force and lift.force on a cylinder 

As a consequence of the vortex-shedding phenomenon, the pressure distribution around 

the cylinder undergoes a periodic change as the shedding progresses, resulting in a 

periodic variation in the force components on the cylinder. The magnitude and 

occurrence of sustained oscillations strongly depend on the lift coefficient of the 

stationary body. 

Re<5 
No separation and creeping flow 

5<Re<40 
A fixed pair of symmetric vortices. 

40<Re<200 
Laminar vortex shedding. 

200<Re<300 
Transition to turbulence in the wake. 
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A 

A 

300<Re<3x 105 

Wake completely turbulent. 
A: Laminar boundary separation. 

3x1 05<Re<3.5x105 

B: Turbulent boundary layer separation 
A: Laminar boundary layer separation 

3.5x 1 05<Re<1.5<1 06 

B: Turbulent boundary layer separation; the boundary 
Layer partly laminar partly turbulent 

1.5x 1 06<Re<4xl 06 

C: Boundary layer completely turbulent at one side 

4x106<Re 
C: Boundary layer completely turbulent at two sides 

Figure 2.3: Regimes of flow around a smooth, circular cylinder in steady 
current 

[based on Surner and Fredsoe, 1979] 

2.2 Forces on a cylinder in a steady current 

If the structure is flexible and lightly damped internally, the resonant oscillations can be 

excited normal or parallel to the incident flow direction [Griffin, 1998]. A resultant 

unsteady fluid force, which is generated on a cylindrical structure, as a consequence of 

vortex shedding, described by Griffin (1980), can be divided into several components: 

a) An exciting component of the lift force, by which energy is transferred to the 

structure 
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b) A reaction or damping force, which is exactly out-of-phase with the structure' s 

velocity, and is a function of relative velocity between fluid and structure 

c) An ' added mass' force, which is exactly out-of-phase with the structure' s 

acceleration 

d) A flow induced inertial force, which is exactly out-of-phase with the structure' s 

acceleration. 

These various contributions to the total force can be deduced from the total 

hydrodynamic force, as reported by Sarpkaya (1979), or the various components can be 

deduced individually as reported by Griffin (1980). 

Hydrodynamic loads on a small-diameter submerged object such as a riser can be 

calculated using Morison' s equation. Basically, if the cylinder (or a riser) is moving 

laterally with the velocity ( v) and acceleration ( v ), in a fluid stream that itself is moving 

with velocity ( u) and acceleration ( u ), then Morison ' s equation for the hydrodynamic 

force per unit length acting on the riser (or cylinder) can be written in two ways: 

f(x) = Yz {£0¢0-v )u- vi+ pA"u +(eM -1 )pAe (u- v ) ... ........ .......... 2.2.1 

or 

where p is the fluid (mass) density, e/J is the drag coefficient, ¢is the cylinder (or riser) 

diameter, eM is the inertia coefficient, and Ae is the riser external cross-sectional area. 

The first right-hand term of equations (2.2.1) and (2.2.2) represents the drag force, and 

the last two make up the inertia force. The term (eM -1 )pAe is frequently termed the 

added mass for convenience, since it has the units of mass and the same acceleration as 

the riser itself. In the literature, (eM - 1) is often given the symbol e/11 and is called the 

added-mass coefficient. The value ofC,H is typically close to 2. Hence, em is typically 

close to 1. 
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The force on an element of a riser, as given by Morison's equation, can be considered to 

be the resultant of three dynamic pressure fields, which have to be superimposed on the 

static pressure field. The four pressure fields stated by Sparks (2007) can be summarized 

as follows: 

a) The static pressure field (as has been described by Archimedes) 

b) The dynamic pressure field in the fluid in the absence of a riser (represented by 

the middle term in equation (2.2.1) 

c) The pressure field resulting from the presence of the riser and the relative 

acceleration of the flow with respect to it (the last term of equation (2.2.1) 

d) The pressure field resulting from the disturbed flow relative to the riser, treated as 

if it was of constant velocity (the first term of equation (2.2.1 ). 

However, Morison's equation may not be practical in use because the drag force is non­

linear. When the flow is not perpendicular to the structure (riser) axis, which is the case 

in general, then the drag force can be evaluated in the direction of the flow and then 

resolved into components perpendicular and parallel to the riser axis. Also, the flow 

velocity can be resolved into components perpendicular and parallel to the riser axis, as 

an alternative solution for the evaluation of the force components. 

Forces acting on the cylinder, mainly, the in-line direction (the drag force) , and a non­

zero force component in the transverse direction (the lift force), vary periodically with 

time. The drag force changes periodically over time, oscillating arow1d the mean drag. 

The lift force occurs at the Strouhal frequency Is, while the fluctuating drag force has a 

frequency of 2/s. In the case of a forced oscillation, synchronization of the two sets of 

forces occur when the forcing frequency, f, of the cylinder approaches the Strouhal 

frequency Is, i.e. the system of cylinder and wake, oscillates at the imposed frequency.[ of 

the cylinder only, the natural Strouhal frequency is lost. This synchronization persists 

over a range of frequencies which may be termed the ' range of synchronization' , within 

which the lift and drag forces suffer changes in phase and amplitude as the imposed 

frequency is varied [Bishop and Hassan, 1963]. 
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2.2.1 Mean drag force 

The flow around a static cylinder will exert a resultant force. There are two contributions 

to this force, one from the pressure and the other from the friction. For the range of Re ~ 

104
, the contribution of the friction drag to the total drag force is less than 2-3% [Sumer, 

and Fredsoe, 1997]. So, the friction drag can be omitted in most of the cases, and total 

mean drag can be assumed to be composed of only one component, namely from the 

pressure drag. Therefore the mean drag force can be described as the force acting on the 

cylinder due to the difference in pressure between the up and the downstream sides. The 

inline fluid forces are considered to be the sum of an inertial force and drag force. The 

inertial force is due to fluid acceleration and the drag force is associated with the relative 

velocity. The mean drag force is a function of the Reynolds number. Figure 2.3 presents 

experimental data, illustrating the variation of CD for a static cylinder with respect to the 

Renumber. 

As seen, C0 decreases monotonously until Re reaches the value of about 300. However, 

from this Re number onwards, CDassumes a practically constant value, namely 1.2 

throughout the sub critical Re range (300< Re<3x I 05). When Re attains the value of 

3x I 05
, a dramatic change occurs in C0 . and the drag coefficient decreases abruptly and 

assumes a much lower value, about 0.25, in the neighboring Re range, the sub critical Re 

range. This phenomenon, namely the drastic fall in C0 is called the drag crisis [Sumer, 

and Fredsoe, 1997]. 
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Figure 2. 4: Drag coefficient for the smooth static cy linder as a function of Re number 
[based on Schlichting 1979] 
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2.2.2 Fluctuating drag force 

The fluctuating drag force is an oscillatory change in the drag which occurs at a 

frequency of 2/s The amplitude of oscillation is not a constant set of values; it varies from 

one period to the next. 

These two forces mean and oscillating, together account for the total drag force, and 

can be mathematically represented in the form of: 

F,, =X pU2 A (c/) + c/)0 sin (2cuJ + ¢ )) .................. .2.2.2.1 ' where 

U = flow velocity 

A= cross-sectional area of cylinder 

c/) = mean drag coefficient 

c/)0 = fluctuating drag coefficient 

¢ is the phase angle between force coefficient and the displacement of the 

structure. 

2.2.3 Lift force 

As stated before, the transverse force, (the lift force) oscillates at the Strouhal frequency, 

Is. and can be expressed as: 

- 1/ 2 c F,_ - I 2 pU A I. 
.2.2.3.1, where, 

CL = lift force coefficient, expressed as CL = C,_" .sin(wJ ), where CL" IS the 

oscillating lift force coefficient. 

Figure 2.4 shows that the ampl itude of the oscillations is not constant. It varies from one 

period to the other. 
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Figure 2.5: Drag and Lififorces on a cylinder 

[based on Drescher, 1956] 

t ( s ) 

Resulting forces (and force coefficients) during VIV are influenced by factors like the 

cross-section of the structure, incoming turbulence, and effect of angle of attack of flow. 

A non-circular cross-section may be subject to steady lift at a certain angle of attack. This 

is due to the asymmetry of the flow with respect to the principle axis of the cross 

sectional area. Schewe (1983) observed a similar kind of steady lift, even for circular 

cylinders in the critical flow regime, where the asymmetry occurred due to the one-sided 

transition to turbulence. For rectangular sections, no change in force coefficients 

depending on Reynolds number should be expected since the separation point is fixed at 

the sharp comers of the cross section. The increased level of turbulence will directly 

influence the boundary layer and hence its separation [Kwok, 1986]. This will obviously 

lead to changes in the force and therefore force coefficients. 
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Chapter 3 

Parametric studies of VIV on a Marine riser 

3.1 Marine riser 

Over the last two decades, the quest for exploration and production of offshore oil has 

extended to deeper and more hostile water. Prime examples of such activity can be seen 

in the Northern North Sea and Gulf of Mexico fields [Sparks, 2007]. Floating Production 

Systems (FPS) offer exciting possibilities both for deep water and for marginal fie lds, 

particularly because such systems are amenable to relocation after depletion of the field . 

A marine riser is a long and slender pipeline extending from a sub-sea system at the 

seabed to a floating vessel at the surface. It is a conductor pipe, which connects the 

wellhead at the seabed to a fixed (or a floating) platforn1, or a vessel. It may be 

categorized mainly as either a production riser or a drilling riser. A riser that is used to 

transport the crude oi l from floating platforms is tern1ed a production riser. They were 

first used in the 1970s with architecture inspired by that of top-tensioned drilling risers. 

Since then, they have taken many other forms, including bundled risers, flexible risers, 

top-tensioned risers (TTRs), steel catenary risers (SCRs) and hybrid risers, which are a 

combination of steel and flexible risers. The drilling riser of today is a low-pressure riser, 

open to atmospheric pressure at the top end. Drilling risers are made up of a number of 

riser joints, for the circulation of drilling fluids [Guesnon and Laval, 2000]. The top end 

of the riser is connected to the floating vessel through guides and tension regulators, to 

al low some freedom in axial and rotational movements, but it is constrained in lateral 

directions. This will restrict the top end of the riser to follow the lateral motions of the 

vessel. At the bottom end, the production/sales riser is connected to the blowout 

preventer (BOP) or to a pipeline through a flexible joint, which has mechanical design 

constraints/operational limits on the permissible angular motions. Drilling mud and 

cuttings from the borehole are returned to the surface through the riser. A BOP placed at 
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the seafloor between the wellhead and the riser provides protection against over pressured 

formations and sudden release of gas. 

The primary design considerations of risers are governed by such factors as the 

operational limits of the riser at the surface and seabed, bending stresses and axial 

tension. Since the bending stiffness of the riser is small, large displacements are possible 

due to the wave and current loads. This gives rise to geometric nonlinearities associated 

with large displacements and those due to displacement dependent loadings such as drag 

loading arising from relative velocity effects. A non-linear time domain analysis is 

therefore considered necessary for a more accurate assessment of the dynamic behavior 

of the risers [Huse, 1996]. 

The initial tension in the riser has a significant influence on the dynamics of the riser and 

its performance. The top tension is typically 20% greater than that required to support the 

weight of the riser. In many cases, wall thickness and mass distribution of the riser varies 

along its length. In some cases, additional buoyancy is also provided at various locations 

along the length of the riser to maintain positive tension at the bottom flex-joint and to 

reduce instability (buckling) of the riser. Constant axial force is applied to the top of the 

riser system by means of hydraulic cylinders at the platform. If buoyancy elements are 

not used, the axial tension will decrease with the depth, resulting in significant bending of 

the riser near the bottom. The static bending moment will be developed by the steady 

drag on the riser itself, and by platform offsets typically caused by winds and currents. 

A variety of problems are encountered in riser designs that arise mainly from structural 

dynamics, non-linear effects, and mechanical constraints. These may be listed as follows 

[Allen, 1998]: 

a) Imposed motion at the top end 

b) Top end boundary conditions 

c) Variations in the top end tension 

d) Wave loading considerations 

e) Effect of current profile 
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f) Relative velocity effect on drag loading 

g) Large displacement effects on loading and stiffness 

h) Bottom end fixity conditions 

Observation of marine riser response how current-induced vortex-induced vibrations 

(VIV) to be a widely occurring phenomenon, with a potential to cause costly and 

environmentally damaging fatigue failure . Figure 3.1 shows a catenary riser suspended 

from FPSO which touches the sea bed. The contact zone of the ri er with sea bed is 

termed the touchdown point (TOP). 

Flexible 

Buoyancy 
tank 

Riser 
tower 

Catenary 
riser 

~ -Loading 
buoy 

TDP 

Figure 3.1 : Riser towers, catenary risers, and mid-depth export lines 

In the deep water of the Gulf of Mexico, West Africa and Brazil for example, where oi l 

and gas exploration and production continue apace, VIV may make the large t 
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contribution to overall riser fatigue damage [Kozicz and Newman, 2005]. Wave and 

vessel motion-related damage may remain at roughly the san1e level or even diminish as 

water depth increases, but currents can act over the full depth of the water column, which 

tends to make VIV more important in deeper water. 

3.2 Method of analysis 

Riser analysis has become a major interest and has drawn considerable attention, partly 

due to the fact that the riser is and will continue to be an important link between the 

floating platform and the sub-sea bore hole, and pa1tly because the analysis itself is 

challenging. The analysis requires the consideration of the wave, and current forces, due 

to most severe as well as nominal sea states, water depth, the rig motion, and suitably 

defined boundary conditions [Sarpkaya, 1 981]. 

The riser analysis may be static or dynamic. The static analysis is more concerned with 

the maximum riser response in a vertical plane and does not take into consideration the 

time-varying effects of waves, vessel motion and the inertia of the system. Various static 

methods adopted are: finite difference formulations [Bathe, 1974 and NESC, 1966], finite 

element formulations [Gosse, 1969], direct integration using a fourth order Runge-Kutta 

method [Burke, 1973], and assumed deflection shapes of an elastic catenary [Jones, 

1975] or power series [Fischer and Ludwig, 1966]. 

The dynamic analysis considers the relative velocity and acceleration between the fluid 

and the riser, and yields a time history of the responses. Sarpkaya (1995) has outlined 

three methods for dynamic response analysis: deterministic time-history analysis, a 

steady state or a frequency-domain analysis, and a non-deterministic random vibration 

analysis. 

A majority of the published work is based on simplified frequency domain analysis 

methods and some literature addresses time domain analysis methods with varying 

degree of sophistication. In evaluating the dynamic response of marine risers, it is 
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sometimes considered more appropriate to carry out the analysis in the time domain 

rather than in frequency domain. However, at the early stages of design, time domain 

analysis may prove very expensive. In a time domain analysis, the equations of motion 

are solved by time step integration starting from a set of initial conditions. Therefore, 

rounding-off errors and numerical accuracy take special significance for non-linear 

problems because of possible divergent solutions. Time domain analysis is quite flexible 

and can accommodate variations in the riser dimensions, buoyancy, boundary conditions 

and external time-varying loads and/or motions. 

Frequency domain analysis method is well suited for computing the steady state response 

transfer functions of linear problems. Since the principle of superposition is implied in 

this method, any non-linearities (such as material, geometric nonlinearity due to large 

deflections), displacement dependent loading, need to be linearised. In this, the geometric 

nonlinearities are ignored, and the loads and stiffness of un-displaced position or in some 

cases, the static offset position are evaluated. The advantages of the frequency domain 

analysis are that one can directly apply a frequency-domain definition of the environment 

or ship motion to the riser and generate within a relatively short computer run, a response 

spectrum suitable for subsequent fatigue life estimation [Sarpkaya, 1995]. In a time 

domain analysis, these non- linearities can be built into the formulation. 

It is costly and often not feasible to perform an experiment at the full scale on marine 

risers. Therefore, researchers have put their efforts into numerical simulations to calculate 

the vibrational effects. Many programs have been created to simulate the VIV, most use 

the modal analysis method, where the measured vibration is separated into different 

frequency modes. Of these methods, only a few are commercially available to the riser 

designer, including the DnV Rules and the analysis progran1s SHEAR7 and VIVA, both 

developed at MIT, ORCAFLEX, and PIPEFLOW. However, there is considerable error 

between the predictions of marine riser VIV fatigue damage by computer models and 

observed damage, by orders of magnitude [Trim, 2005]. In a numerical method, the VJV 

problem is solved by CFD or structural dynamics based approaches. In the former 

approach, an interaction between structure and fluid is analyzed by directly solving the 
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Navier- Stokes equations [Hong et al. 2002]. In the latter approach, VIV is solved using 

experimental hydrodynamic coefficients [Vandiver, and Li 1997; Grant et al. 2000]. 

Raman-Nair and Baddour (2003) had developed a program that simulates riser dynan1ics, 

based on a time domain analysis. The riser is simulated using lumped masses connected 

by springs that model the riser' s properties such as bending and extensional stiffness. A 

Jumped-mass formulation allows the flexibility of dealing with varying material 

properties and fluid loading along the riser' s length. The number of the lumped masses 

can be changed, depending on the accuracy of the results required. The description of the 

riser model is given in the following section. 

3.3 Description of the model 

The riser is modeled as a hollow circular section divided into n segments Sk (k= 1 ... n,) by 

points P0, P 1 ... Pn, (Figure 3.2). In addition to gravity and other applied loads, the riser is 

subjected to hydrodynamic forces due to the ambient fluid as well as forces due to an 

internal flow [Raman-Nair and Baddour, 2003]. Surface waves are described by Stoke' s 

second order wave theory. The effect of internal flow is included in the model. The 

detailed algorithm is presented in the paper by Ran1an-Nair and Baddour (2003) and the 

equations are solved using a robust implementation of the Runge-Kutta method provided 

in MATLAB. Fluid structure coupling is achieved by the application of the 

hydrodynamic loads via Morison' s equation and added-mass coefficients are set using the 

instantaneous relative velocities and acceleration between the fluid field and the riser 

segments. The deformations are necessarily large, but still elastic (i .e. non-plastic) and 

the lumped mass model has been applied, using the methods of multi body dynamics and 

Kane ' s formalism to determine the motions and resulting internal forces. As reported by 

Banerjee (1997), this approach is computationally more efficient than using non-linear 

finite element codes. 

The following assumptions have been made: 
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1) Primary deformations are due to the longitudinal and flexural vibrations 

2) No model has been introduced for shear or torsional deformations. 

The mass of each segment is lumped into halves at the ends, except for the segment S1, 

the entire mass of which is lumped at P 1• Segment Sk has unstretched length l k, material 

area of cross section Ak (not including the internal flow area), second moment of area 

about the neutral axis Jk, and mass per unit length pk . Beam extension and compression 

is modeled by linear springs as shown in the figure below. 

:: ~ -
-._:::: 

lc 
' n , 

Figure 3.2: Riser Model used in the simulation 

[Raman-Nair and Baddour, 2003] 

( ~/ ... ... q _ ~ · q- ,) 

The damping coefficient C may be determined experimentally or estimated as C = ( x 
J J 

2 x ~(kj x segment mass) , where (is the damping ratio which lies between 0 and 1. The 

spring stiffness 0 (j = 2 ... n) is chosen as described by [Huston, 1990], using a linear 

beam theory. For identical segments of length l and flexural rigidity El, these values are 

found as ()' J = El , O = 2 . . . n). The stiffuess CY depends on the prescribed support 
l 
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condition at point Po For a pinned support, a- I= 0. If the beam is cantilevered at Po. a- 1 is 

determined as described by Banerjee (1997), as defined below for the case of identical 

segments. 

_ 6nEI ,.., 
(J 1- ............................. 3.J.1 

(3n -1)1 

The validity of this use of linear beam theory for modeling the large deflection behavior 

of beams has been demonstrated by Banerjee (1997). The origin of inertial coordinates is 

an arbitrary point 0 on the seabed and the inertial fran1e is denoted by N with unit vectors 

n 1, n2, n3. The time dependent location of point Po is specified as: 

OP0 =c/o (l)n
1 
+ c/0 (t)n, + c/'o (t)n

3 
••••••••• •• •• • • •• 3.3.2, where 

c, 1~' (t) (i = 1, 2, 3) are known functions of time t. The system has 3n degrees of freedom. 

SegmentS, 

/ P,_, 
/ 

~ -----... 1;! 
··---- .• ./ Q 

P, 

k = l , ... ,n 

Figure 3.3: Unit vectors for beam segments 

The following parameters have been included in the code. 

1) Kinematics of the different points on the riser 

2) Inertial forces 

3) Gravity, buoyancy and touchdown of the riser portion 

4) Internal forces due to extension and bending 

5) Viscous drag on the riser 

6) Hydrodynamic pressure forces (added mass effects) 

7) Vortex-induced lift forces 

8) Structural damping 

9) Forces due to internal fluid flow inside the riser 

26 



1 0) Possible external loads 

11) Touchdown 

The algorithms used to get the outcomes were applied for this work to measure the 

different responses of a riser, modeled by the code. 

L, 
0 

L , 

0 

I (a1.a2 .aJ) 

Figure 3. 4: Evaluation of angle between two segments of length L 1 and L2 

If internal fluid is flowing uniformly inside the riser, then the rate of momentum entering 

and leaving the riser should be incorporated. The code accounts for the internal flu id 

flow, which in turn, addressed the internal pressure inside the riser. Only a linear pressure 

variation was considered during this study. Figure 3.5 shows the riser mode] with the 

internal flow. 

Although full-scale data provide completely comprehensive phenomena of manne 

structures, it is very expensive to acquire such data and usually the result is affected by 

many kinds of external turbulence such as currents, vortex, waves and wind, and it is 

therefore difficult to interpret it. 
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P,., z= Node location 
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Figure 3.5: Internal flow configuration and control volume 

The code by Raman-Nair and Baddour (2003) was used to make a parametric study 

on VIV on a typical configuration of marine riser. There was a necessity for the 

validation of the code to use this code as a benchmark for the further study. So, this 

work started in two stages: I) Validation of the code and 

2) A Parametric Study 

3.4 Validation of the code 

Two sources were chosen for the validation of the code, 1) analytical proof and 2) 

experimental proof. Known results were more difficult to locate as tests which could be 

simulated as the code was unable in accounting all the parameters and setups in the 

experiments and analysis. However, the code was able to develop a certain parameters of 

the proofs like I) Elastic Catenary and 2) MARINTEK experiment. Details of these 

proofs are described in the following sections. 

3.4.1 Elastic catenary mooring proof 

This proof calculates the defom1ed shape of a uniform elastic cable supported by 

horizontal and vertical forces, when it is suspended at the two points as shown in the 
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figure 3.6. The two ends of the cable are pinned, and supported by two forces Hand V. 

Total deformed length of a cable is L, and the arc length from A to a general point P (x, z) 

isp (deformed shape). When the cable is un-stretched, the arc length is's' from AtoP. 

This catenary proof states that with the given values of Hand V, a catenary profile can be 

determined, which in turn, calculates the value of 'a ' and ' b' . For the known values of ' a' 

and 'b', the horizontal and vertical forces Hand V can be determined for the given elastic 

catenary profile. So, a profile can be developed either for the known values of supporting 

forces Hand V, for which 'a' and 'b ' , can be evaluated, or vice-versa. 

H 

Seabed H 

V- mglo 

Figure 3. 6: Deformed elastic catenary profile 

The relationships between the supporting forces and cable dimensions, a and b can be 

expressed by the following equations [Irvine, 1981]. 

Hs H { . _/ V - mgL" + mgs l . _/ V - mgLo l} 
x(s) = EA" + mg smh l H ) - smh l H ) .................. 3.4.1.1 
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.... . ... ... .. .. .. 3.4.1.2 

where, His the horizontal force, Vis the vertical force, m is the mass of the cable, g is 

the acceleration due to gravity, L0 is the unstretched length of the cable, E is the elastic 

modulus of elasticity , and Ao is the cross sectional area. 

In the same way, 'a' and ' b' can be expressed in terms of the forces Hand V. 

HLo H { . _J V l . _J V - mgLJ } " 
a= EAo + mg smh lH)-smh l H ) ................................... .J.4.1.3 

I 

{ 

I 2}2 _ ~ _ _!_ !!__ ( ~ ) 2 _ {v - mgL0 } 

b- {v mgL }+ ll+ 2 ) {1+ } ................ 3.4.1.4 
EA

0 
2 " mg H H 

A code was developed in MA TLAB, to develop a catenary profile, using the above stated 

equations. The code was used in the preliminary steps of setting up the riser parameters. 

The results show that the present formulation converges from non-equilibrium initial 

conditions to known analytic solutions at steady state. The damping mechanisms for the 

riser are fluid drag, and structural damping in both extensional and flexural modes. With 

the values of ' a' and ' b' (values are arbitrary), a catenary profile (with and without 

bending stiffness i.e. CYk =0 fork = 1, .. . n) was set up with the two ends defined by Po and 

Pm and the reaction forces measured by Hand V were calculated. For the vice-versa case 

of the forces and dimensions (a and b), the code was able to produce the san1e catenary 

profile. After, the code was used in developing a riser profile with the following 

properties. (The line properties are not intended to be realistic). 

30 



Riser properties: 

Length of the riser = 3000m 

Outside diameter of the riser =0.5m 

Inside diameter = 0.4m 

Material Density = 7995 kg/m3 (Steel) 

Modulus ofElasticity=2xl0 11 N/m2 

For the defined value of a=1950m and b=21 OOm, the magnitude of the horizontal and 

vertical forces, Hand Vwere found, as calculated using the above listed equations. 

H= 4.5601x106 N 

Figure 3. 7 shows the riser profile created using the code. The ri er base P 0 was located at 

the point (0, 0, 0) in inertial coordinates (meters). The motion of the top end and Pn was 

specified about a mean position (1950, 0, 21 00). Once the riser profile was set up with 

both ends pinned, simulation was carried out for 1000 seconds. All simulations were 

perfom1ed with non-equilibrium initial conditions. A uniform current velocity of 0.5 

m/sec was set for this simulation. The riser, after the simulation, attained a steady-state 

profile, which coincided with the catenary profile as shown in figure 3.8. For both the 

cases, with and without bending stiffness, the riser profile matched the elastic catenary 

profile after the simulation. This shows that bending effects are not significant for the 

static equilibrium of a long riser (3000 meter long) in this case. 

Furthermore, for estimated values of Hand V from the equations, tension at the top-end 

of the riser can be calculated analytically as a resultant of these two forces , simply by the 

relation, T = .J H 2 + V2 
, which for this case is equal to 1.2025x I 07 N. 

After the simulation, the tension was measured at the top-end of the riser, and was found 

to be 1.2076x107 N. So, there was a close agreement (0.042% error) between the values 

of tension obtained from the analytical calculations and the simulation. 
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Figure 3. 7: Catenary profile of a riser for a= 1950m and b=21 OOm (x-z plane) 

(from the analytical solution) 
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Figure 3.8: (a) Animated riser profile after the simulation 
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pro e a r simulation nary profile 

(ObtainE.'(l from analytical solution) 

(b) Magnified portion to show the catenary profile before and after the 
animation 

Hence, there was a considerable agreement between the code with the developed elastic 

catenary proof . 

3.4.2 Experimental proof 

The Norwegian Deepwater Programme (NDP), a group of oilfield licenses in Norway, 

commissioned experiments on riser models over a range of scales and current conditions 

in order to improve the ability to predict VIV. An experiment was conducted at 

Marintek' s Ocean Basin in Trondheim, on a riser model , with length to diameter ratio of 

1400. The riser was set up in a horizontal position in a flow tank and the current veloci ty 

was set to be 0.5 m/s. The experiments were performed in a tow tank that provided well­

controlled flow conditions. In all cases, a model riser made of 27 mm fiberglass pipe was 

towed in a tank. Testing was also done with various straked configurations by adding 

sleeves to the riser. The riser was pinned at the ends, and either towed by the two ends to 

simulate uniform current or towed in a circle from one end to simulate sheared current 
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conditions as illustrated in figure 3.9. Uniform current was simulated by towing the rig in 

one direction using the crane. Linearly sheared current was simulated by fixing one end 

of the riser and using the crane and gondola in tandem to transverse a circular arc. 

i 
........., go dola ..... 

I nser I 

~lllllltltlt 

Figure 3.9: Tow lank configurations to simulate uniform currents (left) and 
sheared currents (right) 

Crane 

p e ndulum 

~ 
dump weight 

Figure 3.10: Riser position in the experiment [Marintek, 2005] 

The code was used in setting the riser in a horizontal position as shown by setting two 

ends Po and Pn, both pinned, at the coordinates (0,0,0) and (38,0,0) respectively. The riser 

was divided into I 0 lumped masses for the measurement of riser displacements along 

different segments. 
0 = lumped mass 

Ls::O 0 0 0 0 0 0 0 0 0 06.. 

Figure 3.11: Schematic riser configuration adopted in the simulation code 
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The material properties used in the experiment are listed below: 

Material of the riser: Reinforced Fiberglass 

Length of the riser: 38 m 

Outer diameter of the riser: 0. 02 7m 

Inner diameter of the riser: 0.024m 

Current velocity: 0. 5 mls 

Current profile: Linear and shear 

Mass ratio: 1.6 

Young's Modulus of elasticity: 36.2xl 09 N!m2 

The experimental results show that for a bare riser, cross-flow displacement is higher 

than in-line displacement for all the set of velocities. There were less parameters listed in 

the experiment by Trim (2005) which this code can account for such as the riser position, 

current velocity, dimensions of the riser. The code was able to produce the riser profile 

with most of the listed properties in the experiment. However, there was no indication of 

the force coefficients in the experiment for which the measured displacements could be 

measured for different force magnitudes. 

The code accounts for the drag (both the mean and the oscillating) and lift coefficients, 

which is based on the ranges of Reynolds number. So, magnitude of 1.2 and 0.2, for 

Re> 3x 105 were used for mean and oscillating drag force coefficients in addition to the 

value of 0.2 for lift coefficient. Then the cross flow oscillations were measured. With 

these values of force coefficients, the cross flow oscillations ranged from around X to 14 

of the diameter. While in the experiment, the range was from about ~ to 1 diameter of 

the riser. So, to see if the range could be made closer, the lift coefficient was increased to 

0.4 with the hope that cross flow oscillation would increase. Also, there was no indication 

of the material density in the experiment. The riser was made of reinforced fiberglass, 

and density of 1800 kg/m3 was adopted after the series of trials to mimic the report's 

findings of displacements. Later, it was found that the measurements were close to that of 

the experiment. 
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The following is the cross flow oscillation measured from the simulation between 35 and 

40 seconds, for the material properties listed above. 

Table 3.1: Crossjlow displacement at lumped masses for simply supported riser 

Mass Number 1 2 2 4 5 6 7 8 9 

Amplitude(m) 0.0137 0.0156 0.0192 0.023 0.0243 0.023 0.0191 0.0155 0.014 

These magnitudes of the cross flow oscillations from the simulations, as seen vary from 

,K to I diameter of the riser (Riser Diameter = 0.027m). The riser set up in the code 

resembles a simply supported beam pinned at both ends, with uniformly distributed load. 

The maximum deflection would be at the mid span of the beam when is subjected to 

uniform load. As can be seen from table 3.1, lumped mass 5, which represents the mid 

segment of the riser, experienced the highest displacement. Both the cross flow 

displacements and in-line displacements were obtained from the simulation at the lumped 

masses to find the frequency relationship. Vandiver (1981) reported the relationship 

between the in-line and cross flow oscillation of the riser VIV. He came up with a 

conclusion from his experimental work of the flexible cylinders tested at Castine, Maine 

in 1981 that at ' lock in ' the in-line response is at twice the frequency of the transverse 

motion. Also, the in-line motion may have two-modes; the dominant one has a frequency 

twice that of transverse frequency and the smaller response component has the same 

frequency as of the cross flow oscillation. 
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Figure 3.12: Cross flow and In-line oscillations obtained from simulation 

for a riser of 38m long for comparisons with Marintek experiment 
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The in-line oscillations were obtained from the simulation at the same lumped masses 

and tried to establish the relationship between the frequencies between in-line and cross 

flow displacements (figure 3.12). 

Figure 3.13 shows the in-line and cross flow oscillations at the lumped mass 5 obtained 

from the simulation, which shows the frequencies of both oscillations to be almost of 

same magnitude. Vandiver's (1981) findings showed that in line deflection amplitude is 

half that ofthe cross flow deflection amplitude but occurs at twice the frequency. This is 

a surprising outcome because the formula used in the marine riser program for lift and 

drag differs by this ratio while modeling this frequency relationship. However, this 

frequency relationship will be examined more for the long riser during the parametric 

case study. 
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Figure 3.13: Comparison offrequencies.for the cross flow and in-line deflections 

., 

In these tests, there were many obstacles that had to be overcome in simulating these 

tests. Sometimes, the correct setup could not be modeled by the program, due to 

assumptions made when developing the proofs and some parameters had to be changed. 

This caused a disagreement between the computer generated results (from the simulation) 

and the formulated ones (algorithms and assumptions used in the code). 

The ability for the program to simulate a real experiment and produce comparable results 

is a very encouraging finding, but it is difficult to find tests that clearly state their setup 

parameters and/or results clearly. It is recommended setting up own tests to compare the 

riser program against. This way the testing parameters are known and specific properties 

can be changed. 

Furthem1ore, Raman-Nair, and Baddour (2003) validated the code by considering the 

problem of determining the large deflection profile of a cantilever beam under a vertical 

load at the free end. The catenary profile of the riser was compared between the 

equilibrium profile determined from the solution of Bishop, and Drucker (1945) and the 

steady-state profile obtained from the numerical simulation at the end of a 100 seconds 

run. 
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3.5 Parametric studies of VIV on Marine Risers 

The overall goal of a VIV analysis effort is to develop a general VIV analysis procedure 

capable of representing the wide range of vibration behavior associated with long flexible 

cylinders in a current. No single test can provide measurements and data for all the 

parameters involved in VIV. Most of the tests provide data for a few parameters 

(Strouhal number and lift coefficient are the most common) disregarding the effect of 

others. Selection, integration and interpretation of test data are critical to model VIV of 

marine risers. Vandiver (1992), carried out parametric studies to explain the reason for 

varying of flow-induced vibration of long cylinders from single mode lock-in to broad­

band random vibration. He found the parameters such as mass ratio, reduced damping, 

and also fractional variation in the flow velocity affect the responses of the riser subjected 

to the sheared flow. As suggested by Vandiver, (1992), ' lock-in ' , usually results the 

largest amplitudes of vibration and the largest mean drag coefficients, and, are therefore 

considered in most riser designs, to be the worst case. Also, he found out that when ' lock­

in' is likely to occur, mass ratio has a strong effect on determining the range of reduced 

velocity over which lock-in can occur. If this range is narrow, then lock-in may occur for 

narrow bands of flow velocity. This work by Vandiver (1992) was able to reveal the 

parameters which have greatest influence over the occurrence of the lock-in for flexible 

cylinders with large LID and provided case studies. Another study was carried out by 

Willden, and Graham, (2003), on a flexible pipe with the length to dian1eter ratio of 1544 

and Re= 2.84x 105
, for the case study of effect of mass ratio upon the responses of the 

vibrational behavior of a pipe. The mass ratio was varied between 1.0 and 3.0. Despite 

the inflow current being uniform, the pipe was observed to vibrate multi-modally and all 

excited modes vibrated at the san1e Strouhal frequency. The fluid, via its added mass was 

found to be able to excite modes whose natural frequencies differed from the excitation 

frequency. This ability was observed to decrease with increasing mass ratio. 

Despite the large volume of experimental data, a systematic investigation that relates the 

variation of the hydrodynamic forces to the flow patterns in the wake is missing. 

Numerical investigation of the flow past an oscillating cylinder at low Reynolds number 
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has been done by, among others, Blackburn and Henderson (1999), Anagnostopoulos 

(2000), Baek (200 1 ), Blackburn (200 1) and Guilmineau and Queutey (2002), but for a 

very limited number of frequencies and amplitudes of oscillation, not sufficient to offer a 

picture of the dependence of the forces on these parameters. 

Researchers have put effort in to finding the force coefficients of a circular cylinder. 

However, there has been no close agreement among the values of force coefficients found 

by different researchers, which in turn, causes confusions for riser designers in selecting 

the proper force coefficient magnitudes for analysis. This creates the need for a 

parametric study of force coefficients on riser responses in detern1ining, if a wide 

selection of force coefficients affects the riser responses. 

The code was used in this work for a parametric study of force coefficients (primari ly) 

and other factors such as internal fluid flow, on a long and flexible riser. The study 

proceeded first, by identifying the important parameters that affect the riser responses, 

and then by studying the variation of riser responses with the expected ranges of 

significant parameters. 

As stated in the previous chapter, drag and lift force can be written as: 

~I = X rJ-! 2 A(C/) + c /)o sin(2wst + ¢)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .3.5. 1 

F,_ =X rD 2AC, . . ... ... . ...... .... ... .. ... .. . . . . . ......... ... 3.5.2 

And the dimensionless coefficients can be stated as: 

c ,) =C,) +C,') sin(2w +1) .. ....... ..... . 3.5.3 mean o s 

C, = C
1 

sinfw +1) .... ..... ...... ... ...... ... 3.5.4 
' ~0 ~ .~ 

The following responses of a riser were considered. 

1) Maximum Bending Moment 

2) Maximum Tension 

3) Maximum Tensile Stress 

4) Cross flow Displacement 
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5) In-line Displacement 

Only the maximum responses were measured at different lumped masses on a riser from 

the simulation. For most of the cases, the bottom-end mass and top-end mass were chosen 

along with the middle lumped mass. 

After identifying the paran1eters to be considered, a certain profile of riser was chosen on 

which the parametric studies could be carried out. As steel catenary risers are widely used 

in almost every new deepwater field development, a steel catenary riser was taken as a 

typical riser configuration for this study. 

3.5.1 Steel catenary risers 

Steel catenary risers (SCRs) have been associated with floating platforms since the mid-

1990s and were first used as export risers for the Auger TLP [Phifer et.al , 1994]. 

Generally, a catenary is in fact a precise mathematical curve, but the term is used loosely 

in the offshore industry to refer to a catenary riser that approximates to that mathematical 

curve. Their use has given a new dimension to oil exploration and transportation in water 

depths where other riser concepts could not tolerate the environmental loads or would 

have become very costly [Sparks, 2007]. SCR designs are very sensitive to floating 

support platform or vessel motion characteristics to which they are typically attached. In 

addition to pipe stresses, the main design issue for the SCR concept is fatigue related. 

SCRs are horizontal at the lower end (figure 3.14) and generally within 20° of the vertical 

at the top end. Hence, their total profile and curvature cannot be even remotely analyzed 

using small angle deflection theory. They can be analyzed by defining local axes, for a 

number of sections for which the angles do not evolve by more than 1 0°· which is the 

limit normally accepted for small-angle deflection theory. 
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Figure 3.14: Catenary riser 

The basic differential equation governing curvature and deflection of a tensioned beam 

(with uniform bending stiffness) subject to large deflections as has been described by 

Sparks (2007) is as follows: 

d 3B dB 
EI-

3 
-T-+ wcosB+ f(s }=o ........ ......... 3.5.1.1 

ds ds 

where wcosB and f (s )are the respective components of the self weight and the in-plane 

current load, acting perpendicular to the catenary axis, T is the tension. The above 

equation can be expressed in terms of the curvature, which can be expressed as 1/R= dB , 
ds 

so EI d
3

~- T dB+ wcosB+ f(s ) ...... . ........ ... . .. 3.5.1.2 
ds ds 

d
2 

( I l ( I l f. ) 
Ef - 2 l-)- Tl-) + wcosB+ f 0" = 0 ......... 3.5.1.3 

ds R R 

For a cable catenary in zero current, since the bending stiffness and current load will be 

zero [Sparks, 2007], the following equation results. 

1 wH 
- = - 7 ..•.... . . . .. ........ ............. . •.... . .... .. .. 3.5.1.4 
R y -
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Curvature ( ~) is maximum at the TDP (touchdown point), where it is equal to~. 

This is obvious since the part of the catenary adjacent to the TDP can be treated as a 

horizontal cable subject to vertical load w and axial tension H. The above equation can 

be used to estimate the shift of the TDP resulting from the riser top-end movements, 

which may be large. 

Floating platforms can be subject to large static lateral displacements as a result of wind, 

current, and any other loads. When these displacements are in the plane of an SCR, they 

may result in large changes in the position of the TDP. 

Any change in the horizontal projection will cause a change in the top tension. Also, the 

riser experiences the stretch due to changes in factors like temperature, pressure and 

internal fluid density. The stretch may be small for SCRs made from steel, but could be 

more significant for more elastic materials. 

Moreover, the structural response of a catenary nser also depends on the structural 

properties like bending stiffness, boundary conditions (pinned support or free cantilever 

support), and density of the material. The behavior of beams (with EI) and cables (EJ 

being zero) depends upon the bending stiffness. The beam curvature is very close to cable 

curvature (for which EI is neglected) everywhere except for zones close to the supports. 

The extent of those zones depends on the flexibility factor kL, which in turn depends on 

bending stiffness [ k = [T , L is the length of the beam, T is the magnitude of tension, VEi 
and El is the bending stiffness]. For the case of catenary risers, the same relationship 

exists. The influence of bending stiffness on the TDP position, top tension, TDP shear 

force, and the soil interaction has been of great interest to riser designers and analysts. 

Results of static simulations made using computer programs have shown that bending 

stiffness has little effect on catenary curvature except for zones close to the TDP and top­

end [Sparks, 2007]. Curvature is greater for stiff catenaries than for cable catenaries; the 

greater the stiffness, the greater will be the curvature. 
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At the TDP, due to the presence of the sea floor, the displacement of the riser is reduced 

during VIV as the relative thickness of the incoming boundary layer profile along the 

seafloor bottom can also have significant effect on the response of the riser. As explained 

by Schulz and Kallinderis (1998), the boundary layer profile alone can change whether a 

riser experiences ' lock-in' or not. 

Owing to the importance of steel catenary riser in the industry, for this work a steel 

catenary riser was chosen, with the two ends pinned, and with the material properties as 

listed below. 

3.5.2 Properties of a Typical Riser used for the simulation 

1) Length of riser: 3000m (un-stretched) 

2) Outer diameter: 0.5m 

3) Inner diameter: 0.4m 

4) Number of lumped masses: 100 

5) Material density: 7995 kg/m3 (Steel) 

6) Density of sea water: 1025 kg/m3 

7) Modulus ofElasticity: 2x10 11 N/m2 

8) Earth stiffness coefficient: 1 0000 N/m 

9) Internal fluid flow: 0.02m3 /sec, {at the typical production rate of approximately 

10,000 barrels per day}. 

1 0) Density of the internal fluid: 800 kg/m3 

11) Internal pressure in the riser segment: I OOOOpsi, where 1 psi=6897 N/m2 

12) Strouhal Number: 0.2 

13) Damping ratio: 0.4 

The analysis involved two cases: 

1) Parametric study of force coefficients. The force coefficients chosen were: 
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1. Mean drag coefficient 

11. Oscillating drag coefficient 

111. Lift coefficient (oscillating) 

2) Parametric study of force coefficients along with internal fluid flow and riser top-end 

movement. Parameters varied were: 

1. Mean drag coefficient 

11. Oscillating drag coefficient 

111. Lift coefficient 

IV. Internal fluid carried by the riser (this gives riser to internal pressure) 

v. Position ofthe top end of the riser. 

For a parametric study with the force coefficients only, the nser was subjected to a 

uniform flow, whereas for the later case, the riser was subjected to a sheared flow. For 

both cases, the current was set to be in an oblique direction to the riser segments as 

shown. 

Flow velocity 
relative to segment 
qf a riser 

.... 
n 

n defined in plane of segment and .flow vector 

Figure 3.15: Schematic representation of the current on a segment of a riser 

Figure 3.15 shows a schematic representation of the current acting on a riser. The current 

velocity was resolved into the tangential and normal components (V, and Vn). Even 

though the code accounts for three-dimensional vibrational effects, only two-dimensional 

effects were considered for this analysis. Current velocity was resolved into three 
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components along x,y, and z coordinate axes. This study takes current velocity in the x­

direction, so the displacement OCCUlTing in the x-direction refers to the in-line 

displacement, whereas the oscillations along the y-coordinate reflect the cross-flow 

displacement. For this case, the drag forces act in two directions, namely the tangential 

and normal drag forces. They can be expressed as: 

1 
F clrag_T = 2 Pr A T c/)7' lv.TI (lv.TI) T .......... ... 3.5.2.1 

I 
F,lrag_ N = 2 Pt A N C JJN lv.nl (lv.nl) n ........ . 3.5.2.2 

Generally, the tangential drag force is small compared to the normal drag force. The 

tangential drag force was not studied in this study. A constant value of 0.2 was used; and 

no variation was carried out in the tangential drag. 

After the riser properties and boundary conditions were set up, simulations were carried 

out to measure the riser responses. For responses like tension, tensile stress and bending 

moment, their peak values were considered during the analysis. The maximum bending 

moment, maximum tension, and maximum tensile stress reflects to their peak positive 

values. The riser displacements were measured in terms of cross-flow and in-line 

amplitude. 

The following figure 3.16 shows the time series of bending moment measured at Jumped 

mass 99. This lumped mass represents the top portion of the riser. Even though the 

magnitude of bending moment is higher at the beginning, the peak value around 900-

1000 seconds was measured as the maximum (positive) bending moment. In this case, 

maximum bending moment is 4.209x 104 Nm. 
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Figure 3.16: Time-Maximum Bending Moment at lumped mass 99 

Figure 3. 17, shows the cross-flow and in-line displacement of lumped mass 99, after the 

simulation, where the riser was subjected to uniform flow. As can be seen, the in-line 

displacement occurs at around at two times the frequency of the cross flow displacement. 
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Figure 3.1 7: Cross flow and In-line displacement at lumped mass 99 
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(a) Cross-flow amplitude f requency at lumped mass 99 
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(b) In-line amplitude frequency at lumped mass 99 

F;gure 3. I 8: Frequencies comparison of displacement amplitudes at lumped 

mass 99 

Figure 3.18 (a) and (b) show the (magnified portion for 900-1000 sees from figure 3.17) 

cross-flow and in-line displacement with same scale factor for x axis at lumped mass 99 

showing the frequencies at which they occur. Amplitudes of the displacements were 

measured by taking the difference between two antinodes and dividing by two as shown 

in figure 3.18. As seen, cross flow displacement occurs at a frequency of 0.67 while in­

line displacement occurs at a frequency of 0.047. In general, cross-flow displacement 

occurs at a frequency of around 1.5 times that of in-line displacement (figure 3. 17, refer 

frequency ranges). So, the frequency relationship between the cross-flow and in-line 

displacement is also valid for a long riser. 
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3.5.3 Current profile 

VIV is more sensitive to the current profile then to any other parameter [Allen, 1998], so, 

modeling the current velocity was an important part of this study. For risers of short 

spans, the current magnitude determines whether or not VJV will occur, and determines 

whether the response is in-line or transverse or both. While for the deepwater risers, a 

very low current will produce some VIV due to the low natural frequency of the risers in 

bending. The variation of the current along the riser span determines which modes will be 

present in the response [Allen, 1998]. 

If strength or direction of current, or both, vary along the riser length, the current is called 

a sheared current. Shear currents can be separated into two-dimensional and three­

dimensional shear currents; and two-dimensional sheared currents also have various 

patterns. These patterns include positive shear currents, negative shear currents and block 

currents as illustrated in figure 3.19. In this work, a block shear current was modeled. 

Only current in the x-direction was considered for the analysis in this study. However, the 

code can account for a three-dimensional current. The current magnitude was defined as: 

vfluid (t,x) , where t denotes time, and X denotes the positions (x-y-and z). The current in 

the x-direction can be expressed as V x=az+b, where a and b are arbitrary depending on 

water depth z, measured from seabed. 

Positive shear current Negative shear current Block shear current 

Figure 3.19: Shear current category 
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-------- ---- ----------------------

The current magnitude was varied with water depth as shown in the figure 3.20 . 

......................... 

06 
---·-·. -------· ----- ------ --- -- -----· 

3 ....... .......... .............. ... 

Current Velocity (meter/sec) 

Figure 3. 20: Current profile for sheared flow 

After the identification of the parameters to be analyzed, and the responses of the riser to 

be looked upon, a parametric study was carried out which involved the measurement of 

the riser responses for the changes in the magnitudes of the parameters. Each response 

had to be measured for changes in the magnitude of each parameter. For exan1ple, 

keeping the drag force coefficients at a constant value, the lift force coefficient was 

changed and the responses were measured to find the parametric relationship of responses 

with the lift force coefficient. This can be a good way to understand the behavior of riser 

responses with changes of certain parameters keeping other paran1eters unchanged. 

However, there may be cases where increasing/decreasing a certain parameter causes the 

riser responses to change to a certain extent with the changes in other parameters. This 

means that there may be a better approach to understand the riser responses variations 

with changes in different combinations of variations in the parameters concerned. The 

Design of Experiment (DOE) is a statistical method where a parametric study can be 

done by varying the selected paran1eters at two levels (three levels are for Response 

Surface methodology). This gives the combinations of variations of paran1eters in the 

form of main parameter variations and interaction of parameters variations. The 

parameters for this study therefore, were chosen at two levels, levels being named as high 
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and low level. Force coefficients were chosen as low level and high level, considering 

average low and high ranges for a circular cylinder based on Reynolds number 

dependency. Effects of internal fluid flow were studied by varying the discharge from no 

flow to a certain flow within the pipe, which in turn, gives pressure variation. Only linear 

variations were considered. Riser top-end, Pn was moved to a certain position away from 

its original position to study the riser top end movement on riser responses. 
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---- ---------------------------------------------------------------

Chapter 4 

Design of Experiment 

4.1 Introduction 

Design of Experiment (DOE) is a systematic approach to the investigation of a system or 

process. A series of structured tests are designed, in which planned changes are made to 

the input variables of a process or system. The effects of these changes on a pre-defined 

output are then assessed. DOE is important as a formal way of maximizing information 

gained through an experiment or analysis [Montgomery, 2005]. It has more to offer than 

'one change at a time' experimental methods, because it allows a judgment on the 

significance to the output of input variables acting alone, as well input variables acting in 

combination with one another. 

'One change at a time' testing always carries the risk that the experimenter may find one 

input variable to have a significant effect on the response (output) whi le failing to 

discover that changing another variable may alter the effect of the first (i.e. some kind of 

dependency or interaction). This is because the temptation is to stop the test when this 

first significant effect has been found. In order to reveal an interaction or dependency, 

'one change at a time' testing relies on the experimenter in the appropriate direction. The 

OF AT (one factor at a time) method was once considered as the standard, systematic, and 

accepted method of scientific experimentation. Both of these methods have been shown 

to be inefficient and in fact, can be disastrous [Lye, 2002, and Montgomery, 2005]. 

However, DOE plans for all possible dependencies in the first place, and then prescribes 

exactly what data are needed to assess them i.e. whether input variables change the 

response on their own, when combined, or not at all. 

DOE is a methodology for systematically applying statistics to the experimentation. DOE 

aids in developing a mathematical model that predicts how input variables interact to 

create output responses in a process or system. It can be used to find answers in situations 

such as "what is the main contributing factor to a problem?", "how well does the 
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system/process perform in the presence of noise?", "what is the best configuration of 

factor values to minimize variation in a response?" In general, these questions are given 

labels as particular types of study. 

4.2 Principles of DOE 

Following are the principles of DOE as outlined by Easton and Coli (1997). 

1) Replication:- Replication refers to running each combination of factor levels in the 

design more than once. This will allow estimating the so-called pure error in the 

analysis or experiment. When replicating the design, one can compute the variability 

of measurements within each unique combination of factor levels. This variability 

will give an indication of the random error in the measurements (e.g. due to 

uncontrolled factors, unreliability of the measuring instruments, etc), because the 

replicated observations are taken under identical conditions (settings of factor levels). 

Such an estimate of the pure error can be used to evaluate the size and statistical 

significance of the variability that can be attributed to the manipulated factors. 

2) Randomization:- Randomization is the process by which experimental units (the basic 

objects upon which the study or experiment is carried out) are allocated to treatments; 

that is, by a random process and not by any subjective and hence possibly biased 

approach. The treatments should be allocated to units in such a way that each 

treatment is equally likely to be applied to each unit. Randomization is preferred since 

alternatives may lead to biased results. The main point is that Randomization tends to 

produce groups for study that are comparable in unknown as well as known factors 

likely to influence the outcome, apart from the actual treatment under study. 

3) Blocking:- It is a technique dealing with nuisance factors. A nuisance factor 1s a 

factor that probably has some effect on the response, but it is of no interest to the 

experimenter. However, the variability it transmits to the response needs to be 
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minimized. Blocking is an arrangement of expetimental units into groups (blocks) 

that are similar to one another. Blocking reduces known but irTelevant sources of 

variation between units and thus allows greater precision in the estimation of the 

source of variation under study. 

However, in this analysis, two principles, namely the replication and the randomization, 

were not followed as simulation on a computer yields no difference in replicating the 

treatments of the factors. However, blocking was undertaken for the sheared flow case. 

For the case where the riser was subject to a sheared flow, five factors were considered. 

Each factor was selected at two levels, defined by high level and low level (high level 

corresponds to their maximum value and low level corresponds to their low val ue) which 

gave total of 32 runs for the simulations. One simulation normally took 10- 12 hours 

depending on the computer processor. So, to reduce the time, only half factorial 

simulation was carried out for this case and full factorial for the case of study of force 

coefficients only. 

4.3 2k Factorial design 

This is the design in an experiment or an analysis, where the factors are taken at two 

levels and designated as 2\ where 2 denotes the level and ' k' denotes the number of 

factors. Two levels of the factors may be arbitrarily called ' high ' and ' low' , denoted as 

'+' and ' -' respectively. So, 23 design in DOE means three factors with two levels. For 

the parametric study with force coefficients taken into consideration, three factors were 

chosen and represented symbolically as shown in table 4. 1: 

Table -1. I: Factor levels for uniform flow 

Factors Coded factors Hiqh Value (+1) Low value (-1 ) 
-l 

Mean Draq Coefficient A 0.2 

Am B 0.5 0.2 

Am lt. of Lift Coefficient c 0.3 0.05 
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Force coefficients were chosen for theRe > 3xl05
, i.e. the sub critical Re range as shown 

in the figure 2.3.A 23 simulation means there were altogether 8 treatments of the factors, 

which included the main factors and their interactions. A, B, and C are called the main 

factors and are represented by a capital letter, while ab, ac, be and abc are the interactions 

of the factors, represented by the lower case. 

Hence, the simulation was run 8 times with the combination of the factors and the 

responses were measured for each treatment. This is called 'Full Factorial Design' , where 

all the possible combinations of the factors were run. 

Designs with the factors set at two levels implicitly assume that the effect of the factors 

on the dependent variable of interest is linear. It is impossible to test whether or not there 

is a non-linear (e.g. quadratic) component in the relationship between factors and a 

dependent variable, if the factor is evaluated only at high and low levels. So, to check the 

linearity, all of the factors were run at their mid point with the regular treatment. So, there 

were 9 combinations of factors (this includes main factors and the interaction of main 

factors), for which the simulation was run. The responses were measured for all the 

simulations. 

Design of Experiment, verswn 7.1 (www.statease.com), was used to carry out the 

parametric studies. Since the riser was modeled by 100 lumped masses, each mass may 

respond in a different way to the responses, so analyzing all the masses was not feasible. 

Hence, the bottom most and the top most and the middle masses were chosen for most of 

the responses of a riser. The bottom most portion of the riser, represented by mass 1 (and 

also mass 1 0), refer to the portion of the riser that touches the seabed, and lumped masses 

such as 99 and 50 represent the riser portion which is almost vertical and above the 

seabed. 
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99th mass 

Hanging portion of riser 

pt and 1oth mass 
50th mass 

Figure 4.1: Position of lumped masses on the riser 

4.4 Analysis of main factors and their interactions 

4.4.1 Maximum bending moment at lumped mass 1 

Table 4.2: Contribution of factors on maximum bending moment at mass 1 

A-Mean Drag Coeff . 

B-Amptt . of Drag Coeff . 3.823E+006 

e C-Amptt . of Lift Coeff . 367 .50 2.701 E+005 0 .037 

e AB -467 .50 4.371E+005 0 .061 

e AC -317 .50 2 .016E+005 0 .028 

e BC -67 .50 911 2 .50 1 .262E-003 

e ABC -82 .50 13612.50 1 .886E-003 

Curvature -1 .270E+005 1 .731 E+005 0 .024 

Lenth's ME 1792.73 

Lenth's SME 4290.35 

Table 4.2 li sts all the estimable effects for the coded levels of the factors. As can be seen, 

factor A (i.e mean drag coefficient) contributes around 99.32% of the effect on the 

bending moment at the lowest end of the riser. Following A, factor B, holds the next 

significance. This table gives a glimpse of the factors to be considered significant. 

However, all the factors should be decided significant or not, depending on their p-value, 

which can be obtained from ANOVA (analysis of variance). Factors that are considered 
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important from this table are included in the model and analyzed further to check if the 

model itself is significant with the factors included. So, factors A and B are considered as 

significant factors as their contribution percentage is higher and included in the model. 

Also, the curvature is included, though its contribution is only 0.024%. Curvature, here 

defines whether responses are linearly or non-linearly related to the parameters. To check 

curvature, it is included in the model, which further from ANOV A decides the linearity 

of responses with parameters depending on its p-value. It should be noted that the 

curvature as given by ANOV A is for the model but there may be case when the quadratic 

relationships may exist among the considered factors . Significant factors are denoted by 

by 'M', while un-chosen effects are labeled 'e' for error. These effects would be 

incorporated in the residual used to test the model in the subsequent ANOV A. The 

software also reports the Length's margin of error (ME) and simultaneous margin of 

error. It is reconunended against these because Length's method doesn ' t pick effects in a 

consistently good manner. The SME criterion is more conservative and won't pick as 

many effects as the ME. It may work for larger sets of data. So, selection of the factors 

can be drawn based on a HalfNormal plot (refer to design expert manual for details). 

Factors, which are far away from the straight line in the plot, are considered to be the 

most significant that affect the response. 

Design- E>cpert® Software 
Bending Moment at point 1 

S hapiro-Wilk test 
W -value = 0 .943 
p- value = 0 .689 
A : Mean Drag Coeff. 
B : Amp~. of Drag Coeff. 
C : Amplt. of Lift Coeff. 
0 

Negat1 Effects 

99 

J 
95 

90 

* 8 0 

I 70 

50 

30 
20 
10 

0 

Half-Normal Plot 

c 

c s 

• 
[J 

• 
• • 

0 .00 4 733 12 9466 25 14199 37 18932 50 

! S tandardized Effect! 

Figure 4.4.1: Half Normal plot offactorsfor max. BM at mass 1 
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As shown in the plot 4.4.1 , factor A is the furthest point from the straight line indicating a 

highl y significant factor. Next to A is B, which is far away from the straight line showing 

its significance in affecting the bending moment at lowest point of the riser. Other main 

factors and the interaction of the factors along the straight line are used as an error in 

ANOVA. The HalfNormal plot and% contribution table give the approximate figures of 

the significant factors, which further, will be proved from A OVA, depending on p­

value. Generally, curvature is marked as significant in the% contribution table, which is 

further analyzed in ANOV A to check if it is significant or not based on its p-value. 

After identifying the significant factors, analysis of variance (ANOV A) was carried out 

to check whether the model was significant with the factors included. The analysis of 

variance can generally be used to confirm the magnitude and direction of the factor 

effects to determine which variables are likely to be important. 

4.4.1.1 Analysis of variance (ANOV A) 

In ANOV A, focus should be given to the p-values of the factors included in the model 

and the p-value of the model itself to decide if the model with the factors included based 

on a Half Normal plot, are statistically significant or not. The p-value of the curvature 

here will determine if responses are linearly or non-linearly varied wi th the parameters 

concerned. 

ANOV A (figure 4.4.2) shows the model with factors A and B is significant as the p-value 

is less than 0.05, and also each factors, A and B are significant as their p-values are less 

than 0.05. The p-value of the curvature in this case in not significant, wh ich shows the 

bending moment at lumped mass I varies linearly with the factors A and B. Other terms 

in ANOV A such as sum of squares, and degrees of freedom are the statistical 

terminologies in determining the p-val ues manually. In the 23 design with n replicates, 

the sum of squares for any effect is given as: 

(Contrast )2 
• 

SS = , where Contrast gtves the total effect of factors. 
8n 
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For example, contrast of factor A can be defined as: Contrast A = ab+a-b-( I) 

where, a, b denotes the main factor effects (a- a is at high level and bat low level) and ab 

denotes the effect of interaction of factors a and b (both at high levels), (1 ) denotes both 

factors at low levels. 

Now, it is nece ary to check the residual analysis to check the validi ty of the 

assumptions of A OVA. 

Use your mouse to 11ght cl1cf. on Individual cells tor def1nrt1ons 

Bending Moment at poinrt 1 

ANOVA for selected factorial model 

Analysis of variance table [Partial sum of squares - Type Ill[ 

Sum of Mean 

Squares dt Square 

7.207E+OOB 2 3.604E+008 

A-Mean Drag 7. 169£+008 1 -

8-Amplt. of D 3.823£+006 3.823£+006 

1.731E+OOS 1.731E+OOS 

9.316E+OOS 5 1.863E+OOS 

7.218E+OOB 8 

f 

Value 

1934.12 

3847.72 

20.52 

0.93 

The Model F -value ot 1934 12 1mplies the model1s s1gmf1cant There IS only 

a 0 01% chance that a "Model F-Value" lh1s large could occur due to no1se 

V;:;lue~ ot "Prob" F" less than 0 0500 indicate model terms are ~lgnltiC&nt 

In !hiS: case /',, B are Slgn1f1cant model terms 

Values greater than 0 1000 1nd1cate the model terms are nc~ s1gn111Carrt 

p-value 

Prob > f 

< 0.0001 significant 

< 0.0001 

0.0062 

0.3794 not significant 

Figure -1.-1.2: ANOVAfor the bending moment a/ lumped mas 1 

4.4.1.2 Residual Analysis 

1) Normal Plot of Residuals: A check of the normality as umption can be made by 

constructing a normal probability plot of the residuals. This is a plot of studentized 

residuals, number of standard deviations of the actual values from their respective 

predicted values. It is simply a graph of the cumulative distri bution of the residual . 

Ideally, this will be a straight line indicating no abnormalities. In thi s case, the 
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residuals are along the straight line (figure 4.4.3) showing that the residuals follow 

the normal distribution. 

2) Residuals vs. Predicted: If the model is correct and if the assumptions are satisfied, 

the residuals should be structureless, in particular, they should be unrelated to any 

other variable including the responses. A simple check is to plot the residuals versus 

the predicted values. A defect that occasionally shows up on this plot is non-constant 

variance. Sometimes the variance of the observations increases as the magnitude of 

the observation increases. If this were the case, the residuals would get larger and the 

plot of residuals would be like an outward-opening funnel or megaphone. The size of 

the studentized residual should be independent of its predicted value. In other words, 

the spread of the studentized residuals should be approximately the same across all 

levels of the predicted values. In this case (figure 4.4.4), points are scattered between 

the upper and lower margin, which shows the assumption of constant variance is 

valid. 

Oesign-Elpertl> Software 
Bending Moment at point 1 

Normal Plot of Residuals Des~gn-E~en® Software 
Bending Moment at point 1 

Residuals vs. Predicted 

Color points by value of 
Bending Moment at point t · 
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.. 
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70 
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.()82 002 087 '" 
Internally Studentized Residuals 

Figure 4.4.3: Normal Plot of Residuals 

Color points by valJe of 
Bending Moment at point 1. 

343500 

3 00 

-300 

Predteted 

Figure 4.4.4: Residual Vs. Predicted 

3) Box-Cox plot: This diagnostic plot is to calculate the best power law transformation 

analytically. The text on the left side gives the recommended transformation, in thi s 
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case it IS 'None' . The vertical line on I in figure 4.4.5 shows the cunent 

transfom1ation, which is the power applied to the response values. Since there is no 

transformation of data done in this case, a value of 1 is identified. If the designer or 

the experimenter knows the relationship between the variance of the observations, 

and the mean, they can use this information to guide them in selecting the form of 

transformation. In some cases, all the observed values should be transformed to the 

recommended form, for better ANOV A and statistical checks. 

4) Residuals vs Run: Plotting the residuals in time order of the data collection is 

helpful in detecting correlation between the residuals. A tendency to have runs of 

positive and negative residuals indicates positive correlation. This would imply that 

the independence assumption on the errors has been violated. This plot 4.4.6 shows 

all the points inside the margin line. If there were any outliers, then it shows some 

measured magnitudes of the responses far away from the others for the different 

combinations. In this case, there is no such response value, figure 4.4.6 

After the residual checks and confirmation of all statistical assumptions, the relationship 

between the significant factors and bending moment at lumped mass 1 was investigated. 

As found, only the drag coefficients affect the maximum bending moment whereas the 

lift force coefficient, statistically does not affect the bending moment. 
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Figure 4. 4. 5: Box-Cox plot 
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4.4.1.3 Examine the main effects 

1) Influence of mean drag coefficient 

Figure 4.4. 7 is a plot obtained after ANOV A, and residual checks. which shows the 

direction of Bending Moment with the changes of the magnitude of Mean Drag 

Coefficient. It shows the maximum bending moment at the touchdown zone of the riser, 

represented by lumped mass 1, decreases sharply with the increment of the mean drag 

force coefficient. The text on the left side of the plot shows the magnitude of other 

factors, for which the bending moment is varied with the variation of drag force 

coefficient. 

Design-Ellpert® Software 

Bending M:Jrrent at point 1 

X 1 = A: fv'ean Drag Coeff. 
c 

Actual Factors ·g_ 
B: Arrplt of Drag Coeff. = o. 351ii 
C: Arrplt of Lift Coeff. = 0.17 c 

Q) 

E 
0 

:::;; 
Ol 
c 
'6 
c 

365000 

359500 

354000 

~ 348500 

343000 

One Factor 

020 0 40 0.60 0 80 1 00 

A Mean Drag Coeff. 

Figure -1. 4. 7: Influence of Mean Drag Coefficient on max. BM at lumped mass 1 

2) Influence of amplitude of drag coefficient 

Next in importance to the mean drag coefficient is the oscillating drag coefficient in 

affecting the maximum bending moment at the touchdown zone of the riser. The plot 

4.4.8 shows the nature of bending moment with the variation of oscillating drag. The rate 

of change in bending moment due to osci llating drag is lower than that of the mean drag. 
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Design-Expert® Software 

Bending Moment at point 1 
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Figure 4. -1. influence of Amplitude of Drag Coefficient on max. BM at lumped mass 1 
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Figure 4.4.9: Cubical plot.for max. BM at lumped mass] 

Figure 4.4.9 shows the maximum bending moment at lumped mass 1 with all the force 

coefficients. As can be seen, with the increment of drag force coefficient from low level 

to high level, maximum bending moment decreases from 364099 m to 345166 m. 
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Also, increasing the oscillating drag from its low to high level, maximum bending 

moment at the touchdown zone of the riser reduces to 362716 Nm from 364099 Nm. 

Maximum bending moment doesn't change with the change in levels of lift force 

coefficient. The maximum bending moment is developed for the combinations of lowest 

levels of drag force coefficients as seen at the left corner of the plot. 

A linear mathematical model can be developed with the help of ANOV A. For the case of 

curvature being significant, the Response Surface methodology can fit a second order 

equation. Bending moment at the lowest point, i.e. at mass 1, can mathematically be 

represented as given by ANOVA in the form of: 

Bending Moment at point 1-::3.69789* 105-23695.875*Mean Drag Coeff.--1691. 6667 

*Amplitude of Mean Drag Coeff. 

To check the accuracy of the mathematical model developed from ANOVA, bending 

moment was measured at the lumped mass 1 from the simulation for the values of mean 

drag coefficient of 0.6, oscillating drag of 0.35 and lift coefficient of 0.17, which gave the 

magnitude of 3.532xl05 m. For the same values of force coefficients, the bending 

moment from the developed mathematical model gives the bending moment as 3.53x 105 

Nm. It shows the mathematical model developed from the ANOV A shows the 

permissible agreement with the values from the simulation. An error of 0.20% between 

the values may be due to the lift force coefficient. The lift force coefficient is omitted in 

the equation while it was included during simulation. 

The same procedure was followed for the rest of the responses. 

4.5 Blocking and confounding 

For the second parametric study, where the current was varied with the water depth, five 

factors were taken into consideration. ln addition to the force coefficients , internal flow 

was chosen, which considers the discharge ranging from 0 m3/sec (no flow) to 0.02 

m3/sec. Because of the internal fluid flow, pressure is induced within the walls of the 
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riser. Only the linear variation of internal pressure has been considered within the riser 

segments. Effects of the internal flow were incorporated in the code to account for the 

changes in the discharge within the riser. Change in the levels of internal flow discharge 

in this study was accounted for by changing the pressure variation within the riser. 

Table 4.3: Factors for the case o.fshearedjlow 

Factors Coded factors Hiqh Value (+1) Low value (-1) 

Mean Drag Coefficient A 1 0.2 

Oscillating Drag Coefficient B 0.5 0.2 

Lift Coefficient c 0.3 0.05 

0.02 m3/sec 0 
Internal fluid discharge D 

Position of the top point Pn E 50 m 0 

Another factor E , represents the change in the position of the top-end of the riser with 

respect to its original position, which may occur during the riser launching, positioning 

and production. The top end point Pn was fixed to a position of 50 m away from its 

original position, which is coded as a high value in the analysis, 0 m represents the 

original position of the top end. The movement was in the right direction to its original 

position as shown in the figure 4.5.1. 
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Movement of 50m to rir1ht 

Sea bed 

Figure 4. 5.1: Movement of top-end of riser towards the right from its 

original position 

Therefore, thi s analysis involves two levels, and can be represented as 25 (32 treatments 

for the simulation). Rwming 32 simulations was time consuming as one simulation takes 

about 10-11 hours depending on the computer processor. However, the statistical 

information can even be derived without running 32 simulation , which can be achieved 

through the process called blocking and confounding, where only certain and appropriate 

treatments are run at the expense of losing other interaction effects. The treatment of 

factors and their interactions are divided into blocks after the contrast is defined. Only a 

certain block is selected for the analysis through which statistical information can be 

determined. In this case, 25
'
1 fractional factorial design was adopted, where one 

interaction of factors of higher order would be neglected. This means, out of 32 

simulations, only half simulations would be run. In 25
·
1 design, 1 represents the number 

of confounded effects, and is assumed to confound the higher order interaction of the 

factors. In this case, interaction ABCDE was confounded. 

So, I=ABCDE, is a defining contrast. Running half of the full factorial designs lead to the 

development of two blocks, the first block is called the 'Primary block' which includes 

all the factors at low levels, denoted by ' I ' . 
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In blocking, the main effects get aliased with the interaction of the main factors. The alias 

structure may be found by multiplying each effect column by the defining relation. 

Table 4.4: Treatment of factors divided into two blocks 

Primary Block Block 2 
I a 

ab b 

ac c 
be abc 

ad d 

bd abd 

cd acd 

abed bed 

ae e 

be abe 

ce ace 

a bee bee 

de a de 

abde bde 

acde cde 

be de abcde 

So, in this case, factor A will be aliased with BCDE. 

[A]= BCDE 

[B]= ACDE 

[C]= ABDE 

[AB]= CDE 

[BC]= ADE 

[AC]= BDE 

In the analysis which involves confounding, attention should be paid in making decisions 

regarding the aliased terms. For example, if the main factor (which is aliased with other 

main factors or interactions) affects significantly the responses, it should not necessarily 
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be concluded that the main factor is the only factor to affect that response. Since the 

effects are aliased, further analysis has to be carried out, called the 'Fold Over Design', 

which de-aliases the terms, and the effects of the main factors can be investigated. In this 

analysis, no main effect or two-factor interaction was aliased with any other main effect 

or two-factor interaction, but two-factor interactions are aliased with tlu·ee-factor 

interactions. This sort of design is called the ' Resolution V Design' . In some cases, no 

main effects are aliased with any other main effect, but main effects are aliased with two­

factor interactions and two-factor interactions may be aliased with each other. This is 

called "Resolution III Design', represented as 23
-
1
• Another design represented as 24

-
1
, is 

called Resolution IV Design, in which no main effect is aliased with any other main 

effect or with any two-factor interaction, but two-factor interactions are aliased with 

other. 

Defining the confounding effect (and arranging the treatment of factors as shown in table 

4.4) and aliasing terms, a block was chosen to carry out the simulation. Primary block 

treatment was considered for the simulation, so with eight treatments of the factors as 

shown above, the simulation was run for 1000 seconds and the variou responses were 

measured. Block 2 would have been taken for the simulation for the case of de-aliasing 

terms. However, there was no need of de-aliasing the terms in this study. To check the 

linear relationship among factors and the effects, a simulation was run with the mid value 

for all the factors. The main difference between running the simulation for full factorial 

and half factorial is the introduction of aliased terms with the main factors. 

After getting all the response magnitudes, the same procedure was followed to find the 

parametric relationships. To show the difference between the full factorial and the 

fractional factorial design, analysis for bending moment at point 1 has been discu sed, 

which shows how the main factors were aliased with the other factors interactions of 

higher orders. 
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4.5.1 Maximum bending moment at lumped mass 1 

Table 4.5 lists the percentage contribution of factors in affecting the maximum bending 

moment at the touchdown zone. In this case, the maximum bending moment is highly 

affected by the lateral drift of the riser top-end. It contributes about 99.13% in affecting 

the maximum bending moment, followed by the mean drag and internal fluid pressure. 

Among the force coefficients, the mean drag force coefficient has the highest influence 

on bending moment. Since, the riser top-end movement has 99.13% influence, the force 

coefficients contribution in this case seems to be negligible. However, among the force 

coefficients, the same relationship exists for the case of maximum bending moment at the 

touchdown zone irrespective of the flow type (uniform or shear). Factors holding a higher 

percentage of the total contribution were included in the model , and they are represented 

by ' M ' . Other terms like C, AB, AC, which are represented by ' e ' are the residual terms 

or the error terms. The terms such as ABC, ABD, represented by '~ ' are the aliased 

terms, as defined earlier. So, it should not be necessarily assumed that a contribution by 

factor ' A' is just a sole contribution, as its structure exists in the form of [A] = BCDE. So 

the contribution could be from BCDE. But in this case, terms B and C are almost 

negligible, and their combined effects are negligible. So, it is reasonable to conclude that 

this highest significance is due to factor A primarily. The same results were derived from 

the Half-Normal plot (figure 4.5.2). Factors such as E lie furthest from the straight line, 

showing its highest significance for the response of bending moment, followed by other 

factors such as A and D. The rest of the blocks along the straight line are the errors, 

which were not included in the model for ANOV A. 
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Table 4.5: Contribution of factors on bending moment at mass 1 for shearjlow 

_j Term I Stdized Effects !Sum of Squares 1% Contribution I 
Intercept 

A-Mean Drag Coeff . -4875.00 9 .506E+007 0 .59 

e B-Amplt . od Drag Co eft. -550.00 1 .21 OE+006 7 .525E-003 

e C-Ampti. of Lift Coeff . -200.00 1 .600E+005 9 .951 E-004 

D-lnside Fluid 3000.00 3.600E+007 0 .22 

E-Sway at the top -63125.00 1 .594E+010 99.13 

e AB -425.00 7 .225E+005 4.493E-003 

e AC -475.00 9 .025E+005 5 .613E-003 

e AD -275.00 3.025E+005 1 .881E-003 

e AE 400.00 6.400E+005 3 .980E-003 

e BC -350.00 4 .900E+005 3 .047E-003 

e BD -300.00 3 .600E+005 2 .239E-003 

e BE 275.00 3 .025E+005 1 .881 E-003 

e CD -350.00 4 .900E+005 3 .047E-003 

e CE 225.00 2 .025E+005 1 .259E-003 

e DE 775.00 2.402E+006 O.D15 

"" ABC Aliased 

"" ABO Aliased 

"" ABE Aliased 

"" ACD Aliased 

"" ACE Aliased 

"" ADE Aliased 

"" BCD Aliased 

"" BCE Aliased 

"" BDE Aliased 

"" CDE Aliased 

"" ABCD Aliased 

"" ABCE Aliased 

"" ABDE Aliased 

"" ACDE Aliased 

"" BCDE Alia sed 

"" ABC DE Aliased 

Curvature 4.1 06E+005 9 .888E+005 6 .150E-003 

Lenth's ME 1349.56 
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After identifying the significant factors to be included into the model, an ANOVA was 

carried out to check whether the model was significant with the term included, followed 

by the residual checks. Further, each factor and interaction term was diagnosed to check 

its relationship with the responses. 

The curvature for the model was found insignificant for the case of bending moment, in­

line amplitude, whereas, curvature for the model was found significant for the case of 

maximum tension, maximum tensile stress and the cross flow displacement. So, there 

was a linear parametric relationship of factors with the responses for the case of bending 

moment and in-line amplitude. To develop a mathematical model for the case, when 

curvature is significant, all the treatments of factors have to be run at three levels, and 

then using the ' Response Surface Methodology', quadratic equations are be fit to the 

model. In this study, understanding parametric relationships among the parameters and 

responses was of major concern, so no simulations were carried out at three levels. Also 

there was no need to carry out the 'fold over design ' to de-alias the terms. Otherwise, 

complete or semi-fold-over design should be carried out to de-alias the terms. 

The results obtained from DOE are presented and discussed in the next chapter in detail. 
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Chapter 5 

Results and Discussion 

5.1 Analysis for the force coefficients 

Full factorial simulation was carried out for the parametric study of force coefficients 

upon the riser responses, where the riser was subjected to a uniform current velocity of 

0.5m/s at a Reynolds number>3x 105
. Different lumped masses were chosen along the 

riser length to check the variation of effects on the riser responses on different segments. 

After running the simulation for the described treatment of the parameters for the same 

time period, responses like Maximum Bending Moment, Maximum Tension, Maximum 

Tensile Stress, Cross Flow, and In-line Amplitude were measured. Then statistical 

analysis was carried out using the Design Expert 7.1 software. The following parametric 

relationships were obtained after the proper statistical checks. 

5.1.1 Maximum bending moment 

1. At the lowest point ofthe riser (touchdown zone), represented by the lumped mass 1, 

maximum bending moment is affected significantly only by the drag force 

coefficients, the mean and the oscillating drag. The mean drag force coefficient 

affects the maximum bending moment at a higher rate than the oscillating drag 

(figure 5.1.1 ). With a positive increment of the mean and oscillating drag, the 

maximum bending moment decreases. 

11. At the top-most point of the riser, represented by the lumped mass 99, the mean drag 

and the oscillating drag coefficient affect the bending moment. With the increment of 

drag force coefficient, the bending moment increases sharply, and moderately 

increases with the increment of oscillating drag force coefficient. Figure 5.1.2 shows 

the variation of bending moment at the lumped mass 99 where drag force coefficient 

affects the bending moment highly than the oscillating drag coefficient. 
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111. At the I oth lumped mass, the drag force coefficient follows the same effect as for the 

lumped mass I. Drag force coefficient decreases the response. 

1v. At the 50th lumped mass, the drag force coefficients increase the bending moment. 

The variation of the bending moment with the force coeffici nts was linear, as shown 111 

figure 5.1.1 and 5.1.2. 
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Figure 5.1.1: influence of drag force coefficients on max. B.M at lumped mass 1 
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Figure 5.1.2: Influence ofdragforce coefficients on max. BM at lumped mass 99 

Therefore, it shows that drag force coeffici ents affect the maximum bending moment of 

the riser, while lift force coefficient does not contribute a significant effect to bending 

moment. However, the drag force shows the contrasting effect on different segments of 

the riser. Bending moment is reduced with the increment of the drag forces on the por1ion 

of riser which is in contact with the seabed (represented by lumped mass 1 and 1 0), 
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whereas the drag forces increase the bending moment on the riser above the seabed 

(lumped mass 50 and 99). This is because of the geometry of the riser. Riser segments, 

represented by lumped masses 1 and 10, lie on a seabed, where the riser geometry is 

curved, and the increased drag forces reduce the bending moment. Whereas, the riser 

portions, above the seabed, are straight and hanging (because of weight of the lumped 

masses), and the increased drag forces (with time) increase the bending moment. 

99th mass 

positive drag.force 

Sea bed 

1 &10th mass 

Figure 5.1.3: Position of lumped masses on a riser 

Maximum bending moment at the riser poriions on the seabed initially is higher than that 

of the portions above the seabed. The increment of the drag force tends to straighten the 

riser portions in touchdown zone, and decreases the maximum bending moment. While 

for the portions above the seabed, the drag force increases the maximum bending 

moment. However, maximum bending moment at touchdown zone is comparatively 

higher than that of hanging portion. The following figures show the maximum bending 

moment developed at lumped masses 1 and 99, which show the comparative magnitude of 

bending moments. Bending moment at the transient state (which is higher) is reduced 

with the increased drag force. For example, as shown in figure 5.1.4 and 5.1.5, bending 

moment at lumped mass 1 is reduced to 3.636x105 Nm from 3.98x105Nm. However, the 
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bending moment at touchdown zone IS comparatively higher than of the hanging 

portions. 

Figure 5.1.4: initial Maximum Bending Moment at lumped mass 1 

(B.M =3.98xJ05Nm) 

Tim~Bend•ng Mom.m ~ 1 

·········-····-·········+-························-~---··············-·-·······i··························-~---·······················-:---------················· 

""' 95IJ 990 

Figure 5.1.5: Final Maximum Bending Moment at lumped mass 1 

(B.M. =3.636xl05 Nm) 

Figure 5.1.6: Initial Maximum Bending Moment at lumped mass 99 

(B.M =4.25xl0-l Nm) 
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lime in sec 

Figure 5.1. 7: Final Maximum Bending Moment at lumped mass 99 

(B.M=4.209x104 Nm) 

5.1.2 Maximum tension 

Only the drag force coefficients affect the maximum tension on the riser segments, while, 

the lift force coefficient has no significant contribution. Mean drag increases the tension 

at a higher rate than the oscillating drag. It was found that irrespective of the riser portion 

either lying on seabed or hanging, the drag force increases the tension on the riser. A 

linear relationship exists between the tension and the drag coefficients for all the masses. 

Figure 5.I.8 shows the variation of maximum tension at the lumped mass I 00. As seen, 

maximum tension increases when the mean drag force coefficient increases from 0.2 to I . 

Mean drag being higher than the oscillating drag, increases the tension on riser segments 

at a higher rate than the oscillating drag. Also, for lumped mass 50, the same relationship 

exists. Increased drag force increases the tension on riser segments. Figure 5.1.9 shows 

the increment of tension when drag forces are changed from low level to high level. The 

variation of tension was linear with the drag forces. The lift force doesn ' t influence the 

tension significantly. 
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Figure 5.1. 9: Inf luence of drag force coefficient on max. tension at lumped mass 50 
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5.1.3 Maximum tensile stress 

The maximum tensile stress on the nser segments IS affected by the drag force 

coefficients. The li ft force coefficient has a negligible effect. Mean drag coefficient 

increases the ten ile stress highly, wherea the oscillating drag ha a moderate effect. The 

same linear relationship exists for all the masses. Since both the end points of the riser are 

pinned, drag tends to straighten the riser, which in turn increases the maximum tensile 

stress on riser egments. 
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In general , it is seen that the riser positions affect the variation of bending moment wi th 

the variation of drag force coefficients. However, other responses like maximum tension 

and tensile stress are unaffected by the riser geometry. Drag force increases the maximum 

tension and tensile stress along the riser length as the riser is pinned at both ends. 

Bending moment is highest at the lowest end of the riser, which decreases on riser 

segments away from the bottom end. While, tension and tensile stress is higher on riser 

segments on and near to the top-end of the riser. Positive drag force tends to straighten 

the riser portion on the sea bed, which decreases the maximum bending moment on it, 

while drag increases its maximum tension and tensile stress. Drag force on the riser 

segments above the seabed in increases the maximum tension and tensile stress. 

5.1.4 Cross flow displacement 

The cross flow displacement is affected mostly by the lift force coefficient, and partly by 

the drag force coefficient. With the increment of lift force, the cross flow amplitude 
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mcreases linearly for the lowest and top-most point on the riser (figure 5.1.12). An 

increase in mean drag reduces the cross flow displacement (figure 5.1.13). This 

relationship exists for the lumped mass 5 and 99. The mean drag coefficient increases the 

tension and tensile stress which may reduce the oscillations of the riser segments in the 

cross-flow direction. Fluctuation of the drag force may be expected to increase the cross­

flow oscillations, but as the mean drag force is higher than oscillating, suppresses the 

influence of the oscillating drag. This was found to statistically significant. Displacement 

in this study was measured in terms of its amplitude. 

There was no significant effect of oscillating drag on the cross flow displacement. 
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Figure 5.1. 12: Effect of lift force coefficient on cross flow amplitude at lumped mass 99 
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5.1.5 In-line displacement 

The in-line displacement, measured by its amplitude on different riser segments show 

different responses to the variations of force coefficients, depending on the riser position. 

1. At lumped mass 5 (at the touchdown zone), the lift force coefficient increases the in­

line displacement as does the drag force coefficient. The lift force coefficient 

influence is the main effect for the in-line displacement. The interaction between the 

mean drag and oscillating drag affects the in-line displacement (figure 5.1.15). For a 

low level of the oscillating drag, the in-line displacement increases with the increment 

of the mean drag force as shown in figure 5.1.14. While, for a higher level of 

oscillating drag, the in-line displacement decreases with the increment of the mean 

drag. The triangular block in the figure represents the higher level of oscillating drag, 

while the rectangular block represents the oscillating drag at low level for which in­

line displacement increases with mean drag (figure 5.1.15). This could be because the 

mean drag force coefficient acts as opposing force enough to reduce the in-line 

displacement for negative drag amplitude. For the positive side of the oscillating drag, 

the mean drag force coefficient may not be high enough to overcome the resistive 

force for which oscillating drag increases the in-line displacement. 
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Figure 5.1.15: Influence of drag coefficients on in-line displacement at lumped mass 5 

In the fi gure 5.1.15, a warning stating factor involved in an interaction can be seen, 

where the in-line displacement seems to be varying with the increment of oscillating drag 

level. This means oscillating drag affects the in-line displacement at mass 5 depending on 

the level of mean drag coefficient, so the analysis of oscillating drag should be done 
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along with the mean drag at the same time. Since, mean drag force affects the response in 

conjunction with oscillating drag, analysis of the response using only that p1ot would not 

be appropriate as in-line displacement may increase/decrease with change in oscillating 

drag force for non-constant mean drag. 

11. The in-line di splacement at the point 50 is affected by the mean drag coefficient and 

the combination of oscillating drag and lift force coefficient. Mean drag alone reduces 

the in-line displacement as shown in figure 5.1.16. This could be because drag force 

for this p011ion (above the sea bed and vertical) tends to increase the maximum 

tension and tensile stress, which opposes the riser displacement both in in-line and 

cross flow displacements. While, for the riser portion on the seabed (lumped mass 5), 

the mean drag force tends to straighten the riser, and positive and negative amplitudes 

of oscillating drag suppress the influence of the mean drag in affecting in-line 

displacement depending upon the levels of oscillating drag as for lumped mass 50. 

The combined effect of oscillating drag and lift force behaves in two ways. For a low 

level of the lift force coefficient, the oscillating drag increases the response while at a 

high level of the lift force coefficient, response increases w ith an increment of 

oscillating drag as shown in figure 5.1.17. 
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111. At the top-end of the riser, i.e., mass 99, the combined effect of two factors, mean 

drag and lift force coefficient affects the in-line displacement. For a high level of lift 

force coefficient, mean drag increases the in-line displacement, while decreases the 

in-line displacement at the low level of lift force coefficient (figure 5.1.18). 

Figure 5.i .i8: influence of mean drag and lift force coefficient on in-line 
displacement at lumped ma s 99 
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5.2 Analysis for sheared flow: 

For the riser subjected to a sheared current flow, half factorial design was carried out. 

Along with the force coefficients, factors like internal pressure variation (because of 

internal fluid flow), and change in the position of the top-end of the riser were included. 

Higher order interaction of the main factors was confounded, where the main factors 

were aliased with other interaction of the main factors. The following parametric 

relationships were obtained after the proper statistical checks. 

5.2.1 Maximum bending moment 

Maximum bending Moment at the lowest end of the riser, i.e. the lumped mass 1, is 

mostly affected by the movement of the top end from the original position of the riser 

(towards the right from original position), followed by the mean drag and internal flow. 

The influence of the lift force and the oscillating drag force coefficients are almost 

negligible. When the riser top-end is moved away from its original position, the bending 

moment on riser segments decreased remarkably as shown in fi gure 5.2.1. Moving the 

riser top-end stretches length of the riser, and bending moment is decreased. The same 

parametric relationship exists for all considered lumped masses irrespective of their 

position on the riser. 

Increasing internal fluid flow, which causes an increment of the pressure variation in the 

riser segments, has a positive effect on bending moment, i.e. increases the bending 

moment with the increment of pressure variation. However the increment is at a moderate 

level as shown in the figure 5.2.2. Internal pressure variation within the riser walls tends 

to straighten the bent portion of the riser, hence reduces the bending moment. 

Among the force coefficients, the mean drag force coefficient was found to be 

significant. Depending on the riser positions, bending moment increases or decreases 

with the variations of drag force coefficients. Figure 5.2.3 shows the variation of bending 

moment with mean drag force coefficient at lumped mass 99. It shows the bending 

moment increases with the increased drag force. Hence, it can be concluded that 
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irrespective of the type of flow (uniform or shear), drag forces influence the bending 

moment depending on the riser positions. 
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5.2.2 Maximum Tension 

Maximum Ten ion on a n ser IS affected by the pressure variation due to internal fluid 

flow (fi gure 5.2.5), followed by the riser movement at the top-end. Among the fo rce 

coefficients, only the mean drag force increases the maximum ten ion. Unl ike fo r other 

cases, the curvature was found s ignificant for this response becau e of the direction of 

current along the riser length. 
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The same parametric relationships exist for the maximum tension with the facto rs 

considered irrespective of the position along the riser. Increasing the internal fluid within 

the riser induce an internal pressure, which in tum, increa es the tension on nser 

segments. Moving the riser top-end away from its original po ition stretches the n er 

length, and will give rise to increased tension. 

5.2.3 Maximum tensile stress 

1. Tens ile Stress on a riser segment is greatly affected by the internal fluid flow 

(figure 5.2.8).The movement of the riser top-end al o increases the tensile 

stress as shown in fi gure 5.2_9, but this is not as high as the internal fluid flow. 
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Among the force coefficients, mean drag force coefficient increases the maximwn tensile 

stress along the riser length as shown in figure 5.2.1 0. 

11. At the mass 99, there exists the combined effect of factors such as mean drag 

and internal fluid flow, mean drag and riser top-end movement AD, and AE. 

The effects of AD and AE remain constant on either range of factor levels 

(figure 5.2.11 ). Like the case for the tension, the curvature was significant due 

to the variation in current with water depth. 
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5.2.4 Cross flow Displacement 

1. Cross flow di splacement is affected by the lift force coefficient. With an increment of 

lift coefficient, cross flow displacement increases. The mean drag force coefficient 

decreases the cross-flow displacement. A riser carrying the fluid inside of it 

experiences a hi gh cross flow displacement. While the movement of top end of the 

ri ser in the inline direction decreases the cro s flow displacement. 

11. There ex ists a combined effect of factors in affecting the cro s flow displacement. For 

the point 5, AC, BD, AD, BD, CD and AE jointly affect the response_ All the 

interaction of factors decrease the cross flow displacement for either of their levels 

except for BD and CD. With BD, osci llating drag force coefficient increases the cro s 

flow di splacem ent if the riser is carrying inte rnal fluid flow (figure 5.2.12) . However, 

oscillating drag force decreases the cross flow displacement if the riser is wi thout 
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internal fluid. The lift force coefficient increases the cross flow displacement for low 

and high levels of internal fluid discharge. 
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5.2.5 In-line Displacement 

1. Mean drag force coefficient decreases the in-line displacement. The oscillating drag 

force coefficient increases the in-line displacement as shown in figure 5.2.13. Risers 

with internal fluid flow experiences less in-line displacement. A ri er without internal 

fluid has less mass per unit length, for which in-line displacement can be higher than 

for the case when the riser is carrying fluid. 

11. At masses like 5 and 99, there exist a combined effect of oscillating drag force and 

internal fluid discharge. Oscillating drag greatly increases the in-line displacement for 

the lower level of discharge, whi le in-line displacement is reduced for the riser w ith 

high discharge in it (figure 5.2.14). 
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From the above analysis, it can be concluded that, bending moment is affected by the 

drag force coefficients, while the lift force coefficient has almost negligible effect. The 

maximum tensions and tensile stresses are highly affected by the drag force among the 

three force coefficients. Cross-flow displacement is affected by the lift force coefficient 

mostly, and at some lumped masses it was found lift force affecting the in-line 

displacement. The same relationships were found for the influence of the force 

coefficients irrespective of the type of current loading on the riser. After identifying the 

significant parameters, it was of interest to see whether there existed any significant 

changes in the riser responses with the changes of parameters within the expected ranges. 

For example, for the mean drag coefficient of 0.2, final maximum bending moment at 

lumped mass 1 was 3.63xl02 Nm, while for the value of 1, BM decreased to a value of 

3.44x102 Nm. So, with the increment of drag force coefficient from 0.2 to 1 (increment of 

mean drag coefficient by 400%), the bending moment magnitude decreased by 5.20 %. 

Also, oscillating drag force coefficient decreased the bending moment at the touchdown 

zone. For its value of0.2, the bending moment at lumped mass 1 was 3.54xl02 Nm, and 

for the value of 0.5 (increment of oscillating drag by 150%), maximum bending moment 

decreases to 3.531022 Nm, showing a 0.38% fall in the magnitude. 

Similarly, for other masses, change in the parameters within the expected range, showed 

the variation in the riser responses. The following tables (5.1 and 5.2) show the variation 

in bending moment at the top-end of the riser with the drag force coefficients. 
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A. Variation of maximum bending moment with drag force coefficients 

Table 5. 1: Variation of maximum BM with I he mean drag .force coefficient 
at lumped mass 1 for un(formjl.ow 

Mean-drag Bending Moment (Nm) Increment in BM 

coefficient 

0.2 1.11 X 105 -

0.6 1.13x 1 05 1.76% 

1 1.14x105 0.87% 

Table 5.1 shows the variation of maximum bending moment (after the transient state) 

w ith the mean drag force coefficient. Jt shows that with the change of mean drag force 

coefficient from 0.2 to 0.6 to 1 (changes by 200% and 67%), the bending moment 

changes just by the order of 1-1.5%. This variation of bending moment with mean drag 

force is for the case when oscillating drag is set at 0.35 and the lift force coefficient at 

0.17. Similarly, for the case of mean drag force coefficient set at 0.6 and the lift force 

coefficient at 0.17, maximum bending moment at lumped mass 1 varies with the changes 

of oscillati ng drag force coefficient as shown in table 5.2 

Table 5. 2: Variation of maximum BM with the oscillating drag coefficient 
at lumped mass 1 for uniform flow 

Oscillating drag Bending Moment (Nm) % Increment in BM 
coefficient 

0.2 1.1 2x l 05 -
0.35 1.1 3x 105 0.89% 

0.5 1.135x105 0.45% 

It can be seen from above table that changes in the oscillating drag coefficient (changes 

by 75% and 42%) leads to the variation of bending moment by order of only 0.5-1%. 
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B. Variation of maximum tension low with drag force coefficients 

1) Tension on a riser segment is increased with the increment of mean drag coefficient. 

For example, tension measured at the top-end of the riser (at mass 1 00) at uniform 

flow for the mean drag coefficient of 0.2 was 1.203x 107 N, while for the mean drag 

of I , the measured tension was 1.230x1 07 N, showing 2.245% increment in the 

magnitude oftension as shown in table 5.3. 

Table 5.3: Variation of maximum tension with mean dragforce coefficient 
at lumped mass 100 for uniform flow 

Mean-drag Tension (N) %increment 

coefficient 

0.2 1.203x1 07 -

0.6 1.218x107 1.23% 

1 1.230x107 0.98% 

3) Similarly, oscillating drag coefficient increases the tension on a nser segment. 

Tension magnitude increases by 0.37% when the oscillating drag increases from 0.2 

to 0.5 (increment of 15%) as shown in table 5.4. 

Table 5.4: Variation of maximum tension with the oscillating drag coefficient 
at lumped mass 100 for uniform flow 

Oscillating drag Tension (N) % increment 
coefficient 

0.2 1.215x107 -

0.35 1.218x107 0.24% 

0.5 1.219xl07 0.12% 
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C. Variation of maximum tensile stress with drag force coefficients 

1) Drag force coefficient increases the maximum tensile stress on a riser segments. 

Increasing the mean drag coefficient from the range of 0.2 to 1 causes tensile stress 

measured at lumped mass 99 of the riser to increase by 2.465% as illustrated in table 

5.5. 

2) In the same manner, oscillating drag coefficient increases the tensile stress on a riser. 

With the increment of oscillating drag from 0.2 to 0.5, the maximum tensile stress at 

lumped mass 99 increases by 2.45% only as shown in table 5.6. 

Table 5.5: Variation of maximum tensile stress with mean drag coefficient 
at lumped mass 99.for uniform flow 

Mean-drag 

coefficient 

0.2 

0.6 

1 

Tensile stress (N/m2
) 

1.754 x108 

1. 776 X 108 

1.797 xl 08 

% increment 

1.24% 

1.17% 

Table 5.6: Variation of maximum tensile stress with oscillating drag.force 
coefficient at lumped mass 99 for uniform flow 

Oscillating drag Tensile stress (N/m2
) % increment 

coefficient 

0.2 1.772x108 -

0.35 1.776 xl 08 0.22% 

0.5 1.779 x l 08 0.18% 

D. Variations of the cross-flow displacement with lift force coefficient 

Cross flow displacement for the riser is mainly affected by the lift force coefficient. Table 

5. 7 shows the variations of the cross-flow displacement measured at the I umped mass 99, 

when mean and oscillating drag force coefficients are set at 0.6 and 0.17 respectively. 
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Table 5. 7: Variation of cross flow displacement with oscillating lfftforce 
coefficient at lumped mass 99 for uniform flow 

Oscillating lift Cross-flow displacement % increment 
coefficient 

(m) 
0.05 0.000911 -
0.17 0.00283 210% 

0.3 0.003305 16.78% 

Changing the lift force coefficient from 0.05 to 0.17 (by 240%) causes cross flow 

displacement to increase by 210%, which is significant variation with respect to the 

changes in the lift force coefficient (table 5.7). Also, changing the lift from 0.17 to 0.3 

(changes by 77%) causes the cross-flow displacement changes by 16.78%. It shows the 

lift force coefficient changes the cross flow displacement of a riser by significant order. 

E. Variation of in-line displacement with mean drag force coefficient 

In-line displacement is affected by factors like mean drag coefficient and also the 

interaction of mean drag and lift force coefficient (for lumped mass 99). Different lumped 

masses respond differently for the in-line displacement. For the lumped mass 50, the 

combined effect of oscillating drag and lift force exists. However, mean drag force 

coefficient decreases the in-line displacement at the top-end of the riser. Table 5.8 shows 

variation in the in-line displacement at the lumped mass 50, for the lift force coefficient 

of 0.17 and oscillating drag of 0.35. 
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Table 5. 8: Variation of in-line displacement with mean drag force coefficient 
at lumped mass 50 for uniformjlow 

Mean- drag coefficient In-line displacement % decrement 

(m) 
0.2 0.0654 

0.6 0.032 51.04% 

1 0.0192 40% 

For the case of in-line displacement, the main factors along with the interaction of the 

factors exist in affecting the magnitude of the response. However, over some portions of 

the riser, the drag force coefficient decreases the in-line displacement. From the above 

table, it shows there is a significant change in the in-line displacement with the higher 

levels of change in the mean drag coefficient. 

F. Variation of maximum bending moment with position of top-end of riser 

Besides the force coefficients, factors like internal fluid flow and change in the top-end of 

riser position affect the structural responses of a riser. Moreover, these factors dominate 

force coefficients in affecting responses like tension and tensile stress on riser segments. 

For example, bending moment at lumped mass 50 was varied when the riser top-end was 

moved from its original position . Drifting the riser position from 0 to 50m decreases the 

maximum bending moment by 12.29%. Table 5.9 shows the variation in bending moment 

when the riser is moved to 50 meter away from its original position. 

The riser top-end position also changes the maximum tension and tensile stress on a riser 

segment. 
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Table 5.9: Variation of maximum BM with position of the riser top-end at lumped 
mass 50 for shearedjlow 

Movement of the Bending Moment % decrement 
riser (m) 

0 
(Nm) 

1.09x 1 as -

25 1.02x 1 as 5.76% 

50 9.56x104 6.29% 

A lso, increasing the level of ri ser top-end position, maximum tensile stress on nser 

segments increases by significant order. 

G. Variation of maximum tension and tensile stress with internal fluid flow 

With the increment of internal fluid flow, the tension on riser segments mcreases 

significantly. For mean drag coefficient of 0.6, oscillating drag of 0.35 and lift force 

coeffici ent of 0.17, and the riser top-end at 25m from its origina l position, the following 

table shows the variation in the maximum tension at lumped mass 50 with the variation 

of internal flow discharge. 

Table 5.10: Variation ofmaximum ten ·ion with the internalfluidflow 
at lumped mass 50for sheared.flow 

I nterna/ fluid flow Tension % increment 

(m3/s) (N) 
0 1.012xl07 -

0.02 1.872x 107 84.91 % 

This shows the higher variation of maximum tensions on riser segments, with position of 

the riser top-end. Similarly, internal fluid increment highly increases the maximum 

tensile stress on riser segments as is shown in table 5.1 1. 
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Table 5.11: Variation of maximum tensile stress with internal jluidflow 
at lumped mass 50 for sheared flow 

Internal fluid flow Tensile stress % increment 

(m3/s) (N/m2
) 

0 1.580 X108 -

0.02 2.796Xl08 76.96% 
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Chapter 6 

Conclusion and Recommendation 

6.1 Summaries and conclusions: 

The lumped mass model of the riser adopted in the code used in this study was useful in 

understanding the structural responses of various segments of the riser. The primary 

deformations of the riser were assumed to be due to longitudinal and flexural vibrations 

and torsional or shear deformations were not considered. The code was validated partially 

by conducting dynamic simulations of the riser under known constant loads, starting from 

non-equilibrium initial conditions. The sensitivity of the model to parameters such as 

drag and lift force coefficients and internal fluid flow, was studied considering a steel 

catenary riser pinned at both ends. The Design of experiment method was found to be an 

effective statistical methodology in understanding the parametric relationships of the riser 

during VIV. Using this methodology, significant parameters were determined in affecting 

riser responses, which in turn reflected the sensitivity of the riser responses with changes 

in the parameters. Full factorial simulations were carried out to study the sensitivity of 

force coefficients on the riser responses, measured in terms of its maximum bending 

moment, maximum tension and tensile stress, cross flow displacement and in-line 

displacement, where the riser was subject to uniform flow. The selection of ranges for the 

force coefficients were based on Reynolds number only. Other factors such as internal 

fluid flow and the change in riser top-end position were included along with force 

coefficients, where the riser was subjected to a sheared flow. 

The following is a summary of the results, which shows the sensitivity of the parameters 

considered on the riser responses. 

A. Force coefficients 

1. Mean drag force coefficient affects the bending moment of the riser highly in 

comparison with other force coefficients. Depending upon the riser position, 
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the drag force coefficient increases or decreases the bending moment. For 

expected ranges of the mean drag force coefficient (0.2-1 ), the bending 

moment changes by order of 1-1.5%. Similarly, changing oscillating drag 

force coefficient from 0.2 to 0.5 causes the bending moment increase just by 

0.5-1%. Mean drag force coefficient causes a larger influence on bending 

moment compared to oscillating drag and lift force. 

11. Maximum tension and tensile stress on a riser is highly affected by the mean 

drag force coefficient followed by the oscillating drag. Lift force coefficient 

doesn ' t have significant effect. Within the expected ranges of changes in the 

force coefficients (mean drag from 0.2 to 1 and oscillating drag from 0.2 

to0.5), maximum tension and tensile stress on riser segments change only 

by the order of 0.5-2%. 

111. Variations of force coefficients, mainly mean drag and lift force, within the 

expected ranges, affect widely the in-line and cross-flow displacement of a 

riser. Changing the lift force coefficient from 0.05 to 0.3 increases the cross­

flow displacement by the order of 50-200%. Hence, attention should be given 

in the selection of the proper force coefficients for the case of displacements. 

The behavior of riser responses with the force coefficients remains the same irrespective 

of the current loading (uniform or shear). Mean drag force affects riser responses such as 

bending moment, maximum tension and tensile stress highly in comparison to other 

coefficients. Lift force coefficient increases the cross-flow displacement more highly than 

other coefficients and affects in-line displacement depending on riser positions. 

B. Riser top-end movement and internal fluid flow 

1. A change in the riser top-end position with respect to its original position 

highly affects the bending moment. For example, moving riser top-end by 

25m to right direction (away from anchor) from its original position increases 
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the bending moment by order of 6.7%. Movement of riser top-end increases 

the bending moment more highly than the internal fluid flow, while, it has 

little effect in variations of maximum tension and tensile stresses. 

11. Increasing the internal fluid flow causes a significant increase in maximum 

tension and tensile stress. However, it doesn' t influence the bending moment 

highl y as by the riser top-end movement. 

6.2 Recommendations 

This study was made for a parametric study on a long, elastic and flexible catenary riser 

configuration. The riser considered in this study was long and fl exible and was divided 

into 100 lumped masses for which analyzing responses of all the lumped masses were not 

possible. The study was for a certain configuration of a riser and with certain boundary 

conditions. It is recommended to carry out parametric study on other riser configurations 

such as vertical riser with different boundary conditions. 

During the validation of the code, proper experimental data were not available, for which 

there were problems in setting up parameters for the simulation to match the setup 

parameters in the experiments. The abi lity fo r the program to simulate a real experiment 

and produce comparable results was a very encouraging finding, but it is difficult to find 

tests that clearly state their setup parameters and/or results clearly. It is recommended to 

set up own tests to compare the riser program against. This way the testing parameters are 

known and specific properties can be changed. 

Riser-sea bed interaction is a challenging aspect in the ri ser design and analysis. The code 

can be modified to account for riser-sea bed interaction to study the parametric 

relationships of riser responses in detail. 
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