






Bayesian Analysis of Mixture Models with 

Application to Genetic Linkage 

St. John's 

by 

©Fang Fang 

B. Science (Memorial University) 

A practicum submitted to the 

School of Graduate Studies 

in partial fulfilment of the 

requirements for the degree of 

Master of Applied Statistics 

Department of Mathematics and Statistics 

Memorial University 

July 12, 2010 

Newfoundland and Labrador 



Abstract 

Through an application to genetic linkage analysis, this project describes how the 

Bayesian approach can be used for the mixture model with an unknown number of 

components. Genetic linkage analysis based on a complex model can be difficult to 

manage when a large number of markers loci and/or large pedigrees are involved, due 

to computation limitations. However, Markov chain Monte Carlo (MCMC) schemes 

are one alternative, utilizing a reversible jump steps that allow change on the di­

mension of parameter space. Thus, the MCMC samplers with a different numbers 

of quantitative trait loci based on complex large pedigrees can be obtained u ing 

reversible jump MCMC methodology. The application of th MCMC scheme is il­

lustrated with a case study of genetic linkage to hypercalciuria. This analysis r port 

found strong evidence for linkage of hypercalciuria to calibrated estimates of Bay s 

factors the so-called L-Scores. To my knowledge this is the first time that urinary 

calcium excretion has been clearly linked to a narrow region of the genome. Nev r­

theless, further study is needed to confirm this finding. 
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Chapter 1 

Introduction 

Statistical analysis methods have been widely employed in genetic linkage studies 

during the past decade. Genetic linkage refers to the tendency for loci located closely 

on the same chromosome simultaneously are transmitted to an offspring. The purpos 

of genetic linkage analysis is to locate disease genes through the modeling of the 

joint segregation of putative disease loci and genetic markers on each chromosome. 

Detecting and analyzing the genetic linkage for quantitative trait loci (QTL) is one 

of the essential tasks in genetic analysis since many diseases can be consider of as 

continuous traits. 

Fundamental to linkage analysis is the computation of the likelihood of the seg­

regation of disease and markers within families. The computation of this likelihood 

can be very involved and some special algorithms have been developed to perform 

this task (Elston and Stewart 1971; Cannings et al. 1978; Lander and Green 1987; 

Ott 1991). For large pedigrees, the Elston-Stewart (1971) algorithm is used to cal-
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culate exact likelihoods based on the peeling technique. However, this algorithm 

only works with a small number of loci because the computing time increases when 

more markers are involved (Heath 1997; Uimari and Sillanpaa 2001). In contrast, the 

Lander-Green algorithm is efficient for multipoint linkage analysis with many markers 

but small pedigrees (Kruglyak et al. 1995; Kruglyak and Lander 1998). Using the 

Markov chain Monte Carlo (MCMC) method, the likelihood of large pedigree data 

with a large number of loci can be obtained from the haplotype probabilities and 

preassigned penetrance (Sobel and Lange 1996; Uimari and Sillanpaa 2001). 

One feature that makes the Bayesian methods attractive is that all inference is 

drawn through the likelihood. The Bayesian methods are suitable for problems that 

may be analytically intractable because of limitations for computing high-dimension 

integrals. Many of these methods are based on the Markov chain Monte Carlo 

(MCMC) method (Metropolis et al. 1953; Hastings 1970; Geman and Geman 19 4; 

Gelfand and Smith 1990) methods, which are stochastic simulation techniques devel­

oped in the 20th century to solve this kind of computing problem. In this report , the 

Bayesian approach, including Bayes factors, is applied to study genetic linkage. 
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1.1 Some background of the Bayesian approach 

The basic idea of the Bayesian approach is to estimate parameters through the 

Bayes formula, 

J(yjB)1r(e) 
1r(Bjy) = f j(yjB)1r(B)dB' 

where the information of both prior distribution with density function 1r(y) and poste-

rior distribution with density 1r(Bjy) are derived from the joint distribution j(yj8)1r(B). 

However, the computation on the marginal function, J f(yj0)7r(B)dB, can be very dif-

ficult when working with a complex model. As computing power has increased, 

Bayesian methods have become very popular. Recently, the Bayesian approach has 

been widely applied as a tool of statistical analysis to numerous fields, such as health 

science, social sciences, econometrics and physical sciences. There is also a rising 

interest in the use of the Bayesian method in genetic studies because some genetic 

problems are built on complex models that cannot be dealt with in a classical setting 

(Ott 1991; Stephens and Smith 1993). 

Bayes factor can be used to test statistical hypotheses. Assume that the data 

have arisen under one of two mutually exclusive hypotheses H 1 and H 2 according 

to a probability density Pr(YIH1) or Pr(YIH2)· Given a prior probability Pr(HI) 

and Pr(H2) = 1 - Pr(H1 ), the data produces posterior probabilities, Pr(HIIY ) 

and Pr(H2jY). Because prior information is transformed into posterior informa-

tion through consideration of the data, this transformation represents the evidence 
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provided by the data. Once the evidence is connected to the odds scale, the transfor-

mation takes a very simple form. From the Bayes Theorem, we have 

P(H jY ) = P(YIHm)P(Hm) 
m P(Y) ' 

where m = 1, 2. Thus, we have 

p(H1jY) p(YjH1) p(H1) 
p(H2jY) - p(Y jH2) p(H2) ' 

and the transformation is simply the multiplication 

t . dd p(Y jH1) . dd . pos enor o s = ( I ) · pnor o s rat io. 
p Y H2 

The ratio, 

is defined as Bayes factor. The Bayes factor is the ratio of the posterior odds of H 1 

to its prior odds (Kass and Raferty 1995). 

In the simplest case, when the two hypotheses are single distributed with no 

free parameters, Bayes factor is the likelihood ratio. In other cases, when there are 

continuous parameters under either hypothesis, the densities P(YIHm), m = 1, 2, are 

obtained by integrations over the parameter space. This is 

where Om is the parameter under Hm, n(OmiHm), the prior density, and Pr(YIHm, Om), 

the conditional density of Y when Om is given. 
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1. 2 Genetic linkage analysis 

The traditional maximum likelihood calculation algorithms including the Elston­

Stewart "peeling" algorithm and Lander-Green algorithm are employed in the genetic 

mapping of complex pedigrees (Elston and Stewart 1971; Cannings et al. 1978; Lan­

der and Green 1987). However, the linkage analysis is difficult to perform using these 

methods when we have a large number of marker loci and/or large pedigrees. The 

computation takes a long time to evaluate the likelihoods and there is also poten­

tial loss of accuracy due to computer rounding. As an alternative, Markov chain 

Monte Carlo (MCMC) schemes can be implemented to estimate parameters in the 

mixture model for large and/ or complex problems in genetic linkage (Satagopan et 

al. 1996). Furthermore, the traditional likelihood methods have limitations for such 

complex models because of the many parameters involved. In order to obtain an 

estimate of the parameters, the likelihood has to be maximized over the whole space 

of parameters. The traditional MCMC sampling scheme applies to the situation 

in which the parameter space has a fixed dimension. Guo and Thompson (1992) 

showed how Monte Carlo estimates of likelihoods can be obtained using the MCMC 

algorithms. Guo (1991) investigated the use of the Gibbs sampler to study quanti­

tative traits in applications such that the space of parameters is fixed and known. 

When the dimension of the parameter space (k) is a random variable, the traditional 

MCMC techniques cannot be used without modification. Green (1995) developed the 
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method, now called the reversible jump MCMC sampler, which allows changing of 

the dimension of the parameter space. Following this, Richardson and Green (1997) 

implemented a reversible jump MCMC scheme for the normal mixture model with 

an unknown number of components. This scheme has been applied to many genetic 

problems such as genetic segregation and linkage analysis (Heath 1997), construction 

of genetic linkage maps (Jansen et al. 2001), and hypothesis testing for the existence 

of genetic linkage. Therefore, MCMC methodology with a reversible jump step has 

proven to be useful when generating the MCMC sampler with different numbers of 

quantitative trait loci for a large and complex pedigrees. 

In this report, Chapter 2 describes the normal mixture model with an unknown 

number of components under a Bayesian framework. Then, the method of construct­

ing a Markov chain with the stationary distribution using the reversible jump MCMC 

algorithm is presented in Chapter 3. In the last chapter, a case study of genetic link­

age for hypercalciuria, a condition characterized by a high level of urinary calcium 

excretion, was conducted. This linkage study was conducted using the Loki 2.4.6, a 

program developed by Heath (2003). The result of this case study suggested that the 

genetic linkage underlying gene(s) regulating calcium excretion are possibly located 

on chromosome 15. 
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Chapter 2 

Mixtures and modeling of 
quantitative trait loci ( QTL) 

It is a common practice to use the normal distribution model because of the 

acceptance of the normal distribution as the "natural" distribution of the errors as 

well as its connection to the central limit theorem. In particular, th normal mixture 

model is widely used in statistical literature because it allows for the parametric 

description of distributions that can not be achieved with conventional probability 

density functions. Furthermore, Mendelian genetic effects are naturally modeled as 

mixtures and, when the traits under scrutinizing are quantitative. This has been 

facilitated by the rapid development of Bayesian inference in conjunction with the 

reversible jump MCMC methods that include the Hasting-Metropolis algorithm and 

Gibbs sampler. 

In this chapter, we will first introduce the basic Bayesian approach to a mixture 

from the normal distribution with an unknown number of components, and then 
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discuss the selection of a prior distributions for the parameters. Following that, the 

mixed effects model for a quantitative trait will be set up. Also, we will define 

the distribution types of all the variables, which include number of QTLs, allele 

frequencies for QTLs and markers, along with the random effects on each QTL in the 

mixed model. 

2.1 The Bayesian analysis for the normal mixture 

model with an unknown number of compo­

nents 

In this report, Jet k denote the unknown number of components in the normal 

mixture model, which will be used to model the number of QTLs when the normal 

mixture model is applied to genetic linkage analysis. Moreover, the unknown number 

k is assumed to be larger than the unit ( k > 1) in the mixture model, since the 

model would not include any random components if k is less than 1, and the data is a 

random sample from a univariate normal distribution if k = 1 in the mixture model. 
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2.1.1 Modeling for normal mixture distribution with com-

plete data (y, z) 

Suppose y = ( y1 , y2 , · · · , Yn) are the observed random variables which are 

independently and identically distributed with given parameters 1r , J-L , and u 2 . Given 

these parameters, the condit ional joint distribution density function is expressed in 

the form 
n 

p(y I 7r ' J-L , u2) = IJ p(yj I 7r ' J-L , u2). 
j = l 

(2.1) 

The conditional density of Yj for any j (j = 1, · · · , n), p(yjl 1r , J-L , u 2 ) is given by the 

mixture of k components expressed as 

k 

P(Yjl 1r , J-L , CT 2
) = L 1fi . N(yjl/-ti,CJ;). (2.2) 

i= l 

The elements of the vector 1r = (1r1 , 1r2 , · · · , 7rk) are the mixing proportions having 

the following two properties: 

1. 0::; 7fi::; 1 ( i = 1,2,··· ,k), 

2. 7fl + 7f2 + ... + 7fk = 1. 

Notice that given 1r E JRk , it implies that k is also specified. Furthermore, N(yj 1~-ti, CJl) 

is the well-known density function of an observed normally distributed random vari-

able yj. We assume 8 is the parameter vector of the normal densities in equation 

(2.2), where 8 = (J-L , u 2
). 
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For any given 1r and 0 , each element in y is treated as a random sample from 

the set of independent dist ributions, {N(J.Li, o-?)} , with corre ponding drawing prob-

abili ties { 1ri} i = 1, 2, · · · , k. Furthermore, if we know the membership of the pop-

ulation where the yjs was sampled from, then we have (y1, z1), · · · , (yn, Zn), where 

Zj (j = 1, 2, · · · , n) will hold the membership information. Since we cannot ob-

serve z1 , z2 , · · · , Zn, we can treat them as missing variables. Thus, given 1r , z = 

(z1 z2 , · · · , zn ) would also be a vector of independently and identically distributed 

random variables having probability mass function 

(2.3) 

Therefore, t he conditional probability density of the independent variable y = ( y1 , Y2, · · · , Yn), 

given the values of the Zj, is defined as 

(j = 1, 2, ... , n). (2.4) 

From equations (2.3) and (2.4), the density function for the mixture model is 

shown in equation (2.2) could also be expressed as 

k 

= 2:: 1ri. N (yji /-Li (Jn 
i = l 

k 

= L Pr (zj = i I 1r) · p (Yil Zj = i, J-L , a 2
) . 

i = l 
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We could also obtain the following equation from the conditional distribution function: 

-

Pr(yj, Zj = i, 1T , J.L , a 2
) 

p(zj = ij 1T) 
Pr(zj = il Yi, 1T, J.L, a 2

). p(yjj1T, J.L , a 2
) 

p(zj = ij1T) 

Therefore, substituting both equations (2.3) and (2.4) into the above function, we 

have 

(2.5) 

Given y , the conditional probability function for the missing data has the form 

rri·N(yjl J-Li,aD 
-

p (yjj 1T, J.L , a 2) 

1ri · N(Yil J-Li,a}) 

The above equabon shows that 

2 .1. 2 The Bayesian approach 

In genetic studies, maximum likelihood estimation (MLE) is the most common 

method used to obtain the estimators for parameters 1T , J.L and a 2
. When k is assumed 

to be known, the likelihood function is given by equation (2.2) 

n 

=IT P(Yii 1T , J.L , a
2

) 

j = l 

n k 

=IT L 1ri · N (Yil P,i, af), 
j = l i= l 
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with 1r, J-L, and u 2 assumed to be unknown constants, i.e. assumed to be non-random. 

However, multiple local maxima may exist due to multi-modal aspects of a mixture 

distribution. Therefore, choosing between several different local maxima can be a 

non-straightforward issue in the MLE method. Moreover, the high dimensionality 

leads to other computational challenges. 

In contrast, the Bayesian approach, which treats the parameters as random vari­

ables, avoids the issue described for the MLE method by integrating over the whole 

space of parameters. From the Bayesian formula, we have 

where p( 1r, J-L , u 2 ) and p( 1r , J-L , u 2 j y ) are known as the prior and posterior distribu­

tion functions of the parameters in the Bayesian approach. Sometimes, p(y ) can be 

ignored because it can be treated as a constant in this formula. The essential idea 

of the Bayesian approach is to obtain the posterior distribution through the prior 

distribution, based on the Bayesian formula. The computation challenge still exists, 

even though more powerful computational methods have been developed to solve the 

issue. 

Diebolt and Robert (1994) discussed the method of applying the Markov Chain 

Monte Carlo and Gibbs sampler in order to estimate the parameters of the model 

when the number of components is known. Based on the Dirichlet process, Escobar 

and West (1995) have demonstrated this process using examples with an unknown 
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number of components. Moreover, Richardson and Green (1997) solved the problem 

with an unknown number of components for the normal mixture distribution using 

the reversible jump (Green 1995) method. The details will be discussed in Chapter 

3. 

2.1.3 Choosing the prior distribution and hyperparameters 

Using the Bayesian approach, both the observed data y and the parameters 1r and 

8 are treated as random variables. The distributions of parameters 1r and 8 are known 

as prior distributions, and the parameters of those distributions are the hyperparam-

eters. The choice of the prior distribution is not free of controversy, although the 

Bayesian methodology has been well-developed through extensive research by many 

statisticians. Two of the more popular choices are the conjugate prior family and 

the closed by sampling family (Heath 1997; Richardson and Green 1997; Robert and 

Casella 1999). In this report, we use the prior distributions suggested by Richardson 

and Green (1997): 

7r lk rv D·(o o · · · o) t. ' , , 

f-t i rv N(~, K-l) 

a;21w rv r(<;, w) 

w rv r(9, h) 

k rv U[1, kmax] 

13 



Quantities (o, ~, K, <;, g, h, w) are the hyperparameters. Parameter w follows a 

Gamma distribution with parameters g and h. otice that r(g, h) is a hyperprior 

distribution. In addition, the mixing proportions, 1r = (1r1 , 1r2 , · · · , 7rk), are as-

signed to be the symmetric Dirichlet distribution with parameter o]_. The joint prior 

distribution of the parameters is given by 

where ()' = (k, 1r , p, , u 2 ) are the parameters of the univariate normal mixture distri-

bution. The estimated number of components ( k) depends on a marginal posterior 

distribution (Green 1995; Stephens 2000). Assuming p(tJ'jy) is the stationary distri­

bution and (0')(1), (0')(2), · · · , (O')(N) are the realizations of the Markov chain, then k 

can be estimated according to the average: 

Pr (k = i l y) =E(I(k=i)j y ) 
N 

~ ~ LI(k(t) = i) 
t= l 

1 = N Ht: k(t) = i}. 

2.2 Modeling of quantitative trait loci 

In genetic linkage analysis, the modeling of a quantitative trait is more difficult 

when the exact number of genes which control the trait is unknown. Two different 

cases are considered under different assumptions. The first case is under the assump-

14 



tion that the quantitative trait is controlled by an infinite number of genes. In such a 

case, ordinary linear model techniques can be used to carry out the inference. There 

is no single gene to be mapped according to its infinitesimal nature. The second case 

arises when few genes, each having a large effect, are assumed to be responsible for 

the trait. Not knowing the exact number of genes involved implies an unknown num­

ber of terms ( k) in the mixture model. This issue is addressed in the context of the 

Monte Carlo Markov Chain technique with reversible jumping (Green 1995; Green 

and Richardson 1997; Heath 1997). In this report we are fundamentally interested in 

the second case, the oligogenic model, under the following assumptions: 

1. There are no interactions between the QTLs and the environmental convariates 

nor between any QTLs. 

2. The information about quantitative traits, covariates, and marker data are the 

observations included in the data set Y. 

3. The marker positions are known and marker data are correct. 

4. There is an equal prior probability for each QTL, and equal probability for each 

QTL on one chromosome. 

5. The map distances are the same for both males and females . 
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2.2.1 Mixed effect model for quantitat ive trait 

The mixed model is a valuable statistical tool which can be applied to genetic 

linkage analysis. For the pedigree data, the mixed effect model for the quantitative 

trait y is defined in the form of 

kq 

Y = p,] + X {3 + L Q io.i + e, (2.6) 
i= l 

where p,] is the overall mean; X is an (n x m) incidence matrix for covariates; {3 is 

an ( m x 1) vector of covariate effects; kq is the number of diallelic QTLs (of cotuse, 

kq= k- 1, where k is the number of components in the mixttue) ; Q i is an (n x 2) 

incidence matrix that denotes the effect of the ith QTL, and O'.i is a (2 x 1) vector 

of random effects of such a QTL. At the 'ith position, Gi and the QTL genotypes 

of random effects is expressed as 

then the yth row (j = 1, 2, · · · , n) of the incidence matrix Q i for the ith QTL effects 

will be one of 

( 1 0 ) ( 0 1 ) or ( - 1 0 ) 

corresponding to the specific genotypes, (A 1A1 , A1A2 , or A2A2 , respectively) at the 

ith location for the yth individual. 
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Finally, the error term e that indicates the residual effect in model (2.6) is a 

vector of dimension n that follows a normal distribution, with zero mean and diagonal 

variance matrix. 

2.2.2 Joint distribution and prior dist ribution 

Heath (1997) indicated that the joint distribution for a large pedigree data set 

can be expressed as 

p(k, G , M, {3, .X, cp , ry , a , u~, J-L , Y). 

The complete genotype of all QTLs is denoted as G ; M represents the complete 

genotype of all markers; vector .X indicates the QTL map positions for linked QTLs; 

cp represents the currently linked QTL; vector 'f/ denotes allele frequencies for all 

QTLs and markers; and u~ is the residual variance. 

The prior distribution for each parameter in the joint distribution function is 

designated in the following way: 

ai rv N (0, 12) 

di rv N (0, 12) 

, rv Di (1, 1, 1, .. . ) 

k rv u (0, kmax) 

,\ rv U (0, L). 
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In particular, ai and di are the effects of the ith QTL which have normal prior dis­

tributions with both variances equal to T
2

. In this report , T
2 is assumed to be a 

constant which is estimated from phenotypic variation in the data. Furthermore, rJ 

has a Dirichlet prior distribution with parameter vector :D.. The number of compo­

nents, k, is uniformly distributed on [1, kmax] where kmax is assumed to be 10 in this 

report. 

2.2.3 L-Score 

Through MCMC, we can generate "complete data" samples conditional on the ob­

served data proportional to their probability given the model assumptions. Complete 

data samples have values for every unknown variable in the model, from complete 

ordered genotype information on all pedigree members to information about QTL 

positions and effect sizes. Estimates of quantities of interest such as posterior means 

for QTL effects or positions can simply be obtained by averaging across samples. Also 

we can measure the vidence in favor of a particular hypothesis, H 1 against another, 

H 2 by using Bayes factors, which in our case are based on the integrated marginal 

distributions of the data given the hypotheses. However, since a priori the number 

of linked loci and their location is also a random variable, if one integrates over all 

the space of possible positions (the whole genome) , traditional Bayes factors will not 

be of great use to identify the position where a putative locus may lie. To estimate 

the most likely chromosomal regions for linked loci, the following procedure has been 
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proposed. Chromosomes are divided into equal-length bins (1 eM). The prior prob­

ability of linkage of at least one trait locus to a particular bin (expected under a 

random uniform distribution over the whole genome of size L) , denote asp, can be 

calculated asp = 1- (1- t/ L )n, where tis bin size and Lis total genome map length 

for n trait loci. Given a set of complete data samples, the posterior probability q of 

linkage to that region in a given sample is 1 if at least one QTL is located in the bin, 

and 0 otherwise. The value qjp is averaged over all sampling iteration to obtain an 

L-score. The 1- core is a conservative estimate of the Bayes factor (ratio of posterior 

to prior odds), where the null hypothesis is that QTLs are evenly distributed along 

the genome, and the alternative hypothesis is that QTLs are more likely to be linked 

to a given bin (Wijsman et al. 2004). 

One must be cautious in the use of L-scores to evaluate the evidence, because they 

can vary in repeated analyses because of sampling mixing, or lack of convergence. 

Furthermore, the magnitude of the L-score at a real locus can differ with model 

changes (Shmulewitz and Heath, 2001; Snow and Wijsman, 1998). 
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Chapter 3 

Markov Chain Monte Carlo 

The Bayesian paradigm is used to obtain estimators of the posterior average and 

the posterior mode based on the posterior distribution. However , analytic solutions 

can be obtained for simple posterior distribution densities such as the uniform distri­

bution. The estimation can become computationally demanding when the model is 

high dimensional and/ or contains many latent variables or missing data. The mod­

els that are used in this report belonging to this class have complex and inten ive 

computations. 

In genetic linkage analysis, most statisticians concentrate their research on cal­

culating the likelihoods. The Expectation-Maximization (EM) algorithm (Dempster 

et al. 1977) is the most popular statistical method that has been used to estimate 

the maximum likelihood parameters when latent variables are involved in models. 

The Lander-Green algorithm (Lander and Green 1987; Kruglyak t al. 1995) can 

be applied to situations involving small pedigree containing large numbers of loci. 
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With pedigrees of large size, the peeling technique is efficient for small numbers of 

loci (Cannings et al. 1978). However, both approaches have computing limitations, 

especially when there are a large number of marker loci and large pedigrees. In this 

report, the Markov chain Monte Carlo (MCMC) sampling scheme is employed to 

overcome these issues related to complex calculations. 

Traditional the MCMC sampling scheme applies to the situation in which the 

parameter space has fixed dimension. However, when the parameter space is variable 

MCMC with a reversible jump step the methodology is used to obtain a sampler 

generated under different numbers of quantitative trait loci (Heath 1997). This is 

in general terms the Bayesian methodology used to carry on the inference for the 

quantitative trait loci mode of inheritance, allele frequency, map position, number of 

loci affecting the trait and effect size of these trait loci. 

3.1 Classical Monte Carlo integration and impor­

tance sampling 

3.1.1 Markov chain 

According to the definition, a Markov chain is a sequence of random variables 

with the property that the future state only depends on the present state and is 

independent of the past states. In other words, if a sequence of random variables 
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{ X(0), X(l), X(2), · · · } can be expressed in the form 

then this sequence is a Markov chain. At any state t (t 2: 0), x(t+l), which is the value 

of the next state (t+ 1), can be obtained from the conditional distribution P (xiX(tl). 

3.1.2 Monte Carlo simulation 

Suppose that a sample x 1, x2 , · • · , Xr generated from density function 7r(x) is used 

to approximate the integration, 

Err[f(x)] = 1 f(x)7r(x)dx < oo (3.1) 

with f(x) 2: 0 for all x, by using the empirical average fr, where 

_...._ 1 T 

fr = T L f(xt)· 
t=l 

According to the law of large numbers, when x 1 , x2 , · · · , xr are independently sampled 

from 7r( · ), h converges almost surely to Err[f(x)] . That is 

fr ~ Err[f(x)], T ---t oo. (3.2) 

This procedure is known as the Monte Carlo method (Metropolis and Ulam 1949). 
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3.1.3 Importance sampling 

In most cases, it is not straightforward to directly obtain the sample from 1r(x) 

and an alternative approach has to be used. A method used to approximate the 

defined integral in equation (3.1) without sampling from the distribution of 1r(x) is 

the so-called importance sampling. 

Considering a density function h(x) which has the same support as 1r(x), we can 

rewrite the integral (3.1) in order to obtain the expectation I with respect to h. 

Equation 3.1 can be expressed in the form 

I = E [ j(x)1r(x)J 
h h(x) = J( f(~~:;x)h(x)dx 

= 1 j(x)1r(x)dx 

= Errf(x). 

Assume that x1 , x2 , · · · , xr are independently drawn from the density function h(x) , 

where 

(3.3) 

~ 

is an unbia d estimator for I. This estimator I is also a strongly consistent estimator 

of I when T approaches infinity with probability 1 (Feller 196 

as T---+ oo. 

Moreover, Geweke (1989) proved a particular version of the Central Limit Theorem 
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which states that 

~ 

;m I- I 
Vl-~ N(O,l) 

(]' 

as T ---t oo, 

[
j2(x)7r2(x)J with (]'2 = J h(x) dx- 12

. The constant (]'2 depends on the density function 

h( x). Even though there is no restriction on choosing the importance density, h( x), 

it should be s lected so that it has the "same shape" as 1r(x) with the easy sampling 

conditions. However , it may not be possible to have easy sampling adapted density 

in genetic problems that are built on complicated models. 

3.2 Markov chain Monte Carlo (MCMC) sampling 

methodology 

Under an MCMC scheme for a large t, the distribution of X(t) is independent 

of xCo). Also, when t is sufficiently large, the distribution of X(t) converges to th 

stationary distribution. The essential idea for the MCMC algorithm is to have a 

procedure in which the stationary distribution has density 1r(x) in order to obtain a 

sample from such a density. 

We consider the Markov chain { X(t)} t;?:O where the initial transition probability 

function for a move from x to x' can be expressed as 

p(x, x') = P(x ---t x') = P(X(t+l) = x' l xCt) = x). 

If one assumes that the transition kernel p(· , · ) is independent of state t, then the 
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transit ion probability function at the tth step is 

p(t; x, x') = P(X(t+r) = x'/ xCr) =X) 

for r= 0, 1, 2,· . . . If the distribution function of xco) is 

m(x) = P(X(O) = x), 

after t steps, the marginal distribution of xCt> is 

m(t) (x) = P(X(t) = x). 

If n(x) is the stationary distribution density of transition kernel p (· , ·), then n(x) 

satisfies the condition 

j p(x, x') n(x)dx = n(x'). 

In fact, the marginal distribution of X(t) in any state t (t » 0) is arbitrarily 

close to the stationary distribution n(x) without considering the initial value of xco>. 

Under the MCMC framework, the major difference between the Metropolis-Hastings 

algorithm and Gibb sampling method is determined by the vari ty of ways setting 

up the transition kernel. 

3.2.1 M etropolis-Hastings algorithm 

The Metropolis-Hastings method is a common algorithm used to generate sam­

ples from a complicated and/or high-dimensional probability distribution. The main 
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idea of Metropolis-Hastings algorithm is to compare the acceptance ratio with the 

acceptance probability, in order to decide whether either if each chain should move 

to the next state or remain at the current state. 

On a Markov chain { X(t)} t~o, we have X(t) = x at state t. If a move from the 

current state x to a new state x' is proposed with proposal probability q(x, x'), we 

need to choose a transition kernel p(x, x') such that 

p(x, x') = q(x, x')a(x, x'), (3.4) 

where a(x, x') is known as the acceptance probability (0 < a(x, x') :::; 1). Therefore, 

x' will be accepted as the value for state (t + 1), that is X(t+l) = x', with probability 

a(x,x'). Otherwise, x' will remain at state t, X(t) = x', with probability (1-a(x,x')) . 

To implement this, we randomly selected u from a uniform distribution between 0 

and 1, then we have 

{ 

x', u:::; a(x, x') 
x(t+l) = 

x, u > a(x, x'). 

Remember that the goal is to choose a probability function a(x, x') such that the 

stationary distribution of p(x, x') is the same as the posterior distribution n(x). The 

most common acceptance probability function was given by Hastings (1970) which is 

shown in the form of 

a(x, x') = min{1, A}, (3.5) 

26 



where A is the acceptance test ratio which is indicated as 

A = 1r(x
1

) q(x
1

,x) 
1r(x) q(x, X1

) • 

(3.6) 

In order to increase ratio A, the best method is to choose a proposal distribution 

function q(x) such that this q(x) is proportional to the stationary distribution function 

7r(x). 

In addition, the transition kernel p(x, X
1

) with acceptance probability a(x, X
1

) is 

given as 

{ 

q(x, X
1

), 

p(x, xl ) = I 7r(xl) 
q(x , x) 1r(x) , 

1r(xl)q(xl, x) ~ 1r(x)q(x, X1

) 

1r(x
1

)q(x
1

, x) < 1r(x)q(x, X
1

) 

(3.7) 

The Markov chain which is built up on the transition kernel described in equation (3. 7) 

is reversible. Moreover, this form of p(x, X
1

) guarantees t hat 1r(x) is the stationary 

distribut ion of this Markov chain. That is 

n(x)p(x, X
1

) = n(x
1

)p(X
1

, x). 

Proof: Let x =/= X
1

, then 

1 • { n(x
1

) q(xl, x) } 
1r(x)p(x, X

1

) = n(x) q(x , x) mm 1, ( ) ( 1 ) 

1f X q X, X 

=min { n(x)q(x, X
1

), 1r(x
1

)q(x
1

, x) } 

1 1 • { 1r(x) q(x, X
1

) } = 1r ( x ) q ( x , x) mm 1, ( 1 ) ( I ) nx qx,x 

= 1r(x
1

) p(X
1

, x) 
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Therefore, 

1r(x') = j 1r(x) p(x, x')dx 

= j 1r(x') p(x', x)dx 

= 7r(x). 

3.2.1.1 Independent chain 

If the proposal distribution q(x, x') is independent of the current state x on the 

chain, then according to formula (3.4), we have q(x, x') = q(x'). Hence, the accep-

tance test ratio A in equation (3.6) becomes 

A= 1r(x' )j q(x',x) 
1r(x)j q(x,x')' 

and the acceptance probability function is 

a(x, x') =min { 1, 1r(x' )j q(x') } . 
1r(x)j q(x) 

The prior density function is usually used as the proposal distribution function q() 

for each independent chain. The complete information about 1r(x) is not necessary; 

however, multiplicative constants will be needed. 

3.2.2 Gibbs sampler 

The Gibbs sampling method, which is a special case of the Metropolis-Hastings 

algorithm, was introduced by Geman and Geman (1984). Even though limitations 
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exist on choosing instrumental distributions, there are several advantages of the Gibbs 

sampler over other sampling methods. The most extraordinary advantage of the 

Gibbs sampling method in practice, especially for high dimensional problems, is that 

the Gibbs sampler can be simulated from only the full conditional density 7r(xslx- s), 

where xs = {xi,i E S}, x _s = {xi,i tJ. S}, and S c {1,2, · · · ,n}, i.e. xs E RISI and 

Given that S and X _s = x _s, 1r(x) is the distribution density function of 

X = (X1, X 2 , · · · , Xn), a collection of random variables X' = (X~, X~,··· , X~) 

with property X~s = X _s have density function 1r(x~ l x _s). Therefore, for any B, 

we have 

P(X' E B) 

7r(B). 

Thus, 1r(x) is also the distribution density of X ' which implies that 1r(x) is inde d the 

stationary distribution function. Given a proposed move from x to x ', the transition 

kernel, which is formed by the full conditional distribution and defined by the above 

equation, can be expressed as 

In particular, when S contains only one element, the process is called a single-site 

Gibbs sampling method. For example, given that S = { i} and x 1, · · · , Xi- l , Xi+l, · · · , Xn 
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r-----------------------------------

the single-site Gibbs sampler which is based on the full conditional distribution of 

(x1, · · · , xi_1 , Xi+1 , · · · , Xn), has an acceptance test ratio A represented as 

A 

-

n(x~, x _s) · n(xslx-s ) 

n(xs, x_s)· n(x~lx-s ) 

n(x~ , x _s) n(xs, x _s ) 

n(xs, x_s) n(x-s) 

=1. 

n(x-s) 
n(x~, x _s ) 

Thus, the acceptance probability, a(x, x') = min{l, A}, is always 1. Therefore, the 

transition kernel becomes 

The distribution density can be obtained by repeating the Gibbs sampling algorithm 

and it can be shown that the density function converges to n(x). 

Given the initial point xCo) = (x~o), · · · , x~o) , · · · , x~0)), if the starting point is xCt-1
) 

for the tth step, then the Gibbs sampling method for the tth step is described as follows: 

(1) x~t) from the full conditional distribution n(x1 1 x~t- 1l, ... ,x~-1)); 

(1
.) (t) f th f 11 d. · 1 d. ·b · ( 1 (t) (t) ct- 1) ct-1)) · xi rom e u con 1t10na 1stn utwn 1r Xi x1 , · · · , xi_1 , xi+1 , · · · , Xn , 
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(n) x~) from the full conditional distribution 1r(xnl x~t) ' · · · ,x~~1 ). 

As a result, x(l), x(2), · · · , x(t), · · · are the realization of a Markov chain where 

x(t) = (x~t) · · · , x~)). The transition probability distribution function for a move 

from x to x ' is 

and 1r( x ) is the stationary distribution. 

3 .2.3 Full conditional distribution and partial conditional dis-

tribution 

3.2.3.1 Full conditional distribution 

Previous subsections indicated that the ingle-site Gibbs ampler i based on th 

fu ll conditional distribution. Let x = (x1 , · · · , Xn ), then we have 

n 

1r(x) = IJ 1r(xilx <i) (3.8) 
i = l 

where x <i = {xj ,j < i}. According to equation (3.8), the MCMC algorithm would 

not be necessary if the density function 7r(xil x <i) of (x1 , · · · , xn) was known. However, 

this simple case cannot be applied to complicated situations such as genetic linkage 

analysis. 
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For any S C N , we have 

n(x) 
n(xslx- s) = J n(x)dxs ex n(x). (3.9) 

Equation (3.9) shows that the inference could be only made from term x 8 . Similarly, 

given x _s = x~8 , we have 

n(x~lx~8) 
n(xs lx - s) 

3 .2.3.2 Partial conditional distribution 

n(x') 
n(x) · 

(3.10) 

An update of the MCMC algorithm using the partial conditional distribution was 

discussed under special conditions (Besag et al. 1995). Indeed, xis an invalid value if 

it was updated on the unconditional distribution of X - i· If an invalid x value occurs, 

this invalid x can be ignored. Then, we can update it using the Gibbs sampler since 

the Gibbs sampling algorithm is independent of the current value. 

3.3 Reversible jump Markov chain Monte Carlo 

The MCMC sampling scheme is constructed with a fixed dimension of parameter 

space. However, the reversible jump technique (Green 1995) allows the movement of 

the sampler between different parameter spaces with unequal dimensions. 

Suppose that the current state x and future state x' have different dimensions 

denoted as d1 and d2 respectively, where d1 is smaller than d2 . There exists a vector 

u such that the length of vector u is the difference between d1 and d2 . The extra 
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elements are discarded during the reversible jump step. In such a case, the acceptance 

test ratio A has the form 

where J is the Jacobian term for the transformation between (x, u) and x', repre-

8x' 
sented as J =I a(x , u ) I, 1r(x) denotes the posterior distribution function, and q(· ) is 

the proposal probability density function (Green 1995; Richardson and Green 1997; 

Heath 1997). 

3.4 Sampling scheme for quantitative trait loci 

In Chapter 2, the joint distribution function of a large pedigree data set has been 

defined as 

p (k , G , M, {3 , .X , c.p , rJ , a , u;, J-L, Y). 

Based on the full conditional distribution, overall mean (J-L), covariate effects ({3) , 

residual variance (u ;), and marker frequencies (rJ ) can be updated first by using 

Gibbs sampling method (Heath 1994, 1997) . 

Guo and Thompson (1992) investigated a study in which they combined segrega-

tion and linkage analysis on complex large pedigrees, using the MCMC approach to 

simulate samples. The genotype can be updated individually from any given locus. 

Alternatively, the Gibbs sampler with the peeling technique can be used to update all 

marker genotypes (M ) and QTL genotypes (G) simultaneously, with all individuals 
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at a given locus, within a complex pedigree (Ott 1989; Kong 1991; Heath 1997). This 

approach is called the reverse peeling method (Heath 1997). Even though the applied 

pedigrees have to be peelable at a single locus, the reverse peeling method avoids the 

irreducibility problems better than individual-by-individual updating steps (Lin et al. 

1993; Heath 1997). 

As described in Chapter 2 and 3, the reversible jump MCMC algorithm allows 

one to collect samples from the posterior distribution within the spaces with different 

dimensions (Green 1995). Therefore, given any QTL genotype Gi, both reverse peel­

ing and a reversible jump step are required in order to update the information on the 

QTL map position (>,i) and linkage status (cpi) using the Gibbs algorithm because 

it leads to a change in model dimensions. The movement is between either marker 

intervals or chromosomes that depend on the partial conditional distribution (Besag 

et al. 1995; Heath 1997). 

With a successful birth step, the QTL effects, frequency, linkage status, map 

position, and genotypes for pedigree members are generated using the reverse peeling 

method for new QTLs. For a death step, a random selected QTL is discarded (Heath 

1997) . When a move is proposed, the acceptance probability is not affected because 

the peeling method has been applied. In contrast, split/combine steps contain the 

changing of two QTLs. In a split step, an existing QTL is randomly selected and the 

effect is separately distributed for two QTLs. For a combine step, a reverse process, 

we combine two selected QTLs' effects in order to obtain a new QTL. More details 
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are given by Heath (1997). 

The complete updating steps for one iteration based on the reversible jump MCMC 

method was suggested by Heath (1997) are listed as follows: 

Updating Procedure 

1. Update complete marker genotypes M for each locus in turn; 

2. For each QTL i: 

(a) Update QTL effects ai; 

(b) Update QTL position Ai and linkage status 'Pi; 

(c) Update QTL genotypes Gi; 

3. Update QTL and marker frequencies rJ; 

4. Update covariate effects {3 and overall mean J-L ; 

5. Update residual variance u;; 

6. Birth or death of a QTL; 

7. Split one QTL into two, combine two QTLs into one. 
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3.4.1 Acceptance Probability 

Heath (1997) stated that the acceptance probability for the change from po ition 

>.i to >-: is min(1, A), where A is in the product form including the likelihood ratio, 

the prior ratio, and the proposal ratio for the ith QTL at such po itions of>-: and Ai 

that can be expressed as 

A = p(Y ik, G -i• M , {3, >-:, ..\_i, cp , 'TJ , a , u;, J.L)p(>.:)q(>.i; >-:) 
p(Y ik, G -i, M , {3, >.i, ..\_i cp , 'TJ , a , u; , J.L)p(>.i)q(>.~; >.i)' 

when a linked QTL with no change in l.fJi is proposed. 

In contrast, the only major difference when using a reversible jump step is that 

the move leads to a change in l.fJi · Heath (1997) pionted out that when a QTL moves 

to a linked state from an unlinked state, the map position for such a QTL has to be 

proposed, and th corresponding acceptance probability is min(1 , A) , where 

A= p(Y ik, G _i, M , {3, >-:, ..\_i, <p:, cp_i,, 7J , a , u;, J.L)p(<p: )p(>.:)q(<p1 ; <p~ ) 
p(Y ik, G - i, M , {3, ..\_i, <p~, cp_i, , 7J , a , u;, J.L)p( l.fJi )q(>.~, <p~ ; l.fJi) 

On the other hand, if a reversible jump step is applied, then the map position is 

discarded. 
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Chapter 4 

Case Study: Hypercalciuria 

Hypercalciuria is defined as an elevated level of urinary calcium excretion. Al­

though by itself hypercalciuria may not be considered as a medical condition, quite 

often, it is found in patients who have been diagnosed with calcium nephrolithiasis or 

kidney stones in a clinical setting. Briefly, hypercalciuria is diagnosed using the crite­

ria that th amount of urine calcium found over a 24-hour period exceeds 250 mg for 

females and 300 mg for males. FUrthermore, patients with hypercalciuria appear to 

be more vulnerable to calcium nephrolithiasis. Because of the significant correlation 

between hypercalciuria and calcium nephrolithiasis, it is suspected that both traits 

share a common genetic background (Coe et al. 1979; Pak et al. 1981; Petrucci et 

al. 2000; Polito et al. 2000). 

In a study of French-Canadian families, Tessier et al. (2001) indicated that stone 

formation is likely regulated by a metabolic phenotype delineating substantial calcium 

excretion in the urine. Loredo-Osti et al. (2005) performed a complex segregation 
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analysis of urine calcium excretion using the relatives of patients from 221 nuclear 

French-Canadian families in which nephrolithiasis was identified. They concluded 

that there is most likely a major gene with a polygenic background determining the 

calcium excretion trait. 

Here a genetic linkage analysis for hypercalciuria was conducted by using the 

Bayesian methodology on the same aforementioned French-Canadian data set. Bayes 

factors, more specifically, L-Score profiles were used to identify the locations of pu­

tative linked loci. The results for this case study show two L-Score peaks: one with 

value 16.20 at position 41.55cM on chromosome 15 and the other with value 11.09 at 

position 92. 75cM on chromosome 19. According to the Bayes factor criterion, both 

peaks' positions are strongly linked to hypercalciuria, suggesting that the position of 

the gene(s) that regulate urinary calcium excretion may be in the neighborhood of 

these peaks. 

4.1 Data description 

This study investigated 1219 individuals from French-Canadian families who were 

identified as having nephrolithiasis. However, only 985 participants provided blood 

samples and urine samples over a 24-hour period. At the time of examination, data 

regarding age, gender, weight, height , and thiazide drug use were also obtained for 

these participants. Based on a biochemical analysis of urine and serum samples, the 

urine creatinine level for each individual was predicted using the Cockcroft-Gault 
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Table 4.1: Summary statistics for the study sample (N=897) 

Variables 

Number of observations 
Age at examination years 
Weight kg 
Height em 
Body mass index kgjm2 

Serum creatinine J.Lmol/L 
Urine calcium mmol/24 hours 

(Source: Loredo-Osti et al (2005)) 

Males 
(N=455) 

455 
48.6 ± 12.1 
78.6 ± 13.4 
172.4 ± 6.2 
26.5 ± 4.4 
99.7 ± 13.0 
6.2 ± 2.9 

Females 
(N=442) 

442 
49.2 ± 12.2 
65.4 ± 12.5 
159.4 ± 6.5 
25.8 ± 4.8 
83.2 ± 13.3 
4.9 ± 2.3 

formula. The well-known Cockcroft-Gault formula is defined as 

(140 - Age) x Mass (in kg) x Constant 

Serum Creatinine(in J.Lmol/L) 

where the constant is 1.23 for males and 1.04 for females. To control for any over-

and/or under-collection of a urine sample within any 24-hour period, an individual's 

actual urine creatinine level must lie within a predicted range in order for the sample 

to be considered suitable for inclusion in the study. If a collected sample for a given 

individual is found to be greater or less than 20% of predicted level, as calculated 

by the Cockcroft-Gault formula, then another urine sample and blood sample for an 

additional24-hour period would need to be collected. Of the 985 people examined, 897 

individuals representing 154 two-, three- or four-generation pedigrees were sel cted. 

The Cockcroft-Gault formula takes into consideration the fact that males have a 

higher urine creatinine clearance than females at the same level of serum creatinine. 
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As expected, the test data set contained more males than females ( 455 men versus 442 

women; see Table 4.1). There was no significant difference in the average age of males 

and females. It was found that 455 male participants had higher levels of both serum 

creatinine and urine calcium compared with females (99.7 ± 13.0 versus 83.2 ± 13.3 

f.Lmol/1; 6.2 ± 2.9 versus 4.9 ± 2.3 mmol/24 hours, respectively). Even though the 

mean level of serum creatinine of both males and females in these French-Canadian 

families were in the normal range (60-110 f.Lmol/1 for men, and 45-90 f.Lmol/1 for 

women), the averages approached the upper limit. On average, the male group had 

an apparently higher index of urine calcium excretion than did the female group (6.2 

± 2.9 versus 4.9 ± 2.3, respectively). As shown in Table 4.1 , m ans and standard 

deviations are listed for each variable corresponding to the different genders. It is 

evident that all the parameters were higher in males than in females except for the 

age at which the disease was ascertained. 

4.2 Statistical analysis 

In previous chapters, we have discussed the Bayesian inference for a mixture model 

with an unknown number of components, as well as the application of the Bayesian 

method to genetic linkage analysis under a model in which the location of the QT1 is 

treated as a variable. The objective of this analysis was to determine the existence of 

the linkage between a QT1 and the gene(s) controlling calcium excretion. The null 

and the alternative hypotheses are stated as 
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H0 : QTLi is linked with the gene controlling calcium excretion. 

H1: No such genetic linkage exists. 

In this report, the L-Scores with 1 eM bins were used as the estimates of the Bayes 

factors (ratio of posterior to prior odds) for the 22 autosomes under the premise that 

a larger peak L-Score at a given position provides evidence of genetic linkage at that 

position. 

4 .2.1 R esults 

The linkage analysis can be done by the study of the recombination patterns. The 

theory indicates that the recombination fraction ( r) would be 50% if the transmission 

of two loci were independent, i.e. in absence of linkage. On the other hand, a 

recombination fraction smaller than 50% provides evidence for linkage: the smaller 

that the estimate of the recombination fraction is, the stronger the evidence that th 

estimate will provides. One of the most popular methods of linkage analysis is the 

LOD score, which is defined as negative logarithm base 10 of th likelihood ratio. In 

contrast to the LOD score, L-Scores are the estimates of the Bayes factors which 

were discuessed in Chapter 2. 
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Figure 4.1 : Estimates of the L-score, when the model is fitted for at least one QTL, which is being linked 
to a chromosomal region. The peak represents the possible position of the linkage on chromosome 15. The 
total length of chromosome 15 is 122.42 eM. 
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Figure 4.2: Estimates of the L-score, when model is fitted for at least one QTL, which is being linked to 
a chromosomal region. The peak represents the possible position of the linkage on chromosome 19. The 
total length of chromosome 19 is 101.98 eM. 



In our data set, the L-Score peaks on chromosomes 15 and 19 with much larger 

peak values than on the other 20 autosomes. Fig. 4. 1 and Fig. 4.2 show the plots 

of the L-Scores for each locus on chromosomes 15 and 19, respectively. Summary 

statistics for the 22 autosomes are given in Table 4.2. 

An inspection of the generated complete data sample set seems to indicate good 

mixing. Nevertheless, the identified loci in this analytic represent candidate regions 

that need to be further evaluated by using a denser set of markers as well as other 

analytical approaches. 
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Table 4.2: The estimates of Bayes factors (L-Scores) from the linkage analysis 

Linkage group Count Prop. linked Ave. L-Score Peak L-Score Location 

Unlinked 930864 0.46543 1.27518 
Chromosome 1 904448 0.45222 1.03488 3.96 52.95 eM 
Chromosome 2 642322 0.32116 0.73559 1.68 238.96 eM 
Chromosome 3 695256 0.34763 0.88716 2.77 102.41 eM 
Chromosome 4 657705 0.32885 0.92284 2.81 13.32 eM 
Chromosome 5 471848 0.23592 0.65118 1.91 168.93 eM 
Chromosome 6 505210 0.25261 0.76467 1.27 88.89 eM 
Chromosome 7 469143 0.23457 0.74524 2.00 42.72 eM 
Chromosome 8 826041 0.41302 1.39525 4.30 74.89 eM 
Chromosome 9 422940 0.21147 0.72367 1.18 14.42 eM 

Chromosome 10 912216 0.45611 1.54213 8.11 70.51 eM 
Chromosome 11 605605 0.30280 1.08709 3.25 50.33 eM 
Chromosome 12 498038 0.24902 0.84211 1.90 163.69 eM 
Chromosome 13 437588 0.21879 1.02289 2.82 51.52 eM 
Chromosome 14 271167 0.13558 0.60671 1.03 84.55 eM 
Chromosome 15 758818 0.37941 1.90601 16.20 41.55 eM 
Chromosome 16 246915 0.12346 0.51354 0.92 112.47 eM 
Chromosome 17 312095 0.15605 0.58970 0.86 99.13 eM 
Chromosome 18 487481 0.24374 1.02018 2.28 53.50 eM 
Chromosome 19 1052489 0.52624 3.00155 11.09 92.75 eM 
Chromosome 20 415320 0.20766 1.16595 1.99 31.36 eM 
Chromosome 21 244651 0.12233 1.12247 2.01 57.66 eM 
Chromosome 22 140717 0.07036 0.52246 0.69 6.25 eM 
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4.2.2 Conclusion 

In preparation for later application to a data set, we described the use of Bayesian 

methodology to carry out a genetic linkage analysis. The case study comprised data 

on urinary calcium excretion of families ascertained through a proband diagnosed with 

nephrolithiasis. The analysis identified two condidate regions of the genome (one on 

chromosome 15 and the other on chromosome 19) strongly linked to hypercalciuria . 

Although the nature of t his work is preliminary since more studies are needed to 

confirm the finding, the nature of the L-Score profile suggests that the identified 

linked regions are promising. 
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