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Cha iter 1

Introduction

Statistical analysis methods have been widely employed in genetic linkage studies
during the past decade. Geneticl age refers to the tendency for loci located closely
on the same chromosome simultaneously are transmitted to an offspring. The purpose
of genctic linkage analysis is to  ate disease genes through tlie modeling of the
joint segregation of putative di loci and genetic markers on each chromosome.
Detecting and analyzing the ge : : linkage for quantitative trait loci (QTL) is oue
of the essential tasks in genetic  ilysis since many diseases can be consider of as
continuous traits.

Fundamental to linkage analy: is the computation of the likelihood of the seg-
regation of diseasc and markers within families. The computation of this likelihood
can be very involved and s ¢ special algorithms have becen developed to perform
this task (Elston and Stev t 1! Cannings ct al. 1978; Lander and Green 1987;

Ott 1991). For la- - pedigrees, the Elston-Stewart (1971) algorithm is used to cal-







































Quantities (8, &, &, ¢, g, h, w) ‘e the hypcrparanieters. Parameter w follows a
Gamma distribution with parame s g and h. Notice that I'(g, k) is a hyperprior
distribution. In addition, the m g proportions, ® = (m, 7, -+, @), arc as-
signed to be the symmetric Dirichlet distribution with parameter 1. The joint prior

distribution of the parameters is given by

’

p(8)  plk) p(m, p,o?

k),

where 8' = (k,m, i, 0?) are the parameters of the univariate normal mixture distri-
bution. The estimated number of components (k) depends on a marginal posterior
distribution (Green 1995; Stephens 2000). Assuming p(6'|y) is the stationary distri-
bution and (") () ... (6™ are the realizations of the Markov chain, then k

can be estimated according to the average:

Pr (k E( I(k=1)|y)
LS 0
~ ;m =)

1 .
= #{t : kO =i},

2.2 M lel.__g of quantitative .rait loci

In genetic linkage nalysis, the modeling of a quantitative trait is more difficult
when the exact number of mes v ich control the trait is unknown. Two different

cases arc considered under rent assumiptions. The first case is under the assump-
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2.2.1 Mixed effect mc for quantitative trait

The mixed model is a valuable statistical tool which can be applied to genctic
linkage analysis. For the pedigree data, the mixed effect model for the quantitative
trait y is defined in the form of

kq
y ul +XB+) Qiaite, (2.6)

1=1

where p1 is the overall mean; X is an (n x m) incidence matrix for covariates; 3 is
an (m x 1) vector of covariate effects: k, is the number of diallelic QTLs (of course,
k,= k — 1, where k is the number of components in the mixture); Q; is an (n x 2)
incidence matrix that denot the effect of the i QTL, and a; is a (2 x 1) vector
of random effects of such a Q1 . At the " position, G; and the QTL genotypes
A1A,, Al Ay, and Ay A, have corresponding cffects a;, d;, and —a;. Thus, if the vector

of random effects is expressed as

a;
d;

then the j** row (j = 1,2,---,n)« the incidence matrix Q; for the i* QTL effects

(10) (o))

corresponding to the specific genotypes, (A;A). A1 As, or AyA,, respectively) at the

will be one of

it" location for the j** individual.
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Finally, the error term e that indicates the residual effect in model (2.6) is a
vector of mension n that follows a normal distribution, with zero mean and diagonal

variance matrix.

2.2.2 Jo t distribution and prior distribution

Heath (1997) indicated that the joint distribution for a large pedigree data set

can be expressed as
p(k‘ G’ M’ ﬂ’ A’ ‘p’ TI’ a’ Ug’ “7 Y)

The complete genotype of all s is denoted as G; M represents the complete
genotype of all markers; vector A dicates the QTL map positions for linked QTLs;
@ represents e currently linked QTL; vector  denotes allele frequencies for all
QTLs and markers; and o2 is the residual variance.
The prior distribution for each parameter in the joint distribution function is

designated in the following way:

aw ~ N (0, 77

di ~ N(0, 7%

] Di(1, 1,1, ---)

ko~ U0, knar)

A~ U0, L)
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With pedigrees of large size, the peeling technique is efficient for small numbers of
loci (Cannings et al. 1978). Hc :ver, both approaches have computing limitations,
especially when there are a = 'ge number of marker loci and large pedigrees. In this
report, the Markov chain Monte Carlo (MCMC) mpling scheme is employed to
overcome these issues related to ¢ iplex calculations.

Tradition the MCMC sampl g scheme aj ies to the situation in which the
parameter space has fixed dimer on. However, when the parameter space is variable
MCMC with a reversible jump step the methodology is used to obtain a sampler
generated under different numbers of quantitative trait loci (Heath 1997). This is
in gencral terms the Baye me Hdology used to carry on the inference for the
quantitative trait loci mode of inh tance, allele frequency, map position, number of

loci affecting the trait and «  :t size of these trait loci.

3.1 Classical Monte Carlo integration and impor-
tance sampling

3.1.1 Markov chain

According to the definition, Markov chain is a sequence of random variables
with the property that the future state only depends on the present state and is

independent of the past states. 1 other words, if a sequence of random variables

21



{XO, XM X@ ...} can be expressed in the form
Pr (X0 = g1 X0 — 40 () — () L x(0 — g0

— Pr (X(Hl) _ x(t+1)| X — x(t)),

then this sequence is a Markov chain. At any state ¢ (¢ > 0), z*1), which is the value

of the next state (£41), can be obtained from the conditional distribution P (z|X ).

3.1.2 Monte Carlo simu tion

Suppose that a sample x1, T2, - -+ , z7 generated from density function 7(z) is used

to approximate the integration,

Edf )= [ famle)is < o0 (3.1)

with f(z) > 0 for all x, by using the empirical average 7;, where

—~ 1 &
fr= T Y_\ f(2)
According to ¢ law of large numbers, when x1, 23, - - - , zr are independently sampled
from 7(-), Fr converges almost y to ;[f(x)]. That is
fr 2 E.[f(2)], T — oo. (3.2)

This procedure is known as the M te Carlo method (Metropolis and Ulam 1949).
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3.1.3 Importance sampling

In most ¢ es, it is not straightforward to directly obtain the sample from m(z)
and an alter1 :ive approach has to be used. A method used to approximate the
defined integral in equation (3.1) without sampling from the distribution of 7(z) is
the so-called 1portance sar ling.

Considering a density functic  h(x) which has the same support as 7(z), we can
rewrite the integral (3.1) in o1 ' to obtain the expectation I with respect to h.

Equation 3.1 can be expressed in the form

flx\m(x)
I =E = —h(z)dx
. N )
=FE,f
Assume that x,, Ty, -+ ,zp e independently drawn from the density function i(x),
where
"
~ A
A aPACT (3.3)
1’]:1' h(z;)

is an unbiased estimator for /. This estimator 7 is also a strongly consistent estimator

of I when T approaches infinity with probability 1 (F' er 1968).

—~

a.s.
— ] as 1T — oc.

Moreover, Geweke (1989) proved a particular version of the Central Limit Theorem
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which states at

I-1
\/TI — N(0,1) as T — oo,

fa)m?(z)
h(z)

h(z). Even though there is no restriction on choosing the importance density, h(z),

with 02 | [ ]dz — I2. The constant o depends on the density function
it should be selected so that it has e “same shape” as m(z) with the easy sampling
conditions. However, it may not be possible to have easy sampling adapted density

in genetic problems that are built on complicated models.

3.2 Markov chain Monte Carlo (MCMC) sampling
methodolog

Under an MCMC scheme for a large ¢, the distribution of X! is independent
of X© . Also, when t is sufficient large, the distribution of X converges to the
stationary distribution. The essential idea for the MCMC algorithn is to have a
procedure in which the stationary distribution has density 7(x) in order to obtain a
sample from such a density.

We consider the Markov chain {X} 5o where the initial transition probability
function for a move from z to £ ¢  be cxpressed as

’

p(z, ) = Ple —»z')= P(XU) =71| X® =2).

If one assumes that the transition kernel p(-,-) is independent of state ¢, then the
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transition probability function at the t** step is
p(t; z,x) = P(X®M =2 X0 = 1)
forr= 0, 1, 2,---. If the distribution function of X{® ig
=P(XY ),
after ¢ steps, the marginal distribution of X is
m® (z) = P(X® ).

If m(x) is the stationary distribution density of transition kernel p (-, -), then n(x)
satisfies the condition

/p(r, ) m(x)dr = n(z).

In fact, the marginal distribu n of X® in any state ¢t (¢ >> 0) is arbitrarily

close to the stationary distribution 7 () without considering the initial value of X(©,

Under - e MCMC framework, the 1ajor difference between the Metropolis-Hastings

algorithms and Gibbs sampli1 thod is determined by the variety of ways setting

up the transition kernel.

3.2.1 Metropolis-H t 5 algorithm

The Metropolis-Hastings 2t} is a common algorithm used to generate sani-

ples from a compli .ed and/or hi; -dimensional probability distribution. The main
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where A is the acceptance test ratio which is indicated as

71'(.@’) q(;{:’A )
A= 3.6
m(z) g(z, T ) (3:6)

In order to increase ratio A, the best method is to choose a proposal distribution
function g(z) such that this g(x) is proportional to the stationary distribution function
m(x).

In addition, the transition kernel p(x,z’) with acceptance probability a(x,z’) is

given as
, q(z,2), m(z)q(z', ) > m(x)q(x, z)
p(fC,I ) = , 7T'(.’L'/) , , Lo (37)
q(z, ) (z)g(z, z) <m(x)g(z, x)

(Z)
The Markov chain which is built up n the transition kernel described in equation (3.7)

is reversible. Morcover, this form of p(z, ') guarantees that m(x) is the stationary

distrib1 .on of this Markov chain. That is

! I

n(o)p(z,z') = m(z)p(z, ).

Proof: Let 2 # ', then

’

m(x)p(x,x) = m(x) q(w,.rl) min { 1,

] rlade o) m(
w(z') q(z’, ) min{ 1, M’IL)_ }






exist on choosing instrumen  dist Hutions, there are several advantages of the Gibbs
sampler over other sampling methods. The most extraordinary advantage of the
Gibbs sampling method in practice, especially for high dimensional problems, is that
the Gibbs sampler can be simulated from only the full conditional density m(xg|x_5),
where x5 = {z;,i € S}, x_g = {x;,i ¢ S}, and S C {1,2,--- ,n}, ie. xs€ RS and
x_g € RIS

Given that S and X g = a , m(z) is the distribution density function of
X = (X1, Xy, -,X,), a collect 1 of random variables X' = (X;,X;,--- ,X;)

with property X:S = X _g have density function 7(x| _g). Therefore, for any B,

we have
P(X'eB) = / 1(z_g) m(zs| =) da’
B
/ﬂ(:l)/) dx’
B
B).

Thus, 7 (x) is also the distribution « 1sity of X' which implies that 7 (z) is indeed the
stationary distribution function. Given a proposed move froin & to «'. the transition
kernel, which is formed by the full conditior  distribution and defined by the above

equation, can be expressed

Ps(x — B) = I[xg € B_s]-/ n(xg|z g)drs.
By

In particular, when S con ns only one clement, the process is called a single-site
Gibbs sampling method. F amp g that S = {i}anda, - 201, 24400, Ty,
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the single-sitc Gibbs samp  which is based on the full conditional distribution of

(CL‘I, cee L1, i, ,CL‘n), has an acceptance test ratio A represented as

s)m(xsle <
) m(xs|lT_s)

W{mln e o c) \w51m c) 77‘(’1' o)

A

) 7T(27_5') ﬂ-(wS»w—S)

Thus, the acceptance probability, @, 2’) = min{1, A}, is always 1. Therefore, the
transition kernel becomes
P(x — B)=I[z_; € B] | w(xi|z-)d(z:).
B;
The di -ibution density can be obtained by repeating the Gibbs sampling algorithm
and it can be shown that the d y function converges to 7(x).
© O O

Given the itial point 29 = (27", |z -, zy)), if the starting point is (=1

for the ¥ step, then the Gibbs sampling method for the t*" step is described as follows:

(1) z!" from the full conditional distribution 7" | O 2y,

O 20 )

Tty

(i) mgt) from the fu conditional distribution 7 (z;| =
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(n) 2! from the full conditioo  distribution (T LL‘Y), e ,$$zt)—1)-

As a result, (M 2@ ... 2 ... are the realization of a Markov chain where
z® = (:r(lt), e ,a:ﬁf)). The transition probability distribution function for a move

from x to x is

/

plx,@)=m(x1] 2o+, x0) (T2 Ty T3 T0) o (@] L)y Tsy)s
and 7(x) is the stationary distribv on.
3.2.3 Full conditic | stribution and partial conditional dis-

tribution

3.2.3.1 Full conditional distr ition

Previous subsections in cat 1at the single-site Gibbs sampler is based on the
full conditional distribution. Let @ = (&3, , L,), then we have
n
m(x) = HW(TJIBQ‘), (3.8)
i=1

where zo; = {z;,j < i}. Accor 1 to cquation (3.8), the MCMC algorithm would
not be necessary if the density func m 7(x;|x;) of (x1,--- ,z,) was known. However,
this simple case cannot be i 5] | to complicated situations such  genetic linkage

analysis.
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For any § C N, we have

T lx_s)=- - o m(x). (3.9)

Equation (3.9) shows that t! i1 rence could be ouly made from termn xg. Similarly,

- 7
given x_g = T _g, we have

5"33;5‘) 77(33)
T\ xsle_s) w(x)

(3.10)

3.2.3.2 Partial condit al distribution

An update of the MCMC algor 1m using the partial conditional distribution was
discussed under special conditions (Besag et al. 1995). Indeed, x is an invalid value if
it was updated on the unconditional distribution of & _;. If an invalid & value occurs,
this invalid x can be ignored. Then, we can update it using the Gibbs sampler since

the Gibbs sampling algorithm is i1 :pendent of the current value.

3.3 Reversible jump Markov chain Monte Carlo

The MCN ' sampling scheme is constructed with a fixed dimension of parameter
space. However, the reversible jun  technique (Green 1995) allows the movement of
the sampler between different parameter spaces with unequal dimensions.

Suppose that the current s° ‘¢  and future state &’ have different dimensions
denoted as d) and dj respectively, 1ere  is smaller than dy. There exists a vector

u such that the length of vector is the difference between d, and d,. The extra
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are given by Heath (1997).
The complete updating steps Hr one iteration based on the reversible jump MCMC

micthiod was suggested by Hie - (1997) are listed as follows:

Updating Procedure

1. Update complete mar ~ ger  ypes M for each locus in turn;

2. For each QTL q:

(a) Update QTL effects a;;
(b) Update QTL position A; and linkage status @;;

(c) Update QTL genotypes Gj;

w

. Update QTL and ma r frequencies n;

1N

. Update covariate effects 3 overall mean p;
5. Update residual variance o?;

6. Birth or death of a QTL;

-J

. Split one QTL into two, combine two QTLs into one.
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analysis of urine calcium <cretio using the relatives of patients from 221 nuclear
French-Canadian families in whic nephrolithiasis was identified. They concluded
that there is most likely a major gene with a polygenic background determining the
calcium excretion trait.

Here a genetic linkage analys for hypercalciuria was conducted by using the
Bayesian methodology on the same aforementioned French-Canadian data set. Baycs
factors, more specifically, L-Score profiles were used to identify the locations of pu-
tative linked loci. The results for this case study show two L-Score peaks: one with
value 16.20 at position 41.55¢M on chromosome 15 and the other with value 11.09 at
position 92.75¢M on chromosome 3. According to the Bayes factor criterion, both
peaks’ positions are strongly linked to hypercalciuria, suggesting that the position of
the gene(s) that regulate urinary . Icium excretion may be in the neighborhood of

these peaks.

4.1 Data descr_,_tion

This study investigated 1219 viduals from French-Canadian fanmilies who were
identified as having nephrolithi. s.  >wever, only 985 participants provided blood
samples and urine samples over l-hour period. At the time of examination, data

regarding age, gender, weight, height, and thiazide drug use were also obtained for
these participants. Based on a1 » 2mical analysis of urine and serum samples, the

urine creatinine level for each inc ridual was predicted using the Cockeroft-Gault.
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Hy: QTL; is linked with the gene controlling calcium excretion.
H,: No such genetic 1kage cxists.

In this report, the L-Scores with 1 ¢M bins were used as the estimates of the Bayes
factors (ratio of posterior to prior odds) for the 22 autosomes under the premise that
a larger peak L-Score at a given [ tion provides evidence of genetic linkage at that

position.
4.2.1 Results

The linkage analysis can be do : by the study of the recombination patterns. The
theory indic: s that the recombination fraction (r) would be 50% if the transmission
of two loci were independent, i.c. in absence of linkage. On the other hand, a
recombination fraction smaller than 50% provides evideuce for linkage: the smaller
that the esti  ate of the  ombii  ion fraction is, the stronger the evidence that the
estimate will provides. One of the most popular methods of linkage analysis is the
LOD score, which is defin  asn  itive logarithm base 10 of the likelihood ratio. In
contrast to the LOD sco  L-Scores are the estimates of the Bayes factors, which

were discuessed in Chapter 2.
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Figure 4.1: Estimates of =~ : L-score, when the model i  tted for at least one Q1 .- ich is being linked
to a chromosomal regic . he pe: represents the poss : position of the linkage on  ‘omosome 15. he
total length of chromosome 15 is 122.42 cM.







In our data set, the L-Score peaks on chromosomes 15 and 19 with much larger
peak values than on the other 20 autosomes. F° 4.1 and Fig. 4 show the plots
of the L-Scores for each locus on chromosomes 15 and 19, respectively. Summary
statistics for the 22 autosomes are given in Table 4.2.

An inspection of the ge1  ated cc  Hlete data sample set seems to indicate good
mixing. Nevertheless, the identified loci in this analytic represent candidate regions
that need to be further evaluated by using a denser set of markers as well as other

analytical approaches.

44






4.2.2 Conclusion

In preparation for later application to a data set, we described the use of Bayesian
methodology to carry out a genetic linkage analysis. The case study comprised data
on urinary calcium excretion of families ascertained through a proband diagnosed with
nephrolithiasis. The analysis identified two condidate regions of the genome (one on
chromosome 5 and the other on chromosome 19) strongly linked to hypercalciuria.
Although the nature of this w k is preliminary since more studies are needed to
confirm the finding, the nature of the L-Score profile suggests that the identified

linked regions are promisi:
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