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Abstract

This thesis studies the use of data dependent structures in eryptography. Since the
introduction of RCH by Rivest in 1994, which relied heavily on data dependent rota-
tions for its security [1]. these structures have gained interest in eryptography. During
the Advanced Encryption Standard selection process two candidate ciphers, RCG and
MARS. rclied on data dependent. structures.

The thesis focuses on CIKS-1, a cipher introduced in the Journal of Cryptography
in 2002 [2], that relies mainly on data dependent permutations for its security. Due
to its reliance on these permutations, this cipher is chosen as a  asis for the study of
data—dependent structures in cryptographic algorithms.

The first attack on CIKS- 1 presented is a chosen plaintext attack which exploits
the lack of change in the [Tamining weight of the data as it is enciphered. The rescareh
shows that there is a class of weak keys with low weight that can be detected when the
input weight is constrained. An attack on a 6 round reduced version of the cipher is
outlined that can reduce the search space of the first round subkey to within a weight
of two from the weight of the actual key. This attack is experimentally shown to work
when the subkey weights are around six or less with a total thme complexity for the
attack of 2°2 encryption operations.

The sccond attack presented is a variant of classical differential eryptanalysis.
Instead of focusing ou the exact bit difference of the two inputs that make up the
differential, the attack instead focnses on the difference in their weights. An experi-

mental attack on a thrc  ound reduced version of the eipher is presented using this



techmique which can retrieve the last round subkey of CIKS 1 with a data complexity
of approximately 2% plaintext/ciphertext pairs and time complexity of approximately
235 encryption operations plus 2% partial deeryption operations. It is also shown that,
this can theoretically be extended to the whole eipher with a total data complexity of
271 plaintext/ciphertext pairs and thne complexity of approximately 2°* eneryption
operations plus A partial decryption operations.

Despite the weaknesses discovered in CIKS 1, there is potentially some merit in
using data dependent permutations in ciphers.  Therefore, the implementation of
CIKS-1 in software is investigated. The cipher was originally designed to be fast
in hardware and contains many operations that work at the bit level. which are
inefficient to implement in software. A software version of the cipher is presented
which uses bitslicing, effectively parallelizing the cipher on a single processor. This
version experimentally shows a speed up of approximately 175 times over a more

straight forward implementation using arrays of clements to hold individual bits.
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Chapter 1

I1 troduction

“There is a ton of evidence both in computing and outside of it which
shows that poor security can be very much worse than no security at
all.  In particular. stuff which makes nsers think they ¢ secure but s

worthless is very dangerous indeed.”  Alan Cox, Linux Kernel Developer

For hundreds of years, govermments throughout the world have used cryptography
to gunard v seerets from their enemies. Julius Caesar used simple substitutions
and rotations to convey messages to his troops at war. The simplest of these ciphers
substituted Greek letters for Re an, making it impossible for his enemies to read it.
Another, now known as the Cacsar Cipher, rotated cach letter three places down the
alphabet (i.e. A D), thus making the message appear to be gibberish if intercepted
[5].

Over time, simple ciphers such as these were realized to be easily defeated using
statistical information known about the language in use, and thus to be weak. They
were replaced by newer ciphers using techniques such as the wholesale replacement
of alpha numeric characters with symbols or using published works as keys. Oune
example of this was the set of encrypted messages left by Thomas Beale, an Amer-
ican prospector, outlining details on a large cache of gold. silver and gems he had

buried. One of the messages was found to have nsed the United States Declaration



of Independence as a key, After numbering the words in the document, the message
is revealed by replacing cach number in the encoded message with the first letter in
the corresponding word from the Declaration [5).

By the Second World War these types of ciphers were also bhemg replaced. man-
dated by the need for more secure communication to relay mi ary plans. The Ger-
man govermnent had started to employ the use of mechanical cipher devices such as
the German Enigia machine, which created codes increasingly difhicult to break by
hand. This in turn led to the use of computers heing employed by the code breakers,
which again led to the development of more secure ciphers using computing.

With the proliferation of computers and computer networks after the war, the use
of cryptography moved from primarily a government and military domain to otler
sectors such as banking. For example. in 2006 the Society for Worldwide Interbank
Financial Telecommunications (SWIEFT) handled an average of 1.4 million secure
transactions per day on their network [6]. Without encr:  tion, these transactions
would be vulnerable to attacks which could induce chaos in world cconomies.

Today, encryption is ubiquitous in modern life. In 2005, 58% of Ctanadian internet
users went online to do their banking electronically and 55% used it to pay bills, all
secured by forms of encryption [7]. Voice over IP applications such as Skype™ now
employ cneryption to keep conversations private. Even operating systems such as

Microsoft Windows™

and Apple OSX™ include functionality to cnerypt personal
files.

One byproduct of the public exposure of eryptography is the move to standardize
it in public. For many years, ciphers used for standards were chosen by governments
in conjunction with industry. This led to belief that these ciphers were intentionally
weakened to allow the government to decipher them ecasily. Such was suspected of

the Data Encryption Standard (DES) [8]. Although it Las never been found or even

proven to exist, many have suspected a trap door in this cipher that was developed



by IBM in conjunction with the United States National Security Agency (NSA). an
ageney of the govermment of the United States [8]. Today, commercial security stan-
dards such as this are no longer developed seeretly. Standards such as the Advanced
Encryption Standard (AES) (the replacement for DES) are now selected through pub-
lic processes involving governnents, industries and academies. In fact. many of the
world’s cryptographic ciphers are now published and undergo serutiny from scholars
worldwide to determine their strengths and weaknesses. One such cipher is CIKS 1,
which was published in January 2002 [2].

The CIKS 1 cipher was proposed as a fast and secure method of encryption de-
signed for hardware implementation. The main primitives used in the algorithm are
Data Dependent Permutations (DDPs), a large set of functions that use part of the
data involved in the encryption (cither plaintext or key) to permute other portions of
the data. These structures have appeared in other ciphers as well, including RCH and
RCG, but normally in the less general forni, Data Dependent Rotations (DDRs)[1][9].
DDRs have shown to be resistant to popular eryptanalysis techniques such as linear

and differential attacks [10] and the CIKS-1 authors state the same for DDPs [2].

1.1 Motivation I r Research

The DDP is proposed as a component in new cryptographice algorithms. It can be
implemented in hardware to achieve fast speeds [2] and a subset of these permutations
has been shown to be resistant to lincar and differential cryptanalysis [10]. Two
popular algorithms proposed by Ron Rivest, RCH and RCG, use a subsct of the DDP
functions, in the way of DDRs, as main parts of cipher [1]{9].

In 2002, CIKS | was proposed as a new cipher that was fast in hardware and
resistant to attack. The eipher uses a more general form of the DD as its main

primitive with ouly four other functions to create its security. Since this algorithim



relies so heavily on DDPs, it makes a good candidate for a study on the security
. ) g ! A
properties of the functions. Therefore, we use this cipher as our ™ sis for eryptographic

attacks to determine the qualities of DDPs.

1.2 Scope of Work

The purpose of this thesis is to investigate the properties of DDPs as a cryptographic
primitive.  First, an introduction to cryptography and concepts required in later
chapters is provided. Tncluded is a look at general guidelines for secure algoritls
and common cryptanalysis techniques. There is also an overview (;f sclected ciphers
with DDPs with a more in—depth look at CIKS 1.

In later chapters the CIKS 1 cipher is used as a testbed for the DDP. The
properties of the DDP are studied under the use of low weight inputs, exposing the
need for a well=defined key schedule. A differential attack is proposed for the cipher
which exposes limitations on the CIKS 1 use of DDPs. Finally, there is a study of

techniques optimizing speed when implementing DDPs in software.

1.3 Thesis Outline

The thesis progresses in the following manner:

Chapter One: An introduction to the research conducte

Chapter Two: An introduction to cryptography and cryptanalysis.

Chapter Three: An introduction to ciphers with data dependent structures,

with particular focus given to the CIKS 1 cipher.

Chapter Four: A weight based attack on the CIKS 1 cipher is proposed.

Chapter Five: A differential attack on the CHKS—-1 cipher 1s proposed.



e Chapter Six: A bitsliced implementation of CIKS-1 is presented as an efficient

software implementation.

e Chapter Seven: A summary of results and conclusions.

1.4 Summary of Results

In Chapter 4 of this thesis, a weight based attack on the C €S 1 cipher is proposcd.
The attack focuses on the limited effect of the weight of the key on the weight of
the data being processed by the cipher. A class of weak keys with low Haming
weight. that can be exploited to constrict the search area for actual key is presented.
An attack is demonstrated on a six- round reduced version of the cipher with subkey
Hamming weights limited to six or less. The attack has a total time complexity of
25 encryption operations and reduces the search space for the actual key to a value
with Hamming weights within two of the actual weight.

In Chapter 5 another attack is proposed which takes advantage of weight prop-
agation in CIIKS—1. This attack is a non—traditional differential attack where the
differentials arc differences in the Hamming weight of the plaintext inputs. An ex-
perimental verification of the attack is completed on a three—ronnd reduced version
of the cipher with a data complexity of 2% plaintext/ciphertext. pairs and a time
complexity of 2% partial decryption operations. Differentials for the attack on the
full 8 round versions of the cipher are also presented which results in an attack with a
data complexity of 2°? plaintext/ciphertext pairs and a time complexity of 2*! partial
decryption operations.

Finally, in Chapter 6, efficient. implementation for CIKS-1 in software is investi-
gated. Since the cipher was des” ed for hardware, many of the primitives perform

operations at the level of bits and as such do not cffectively utihize word based -

structions in general purpose processors. An implementation of CIKS 1 using the



bitslicing technique is presented which fully utilizes the instruction st of modern
processors. The 32 bit and 64 bit versions of this implementation are compared to
implementations using arrays and bitset (from the C++4 STL). It is shown that the
bitslice technigque provides a speed up of 234 times for the 32 bit implementation

and 425 times for the a 64-bit implementation over the fastest of the other versions

presented.,




Chapter 2

Overview of Cryptography

Cryptography is the study and process of hiding inforination. Generally, it is nsed to
keep third partics from viewing sensitive data. This includes concealing stored data
such as crerypting data on a computer hard drive, but more often refers to the transfer
of information over an insecure communications channel. For illustration, a transfer of
information model will be used in this discussion, employing the following characters:
Alice, the data transmitter; Bob, the data receiver; and Oscar, the intruder.

To transfer the data securely, a cryptosystem is used. A ¢ | tosystem is defined
as a sct of functions and data sets required to transmit data from one party to
another, secure from interception by a third party. As presented in [11], the parts of

a cryptosystem include:
e an encryption function,
e a decryption function,
e a set of possible plaintexts,
e a sct of possible ciphertexts, and

e a set of possible ke 'C.




The eneryption function is used to transform data in the set of possible plaintexts
to data in the set of possible ciphertexts, based on a key from the kevspace. This
function must be one to one inorder for the plaintext to be restored by the deeryption

function [12]. Figure 2.1 shows the standard model of a general eryptosystem.

N I
P — 1& (x) > ¢ /;»j Inaeenie Channel ’ | 'k (x) > P
On 3 0 on d 0on

Figure 2.1: A Model of a Crytopsystem

If Alice has plaintext data py, py, ..., p, 1 and wants to send it to Bob, but wants
to make sure that only he can read it, she needs to encrypt the data. To do this she
can usc the cueryption function f, to produce ciphertext ¢; = f.(p;), with a key ¢.
She can then send the resulting ciphertext data ¢y, ¢, ..., ¢, 21 to Bob over an insceure
channel. When Bob receives the data he uses the decryption function. ¢, to compute
Pi = ga(c;) with key d to reproduce the plaintext.

In an cffective eryptosysten, the decryption key d (and sometimes the eneryption
key €) is the only piece of information that nceds to be kept from Oscar in order to
ensure confidentiality of the tran itted data. . aerefore, Alice must have a secure
mechanism to provide Bob with the key. Oscar is therefore left with trying to guess
the key to decrypt the data, or trying to exploit flaws in the cryptosvsten to recover
thie original data. This latter approach is known as cryptanalysis.

In the following scctions, an introduction to cryptography is presented. There
is a discussion of the different types of eryptographic functions (or ciphers) and the
ways in which they are used. This is followed by a discussion of general properties

for securc ciphers. Finally there is an introduction to cryptanalysis, the practice of



attacking ciphers.

2.1 Types of Cryptographic Algorithms

Cryptographic algorithms are normally classificd into two gre s based on the type
of key which they use. When the encryption key employed in the eipher must be kept
secret, it is referred to as a symmetric (sometimes called shared or secret) key cipher.
When the security of the cipher does not depend on the encryption key used being
kept secret, the cipher is referred to as an asymmetrie (or public) key cipher. These
ciphers get their nanmes from the fact that they are designed in such a way that one
key can be distributed publicly, without compromising the security of the function.
Symmetric and public key ciphers are discussed in the following sections. However,
symmetric key algorithms are cxplored more since such algoritlims are the focus of

this thesis.

2.1.1 Public Key Ciphers

In [13] Diftic and Hellinan outlined a new miethod for enervpting data which nses two
separate keys rather than the traditional one key. Of the two, onc is to be kept private
while the other is made public. They called the scheme public key eryptography.

In a public key cryptosystem as proposed by Diffie and Helman, the sender en-
crypts the data using the public key which is unique for cach receiver. The eneryption
is nominally done using a mathematical computation which is casy for the sender to
perform. Sccurity is gained by choosing a problem which is intractable with the pub-
liclty known information. The recciver (of eourse) has extra info iation, the private
key. This key is used in a function, comnnonly referred to as a trapdoor function, that
allows the recciver to easily recover the origimal data.

The most frequenty used publie key algorithin, referred to as RSA, was proposed

9




by Rivest, Shamir and Adleman in [14] and is presented here as an example. The
sceurity of the RSA algorithm is based on the assmmption that factoring the product
of two large primes is an intractable problem. To generate keys, the receiver must

choose two large prime numbers p and . From these munbers,

n=pxgq (2.1)

and

¢(n) =(p—1)(q—-1) (2.2)

are generated. Then another number b is chosen such that 1 < b < &(n) and the
greatest common divisor of b and @(n) is 1. The final part of the key a is calculated

such that

a " 'mod¢(n). (2.3)

The public key consists of n and b, while the private key consists of p. ¢ and a.

To encrypt data the sender must convert it to an integer form between 0 and n—1.
If the message is large, it will need to be broken into multiple integers. Once in this
form, the data z is encrypted using the function

finpy (2) = 2° mod n. (2.4)

Once received, the ciphertext can be decrypted using the inverse trapdoor function

I(na)(y) = y* mod n. (2.5)

The sccurity of RSA is based on the widely held belief that given a choice of large

enough primes, knowing fn.»(2), b and n solving for = presents a computationally

10




infeasible problem of factoring large numbers that are a product of two primes. Know-
ing cither @ or the primes p and ¢ so that a can be computed, allows the receiver to
reverse the eneryption using the trapdoor function g, o) (). This leaves an attacker
with the most obvious attack possibility of factoring n into its two prime factors p
and ¢ so that a can be computed. However, prime factorization is considered to be
computationally difficult problem for large n (e.g. n of a few hundred bits).

Other popular public key ciphers include those based on the Discrete Logarithm
Problem. The algorithms are based on logarithms in finite groups which are one-
way functions such as the ordinary logarithm found in RSA. One such cipher is the

ElGamal eryptosystem [11].

2.1.2 Symmetric Key Ciphers

Due to the mathematics involved in public key cryptosystems, 1e ciphers are inher-
ently slow in encryption speed. In applications where speed is a priority, symmetric
key cipliers are normally employed. In some applications the two are combined, using
public key cryptography to transmit a secret key that can then be used by symmnetrice
key ciphers.

Symmetric key ciphers, also called shared or secret key, come in two varicties
stream ciphers and block ciphers. The following sections outline the two types, giving

more weight to block ciphers since they are studied closcly in the chapters that follow.

Stream Ciphers

Stream ciphers are designed to encipher data with minimal delay. To do this, they
operate on single symbols at a time, thus eliminating the requirement to wait for
data to build in a queue. The primary component. of a stream ciplier is a keystream
generator, the purpose of which is to generate a continuous streani of pseudorandon

bits. This streain of bits is know as the keystream and is combined with the plaintext

11



to produce the ciphertext. The combining operator can vary from cipher to cipher;
lhowever it is most commonly a stmple modulo two addition « bitwise exclusive or.

The decryption of the data is achieved by running the ciphertext through the
same cipher to obtain the plaintext. In order for this to work, the sender and receiver
must not only have access to the same key, they must also ensure that the keystream
generation is synchronized on both ends of the commmunication. Figure 2.2 shows the

basic strezun cipher model.

Key
Keystream
Generator

Ciphertext  Ciphertext €= - Plaintext

Key
Keysiream
Generator

Plaintext —

Encryption Decryption

Figurce 2.2: Stream Cipher Model

Stream ciphers are commonly employed in comnmmication networks. The proto-
cols used in these networks connmonly require imited amounts of buffering to reduce
the amount of latency. Example stream ciphers found in common networks are the £
cipher, used to secure cominunications between Bluetooth devices, and the Wireless

Equivalent Protocol, or WEP, found in IEEE 802.11h wircless networks [15][16].

Block Ciphers

Block ciphers are symmetric (or shared) key cryptographic algorithms that encipher a
fixed length of data, or block, at a time. They are typically product ciphers, meaning
they have a simple function known as a round, and the final ciphertext is a result of
passing the data through many rounds. Each round uses a different key known as
a subkey: therefore, there is a requirement to be able to derive these keys from the
shared key. The process used to derive the subkeys is known ¢ a key schedule.

Block ciphers are designed to take advantage of the word length of the hardware on

12



which they will be used. If designing a block cipher for a modern personal computer,
it would most hkely be designed with 32 bit or 64 bit words to take full advantage
ol the instruction set provided by the processor.

The Substitution Permutation Network (SPN) is commonly used as an example
of a block cipher. Presented by Feistel in [17]. the SPN is a simple cipher consisting
only of substitutions and permutations, as its name suggests. The compouents of an
SPN are quite similar to that of DES and ALES, but the algori 1 is simpler, making
it a good learnming tool. The simple example presented in Figr 2 2.3 is used by Heys
in [18]. in a tutorial to illustrate cryptanalysis technicues.

As can be seen in Figure 2.3, the algorithm takes as input a fixed data block of
16 bits. The Nrst three rounds use an identical round structi add the subkey (in
this case by simple modulo two addition); perform a substitut  n for cach sub block
of four bits comprising the data; 1 permute the result. The fourth round does not.
include the permutation, but an additional subkey is added following the substitution.
This is done to prevent an attacker from ignoring the final substitution since without

the added key it could easily be reversed.

The Advanced Encryption Standard

From 1997 to 2001, The United States National Institute of Standards and Technology
(NIST) held a competition to replace the DES. The winner was to be chosen based on
security, cost and characteristies of the cipher [19]. Security was the most important
criterion, and as such, any cipher that showed vulnerability during the competition
was climinated. The other two criteria were then used to differentiate the remaining
candidates. The cost criterion looked at the complexity of each algorithin with respect
to both speed and memory. Finally the characteristies of cach cipher were compared,
including such qual s as fl sility and siimplicity of the ciph

In the end, the Rijndael cipher by Dacmen and Rijmen was chosen as the new
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AES. The cipher is an iterated cipher with varying kev length depending on the
number of rounds employed. Table 2.1 shows the key size for the three ronnd lengths

defined for the cipher. All operations nsed in the ¢ipher are word oriented.

Number of Rounds ’ Key Size

10 128 bhits
12 192 bits
141 250 bits

Table 2.1: Number of Rounds Versus Key Size for AES

AES has a structure quite similar to the SPN presented in the previous section.
There is an initial whitening of the data by mixing the fivst round subkeyv with the
plaintext via an exclusive or operation. Then the next 1 rounds involve a sub-
stitution, linear transformation and subkey mixing just as with the SPN. The final
round excludes the column mixing portion of the linear transformation.

The substitution used in AES is an 8 by 8 substitution box, or S Box. For cach
byte in the cipher data, the substitution replaces the data based on a conceptual
256-by-8 bit lookup table. These values can also be caleulated using, finite field
mathematics.

The linear transformation that is performed next is a combination of a stniple
shifting of bytes and column mixing. The data in the AES is h 1 in a variable called

State which is a 4-by—4 byte m:  x defined as

50,0 50,1 S02 S03

S0 S S12 Sig
State =

.5'2,() 591 89

S3.0  S3,1 932 S33

where s, , is the state byte s in row i, column n. The shifting rotates cach row m

bytes to the left with wrapping. To mix the columns of data in the state variable




cacli columm of data is multiplied by a column of data in a Anite Held Foo The result
of the multiplication is used to replace the original data of the column. Finally, for

cach round there is subkey mixing which is done via an exclusive or as was the case

with the whitening [L1].

Modes of Operation

In [20]. the U.S. National Burcau of Standards (now NIST) introduced four modes
of operation for block ciphers: Electonic Codehook (ECB), Cipher Block Chaining
(CBC). Cipher Feedback (CFB) and Output Feedback (OFB). under which DIES
could be run. These modes specify how the cipher could be used in various scenarios,
and though intended originally for use with DES, they arce commonly used with many
current block ciphers.

ECD is the native mode for all block ciphers. It is defined as the most simiple
use of the cipher, encrypting one block at a time, independent of all other blocks.
Due to this independence, the sender is guaranteed that an error in transmission in
a single block will not propagate to others. ECB mode works straightforwardly for
fixed length data that is a multiple of the block size. If the data does not completely
fill multiple blocks, padding is required in the final block. When using this mode, the
sceuder should be aware that repeating blocks of data using the same key will result
i1 a repeat in ciphertext at the output, which could be exploit  for an attack.

The next mode defined in [20] is CBC mode. In this mode, cach ontput. block is
dependent on the last with an Initialization Vector (IV) being used to produce the
first round output block. To use this mode, the sender hrst selects an IV, ¢,. The

data is then encrypted using

ci = filpi @ cicy) (2.7)
where ¢ > 1 and fi is the enceryption algorithm in use with key k. As can be seen, cach
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plaintext block p; is added modulo two with the previous ciphertext block ¢, . before
being encrypted (with the exception of the first block, which is added modulo-two

with the 1V). The inverse of this operation is

pi = grlci) b (2.8)

where g is the decryption algorithm, using the same key A.

The advantage this mode has over ECB is that identical inputs do not result in
identical output when using the same key. However, this mode still requires padding
when the data size is not a multiple of the block size. As w | the introduction of
dependence on previous ciphertexts comes with error propagation. An errvor in ¢; will
result in errors in both p;yy and p;. Also, the loss of a single block of ciphertext (¢;)
in transmission results in a loss of two plaintext blocks in decryption.

To overconie the limitation of requiring the plaintext size to be a multiple of
the cipher block size, a mode that converts a block cipher into a stream cipher can
be used. Both CFB and OFB accomplish this task. When using these modes the
encryption and decryption operations need to be synchronized to ensure the plaintext
at both ends of the cryptosystem match.

In CFB mode, m bits are encrypted at a time where m < n, the munber of bits
in a block. Again, the CFB uses an IV, xy. Once choscn, the plaintext blocks are

encrypted using the operation

Ci = Di ¥ A/ISBWL(fk(iEi)) (29)

where MSB,, is the m most significant bits of the encryption of the input variable;
felx;) and p; and ¢; represent m bits of plaintext and ciphertext respectively. This

mc  also requires the caleulation of the next block cipher input, x;,; using
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Ty = LSBn—m.(:]:i) I J(.‘i (2 10)

T is a concatenation

where LS B, _,, is the (n — m) least significant bits of @; and =
operation. Deeryption is a similar operation to eneryption.

CFIB can be used to reduce the padding requirement, however it coimes with a
cost, in crror propagatioinn. Depending on the location of the + or i the ciphertext,
a single bit error in transmission can create errors in as many as (= + 1) plaintext
blocks. After the error has propagated through, CFB will start producing the correct
plaintext again at the receiver, or self synchronize. The result of losing a block in
CFB is equivalent to that in CBC.

The last mode outlined in [20] is OFB mode. This mode is similar to CFB mode in
that it transforms a block cipher to a stream cipher; however, instead of feeding back
ciphertext, keystream bits are fed back. Again, an IV zg is chosen and the ciphertext

of m bits, < m < n, is created using

Cp = Pi (D AISB?Yl(fk(lll‘q')), (211)

thie same operation as in CFB. However the next value of input is calculated as

i1 = LSBp_m(:)||MSBy(filr:)) (2.12)

thus depending only on the previous values of the keystream. This has the advantage
that an error in transmission of the ciphertext will not propagate to the decryption
of other plaintext bits. However, a lost Dlock of ciphertext results in loss of synchro-
nization and continual error in the recovered plaintext.

Even though CFB and OFB can be used to convert a block cipher into a stream
cipher, it should be noted that this docs not automatically overcome the latency

problems with block ciphers. This is due to the fact that the Dlock ciplier usually
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functions on larger data inputs.
Now that the various types of ciphers and their operation lave 1 1 introduced,
the next section looks at properties considered desirable for secure ciphers. After this,

an introduction to cryptanalysis is presented.

2.2 Properties of Secure Block Ciphers

In the body of literature for cryptography rescarch there are many theories presented
for what makes a secure block ciphier. For modern eryptog  phy. one of the first
works to approach the topic was [12] by Shannon. In this paper, Shannon approaches
the study of cryptosysterns from an information theory point of view. In doing so,
he presents properties that are desirable to make a cipher secure. Sinee then, others
have added to this list, and a subset of these properties is pre  1ted here.

It should be noted that though these properties can be nsed as a guide in design,
in [21} Knudsen warns agaiust overvaluing them. He notes that Shannon's principle
to cnsure that a cipher is sccure against all known attacks is still considered the best

design principle for ciphers.

2.2.1 Confusion and Diffusion

Confusion and diffusion are related propertics presented by Shannou in [12]. Confu-
sion is a relationship between the key and the ciphertext. The goal is to make the
relationship as complex as possible. If the relationship is simple (for example a simple
rotation of symbols such as a Cacsar Cipher), the attacker can use simple statistical
analysis, based on knowledge of the plaintext language, to break the cipher. However,
as more complexity (or confusion) is added to the relationship, the statistical analysis
required by the attacker grows in complexity as well, with the ultimate goal of being

mifeasible.
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Diffusion is the concept of hiding any redundancy of miput bits from being, discov-
cred in the output bits. The goal is to have each bit of plaintext ifluence as much
of the ciphertext as possible. This makes it more difficult for the attacker to deteet,

any statistical relationship between the plaintext and ciphertext.

2.2.2 Spurious Keys and Unicity Distance

Spurious keys are keys used in decrypting ciphertext that lead to a plaintext that
has meaning, but is not actually the plaintext. If an attacker has only the ciphertext
and through trying multiple keys comes across two keys in which the plaintext result
is meaningful, without further information it would be impossible to determine the
intended message.

Using this concept, Shannon presents the idea of unicity distance in [12] . This is
defined as the amount ol ciphertext that would be required to reduce the number of
spurious keys to zero. Put another way, unicity distance is the amount of ciphertext
the attacker would require to ensurce the correct key has bec  found, given enough
time to exhaustively search all keys. Obviously, the larger the unicity distance, the
better for the security of the cipher, as it has a direct relationship on the complexity

of a ciphertext only attack.

2.2.3 Completeness, Avalanche Effect and the Strict

Avalanche Criteria

Conipleteness, avalanche effect and the Strict Avalanche Criteria (SAC) are related
measures of how well a cipher is designed. In fact, they are an expansion on Shannon’s
concept of diffusion. In [22], a cipher is said to be complete il cach output bit is
dependent. on all of the plaintext bits in the output. Feistel introduces a related

concept, the avalanche effect, [17] whereby a change in any one input bit shonld
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result in o change of 5 of the output bits.

Bo—

In [23], Webster and Tavares combine the previons ideas to deline the concept. of
SAC. By definition of SAC, a change in one input bit. should change cach output
bit with a probability of % Ciphers exhibiting this property do not have a strong

correlation between input and output bits.

2.3 Introduction to Cryptanalysis

In the past, many ciphers depended on the attacker not knowing how they worked
to ensure their security. In modern eryptography this is no longer the normal proce-
dure. Modern cryptographers design their ciphers according to Kerckhioft™s Principle:
assunie that your attacker is familiar with the algorithm in use. "T'his means that the
attacker cannol just work on decrypting intercepted data, but also work on finding
flaws in the cipher itself.

There are four comunon types of eryptanalytic attacks: known ciphertext, known
plaintext, chosen plaintext and chosen ciphertext. A known ¢ hertext attack is the
same as the attacker intercepting ciphertext during transmission. No other informa-
tion is known. In a known plaintext attack, the attacker has o benefit of not only
having the ciphertext, but also the corresponding plaintext. For the chosen plaintext
attack, not only is the plaintext known, but the attacker is assumed to have heen able
to access the encryption device and thus is able to choose a particular plaintext of
interest and to determine the corresponding ciphertext. The chosen ciphertext attack
is stiilar to the chosen plaintext; llowever, access to the deerny tion device hias been
gained and therefore the attacker can choose a ciphertext of interest and obtain the
plaintext [11].

In all casecs, the objective of the attack is to gain information about plaintext

encrypted given only ciphertext. The ultimate goal is to obtain the key, but any



information revealed will allow the attacker to reduce the number of keys needed to
search. In fact, for an ideal cipher, an exhaustive key search (trying all possible keys)
is the only method of attack. In practice, many ciphers leak information about their
key, reducing the size of the search space. An attack on a cipher is considered to
be suceessful when is able to reduce the scarch space to less than the 27 possible
keys (where n is the key size in bits). Although many attacks are theoretical in
nature and not possible to implement due to the time or amount of data required,
any weakness found is usually considered an indication that there may be others to
find, and thercfore the cipher will be considered inadequale.

The following sections outline some examples of attacks found in the Literature.

2.3.1 Meet—in—the—Middle Attack

In [24], Merkle and Hellman introduce the concept of a mect in-the middle attack.
When investigating ways to improve ciphers by running data through a cipher multiple
times, they noted a flaw in blindly choosing two keys and running the data through
two iterations of the cipher. Even though the key length is clfectively larger, they
found that with a trade off on the amount of memory required, the attacker can
attack the cipher in only double the time.

To do this, the attacker must have access to a set of plaintexts and corresponding
ciphertexts. The attacker first encrypts a portion of the plaintext for all possible
keys through the fivst half of the combined cipher and stores the result. The attacker
then takes the corresponding portion of the original ciphertexts and does a partial
decryption of the data for all known keys. If a match is found between the encrypted
and decrypted data (in the middle of the cipher), a second test with more data can
be performed to show the correct combined key has been found.

This attack exploits the fact that in doubling the key size, it is expected that the

number of exhaustive key search operations will ~ from 2" to . However, if there
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15 enough available menory (2" blocks), this attack can be performed i 2 x 2" or
2" operations. When designing a cipher, care should be employed to ensure this

flaw 1s not made available to an attacker.

2.3.2 Linear Cryptanalysis

In [25], Matsui presented an attack on the DES cipher which exploited a bias derived
from the probability of linear equations of data in the cipher. This attack is known
as linear cryptanalysis and is outlined in a more general form in [18].

The idea behind the attack is to find linear equations involving both input and
output bits which have a high or low probability of being satisfied. These equations

arc commonly of the formm

:Eil @ J:ig dl' T G:a 'Ti,j EB ykl @ yk'z GD’ T (P ykl — () (213)

where the 7 and & subscripts are indicators of the position of the bit in the input (x)
and output (y), respectively. If a cipher is completely random, an equation of this
form should hold with a probability of % If an cquation of this form can be found
with a large bias in the probability, it can be used to extract subkey bits within the
cipher.

The first step in settihh  up a linear cryptanalysis attack is to examine the non—
lincar elements of the cipher for possible linear approximations. This can be achieved
by running all possible inputs through the cipher component (e.g. s box), masking
off all combinations of input and output bits, and counting the number of tinmes the
exclusive or of the masked input bits is equal to the exclusive or of the masked output
bits. Once this procedure is complete, the combinatious with the largest and simallest
counts are those with the largest bias and can therefore be used for the attack.

When the analysis of all non-lincar components is complete, the attacker must
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then string together the inputs of interest to provide a complete path through to
the sccond last round of the cipher. For instance, if you have approximation for one

component of

Ty = (2.1.1)

the next component in the chain should use the output bit gy as its input. In using
this method, the total bias of the approximation can be caleulated using Matsui's

Piling Up Lemma

Cagm — 2" H € (2.15)

where norepresents the number of active components and ¢; is bias of probabilities,
or the amount by which they deviate from %

This cquation is derived with the assumption that all components are indepen-
dent, which they are strictly not. However, in most cases it provides a close enough
approxintation.

Once an approximation through to the second last round as been found. the
attack can commence. The output bits from the approximatic indicate which bits
of the final subkey one can attack, based on their relationship to *°  tinal subkey
in the last round. The attack is a known plaintext attack where the attacker uses
input bits involved in the linear approximation. The output is run back through the
final round using all possible values for the partial subkey under attack in the final
round. With cach decryption, a count is kept of how many times the expected value
of the approximation at the output of the second last round is consistent with the
input bits. Once all possible subkeys have been tried, the partial subkey with the

largest bias is chosen as the actual value of the bits in the subkey. In [25], the data

1

“1.2.3,....n

complexity of the attack is given to be approximately



2.3.3 Differential Cryptanalysis

Introduced by Biham and Shamir in [26], differential crvptanalysis is a chosen plain-
text attack. It is based on the fact that in an ideal eryptogr Hhic algorithm. given
any difference in the input, AX, the probability of resulting in a particular difference
at the output, AY  would be pay Ay = _)i where 1 is the munber of bits in X' If we
can hnd a difference in the input that deviates from this probability. we can exploit.
it to extract information about the cipher key.

Differential eryptanalysis classically uses sets of pairs of inputs that have a com-
mon difference AN = Xyp Xy, where Xy and X represent two different input valnes
and ) represents bit wise exclusive or. These pairs. when used as input to the ci-
pher, result in an output difference Y, 48 Y, which with high probability is equal to a
value AY . The pair, (AX,AY) is referred to as a differential.

To find differentials of interest, the various primitives of the cipher are usually
analyzed to find any pattern that may be exploitable.  For example, if a cipher
uses substitution boxes, or s boxes, cach individual s=hox can be analyzed to find
a differential that occurs with a probability greater than expected. The larger the
deviation, generally the greater the likelihood of success for the attack on the cipher.
Once the individual components are analyzed, the differential must be combined
to find a total differential that passes through the entire cipher with the greatest
probability.

ghly likely differentials can be exploited to determine key bit information. Once
a highly probable differential (ANX " Y) is found for r rounds of an »+ 1 round cipher.
the last round subkey can be attacked. Nany pairs with the input diflerence * X are
encrypted over 7 + 1 rounds. Each pair is then decrypted for the last round using all
possible subkeys. A check for the output difference AY of vour 7 — 1 is perfornied
and a count for the number of time it occurred with the given subkey s meremented.

The actual subkey will result in the largest count of the AY ocer ences as predicted




by the differential.

2.3.4 Side Channel Attacks

Side channel attacks are attacks that are not focused on the cipher itself but rather
its implementation. When implementing an algorithin, care must be taken such that
details of the data within are not revealed due to implementation measurcments. "I'wo
types of common side channel attacks are outlined in the following sections: timing

attacks and power attacks.

Timing Attacks

Introduced by Kocher in [27], timing attacks exploit implementations of a cipher
which take an amount of time, dependent on the input data. The author lists pos-
sible reasons for the variability as: performance optimizations to bypass unnecessary
operations, branching aud conditional statenrents, RANM cache hits, and processor
instructions such as multiplication and division that run in non—fixed time.

A 7 ple example of an implementation vulnerable to this tvpe of attack would
be o »such that certain operations are skipped based on a condition of the data. In
his paper, Kocher gives an example of a modular exponent algorithm that could be
used with RSA, which includes the following pseudocode:

if (bit k of x) is 1 then
Let Ry = (s - y) mod n

else

Let Rp = sg.

It is obvious from this code that the if case will take more time than the else case.
The author goes on to show how by measuring this time d = ence an attacker can
extract the bits from the exponent i, the key to deerypting the ciphertext. 1t should

also be noted that though this attack was originally implemented on a public key




cipher, it can also be used on symmetrice kev ciphers. an example of which is given in

the next chapter.

Power Attacks

In 28], Kocher et al. investigate implementation attacks based on measurement of
power consmnption. They put a 50 olin resistor in series with power or ground for
the circuit, and measured the voltage across the resistor, sampling it at a high rate of
speed. Since processing circuits are made up of many transistors which change state,
dynamic power consumption is proportional to transistor state changes and hence
processing of the different data results in unique power traces measured as current
cntering the circuit.

An example of an implementation that can be attacked is the DES key schedule,
which involves the rotation of 28 bit key registers. One implementation method would
he to use a conditional branch to check the bit heing rotated off, to determine if the
bit rotated onto the other side need to be set. Using this method, rotating a bit that
is set would have a different signature than a bit that is not. These signatures could

be measured in order to determine the number of set and unset bits in the registers.

2.4 Summ-~-y

This chapter has given an introduction to cryptography including types of algorithms
and desired properties. An outhine of common cryptanalysis techniques was also pre-
sented. The following chapter looks more closely at a single cryptographic primitive,
the DDP. Example ciphers using DDPs are presented, including an in depth ook at.
CIKS L. This cipher is also analyzed using some of the techmiques presented in this

chapter.




Chapter 3

Data-Dependent Permutations an..

CIKS—-1

Data—Dep: dent Pernmtations were introduced in [29], an IBM patent filed in 1977, in
the form of Data Dependent Rotations. In the author’s patent “System for NMachine
Enciphering,” data within the cipher is subject to one of a set of operations depending
on other data. This did not make the primitive strictly & DDP as other operations
could be used; however, it was the first example of permutati 5 heing selected via
the data itself.

It was not until Ron Rivest published [1] that a DDP primitive began to gain
attention. In his paper, Rivest proposced RCH, a siinple cipher based mainly on a DDR
(a subset of the DDP functions) that was considered both fast and secure. Further
study of the DDR in [10] sho' 1 it to be resistant to both lincar and differential
cryptanalysis.

In this chapter we look at the DD, a class of nonlincar eryptographic primitives
that arc gaining popularity in cryptography. The properties of the DD are reviewed,
as well as various implementations. We then look at example ciphers using DDPs.

I the latter part of the chapter we focus on the CIIKS L. Since this cipher is

built with a major dependency on DDPs for nonlinearity, it is «  particular interest.
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We look at the various components used and their role in the cipher. We investigate
the data flow through the cipher and examine how the cipher performs for accepted
cryplographiic properties. Finally, we take a look at known attacks on the CIKS 1

cipher.

3.1 Data—Dependent 1 ermutations

A permutation, 11, of width 7 is a one—to-one total function from a finite set,
{0,1,....n — 1} to itself. A Controlled Permutation (CP) is an indexed set of p

permutations, {IIy, IT,....,T1, 1} in which the input data is permuted by a member of

.
the set chosen by the Control Vector (CV) to produce the output. Given an input «
and a control vector i, where 0 <7 < p, then the output is y such that y = IT;(x). The
maximum size of the set is n! diflerent permutations. However, due to the munber of
control bits required and the difficulty of structuring the sclection of the permutation,
this is unpractical. In practice, CPs arc normally used with simaller CVs when used
as cryptographic primitives. When a CP is controlled by a subset of the data i the
function, we cousider it a DDP.

In [2] P,y is defined as a controlled permutation of n input bits such that there
arc 2" permutations, defined by a CV of size m. P, is of order h, if for cach
sequence of h < ninput bits, g, 21, ..., 2,1, and h < noutputs, ¥, y1. ..., Yn_1, there
exists at least one CP which moves r; to y; for all i = 1,2,...,h. CV is of maximal
order if i = n and it therefore contains the set of all n! possible permutations. Also,
P,/ 1s considered strict if and only if 1I; # 1, where 4,k € {0,...,2™ =1} and j # k.
Finally, P 1,,/,,, is defined to be the inverse of P, if and only — each I from Py,
is the inverse of I, ' from Pnf/lm, for cach k.

In order to be used for cryptographic application, DDPs should be designed with

no bias. Therefore, over all permutations in the set P, ,,. if the control vector & is



chosen uniforwly, then Pr(11 (i) — j) — % for all ¢+ and j. DDPs exhibiting this

property arc considered to be uniform. In practice, it is diflicult to build uniform
DDPs of a uscful size, so they are instead designed to be approximately unifornt and
combined with other elements to compensate [2].

A DDP can be designed in many wayvs depending on the requirement of the eiplier.
In some ciphers (such as RCH and RCG), the DDPs are implemented as a rotation of
the bits. Other possibilitics include bit swapping, block swapping or comnbinations of

each of these techniques.

3.2 Ciphers with Data—Dependent Permutations

There are iany ciphers that use DDPs, but there are two in particular that have
received more attention in the literature: RCH and RCG. Although neither of these
ciphers use DDPs in their more general forin (both of these ciphers use DDRs), the
permutations arc a major component of their algorithm. We take a cursory look
at these ciphers here before we move on to ciphers using the more general DDP:

Spectr H64, Cobra H64, Cobra H128 and CIKS 1.

3.2.1 RGCS

Much of the interest in data dependent primitives came about as a result of RCH,
publishied by Rou Rivest in [1]. The cipher was designed to be simple, fast (in both
hardware and software), and variable in input size, key size and number of rounds. It
was also a stated goal of the author to highlight the use of DDRs. In fact, the DDRs
arc the only nonlincar component of the cipher.

The algorithm is shown in Figure 3.1 where @ <<< y 15 the rotation of = by y
bits to the left and = is exclusive or. RCH requires a key expansion array, S, which

is also computed using DDRs. The input is broken into two w bit plaintext words,
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A=A+ S5
B =D+ S[1]
for ¢ :=1to r do
A:=((A _B)<<< B)+ 52
B:=(B@A) <<< Ay + S[2i + 1]
end for

Figure 3.1: RCS Encryption Algorithm

A and B (where w is a paramcter of the eipher iimplementation) and initially added
to the first two subkeys. Then r rounds of the cipher are executed where the input is
combined with the other via an exclusive or and then rotated by the log,(w) lower
bits of the second input. Subkeys are also added to cach input. The final values of A
and I3 are the ciphertext.

The algorithim is deceptively simple at only five lines long, but has held up well
against attack. In [10], the authors showed that the rotations used in RCS help to
make lincar and differential attacks on RCS mmpractical for implementations using
12 or more rounds. In [9], the cipher’s author claims that alth gl there have been
theoretical attacks on RCSH (mostly to due the effective limit on the nmuber of data

bits influencing the rotations), there have been no practical att ks,

3.2.2 RC6

RC6, presented in [9], is a direct descendant of the RCS cipher and was a candidate
for the AES. Both the key schedule and the cipher itself ave derived from the original
cipher. In the case of the key schedule, the algorithin is similar 1 all aspects except
the number of keys derived, of which RC6G has more.

The encryption algorithm itself has additional clements. Fixed rotations based on
the logarithm (base 2) of the size of the data, w, have been added along with integer
multiphication modulo w. Both of these operations arc emiployed to ensure more data

bits are involved in the determination of the rotation amount in the DDRs employed,

31



B = B+ S|
D:=D+ S[l]
fori:=1tordo
t:=((B x (2B + 1)) <<< logy(w)
w:=((Dx (2D + 1)) <<< log,(u)
A:=((APt) <<< B) + 5]2i
B:=((BPu) <<< A)+ S[2i +1]
(A,B,C, D)= (B.C, D. A)

end for

A=A+ S2r+2]

C:=C+ S2r+ 3

Figure 3.2: RC6 FEueryption Algoritlim

thus overcoming a perceived weakitess in RCH. The algorithm itself is given in Figure
3.2.

In (30] the authors found that using the chi squared (y7) test. they could distin-
guish the results of the cipher from random data when using up to 15 rounds. They
present an algorithm for extracting keys which will work in less time than exhaustive
key scarch, requiring 2'' plaintexts with a time complexity of 22! for a cipher key of
256 bits. The authors also note they detected weak keys in the analysis of the eipher.
The keys are not enumerated, however they are visible due a large deviation in the
v tests.

The authors of [31] also use the x? test as a distinguishing algoritlim in an attack
of RC6. The anthors propose a simplification to the cipher. re wing the whitening
steps (the caleulations of B and D at the beginning of the cipher and A and " at the
end), calling it RC6W (RC6 without Whitening). Ou this new variant of the cipher,
they present an attack which can recover the key of an r round cipher using 2817138

plaintexts with a probability of 90%.
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Figure 3.3: The Spectr-H64 Encryption Function [3]

3.2.3 Spectr-H64

In [3], Spectr-H64 is presented as a fast, hardwarc-oriented cipher with extensive use
of DDPs . The same algorithin is used for both cneryption and decryption as shown
in Figure 3.3. The cipher has 12 rounds 1 two additional t  asformations at the
beginning and end of the function. The additional transformations are a combination
of DDPs and inverters that function on groups of two bits. In the case of the initial
transformation, one bit is inverted at the outpud, of the DD, In the case of the final
transformation, one of the bits is inverted at the input of the DDP.

Bach round of the cipher uses a 192-bit subkey which is derived from the 256 -bit
key for the cipher via the given key schedule. Of the 192 bits, 32 are added to the
data via an exclusive or and 160 are input into the extension function E and used as
control bits for the DDPs. In addition to the DDPs, Spectr H64 includes a nonlinear
function G which operates on key and data, the result of which is exclusive ored back

into the cipher data.
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Figure 3.4: The Cobra-H64 Encryption Function [4]

3.2.4 Cobra-H64 and Cobra-H128

In [4], Sklavos, Moldovyan and Moldovyan present the Cobra family of ciphers. These
ciphers are again based on DDPs and are the result of analysis of their previous
ciphers Spectr H64 and CIKS 1 (presented in the next section). The cipher has two
variants, Cobra H64 (shown in Figure 3.4), which has a 64 bit block size, and Cobra-
H128 (shown in Figure 3.5) which has a block of 128 bits. The ciplers cach have
four subkeys of lengths 32-bits and 64 bits, and are comprised of 10 and 12 rounds
respectively.

Each round starts with an initial transformation and ends with o final transfor-
mation during which part of the subkey is added modulo-two to the left and right
halves of the data. Each round consists of a crypt function du 1g which the Right
Hand Side (RHS) of the data is permuted by a DDP using the Left Hand Side (LHS)
as the control. The ciphers use DDPs, but do not depend on them entirely to pro-

vide nonlinearity. The cipher also includes a nonlinear function, G similar to the one
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Figure 3.5: The Cobra 1128 Encryption Funetion [4]

found in Spectr HG4 which is a function of half the round data and half the subkey,
the result of which is exclusive ored into the other half of the data. This is done
twice, with the LHS and RHS being permuted in between the operations. Finalty,
the RHS is once again permuted via the inverse of the DDP used previously, with
the LHS data being used as the control once again. Other components found in the
ciphers are: I, a permutation imrvolution; 11, a lixed permutation; and 7, a switchable
fixed permutation.

The anthors’ analysis of the ciphers shows that they are resistant to differential
cryptanalysis after eight and ten rounds for Cobra H64 and Cobra H128, respectively.
They also state hoth ciphers are resistant to linear cryptanalysis after five rounds. In
[32], the authors propose implementation of the Cobra ciphers, Cobra-S128, which
is designed to be implemented in softwarc. In the next section, we look at another

cipher proposed by Moldovyan and Moldovyan which depends almost exclusively on



DDPs for nonlincarity.

3.3 The CIKS—-1 Cryptographic Cipher

In [2]. Moldovyan and Moldovyan proposed a new 8 round cipher based on DDPs.
CIKS 1 was presented as a fast. hardware oriented eipher. It relies on DDPs for
their speed in hardware and is designed to lack pre computation of key scheduling.
Preliminary analysis of the cipher by the authors showed that it can casily obtain
speeds of 2Gh/s and was resistant to both lincar and differential eryptanalysis.

We chose (‘/H\'S. 1 for the investigation of DDPs as cryptographic primitives for
three main reasons. First, the cipher is relatively new. and as such has not been
extensively tested. Second, it uses DDPs in a more general form, rather than using the
subset, of DDR functions. Finally, the cipher relies mainly on the DDP for nonlinearity
in the output.

In this section, we will look at the DDPs defined for use in the CHCS-1 cipher by
its authors. We will then look at the other components used before moving on to the
algorithin as a whole. We will then investigate C...S 1 with respect to some common

cryptographic principles before examining known attacks on the cipher.

3.3.1 CIKS-1 Dat: epe ':nt 2rmutat

The CIKS 1 DDPs are designed to be constructed from basic building blocks. The
most basic block. the Py/q controlled permutation, takes two ing: - bits, .y and @y and
a single control bit cug. If cvg = 0, 2y and xy are swapped to form the output; other-
wise, they pass through, positions unchanged. This simple permutation is combined
in layers to make the more complex DDPs that appear in the cipher.

For instance. in order to make a Py, two layers of two Iy blocks are used.

As seen in Figare 3.6, a “butterfly” pattern is used to conncet the two lavers of
Yy 1 A
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Figure 3.6: P,y Data Dependent Permutation with Example Inputs.

permutations. This ensures that bits that are grouped together in the input are
not. continually swapped with cach other as they move through the layers. It also
guarantees that a CV which is comprised of mostly “1”s will not result in a poorly
permuted output.

In order to decrypt the ciphertext created using the DDPs, an inverse function is
required. This is produced simply by running the ciphertext through the permutations
in reverse using the original control vector. An example of the P10 DDP and its
inverse, P‘IB/IQ arc shown in Figure 3.7. Both of the example DDPs shown, P4 and
Py/12 are strict and have an order of 1.

The CIIKS-1 DDPs are both fast in operation and ethicier  in hardware imple-
mentation. Since the CVs are available at the time of the permutation operation,
there is no setup time required and the time delay is only that of the permutations

themselves. The hardware cost for the B/, DDP is given as 4m NAND gates [2].

3.3.2 Other Cipher Components

Although it depends heavily on its DDPs for nonlinearity, CIKS 1 does ciploy a few

other primitives to complete the cipher. Here we present a7 cussion of cach one,
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Figure 3.7: Py/1, Data Dependent Permutation and its Tuverse.

including any design decisions indicated by the authors in [2].

Fixed Permutations and Rotations

In addition to the DDPs nsed in the cipher, the anthors have o included two fixed
permutations and three fixed 7-bit rotations to the right. The fixed permutations
are applied to control vector data and in [2] the authors indicate that this is done
to increase diffusion (the relationship of the effect of changing an input bit on the
output defined by Shannon in [12]). 7 e rotations affect hoth the cipher data and

the CVs; however, no reason for their inclusion is given.

Two—bit Additions

CIKS 1 uses modulo 2? addition to combine the left and right data at the end of

cach round. Sixteen of these addition blocks are used in parallel, cach operating
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on only two bits of the input data with the carry bit out of cach 2 bit hlock being
ignored. The cipher authors state that modulo 2% addition was chosen over a full
32 bit addition to avoid the long carry propagation delay associated with the latter.
However. since cach addition is isolated to affecting only two bits of data. it also

introduces a limit on the propagation of change within the cipher.

Key Addition

Key addition in the cipher is achieve  using an exclusive or operation. This is a
conunon way of mixing the key into the ciphertext in cryptographic algorithms. The
authors choose not to directly add in cach cipher subkey; ey instead first permmute
it using a DDP based on the LHS cipher data. In [2] this is referred to as an internal
key schedule, a way of ensuring the same subkey is not continually added between

key changes.

3.3.3 Description of Cipher

The CIKS 1 cipher is a fast, hardware oriented cipher, with its principle security
component being DDPs. Tt is a block cipher with a block size of 64 bits. The cipher
is composed of cight rounds, cach with a 32 bit subkey, Ky, 1,..., Ny, for a total
key size of 256 bits. A single round of the cipher is shown in  igure 3.8. The solid
lines in the diagram show the How of data and the dashed lines are control vectors.
Permutations are labeled n/m, where 22 is the number of bits permmted and m is the
number of bits of control. Additional labels of the form /% are given to identify the
individual permutations.

The 64 hit data is split into half for input to the left and right hand sides. The
RHS is expanded and used to permute the data on the LHS using 2. The LHS
data is then expanded, with a portion being permuted using Py based on the subkey

data, and permuted using the fixed permutation IT;, the resu  of which is used to
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Input: 64 bit plaintext L | I?, where L and I? are the 32 bit sub-
blocks of data.
for + — 0 to 6 rounds do
L|R:=Round(L|R),I. - R;
end for
L | R:= Round(L | R);
Output: ciphertext L | I?

Figure 3.9: Encryption Algorithm for Full 8 Rounds of CIKS |1

perinute the RHS data with Py, 'T'he subkey is permuted next using an expanded
version of the LHS data as the CV for Iy before combining it with the RHS data via
exclusive or. Once agan, the LIIS data s expanded, with a portion being permuted
using %5 based on the subkey ¢ a. and permuted using the fixed permmtation I,
the result of which is used to permute the RHS data with Ps. Finally, the RHS data
is added to the LHS data via 16 parallel modulo-2% additions, before swapping the
left. and right sides at the end of the round (in all but the last round). The full 8
rounds of the cipher are defined algorithmically in Figure 3.9 where Round is a single
round function of CIKS-1, excluding the final swap.

The decryption algorithm for CIKS 1 is shown in Figure 3.10. The 16 parallel
2-bit addition blocks are replaced with the same number of 2 bit subtractions. As
well, all othier primitives that act directly upon the data are replaced by their inverse
functions. Other rotations and DDPs remain the same as they are required to build
identical CVs. The swapping of the left and right sides remains at the end of all but

the last round.

3.3.4 Initial Analysis of CIKS-1

An initial analysis of the CIKS 1 ciplier was done when looking for weaknesses that
could be exploited. In the following sections, we look at general crypte 47~ con-
cepts, applying them to CIHKS 1. More detailed analysis of the cipher is done in the

following chapters.
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Avalanche Effect and the Strict Avalanche Criteria

The authors of CTIKS—1 presented a brief analysis of the avalanche effect in the original
paper. They noted that each control vector bit influences two output bits, with a
probability of swapping them cqual to % Taking into account the swap at the end
of each round, they state that after two rounds, everv input bit should influence all
output bits. During the analysis of the cipher, it was found that the SAC criteria
holds. Choosing random inputs and keys, the data was encerypted over cight rounds.
A version of the data with a one=bit difference was also encrypted. Comparison of the
different results showed that the number of output bits changed matched a binomial
distribution with probability of 3. thereby confirming the cipher conformed to the

SAC.

Key Schedule

There is no key schedule specified for CIKS 1. The anthors note that there is an
internal key scheduling (IIKS) due to permutation Py, which serambles cach subkey,
controlled by the data on the LHS of the cipher. This is considered to be beneficial
to the cipher, as the key scheduling can be done in parallel with other parts of the
cipher, eliminating pre computations and thus adding no time  lay due to frequent
key changes.

However, the CIKS 1 paper does not give any indication as to how these subkeys
should be derived from the master key. Leaving this to the implenientor of the cipher
allows for the increased chance of using weak keys. For example, the cipher can be
implemented such that cach round uses the same subkey, depending on the TKS to
scramble it differently for each round. In later chapters we examine an attaek based

on a set of weak keys and show how it can exploit a poorly chiosen key schedule,



3.3.5 Known Attacks

In [33], a chosen plaintext attack is presented on a reduced 5 round version of the
CIKS 1 cipher. The authors exploit the fact that DDPs have no hearing on the parity
of the data and the parallel additions can be shown to be close  linear in nature. In
order to cancel out the effect of the first o, they choose the LIS plaintext such
that the jth bit of the plaintext, r;, is 0, for all ;2 x ¢+ L where 0 <7 < 15, This
ensures that the probability of their hncar approximation for the addition in the first
round holding is one.

The authors then attack the following four rounds. revealing key information for
the fifth round. This is achieved by decrypting 2% ciphertext pairs using all possible
232 subkeys. The resulting LHS data has the RHS data subtracted so that the value
of the LHS before the fourth round addition is obtained. The parity of this data is
then compared to that of a hnear approximation and a record of matcehes is recorded
for each subkey. The subkey with the best results is chosen as the last round subkey.
The authors calculate that the attack will succeed i revealing the final round subkey
with a probability of 78.5%, with a data complexity of 2%¢ and time complexity of
2657.

In [34], the authors implemented a timing attack on CIKS 1. Though designed
for hardware, the authors note that the cipher can potentially have a weakness if
naively implemented in software, specifically in single threadc  environments such
as a micro controller or smart card. The attack presented exploits the case when
the DDDPs arc simply implemented as swaps controtled by the CV oas a conditional

statement such as:

if (ev = 0)

swap(x1l,x2);

In this case the anthor’s show that the time taken for encryption reveals infor-

mation about the Hamming weight of the key when the plaintext and ciphertext are
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known. The authors also propose an implementation of the DDPs using pure boolean

expressions that is immune to this method of attack.

3.4 Summary

In this chapter we have given an introduction to DDPs and examples of ciphers
in which they are used. We then introduced the CIKS 1 cipher. as introduced by
Moldovyan and Moldovyan in [2]. This introduction included an analysis of the com-
ponents of CIKS 1 and known attacks on the cipher. In the following two chapters,
two new attacks on CIKS-1 are presented. The first exploits a class of weak keys for
the cipher. The second 1s a differential attack that focuses on the weight of the input

differentials.




Chapter 4

Weight Based Attack on CIKS-1

In [2]. Moldovyan and Moldovyan provided a preliminary analysis for the strength of
the proposed cipler CIKS-1. The evaluation was done for two of the most successful
crvptanalysis techniques known, lincar and differential eryptanalysis.  Using these
attacks, while making assumptions in the attacker’s favour, the authors estimated
that approximately 2% and 2% plaintexts would be required to attack the cipher
with differential and linear cryptanalysis, respectively. In this chapter, we look at an
alternate approach to breaking the cipher that exploits low Hamming weight subkeys.

In [33], Lee et al. presented a chosen plaintext attack designed for use on a b
round version of the CIKS-1 cipher. They present lincar approximations of three
rounds of the cipher, based on the parity of the data. The time complexity of the
attack is estimated by the authors to be approximately 27 encryptions. Unfortu-
nately, although this attack can be applied to all possible keys, its success is only
demonstrated on a five-round version of the eipher. The authors propose that this
attack will work on the full eight round cipher through “canonical extension,” but
do not explain how this can be achieved.

The attack introduced in this chapter will also be a chosen plaintext attack. A
look at the effects of the data—dependent permutations will be presented, focusing on

their effect on the Hamming weight of the ciphertext. It will be shown that one could
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exploit the fact that since there is no prescribed way of implementing a key schedule
for the cipher, there is the potential for a class of weak keys to reveal information
about, the first or last round of the cipher. The attack is then presented which builds
on this information to reveal information of subkeys, allowing for a brute force attack

on the first snbkey using a reduced search space,

4.1 Analysis of the CIKS—-1 Components

The following scetions analyze the components that make up the entire CIKS 1 al-
gorithin ‘;vith respect to a Hamming weight based attack. It will look at all the
primitives used in the cipher, as well as discuss the problems with not specifying a
key schedule. There will then be an analysis of the weight propagation through the

cipher as a whole.

4.1.1 The CIKS—-1 Permutations

As presented in Chapter 3, the CIKS 1 cipher uses DDPs, which in turn use a portion
of key or data to control the permutation of the individual bits of data as they pass
through the cipher. The CIKS 1 DDPs are labeled P/, where n is the number of
bits to be pernted and mn is the the number of bits in the CV. For example, the
2- bit permutation Py, produces an output of the two input bits  sing a L bit control
vector. If the CV is a 0, the input bits are swapped, otherwise { y pass through the
permutationr unchanged. All of the CIKS 1 DDPs are formed using the smaller two
bit. permutations in layers, interconnecting cach layer with a fixed permutation.
This “butterfly” patterned permutation is used to keep the input bits of the per-
mutation from being grouped together as they pass through DDPs. This keeps the

individual bits from continually being swapped in the same pair, and prevents the




existence of a single control vector that would make the permutation a unity opera-
tion with respect to data position. A CV of all Is would not permute the bits at the
smaller %/ permutations in the DDPs, therefore the “butterlly”™ pattern prevents
the entire input passing through the larger DDP unchangoed.

It 1s important to note that the DDPs in CIKS-1 have ¢ solutely no effect on the
weight of the ciphertext. The individual values of the input bits of cach permutation
remain unchanged; only their position is modified.  Therefore, the DDP has done

nothing to affect the Hamming  ight of the output data.

4.1.2 Fixed Permutations

CIKS-1 contains two fixed permutations. 11, and II,. These permutations never
operate on the actual data of the cipher itself, only the data used in CVs. This appears
to be done to prevent the user from processing data backward through the cipher to
reveal information about the subkeys. Since they perforn no direet operations on
the cipher data itself. the fixed permutations have no effect on the output Hamming

weight.

4.1.3 Key Addition

The subkey for cach round of CIKS—1 is always added to the RIIS data. It is first
permuted via a DDP and then added to the data via an exclusive or operation. This
1s a standard way of inserting the key into many ciphers as it is simple and efficient,
to implement.

The exchisive or is one of only two operations used in the cipher where the weight.
of the data can be allected. This operation has a probability of changing the data bit
% of 1 time, assuming random key inputs. A problem arises when a characteristic
of the key is not, consistent with random behavior, particularly in the case of having a

key with a significantly low Hamiing weight. In this case, the majority of the subkey
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being added via exclusiv 1 will be binary zeros. By delinition, when a binary zero
is exclusive ored with another binary bit, «x, the resutt will be . Thus, in the case
of low weight keys, the Hamming weight ot the data is only modestly aflected by the

exclusive or operation.

4.1.4 Addition

The only other place the weight of the data in the CIKS I cipher can be changed
is e parallel addition block at the end of cach round. Here, 16 parallel modulo
22 additions combine the left and right hand side data before they are swapped to
form the output of the round. ™ «h addition operation carries out 16 2 bit binary
additions, with the carry being ignored. This has the advantage of being efficient to
implement in hardware, but has the disadvantage of grouping small blocks of data
together, atfecting each other in isolation of other groups.

If 2 is the data from the LHS cntering the addition and y is the data from the
RHS, then z is the modified LHS data as a result of the addition. The weight change
in the output. Awt, is defined as a difference in the weight of = with respeet to . An
analysis of the the modulo-2? addition shows that although there is an influence on
the weight of the LHS data, there is still a significant probability that it will remain

unchanged. Consider two bit addition as shown in,

212) — &g { YilYo- (-11())

We can break Equation 4.16 into two cquations:

2o — &0 b yo (4.17)

and
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Table 4.1: Addition output as a function of oy and @
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Using 1.17 and 4.18, we can consider the output as a function of g and ry, for all
possible values of yg and ;. This is shown in Table d.1.

It can be seen from Table 4.1 that the case where iy = g = 0 results in an output
where the weight always remains the same. Counversely, the case where 3y = 1 and
y1 = 0 always equates to a change in the weight. In the two  maining cases, any
change in the output weight is dependent on the inputs for xy and . Table 4.2 is
an expansion of these remaining cases. From the table we cain observe that there is a

yrobability of 1 that the output weight will remain unchanged.
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Table 4.2: Hamiming weight change of modulo 22 addition.

This analysis shows that each 2-bit addition block has a significant chance the

weight of the data will be unchanged after the operation is performed. In fact, six




of 16 possible outcomes result in no change to the weight ol the input data at the

output.

4 = Analysis of Weight Change Propagation

When designing a ciphier, the goal is to create an algorithim which produces an output
that looks completely random for the sct of all possible inputs over the set of all
possible keys. Ideally, it should not be possible to distinguish hetween the output
of the cipher and the output of a random number generator. One quick check for
this property is to examine the mean Hamming weight of the output of th(‘-(‘ipll(‘r.
It truly random, this weight would At a binomial distribution. thus giving a 64 -bit
output an average weight of 32 [35].

Since there are very few clements of this cipher which affect the weight of the
data as it is encrypted, if the weight of the plaintext input is low, the weight of the
data grows slowly as the data progresses through the rounds, particularly if the key
has a low weight. This was confirmed by performing five million encryptions for keys
with weights from one to eight, and a maximum plaintext input weight of six. The
key and input weights were chosen based on initial testing that showed these values
constrained the output weights without overly limiting the number of possible inputs.
The number of tests was chosen to be large enough to highlight the deviation from
the expected mean without being time prolibitive for testing.

The test was executed by encrypting a randomly selected plaintext with a Ham-
ming weight less than or equal to six. After cach round of the cipher we noted the
weight of the output and calculated the mean overall results. As cant he seen in Table
4.3, the weight of the output grows slowly under these conditions. Figure 4.1 further
illustrates this by plotting deviation of the expected mean weight against the actual

mean weight of low Hamming weight keys (keys with a Hamming weight of eight or










hypothesis is
Hy © 'The sample is from the binomial distribution 6(y; 65,0.5) (1.19)

where b(y: 65,0.5) is the binomial distribution with 65 trials and a 50% probability of
success (1.c., obtaining a ‘1" bit as opposed to a ‘07 bit) in cach trial. Simply put. the
weight of the output data from the CIKS-1 cipher will fit the binomial distribution.

The degrees of freedom, v for the test are the number of possible outeomes (i.c.
number of different Hamming weights for the output) minus oue. Therefore, in this
case there are v = 61 degrees of freedom. For the test, a probability of error threshold
of a = 0.05 is chosen, making unlikely outlier cases where the result is a [it on chance
alone.  Using these values the critical value for the test, \Z . is caleulated to be
Xoos.6a = 83.675. This value is used to determine if the sample data is fit to the

expected data. Tor this, the y? value must be caleulated, using the formula,

J 9
Y ((), - F* .
V-2 - E; (4.20)

1 !
where O; is the observed frequency, and FEj is the expected frequency of the event.

From Equation 4.20, it can be scen that the larger the deviation between the
observed and expected values, the larger the 2 value. The eritical value is used to
determine what result is too large; thus, if the caleulated value exceeds the critical
value, the null hypothesis, Hy, is rejected.

Up to five rounds, the CIIKS-1 output {or each key weight up to six and plaintext
inputs of weights less than or equal to six gives large values of 2. This indicates
there is no fit to the binomial distribution for this constrained use of the cipher. In
fact, this property holds for CTKS 1 as long as the given limits to Hanuning weights

are used, and is the basis for the attack on the cipher presented in the next section.



4.3 Proposed Attack

As shown, CIKS 1 depends almost entirely on the subkeys to contribute to the growth
of Hamming weight for the data. In fact, when low weight keys are used with low
weight input data, it is possible to distinguish between a random set of bitg that
conforms to the binomial distribution aud the output of the cipher. The analysis
reveals that the set of low weight subkeys, with weight of around six or less, results
in a weight distribution that is easily distinguished as non random using the y? test
when we constrain the weight of the input to about six or less as well. This set of
keys should be considered to he weak keys.

Exploiting this weakness, an attack can be mounted on a reduced version of the
cipher. limited to six rounds, to extract information about the first subkey. A subkey
is guessed for the first round. Next, a large set (one million in the case of the six
round attack) of random values for the LHS data after P is g rated. The lower the
Hamming weight for cach of these, the better for exploiting weak keys. Towever we
need enough possible plaintext to complete the test. and therefore a Haning weight.
of six or less is used. Each value is used as an input to 2y to permnte the guessed
subkey. The permuted subkey is then run backwards through 12 to generate a value
for the RHS input. This input is then used to as the control vector data when the
original generated LHS data is run backward through P to produce an input value
for the LHS.

The values for LHS and RHS are then enerypted over six rounds. The idea is to
produce a value for the right hand input which is close to the actual subkey being
attacked. A correet guess nullifies the effect of the subkey (thus reguiring no constraint
on its Hamming weight) in the first round, thus leaving only the eflects of the last
five rounds. If the keys used in ronnds two through six are low weight, the y? test
shows the weight distribution of the output does not match the bimomial distribution.

Pseudocode for the attack (using notation from Figure 3.8) is given in Figure 4.2 and

Ct
[l



Choose the number of required mputs. &
for all possible 2% subkeys in round 1 do
fory =1to k do
Create a random value for LHS after Py, L*, with weight ¢ < 6
Form Control vector V),
Run subkey through Py, call result PSK
Form control vector V'’
Run PSK backward through % to get RHS
Form control vector V/
Run veetor L™ back through I to get LIIS
Encrypt RHS and LIIS over 6 rounds, record res  ting weight,
end for
Calculate the y? value for the results
end for
Compile a Jist of weiehts with noor fit to the Binomi:  Distribntion

Figure 4.2: Proposcd weight based attack on CIKS 1 cipher

the full code can be found in Appendix B.

2ot results show the guessed subkey does not have to be exact to give useful
results. Guessed keys with the same weight as the actual key and those with similar
weights produce similar results to guessing the actual key. With this knowledge, the
search space for the first subkey can be reduced based on the result of the 2 tests.

Table 4.4 is an example of results obtained with the attack!. This example used
an actual subkey of all zeros and only 100 randomly guessed subkeys for cacli of the
possible weights. This test shows that the scarch area can be reduced to keys with a
similar weight within two of the correct key. It is iportant to note that although this
test used a low weight first round key, this is not required. The attack only requires
low weight subkeys in the subsequent rounds to be successful.

‘This attack on the 6 round reduced cipher requires approximately 22 random data
inputs for each of the 2% possible subkeys tested, giving it a total time complexity of
2°2 encryption operations. This is an improvement over the 5 round attack with time

7

complexity of 287 presented in | 3], However, that attack makes no assumptions

“Calculated using Microsott, Fxcel 2002 which has the limit on the maximum value in a cell of

1.79769313486232 x 10398,




Weieht Difference \?
U > 1.79769313148623¢ e

1 > 1.79769313486232 x 10%%8
2 > 1.79769313486232 x 1098
3 118.52
4 69.33

Table 4.4: Test results for low weight attack

about the cipher keys, whereas the attack presented here requires that all but the
first round key be low weight. The probability of choosing a single 2% key at random

and getting a key with Hamming weight of six or less is given by

6 (32)
P(Low Weight Key) = N

932
1=u

= 2.68 x 107%. (4.21)

The probability of choosing five keys with such a low Hamming weight would be
far lower. However, not all key scheduling methods guarantee independence. For
exarnple, the DES key schedule specifies that a single 56-bit key is chosen for the
cipher and then each 48-bit subkey is chosen as a subset of that key [36]. If a similar
key schedule was used with CIKS-1, a gle low weight key would result in a very
high probability of weak subkeys throughout the cipher. If a weak (i.e. low Hamming
weight) key is chosen in this implementation, then the entire cipher is commpromised
until the next key change, as all of the subkeys are derived from the main key. Even

more complex key schedules can result in a significant probability of weak keys.
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4.4 Conclusions

Due to the choice of primitives with Hmited effect on the T'omning weight of the
cipher data, the CIKS 1 cipher depends heavily on the weight of subkeys to produce
change in the data weight. It has been shown that the DDDPs, fixed permutations
and fixed rotations have no effect of the weight of data as it progresses through the
cipher. The exclusive or operation depends heavily on the weight of the input data.
By definition it changes the weight of the output half of the time based on random
data, but when using low weight data, this probability decreases. Finally, the two bit
‘parallel additions are shown to preserve the input weight with a probability of -g
We conelude that there are a class of low weight keys which should be considered
weak keys for the cipher. Analysis of weight propagation thirough the cipher shows
that when keys with weight of around six or less are used as subkeys, we can easily
detect them by constraining our input data weight and comparing the output to the
binomial distribution using the 32 test. Using this fact, an attack is proposed to
distinguish the first subkey by dramatically reducing its entropy. Testing has been
done on the attack, the results of which are shown to reduce the search area for the
first subkey to within a weight of two from the actual weight. In the next chapter
we look at another attack on the cipher which involves the Hamming weight of the

cipher data.




Chapter 5

Differential Attack on CIKS—1

In this chapter a non—traditional differential attack on CIKS-1 is presented. First
there is a look at the analysis of the cpher’s resistance to conventional dilferential
cryptanalysis. The focus then shifts to applying differential cryptanalysis in a new
way. The attack deals with the weight differential rather than the actual specific
differential in the data itself. Using this technique the data complexity for differ-
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ential cryptanalysis on the CIKS 1 cipher is reduced to approximately 2°° chosen

plaintext/ciphertext pairs.

5.1 Previous Differential Analysis of CIKS—1

In the original paper on CIKS 1 [2], Moldovyan and Moldovyan make the claim
that the number of plaintext pairs required for a differential attack on the cipher is
approximately 2%4. To determine this number they examine the maximal case of a
non—zero difference passing through the two Psy/ permutations on the right side of
the cipher. Based on the analysis of the permutation blocks given, the maximal case
corresponds to the case with differences using one active bit.

Aceording to the authors’ analysis. the probability that a difference passes through

the permutations, ppa, for a one-bit difference is ppa(l) = 2% However, due to the



implementation details, it is stated that maximuun probability of the difference passing
through the Py permutations on the RIS of the ciphers is p'pagnary — 2ppa(l) =
274 where the added factor of two acconnts for the non-uniform distribution of the
control vectors V' and V7.

With this approximation and considering that the RIS data passes through two
Piy 0 permutations, the maximun probability of the difference surviving one ronud
of the cipher is ppa—1) = [[)’,),4(-,,“,_,)]2 = 27% where f is the number of times the
difference passes through the RHS permutations. The best case analysis is done for the
difference surviving all eight rounds of the cipher, focusing on the RHS permutations
which the difference will pass through four times. Therelore, we have a probability
of the difference propagating through the cipher of ppar—yy —= []J,M(f,”]“ =2 3
With this, the authors use the approximation Ny 4 =~ ('p,m(f:h‘))’2 to determine that
the nmumber of plaintext/ciphertext pairs, Npa, required for a differential attack is
approximately 204,

Since this analysis is done focusing on only the effects of the RHS permutations
Py and By, it does not account for the effects of the LHS of ¢ cipher. As such,
the analysis is considered to he a best case in lavour of the attacker; the authors
couclude that the c¢ipher is resistant to differential attack. The following scction
looks at applying the idea of differentials to a difference in weight and how these

differences propagate through CTKS-1.

5.2 Data—Dependent Permutations and the Prop-
agation of vifferences

Being the main element of CIKS 1, it might be expected that the DDPs would play
a major role in the propagation of differences through the cipher. In fact, other than

the parallel addition, DDPs arc involved in all operations of the cipher data. On
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both sides of the cipher, data is scrambled by the permutations and the key itself is
scrambled before being added.

Obviously, if the sanie control veetor used on a DDP is used more than once, then
the data in cach instance will be permuted the same way. When the control vector
does change, the likelihood of new differences in the output depends on the differences
at the input. When there is only a one bit difference in the control vectors, the input,
to the Py permutation that the particular CV difference affects determines if there
is a resulting difference in the output. The swap at this site is only noticeable if the
input bits are different. Thus, there is a % chance that the output will be unchanged
by the control bit difference in the Payy permmtation. In general, the probability that
the permutation’s output will remain unchanged by the DDP is 27", where n is the
number of different bits in the control vector.

The case where there 1s a difference in the mput as well as i the CV 1s more
complex. When the CV difference is the control bit for a Ppyy permutation where
there is also a difference in one of the put bits, there is no new difference introduced
iin the data. In fact, if both input bits arc changed, the output will have no new
difference.  hese cases actually increase the chance of a given difference surviving a
DDP. In our analysis, a one-bit difference inpnt into a Pya/g0 with a control veetor
containing two differences has approxim. ly a 28% probability of retaining a one—bit

difference at the output.

5.3 Analysis of Differentials

If an analysis of the cipher is done not on strict differentials, but the Hamming
weight. of differentials as they pass through the cipher, it is possible to construct an

attack which has much lower complexity than the one in [2]. Three input difference
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welghts were examined for relationships to four output difference weights of iuter-
est. These are given in Table 5.1 for one ronnd where (wt(AL; ), wt{AR; 1)) and
(wt(AL), wt(AR;)) arc the Hamming weights of the differences in the left. and vight

halves of the inputs and outputs. respectively.

Differentials ( wt(AT: 1), wt(AR, ) — wt(AL;). wt{AR;) ) | Probability
0,1) — (1,2) 2 3
(0,1) — (1, 1) 2 LN
(1,0) — (0, 1) 2 T
(1,1) — (1,0) 2 M7
(1,1) — (1, 1) 27187
(1,1) — (1,2) QT

Table 5.1: Frequency of occurrence of transitions of interest with random keys.

Examining the case of (wt(AL; ) = 1, wt{AR;_) = 1), we see that the right
side difference can appear either once or twice in CV V' (see Figure 3.8). Taking into
account. both cases, the probability of the one=bit difference surviving Py is 12.5%.
Again, depending on where the one -bit difference in the left side ocenrs, it can appear
in V7 either two or three times. Thus, the probability of the one bit difference on the
right side surviving % is approximately 8.1%.

When the key is bit wise exclusive ored with the right side data, there are many
possible cases to examine. Any case where the absolute difference of wt(AR) and
wt(ARN) (where wt(AR) and wt(AK) are the data and key inputs to the key addition)
equals 1 could result in the output of the key additions being diflerent. by one bit. To
simplify the analysis we consider only the most dominant of these eases, (wt(AR) =
Lwt(AKN) = 0) and (wt(AR) = L, wt{AK) = 2), and get a li  ihood of the one
bit difference surviving of approximaltely 277, Note that I acts similarly to 1.
Overall, the probability of a (wt” ™ L;—)) — 1, wt(AR,—1) = 1) difference leading to a
(wt(AL;) = 1L, wt(AR;) = 0) is 27137,

The other differential probabilitics can be calenlated in a similar way. Note that

in the cases where the difference only appears on one side of the cipher, many of the
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cipher's elements do not affect the difference on the other side. These one ronnd
differentials can be chained together to pet an overall differential for the cipher.
The notation (wt” " L), wt(AR; 1)) — (wl(ALy), wt(AR;)) is used to represent
the transition in the weight difference of each side of the imput and output pair. If
we use the 7-round chain of differentials (0.1) — (1, 1) — (1,0) — (0.1) — (1.1) —
(1,0) — (0,1) — (1, 1) there is a probability of 2 479 that we get. the final differential
assuming the differences from ronnd to round can be considered to ocenr indepen-
dently. Figure 5.1 shows the probability of transitions between all of the differentials

of interest. listed in Table 5.1.

,)—1.83

-13.7

Figure 5.1: Probabilitics of transitions of interest.
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count. = 0
1 = Number of rounds for attack
Define state(w,z) = (wt(left (w) hleft(x}), wi{right{w)hright(x)))
sy := Initial state of interest,
s, 1 := state of interest. after r — 1 rounds
Choose the number of required differential pairs, &
fori=0tok—1do
Initialize Xgp and X such that state(Xog, X1,0) = so
Encrypt Xy for r rounds to get X,
Encrypt X for 7 rounds to get X,
for all Possible 2%? subkeys, j 0 < j <2*2 -1 do
Decrypt X;, for one round using 5 to get Xo,
Decrypt X, for one round using j to get Xy,
if state(Xo, 1, X1,-1) = s, 1 then
Increment count|j|

end if
end for
end for
Result is the sct of all @ such that count|xr] = max (count|j])
j

N

Figure 5.2: Proposed differential attack on CIKS-1 cipher
5.4 Proposed Attack

As shown in the last scction there are certain differentials with a high probability
of vccurrence. The transitions (0,1) — (1,1), (1,0) — (0,1) a 1 (1,1) — (1,2) are
the most attractive. When chaining together multiple rounds these transitions are
reused as frequently as possible to keep the overall probability high. Although the
(0,1) — (1,2) and (1,1) — (1,2) transitions have a high probability, (1,1)  (1,2)
is only uscful at the end of a chain and (0,1) — (1,2) has a lower probability than
the alternate branch from (0, 1), (0,1) — (1,1).

To attack the cipher, we first choose a chain of states w 1 a rclatively high
probability of success to use. For example, to attack a six-ronund version, a five
round chain would be required. The chain of weight difference (1,0) — (0,1) —
(1,1) — (1,0) — (0,1) — (1,1) could be used with a probability of approximately

273186 A table of high probability chains versus numbers of rounds is given in Table
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0.2,

Rounds | Differential Chain Probability
3 (1,0) — (0,1) — (1,1) 5 O 5F
4 (1,0) - (0,1) — (1, 1) (1.2) 9 17.33
5 (1,0) — (0,1) — (1,1) — (1,0) — (0, 1) - 3103
6 (1,0) = (0,1) — (1,1) — (1,0) — (0, 1) — (1, 1) o= 3256
71(1,0) = (0,1) = (1,1) = (1,0) — (0, 1) — (1,1) — (1,2) | 276!
81(0,1) = (1,1) = (1,0) — (0,1) — (1,1) 9—18.00
— (1,0) — (0,1) — (1, 1)

Table 5.2: Dillerential chains for attacking different numbers of rounds

Next, the number of differential pairs that will need to he generated is determined
based on the probability of deteeting the chosen outcome. In the six round example
above, the output difference would be expected once in every 8 billion enervptions.
In comparison, if the output difference weight were to occur randomly, the likelihood
of output difference (1, 1) would be (2%)2 = 275 Hence, sceveral times more than
8 billion encryptions would be required to clearly distinguish the occurrence of the
expected difference.

When attacking r rounds of the cipher, lor cach of the chosen number of dilferential
pairs, we encrypt the two inputs, Xy and X, over 7 rounds labeling the results
Xo, and X,. These two valucs are then decrypted for all 232 possible subkeys of
round 7 and labeled X,y and X ,_;. For each result corresponding to a subkey, a
co ter for the subkey is incren ted if the weight of state( Xy, -1, X ,-1) matches
the expected value.

When all of the differentials hiave been processed for all of the possible subkeys for
round r, the subkey with the highest count is the most likely to be the aetual subkey.
The full pseudocode for the attack is given in Figure 5.2 and the implementation code

can be found in Appendix C. The next section presents an experimental verification

of this attack.
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5.5 Experimental Verification

To verify the attack experimentally, an attack has been implemented on a 3 round
reduced version of the cipher. The chain used for the attack was (1.0) — (0,1) —
(1,1). which has a calculated probability of occurrence of approximately 2 95 The
cxpected desired output differential (1. 1) should appear in the result for the correct
key approximately once in every 540 attempts. Thercfore. the number of plaintext
pairs for the test is chosen to be 10000, implying the expected state for the actual
subkey will occur approximately 19 times.

The test was run using the actual key. 32 keys with a one bit difference from
the actual key, and 10000 randomly generated keys.  All of the keys with a one
bit difference from the actual key resulted in the expected output state zero times,
making them casily discountable as the actual key. The set of random keys resulted
i the desired output differential between zero and two times; with the distribution
given in Table 5.3. However, the actual key returned the expected difference 22 times,
making it casily distinguishable from the other possible keys.

Score | Frequency

0 9760
1 238
2 2

Table 5.3: Frequency of occurrence of desired differential w1 random keys.

5.5.1 Attack Complexity

Although this has only been implemented on a 3 round version of CIKS 1, it could
be extended to the 6 round version using the example chain given in the previous
section. The probability for that chain is approximately 27*% meani one would
expect the desired output difference once in every 232 tries. To be distinguishable,

one would want. the expected differential to ocenr approximately 8 times, giving vou a
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data complexity of approximately 2% x 2% — 2% plaintext./ciphertext pairs. The time

complexity of the attack includes 27 x2 = 2% cncry ption operations and 2% x 2x 232 =
208 partial decryptions.

In fact, it is tlicoretically possible to extend this attack to the full cipher. For
this extension, the seven round differential chain (0,1) — (1,1) — (1,0) — (0.1) —
(1,1) — {1,0) — (0,1) — (1,1) could be used. This chain has a probability of
occurrence of 2 49 and thercfore is expected to give the desired output approxi-
mately once in every 2% tries. Again, to be distinguishable from random noise, we
would warnt to sce the expected output difference approximately cight times. giving a
data complexity of approximately 27% x 23 — 251 plaintext/ciph  ext pairs to recover
the final round subkey. The time complexity of this attack includes 270 x 2 = 252
encryption operations and 2°! x 232 = 2% partial decryption operations. The remain-
ing subkeys can then be found by stripping off the last roimd and implementing the

attack again on the remaining ronnds.

5.6 Conclusion

In the original paper for the CIKS 1 cipher, the authors” analysis of the possibility of
a differential attack on the cipher showed that it would have a d v complexity of 201
Instead of the usual approach to this attack, a non-traditional approach of exploiting
the weight, of differences in the cipher is given in this work. DDDPs are shown to have
a probability of passing one-bit differences introduced at their mput to their ontput
28% of the time. This knowledge is then nsed to create a set of differences that can
be used to retrieve key data from CIKS 1.

Using these differentials, an attack has been proposed to gain kev information
from the last round. As a proof of concept, the attack has been implemented on

a 3-round version of the cipher. This attack showed that the actual key can be
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easily distinguished from both random keys and keys with one bit different than
the actual. This attack can be extended to six rounds with a data complexity of
approximately 2% plaintext/ciphertext pairs and time complexity of approximately
236 eneryption operations plus 20 partial deeryption operations. The attack can be
further extended again to the full cight rounds of the cipher with a data complexity
of 2°1 plaintext/ciphertext pairs and a time complexity of 2% cncryption operations
plus 2% partial decryption operations.

Although two attacks on the CIKS | cipher have been presented, one simple way
to increase the security of this ciphier would be to increase the number of rounds
uscd. This would decrease the likelihood of being able to carry out the attacks in
this cipher. Since the cipher can still have value, in the next chapter we look at the

implementation of CIKS 1 in software.
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Chapter 6

Software Implementation of CIKS—1

In the original paper [2], the authors state that the CIKS 1 cipher is designed for
hardware i plementation. Their original goals were to implement, a ciplier that is free
of pre computations (i.e., lacking a key schedule requiring the generation of subkeys)
and efficient to implement in hardware. Unfortunately, such specifications can also
lead to algorithms which are inefficient to implement in software. which is the case
with CIKS 1.

In [32], the anthors propose an efficient software implementation of the DDP
based Cobra family of ciphers. However, this implementation depends heavily on
the addition of a DDP instruction to general purpose processors. The focus of this
chapter is to investigate an alternate method of implementing DDPs, and thus CIKS
1, efficiently in software. Such knowledge will be useful in implementing other DDIP—

based ciphers or a strengthened version of CIKS-1.

6.1 Implementing CIKS—1 in Software

Each component of CIKS-1 is designed with efficient hardware implementation in
mind. The fixed permutations and rotations are easily implemented using simple

. . .- a2 .
clectrical connections between the components. An addition modulo 27 is chosen to




avoid the gate propagation delay associated with addition components using larger
words, such as modulo 2% The key addition is a simple 3 Hit. exclusive or. Fi-
nally, the main non linear component, the DDI, is designed such that the delay is
proportional to the number of layers in the permutation.

The majority of the operations cimployed m CIKS-1 operate at a sub word level,
most operations are at the bit level. While this works quite well when implementing
custom hardware, a large portion of software is written for general purpose processors.
These processors are usually optimized for instructions that process full words of data
at a time (32 bit or 64 bit words for current mainstream processor techmologies). In
order to manipulate data n bits at a time, where n is less than the processor word size,
many progranuning languages require overhead operations such as masking, shifting
and temporarily storing bits in order to affect only those bits of interest.

One strategy to avoid the overhead of these operations would be to use arrays
to contain the data, thus allowing dircct access via the array index. This can be
accomplished in a language such as C/C++ by storing caclr bit in a single char, a
single byte variable, which is stored in an array. This system has an obvious advantage
for bitwise data access, but it has the equally obvious storage inefficiency since an
eight bit variable type is being used to hold a single bit of data. Also, some operations
that can be done efficiently on a word basis (e.g. word-oriented exclusive—or) has to
be done for each individual bit whicli is extremely inefficient. In the following sections
we look at another method for efficient implementation of CIIKS—1 which overconies

the single bit access problem while avoiding wasted mewmory.

6.2 Bitslice Implementation of Ciphers

In [, Eli Bihamn introduced a new fast software implementation of DES. Unlike

other implementations of DES. this one approached the proble  from the point of
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view of trying to fully utilize the entive word length of the instruction set for the
processor.  To achieve this, an n bit processor is treated as noone bit processors.
Therefore, a modern 64 bit processor is used as 64 parallel one bit proeessors, per-
forming the same operation 64 times simultancously. This 1 thod, referred to as
bitslicing, allows for single bit operations to be implemented more efficiently on gen-
eral purpose processors by operating on large numbers of inputs simultancously.

To implenient DES at a bit level, Bilain starts with the cipher represented as a
serics of logic gates. Tt s a straight. forward translation to obtain a set of boolean
equations for cach component of the cipher. Using bitwise operators, these equations
arc casily nmplemented in code. Sinee a single bitwise operator will by definition
apply the same operation to each bit in the word independently, this iimplementation
can be used to cuerypt (or deerypt) multiple plaintext inputs simultancously.

To be able to use this version of the cipher, the data used needs to be stored
in a non standard arrangement. The normal way of treating data in software is to
store it in variables with each one holding a single picce of information. In order
to use the bitslicing technique, n picces of data (where n is the n bit size of the
word form the processor) are grouped together into an array. That array can then be
transposed such that each value accessed by index 7 now holds the ith bit for each
input. Arranged in this manner, the data can be input into the new version of DES,
allowing for parallel cucryption (or decryption). To get the final rvesults from the
output of this code, it must be transposed again into the standard arrangement.

Biham shows in the paper that this implementation of DES provides a speed up of
approximately 1.6 times over Eric Young's lib DES, a standard fast implementation
of the cipher, whien run on a 300MHz Alpha 8400 processor. He also notes that this
technique can be extended to other ciphers. Biham states the approach can be useful
for most ciphers which do not take advantage of the full word size of the processor.

He notes that the cipher should have no complex operations, such as multiplication or
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Figure 6.1: Example transposition of input for bitslice implementation

large substitution boxes, whose implementation would require a much larger mmuber
of instructions compared to a straight forward implementation. Since the CIKS 1
cipher meets these criteria, a bitslice version has been implemented and is presented

in the next section.

6.3 Bitslice Implementation of CIKS |

The simplicity of the components used in CIKS ‘1 make it an ideal candidate for
a bitsliced implementation. The cipher is mainly comprised of bit permutations,
cither fixed or data—dependent. The only other operations are addition mnodulo—22,
rotations and an exclusive or key addition, all of which can ber  aced to siimple gate
level representations. The next sections discuss the implementation of cach operation

for the bitsliced version of CIKS-1.

6.3.1 Preparing the Input

'The bitslice method requires the user to prepare the input into an unconventional
format. For n-bit bitslice implementation, the user is required to create an n by m
matrix of inputs where n is the number of simultaneous pieces of  ita to be enc  pted
and m is the size of the data in bits. This matrix is then transposed such that row 7 of
the transposed matrix will contain bit 7 of each original input. Figure 6.1 illustrates
an example of the transposition where n m = 4.

The success of this method is h 1y dependent on this transposition being done
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in an ethaent manner. If the amount of time required to transpose the data is larger
than that of the actnal specdup, then bitshicing the algorithm provides no benefits. In
[3%], the anthor provides an cflicient method for transposing a 32-by 32 hit matrix by
breaking the matrix into smaller sub matrices that can be handled more effectively
by the processor’s registers; trausposing those sub matrices before combining them
to form the transposed 32 by 32 matrix.

The algorithm starts by dividing the 32 by 32 matrix into 4 smaller matrices of
size 16 by 16 bits. These matrices are transposed such that the second half (16 bits)
of the first 16 words is swapped with the first half of the second 16 words. The results
of this swap are then subdivided into 16 -1 by 1 bit matrices and grouped such that
bits 815 and 2 31 of the first cight words are swapped with bits 0 7 and 16 23
with the sccond group of eight words. Similar swaps are done on the third and forth
groups of words. This pattern is repeated with sinaller sub matrices until the entire
32-by 32 bit matrix is transposed. In our tests, the 32-bit bitslice version uses a 32
by 32 bit matrix. The 64-bit version uses a 64 by 32 bit matrix that is transposed

to a 32 by 64 bit matrix.

6.3.2 Data—Dependent Permutations

To implement the CIKS-1 DDPs, larger DDDPs are broken down into their small-
est single clement, the Py block, a simple data controlled swap of two bits. This

primitive can be modeled as two parallel multiplexers with eguations

xg — (co Awg) V (oev Aay) (6.22)

and

= (—ev Aag) VA{co A ). (6.23)
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By the definition of the cipher. if the control vector bit is zero then the inputs are
swapped, whereas a control vector input bit of one allows them to pass through
unchanged.

As we can sce in Figure 3.6, the DDPs are constructed of layers of the smaller
P>y permutations. Using Equations 6.22 and 6.23 to form %, permutations for cach
layer, all that is required to complete the larger permntations is to conneet the layers
via the fixed permutations. Using bitslicing, the Pyymg pe utation is implemented
using cquations 6.22 and 6.23 using bitwise operations on words, thereby completing

n permutations in parallel for the no bit bitslice implementation.

6.3.3 Modulo—2? Additions

r > .. . . -
The modulo 27 additions can be expressed as a series of three equations:

= Iy A Yo, (624)
xrg = ro b yo (6.25)

and
ry— 1y Dy B (6.206)

where 1y is the Least Significant Bit (LSB) and xy is the Most Significant Bit (MSB)
of the LHS, y, is the LSB and 3, is the MSB of the RHS and ¢ is the carry bit.
First, the carry bits can be calculated in parallel by using bitwise “and™ on the
words lolding the LSBs. Then. the final values for the LSB and MSB can be calenlated
as an exclusive or of the respective bits together; the MSB also being exclusive ored

with the carry bit. There are 16 parallel additions, so these operations are repeated.
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6.3.4 Fixed Permutations, Rotations and Key Addition

In our original implementation of CIKS-1, the fixed permutations were very compu-
tationally expensive since the individual bits need to be isolated within the data and
moved to different position. In the bitslice implementation of CIKS 1, cach value
in the array contains a processor word which is comprised of a group of bits from a
single position in multiple pieces of data. Therefore, in order to swap bits it 1s only
neeessary to change the order of the groups. This also holds for rotations, making
cach of these operations very efficient when operating on many blocks in parallel.

ey addition for CIKS 1 is a simple exclusive or of the key (permuted via a
DDP) with the RHS of the data. In the bitslice implementation, this is achicved as

32 exclusive-ors of the groups of bits.

6.4 wxperimental Results and Discussion

The bitsliced implementation of CIKS- 1 was compared against two other implemen-
tations of the cipher. The first uses the bilset class in the C++ Standard Template
Library (STL). This class makes it convenient to access individual bits of the cipher
data, but it is not written to maximize the usage of the processor’s instruction sct.
The second implementation stores cach bit in a char variable. This iniplementation
allows for easy access to each bit, but uses eight times more storage than required for
the data and is only effective when operating on a per-bit basis.

For the comparison of each implementation, 320 million randoimnly generated plain-
texts are enciphered. The number is chosen as a multiple of 32 since the word sizes
for the processor being tested are multiples of this value (32 bit and 64 bit). The
factor of 10 million is chosen to be long enough to allow for measurement of differences
between tests without making the tests too long to rum.

In the case of the bitsliced implementation of CIKS-1, the required number of



plaintexts (32 or 64) are generated and added to an array. The array is transposed,
the data encerypted and then the array is transposed again to get the ciphertexts. For
the other two implementations, cach plaintext is enerypted as it is generated. Each
of the tests was run on an Intel Core 2 Duo 2.4GHz 61 bit processor with 2GI of
RAMN. The 32 bit version was compiled using only 32- bit instt - tions and the 64 bit.
version was compiled to use 64 bit instructions by changing the target architecture
use by the GCC compiler. The total processing time is measured using the POSIX
command tirne. This command gives the total time for the command to complete,
as well as the breakdown of the time used by the actual prc am and the system
overhead.

The initial bitslice version was implemented using 32 parallel encryptions, which
was considered portable to the majority of processors commonly available which use
32-bit words. The test consisted of 320 million encryptions  rough one round of
the cipher using random inputs for both the data and key. For the char array and
STL bitset based implementations, cach input was generatc  then enerypted before
moving on to the next. For the bitsliced version, inputs were generated in groups of
32, transposed,; encrypted and then transposed again to get the output.

A sample set of results from the testing for each version ¢  the cipher is given
in Table 6.1. The bitslice version of the ciplhier outperformed both the STL bitset
and char array bascd versions. .y bitslicing the cipher an overall speedup of 130
times is achicved over the next fastest method, the char array implementation. . ae
time required to generate 320 million plaintexts was measured to be approximately
23 scconds. Taking this into account, the actual speedup of approximately 234 times
is achicved by the 32 bit bitsliced version of the cipher over the char array based
implementationr.

64 bit. processc opular and th now (

ve Hns of the most common operating systems available, a 64 bit bitslice version
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Toat | Time

“Genvrae 1mintexts 23s
STL bitset CIKS 1 126n1 Is
char arvay CIKS | 1131 4ls
Bitslice (32 bhit) CHXS 1 D25
Bitslice (61 bit) CIKS 1 39s

Table 6.1: Elapsed time for 320 million eneryptions

was also implemented. The inputs to the cipher were 64 values (each of size 32- bits)
for each of the left side, right side and key inputs stored in arrays. To prepare the
inputs to be used in the bitsliced code, the previous algorithim from [38] was extended
to fit the word size. To do this. the inputs were split into two 32 by 32 bit arrays.
These arrays were individually transposed and then concatenated into an array of 32
words. Since the CIKS 1 cipher itself was written at the word level, its code did not,
nee to be changed.

The 64 bit bitsliced version of CIKS 1 was tested by encerypting 320 million ran-
dom plaintexts. The tune to perform the encrvptions was about 13 seconds less than
that of the 32 bit bitsliced version.  Since a two times increase in speed was not
achieved, it is obvious that the overhead of formatting the inputs for the bitsliced ci-
phers is a large portion of the overall tile. Howcever, it is not large enough to negate

the increase in speed of the implementation method as compared to the others.

6.5 Limitations of Bitslicing

Although these implementations show a significant. improvement. over the more con-
ventional implementation techniques, they come with restrictions on their use. Since
they require 32 (or 64) inputs to be encerypted at a time, they cannot be used for any
of the standard modes of operation other than ECB or counter ode. Other modes

require the output of one block into the next, however, these outputs are not available
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when needed.

Other modes can be implemented using non standard methods. CBC can be used
by using 32 (or 64) parallel chains by choosing the appropriate number of initialization
vectors. This mode would be implementing 32 (or 64) standard CBC modes in parallel

and CFB or OFB mode can also be implemented i a stimilar way.

6.6 Conclusions

The CIKS 1 cipher was designed for hardware and as a result utilizes many oper-
ations that are not well suited for general purpose processors. In this chapter, an
implementation has been presented that overcomes these limitations. The bitsliced
implementation of CIKS-1 has a speedup of approximately 234 tinies over the nearest
competitor in tests run. When a 64 bit architecture is used, that speedup increases
to approximately 425 times.

The bitsliced version of CIKS 1 is ouly compatible with two standard implemen-
tations of ¢ipher modes, ECB and counter mode. However, it is possible to implement
the cipher using CBC, CFB or OFB modes. In these cases, there are parallel imple-
mentations of the standard modes where the output of cach is passed into the input of
the next encryption for cach implementation. Bitslicing can also be applied to other

DDP-based ciphers to improve the efliciency of software implementation.
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Chapter 7

Conclusions and Future Directions

The purpose of this thesis was to investigate the use of data dependent structures as
an element in cryptographic ciphers. In particular, the CIKS 1 cipher was used for
the research since it was written to primarily rely on DDPs for security. Two attacks
on the cipher were presented as well as a look at implementing the cipher efficiently
in softwarc. The following is a suinmary of the conclusions of this rescarch. As well,

a list of future directions for this research is given.

7.1 Conclusions

The primary focus of the attacks presented in this thesis was the Hamming weight of
the data as it was enerypted. Since the DDPs only permute the data bits, they have no
effect on the weight of the data. Therefore, if the effect of the other components used
is similarly limited, there arises the potential to attack the cipher by manipulating
the data in a chosen plaintext attack. This approach is used 1 the weight based
attack presented in Chapter 4.

CIKKS 1 has very few components that change the Hamming weight of the data.
The rotations and permutations have no cffect and the parallel modulo 22 additions

are shown to preserve the input weight of the data in § of the cases. Therefore, the
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cipher depends heavily on the exclusive or addition of the round subkeys to modify
the weight of the data. Given this fact, keys with a low Hamming weight can be
detected by choosing low weight inputs.

Therefore, it is concluded that there is a class of low weight keys which should
be considered weak keys for the cipher. Through experimentation it is found that
keys with weight around six or less can be detected by constraining the mput data
weight and comparing the resulting outputs to the binomial distribution through the
\? goodness—of—fit test. Testing shows that the search area for the first subkey can
be reduced to within a weight of two from the actual weight on a 6 round reduced
version of the cipher with a total time complexity for the attack of 2% ceneryption
operations.

In Chapter 5, a differential style attack is presented which focuses on the differen-
tial weight of the inputs rather than the individual differences of bits. The CIKS-1
DDPs are shown to pass a one—bit difference introduced at their input to their output
approximately 28% of the time. Using this information the CIKS 1 round function is
analyzed to create a set of likely differentials with which the cipher can be attacked.

These differentials are used to gain information about the subkey of the last round
of the cipher. An experimmental result is presented which can retrieve the last round
subkey of a six round version of CIKS | with a data complexity of approximately
2% laintext/ciphertext pairs and time complexity of approxima vy 2% cneryption
operations plus 2% partial decryption operations. This attack is then extended to
show theoretically that the entire eight round cipher could be attacked with a data
complexity of 2°! plaintext/ciphertext pairs and a time complexity of 2°% encryption
operations plus 2% partial decryption operations.

Implementing these attacks in software can be ineflicient due o the primitives cho-
sen to satisfy the criterion of being st in hardware. Many of the operations require

swapping of individual bits which is not well suited for general purpose processors.
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In testing and experimenting with the cipher. two versions were implemented, the
first using the C} 1 STL class bitset and the second using  yte arrays in which each
clement held a single bit of the cipher data. In Chapter 6, a third implementation
method, bitslicing, was investigated.

Bitslicing overcane the inefliciency of bit level operations in general purpose pro-
cessors by treating an e bit processor as noone bit processors. This allows bitwise
operation on a specific bit of n inputs to be calculated in parallel. The bitsliced im-
plementation of CIKS-1 presented has a speedup of approximately 234 times over the
nearest competitor in the test runs when implemented on a 32 bit architecture, When
compiled for a 64 bit bitslice architecture, the speedup increased to approxinately
425 times.

Although DDPs can be cfficiently implemented in both software and hardware,
care needs to be excercised in the design of a cipher which uses them extensively.
Specifically from the resnlts presented, elements should be added that counteract the
permmntations’ lack of effect on the weight of the cipher data. The following section

provides suggestions for future directions for the study of DDPs.

7.2 Future Directions

Lals thesis focused solely on the use of DDPs in the CIKS 1 cipher because it relies
so heavily on them for its security. Future study of the data dependent structures
should he extended to other ciphers, specifically Spectr—164 and the Cobra family of
ciphers. These ciphers have DDPs of similar structure to CIIK | but were designed
based on lessons learned from attacks on the original cipher. Specitically, a study of
the weight propagation in these cipliers would help to understand if they have solved
this weakness and if so how.

An attempt at redesigning CIKS 1 could also provide insight into avoiding the
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weaknesses of the current design. Keeping in mind the primary goals of the cipher, to
be secure while fast in hardware, replacements for fixed permutations, rotations and
addition could be investigated. This could result in a catalog of comiponents that are
both fast when implemented in hardware and complementary > DDDPs.

From the point of view of softwarc implementation, the design of the pernutations
themselves could be reconsidered. Although the bitslicing technique worked well with
CIKS 1. it has Limitations for the mode of operation with which it could be used. It
would be beneficial to have a DDP designed such that it can be efficiently impleinented

in software as well as hardware.
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Appendix A

CIKS—1 Implementations

A.1 CIKS—-1 Bitset Implementation

/******************tt*i*******t**ttvtvtVO**-**tv***********t-+**v*t'*ttt*tt

Filename: cihs . cpp
Author: Brian Kidney, P.Eng

Description :

Straight forward implementation of the

STL bitscet cluss.

CIKS | block cipher

wsing the

ok ok oK ok ok ok ok o ok K K K KKK KRR Rk KR R K K R K KR KR KRR R OO KRR R R R Rk R e Rk Rk Rk Rk Rk Rk kK ok ok /)

#include "ciks.h”

struct State
bitset <32> L;
bitset <32> R;
bitset <32> K;
bitset <d48> v,
bhitsct <d48> v_k;
bitsct <80> v_p:
bitsct <32> s.p;
bitset <80> v_l;
bitset <32> s_pp;
bitsct <80> v._pp;
bitsct <32> xored;
bitsct <32> key_permuted;
bitset <32> after_pl;
bitsct <32> after_p?2;
bitsct <32> after_p6;

}s

void swap.bits(bitsct <32>& plaintext, int x.0, int

{

bool temp — plaintext. test (x.0);
plaintext [x.0] = plaintext [x_-1];
plaintext [x_1] — temp;

void rotatc_lsbh_7 (bitsct <d8>& input)
{
bitsct <48> temp — input;
temp <<= T,
input >>= (iuput.size () — 7);
input |= temp;
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47 void rotate_lsbh_7 (bitset <32>& input)

mo

49 bitsct <32> temp — input;

00 temp <<= 7;

51 input »>= (input.size () 7Y}
52 input |- temp;

53}

o
—

55 void DDP2.1( hitsct <3254 plaintext , int x_0, int x_1, bool control_vector)
56|

57 if (control_vector = false)

58

59 swap_bits(plaintext . x.0, x_1);

60 }

61}

62

63

G4  void DDP4.4( bitset <32>& plaintext , int x.0_pos,

65 int x.3_pos, bitsct<d>&X control_.vector)

66 {

67 // Do initial controlled brt swaps

68 DDP2.1(plaintext , x.0_pos, x_0_pos | I, control_vector [0]);
69 DDP2_1(plaintext . x_3_pos — 1. x.3_pos, control_vector |[1]);
70

71 // Swap internal bits

72 swap_.bits(plaintext . x_.O_pos | 1, x_3_pos — 1)};

73

74 /7 Do final controller bit swaps

75 DDP2_1( plaintext , x_0O_pos, x.0_pos | 1, control_vector [2]};
76 DDP2_1( plaintext , x_3_pos — 1, x_3_pos., control_vector [3]);
77}

s

79

80  void DDP8_12( bitsct <32»& plaintext . int x_0O.pos,

81 int x_7.pos, bitset <12>& control_vector)

82 |

83 // Do initial controlled bit swaps

84 for(int 1 — 0; i < 2; i+t )

85 {

36 bitset <4> cv;

87 for(int j = 0; j < J4: jt1)

&y {

X9 cv.set(j, control_vector[j + (i = 4)]);

90

91 DDP44(plaintext , x_O_pos 4 (1 * 4), x_O_pos + (i = 4) { 3, cv);
92 }

93

94 // Do the bit swaps

95 bitsct <32> temp;

96 for (int i = 0; i < x_0_pos; itt)

97 temp|i] — plaintext[i];

08 for(int 1 = 0; i < x_7_.pos — x_U_pos: i11{1})

99 {

100 temp [i } x_0_pos| = plaintext [(i»((x.7_pos x_0_pos + 1) /2))
101 % (x-7-pos — x_0_pos) t x_O_pos|;

102

103 templ32 — 1] = plaintext {32 - 1];

104 for (int 1 = x_.7.pos; 1 < 32; itt)

105 temp{i] = plaintext[i];

106

107 plaintext = temp;

108

109 /Y Do final conirollcd permutations

110 r(int i 0 1 di )

111

112 DDP2_t(plaintext , x_O_pos t (i * 2),

113 x-O_pos t (i » 2) | 1, control_vector[i + 8]);
114 }
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11H
116
117
115
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
14%
149
150
151
152
154
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

}

void DDP32.48(

{

}

void DDP16.32(

{

}

void DDP32.80(

{

bitset <32>& plaintext ,

for (int i — 0; i < Jd; it+4)
{
bitset <12> c¢v;
for (int j — 0: j < 12; ji1)

{

cv.set(j, controlovector|j

DDPR_12( plaintext , 1 +« &, (i ¢

bitsct <32>& plaintext
int x_15_pos,

// Do initial controlled bit swaps
for(int i = 0; 1 < 2; i1+ )
{

bitset <12> cv;

for(int j 0; 7 < 127 j44)

cv.sct(j. control_vector([)

DDPR_12( plaintext , x_0_pos | (

}

// Do the bit swaps

bitscet <32> temp;

for (int i = 0; i < x_.0_pos;
temp[i] — plaintext[i];

for(int i = 0; i < x_15_pos —

{

it

temp[i i x_.0_pos] = plaintext |
% (x_-1bd_.pos — x_0_pos)

}

x_0O_pos;

bitset <d8~& control.vector)

Eolio« 1235
By + T, cv)
int x.0_pos,

bitsct <32»& control_vector)

i«

iH+)

(i*((x-15.pos — x_.0_pos { 1)
Fox-O_pos];

temp|[x_15_pos]| = plaintext [ x_15_pos];

for (int i = 32,

temp|i] =

x_15_pos + 1; i <
plaintext [i]:

plaintext = temp;

// Do final

for(int 1 = 0; i < 8; i+t )}

DDP2_1(plaintext
control_ovector [1

x_O_pos + (i
24]);

bitsct <32>& plaintext ,

// Do initial controlled bit swaps
for{int i = 0; i < 2; i++ )
{

bitset <32> cv;

for(int j = 0; j < 32; j++)

{

cv.set(j, control.vector[j
DDP16_32( plaintext , (i * 16),
}
// Do the bit swaps
bitsct <32> temp;
for(int 1 = 0; &+ < 32 — 1; itt)

i)

controlled permutations

= 2), x_O_pos { (i = 2) ¢

bitset <80>& control_vector)

b« 32)])s

(i = 16) t 15 cv);
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183
184
18H
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250)

}

void

{

}

void

{

}

void

}

void

temp[i] = plaintext [(1 * (32 /

temp (32 — 1] = plaintext[32 — 1];

plaintext = temp;

// Do final controlled permutations

for(int i = 0; 1 < 16; i1t )

DDP21( plaintext , (i * 2), (i

P1.1( bitsct <80>& plaintext )
bitset <80> temp;

for (int i = 0; i < 24; i)
temp[i] = plaintext[i + 8];

for (int i = 24; i < 32; i+4)
temp[i] = plaintext[i + 24];

for (int i = 32; i < 48; i +414)
temp[i] = plaintext [i];

for (int i = 48; i < 56; i)
temp[i] = plaintext[i — 48];

for (int i = 56; i < 80; i++)
temp[i] = plaintext[i];

plaintext = temp;

P1.2( bitsct <80>& plaintext )
bitset <80> temp;

for (int i = 0; 1 < 8; i+41)
temp[i] = plaintext{i F 16];
for (int i = 8; i < 12; i++)
temp[i] = plaintext[i + 24];
for (int i = 12; i < 20; il{)
temp[i] = plaintext[i | 12];
for (int i = 20; i < 325 i++)
temp|i] = plaintext[i + 16];
for (int i = 32; i < 40; i4+4)
temp[i] = plaintext[i - 32];
for (int i = 40; i < 44; i11)
temp[i] = plaintext [1 + 8];
for (int 1 = 44; 1 < 52; i++)
temp[i] = plaintext[i — 36];
for (int i = 52; i < 64; i++)
temp[i] — plaintext [i];
for (int 1 = 64; 1 < 80; i4+)
temp[i] = plaintext[i];

plaintext = temp;

parallel_addition ( bitsct <32>&

for (int i = 0; i < 32; 1t =1 +

{

lhs , bitsct <32>& rhs )

2)

bool carry = lhs[i] & rhs[i];

lhs[1] = lhs[i] ~ rhs[i];
lhs [i + 1} = lhs[i + 1] °

parallel_xor ( bitset <32>& lhs |

rhs[1 + 1]

bitset <32>&
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cCarry

rhs

)
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i x 2) 1 1, control_vector|i
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291
202
293
294
295
296
297
208
299
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306
307
308
309
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313
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315
316
317
318

—_—

}

void

{

lhs = lhs ° rhs;

ciksloround ( struct Stated state )

// Form control wvector o

for (int i — 0; i < 7; ilt)
state.v{i] — state R[25 t+ i];

for (int i Tl o< 325 i+ 1)
state. v]i] = state . R{i — 7]

for (int i — 32, i < 48: it++4)
state.v[i] = state R[} 32];

// Apply Pl
DDP32.48(state . L, state.v);

// Form control vector wv_k

for (int 1 — 0; 1 < 32; it¢t)
state. v k[i] — state K[i];

for (int i = 32; i < 48; ii})
state . v k[1] = state Kii 32];

// Form control wveector u.p
for (int 1 = 0:; 1 < 32; it1t)

state . vopli] = state . L[1];
for (int i — 32; i < 48:; i++)
state.vop|i] state L1 — 16];
state . .s_p — state . L

DDP32_48(state.s_p, state.v_k);
for (int i = 48; 1 < 80; i++)
state.vopli] = state.s_.p[i — 48];

// Permute v_op
PI_t(state.vop);

// Apply P2
DDP3280(state R, state.v.p):

// Form Control vector v_l

for (int i = 0; i < 165 i4+4)
state.v_l[i] = state.L[i t 16];

for (int i = 16; 1 < 48; 1t})
state.v_l[i] = state . L[i ~- 16];

for (int i — 48; i < 80; i++)
state.v_l[i] = state.L[i - 48];

// Apply P_4 to key
DDP3280(state K, state. v_l);

// XOR round key with Right Side
state.R = state . R 7 state . K;

// Rotate Left side
rotate_lsb_7 (state.L);

// Form v_pp
state.s_pp — state.Ll;
rotate_lsbh_7 (state.v. k);
DDP32_ 48 (state.s_pp, state.v_k);
for (int i = 0; i < 32; i{+4)
state.v_opp[i] = state.s_ppli];
for (int i — 32; i < 64; iit)
state .v_pp|i] = state.L[i - 32];
for (int i = 64; i < 80: i++)
state.vopp|i] = state . L{i - 64];

// Permute v_pp
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332

P12 (state . v_pp);

/7 Apply P.6
DDP32 K80 (state R,

/7 Add to sides

state

parallel_addition {state

// Swap side
bitset <32 temp —
state . — state R,
state R — temp;

state

L.

L

LVopD )
state.after_.p6 = state R;

state R,

9

‘
.

3
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A.2 CIKS—-1 Array Based Implemer ation

/****************(‘*******‘******‘**‘**4*A*Ai********it*i**************‘***

FFilename : ciks . cpp
Author: Brian Kidney, I’.Eng

Description :
Straight forward implementation of the CIKS—1 block cipher using
char arrays to hold individual hits.

R R R OK KK K K R K R ROK T OR R R R R R K KK R K Kk R KK R R R K R K K KK KK KK K R K KK K KR KOk R koK %

#include " ciks . h”

struct Statc

{
char L[32];
char R[32];
char K[32};

I

void swap_bits(charx plaintext ., int x.0, int x_1)

{

char temp = plaintext [x_0];
plaintext [x_0] — plaintext [x_1];
plaintext [x_1] — temp;

}

void rotatc_lsb_7_48(char= input)

{

char temp[48];
memepy (&temp, input, 48);

for (int i = 0; i < 48; i++)
input[i] = temp[(41 1 i) % 48];
}

void rotate_lsb_7_32(charx input)

{
char temp [32];
memepy (&temp, input, 32);

for (int i = 0; i < 32; i4+4)
input [i] = temp[(25 + i) % 32];

}

void DDP2_1( charx plaintext , int x_0, int x.1, char control_vecctor)

{

if (control_vector 0)

{
}

swap_bits(plaintext , x_0, x.1);

void DDP4_4( charx plaintext , int x_0O_pos, int x_3_pos, charx control_vector)

{

// Do initial controlled bit swaps
DDP2_1 ( plaintext , x_0.pos, x_0_pos + 1, control_vector [0]);
DDP2_1 (plaintext , x_3.pos 1, x-3_pos, control.vector [1]);

// Swap intcrnal bits
swap.bits(plaintext , x_0_pos + 1, x_3_pos — 1);

// Do final controller bit swaps

DDP2.1(plaintext , x.0_pos, x_-O_pos | 1, control_vector [2]);
DDP2.1(plaintext , x_3_pos 1, x.3.pos, control_vector [3]);
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86
87
&3
89
90
91
92
93
9
95
96
97
i
99
100
101
102
103
104
105
106
107
108
10Y
110
111
112
113
114
115
116
117
1S
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

void DDPX_12( charr plaintext | int x_O_pos |

{

// Do anatial controlled bit swaps

for{(int i = 0; 1 < 2; it )

{

char* ¢v = control_vector;
ev b (1% 1)
DDPY4( plaintext | x_O_pos | (i »
}
J/ Do the bil swaps
char temp [8];
for(int i = 0; i < x.7T_pos x_0_pos

{

1),

int x_7_pos, char«

x_0O_pos + (1 =

i

temp|i] — plaintext [(i*((x-7_pos — x_O_pos | 1) /2)
x.0_pos|;

Yo (x.7_pos — x_0_pos) |

for (int 1 = x_0O_pos; 1 < x_7_pos;

plaintext [1]

// Do final controlled permutations

for(int i = 0; i < 4; it} )

DDP21(plaintext . x_0_pos |
control_vector [i + 8]);

}

void DDP32_48( charx plaintext , charx

{
for (int 1 — 0; 1 < 4; it4)
{
charx= ¢v = control_vector;
cv t— (i x 12);
DDP8_12(plaintext , i * 8, (i

}

void DDP16.32( char» plaintext , int

for(int i — 0; 1 < 2; i++ )

{
char+ ¢v — control_vector;
cv I= (i * 12);
DDP8_12( plaintext , x_.0O_pos |

}

// Do the bit swaps
char temp[16];
for(int i — 0; i < x-15_pos

{

(i

1t4) // w7.pos docs

*

temp |1 — x_-O.pos];

2).

x-0_pos
// Do initial controlled bit swaps

(1

x_0_pos;

* H),

x_O_pos + (i =

control_vector)

int x_15_pos,

x_O.pos + (i

i)

)

not

control_vectar)

¢

charx

*

8)

temp|i}] — plaintext [(is({x_15.pos — x_0_pos + 1) /2))
X_()_])n.\‘ ] B

% (x_15_pos — x_0_.pos) t

}

for (int i = x_.0_pos; i < x_lbH_pos;
plaintext [i] = temp[i — x_0_pos|;

J// Do final controlled permutations

for(int i — 0; i < 8; i++ ) {
DDP2_1(plaintext , x_0_pos
control_vector{i + 24]);

(i

*

b))

23,

x_0_pos + (1 =

1

hange

control_vector ){

T, oev);




134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
136
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

// Function: DDP32.80( bitset <H32> plointest
Implements the CP Bor P32/80.

//

void DDP32.80( chars plaintext |

}

// Do initial controlled brt swaps

for(int i = 0; 1 < 2; it ) {

}

char* ¢v = control_vector;
cv t= (i x 32);

DDP1632(plaintext , (i = 16),

// Do the bit swaps

char temp [32];

for(int i = 0; 1 < 32 - 1; i44){
temp|i] = plaintext [(i = 16) % 31 ];

}

for

// Do final

(int i = 0; 1 <321, it1)
plaintext[i] = temp]|[i];

for(int i = 0; i < 16; i++ )

{
b

DDP2_1( plaintext , (i * 2}, (i

void PI_1( char*x plaintext )

{

}

void

{

char temp [80];

for

for

for

for

for

for

(int 1 = 0; 1 < 24; i++)
temp[i] = plaintext{i + 8];
(int i = 24; i < 32; ik4)
temp[i] = plaintext i + 24];
(int 1 = 32; 1 < 48; 1 1)
temp|i] = plaintext[i];

(int 1 = 48; i < 56; i+4)

temp[i] = plaintext[i — 48];
(int i = 56; i < 80; i
temp[i] = plaintext [i];

(int i = 0; i < 80; i+t+)
plaintext [i] = temp[i];

PI.2( charx plaintcext )

char temp [80];

for

for

for

for

for

for

for

for

(int i = 0; i < 8; i+¢)
temp[i] = plaintext|[i + 16];
(int 1 = 8; i < 12; i++4)
temp[i] = plaintext[i + 24];
(int i = 12; i < 20; i++)
tempf[i] = plaintext[i ¢ 12];
(int 1 = 20; i < 32; i++)
temp[i] = plaintext[i + 16];
(int 1 = 32; i < 40; i++)
temp[i] = plaintext[i — 32];
(int 1 = 40; i < 44; i++)
temp[i] = plaintext[i + 8];
(int i = 44; i < 52; i++)
temp[i] = plaintext[i — 36];
(int 1 = 52; 1 < 64; i++)
temp[i] = plaintext[i];

befset <S80

(i » 16)

controlled permutations

¥ 2) |
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char+ control_vector){

15 , cv);

control_vector [

l

control_vector)

G4]):




202
203
204
200
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
2562
253
254
2565
256
207
258
259
260
261
262
263
264
265
266
2067
268
269

for (int i = 64; 1 < 80; itt)
temp[i] = plaintext [1]:

for (int i = 0; 1 < 80; 111)
plaintext |[i] = temp|i];

}

void parallel_addition( charx lhs, char* rhs )

{
for (int i = 0; i < 32; i =1 t 2)
{
char carry = lhs[i] & rhs[1];
ths[i] = Ihs[i] ~ rhs[i];
ths[i + 1) = ths[i + 1] ° rhs{i 4+ 1] = carry;

}

void parallel_xor( char* lhs, charx rhs )

for (int i = 0; i < 32; i++4)
lhs[i] = lhs[i] = vhs{i];
}

void ciksl_round( struct Statc& state ){

char v[48&];

// Form control vector v

for (int i = 0; i < 7; i++)
v[i] = state.R[25 4 1];

for (int i = 7; i < 32; i++)
v[i] = state.R[i = T7];

for (int i = 32; i < 48; i4++)
v[i] = state.R[i — 32];

// Apply P_1
DDP32_48(state . L, v);

// Form control vector v_k

char v_k [48];

for (int i = 0; i < 32; i++4)
v_k[i] = state K[i];

for (int i = 32; i < 48; it1)
vk (1] state K[1 — 32];

// Form control vector wv.p

char v_p[80];

for (int i = 0: i < 32 it4)
v_p[i] = state . L[i];

for (int i = 32; i < 48; i++)
v_pli] = state L[i — 16];

char s_p[32];

memepy(s_p, state.L, 32);

DDP32.48(s.p, v.k);

for (int i = 43; i < 80; i++4)
vepli] = sop i — 48];

J// Permute v_p
PI_1(v_p);

// Apply P2
DDP32_80(statc.R, v_p);

// Form Control vector v_l

char v.1[80];

for (int i = 0; 1 < 16; it+})
v_1[i] = state . L[i + 16];

for (int i = 16; 1 < 48; i4 1)
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270 vol]i] — state Lt — 16];
271 for (int i — J48: 1 < BO: it1t)
272 v_l[i] — state L[i — 48],
273

274 /) Apply P_f to key

275 DDP32.80(state K, v_l);

276

277 // XOR round key with Raight Side
278 parallel_xor(state . R, state . K);

SV
=1
K}

2580 // Rotate Left side

2R1 rotate_Ish_7_32(state L);

282

283 // Form v_pp

284 char v_pp[R80];

285 char s_pp[32];

286 momepy (s.pp, state.l, 32);
287 rotate_lsh_7_48(v_.k);

288 DDP32. 48 (s_pp, v.k);

289 for (int i — 0; i < 32; it)
290 veppi] = soppli];:

201 for (int i — 32; 1 < 64: it1{)
292 voppli] - state L1 — 32];
293 for (int i — 64; i < 80; itt)
204 vepp |i] = state L[i - 64];
205

206 // Permute v_pp

297 P1.2(v_pp);:

208

299 /) Apply P_6

300 DDP32.80(state . R, v_opp);

301

302 S/ Add to sides

303 parallel_addition{state . L, state.R);
304

300 // Swap side

306 char temp [32];

307 memepy (temp, state L, 32);
308

309 for (int 1 — 0: 1 < 32; iy+)
310 {

311 state.L[i] — state.R[i];
312 state R[] = temp|i];

313 }

314
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A.3 CIKS-1 Bitsliced Implementation

I /"**)“**‘*****************************l**************l********’t************
2

3 Fulename: ciks. cpp

4 Author: Brian Kidney., P.FEng

)

6 Pescription :

7 Bitsliced implementation of the CIKS-1 block cipher.

8

9 ***********t*tt**t*tx***********x*t********t****nx*****xx*xxt****t**»*****n/

10 #include "c¢iks . h”
11 #include " hitutil . h”

12

13 static inline void DDP3280( unsigned long* x, unsigned longx c¢)
1

15 unsigned long temp [32];

16

17 // Layer 0

18 temp [0] = (c[0] & x[0]) | (Tc[0] & x[1]);

19 temp 1] = (Tc[0] & x[0]) | (c[0] & x[1]);

20 temp [2] = (c[1] & x[2]) | (Tc[l] & x[3]);

21 temp (3] — (Te[1)] & x[2]) | (c¢[1] & x[3]);

22 temp (4] = (c|4] & x[4]) | (Tc[4] & x[5]);

23 temp (6] — (Tc[4] & x[4]) | (c[4] & x[5]);

24 temp [6] — (c[5] & x[6]) | (Tc]b] & x[7]):

25 temp [7] = (Tc[5] & x[6]) | (c[5] & x[7]);

26 temp 8] = (c[12] & x[8]) | (Tc[12] & x[9]);

27 temp [9] = (Tc[12] & x[8]) | (c[12]) & x[9]);

28 temp[10) = (c[13] & x[10]) | (Tc[13] & x[11]);
29 temp[11] = (Tc[13] & x[10]) | (c{13] & x[11]):
30 temp[12] = (c[16] & x[12]) | ("c[16] & x[13]);
31 temp[13] = (Tc[16] & x[12]) | (c[16] & x[13]);
32 temp[14] = (c[17] & x[14]) | (Tc{17] & x[15]);
33 temp{15] = (Tc[17] & x[14]) | (c[17] & x[15]);
34 temp[16] = (c[32] & x[16]) | (T¢[32] & x[17]));
35 temp[l17] = (Tc[32] & x[16]) | (c[32] & x[17]):
36 temp[18] = (c¢[33] & x[18]) | (T¢[33] & x[19]);
37 temp[19] = (Tc[33] & x[18]) | (c[33] & x[19]);
38 temp[20] = (c[36] & x[20]) | (Tc[36] & x[21]);
39 temp [21] = (Tc[36] & x([20]) | (c[36] & x[21]);
40 temp(22] — (¢[37] & x[22]) | (Tc[37] & x[23]);
41 temp 3] = (Tc[37) & x[22]) | (¢[37) & x[23]);
42 temp24] = (c[44] & x[24]) | ("cld4] & x[25]);
43 temp [25] = (Tcld44] & x[24]) | (c[44] & x[25]);
44 temp[26] = (c[45] & x[26]) | (Tc[45] & x[27]);
45 temp [27] = (Tc[45] & x[28]) | (c[45] & x[27]);
46 temp (28] = (c[48] & x[28]) | (Tc[48] & x[29]);
47 temp (29] = (‘C[Ll&] & x[28]) | (c[48] & x[29]);
48 temp[30] = (c[49] & x[30]) | ("c[49])] & x[31]);
49 temp [31] = (Tc[49] & x[30]) | (c[49] & x[31]);
50

51 // Layer | (P4_4 butterflics)

52 for (int i = 0; 1 < 32; i =1 4 1)

53 {

54 x[1] = temp[i];

55 x[1 t 1] = temp[i + 2];

56 x[i + 2] = temp|i 4+ 1};

57 x[i1 + 3] = temp|1 + 3]

58 }

59

60 // Layer 2

61 temp [0] = (c[2] & x[0]) | (Tc[2] & x[1]);

62 temp (1] = (Tc[2] & x[0]) | (c[2] & x[1]);

63 temp [2] = (¢[3] & x[2]) | (Tc¢[3] & x[3])

64 temp [3] = (Tc[3] & x[2]) | (c[3] & x[3])

65 temp [4] = (c[6] & x{4]) | (Tc[6] & x[5]);



temp [5
temp [6
temp [7
temp [ 8

temp [9
temp[10]
temp[11]
temp [12]
temp [13]
temp |14}
temp [ 15]
temp [ 16]
temp [17]
temp 18]
temp [19)
temnp [20]
temp [21]
temp [22]
temp [23]
temp [24 ]
temp [25]
temp [26]
temp [27]
temp (28]
temp [29]
temp [30]
temp [31]

// Layer

]
]
]
]
] -

|

L | T | | R 1 R A I

3

)
I
]
1
1
C
{c[19] & x[1+ ¢
( c[19] & x[1- ¢
c[34] & \[1(’)] ¢
([14] & x[16])Y | (¢
C[35) & x[18]) | (e
k[’;)] & x[18]) | (¢
c[38] & x[20]) | (¢
c[38] & x[20]) | (¢
c[39) & x[22]) | (¢
c[39] & x[22]) | (c
c

c

5

(
(
.
(
-
(
-
(c46] & x[24]) [ (7

(Tcl46] & x[24]) | (c[46
(c[47] & x[26]) | ("c[47
(Tcel47] & x[26]) | (c[47
(c[50] & x|28]) | (° 0
(Te[p0] & x{28]) | (c[50
(c[51] & x[30]) | (Tc[bl
(Telh1] & x[30]) | (c¢[o1

(P8_12 butterflies)

for (int 1 — 0; i < 32; i =1 t 8)

{

}

// Layer
temp [0]
temp [ 1]
temp [ 2]
temp [ 3]
temp [4]
temp [5]
temp [ 6]
temp [ 7]
temp [ 8]
temp [9]
temp[10]
temp [11]
temp [12]
temp [13]
temp [14]
temp [15]
temp [16]
temp [17]
temp [ 18]
temp [19]
temp [20]
temp [21]
temp [22]
temp [23]
temp [24)]
temp (25]
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i] = tempfi];

i+ 1] = temp|i { 4]

i) 2] — temp[i 1 1]

i1 3] = templi | 5]

i 4 4] = temp[i | 2]

it 5] = temp[i 4 6]

i 4 6] = temp[i + 3]

i 4 7] — temp[i { T7];
(c[8] & x{0]) | (Tc(8] & x
(Tc[B) & x[0]) | (c¢[8] & x
(c[9] & x[2]) | (Tc[9] & x
(Tcl9] & x[2]) | (c¢[9 x
(c[10] & x[4]) | ("e[10] &
(Tc[10] & x[4]) | (c[10] &
(cl11] & x[6]) | (c[il] &
(Tel11] & x[6]) | (c[11] &
(cl20] & x[8]) | (Tcl20] &
(“c]20] & x[8]) | (c120] &
(cl21] & x[10]) | (
(cl21] & x(10]) | (
(cl22] & x[12]) | (-
(cl22) & x[12]) | (

(c{23] & x[14]) | (7
(Tcf23] & x[14]) | (
(cl40] & x[16]) | (7
(Tcj40] & x[16]) | (
(cfd41] & x[18]) | (7
(Teld1] & x[18]) | (
(c[42] & x[20]) | (7
(Tc[42] & x[20]) | (
(c(43] & x[22]) | (7
(Tel43] & x[22]) | (
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(Tc[52] & x[24]) | (
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134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
L59
160
161
162
163
164
165
L66
167
168
169
170
171
172
173
174
175
176
177
178
179
1860
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

temp[26] = (¢[53] & x{26]) | (Tc¢[5H3]
temp [27] = (Tc[H3] & x[26]) | (c¢]53]
temp 28] = (c[54] & x[28]) | (Tc[54]
temp [29] — (Tc¢[54] & x[28]) | (c[h4)]
temp [30] — (c[55] & x[30]) [ (" c[5h5]
temp [31] — (Tc[55] & x[30]) | (c¢[55]
// Layer 5 (P16.32 butterflies)
for (int i = 0; i < 32, i =1 { 16)
{

x[i] = temp{i];

x[t t+ 1] = temp[i | 3];

x[i + 2] = temp[i + 1];

x{i t 3] — temp[i t 9];

x[1 t+ 4] = temp[i { 2];

x[t + 5] = temp[i + 10];

x[1 + 6] = temp[i + 3];

x[i f 7] = temp|i 4 ll];

x[i 4+ 8] = temp|i + 4];

x[i | 9] = temp[i + 12];

x[i 1 10] = templi + 5];

x[i + 11} = temp[i t 13];

x[i + 12] = temp[i + 6];

x[i + 13] = temp|i + 14];

x[i 4 14] = temp[i t 7]

x[i + 15] templi + 15];
}
// Layer 6
temp [0] = (c[24] & x[0]) | (7 ([24] &
temp[1] = (Tc[24] & x[0)) | (c[24] &
temp [2] = (c[25] & x[2]) | ("L[Z'] &
temp [3] = (Tc[25] & x[2]) | (c|25] &
temp [4] = (c[26] & x[4]) | (° C[’ﬁ] &
temp [5] = (Tc[26] & x[4]) | (c[26] &
temp [6] = (c[27] & x[6]) | (~( [27] &
temp [7] = (Tc[27] & x[6]) | (c[27] &
temp [8] = (¢ [28] & x[8]) | ('([28] &
temp [9] — (Tc[28] & x[8]) | (c[28] &
temp [10] c[29] & x[10]) | (Tcf29]

temp [11]
temp [12]
temp [13]
temp [14]
temp [15]
temp [16]
temp [17]
temp [ 18]
temp [19]
temp [20]
temp [21]
temp [22]
temp {2 3]
temp [24]
temp [25]
temp [26]
temp [27]
temp [2 8]
temp [29]
temp [30]
temp [31]

// Layer
for (int
{
1

c[29] & x[10]) | (c[29]
c[30] & x[12]) | (Tc[30]
[30] & x[12]) | ((‘[3(}]
c[31] & x[14}) | (Tc[31]
[31] & x[14]) | (c[31]

[56) & x[16]) | (C[)ﬁ]

1 1 1 o T [ I T T

(
(-
(
("¢
(cf
(Tc
(cl
(Tc
(c[5
("¢
(c[58] & x[20]) |
("¢
(el
(Tc
(cl
("¢
(cl
("¢
(el
(-
(e
-

c[57] & x[18]) | cl[57]
[57] & x[18]) | (c[o7]

(e [58]

[58] & x[20]) | (c[h8]

59] & x[22]) | ("¢[59]

[59] & x[22]) | (c[59]
c[60] & x[24]) | ("c[60]

= [60] & x[24]) | (([(10]
= 61] & x[26]) | ("c[61]
= [61] & x[26]) ] (c[61]
= (c[62] & x[28]) | (‘[()2]
= (Tc[62] & x[28]) | (c[62]
= (c[63] & x[30]) | (" <[m]
= (Tc[63]) & x[30]) | (c[63}

7 (P32.80 butterflies)
i=0; i< 16; it4)

x[i *x 2] = temp[i];

56] & x[16]) | (Tc[B6]

[SE SRl NS

o o VIV

x[(i = 2) t 1] = temp|i | 16];
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*[27]);
x[27]);
x[29]);
x[29]);
x[31]);
x[31]):
1
1
3
3
7
7
9
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263
264
265
266
2067
2068
269

static i

{

// Layer &

temp [0] — (c[64) & x[0]) | (Tc[64] &
temp 1] = (Tel64] & x[0]) | (c[64] &
temp (2] = (¢[65] & x[2]) | (Te[60] &
temp[3) = (Tc[6h] & x[2]) | (c¢[65] &
temp [4] — (c[66] & x[4]) | (Tc[66] &
temp [5] = (Tc[66] & x[4]) | (c[66] &
temp [6] = (c[67] & x[6]) | (Tc[67] &
temp 7] — (" c[67] & x[6]) | (c[67] &
temp [8] = (¢ [08] & x[8]) | (Tc[6R] &
temp [9] = (Tc[68] & x[8]) | (c[6R8] &
temp[10] = (c[69] & x[10]) | (Tc[69]
temp[11] = (Tc{69] & x[10]) | (c|69]
temp[12] — (c[T0] & x[12]) | (T¢[70]
temp[13] = (Tc[70] & x[12]) (c|70]
temp[14] — (c[71] & x[14]) | (‘('[71]
temp[15] = (Tc[71] & x|14]) (c[71]
temp [16] = (c[72] & x[16]) | ("c[72]
temp(17] — (Te[72] & x[16]) (c[72]
temp[18] = (¢ [Ti] & x[18]) | (T¢]73])
temp [19] = (Tc[73] & x[18]) (¢]73]
temp [20] = (¢ [74] & x[20]) | (Tc[74]
temp [21] = (Tc[T4] & x[20]) (¢[74]
temp[22] = (c[75] & x[22]) | ( ¢[T75]
temp (23] = (Tc[75] & x[22]) (c{75]
temp[24] = (c[76] & x[24]) | (" c[76]
temp [25] = (T [76] & x[24]) (c[76]
temp [26] — (¢ [77] & x[26]) | (Tc[77]
temp [27] = (Tc[77] & x[26]) (e[77]
temp [28] = (c[78] & x[28]) | ("c[78]
temp[29] = (Tc¢[78] & x[28]) (c[78]
temp [30] = (c[79] & x[30]) | ("c[79]
temp [31] = (T¢[TY] & x[30]) (¢|79]

// Assign back to z[]

for (int i = 0; i < 32; i+1})

x[1] = temp|i]:

nline void DDP32_45(

uns

unsigned long temp [32];

// Layer 0

temp|0] = (c[0] & x[0]) | c[0]
temp[¥] — (Tc[0] & x([0]) | (([()]
temp [2] = (c[1] & x(2])) | (Tc[l]
temp[3] — (Tc{l} & x[2]) | (c[1]
temp [4] = (c[4] & x(4]) | (Tc[4]
temp (5] = (eld] & x[4]) | (c[4]
temp[6] = (c[5) & x[6]) | (“c[5]
temp 7] = (Tc[5] & x[6]) | (c[5]
temp [8] — (e12) & x[8]) | (Tefl
temp (9] = (Tc[12] & x[8]) | (c]l
temp [10) = (¢[13] & x[10]) | ("¢
temp[11) = (Tc[13] & x[10]) (¢
temp[12]) — (c[16] & x[12]) | ("¢
temp[13] = (Tc[16] & x[12]) (c
temp[l14] = (c[17] & x[14]) | ("¢
temp[15] = (Te[17]) & x[14]) (¢
temp [16] = (c[24] & x[16]) | ("¢
temp[17] — (Tc[24] & x[16]) (¢

o e
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unsigned long= ¢,

1):
1)s
x[1i]):
x[11]);
x[13]);
x[13]):
x [15]);
x[15]):
x[17]);
x{17]);

unsigned longx out)
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279
280
281
282
283
284
285
2386
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

temp [18] — (¢[25] & x[18]) | (Te]23] & x[19]);
temp[19] = (Tc[25] & x[18]) | (c[25] & x[19]);
temp [20] = (¢ [28] & x[20])) | (Tc[28] & x[21]});
temp[21] — (Tc{28] & x[20]) | (c[28] & x[21]);:
e (22] = (c[29] & x[22]) | Cef29] & x[23]).
temp 23] — ("¢ [29] & x[22]) | (c[29]) & x[23]);
temp [24] = (¢[36] & x[24]) | (Tc[36] & x[25]);
temp [25] = (Te[36] & x[24]) | (c[38] & x[25]);
temp{26] = (c[37] & x[26]) | (Te[37] & x[27]);
temp [27] = ("¢ [37) & x[26]) | (¢]37] & x[27});
teip [28] = (¢ [40] & x[28])y | (Tcl40] & x[29]);
temp [29] = (T [40] & x[28]) | (¢[40] & x[29]);
temp[30] = (c[41] & x[30])) | (Tc[41] & x[31]);
temp [31] = (Tc[41] & x[30]) | (c[41] & x[31]);
// Layer 1 (P4_4 butterflies)
for (int i — 0; i < 32; 1 =1 | 4)
{

out [i] = temp|i];

out {i + 1] = tempf|i + 2];

out [i + 2] = temp[i | 1];

out[i t 3] = temp[i 4 3];
t
// Layer 2
temp [0] = (c¢[2] & out[0]) | c[2] & out[1]);
temp 1] = (T¢|2] & out[0]) ] c[2] & out[1]);
temp 2] = (¢[3] & out[2]) | c[3] & out[3]);
temp 3] = ("c[3] & out[2]) | C[J] & out [3]);
temp[4] = (c[6] & out[4]) | (Tc[6] & out[5]);
temp [5] = (Tc[6] & out|4]) | (c[6] & out[5]);
temp [6] = (c[7] & out[6]) | (Tc[7] & out[7]);
temp [7] = (Tc{7] & out[6]) | c[7] & out [7]);
temp [8] = (c[14] & out[8]) | (Tc[14] & out[9]);
temp[9] = (Tc¢[14] & ount[8]) | (c[14] & out[9]);
temp [10] = (c[15] & out[10]) | ("c[15] & out(11])
temp[11] = (Tc[15] & out[10]) | (c[15] & out[11])
temp[12] = (¢[18]) & out{12]) | (Tc[18] & out[13])
temp [13] = (Tc[18] & 0ut[12] | (c]18] & ount[13])
temp([14] = (c[19] & out|14]) | ("¢{19] & out([15])
temp[15] = (Tc[19] & out{14]) | (c[19] & out[15])
temp[16] = (c[26] & out[16]) | ("c{26] & out[17])
temp[17] = ("c{26] & out(16]) | (c{26] & out[L7])
temp (18] = (c[27} & out{18]) | ("c{27] & out[19])
temp[19] = ("c[27] & out[18]) | (<¢[27] & out[19])
temp [20] = (c[30] & out[20]) | ("c[30] & out[21]);
temp[21] = ("¢ [30] & out[20]) | (<¢[30] & out[21]);
temp[22] = (c{31] & out[22]) | (Tc(31] & out[23]);
temp (23] = ("C[31] & out|22]) | (c[31] & out[23]);
temp[24] = (c[38] & out[24]) | ("c[38] & out[25]);
temp[25] = ( c[38] & out|24]) | (c¢[38] & out[25]);
temp [26] = (c[39] & out[26]) | (Tc[39] & out[27]);
temp[27]) = (Tc[3Y] & out[26]) | (c[39] & out[27]);
temp[28] = (c[42] & out[28]) | ("c[42] & out[29]);
temp[29] = ("c[42] & out[28]) | (c|42] & out[29]);
temp [30] = (c[43] & out[30]) | ("c¢{43] & out[31]);
temp[31] = (Tc[43] & out{30]) | (c[43] & out[31]);

out{i] = templi];

// Layer 3

for (int i

{
out{i 1]
out{i + 2]
out{i | 3]
out[i + 4]
out [i { 5]
out{i t 6]

temp [ i
temp [ i
temp [ i
temp [ i
temp [ i
temp [ i

(P8.12 butterflics)
= 0; i < 32; 1 =

i 48

e

BICAS
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338
3349
310
341
342
343
344
345
346
BT
SR
319
350
301
3h2
303
304
355
3h6
357
358
359
360
361
362
363
364
365
3066
367
368
369
370
371
372
373
374
375
376
377
378
379
380
331
382
383
384
380
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

}

// Layer

temp [0
temp | 1]
temp [ 2]
temp [ 3]
temp [ 4]
temp [ 5]
temp [ G
temp | 7]
temp [8]
temp [ 9]
temp [10]
temp (11}
temp [ 12
temp {13
temp (14
temp [ 15
temp |16
temp [17
temp [ 18
temp [ 14
temp [2(
temp [ 2
temp |2
temp (2

temp [ 2
temp [ 2
temp [2
temp [ 2
temp 28
temp [29
temp [30
temp [31

1
2
3
1
5
6
7

]
]
]
|
]
]
|
)
0]
|
|
|
I
J
I
|
|
J
J
]

Assig
(int

//

for

{

}
}

n back to out[]

= 05 0 < 325 1i+4)

out[i] — templil;

static inline void add_key(
{
for (int i = 0; i < 32; i+4)
x[i] = x[1] k[i]:

}

J/ 16 parallel mod 4§ additions where z = @

static inline void parallcl_addition (
{
unsigned long ¢
for (int i = 0; i < 32; i — i
{
¢ =x[i] &y[i]:
x[i] o x[i] Coyli];
[i t 1] =xti t 1]
}
}
static inline void rotate_vight._

{

unsigned long t[32];

unsigned longsx x,

vii4

104

{»
unsigned long= x,

out[i + 7] — temp[i t T):
4

(¢ [8] & out[0]) | (Te[B] & out[1]);
= (Tc|8]) & out[0]) | (c[8] & out{1]);

(o] & out]2])y | (Tc[Y] & out{3]);
— (Te[9] & out[2]) | (¢[Y] & out[3]);
= (c[10] & out|4]) | (Te[10] & out[5]);
= (Ce[10] & out[4]) | (c[10] & out[d]);
— (1] & out[6]) | (Cell1] & out|7]);
= (T[] & out[6]) | (¢[11] & out[T]);
= (c]20] & out[8]) | ("c[20] & out|9]);
= (Tc[20] & out[8]) | (c[20] & out[9]);

(c[21] & ont [LO]) | (Tc[21] & out[11]);
= (Tc[21) &nut,[l()]) | (c[21] & out[11]);
= (c[22] & out[12]) | (Tc[22] & out[13]);
= ("c[22) & out[12}) | (c[22] & ont[13]);
— (c[23] & out{14]) | (Tc¢[23] & out[15]);
= (Tc(23]) & out[14]) | (c[23] & out[15]);
= (([{3] & out[16]) | (T¢[32] & out[17]);
= (Tc[32]) & out[16]) | (c[32] & out[17]);
= (¢ [43] & out[18]) | c[33] & out[19]);
— (T [33) & out[18]) | (c[33] & out[19]);
— (c[34] & out[20]) | (“c[34] & out[21]);
= (Tc[34) & out[20]) | (c¢[34] & out[21]):
= (c[35] & out{22]) | (Tc[35] & out[23]);
= ("c[35] & out|22]) | (c[35] & out[23]);
= (c[44] & out{24]) | '([44] & out [25]);
= (Tc[44] & out[24]) | (c[44] & out[25]);
= (c[45] & out[26]) | ("c[45] & out[27]);
= ("c[45] & out|[28]) | (C[45] & out [27]);
= (c[46] & out[28]) | (Tc[46] & out[29]);
= (T [46] & out[28]) | (c[46] & ont[29]);
= (c[47] & out [30]) | (Tc[47] & out[31]);
— (Tc[47] & out[30]) | (c[47] & out[31]);

Y

1] 7 ¢y

7_32bits (unsigned longs x)

unsigned longx k)

unsigned longx y
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407 for (int i 0 0 < 32 0i11)

A08 {

409 tli] — x[(i 1 2n) Y% 32];

410 }

411

412 S/ Assign back to r]]

413 for (int i - 0; 1 < 32; it4)

414 {

115 x[i] — t]i];

416 }

17 )

418

419 static inline void rotateoright_7_48bits (unsigned longx x)
20

421 unsigned long t [18];

422

423 for (int i = 0; i < 48; it1)

424 {

425 tli] — x[(i 4 41) % 48];

426 }

427 :

428 /7 Assign back to xf]

429 for (int i — 0; i < 48; it14)})

130 {

131 x[1] = t]i];

132 }

433}

434

435

436  void ciksl_.round( unsigned longx L, unsigned longsx R, unsigned longx K )
37

438

439 // Form control vector v

440 {

44] unsigned long v [4R];

442 for (int i = 0; 1 < 32; it}1)
143 {

44 vii] = R{(i + 25) % 32];
A5 }

446 for (int i = 0; i < 16; 1t4)
447 {

443 vli v 32] = R[i];
149 }

450

451 /) Apply P_i(32/48)

452 DDP3248(L, v, L);

453 }

454

455

456

457 // Form control vector wv_k

458 unsigned long v_k [48];

459 for (int i — 0; 1 < J48; i41)

160 {

161 vok[i] = K[i % 32];

162 '

163

464

465

466 {

167 // Form control wvector v_p (fized permutation built in)
468 unsigned long s_p [32];

169 DDP32_48 (L, vk, s_p);

470

471

472 unsigned long v_p [80];

473 for (int i = 0; i < 24: i}+)

105




474 {

475 vopli] - L[i I 8]
476 }

477 for (int i = 0; i < &; il{)
478 {

479 vep i 24]) — sop i),
480 )

481 for (int 1 = 16; i < 32; itt4)
482 {

483 vep i 16] — L[i};
484 }

485 for (int i = 0; i < 8 iti)
186 {

487 vep [Pt 48] — L[i];
488 }

489 for (int i = 8; i < 32; i41t)
490 {

491 vop i+ 48] = sop[i];
492 }

493

494 /) Apply P_2(32/80)

495 DDP32_80(R, v_p);

196 }

497

498 {

499 // Form Control vector wv_l
500 unsigned loi v_l[80];

501 for (int i = 0; i < 16; i4)
502 {

503 vol[i] — Li + 16];
504 }

505 for (int i = 0; i < 32; it{)
506 {

507 vol[i 4+ 16] = L[i];
508 }

509 for (int i = 0; i < 32; i+14)
510 {

511 vol[i + 48] = LJ[i];
512 }

513

514 /) Apply P_4(32/80) to key
515 DDP32.80(K, v_1);

516

517 // XOR round key with Right Side
518 add_key ( R, K ),

519 }

520

521 // Rotate Left side

522 rotate_right . 7.32bits (I.)};

523

524 {

525 // Form v_pp (fized permutation built in)
526 rotatc.right.7_48bits (v_k);
527

528 unsigned long s_pp[32];

529 DDP32.48%(L. v_k, s_pp);

530

531 unsigned long v_pp|[80];

532 for (int i = 0; i < 8; itt)
533 {

534 veppli) = s.ppli + 16];
535 }

536 for (int i = 0; 1 < 4; i4+)
537 {

538 v_ppli t+ 8] = L[i];
539 }

540 for (int i = 12; i < 20; it}4)
541 {

106




542 \'_p])[i] _ .\'-pp[i | I'..’];
543 }

544 for (int i@ = 4; i < 15; if})
545 {

546 vepp i+ 16] = L[i];
547 }

Hd8 for (int i O 1 < 85 14t)
549 {

550 voppli ot 32] = s.ppli];
551 }

152 for (int i = 16; i < 20; it+)
553 {

voppli 4 24] = L[i];

oy Ry
Th S
b “'F .

[
——

5h6 for (int i = 8; 1 < 16; i44)
557 {

558 vepp i 4 36] = s.ppli];
559 }

560 for (int i — 20; i < 32; i41t)

[ ]
joriNe)]
N o—

—~

vepp i1 32]) = L[i];

It
e
ALl
———
=]

-

(int i 0; 1 < 165 i41)
565 {

566 vopp i+ 64] = L[i];
567 }

568

569 // Apply P.6(32/80)

570 DDP32_80(R, v_pp);

h7l

572 }

573

574 // Add two sides with parallel additions
575 parallel_addition( L, R );

576

577 // Swap side

578 unsigned long* temp = R;

579 R =1L;

HR0 [ = temp;

581

582}
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Appendix B

Weight pased *ttack Implementation
Code

/****x*x****tt*t*nxtx*x*:***********tt**xn**t*!***n******x*nc#'*xAtntr*t*tr«

Filename: ciks_attack . cpp
Author: Brian Kiduey, P.FEng

Description :
Weight based attack on CIKS | cipher.

*tt***»***‘*t##*******v*t****x*t*****ﬁk**tv*v****t***t**x***lt****t#**ﬁt**/
#include "ciks_attack.h”
void top_down_low_weight_crack () {

// Guess a subkey

/A

// For cach of a million wvectors

// Run subkey through P4, call result PSK

//  Run PSK back through P (—1)2 to gct rhs
// Run wvector back through P (—1)1 to get lhs
//  Encrypt rhs and lhs, rccord vesult

// Run statistical test on set of results

// -

// Erpected distribition for the results

long double cxpected [65] — {
0.0000000000000542101,0.00000000000346945,0.000000000109288,
0.00000000225861,0.0000000344438,0.000000413326,0.00000406437,
0.000036762,0.000239943,0.001492978, 0.00 1379.0.04031040K,
0.178037636,0.712150543,2.594262693 .8.64754231,26.48309832,
74.77580704,195.2479406,472.7055404,1063.587466,2228.468976,
4355.643908,7953.784527,13587.71523,21740.34437.32610.516506,
45896.28257 ,60648.65911,75287.99062 ,87835.98905.96336.24606
99346.75375,96336.24606 ,87835.98905,75287.99062 ,60648.65911 ,
45896.28257 ,32610.51656,21740.34437,13687.71523,7953.784527,
41355.643908,2228.468976,1063.587466,472.7055404,195.2479406,
74.77580704,26.48309832,8.64754231,2.594262693,0.7121000H43,
0.178037636,0.040310408,0.008211379,0.001492978,0.000239943.
0.000036762,0.00000406437,0.000000413326,0.0000000344438,
0.00000000225861,0.000000000109288,0.00000000000346945,
0.0000000000000542101};

// B -
// Set up for random number gencrator

long+ sced = new long;

xsced = =1 x thime( NULL );
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76
77
78
79
80
81
82
83
84
85
86

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

// Create subkecys for six rounds of the cipher
hitsct <32> key [6];
key [0] = 0x00000000;

int bit = ({(int){{randl (sced) * (float)(32.0))))

for (imt i = 1; i < 6; iit)
{
key [ ] = 0x00000000;
int k = 1;
while (k <= 6)
{
if (tkey[i]]bit])
key | 1]. set (bit .
t
k445
1

}

// Array to hold current round data.

int data[6][65];

for

// Get statistics

(int
for

r = (0;
(int i

r < 6; rt#t)
0; 1 < 64;

data[r][i] = 0;

truc };

i++)

bitsct <32> g_subkey = 0x00000000;

// For cach of a million vectors

for

{

(int

i = 0;

i < 1000000; i+1+)

//  Make random wvector

bitset <32>

int

k — 0;

lhs = 0x00000000;

while (k < 6)

{

i
/7

int bit

if (!lhs[bit])

lhs.

k4t

set (bit, true);

Run subkey through P4, call
bitsct <32> psk = g.subkey;

// Form Control vector
bitset <80> v_l;

for

for

for

(int ¢
v.l[c]
(int ¢
v_l]c]
(int ¢
v_l[c]

if

0; ¢ < 16;

vl

cht)

lhs[c + 16];

16; ¢ < 48

;o)

hs[c - 16];
48; ¢ < 80; ci 1)
Ihs ¢ 48];

DDP3280(psk, v_1);

on quessing the key cxactly

(wt <= 6)

((int)((randl(sced) * (float)(32.0))))

result PSK

// Run PSK back throuyh P (—1}2 to get ths
// Form control wvector
bitsct <48> v_k;

for

for

(int ¢
v.k[c]
(int c
v_k[c]

0; ¢ < 32
g-subkey [¢

v_k

cH+)
I;

32; ¢ < 48; c++4)

g_subkey [¢

- 32);

// Form control vector w.p
bitset <80> v_p;

for

(int ¢
v.p|c]

0; ¢ < 32;
lhs [c];

ct )
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116
117
18
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

1

for (int ¢ = 32; ¢ < 48; ct1)
v_p[('} = lhs|c¢ 16];

hitset <32> s_p;

s_p = lhs;

DDP32.48(s_p, v_k);

for (int ¢ = 48; ¢ < 80; ctt)
v.ple] = s.ple - 48];

// Permute v_p
PI_1(v_p);

DDP32 ROINV (psk, v_p);
bitset <32> rhs = psk;

// Run vector back through PP7(—1)1

// Form control vector v
bitset <48> v;

for (int ¢ = 0; ¢ < 7; clt)
vic] = rhs (25 4 c];

for (int ¢ = 7; ¢ < 32; ct})
vic] = rhs|e = T];

for (int ¢ — 32; ¢ < 48; c4+)

vic] = rhs|c — 32];
DDP32_48_INV{lhs , v);

//  Encrypt vhs and lhs, record result

for (int r = 0; r < 6; ri{)

{

//ciksi_round(lhs, rvhs., key[r]);

// Count wcight of output text

to

and

get lhs

store in array

data|[r][lhs.count() + rhs.count()]++;

// RUN CHI-SQUARED TEST IHERE

int
for

long double chiResult = chiSquaredTest (temp,

temp [65] ;
(int idx = 0; idx < 65; idx++4)
temp[idx | = data[5][idx |;

cout << g.suhkey << endl;

for

{

}

(int rnd = 0; rand < 6; rnd++4)

cout << "Round.” << rnd + 1;

for (int wt = 0; wt < 65; wtt)
cout << .7 << data|[rnd][wt];

cout << endl;

expected );

cout << "Chi—Squared_Result ;7 << chiResult << endl;

// Clear the data atray

for

(int r = 0; v < 6; r+4)
for (int i = 0; i < 65; 1++4)
data[r][i] = 0;

// Get statists for 100 keys off by

for

{

(int 1 = 0; 1 < 5; i4+4)

for (int j = 1; j <= 100; jt1)
(
int bits_.set = 0;
g_subkecy = 0x00000000;
while (bits_set < i t+ 1)

int bit = ((int)((randl(sced) =

if (!g.subkecy[hit])

1

L2....,5 bits
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184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251

}

g_subkey . scet(bit, truc);
bits_sct it t;

// For cach of a wmillion vectors (wt <= )

for

{

(int vee = 0; vece < 10000005 veclt t)

//  Make random wvector
bitscet <32> lhs = 0x00000000;

int k = 0;
while (k < 6)
{

int bit = ((int){(randl (sced)

» (float)(32.0)))) ;
if (t1hs[bit])
{

lhs.sct (bit, truc);

ktt;

4

//  Run subkey through P4, call result PSK
bitset <32> psk g_subkey;

// Form Control wector w_l

bitsct <80> v_1;

for (int ¢ — 0; ¢ < 16; ct+)
v_l[c] lhs[c } 16];

for (imt ¢ = 16; ¢ < 48; ct+)
v_.l{c] = lhs[c - 16];

for (int ¢ = 48; ¢ < B0; ct+t)
v_l[c] = lhs[c — 48];

DDP32_80(psk, v_1);
//  Run PSK back throuwgh P°(—1)2 to gct rhs

// Form control wvector wv_k

bhitsct <d48> v.k;

for (int ¢ = 0; ¢ < 32; ct++)
v_k[c] = g-subkey[c];

for (int ¢ = 32; ¢ < 48; c+4)
vk[c| g-subkey ¢ - 32];

// Form control wvector wv_p

bitsct <80> v.p;

for (int ¢ = 0; ¢ < 32; ct+4)
v.plc] = lhs[c];

for (imt ¢ = 32; ¢ < 48; ct4)
vep[e] = Ths[c - 16];

bitsct <32> s_p;

s-p = lhs;

DDP32.438(s_p, v_k);

for (int ¢ = 48; ¢ < 80; ct4)
vop|c] s.plc — 48];

// Permute u_p

PI_.1(v.p);

DDP32_80.INV (psk, v_p);
bitset <32> rhs = psk;

// Run wector back through P°(—1)1 to get lhs

// Form control vector v
bitset <48> v;
for (int ¢ = 0;

c ctt)
v[c] = rhs[25

< 7
o

B
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=~
[

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
205
296
297
208
299
300
301
302
303
304
305
306
307
308
309
310
311

}

for (int ¢ = 7; ¢ < 32, ¢ft)
vic] = rhs(e 7],

for (int ¢ = 32; ¢ < d48; ct1)
vic] — rhs[e — 32];

NDDP32_48_INV (1hs | v);

//  Encrypt rhs and lhs . record vesult

for

{

// Count

(int r

= 0;

r

<,

G, rit)

J/ecikst_round (lhs . vhs. key[r]);

// and store
data[r]|[lhs.count{) | rhs.count ()] t;

werght

m

of output tert
array

}
// RUN CHI-SQUARED TEST IIERE

int temp

[65];

for (int idx 0; idx < 65 dxit)
temp [idx | = data [5][idx [;
long double chiResult — chiSquaredTest (temp, expected);

cout << g_subkcy << endl;
0: rnd <

for (int

{

cout

for (int wt

}

rnd =

<< "Round.”

= 0;

<l
wit

6: rnditt)

rnd ¢+ |
< 65; wtil)

cout << 7" << data[rd [ wt];
cout << endl;

cout << "Chi—=Squarcd.Result ;" << chilResult << endl;

// Clear the data array

r o< 6,

for (int
for

r — 0
(int i

= 0

i

<

data[r][1] = 0;

rit)
65 114)

long double chiSquaredTest(int data[], long double cxpected [])

{

}

long double chiSqr = 0;

// for cach in the 65 possible

for (int i = 0;

{

i< 65;

long double temp;
// O — Ezpected
temp = (long double)datali]

/7 (O k)2
temp = temp

// (O-E)2/E

*» temp;

i+1)

values

(expected [1]=1000000);

temp = temp / (expected [P ]*1000000);

// Sum

chiSqr — chiSqr 4 temp:

}
// Return to be

return chiSqr;

summed
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Appendix C

Differential Attack Implementa ion Code

/*********#**1**t*t******t********************************V*!*****t***tttit

Filename: differential_8_round_version.cpp
Author: Brian Kidney, P.Eng

Description :
Test to determine 1f the correct key can be obtain wsing a three round
version of CIKS—1 and the 10 > 01 > 11 differential.

B R R T L T E Ry
#include " diff.3_round_version.h”

#include " util.h”

struct Statc

{
char L[32];
char R(32];
char K[32];

b

void threc.round_diff_crecatc_ciphertext ()

{

const int rounds = 3;

char keys [32][rounds];
char diff_keys [32][rounds];

long+* seced = new lo
xsced — —1 » time({ ~JLL );

int total_test_size = 100000;

// Initialize keys to 4 random wvalues to be wuse for the entire test
for (int p = 0; p < rounds; p++4)
{
long key = ( ((int)((randl(secd) * (float)(0xFIFFF})) << 16)
+ (int)((randl(sced) * (float)(OxFFIFF))) );
int mask = 0x00000001 ;
for (int 1 = 0; 1 < 32; it+4)

keys[1][p] = (char)({bool)(mask & key));
diff.keys[i][p] = (char)((bool){mask & key));

mask <<= 1;
}
}
char actualKey [32];
memepy (actualKey , &keys [0 [rounds —1], 32);
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50 cout << "Actualokey " << cereateonlong (actualKey) << endl;g

ol

n2 for (int i = 0; 1 < total_testosize; 114)

n3 {

o4 // Set random values for the left and vight plaintert
a5 long left = ( ((long)((randl(seed) * (float)(OxFFFE))) << 16)
H6 i (long)({randl(sced) * (float)(OxFFFF))) }:
57 long right — ( ((long)((randl(sced) = (float)(OxFFFF))) << 16)
58 t (long)((randl(sced) * (float)(OxFFFF))} ):
Y

60 // Inuvtialize state variables

61 State state;

62 State diff_state;

6.3

G4 // The left and right wvalues to be unaltered.
65 create_array (state . L, left);

66 create_array (state R, right);

67

(62 // The left and right valucs to be altered by 1 bit
69 create_array (diff_state teft )

70 create_array (diff_state .1(, right);

71

72 // Introduce the difference anto any of the 32 baits
73 int difference.bit = (int)(randl(sced) = 32.0);
74 if (diffostate . L{difference_bit] — 0)

75 diff.state L{difference_hit] = 1;

76 clse

' diff_stat'(‘.L[(liffcrcn('c_l:it,] = 0;

7

79 for (int j = 0; j < rounds; j+1)

30

81 // Encrypt 1 round

82 memepy ( state K, &keys [0][j], 32);

83 memepy( diff_state K, &keys[0][j], 32):

84 ciksl_round (state);

85 ciksl_round(diff_state);

86

87 }

b

89 // Record the result

90 cout << create_ulong(state. L) << "7

91 << create_ulong(state . R) << "0

92 << create_ulong(diff_state L) << "7

93 << create_ulong (diffostate R) << endl;

04 }

95 delete sced;

9%  }

97

98 void three_round.diff_key_score ()

99 {

100 int good_differential_count = 0,

101

102 // Load the file

103 fstream file;

104 file .open(Tciphertext . txt”™);

105 if (!file)

106 {

107 cout << "Cannotoopencfile.” << endl

103 }

109 clse

110 {

111

112 string templ, temnp2;

113 unsigned long key;

114 unsigned long 1;

115 unsigned long r;

116 unsigned long di;

117 unsigned long dr;

114




118

119 {ile >>templ>>temp2>>key

120

121 // For each datae sect

122 while (file >>1>>r>>dl>>dr)

123 {

124 // Set up data variables

125 char bL[32];

126 create_array (bl, 1);

127 char bR[32];

128 create_array (bR, r);

129 char bDL[32];

130 create_array (bDL, dl);

131 char bDR[32];

132 create.array (bDR, dr);

133

134 char bK[32];

135 create_array (bK, key):

136 char bDK|[32];

137 create_array (bDK, key);

138

139 int total_diff_left = 0;

140 int total_diff_right 0;
141

142 State norm;

143 State diff;

144

145 memepy (norm. L, bl, 32);

146 memepy (norm . R, bR, 32);

147 memcepy (norm . K, bK, 32);

148

149 memepy ( diff . L, bDL, 32);

150 memepy ( diff .R, bDR, 32);

151 memepy ( diff . K, bDK, 32);

152

153 // decript with key.

154 ciksl_round.inv (norm);

156 ciksl_round.inv (diff);

156

157 for (int k = 0; k < 32; k+4+)
158

159 if (norm.L[k] != diff.L[k])
160 total _diff_right+4+;
161 if (norm.R[k] != diff .R[k])
162 total_diff_left | t;
163 }

164

165 // see if there is a ! — | difference.
166 // if so add 1 to count

167 if (total_diff_right = 1 && total.diff_left = 1)
168 good_differential_count+4;
169

170 // Output count.

171 cout << " Actual_Count."<< pgood_differential_count << endl;
172

173 for (int j = 0; j < 32; j+4)

174 {

175 good._differential_count = 0;
176

177 file .close ();

1738 file .open( " ciphertext.txt™);
179

180 string tcmpl, temp2;

181 unsigned long kecy;

182 unsigned long 1;

183 unsigned long r;

184 unsigned long dl;

185 unsigned long dr;




187
188
159
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

252

file >>templ>>temp2>>key

// For cach data sect
while (file>>1>>r>5dl>>dr) |

// Set up data variables
char bl [32];
create_array (blL, 1);
char bIR[32];
create_array (bR, r);
char bDL[32];
create_array (bDL, dl);
char bDR[32];
create_array (bDR, dr);

char bK[32];
create_array (bK, key);
char LDK[32];
create_array (bDK, key );

if (bK[)] — 0)
bK[j] = 1;
clse

bK[]] = 0;

if (DDK[j] — 0)
BDK[j] = 1;

eclse
BDK[j] = 0;

int total_diff_left = 0;
int total_diff.right = 0;

State norm;
State diff;

memepy (norm . L, bL, 32);
memepy (nortn LR, bR, 32);
memcepy (norm . K, bK, 32);

memepy (diff . L, bDL, 32);
memepy (diff . R, bDR, 32);
memepy( diff K, bDK, 32);

// decript with key.
ciksl_round_inv(norm);
ciksl_round_inv (diff);

for (int k = 0; k < 32; k++)

{
if (norm.L[k]

diff .L[k])

total_diftf_right++;
if (norm.R[k] != diff Rfk])
total_diff_lceft+;

}

// see if there is a I —
// if so add T to count

if (total_diff_right — 1 && total_diff_left

1 difference.

good_differential_count+4;

}
// Output count.

cout << good_differential_count << ecndl;
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