

AN INVESTIGATIO OF DATA- DEPENDENT STRUCTURES IN

CRYPTOGRAPHIC CIPHERS

St. John'

BY

@ BRIAN J. KIDNEY

A thesis submitted to the

School of Graduate Studies

in parLial fu lfillment of the

requirements for the degree of

Master of Engineering

FA ULTY OF ENGINEERING AND APPLIED SCIENCE

MEMORIAL UNIVERSITY OF NEWFOU DLAND

March 2010

Newfoundland

Abstract

This thesis studies the use of data- dependent structures in cryptography. Since the

introduction of RC5 by Rivest in 1994, which relied heavily on data- dependent rota­

tions for its securi ty [1], t hese structures have gained interest in cryptography. During

t he Advanced Encryption Standard selection process two candidate ciphers, RC6 and

MARS, relied on da ta- dependent structures.

The thesis focuses on CIKS- 1, a cipher introduced in the Journal of Cryptography

in 2002 [2], tha t relies mainly on data- dependent permutations for its security. Due

to its reliance on these permu tations, this cipher is chosen as a basis for the study of

data- dependent structures in cryptographic algorithms.

The firfl t attn.ck on CIKS- 1 preflented is a choflen plaintext attack wh ich exploits

the lack of change in the Hamming weight of the dat a as it is enciphered. The research

shows that there is a class of weak keys wi th low weight that can be detected when the

input weight is constrained. An attack on a 6- round reduced version of the cipher is

outlined tha t can reduce the search space of the first round subkey to within a weight

of two from the weight of the actual key. T his attack is experimentally shown to work

when the subkey weights are around six or less with a total time complexity for the

attack of 252 encryption operations.

The second attack presented is a variant of classical differential cryptanalysis.

Instead of focusing on the exact bit differ nee of the two inputs that make up the

differential, th attack instead focuses on the difference in their weights. An experi­

mental attack on a thre round reduced v rsion of the cipher is presented using this

technique which can retrieve the last round subkey of CIKS- 1 with a data complexi ty

of approximately 235 plaintext/ciphertext pairs and time complexity of approximately

235 encryption operations plus 268 partial decryption opera tions. I t i · also shown that

this can theoretically be extended to the whole cipher with a total data com plexity of

251 plaintext/ciphertext pairs and time complexity of approximately 2r,2 encryption

operations plus 284 partial decryption op rations.

D spite the weaknesses discovered in CIKS- 1, there is potentially some merit in

using data- dependent permutations in ciphers. Therefore, the implementation of

CIKS- 1 in software is investigated. T he cipher was originally designed to be fast

in hardware and contains many operations that work at the bit level, which are

inefficient to implement in software. i\ software version of the cipher is presented

which uses bi ts licing, effectively parallelizing the cipher on a single processor. This

version experimentally shows a speed up of approximately 175 times over a more

straight- forward implementation using arrays of elements to hold individual bits.

11

Acknowledgments

First and foremost , I would like to thank my wife, Lori Hogan. Without her support

and encouragement, this thesis would not exist. She has been my sounding board ,

my editor , my motivational speaker and my rock. She is the only person wi th whom

I would ever have undertaken this journey.

I would like to thank my supervisors, Dr. Howard Heys and Dr. T heodore Norvell.

Their funding allow me to start my research . Their support , guidance, t eaching and

immense patience have allowed me to complete my research. Along the way, they

have taught me many things.

I would also like to thank my parents, Noel and Roma Kidney. They have always

believed in me and pushed me to work hard, set my goals higher and never let me

quit.

Finally, I would like to thank my old office mate, Andrew House. He was always

there to answer a question, give an opinion or provide a needed distraction. Even

after he finished his degree, he was always there to push me toward completing my

own.

lll

Contents

Abstract

Acknowledgments

Table of Contents

List of Tables

List of F igures

List of Abbrev iations and Symbols

1 Introduction

1.1 Motivation for Research

1.2 Scope of Work .

1.3 T hesis Outline .

1.4 Summary of Results

2 O verview of Cryptography

2.1 Types of Cryptographic Algori thms

2.1.1 P ublic Key Ciphers . . .

2.1.2 Symmetric Key Ciphers

2.2 P roperties of Secure Block Ciphers

2.2. 1 Confusion and Diffusion .

JV

Ill

IV

V lll

IX

X

1

3

4

4

5

7

9

9

11

19

19

2.2.2 Spurious Keys and Unicity Distance. 20

2.2.3 Completeness , Avalanche Effect and the Strict Ava lan he CriLeri FI. 20

2.3 Introduction to Cryptanalysis . . .

2.3.1 Meet- in- th Middle Attack

2.3.2 Linear Cryptanalysis ...

2.3.3 Differential Cryptanalysis

2.3.4 Sid Channel Attacks

2.4 Summary

3 Data-Dependent Permutations and CIKS- 1

3.1 Data- Dependent Permutations

3.2 Cipher · with Data- Depend nt Permutations

3.2.1 RC5

3.2.2 RC6

3.2.3 Spectr- H64

3.2.4 Cobra-H64 and Cobra-H128

3.3 The IKS- 1 Cryptographic Ciph r

3.3.1 CIKS- 1 Data- Dependent Permutations .

3.3.2 Other Cipher Components

3.3.3 Description of Cipher . . .

3.3.4 Ini tial Analysis of CIKS- 1

3.3.5 Known Attacks

3.4 Summary

4 Weight Based Attack on CIKS- 1

4.1 Analysis of the CIKS- 1 Components

4.1.1 The CIKS- 1 Permutations

4.1.2 Fixed Permutations

v

21

22

23

25

26

27

28

29

30

30

31

33

34

36

36

37

39

41

44

45

46

47

47

48

4. 1.3 Key Addition

4.1.4 Addition .. .

4.2 Analysis of Weight Change Pro] agation

4.3 Pr posed Attack

4.4 Conclusions . . .

5 Differential Attack on CIKS- 1

5.1

5.2

Previous Differential Analysis of CIKS-1

Data- Dependent Permutation and the Propagation of Differences

5.3 Analysi of Differentials

5.4 Proposed Attack

5.5 Experimental Verification

5.5.1 Attack Complexity

5.6 Conclusion

6 Software Implementation of CIKS- 1

6.1 Implementing CIKS- 1 in Softwar .

6.2 Bitslice Implementation of Ciphers

6.3 Bitslice Implementation of CIKS- 1

6.3.1 Preparing the Input

6.3.2 Data- Dependent P rmutations

6.3.3 Modulo- 22 Additions

6.3.4 Fix d Permutations, Rotations and Key Addition

6.4 Experimental Results and Discussion

6.5 Limitations of Bitslicing

6.6 Conclusions

7 Conclusions and Future Directions

7.1 Conclusions

Vl

48

49

51

55

5

59

59

60

61

64

66

66

67

69

69

70

72

72

73

74

75

75

77

78

79

79

7.2 Future Directions

List of References

A CIKS- 1 Implementations

A.1 CIKS- 1 Ditset Implementation

A.2 CIKS- 1 Array Based Implementation

A.3 CIKS- 1 Bitsliced Implementation . .

B Weight Based Attack Implementation Code

C Differential Attack Implementation Code

Vll

81

83

88

88

94

99

108

113

List of Tables

2.1 Number of Rounds Versus I<ey Size for AES

4.1 Addition output as a function of x0 and x 1 .

15

50

4.2 Hamming weight change of modulo-22 addition. 50

4.3 Average output weight (J.L) with mroomum input weight of 6 over

5000000 encryptions 53

4.4 Test results for low weight attack 57

5.1 Frequency of occurrence of transitions of interest with random keys. 62

5.2 Differential chains for at tacking d ifferent numbers of rounds 65

5.3 Frequcucy of occurTcucc of desired difi"ercutial with raudolll keys. . GG

6.1 Elapsed tim for 320 million encryptions 77

Vlll

List of Figures

2.1 A Model of a Crytopsystem

2.2 Stream Cipher Model .

2.3 A SP Cipher

3.1 RC5 Encryption Algorithm .

3.2 RC6 Encryption Algorithm.

3.3 The Spectr- H64 Encryption Function [3]

3.4 The Cobra- H64 Encryption Function [4]

3.5 Th Cobra- H128 Encryption F\mction [4] .

3.6 P4; 4 Data Dependent Permutation with Example Inputs.

3.7 P8; 12 Data Dependent Permutation and its Inverse.

3.8 The CIKS- 1 Encryption Algorithm.[2]

8

12

14

31

32

33

34

35

37

38

40

3.9 Encryption Algorithm for Full 8 Rounds of CIKS- 1 41

3.10 The CIKS- 1 Decryption Algorithm. [2] 42

4.1 Deviation of Output Weight for Low Weight Keys over Rounds . 52

4.2 Proposed weight based attack on CIKS- 1 cipher 56

5.1 Probabilities of transitions of interest

5.2 Proposc<.l dift"crcutial attack ou IKS- 1 cipher

6.1 Example transposit ion of input for bitslice implementation

lX

63

()4

72

List of Abbreviations and Symbols

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CFB Cipher Feedback

CP Controlled Permutation

CV Control Vector

DES Data Encryption Standard

DDP Data- Dependent Permutation

DDR Data- Dependent Rotation

ECB Electonic Codebook

IV Initialization Vector

LHS Left Hand Side

LSB Lea t Significant Bit

MSB Most Significant Bit

NIST The United States National Institute of Standards and Technology

NSA Unit d States National Security Agency

OFB Output Feedback

RHS Right Hand Side

X

SAC Strict valanche Criteria

SPN Substitution Permutation Network

STL Standard Template Library

SWIFT Society for Worldwide Interbank Financial Telecommunications

WEP Wired Equivalent Privacy

X l

Chapter 1

Introduction

"Ther is a ton of evidence both in computing and ou tside of it which

shows that poor security can be very much worse than no security at

all . Tn pFl.r ticu l::tr, stuff which m::tkcs nsers think they me secure bnt is

worthless is very dangerous indeed." - Alan Cox, Linux Kernel Developer

For hundreds of years, governments throughout the world have used cryptography

to guard their se rets from their enemies. Julius Caesar used simple substitutions

and rotations to convey messages to his troops at war. The simplest of these ciphers

substituted Greek letters for Roman, making it impossible for his enemies to read it .

Another, now known as the Caesar Cipher, rotated each letter thr places down the

alphabet (i.e. A~ D), thus making the message appear to be gibberish if intercepted

[5] .

Over t ime, imple ciphers such as t hese were realized to b easily defeated using

statistical information known about the language in use, and thus to be weak. They

were replaced by newer ciphers using techniques such as the wholesale replacement

of alpha- num ric characters with symbols or using published works as keys . One

example of this was the set of encrypted messages left by Thomas Beale, an Amer­

ican prospector, outlining details on a large cache of gold, si lv r an I gems he had

buried. One of the messages was found to have used the United States Declaration

1

of Independence a~ a key. After numbering the word~ in the document, the message

is revealed by replacing each number in the encoded message wiLh the firs t let ter in

the corre~pondiug word from the Declaration [5] .

By the Second World War thc~e types of ciphers were also being replaced , man­

dated by the need for more secure communication to relay military plans. The Ger­

man government had started to employ the usc of mechanical cipher devices such as

the German Enigma machine, which created codes increasingly difficul t to break by

hand. This in turn led to the use of computers being employed by the code breakers,

which again led to the development of more secure ciphers using computing.

With the prolifera tion of computers and computer networks after the war, the us

of cryptography moved from primarily a government and mili tary domain to other

sectors such as banking. For example, in 2006 the Society for Worldwide Interbank

Financial Telecommunications (SWIFT) handled an average of 11 .4 million secure

transactions per day on their network [6]. Without encryption, these transactions

would be vulnerable to attacks which could induce chaos in world economies.

Today, encryption is ubiquitous in modern life. In 2005, 58% of Canadian internet

users went online to do their banking electronically and 55% used it to pay bills, all

secured by forms of encryption [7] . Voice- over- IF applications such as Skype™ now

employ encryption to keep conversations private. Even operating systems such as

Microsoft Windows™ and Apple OSX™ include functionality to encrypt personal

files.

One byproduct of the public exposure of cryptography is the move to ~tandardize

it in public. For many years, ciphers used for standards were chosen by governments

in conjunction with industry. This led to belief that these ciph rs were intentionally

weakened to allow the government to decipher them easily. Such was suspected of

the Data Encryption Standard (DES) [8]. Although it has never been found or even

proven to exist, many have suspected a trap door in this cipher that was developed

2

by IBM in conjunction with the United States National Security Agency (SA), an

agency of the government of the Uni ted States [8]. Today, commercial security stan­

dards such as this are no longer developed secretly. Standards such as the Advanced

Encryption Standard (AES) (the replacement for DES) are now selected through pub­

lic processes involving governments, industries and academics. In fa.ct, many of the

world 's cryptographic ciphers are now published and undergo scrutiny from scholars

worldwide to determine their strengths and weaknesses. One such cipher is CIKS- 1,

which was published in January 2002 [2].

The CIKS- 1 cipher was proposed as a fast and secure method of encryption de­

signed for hardware implementation. The main primitives used in the algorithm are

Data Dependent Permutations (DDPs), a large set of function · Lhat use part of the

data involved in the encryption (either plaintext or key) to permute other portions of

the data. These structures have appeared in other ciphers as well, including RC5 and

RC6, but normally in the less general form, Data- Dependent Rotations (DDRs)[1][9].

DDRs have shown to be resistant to popular cryptanalysis techniques such as linear

and differential attacks [10] and the CIKS- 1 authors state the same for DDPs [2].

1.1 Motivation for R esearch

The DDP is proposed as a component in new cryptographic algorithms. It can be

implemented in hardware to achieve fast speeds [2] and a subset of these permutations

has been shown to be resistant to linear and differential cryptanaly is [10]. Two

popular algorithms proposed by Ron Rivest , RC5 and RC6, use a subset of the DDP

functions, in the way of DDRs, as main parts of cipher [1][9] .

In 2002 , CIKS- 1 was proposed as a new cipher that was fas t in hardware and

resistant to a ttack. The cipher uses a more general form of the DDP as its main

primitive with only four other functions to create its security. Since this algorithm

3

relies so heavily on DDPs, it makes a good andidate for a study on the securi ty

properties of the functions. Therefore, we use this cipher as our ba.sis for cryptographic

attacks to determine the qualities of DDPs.

1.2 Scope of Work

The purpose of thi · thesis is to investigate the properties of DDPs as a cryptographic

primitive. First , an introduction to cryptography and concepts required in later

chapters is provided. Included is a look at general guidelines for secure a lgorithms

and common ryptanalysis techniques. T here is also an overview of selected ciphers

with DDPs with a more in- depth look at CIKS- 1.

In !at r chapters the CIKS- 1 cipher is used as a testbed for th DDP. The

properti s of th DDP are studied under the use of low weight inputs, exposing the

need for a well- defined key schedule. A differential attack i proposed for the cipher

which exposes limitations on the CIKS- 1 use of DDPs. Finally, there is a study of

techniques optimizing speed when implementing DDPs in software.

1.3 Thesis Outline

The thesis progre ·ses in the following manner:

• Chapter One: An introduction to the research conducted.

• Chapter Two: An introduction to cryptography and cryptanalysis.

• Chapter Three: An introduction to ciphers with data- dependent structures,

with particular focus given to the CIKS- 1 cipher.

• Chapter Four: A weight- based attack on the CIKS- 1 cipher is proposed.

• Chapter Five: A differential attack on the CIKS- 1 ciph r i · proposed.

4

• Chapter Six: A bitsliced implementation of CIKS-1 is presen ted as an efficient

software implementation.

• Chapter Seven: A summary of results and conclusions.

1.4 Summary of Results

In Chapter 4 of this thesis, a weight- based attack on the CIKS- 1 cipher is proposed.

The attack focuses on the limited effect of the weight of the key on the weight of

the data being processed by the cipher. A class of weak keys with low Hamming

weight that can be exploited to constrict the search area for actual key is presented.

An attack is demonstrated on a six- round reduced version of the cipher wi th subkey

Hamming weights limited to six or less. The attack has a total time complexity of

252 encryption operations and reduces the search space for the actual key to a value

with Hamming weights within two of the actual weight.

In Chapter 5 another attack is proposed which takes advantage of weight prop­

agation in CIKS- 1. This attack is a non- tradi tional differential attack where the

diftcrcutials arc diHcrcuce::; in the Hamming weight of the plaintext inputs. Au ex­

perimental verification of t he attack is complet ed on a three- round rednced version

of the cipher with a data complexity of 235 plaintext /ciphertext pairs and a time

complexity of 268 p artial decryption operations. Differentials for the attack on the

full 8- round versions of the cipher are also presented which results in an attack with a

data complexity of 252 plaintext/ciphert ext pairs and a t ime complexity of 284 partial

decryption operations.

Finally, in Chapter 6, efficient implementation for CIKS- 1 in software is investi­

gated. Since the cipher was designed for hardware, many of the primitives perform

opera tions at the level of bits and a.s such do not effectively utilize word- ba.'ied in­

structions in genera l purpose processors. An implementation of CIKS- 1 using the

5

bitslicing technique is presented which fully utilizes the instru tion s t of modern

processors. The 32- bit and 64- bit versions of this implementation a re compared to

implementations using arrays and bitset (from the C++ STL). It is shown that the

bitslice techniqu provides a speed up of 234 times for the 32 bit implementation

and 425 times for the a 64- bit implementation over th fast st of the other versions

presented .

6

Chapter 2

Overview of Cryptography

Cryptography is the study and process of hiding information. Generally, it is used to

keep third parties from viewing sensitive data. T his includes concealing stored data

such as encrypting data on a computer hard drive, but more often refers to the transfer

of information over an insecure communications channel. For illustration , a transfer of

information model will be used in this discussion, employing the following characters:

Alice, the data transmitter; Bob, the data receiver; and Oscar, th intruder.

To transfer the data securely, a cryptosystem is used. A cryptosystem is defined

as a set of functions and data sets required to transmit data from one party to

another, secure from interception by a third party. As presented in [11], the parts of

a cryptosystem include:

• an encryption function,

• a decryption function,

• a set of possible plaintexts,

• a set of possible ciphertexts, and

• a set of possible keys or keyspace.

7

The encryption function is used to t ransform da ta in the set of possible plaintexts

to data in the set of possible ciphertexts, based on a key from the keyspace. This

function must be one- to- one in order for the plaintext to be restored by the decryption

function [12]. Figure 2.1 shows the standard model of a general cryptosystem.

I n..;cl·urc Ch:mncl

Figure 2.1: A Model of a Crytopsystem

If Alice has plaintext da ta p0 , p 1 , --- , Pn- l and wants to send it to Bob, but wants

to make sure that only he can read it , she needs to encrypt the da ta. To do this she

can use the encryption function fe to produce ciphertext ci = fe(Pi), with a key e.

She can then send the resulting ci ph rtext data c0 , c1 , . .. , Cn- J to Bob over an insecure

channeL When Bob receives the data he uses the decryption function, 9d to compute

Pi = gd(ci) with key d to reproduce the plaintext.

In an effective cryptosystem, the decryption key d (and sometimes the encryption

key e) is the only piece of information that needs to be kept from Oscar in order to

ensure confidentiality of the transmit ted data. Therefore, Alice must have a secure

mechanism to provide Bob with the key. Oscar is therefore left with trying to guess

the key to decrypt the data, or trying to exploit flaws in the cryptosystcrn to recover

the original data. This latter approach is known as cryptanalysis.

In the following sections, an introduction to cryptography is presented. There

is a discussion of the different types of cryptographic functions (or ciphers) and the

ways in which they are used. This is followed by a discussion of general properties

for secure ciphers. Finally there is an introduction to cryptanalysis, th practice of

8

attacking iphers.

2 .1 Types of Cryptographic Algorithms

Cryptographic algorithms are normally classified into two groups Lmsccl on the type

of k y which they use. When the encryption key mploycd in the cipher must be kept

secret, it is referred to as a symmetric (sometimes called shared or secret) key cipher.

When the security of the cipher docs not depend on the encryption key used being

kept ·ecr t , the cipher is referred to as an asymmetric (or public) key cipher. These

ciphers get their names from the fact that they are designed in such a way that one

key can be distributed publicly, without compromising the s curi ty of the function.

Symmetric and public key ciphers are dis usscd in the following se tions. However,

symmetric key algorithms are explored more since such algorithms arc the focus of

this thesis.

2.1.1 Public Key Ciphers

In [13] Diffie and Hellman outlined a new method for cnrrypt.ing data which uses two

separate k ys rath r than the traditional one key. Of the two, one is to be kept private

while the oth r is made public. Th y called the scheme public k y cryptography.

In a public key cryptosystem as proposed by Diffie and Helman th ender en­

crypts the data using the public key which is unique for each r ceiver. The encryption

is nominally done using a. mathematical computation which is easy for the sender to

perform. Security is gained by choosing a problem which is intractable with the pub­

licly known information. The receiv r (of course) has extra. information, the priva te

key. This key is used in a function, ommonly referred to as a trapdoor function, that

allows the r ceiver to easily recover th original data.

The most frequenty used public key algorithm, referred to as RSA, wa proposed

9

by Rive::; t , Shamir and Adleman in [14] and is presented here a.'::i an example. The

!:lecurity of the RSA algorithm is based on the assumption that factoring the product

of two large primes is an intractable problem. To generate key::; , the receiver must

choose two large prime numbers p and q. From these numbers,

n=pxq (2.1)

and

¢(n) = (p- 1)(q- 1) (2.2)

are generated. Then another number b is chosen such that 1 < b < ¢(n) and the

greatest common divisor of b and ¢(n) is 1. The final part of the key a is calculated

such that

a= b- 1 mod ¢(n). (2.3)

The public key consists of n and b, while the private key consists of p , q and a.

To encrypt data the sender must convert it to an integer form between 0 and n - 1.

If the message is large, it will need to be broken into multiple integers. Once in this

form , the data x is encrypted using the function

(2 .4)

Once received, the ciphertext can be decrypted using the inverse trapdoor function

9(n,a) (y) = ya mod n. (2.5)

The security of RSA is based on the widely held belief that given a choice of large

enough primes, knowing f (n,b)(x), band n solving for x presents a computationally

10

infeasible problem of factoring large numbers that are a product of two primes. Know­

ing either a or the primes p and q so that a can be computed, allows the receiver to

reverse the encryption using the trapdoor function g(n,a)(y). This leaves an attacker

with the most obvious attack possibility of factoring n into its two prime factors p

and q so that a can be computed. However, prime factorization is considered to be

computationally difficult problem for large n (e.g. n of a few hundred bits).

Other popular public key ciphers include those based on the Discrete Logarithm

Problem. The algorithms are based on logarithms in finite groups which are one­

way functions such as the ordinary logarithm found in RSA. One such cipher is the

ElGamal cryptosystem [11] .

2.1.2 Symmetric Key Ciphers

Due to the mathematics involved in public key cryptosystems, the ciphers are inher­

ently slow in encryption speed. In applications where speed is a priority, symmetric

key ciphers are normally employed. In some applications the two are combined , using

public key cryptography to transmit a secret key that can then be used by symmetric

key ciphers.

Symmetric key ciphers, also called shared or secret key, come in two varieties -

stream ciphers and block ciphers. The following sections outline the two types, giving

more weight to block ciphers since they are studied closely in the chapters that follow.

Stream Ciphers

Stream ciphers are designed to encipher data with minimal delay. To do this , they

operate on single symbols at a time, thus eliminating the requirement to wai t for

data to build in a queue. The primary component of a stream cipher is a keystream

generator, the purpose of which is to generate a continuous stream of pseudorandom

bits. This stream of bits is know as the keystream and is combined with the plaintext

11

to produce the ciphertext. The combining operator can vary from cipher to cipher;

however it is most commonly a simple modulo- two addition or bitwise exclusive- or.

The decryption of the data is achieved by running the ciphertext through the

same cipher to obtain the plaintext. In order for this to work, th s nder and receiver

must not only have access to the same key, they must also ensure that the keystream

generation i. synchronized on both ends of th communication. Figure 2.2 shows the

basic stream ipher model.

Key
Encryption

Key
Decryption

Figure 2.2: Stream Cipher Model

Stream ciphers are commonly employed in communication networks. The proto­

cols used in these networks commonly require limited amounts of buffering to reduce

the amount of latency. Example stream ciphers found in common n tworks are the E0

cipher, used to secure communications between Bluetooth devices, and the Wireless

Equivalent Protocol, or WEP, found in IEEE 802.llb wireless networks [15][16].

Block Ciphers

Block ciphers are symmetric (or shared) k y cryptographic algorithms that encipher a

fixed length of data, or block, at a time. They are typically product ciphers, meaning

they have a simple function known as a round, and the final ciphertext i a result of

passing the data through many rounds. Each round uses a different key known as

a subkey; therefore, there is a requirement to be able to derive these keys from the

shared key. The process used to d rive the subkeys is known as a key schedule.

Block ciphers are designed to take advantage of the word length of the hardware on

12

which they will be used. If designing a block cipher for a modem personal computer,

it would most likely be designed with 32 bit or 64- bit words to take full advantage

of the instruction set provided by the processor.

The Substitution Permutation Network (SPN) is commonly used as an example

of a block cipher. Presented by Feistel in [17], the SP is a simple cipher consisting

only of substitu tions and permutations , as its name suggests. The components of an

SPN are quite similar to that of DES and AES , but th algorithm is simpler, making

it a good learning tool. The simple exampl presented in Figure 2.3 is used by Beys

in [18], in a tutorial to _illustrate cryptanalysis techniques.

As cau be secu in Figure 2.3, the algori thm takes as input a. fi.xed data. block of

JG bits. T he firs t three rounds use an identical round strncture: add the subkey (in

this case by simple modulo- two addit ion) ; perform a substitution for each sub- block

of four bits comprising the da ta; and p rmute the result. The fourth round does not

include the permuta tion, but an additional subkey is added following the substitution.

This is done to prevent an attacker from ignoring the final substitution since wi thou t

the added key it could easily be revers d.

The Advanced Encryption Standard

From 1997 to 2001 , The United States National Institute of Standards and Technology

(NIST) held a competition to replace the DES. The winner was to be chosen based on

security, cost and characteristics of the cipher [19]. Security was the most important

criterion, and as such, any cipher that showed vulnerability during the competit ion

was eliminated . The other two criteria were then used to differentiate the remaining

candida tes. The cost criterion looked at the complexity of each algorithm with respect

to both sp eed and memory. Finally th characteristics of each cipher were compared ,

including such qualities as flexibility and simplicity of the cipher.

In the end , the Rijndael cipher by Daemen and Rijmen was chosen as the new

13

p

c Cipherlexl c
"

Figure 2.3: A SPN Cipher

14

AES. The ciph r is an iterated ciph r with varying key length depeuding on the

number of rounds employed. Table 2. 1 shows the key size for the thr e round lengths

dch11cd for the cipher. All operations nscd in tltc cipher arc word oricnt<'d.

umber of Rounds
10
12
14

Key Size
128 bits
192 bits
256 bits

Table 2.1: Number of Rounds Versus Key Size for AES

AES has a structure quite similar to the SPN presented in the previous section.

There is au initial whitening of the data by mixing the IirsL round subkey with Lhc

plaintext via an exclusive-or operation. T hen the next T - 1 rounds involve a sub-

stitution , linear transformation and subkey mixing just as with the SP . The final

round excludes th column mixing portion of the linear transformation.

The sub titution used in AES is an 8- by- 8 substitution box, or S Box. For each

byte in the cipher data, the substitution replaces the data ba ·ed on a conceptual

256- by- bit lookup table. These values an also be calculated using finite field

mathematics.

The lin ar transformation that is performed next i a combination of a simple

shifting of bytes and column mixing. T he data in the AES is held in a variable called

State which is a 4- by- 4 byte matrix d fined as

so,o so,! so,2 so,3

State=
s1,o s1 ,1 8 1,2 s l ,3

(2.6)
82,0 82,1 82,2 82,3

83,0 83,1 83,2 83,3

where Sm,n is the state byte s in row m , column n . The shifting rotat s each row m

bytes to the left with wrapping. To mix the columns of data in the state variable

15

each column of data is multiplied by a column of data in a finite field!F28 . T he result

of the multiplication is used to replace the original data of the olumn. Finally, for

each round there is subkey mixing which is done via an exclusive or as was the case

with the whitening [11].

Modes of Operation

In [20], the U.S. ational Bureau of Standards (now NIST) introduced four modes

of operation for block ciphers: Electonic Codebook (ECB), Cipher Block Chaining

(CBC) , Cipher Feedback (CFB) and Output Feedback (OFB), under which DES

could be run. T hese modes specify how the cipher could be used in various scenarios,

and though intended originally for use with DES, they are commonly used with many

current block ciphers.

ECI3 is the native mode for all block ciphers. It is defined as the most simple

use of the ciph r , ncrypting one block at a t ime, independent of all other blocks.

Due to this independence, the sender is gum·ante d that an error in transmission in

a single block will not propagate to others. ECB mode works straightforwardly for

fixed length data that is a multiple of the block size. If the data does not completely

fill mul tiple blocks, padding is required in the final block. When u ing this mode, the

sender should be aware that repeating blocks of data using the same key will result

in a repeat in ciphertext at the output, which could be exploited for an attack .

The llext mode defined in [20] iR CBC mode. Iu this mode, each ou t.pn t. block is

dependent on the last with an Init ialization Vector (IV) being used to produce the

first round output block. To use this mode, the send r firs t selects an IV, c0 . The

da ta is t hen encrypted using

(2.7)

where i 2: 1 and f k is the encrypt ion algorithm in use with key k. As can be seen, each

16

plaintext block Pi is added modulo-two with the previous ciphertext block ci- J before

being encrypted (with the exception of the first block, which is added modulo- two

with the IV) . The inverse of this opera tion is

(2.8)

where .9k is the decryption algorithm, using the same key k .

The advantage this mode has over ECB is that identical inputs do not result in

identical output when using the same key. However, this mode still requires padding

when the dat a size is not a multiple of the block size. As well , the introduction of

dependence on previous ciphertexts comes with error propagation. An error in ci will

result in errors in both Pi+l and Pi· Also, the loss of a single block of ciphertext (ci)

in transmission results in a loss of two plaintext blocks in decryption.

To overcome the limitation of requiring t he plaintext size to be a multiple of

the cipher block size, a mode that converts a block cipher into a stream cipher can

be used. Both CFB and OFB accomplish this task. When using these modes the

encryption and decryption operations need to be synchronized to ensure the plaintext

at both ends of the cryptosystem match.

In CFB mode, m bits are encrypted at a time where m ::; n, the number of bits

in a block. Again, the CFB uses an IV, x 0 . Once chosen, the plaintext blocks are

encrypted using the operation

(2.9)

where MSBm is the m most significant bits of the encryption of the input variable;

fk(xi) and Pi and Ci represent m bits of plaintext and ciphertext respectively. This

mode also requires the calculation of the next block cipher input, Xi+l using

17

.------------------------------·-----

(2.10)

where LSBn- m is the (n - m) least significant bits of :r;i and "I I" is a concatenation

operation. Decryption is a similar operation to encryption.

CFB can be used to reduce the padding requirement , however it comes with a

cost in error propagation. Depending on the location of the error in the ciphertext,

a single bit error in transmission can create errors in as many as (!f!: + 1) plaintext

blocks. After the error has propagated through, CFB will start producing the correct

p laintext again at the receiver, or self- synchronize. The result of losing a block in

CFB is equivalent to that in CBC.

The last mode outlined in [20] is OFB mode. This mode is similar to CFB mode in

that it transforms a block cipher to a stream cipher; however, instead of feeding back

ciphertext, keystream bits are fed back. Again, an IV :r:0 is chosen and the ciphertext

of m bits, 1 ~ m ~ n, is created using

(2.11)

the same operation as in CFB. However the next value of input is calculated as

(2.12)

thus depending only on the previous values of the keystream. This has the advantage

that an error in transmission of the ciphertext will not propagate to the decryption

of other plaintext bits. However, a lost block of ciphertext results in loss of synchro­

nization and continual error in the recovered plaintext.

Even though CFB and OFB can be used to convert a block cipher into a stream

cipher, it should be noted that this does not automatically overcome the latency

problems with block ciphers. This is due to the fact that the block cipher usually

18

functions on larger data inputs.

Now that the various types of ciphers and their operation have been introduced ,

the next section looks at properties considered desirable for secure ciphers. After this,

an introduction to cryptanalysis is presented.

2.2 Properties of Secure Block Ciphe rs

In the body of literature for cryptography research there are many theories presented

for what makes a secure block cipher. For modern cryptography, one of the first

works to approach the topic was [12] by Shannon. In this paper, Shannon approaches

the study of cryptosystems from an information theory point of view. In doing so,

he presents properties that are desirable to make a cipher secure. Since then, others

have added to this list , and a subset of these properties is presented here.

It should be noted that though these properties can be used as a guide in design ,

in [21] Knudsen warns against overvaluing them. He notes tha t Shannon's principle

to ensure that a cipher is secure against all known attacks is still considered the best

design principle for ciphers.

2.2.1 Confus ion and Diffusion

Confusion and diffusion are rela ted properties presented by Shannon in [12] . Confu­

sion is a relationship between t he key and the ciphertext . The goal is to make the

relationship as complex as possible. If the relationship is simple (for example a simple

rotation of symbols such as a Caesar Cipher) , the attacker can use simple statistical

analysis, based on knowledge of the plaintext language, to break the cipher. However,

as more complexity (or confusion) is added to the relationship, the statistical analysis

required by the attacker grows in complexity as well, with the ultimate goal of being

infeasible.

19

Diffusion is the concept of hiding any redundancy of in put. bits from beiug discov­

ered in the output bits. The goal is to have each bit. of plaintext infiuence as much

of the ciphertext a.s possible. T his makes it more difficnlt for t he attacker to detect

any statistical relationship between the plaintext and ciphertext.

2.2.2 Spurious Keys and Unicity Distance

Spurious keys are keys used in decrypting ciphertext that lead to a plaintext that

has meaning, but is not actually the plaintext. If an attacker has only the ciphertext

and through trying multiple keys comes across two keys in which the plaintext result

is meaningful, without further information it would be impossible to determine the

intended message.

Using this concept, Shannon presents the idea of unicity distance in [12] . This is

defined as the amount of ciphertext that would be required to reduce the number of

spurious keys to zero. Put another way, unicity distance is the amount of ciphertext

the attacker would require to ensure the correct key has been found, given enough

time to exhaustively search all keys. Obviously, the larger the unicity distance, the

better for the security of the cipher, as it has a direct relationship on the complexity

of a ciphertext- only attack.

2 .2.3 Completeness, Avalanche Effect and the Strict

Avalanche Criteria

Completeness, avalanche effect and the Strict Avalanche Criteria (SAC) are related

measures of how well a cipher is designed. In fact, they are an expansion on Shannon's

concept of diffusion. In [22], a cipher is said to be complete if each output bit is

dependent on all of the plaintext bits in the output. Feistel introduces a related

concept, the avalanche effect, [17] whereby a change in any one input bit should

20

result in a change of~ of the output bits.

In [23], Webster and Tavares combine Lhe previous ideas to define Lhe concept of

SAC. 13y definition of SAC, a change in one iuput bit :-;ltonld change each output

bit with a probability of ~ · Ciphers exhibiting this property do not have a strong

correlation between input and output bi ts.

2.3 Introduction to Cryptanalysis

In the past , many ciphers depended on the attacker not knowing how they worked

to ensure th ir security. In modern cryptography this is no longer the normal proce­

dure. Modern cryptographers design their iphers according to Ker khoff 's Principle:

assume that your attacker is familiar with the algorithm in use. T hi · means that the

attacker cannot just work on decrypting intercepted data, but also work 011 finding

fl aws in the cipher itself.

T h re are four common types of cryptanalytic attacks: known ciphertext, known

plaintext, chosen plaintext and chosen ciphertext. A known ciphertext attack is the

same as the attacker intercepting ciphertext during transmission. o other informa­

tion is known. In a known plaintext attack, the attacker ha: th benefit of not only

having the ciphertext , but also the corresponding plaintext. For the chosen plaintext

attack, not only is the plaintext known, but the attacker is assumed to have been able

to access the encryption device and thus is able to choose a particular plaintext of

interest and to det rmine the corresponding ciphertext. The chosen cipher text attack

is similar to the chosen plaintext ; however, access to the decryption device has been

gained and therefore the attacker can choose a ciphertext of interest and obtain the

plaintext [11].

In all cases, the objective of the attack is to gain information about plaintext

encrypted giv n only ciphertext. The ultimate goal is to obtain the key, but any

21

information revealed will allow the attacker to reduce the number of keys needed to

search. In fact , for an ideal cipher, an exhaustive key search (trying all possible keys)

is the only method of attack. In practice, many ciphers leak information about their

key, reducing the size of the search space. An attack on a. cipher is considered to

be successful when is able to reduce the search space to less than the 2n possible

keys (where n is the key size in bits). Although many attacks are theoretical in

nature and not possible to implement due to the time or amount of data. required ,

any weakness found is usually considered an indication that there may be others to

find , and therefore the cipher will be considered inadequate.

The following sections outline some examples of attacks found in the literature.

2.3.1 Meet- in- the- Middle Attack

In [24], Merkle and Hellman introduce the concept of a meet- in-th middle attack.

When investigating ways to improve ciphers by running data. through a. cipher multiple

times, they noted a. flaw in blindly choosing two keys and running the data. through

two iterations of the cipher. Even though the key length is effectively larger, they

found that with a. trade off on the amount of memory required, the attacker can

attack the cipher in only double the time.

To do this , the attacker must have access to a. set of plaintexts and corresponding

ciphertexts. The attacker first encrypts a. portion of the plaintext for all possible

keys through the first half of the combined cipher and stores the result. The attacker

then takes the corresponding portion of the original ciphertexts and docs a partial

decryption of the data. for all known keys. If a match is found between the encrypted

and decrypted data (in the middle of the cipher) , a. second test with more data. can

be performed to show the correct combined key has been found.

This attack exploits the fact that in doubling the key size, it is expected that the

number of exhaustive key search operations will go from 2n to 22n. However , if there

22

is enough available memory (2n blocks), this attack can be performed in 2 x 2n or

2n+ 1 operations. When designing a cipher , care should be employed to ensure this

flaw is not. made available to ;.m attacker.

2.3.2 Linear Cryptanalysis

In [25], Matsui presented an attack on the DES cipher which exploited a bias derived

from the probability of linear equations of data in the cipher. This attack is known

as linear cryptanalysis and is outlined in a more general form in [18].

The idea behind the attack is to find linear equations involving both input and

output bits which have a high or low probability of being satisfied. These equations

are commonly of the form

(2 .13)

where the i and k subscripts are indicators of the position of the bit in the input (.x)

and output (y) , respectively. If a cipher is completely random, an equation of this

form should hold with a probability of ~ · If an equation of this form can be found

with a large bias in the probability, it can be used to extract subkey bits within the

cipher.

The first step in setting up a linear cryptanalysis attack is to examine the non­

linear elements of the cipher for possible linear approximations. This can be achieved

by running all possible inputs through the cipher component (e.g. s- box) , masking

off all combinations of input and output bits, and counting the number of times the

exclusive-or of the masked input bits is equal to the exclusive- or of the masked output

bits. Once this procedure is complete, the combinations with the largest and smallest

counts are those with the largest bias and can therefore be used for the attack.

When the analysis of all non- linear components is complete, the a ttacker must

23

then string together the inputs of interest to provide a complete paLh through to

the second last round of the cipher. For instance, if you have approximation for one

component of

(2. 14)

the next compon nt in the chain should use the output bit y3 as its input. In using

this method, the total bias of the approximation can be calculated using Matsui's

Piling- Up Lemma

n

E = 2n-l II C 1,2,3, ... ,n t· (2. 15)
i = l

where n represents the number of active components and Ei is bias of probabilit ies,

or the amount by which they deviate from ~.

This equation is derived with th assumption that all components arc indepen-

dent which they are strictly not. However, in most cases it provides a close enough

approximation.

Once an approximation through to the second last round has been found , the

attack can commence. The output bits from the approximation indicate which bits

of the final subkey one can attack, based on their relationship to t.hc final subkey

in the last round . The attack is a known plaintext attack where the attacker uses

input bits involved in the linear approximation. The output is run back through the

final round using all possible values for the partial subkey under attack in the final

round. With each decryption, a count is kept of how many times the expected value

of the approximation at the output of the second last round is consistent with the

input bits. Once all possible subkeys have b en tried , the partial subkey with the

largest bias is chosen as the actual value of the bits in the subkey. In [25], the data

complexity of the attack is given to be approximately 1

t 1,2,3,. ,1'l

24

2. 3 .3 Differential Cryptan alysis

Introduced by Biham and Shamir in [26], differential cryptanalysis is a chosen plain­

text attack. It is based on the fact that in an ideal cryptographic algori thm, given

any difference in the input , !::,X , th probability of resulting in a particular differ nee

at the output, !::,Y , would be p6 x _.6 y =
2
:. where n is th number of bits in X. If we

can find a difference in the input that deviates from this probability, we can exploit

it to xtract information about the cipher key.

Differcutial cryptana.lysis classically ut>es Hett> of pain; of iuputs that have a cmn­

mon difference !::,X = X 0 EB X 1, where X 0 and X 1 repre ent two different input values

and EB represents bit- wise exclusive- or. These pairs, when used as input to the ci­

pher, result in an output difference Y0 EB Yt which with high probability is equal to a

value !::,Y. The pair, (!::,X, !::,Y) is referred to as a differential.

To find differentials of interest, the various primitives of the cipher are usually

analyzed to find any pattern tha t may be exploitable. For example, if a cipher

uses substitutiou boxes , or s- boxes, eacb iudividual s- box can be analyz.ed to fiud

a difl:"erential that occurs with a probabil ity greater than expected. The larger the

deviation, generally the greater the likelihood of success for the attack on the cipher.

Once the individual components are analyzed , the differential must be combined

to find a total differential that. passes through the entire cipher with the great st

probability.

Highly likely differentials can be exploited to determine key bit information. Once

a highly probable differential (!::,X, !::,Y) is found for r rounds of an r+1 round cipher,

the lat:it rouud subkey can be attacked. Many pairs with the input difference !::,X are

encrypted over r + 1 rounds. Each pair is then decrypted for the last round using all

possible subkeys. A check for the output difference ~::,y of round r - 1 is perform d

and a count for the number of time it occurred with the given subkey is increment d.

The actual subkey will result in the largest count of the 6.Y occurrences as predicted

25

by the different ial.

2 .3.4 Side-Channel Attacks

Side-channel attacks are attacks that are not focused on the cipher itself bu t ra ther

its implementation. When implementing an algori thm, care must be taken such that

details of the data within are not revealed due to implementation measur ments. Two

type. of common side- channel attacks are outlined in the following sections: timing

attacks and power a ttacks.

Tim ing Attacks

Introduced by Kocher m [27], t iming attacks exploit implementations of a cipher

which take an amount of t ime, dependent on the input data. The author lists pos­

sible reasons for the variability as: performance optimizations to bypass unnecessary

operations, branching and conditional statements, RAM cache hi ts , and processor

instructions such as multiplication and division that run in non- fixed Lime.

A simple example of an implementation vulnerable to this type of attack would

be one such that certain operations are skipped based on a condition of the data. In

his paper, Kocher gives an example of a modular exponent algorithm that could be

used with RSA, which includes the following pseudocode:

i f (bi t k of x) i s 1 th e n

Let R k = (S k · y) mod n

e l se

It is obvious from this code that t he if case will take more t ime t han the else case.

The author goes on to show how by measuring this time difference an atta ker an

extract the bits from the expon nt x, the k y to decrypting the ciphertext. It should

also be noted tha t though this attack was originally implemented on a public key

26

cipher, it can abo be used on symmetric key ciphers, an example of which is given in

the next chapter.

Power Attacks

In [28], Kocher et al. investigate implementation attacks based on mea 'urement of

power consumption. They put a 50- ohm resistor in series with pow r or ground fo r

the circuit, and measured the voltage across the resistor, sampling it at a high rate of

speed. Since processing circuits are made up of many transistors which change state,

dynamic power consumption is proportional to transistor stat~ changes and hence

processing of the different data results in unique power trac s measured as current

entering the circuit.

An example of an implementation that can be attacked is the DES key schedule,

which involves the rotation of 28- bit key registers. One implementation method would

be to use a conditional branch to check the hit being rotated off, to determine if the

bit rotated onto the other side need to be set. Using this method, rotating a bit that

is set would have a different signature than a bit that is not. These signatures could

be measured in order to determine the number of set and unset bits in the registers.

2.4 Summary

This chapter has given an introduction to cryptography including types of algorithms

and desired properties. An outline of common cryptanalysis techniques was also pre­

sented. The following chapter looks more closely at a single cryptographic primitive,

the DDP. Example ciphers using DDPs are presented, including an in- depth look at

CIKS- 1. This cipher is also analyzed using some of the techniques presented in this

chapter.

27

Chapter 3

Data-Dependent Permutations and

CIKS- 1

Data- Dependent Permutations were introduced in [29], an IBM patent filed in 1977, in

the form of Data- Dependent Rotations. In the author's patent "System for Machine

Enciphering," data within the cipher is subject to one of a set of operations depending

on other data. This did not make the primitive strictly a DDP as other operations

could be u eel ; however, it was the first example of permutations being selected via

the data itself.

It was not until Ron Rivest published [1] that a DDP primitive began to gain

attention . In his paper , Rivest proposed RC5, a simple cipher based mainly on a DDR

(a subset of the DDP functions) that was considered both fast and secure. Further

~tudy of the DDR in [10] showed it to be resistant to both linear and differential

cryptanalysis.

In this chapter we look at the DDP, a class of nonlinear cryptographic primitives

that are gaining popularity in cryptography. The properties of the DDP are reviewed,

as well as various implementations. We then look at example ciphers using DDPs.

In the latter part of the chapter we focus on the CIKS- 1. Since this cipher is

built with a major dependency on DDPs for nonlinearity, it is of particular interest.

28

We look at the various compon nts used and their role in the cipher. We investigate

the daLa fiow through the cipher and xamine how the cipher performs for accepted

cryptographic properties. Finally, we take a look at known attacks on the CIKS- 1

cipher.

3.1 Data- Dependent Permutations

A permutation, II, of width n is a one- to- one total function from a finite set,

{0, 1, ... , n - 1} to itself. A Controlled Permutation (CP) is an indexed set of p

permutations, {Ilo, I11 , . . . , IIp- d in which the input data is permuted by a member of

the set chosen by the Control Vector (CV) to produce the output. Given an input x

and a control vector i, where 0 ~ i < p, then the output is y such that y = IIi(x). The

maximum size of the set is n! different permutations. However , due to the munber of

control hits required and the difficulty of stmctming the selection of the permutation,

this is impractical. In practice, CPs ar normally used with smaller CVs when used

as cryptographic primitives. When a CP is controlled by a subset of the data in the

function, we consider it a DDP.

In [2] Pn;m is defined as a controlled permutation of n input bits such that there

are 2m permutations, defined by a CV of . ize m. Pn;m is of order h, if for each

sequence of h ~ n input bits, xo, x1, ... , xh- l, and h ~ n outputs, Yo , Y1 , ... , Yh- 1, there

exists at least one CP which moves Xi to Yi for all i = 1, 2, ... , h. CV is of maximal

order if h = n and it therefore contains the set of all n ! possible permutations. Also,

Pn;m is considered strict if and only if II1 =f Il k, where i, k E { 0, ... , 2m - 1} and j =f k .

Finally, p - l n/m is defined to be the inverse of Pn;m if and only if each Ilk from Pn;m

is the inverse of Ili; 1 from P;:jm, for each k.

In order to be used for cryptographic application, DDPs should be designed with

no bias. Therefore, over all permuta tions in the set Pn;m , if the control vector k is

29

chosen uniformly, then Pr-(ITk('i) = .7) = ~ for all i and j. DDPs exhibiting this

property are com;idered to be uniform. ln practice, it is difficult Lo build uniform

DDPs of a useful size, so they are instead designed to be approximately uniform and

combined with other elements to compensate [2].

A DDP can be designed in many ways depending on the requirement of the cipher.

In some ciph rs (such as RC5 and RC6), the DDPs are implemented as a rotation of

the bits. Other possibilities include bit swapping, block swapping or combinations of

each of these techniques.

3 .2 Ciphers with Data- Dependent Permutations

There are many ciphers that use DDPs, but there are two in particular that have

received more a ttention in the literature: RC5 and RC6. Although neither of these

ciphers use DDPs in their more general form (both of these ciphers use DDRs) , the

permutations are a major component of their algorithm. We take a cursory look

at t hese ciphers here before we move on to ciphers using the more general DDP:

Spectr- H64, Cobra H64, Cobra- H128 and CIKS- 1.

3 .2 .1 RC5

Much of the inter st in data- dependent primitives came about as a result of RC5,

published by Ron Rivest in [1]. The cipher was designed to be simple, fast (in both

hardware and software), and variable in input size, key size and number of rounds. It

was also a stated goal of the author to highlight the use of DDRs. In fact, the DDRs

are the only nonlinear component of the cipher.

T he algorithm is shown in Figure 3.1 where x <<< y is the rotation of x by y

bits to the left and EB is exclusive-or. RC5 requires a key expansion array, S, which

is also computed using DDRs. The input is broken into two w- bit plaintext words,

30

A:= A+ S[O]
B := B + 5[1]
for i := 1 to r do

A:= ((A EB B) <<< B)+ S[2i]
B := ((B EB A) <<<A) + S[2i + 1]

end for

Figure 3.1: RC5 Encryption Algorithm

A and B (where w is a parameter of the cipher implementation) and initially added

to the first two subkeys. Then r rounds of the cipher are executed where the input is

combined with the other via an exclusive- or and then rotated by the log2 (w) lower

bits of the second input. Subkeys are also added t.o each input . The final values of A

and B are the ciphertext.

The algorithm is deceptively simple at only five lines long, but has held up well

against attack. In [10], the authors showed t hat the rotations used in RC5 help to

make linear and diHerential attacks ou RC5 impractical for implementations using

12 or more rounds. In [9], the cipher 's author claims that although there have been

theoretical attacks on R.C5 (mostly to due the effective limit on the number of data

bits influencing the rotations), there have been no practical attacks.

3.2.2 RC6

R.C6, presented in [9], is a direct descendant of the RC5 cipher and was a candidate

for the AES . Both the key schedule and the cipher itself are derived from the original

cipher. In the case of the key schedule, the algorithm is similar in all aspects except

the number of keys derived , of which RC6 has more.

The encryption algorithm itself has additional elements. Fixed rotations based on

the logarithm (base 2) of the size of the data, w, have been added along with integer

multiplication modulo w. Both of these operations are employed to ensure more data

bits are involved in the determination of the rotation amount in the DDRs employed,

31

B := B+S[O]
D := D + S[l]
for i := 1 to r do

t := ((B x (2B + 1)) <<< log2 (w)
u := ((D x (2D + 1)) <<< log2 (w)
A:= ((Affit) <<< B) + S[2i]
B := ((B EB u) <<< A)+ S[2i + 1]
(A, B, C, D) = (B , C, D, A)

end for
A:= A+ S[2r + 2]
C := C + S[2r + 3]

Figure 3.2: RC6 Encryption Algorithm

thus overcoming a perceived weakness in RC5. The algorithm itself is given in Figure

3.2.

In [30] the authors found that using the chi- squared (x2
) test , they could distin-

guish the results of the cipher from random data when using up to 15 rounds. They

present an algorithm for extracting keys which will work in less time than exhaustive

key search, requiring 2119 plaintexts with a time complexity of 2215 for a cipher key of

256 bits. The authors also note they detected weak keys in the analysis of the cipher.

The keys are not enumerated, however they are visible due a large deviation in the

x2 tests.

The authors of [31] also use the x2 test as a distinguishing algorithm in an attack

of RC6. The authors propose a simplification Lo the cipher, removing the whitening

steps (the calculations of Band D at the beginning of the cipher and A and Cat the

end), calling it RC6W (RC6 without Whitening) . On this new variant of the cipher,

they present an attack which can recover the key of an r round cipher using 28·1r - lJ.B

plaintexts with a probability of 90%.

32

Figure 3.3: The Spectr- H64 Encryption Function [3]

3 .2.3 Spectr- H64

In [3], Spectr- H64 is presented as a fast , hardware- oriented cipher wi th extensive use

of DDPs . The same algorithm is used for both encryption and decryption as shown

in Figure 3.3. The cipher has 12 rounds with two additional t ransformations at the

beginning and end of the funct ion. The additional t ransformations are a combination

of DDPs and inverters that function on groups of two bits. In the case of the ini tial

transform8.tion, one bit is iuvcrted at the output of the DDP. Ia the case of the final

transformation, one of the bits is inverted at the input of the DDP.

Each round of the cipher uses a 192- bit subkey which is der ived from the 256- bit

key for the cipher via the given key schedule. Of the 192 bits , 32 are added to the

data via an exclusive- or and 160 are input into the extension function E and used as

control bits for the DDPs. In addit ion to the DDPs, Spectr- H64 includes a nonlinear

function G which operates on key and data, the result of which is exclusive- ored back

into the cipher data.

33

Lin

(I) (2)
A A

~ = I(L)

w

v
....................

e

w

V'

Lout --1---.- ---1--
96 32

Figure 3.4: The Cobra- H64 Encryption Function [4]

3.2.4 Cobra-H64 and Cobra-H128

In [4], Sklavos, Moldovyan and Moldovyan present the Cobra family of ciphers. These

ciphers are again based on DDPs and are the result of analysis of their previous

ciphers Spectr- H64 and CIKS- 1 (presented in the next section) . The cipher has two

variants, Cobra- H64 (shown in Figure 3.4), which has a 64- bit block size, and Cobra­

H128 (shown in Figure 3.5) which has a block of 128- bits. The ciphers each have

four subkeys of lengths 32- bits and 64- bits, and are comprised of 10 and 12 rounds

respectively.

Each round starts with an initial transformation and ends with a final transfor-

mation during which part of the subkey is added modulo- two to the left and right

halves of the data. Each round consists of a crypt function during which the Right

Hand Side (RHS) of the data is permuted by a DDP using the Left Hand Side (LHS)

as the controL The ciphers use DDPs, but do not depend on them entirely to pro-

vide nonlinearity. The cipher also includes a nonlinear function , G similar to the one

34

(4)

A

R,·

(I)

A

•. J •••
192

v

Figure 3.5: The Cobra- I-!128 Encryption Function [4]

found in Spectr- H64 which is a function of half the round data and half the subkey,

the resul t of which is exclusiv ored into the other half of the data. T his is done

twice, with the LHS and RHS being permuted in between the operations. Finally,

the RHS is once again permuted via the inverse of the DDP used previously, with

the LHS data being used as the control once again. Other components found in the

ciphers arc: I, a permutation involution; II, a fixed perrnutatiou; aud w, a switchable

fixed permutation.

T he authors' analysis of the ciphers shows that they are resistant to differential

cryptanalysis after eight and ten rounds for Cobra- H64 and Cobra- I-!128, respectively.

They also state both ciphers are resistant to linear cryptanalysis after five rounds. In

[32], the authors propose implementation of the Cobra ciphers, Cobra-8128, which

is designed to be implemented in software. In the next section, we look at another

cipher proposed by Moldovyan and Moldovyan which depends almost exclusively on

35

D D Ps for nonlinearity.

3.3 The CIKS- 1 Cryptographic Cipher

In [2], Moldovyan and Moldovyan propo ·ed a new 8- round cipher ba ed on DDPs.

CIKS 1 was presented as a fas t, hardware oriented cipher. It relies on DDPs for

their speed in hardware and is designed to lack pre-computation of key scheduling.

Preliminary analysis of the cipher by the a uthors showed tha t it can easily obtain

speeds of 2Gb/s and was resistant to both linear and diff r ntial cryptanalysis.

We chose IKS 1 for the investigation of DDPs as cryptographic primitives for

three main reasons. First, the ciph r is r latively new, and as such has not been

extensively tested . Second , it uses DDPs in a more general form, rath r than using th

subset of DDR fun tions. Finally, the cipher relies mainly on the DDP for nonlinearity

in the output.

In this section, we wi ll look at the DDP defined for use in the CIKS- 1 cipher by

its authors. We will then look a t the other components used before moving on to the

algorithm as a whole. We will then investigate CIKS- 1 with respect to some common

cryptographic principles before examining known attacks on th cipher.

3.3.1 CIKS- 1 Data- Dependent P ermutations

T he CIKS- 1 DDPs ar designed to be constructed from basic building blocks. The

most basic block, the P2; 1 controlled permutation , takes two input bits, x0 and x 1 and

a single control bit cv0 . If cv0 = 0, x0 and .1: 1 are swapped to form the outpu t; other­

wise, they pass through, posit ions unchanged. This simple permu tation is combined

in layers to make the more complex DDPs that appear in the cipher.

For instance, in order to mak a P4; 4 , two layers of two P2; 1 blocks are used.

As seen in Figur 3.6, a "butterfly" pat tern is used to conn t th two layers of

36

cv
2

X X
0 I

y y
0 I

X X
2 3

Figure 3.6: P4 ; 4 Data Dependent Permutation with Example Inputs.

permutations. This ensures that bits that are grouped together in the input are

not continually swapped with each other as they move through the layers. It also

guarantees that a CV which is comprised of mostly "1"s will not result in a poorly

permuted output.

In order to decrypt the ciphertext created using the DDPs, an inverse function is

required. T his is produced simply by running the ciphertext through the permutations

in reverse using the original control vector. An example of the ? 8; 12 DDP and its

inverse, p - 1
8; 12 are shown in Figure 3.7. Both of the example DDPs shown, P4 ; 4 and

Ps;12 are strict and have an order of 1.

The CIKS- 1 DDPs are both fas t in operation and efficient in hardware imple-

mentation. Since the CVs are available at the t ime of the permutation operation,

there is no setup time required and the time delay is only that of the permutations

themselves. The hardware cost for the P";"" DDP is given as 4m NAND gates [2].

3.3.2 Other Cipher Components

Although it depends heavily on its DDPs for nonlinearity, CIKS- 1 does employ a few

other primitives to complete the cipher. Here we present a discussion of each one,

37

p
8/12

X X X X X X X X
0 I 2 3 4 s 6 7

·v
8

p - 1

8/ 12

y
0 y3 y

4
y

7

Figure 3. 7: P8; 12 Data Dependent Permutation and its Inverse.

including any design decisions indicated by the authors in [2] .

Fixed Permutations and Rotations

In addition to the DDPs used in the cipher , the authors have a lso inclnclecl two fixed

permutations and three fixed 7-bit rotations to the right. The fixed permutations

are applied to control vector data and in [2] the authors indicate that this is done

to increase diffusion (the rela tionship of the effect of changing an inpu t bi t on the

output defined by Shannon in [12]). The rotations affect both the cipher data and

the CVs; however , no reason for th ir inclusion is given.

Two- bit Additions

CIKS- 1 uses modulo- 22 addition to ombine the left and right data at the end of

each round. Sixteen of these addition blocks are used in parallel, each operating

38

on ouly two bits of the input data with the carry bit out of each 2 bit block being

ignored. The cipher author state that modulo 22 add ition was chosen over a full

32- bit addition to avoid the long carry propagation d lay associated with the latter.

However. since each addition is isolated to affecting only two- bits of data. it also

introduces a limit on the propagation of hange within the cipher.

Key Addition

Key addition in the cipher is achieved using an exclusive-or operation. This is a

common way of mixing the key into the ciphertext in cryptographic ale;orithms. The

authors choose not to directly add in each cipher subkey; they instead first p rmute

it using a DDP based on the LHS cipher data. In [2] this is referred to as an internal

key schedule, a way of ensuring the same subkey is not continually add cl between

key changes.

3.3.3 Description of Cipher

The CIKS- 1 cipher is a fast , hardware-oriented cipher, with its principle security

component being DDPs. It is a block cipher with a block size of 64 bits. The cipher

is composed of eight rounds, ach with a 32- bit subkey, K 0 , K 1 , . .. , K 7 , for a total

key size of 256 bits. A single round of the cipher is shown in Figure 3.8. The solid

lines in the diagram show the flow of dat a and the clashed lines arc control vectors.

Permutations are labeled n jm, where n is the number of bits permuted and m is the

number of bits of control. Additional labels of the form Pi ar given to id ntify the

individual permutations.

The 64- bit data is split into half for input to the left and right hand sides. The

RHS is expanded and used to permute the data on the LHS using P1 . The LHS

data is then expanded, with a portion being permuted using P3 based on the subkey

data, and permuted using the fixed permutation II1, the result of which is used to

39

32/48 >>>7

16

~ /L '=(116·· /31) nl ······;;.o L=(/o . ./:. 1)

K,.=

=(ko .. k3 1)

L · I

v·

: V. -=K J(k k)
48yA , 0 ·· 1s v,.=L 'ILIL ._ ~ ,...... /

: ~k0 . . k15) • 80

16 32/80
'······ 32

s··

32

32/80

32/80

R,.

Figure 3.8: The CIKS 1 Encryption Algorithm.[2]

40

Input: 64- bit plaintext L I R , where L and R are the 32 bit sub­
blocks of data.
for i = 0 to 6 rounds do

L I R := Round(L I R) ; L +-> R;
end for
L I R := Round(L I R) ;
Output: ciphertext L I R

Figure 3.9: Encryption Algorithm for Full 8 Rounds of CIKS 1

permute the RHS data with P2 . The subkey is permuted next using an expanded

version of the LHS data as the CV for ?4 before combining it with the RHS data via

exclusiv or. Once again, the LHS data is expanded, with a portion being permuted

using P5 based on the subkey data, and permuted using the fixed permutation I12 ,

the result of which is used to permute the RHS data with P6 . Finally, the RHS da ta

is add d to the LHS data via 16 parallel modulo- 22 additions, b fore swapping the

left and right sides at the end of the round (in all but the last round) . The full 8

rounds of the cipher are defined algorithmically in Figure 3.9 where Round is a single

round function of CIKS- 1, excluding Lhe final swap.

The decryption algorithm for CIKS- 1 is shown in Figure 3.10. The 16 parallel

2- bit addition blocks are replaced with the same number of 2- bit subtractions. As

well, all other primitives that act directly upon the data are replaced by their inverse

functions. Other rotations and DDPs remain the same as they arc requir d to build

identical CVs. The swapping of the left and right sides remains at the end of all but

the last round.

3.3.4 Initial Analysis of CIKS- 1

An initial analysis of the CIKS- 1 cipher was done when looking for weaknesses tha t

could be exploited . In the following sections, we look at general cryptographic con­

cepts, applying them to CIKS- 1. More detailed analysis of the cipher is done in the

following chapters.

41

K9_;=

=(ko .. k31)

P- 1
32/48

L · I

.

R ,-_]
..,? _,_

P- 1
32/80

~•

.

32/40

P- 1
32/80

48 --:----1~L.,_>_>_>_7_~--41~
"j" -1· • • •• (ro..r3l)

V=GID G

Figure 3.10: The CIKS 1 Decryption Algorithm.[2]

42

Avalanche Effect and the Strict Avalanche Criteria

The authors of CIKS-1 presented a brief analysis of the avalanche effect in the original

paper. They noted that each control vector bit influences two output bits, with a

probability of swapping them equal to ~· Taking into account the swap at the end

of each round, they state that after two rounds, every input bit should influence all

output bits. During the analysis of the cipher, it was found that the SAC criteria

holds. Choosing random inputs and keys, the data was encrypted over eight rounds.

A version of the data with a one-bit difference was also cucryptcd. Comparison of the

different results ·bowed that the number of output bits changed matched a binomial

distribution with probability of ~ , thereby confirming the cipher conformed to the

SAC.

Key Schedule

There is no key schedule specified for CIKS- 1. The authors note that there is an

internal key scheduling (IKS) due to permutation P4 , which scrambles each subkey,

controlled by the data on the LHS of the cipher. This is considered to be beneficial

to the cipher, as the key scheduling can be done in parallel with other parts of the

cipher, eliminating pre- computations and thus adding no time d lay due to frequent

key changes.

However, the CIKS- 1 paper docs not give any indication as to how these sub keys

should be derived from the master key. Leaving this to the implcm ntor of the cipher

allows for the increased chance of using weak keys. For example, the cipher can be

implemented such that each round uses the same subkey, depending on the IKS to

scramble it differently for each round. In later chapters we examine an attack based

on a set of weak keys and show how it can exploit a poorly chosen key schedule.

43

3.3.5 Known Attacks

In [33], a chosen plaintext attack is presented on a reduced 5- round version of the

CIKS- 1 cipher. The authors exploit the fact that DDPs have no bearing on the parity

of the data and the parallel additions can be hown to be clo e to linear in nature. In

order to cancel out the effect of the first round, they choose the LHS plaintext such

that the jth bit of the plaintext, Xj, is 0, for all j = 2 xi+ 1 where 0 ~ i ~ 15. This

ensures that the probability of their linear approximation for the addition in the first

round holding is one.

The authors then attack the following four rounds, revealing key information for

the fifth round. This is achieved by decrypting 236 ciphertext pairs using all possible

232 subkeys. The resulting LHS data has the RHS data subtracted so that th value

of the LHS before the fourth round addition is obtained. The parity of this da ta is

then compared to that of a linear approximation and a record of matches is recorded

for each subkey. The subkey with the best results is chosen a the last round subkey.

T he authors calcula te that the attack will succeed in rcvcaliug the iiual round subkcy

with a probability of 78.5%, with a data complexity of 236 and time complexity of

265.7 .

In [34], the authors implemented a timing attack on CIKS- 1. Though designed

for hardware, the authors note that the cipher can potentially have a weakness if

naively implemented in software, specifically in single thread d environments such

as a micro- controller or smart card. The attack presented exploits the case when

the DDPs are simply implemented as swaps controlled by th CV as a condit ional

statement such as:

if (cv = O)

swap(xl, x2) ;

In this case the author's show that the time taken for encryption reveals infor­

mation about the Hamming weight of the key when the plaintext and ciphertext are

44

known . The authors also propose an implementation of the DDPs usiug pure booleau

cxpressious that is immune to this method of attack.

3.4 Summary

In this chapter we have given an introduction to DDPs and examples of ciphers

in which they are used. We then introduced the CIKS- 1 ipher, as introduced by

Moldovyan and Molclovyan in [2] . 1 his introduction included an analysis of the com­

ponents of CIKS- 1 and known attacks on the cipher. In the fo llowing two chapter ,

two new attacks on CIKS- 1 are pres nted. The first exploits a l· s of weak keys for

the cipher. The econd is a differential attack that focuses on thew ight of the input

differentials.

45

Chapter 4

Weight Based Attack on CIKS- 1

In [2], Moldovyan and Moldovyan provided a preliminary analysis for the strength of

the proposed cipher CIKS- 1. The evaluation was done for two of the most successful

cryptanalysis techniques known, linear and differential cryptanalysis. Using these

attacks, while making assumptions in the attacker's favour, the authors estimated

that approximately 264 and 266 plaint xts would be requir d to attack t.he cipher

with differential and linear cryptanalysis, respectively. In this hapter, we look at an

alternate approach to breaking the cipher that exploits low Hamming weight subkeys.

In [33], Lee et al. presented a chosen plaintext attack design d for use on a 5-

round version of the CIKS- 1 cipher. They present linear approximations of three

rounds of the cipher, based on th parity of the data. The time complexity of the

attack is estimated by the authors to b approximately 265·7 encryptions. Unfortu­

nately, although this attack can b pplied to all possible k ys, its success is only

demonstrated on a five- round version of the cipher. The authors propose that this

attack will work on the full eight round cipher through " anonical xtension," but

do not explain how this can be achieved .

The attack introduced in this chapter will also be a chosen plaintext attack. A

look at the ff cts of the data- dep ndent permutations will be presented, fo using on

their efl'ecl 0 11 the Hamming weight of the ciphertext. It will be shown Lhal one could

46

exploit th fact that .-ince there is no prescribed way of implementing a key schedule

for the cipher, there is the potential for a lru:;s of weak keys to reveal information

abou t. t he firs t or lc-tst mnnd of tl1e cipher. T he attack is then presented which builds

on this inf rmation to reveal information of subkeys, allowing for a brut force attack

on the first u bkey using a reduced search space.

4.1 Analysis of the CIKS- 1 Components

The following sections analyze the components that make up the entire CIKS- 1 al­

gorithm with r sp t to a Hamming weight based attack. It will look at all the

primitives us d in the cipher, as well as discuss the problems with not specifying a

key schedule. Th r will then be an analysis of the weight propagation through the

cipher as a whole.

4 .1 .1 The CIKS- 1 P ermutations

As presented in Chapter 3, the CIKS- 1 cipher uses DDPs, which in turn use a portion

of key or data to control the permutation of the individual bits of data as they pass

through the cipher. The CIKS- 1 DDPs are labeled Pn;m, where n is the number of

bits to be permuted and m is the the number of bits in the CV. For example, th

2- bit permutation P2; 1 produces an output of the two input bits using a 1- bit control

vector. If the CV is a 0, the input bits are swapped , otherwise they pass through the

permutation unchanged. All of the CII<S- 1 DDPs are form d using the smaller two

bit permuta tions in layers, interconnecting each layer with a fixed permutation.

T his "butterfly" patterned perrnuLaLiou is used to keep the iuput bits of the per­

mutation from being grouped together ru:; they pass through DDPs. This keeps the

individual bits from continually being swapped in the same pair, and prevents the

47

exis tence of a single control vector that wou ld make the permutation a unity opera­

tion with r specL to data position. A V of all l s would not permute the bits at the

smaller ? 2;1 pennutatious in the DDPs, therefore the "but.t.crfly ' paLtcru prcvc11tt>

the entire input passing through the larger DDP unchanged.

It is important to note that the DDPs in CIKS- 1 have absolutely no effect on the

weight of th ciphertext. The individual values of the input bits of each permutation

remain unchanged; only their position is modif-ied . Therefore, the DDP has done

nothing to affect the Hamming weight of the output data.

4.1.2 Fixed Permutations

CIKS- 1 contains two fixed permutations. I11 and I12 . The e permutations n ver

operate on the actual data of the cipher itself, only the data used in CVs. This appears

to be done to prevent the user from proc ssing data backward through the cipher to

reveal information about the subkeys. Sine they perform no direct operations on

the cipher data it elf, the fixed p rmutations have no eA'ect on the output Hamming

weight.

4.1.3 Key Addition

The su bkey for each round of CIKS- 1 is always added to the RHS data. It is first

permuted via a DDP and then added to the data via an exclusiv or operation. This

is a standard way of inserting the k y into many ciphers as it i simple and efficient

to implement.

The exclusiv or is one of only two operations used in the cipher where the weight

of the data can be affected. This operatiou has a probability of chc:mgiug the data biL

~ of th time, assuming random key inJ uts. A problem aris s when a characteristic

of the k y is not consistent with random behavior, particularly in th ase of having a

key with a ignifi antly low Hamming weight. In this case, the majority of the subkey

48

being added via exclusive- or will be binary zeros. By definition, when a binary zero

is exclusive- ored with another binary bi L, x, the result will I e x. Thus, in the case

of low weight keys , the Ilarnrning weight of tlH' data is on ly modes tly affected by the

exclusive- or operation.

4 .1.4 A ddition

The only other place the weight of the data in the CIKS- 1 cipher can be changed

is the parallel addition block at the end of each round. Here, 1G parallel modulo-

22 additions combine the left and right hand side data b fore they are swapped to

form the output of the round. Each addition operation carri out 16 2- bit binary

additions, with the carry being ignored. This has the advantage of being efficient to

implement in hardware, but has the eli advantage of grouping small blocks of data

together, aHectiug each other iu isolation of other groups .

If x is the data from the LHS entering the addition and y is the data from the

RHS, then z i the modified LHS data as a r sult of the addition. The weight change

in the output, D.wt, is defined as a differen e in the weight of z with re ·pect to x . An

analysis of the th modulo- 22 addition shows that although there is an influence on

the weight of the LHS data, there is still a significant probability that it will remain

unchanged . Consider two-bit addition as shown in,

(4.16)

We can break Equation 4.16 into two equations:

zo = xo E9 Yo (4.17)

and

49

Y1 Yo Z J zo
0 0 .1:1 .'Co
0 1 X1 EB .'Co Xo
1 0 X i Xo
1 1 x 1 EB xo xo

Table 4.1: Addition output as a function of :1:0 aucl .1: 1

Zt = x 1 (]) Y1 ED (xo 1\ Yo) . (4.18)

Using 4.17 and 4.18, we can consider the output as a function of xo and x, , for all

possible values of Yo and y1 . T his is shown in Table 4.1.

It can be seen from Table 4.1 that the case where y0 = y1 = 0 results in an output

where the weight always remains the same. Conversely, the cas where Yo = 1 and

y1 = 0 always equa tes to a change in the weight. In the two remaining cases, any

change in the output weight is dependent on the inputs for x0 and x1 . Table 4.2 is

an expansion of thes remaining cases. From the table we can ob ·erve that there is a

probabili ty of t tha t the output weight will remain unchanged.

Y1 Yo X 1 xo Z t zo 6 wt
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 0 1
1 0 1 1 0 1 1
1 1 0 0 1 1 2
1 1 0 1 0 0 1
1 1 1 0 0 1 0
1 1 1 1 1 0 1

Table 4.2: Hamming weight change of modulo- 22 add it ion.

This ana1ysis shows that each 2- bi t aclclition block ha~ a significant chance the

weight of th lata will be unchanged aft r the operation is performed. In fact , six

50

of 16 possible outcomes result in no change to the weight of Lhc input data at the

output.

4 .2 Analysis of Weight Change Propagation

When designing a cipher , the goal is to create an algorithm which produces an output

that looks completely random for the set of all possible inputs over the set of all

possible keys. Ideally, it should not be possible to distinguish between the output

of the cipher and the output of a random number generator. One quick check for

this property is to examine the mean Hamming weight of the output of the cipher.

If truly random, this weight would fit a binomial distribution, thus giving a 64- bit

output an average weight of 32 [35].

Since there arc very few clements of t his cipher which affect Lhc weight of the

data as it is encrypted , if the weight of the plaintext input is low, the weight of the

data grows slowly as th data progresses through the rounds, particularly if the key

has a low weight. This was confirmed by performing five million encryptions for keys

with weights from one to eight, and a maximum plaintext input weight of six. The

key and input weights were chosen based on initial testing that showed these values

constrained the output weights without overly limiting the number of possible inputs.

The number of tests was chosen to be large enough to highlight the deviation from

the expected mean without being time prohibitive for testing.

The test was executed by encrypting a randomly sel cted plaintext with a Ham­

ming weight less than or equal to six. After each round of th cipher we noted the

weight of the output and calculated the mean overall results. As can be seen in Table

4.3, the weight of the output grows slowly under these conditions. Figure 4.1 further

illustrates this by plotting deviation of the expected mean weight against the actual

mean weight of low Hamming weight keys (keys with a Hamming weight of eight or

51

,.------------------- -----------------·--····--·-·------------·---.
Deviation from Expected Mean Weight per Round

7

Rounds

.-.-..Key Weight 1

---Kev Weight 2

-.-Key We ight 3

-M-Key Weight .4

_......Key Weight S

-Key Weight 6

-Key Weight 7

- Key Weight 8

Figure 4.1 : Deviation of Output Weight for Low Weight Keys over 8 Rounds

less) over 8 rounds. If fact , with the given input conditions, it can be seen that t he

mean does not get to within two one- thousandths to the ideal of 32 until the sixth

round of the test using key weights of 8, which would be easily distinguishable from

random .

Another test to see if the cipher output looks random is to do a "goodness- of­

fi t" test. For this, the chi- squared (x2
) test is chosen to test if the dist ribu tion of

the output weights matches the binomial distribution as would be expected in any

strong cipher. We are able to use this test since all inputs, though const rained , are

chosen randomly (satisfying the requirement of independence) and the outcomes are

mutually exclusive.

The first step in the x2 test is to state a null hypothesis. In this case, the null

52

- ---- ------

Rounds
1 2 3 4 5 6 7 8

Key Weight 1 9.80562 15.8245 21.9752 27.3286 30.3768 31.5483 31.8731 31.9652
2 11.3139 18.4168 24.8688 29.3186 31.2509 31.8091 31.948 31.9767
3 12.8101 20.7126 27.0043 30.4733 31.6386 31.9094 31.9818 32.0041

c.n 4 14.3018 22.7463 28.5732 31.1414 31.8139 31.9601 31.9952 32.0018
w 5 15.8009 24.5132 29.6916 31.5112 31.8963 31.9727 31.9909 31.9977

6 17.2943 26.0585 30.4913 31.7317 31.9477 31.9882 31.9972 31.9988
7 18.7754 27.3571 31.0336 31.8431 31.9641 31.9904 32.0005 32.0039
8 20.2617 28.4782 31.4082 31.9131 31.9769 31.998 32.001 32.0054

Table 4.3: Average output weight (J.L) with maximum input weight of 6 over 5000000 encryptions

hypothesis is

H0 : The sample is from t he binornial distribution b(y; 65, 0.5) (4. 19)

where b(y; 65, 0.5) is the binomial distribution with 65 trials and a 50% probability of

success (i.e. , obtaining a '1' bit as opposed to a '0' bit) in each trial. Simply put, the

weight of the output data from the CIKS- 1 cipher will fit th binomial distribution.

The degrees of freedom, u, for the test are the number of possible outcomes (i.e.

number of different Hamming weights for the output) minus one. Therefore, in this

case there are u = 64 degrees of fr edom. For the test, a probability of error threshold

of a= 0.05 is chosen , making unlikely outlier cases where the resul t is a fit on chance

alone. Using these values the critical value for the test, x;,v, is calculated to be

x2 = 83.675 . This value is used to determine if the sample data is fit to the 0.05,64

expected data. For this, the x2 value must be calculated , using the formula,

(4.20)

where Oi is the observed frequency, and Ei is the expected frequency of the event.

From Equation 4.20, it can be seen that t he larger the deviation between the

observed and expected values, the larger the x2 value. The critical value is used to

determine what result is too large; thus, if the calculated value exceeds the critical

value, the null hypothesis, H 0 , is rej cted.

Up to five rounds, the CIKS- 1 ou tput for each key weight up to six and plaintext

inputs of weights less than or equal to six gives large values of x2
. This indicates

there is 110 fit to the binomial distribution for this constrained usc of the cipher. Iu

fact , this property holds for CIKS- 1 as long as the given limits to Hamming weights

are used, and is the basis for the attack on the cipher presented in the next section .

54

4.3 Proposed Attack

As shown , CIKS- 1 depends almost entirely on the subkcys to contribuLe to the growth

of Hamming weight for the data. In fact, when low weight keys are used wi th low

weight input data, it is possible to distinguish between a random set of bits that

conforms to the binomial distribution and the output of the cipher. The analysis

reveals that the set of low weight subkeys, with weight of around six or less, results

in a weight distribution that is easily distinguished as non- random using the x2 test

when we constrain the weight of t he input to about six or less as well. This set of

keys should be considered to be weal< keys.

Exploiting this weakness, an attack can be mounted on a reduced version of the

cipher, limited to six rounds, to extract information about the first ·ubkey. A subkey

is guessed for the first round. Next , a large set (one million in the case of the six

round attack) of random values for the LHS data after P1 is generated. The lower the

Hamming weight for each of these, the better for exploiting weak keys. However we

need enough possible plaintext to complete the test , and therefor a Hamming weight

of six or less is us d. Each value is used as an input to P4 to permute the guessed

subkey. The permuted subkey is then run backwards through P2 to generate a value

for the RHS input. This input is then used to as the control vector data when the

original generated LHS data is run backward through P 1 to produce an input value

for the LHS.

The values for LHS and RHS are then encrypted over six rounds. The idea is to

produce a value for the right hand input which is close to the actual subkey being

attacked. A correct guess nullifies the effect of the subkey (thns requiring no constraint

on its Hamming weight) in the first round , thus leaving only the eA~ects of the last

five rounds. If the keys used in rounds two through six are low weight, the x2 test

shows the weight distribution of the output does not match the binomial distribution.

Pseudocode for the attack (using notation from Figure 3.8) is given in Figure 4.2 and

55

Choose the number of required inputs, /,;
for all possible 232 subkeys in round 1 do

for y = 1 to k do
Create a random value for LHS after P1, L * with weight i ~ 6
Form Control vector VL
Run subkey through P4 , call result PSK
Form control vector V'
Run PSK backward through P2 to get RHS
Form control vector V
Run vector L * back through P1 to get LHS
Encrypt RHS and LHS over 6 rounds, record resulting weight

end for
Calculate the x2 value for the results

end for
Compile a list of weights with poor fit to the Binomial Di tribution

Figure 4.2: Propos d weight based attack on CIKS- 1 cipher

the full code can be found in Appendix B.

Test results show the guess d subkey does not have to be exact to give useful

results. Guessed keys with the same weight as the actual key and those with similar

weights produce similar results to guessing the actual key. With this knowledge, the

search space for the first subkey can be reduced based on the result of the x2 tests.

Table 4.4 is an example of results obtained with the attack1 T his example used

an actual subkey of all zeros and only 100 randomly guessed subkeys for each of the

possible weights. This test shows that the search area can be reduced to keys with a

similar weight within two of the orrect key. It is important to note t hat although this

test used a low weight .first round key, this is not required. The attack ouly requires

low weight subkeys in the subsequent rounds to be successful.

This attack on the 6- round reduced cipher requires approximately 220 random data

inputs for each of the 232 possible subkeys tested , giving it a total t ime complexity of

252 encryption operations. This is an improvement over the 5- round attack with time

complexity of 265
·
7 presented in [33]. However, that attack makes no assumptions

1 Calculated using Microsoft Excel 2002 which has the limit on the maximum value iu a cell of
1. 79769313486232 X 1Q308 .

56

Weight Difference
0
1
2
3
4

> 1. 79769313486232 X 10.
> 1. 79769313486232 X 10308

> 1. 79769313486232 X 10308

118.52
69.33

Table 4.4: Test results for low weight attack

about the cipher keys, whereas the attack presented here requires that all but the

first round key be low weight. The probability of choosing a single 232 key at random

and getting a key with Hamming weight of six or less is given by

P(Low Weight Key)
6 en L 232

i=O

2.68 X 10- 4 . (4.21)

The probability of choosing five keys with such a low Hamming weight would be

far lower. However, not all key scheduling methods guarantee independence. For

example, the DES key schedule specifies that a single 56-bit key is chosen for the

cipher and then each 48- bit subkey is chosen as a subset of that key [36]. If a similar

key schedule was used with CIKS- 1, a single low weight key would result in a very

high probability of weak subkeys throughout the cipher. If a weak (i.e. low Hamming

weight) key is chosen in this implementation , then the entire cipher is compromised

until the next key change, as all of the subkeys are derived from the main key. Even

more complex key schedules can result in a significant probability of weak keys.

57

4.4 Conclusions

Due to the choice of primitives with limited effect on the Hamming weight of the

cipher daLa, th CIKS- 1 cipher dep n I · h avily on the weight of subkeys to produce

change in the data weight. It has been shown tha t the DDPs, fixed permutations

and fixed rotations have no effect of th weight of data as it progresses through the

cipher. The exclusive- or operation depends heavily on the weight of the input data.

I3y defini t ion it changes the weight of the output half of the time based 011 raudom

data, but when using low weight data, this probability decreas s. Finally, the two- bit

·parallel addi tions are shown to preserve Lhc input weight wi th a probability of ~·

We conclude that there are a cla.<>s of low weight keys which should be considered

weak keys for the ipher. Analysis of weight propagation through the cipher shows

that when k ys with weight of around six or less are used as subkeys, we can easily

detect them by constraining our input data weight and comparing the output to the

binomial distribution using the x2 test. Using this fact , an a ttack is proposed to

d istinguish the first subkey by dramatically reducing its entropy. Testing ha.<> been

done on the a ttack, the results of which arc shown to reduce the search area for the

first subk y to within a weight of two from the actual weight. In the next chapter

we look a t anoth r attack on the cipher which involves the Hamming weight of the

cipher data .

58

Chapter 5

Differential Attack on CIKS-1

In this chapter a non- traditional diff'erential attack on CIKS-1 is presented. First

there is a look at the analysis of Lite cipher 's resi:::;tancc to couveutional differential

cryptanalysis. The focus then shifts to applying differential cryptanalysis in a new

way. The attack deals with the weight diHerential rather than the actual specific

differential in the data itself. Using this technique the data complexity for differ­

ential cryptanalysis on the CIKS- 1 cipher is reduced to approximately 251 chosen

plaintext/ ciphertext pairs.

5.1 Previous Different ial Analysis of CIKS-1

In the original paper on CIKS- 1 [2] , Moldovyan and Moldovyan make the claim

that the number of plaintext pairs required for a differential attack on the cipher is

approximately 264
. To determine this number they examine the maximal case of a

non- zero difference passing through the two ? 32; 80 permutations on the right side of

the cipher. Based on the analysis of the permutation blocks given, the maximal case

corresponds to the case with differences using one active bit.

According to the authors' analysis, the probability that a difference passes through

the permutations, PDA , for a one-bit difference is PnA(1) = 2- 5 . However, due to the

59

implementation details, it is stated that maximum probability of the difference passing

through the ? 32/80 permuta tions on the IU-IS of the ciphers is]J
1
DA(max) = 2PDA(l) =

2- 4
, where the added factor of two accounts for the non-uniform distribution of the

control vectors V ' and V''-

With this approximation and considering that the RHS data passes through two

?32/80 permutations, the maximum probability of the difference surviving one round

of the cipher is PDA(f= l) = b/ DA(max)F = 2- 8
, where f is the number of times the

difference passes through the RHS permutations. The be t case analysis is done for the

difference surviving all eight rounds of Lhe cipher , focusing on the RHS permutations

which the difrerencc will pass through four times. Therefore, we have a probability

of the difference propagating throngh the cipher of P DA(J= 4) = [pDA(J= l)]4 = 2- 32 .

With this, the authors use the approximation N DA ~ (PDA(J=4)) - 2 to determine tha t

the number of plaintext/ ciphertext pairs, N DA, required for a differential attack is

approximately 264
.

Since this analysis is done focusing on only the effects of the RHS permutations

P2 and P6 , it does not account for the effects of the LHS of th cipher. As such,

the analysis is considered to be a best case in favour of the attacker; the authors

conclude that the cipher is resistant Lo differential at tack. The following section

loob a t applying the idea of differentials to a difference in weight and how these

differences propagate through CIKS- 1.

5.2 Data- Dependent Permutations and the Prop­

agation of Differences

Being the main element of CIKS- 1, it might be expected that the DDPs would play

a major role in the propagation of difFerences through the cipher. In fact , other thau

the parallel addition, DDPs ar involved in all opera tions of the cipher data. On

60

both sides of the cipher, data is scrambled by the permutations and the key itself is

scrambled before being added.

Obviously, if the same control vector used on a DDP is used more than once, then

the data in each instance will be permuted the same way. When the control vector

does change, the likelihood of new differences in the output depends on the differences

at the input. When there is only a one bit difference in the control vectors, the input

to the P2; 1 permutation that the particular CV difference affects determines if there

is a resulting difference in the output. The swap at this site is only noticeable if the

input bits are different. Thus, there is a ~ chance ~hat the output will be unchanged

by the control bit difference iu the P2; 1 permutation. In general, the probability that

the permutation's output will remain unchanged by the DDP is 2- n, where n is the

number of different bits in the control vector.

The case where there is a difference in the input as well as m the CV is more

complex. When the CV difference is the control bit for a P2; 1 permutation where

there is also a difference in one of the input bits, there is no new difference introduced

in the data. In fact, if both input bits are changed, the output will have no new

difference. These cases actually increase the chance of a given difference surviving a

DDP. In our analysis , a one-bit dif·fcreuce input into a ? 32/80 with a control vector

containing two differences has approximately a 28% probabili ty of retaining a one- bit

difference at the output.

5.3 Analysis of Differentials

If an analysis of the cipher is done not on strict differentials, but the Hamming

weight of differentials as they pass through the cipher , it is possible to construct an

attack which has much lower complexity than the one in [2] . Three input difference

61

weights were examined for relationships to fo ur output diffrrcncc weights of inter-

est . These are given in Table 5.1 for one round where (wt(6.L,_1), wt(6.Ri_ 1)) and

(wt(6.Li), wt(6.~)) arc the Hauunillg W<'ig!J ts of the diffcn'tln's in Lh<' left all(! right

halves of the inputs and outputs, respectively.

Differential (wt(6.Li_1), wt(6.Ri- J) -t wt(6.Li) , wt(6.R;))
(0, 1) -t (1, 2)
(0, 1) -t (1, 1)
(1, 0) -t (0, 1)
(1 , 1) -t (1 , 0)
(1 , 1) -t (1, 1)
(1 , 1) -t (1, 2)

Probability
2- .
2 - 1.83

2 7.25

2 - 13.7

2 - 13.7

2 - 7.75

Table 5.1: Frequency of occurrence of transit ions of interest with random keys.

Examining the case of (wt(6.Li_I) = 1, wt(6.Ri_1) = 1), we · e that the right

side difference can appear either once or twice in CV V (see Figure 3.8). Taking into

account both cases, the probability of the one- bit diffcrcucc smviving P 1 is 12.5%.

Again , d pending on where the one-bit differ nee in the left side occurs, it can appear

in V' either two or three times. Thus, the probability of the on bit difference on the

right side surviving P2 is approximately 8.1 %.

When the key is bit- wise exclusive- or cl with the right side data, there are many

possible cases to examine. Any case where the absolute differ nee of wt(6.R) and

wt(6.K) (wh re wt(6.R) and wt(6.K) arc the data and key inputs to the key addition)

equals 1 could r sult in the output of the key additions beiug different by one bit. To

simplify the analysis we consider only the most dominant of thes ases, (wt(6.R) =

1, wt(6.K) = 0) and (wt(6.R) = 1, wt(6.K) = 2), and get a likehhood of the one-

bit difference surviving of approximately 2- 5·
7

. Note that P6 acts similarly to ? 2.

Overall, the probability of a (wt(6.Li_1) = 1, wt(6.~-d = 1) difference leading to a

(wt(6.Li) = 1, wt(6.~) = 0) is 2- 13
·
7

.

The other differential probabilities can be calculated in a similar way. Note that

in the case wher the difference only appears on one side of the cipher, many of the

62

cipher·s clements do not affect the difference on the other ·ide. These one round

differenLiab an be chained together to get an overall di.ficrcnLial [or the cipher.

The notation (wt(6.Li_1) , wt(6.Ri- J)) --+ (wt(6.Li), wt(6.Ri)) is used to represent

the transition in the weight difference of each ide of the input and output pair. If

we us the 7- round chain of different ia ls (0 , 1) --+ (1 , 1) --+ (1 0) --+ (0, 1) --+ (1, 1) --+

(1 , 0) --+ (0, 1) --+ (1 , 1) there is a probability of 2- 4739 that we get th final differential

assuming the differences from round to round can be considered Lo occur indepen­

dently. Figure 5.1 shows the probability of transitions between all of the differentials

of interest listed in Ta ble 5.1.

2-1.83

Figure 5.1: Probabilities of transitions of interest.

63

count = 0
r = Number of rounds for a ttack
Define st ~tte(w,x) = (wt(left(w)CI)!eft(x)) , wt(right(w)Wright(x)))
s0 := initial state of interest
s,._1 := sta te of interest after 1· - 1 rounds
Choose the Jlllltlbcr of required differentia l pairs, k
for i = 0 to k - 1 do

Initialize Xo,o and X1,o such that sta te(Xo,o , X, ,o) = o
Encrypt X o,o for r rounds to get X 0 ,,.

Encrypt Xt ,O for r rounds to get xl ,T

for all Possible 232 subkeys , j 0 :::; j :::; 232
- 1 do

Decrypt X 0,,. for one round using j to get Xo,,.- I
Decrypt X1,,. for one round using j to get X1,r- 1
if sta te(Xo,r- 1, X1,1·- l) = Sr- I then

Increment count[j]
end if

end for
end for
Result is the set of all x such tha t count [x] = max (count[j])

J

Figure 5.2: Proposed difFerential attack on CIKS- 1 cipher

5.4 Proposed Attack

As shown in the las t section there are certain differentials wi th a high probability

of occurrence. The transitions (0, 1) --> (1, 1) , (1 , 0) --t (0, 1) and (1, 1) --t (1, 2) are

the most attractive. When chaining together multiple rounds these transitions ar

reused as frequently as possible to keep the overall probability high. Although the

(0 , 1) --> (1 , 2) and (1, 1) --t (1, 2) transitions have a high probabili ty, (1 , 1) --> (1, 2)

is only useful at the end of a chain and (0, 1) --t (1 , 2) has a lower probability than

the alternate branch from (0, 1) , (0 , 1) --+ (1, 1).

To attack the cipher , we first choose a chain of states with a relatively high

probability of success to use. For example, to attack a six- round version, a fiv

round chain would be required. The chain of weight difference (1 , 0) --+ (0, 1) --+

(1, 1) --+ (1 , 0) --t (0, 1) --+ (1 , 1) could be used with a probability of approximately

2- 31.86 . A table of high probability chains versus numbers of rounds is given in Table

64

5.2.

Rounds
3
4
5
6
7
8

Differential Chain
(1, 0) ---> (0, 1) ---> (1 , 1)
(1, 0) ---> (0, 1) ---> (1 , 1) ---> (1, 2)
(1 , 0) ---> (0, 1) ---> (1, 1) ---> (1, 0) ---> (0, 1)
(1, 0) ---> (0, 1) ---> (1, 1) ---> (1, 0) ---> (0, 1) ---> (1, 1)
(1, 0) ---> (0, 1) ---> (1 , 1) ---> (1, 0)---> (0, 1)---> (1, 1)---> (1, 2)
(0, 1) ---> (1 , 1) ---> (1 , 0) ---> (0, 1) ---> (1, 1)
---> (1 , 0) ---> (0, 1) ---> (1, 1)

P robabili ty
2 .;)
2 - 17.33

2 - 31.Q3

2 - 32.86

2 - 40.61

2 - 48.09

Table 5.2: Differential chains for attacking di fferent numbers of rounds

Next, the number of differenti al pain; that will need to he generated if; cletermined

based on the probabili ty of detecting the chosen outcome. In the six round example

above, the output difference would be expected once in every 8 billion encryptions.

In comparison, if the output difference weight were to occur randomly, the likelihood

of output difference (1 , 1) would be (;3;? = 2- 54
. Hence, several t imes more than

8 billion encryptions would be required to clearly distinguish the occurrence of t he

expected difference.

When attacking r rounds of the cipher , for each of t he chosen number of differential

pairs, we encrypt the two inputs, X o,o and X 1,0 , over r rounds labeling the results

Xo,r and X 1,r· These two values are then decrypted for all 232 possible subkeys of

round r and labeled X 0,,._ 1 and X 1,,._ 1 . For each result corresponding to a subkey, a

counter for the subkey is incremented if the weight of stat e(Xo,r-1> X 1,,._ 1) matches

the expected value.

When all of the differentials have been processed for all of the possible subkeys for

round r , the subkey with the highest count is the most likely to be the actual subkey.

The full pseudocode forth at tack is given in Figure 5.2 and the implementation code

can be found in Appendix C. The next sect.ion presents an experimental verification

of this attack.

65

5.5 Experimental Verification

'I'o verify the attack experimentally, an attack has been implemented on a 3- round

reduced version of the cipher. The chain used for the attack was (1, 0) ----t (0, 1) ----t

(1, 1), which has a calculated probability of occurrence of approximately 2- 9·58. The

expected desired output differential (l , 1) should appear in the result for the correct

key approximately once in every 540 attempts. Therefore, the number of plaintext

pairs for the test is chosen to be 10000, implying the expected state for the actual

subkey will occur approximately 19 times.

T he test was run using the actual key, 32 keys with a one- bit difference from

the actual key, and 10000 randomly generated keys. All of the k ys with a on

bit difference from the actual key resulted in the expected output state zero times,

making them easily discountable as the actual key. T he set of random keys resulted

in the desired output differential between zero and two Limes, with t.he distribution

giveu in Table 5.3. However, the actual key returned t he expected dWereuce 22 times,

making it easily distinguishable from the other possible keys.

Score Frequency
0 9760
1 238
2 2

Table 5.3: Frequency of occurrence of desired differential with random keys.

5.5.1 Attack Complexity

Although this has only been implemented on a 3- round version of CIKS- 1, it could

be extended to the 6- round version using the example chain given in the previous

section. The probability for that chain is approximately 2- 31.
86 , meaning one would

expect the desired ou tput difference once in every 232 tries. To be distinguishable,

one would waut lhe expected d iftercutial to occur approximately 8 times, giving you a

66

data complexity of approximately 2:12 x 2:1 = 235 plaintext/ciphertext pairs. The time

complexity of the attack includes 235 x 2 = 236 encryption operations and 235 x 2 x 232 =

268 partial decryptions.

In fact , it is theoretically possible to extend this attack to the full cipher. For

this extension, the seven round differential chain (0, 1) ~ (1, 1) ~ (1 , 0) ~ (0, 1) ~

(1 , 1) ~ (1 , 0) ~ (0, 1) ~ (1 , 1) cou ld be used. This chain has a probability of

occurrence of 2- 48
·09 and therefore is expected to give the clesir -d output approxi­

mately once in every 248 tries. Again, to be distinguishable from random noise, we

would want to see the expected output difference approximately eight times, giving a

data complexity of approximately 248 x 23 = 251 plaintext /ciphertext pairs to recover

the final round subkey. The time complexity of this Ft.t t.Ft.ck inclndes 251 x 2 = 252

encryption operations and 251 x 232 = 284 partial decryption opera tions. The remain­

ing subkeys can then be found by stripping off the last round and implementing the

a ttack again on the remaining rounds.

5 .6 Conclusion

In the original paper for the CIKS- 1 cipher , the authors' analysis of the possibility of

a differential attack on the cipher showed that it would have a data complexity of 264
.

Inst ead of the usual approach to this attack, a non- traditional approach of exploiting

the weight of differences in the cipher is given in this work. DDPs arc shown to have

a probability of passing one-bit differences introduced at their input to their output

28% of the time. This knowledge is then used to create a set of differences that can

be used to retrieve key data from CIKS- 1.

Using these differentials, an attack has been proposed to gain key information

from the last round. As a proof of concept, the attack has been implemented on

a 3- round version of the cipher. This attack showed that the actual key can be

67

easily distinguished from both random keys and keys wi th ouc bi t different than

the actual. This a ttack can be extended to six rounds with a data complexity of

approxima tely 235 plaintext/ciphertext pairs and time complexity of approximately

236 encryption op rations plus 268 partial decryption opera tions. T he a ttack can be

fur ther extended again to the full eight rounds of the ciph r wi th a data complexity

of 251 plaint xt /ciphertext pairs and a t ime complexity of 252 encryption operations

plus 284 partial decryption operations.

Although two a ttacks on the CIKS- 1 cipher have been present d, one simple way

to increas the security of this cipher would be to increase the number of rounds

used . T his would decrease the likelihood of being able to carry out the attacks in

this cipher . Since the cipher can still have value, in the n xt chapter we look at the

implementa tion of CIKS- 1 in software.

68

Chapter 6

Software Implementation of CIKS- 1

In th original paper [2], the authors state that the CIKS- 1 ciph r is designed for

hardware impl mentation. Their original goals were to implement a ipher that is fre

of pre- com] utabons (i.e., lacking a key schedule requiring the gen ration of subkeys)

and efficient to implement in hardware. Unfortunately, such spe ifications can also

lead to algorithms which are inefficient to implement in software, which is the cas

with CIKS- 1.

In [32], the authors propose an efficient oftware implementation of the DDP

based Cobra family of ciphers. However , this implementation depends heavily on

the addition of a DDP instruction to general purpose processors. The focus of this

chapter is to investigate an alt ernat method of implementing DDPs, and thus CIKS-

1, efficiently in software. Such knowledge will be useful in implementing other DDP­

based ciphers or a strengthened v rsion of CIKS- 1.

6.1 Implementing CIKS- 1 in Software

Each compon nt. of CIKS-1 is designed with efficient hardwar imp! mentation in

mind. The fixed permutations and rotations are easily implemented using simple

electrical connections between the components. An addition modulo 22 is chosen to

69

avoid the gate propagation delay associated with addition components using larg r

words, such as modulo- 232
. T he key addition is a simple 32- bit exclusiv or. Fi­

nally, the main non linear component, the DDP, is designed such that the delay is

proportional to the number of layers in th permutation.

T he majority of the operations employed in CII<S- 1 opera.L - at a sub- word level·

most operations are at the bit level. While this works quite well when implementing

custom hardware, a large portion of software is written for general purpose processors.

These pro essors are usually optimized for instructions that process full words of da ta

at a time (32 bit or 64- bit words for current mainstream processor technologies). In

order to manipulate data n bits at a time, where n is less than the processor word size,

many programming languages require verhea.d operations such as masking, shifting

and temporarily storing bits in ord r to affect only those bit of interest.

One strategy to avoid the overhead of these operations would be to use arrays

to contain the data, thus allowing direct access via the array index. This can be

accomplish d in a. language such as C/C++ by storing each bit in a single char, a

single byte variable, which is stored in an array. This system has an obvious advantag

for bitwise dala access, but iL has lhe equally obvious storage in fficiency since an

eight- bit variable type is being used to hold a single bit of data. Also, some operations

that can be done efficiently on a worcl h~'"iis (e.g. word- oriented exclm;ivc-or) has to

be done for each individual bit which is xtremely inefficient. In the following sections

we look at another method for efficient implement at ion of CIKS- 1 which over com s

the sing! bit access problem while avoiding wasted memory.

6.2 Bitslice Implementation of Ciphers

In [37], Eli Biham introduced a new fast software implementation of DES. Unlike

other implementations of DES, this on approached the problem from the point of

70

view of trying to fully utilize the entire word length of t he instruction set for the

processor. To achieve this, an n bi t processor is treated as n on bit processors.

Therefore, a modern 64- bit processor is used as 64 parallel one- bit processors, per­

forming the same operation 64 times simultaneously. This m thod , referred to as

bitslicing, allows for single bit operation· to be implemented more efficiently on gen­

eral purpose processors by operating on large numbers of inputs simultaneously.

To implement DES at a bit level, Biham starts with the cipher represented as a

series of logic gates. It is a straight- forward translation to obtain a set of boolean

equations for each component of the cipher. Using bitwise operators, these equations

arc easily implemeJJtecl iu code. Since a siuglc bitwise operator will by definition

apply the ·arne operation to each bit in th word independently, this implementa tion

can be used to encrypt (or decrypt) multiple plaintext inputs simultan ously.

To be able to use this version of the cipher , the da ta used needs to be stored

in a non- standard arrangement. T he normal way of t reating data in software is to

store it in variables with each one holding a single piece of information. In order

to use the bitslicing technique, n pieces of data (where n is the n- bit size of the

word form the processor) arc grouped together into an array. T hat array can then be

transposed such that each value accessed by index i now holds th i th bit for each

input. Arranged in this manner , the dat a can be input into the new version of DES,

allowing for parallel encryption (or decryption). To get the final results from the

output of this code, it must be transposed again into the standard arrangement.

Biham shows in the paper that this implementation of DES provides a speed up of

approximately 1.6 t imes over Eric Young's li b DES, a standard fast implementation

of the cipher , when run on a 300MHz Alpha 8400 processor. He also notes that this

technique can be extended t o other ciphers. Biham states th approach can be useful

for most ciphers which do not take advantage of the full word size of the processor.

He notes that the cipher should have no complex opera tions, such as multiplication or

71

Figure 6.1: Example transposition of input for bitslice implementation

large substitution boxes, whose implementation would require a much larger number

of instructions compared to a straight forward implementation. Since the CIKS- 1

cipher meets these criteria, a bitslice version has been implemented and is presented

in the next section.

6.3 Bitslice Implementation of CIKS- 1

The simplicity of the components used in CIKS- 1 make it an ideal candidate for

a bitsliced implementation. The cipher is mainly comprised of bit permutations,

either fixed or dat(L- dependent. The only other operations arc (l,ddi tion modnlo- 22
,

rotations and an exclusive- or key addit ion, all of which can be reduced to simple gate

level representations. The next sections discuss the implementation of each operation

for the bitsliced version of CIKS- 1.

6.3.1 Preparing the Input

The bitslice method requires t he user to prepare the input into an unconventional

format. For n- bit bitslice implementation, the user is required to create an n by m

matrix of inputs where n is the number of simultaneous pieces of data to be encrypted

and m is the size of the data in bits. This matrix is then transposed such that row i of

the transposed matrix will contain bit i of each original input. Figure 6. 1 illustrates

an example of the transposition where n = m = 4.

The success of this method is highly dependent on this transposition being done

72

in an effi ient manner. If the amount f time required to t.ran po the data is larger

than that of the actual speedup , then bit.1-i licing the algorithm provides no benefits. In

[38], the an t hor provides au dhcicn t. 1 IJd!Jod for t rallsposi ng a 32- by- 32 hit matrix by

breaking th matrix into smaller sub- matrice that can be hand! d more effectively

by the processor's registers; transposing those sub- matrices before combining th m

to form the t ranspos d 32- by- 32 matrix.

The algorithm starts by dividing the 32- by- 32 matrix into 4 smaller matrices of

size 16- by- 16 bits. These matric s are transposed such that the secoud half (16- bits)

of the first 16 words is swapped with Lhe firsL half of these ond 16 words. The results

of this swap are then subdivided into 16 4 by- 4 bit matrices and grouped such that

bits 8- 15 and 24- 31 of the first right words arc swapped with bits 0- 7 and 16- 23

with the second group of eight words. Similar swaps are done on the third and forth

groups of words. This pattern is repeated with smaller sub- matrices until the entire

32- by- 32 bit matrix is transposed . In our tests , the 32- bit bit lie version uses a 32-

by- 32 bit matrix. The 64- bit version uses a 64- by- 32 bit matrix that is transposed

to a 32- by 64 bit matrix.

6.3.2 D ata- D ependent P ermutations

To implement th CIKS- 1 DDPs, larger DDPs are broken down into their small­

est single element, the P2; 1 block, a simple data controlled swap of two bits. Thi

primitive can be modeled as two parallel multiplexers with equations

xo = (cv A xo) V (•cv A x1) (6.22)

and

(6.23)

73

By the definiti n of the cipher , if the control vector bit is zero then the inputs a re

swapped, whereas a control vector iu put bit of one allows Lhcm Lo pass through

unchanged.

As we can see in Figure 3.6, the DDPs are constructed of layers of the smaller

P2; 1 permuta tions. Using Equation · 6.22 and 6.23 to form P2; 1 permutations for each

layer, all that is required to complete the larger permutations is to ann ct the layers

via the fix d p rmuta tions. Using bitslicing, the P32; 80 permutation is implemented

using equations 6.22 and 6.23 using bitwis operations on wor ls, thereby completing

n permutations in parallel for the n- bit bitslice implementation.

6.3.3 Modulo- 22 Additions

The modulo- 22 additions can be express d as a series of three quations:

c = Xo 1\ Yo , (G.24)

xo = xo E9 Yo (6 .25)

and

(6.26)

where x0 is the Lea..c; t Significant Bit (LSB) and x1 is t he Most Significant Bit (MSB)

of the LHS, y0 is the LSB and y1 is the MSB of the RHS and c is t he carry bit.

F irs t , the carry bits can be calculated in parallel by using bitwise "and" on t he

words holding the LSBs. Then , th final values for the LSB and MSB cau be calculated

as an exclusiv or of the respective bits together ; the MSB also being exclusive- ored

with the carry bit. There are 16 parallel additions, so these operations are repeated.

74

6.3.4 Fixed P ermutations, Rotations and Key A ddit ion

In our original implementa tion of CIKS- 1, the fixed permutations were very compu­

tationally expensive since the individual bits need to be isolated within the data and

moved to different position. In the bitslice implementation of CIKS- 1, each value

in the array contains a processor word which is comprised of a group of bits from a

single position in mul tiple pieces of data. Therefore, in order to swap bits it is only

necessary to change the order of the groups. This also holds for rotations, making

each of t bese operations very efficient when operating ou many blocks in parallel.

Key addition for CIKS- 1 is a simple exclusive- or of the key (permuted via a

DDP) with the RHS of the data. In the bitslice implementation, this is achieved as

32 exclusive-ors of the groups of bits.

6.4 Experimental Results and Discussion

The bitsliced implementation of CIKS- 1 was compared against two other implemen­

tations of the cipher. The first uses the bitset class in the C++ Standard Template

Library (STL). This class makes it convenient to access individual bits of the cipher

data, but it is not written to maximize the usage of the processor 's instruction set.

The second implementation stores each bit in a char variable. This implementa tion

allows for easy access to each bit, but uses eight times more storage than required for

the data and is only effective when operating on a per- bit basis.

For the comparison of each implementation, 320 million randomly generated plain­

texts are enciphered . The number is chosen as a multiple of 32 since the word sizes

for the processor being t ested are multiples of this value (32- bit and 64- bit). The

factor of 10 million is chosen to be long enough to allow for measurement of differences

between tests without making the tests too long to run.

In the case of the bitsliced implementation of CIKS- 1, the required number of

75

plaintcxts (32 or 64) arc generated aud added to an array. T he a rray is transposed ,

the data encrypted and then the array is transposed again to get the ciphertexts. For

the other two implementations, each plaiutext is encrypted as it is generated. Each

of the tests was run on an Intel Core 2 Duo 2.4GHz 64- bit processor with 2GB of

RAM. The 32- bit version was compil cl using only 32- bit instruction and the 64- bit

version was ompil d to use 64 bit instructions by changing the target architecture

use by the CCC compiler. The total pro essing time is measured using the POSIX

command time. This command gives the total time for the command to complete,

as well as the breakdown of the time used by the actual program and the system

overhead.

T he initial bitslice version was implemented using 32 parallel encryptions, which

was considered portable to the majority of processors commonly available which use

32- bit words. The test consisted of 320 million encryptions through one round of

the cipher nsing random inputs for both the da ta and key. For the char array and

STL bitset based implementations, each input was generated then ncrypted before

moving on to the next. For the bi tsliced version, inputs were gen rated in groups of

32, transpos d, encrypted and then transposed again to get th output.

A sampl set of r sults from the testing for each version of the cipher is given

in Table 6.1. The bitslice version of t he cipher outperformed both the STL bitset

and char array based versions. By bitsli ing the cipher an ov rall speedup of 130

times is achieved over the next fastest method, the char array impl mentation. The

time required to g nerate 320 million plaintexts was measured Lo be approximately

23 seconds. Taking this into account, the actual speedup of approximately 234 times

is achieved by the 32- bit bitsliced version of the cipher over the char array based

implementation.

Since 64 bit processors ar becoming more popular and th re are now 64- bit

versions of the most common operating systems available, a 64- bit bitslice version

76

Test T ime
Generate Plaintexts 23s
STL bitset CII<S 1 126m l s
char array CIKS 1 113m 4l s
Bitslice (32- bit) CIKS- 1 52s
Bitslice (64- bit) CJKS- 1 39s

Table 6.1: Elapsed time for 320 million encryptions

was also implemented . The inputs to the cipher were 64 values (each of size 32- bits)

for each of the left side, right side and key inputs stored in arrays. To prepare the

inputs to be used in the bitsliced code, the previous algorithm from [38] was extended

to fit the word size. To do this, the inputs were split into two 32- by- 32 bit arrays.

These arrays were individually transpos d and then concatenated into an array of 32

words. Since the CJKS- 1 cipher itself was written at the word level, its code did not

need to be changed .

The 64- bit bitsliced version of CIKS- 1 was tested by encrypting 320 million ran-

dom plaintexts. The time to perform the encryptions was about 13 seconds 1 ss than

that of the 32- bit bitsliced version. Since a two times increase in speed was not

achieved , it is obvious that the overhead of formatting the inputs for the bitsliced ci-

phers is a large portion of th overall time. However , it is not larg enough to negate

the increase in speed of the implementa tion method as compared to the others.

6.5 Limitations of Bitslicing

Although these implementations show a significant improvement over the more con-

ventional implementation techniques, they come with restrictions on their use. Sine

they require 32 (or 64) inputs to be encrypted at a time, they cannot be used for any

of the standard modes of operation other than ECB or counter mode. Other modes

require the output of one block into the next, however, these outputs are not available

77

when needed.

Other modes can be implemented 11s ing non standard methods. CBC can be used

by using 32 (or 64) parallel chains by choo ·iug the appropriate numb r of initialization

vector . This mode would be implementing 32 (or 64) standard CBC modes in parallel

and CFB or OFB mode can also be implemented in a similar way.

6.6 Conclusions

The CIKS- 1 ipher was design d for hardware and as a result utilizes many oper­

ations that ar not well suited for general purpose processors. In t his chapter, an

implementation has been presented that overcomes these limitations. The bitsliced

implementation of CIKS- 1 has a speed up of approximately 234 times over the nearest

competitor in tests run. When a 64- bit architecture is used, that speedup increases

to approximately 425 times.

The bitsliced version of CIKS- 1 is only compatible with two standard implemen­

tations of cipher modes, ECB and counter mod . However, it is possible to implement

the cipher using CBC, CFB or OFB modes. In these cases, there are parallel imple­

mentations of th standard modes where the output of each is passed into the input of

the next ncryption for each implementation. Bitslicing can also be applied to other

DDP- based ipher::; Lo improve the effi i ncy of software impl m ntation.

78

Chapter 7

Conclusions and Future Directions

The purpose of this thesis was to investigate the use of data- dependent structures as

an element in cryptographic ciphers. In particular, the CIKS- 1 cipher was used for

the research since it was written to primarily rely on DDPs for securi ty. Two attacks

on the cipher were presented as well as a look at implementing the cipher effici ently

in software. The following is a summary of the conclusions of this re earch. As well,

a list of future directions for this research is given.

7.1 Conclusions

The primary focus of the attacks presented in this thesis was the Hamming weight of

the data as it was encrypted. Since the DDPs only permute the data bits, they have no

effect on the weight of the data. Therefore, if the effect of the other components used

is similarly limited, there arises the potential to attack the cipher by manipulating

the data in a chos n plaintext attack. T his approach is used in the weight- based

attack presented in Chapter 4.

CIKS- 1 has very few components that change the Hamming weight of the data.

The rotations and permutations have no effect and the parallel modulo-22 additions

are shown to preserve the input weight of the data in ~ of the cases. Therefore, the

79

cipher depends heavily on the exclusive or addi tion of the round subkeys to modify

the weight of the data . Given this fact , keys with a low Hamming weight can b

detected by choosing low weight inputs.

Therefore, it is concluded that there is a class of low weight keys which should

be considered weak keys for the cipher. Through experimentation it is found that

keys with weight around six or less can be detected by constraining the input data

weight and comparing the resulting outputs to the binomial distribution through the

x2 goodness-of- fit test . Testing shows that the search area for the first subkey can

be reduced to within a weight of two from the actual weight on a 6- round reduced

version of the cipher with a total time complexity for the at tack of 252 encryption

opera tions.

In Chapter 5, a differential style at tack is presented which focuses on the differen­

tial weight of the input ra ther than the individual differences of bits. The CIKS-1

DDPs are shown to pass a one-bit difference introduced at their input to their output

approximately 28% of the time. Using this information the CIKS- 1 round function is

analyzed to create a set of likely differentials with which the cipher can be at tacked.

These differentials are used to gain information abou t. the subkey of the las t round

of the cipher. An experimental result is presented which can retrieve the last round

subkey of a six round version of CIKS- 1 with a data complexity of approximately

235 plaintext /ciphertext pairs and time complexity of approximately 236 encryption

opera tions plus 268 partial decryption operations. T his at tack is then extended to

show theoretically that the entire eight round cipher could be attacked with a data

complexity of 251 plaintext/ciphertext pairs and a time complexity of 252 encryption

operations plus 284 partial decryption opera tions.

Implementing these attacks in software can be inefficient due to the primitives cho­

sen to satisfy the criterion of being fast in hardware. Many of the operations require

swapping of individual bits which is not well suited for general purpose processors.

80

In testing and experimenting with the cipher , two versions were implemented , the

firsL using Lhe C+ + STL class bitset and the second using byte arrays in which each

element held a single bit of the cipher data. In Chapter 6, a third implementation

method , bitslicing, was investigated.

Bitslicing overcame the inefficiency of bi t 1 vel operations in general purpose pro­

cessors by treating an n- bit processor as n on bit processors. T his allows bitwise

operation on a specific bit of n inputs to be calculated in parallel. The bitsliced im­

plementa tion of CIKS- 1 presented has a speedup of approximat ely 234 times over the

nearest competitor in the test runs when implemented on a 32- bit architecture. When

compiled for a 64- bit bitslice architecture, the speedup increased to approximately

425 times.

Although DDPs can be efficiently implemented in both software and hardware,

care needs to be exercised in the design of a cipher which uses them extensively.

Specifically from th P. results presented , elements should be added tha t counteract the

permutations' lack of effect on the weight of t he cipher data. The following section

provides suggestions for future directions for the study of DDPs.

7.2 Future Directions

This thesis focused solely on the use of DDPs in the CIKS- 1 cipher because it relies

so heavily on them for its security. Future study of the data- dependent structures

should be extended to other ciphers, specifically Spectr- H64 and the Cobra family of

ciphers. These ciphers have DDPs of similar structure to CIKS- 1 but were designed

based on lessons learned from at tacks on the original cipher. Specifically, a study of

the weight propagation in these ciphers would help to understand if th y have solved

this weakness and if so how.

An attempt at redesigning CIKS- 1 could also provide insight into avoiding the

81

.--------------------------------------

weaknesses of the current design. I<eeping in mind the primary goals of the cipher, to

be secure while fast in hardware, replacements for fixed permutations, rota tions and

addition could b e investigat d. This could result in a catalog of components that are

both fast when implemented in hardware and complementary to DDPs.

From the point of view of software implementation, the design of the permutations

themselves could be reconsidered. Although the bitslicing technique worked well with

CIKS- 1, it has limitations for the mode of operation with which it could be used. It

would be b n ficial to have a DDP designed such that it can be efficiently implemented

in software as well as hardware.

82

References

[1] R. L. Rivest, "The RC5 encryption algorithm," in K. U. Leuven Workshop on

Cryptographic Algorithms, December 1994.

[2] A. Moldovyan and N. Moldovyan, "A cipher based on data- dependent permu­

tations ," }o'urnal of Cryptology, vol. 15, pp. 61- 72, January 2002.

[3] N.D. Goots, A . A. Moldovyan, and N. A. Moldovyan, "Fast encryption algorithm

Spectr- H64," in MMM-ACNS '01: Proceedings of the International Workshop

on Information Assurance in Computer· Networks, vol. 2052 of Lecture Notes in

Computer Science, (London, UK) , pp. 275- 286, Springer-Verlag, 2001.

[4] N. Sklavos, . A. Moldovyan, and 0. Koufopavlou, "High speed networking

security: design and implementation of two new DDP-based ciphers," Mobile

Networks and Applications, vol. 10, no. 1-2, pp. 219- 231, 2005.

[5] S. Singh, The Code Book. Anchor Books, 1999.

[6] Society for Worldwide Interbank Financial Telecommunications, "Annual report

2006: Achieving more, together." Online at http: I /www . swift. com, 2006.

[7] Statistics Canada, "The daily: Canadian internet usc survey. " Online at http:

//www.statcan.ca/Daily/English/060815/d060815b.htm, August 2006.

[8] B. Schneier, Applied Cryptography. John Wiley and Sons, Inc., 1996.

83

[9] R L. Rivest, .l\IJ. J. B. Robsbaw, R. Sidney, andY. L. Yin , "T he RCGTI\I block

cipher ," in First Advanced Encryption Standard (AES) Confe·rence, 1998.

[10] B. S. Kaliski Jr. andY. L . Yiu , ··On cliff 'rcntial aud linear crypLaualysis of the

RC5 encryption a lgorithm," in Advances in Cryptology CRYPTO 95 (D. Cop­

persmith, eel.) , vol. 963 of Lecture Notes in Computer Science, pp. 171 184,

Springer- Verlag Berlin, 1995.

[11] D. R Stin on, Cryptography: Theory and Practice. New York: Chapman &

Hall/CRC, 2nd ed., 2002.

[12] C. E. Shannon, "Communications theory of secrecy systems," Bell Systems Tech­

nical Journal, no. 28, pp. 656 - 715, 1949.

[13] W. Diffie and M . Hellman, "New directions in cryptography," Information The­

ory, IEEE Transactions on, vol. 22 , pp. 644- 654, Nov 1976.

[14] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital sig­

natures and public-key cryptosyst m ," Communications of the ACM, vol. 21,

no. 2, pp. 120- 126, 1978.

[15] Bluctooth, "Blnctooth core V2. 1 + bDR specification ." Avnilihle Online: http :

//www.bluetooth.com.

[16] S. Weatherspoon 'Overview of IEEE 802.llb security," Intel Technology Jour­

nal, 2000. Available Online:

http:/ /dev loper.intel.comjtechnology /itj /q22000/pdf/arL5.pclf.

[17] H. Feistel, "Cryptography and computer privacy," Scientific American, vol. 228,

pp. 15- 23, May 1973.

[18] H. M. Heys, "A tutorial on linear and differential cryptanalysis," Cryptologia,

vol. XXVI, no. 3, pp. 189- 221, 2002.

84

[19] N. I. of Standards and Technology, "Advanced encryption standard (AES) devel­

opment cfforL." Online at http : //csrc.nist .gov/archive/aes/index.html,

2001.

[20] ational Bureau of Standards, "DES modes of operation, F II S PUB 81," 1980.

[21] L. R. Knudsen, "Contemporary block ciphers," in Lectures on Data Security,

Modern Cryptology in Theory and Pmctice, Summer School, Aarhus, Denmark,

July 1998, vol. 1561 of Lecture Notes in Computer Science, (London, UK) ,

pp. 105- 126, Springer-Verlag, 1999.

[22] J. Kam and G. Davida, "Structured design of substitution-permutation encryp­

tion networks," Computers, IEEE Transactions on, vol. C-28, pp. 747 753, Oct .

1979.

[23] A. F. Webster and S. E. Tavares, "On the design of S-boxes," in Advances

in cryptology- CRYPTO 85, vol. 218 of Lecture Notes in Computer Science,

pp. 523- 534, Springer-Verlag, 1986.

[24] R. C. Merkle and M. E. Hellman, "On the security of multiple encryption,"

Communications of the ACM, vol. 24, no. 7, pp. 465- 467, 1981.

[25] M. Matsui , "Linear cryptanalysis method for DES cipher," in EUROCRYPT

'93: Workshop on the Theory and application of Cryptographic Techniques on

Advances in cryptology, vol. 765 of Lecture Notes in Computer Science, pp. 386-

397, Spring r-Verlag, 1994.

[26] E. Biham and A. Shamir, "Differential cryptanalysis of DES- like cryptosystems,"

}o'urnal of Cryptology, vol. 4, no. 1, pp. 3- 72, 1991.

[27] P. C. Kocher , "Timing attacks on implementations of Diffi Hellman, RSA, DSS,

85

and other ~y~tem~," in CRYPTO '96: Proceedings of the 16th Annual lntema­

tional Cryptology Conference on Advances in Cryptology, vol. 1109 of Lecture

Notes in Computer Science, (London, UK) , pp. 104- 113, Springer-Verlag, 1996.

[28] P. C. Kocher, J. J affe, and B. Jun, 'Differential power anal sis" in CRYPTO '99:

Proceedings of the 19th Annual Intemational Cryptology Conferen ce on Advances

in Cryptology, vol. 1666 of Lecture Notes in Computer S ci nee, (London, UK) ,

pp. 388- 397, Springer-Verlag, 1999.

[29] W. Becker, "Method and system for machine enciphering and deciphering." .S.

Patent #4157454, 1979.

[30] L. R. Knudsen and W . Mei r, "Correlations in RC6 with a reduced number of

round~, ' in FSE '00: Proceedings of the 7th Intemational Workshop on Fast

Software Encryption, vol. 1978 of Lectur-e Notes in Computer· Science, (London,

UK) , pp. 94- 108, Springer-Verlag, 2001.

[31] A. Miyaji and M. Nonaka, ' Cryptanalysis of the reduc d-round RC6, ' in !GIGS

'02: Proceedings of the 4th Intemational Confer-ence on Information and Com­

munications Security, vol. 2513 of Lecture Notes in Computer· Science, (London,

UK) , pp. 480- 494, Springer-Verlag, 2002.

[32] N. Goots, . Moklovyan, P. Moldovyanu, and D. Sumwerville, ' Fast DDP­

based cipher : from hardware to software," Micro-NanoMechatmnics and Human

Science, 2003 IEEE Intemational Symposium on, vol. 2, pp. 770 773 Vol. 2, Dec.

2003.

[33] C. Lee, D. Hong, S. Lee, S. Le , H. Yang, and J . Lim , "A cho~en plaintext

linear attack on block ciph r IKS- 1," in Information and Communication

Secur-ity: 4th Intemational Confer-ence, !GIGS 2002, Singapore, December 9-12,

86

2002. Proceedings, vol. 2513 of Lectur·e Note in Computer Sci nc , pp. 456- 46 ,

Spring r-Verlag Heidelberg, January 2002.

[34] M. Furlong and H. Heys, "A timing attack on the CII<S-1 block cipher ," Cana­

dian Conference on Electrical and Computer Engineering, 2005, pp. 231- 234,

May 2005.

[35] S. Dowdy and S. Wearden, Stati tics fo1· Research. New York: Wiley Publishing,

Inc., second eel., 1991.

[36] ational Bureau of Standards , "Data encryption standard, FIPS PUB 46, jan­

uary 15, 1977," 1977.

[37] E. Biham, "A fast new DES implem ntation in software," in FSE '97: Proceed­

ings of the 4th International Workshop on Fast Software Encryption, vol. 1267

of Lecture Notes in Computer Science, (London, UK) , pp. 260 272, Springer­

Verlag, 1997.

[38] H. S. Warr n , Hacker's Delight. Boston, MA , USA: Addison-Wesley Longman

Publishing Co. , Inc., 2002.

87

Appendix A

CIKS- 1 Implementations

A.l CIKS- 1 Bitset Implementation

1 !** ***************** ***************
2
3 Filename: ci k s. cpp
4 Author: Brian I< idney , P. Eng
5
6 DescT'iption :
7 Stra ight f o r-w a r·d implementation of th e CJJ<S- 1 blo c k cipher using th e
8 STL b i t se t c la ss .
9

10 *************************************** ***********************************!
11 #i n c lude "c i ks. h"
12
13 s tru c t S t a t e {
14 bitsct < 32> L ;
15 bitsct < 32> R ;
16 bitset < 32> l< ;
17 bitset < 48> v;
18 bit set < 48> v_k ;
19 bitset < 80> v_p ;
20 bitset < 32> s_ p ;
21 bitset < 80> v_l ;
22 b i t se t < 32> s - p p ;
23 bit sc t < 80> v _pp;
24 bit se t < 32> xor cd;
25 bit set < 32> key_pc rmuted ;
26 bitse t < 32> a ft e r_pl;
27 b i t s e t < 32> aft e r _ p 2 ;
28 b i t s e t < 32> aft e r _ p 6 ;
29 } ;
30
31 v oid s w a p_bits{bi t set < 32>& plaintext , int x_O , int x_l)
32
33 boo ! t e mp = plaintext. test (x _O);
34 p l aintext [x-0] pl a int ex ~ [x _l J;
35 pl ai nt ext [x_1J = t emp ;
36
37
38
39 v o id rot a t e_ l sb_7 (bitset < 48>& input)
40 {
41
42
43
44
45
46

bitse t < 48> t emp = input;
temp <<= 7 ;
inp u t >>= (input . s iz e ()
input I= temp ;

7);

88

47 void rotat e_ l s b _7 (I itset < 32> & input)
48 {
49 bit se t < :32> temp = input ;
50 temp <<= 7;
51 input >>= (in put . size() 7);
52 inp ut I= t emp ;
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

7
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
l09
110
Ill
t12
113
114

void DDP2_1 (bi tset < :32> & plaintext , int x_O , int x_ l , bool cont r ol_vc c tor)

if (control_vector = fals e)
{

swap_ b it s (plaintext , x_O , x _l) ;
}

void DDP4A(b it se t < 32> & plaint ext , int x_O_pos,
int x_3_pos, bitset <4>& co ntro l_ vec t o r)

II Do initial contro ll e d bit swaps
DDP2_l(plaintext , x_O_ pos , x_O_pos I , cont r ol_vccto r [OJ);
DDP2_l(p laint cxt, x _3_ p os - 1 , x _:Lpos, c ontroLvcctor[l]);

II Swap int e rnal bit s
swap_bits(p laintext , x_Q_pos + 1 , x_3_pos- 1) ;

II Do f ina l contr·ol l e1· bit swaps
DDP2_1(p laintext, x_O_ pos, x_O_pos 1 1 , o ntr ol_vector [2]);
DDP2_1(plaintext, x_3_pos - 1 , x_3_ p os, cont r oLvecto r [3]);

void DDP8_12(bitset <32>& pl ai nt ext , int x_O_pos ,
int x_Lpos, bitset < 12> & c o ntro l_ vecto r)

II Do initial c ontrolled bit swaps
for (int i = 0; i < 2; i++)
{

bits t <4> cv;
for (int j = 0 ; j < 4 ; j ++)
{

cv . se t(j , co ntrol_v ec t o r [j + (i * 4)]);
}
DDP4_4(pl a intex t , x_O_p os -1 (i

II Do the bit swaps
bitset < 32> temp;
for (int i = 0 ; i < x_O_pos ; i ++)

temp[i] = plaintext(i];

* 4), x_O_pos + (i * 4) -t 3, cv);

for (int i = 0 ; i < x_Lpos - x_Q_pos ; i+t-)
{

temp[i + x_O_pos] = plaintext[(i*((x_7_pos - x_O_po s + 1) /2))
% (x_7_pos - x_O_pos) + x_O _pos];

}
t e mp[3 2 1] = plaintext [32 - 1];
for (int i = x_7 _pos; i < 32; i + +)

t emp[i] = pl a int ex t[i] ;

p la int ext = temp;

I I Do fina l controll e d permutations
for (int i = 0; i < 4 ; i++)
{

DDP2_J (p laintext, x_O_pos
x_Q_ p o s 1- (i * 2)

(i * 2) '
1 , c ont r oi_ve c tor [i + 8]);

9

115
116
117 void DDP32A8 (b it se t < 32> & plaint ex t, bit se t < 48> & c ontroLv ec t o r)
118
119 for (inti = 0; i < 4 ; i + +)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
1.54
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

bits c t < 12> cv;
for (in t j = 0 ; j < 12; j -1 I)
{

cv. se t (j , co ntroL vector [j (i * 1 2) 1) ;

DDP8_12(plaintext, i * 8 , (i .. 8) + 7 , cv);

void DDP16_32(bit se t <32>& plaintex t, int x_O_pos ,
i nt x_ l 5_pos , b i t se t < 32> & co ntroL ve c tor)

II Do initial contro ll e d bit swaps
for (int i = 0 ; i < 2; i)
{

bitse t < 12> c v;
for(int j = 0 ; j < 12 ; H+)
{

c v .se t(j , co ntroLv ecto r [j 1- (i * 12)]) ;
}
DDP8_12(plaintex t , x_O_pos + (i * 8},

II Do th e bit s waps
bitse t < 32> t emp ;
for (int i = 0 ; i < x_O_pos; i ++)

t emp[i] = plaintext[i] ;

x _O_pos + (i * 8) + 7 , cv);

for (int i = 0 ; i < x_l5_pos - x_O_pos ; i ++)
{

temp[i + x_Q_pos] = pl aintex t [(i *((x_1 5_ p os - x_O_ p os + 1) / 2))
% (x_15_pos- x _O_pos) + x_O_pos] ;

}
te mp[x_ l 5_pos] = plaintext [x_ l 5_p os] ;
for (int i = x_l5_pos + 1 ; i < 32; iII)

temp[i] = plaintcx t[i];

pl a intex t = temp ;

II Do final cont!·ol l e d p ermutations
for(int i = 0 ; i < 8; i++)
{

DDP2_l(pl a in text, x _O_pos + (i * 2), x_O_p os + (i * 2) + 1 ,
c ontrol_v ec tor [i + 24]);

void DDP32_80(bitse t < 32> & plaintext, bitset <80>& co ntr o l_vector)

I I Do initial con troll e d bi t swaps
for(int i = 0 ; i < 2; i++)
{

bit se t < 32> cv;
for(int j = 0 ; j < 32; j++)
{

cv. se t (j , co ntr o L ve c t o r [j
}

(i * 32)]) ;

DDP16_32(pl a intext, (i * 16) , (i * 16) + 15 , cv) ;

I I Do th e bit swaps
bitse t < 32> t emp ;
for(int i = 0; i < 32 - 1 ; i++)

90

183
l84
185
186
187
188
189
190
191
192
193
194

{

}
tem p[i] = p l a i ntext [(i • (32 / 2)) % (32 - 1)] ;

tem p [3 2 -
p la int ext

1] = p la int ex t [32 - 1];
t emp ;

II Do fina l con t roll e d permutations
for (in t i = 0 ; i < 16; i 1-)
{

D D P2_1 (pI a i n t c x t , (i • 2) , (i • 2) + 1 , co n t r o I_ v c c to r [i I 6 4]) ;

195
196 void PL1 (bit se t < 80> & p l a i ntex t)
197
198 bi t se t < 80> temp ;
199
200 for (in t i = 0 ; i < 24; i -1-+)
201 t em p [i] = p l a in text [i + 8];
202 for (inti = 24; i < 32; i ++)
203 tem p [i] = pl a in text [i + 24] ;
204 for (int i = 32; i < 48; i ++)
205 tem p [i] = pl a in text [i] ;
206 for (in t i = 4 8; i < 56; i +)
207 temp[i] = pl ai n tcxt [i - 48];
208 for (int i = 56; i < 8 0 ; i + +)
209 tem p[i] = pl ai n text [i];
210
211 pl ai nt ex t = t emp ;
212
213
214 void PL2 (b it set < 80>& p la in tex t)
215
216 bi tse t < 80> temp ;
217
218 for (int i = 0 ; i < 8; i++)
219 temp [i] = pl ai n t cxt [i + 1 6];
220 for (inti = 8; i < 1 2; i++)
221 tcmp [i] = pl a in text [i + 24];
222 for (int i = 1 2; i < 2 0 ; i + +)
223 tcm p[i] = pl a in text [i + 1 2];
224 for (inti = 2 0 ; i < 3 2; i + +)
225 tem p[i] = pl a i n t cxt [i + 1 6];
226 for (inti = 32; i < 4 0 ; i + +)
227 t cmp [i] = pl a int cxt [i - 32] ;
228 for (int i = 40; i < 44; i -1 1-)
229 tcmp [i] =p l a int ext [i + 8];
230 for (int i = 44; i < 52; i + +)
231 tem p[i] = pl a in text [i - 36];
232 for (int i = 52; i < 6 4; i ++)
233 tcmp [i] = pl a i ntext [i] ;
234 for (int i = 6 4 ; i < 8 0 ; i ++)
235 t emp [i] = pl a int ext [i];
236
237 pl a int ex t = t emp ;
238
239
240 void p a r a ll e L a ddi t i o n (bi tset < 32> & lh s, bi t sct < 32>& r hs)
24 1
242 fo r· (int i = 0 ; i < 3 2 ; i = i + 2)
243 {
244
245
246
247
248
249

b oo! ca rry = lh s [i] & rh s [i];
lh s[i] = lh s [i] A rhs[i] ;
lh s[i + 1] = lh s [i + 1] A rh s [i + 1] A carry;

250 void p a r a ll c l_xo r (bit se t < 32>& lh s , bitset < 32>& rh s)

91

251
252
253
254

l h s l h s • rhs;

255 v o id c ik s l _r o und (s tru ct S t a t e& · t a t e)
256
257 II Form coutr·o l vector v
258 for (i n t i = 0 ; i < 7; i ++)
259 state.v[il = state. R [25 I il;
260 for (in t i = 7; i < 32; i ++)
261 stat c . v [i [= state . R [i - 7 1 ;
262 fo r (in t i = 32; i < 48; i + +)
263 s t ate . v [i I s t ate . R [i - 3 21 ;
264
265 II Apply P_J
266 DDP32A8(state . L , state.v);
267
268 II Fonn contr·ol vec l.o r v_k
269 fo t· (in t i = 0 ; i < 32; i ++)
270 s t a t e . v _k [i I = sta t e .I<[i I;
271 fo r (int i = 32; i < 48; i ++)
272 state. v_k [i I = s t a t e . I<[i 32 1;
273
274 II Fonn contro l v e cto1· 'ILP

275 for (in t i = 0; i < 32 ; i ++)
276 s tat . v _p [i I = state . L [i I ;
277 fo r (inl i = 32; i < 48 ; i++)
278 state.v.p[il = s tate . L [i - 1 61;
279 s t ate.s_ p = s t a t e .L;
2 0 DDP32_48(s tate. s.p , s tate. v_k);
281 fo r (in t i = 48 ; i < 80; i ++)
282 s t at e . v _ p [i I = s tate . s _ p [i - 4 81 ;
283
284 I I Permute v_p
285 P L l (s t ate . v _ p) ;
286
287 II Apply P_2
28 DDP32.80 (state . R , state . v_p) ;
289
290 II Form Contro l vector v_ l
291 for (in ti = 0; i < 16; i++)
292 s t a t e . v _I [i I = s t at c . L [i 1 1 61 ;
293 fo r (inti = 16 ; i < 48 ; i++)
294 sta t e. v _l [i I = s tat e . L[i - 1 61;
295 fo r (int i = 4 8; i < 8 0; i++)
296 s t a t e . v _I [i I = s t at c . L [i - 4 81 ;
297
298 I I Apply P.4 t o k ey
299 DDP32. 80(sta t e . I< , state. v _I);
300
301 I I XOR round key wi th R ight Side
302 s t a t e . R = state . R · state . I< ;
303
304 II R otat e L eft si d e
305 r o tat e_ lsb_7 (sta t e . L);
306
307 I I Form v_pp
308 s t a t e.s.pp = sta t e .L ;
309 r o t a t e _I s b _ 7 (s t a t e . v _ k) ;
3 10 DDP32A 8(s tat e. s _pp, s tate. v_k);
311 fo r (in t i = 0 ; i < 32 ; i++)
312 state . v_pp[il = s tate.s.pp[il ;
313 fo r (i n t i = 32; i < 64; i +)
3 14 state . v_pp[il = state. L[i 32];
3 15 for (int i = 64; i < 8 0 ; i++)
316 s tate . v_pp[il = state . L[i - 641 ;
:.n7
318 I I P ermute v _pp

92

319 PL2(Htatc . v_pp);
320
321 II A7J]Jly p_(j
322 DDP32_80(s t a t e. R , s tat e. v_pp);
323 s tat . after_ p 6 = s tat c . R ;
324
325 II Add to sides
326 pantllcl_add ition (state. L , s tate . R);
327
328 I I Swap Std e
329 bi t s et < 32> temp = state. L ;
330 sta t e. L = s tate . R;
331 s tate . R = te mp ;
332

93

A.2 CIKS- 1 Array Based Implementation

!************ * ***** * *********************~***************** * * * ****** ** *****
2
3 Pi l enam e : ci k .s . cpp
4 J\ uthor: Bria n J<i clncy , P. Eng
5
6 Desc r i pt ion:
7 S tra i ght forwarcl i mple ment a t i on of t h e C IJ<S- 1 block ci ph e r u s i n g
8 ch ar arrays t o h o lcl i ncl iviclual b i t s .
9

10 * * *** **** * * **** * ******** ** *********** * ** ** * ******** ******** * ** ** ** ********!
11 # in c lude " c ik s. h"
12
13 st ruct S t a t e
14
15 c h a r L [32] ;
16 c h a r R[32] ;
17 c h a r K [3 2 1 ;
18 } ;
19
20 v o id s w a p_b i t s(c h a r • pl ai ntex t , in t x _O , in t x _l)
21
22 c h a r t emp = pl a int ex t [x_O 1;
23 p I a i n t ext [x _0 1 p I a i n t ex t [x _ 1) ;
24 p l a int ext [x_1 1 = t emp ;
25
26
27 void r o tat e_ l s b _7 _4 8 (chau inpu t)
28
29 cha r t e mp [4 8 1;
30 merncpy (&te mp , in pu t, 4 8);
31
32 for (int i = 0; i < 4 8 ; i ++)
33 in p u t [i] = t ern p [(4 1 + i) % 4 8] ;
34
35
36 v o id r o tat e _l s b_7 _3 2 (ch a r • inp u t)
37
38 c h a r t em p [3 2] ;
39 memcpy(&t emp , in put , 3 2);
40
41 fo r (int i = 0; i < 32 ; i++)
42 in put[i] = t emp[(25 + i) % 32] ;
43
44
45 void DDP2_l(c h a r • p l a in t ex t , int x _O , int x_ l , c h a r c o n tr o l_v ec t o r)
46
47 if (c o n t r ol _v ec to r = 0)
48 {
49 s w a p_bit s (pl a i ntex t, x _O , x_1);
50
51
52
53
54 void DDP4_4(cha r • pl a intex t , int x _O_pos, int x _3 _p os, c h a r • co ntr o l _v ec t o r)
55 {
56 II Do i nit i a l c ont ro l l e d bit swaps
57 DDP2_l(p la in t ex t , x _O_pos, x _O _pos + 1 , co ntr o l _vec tor [OJ);
58 DDP2_1(p la in t ex t , x _3 _p os - 1 , x_3_ p o s, co ntr o Lv ec t o r [11);
59
60 I I Swap int e rnal bit s
61 s wap_b i t s (p l a intex t , x_ O_pos + 1 , x _3_pos- 1);
62
63 II Do f inal c ontro ll er- b i t swaps
64 DDP2_l(pla int e xt , x_O_pos, x _O_ p o s + 1 , c on t r o l _v e c tor [2 1);
65 DDP2_1(pl a intex t, x _3 _pos - 1 , x_3 _pos, co ntro l_v e ct o r [3]);

94

66
67
68 v o id DDPtL 12(c h at· * pl a in text , int x_O_ p os, int x_7_ pos , c h a r * co ntr o l _vcc t o r)
69
70 II Do ini t i al con troll e d bit .swn.p8
71 for (int i = 0 ; i < 2; i +~)
72 {
73 c h a r * cv = co ntr o L vector ;
74 cv + = (i * 4) ;
75 DDP4A(p! aintcxt , x_O_pos 1 (i * 4), x_()_pos + (i * 4) 1 3 , cv) ;
76
77
78 II Do th e b it swaps
79 c h a r temp [8 J;
80 fot·(int i = 0; i < x_7_ p os- x _O_pos ; iII)
81 {
82 tcmp [i] = p laintcxt[(i*((x_7_pos - x_O_pos + 1) /2))
83 % (x_7_ pos - x_O_pos) + x_O_pos] ;
84
85 for (int i = x _O_p os; i < x _7_p os; iII) II x _7_p os does no t c hang e
86 p l a intcx t [i] = tcmp[i x_O_ p os];
87
88
89 II Do f tna l c ontrolled p ermutatton s
90 for (int i = 0 ; i < 4 ; i++)
91 {
92
93
94
95

DDP2_1(p1 ai nt cxt, x _O_pos 1 (i * 2) , x_O_pos ~ (i * 2) I 1 ,
co ntrol_v cto r [i + 8]);

96
97 void DDP32A8(cha r * p laintext, c h a r * co n tro l _vccto r)
98
99 fo r (int i = 0 ; i < 4; i++)

100
101
102
103
104
105
106

c h ar * cv = cont r o l_vccto r ;
cv + = (i * 1 2) ;
DDP8_12(p1aintcxt, i * 8 , (i *) -1 7 , cv) ;

107 v o id DDP16_32(c h a r * p laintext, int x _() _pos, int x_ 15_pos, c h ar * co ntr o l _vccto r){
108 II Do initia l contro ll e d b it swaps
109 f o r (int i = 0; i < 2; i++)
11 0 {

c h a r * c v = co n t r o l_vc c to r
cv += (i * 12) ;

111
112
113
114
115

001 8_12(plai n t cx t , x_O_po· + (i * 8) , x_O_pos + (i *) + 7 , cv) ;

116 II Do the bit swaps
11 7 c h a r tcmp[l6];
118 for (int i = 0; i < x_ 15_pos - x_O_pos; i 1 1)
119 {
120 tcmp[i) = p1aintcxt[(i *((x_l 5_pos - x_O_pos + 1) /2))
121 o/c (x_ l 5_ pos - x_O_pos) + x_O_pos];
122
123
124
125
126
127
128
129
130
131
132
133

fo r (int i = x_O_ p s; i < x_15_pos; i I 1)
p l ai n t cx t [i] = tc m p[i - x_O_pos] ;

I I Do final con trol l ed p ermutations
for (int i = 0 ; i < 8; i++) {

DDP2_1(pl a intext , x_O_p os + (i * 2), x _O_pos + (i * 2)
·o n troLvcctor[i + 24]);

95

1 '

134
135 II Fun c t ·ion: DDP32_80{ b i ts et<32> plrt-.ut e xt, lnt se l. <80> con t rol_vecl.o 1·)
136 II Implements the CP Box P32l80 .
137 void DDP32_80(cha•· • plaintex t , char• c o ntrol _vcc to r){
138
139 II Do initial contro ll ed bit swaps
140 for (int i = 0 ; i < 2; i++) {
141 char • cv = co ntr o L v ec tor ;
l42 cv += (i * 3 2);
l43 DDP16_32(p l a intcxt , (i * 16), (i • 16) + 15 , cv);
144
145
146 II Do the bit swaps
147 char temp[32];
148 for (int i = 0; i < 32- 1 ; i++){
149 t emp[i] = plaintext[(i • 16)% 31];
150
151
152 for (int i = 0 ; i < 32 - 1 ; i + +)
153 pl a intext[i] = temp[i];
154
155
156 II Do f ina l contro ll ed p ermu tations
157 for (int i = 0 ; i < 16 ; i++)
158 {
159 DDP2_1(pl a int ex t , (i • 2), (i * 2) + 1 , co n tro l _vcctor[i + 64]);
160
161
162
163 void PL1 (char• pl a int ext
164
165 char t c mp [8 0];
166
167 for (int i = 0 ; i < 24; i ++)
168 t emp[i] = pl a intex t[i + 8];
169 for (int i = 24; i < 32; i ++)
170 t emp[i J = plaintext [i + 24];
171 for (int i = 32; i < 4 8 ; i H-)
172 temp[i] = pl a int ex t [i] ;
173 for (int i = 48; i < 56; i ++)
174 t emp[i] = pl a int ex t [i - 4 8];
175 for (int i = 56; i < 8 0; i++)
176 te mp[i] = pl a intext[i];
177
178 fo•· (int i = 0; i < 80; i + +)
179 p I a in te x t I i J te mp I i] ;
180
181
182 void PL2(char • pl aintext
183
184 c har t e mp[80];
185
186 for (int i = 0; i < 8; i + +)
187 temp[i] = plaintext[i + 1 6];
188 for (inti = 8; i < 12 ; i ++)
189 temp[i J = pl a int ex t [i + 24];
190 for (int i = 12; i < 20; i++)
191 t cmp[i] = p la int ex t [i + 12];
192 for (int i = 20; i < 32; i ++)
193 t cmp[i] = plaintcx t [i + 16];
194 for (in t i = 3 2; i < 4 0 ; i ++)
195 te mp[i] = plaintex t [i - 32];
196 for (int i = 40 ; i < 44 ; i ++)
197 temp[i] = plaintext[i + 8];
198 for (int i = 44; i < 52; i ++)
199 tc mp[i] = pl a int cx t[i - 36];
200 for (int i = 52 ; i < 64; i-J-+)
201 te mp[i] = pl a intext[i] ;

96

202 for (int i = 64 ; i < 8 0; i + +)
203 tc rnp [i] = plaint c xt [i] ;
204
205 for (int i = 0; i < 80; i 1-1)
206 p l ai n text[i] = tcmp[i] ;
207
208
209 void parall c l_addition (c har* lhs, c h a r * rh s)
210

for (int i = 0; i < 32; = i + 2)
{

c har c arry = lh ~[i] & rhs[i] ;
lh s[i] = lh s [i] • rh s[i];

211
212
213
214
215
216
217
218
219
220
221
222
223

lh s [i + 1] = lh s [i -1- 1] • rh s [i -\- 1] • c ar r y;

void parallel_xor (char* lhs , char * rh s)

224

for (inti
I h s [i J

0 ; i < 3 2; i -I-+)
lh s [i] · rhs[i];

225 void c iksLr ou nd (st ruct State& s tat e){
226
227 c har v [4 8];
228 II Form c ontro l ve c tor· v
229 for (i n t i = 0 ; i < 7 ; i -\--\-)
230 v[i] = statc.R[25 -\- i];
231 for (int i = 7; i < 32 ; i++)
232 v [i J = stat c . R [i - 7 J ;
233 for (inti = 32 ; i < 48; i-1--1-)
234 v [i J = s tate . R [i - 3 2 J ;
235
236 II Apply P_l
237 DDP32A8(statc.L, v) ;
2::l8
239 II Form c ont r ol v e ctor v_k
240 c har v _k [4 8 J ;
241 for (int i 0 ; i < 32; i++)
242 v _k [i] st a t c . K [i] ;
243 for (int i 32; i < 48; i -H -)
244 v _k [i J s t ate . K [i 3 2 J ;
245
246 II Form c ontrol v ec tor v_p
247 char v_p [8 0];
248 for (int i 0; i < 32 ; i++)
249 v - P [i j = stat c . L [i];
250 for (int i = 32; i < 48; i ++)
251 v_p[i] = state.L[i- 16];
252 char s _p [32] ;
253 memcpy(s_p, state .L, 32);
254 DDP32A8(s _p, v_k);
255
256
257
258

for (int i
v_p [i J

48; i < 80; i++)
s_p[i 48];

259 I I Permute v_p
260 PL1(v_p) ;
261
262 II Apply ?_2
263 D DP32_80(s tate .R, v_p);
264
265 I I Form Contro l v e ctor v _I
266 char v_ l [80];
267 for (i nt i 0; i < 16 ; i++)
268 v _I [i J s t at c . L [i -\- 1 6 J ;
269 for (i nt i 16 ; i < 48; i -1--1-)

97

270
271
272
273

v _I I i J
fo r (i 11 t i

v _I I i J

s tat e. Lii - 16];
48; i < 80; i 1-+)
s tat e .Lii - 48];

274 II Apply P_4 i,o k e y
275 DDP32_80(s tate. 1<, v _I);
276
277 II XOR ,-o und k ey with R i ght Side
278 parallel_xor (state. R , stat e .K);
279
280 II Rotate L e ft side
281 rotate_lsb_7_32(state.L) ;
282
283 I I Form v_pp
284 c h a r v _ppl80] ;
285 c h a 1· s_ppi32 J;
286 memcpy(s _p p, state. L , 32);
287 rotate _l s b_7 _48 (v_k) ;
288 DDP32_48(s_pp , v _k) ;
289 for (i11t i = 0 ; i < 32; i++)
290 v_ppliJ = s_pp l iJ;
291 fo r (i11t i = 32; i < 64; ill)
292 v_ppliJ = s t atc. L ii - 32];
293 fo r (i 11 t i = 6 4 ; i < 8 0 ; i ++)
294 v_ppliJ = s tate . L i i - 641;
295
296 I I P ermute v _pp
297 P L 2(v_pp);
298
299 II Apply P_6
300 DDP32_ O(s tatc . R, v _pp) ;
301
302 I I A del t o s i cl e s
303 para l l e Laddit i on(state.L, s tatc. R) ;
304
305 I I SwCLp si d e
306 c h a r t emp 132 1;
307 memcpy(temp , s tate.L , 32);
308
309 fo •· (i11t i = 0 ; i < 32 ; i ++)
310
311
3 12
313
314

s tat e. Lii1
statc . RiiJ

s tat e .RI i 1;
temp I i 1 ;

98

A.3 CIKS- 1 Bitsliced Implementation

1 /************************************** ************************************
2
3 Filename : c iks. cpp
4 Autho1· : Brian J<iclney , P.Eng
5
6 D e s cription:
7 Bitsl ice cl implem e ntat i on of the C/J<S- 1 block c ipher.
8
9 *************************************** ***** ********** **** *********** * * * * *!

10 # inc lude "c i ks.h"
11 # incl ud e "bitutil . h"
12
13 stat i c in I in c void DDP32_80 (uns igned long* x , unsigne d long* c)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

uns igned long temp [3 2] ;

II Layer n
t emp [OJ
temp [1 J
temp [2]
temp [3]
temp [4]
temp [5]
temp [6 J
temp [7]
temp [8]
temp [9]
temp[lO]
temp [11]
temp[l2]
temp [13]
temp [14]
temp [15]
temp [l 6]
temp[l7]
temp [18]
temp[l9]
temp[20]
temp [21]
temp[22]
temp [23]
temp [24]
tcmp(25]
temp (26]
temp [27]
temp (28J
temp (29]
temp(30J
temp [31]

(c[OJ & x(O]) I (- c(O] & x (l]) ;
(- c [O] & x[O]) I (c (OJ & x(l]) ;
(c[l] & x[2]) I (- c[l] & x[3]);
(-c[l] & x[2]) I (c[l] & x [3]) ;
(c[4] & x(4]) I (-c[4] & x (5]);
Cc[4] & x(4]) I (c[4] & x (5]);
(c[5] & x[6]) I (- c[5] & x[7]);
(- ci5J & x[6J) I (ci5J & x(7]);
(cl l 2] & xiS]) I (- ci12J & xi9J);
(- cll2] & x [8]) I (c[l2] & xl9]);
(cl l 3] & x[JO]) I (-cll3] & xl11]);
(- c [l 3] & x llO J) I (c ll 3J & xlll]);
(cl 1 6] & x(l2]) I (- c ll 6) & x(l3]) ;
c- c[l6J & xl 12]) 1 (ci16J & x(13J);
(cl l7] & xl l4]) I (- cl 17] & x(15]);
(- cll7] & x[l4]) I (c(l7] & xl l 5]);
(c l32] & xl l6]) I Cc[32J & xll7]);
(-c[32] & xll6]) I (c[32] & xll7]);
(c i33J & x(l 8]) I (-c[33) & x[19]);
(- c(33J & xll8]) I (c [33J & xll9]);
(cl36] & x[20)) I (- c [36) & x(21]);
(- cl36) & xl20)) I (cl36] & x[2 1]);
(cl37] & xl22]) I (-c [37) & x[23]) ;
(-cl37] & xl22]) I (cl37] & x(23)) ;
(c (4 4) & x[24)) I (- c [44) & x(25]);
(-cl44] & x(24]) I (cl44) & xl25));
(c[45] & xl26]) I (- cl45] & x[27]);
(- cl45] & x[26]) I (cl45] & x[27]);
(cl48] & x(28)) I (- c(48) & x [29]);
(- c[48] & xl28]) I (c(48] & xl29]);
(c l4 9] & x[30]) I (-c[49] & x[3 1]);
(-cl49] & xl30]) I (c(49] & x(3 1]);

II Layer 1 {P4 -4 butte1·jlies)
for (i nt i = 0; i < 32; i i + 4)

x [i] = temp [i] ;
x I i + 1] temp (i + 2] ;
xI i + 2] temp [i + 1] ;
xli + 3] = temp l i + 3];

I I Ln ye1· 2
temp I 0) (c [2] & x I 0]) I (- c [2]
templlJ c- c(2] & x [OJ) I (c(2]
temp [2] (c [3] & x [2)) I (- c I 3]
tempi3J (-c[3] & x[2]) I (c(3]
temp(4) (c(6] & x[4]) I (-cl6)

& X [1 I) ;
& X I 1 I);
& X [3));
& X [3));
& X 15]);

99

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
llO
ll1
ll2
113
ll4
115
116
ll7
ll8
ll9
120
121
122
123
124
125
126
127
128
129
130
131
132
133

templ5]
templ6]
tempi7J
temp I 8]
temp 19]
temp I 1 OJ
temp I 1 1]
templ 12]
templ l 3]
temp I 14]
templl5]
temp I 16]
templ 1 7]
tem p I 18]
templ 19]
temp 120]
temp I 21]
tem p 122]
templ23]
templ24]
templ25]
templ26]
templ27]
templ28]
templ29]
templ30]
temp 13 1]

c · cl6] & xl4]) I (c iG J & xl5]);
(c i7J & xi6J) 1 c·c i7J & xi7J) ;
c · ci7 J & xi6Jl 1 (ci7J & xi7J);
(cll4] & xi8 J) 1 c·cl l 4J & xi9J);
c · cl l 4] & xi8J) 1 (c l l4 J & xi9J);
(cl15] & xl10]) I c·c ll5] & xl11]);
(-cl15] & xl l O]) I (c l15] & xll 1]);
(c l l8J & xll2J) 1 c · ci18 J & xi13J);
c·c l18] & x l l 2J) 1 (c ll8J & xll3J);
(cl l 9J & xll4]) 1 c· ci19J & xll5J);
('cll9] & xll4]) I (cll9] & xll5]);
(ci34J & x l l61) 1 c·cl341 & xi17J);
('cl34] & xl 16]) I (c l341 & xll7]);
(c l351 & xl l 8]) 1 c·cl351 & xll9]);
('cl35] & xl 181) I (c l351 & xll9]);
(c i38J & xi20]) 1 c· ci38 J & xl21]);
('cl38] & x l20]) I (ci38J & xl211);
(c l391 & xi22J) 1 c· ci39J & xi23J);
c· ci39J & x l 221) 1 (c i39J & xi23J) ;
(cl461 & xl24]) I ('cl461 & xl251);
('cl46] & xl241) I (cl4 6) & xl251);
(cl47] & xi26J) 1 c·cl47] & xl27]);
('cl471 & xl26]) I (cl 471 & xl271);
(ci501 & xl28]) 1 c·ci5 0] & xl2 91) ;
c·ci501 & xl28]) 1 (ci5 0J & xi29J);
(cl51] & xi30J) 1 c·cl51] & xi3 IJ) ;
('cl5 11 & xl30]) I (cl5 11 & xl31]);

II Layer 3 {?8. 12 butt erfli es)
fo r (int i = 0; i < 32; i i + 8)
{

x I i J = temp I i 1 ;
x li + 1] = templi + 41;
x l i + 21 = tcmpli + 1];
xl i + 31 = temp l i + 5];
xl i + 4] = temp l i + 2];
xli + 5] = templi + 61;
xl i + 6] = templi + 3];
xl i + 7] = templi + 7] ;

I I Layer 4
temp I 01 (c I 8] & x I 0]) I (- c I 8] & x I 1) ;
temp I 1] (- c I 8] & x I 0]) I (c I 8] & x I 1) ;
temp I 21 (c I 9] & xI 2]) I (- c I 9] & xI 3) ;
temp I 3] (- c 19 1 & x I 2]) I (c I 91 & x I 3) ;
temp I 4] (c 11 0] & x 14]) I (- c 11 0] & x 5]) ;
templ51 c-c l10] & x i 4J) I (ci 101 & X 5]);
templ6] (c l11] & xi6J) I (-cl111 & x 7]);
tcmpl71 c·c l 111 & xi6J) I (cl1l] & X 71) ;
templ81 (c l20] & xl8 1) I ('ci201 & x 9]);
temp I 91 (- c I 2 0] & x I 8 1) I (c I 2 01 & x 9]) ;
templl01 (c l21] & xllO]) I c· cl21] & xll1]);
templ 11 1 c·cl2l] & xl l 0 1) I (cl21] & xlll]);
temp I 1 2] (c 12 2] & x I 1 21) I (- c [2 21 & x [1 3]) ;
tem p [131 (' c [2 21 & x [l 2]) I (c [2 2] & x [1 3]);
temp [1 4 J (c [2 3 J & x [1 41) I (- c [2 3] & x [1 5]) ;
temp[15] ('c[23] & x[1 4]) I (c [23] & x[151);
temp I 1 6] (c [4 0 J & x [1 6 J) I (- c [4 0] & x [1 7]) ;
templ 1 7] ('c [401 & x[l 6]) I (c[40] & x[17]);
temp [18 1 (c [4 1] & x [1 81) I (- c [4 1] & x I 1 9]) ;
temp [1 91 (' c [4 1] & xI 1 8 J) I (c [4 1] & x [1 9]);
tcmp[201 (c [42 1 & x [20 1) 1 c·c[42J & x[21J);
templ2 11 ('c[421 & xi2D1) I (c[42] & x[2 1]);
templ221 (c [43 1 & x [22]) 1 c-c[43J & x[23J);
tem p [2 3 J (' c [4 31 & x [2 2]) I (c I 4 31 & x [2 3]) ;
temp I 2 41 (c [52] & x [2 4 J) I (- c [5 21 & x [2 5]) ;
temp[251 ('c[521 & x[241) I (cl52 1 & x[25]);

100

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

temp[26] (c [53] & X [26]) I (- c [5 3 J & X [27]) ;
temp[27] c c [53] & X [26]) I (c [5 3 1 & X [27]) ;
temp [28] (c [54 J & X [28]) I (- c [54 J & X [2 9]) ;
temp [29] c-c[54] & x[28]) I (c [54 J & X [29 1) ;
temp[30I - (c [55 J & X [30]) I (- c I"" J & X [3J)) ;
temp 13 1 I Cc [55] & X 1301) I (c 1551 & X 13 1 I) ;

II Layer 5 (P16_32 butterflie s)
for (in t i = 0; i < 32; i i + 1 6)

X Ii I = tem p [i J;
X I i + 1 J = temp [i + 8] ;
X I i + 2] = tem p I i + 1 I ;
X [i + 3] = temp I i + 9] ;
X I i + 4] = temp I i + 2 1;
X [i + 5] = tem p [i + 10];
X I i + 6] = temp [i + 3];
X [j + 7] = tem p [i + 1 1];
x[i + 81 = temp[i + 4 J ;
X [i + 9] = temp[i + 1 2];
X [j + 1 OJ = temp I i + 5];
X [i + 1 1 J = temp [i + 13];
X I i + 1 2] = temp I i + 6 I;
X [i + 13] = temp I i + 1 4];
X I i + 1 41 = temp [i + 7];
X I i + 1 5] = tem p [i + 1 5];

I I Layer 6
tem p[O] (c[24l & x i O]) I c- c [24l & x l1l);
temp [1] (- c [2 4 I & x [0]) I (c 12 4 I & x 11]);
temp [2] (c [2 5] & x [2]) I (- c [2 5 J & x [3 J) ;
temp [3 J (- c 12 5 J & x [2]) I (c [2 5] & x [3 J) ;
temp [4J (c [26J & xi4J) 1 c-ci26J & xi5J};
temp[5] (-c [26] & x[4]) I (c [26l & xl5l);
tern p [6] (c [2 7] & x [6] } I (- c [2 7 I & x 17]) ;
tern p [7] C c [2 7 I & x [6]) I (c [2 7 I & x [7 J) ;
tern p [8] (c [2 81 & x [8 I } I C c [2 81 & x [91) ;
temp[91 (- c[281 & x[8] } I (c [28] & x l9l};
temp [10] (cl291 & xl 1 0]} I (- c [291 & xl1 1]);
temp 111] (- c [2 9 J & x 11 0 J) I (c 12 9 J & x 11 1]) ;
temp [1 21 (c [3 0 J & x [1 2]) I (- c 13 0 1 & x 11 31) ;
temp [1 31 (- c [3 0 J & x 11 2 I) I (c 13 0 1 & x 11 3]) ;
temp [1 4 I (c [3 11 & x [1 41 } I (- c [3 1] & x 11 51) ;
temp[15l c-c[31 1 & x[14]) 1 (c[311 & x[15l) ;
temp [161 (c [5 61 & x [1 61) I (- c [56) & x [1 7 J);
temp[1 7) (-c[56) & xl 1 61} I (cl56) & xl17)} ;
tcm p [1 8) (c [5 71 & x [1 8 I) I (- c [5 7) & x [1 9 I) ;
templ 1 91 c-cl571 & xl181) 1 (c[57 1 & xl19l} ;
tempi20J (c[58J & x[201) 1 c- ci58 J & xl2 1l } ;
templ2 1 l c-c [58 J & x[20 1) 1 (c[58) & xl2 11) ;
tern p [2 2 J (c 15 91 & x 12 21) I C c 15 9 1 & x [2 3]) ;
tern p [2 3 1 (- c 15 9 1 & x 12 2 1) I (c [5 9 1 & x [2 31) ;
temp[24 1 (c[60I & x l24l) 1 c- c[601 & x[251) ;
t emp[251 c-c[6D 1 & x[241} 1 (c[601 & x[25J) ;
temp [2 6) (c 161 I & x 12 6]) I (- c [61) & x [2 7)) ;
temp 12 7) (- c [6 1) & x 12 6)) I (c [6 1) & x [2 7 J) ;
temp[281 (c l62 l & x[28 J) 1 c- cl621 & x[29 J) ;
templ291 c-c i62J & x[28]) 1 (c[621 & xl291) ;
tempi3 DI (ci63 J & x[3o J) 1 c- c[63 J & x[3ll} ;
temp[3 1l c - c[63J & xi30J) 1 (c[63J & xi31J} ;

II Layer 7 {P32_80 butt e rflies}
for (int i = 0 ; i < 16; i++)
{

x [i * 2) = tem p I i] ;
x [(i * 2) + 1] = tcmp[i + 16] ;

101

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
24 1
242
243
244
245

II Laye1· 8
temp[O]
temp [1 J
temp [2]
temp [3]
temp[4]
temp [5]
temp[6]
temp [7]
temp[8]
temp [9]
temp [10]
tem p [l 1]
temp[1 2]
temp[l 3]
temp[14]
temp [l5]
temp[l6]
temp[17]
temp [18]
temp[19]
temp [20]
temp[21]
temp[22]
temp[23]
temp [24]
temp[25]
temp [26]
temp[27]
temp [28]
temp [29]
temp [30]
temp[3 1]

(c[64] & x[OJ) I (-c [64] & x[l]);
(-c[64] & x[O]) I (e [64] & x [l]);
(c[65] & x[2]) I (-c[65] & x[3]);
(-c[65] & x[2]) I (c[65] & x[3]) ;
(c[66] & x[4]) I (-c[66] & xl5]);
(-c[66] & x[4]) I (c[66J & xl5]);
(c[67] & x[6]) I ("c[67] & x[7]);
(- c[67] & x[6]) I (c[67] & x[7]);
(c[68J & x[8]) I (- c[68] & x[9]);
(-c [68] & x[8]) I (c[68] & x[9]);

(c [69] & x[l OJ) I (- cl69] & x[l l]);
(- c[69] & x!lOJ) I (c[69] & x[l l]);
(c[70] & x[1 2]) I (-c[70] & x[l3]) ;
(- c[70J & x[l 2]) I (c[70] & x[l3]);
(c[71) & x[14)) I (-c[71) & x[l5));
(- c [7 1) & x[14]) I (c[71) & x[15]);
(c[72) & x[l 6]) I (- c[72) & x[l7)) ;
(-c[72) & x[l 6)) I (c[72) & x [17]);
(c[73] & x[18)) I (-e[73) & x [l9]) ;
(- c [73] & x [l 8)) I (c[73] & x[l 9)) ;
(c[74) & x[20)) I (- c[74] & x[2 1]);
(- c[74] & x[20]) I (c[74) & x[2 1)) ;
(c[75] & x[22)) I (- c[75] & x[23)) ;
(-c[75) &x[22]) I (c[75] &x[23));
(c [76] & x[2 4)) I (- c [76] & x[25));
(- c[76) & x[24)) I (c[76] & x[25));
(c[77) & x[26)) I (-c[77) & x[27]) ;
(- e[77) & x[26]) I (e[77] & x[27));
(c [78) & x[28)) I (-e [78) & x[29));
(- c[78) & x[28]) I (c [78) & x[2!l));
(c[79) & x[30)) I (- c[79) & x[31));
(- c[79] & x[30]) I (c[79] & x[3 1]);

I I Assign back to x fJ
for (int i = 0; i < 32; i + +)

x [i] = temp [i] ;

246 s tat i e in I in e void DDP32_48 (unsigne d long* x, uns ig n e d lo ng* c, uns ig n e d long* o u t)
247
248
249 uns ig n e d long temp [3 2];
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

I I L ayer· 0
temp [OJ
temp [1 J
temp[2]
temp [3]
temp [4]
temp [5]
temp [6]
temp[7]
t em p] 8]
temp [9]
temp [1 OJ
temp [11]
temp[l 2]
temp [13]
temp [14]
temp[l5]
temp [16]
temp[17]

(c[O] & x[O]) I (-c[O] & x[l]);
(- c [O] & x[O]) I (c[O] & x[l]) ;
(c[l] & x[2]) I (-c[l] & x[3]);
(- c [l] & x[2]) I (c[1] & x[3]);
(c[4] & x[4]) I (-c[4] & x[5]) ;
(- c[4] & x[4]) I (c[4] & x[5]);
(c[5] & x[6]) I (- c[5] & x[7]);
("c [5] & x[6]) I (c[5] & x[7]);
(c[l 2] & x[8]) I (-c [1 2] & x[9]);
(- c[1 2] & x[8]) I (c [12] & x[9]);

(c[l 3] & x[lO]) I (-c[13] & x[ll])
(- c[l3] & x[l O]) I (c[l3] & x[ll])
(c[l 6] & x[l 2]) I (- c[l6] & x[l3])
(- c [l6) & x[l2]) I (c[l6] & x[l3]) ;
(c[l7] & x[l4]) I (- c[l7) & x[l5]);
(- c[17) & x(14]) I (c[l7] & x[l5]) ;
(c[24) & x(16]) I (- c[24) & x[17]);
(-c [24] & x[l 6]) I (c[24] & x[l7]) ;

102

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
3 16
3 17
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

temp I 1 8)
temp 119]
temp 120]
temp I 2 1]
templ22]
temp 123]
tcmpl24]
templ25]
temp 126]
tcmpl 27]
temp 128]
temp 129]
temp[30]
temp I 3 1]

(cl25] & x[l8]) I (-cl25] & xll9]);
(-c [25] & x l 18]) I (c[25) & x[l 9]);
(cl28] & xl20]) I (-c[28) & xl21]);
(-cl28] & xl20]) I (cl28] & xl2 1]);
(cl29] & xl22]) I Ccl29] & x[23]);
(-cl29] & xl22]) I (cl29] & xl23]);
(c l36] & xl24]) I (-c[36] & xl25]) ;
(-c[36] & x[24]) I (c[36] & x[25]);
(cl37] & xl26]) I (-c[37] & xl27]);
(-cl37] & x[26]) I (cl3 7] & x [27]);
(c l40] & xl28]) I (-cl40] & xl29));
(-cl40] & xl28]) I (cl4 0] & xl29]);
(cl4 1] & xl30]) I (- c l41] & x[31]);
Ccl41] & xl30]) I (c l 41] & xl31]);

II Layer 1 (?4-4 butterfli es)
for (int i = 0; i < 32 ; i = i + 4)
{

out I i] = temp I i];
o ut [i + 1] = templi + 2];
o u t I i + 2] = temp [i + 1] ;
outl i + 3) = tcmp[i + 3];

II Layer 2
tempiOJ (cl2] & out iO]) I (-cl2] & out[1]);
tcmp[1] (-c[2] & out[O]) I (cl2] & out[1]);
tcmp[2] (c[3] & o ut[2]) I (-c[3] & out[3]);
tcmp[3] (-c[3] & out[2]) I (c[3] & out[3]);
tcrnp[4] (c[6] & o ut[4]) I Cc [6] & out[5]);
tcmp[5] (-c i 6 J & o ut [4]) I (c[6] & out[5]) ;
tcmp[6] (c[7] & o ut [6]) I (-c [7] & out[7]);
temp[7] (-c[7] & out[6]) I (c[7] & out[7]);
tcmp[8] (cll4] & outl8]) I (-c l14] & out [9]);
tcmpl9] (-cl14] & out[8]) / (c[14] & out [9]);
tcrnp[10] (c[l5] & out[10]) I Cc[1 5] & o ut [11]);
tcmp[ll] Ccl15] & outl10]) I (cl15] & o ut l1 1]);
tcmp[12] (cl18] & out l1 2]) I (- cl18] & o ut l13]);
tcmp[13] Cc/18] & outl12]) I (cl18] & o ut [l3]) ;
tcmp [l4] (cl 1 9] & out[1 4]) I Cc[19] & o ut l 15]);
temp[15] (-cl19] & o utl1 4]) I (c[19] & o ut l 15]) ;
tcmp[16] (cl26] & outl16]) I (-c[26] & o ut l 17]);
tcmp[17] Ccl26] & out l1 6]) I (cl26] & o ut ll7]) ;
tcmp[18] (cl27] & out[18]) I (-cl27] & outl19]);
tcmpll9] (-cl27] & o utl1 8]) I (cl27] & o ut [19]) ;
tcmp[20] (c[30] & out[20]) I Ccl30] & o ut [2 1]);
templ21] Cc[30] & outl20]) I (cl30] & o ut l21]);
tcmpl22] (c [31] & outl22]) I (- cl3 1] & o ut [23]);
tcmp[23] Ccl31] & out l 22]) I (c[31] & o ut l23]);
tcmpl24) (c [38] & out[24]) I (-cl38] & o ut [25]);
tcmpl25] (-cl38] & o utl 24]) I (cl38] & o ut [25]);
tcmpl26] (c [39] & o ut[2 6]) I (-c i39J & o ut[27]);
tcmpl27) Cc [39] & out l26]) I (c[39] & o ut [2 7]);
tcmp[28] (c l4 2] & outl28]) I (-c/42] & outl29]);
temp 12 9 J C c 14 2 J & out 12 8 J) 1 (c [4 2] & o ut 12 9 J);
tcmp[30] (c [43] & out[30)) I (-c [43) & o ut [31]) ;
tcmp[31] (-c[43] & o ut[30]) I (c[43] & o ut [31]) ;

II Lay er 3 (?8_12 butterfli es)
for (int i = 0; i < 32; i = i + 8)
{

o ut [i J = temp [i];
o ut[i + 1] = temp[i + 4];
out[i + 2] = temp[i + 1] ;
o ut(i + 3] = tcmp(i + 5];
out(i + 4] = temp(i + 2];
out(i + 5] = temp[i + 6];
o ut [i + 6] = t cmp[i + 3];

103

338
339
340
34 1
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
3 0
381

ou t [i ~ 7) lC II lp[i + 7);

I I Layer 4
tem p[OJ (c[8) & out[O)) I c-c[8) & o ut[1));
temp[!) c- c[8) & o u t[O)) I (c[8) & out[l));
temp [2J (c[9J & out[2J) 1 c- c[9J & out[3J);
temp[3J c-c [9] & o u t[2 J) 1 (c[9J & out [3J);
tem p[4) (c[l O] & o ut [4)) I c-c [lOj & out[5));
temp[5) c-c [l O] & o ut[4)) I (c[l O) & o u t[5));
temp[6J (c[l 1) & out[6J) 1 c-c[ll J & out [7J);
tcmp[7J c- c[l l] & o u t[6J) 1 (c[ll] & o u t [7J);
tcm p[8) (c[20) & out[8)) I c- c[20) & out [9]);
tem p[9) c-c[20] & o u t [8)) I (c[20] & ou t [9));
tem p [l O) (c[2 1] & o u tllO)) I c-c[21) & out[1 l));
temp [l l) Cc[2l) & o u t [lO)) I (c[21] & out[ll));
tern p [1 2) (c [2 2) & o u t [l 2 J) I (- c [2 2) & out [l 3)) ;
temp[l 3) c- c[22J & o u t [l 2)) 1 (c[22J & out[13J);
tcmp[t 4J (c[23J & out[t4 J) 1 c-c[23J & out[1 5));
temp[l 5) Cc[23) & out[14]) I (c[23J & out[l 5));
tem p[l 6] (c[32) & o ut[l6)) I ('c[32) & o u t[l 7));
t crnp[l 7] ('c [32) & out[l 6]) I (c[32) & out[l 7]) ;
temp[l 8) (c[33) & o u t[l8]) I c-c [33) & o u t[l 9)) ;
temp[l9J c-c[33J & out[l 8]) 1 (c[33J & out[l 9J);
temp[20J (c[34) & out[2o]) 1 c- c[34J & o u t[21J) ;
temp [2 1) C c [3 4) & out [2 0]) I (c [3 4) & out [2 1));
tem p[22J (c[35J & o u t[22]) 1 c- c [35J & o u t [23 J);
temp [2 3) (- c [3 5) & out [2 2]) I (c [3 5] & out [2 3]);
temp[24J (c[44] & out[24]) 1 c-c [44J & o u t[25J);
tem p [2 5) (- c [4 4 J & o u t [2 4]) I (c [4 4) & o u t [2 5));
tcmp[26 J (c[45] & out[26]) 1 c-c [45] & o u t [27]);
tem p[27 J c-c [45J & o u t [26]) 1 (c [45) & o ut[2 7 J);
temp [28J (c[46J & out[28]) 1 c- c [46J & o u t[29J);
temp[29J c-c[46J & o u t [28J) 1 (c[46J & o ut[29J);
tem p[3o) (c[47 J & o u t[30 J) 1 c-c [47J & out [3 t]);
tem p [3 l) (- c [4 7) & out [3 0]) I (c [4 7 J & o ut [3 1)) ;

I I Assign back to out r J
fo r (int i = 0; i < 32; i++)

o u t [i) = tem p [i) ;

382 s t a ti c inlin e v o id add_key(uns ig n e d lo n g* x, uns ig n e d long* k)
383 {
384 fo r (int i = 0; i < 32; i++)
385
386 x[i) = x[i) • k[i);
387
388
389
390 II 16 para ll el mod 4 additions wh e1·e x = x + y
391 s t a ti c in l i n e void paral l e l _additio n (uns ig n e d long* x, uns i g n e d lo n g* y)
392 {
393 u n s ig n e d lo n g c;
394
395
396
397
398
399
400
401
402

fo r (int i = 0 ; i < 32; i = + 2)

c = x [i) & y [i) ;
x[i) = x[i) · y[i];
x [i + 1) = x[i + 1] • y[i + l) · c;

403 s t a ti c i n l i ne void rotate _r ig h t_7_32bits (uns ig n e d lo n g* x)
404
405 uns ig n e d long t [3 2) ;

104

406
407
408
409
4 10
411
4 12
4 13
414
415
416
417
4 18

fo r (int i = 0 ; i < :l2 ; i 1 1)

tliJ = xl(i -1 25) % ~l2J ;

II Asstgn bac k to xfj
fo r (int i = 0; i < 32;
{

xl i) = t I i] ;
}

i+l)

4 19 s t at i c i n linc v o id rotat c _rig h t_7_48bits(uns ig n c d long* x)
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

u ns ig n e d lon g tl48];

fo r (int i = 0; i < 48; i H -)
{

}
tli J = xl(i + 41) % 48] ;

I I A sstgn back to x IJ
fo r (int i = 0 ; i < 48; i H)

X I i l = t I i l;

436 void c ik sLr o u nd (uns ig n e d lo n g* L , uns ig ne d long* R, uns ig n d lo n g* K)
437
438
439 I I PO'I-rn con t 1' o l v e c tor v
440 {
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

uns ig n e d lo n g vI 4 8] ;
fo r (int i = 0; i < 32 ; i 1 1-)

vii] = Rl(i + 25) % 32];
}
fo r (int i = 0; i < 16; it-+)
{

v 1 i + 32]

II Apply P_J(32I 48)
DDP::J2A8(L , v, L);

II Form control vector v_k
uns ig n e d lo n g v _k 14 8 1;
fo r (int i = 0; i < 48; i++)

v _k I i 1 = I<] i % 3 2];

Rli 1;

II Form control vector v _p (fixed permutation bui l t in)
uns ig n e d lo ng s _p 13 21;
DDP32A8(L , v_k, s _p);

uns ig n e d long v - P 18 01 ;
fo r (int i = 0 ; i < 24; i++)

105

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

v_p l iJ == L l i I 8];
}
for (in t i = 0 ; i < 8 ; i I 1-)
{

v_p I i 1- 24] = s _p I i];

for (int i = 16 ; i < 3 2 ; i ++)

v -P I i + 16]
}
for (in t i = 0 · i <
{

v -PI i 1 4 8]
}
for (in t i = 8 ; i <
{

v -PI i + 48]
}

II Apply P_2 (32IBO}
DDP32_80(R., ·v_p);

== L l i] ;

8 i I +)

== Ll i];

32 ; i ++)

== s _p I i] ;

II Form C on tr ol v ec tor v_l
uns igne d long v_ l l80];
for (in t i = 0 ; i < 1 6 ; i ++)

v_lli J == Ll i + 16] ;

for (int i = 0; i < 32; i -1--1-)

v _l l i + 16] == L[i] ;

for (int i = 0; i < 32 ; i ++)

v_ l li -!- 4 8] Ll i];

II Apply P-4{32180} to key
DDP32_80(1<, v _l);

I I XOR round k e y w i th Right. S i d e
add_kcy (R., I<) ;

II Rotate L e ft sid e
r otatc_r i g h t_7_32bits(L);

/ I Form v_pp (fixed p ermuta t i on built in }
r otatc_right_ 7 _4 8bi ts (v_k) ;

uns ig n e d long s_pp 13 2];
DDP32A8(L , v_k, s_pp) ;

uns igne d long v -PP 18 0] ;
for (int i = 0; i < 8 ; i++)

v_ppliJ = s _pp [i + 1 6] ;

for (int i = 0; i < 4; i++)
{

v_pp[i + 8] = Ll i J ;
}
for (int i = 1 2; i < 20; i + +)
{

106

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

v_ppli J = S-PP i i 1 12] ;

for (int i = 4 ; i < 1 5 ; i + +)

v_ppli + 1 6] = LiiJ;
}
for (int i = 0 ; i < 8 ; i ++)
{

v_ppli I 32] s_ppli J ;

for (in t i = l 6; i < 2 0; i + +)
{

v_ppli + 24] = L l i];
}
for (int i = 8 ; i < 16 ; i + +)

v_pp I i + 36] = s_pp I i];

for (int i = 20; i < 32; i++)

v_ppli -1 32] = Lli];

for (int i = 0 ; i < 1 6 ; i + +)
{

v -PP I i + 64] = L I i I ;

II Apply P_6(32l 80)
DDP32_80(R, v_pp);

II Add two sides with parallel additions
pa r a ll eLadditi o n(L , R);

II Swap side
uns igned long* temp
R = L;
L = temp;

R ;

107

Appendix B

Weight Based Attack Implementation
Code

1 /• ***** *** ********** *** ****************** ***** * ** ******** ***~*~************
2
3 Fil ename: ci k s_a tta ck. cpp
4 Author: Brian J<idney , P. Eng
5
6 D escri ptton:
7 W eight based attack on CJKS- 1 c ip h er.
8

9 ***** * *** * ** ************* ********~ ******* * ********* * **********************!
1.0
Ll #i nc l ude " i ks_attack. h"
12
13 vo id top _down_low _w ig ht_crack ()
14
15 I I Guess a s ub k e y
16 II
17 II For· each of a mill io n vectors
18 II Run s ubk e y th roug h P4 , call result PSK
19 I I Run PSI(back through p · (- 1)2 to get rhs
20 I I Run vec tor back through p · { - 1} 1 to get lh s
21 I I En cryp t r hs and lhs , recoTd Tesu lt
22 I I Run s t a tt s tt c a l te s t on se t o f r· e s u l t s
23
24 1/----------------------
25 II Exp ec t e d distr·ibition f or th e r es ult s
26 long double expect d [65) = {
27 0.0000000000000542101,0.00000000000346945 ,0.000000000 109288,
28 0 .00000000225 86 1 ,0.0000000344438, 0 .000000413326 ,0 .00000406437 ,
29 0 .000036762 , 0.000239943 ,0.00149297 8 ' 0 .008211379 ,0 .04031040 '
30 0 . 178037636 , 0 . 712 150543 ,2.594262693 ,8.64754231,26.48309832,
3 L 74 .77580704,195 .2479406 ,472 . 7055404 , 1063 . 587466 ,22 28 .46897 6 ,
32 4355.643908 ' 7953. 784527 ' 13587 . 71523,21740 .34437 ,32610 .5 1656'
33 45896.282 57 ,60648.65911,75287 . 99062,87835.98905,96336.24606,
34 99346.75375,96336.24606,87 35.98905 ' 75287.99062 ,6064 8 .65911 '
35 4 58 9 6 . 2 2 57 ' 3 2 6 1 0 . 5 1 6 56 '2 1 7 4 0 . 3 4 4 3 7 ' 1 3 58 7 . 71 52 3 ' 7 9 53. 7 4 52 7 '
36 4355.643908,2228.468976,1063.587466,472.7055404, 195.2479406 ,
37 74 . 77580704 ,2 6 .48309832 ,8. 64754231,2 .5 94262693 ,0.712150543 ,
38 0.178 037636 , 0 .040310408,0.0082 11379,0.001492978,0.000239943,
39 0 .000036762 ,0 .00000406437,0.000000413326,0.0000000344438,
40 0 .00000000225861 ,0.000000000109288,0 .0000000000034694 5,
41 0 .0000000000000542101} ;
42 1/------------
43
44 II Se t up f or random number g enerator
45 long* seed = new long ;
46 * seed = - 1 * time(NULL) ;
47

108

48 II Creat e subkeys for s·ix ro tLnds of th e c~p h er
49 bit sc t < 32> k ey 16];
50 kcyiOJ = OxOOOOOOOO ;
51 fo r (in t i 1 ; i < 6 ; i ++)
52
53
54
55
56
57
58
59
60
61
62
63
64
65

key f i] OxOOOOOOOO ;
in tk = l ;
whil e (k <= 6)
{

int bit= ((int)((rand1(sccd) * (fl oat)(32 . 0))))
if (!kcyliJibit])

kcyli].sc t(bit , true);
}
k++;

66 I I Array to hold c urr ent round data.
67 int data i 6 J [65] ;
68 fo r (i nt r = 0 ; r < 6 ; r++)
69 fo r (in ti = 0 ; i < 64 ; i++)
70 data I r] I i] = 0 ;
71
72 I I Get s tat is t ics on guesStng th e k ey exac tly
73 bit sc t < 32> g_s u bkcy = OxOOOOOOOO ;
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

II For eac h of a million v e c t ors {wt <= 6)
fo r (int i = 0; i < 1000000 ; i -t--t-)

II Make r-andom v ec t or
b i tsct < 32> lh s = OxOOO OOOOO ;
int k = 0 ;
whil e (k < 6)
{

int bit = ((int)((randl(sccd) * (fl oat)(32 .0))))
if (!l h s lbit])
{

lh s . sc t(bit, t r u c) ;

}
k++;

II Run s ubk e y through ?4, ca ll res ult PSJ<
bit sc t < 32> psk = g_s u bkcy ;

II Form Control vec t o r v _l
b i t s e t < 80> v _I ;
fo r (in t c 0 ; c < 16 ; c 1-+)

v_l[c] l h slc-t-16];
fo r (in t c 16 ; c < 48; c++)

v_l [c] l h s l c 16J;
fo r (int c 4 8; c < 80; c+!-)

v_l[c] lh s l c 48];

DDP32_8Q(ps k , v_ l) ;

II Run PSJ< bac k through p -{- 1}2 to get r h s
II Fm"m con trol vector v_k
bit sc t < 48> v_k;
fo r (int c 0 ; c < 32; c-t-+)

v _kl c J = g _s u bkcy l cJ;
fo r (int c = 32; c < 48 ; c++)

v_klc] = g_s u bkeyl c - 32];
I I Form con tro l v e c tor v_p
bitsc t < 80> v _p ;
fo r (int c 0 ; c < 32 ; c-t-+)

v _p(c] = l h slc] ;

109

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
14 0
141
142
143
144
145
146
147
148
149
150

for (int c = 32; c < 48; c -j 1-)
v_p[c] = lh s [c - 1 6];

b i tset < 32> s _p ;
s_p = lh s;
DDP32A8 (s_p , v _k);
fo r (int c 48; c < 8 0 ; c ++)

v_p[c] = s _p[c - 48] ;

I I Permute v _p
PLl(v_p);

DDP32_80_1NV (psk , v -P);
bitset < 32> rh s = psk ;

I I Run ve c tor back through p - (- 1}1 to get l hs
I I Form control v e ctor v
bitsct < 48> v;
for (int c = 0 ; c < 7; c++)

v[c] = r h s [25 + c] ;
for (int c = 7; c < 32; c+ +)

v[c] = rh s [c - 7];
for (int c = 32 ; c < 48; c++)

v[c] = rh s[c - 32] ;
DDP32A8_! NV(lhs, v);

I I Encrypt rhs and lhs , record resu lt
for (int r = 0; r < 6; r + +)

llciksLround(lh s , rhs , k e yfrj) ;
I I Count weigh t of outpu t t e xt and s t ore in array
data[r][lhs.cou n t() + rh s . cou nt()] ++;

151 I I RUN CHI-SQUARED TEST HERE
152 in t t em p [6 5];
153 for (in t idx = 0; id x < 65; idx + +)
154 temp[idx] = d ata [5][idx];
155
156 long double c h iRes ul t = c h iSquaredTest(temp, expected);
157
158 cou t << g_s u bkey << end ! ;
159 for (int r nd = 0; rnd < 6; rnd++)
160
161 co u t << " Rou nd_" << r nd + 1 ;
162 for (int wt = 0; wt < 65; wt++)
163 cout << " ," << d ata[rnd][wt] ;
164 cout << e nd! ;
165
166 cout << "Chi- Squa r ed -Result , " << c hi Res ul t << e n d ! ;
167
168 I I C lear th e data array
169 for (in t r = 0 ; r < 6; r + +)
170 for (int i = 0; i < 65; i++)
171 d a t a[r][i] = 0;
172
173 II Get sta t is t s fo r 100 keys off by 1 ,2, ... , 5 bits
174 for (int i = 0 ; i < 5; i ++)
175
176 for (in t j = 1 ; j <= 100; j + +)
177
178 int bit s_se t = 0 ;
179 g_s ubkey = OxOOOOOOOO;
180 while (bit s_set < i + 1)
181 {
182 int bit = ((int)((rand1(seed) * (flo a t)(32. 0))))
183 if (!g_subkey[bit])

llO

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

--

g_s ubkey. set(bit, tru e);
bi t s_se t f "";

II FoT each of a m illion vectoTs {wt <= 6)
for (int vee 0 ; vee < 1 000000 ; ve e++)
{

II Make random vec f.OT
bit se t < 32> lh s = OxOOOOOOOO;
int k = 0 ;
while (k < 6)
{

int bit = ((int)((rand l (seed)
* (float)(32 .0)))) ,

if (! lh sl bit])
{

lh s.set(bit, true);
}
k++;

II Run subkey through P4, ca ll resul t PSK
bitset < 32> p s k = g_s ubk ey;

II Form Co ntTo l vec t or· v_ l
bitset <80> v_ l ;
for (int e 0; e < 16; e++)

v_ll e] lh sle + 1 6];
for (int c 16; e < 48; c++)

v_ll e] lh slc 1 6];
for (int e 48; e < 8 0 ; c++)

v_ll e] lh sle 4 8];

DDP32_80(ps k, v_l);

II Run PSK ba c k thToug h p -(- 1)2 t o get Th s

II Form con tro l vectoT v_k
bits e t < 48> v _k ;
for (int e 0 ; c < 32; e++)

v_kl e] g _s ubkeyle J ;
for (int e 32; c < 48; e++)

v_kl eJ g _s ubkeylc - 32] ;
II Form co ntTol vector v_p
b itse t <80> v_p;
for (int e 0 ; c < 32; e++)

v _pl cJ lh sle];
for (int c 32; c < 48; e++)

v_pleJ lh s lc- 1 6];
bitset <32> s_ p ;
S-P = lh s;
DDP32A8(s_p, v_k);
for (int c = 48; e < 8 0; e++)

v -P Ie J = s -P I e - 4 8 J ;
I I P ermute v_p
PL1 (v_p);

DDP32_80_INV (ps k , v -P);
bitset <32> rh s = p 8k;

II Run vector back through p -{- 1)1 to get lh s
II Fonn contro l vector v
bitset < 48> v;
for (int c = 0; c < 7 ; e++)

v ic] = rh s l25 + e];

111

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
28
289
290
291

}

}

for (inl e = 7 ; c < :i2; ell)
v[c] = rh s [c - 7];

for (int c = 32; c < 4 8; ell)
v[e] = r h s[e - 32];

DD I 32A8JNV(lh s , v);

II Encrypt rhs and lh s , rf•co1·d 1·esult
for (in t r = 0; r < 6; r I I)

llctks Lround{lhs, rhs, keyfr/);
I I Count wetght of ou t put I ext
II and store tn an·ay
data [r][lh s.count () I rh s.count ()]-11;

I I RUN CHI-SQUARED TEST IIERE
int t e m p [65];
for (int idx = 0 ; idx < 65; id xil)

t e mp[idx] = d a t a [5] [idx];
lon g double e hiRcsult = c hi Sq uar cdTcst(tcmp , expcc l. c d);

cout << g_subk cy << c ud! ;
for (i nt rnd = 0 ; rnd < 6; rnd I I)

eout << " Round_" << rnd I I ;
fo r (in t wt = 0 ; wt < 65 ; wtll)

cout < < "," << data [rnd] [wt] ;
eout << e nd!;

cout << " hi - Squared-Res u lt, " << ehiResu lt < < e nd! ;

I I C lear the data arr ay
for (in t r = 0 ; r < 6 ; r ++)

for (i nt i = 0 ; i < 65; i + l)
clata[r] [i] = 0 ;

292 long double c h iSq u arcdTcst (in t dat a [] , long double ex p ee t e d [])
293 {
294 lon g double c hi Sqr = 0 ;
295
296 II for e a ch in th e 65 possibl e vnlue8
297 for (int i = 0 ; i < 65; i ++)
298
299 lon g do ubi t emp ;
300 I I 0 - E x pec t ed
301 t e mp = (long d o uble)data[i] - (cxpected[i]• lOOOOOO);
302 I I (0-E) ·2
303 t emp = t emp * temp;
304 II (O-E) .2IE
305 t emp = t c onp / (expected[i]*lOOOOOO) ;
306 I I Sum
307 chiSq r = e hiSqr + t emp ;
308 }
309 I I R eturn l.o be summed
310 r e turn ch iSq r ;
311

112

r--

Appendix C

Differential Attack Implementation Code

1 /•************ ************************************ ************** ***********
2
3 Fil ename: diff e r en tial_ 3_round_version. cpp
4 Author: Brian Kidney, P. Eng
5
6 D esc r i ption:
7 T est t o d e t ermi n e if th e correc t k ey can be obtain us ·ing a th ree round
8 version of CJKS- 1 and th e 10 -> OJ -> 11 differential.
9

10 *** *********** ********** **** **!
11 #include " diff_3_round _ve r s ion .h"
12 #include " util.h"
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

struct State

c h ar L [32) ;
c h ar R[3 2);
c h a r 1<[32) ;

} ;

void thr ee _round_difL c r eate_ciphertext ()
{

const int rounds = 3;

c h ar keys[32)[rounds) ;
c h ar difLk eys [32) [rounds);

long* see d = new long ;
*seed - 1 * time (NULL) ;

int totaLte s t_ s iz e 100000;

II In itia l ize k e y s to 4 r andom values to be use fo r th e en t ire t est
for (int p = 0 ; p < ro unds; p++)
{

long key= (((int)((randl(seed) * (fl oat)(OxFFFF))) << 16)
+ (int)((rand1(seed) * (fl oat)(OxFFFF))));

in t mask = Ox OOOOOOO 1 ;
for (int i = 0; i < 32; i + +)

k eys[i)[p) = (char) ((boo l) (mask & key));
diff_key s [i)[p) = (char)((boo l)(mask & key));

45 mask <<= 1 ;
46
47 }
48 c h a r actua1Key [32);
49 memcpy(actualKey , &keys[O)[rounds-1), 32);

113

50 cout << "Act u a l-key:_"<< c r ca t e_ nl o n g(act n alKey) << e n dl;
5 1
52 for (int i = 0 ; i < t o tal_t es L size; i -1 +)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

II Set random v alu es f or the left and right plainl e 3:l,
long left = (((long) ((randl (seed) * (float)(OxFF'FF'))) << 16)

(long)((randl (seed) * (float)(OxF'F'F'F'))));
long ri g ht = (((long)((rand l (seed) * (float)(OxF'F'F'F })) << 16}

1 (long)((r a nd1 (seed} * (float)(OxFFFF))) } ;

II l nitta l ize state variables
State state;
State d if L state;

II The l e ft and rig ht va lues to be unaltered.
c r eate_a rray(s t ate. L , l e ft);
c r ea t e_a rray (state .R , right);

II The l e ft and rig ht va lues t o be alter·e d by 1 b i t
c r eate_a rray(d iff_sta t e .L, l e ft };
c r eate_a rr ay (difLstate . R, ri ght};

II l ntrod1tce the diffe r·e nc e into any of the 32 bits
int difference_hit = (int)(rand1(seed} * 32 . 0) ;
if (dif f_ s tate.L(difference_bit] = 0)

diff_ s tate . L [difference_bit J I ;
e l se

diff_sta te . L[difference_bit] O·
'

for (int j = 0 ; j < r o und s; j +)

I I E ncrypt 1 round
memcpy(s tate.K, &k eys [O)(j] , 32);
memcpy(difLst a tc . l<, & kcys[O)[j], 32);
ci k s l_round (state);
c i ks 1_ro u n d (d iff _state) ;

89 II R ecord th e result
90 cout << crea t e_ ul o n g (state. L } << "_,
9 1 << c r ca t e_ ul ong (s t ate .R) << " _,
92 << e r ea t e_ ulon g(diff_sta t e. L) <<""
93 << crea t e_ ul o n g(diff _s t a tc . R} << e ncll ;
94
95 de l e t e seed ;
96
97
98 void t hr ee_ro und _d ifLk ey_sco r e ()
99

int good_diffe r e nti a l_cou n t

I I Load the ftl e
fstream file;
fi I e. o p e n (" c iph ertext. txt ");
i f (I f i I)
{

O·
' 100

101
102
103
104
105
106
107
108
109
110
111
112
113
11 4

115
116
117

cout << "Canno t-ope n _f il e . " << cndl
}
e l se

s trin g templ, tcmp2;
uns ig n e d long key;
uns ig n e d long I ;
uns igne d long r;
uns ig ned long d I ;
uns igne d long dr;

114

11 8
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

fi lc >>temp1 >>t e mp2>> key;

I I F or eac h data e t
while (fil e >> l >>r >>cll >>clr)
{

}

II S e t up data varia bl es
char bL[3 2J;
c r ea te_array (bL, I);
char bR[3 2];
c re a t e_array(bR , r) ;
char bDL[3 2] ;
c r ea t e_a rray (bDL, cll);
c har bDR [32] ;
creatc_array (bDR, dr);

char bK [32];
c r ca t e_a rr ay (bi<, key);
char bDK[32];
c r ea te_ a rray (bDI< , key);

int total_diff_left = 0;
int total_difLright = 0 ;

Stat e norm ;
Stat e cliff ;

memcpy (norm . L ,
memcpy (norm .R,
memcpy (norm .I< ,

memcpy (cl i ff . L,
memcpy(cliff .R,
memcpy (d i ff . I< ,

bL, 32);
bR , 32);
bi< , 32);

bDL, 32);
bDR, 32) ;
bDK , 32) ;

II decript with key.
c i k s Lr o u nd _i nv (norm);
c iksLro und_inv (cliff);

for (int k = 0; k < 32; k++)

if (norm.L[k] != cliff . L[k])
tot a I_ d if L ri g ht ++;

if (norm.R[k] != cliff . R[k])
total _d iff _left ++;

II see if th ere is a 1 - 1 difference.
II if so add 1 to count
if (totaLdiff_right = 1 && total_diff _l ef t 1)

goo d _d i ff c r e n tial _co unt ++;

I I Output count.
cout << " Actual_Count-"<< g ood_diffc r c ntiaLco unt << end!;

for (int j = 0 ; j < 32; j ++)

good _d i ffercn t i aLcou n t O· ,

fi lc . c lose();
file .opc n(" c iph c rt cx t. txt");

s tring tcmpl, temp2;
unsigned long key ;
unsigned long I ;
unsigned long r ;
unsigned long d I ;
unsigned long dr;

115

186
187
188
189
190
I 01
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

fi I c >>tempi >>t e mp2>>key ;

II Fo1' e a c h rlatn, set
while (file >> l >>r >>dl >>dr)

}

/1 Set up data vari abl es
c h a r bLI32];
c rcate_array (bL, I);
c h a r bR I32];
create_ar r ay (bR, r) ;
c h a r bDL I 3 2];
creatc_ar r ay (bDL, d I) ;
c har bDRI32];
c re a tc_array (bDR, dr) ;

c h a r bf<l32];
c r catc_arr ay (bK, key);
char bDKI32];
c r ca t e_ a rr ay (bDK , key) ;

if (bK I j l = 0)
bl< 1 i J 1 ;

e l se
bl< I i J o;

if (bDKi j J = 0)
bDK I j l 1 ;

e l se
bDKij] 0;

int total_diff_left = 0;
in t total_diff_right = 0 ;

State norm ;
Stat e diff;

memcpy (norm
mcmcpy (norm
mcmcpy (norm

memcpy(d i ff
memcpy (d i ff
memcpy(d if f

II d ec T'i p t

.L ,

.R,

.K,

-L ,
.R,
.K ,

with

bL, 32);
bR, 32);
bK , 32) ;

bDL, 32);
bDR, 32);
bDK , 32);

k ey ,
ciksLround _in v (norm);
ciksLround_in v (cliff);

for (int k = 0; k < 32 ; k++)

if (norm , L I k] != d iff , L I k])
totaLdiff_ r ight++ ;

if (norm.R i kJ != cliff . R i k])
tot a I_ d iff _I cf t ++;

II see if there is a 1 - 1 d iffer e nce­
I I if so add 1 to c ount

if (totaLdifLr i g h t = 1 && totaLdi ff _le f t
good _d i ffcren ti aLco u n t ++;

I I Output count_
co u t << good _differcntiaLco u nt << end l ;

116

I)

