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Abstract

Let . ¢ : M — N be maps between closed = nifolds of the ¢ ne dimension, and
let p : M — M and P N — N be finite regular covering maps. 1f the manifolds
M and N arc orientable, then, under certain condi ns, the Nielsen number N(f, g)
of f and g can be computed as a linear combination of the Nielsen numbers of the
lifts of f 1d g. In the non-orientable case, ing semi-index, we introduce two new
Nielsen numbc The first one is the Linear Niclsen number Ny(f,g), which is a
line combination of the Nielsen numbers of the lifts of f and g. The second one
is t  Non-linear Niclsen number Ngp(f,g). It is the number of certain essential
classes whose | ‘crse images by p are inessential Nielsen classes. In fact, N(f,g) =
Np(f.¢9) + Nep(f,g), where by abuse of notation, N(f, g) denotes the coincidence

Niclsen nnumber defined usi  semi-index.
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This relation is an equivalence relation, the equivalence classes are ca d H-Nielsen

clas. . For z € ®(f,g), we write [z]g for the //—Niclsen class of a.

Remark 1.8. If H = 0 in Definition 1.1.7 the equivalence classes are called '™ '

classes. The symbol [x] stands for the Nielsen class of the coincidence pownt x.

Lemma 1.1.9. [z] C [2]y for every x € ®(f,y). That is, each H—Nielsen class is a

union of ordin: « Nielsen classes. |

Next, we introduce the definition of H—Reider ister classes and an alternative
description of @ H—Nielsen classes in terms of 2 H —Reidemeister classes. We

start with the following proposition.

. coposition  .10. [15] Let f and f be lifts of f, then there exists a unique 3 €

A(N') such that f = ﬁf. In other words, if we fix a lift f of [, then the function
n: AN) — Lift(f) : 3~ 3f

ts a ell-define hijection. O

The group A(1\~f) (resp. A(W)) acts on Lifti_ from the left (resp. from >
right) by 3f = 3o f (tesp. fa = foa)w f e Lift(f) and 5 € A(N) (resp.
a € A(M)).

1 5) are

Definition 1.1.11. /5] Let ([.§), (f.3) € Lift(f . We say (f,5) and (
},’ _ —~

conjugate if there exist o € A(M) and 3 € A(N/) such that ( E) B(f,9)a =

(Bfc, 87 a).
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That is, the coincidence H— Reidemeister number of the pair (f, 1) is equal to the

fized point H-  zidemeister number of the map f.

Proposition 1.1.15. [5] Assume we are given reg i coverings as in diagram 1.1.1.

Then,

1. f.g)= U(ﬁa)pé(ﬁ}}) where the index runs over all pairs of lifts.

2. The sets p®(f.5) and p®(f, §) are either equal or disjoint.

3. p@(f, g) = pq)(f,g) if and only if (f,g) and f 5) are conjugate.

4. ®(f,9) = U(m)p@(f, g) 1s a disjoint union, where the union takes one (f~, J)

from each congugacy (H— Reidemeister) ¢lass.

The followi : proposition generalizes the : 5t ] t of Lemma 3.1 of [15].

Pr¢ osition 1.1.16. Let x,y € ®(f.g). Then x andy belong to the same H-Nielsen
cla. if and only if there exists a pair (f, g) € Lift(f,g) such that x,y € p (I)(f, q).

Moreover, (f, g) is unique up to conjugacy.

Proof. We kne  that
o(f.9y= Uref9.

(fLoeLiftif. g

Since z € (f, g). there cxists a lifting pair (f~, 7)and T € ®(f,7) such that p(F) = .

Suppose z and y are in the same H-Nielsen class. Thus, there exists apathw : 2 — y

such that g(w w)™! € H{f(T)) = p#(m(ﬁ,f(fi DLletd i 7 be a lift of w
T

starting at ¥ and ending at § € p~'(y). n glw)f(w)™! = p(A) for some A €
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¥ L X
x L ox

Definition 1.2.1. For a lift f € Lift(f), fixed point rp € ®(f) and clement
be (X.xo) we define the subgroups

Lf={re A for=rof} (1.22)
C(fzoib) = {a€m(X )| ab=bfy(a)) (1:2:3)

Cr(fu 20:0) = {[a]ly € m(X.z0)/H(xa)| ¢ =0bfula) modulo H} . (12.4)

For =1 we write simply C(fg.x0) or Cy(fs,T0).
Le na 1.2.2. Let A C CID(jT) be a Nielsen cluss of fized lift f~ of f. Let us denote
A= p(Z) Then,

1. Let j « C(fa,70;0) — Cu(fg,x0;b) : the homomorphism induced by the
canonical projection j : m(X,xq) — m(X.xo)/H(xg). Then, the restriction
of the map p : X — X to the map p: A—4 (the restriction is also denoted
byp for aplicity) is a covering map, and the fiber is in bijective correspondence

with the image j(C(fg.x)) C m(X,2)/H(x) for x € A

2. The car .ality of the fiber (i.e., Ip~'(z) N ,Z\) does not depend on xr € A and

we denote it by Ja.

’

3. If A is another Nielsen class of f such that p(A) = p(A), then Ja = |p~ (&) N

Al = |p~(x) N Al O
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Ler na 1.2.3. The map p : X — X restricts to a covering map p : ®(f) —

D (@(f)) The fiber over each point is in bijective correspondence with the subgroup

L(f O

—

Remark 1.2.4. 1t follows from Lemma 1.2.3 that if Ay = p (@(f)) isan H—Nie n
cla. that corresponds to a lift f of f, and x € Ay, then the cardinality Ip‘l(.r)ﬂq)(f)\
is independent of the choice of © € Ay. That is. it depends only on the H— Nielsen
class Ay. We denote it by I4,. Also. we write 4 := Iy, for each Nielsen class

AC Apy.

Lemma 1.2.5. [15] Let A be a Nielsen class of f and A be a Nielsen class of f

contained in p~'(A). Then, by Proposition 1.1.19 A = p(A) and moreover

index(fip N (A)ND(f), I~ index(f, A)

and

index(f; A) = Ja - index(f, A) .

O

» obtain a formula expressing N(f) in terms of N(f), we nced the assumption
that the numbers J4 J i for any Niclsen classes A and A that lic in thes e

H- elsen class of f. The next lemma gives a sufficient condition for such equality.

Lemma 1.2.6. Let z € p(®(f)). If the subgroups H(x) and C(f.z) commute in
m(X,x), that is. h-a = a-h for every h € H(z) da€ C(f.x), then Jya=J4 for

all Nielsen classes A, A C p(®(f)). O
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Remark 1.2.7. The assumption in Lemma 1.2.6 holds if either of H(x) or C(f.x)
is contained in the center of m(X,xz). On the other hand, if the subgroups H(z) and

C(f,z) commute in m (X,z) so do the corresponding groups at any point in p(P(f)).

Now, we express the numbers T4 and Ju in terms of the homotopy group hor -
morphism fg : m(X,r) — m(X, f(x)) for v € f). Let fe Lift(f), and & €
p~Hz)N :f) We fix 1c isomorphism m (X, r)/H(z) — . X) [aln — Yiaju

where 7, () = @(1) and @ denotes the lift of @ arting at @(0) = & (sce Lemma

1.1.5).

Ler na 1.2.8. We have

f ©NNaly = Vflau © f-

a

Ler na 1.2.9. Let f € Lift(f), AC p(@(f)) be a Nielsen class of f, and x € A.
Then,
I4=|Cu(" ).

The next ¢ it follov  directly from Len 1.2.2 and 1.2.9.

Co llary 1.2.10. Let fe Lift(f), A C p(®d(f)) be a Nielsen class of f, and x € A.
Then,
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Fix a point € ®(f). The following lemma shows how to express the cardinality
of the subgroups C(fz.z’') and Cy(fg,2') at 2" € {(f) in terms of the cardinality
of s groups of (X,z). It follows that the numbers I and J can be computed
from a single fixed point of f. Let w : & — & be a path. We denote the  o-
morphism (X, ') - m(X, z) induced by w by wg, Lo wg(b) = vl bw for
cach b € m(X,x). Further, the isomorphism wy induces an isomorphism @y on

m (X, z)/H(z) defined in the natural way.
Lemma 1.2.11. Let 0 = w™ ' f(w). Then,

wu(C(fg, ") = {a € m(X.2)] a0 =0 fa(a)}
and

D4 (Cu(fu,2)) = {laly € m(X,z)/H(r)| ao = o fu(a) modulo H} .

a

Lemma 1.2.1 Let A C p(®(f)) be a Nielsen class of f. Then. p~'(A) contains

exa y Ia/Ja fixed point classes of f O

Fix lifts fl, e ,fr representing all H—Nielsen  sses of f, then &(f U d( fl
is a disjoint union. If we assume that all the Nielsen classes that lic in tho same
H —Nielsen class have the same J number, 1 J depends only on the H— Niclsen
class. TI s, we let I, and J; denote the numbers corresponding to the H— Nielsen

class represented by f: and i = 1....,7. By Lemn  1.2.2 and 1.2.3 we have

=Ll =|{reac yafi=7n}
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and

= [j(C(fa, )l = lJ ({y € m{X 2l fz(v) =} |

for any z; € A, nd A; is any Nielsen class in p(@(ﬁ))
The following theorem gives N(f) in terms of the Nielsen number of lifts of f.

Theorem 1.2 3. Let X be a compact polyhedron, p : X — X bea finite reqular
covering corres  nding to a normal subgroup H of m(X), and let f: X — X 1 be a
self-map admitting a lift f~: X — X. We assume that for each two Nielsen classes

A A" C ®(f), hich represent the same Nielsen  .ss modulo the subgroup H. the

nur s Jya= . Then,

Z (Ji/ 1) - N(fi) . (1.2.5)
where I, and  denote the numbers defined above, and the lifts f: represent all
H— Reidemeister classes of f, corresponding to nonempty H— Nielsen classes. O

Corollary 1.2.14. If moreover, under the assumptions of Theorem 1.2.13, C' = Ji/I;

does not depen  on i, then



Chapter 2

Computation of N(,, ~) for

orient ble manifolds

In this chapter, in Theorem 2.3.5, we gener. ¢ T orem 1.2.13. We show © 1t the
coincidence Nielsen number of a pair of maps f and g can be presented as a hnear
combination ol 1e Nielsen number of its pairs of lifts. There are three numbers J, 1,
and S are associated with an H-Reidemeister class, where H is a norinal subgroup of
the fund: ental group of the co-domain space. Those numbers are used to compute
the coefficients in the formulas given in Theorem 2.3.5. the main result in this chapter.
Asin thc  xed point case (Theorem 1.2.13), o0 ap cations are limited to situa  ns
where the ana ous numbers .J are independent of certain choices. Furtliermore, we
show that we ¢ v need one coincidence point in each H—Nielsen class (in some casces,

only onc coincidence point in @®(f, g) is needed) to  ake the computations.

20
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In ¢ =r words, J4 is the cardinality of the fiber of the map
plA:A— A

at any point in A.

Remark 2.1.2. In fact, it can be shown that the map p|/I is a covering map with

disc ‘e fibers  cardinalities equal to J.

Dei ition 2.1.3. [15] Let x € ®(f.g). We define

Clfu.gs)e ={vem(M D) faly) = g4(1)}

The follow' : proposition shows that J4 is we defined. Furthermore, it shows

~ A
that J4 is the order of a specific subgroup of . M) = W—liﬁ—)

Proposition 2.1.4. Let A be a Nielsen class of f and g. and let v € A. Then,
Ja=1i(C(fe,9%))]

where

1s the natural  imorphism.

Prc . Let AC @(f, g) be a Nielsen class such that p (ﬁ) = A, and let Iy € p~H{z)NA.
For cach A €« M, x), let ATy — X(l) be the unique lift of A which starts at T.
Consider the function

0 J(CUfagn)e) — p @) NA A A1)



23

e ¢ is well-defi 1
(1) Let A, A2 € 5(C(fg.g4)z)- then

5\12/_\2 = /\1/\2_l € I\'(l‘):[ T](N,E())
AL = p(A) for some A

A1 ~ p(A) A2 rel. endpoints

¢

p(A1) ~ p(M)p(Ay) rel. endpoints

p(xl) ~ p(X A2} ol endpoints

4

A1) = AX(1) = Ap(1)

= ¢(M) = ()

(2) Let A€ C(f#,94)z- Then. f4(A) = gg(A). Thus,
f) =g = M) =g M)
= p(f(A) =p(EA)
= f(A) ~ G(A) rel. endpoints
= Mled
= M1)eAnp ().

e » injective: Let Ay, Ao € F(C(" gg)r). Then

5
P
-
l
X
>
N
>0
i
>
L=}
S
-

= MAytem (M.

= MA7 =p()p Ay
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e o is surjective: Let T € p~H(z) N A. 3 : Ty — T be a path such that f(@) ~ g(@)
rel. dpoints (which exists since Ty, T € A),aud 1w = p(@) € m (M, x). Then

f@)~g@) = fl« =g(w)
= w€C(fy.94):

= o@) =3(1) =1

Consequently, = |J(C(fs.94)0)l- o

Remark 2.1.5. If we change the base point Ty € p~'(x) N A and follow the sume

arg. .ent as above, we find that Jy is independent of Iy € p )N A

Prc osition 2.1.6. Let A C @(f g) be a Niclsen class such that p(.g) = A, then J,

is independent of the choice of x € A.

Proof. By the definition of normal subgroup . if z is another point in A4 and 4§ :
r — = is a path in A such that f(§) is homotopic to g(é) rel. endpoints. then we

have the comn  tative diagram

A
W](AI,I) T.'l(‘ Z)

Jl ]
T (M. 1) i M. 2)
K{r) (2)

wh 84 is the isomorphism induced by the path ¢ and 04 is the isomorphism in-

duced by &4 on the quotient groups. Morcover, t  restriction 8y « C(fy,94). —
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C(fs,g#). is also an isomorphism. Hence, the ¢ 1mutativity of the diagram
sures that j(C{f4,g4):) and j(C(fx.g%):) a is orphic. This yields that J4 is

inde¢ mdent of the choice of A d

Remark 2.1.7. Since the above argument is the same for each Nielsen class AcC

<I>(f, §) with p(A) = A, we conclude that Ju depends only on the Nielsen class A.
That is, if A, BC @(f, g) are Nielsen classes such .at p(ﬁ) =p (E) = A, then

1p~! ()N Al =|p~'(x) N B.

Def ition 2.1.8. Let A C ®(f,g9) and AC <I>(j~ g) be Nielsen classes such that
p(A) = A. and iet z € A. Define 14 by

Iy p o) f.9)
In other words, 14 is the cardinality of the fiber of the map

Pe(5): o5 — p( D)

\

at ¢ ' point of AND(f,g).

Rer wrk 2.1.9. In fact, it can be shown that the map p|<I>(f. g) is a covering map

with discrete fibers of cardinelities equal to I 4.

Let (f?}) be a lift of (f.y) and a € A(ﬁ). Since fa and ga are lifts of f and g

respectively, there are unique clements 3. Je A(N’) (Proposition 1.1.10) that satisfy

foa'zﬁof and ﬁou:,éog.
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Def ition 2.1.10. We define the number 6 (J,g; o) by

~ 0 if .3 '3’
sGgia=4 7

.

1 if3=4

Defit ion 2.1.11. We define the set L(f.3)

U9 = {ae AGDI6(]Gia) =1} .

The followi ; Proposition gives some facts about L(f g).

Prc osition 2.1.12. Let (f,g) be a lift of (f.g) 43 € A(N). Then,
1. L(f.§) is a subgroup of A(M)

2. L(F.9) = LB T.87).

Proof. (1) By definition. € L(f.g). Let a;. az,a € L(f g). Then,

flarag) = (f~0/1)a2
= (81 f)ay for some 3 € A(N)

o (J?Offz)

= 01(5 f) for so 3y € A(iv)

= (5B)f

Similarly, we get that gl aq) = (1 F2)g. = cefore, ayag € L(f, ).

On the other hand,



fa=8Ff 87 f =fa"! .
Je / = f=1o a~teL(f.9)
a=733 Alg=ga™

So. L(f.7) is a subgroup of A(.Tf).

(2) Let a € L(f~?1) and 4 € .A(S") such that fa =7 f and ga =-vg. Then

~

(3 a=3(fa)=237f (3f)a=3313f (3f)a=.373"1(3f)
= =
(3 a=3(Fa)=347 (39)a = 3737137 (I a =3y (37)

= acL(3f 7).
Hence. we get that L(f. g) C L(J ]7, 33).

Since the above argument holds for every 3 € .A(X’) and (f~ g) € Lift(f.g). we get
L@Bf.B3G) C L3 3f '35 =L(f.9)

and (2) follows. O

The next proposition shows that the number 74 is well-defined. i.e., it depends

only on the H—Niclsen class that contains A. Further, it shows that /4 is equal to
m (M)

K

s

the order of a particular subgroup of A(ﬁ)

Proposition 1.13. Let A C ®(f,g) be a Niclsen class and x € A. ...en

Li=IL(f,9).

Proof. Fix a point 2y € p~*(x) N <I>(]7 7). Consider the bijection

£:p7 () — AL



28

given by £(Z)  «, where a is the unique covering transformation in A(H) with

a(To) = I. It follows that the restriction (for simplicity we call it £ too )
£ @) NB(L5) — € (p7 @) 0 (1.3)) S AL
is also a biject 1. We claim that |
¢(ri@nef.y) = LTB).

Let a € & <p‘1(2") N (D(f~ §)> then there exists an € A such that a(Z,) = ¥, with
p(%) = z, and f(T) = §(¥). Hence,

f@) =3 = fla@) Jjla(io))
= foa(fo):goa(l'o)

= 3f(F) = 35(F) = 3 f(To)

Thus o € L(f. 7.

Now, let a € L(f~,§) Then,

§(f.5:a)=1 = Ja=3f and Ga=37 for some 3 € AN).
= fa(@)=3f(F) J To)=gali)
al(F) € (f.7).
Sin T =a(F) €pt(z), weget a € & (p“l(.z') N &(f. g)).

Consequen € (p_l(:n) n <D(j7, §)) = L(f, ¢), and our result follows. O
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and Tp) = g(xy) = yo. Define bijections
'/Tl(A[, IO) v 7 —
—f——‘A]\[) Lar— g
K (1‘0) ( )
whe agz(zg) = a(1), and @ is the lift of a at &y,
and
7'1'1(17\'[. yg) v -~ - )
—_— — A(N) = br— 5,
H(yo) (N) o
whe  F(yo) = b(1), and b is the lift of b at .
Lemma 2.1.1  Let (f, q) be a lift of (f.g). en,
faﬁ = ﬁmf and §og = Bg(—a)?j
Proof. Since f(ﬁ) is a lift of f{a), we have
B (B0) = F@(1) .
Thus,
T o () = T (0w (8)) = F(@(1) = F@1) = by (o) = 855 (#0)
Since fa; and & fare lifts of f. we get f = Oy f
Similarly, gaz = Jm?j O

Pr¢ osition 2.1.17. Let (f, g) be a lift of (f.g). Then. there is a bijection between

L(f.§) and C ™ 4, Gu)any-
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Lemma 2.1.1 Let (f g) be a lift of (f,g) and pe : <I>(f, g) — p f, g) be the
restriction of p to @(]7@ Then,

1. We have p3'p (0(£.9)) = (£, 9).

2. We have ]);'I(Q(f,g)) Ne(f,3-3) = O(f.3-G), for every 3e .A(N)

Pro (1) It is obvious that p3' p (<I>(j~ §)) - (D(f g). On the other hand, @(f, g) C

T ) L. . s T o~ T~ - T~
pip (F3) o chimpliesthat (7.9) C p~tp (U D)NOFD) =p5'p (L),
The ore, ®(f. 0 pa'p (2(1.9)).

(2) Follows dir :ly from the facts that

pef ) = | 089,

BeA(N)

and (f.3-9)N ®(f.5-7) =0 if and only if 3 # O

Lemma 2.1.1  Assume we are given finite reqular coverings as in Diagram 1.1.1.

Then the following are equivalent

1. ®(f.g) is finite.

2. &(f.B-1 is finite, for cach § € A(N).

3. @(f, g) 1s finite, for each lift (f,?ﬁ of (f,9).
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Proc (1) implies (2): Assume that ®(f,g9) fir > Let 3 € A(N). By Lemma

2.1.18, we have

®(f.8-9) = pH@F N3 D= U r)]ne(f.3-79)

re®(fy)

= U (pﬂl(x)rw@(f,,'iﬂ))-

re®(f9)

Since the coverings are finite, p~!(x) N <I>(f~. 3+7) is finite. Since ®(f, ¢) is finite, we

obti 1 that ®(f.4-7) is finite.

(2) plies (3) dircctly from the facts, firstly that every lift (f g) of (f.g) is con-
jugate to a lift (f~,5 - g) for some 3 € A(N). and sccondly that coincidence sets

corn ponding to conjugate lifts have the same cardinality.

(3) plies (1) since U pfb(f.ﬂ -q)=®(f.g). and |A(K’)| is finite. O
BeA(N)

Definition 2.1.20. Assume we are given finite reqular coverings as in Diagram 2.1.1.
Let A C po(f,§) be a Nielsen class. We « &t number Sy to be the number of

Nielsen classes A C ¢(f~, g) such that p(g) = A.

The following proposition gives important rc  ionships among [Z| |AlL |pg ' (A)]

Ja. T4, ar Sy
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Prc osition 2.1.21. Assume that ®(f, g) is finite. Let AC  f.y) and AcC @(f J)

be Nielsen classes such that p(/?) = A. Then,

(1) {Al=Ja- 1A (2.1.1)
(2) pg'(A)]=1Ly-|Al (2.1.2)
(3) Sy = ‘f]“{ . (2.1.3)

Prc . (1) Since the family {ﬁﬂp‘l(xr)\ for all r € A} is a partition of A and J4 =

|p~'(x) N A, we have

[Al=p 1Ay (a)) =) Ja=Ja-[Al
€A

(2) By Lemima 2.1.18, we get

pa'(4) = m' (anp(oF.9)) =ra (00 (p(2.9)) =ra' (AN 2(7.9)
= | w'@nefg).
He: =,
e (A= 1p @) NG =D Ta=Ls- A
z€A I‘T reA

J=Sa
(3) oty (A)= U A;, where A; is a Nielsen class of f and g such that p(A;) = A,
=1

for every j with 1 € j < S4. Using the same noi  ions as in Lemma 2.1.18, by (1)

we have

9,1 SA
e (A = Al =D Ja-|Al=Sa-Ja-|A]
=1 J=1



or
[Py’ (A)]
Sy=—"=
A JA . “4[
which implies by (2) that
T4
Sh=—.
A=
O
Co llary 2.1.22. [fAC p@(f,ﬁ) is a Nielsen class, then
L f ( F y_ ey
5, = — L9 :.__| #> 04 )wo] (2.14)
|.} (C(f#‘g#)rn) l J (C(f#'g#).r()) !
Proof. Apply Propositions 2.1.13, 2.1.17, and 2.1.21. O

The above results show that the numbers J, I. and S depend only on the Niclsen
clar or the A-Nielsen class. Next. we show thi  one coincidence point is sufficient
to compute those numbers, for all Niclsen classes (and of course for all H-Nielsen
clas  s).

De ition 2.1.23. Let xr and z be coincidence p. ts and w - x — z be a path. ¢

denote the loop glw) f(w)™! by h,. and define '(f;;“‘.g#),,. by

C( ph..‘.g#)‘r - {,\ € (M. x) fgt(/\) = !1#(/\)}

= {Aem(M.ojl hy f(A) =g\ ho} .

wh » fg=h,ofyo0 hol. We also define C'(j'j;"' e by

- - mMary o~ I
CUfy" Tu)e = {/\eﬁ\-’:.;u):g#(m}
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whe E and ~ . are the homomorphisms ind:ced by f;” and gu.

— Al
It is obvious that C‘(f;‘;““g,&,g)I and C~(f;;“',§#)I are subgroups of m (A, r) and %
X
respectively.
Lemma 2.1.24. Let 2o € ®(f.g). Then,
fa (C(f4:98)20) = 93 (C(f4 94 )z0)
O

The following Proposition generalizes Lemima 1.2.11. It also shows that C(f4, g4)
and 0(7#,§#), and hence I, J and S, can be con  uted using a single coincidence

point.

Pro sition 2.1.25. Let 25 and x be coincidence points and w : 1o —  be a path.

Then,

1. W4 (C(f:;wwg#)ro) = C(f#ﬁg#)l :

2. C(fi;“',g#)lo =C(fu.94)z, tf and only if h, commutes with fu (C{f4.94)z,)-

5. @y (CUE Tp)n) = CU 4T

where wu(N) = w Aw for each N € m(M.xg) nd 4, is the isomorphisms induced

by wy.
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Proof. (1) Rec  that wy is an isomorphism from m (M. xg) to m (A, r). Let 0 €

C(f4.94)r and \ € m (M. zp) such that ¢ = wg(A). Then,

o€ C(fu.94) & flo)=glc

flw™ Aw) = glw™ Aw)

—
&
|
—
>
€
I
<
S
|
Q
=
o
&

N
—
&
S
S~
VoY
&

f
>
@
>
e
£
S~y
&
]

ho f(A) = A)h,

AE C(f#i“ . .(/#)Tn

T v 3

g€ wy (C(./"‘,Z&“-!J#)Io) .

(2) Assume  at C(fg”, 94, = C(fa0 93 )ry- Lot A€ C(f. 94 )s- Then,

he fON) =gN) h, = f(A) h,.
Thus, h,, commutes with fu (C(fg, 9#)s)-
Now suppose that h,, commutes with fg (C(fge, ¢)r,). We have,

AE{C(fg 98)n) & A =9(N)
f(/\) h, = _(](/\) }lu)
o ho () = gk

& N CUL g4,

There  re, C(f4 . 94)z0 = C(fi 9#)n0-

)

(3) Let @ € n Z and e be the identity of H(f(xg)). Since 5;1

-1

:u)#.“(
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& Gub) = 4(b)
SbeC(fubyl O

Remark 2.1.26. If. in Proposition 2.1.25, @ and a  belong to the same H-Nielsen

class, en h, = and hence

Tho = 7 oo—-
C(f# *g#)-r() = C(f#‘.‘ Io ¢

The following finition allows us to change from the covering space approach to

the fi  lamental  oup approach.
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Lemma 2.1.29. Let xy and r be coincidence points and w : xg — 1 be a path. Then,

homr = (fw))y (51 = (9(w)) g (h5)
Proof. For the first equality,

(f)y (he) = fw) " he f(w)

Since (f(w)), is a homomorphism, we get that

Similarly we can show that

Corollary 2.1.30. Let xy and = be coincidence pc ts and w : ry — & be a path.

Then, h., commutes with fu (C(fu. 94 )z ) if and only if h,- commutes with f4 (C(f4.94):)-

Proof. The proof depends on Corollary 2.1.28. where we saw that
h’u comm s with f# (C(f#v g#)l‘o) = Wy ((ﬁ(.f#»g#)ro) = C(f#~ g#)r

& Wy (C(fa 98)z) = Cfa-9#)x0

& h, commu s3with fu(C( g#)e) - 0
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Pro.  Let w: xy — x be a path that cstabli  »s the H-Niclsen relation. Consider

the mmutative diagram

m(M,zg) =5 m(Mz)
fe L f4 (2.1.5)
(F(w)g o
m(N, flzo)) —" m(N.f(z))
We need only t¢ 10w that if fg (C(fg.94)s,) comn es with H{f(xg)) then H(f(a

commutes with f,: (C(fx, gx).). Assume that fu (C(fg, g )ae) conunutes with H(f(xg)).

Let h € H(f(x)) and § € C(fg,9%).. Then,

hi(0) = f) f)hfw) ™ fw) f0) flw) ™ flw)
@) flwyh flw) flwiw™)  fw)

~ S~

EH(20) € fa(Clfs.98)20)

= fw) T fww™) (flw)h flw)h) flw)

= f(O)h
where wdw™ € C(fg,gs)z, by Corollary 2.3 . ws, H(f(xr)) commutes with
f# (C(f#9%)z)-
The converse is done similarly. O

Remark 2.1.33. The previous lemma states the property that H(f(x)) and fu (C(fy. 9#):)

commute with ecch other, is independent of the choice of x within its H-Nielsen class.
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where D(M) and D(N) are the corresponding Poincare duality isomorphisms. D ne

Or: WM, Q) ~— Ho(M,Q) by Oy = D(M) ' og* o D(N)o f..

Definition 2.2.5. The Lefschetz number of the pair (f, g) is defined to be the rational

number

L(f.9) = p_(~1)ftr(O4)

hk=0

where tr(©) denotes the trace of the linear transfo .ation ©y .

Remark 2.2.6. If M = N and g = 1. then we write L(f.g) = L(f) and s called

the Lefschetz fized point number.

The following theorem gives the basic propertics of the Lefschetz number. The

proof is found in [26].
Thec m 2.2.7. Under the hupotheses just before Definition 2.2.5, we have that:

1. =2fschetz Coincidence Theorem: L(f,g) = index(f, g; M). Thus. if L(f.g) # 0
then f.c #0.

2. fschetz Fized Point Theorem: If M = N, . n L(f) = index(f: M). Thus, if
L(f)#0, :®(f)#0.

3. IfL(f,9) #0, f is homotopic to f and § is homotopic to g, thenf and ¢ have

a coincidence point.

Now, we give our notion of a Nielsen number.
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O

T following proposition explains the relationship between the indices of the
Nielsen classes ©  the total space and those in 2 base space. It gencralizes Lemma

1.2.5.

Pro;j sition 2.3.2. Let (f,g) : M — N be mi 5 between the given orientable man-
ifolds, and let A C ®(f.g) and A C ®(f.G) be Nielsen classes such that p(A) = A.

Then

1. dex(f.g: /T) = J4 - index(f,g; A).

Proof. 1. Recall that

A U pHz)N A

T€A

is a disjoint uni . Since both A and A consi of isolated coincidence points, we get

that

inde.r(f,fi;.Z) = Linde.z‘(f.f T)

€A

= . z'ndc:r(f, g,T)

L gepTiir)nNAg



Z Z index(f,g;2) (by Lemma 2.3.1)

€A Fep=1{x)NA

= ZJA‘i”deI(fqg;I)

reA

= J4- Zinder(f,g;f)

€A

= Ja-index(f,g; A).

2. We have that

where for ca 1 < ¢ < 5S4, A; is a Nielsen cl:  of the pair (f g} and p(gl) = A
Thus,

Sa
index( ,E:p‘l(A)ﬂfb(jT,E)) = Z'z'nde;r(f.g;zi)

Q

= p_Ja-index(f.g; A)  (by part (1))
i=1

[N

= Ja- ), index(f, g, A)

i=1
= J4-Sy-index(f.g; A)

= Iy-index(f,g;A4).






is the same for | Nielsen classes A of f and ly  in the same H-Nielsen class.

Then,

. ZV{,E,@')
N(f,g)=) —— (2.3.2)
’ ; S .9i)

Proof. Define the function x : Z — {0,1} by

0 ifmn=0,
x(m) =
1 otherwise .

Thenu oerofthe  ntial Niclsen classes thai  in the A/ —Nielsen class p @(ﬁ, g;)can

begi 1 by

Pee(fug)l= D xlnder(fig A= Y x(inder(f.giA).

Aep®(fi.g)) Aepo(f,,

!
t

=L

Since J4 = Jp for all Nielsen classes A, B ~ @(ﬁ,ﬁi), then S4 = Sp for such classes.



So, we write Sy S(ﬁ,@-) for every Niclsen class A pfb(ﬁ,@). Thus,

N(ug) = > xlindex(fi, Gz A))

Aed(f.3.)

— Z Z X(z’ndea‘(ﬁ,ﬁi;ﬁ))

Aep®(f,,9,) ACp~ 1 (AN(fi.50)

= Z Sa - x(index(f.g; A)) (by Proposition 2.3.2)
Aep®(fi.3,)

= > SUuF)xlind f.9:4))

Aep®(f..d.)

= S(fug)- Y xlindexr(f.g; A))

Aep(f,.3:)

= S(fi.3) W ®s(f.3)].

Therefore, N
~ o~ N(fi.gi) .
p®e(fi0)l  —=—- (2.3.3)
S{fi. gi)
fore 11 <7<r. Now, we have
o~ e NG
N(f,9) =) Ip®e(fi.gi)l —=
Z:; — i)

asreq cd. —

Remark 2.3.6. For an empty F Neelsen class p<I>(f~, g). we have N(f, g) =0 and
|pA<i>(f~, 9l =0. we define S(f., G) 1, Then , Eq ‘ion 2.3.9 still holds for empty

H— Nielsen cla: s. Hence, we can replace v in Equation 2.3.2 by Ry (f.g)-



Corollary 2.3.7. If in Theorem 2.8.5 we further have the condition ”S(f, g) is equal

to a constant number q for every lifting pair of (f.g)” Then.

r

N(fg) = - SN (d. (23.4

2.4 Applications and Examples

In this section, we give applications and examples for Theorem 2.3.5. We show that

our theorc  generalizes the fixed point case {151,

We re-write the following results from [3, 6, 7. 20] in the notation of this thesis.

Lemma 2.4.1. /6, 7, 20] If M is a compact orientable manifold, A is an isolated fized-
point set for f: M — M, then index(f,1p; = index(f; A), where index(f;A) 1s

the fized-point index of A.

Theorem 2.4.2. [3] If M is a compact orientable  nifold, then N(f,1x;) = N(f)
forall f: M — AL

In Chapter 3, we ¢ delete the condition - orientability in Theorem 2.4.2. The
follo ng result shows that Theorem 2.3.5 gen  izes Theorem 1.2.13 to the Coinci-

dence 7 corv ¢ orientable manifolds.

Theorem 2.4.3. Let Al be a connected closed orier ible manifold, (17\7 p) be a finite

reqular covering of M, and f : M — M be a map for which there exists a lift



f: M — M. Assume that all the Nielsen fired point classes that lie in the same

H-Nielsen class  ve the same number J. Then,

N =S Ny

where r is the number of nonempty H-Reidemeister classes of f, and fN, is a collection

of one representative from each of these classes .

Proof. Apply Theorem 2.3.5 and Theorem 2.4.2 for M = N, (ﬂ,p) = (N',p), and

g=lar. O

M :t, we list some special cases of Theorem 2.3.5. For the definitions of Jiang
space and of pscudo Jiang maps, we refer the reader to [11, 18]. The first theoren is

apa of Theorem 2.7 of [11].

The ‘em 2.4.4. [11] Let f.g: M — N be maps between connected closed orientable
man lds of the same dimension. If N is a Jiang space or if f and g are pseudo

Jiang, then all mempty Nielsen classes have the same index, and hence

[0 i L(f.9) =0,

N(f.g)=
| 1Cokerton = 1) Li.0) 20

Theorem 2.4  Suppose (117, p) and (A~/, p) are « entable coverings, N is a Jiang
spac  or (ﬁ,ﬁl) are pseudo Jiang for all i = 1,....r, where r is the number of non-
empty H-Reidemneister classes, and all Nielsen classes that lie in the same H-Nielsen

class of f and g have the same number J. Since the order of the lifts (ﬁ@) mn
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Equation 2.8.2 does not affect the value of N(f,g). without loss of generality we can

assume L(ﬁ,@-) 0 foreachi=1,....t and 1 <t <r, and L(ﬁ,gi) = () otherwisc.

Then,
. - ~
Coker i# — Ji
N(f,g)=zl (L_Jv#~ far)l
i=1 S(fi, i)
Proof. Apply Theorems 2.3.5 and 2.4.4. d

Some of the tails in the following example will be illustrated in Section 4.2,

Example 2.4.6. Let f,g: S' — S be maps fined by f(z) = 2 and g(z) = 5°
fore -yzeS'. Letp,p: S' — S? be the covering maps defined by p(z) = 22
and p(z) = 2% Both coverings are regular (m(S', 1) is abelian). The maps f and

g adniit lifts f and § on S! defined by f(z) = 2%, and §(2) = 22 respectively, where

z € S'. We have the commutative diagram

St 51
ip il (241)
s1 u, gl

We have ' = 2Z and H  3Z. Thus, A(S'.p) = {ls1.—1la1} and A(S',p) =
{1g1.w,w?} where w is the third primitive root of unity. Let o = —1g1. Then.
fa(z) = J(=2) === f(2)
and
ga(z)=g(-2)=2"= 2).
That is []7 a} = [7.a] = 1s1 and henee 6(f, g} = 1 (that is, §(f.G,a) =1 for cvery

a € A(]Tf), and (f, G) € Lift(f, g)). Notice that the H-Nielsen classes are equal
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tangent map 7,91 = lrs2 is the identity isomorphism on T,S%, while the tan-
gent map T, fi : T,5* — T,5% is defined by T, fi = —1r,s2. This implies that
T,fi—=Tp,g1 = —2 11,52 which is an isomorphism. Thus, f; and g; are transverse at

D.

Example 3.1.4. [17] Let M bc a non-orientable col  2cted manifold of dimension 2.
It may be regarded as a CW-complex with a unic > cell (sce section 8 of chapter 11
of [1] and chapter 1 of [19]). Let fo : Af — 5% > a map whir sends the I-skeleton
to a point y, € S? and the interior of the 2-ccll ¢ comorphically to S* — y;. Let
g2 : M — S? denote the constant map with go(M) = yo # y. First, M and 52 have
the same dimension 2. Now, let z¢ be the unique point in the interior of A7 such
that fo(zo) = yo. Thus, ®(f2,92) = {20}. To show transvers: ty at xo, we have g
is constant, so Ty, g2 = 0 is the trivial homomorphisn. Since fp is diffcomorphism
near o, Ty fo @ TogM — Ty052 is isomorphisin. Thus the difference T, fo — T%, g2

is is .orphism. Therefore, the pair (f2, g2) is a transverse pair.

Example 3.1.5. [17] Consider the maps f X f4. g1 X g2 SZx M — S2x St w e
fi and g, are given in Example 3.1.3, and f, and gz arc given in Example 3.1.4. We
have ® (f1 X fa, 1 X g2) = {(p:%0), (¢,x0)}. Let us prove the transversality of the
maj fi X fo and g; x go. The transversality of the  aps fi X f2 and g1 x g2 at (p, Zo)

follows from the following facts:

e 7 o tangent space of the product of two smooth manifolds is isomorphic to the

external direct sum of the tangent spaces.
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 Tipro) 1 X [z i X <y fo. Similarly for T, 20y g1 X g2,

o LAXTfo)=(Tog xTeyg2) = (T, fr — -, 1) X (Try fo = T,y g2). and

o (T,fi—T,0) x (T fo — Tryg2) Isanisc  orp sm because the product of iso-

morphisms is an isomorphism.

The transversal - at the other coincidence point is proved similarly.

Proposition 3.1.6. [14] Any pair (f.g) of maps between smooth closed manifolds is

homotopic to a ansverse pair (f',q').
We call the pair (f', ¢') a transverse approximation to (f,g).

Let (f,g) : -—— N be a transverse pair  etween smooth closed n—manifolds.
Then, ®(f.g) is finite and hence any coincidence point is isolated (see [14]). Let
Ty &(f,g) be in the same Niclsen class, and let w @ & y be a path that
establishes the Nielsen relation. Let a, be an orientation of the vector space T, A
and o, be the orientation of the veetor space 7.\ obtained under the shift of a, along
w. Let 3, be the orientation of the vector sp e Ty(,)N obtained as the image of
isomorphism 7, f — T,¢ and 3, be the orientation of e vector space Ty, N obtained
by the image of the isomorphism 7, f — T, g. Let 4, be tlie orientation of the vector
space T,y N obtained by shifting the orientation .3, along f(w) (or equivalently g(w))

at f(y).
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N v, Let (f.g) be a transverse pair, and let A be a subsct of ®{f,g). Let us
present A as
A={ri oy Tk Yk S 3
where x; redue: to y; for cach i = 1..... k. but z; reduces to z; for cach j # i,
where 1 <4, j < 5. Such a presentation is called a decomposition of A. The clements
Z1.....zgareca d " in this decomposition - A.  me may check that the number

of free clements is the same for all decompositions « A ([5]).

Definition 3.1.12. The semi-indexr of f and ¢ at A is defined to be the number of

the free elements of A, and we write |ind|(f. g: A) = s.

Definitic 3.1.13. Let W be an open subset of M. We define

ind|(f.g; 1) by

lind|(f. g: 1) = |ind|(f. W N®(f.g)).

Example 3.1.14. [17] From Example 3.1.9. let 1, = % — g and 11, = §* —p. Then
1, and 11, arc open neighborhoods of p and ¢ respectively. Thus, lind|(f1.q1; W,) =

lind|(fr,gv: {p. = L. [ind|(fr, q1sWy) = lind|(fi.g1:{q}) = L and [ind[(fr. g; {p.c =
2.

Example 3.1.15. [17] In Example 3.1.10. it follows that [in  fa.g2: {a0}) = 1.



Exar sle 3.1.16. [17] Let W), = W, x M a | Wy = W, x M, where 11, and 1V,
arc the open neighborhoods of p and ¢ respectively given in Example 3.1.14. From
Exar le 3.1.11, we have that 117 and 115 are open nc” iborhoods of (p. xy) and (g, o)
respectively. Therefore, |ind|(f1 X fa, g1 X g2: W) = |ind|(fi X fo. 91X g2: {(p. 00)}) = L,
lind|(f1 % f2. 91 % g2; Wa) = |ind|(fi X fa. 1 X g2: {(g. T0)}) = 1, aud |ind|(f1 X f2, g1 X

92 {(p, x0), (g« ) =0.

Lemma 3.1.17. [5] Let (fo,90) and (fi.q1) be transverse pairs and let .G+ M X
[0,1] — N be homotopies between them. Let Ay € ®(fa. go) be a Niclsen class which

corresponds to > Nielsen class Ay C ®(f1.q1). Then,
lind|( fo, go; Ao) = it f1, 915 A1)

Note that, we do not require the homotopies 1+ Lemnia 3.1.17 to be transv  e.
Lemma 3.1.17. thercfore. allows us to extend the  finition of coincidence semi-index

to any arbitrary pair of maps.

Del ition 3.1.18. Let (f,g) : M — N be a pair of maps between two closed
smc  h n—manifolds, and let A C ®(f,g) be a Nielsen class. Lct (_f,g}) be a transverse

approrimation of (f,g) and Ac <I>(f:‘ §) be the corresponding class of A. We define
jind|(f.g; A) = |ind|(f.§: A)

The following proposition lists the properties of semi-index. We refer to [5] for

proofs.

Proposition  1.19. /5] Let (f,g) : M » N be a pair of maps between two closed

sm th n—manifolds. Then,



1. Definition 3.1.18 is independent of the transverse approximation of (f.g).

2. The semi-index is subadditive: if WW). , are open subsets (or disjoint open

subsets) o' M such that W; N ®(f.g) is compact for i = 1.2, then

lind|(f, g: W1 U Wo) < lind|(f.g:W1) + lind|(f.g:11%) .
3. [fW is o, 1 subset of M and |ind|(f.g; ) #0 then ®(f,g) N1 # 0.

4. The semi idex is homotopy invariant: Let (F.G) : M x [0,1] — N be a
homotopy between pairs ! fo. 9o) and (fi.gi). Let W C M x [0,1] be an open

subset such that WN®(F.G) is compact. Let W, = {& € M|(r.t) € W}. Then,

lind|( fo. go: Wo) = lind| . g1;:1V71) .

Remark 3.1.20. The semi-index is not local, since the reducibility depends on the

behavior of the .aps on all M.

Example 3.1.21. [5] ) show that semi-ine < may not be ictly additive, let 11,
and '’ be the open subsets of S? x M given  Example 3.1.16. and let f = fi x f

an¢ = g X ga. Then,

lind|(f,g: W1 UW,) =0<2=1+1=|ind|(f.g: V1) + lind|(f,g:W5) .

Pr« osition 3.1.22. 5] If Wy Nd(f.g) = A; and Wa N @(f.g) = Ay are different

Nielsen classes, then

lind|(f, g; W1 W) = lind|{f. ¢: W+ [ind|(f, g: 112} .
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a pair of maps for which therc cxists a pair of | s (f, q9) Al — N. Consider the

commutative di  -am

VEARELRN
MoLE N

Lemma 3.2.1. /5] Let r.y € ®(f.g) be such it x reduces to y. Then. there exists
a bijection o p~H{r}N®(f. 5 — p~ {y} N O(f.1 such that T reduces to (T) for
every T € p~H{r}nN CI’(jT 7). In other words, the set p~'{x.y} N &(f.5) splits into

pairs reducing themselves.

Remark 3.2.2. In the case where M and N uare orientable manifolds. such x and y

do not erist.

Del ition 3.2.3. [17] A Nielsen class is called defective if it contains a self reducible

point.

Ex ple 3.2  The coincidence Niclsen classes {&g} given in Example 3.1.10. and
{(p. xo). (q.70)} given in Example 3.1.11 are dc  tive since cach of them contains
a sclf reducible coincidence point. However, the coincidence Nielsen class {p.q} in
Exam] -3.1.9 is not defective, since neither of p or g is self reducible point. In fact
if cither p or ¢ is self reducible, then p reduces to . which contradicts that p and ¢

do not reduce to cach other (sec Lemna 3.2.9).
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The followinig Lemma is an obvious geome ¢ characterization of self reducibil

Lemma 3.2.5. Letz € ®(f.¢g) and (f?ﬂ € Lift(f.g) be such th(1tp‘1(r)ﬂd)(f~. g) #

0. T, 1 the following are equivalent

1. xr reduces  itself .

2. There exist points in p~(x) N O(f.§) not necessarily distinet. which reduce to

cach other.

3. p‘l(I)ﬂ‘D(f, g) splits into pairs reducing cach other 'if|p'1(.1‘)ﬂ‘1>(f.m| is even,
or splits into pairs reducing cach other together with a single self reducible point,

if |p_l(;r).ﬂ O(f. )| is odd .

Proof. Apply Leinma 3.2.1. O

The followi  lemma is an algebraic characteriz  ion of self reducibility.

Lemma 3.2.6. '/17/ Let f.g : M — N be transverse maps, x € ®(f.g) and Oy,
and Ox be the subgroups of (M) and m(N) r ectively. cach of which consists of

orie  ation-preserving elements. The following are equivalent
1. x reduces to itself.
2. C(fs.98)e N Ot # Cp93): N [ (On)

3. There ea ‘s~ € m(M,x) such that f(n) = 7). and cxactly one of the loops

5 or f(8) is orientation-preserving.



The ¢t acterization of self reducibility given in Lemnna 3.2.6 is restricted to
transverse airs of maps. So, using Lemma 3.2.6 for any pairs of maps requires
a transverse ap] ximation (Sce Proposition 3 6), which is in practice difficult to
obtai  The following proposition. which generalizes Lemma 3.2.6 to any pair of

maps, allows us, in most cases, to ignore the wsv  ality coudition.

Proj sition 3.2.7. Let (f.g) : M — N be a pair ¢ maps homotopic to a transverse
pair (f,g') : M —- N by the hemotopy-pair (F, G) : M x[0,1] — N. Letxr € ®(f. g)

and I € <I>(f,g') : F, G-related coincidence points. Then, the following are equivalent
1. 1 reduces to itself.
2. C(fu94): 1 Ons # Clfue94): 0 f5'(Ox)

3. There exists 4 € m (M. 1) such that f(7) = g(v) and exactly one of the loops

or f(7) is oricntation-preserving.

Pro he equivalence between (2) and (3) is casily proved. We show the equivalence

betv »n (1) and (3).

Suppose that # reduces to itsclf. By Lemma 2.6, there exists 5 € m(M.F)
such that f#(’y) = g (%) (for simplicity, we write j(')) and ¢(%) for j{#(ﬁ) and gx(7)
respectively). and exactly one of the loops 5 or f:#('}) is orientation-preserving. Siuce
x and £ are F,G-related, there exists a path « : x — £ such that F(u) ~o G(u).
i.c.. F(u) is I aotopic to G(u) rel. endpoi s, where F(u), G(u) : [0,1] — N

arc paths defi: 1 respectively by F(u)(t) = F(u(t).t) and G(u)(t) = G(u(f).t) for



every t € [0,1]. Define the path F(z) : [0,1] — N by F(r)(t) = F(x.t) for cvery

1

t € [0,1] (F(£), G(x), and G() are defined s Iv). Then. the loop v = udu~! at

r ostablishes the Niclsen relation between & ar  itself since

s f(y) =glusut)y = g(r) .

b

! w, suppc . without loss of generality. that 4 preserves orientation at & and
f(%) reserves orientation at f(.f). We show that 4 preserves orientation at x, while

f(7) reverses o ntation at f(r).

To sce that the op v prescrves orientation at .. let ¢ be an orientation at -« which is

translated by u to the orientation g at £. If we write the last — atement symbolically
u

as g — y. Then

u ¥ ut
ar— =t — g.

That is. the loop v = u5 u™! preserves orientation at .

Note also that  2loop f(7) reverses the orie  itior  f(.) because f(3) = F(&) f(5) F(£)~!,



. . . , 4, . (4)
and if 7 and € are orientations at f(£) and f(£) res ctively such that 7 »— ¢ then

Fl&) () Fiiy-!

T ~— € > —€ —— -

Hence, the path f(5) reverses orientation. Thus, if  and p are orientations at f(«r)
, . f(u)
and f(f) respectively such that  — g, then

fluy, () flu)=?

= 09— =0 o ).

That is. the loop f(7) = f(u5 u~!) reverses orientation at f(r).

Similarly, if % reverses orientation at f, =0 does 5 at . and if f(4) preserves
oric tion at | *), so does f(v) at f(x).

Therefore (3} holds.

For the converse, if (3) holds, the same argument as above shows that Lemima

3.2.6 (3) holds. By that same lemma this implies t ¢ & reduces to itself. O

Remark 3.2.8. Proposition 3.2.7 allows us to generalize the definition of self re-
ducibility (defective class) to include coincidence points (Nielsen classes) of any pair

of maps.

Ler na 3.2.9. [17] If A is a defective cluss, then any two points in A reduce to cach

oth  Conseq tly,

‘ if |+ is even.
lind|(f.g; A) =
1 4|« isodd

wh | A] denotes the cardinality of A.
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We return to the context of Lemma 3.2.1.

l

Theorem 3.2.° . [25] Let A be a coincidence class of the pair (f.§). thenp(A) = A

s a coincidence class of the pair (f.g) and

s.k (mod?2) if A is defective.

!

@
=
I

b
sk if A is not defective.

where s = |ind!(f, g; A), k| J(C(fu. 9%))x |. and 1o € A. a

Remark 3.2.1  The homotopy invariance of the number k in Theorem 3.2.10 fol-
lows by Propos on 3.3.12 (where k = J there). Lemma 3.2.9 and Theorem 3.2.10

give sufficient information for us to complete the analysis of this thesis.

The following proposition is a simple, but useful, modification of Theorem 3.2.10.

[t w be usefu! in the proof of Proposition 3.2.13.
Proposition 3.2.12. Let A be a coincidence #lass of the pair (f g), then p (Z) =

is a »nncidence class of the pair (f,g) and

1-(-1)7a . ) . . .
~ - A Slind|(f, g; A) if A is defective,
lind|  §; A) = >l

Ja-lind|(f, 9. A) if A is not defective.

The followi - proposition gencralizes Lemiia 1.2.5 to semi-index Coincidence The-

ory.



Proposition 3.2.13. Let A C p@(f, g) be a Nielsen class of the pair f,y. Then,

. - . Sa- . L N (fog:A)y if A s defective:
lind|(f,g: p” (A)N@(f.g)) = -
Ly lind|(f.g:4) otherwise.

Proof. As in Proposition 2.1.21, we have
Sa
p(A) N @(f.7) U

where A; is a Nielsen class of (j7 g) such that p(:i-) = A, forevery i = 1,.... Sa.

Thus,

jind| (F.:p A N@([.9)) = L jind| (F.5: A1) -
=1

If A not defective, then by Proposition 3.2.12

Sa
lind)| (ﬁ G A Ne(/f. a)) = 3 s lindl (f.g: )

= Sy Ja-lind](f,g:A)

= Iy -|ind{(f,g.A) .

If A is defective. by Proposition 3.2.12 we have
. . >~ 1— (=1 .
S . :
lind| (j.g.p (A)ﬂ@(ﬁy)) E 5 lind| (f.g:A)

A
Sind| (f.g:A) .



=1
[

Rem k 3.2.14. Notice that if S4 = 1 in Preposition 3.2.13, then 14 = J4, and in

this ¢ e, Proposition 3.2.12 and Proposition 3 13 coincide.

The next proposition gives the complete relatior  [p between the Nielsen classes

in the base space and those in the total space.

Proj sition 3 15. Let A C ©(f,g) be a Nielsen class. Then.

1. If J4 is odd and A is defective, then A is essential if and only zf;{ is essential

for every  elsen class AcC <I>(f~ g) with p (i) = A

2. If Jy s even and A s defective, them  is inessential. ¢, |1'ndi(f. g :&) =0

for every A C ©(f.§) such that p(A) = A.

3. If A is not defective, neither is A for any AC <I)(f~. q) for which p(g) = A
Hence, when A is not defective, A is essenti if and only if A is essential for

every A C <I>(f~'. g) with p(ﬁ) = A

Proof. The proof follows dircctly from Thec 3.2.10 and Lemma 3.2.9. O

Corollary 3.2.16. Let (f~ G) be a lift of (f.¢). A be a Nielsen class of f and g such

that J, is even, end let A be a Nielsen class off~ and § such that p (E) = 4. Then,
1. [f;{ is essential, then A is not defective.

2. A s ess ‘ial if and only if A is essent and not defcctive.



3. If A is e: ntial, then all the other classes in pg'(A) are essential and not

defective.

Proof. (1) Assuine that A is essential. Since | is. n. then A camnot be defective.
(2) » sume that A is essential. Since J4 is even. by (2). Proposition 3.2.15 we get
A is not defective. Thus, by (3) of Propositic  3.2.15, we have A is essential. T
converse follows immediately from part (3) of Proposition 3.2.15.

(3) Assumec that Ais essential. By (2), A is essential and not defective. By Proposition

3.2.12. every ¢l s in pg'(A) is essential and defective. O

Remark 3.2.17. Note that. if A is a defective class for which Jy is cven. then A
is not necessarily essential or inessential. This fact is illustrated in Examples 8.2.18

and 3.2.20.

Ex: ple 3.2 3. Let M be a nonorientable closed smooth manifold of dimension
2, and let y : S° RP? be the quotient map, where RP? is the real projec-
tive planc. For every (r,y.z) € S% we write \(z.y.2) = [(r.y.2)]. The maps
Jfo, f1, 90 foogo S — 5% A g1 RP? -— RP?, and f5. §a, f2, 921 M — :
arc defined as follows

o folo.y.2) = filr.y.z) = folz.y.2) = (—r.—y.2), for every (r.y, z) € S%,

o Go(z.y,2) =qi(x.y.2) = go(r,y. 2) = (r,y. 2), for every (r,y.2) € 52,

fi(l(e vy 2))) = [(—x. —y. 2)]. for every [(r,y.2)] € RE

g 2,y.2)]) = (2, y.2)]. for every [(x.y.2)] € RP2,
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e _mapst l-skeleton to a point y; = (&1, 21) € S? and the interior of o
cell diffe: 1orphically to §% — (21, y;.2,).
o gy is the oo stant  ap with Go(A) = yo = (To. Yo, 20) # (1. 91, 21).

e fy= E, and

t

°

H
Q
i

Notice that f) 1s well-defined since it is an odd function. That is, it maps antipodal
poin' to antipodal points. We define the maps F5:52%x 8% x M — §% x 5% x §°
and f.g:S2x  ExAM— SExRP2XS2hy f=fox fi X fo.§=q0oxX 51 X G

f= xfixfrand g=gyxg Xgo. We vethe commutative diagram which

represents a 2-lold covering

Ss?xS2x Al LS §2 % S x 52
Loz x x x 1yl L lgz Xy X g2
S5 . P2x A LY 2% P2y §?

Let p = (0,0,1) and ¢ = (0,0, —1), and let xo € A be such that fg(xo) = §2(X0) = Yo-

The

O(f.5) = 2(fo, Go) x ®(f1.71) X B(fae o) = {p-q} x {p.q} x {x0} -

Since S% x S?% x 52 is simply conneeted, @(f, g) consists of a single Niclsen class of f

and g. Morcover, siuce [p]  [g]. we have

A= L < L (0(1.9) = (0.1 %0)- (g [p)x0))
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isa clsen cla of f and g. A similar argum t  that of xample 3.1.11 shows
that the point (p. [p], Xo) is self reducible. Hence, A is defective. On the other hand.

Ja = (Lse x v x L) ™ ([0} x0) D (F 1l = [{(p-p.x0)- (pg-X0)}| = 2.

Al = 2. and A is defective, [ind[(f,g; A) = 0. other words, A is an inessential

Since

defective class | which J4 is even.

» followir  version of Proposition 3.2.15  useful.

Cor lary 3.2.19. Let A C O(f,g) be a Nielsen ¢ s, Then,
o If A is defective, then

— A is inessential (equivalently | A| is ~ven) implies that A is inessential for

ever  Nielsen class A C ®(f,§) such th p(A) = A

— A is essential {equivalently | A| is odd). and

% J4 is even implies that A is iressential for every Nielsen class A C

@(f, J) such that p(/T) = A.

x J4 is odd implies that A is essent. and defective for every Nielsen

class A C @(f, q) such that p(;i) = A

o If A is not defective, neither is A for any AC @(f g) with p(/]) = A. Hence,
when A is not defective, A is essential if and only if " s essential for every

Nielsen closs A C (IJ(f, g) such that p (E\ =A.












by Lenn - 3.2.5. On the other hand. B = <I>(j~'l, —1g2) is a cor act l-manifold, .

the pair (f;. =1, is not transverse on it. We have

index{, .—1g2; E) = 2'71(101'(]?1. —1g2: §%) = L(f] —1g2)

= deg(—1g)+ (- 2(17cg(f~k) =-1+1=0.

Thus, the Niclsen class B is inessential, Hence, = y(B) is either inessential or
defective. Since this example considers the fixed point case, the defective classes do

not exist. So, B is not defective and hence inessential. Therefore, Nep(fi.g1) = 0.

Exa ple 3.3.2. An argument analogous to  at in Example 3.3.2 applicd to
pair of maps (fs,¢2) and their lifts given in Example 3.2.20 gives that the unique
Nielsen class A := {x¢} of (fy.g2) is essential defective with Jy = 1. This implies

that Nep(f2. 92} = 0.

] ‘ore we1 ve to the next example, we , ¢ a formula for the semi-index of the
product maps f x g. We know that for the usual index, the index of the product
maj s the roduct of the their indices. This is not always truc for semi-index when

defective classes arc considered. For instance, in Example 3.2.20
lind|(f1 % fa.g1 x g2 {p.q} x {xo}) = lind|(fr x f2.g1 % g2 {(p.20).(q.70)})
= 0#2=2-1

{indi(figii{p,q}) - lind|(f2 921 {xo}) -

I

However, our form' , of the semi-index of product maps extends the index formula

when non defective classes are involved. We start with the fc wing Definition.



83

Defi tion 3.5 . [5] Let E = Ey @ Ey be a real  tor space of finite dimension,
and let ay = [(ey, ... ex)] and ay = [(€].....¢e})] be orientations of L2, and Ey respec-
tively. We define a; A ay to be the orientatior of E determined by the ordered basis

(€1, . ex €l . .. ey).

Definition 3.3.5. [5] Let ¢ : E — E' be a linear transformation (isomorphism)
between real veelor spaces of finite dimensior. and let o = [(cy,....c,)] be an ori-

enta m of Ey. Then the orientation of E, determined by o is defined by o(a) =

Pro )sition 3.3.6. We have
1. The oper on A is associative; that is, (o) Aca) A = ay Aaa A ay) [5].
2. —(aj AN =-—a;Naz=a1 A\ —ay.

3. If ¢ : E —> E' is a linear transformation. and E' = £, ® E,, then o(a; Aag) =

Glar) A olan).

Proof. The prool of (2) depends on the fact that M is a real square matrix ¢ d
L is a real number, then det(A - M) = A" - det(AM). The proof of (3) is casy since

o(E1 & Ey) = ol £1) & o £y} .

Lei na 3.3.7. Let (fi.q1) : My — Ny and (f2.g2) : My — Na be transverse pairs
of maps betwe  smooth closed manifolds of the same dimension. and Let a, ay, az €

O(fi.q1). and by, by € B(fa.g2). Then. with res -t to (fi x fo,q1 X g2), we have
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1. If a; reduces to ag, then {a,b) reduces to (az.b).
2. If by reduccs to by, then (a,by) reduces tc 1.b).

3. If ay does not reduce to ay, and by does . *1 e to by, then (a;.by) does not

reduce to (as, by).

Proof. 1. Supp that a; reduces to a;. Let Cp bet - constant loop at b, and v be an
orientation at b, and let o @ ¢, — ag be a path that establishes the reducibility between

-~

a; and ay. Let o be an orientation at @, which is shifted by o to the oricutati 3

at ap (symbolically, a s 3) Let g;! @) = a. and g7 — {'f(.;) = 3. Since a,

fila) _ Cy
reduces to ag, we get that o — —3. On the ot. - hand, we ave 7 — 5. If we let
~ f2(Cy)
95, — f3.(3) =, then, 5 = .

Now, the loop ¢ x C, shifts the orientation a A~ (a1.b) to the orientation AF at

(ay.b). Since
(910 % g2)' " = (f1o x f2)“ " (@ AF)

(g5 — fi2) x (g8, — f3.) (G AT)

= (g1l =) (@A (g~ f2) B)=ann,

I

apb ay.b) /~ ~
(g1 % g2)\™ = (fi x )@ AT

I

and

(g%, " = (fx R (IAF) = 380,

*

we have that

Silo)x f2(Cy)
any oS —IAY=—=(8N7).

Thus, (a;.b) r uces to (az.b).



2. Similar to (1).

3. Assume that a; does not reduce to a,. 1d by does not reduce to by, Let
8 (ay.by) — (az,b) be a path such that fi x fo(d) = g1 x ¢2(d) rel. endpoints. We
can write & = ¢, X g9, where 7; = m(9) is a path i 1 from a; to ay. and gy = m(d)
is a path in A, from by to b, (here m) and 7y e the projections on the first and
the sce 4 coordinates, respectively). Morcover, fi(o;) = g.(o;) rel. endpoints, for
7 =1,2. Let & be an orientation at (ay,by). Wecan  site @ = a; Aaz where a; is an
orientation at a; and &, is an orientation at b:. Assume that q; is shifted by o; to
the. entation 3, for i = 1.2. Thus. & 2 3= 3 A3 If we lot g1t — filay) = aq.

92 = fi2(3) = N, ghh — f31(@2) = az. and ghi —~ f32(3) = A then,

(g % g2) ) = (fi x o) (@ A ) = g Ay

and
o, b3 , .
(g % g2)") = (fy x f2) " (A D) =31 A 3.
. filay)
Now. since «, does not reduce to a,., and by does not reduce to by, oy —  Jy. av
] 2
f2(02) Julon)x falo2)
ay — . H ce.a;Aag - — A A3y T s means that any path between

(a;, ) and (az.by) cannot establish the reducibility between them. Therefore. 11, 0y)

does not reduce to (az. by). : O

Co llary 3.3.8. Let (fi,q1) : My — Ny aad (__,92) : My — N, be transverse
pairs of maps between smooth closed manifolds of the same dimension, and let A and
B be Nielsen  sses of (fi.g1) and (fa, g2). respe vely. Then A x B is defective if

and only if either A or B is defective.
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Proof. Assume that A x B is defective. Thus, there exists a coincidence point (a,b)
in A x B that reduces to itsclf. By part (3) of Lemma 3.3.7. either a or b reduces to

itself. 7 atis. her A or B is defective.

Now, assume that either A or B is defective. Let us assume that .1 is defective and
that @ € 4 red' s to itsclf. Let b € B. By part (1) of Lemma 3.3.7. (a.b) € Ax B
reduces to itself. . aercfore, A x B is defective. The case where B is defective is done

similarly. O

The next proposition gives the semi-index fornn . for the product maps.

Proposi:  3.3.9. Let (fi, 1) : M1 — Ny and (fo.g2) © My — Ny be pairs of
maj between  ooth closed manifolds of the same dimension. and Let A and B be

Nielsen classes of {fi,q1) and (fa. g2). respectively. Then

lind|(f1.91: A) - [ind|(fa. g2: B) . if neither A nor B

lind|(f1 % fa, g1 X g2; AX B) are defective,
1 — (—NYlindl(frg1:4)-lind|(f2.92:3)
otherwise .

2

(3.3.1)

Proof. Since t  semi-index is homotopy invariant, without lose of generality assunie
that (f1, 1) and { fo, g2) are transverse pairs. Firstly. suppose t. both A and B are
not ofective. Let

A={anag.... ..., 2} (3.3.2)

and

B={biby... ..., Yn} (3.3.3)
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be decompositions of A and B, respectively. It is ce  to see that A x B is a Nielsen
class v (f]1 X . g1 X g2). Since the numbers s and t are even, Lemma 3.3.7 allows

A x Btohave 2 following decomposition

Ax B = {(a;.by), (a1.b9), ... (ar, b)) (a2.b,), (a2, ba), . ... (az by). ..., (as,by).
((13,1)2),...,(as.bt),(:l,bl),(:l,sz ..... (Z],bf) ..... (;’,‘,bl).(l,v.bg)....,
(z0-be), (ar. ), (a2, 1)y - oo s (@ ) s (ay.yr)s (az, ya)e s (as )

(Gioy) ey Gr)e G (Groge) o (Groun) }
Thus,

lind|(fi X fa.q1 X g2i A x B) =15 = [ind|(f1. 12 A) - [ind|(f2, g2; B) -

Next. suppose  at either A or B is defective. By Corollary 3.3.8, A x B is defective.
We give A and  the decompositions given in Equations 3.3.2 and 3.3.3. respectively.
Wit it lose of generality, let us assume that 4 is defective and that a; is self re-
ducible. Then » =0 or r = 1. We have the following cascs

1. Suppose [ind|(f,.g1; A) = 0. Then [A] isev . This implies that |4 x B| = |A

| B
Is¢ 1. ..us,

1—-1 1— (_1\|i’1(lf(f1-gl‘.A)-]ind!(h»!lziB)

] . ; = = f—
nd|(fi x g1 XgnAxB)=0 5 5

2. ¢ ppose it (fi,gi; A 1, and B is defective with [ind|( f. g2; B) = 0. This casc

is similar to the previous case.
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3. Supposc |ind{(f1,g1; A) = 1, and B is defective with [ind|(fs. g2; B) = 1. Thus,
|A

A x Bl is odd. The ‘ore,

¢ | |B| arc odd and hence

1 L 1= (_1)|i“d|(f1v.f/1:A)‘hmil(fevg::B)

|1nd’(f1Xf'.ungQz:AXB):l:‘—Q—: 5

4. S pose |ind)(fi1,g1; A) = 1, and B is not defe. ve. We have the followi ; sub

cases:

o If |ind|(fa. g2: B) is even. the fact that the difference |B| — |ind|( f2. go: B) being
always even gives that |B] is even. Hence, [A x BJ is even. Thus.

1-1 1 — (N indi(frgriA)-hnd|(f2.92:8)

|i71‘{‘(f1><f2~91><g2:A><B)=0=T: 5

o If [ind|(f2. g2; B) is odd. the fact that the difference |B| — |ind|( fa. go; B) being

always cven gives that |B] is odd. Hence, | x B[ is odd. Thus.

1+1  1- (_1)|inrll(f1‘.«n;A)~1inrl|(f2.gz;3)

lind|(fu x fa, g1 X g2: A x B) = 1 = — 5

Co1 quently. we get that

1 — (—1)lindlr gAY lind)(f2.02:8)
2

lind|(fi X fa.91 X g2; A ¥ B) =

Now, we give an example where Ngp(f,g) = L.

Example 3.3.19. In Example 3.2.20, we shc  »d that Npp(f, g) > 0. We show here

that Ngp(f,g) = 1. The Niclsen class B x -} is inessential. In fact. In Example
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3.3.2, we have ¢ wn that B is inessential. "~ , |ind|(fi.g1; B) = 0. Since {xy} is
defective, by Proposition 3.3.9

| 1— (_1)|m(11(f1,gl;B)-]imu(h.yz:{ru})
lind|(fi x f2.91 % g2: B x {wo}) = 2

Thus {([p].xe)} i% the only essential defective such that J is even. Therefore. Nep(f, g) =

1.

o followir  proposition gives a procedure for the computation of Nep(f. g).

Pro >Hsition 3.3.11. The nwmber Ngp(f.g) can be computed using the following

procedure:

1. Fiz a lift (I G) of (f.g). then apply Remark 4.1.9 to generate the H-Reidemerster
classes. Pick a representative of each H  zidemeister class of the form (f~ 3g)
and .3 € .A(N’)(u'e will explain in Chapter 4 why we focus on such representa-

tives).
2. Choose a coincidence point o of f and g, «nd use it to compute J = |j (C(far9#)r0)|-

3. Sclect those Tepresentatives of the H-Rewdemeister classes for which there erist

Nielsen classes of even J.

4. Apply Lemima 3.2.5 or Proposition 3.2.7 to find the essential dcfective classes
within the H-Nielsen classes correspond g to the representatives determined in

the previous step.
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5. For each of these representatives. find the . en l defective Nielsen classes with

even J that lie inside the corresponding I -Nielsen classes.

6. Count the Nielsen classes in the last step for eac »f these certain H-Reidemeister
classes and denote the resulting nummber — ED. Then. add these ED’s up to

get the desired number Negp(f. g).
Next, we sh  that Ngp(f ¢)is a Niclsen unber. We start by showing that the
three numbers /. J, and § arc homotopy invariant.
Proposition 3.3.12. The numbers J, I, and S are homotopy invarwant.

-

Proof. Assume (f,g) : M — N is homotopic to  pair (f.g) : M — N by the
homotopy-pair (F.G) : M x [0,1] — N. Let v € f.g) and f € ®(f, ) be F,G-
related coincidence points. Let u:x — £ be ap hsuch that F(u) ~o G(u).
(1) J is homotopy invariant: As in the proof ot roposition 3.2.7. the isomorphisim
Ug . ﬂ'l(x"[.ll‘) E— Wl(x\[,.i')

restricts to the isomorphism

ug  C(fagu)e — Clfg 08)s -
Cor  ler the ¢ zram

Cfagw)e  —  Clla da)s

Jjl 1J
F(CUurga)s) —2 JCC o d8)8),
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(3) S is homot vy invariant: Since both J a. [ arc homotopy invariant, Propo-

sition 2.1.21 gives that S is honiotopy invariant. O

Corollary 3.3.13. The number Npp(f.g) s homotopy invariant. In particular,

Nep(f,g) is a Nielsen number.

Proof. Proposition 3.2.7 states that "being defective™ is homotopy invariant as is
“being essential”. Hence, by Proposition 3.3.  we get that Ngp(f.g) is homotopy
invariant. Since it is also non-negative and a lower bound of ®(f.g) we get that

Nep(f.g)isa  clsen number. O

Now we de > the Linear Nielsen number N (f, g) and show that it is indeed a

Niel 1 nuniber.

Del ition 3.3.14. The Linear Nielsen number Np(f, ¢) of the pair (f.g) is defined
to be
Nitfog) = N(fog) = Nenlf.9) .

Prc osition 3.3.15. The ~ near Nielsen nun 1 N_(f, g) of a pair (f,g) is a Nielsen

number of f and g.

Prc  Obviously. N, (f.g) is a nonnegative integer. Since N(f.g) is homotopy in-
var 1t, by Corollary 3.3.13 we obtaiu that /  f,  is homotopy invariant. Also, it

is a lower bound of the set {| <I>(f,g)| | f~, and g~ g}}. O






























103

By I ma 3.4.7.if J; is cven

Therefore. Nep(f,g) equals to the nunmiber of  cidemeister classes cach of which is

of a representative (f~ g) such that L(jT, g) =0 and [)@(f, g) is cssential.

Cor lary 3.4 . Assume that M and N are orientable closed connected manifolds,
and e coveri s are orientable closed conne d manifolds such that (K/,p) s uni-

versal, then

N(fg)=No g)=t,
wh ¢ is given as in Theorem 3.4.8.

Proof. Apply mma 3.4.5 and Theorem 3.4.8. O

> turn now to the case that the covering spa s of Jiang type.

Ler na 3.4.10. Suppose that M and N are oric  able coverings. Assume N isa
Jiang space or (f~,§,) is pseudo Jiang for all i = 1,...,r. where r is the number of
non-empty H-Reidemeister classes. Then, Lt ) = 0 if and only if all the essential

Nielsen classes in [)@(f. g) are defective with ven J.


















Chapter 4

Classil cation of H Reidemeister
classes, : pplications, and examples

In this chapter, we give a method that in some cases will classify the representatives
of the Reidemeister classes which appear in E¢ tion 2.3.2 or Equation 3.3.4. We also
give ore exan  es which illustrate the results " previous chapters. Unless otherwise
stated, the work in this chapter does not require orientability for the considered

SPAacces.

4.1 Clas fication of Reidemeister classes

Int ssection. e discuss to what extent we cau characterize the representative lifting

pairs in Equation 2.3.2 or Equation 3.3.4in " Hrem 3.3.16.

Lot M and N be path connected. locally  ith connected topological manifolds.
(W p) and (K"‘p') be regular coverings corres  mding to the normal subgroups A C
m (M) and H C m(N) of finite index o A/ and N respectively. Let (f,g): M — N

be a pair of maps for which there exists a pair of lifts (f~, g): M — N.
For the r¢  of this chapter, we write f for ]70 a, and ,jf~ for 3o f where
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a € A(]Ti) and 3 € A(N).

Definition 4.1.1. Let o € A(W) and 8 €  N) such that foa=3f We write
[fral=23.

Proposition 4.1.2. The notation [f | defines a homomorphism from .A(]Ti) to
A(N). Moreover, [3f :a]=3-[f:a]- 37" for every o € A(M) and 3 € A(N).

Pro  We have that [f a] is uniquely determined by f and . Thatis, [f : ]is

well-defined. Clearly, [f il = Lam- Let o1 an € A(E\\I/) Tlien,

flarag) = (fra oy
= ([1?101}']?)'02
= [JTiGI]'(JT‘sz)

Thus,
[f Q) - Q] = []7 al- []7 Q) .

Now, let a € A(ﬁ) and g3 € A(N) Then
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The st line in Equation 4.1.2 implies that

=[f:a” (4.1.3)
Thus. the second line in Equation 4.1.2 along with Equation 4.1.3 implies that
Bi=y""B-G:a ' =[f:a]- B [§:a7].

For the converse, we neced to show that Equ ion 4.1.1 implies that (f.Bs - §) is

conjugate to (j,H g). Actually,

.l (f B J) 12([ ia]'f-a‘l.[f:\o}. ~§-a‘1)

= (Frol (Fra™) - Filfcal - B [fra™']
= (f 2 g)
Thercfore, (f, s - g) is conjugate to (f, 51-4). 0

Remark 4.1.5. Proposition 4.1.4 states that the s of the covering transformations
[f:a]-8[F:a7Y], forae A(M), is closely related to the set of the lifts (f.B1-3) that
lie in the Reide ister cluss represented by (i.e., conjugate to) (f, 52g) and vise versa.
As we will see, it is not necessarily that the two sets be in one to one correspondence
with each other. So, our next job is to farth investigate the relationship between

them.

Definition 4 6. Let 3 € A(r\~7). For a fized pair of lifts (f g) of f and g, the set
é(fﬁ -3) C A(N) is defined by

G- 3 ={IFal-0:G ~laeAdD} .
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Lemma 4.1.7. Let 3,,/3: € A(]V) Then, (f, 71 - ) 1s conjugate to (f, 32-9) tf and
only if G(F.81 1NG(f.0,-9) #0.

Proof. Suppose '\f 31-g) isconji ite to (f 35 +g). By Proposition 4.1.4, there e 3
o € A(M) such that 3 = [f | Ba-[g:a” Thus, 5 € G(f.3 - §). Since
3, € G(f, Ba - §). we get that GUf.58-9NG(f.) G #0.

Conversely, assume that @(f, B81-g)N @(j? By - ) # 0. This means that there exist

ar.c € A(M) such that

Frad-d-Fral=f o 3 [F:03'],

Hence,
B = [[:ail]-[fias)-Ba-[gray']-[§: o).
= [fiof aa) B[ ast oyl
= [froit 0 B (G (o7 a2) 7],
By Proposition 4.1.4, (f, 31 - g) is conjugate to (f. 32-9). O

Definition 4.1.8. Let (f,§) be a lft of (f,g) and 3 € A(N). We define the subset
A(B) of Lift(f.9) by

A@) = {u(F.39) = uFus7) € Lift(f.g) e AN -
Lemma 1.9. Fiz a lift ([,§) of (f.g). Then

1. A(3) = A(ﬁ) if and only if 5 = 3. Morcover, A3 N A(ﬁ) =0 if and only if
B#B.






So, (fi.d € AB' A C |JAMB). Since | T A(3) C Lift(f.g). we get that
BEA(N) JEA(N)

Lift(f,q) U A(F). Morcover, by (1), t.  family {A(,"i)\ BRS A([\?)} is a parti-
FeAN)
tion of Lift(f.g).

(3) The proof follows from Definitions 1.1.11 and 4.1.8.

(4) By (3). [Ru(/

‘A(N’)‘ = [m(N) : H]. ]

Remark 4.1.10. Fiz a lift (f,ff) of (f,g). Then any other lift (j71§1) is conju-
gate to (f, Bg) for some 3 € A(/\~/). If we  fine the action of A(?\Af/) on the set

{ N3 e A( N) } from the right by
AW)-a= {“ (f.39) 0 u(fa,3ga) = (nfandja)l ne A(N’)} :

then the union of the elements of each orbit, under this action, is a conjugacy class.

Definition 4.1 L. A set Q" C Lift(f,g) is d to be a set of Reidemeister repre-

sentatives, if each conjugacy class is represented ei ty once in SV,

Proposition 4.1.12. Let () = {(j7 J-g)l3e A(X’)}, and let 0 be a subset of Q2.
Then, Q is the set of Reidemeister represent  ves. which appear in Equation 2.5.2

or in Equation 2.3.4, if and only if ' satisfies the following conditions:

1. Any two distinct pairs in Y are not conjugate.



116

2. If we add any (f, 8-9) ¢ from Q to Y, then Q' U {(f~, B -4} is not pairwise

non conjugate; that is, (f 3 7) must be mjugate to some pair in Y.

Proof. Apply Lemma 4.1.9. O

€ then, Proposition 4.1.12 implies that we can make a suitable choice of 3 €

A(N), and usc this choice to determine a set of Reiremeister representatives.

Definition 1.13. From now on, we will assume .at we have chosen an appropriate
set of Reidemeister representatives. We use the the notation A C .A(N) to denote the

corresponding « ice of 3°s.

The following theorem allows us to move o step closer to enumerate the H—

Reidemeister representatives.
The em 4.1.14. We have

AN)=|JG(f.8-7). (4.1.4)

wher  the union is a disjoini union.

Proc, It is enough to show that .A(N') U G(fﬁ -g). ot 3 e _A(]V) By the
JEA

definition of A, (]T, ﬁ -7) belongs to the Reidemeister class represented by (f, 3-q) for
some 3 € A. This implies that 3 = [f a)-3-[7: ™) for some « € A(H) Thus,

Be - f, 3-79). Therefore, e J @(f,ﬁ -§). The union is disjoint by Lemma 4.1.7
geA

and the defi tion of A. O












1. If G(g) c¢c mutes with G(f). then G(f.§) is a subgroup of A(N).

2. IfG(F) € Z(A(N)). then G(f..3-§) = G(f.§). for every 3 € A(N). However,

IfG(f) C A(K/)) then G(f 3-g) 1s a  hgroup which is conjugate to G(f‘ﬁ)
) 3. for every 3 € A(N).

3. If GG C (AN or G(f) € Z(A(N)). then L(f,3-79) = L(f. 7). for every
3 e .A(ﬁ) and L(f, g) is a normal subgre ofA(ﬁ).

Proof. (1) Let a, a1, ag € A(M). Then,

(IF: 1-@ear) - (IF el [5:07"]) = [Fron] - (G:ai]-[F ) [5: 03"
= (Frai) ([Fras) - [Fa7"]) (5207

= (o] [ a2)) - (3 0] 3 05")

= (7 ) 1f: 1) (07} 5 07])

=[frar-a] 703" ar]

= [[:ai-a))-[7: (a1-a2)"'| € G(f.9).

On the other hand, it is casy to sce that [f:a]-[§: a ' has [f:a7Y - [§:a] €
G(f.3) as an inverse.
(2) Apply Proposition 4.1.2 and Proposition 4.1.22.
(3) Assume G(g) € Z(A(wv)) or G(f) C Z(A(N)). It is easy to sce that L(f.3-9) =

L(f.§) for cvery 3 € A(N). Now. Let a € L(f.¢ Hence. [f :a] = [§:a] €
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G’(f) NG(g). L A€ A(ﬁ) We need to show tI A-a-A~! € L(f.5). In fact.

a2 = [FA-(Fal-[f: A7

Therefore, A - a - A~ € L(f, §). 0

—~— ~

4.2 The case where |[A(M)| and |A(N)| are prime
numbers

In this scction, 1 less otherwise stated, we stuc  the case where |A(W)| and \A(ﬁ')]
are prime numbers. This gives a simpler ve o of formula 3..4.6. This scction
gener  zes [5]. Its flow is similar to that of [5]. however we use the notion of 4(f. ¢)
rather than the notion of even and odd lifts introduced in [5]. Also, we generalize
[Theorem 2.5, [5]] by giving sufficient and neces v conditions for our desired formula

to hold.

L M and N be path connected, locally path ¢ nected topological spaces, (W P)
and (N,p) be re ilar coverings corresponding to the normal subgroups i € m (M)

and H € (N} fAl and N respectively. We assume the coverings are finite, and
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unless otherwise stated that ].A(/Tf) and |A(N)| ¢ prime numbers. Lot (f,g) :

A — N bea  rof maps for which there ex s a pair of lifts (f g): M — N,

Recall from Definition 2.1.10, if a € A(E then 6(f g.a) = 1 provided t t

[f: a] = [g : a: otherwise, 5(f.gia)=0.

In what follc 3, we list some geometric and — gebraic characterizations for f. d
g to« isfy that §(f,g) = 1. The next lemma does not require that A(M) and A(N)

have a prime or - or even are cyelic.

Lemma 4.2.1. ‘a€ .A(:ﬁ). If (5(f. Gia)=1, then 6(f.g:0) 1 forall o € (@),
where (o) is the cyclic subgroup of A(W) gene: ed .

Proof. By Proposition 4.1.2, we have [f : of] = [f~ alf for every a € A(H) and
every integer A, Hence,

5(f,g:0)=1 & [f:a]=1[7:q]

Proposition 4.2.2. Let a € A(H). Then,

1. We have §1 g;a) =1 i and only if (5(f, g.o) =1 for every o € A(ﬁ)
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Proposition 4.2.4. Let 8 € A(N) — {15} Then, there exist eractly |A(N)[5U9)
H-Reidemeister classes each of which can be repres ted by a pair of lifts of f and g

of the form (f,3G) where 0 < i < |A(N)[PU9 — 1.

Proof. By Rema  4.1.9, the action of A(]\\j) on the sets A(3), where 0 < ¢ <
|.A(ﬁ — 1, pla 5 them in their conjugacy classes.  aec number of these classes de-

pends on the va 2 of §(f,g). So, we differentiate b veen two cases,

In the first case. we assume that 6(f,g) = 1. Let o € A(ﬁ) 0<i< ].A(N)| -1,

and (3 f.8B9) € A(B) . Then,

BF.557) 0 = (87 0857 a) = (60185 Ga)
= (Al 80 G0l = (817l FB5(F:a)g)
= (T:aldJ.F:a)859) =17+ )8 (F.57) € AG)

That is, the action of .A(zv) on A(3") carrics it back on to itself, i.c., the elements of
A(B") are conju; e onl, .o themselves for cach v ective <. Hence, In this case, we
have |A(N)| conjugacy classes (namely A(BY). e 0 < i < IA(N)| = 1). That is,
the number of H-Reider ister classes is ].A(N)| and each H-Rcidemeister class has

(f, 3'g) as a representative for some ¢.

In the sccond case, let us assume §(f,g9) = 0. Let « € .A(/’\\f), 0<i< ]A([V)| — 1.



and (3 fﬁﬁlﬁ) € A(3") . Suppose [§: o] = [f o]t where t > 1. Then,

(376090 = (B) a(367)-a) = (§(Fa)d0Ga)
- (mf wr = (IF el f AT al')
= (317l aw)
= BIf el (f{ o™ty J) € A(If a1 8

That is, the action of & maps A(3") bijectively onto . [f : a]'™! §%), i.c., the elements
of A(f1) and A 7 : a'~!3') are conjugate tc  ach other. Since [f : o] 7! is fixed

and A(N) is cy ¢, if i runs over the sct {0, 1,....|AN)] - 1}, then each of the

AN -1
clements of UA(ﬁi) is coujugate to the others.  1wus, in this case we have only
1=0
JA(N) -1
one conjugacy class (namecly UA(ﬁ‘)), and hence one H-Reidemeister class, which
1=0
of course can be represented by (fN, g). O

Next, we pre 1t many characterizations for which a pair of maps (f, g) satisfies

the condition 6(f.g) 1. Afterward, we collect our results in Corollary 4.2.10.

For cach r € ®(f. g). we have the following d ir
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Clmoe)e —— mOLa) 5 m(Vof@) - ”'_]g:;kfl()l)_))
Loy (1) 10u (2 I~ (3) i1
Ou (Clfg.g8))  »  Hi(A) B I Hi(N) = % (4.2.1)
TR =~
A(N)
where

e ( and 7 arc ¢ inclusion homomorphisim on the corresponding groups.

e O,; and Oy arc the abelianizations on the correspouding groups.

e 1 in diagram 4.2.1 denotes the identity.

e Tl function gy f;l is defined by g4 1) gu(a) fx(a)™! for every a €

US| (l‘]‘ .‘l').

The next leir  a does not require that ]A(H)I and |.A(N)| be priue.

Lerm 14.2.5. If .A(’V) is abelian, then Diagram 4.2.1 is commutative with Kerj =

ON(H(f(x))) ar Bar (Cf4.94)s) € Ner(Gy — fy)-
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Proof. Let Fy; and Fy be the commutator subg s of m (M, ) and 7 (N, f(x))

respectively.

e Commutativity of box (1): it is obvious that is well-defined. Let a € C(fg.g4).-
Then,
e @1\1((1) - Z(@/\/((l)) = @/\/(0) = @A\[ (L((l)) = (‘);\/ o 1((1‘) .

e Commutativity of box (2): first. 7# is defined suc  that the diagram

m (M, x) fi, mi (N f(x)
Oar | | Ov (4

(M) T+, Hy(N)

o
O]
=

is col nutative. What we need to show is that . is well defined. which is true since

fa(Fy) € Fy. e same is true for g, Th fo  the homomorphism 7, — 7# is

well « ined. No o Let a € m(M.r). Then,

Ovogs f7' (@) = Ox(g9ala) fel@)™!)
= On (9s(a)) + On (f(a)™")
= Onl(gsla))  Ow(fulw)
©x(a)) = [ 4 (Ou(a))
= G4~ T4 (©x )

= 5#—T# @M(a)-

e Commutativity of box (3): we have j is defi 1+ h that box (3) commutes. To



show it is well-defined, it is sufficient to noti  tl

Fy C H(f(z)).

o Let € m(N. f(r)). Then.

On(b) € Ner(j)

o Let a € C(fy,gu)r Then,

fala) = gpla) =
=

=

There  re,
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since is abelian,

=

On(fala)) = On(fz(a))

f#(el\l(a = i@‘\[((l))
G4 (Oar(a)) = f4(Orr(a)) =0
g & 1(a) =0

Onr(a) € Ker(gy — 7#) .

O (Clf4.94):) C e iy~ T4

The first characterization. for which a pair (f,g) satisfies that 6(f.g) =

1, is

geometric. The condition characterizes the fact §(f,g) = 1 through the action of

A(ﬁ) on the coincidence set of every pair of li

(f e Lift(f.g).




Proposition 4. 8. Assume |A(H)| and |A(N’)| are prime numbers. The following

are e walent:

1. 6(f.g) =1

2. orevery (f,5) € Lift(f,g), T € ®(f,7). and o € A(ﬁ) we have «(T) €

9.

3. here exist (f,§) € Lift(f,g), ¥ € ®(f,7), and a € A( ) ) such that o(F) €
®(f,9).

Proof. o(1) = (© : Assume 8(f,g) = 1. Let (f.g) € Lift(f,g) such that ®(f,g) #
6, T € ®(f,7), and a € A(M). Then,

fla@) = fa@ =[f o] f(Z) =7 : ) 7(@) = Fa(@) = gla(T)) .

That is, (%) € ®(f,3).
¢(2) = (3) : Trivial.

o(3) = 1 :Su} ose therc exist (f.q) € Lif f.g).T¢€ ®(f.7). and a € A(M)
such 1 & a(T) € (f, 7). Then,

[F:a) fG) = Ja@ = fa@) = §a@) =§a(F) = [§: )53 = [§: a] f(T) .

Thus, [f: ¢ =[j:a] and hence §(f, g) = 1. O
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e(2) = (3) : Trivial.

o(3) = (1) : Assume

gp f3" (m(M.p () € H(f(®)) .

for sc - lift (f g) of (f.g) and T € (I)(]T7 g). Let a € A(ﬁ) a1 a:r — a(r) bea

Thus, there exists b € m (V. f(2))

path in M. We ve p (@) is aloop in M at p(
such that g4 f;l(p (a@)) = p (). Hence,

s(p (@) = p(b) flp(@)
p (@) = p () p(F(@)

= p(g(@) =pf()).

Howe -, g(a) and bf(?i) are lifts to the same p. 1 and having the same initial point

f(Z). us, they are homotopic relative endpoi 5 1d have the same end point. i.c..

fa(@)) = §(a(T)) or a(T) € ®(f,5). By Propc ion 4.2.6, we get 6(f,g) = 1.

The third characterization, for which a pair (f,g) satisfies 0(f,¢) = 1, is also
algeb ¢ It characterizes the fact §(f,¢) = 1 rc sh a scquence of homological

groups and homomorphisins of the involved spa 5.

Proposition 4.2.8. Assume lA(AN[)} and |A(N)| are prime numbers. The following

are equivalent:
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Rem 'k 4.2.9. In Proposition 4.2.8, we did not mention the coincidence point of f
and g at which the sequence 4.2.3 is applied because the proposition is true whatever

the coincidence point of f and g is.

Now, we summarize the previous characteri  tions in the following corollary.

Corollary 4.2.1  Assume [A(ﬁ)} and |A(N)| are prime numbers. The following

are equivalent:

1. f,g)=1

~

2. For every (f,§) € Lift(f,9), T € (D(f¢ and o € Al ‘7), we have o(T) €
1.9).

3. ere exist (f, 9) € Lift(f,g), T € (D(fﬁ) and o € A(ﬁ) such that «(T) €

(f,9)-

4. ere exist a lift (f,§) € Lift(f, g) and 3 ®(f, ) such that

g# 7 (m(Mp(@) < f(3).

5. For every (/. g) € Lift(f.g) and T € &(f.7). we have

g f (m(M.p() C H(f(D)) .
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6. The sequence

01 (Clfu-94)) 2 Hi(M) 22 HY(N) = AR

is a chain complex for every x € O(f,y).

7. e sequence

O (Clfug4)) <o AN 2 HI(N) 0 A(T)

is a chain complex for some a € (f.g).

Proof. Ap] - Propositions 4.2.6, 4.2.7, and 4.2.8, O

T following corollary gencralizes part (3) of Corollary 4.1.21.

Coro iy 4.2.11. For every nonempty Niclsc class A of f and g, we have Iy =

[AGRD P,

Proof. Suppe  6(f =1 et AT a Niclss  class of f and g.
Let © € A and (f g) be a lift of (f.g) such A C p<1>(f, q). By (2), Coroll

4.2.10. if ¥ € p~Ha) N <I>(fv‘§). then o7) € fg) for every a € A(ﬁ). That
is, p~ ) C (I)(f 7). Therefore, 14 = |p~"(x)| = 4(./\7)|.

Suppose now 6(f,g) = 0. Then, ®(f.g) = (I)(f, 7). Let € ©(f,g) and 7 €

p~ )N <I>(f,§). By Proposition 4.2.6, a(Z)} docs not belong to ®(f,g). Thus.
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lp~ () N <I>(f, g)| = 1. This mecans that for any no1  pty Niclsen class A of f ¢ |

g we velq=1. O

We now prepare for the main results in this section, Theorems 4.2.16, 4.2.18, and

4.2.19. For each x € ®(f,g), Consider the diagram:

Cllyga)e — m(dz) L TALD)
K(x)
1 O | € 11

On (Clisrgy)e) —— Hio . - m.o) (1.2.9)
K(r)
|
A(N)

where 1e homomorphisms are as in 4.2.1.

Lemma 4.2.12. Let z be a coincidence point of f and g. Then, diagram 4.2.4

commutes, and kerj v(K(x)).

Proof. T - proof is quite similar to Lemima 4.2 O

Lemma 4.2.13. Let x be a coincidence point of f and g. [n diagram 4.2.4, the first
horizontal sequenice is a chain complex if and ¢ vy if the second horizontal sequence

s a chain complex.



Proof. Assume C(fg,g4): C ker(j) = K(x). By Lemma 4.2.12. we have
O1 (C(f4.94)s) C Orr "(2)) = kerj.

Conversely, supp ¢ O (C(fu.g4)r) C kerj O (K(x)). Since Fay € K(x). we

get that C(fg.g94), € K(2). a

Lemma 4.2.14. Let T,y € q>(j~', g) be in the s e Nielsen class, and let © = p(r)
and y = p(y) Then.

C(fs,9%): CR(x) if and only if C(fg.9%)y € KN(y)-
Proof. Tt is sufficient to show that if C(fg.g%), € K (&) then C(fyg.94)y € K(y).
Let&:F— i aj hthat establishes the Niclsen relation between 7 and y. Put

w = p(w). We have the commutative diagrain

m(M. D) 2 n (ML)

L pa Pl

m(Mr) =5 m(M.y)

fal gs Ja l g4

J(w)
m(N, flz)) == m(N.f(y).
Notice that f(w)s = g(w)g. Let a € (M. y). Then,

a€e( f#.g#)y = \.u‘;l((l)EC(f# &)Ig]\'(‘l')

= wy'(a) = pg(d) wsome d e m(M.F).

= a=wypp(d) = pu(Ty(d))

= aepy (m(9) = K@),
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Pl
pie C b [F)
k=0
Conscquently, we have Sy = P. That is, the number § is fixed for all Nielsen

classc of f and and equal to P. Since Corollary 4.2.11 implics that [ is also equal
to P rall Niel 1 classes of f and g. we get that J4 = 1 for all Nielsen classes of f

and ¢g. Thus, Nep(f,g) = 0 and hence by Ther :m 3.3.16, and Lemaima 4.2.4 we get

N(f.g) = Ni(f.g) = 3 =

=0
or
1=
V(f9) =5 ) NULIG)
=0

For the con  se. asswunc

et
=

1 &
N9 =5 >
=0

Let [¢] be a nouempty Nielsen class of f ar g, ick T € p~H ) N @(f,37) for

P-1

son suitable i. As in the above argument we have p([r]) = L ol - [T]. We
Jj=0
claim  at this union is disjoint. Let W([]) = {[¥].a - [7]..... a1 7]} and ¥ =

{\I/ N [2] € Dr(f, g)}, where ®g(f.g) is the set of all essential Niclsen classes of

f and ¢g. Define the function

p(fig) — ¥ ¢ [a] = ().
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We show that tl  function is a well-defined bij  :ion.

o Let [z],[y] € $r(f.g) such that [¢] = [y]. Let w : & — y be a path that cs-
tablishes the Niclsen relation and & : 7 — § b‘e its i at T, where 7 € p~'(y). Then,
[7] = [g) and = > ¥([2]) = ¥([y]). Therefore. the function is well-defined.

o Suppose ¥([2]) = ¥([y)) and let T € p~' (2)NO(f. 3"F) and J € p~H(y) NO(f, 327,
Thus, i, = i5. Furthermore. there exists j with 0 < j < P —1 such that [§] = o/ - [7].
Thus, [y] = p([7]) = p(a’ - [T]) = p([7]) = [«]. This implies that the function is one
to one.

e Su ctivity is obvious.

Since the fu  tion is bijective we get that (U] = N(f, ¢). Now. Let r denote the
number of essc ial classes [r] € ®(f, g) such that [¥] = o’ - [T] for some j with
0 < < P—1 (and hence for all j with 0 < j < P —1). In other words. 7 is the
number of essc ial classes [¢] such that [¥([«])] = 1. So, there exist N(f, g) ~7

clements W cach of which has a cardinality P, Hencee,

—

Q-1
(fg) -1 = F-KZN ,3f§)>_,,}

i=0
1 (& r

= B ;f\(fﬂfl) - P

= N(f.9)— % (by the assumptions)

which viclds that r = 0. That is, [Z]Na-{T] = for every o € A(XD), 3" € A(N),

and [7] € 5(/7, 3'9) such that p ([7]) is an ess ial Nielsen class of f and g. a



141

Notice that, although Theorem 4.2.16 gives a necessary and sufficient condition
for Equation 4.2 to hold. it has a drawback. It usc the set of essential classes of f
and ¢ the very thing we arc supposed to count. The following corollary helps us to

get o and this .

Cor: ary 4.2.17. Assume 6(f,g) = 1. Let 3 € A(Ji?) - {15} If An (a . 1) =0
for every o € A(M) — {15}, 8 € A(N) for all i. and for all A € ®(f,3'G). then

1 JA{N)]—1 N
N(fg)=——=+ , N([,39
AGDL =
Proof. Apply Theorem 4.2.16. O
Theorem 4.2.18. If 5(f.¢) = 0. then N(f.. = N(f.5).

Pro. Assume that §(f.g) 0. By Corollary 4.2.11. the number [ = 1. Siuce
J-S =1, weget that J =5 =1 for every nonempty Nielsen class of [/ and g. Since
J = 1 is odd, and the same for all classes, we have 1at Nep(f.g) = 0. So The »m

3.3.  holds imy] -ing that

[A(N)[0=1 ~ e ~
N(f.Fg) N & 7o
N(f.g)=Nu(f.g)= N 2 d- = N(f.7).
(f.g)=Ne(f.g) S 1 (f.9)

We sum up Theorem 4.2.16 and Corollary 14.2.17 in the following theorein.
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Theorem 4.2.19. Let M and N be connected closed smooth manifolds of the same
dimension, and let (T[/, p) and (N’.p) be regular  verings corresponding to the normal
subgroups K C (M) and H C 7 (N) of M and N respectively. Assume the cover-
ings are finite and that |.A(W)[ and |A(’§')| are prime numbers. Let (f.g): M — N
be a ir of maps for which there exists a pair of lifts (f~, g): M — N. If either
0f,e =00rd(fig)= withC(fu.g94)pe € (p(T)) for every nonempty Nielsen
class [T) of (f.59) with 0 < i < |AN)| =1, ti .

LA(A) P

1 ~
N g = —=——" N(f.Fg). (4.2.6)
LAV ;
Proof. Apply Theorem 4.2.18 and Corollary 4 7 along with Lennna 4.2.14. O

4.3 Examples

This scction is devoted to examples. Before giving them. we do some necessary
prer  atory work. The main preparation is to  ve 1 explicit formula of the suspen-

sion  >nicomorphism between the (n + 1)—sphere S"*! and the suspension £S™.

Notation 4.3 We set the following notati  which is necessary in this section:

- T, nth unit sphere S defined by

er

|
{(1‘1 ...... I‘,,+1) S R"! | N '|:l‘,“2 =1

=1

{(nt)lneR" te[-1.1], and [n|* +* =1} .
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- The upper nth hemisphere S" and the lower h hemisphere S :
st o= dm.ty[ne R te0.1]. and [n* +1* =1}
st = {(nt)lneR" tel-1. and PP +t* =1} .

Notice that S* = S"t U S"™ and S* ' =85 .

- The nth unit disc D™ defined by

D" = {(;p],..._fn) ER"| D |l < 1} .

=1

- The unreduced suspension BX of the topologic  spc X, is obtained from X x[—1.1]
by identifying « h of X x {-=1} and X x {1} to a single point (the points are

different). The elements of ©.X are denoted by [x.t] where v € X and t € [—1.1].

- We let
(TX)" = {[nt]]lreX w  €[0.1]} .
(EX)” = {[at]lzeX d €[-1,0}}.
and
vy =[r,1] and a- =[r,=1] foral re X .
Notice that X = (EX)TU(ZX)” and (ZX)TN(EX) = -~ 0]jr e X} =X.

-Xf X — YY the suspension of the map X — Y.

- R onding R as R" x R, we define

e T:R"™ s R" : (u.t)— 1 tobet projection of R"™ on R".

o T, S"" —— D" to be the restriction of T on S"T.
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e 7T_:S"" — D" to be the restriction of m on S".
o T, (XS", — D" by T, [z t]=(1-

o T (B8 — D" by T [zt = (14+1) 2.

where (1 —t) z is the scalar multiplication of = ;1 —t. Similarly for (1+1) z.

/

t/1tl i teR-{0}:

) = is the well known signon function from Real

10 ift 0

Ana’ s,

Len 1a 4.3.2. The maps my.m_. Ty, and T_ are s meomorphisms. Moreover.

o 17! D" — S defined by 71 (z) = (z. v [z]%).

o w71 D" —— S defined by nZ'(2) = ( —y/1—|z]?).

cif 2=0
o T71: DM — (T5")T by T7(z) = I;I - .
2zl L=z cif 2 #0
I_ Jif =0

e T-1: DM S (2SS by T z) = ,
2/l =) i 2 £0




Proof. It is not « fcult to show that the mentic : maps arc homeonmorphisms. We
ouly * int that as z approaches 0. the clement [z/|z] .1 = |z]] approaches to xy an
[2/]z] . ]z] — 1] approaches to x_ although z/|z| diverges. This confirms the continuity

of T;l and 77! at z = 0. O

Remark 4.3.3. Since v, F1| = g for all x € ST, without loss of gencrality we write

T7'z2) = [z/]2]. |2l = 1] and T{'(2) = [2/]z] .1 — |z]] for all z € D".

C sider the figure

L

(ESH)+ i pn+l - (Sn+1)+
ESH — — Sn+l )

-1

T m
(ES”)_ - Dn+l ., (S‘n+l)“
o followi  proposition gives an explicit formula for the homeomorphism be-
tween £.S™ and S™! and its inverse.

Proposition 4.3.4. Let h: £5" — S"*! be  map defined by h| (£S")" =7, 0T}

and h| (£8™)” = w.oT-. Then, h is a homeomorphism and it is given explicitly by
hlzt] = ((1 — )z, sgn(t) - /T — (1 - |1|)'2)

for all [z.t] € £S™, and h™! is given by
Lsgn(t) cift=7F1

2/|z] . sgn(t) - cif —l<t <]
1+ 3
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or by ewmark 4.5.3
t2
BEEN

Rtz t) = |z/)z] sgn
for all (z.t) € S"*L.

Proof. It is not difficult to prove our propositic if we recall the following propertics

of sgn(t):

1. (sgn(t))* =1 for every t € R — {0}.

2. sgn(t)-|t] =t for everv t € R.

3. sgn (r(t).sgn(t)) = sgn(t) for every t € R. v cre 7 is a nonnegative real valued

function such that r(¢) = 0 if and only if = 0.

Now we apply Proposition 4.3.4 to create maps on S™ of any degree we wish. We

start with t  following proposition.

Proposi m 4.3.5. The map g : S™+' — S"*! given by

Pty cif e Conpe RN P AP =10 and 2 #0
glz.n) = , ‘
(0.7) Hif e=

or  zle® n)  (|z{c*% n) for every (z.n) € T has the degree k. where k € Z.






groups Hy(S?%) and H,(XS?) respectively. Hence,

ge2(€) = hi20SfinohIB(€) he >Tfia((=1)%)
= hook(=1)¢)=(=D'k(=1)€=k¢
where [ = F1. This means that deg(g) = k.
S1 pose our clahn is true for n — 1. i.e., thc ap f: 8" — S given by
Gz ton) if 2 #£0

flzon) = \
(0.1) Gif =0

for every (z,7) € S*, where = € C and 77 € R, has a degree k. Let (u.t) € Sr+d
(usc Nota m 4.3.1). Write g = (z.1j) where z € C and 77 € R Assume firstly
that £ 0. Th p/|ul € S pu/|u) = (=/|pl. 3/ |pe)). and |ul? = |z]* + P>, We have

two cascs:

o Casc 1: If z # 0. Then.

2
hoXfoh (. zhoEfI: 2/|ul 3/ lul). sgrit) - —pm
I
i 2
=h|f(z .y , sgn(t) -
Gl 1/ s9m0)
|l
= h . 1), sgn(t -
T 1+w|]
r ~k It‘Z
= h | (————.1/|ul]), sgn(t) - }
e e o9 g
1 2 t?
=h —(——.1), sgn(t) - }
1 e Do
L £
= 1 —|sgn L) v(sgnz‘ )
(b ]) e YT




( ) t2 2 ( 31\' ;,I\‘
F o o)) - () = ().
1+ |u| Bl |z

where without loss of gencrality, n = (1, 1) € R".

o Casc 2: If 2 =0. Then,
hoXfoh™(u, ) h|f(0,n/|ul), sgn(t)- v —}

| .

=h hn/lp]). sgn(t) -
/! 171

N————
l Alt)

= (1= NOD O, /1), sgm (A0) - T = (T = AN
(0.1). ) = (0. 1),

Seconc -, we assume g = 0. Then, 2 =0. 7 =0, and f = F1. Henee,
hoSfoh (0. F1) = hoSf(rg) =hoEfly.3 = h{f(y). F1] = (0. F1). where
ye S

( nscquently, we get that hoX foh™! = ¢. | reover. since deg(Ef) = deg(f) =k,

a simnilar argunient shows that deg(g) = k.

Finally, by mathematical induction, our result holc  for cach positive integer n. U

Corollary 4.3.6. Let 5! : 83 — 53 be the map defined by
f(""”(rem, peinp) _ (7, (,)ik()! peilg) )

Then, deg(f*0) = kL.



Proof. Firstly, we show that f(10 is of degree I. Let ¢ : S* — S% be then
definc by q(z1, %) = (2. 21). We have go f40 =5 V. Thus, deg(q) - deg(f0) =
deglgo fA0y = (4D, Since deg(f"Y) =1 by Proposition 4.3.5 and deg(q) = 1.

we get deg(fD) = 1.

Secondly, f*0 = feDo fLh Henee, deg(f 1) = deg(f* Vo f0) = deg(f*-1).

d€g(f(lul)):11'[. O

The following proposition is useful for computing the Lefschetz number of a pair

of maps on the  here S™:

Proposition 4.3.7. Let (f,g) : S — S™ be a pair of maps. Then. the Lefschetz

number of f and g is given by
L(f,g) = deg(g) + (=1)" deg(f) .

Proof. We have

H(S") =

Let ; : HY(S") — H,_i(S") be the Poincare’  omorphism. Let a; and a' be
the nerators of H;(S") and H'(S™) respectively such that D;(e') = a,_; for cach
i = 0,n. Consider the sequence

~1
Dy -y

H,‘(S”) ﬁ’ Hi(sn) D'_l;l Hn—i(sn) » F »z(Sn) il ]{"(Sn)





















2. Let (g1,92) € G & Go. Then,

(91.92) € Clpr X 2,01 X W) & o1 X pa(gr.g2) =1 X 1291, 92)
< (21(91). 92(92)) = (ilg1). wa(g2)

S o1(g1) = ¢ilgr) and  p2(g2) = va(g2)

& g1 € Clor,¥y) and  go € Cp2.172)

& (91, 92) € Clenvr) © Clpa. i),

Thus, 2 follows.

3. It casy to show that the following diagram commutes:

G Gy
G. ll
GGy o, H,
J1 X ja /€
G g &
H, ~ H,

where € is the isomorphism induced by j; x jo. By part 2, we have

J(Clor X pzopr x w2) = j(Cloryn) & Clyzve)) = e (Clen ) @ Ol i)
= €0 J(Clp1.t1) ®Clpa ) = j1 X 2 (Clerin) @ Clyoaty))

= Ji (Clor.41)) B J2 (Cle2.472)),

whi  mecans that part 3 is true.

4. e equality C(F, X Py, ¢y X ¥y) = C(Z,.0n) @ C(Fa,¥1y) is proved by applying

part 2 to the correspondent  oups, subgroups and homomorphisms. On the other

hand. C(71 X 2. 11 X 1) = C(F) % Fy. 1 %) holds by the commutativity of the
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Since f~2 U= f~2 1 Go it = go, we have

(7)) = (Fox (o) (X0 Gx o (o)

“w

"><f o grat o x A Jo/l)

- (£
( x fo, G xX%):(f@lX)ﬂ(ij)
- (

u

?

k

w1 J1></\92>

x fa.
k -~ —~—
= (W 1g) (flez ).(]1><92>
@*gq(,QuX)@.

So we must choose 15 H —Reidemeister representatives (f W A ) for0 <1<
and <t < 2. The H—Reidemeister classes e A ) sce Definition 4.1.8 and
Lem 14 9), where0<!{<dand(<¢<2

e Si The fundamen  group of L(5,1) x S is an, the munber J only depends

on the H—Niclsen class. Thus,

Since (f, (w’. M) §) is homotopic to (f, 7) and 2 fundamental group of L(5.1) x S

is abelian, it follows by Proposition 2.1.25 that

Ny(fog) =15 x - ((]{ 9) (4.3.1)

QI
S——r

~

e To compute S(f,g). parts (3) aud (4) of L a 4.3.13 imply that
JED = G) x I (f2.52) =5x 1 =5

and

1(f,5) =1, 3) x [(fa.7n) 5x2=10.
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isomor) isms. where 0 < A <1,0<s< 3, and <7 <4 In addition, let

a" be the gencrator of HY(S') such that Dy(S')(a") = a® Na, = a; .
@' be the generator of  H'(S!) such that Dy (SY)(a') =a' Na, = ay ,
b" be the generator of H(S?) such that Do(S?)(8°) = 6" N by = by, and
? be the generator of H*(S®) such that  '5(S%)(b*) = b* Nby = by .
Thus. we have Di(S")(a*) = a1_¢ for 0 < k < 1 and D, (S?)(b*) = by_, for 0 < 5 < 3.

Let us compute the image of &* x a*. the ex  mnal product of ¢ smology classes,

under D (8% x SY), where 0 <A< 1,0< s <3, and 0 < s+ A < 4. In fact.

Dye(S* x SH(V® x a*) = (B xa*) (= (byxay)
= (D)= (0 Nby) x ()
— (_l)t‘+k(3-.~) (D.,(S;)(bs) « DA»(SI)((IAV))

= (—1)f+k(3_<) (1)3_5 X (ll_k) .
Put s, k) =1{+ k(3 — ). Hence,
Dyir(S% x SH(V* x a*) = (=N (by_y x ayy) (4.3.3)

Since Dyyy is an isomorphisni, we -t that

D71(8% % SY(bsoy x a1 x) = (=1 (" % a*) (4.3.1)
or cquivalently
D.l_ﬁl,,-k(SS x Sl)(bs % ak) _ (_1)\(3—5.1—k) (bii—s > al—k) ) (435)

Now, we use Equations 4.3.3 and 4.3.4 (or 4.2} in order to compute the trace of the

line  homomo hisms @ = D, jog*o D‘l__l{, o f, for 0 < [ < 4. We show the work
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for ©4.
Os(by x ap) = Di(S*xS)og c  N(S* xS o fu(bsy x ay)

= DS xSYog oDt x SN 6y x ay)
= 6D(S*x S oy o DS x S"Y(by x o)
= 6D,(S®xSYog - MOV xah)
= 6(=1)X"D D(S* x SHYo g (b x a')
= 6(=1n"Y DS x SH( x 24}
= 12(=1)M"YD(S* x SH x a')
= 12(=1MOD (=IO < ay)
= 12(bs x ay).

Thus, tr(0;) = 12. Similarly, we get that tr(0y) = 2, tr(0;) = 4, tr(0,) = 0, and

tr(®,) = 24. Therefore.
L(f ) :tl((‘)1 tr(@1)+t1(@2)—h((~)‘;)+ 0 =2-1+0-12+21= 10740

o It follows that L (f (u)l,/\') ?j) # 0 for all t and {. Hence, NVgp(f.g) = 0 and
N(f.§) = |Coker(Gu — fu)|. We have m,(S® x S*, ..0),1)) 2 m (S, 1). If ay is the

gen ator of m1(S!, 1), by abuse of language we ¢ 1 write
(94 — fe)(@1) = (G2 — fog)la =2a1 —day = =2a; .

- - Z ~
That is Im(Gg — f#) = 2Z. Therefore. [Coker(7u — f4)| = ‘Z—} =2aud N(f.7) =2
2

e [ ally, by Equations 4.3.1 and 1.3.2

N(f.g) =15 %

o
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The next example is the main example in this chapter because the manifolds
involved are non-orientable, and the covering  ansi  nations groups do not have a
prime order. In  1dition, this example shows how our results are effective for non-
orientable manifolds. On the other haud. this ¢ 1mple also shows the way our result
can be applied in the sense that we compute > 1 lsen number of maps between
non-oriental - manifolds in terms of the Nielsen numbers of maps between orientable

man lds.

Example 4.3..  Let fi.g; : RP2 — RP? 1d f5,92: 8! — S be maps defined

by fil@y.2)] = (= =y 5] g1 = Irpss fo(6) = €M and go(e?) = e,
Let p.p : S' — S! be the covering maps defined by p(z) = 22 and p(z) = =3
respeetively, and ¢ : S — RP? be the quotient map that defines ¢ projective
planc. Define f.g : RP?2 x S! — RP%2x S!' v f= fix fo and g = g, x g5. We
have ¢ X p g x p: S? x §' — RP? x S! arc covering maps. Both f and ¢ admit

9

-

lifts = fi % j~_) and ¢ = g1 ¥ go, where ]'1(1‘.[/.:) = (—x,—y.2) for (x.y.z) €

91 = lg. fo(2) = 28, and §a(z) = 22, for z € S'. Consider the commutative diagrains

g g st g el L g
l lg Ip pl gxpl Lgxyp
RP? 1% Rp? st " og ] xSt L4 Rp2x st

where f; and g; arc lifts of f; and g; respectively for i = 1,2. Here the space RP? x S!
is a nonorientable connected closed smooth manifold and all inaps considered arce
smooth. Morcover, the coverings are regular  nce the fundamental groups of RP?

and St and RP? x St are abelian.
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homotopic » (f.(=1g2.1g2)§) for cach t. Thus,

Ny,

The next stc s to compute S(f, §) and S(f. (—1g2, 1g2) §). Wo start with S(j~ g).

e Sinice S? is simply connected, @(ﬁ.f}l) the ouly Nielseu class for the pair
(fl?jl) Thus,
I(fi,g1) = IL(1.g1)i = | 52)\ =2.

Morcover, {(fi,g1) = J(f1.91)-

o If u is the generator of m(S!), we get (gog — fa) (1) = 3u — 12u = —=9u.
This imp! s that Ker (g24 — f2g) 0. Henee, J(f}‘gg) =|j (Ner(gop — for)) | =

1. On the other hand,
I(f2.32) = [L(f2.52)l = A(S".p)| =2.

o Parts (3) and (4) of Lemma 4.3.13 im= - that

JEG) = JFrg) x Jifain) =2x1=2,

and

I(F,9) = 1(/1,3) x [{JaGp) =2 x2=1.




|

Thus,
=2. (1.3.8)

-~

We don't need to compute S(f., (—1g2, 1g2) g), since, as we will soon see, '\(j~ (—lgz ) g) =

0.

Next. we compute N(f,g) and N(f.(—1g2.lg2) ). In order to give a variety of
compnutation methods, we will not use the Lefs  :z numnbers of the H —Reidemeister
repre wtives or Jiang space methods as in t© -+ »vious examples. Instead. we will
usc the index formula for product maps.

Each Niclsen class of (f.3) has the form
Ar = {0000, 1)) (0 ) =1 )}

where g is the 6th primitive root of unity, and & = ,1.2,3,4,5. Furthermore, since
index(fr.gv; {(0.0,1),(0,0.—1)}) = 2 (See Ex iple 3.1.14). and {g*} is essential for

each k, we have
"1()1‘(]?. g Ay) = index(fy. g {(0,0,1).(0.0.-1)}) - index(fa. Gor {1"}) £ 0 .

Tht  we have G essential elasses for (f g). Therefore, N(f. g) o

On the other hand, cach Nielsen class of (f (—1g2,1g2) g) has the form
B = {((x.v.0).4) | & +4* =1}

where & = 0,1,2.3,4,5. Since z'ndmf(fl,gl; {(x.y.0)] 22 +y* = 1}) = 0 (see Example

3.3, the for1 da of index of product maps gis 1at

z'nrz’e.r(f. (=lgz.lg2) 531 V=0
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