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Abstract 

Let J, g : M ---+ N be maps between closed manifolds of the same dimension, and 
- -let p : M ---+ M and p' : N ---+ N be finite regular covering maps. If the manifolds 

M and N are orientable, then, under certain conditions, the ielsen number N(J, g) 

of f and g can be computed as a linear combination of the Nielsen numbers of the 

lifts off and g . In the non-orientable case, using semi-index, we introduce two new 

Nielsen numbers. The first one is the Linear ielsen number NL(J,g), which is a 

linear combination of the Nielsen numbers of the lifts of f and g. The second one 

is the Non-linear Nielsen number NED(/, g). It is the number of certain essent ial 

classes whose inverse images by p are inessential Nielsen classes. In fact , N (!,g) = 

NL(J, g) +NED(/, g), where by abuse of notaLion , N(J, g) denotes the coincidence 

ielsen number defined using semi-index. 
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Introduction 

Let f: X ----t X be a map on a topological space X , and let if>(!) = {x E XJ f (x) = 

x } be the set of the fixed points of f. It is not always possible to find the set if> (f) 

or even its cardinality JiP(J)J . One of the fundamental studies of this set has been 

to find an estimate for its cardinality. The most useful estimates are usually lower 

bounds of JiP(J)!. The closer to JiP (J) J the lovver bound is, the better the estimate. 

The ielsen number [21 , 22] is one method used to find such an estimate. It counts 

a special type of classes (called Nielsen classes) defined by an equivalence relation 

(called the ielsen relation) on the elements of if>(!). The importance of the Nielsen 

number arises from two facts. The fi rst is that it is homotopy invariant. That is, 

homotopic maps have the same Nielsen number. The other fact is that it is equal, 

under certain conditions, to the minimum of the set {JiP (JI) JJ h is homotopic to!} . 

A drawback of the ielsen number is that it is difficult to compute. For this reason , 

Nielsen Theorists search continuously for methods that help compute the Nielsen 

number. 

Let X be a finite polyhedron, and H be a normal subgroup of w1(X ) of finite 

index. Fix a covering p: X ----t X corresponding to H ; that is, P#(n1(X)) =H. If 

1 
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f#(H) ~ H , then, f admits a lift J, and hence we have the commutative diagram 

X 1 X --7 

Pl lP (0.0. 1) 

X f X --7 

In [15], J. Jezierski gave, under certain conditions, a method that computes the 

ielsen number N(J) off as the following linear combination of the Nielsen numbers 

of its lifts . 
r 

N(J) = L (Jd ! ;) . N(h) ' (0.0.2) 
i=1 

where r denotes the number of the nonempty Reidemei ter classe represented by the 

- ~(X) 
lifts j ; of j , and I; and J; are the order of specific subgroups of~-

Let j , g : M --t N be maps from a topological space M to a topological space 

N, and let ip(J,g) = {x E Ml f(x) = g(x) } be the set of coincidence points off 

and g. Coincidence Theory is a natural extension of the Fixed Point Theory. The 

coincidence ielsen number N (!, g) of f and g is defined to be a homotopy invariant 

nonnegative integer which is a lower bound of the set 

{ lip(!J, gl) II !1 i homotopic to f and g1 is homotopic to g} . 

The Nielsen number N(J, g) is homotopy invariant means that, if f 1 is a map homo

topic to f and g1 is a map homotopic tog, then N (h, g1 ) = N (! ,g). In this thesis, we 

study two coincidence Nielsen numbers. The first one is the index Nielsen number [2] 

which is defined for orientable closed manifold , and the second one is the semi-index 

Niels n number [5] which is defined for smooth closed manifolds (the orientability 

condition is dropped). The Purpose of the thesis, given finite regular coverings for 
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which the maps f and g admit lifts, is to generalize the formula 0.0.2 given above 

to formulas that compute the coincidence Nielsen numbers as linear combinations of 

lifts of the maps f and g . More precisely, under certain condit ions, we show that the 

index Nielsen number is a linear combination of lifts off and g (Chapter 2). The 

semi-index Nielsen number, however, is the sum of two ielsen numbers (Chapter 3). 

The first number is called the Linear ielsen number. It is a linear combination of 

lifts of f and g. The second one is called the Nonlinear ielsen number. It counts 

special essential classes of f and g which their inverse image by the covering map are 

inessential classes of the lifts off and g. The onlinear iels n numb r , as we will 

show in Chapter 3, equals to zero in the fixed point case or with orientable manifolds, 

where the index is defined in this case, are con~idered. 

In Chapter 1, we give the necessary background for th thesis. In th firsts ction, 

we give the definitions of the ielsen classes and· Reidemeister classes, along with their 

basic properties. In the second section, we present the main results of J . Jezierski 

in [15]. This gives a pattern to follow as we work toward generalizations of Formula 

0.0.2 which is the main result in [15]. 

In Chapter 2, given finite regular coverings for which f and g admit lifts, we 

define, in the first section, the three numbers JA , IA , and SA for a given Nielsen class 

A off and g. They generalize JA and IA given in [15] . The number JA is defined to 

be lp- 1 (x) n AI, where x E A, and A~ iP(T, 9) is a Nielsen class such that p(A) =A. 

We can compute JA algebraically from the equation JA = j (C(f#,g#)x), where 

C(f#, g# )x i the set of all a E n1 (M, x) such that f #(a) = g#(a), and j : n1 (M, x) -----+ 

n11~ )x) is the c~nonical projection. The numbGr I A is defined to be IP-1 (x )n<P(J, 9) I· 

We can also compute JA algebraically from t.h ·equation IA = C(J# g#)x, where f# 
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and 9# are the homomorphisms induced on 7r1l~)x) by f # and g#, respectively. 

The number SA is the number of ielsen classes A ~ <P (J, 9) such that p(A) = A. 

The numbers JA IA, and SA are independent of the orientabililty of the manifolds. 

They are used to compute the coefficients in the formulas given in Theorems 2.3.5 

and 3.3.16, which generalize Theorem 4.2 of [15]. Also, we exhibit geometric and 

algebraic interpretations of these numbers, and give methods of computing them 

from the fundamental group n1(M). Also, in this section, we give results that help 

us to use a single coincidence point to compute the numbers J , I , and S for the 

H - Reidemeister representatives which appear in the formula given in Theorems 2.3.5 

and 3.3.16. In the econd section, where we assume the manifolds are orientable, w 

introduce the definition of index [26] and its properties. Then, we give the definition 

of the Lefschetz number and its relationship to the index. xt, we give the definition 

of a ielsen number [16] and the index Nielsen number. In the third section , we give 

the relationship between the ielsen classes in the base space M, and those of the 

covering space M through two equations (see P roposition 2.3.2) that link the indices 

of those Nielsen classes. In fact , the equations generalize to coincidences those given 

in Lemma 3.4 of [15] and in Theorem 3. 7 of [25] for orientable manifolds. Then, we 

use the relationships between Nielsen classes to derive Theorem 2.3.5, which shows 

the index ielsen number N (! ,g) as a linear combination of the Nielsen numbers of 

the lifts off and g. Afterward, in the forth section, we give applications and examples 

of Theorem 2.3.5. In particular, we show how T heorem 2.3.5 generalizes Theorem 4.2 

of [15], and explain how to use it to compute the ielsen number. 

In Chapter 3, we drop the orientabili ty condition given in Chapter 2, but study 

only mooth manifolds. In the first section, we define the semi-index [5] (or [16]), 
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and list its properties and its relationship to the index. We, then, define the semi

index Nielsen number. In the second section, we recall the notion of defective classes 

together with its properties. A relationship between the indices of the ielsen classes 

of the base space and the covering space is developed in Propo itions 3.2.12 and 

?? . In fact, these propositions generalize Lemma 3.4 of [15] and Theorem 3.7 of 

[25] to Coincidence Theory. In these two references, orientable and nonorientable 

manifolds respectively are con idered. ext , u::;ing these propositions, we completely 

explain the relationship between ielsen clas es in the base space, and those in the 

covering space. This relationship is not straight forward, because the defective Nielsen 

classes exist for nonorientable manifolds and behave quite different from nondefective 

ielsen classe . In the t hird section, we define our two new ielsen number . The 

first is the Linear Nielsen number NL( f ,g) . We; show that it is a well defined ielsen 

number. It is a linear combination of the Nieben numbers of lifts off and g. The 

other number is called the Nonlinear ielsen number NEo(f, g). It is the number of 

essential defective ielsen classes off and g for which J is even positive integer. We 

show that it is a well-defined ielsen numb r , and give an example which hows that 

it can be nonzero. Next, we show that the semi-index Nielsen number is the sum of 

the Linear and the onlinear Nielsen numbers. In the forth section, we show how 

Theorem 3.3.16 generalizes both Theorem 2.4 of [15] and our 2.3.5. Finally, many 

special cases of T heorem 3.3.16 are discussed , a nd examples given. 

Chapter 4 is divided into two parts. The first part, covered by Sections 4 .1 and 

4.2, gives a classification of H - Reidemeister dasses. We show, under certain con

ditions, how to choose canonical H - Reidemeister rep res ntatives which appear in 
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the formulas given in Theorems 2.3.5 and 3.3. 16. The second part , cover d by Sec

tion 4.3, includes many examples that illu t rat the main results of the thesi . In 

more detail, in section 4. 1, we study the generai classification of the H - Reidemeister 

classes (or representatives) and give, under certain condi tions, the exact number of 

H - Reidemeister representatives which appear in the formulas given in Theorems 

2.3.5 and 3.3.16. In section 4.2, we study the special case of our clas ification when 

the cardinality of the group of covering tran formations of both coverings is prime. 

We show in thi case, that the number of H - R.eidemei ter classes is either 1 or equal 

to the number of sheets of the covering space ( N, p) of N . We also show that the 

coefficients, in our formulas , are either 1 or equal to the reciprocal of the number 

of sheets of the covering space ( M , p) of M. This will give elegant versions of the 

formulas given in Theorem. 2.3.5 and 3.3.16. Finally, in section 4.3, we give sev

eral examples which illustrate the main results of the thesis. The main example for 

nonorientable manifolds comes here in Example 4.3.18. 



Chapter 1 

Background 

In this chapter , we give the background necessary for this thesis [4, 5, 15, 16, 18, 19, 

26]. The first section presents Nielsen and Reidemeister coincidence classes and the 

relationship between them, as well as their basic properties. In the second section, 

we list the results for the fixed point case from [15] which were the motivation of this 

thesis. 

1.1 Nielsen and Reidemeister Classes 

In this section, we give t he concepts of Nielsen class and Reidemeister coincidence 

classes along with t heir basic properties [4, 18]. 

Let M and N be path connected, locally path connected topological spaces, and 

(M, p) and (N, p) be regular coverings corresponding to normal subgroups K ~ rr1 (M) 

and H ~ rr1 (N) of M and N respectively. The covering maps p : M -----t M and 

p : N -----t N are not t he same in general. The context clearly shows which covering 

map is under consideration. In possible cases of confusion, we will give the covering 

maps different names. Let (!,g) : M -----t N be. a pair of maps for which there exists 

7 
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a pair of lifts (J, 9) : M -----+ N. Thus, we have the commutative diagram 

M 1.9 N -----+ 

p l lp (1.1.1) 

M 
J,g 

N -----+ 

In what follows, A(M) and A(N) denote the groups of covering transformations 

of the corresponding covering spaces, and Lift(!) and Lift(g) denote the sets of lifts 

of f and g respectively. 

R emark 1.1.1. In case of fixed points, where M = N and g = 1M is the identity on 
~ -

M, we assume NI = N, and of course the covering maps are the same. Composition 

of functions h and h will be denoted by either- !I o h or !I h. In addition, if w is a 

path in the domain of f , then the path f o w is denoted for simplicity by f ( w). 

Lemma 1.1.2. (19} Let M and p : M -----+ .Vf be as above, and let Y be a path 

- -
connected space. Given two maps fa, h : Y -~ M such that p fa = p !1, the set 

Cf!(j;, h) is either empty or equal to Y. 0 

Lemma 1.1.3. (19/ Let M and p: M-----+ M be as above and let 9a, 91 : [0, 1] -----+ M 

be paths in M which have the same initial point. If p 9a is homotopic to p 91 relative 

endpoznts, then ?fa is homotopic to 91 relative endpoints; in particular, 9a and 91 have 

the same terminal points. 0 

Definition 1.1.4. We define Li ft(! , g) by 

Lift(!, g)= {(f,9Jif E Lift(!) and 9 E Lift(g)}. 
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Since t he validity of our results requires a nonempty set of coincidences, we assume, 

without loss of generality, that the set if>(!, g) of coincidence points of f and g is 

nonempty. 

Lemma 1.1.5. Let M and p : M ---t M be as above. Then, there are bijections 
~ 1T'1(M,x) 1 

A(M) ---t p- 1(x) and H (x) ---t p- (x) for each x E M . 

Proof. For each x E M, fix x0 E p- 1 (x). The function 

is a well-defined bijection. On the other hand, for each a E 7r1 (M,x), let a be its lift 

at Xo (i .e., starting at X'o). The function 

1T'1(M,x) _1 ( ) ( ) _( ) 
H (x) ---t p x : a H x t---t a 1 

where a H (x) is the coset of H (x) determined by a , is a well-defined bijection . 0 

T he following lemma is a special case of Lemma 6.1 of [19]. 

Lemma 1.1.6. (19} Let M and p : M ---t M be as above, and let a0 , a 1 E A (M). If 

0 

The following is Schirmer's definition of co!ncidence Niel en class. 

Definition 1.1. 7. Let H be a normal subgroup of 1!'1 ( N). Let x, y E if>(!, g) . We say 

that x and y are in the same H-Nielsen class, and we write x "'H y, if there exists 

a path w : x -t y in M such that f (w) is homotopic to g(w) relative endpoints (mod 

H ), symbolically f(w) "'H g(w), which means that g(w)f(w)- 1 E H(f(x)). 

If H = 0, then we say that x and y are in ~he same Nielsen class, and we write 

X "'O Y· 
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This relation ·is an equivalence relation, the equivalence classes are called H- ielsen 

classes . For x E i:f>(f, g) , we write [x] H for the H- ielsen class of x. 

Remark 1.1.8. If H = 0 in Definition 1.1. 7 the equivalence classes are called Nielsen 

classes. The symbol [x] stands for the Nielsen .class of the coincidence point x . 

Lemma 1.1.9. [x] ~ [x]H for every x E i:f>(f, g). That is, each H -Nielsen class is a 

union of ordinary Nielsen classes. 0 

Next, we introduce the definition of H - Reidemeister classes and an alternative 

description of the H - ielsen classes in terms of the H -Reidemeister classes. We 

start with the following proposition. 

Proposition 1.1.10. (15/ Let 1 and j be lifts off, then there exists a unique {3 E 

A (N) such that .j = f3J. In other words, if we fix a lift 1 off, then the function 

TJ: A(N) --4 Lift(!) : f3 f------* f3 f 

is a well-defined bijection. 0 

The group A(N) (resp. A(M)) acts on Lift(!) from the left (resp. from the 

right) by !31 = {3 o 1 (resp. 1a = 1 o a) where 1 E Lift(!) and {3 E A(N) (resp. 

a E A (M)). 

Definition 1.1.11. (5] Let (1,9), (/};) E Lift(!, g). We say (1,9) and(/,{;) are 

conjugate if there exist a E A (M) and {3 E A (N) such that (/};) = /3(1, 9)a := 

(f31a, {3g a). 
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The set of all conjugacy classes is called the set of H-Reidemeister classes, and is 

denoted by SRH(f, g). The cardinality of SRH(f, g) is denoted by RH(f, g) and is called 

the H -Reidemeister number off and g. 

D efinition 1.1. 12 . {18} Let f : M ---> M be a map, and let (M,p) be a covering 

- -space. Two lifts h and h off are called conjugate in the fixed point sense if there 

exists 1 E A(M) such that h = 1 };_ 1-1
. 

Proposit ion 1.1.13. Let f : M ---> M be a map, and let (M ,p) be a covering 

space. Two lifts(};_ , 1M) and (h, 1M) of (f, i\1/) are conjugate (in the coincidence 

- -point sense) if and only if f 1 and h are conjugate in the fixed point sense. 

Proof. Suppose (};_, 1M) and (h, 1M) are conjugate. There exist a, (3 E A (M) such 

that (h, 1M)= {3 (};_,1M) a. Thus, 

(]; , 1M)= ((3};_a,(31Ma) = ((3};_a,(3a). 

Hence, h = (3 J; a and 1M = (3 a. The later equation implies that a = (3- 1
. Thus, 

h = (3 };_ (3-1 . Therefore, };_ and h are conjugate in the fixed point sense. 

Now, assume };_ and h are conjugate in the fixed point sense. There exists 1 E 

A(M) such that h = 1 };_ 1-1. If we let (3 =~; and a= 1-1
, we get that (h, 1M)= 

(3 (};_,1M) a. That is, (};_,1M) and (h, 1M) are conjugate in the coincidence point 

sense. 0 

The following corollary is an obvious consequence of Proposition 1.1.13. 

Corollary 1.1.14. Let f : M ---> M be a map, and let ( M, p) be a finite covering 

space corresponding to the normal subgroup H. Then, 
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That is, the coincidence H - Reidemeister number of the pair (!, 1M) is equal to the 

fixed point H- Reidemeister number of the map f. 

Proposition 1.1.15. (5} Assume we are given regular coverings as in diagram 1.1 .1. 

Then, 

1. i:J>(J,g) = U(J,g)p i:J>(j,g) where the index runs over all pairs of lifts. 

2. The sets p i:J>(J, g) and p i:J> ( j , §) are either equal or disjoint. 

- -
3. p i:J>(J, g) = p i:I> (/, §) if and only if (J, g) and (/, J) are conjugate. 

4. i:J>(J, g) = U (f,§) p i:J>(J, g) is a disjoint union, where the union takes one (J, g) 

from each conjugacy (H- Reidemeister) class. 

The following proposition generalizes the fi r t part of Lemma 3.1 of [15]. 

Prop os ition 1.1. 16. Let x,y E i:J> (J,g). Then x andy belong to the same H-Nielsen 

class if and only if there exists a pair (J, g) E Lift(!, g) such that x, y E p i:J> (J, g). 

Moreover, (1, g) is unique up to conjugacy. 

Proof. We know that 

i:J> (J, g)= u p i:J>(j,g). 
(J. g) E Lift(!. g) 

Since x E i:J>(J, g), there exists a lifting pair (J, 9) and x E i:J>(J, g) such that p(x) = x. 

Suppose x andy are in the same H-Nielsen clasi.i. Thus, there exists a path w : x ----+ y 

such that g(w)f (w )-1 E H(J(x)) = P#(1r1(N, J(x))) . Let w : x----+ y be a lift of w 

start ing at x and ending at y E p-1(y) . Then g(w)f(w)-1 = p (>.) for some A E 
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1r1(N,J(x)) ). So, g(w) is homotopic to p (A.)f(w) rel. endpoints. Now, >..J(w) is a 

path from J(x) to fCY'J , which is a lift of the path p(>.) f (w). Similarly, g(w) is a path 

from g(x) = f Cx) to ?iCilJ, which is a lift the path g(w). Sine these two lifts have 

the same initial point and g(w) is homotopic top (>-)f(w) rel. endpoints, applying 

Lemma 1.1.3 gives that they are homotopic rcl. endpoints, and, in particular, that 

J(Y) = g(Y) . Thus, y E i!J(f, g), and hence yEp i!J (f, g). The uniqueness of the pair 

(f , ?i) up to conjugacy follows from Proposit ion 1.1.15. 

For t he converse, assume x, y E piJJ(f,?i) . Let x E p- 1 (x) n iJJ (f,?i), y E p- 1(y) n 
- ~ 

iJJ(f , ?i), and w : x----+ y be a path in M. Let w = p(w). Then 

g(w)f (w)- 1 = p g(w)(pJ(w)t 1 

P g(w)p (J(w)-1
) 

p (g(w)(fp)- 1
) E H (f(x)). 

Therefore, x and y belong to the same H-Nielsen class. D 

Corollary 1.1.17. If p iJJ(f, ?i) f= 0 for a lift (J ?i) of (f, g) , then p iJJ(f, ?i) = [x]H for 

every x E piJJ(f, ?i) . 

Proof. Apply Propoistion 1.1.16. D 

Corollary 1.1 .17 states that each H- ielsen class is of the form p iJJ(f, ?i) for some 

lift (f , ?i) of (f , g) . For nonempty H -Nieslen classes, this "covering form" of the 

definition coincides with Definit ion 1.1.7. 

Proposition 1.1.18. {1 OJ rf M is locally path connected and N is semilocally simply 

connected, then each Nielsen class is an open subset of iJJ(f, g). 0 
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The following proposition generalizes the last part of Lemma 3.1 of [15]. 

Proposition 1.1.19. If M and N are connected compact manifolds, and A ts a 

Nielsen class, then the setp-1 (A)n<I>(J,9) , where (J,g) E Li ft(! , g) , is either empty, 

or splits into a finite union of nonempty Nielsen classes of (1, 9). 

Pmoj. The proof is similar to that of Lemma 3.1 of [15]. 0 

Remark 1.1.20. If the coverings are universal then the H -Nielsen classes are ordi

nary Nielsen classes, that is ifx E <I>(!, g) then [x] = [x] J-1 . Also, the H - Reidemeister 

classes are Reidemeister classes, and the H - Reidemeister number is the Reidemeister 

number. 

1.2 The Fixed Point Nielsen number of covering 

maps 

The main results of this thesis generalize those of [15]. Thi section states these results 

of [15] . Concisely, [15] gives a method to compute N(f) as a linear combination of 

the ielsen number of lifts off under certain conditions. 

Let X be a finite polyhedron, and H be a normal subgroup of 1r1 (X) of finite 

index. Fix a covering p : X -----+ X corresponding to H , i.e., P#(7r1(X)) = H (the 

covering p is finite) . Let f : X -----+ X be a map such that f#(H) ~ H. Then, f 

admits a lift f and hence we have the commutative diagram 
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X J X ----t 

p l I · 
~p (1.2.1) 

X f X ----t 

Definition 1.2.1. For- a lift f E Lift(!), a fixed point xo E <P(J) and element 

b E 1r1 (X, xo) we define the subgr-oups 

L(J) = { -y E A(X)I1 o -y =-yo 1} (1.2.2) 

C(J#,xo;b) ={a E nr(X,xa)l ab = bf#(a)} (1.2.3) 

CH(J#,xo;b) = { [a]H E nl(X,xo) / H (xn)l ab = bf#(a) modulo H} (1.2.4) 

Lemma 1.2.2. Let A ~ <P(1) be a Nielsen class of fixed lift 1 of f. Let us denote 

A= p(A). Then, 

1. Let j : C(J#, xo; b) ----t CH(J#, xo; b) be the homomor-phism induced by the 

canonical pr-ojection j : n 1(X,x0 ) ----t n1(X,x0 )/ H(xo ). Then, the r-estriction 

- -of the map p : X ----t X to the map p : A ----t A (the r-estriction is also denoted 

by p for- simplicity) is a cover-ing map, and. the fiber- is in bijective correspondence 

with the image j(C(J# , x)) ~ n 1(X, x) j H(x) for- x EA. 

2. The car-dinality of the fiber- (i.e., IP-1 (x) n AI) does not depend on x E A and 

we denote it by J A . 

- -
3. If A is another- Nielsen class of 1 such that p(A) = p(A) , then JA = IP-1(x) n 

D 
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Lemma 1.2.3. The map p : X -----+ X restricts to a covering map p : l'fJ(j) -----+ 

p ( l'fJ(j)). The fiber over each point is in bijective correspondence with the subgroup 

L(J). o 

Remark 1.2.4. It follows from Lemma 1. 2. 3 that if AH = p ( l'fJ(j)) is an H- Nielsen 

class that corresponds to a lift J off, and x E AH, then the cardinality IP-1(x)nl'fJ(J)I 

is independent of the choice of x E AH. That is, it depends only on the H- Nielsen 

class AH. We denote it by IAH. Also, we write !A := IAH for each Nielsen class 

- -
Lemma 1.2.5. {15/ Let A be a Nielsen class off and A be a Nielsen class off 

contained in p-1(A). Then, by Proposition 1.1.19 A= p(A) and moreover 

index(J; p-1 (A) n l'fJ(J)) = IA ·index(!, A) 

and 

index(!; A)= JA · index(!, A) . 

0 

To obtain a formula expressing N(f) in terms of N(J) , we need the assumption 

that the numbers JA = JA for any Nielsen classes A and A that lie in the same 

H-Nielsen class of f. The next lemma gives a sufficient condition for such equality. 

Lemma 1.2.6. Let x E p(l'fJ(j)). If the subgroups H (x) and C(f,x) commute in 

n 1(X,x) , that is, h ·a= a · h for every hE H(x) and a E C(f,x), then JA = JA for 

all Nielsen classes A , A~ p(l'fJ(j)). 0 
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R emark 1.2.7. The assumption in Lemma 1.2. 6 holds if either of H(x) or C(J, x) 

is contained in the center of1r1(X ,x) . On the other hand, if the subgroups H (x) and 

C(J, x) commute in n1 (X , x) so do the corresponding groups at any point in p(<P(1)). 

Now, we express the numbers IA and JA in terms of the homotopy group homo

morphism f# : n 1(X ,x) --t n1 (X,f(x)) for x E iJ.>(J). Let 1 E Lift(!) , and x E 

p- 1(x) n iJ.>(1). We fix the isomorphism n1(X,.r)/H (x) --t A (X) [a]H f-+ 'Y[a)H 

where 'Y[a)H (x) = a(l) and a denotes the lift of a starting at a(O) = X (see Lemma 

1.1.5). 

Lemma 1.2.8. We have 

f 0 'Y[a)H = /'[J(a))H 0 f · 

0 

Lemma 1.2.9. Let 1 E Li f t(!), A ~ p(iJ.>(1)) be a Nielsen class of f, and x E A. 

Then, 

0 

T he next result follows d irectly from Lemmas 1.2.2 and 1.2.9. 

Corollary 1. 2.10. Let 1 E Li ft(! ), A~ p(ci>(1)) be a Nielsen class off, and x E A. 

Then, 
IA ICH(J# , x))l 
JA Jj(C(J#. x)) I · 

0 
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Fix a point x E <P(J). The following lemma shows how to express the cardinali ty 

of the subgroups C(J#,x' ) and CH(J#,x' ) at x' E <P(J) in terms of the cardinality 

of subgroups of n1(X ,x) . It follows that the numbers I and J can be computed 

from a single fixed point of f . Let w : x' _____. x be a path. We denote the iso

morphism n1 (X ,x' ) _____. n1(X , x) induced by w by w# , i.e., w#(b) = w-1 bw for 

each b E n1 (X , x') . Further , the isomorphism w# induces an isomorphism w# on 

n1 (X , x)/ H (x) defined in the natural way. 

Lemma 1.2.11. Let r7 = w-1 f (w ). Then, 

and 

0 

Lemma 1.2.12 . Let A ~ p(<t> (f)) be a Nielsen class of f. Then, p- 1(A) contains 

exactly IA/ J A fixed point classes off. 0 

i=r 

Fix lifts h, ... , Jr representing all H-Nieloen classes of f , then if> (f) = U <P (h) 
i=l 

is a disjoint union. If we assume that all the ielsen classes that lie in the same 

H - ielsen class have the same J number, then J depends only on the H - ielsen 

class. Thus, we let I ; and Ji denote the numbers corresponding to the H - Nielsen 

class represented by f ;, and i = 1, .. . , r . By Lemmas 1.2.2 and 1.2.3 we have 



19 

and 

for any Xi E A and A; is any Nielsen class in p(if>(h)). 

The following theorem gives N (f) in terms of the ielsen number of lifts of f. 

Theorem 1.2.13. Let X be a compact polyhedron, p : X -----> X be a finite regular 

covering corresponding to a normal subgroup H of -rr1 (X), and let f : X -----> X : be a 

self-map admitting a lift J: X -----> X. We assu.me that for each two Nielsen classes 

A, A' <;: if>(!), which represent the same Nielsen class modulo the subgroup H , the 

numbers J A = J A' . Then, 

r 

N(f) = L (Jd I;)· N(h) , (1.2.5) 
i=l 

where I; and Ji denote the numbers defined above, and the lifts f ; represent all 

H- Reidemeister classes off , corresponding to nonempty H - Nielsen classes. 0 

Corollary 1.2.i4. If moreover, under the assumptions of Theorem 1. 2. 13, C = J;/I; 

does not depend on i, then 

r 

N(f) = C · L N(h). 
i=l 

0 



Chapter 2 

Computation of N (f , g) for 

orientable manifolds 

In this chapter, in Theorem 2.3 .5, we generalize Theorem 1.2.13. We show that the 

coincidence Tielsen number of a pair of maps f and g can be presented as a linear 

combination of the ielsen number of its pairs of lifts. There are three numbers J , I , 

and S are associated with an H-Reidemeister class, where H is a normal ubgroup of 

the fundamental group of the co-domain space. Those numbers are used to compute 

the coefficients in the formulas given in Theorem 2.3.5, the main result in this chapter. 

As in the fixed point case (Theorem 1.2.13), our applications are limited to situations 

where the analogous numbers J are independent of certain choices. Furthermore, we 

show that we only need one coincidence point in each H - Nielsen class (in some cases, 

only one coincidence point in i.f>(f, g) is needed) to make the computations. 

20 
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2.1 The numbers J, I, and S . 

In this section, we generalize the work in [15] related to the numbers I and J defined 

earlier in Section 1.2. More precisely, to each ielsen class A ~ ip(J,g) , we assign 

three numbers namely JA , !A and SA · Under the conditions giv n, all three num-

bers are always determined by A (In fact , IA is determined by the H- ielsen clas 

containing A) . They have both geometric and algebraic interpretations and are inti

mately inter-related. Moreover, they are the major ingredients in the computations 

of N(J,g) . 

Let M and N be path connected, locally path t::onnected topological spaces, and 

(M,p) and (N,p) be regular coverings corresponding to the normal ubgroups I<~ 

rr1(M) and H ~ rr1 (N) of M and N respectively. Let (! , g): M -t N be a pair of 

- -maps for which there exists a pair of lifts (f , 9) : M -t N. Thus, we have the same 

commutative diagram 1.1.1. 

In [15], in the fixed point case, the author used covering space to define IA and 

JA for a Nielsen class A ~ ip(J), and to investigate the relationship between the 

indices of the Nielsen classes in the base space and in the total space. H showed 

that essential classes in the total space are mapped onto essential classes in the base 

space. Our approach is rather to find a mor t::omplicated relationship between the 

e sential classes in both the base and the total paces. 

Definition 2.1.1. Let A ~ ip(J,g) and A C ip(J,9) be Nielsen classes such that 

p (A) = A , and let x E A. Define JA by 
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In other words, JA is the cardinality of the fiber of the map 

at any point in A . 

Remark 2.1.2. In fact, it can be shown that the map piA is a covering map with 

discrete fibers of cardinalities equal to J A. 

D efinition 2.1.3. {15} Let x E Cf>(f, g). We define 

The following proposition shows that JA is well defined. Furthermore, it shows 
~ n1(M) 

that his the order of a specific subgroup of A(M) ~ ~· 

Proposition 2.1.4 . Let A be a Nielsen class of f and g, and let x EA. Then, 

where 

is the natural epimorphism. 

Proof. Let A~ ~(J, g) be a ielsen class such t hat p (A) =A, and let x0 E p- 1 (x)n.A. 

For each A E n1 (!VI, x) , let>: : x0 -----+ >:(1) be the uniqu lift of A which starts at x0 . 

Consider the function 

A r--t A(l ) . 



• cp is well-defined: 

(1) Let )q , :X2 E j(C(f#, 9#)x) · then 

5.1 = 5.2 =} >11 >-21 E K (x) = P# 1r1 (M, xo) 

=} >.1>-21 = p().) for some>: 

=} A1 "' p().) >.2 rei. endpoints 

=} p():.I ) "' p().)p().2) rel. endpoints 

=} p().I) ,....., p(>: >:2 ) rei. endpoints 

=} >:1 (1) = >: >:2(1) = >:2(1) 

=} c.p( :X1) = c.p( :X2) . 

j (>. ) = g(>.) =} f (p (>:)) = g(p (>:)) 

=} p (J(>:)) = p (q(>:)) 

=} J().) ,....., g().) rei. endpoints 

=} >:(1 ) E A 

=} >:(1) E An p-1(x) . 

• cp is injective: Let :X1 , :X2 E j (C(f#, 9#)x) · Then 

c.p( :XI ) = 'P(5.2) =? ):.1 (1) = ):.2(1) 

=? >:1 ):.21 E 1r1(M, xo) 

~ >-1>-21 =p(>:1)p ():.21) =p(>:1>:21) EP#7T1(M,xo) 

=} 5.1 = 5.2 

23 
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• cp is surjective: Let x E p- 1(x) n A, w : x0 _:__.... x be a path uch that f(w) ,...., g(w) 

rel. endpoints (which exists since x0 , x E A), and let w = p(w) E 1r1 (M, x) . Then 

J(w) "'g(w) => f(w) = g(w) 

=> wE C(J#, g#)x 

=> cp(w) = w(l) = x. 

0 

Remark 2.1.5. If we change the base point To E p- 1(x) n A and follow the same 

argument as above, we find that J A is independent of x0 E p-1 (x) n A. 

Proposition 2.1.6. Let A~ <P(J g) be a Nielsen class such that p (A) =A, then h 

is independent of the choice of x E A. 

Proof. By the definition of normal subgroup T< , if z is another point in A and fJ : 

x -----+ z is a path in M such that f(fJ) is homotopic to g(8) rel. endpoints, then we 

have the commutative diagram 

1r1 (M,x) 
0# 

1r1(M,z) -----+ 

j l l j 
1r1 (M, x) 6# 1r1(M,z) 

-----+ 
K(x) K(z) 

wher 8# is the isomorphism induced by the path 8 and b# i the i amorphism in

duced by 8# on the quotient groups. Moreover, the restriction 8# : C(J#, g#)x -----+ 
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C(J#,g#)z is also an isomorphism. Hence, the commutativity of the diagram en

sures that j(C(J#,g#)x) and j(C(J#,g#)z) are isomorphic. This yields that JA is 

independent of the choice of x E A. 0 

Remark 2.1. 7. Since the above argument is the same for each Nielsen class A ~ 

<I>(1, 9) with p (A) = A, we conclude that J A depends only on the Nielsen class A. 

That is, if A, B ~ <I>(1, 9) are Nielsen classes '>Uch that p (A) = p (B) =A, then 

Definition 2.1.8. Let A ~ Cf>(f,g) and A ~ <I>(1,9) be Nielsen classes such that 

p (A) =A, and let x E A. Define !A by 

In other words, f A is the cardinality of the fiber of the map 

pi<I>(1, 9) : <I>(1, 9) --7 p ( <I>(1, 9)) 

at any point of A n <I>(J, g). 

Remark 2.1.9. In fact, it can be shown that the map pi<I>(1, 9) is a covering map 

with discrete fibers of cardinalities equal to I A. 

Let (1, 9) be a lift of (!,g) and a E A ( !VI). Since 1 a and g a are lifts of f and g 

respectively, the~.e are unique elements {3, J E A(N) (Proposition 1.1.10) that satisfy 

1 o a = {3 o 1 and go a = J o g. 



D efinition 2.1.10. We deji:TJ,e the number 8 (! , g; a) by 

- { 0 8(f,g;a)= 
1 

if (3 i- /3 

~f(J=/3. 

Definition 2.1.11. We define the set L(J, g) by 

L(J, g) = {a E A( M) I 8 (J , g; a) = 1} . 

The following Proposition gives some facts about L(J, g). 

Proposition 2.1.12. Let (J,g) be a lift of(f, g) and (J E A (N). Then, 

- ~ 

1. L(J , g) is a subgroup of A ( M) . 

2. L(J, g) = L((J J , (3 g) . 

Proof. (1) By definition, l NJ E L(J, g). Let a1, a2, a E L(J, g). Then, 

f(al az) (J a 1) az 

((31 J) az for some fJ1 E A (N) 

= fJ1 (! az) 

= fJ1 ((Jz J) for some f3z E A(N) 

= ((31 fJz) J 

Similarly, we get that g( a 1 a 2) = ((31 (32) g. Therefore , a 1 a2 E L(J, g). 

On the other hand, 

26 
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So, L(f, 9) is a subgroup of A ( M). 

(2) Let a E L(f, 9) and 1 E A (N) such that fa= 1 f and g a= 1 g. Then 

({J f) a = {J (f a) = {J 1 f } ::::} 

({J 9) a = {J (g a) = {J 1 g 

::::} a E L ({J f ,jJ 9) . 

Hence, we get that L(f, 9) ~ L({J f, {J 9). 

({J f ) a= fJ1 {J- 1 ({J f ) } 

({J 9) a = {J 1 fJ- 1 ({J 9) 

Since the above argument holds for every {J E A(N) and (1, 9) E Lift(! g), we get 

and (2) follows . . 0 

The next proposition shows that the number IA is well-defined, i.e., it depends 

only on the H - · ielsen class that contains A. Further, it shows that IA is equal to 
- 7r] (M) 

the order of a particular subgroup of A (M) ~ ~· 

Proposition 2.1.13. Let A~ ~(!, g) be a Nit lsen class and x EA. Then 

Proof. Fix a point x0 E p-i(x) n ~(f,g). Consider the bijection 
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given by ~(x) = a, where a is the unique covering transformation in A(M) with 

a(x0 ) = x. It follows that the restriction (for simplicity we call it~ too ) 

is also a bijection. We claim that 

Let a E ~ (p-1 (x) n cf>(J, 9)), then there exists an x E M such that a(x0 ) = x, with 

p(x) = x, and J(x) = g(x). Hence, 

J(x) = g(x) ::::} J(a(xo)) = g(a(xo)) 

::::} J o a(x0 ) =go a(x0 ) 

::::} /3 J(xo) = 4 g(xo) = 4 J(xo) 

::::} !3=4 

::::} 8(J, g; a) = 1. 

Thus a E L(J, 9). 

Now, let a E L(J, 9) . Then, 

8(f,g ;a) = 1 =? fa= /3J and ga = /39 for some /3 E A(N). 

=? J a(xo) = {3J(xo ) = f3g(xo) = 9 a(xo) 

=? a(xo) E cf>(f, 9). 

Since x = a(x0 ) E p-1 (x) , we get a E ~ (p-1 (x) n cf>(J,g)). 

Consequently,~ (p-1 (x) n cf>(J,g)) = L(J, g), and our result follows. D 
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R emark 2.1.14 . In the case that M = N and g = 1M is the identity on M, it is 

easy to see that 

L(f, l !Vf) = {a E A(M) I a J =fa}= L(f) , 

where L(J) is defined in Definition 1. 2.1. On the other hand, the proof of Proposi

tion 2.1.13 is independent of the choice of xo E i.P(f, 9). Since I L(f, 9) I is indepen

dent of the choice of xo E i.P (f, 9), we have that !A is independent of the Nielsen 

class contained in i.P(f, 9). Therefore, for any pair of lifts (f, 9) of (J, g) we can put 

I (f,g) = !A for any A E i.P(f,g). 

Let x0 be a roincidence point of f and g and Yo = f(xo). Since f# (K(xo)) U 

9# (K(x0 )) ~ H(J(xo)), then f # and 9# induce homomorphisms]# and g# which 

are defined such that the following diagram is commutative: 

n1(M,xo) 
f#,9# 

1r1(N, f( xo)) ----t 

j l l j 

n1(M,xo) ]#,g# 1r1 (N, f(xo)) 
----t 

K(xo) H(J(xo)) 

D efinition 2 .1.15. Define C(] #• g#)xo by 

C(-f _ ) { - 1r1 (M, xo) I -1 (-) _ (-) } 
, #• g# xo ~ a E K(xo) # a = g# a 

Let A ~ p i.P(/, 9) be a Nielsen class and let x 0 E A. We show that !A is equal to the 

order of the subgroup C(] #' g#)xo· Fix xo E p-1(xo)ni.P(f, 9). Let f(xo) = g(xo) =Yo 



and i(£0) = g(£0 ) =Yo· Define bijections 

where aer(£0) = a(l) , and a is the lift of a at £0 , 

and 

-rr1 (M, Yo) ~ A (N) : - f3r. 
H (yo) b~------t b, 

where fJr, (Yo) = b(l ), and b is the lift of b at Yo· 

Lemma 2.1.16. Let (1,9) be a lift oj(J, g). Then, 

- -f O'a = (Jf (a) f and g O'er= (Jg(a) g. 

Proof. Since f (a) is a lift of f (a), we have 

(Jf (a) (Yo) = 1Ca)( I ) . 

Thus, 

1 O'er (iO) ~ 1 (aer (£0)) = 1(a (1)) = J(a)( l ) = fJJ (a) (Yo) = f3f(a) (1 (£0)) · 

- .....,. - -
Since f O'er and (3 f(a) f are lifts of f , we get f O'er = f3 f (a) f. 

Similarly, g O'er = (Jg(a) g. 
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Proposition 2.1.17. Let (1, 9) be a lift of(!, g). Then, there is a bijection between 

£(1,9) and C(]#, g# )xo · 
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Proof. The restriction of the isomorphism v, which we call it v too, given just before 

Lemma 2.1.16 

is also an isomorphism. We claim that v ( C(j #• g#)xo) = 1(1, 9). 

Let a E C(J#, g# )xo · We have 1v(a) = v(.f(a) )1 and gv(a) = v(g(a))g. Since 

f(a) = g(a), we have t:(f(a)) = v(g(a)), i.e., o(1, g; v(a)) = 1, which yields v(a) E 

1(1,9). 

- ~(M,~) 
On the other hand, assume a E L(f, 9) . Hence there exists a E K (xo) , such 

that a = v(a) . Thus, 1 v(a) = v(f(a)) 1 and g v(a) = v(g(a)) 1 with v(f(a)) = 

v(g(a)). Becau e v is an isomorphism, f(a) = g(a) or a E C(] #• g#)xo· Therefore, 

a E V (C(] #• g'lf )x0 ) . 0 

In [15] , Jezierski used the fact that every covering map is a local homeomorphism 

to exhibit the relationship between the indicc\ of th fixed point classes A and A 

(Lemma 1.2.5). He used thi to derive the formula in Equation 1.2.5. The relationship 

bewteen the coincidence semi-indices of the analogous coincidence classes A and A 

turns out to be far more complicated than in the fixed point case. In fact, it turns out 

that there are cases where A can be essential even when A is not. This will ultimately 

lead to the definition of our non-linear ielsen number. Nevertheless, there are several 

useful results that, under appropriate condibons do effectively generalize the fixed 

point case. The complete picture is given in Lhe following sequ nee of lemmas. The 

result for index (Proposition 2.3.2) combines Proposition 2.1.21 and Lemma 2.3.1. For 

semi-index Proposition 3.2.12 is a modified version of Theorem 3.2.10, and Proposition 

3.2.13 combines Propositions 2.1.21 and Proposition 3.2.12. 
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Lemma 2.1.18. Let (f,g) be a lift of(J,g) andp<P: <I>(f,g) _____, p<J>(f,g) be the 

restriction of p to <I>(!, 9) . Then, 

2. We have p:.. 1( <I>(J, g)) n <J>(f, /3 · 9) = <J>(l, /3 · 9), for every /3 E A (N) . 

Proof. (1) It is obvious that p;j; 1 p ( <J> (f, 9)) ~ <P(f, 9). On the other hand , <I>(f, 9) ~ 

p-Ip (<r> (J,g;) , which impliesthat<J>(f,g) ~P-IP (<r> (J,g; ) n<r>(f,g) =p;j;Ip (<r> (J,g; ). 

Therefore , <J>(f, ?f) = p;j;1 p ( <J>(i, 9)) . 

(2) Follows directly from the facts that 

p-I (<I>(!, g)) = u <I>(f, {3. 9) ' 
f3EA(N) 

and <I>(f, {3 · 9) n <I> (f, /3 · 9) = 0 if and only if (3 =1- /3 . 0 

Lemma 2.1.19. Assume we are given finite regular coverings as in Diagram 1.1.1. 

Then the following are equivalent 

1. <I>(!, g) is finite . 

2. <I>(f,(J · 9) is finite, for each {3 E A(N). 

3. <I>(f, 9) is finite, for each lift (f, 9) of(!, g) . 
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Proof. (1) implies (2): Assume that Cf> (J, g) is fini te. Let f3 E A (N). By Lemma 

2.1.18, we have 

p-1(if>(J,g))n<P(f,f3 · 9J = ( U p-1(x) ) ncr>(f,f3·9) 
xE<f>(f,g) 

U (p- 1(x)n cr> (J,f3 · 9J ) 
xE<f>(J,g) 

Since the coverings are finite, p-1(x) n cr> (J, f3 · 9) is fi nite. Since Cf>(f, g) is finite, we 

obtain that <P(l, f3 · 9) is fini te. 

(2) implies (3) J irectly from the facts, first ly that every lift (f, 9) of (!,g) is con

jugate to a lift (f, f3 · 9) for some {3 E A( N), and secondly that coincidence sets 

corresponding to conjugate lifts have the same cardinality. 

(3) implies (1) since U p if> (f,(J · 9) =if>(!, g) , and IA(N)I is finite. 

{JEA(N) 

0 

D efinition 2 .1.20. Assume we are given finite regular coverings as in Diagram 2.1.1. 

Let A ~ p ¢(f, 9) be a Nielsen class. We define the number SA to be the number of 

Nielsen classes A~ ¢(f, 9) such that p(A) = A. 

T he following proposition gives important relationships among I AI , IAI, lp,;1 (A)I, 



34 

Proposition 2 .1. 21. Assume that if?(!, g) is finite. Let A~ if?(!, g) and A~ iP(J, 9) 

be Nielsen classes such that p (A) = A. Then 

(1) 

(2) I p;j; 1(A)I = IA · I AI . 

(3) SA = I A . 
JA 

(2.1.1) 

(2.1.2) 

(2.1.3) 

Proof. (1) Since the family {An p-1(x)l for all x E A} is a partition of A and JA = 

1 p- 1(x) n AI, w have 

xEA xEA 

(2) By Lemma 2.1.1 , we get 

Hence, 

p;j; 1 (A np (iP(f,9J )) = p;j;1(A) n p;1 (p (iP(l,9J) ) = p;j;1(A)niP(1,9) 

= U p;j;1 (x) n iP(f g). 
xEA 

j=SA 
(3) Let p;j;1 (A) = U Aj , where A j i a Tiel en class of J and g such that p(Aj) =A, 

j=l 

for every j with 1 ~ j ~ SA · Using the arne notations as in Lemma 2.1.1 , by (1) 

we have 
SA SA 

IP;j;1(A)I = L:: IAjl = L JA ·I AI = SA. JA · I AI 
j =l j = l 



or 

which implies by (2) that 

Corollary 2.1.22. If A ~ p 1>([, 9) is a Nielsen class, then 

IC(l#,g#)xoi 
;j (C(J#, 9#)xo) J 

Proof. Apply Propositions 2.1.13 , 2.1.17, and 2.1.21. 
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0 

(2.1.4) 

0 

The above results show that the numbers J, I , and S depend only on the ielsen 

class or the H- ielsen class. Next, we show that one coincidence point is sufficient 

to compute those numbers, for all Nielsen clru;ses (and of course for all H- ielsen 

classes). 

D efinition 2.1.23. Let x and z be coincidence points and w : x --+ z be a path. We 

denote the loop g(w)f(w)-l by hw, and define cu;w , 9#)x by 

{A E 1r1 (M, x)i J;w(A) = 9#(A)} 

{A E 7ri(M,x)l hwf (A) = g(A)hw} 

{

- 1r1(M, x).-- --} 
A E K(x) i hw j (A) = g(A) hw , 
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where f ;w and 9# are the homomorphisms induced by f ;w and 9# · 

Jt is obvious thatC(f;w, 9#)x and C(f;w, 9#)x are subgroups of 1r1 (M, x) and 7rll%)x) 
respectively. ' 

Lemma 2.1.24. Let x0 E <P (f,g) . Then, 

0 

The following Proposit ion generalizes Lemma 1.2.11. It also shows that C(f#,9#) 

and C(] #> 9#), and hence J, J and S, can be computed using a single coincidence 

point. 

Proposition 2.1.25. Let x0 and x be coincidence points and w : x0 --> x be a path. 

Then, 

where w#( >-. ) = w-1 >-. w for each>-. E rr1 (M, x0 ) and w#, is the isomorphisms induced 
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Pmof. (1) Recall that w# is an isomorphism from 1r1(M,x0 ) to 1r1(M,x). Let a E 

C(f# ,g#)x and;\ E 1r1(M,x0 ) such that a = w#( >.. ). Then, 

a E C(f#, g#)x ¢::? f(a ) = g(a) 

¢::? f(w-1 >..w) = g(w-1 >..w) 

¢::? f (w- 1
) !(>..) f(w) = g(w- 1

) g(>.. ) g(w) 

¢::? g(w) f(w-1
) .f(>..) = g(>.. ) g(w) f (w- 1

) 

¢::? hw J (>.. ) = g(>.. ) hw 

¢::? ),. E C(f;w, Y#)xo 

¢::? a E w# ( C(f;w, 9#)x0 ) 

hw J (>.. ) = g(>..) hw = J (>.. ) hw · 

Thus, hw commutes with f# (C(f# 9#)x0 ) . 

Now suppose that hw commute with f# (C(f#, g#)x0 ) . We have, 

A E (C(f#, 9# )xo ) ¢::? J (>..) = g( >.. ) 

¢::? J(>.. ) hw = g(>..) hw 

¢::? h,.; J (>.. ) = g(>..) hw 

¢::? A E C(f;w, 9#)xo · 

7f1 (tV!,x0 ) -
(3) Let a E K(xo) and e be the identi ty of H (f(x0 ) ) . Sine w-;/ = w;_1

, we 



have 

b = w#(a) and a E C(J~w,g#)xo {::} b = w#(a) and hw ] #(a)= g#(a) hw 

{::} hw 7 # (w;/ (6)) = g# (w;/ (b)) h'"' 

¢:} hw J# (~) =g# (~) hw 

{::} hw f# (w# 1(b)). = 9# (w#1(b)) hw 
{::} g(w) J(w-1) f (w bw- 1),;, g (w bw-1) g(w) J (w-1) 

{::} g(w) J(w- 1) f (w) f(b) f(w - 1) = g(w) g(b) g(w-1) g(w) f (w- 1) 

{::} g(w) f(w-1) J(w) J (b) f(w - 1) = g(w) g(b) g(u.·-1) g(w) f (w- 1 ) 

{::} g(w) J(b) f (w-1) = g(w) g(b) J(w- 1 ) 

{::} (g(w) g(b) f(w-1 ))- 1 g(w) J(b) f(w- 1) = 

{::} f(w) g(b) - 1 g(w- 1) g(w) f(b) J (w- 1) = e 

{::} f(w) g(b)-1 J(b) f(w - 1) = e 

{::} f(w) g(b)-1 f(b) f(w - 1) =hE H(J(xo)) 

{::} g(b) - 1 J (b) = f (w)-1 hf(w) E H(J(x)) 

¢:} g(b) = J(b) 

¢:} g#(b) = 7 #(b) 

{=} b EC(]#,g#) .c · 

3 

0 

R emark 2.1.26 . If, in Proposition 2. 1. 25, x and x0 belong to the same H-Nielsen 

class, then hw = 1, and hence 

The following definition allow u to change from the covering pace approach to 

the fundamental group approach. 
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Definition 2.1.27. Let ~(!, g) be the set of all nonempty Nielsen classes off and 

g. Fix x0 E ~(f. g). For every x E ~(!, g) , define wand hw as in Definition 2.1. 23. 

Consider the injection 

[x] f----7 [hw] . 

We define 

and 

Corollary 2.1.28. Letx0 andx be coincidence points andw: Xo -t x be a path. Then 

Proof. Supposew# (C(J#,g#)x0 ) = C(J#,g#) x· Thus, C(J#,9#)x0 = w;/ (C(J#,g#)x)· 

By (1 ) of Proposition 2. 1.25 , C(J# 9#)x0 = C(J~w,g#)xo · By (2) of Proposition 

2.1.25 , we obtain that hw commutes with f# (C(J#, g# )x0 ) . 

Now assume that hw commutes with f# (C(J#, g#) x0 ) . Part (2) of Proposition 

2.1.25 implies that C(J# , 9#)xo = C(J~w, g#).co · By (1) of Proposition 2.1.25, we 

have C(J# ,g# )xo = wif/ (C(J#,·9#)x)· Thus, Wtf (C(J#, 9#)x0 ) = C(J#,g#)x· D 

In order to give applications of the main result, Theor m 3.3.16 of the next chapter, 

we need to impose the condition the number J be the same for all Nielsen class s that 

lie in the same H - Nielsen class. Proposition 2.1.31 below gives a sufficient condition 

for this to hold. Actually, Proposition 2.1.31 is a generalization of Lemma 1.2.6. 
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Lemma 2.1.29. Let x 0 and x be coincidence points and w : x0 ---+ x be a path. Then, 

Proof. For the first equality, 

f(w)- 1 hw f (w) 

f(w)- 1 g(w) f(w)-1 j (w) 

f (w)- 1 g(w) 

(g(w) - ) J (w) r
1 

Since (J(w))# is a homomorphism, we get that 

Similarly we can show that 

0 

Corollary 2.1.30. Let x 0 and x be coincidence points and w : xo ---+ x be a path. 

Then, hw commutes with f# ( C(J# , 9#)x0 ) if and only if hw-1 commutes with f # (C(J#, 9#)x). 

Proof. The proof depends on Corollary 2.1.28, where we saw that 

hw commutes with f # (C(J#, 9#)x0 ) <=> w# (C(.f#, 9#)x0 ) = C(J#, 9# )x 

<=> wj/ (C(J#, 9# )x) = C(J#, 9#)xo 

<=> hw-1 commutes with f# (C(J#, 9#)x) 0 
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Proposition 2.1.31. Let x0 and x be in the same H -Nielsen class, and w : x0 ----+ x be 

a path that establishes the H -Nielsen relation. If hw commutes with f# (C(J#, 9#)x0 ) 

then J[xo) = J[x)· 

Proof. By Corollary 2.1.2 , w#: C(J#,9#)x0 ~ C(J#,9#)x i ani amorphism. This 

isomorphism induces 

We show that w# is a well defined isomorphism. 

• It i a well defined injection: let a, bE j (C(J#, 9#)x0 ). Since w# (K(xo)) = K(x), 

we have 

a=b ¢::> a b-1 E K (xo) 

¢::> w#(ab- 1
) E K (x) 

¢::> w#(a)w#(b-1
) E K(x) 

¢::> w#(a) = w#(b) 

• w# is onto since w# is onto. 

Consequently, by Proposition 2.1.4 we get J[xo) = J[x )· 0 

In what follows, two subgroup of a give~1 group are aid to commute if each 

element in the former commute ' with each element of the latter. 

Proposition 2.1.32. Let x0 and x be in the same H -Nielsen class. Then, H(J(xo)) 

commutes with f# (C(J#, 9#)x0 ) if and only if H(J(x)) commutes with f # (C(J#, 9#)x ) 
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Proof. Let w : x0 ---+ x be a path that establi$hes the H-Nielsen relation. Consider 

the commutative diagram 

(2.1.5) 

We need only to show that iff# (C(J#, 9#)x0 ) commutes with H (J(xo)) then H (J(x)) 

commutes with J # (C(J#, g#)x) · Assume that f# (C(J#, 9#)x0 ) commutes with H(J (xo)). 

Leth E H(J(x)) and 0 E C(J#,g#)x· Then, 

h f(o) f (w )-1 f (w) h f (w) -l f(w) f (o) f (w )-1 f (w) 

f (wt 1 f (w) hf(w)- 1 f(wow - 1
) f (w) 

~ ...__,_, 
E H(f(xo) ) E f#(cu#.9#lxo) 

= f (w)- 1 f (w 0 w- 1
) (f (w) h f (wt 1

) f(w) 

f (o) h 

where w 6 w-1 E C(J#, g#)xo by Corollary 2.1 .28 . Thus, H(J(x)) commutes with 

The converse is done similarly. 0 

R em ark 2 .1.33. The previous lemma states the. property that H (J(x)) and f# ( C(J#, 9#)x) 

commute with each other, is independent of the choice of x within its H -Nielsen class. 
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Corollary 2.1.34. Let x0 belong to some H -Nielsen class p iP(f, 9). If H(J(x0 )) com

mutes with f # (C(J#, g#)x0 ) then JA = Ja for all Nielsen class sA, B ~ p iP(f9). 

In other words, the number JA depends only on the H -Nielsen cla s p iP(f,9). In thi 

case we write JA = J (J 9). 

Proof. Apply Pr:opo ition 2.1.31 and Lemma 2.1.32. 0 

Remark 2. 1.35. Since the number I depends only on the H-Niel en class, by Propo

sition 2. 1. 21, J only depends on the H -Nielsen class if and only if the number S = 5 
- IA -

does. In this caJe, we write JA = J (J 9) and SA = JA = S(J, 9), where A is any 

Nielsen class in p iP(! , g). 

2.2 Index, the Lefschetz number, and the Nielsen 

number. 

In this section , we recall the notion of index which is defined for map on orientable 

manifolds and describe its properties. After that , we define the i !sen coincidence 

number. The material on index can be found in [26]. 

Let M and be oriented connected closed manifold (compact manifolds without 

boundary) of th arne dimension n. Denote the diagonal ub et of M x M by t:::.(M) 

and the pair (M. x M, M x M- b.(M)) by (M" ); similarly for N. Let ZM E Hn(M) 

and ZN E Hn(N) be the respective fundamental classes [26], and UM E Hn(Mx) and 

UN E Hn(Nx) be the respective Thorn clas cs [26]. Let W be an open subset of 
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M, and f , g : W ---+ N be maps such that <P (J, g) is a compact sub et of W. By 

normality of M; there exists an open et V in M such that if>(!, g) ~ V ~ V ~ W . 

Consider the composition of the homomorphisms 

where exci ion is an isomorphism , (!,g) : W ---+ N x N is defined by (!, g)(x) = 

(J(x) , g(x)), and the isomorphism h sends a homology class a to the integer (UN, a) 

where (,) i the Kronecker index [26] . 

Definition 2.2.1. The integ r given by the image of the fundam ntal class ZM by the 

above campo ition of homomorphism i called the index of the pair (!,g) on W and 

is denoted by inriex(J, g; W) . 

The proof of t he following proposition is found in [26] : 

Proposition 2.2.2. Under the above hypothe es, the following properties of index 

hold: 

1. Definition 2. 2.1 is independent of the choice of the open set V . 

2. The index 1s local: If ~V is another open subset of M, and j, g : W ---+ N are 

map such that f = f and g = g on Wn W, and if if> (/, g) = if>(!, g) ~ Wn W, 

then 

ind x(/, g· 1~1 ) = index(!, g; W) . 

3. The index is additive: Let W = W1 U ... U Wk be a disjoint union of open sub ets 

of M such that if>(!, g) is a compact subset in W. Then, 
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4. If iP(J, g) = 0, then index(!, g; W) = 0. In particular, if index(!, g; W) ::/= 0, 

then iP(J, g)::/= 0. 

5. The index is homotopy invariant: Suppo~e ft. gt : W -----+ , 0 ~ t ~ 1 are 

homotopies. If U iP(Jt , gt; W) is a compact subset of W , then 
099 

D efin it ion 2.2 .3. Let W n iP (f, g) =A be a Nielsen clas off and g. We define the 

index off and g at A by 

index(!, g; A)= index(!, g; W) . 

Remark 2.2 .4. If M =Nand g = l w, then if!(!, g)= iP(f) is the set of the fixed 

points off in W , and the coincidence index agrees with the fixed point index off on 

W. Notice that the fixed point index i defined under more general conditions (see 

section 3, chapter 1, {18}). 

It is convenient to introduce here the concept of the Lef chetz number which 

will ne d later. Let M and N be connected closed oriented manifolds of the same 

dimension n, with fundamental classes ZM and ZN, respectively. Let f , g : M -----+ N 

be map . U ing the coefficient homomorphism Z ~ Q, we denote by ZM and ZN the 

image of ZM and ZN in t he rational homology. That is, Zfl,f = t:.(zM) E Hn(M, Q) 

and z = E. (zN) E Hn( , Q). Consider the following diagram: 

Hk(M, Q) 

D(M) l 
Hn-k(M, Q ) 

/. 
-----t Hk(N,Q ) 

l D (N) 

H"- k(N, Q) 
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where D(M) and D(N) are the corresponding Poincare duality isomorphisms. Define 

Definition 2.2.5. The Lefschetz number of the pair(!, g) is defined to be the rational 

number 
n 

L(f,g) = 2:)- l )ktr(Gk) 
k=O 

where tr(Gk) denotes the trace of the linear transformation Gk . 

Remark 2.2.6. If M = N and g =1M, then we write L(f,g) = L(f) and is called 

the Lefschetz fixed point number. 

The following theorem gives the basic properties of the Lefschetz number. The 

proof is found in [26]. 

Theorem 2.2.7. Under the hypotheses just before Definition 2.2.5, we have that: 

1. Lefschetz Coincidence Theorem: L(j, g) = index(!, g; M). Thus, if L(f, g) =/= 0 

then 'P(j, g) =/= 0. 

2. Lefschetz Fixed Point Theorem: If M = N, then L(f) =index(!; M). Thus, if 

L(f) =/= 0, then 'P(j) =/= 0. 

3. If L(f, g) f- 0, j is homotopic to f and g is homotopic tog, then j and g have 

a coincidence point. 

Now, we give our notion of a Nielsen number. 
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Definition 2.2 .8. {21, 22} Let f, g : M -----+ N be maps between topological spaces. A 

Nielsen number N(J, g) off and g is a number that has the following properties: 

1. The number N(J, g) is nonnegative integer. 

2. The number N(J, g) is homotopy invariant. That is, if(/, g) is a another pair in 

the categor-y which is homotopic to (J , g) then N(J, g) = N(/, g). (The homotopy 

usually is compatible with the categor-y under- consideration; for instance, the 

homotopy in the category of pair of spaces is a homotopy of pairs, .. . etc). 

3. N(J,g)::; !<I>(J,g)j . 

4. N(f,g) is computable in some situations. 

Remark 2.2.9. The number- N(J, g) = 0 is a Nielsen number based on Definition 

2.2.8. In practic~, we will not use a Nielsen number N(J,g) which is ever-ywhere zero. 

The concept of t he Nielsen number is usually related to the notion of essentiality. 

However, there are several definit ions of essentiality [2, 5, 18]. We focus in this chapter 

on the defini tion that is related to index. 

D efinition 2.2.10. Let (J, g) : M-----+ N be maps between oriented connected closed 

manifolds. A Nielsen class is said to be essential if it has a nonzero index. 

T he Nielsen number N(/, g) off and g is defined to be the number of essential 

classes. 

Remark 2.2.11 . The number N(J, g) is usuaLly caLled the coincidence Nielsen num

ber off and g. If M = N and g =1M, then N(j, g)= N(J) is the fixed point Nielsen 

number, see {3, 20}. 
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2.3 Computation of N(f, g) 

Let (!,g) : M ----+ N be maps between connected orientable closed manifolds of 

the same dimension. In this section we show that if the number J is the same 

for all ielsen classes that lie in the same H-Nielsen class, then N(f,g) is a linear 

combination of the Nielsen numbers of the lifts off and g. 

Let M and N be connected orientable closed manifolds of the same dimension 

n, and ( M, p) a:1d ( N, p) orientable regular coverings corresponding to the normal 

subgroups K ~ 71'1 ( M) and H ~ 1r1 ( N) of M and N respectively. We assume the 

coverings are finite, i.e., that [1r1(M) : K ] <eel and [1r1(N): H] < oo . Let (! ,g) : 

M ----+ N be a i-1a ir of maps which admits a pair of lifts (J, 9) : M ----+ N. We have 

the commutative diagram 

M J,g N ---t 

p! ! P (2.3 .1) 

M f,g N ---t 

Since we can homo top the pair (!,g) to a pair with finite set of coincidences (see 

Theorem 2 of [23]), without loss of generali ty, we may assume that i!>(J, g) is finite. 

By Lemma 2.1.19, each coincidence point of either(!, g) or (J, 9) is isolated. We refer 

to the proof of Corollary 5.7, [20] for the proof of the following Lemma. 

Lemma 2.3.1. /20} Let x E i!>(J, g) and x E p.:... 1(x) n i!>(J, 9). Then 

index(!, g; x) =index(!, g; x). 
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0 

The following proposition explains the relationship between the indices of the 

Nielsen classes in the total space and those in the base space. It generalizes Lemma 

1.2.5. 

Proposition 2.3.2. Let (f, g) : M----+ N be maps between the given orientable man

ifolds, and let A ~ ip(f, g) and A~ ip(J, g) be Nielsen classes such that p(A) = A. 

Then 

1. index(J,g;A) = JA ·index(f,g;A). 

2. index (J, g; p- 1 (A) n ip(j, g)) = IA · index(f, g; A). 

Proof. 1. Recall that 

A= Up-1(x)nA 
xEA 

is a disjoint union. Since both A and A consist of isolat d coincidence points, we get 

that 

index(J, g; A) 2::::: index(!, g; x) 
xEA 

= 2::::: 2::::: index(!, g; x) 
xEA xEp- l (x)nA 



2. We have that 

L L index(!, g; :r:) (by Lemma 2.3.1) 
xEA xEp-l(x)nA 

L JA · index(!, g; x) 
xE A 

JA · L index(!, g; x) 
xEA 

JA ·index(! , g; A ). 

SA 

p-1 (A) n if?(j,g) = U Ai 
i=l 

50 

where for each 1 s; i s; SA , Ai is a Nielsen class of the pair (J, 9) and p(Ai) = A. 

Thus, 

SA 

L index(J, g; Ai) 
i= l 

SA 

L JA · index(!, g; A) (by part (1)) 
i=l 

SA 

JA · L index(f,g; A) 
i=l 

JA · S.1 · index(!, g; A) 

IA ·index(! , g; A) . 

0 
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Corollary 2.3.3. Let A be a Nielsen class of(!, g) and A a Nielsen class of (J, 9) 

such that p(A) = A. Then, A is essential if and only· if A is essential. 

Proof. Apply part (1) of Proposition 2.3.2 noting that JA is a positive integer. 0 

Let (h, gi) , ... , (JnH(f,g), 9nH(f,g)) be the rLpresentatives of the H -Reidemeister 

classes of the pa ir (!,g), and Let r be the number of nonempty H -Niclsen clas es 

off and g. Thus, r :=:; RH(f,g). Without lose of generality, let (h ,9I), ... , (fr,gr) 

be the representatives of the H -Reidemeister dasses of th pair (f,g) corresponding 

to the nonempty H-Nielsen classes. On the other hand, let ~(!, g) be the set of the 

Nielsen classes of the corresponding pair, and let ~E(J, g) be the set of the essential 

Niel en classes of the corresponding pair. AI o, let p <P(J, 9) denote the set of ielsen 

- - -
classes in the H-Nielsen clas p<P(J,g), and p<Pe(f,9) th set of the ss ntial Nielsen 

classe that lie in the H- ielsen class p <P(J, 9) . We are ready now to prove our 

main theorem of this chapter which shows that N(J,g) is a linear combination of the 

Nielsen numbers of the lifts of (!, g). 

R emark 2.3.4. In the case where JA = Js for all Nielsen classes A and B that lie 

in the same H- Nielsen class p <P (J, 9), we write h = J (1, 9) and SA = S (J, 9), for 

every Nielsen classes A that lies in the H-Nielsen class p <P (J, 9) . 

Theorem 2.3.5 . Let M and N be connected closed orientable manifolds of the same 

dimension, and ( M, p) and ( N p) be finite r-egular coverings which correspond to the 

normal subgroups K ~ 1r1 ( M ) and H ~ 1r1 ( N) , respectively. Let f, g : M --+ N be 

- -maps for which there exist lifts f , g : M --+ N. respectively. Suppose the number J A 
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is the same for all Nielsen classes A off and g lying in the same H -Nielsen class. 

Then, 

(2.3.2) 

Proof. Define the function x : Z --+ { 0, 1} by 

if m = 0, 

otherwise . 

The number of the essential ielsen classes that lie in the H - Nielsen class p <I> (h, gi)can 

be given by 

L x (index(!, g; A)) = L x (index(!, g; A)) . 

Since JA = J8 for all Nielsen classes A,B ~ <P(h ,gi), then SA= Sa for such classes. 



So, we write SA= s(J:,gi) for every Nielsen class A~ pi!>(h,gi)· Thus, 

= 

Therefore, 

2: x(index(J:, gi;Ji )) 
AE<i>(.{; ,g, ) 

L SA 0 x(index(f. g; A)) (by Proposition 2.3.2) 

AE~{];;g,) 

L S(h,gi) 0 x(index(f,g;A)) 
AE~(f,;g,) 

S(h, gi) 0 L x(index(f , g; A)) 
AE~{]; ,gi) 

for each 1 ::; i :Sr. Now, we have 

as required. 
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(2.3.3) 

0 

R em ark 2.3.6. For an empty H -Nielsen class pi!>(f,g) , we have N(f,g) = 0 and 

IP i!> (f , 9) I = 0. If we define S(f, 9) = 1, Then , Equation 2.3.3 still holds for empty 

H - Nielsen classes. Hence, we can replace r in Equation 2. 3. 2 by RH (! , g) . 
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Corollary 2. 3. 7 . If in Theorem 2. 3. 5 we further have the condition "S (T, g) is equal 

to a constant number q for every lifting pair of(!, g)" Then, 

N(f , g) = ~ · t N(f,gi) . 
q i=l 

(2.3.4) 

2.4 Applications and Examples 

In this section, we give applications and examples for Theorem 2.3.5. We show that 

our theorem generalizes the fixed point case [15]. 

We re-write t he following results from [3 , 6, 7, 20] in the notation of this thesis. 

Lemma 2.4.1. {6, 7, 20} If M is a compact orientable manifold, A is an isolated fixed

point set for f : M----+ M, then index(!, 1M; A) =index(!; A) , where index(!; A ) is 

the fixed-point index of A. 

Theorem 2 .4.2 . {3} If M is a compact orientable manifold, then N(f, 1M) = N(J) 

for all f : M ----+ M. 

In Chapter 3, we can delete the condition of orientability in Theorem 2.4.2. The 

following result shows that Theorem 2.3.5 generalizes Theorem 1.2.13 to the Coinci-

dence Theory on orientable manifolds. 

Theorem 2.4.3 . Let M be a connected closed orientable manifold, (M, p) be a finite 

regular covering of M, and f : M ----+ M be a map for which there exists a lift 
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f : M -----+ M. Assume that all the Nielsen fixed point classes that lie in the same 

H -Nielsen class have the same number J. Then, 

where r is the number of nonempty H- Reidemeister classes off, and f i is a collection 

of one representative from each of these classes . 

- -
Proof. Apply T heorem 2.3.5 and Theorem 2.4.2 forM= N, (M,p) = (N,p), and 

0 

Next , we list some special cases of Theorem 2.3.5 . For the definitions of J iang 

space and of pseudo Jiang maps, we refer the reader to [11, 18]. The first theorem is 

a part of Theorem 2.7 of [11]. 

Theorem 2.4.4 . (11} Let f , g : M __, N be maps between connected closed orientable 

manifolds of the same dimension. If N is a Jiang space or if f and g are pseudo 

Jiang, then all nonempty Nielsen classes have the sam e index, and hence 

if L (f, g) = 0, 
N(!,g) ~ f 0 

l ICoker(g#- f#) l if L(f, g) "I 0 . 

Theorem 2 .4.5. Suppose (M , p) and (N, p) ere orientable coverings, N is a Jiang 

space or (h , gi) are pse·udo Jiang for all i = 1, . . . , r, where r is the number of non

empty H -Reidemeister classes, and all Nielsen classes that lie in the same H -Nielsen 

class of f and g have the same number J. Since the order of the lifts (h, gi) in 
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Equation 2. 3. 2 does not affect the value of N (! ,g), without loss of generality we can 

assume L(h, gi) =f 0 for each i = 1, . . . , t and 1 ::; t::; r, and L (h, gi) = 0 otherwise. 

Then, 

N(f,g) = t ICoker(gi#-- h#)l . 
i=l S(fi, 9i) 

Proof. Apply Theorems 2.3 .5 and 2.4.4. 0 

Some of the details in the following example will be illustrated in Section 4.2. 

Example 2.4.6. Let f , g : S1 --t S1 be maps defined by f (z) = z6 and g(z) = z3 

for every z E S1 . Let p, p : S 1 
--t S1 be the covering maps defined by p (z) = z2 

and p(z) = z3 . Both coverings are regular (n1 (S1, 1) is ab !ian) . The maps f and 

g admit lifts 1 and g on S1 defined by J(z) = z4
, and g(z) = z2 respectively, where 

z E S1 . We have the commutative diagram 

lP pl (2.4.1) 

We have K = 2Z and H = 3Z. Thus, A (Sl,p) = {ls~,- ls~} and A(Sl,p) 

{15 1,W,w2} where w is the third primit ive root. of unity. Let a= - 15 1 . Then, 

1 a(z) = J( -z) = z4 = J( z ) 

and 

ga(z) = g(-z) = z2 = g(z). 

That is [1,a] = [g,a] = l s1 and hence 6(J,g) = 1 (that is, 6(J ,g,a) = 1 for every 

a E A (M), anci (1,9) E Lift(J,g)). Notice that the H-Nielsen classes are equal 
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to the Nielsen classes. Moreover, since the fundamental group of S1 is ab !ian, all 

the numbers J are uniform. Pick z = 1 E if?(!, g) as an initial point. We have 

(g# - f #)(a) = 9#(a)- f#(a) = 3a- 6a = -3a for every a E n1(S1
, 1). Thus, 

(g#- f#)(a) = 0 if and only if a= 0. This means that C(f#, 9#) 1 = ]( er(g#- f#) = 0. 

Hence, C(f#,9#)1 = 0 ~ K(1). This implies that the number S equals 2 for all 

H -Nielsen classes, and (1,9), (J,w?f) , and (f,w2 ?f) are the representatives of the 

R idemeister cla:sses we seek (Theorem 4.2.16). Hence, 

Since the pairs (J, ?f), (J, w ?f) , and (J, w2 ?f) are homotopic, S1 is an orientable Jiang 

space, and L(J, [j) = 2 - 4 = - 2 =I 0, we have 

N(J,?f) = N(f,c.v?f) = N(j,w2 ?f) = R(J,?f) = jCoker(g# -f#) l = li
2
l = 2. 

Therefore, N(f,g) = ~ = 3. 

Of course, the result N (!,g) = 3 can be obtained more simply in the usual way 

(see [11]) . However, we felt it is important to illustrate the concepts being studied, 

and to at least once show that our methods give the same results as more conventional 

methods. 

More examples will be given in Chapter 4. In that Chapter, we talk about the 

enumeration, which leads in some cases to the classification, of the representatives of 

the Reidemeister classes needed to appear in Equation 2.3.2. 



Chapter 3 

Computation of N(f, g) for smooth 

manifolds 

In this chapter, we generalize Theorem 1.2.13 to Coincidences (Theorem 3.3.16) . 

Using the semi-index on smooth manifolds, new Nielsen numb rs NL(J, g) (the linear 

Nielsen number) and NED (J ,g) (the non-linear Nielsen number) on non-orientable 

manifolds are introduced. The number NL(J , g) satisfies NL(f, g) ::; N(J, g), and is 

easier to compute than N (!, g) being a linear combination of the lifts of (!,g) . The 

numbers J , I , and S associated to the H-Reidemeister classes are also used here to 

compute the coefficients in the formula given by Equation 3.4.6 which represents the 

main result in this chapter. The applications of Theorem 3.3.16 is limited to the 

situation where the numbers J are independent of certain choices. 

58 
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3.1 The semi-index and the N ielsen number. 

In thi ection, we recall the notion of the semi-index of a pair of maps defined on 

smooth clos d manifolds. We a! o describe its properties. After that, we define the 

Niel n number in terms of th emi-index. The main reference for emi-index can 

be found in [5] and [16] . 

D efinition 3.1.1. [5) Let j, g : M -- N be maps between smooth manifolds. The 

pair (J g) is called transverse if the maps are smooth, and for any coincidence point 

x E <P(J, g) the difference of the tangent maps Txf - Txg : TxM -- Tt(x)N is an 

epimorphism (or isomorphism when M and · have the same dimension) . 

The following proposit ion gives a characterization of tran versality, which is equiv

alent to Definition 3.1.1, when we con ider smooth closed manifolds [16] . 

Proposition 3.1.2. [16} Let f g : M -- N be maps between mooth closed mani

folds. The pair (!,g) is called transverse if the maps are mooth in a neighborhood 

ofiP(J,g) and the map M 3 x t-t (J(x),g(x)) EN x tran verse to the diagonal 

!J.(N) = {(x,x)lx EN} C N x N. D 

Example 3.1.3. [17] Let us show that the pair (fl,gt) 5 2 
-+ 5 2 defined by 

h (x, y, z) = ( -x: -y, z) and g1 = 1s2 is a tran::;verse pair. 

We have iP(J1,y1) = <P(J1) = {p,q} where p = (0,0, 1) is the north pole and 

q = (0, 0 - 1) is the south pol . We n ed to show that f 1 and g1 are transvers 

at p and q. We show the transversali ty at p. The transver ality at q is quite sim

ilar. The tangent plane Tp52 at pi given by Tp52 = {(x,y,O)Ix, y E R}. The 
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tangent map T-p 91 = 1rpS2 is the identity isomorphism on TpS2
, while the tan

gent map Tp h . :. TpS2 
------> TpS2 is defined by TP h = - 1rpS2. This implies that 

Tp !1 - Tp 91 = --2 · 1r s2 which is an isomorphism. Thus, !1 and 91 are transverse at 
p • 

p. 

Example 3.1.4 . [17] Let M be a non-orientab!e connected manifold of dimension 2. 

It may be regarded as a CW-complex with a unique 2-cell (see section 8 of chapter III 

of [1] and chapter 1 of [19]). Let h : M-+ S2 be a map which sends the 1-skeleton 

to a point y1 E S2 and the interior of the 2-cell diffeomorphically to S2 
- y1 . Let 

92 : M-+ S2 denote the constant map with 92(M) =Yo =I Y1· First, M and S2 have 

the same dimension 2. Now, let x 0 be the unique point in the interior of M such 

that h(xo) =Yo· Thus, <P(h , 92) = {xo} . To show transversality at xo , we have 92 

is constant, so Tx
0 

92 = 0 is the trivial homomorphism. Since h is diffeomorphism 

near xo, Tx
0 

h : Tx
0
M ------+ Ty0 S 2 is isomorphism. Thus the difference Tx0 h - Tx0 92 

is isomorphism. Therefore, the pair (h, 92) is a transverse pair. 

Example 3 .1.5. [17] Consider the maps h x h , 91 x 92 : S2 x M------+ S2 x S2
, where 

h and 91 are given in Example 3.1.3, and h and 92 are given in Example 3.1.4. We 

have <P (h x h , 91 x 92) = {(p ,xo), (q,xo)}. Let us prove the transversality of the 

maps h x h and 91 x 92 . The transversality of the maps h x h and 91 x 92 at (p , xo) 

follows from the following facts: 

• The tangent space of the product of two smooth manifolds is isomorphic to the 

external direct sum of the tangent spaces , 
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• (Tp h - Tp gi) x (Txo h - Tx0 g2) is an isomorphism because the product of iso

morphism is an isomorphism. 

The transversality at the other coincidence point is proved similarly. 

Proposition 3.1.6. (14) Any pair(!, g) of maps between smooth closed manifolds is 

homotopic to a transverse pair- (!', g') . 0 

We call the pair (!' , g') a transverse approximation to (!,g) . 

Let (!,g) : M ---? N be a transverse pair between smooth closed n-manifold . 

Then, <P(J, g) is finite and hence any coincidence point is isolated (s e [14]). Let 

x, y E <P(J, g) be in the same ielsen class, and let w : x -t y be a path that 

establishes the Nielsen relation . Let frx be an orientation of the vector space TxM 

and fry be the orientation of the vector space TyM obtained under the hift of frx along 

w. Let f3x be the orientation of the vector space Tf(x) N obtained as the image of the 

isomorphism Txf - Txg and {3y be the orientation of th v ctor space Tf(y) N obtained 

by the image of the isomorphi m Tyf- Tyg . Let /y be the orientation of the vector 

space Tf(y)N obtained by shifting the orientation f3x along f(w) (or equivalently g(w)) 

at f(y ). 
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D efinition 3 .1. 7. The point x is said to reduce toy if the orientations {Jy and "(y are 

opposite to each -other. Also, the path w is said to establish the reducibility between x 

andy. 

Remark 3.1.8. Notice that reducibility need not to be an equivalence relation. 

Example 3.1.9. [17] In Example 3.1.3, the points p and q lie in the same Nielsen 

class since S2 is simply connected. However, they do not reduce to each other because 

S2 is orientable. 

Example 3.1.10. [17] In Example 3.1.4, iJ!(/2 ,92) = {x0 }. Thus, the point Xo i the 

only Nielsen class of hand 92 . The coincidence point x0 is a self reducible coincidence 

point, that is it reduces to itself. In fact , there exists a smooth loop o in the non

orientable mani fo ld M that reverses orientation . Let x1 be a point on o and a be a 

smooth path from x0 to x 1 such that a - { x J} lies in the interior of the 2-cell of M. 

Then, the loop a o a - 1 is a loop at x0 that reverses orientation. Since S2 is orientable, 

the loop a o a-1 satisfies the conditions that make the point x0 s lf reducing. 

Example 3.1.11. [17] In this example we show that the points (p, xo) and (q, xo) 

given in Example 3.1.5 reduce to each other. Since S2 x S2 is simply connected , these 

points belong to the same Nielsen class. Since S2 x M is non-orientable and S 2 x S2 

is orientable, a similar argument to that in Example 3.1.10 leads to the reducibili ty 

of these two points to each other, and moreover to themselves. 
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Now, Let (f, g) be a transverse pair , and let A be a subset of if> (J ,g) . Let us 

present A as 

where Xi reduces to Y i for each i = 1, . .. , k but zi reduces to no Zj for each j =I i , 

where 1 ::::; i, j ::::; s. Such a presenta tion i callerl a decompo ition of A. The elements 

z1, .. . , Zs are called free in this decomposition of A. One may check that the number 

of free elements is the same for all decompo itions of A ([5]). 

Definition 3.1.12. The semi-index off and _q at A is defined to be the number of 

the free element. of A , and we write lindi(J, g; A) = s . 

Definition 3.1.13. Let W be an open subset of M . We define lindi(J g; W) by 

lindi(J , g; W ) = lindi(J , g; W n if> (! g)). 

Example 3.1.14. [17] From Example 3.1.9, let WP = S2
- q and Wq = S2

- p. Then 

WP and Wq are open neighborhoods of p and q respectively. Thu , lindl(h , g1; Wp) = 

lindi(Jl ,gl ; {p}) = 1, lindl(h ,gl ; Wq) = lindi(JI ,gl; {q} ) = 1, and lindi(JI ,gl ; {p,q}) = 

2. 

Example 3.1.15. [17] In Example 3.1.10, it follows that lindl(h , 92; {xo}) = 1. 
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Example 3.1.16. [17] Let WI = Wp X M and w2 = Wq X M, where Wp and Wq 

are the open neighborhoods of p and q r spectively given in Example 3.1.14. From 

Example 3.1.11 , we have that W1 and W2 a re open neighborhood of (p xo) and (q, xo) 

respectively. Th refore, Jindj (Jl X h gl X 92; wl) = Jindl Ut X h, gl X g2; { (p, Xo)}) = 1' 

Jindj(J1 xf2,gi x g2 ;W2) = Jindj(ft xf2,9t xg2; {(q,x0 )}) = 1, and JindJ(ft xf2,g1 x 

g2; {(p ,xo), (q,xo)}) = 0. 

Lemma 3.1.17. (5} Let (J0 ,g0 ) and (ft g1) be transverse pairs and let F,G: M x 

[0, 1] ---+ be homotopies between them. Let A0 ~ <'P(J0 , go) be a Nielsen class which 

corresponds to the Nielsen class A 1 ~ <'P(f1 , gt). Then, 

ote that, we do not require the homotopie in Lemma 3.1.17 to be transverse. 

Lemma 3.1.17, tl:Jerefore, allows us to extend the definition of coincidence emi-index 

to any arbitrar pair of maps. 

D efinition 3 .1.18. Let (f, g) : M ---+ N be a pair of maps between two closed 

smooth n-manifolds, and let A C <'P(f, g) be a Nielsen class. Let (j, g) be a transverse 

approximation of (f, g) and A C <P(j g) be the corresponding class of A. We define 

Jindj(J, g; A) = Jindj( j , g; A) 

The following proposition lists the properties of semi-index. We refer to [5] for 

proofs. 

Proposition 3.1.19. (5} Let (f , g) : M ---+ N be a pair of maps between two closed 

smooth n-manifolds. Then, 



1. Definition 3. 1.18 is independent of the tmnsveTse appr-oximation of (J, g). 

2. The semi-index is subadditive: if W1 W2 are open sub ets (or disjoint open 

subsets) of M such that Win if>(!, g) is compact fori= 1, 2, then 

3. lf W is open subset of M and lindl(f,g; W) =I= 0 then Cf>(f,g) n W =I= 0. 

4. The semi-index is homotopy invariant: Let (F, G) : M x [0, 1] -----+ N be a 

homotopy between pairs (!0 ,go) and (!1 ,gt). Let W ~ M x [0, 1] be an open 

subset such that Wnif>(F,G) is compact. Let Wt = {x E Ml(x t) E W}. Then, 

Remark 3.1.20. The semi-index is not local, since the reducibility depends on the 

behavior of the maps on all M. 

I 

Example 3.1.21. [5] To show that emi-ind x may not be trictly additive, let W1 

and W2 be the open subsets of S2 x M given in Example 3.1.16, and let f = !1 x h 

and g = g1 x g2. Then, 

.. 
Proposition 3.1.22. [5] If W1 n if>(!, g) = Ai and W2 n if>(!, g) = A2 are different 

ielsen classe , then 

0 
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Example 3 .1.23. [5] Let f : S" ----+ S 1 be the flip map (the standard map of degree 

-1) and g = ls1. Then, iJ?(f) = {p ,q} where p = (0,1) and q = (0,-1). Let 

WP = S 1 - q and Wq = S 1 - p. Then, WP and Wq are open neighborhoods of p and q 

respectively. Moreover, WP n <J>(f) = {p} and Wq n iJ?(f) = {q} are differ nt ielsen 

classes. Thu , 

lind I (f , g; S 1
) = lind I (f, g; {p , q}) 

2 = 1 + 1 = lindj(f, g; WP) + lindj(f,g; Wq) . 

The following example show that additivity might occur even if the necessary 

condition of Proposition 3.1.22 are not satisfied. 

Example 3.1.24 . [5] In Example 3.1.14, Wpnii?(fi,9I) = {p} and Wqnii?(fi ,gt) = 

{ q} are not iel8.en classes. However, 

lind I U1 91 · S 2
) = lind I (/J 91; {p, q}) 

2 = 1 + 1 = lir~di(fi,gi; WP) + lindi(!J,gl; Wq). 

ext, we give the relationship between the index and semi-index. 

Proposition 3.1.25. {16} Let (f,g) : M ----+ N be a pair of maps between two 

oriented closed smooth n-manifold . Then, 

1. If (! ,g) is a transverse pair, then index({ g;x) = ± 1 for every x E if?(!, g). 

2. If x,y E if?(!, g) are in the same Niel en class, then x reduc toy if and only 

if index(!, g; x) = -index(!, g; y). Thus, 

3. If A ~ if?(!, g) is a Niel en class then ji11dl (!, g; A) = I index(!, g; A) j. 
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ext, w introduce the notion of essential iel en classe , as well as the concept 

of the ielsen number in the context of semi index. 

D efinition 3.1.26. (5] Let (f g) : M - be maps between connected closed smooth 

manifolds. A Nielsen class is said to be essential if it has a nonzero emi-index. 

D efinition 3.1.27. (5] We define th emi-index Nielsen number N(f, g) of the pair 

(J, g) to be the number of the essential classes. 

Part (3) of Proposition 3.1.25 leads to the following corollary. 

Corollary 3.1.28. (5] For orientable manifold , the semi-index Niel en number is 

equal to the usual index Nielsen number. 

3.2 Defective and Non-defective Nielsen classes 

In this section, ''ve give the notion of defective cla ses along with several properties. 

An important relationship between the ielsen classes in the ba e space and in the 

total space of covering spaces, is given at the end of this section. Some of the results 

h re are found iu [5 15, 25]. Others are general ization or modifications of re ults in 

Section 1.2. 

Let M and .V be closed connected mooth manifolds of the arne dimension n, 

and let ( M , p) and ( N, p) be regular coverings corresponding to the normal subgroups 

K ~ n1 ( M) and H ~ n1 ( N) of M and N respectively. We assume the coverings are 

finite; that i , [i1 (M) : K ] < and [n1 (N) : H ] < oo. Let (f, g) : M - N be 
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a pair of maps for which there exists a pair of lifts (J, 9) : M -----+ N. Consider the 

commutative diagram 

M 
J;g 

-----+ 

P! !P (3.2. 1) 

M 
/,g 

-----+ N 

Lemma 3.2.1. [5} Let x, y E 'P(J, g) be such that x reduces toy. Then, there exi ts 

a bijection 'P: p- 1{x} n 'P(1,9)-----+ p- 1{y} n 'P(f,9J such that x reduces to cp(x) for 

every x E p-1 { :r} n 'P(j, 9). In other words, the set p-1 
{ x, y} n 'P(j, 9) splits into 

pairs reducing themselves. 

Remark 3.2.2. In the case where M and N aTe orientable manifolds, such x andy 

do not exist. 

Definition 3.2.3. (17} A Nielsen class is called defective if it contains a self reducible 

point. 

Example 3.2.4. The coincidence ielsen classes {x0 } given in Example 3.1.10, and 

{(p,x0 ),(q,x0 )} given in Example 3.1.11 are defective since each of them contains 

a self reducible coincidence point. However, t.he coincidence iel en cla s {p, q} in 

Example 3.1.9 is not defective since n ither of p nor q is self reducible point. In fact 

if either p or q i · self reducible, then p reduces to q, which contrad icts that p and q 

do not r duce to each other (see Lemma 3.2.9) . 



69 

The following Lemma is an obviou geometric characterization of self reducibility. 

Lemma 3.2.5. Let x E CI?(J, g) and (J, 9) E Lift(!, g) be such that p-1 (x)nCI?(J, 9) =I= 

0. Then the following are equivalent 

1. x reduces to itself . 

2. There exist points in p-1 ( x) n CI? (J, 9) not necessarily di tinct, which reduce to 

each other. 

3. p-1 (x) n <P (.f, 9) splits into pairs reducing each other if /p- 1 (x) n CI? (J, 9) / i even, 

or splits into pairs reducing each other together with a single self reducible point, 

if /p- 1(x) n CI?(J,9J/ is odd. 

Proof. Apply Lemma 3.2.1. 0 

The following lemma is an algebraic characterization of self reducibility. 

Lemma 3.2.6. {17] Let f , g : M ----+ N be tmnsverse maps, x E CI?(J, g) and OM 

and 0 N be the subgroups of rr1 ( M) and rr1 ( N) respectively, each of which consists of 

orientation-preserving elements. The following are equivalent 

1. x reduces to itself. 

3. There exists 1 E rr1(M,x) such that f( r) = g(r), and exactly one of the loops 

1 or f ( 1) is orientation-preserving. 
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0 

The characterization of self reducibility given in Lemma 3.2.6 i restricted to 

transverse pairs of maps. So, using Lemma 3.2.6 for any pairs of maps requires 

a transverse approximation (See Propo ition 3.1.6), which is in practice difficult to 

obtain. The following proposition, which generalizes Lemma 3.2.6 to any pair of 

maps, allows us, in most cases, to ignore the transversality condition. 

Proposition 3.2.7 . Let (! , g): M-----+ N be a pair of maps homotopic to a transverse 

pair (j, g) : M -~ N by the homotopy-pair (F, G) : M x [0, 1] -----+ N. Let x E if>(!, g) 

and i E <P(j, g) be F, G-related coincidence points. Then, the following are equivalent 

1. i reduces to itself. 

3. There exists 1 E 1r1(M, x) such that f(r) = g(r) and exactly one of the loops 1 

or f(r) is orientation-preserving. 

Proof. The equivalence between (2) and (3) is easily proved. We show the equivalence 

between (1) and (3). 

Suppose that i reduces to itself. By Lemma 3.2.6, there exits i' E 1r1(M,i) 

such that j#(i') = g#(i') (for implicity, we write f(i') and g(i') for j#(i') and g#(i') 

respectively) , and exactly on of the loops i' or /#(i') is orientation-pre erving. Since 

x and i are F, G-related, there exi ts a path u : x -----+ i uch that F(u) ""o G(u), 

i.e., F(u) is homotopic to G(u) rei. endpoints, where F(u), G(u) : [0, 1] -----+ N 

are paths defined respectively by F(u)(t) = F(u(t), t) and G(u)(t) = G(u(t), t) for 
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every t E [0, 1]. D fine t he path F(x) : [0, 1] -----+ N by F (x)(t) = F(x, t) for every 

t E [0, 1] (F(x), G(x), and G(i) are defin d similarly) . Then, the loop 1 = u-yu-1 at 

x e tabli hes the Nielsen relation between x and itself ince 

f(i) = §(i) ¢:} F(:t)-1 J(i) F(i) = G(x) - 1 g(i) G(i) 

¢:} J (i) = F (i) G(x)-1 g(i) G(i) F (x)- 1 

¢:} f(u ) f (i) f (ut 1 = f(u) F (i) G(x)-1 g(i) G(x) F(i)-1 f(u)- 1 

¢:} f (uiu-1
) = (f(u) F(x)) G(x)- 1 g(i) G(x) (F(i)-1 f(ut 1

) 

¢:} f (!) = F(u) G(i)-1 g(i) G(i) F(u)- 1 

¢:} !(!) = G(u) G(x)- 1 g(i) G(i) G(u)-1 

¢:} f (!) = g(u) g(i)g(u)- 1 

{::} f (!) = g ( u iu - 1
) = g (!) . 

ow suppo e, without lo s of generali ty, that i preserves orientation at i and 

j(-y) reserves orientation at }(x). We show that 1 preserve orientation at x, while 

f ('Y) reverses orientation at f(x). 

To see that the loop 1 preserves orientation at x, let a b an orientation at x which is 

tran lated by u to the orientation J.L at :t. If we write th last statement ymbolically 

u 
as a >-> J.L. Then 

That is, the loop 1 = uiu-1 pre erves orientation at x . 

Note also that the loop f ('Y) reverses the orientation at f(x) because f(i) = F(x) f(i) F(x)-1
, 
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and if T and E ar orientation at f ( x) and j ( x) respectively such that T ~) E then 

F (x) f("r) F(:fF 1 

T >--+ E >--+ -E >---+ -T . 

Hence, th path f ('Y) reverses orientation. Thus, if TJ and e are orientations at f (x) 
f (u) 

and f( x) respect ively uch that TJ >---+ e then 

f (u) f( "r) /(u)- 1 

T) >--+ {2 >---+ - {2 )---1 - T) . 

T hat i , the loop f (r ) = f(u "fu-1 ) rver e orientation at f (x) . 

Similarly, if "f reverses orientation at x so does 1 at x, and if }(i) preserves 

orientation at } (x), o does f (r) at f (x). 

Therefore (3) holds. 

For the converse, if (3) hold , the same argument as above hows that Lemma 

3.2.6 (3) holds. By that same lemma this implies that x reduce to it elf. 0 

R emark 3.2.8. Proposition 3.2. 7 allow u t.o generalize th definition of self re

ducibility (defective class) to include coincidence points {Nielsen classes} of any pair 

of maps. 

Lemma 3.2 .9. (17} If A is a def ctive class, then any two points in A reduce to each 

other. Consequently, 

lindl(f,g; A) ~ { 0 if I AI is even. 

1 if I A I is odd. 

where I A I denotes the cardinnlity of A. 
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We return to the context of Lemma 3.2.1. 

Theorem 3.2 .10. (25] Let A be a coincidence class of the pair (f 9), then p (A)= A 

is a coincidence class of the pair (!,g) and 

- - { . k (mod 2) 
lindi(J,g; A)= 

s.k 

if A i defective. 

if A is not defective. 

where s = lindl(f,g; A) , k = lj(C(f#, 9#))x0 1. and Xo EA. 0 

R emark 3.2.11 . The homotopy invariance of the number k in Theorem 3.2.10 fol

lows by Proposition 3.3.12 (where k = J there}. Lemma 3.2.9 and Theorem 3.2. 10 

give sufficient information for us to complete the analysis of this thesis. 

The following proposition is a implc, but n~eful , modification of Theorem 3.2.10. 

It will be useful in the proof of Proposition 3.2.13. 

Proposition 3.2.12. Let A be a coincidence class of the pair (f, 9) , then p (A) =A 

is a coincidence class of the pair (f , g) and 

{ 

1-(-l)JA . I' di(J . A) 
lindi(J,g; A)= 2 m ,g, 

h ·lindl(f,g;A) 

if A is defective, 

if A is not defective. 

The following proposition generalizes Lemma. 1.2.5 to semi-index Coincidence The-

ory. 
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Proposition 3.2.13. Let A ~ piP(J,9) be a Nielsen class of the pair f , g. Then, 

{ 
s 1-(- 1)JA I' dl (f . A) 

lindl(fg;p-1(A)niP(f,9))= A'. 
2 

. m ,g, 
f A .ltndi(f. g; A) 

if A i defective; 

otherwise. 

Proof. As in Proposition 2.1.21 , we have 

SA 

p-1(A) n iP(f, 9) = U A; , 
i=1 

where A; i a ielsen class of (f 9) such that p (A;) = A, for every i = 1 ... SA · 

Thus, 

SA 

lind I (J, g; p- 1 (A) n iP(f, 9) ) = L lindl (J, g; A;) . 
i=l 

If A is not d fective, t hen by Proposition 3.2.12 

SA 

lindl (Jg;p- 1(A)niP(f9J) = L JA · lindi(J,g;A) 
i=1 

= SA· h ·lindl (f ,g;A) 

f A· lind!(!, g; A) . 

If A is defective. by Proposition 3.2.12 we have 

1 -(-1)JA . 
= SA · 

2 
· lmdl (f,g;A) . 

0 
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Remark 3.2.1~. Notice that if SA = 1 in Proposition 3.2.13, then IA = JA, and in 

this case, Proposition 3. 2.12 and Proposition 3. 2. 13 coincide. 

The next proposition gives the complete relation hip betwe n the ielsen classes 

in the bas space and those in the total space. 

Proposition 3.2.15. Let A~ <P(J, g) be a Nielsen class. Then, 

1. Jf J A is odd and A is defective, then A is essential if and only if A is essential 

for every Nielsen class .4 ~ <P(J, 9) with p (A) =A. 

2. If JA is even and A is defective, then A is inessential, i.e., lindi(J,g; A)= 0 

for every A~ <P(J, 9) such that p (A) = A. 

3. Jf A is not defective, neither is A for a~LY A ~ <P(J, 9) for which p (A) = A. 

Hence, when A is not defective A is essential if and only if A i essential for 

every A~ <P(J, 9) with p (A) = A. 

Proof. The proof follows directly from Theorem 3.2.10 and Lemma 3.2.9. 0 

Corollary 3.2.16. Let (J, 9) be a lift of(!, g), A be a Niel en cla off and g such 

that JA is even, and let A be a Nielsen class of J and g uch that p (A) =A. Then, 

1. Jf A i essential, then A is not defective. 

2. A is essential if and only if A is essential and not defective. 
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3. If A is essential, then all the other classes in p;1 (A) are essential and not 

defective. 

Proof. (1) As ume that A is es ential. Since I AI is even, th n A cannot be defective. 

(2) Assume that A is essential. Since JA is even, by (2), Proposition 3.2.15 we get 

A i not defective. Thus, by (3) of Propo ·ition 3.2.15, we have A is essential. The 

converse follows immediately from part (3) of Proposition 3.2.15. 

(3) Assume that A is essential. By (2), A i es ential and not defective. By Proposition 

3.2.12, every clas in p;1 (A) i es ential and not defective. 0 

Remark 3.2.17. Note that, if A is a defective class for which JA is even, then A 

is not necessarily essential or inessential. This fact is illustrated in Examples 3. 2. 18 

and 3.2.20. 

Example 3.2. 18 . Let M be a nonorientable closed smooth manifold of dimen ion 

2, and let x : S2 -----+ RP2 be the quotient map, where RP2 i the real projec

t ive plane. For every (x,y,z) E S2
, we write x(x,y,z) = [(x,y,z)]. The maps 

Jo, ?fo, h, ?/1, fo, 9o: S2 -----+ S2, ]I , 9t : RP2 
----+ RP2

, and h, ?/2 , !2, 92: M-----+ S2 

ar defined as follows 

• fo(x, y, z) = h (x, y, z) = fo( x y, z) = ( -x, -y, z), for every (x y, z) E S2 

• ?fo ( x y, z) = ?it ( x, y, z) = 9o ( x, y, z) = ( x, y, z), for every ( x, y, z) E S2
, 

• f 1 ([(x, y , z)]) = [( -x, - y, z)], for every [( .r, y, z)] E RP2
, 

• 91 ([(x,y,z)]) = [(x,y,z)], for every [(x,y,z)] E RP2
, 
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• h maps the 1-skeleton to a point y 1 = (x1 , y1 , zl) E S2 and the int rior of the 

2-cell diffeomorphically to S2
- (xi , y1 , zi) · 

• ?h is t he constant map with g2(M) = Yo = (xo Yo , zo) =F (x i , YI, z,). 

• !2 = h, aud 

• 92 = 92· 

otice that f 1 i~ well-defined since it is an odd function. That is , it map ant ipodal 

point to antipodal points. We define the maps J g : S2 x S2 x M -----+ S2 x S2 x S2 

and f , 9 : S2 x RP2 x M -----+ S2 x RP2 x S 2 by J = Jo x ft x h, g = 9o x gi x g2, 

J = fo x h x h and 9 = 9o x 91 x 92 · We have the commutative diagram which 

represents a 2-fold covering 

S2 X S2 X ]\If 

1s2 X X• X 1M 1 

S2 X RP2 
X 111 

J.g 
-----+ 

J,g 
-----+ 

1 152 x x x 15 2 

5 2 X RP2 
X S2 

Let p = (0, 0, 1) and q = (0, 0, - 1), and let x0 E M be such that h(xo ) = g2 (xo) = Yo · 

Then, 

Sine S2 x S2 x 3 2 is simply connected , ip(J , g) consi t of a single ielsen class off 

and g. Moreover since [p] = [q], we have 

A:= 1s2 x X x 1M ( ip(J,g)) = {(p [p], xo) , (q , [p], xo)} 
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is a Nielsen class off and g. A similar argument to that of Example 3.1.11 shows 

t hat the point (~, [p], x 0 ) is self reducible. Hence, A is defective. On the other hand, 

J A = I (ls2 x X x 1M) -I ( (p, [p], xo)) n <P (J. 9) I = I { (p, p, xo), (p, q, xo)} I = 2 . 

Since IAI = 2, and A is defective, lindi(J, g; A) = 0. In other word , A i an inessential 

defective class for which JA is even. 

The following version of Propo it ion 3.2. 15 is useful. 

Corollary 3.2.19. Let A~ <P (J, g) be a Nielsen class. Then, 

• If A is defective, then 

- A is inessential (equivalently I AI is even) implies that A i inessential for 

every Nielsen class A~ <P (f, 9) such that p (A) = A. 

- A is essential (equivalently I AI is odd), and 

- -* J A is even implies that A is inessential for every Nielsen class A ~ 

<P(f, 9) such that p (A) = A. 

* J A is odd implies that A i e sential and defective for every Nielsen 

class A~ <P([, 9) uch that p (li) = A . 

• If A i not defective, neither i A for any A~ <P(f, 9) with p (A) = A. Hence, 

when A is not defective, A is essential tf and only if A is essential for every 

Nielsen cl~1.ss A~ <P(f, 9) such that p (A) = A . 
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Proof. The proof follows directly from Proposit ion 3.2.15. 0 

The following Example show that there xist essential defective Nielsen classe 

with even J. In other words, thi example hows that there exi t map f and 9 such 

that their nonlinear ielsen number NE0 (!,9), which count thee entia! defective 

iel en classes of f and g for which J i even , is not zero. This ca e only appears 

when nonorientable manifolds arc involved. 

Exa mple 3 .2.20. Let M = RP2 . It is well-known that RP2 is a nonorientable 

smooth manifold with finite cyclic fundamental group of ord r 2. Let ft 9t, h 
- -

92, !1 , h , 9t and 92 as given in Example 3.2.1 . Let J := ft x h, g := 9t x 92, 

f := ft x h, and 9 := 9t x 92 · Let X: S2 
---t RP2 be the quotient map. 

In what follows, the commutativity of diagrams (1) and (2) implies the commuta

tivity of diagram (3) . Also, all the covering spaces are regular inc the fundamental 

group of the involved manifold are abelian. Moreover, each of th coverings is fi-

nite where diagrams (1) , (2) and (3) repre ent 2- fold , 1-fold , and 2-fold covering, 

respectively. 

S2 ]; ,g) S2 RP2 12.92 S2 S2 X RP2 J,g 
S2 X S2 

---t ---t ---t 

x! (1) l x 1Rp2 ! (2) X! ':: X 1Rp2 ! (3) lxxx 

RP 2 !t ,g) 
RP2 RP 2 h .92 RP2 RP2 x RP 2 J,g RP2 X RP2 

---t ---t ---t 

Now, incc the pair (!1 , g1) is transverse at the points p and q, the commutativity 

of diagram ( 1) implies that the pair (!1 , 9!) is transver e at the point [p]. However 
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(f1 , gi) is not transverse at each point in <P(f1,gl) = {[p]} U {[(x,y,O)]Ix2 +y2 = 1} 

becau e ( - h, g1), the other Reidcmci ter repre entative, i not transverse. This is 

due to the fact t hat the set B := <P ( -h 91 ) = { (x y,O)I x2 +y2 = 1} is homeo

morphic to S1 which is a 1-manifold (the pa ·r (-h, 91) mu t be transver e on a 

discrete ubmanifold) . Transversality of (!2, g2 ) follows from commutativity of Dia

gram (2). Th commutativity of diagram (3) together with a similar argument as was 

given for the pair (h , g1 ) shows that (!,g) is t.ransverse only at the point ( [p], x0 ) . 

On the oth r hand let A= {(p,x0 ), (q,x0 )}, then A is a defectiv iclsen class of 

J and 9 (see Example 3.2.4) with lindi(J, 9· .4) = 0 (see Example 3.1.16). Thus 

A := (x x 1Rp2) (A) = { ([p] x0 )} con i ts of a single coincidence point, since p and 

q are antipodal and so they are identified to each other by X· This implie that 

lindl(f, g; A) = 1, so A is an essential class. Dy Lemma 3.2.5, the self reducibility 

of (p , x 0 ) implies the self reducibility of the point ([p], x 0 )) . That is, A i a defective 

ielsen clas . Smce JA = I (x x 1Rp2 )-1 ([p] xo ) n <P(h , 9t ) I = I { (p, xo) , (q , xo)} I = 2, 

we get that A L an es entia! defective cla with even J. 

Notice that the covering map x x 1Rp2 maps the nonessential Nielsen class A of 

the lift (J, 9), tu the essentia l Nielsen class A of (!,g). A we will sec in the next 

section, t his example implies that the nonlinear Niels n numb r of the pair (! , g) (sec 

Definit ion 3.3.1) so(!, g) is greater than or equal to 1. T hat is, soU g)-=/= 0. 
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3.3 Computation of N( f , g) . 

In this section w generalize Theorem 1.2.13 to Theorem 3.3.16. This gen ralization 

computes the coincidence Tielsen number (f. g) as a linear combination of the 

coincidenc Nielsen numbers of the lifts of t he pair (/,g ). It i convenient to t hink of 

there being three ielsen numbers . The fir t is the ordinary Nicl en number N (!,g). 

We call the second one the linear Nielsen number NL(f, g). It is defined using a linear 

combination of the Niel en number of the lifts of (J g). Th third one is called the 

non-Linear ielsen number Ns0 (J,g). It i the number of thee sential defective 

clas es of (! , g) with even J . In fact , (! ,g) = LU g) + so(!, g). The main 

difficulty in the computation of N(J g) appears while compu t ing so(J,g). As we 

will see, it cannot be computed in the same way we computed other iclsen numbers, 

since it is r lated to the inessential classes of the lifts of (f, g). However , we do give 

a procedure for the computation of Nso(J,g). 

Definition 3.3 .1. The number soU, g) is defined to be the number of es entia[ 

defective classec of f and g for which J i e'lien. It is called the nonlinear iel en 

number off and g. 

Example 3.3.2 . In Example 3.2.20, N so(J1 , 91) = 0. To see this , we have A (S2
) = 

{1s2 , - l s2 }. Mcreover, h o( - l s2) = - 1s2oh and g1 o( - 1s2) = - l s2og1 . This implies 

that th re are two Reidemeister repre ntatives of the pair (11 g1) , namely (h, l s2) 

and (h, - 152) . Moreover, <I> (ft , 152) = {p, q}. and <I>(h, - 152) i hom omorphic to 

s~ . 

ow, sine A := {p , q} is the unique Nielsen class of the pair (!1, g1) and p does 

not reduce to q, the unique Nielsen class A:= x(A) = {[p]} of (J1 ,g1) is not defective 
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by Lemma 3.2.5'. On t he other hand , B := <P(j; , -15 2) is a compact !-manifold , and 

the pair (j; , - 15 2) is not tran verse on it. We have 

index(]; . - 15 2; S2
) = L (};, -152) 

deg(-152) + (-1)2 deg(};) = - 1 + 1 = 0. 

T hus, the Niels8n class B is inessential. Hence, B = x(B) is eit her ines entia! or 

defective . Since this example consid rs the fixed point case, t he de~- ctive classes do 

not exist . So B is not defective and hence inessent ial. Therefore, N soUt g1) = 0. 

Example 3.3.3 . An argument analogou to that in Example 3.3.2 applied to the 

pair of map (h, g2) and their lifts given in Example 3.2.20 gives that the unique 

Nielsen class A := {x0 } of (f2 ,g2 ) is essential defective with JA = 1. Thi implies 

that Nso(h,g2) = 0. 

Before we move to the next example, we give a formula for the emi-index of the 

product maps f x g. We know that for the usual index, the index of the product 

map is the product of the their indices. This is not always true for emi-index when 

defective classes are considered. For instance, in Example 3.2.20 

lindi(JJ x f2,9J x g2;{p,q} x {xo}) = lindi(!I x f2,gt x g2;{(p,xo) , (q xo)}) 

Of-2=2·1 

lindi(J,gl; {p,q}) · lindl(f2g2·{xo}). 

However , our formula of the semi-index of product maps ext end the index formula 

when non d fective classes are involved. We start with the following Definition. 
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Definition 3.3.4. (5] Let E = E1 EB E2 be a real vector space of finite dimension, 

and let a1 = [ ( e1, ... , ek)] and a2 = [ ( e~ , ... , e~)] be orientations of E1 and E2 respec

tively. We define a 1 1\ a 2 to be the orientation of E determined by the ordered basi 

Definition 3.3.5 . (5] Let ¢ : E ---t E' be a linear transformation (i amorphism) 

between real vector spaces of finite dimen ion, and let a = [(e1, ... , n)] be an ori

entation of E 1 • Then the orientation of E2 determined by ¢ i defined by ¢(a) = 

[(¢(e1) ... , ¢( n)J] . 

Proposition 3.3.6. We have 

1. The operation 1\ is associative; that is, (o·1 1\ a2) 1\ a3 = a 1 1\ (a2 1\ a3) (5}. 

3. If ¢: E ---t E' is a linear transformation, and E = Et EB £2, then ¢(a1 1\ a2) = 

¢(a1) 1\ ¢(a2). 

Proof. The proof of (2) depends on the fact that if M is a real quare matrix and 

k is a real number, then det(k · M) = k11 
• dct(M). The proof of (3) is easy sine 

0 

Lemma 3.3.7. Let (!1, 91): M1 ---t N1 and (]2,92): M2 ---t N2 be transverse pairs 

of maps between smooth closed manifolds of the same dimension, and Let a, a1, a2 E 

!JJ(/1,91), and b. b1 b2 E 1J(]2 ,92). Then, with respect to (ft x ]2,91 x 92), we have 
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1. If a1 reduces to a2, then (a1 , b) reduces to (a2, b). 

2. Ifbt reduces to b2, then (a,b1) reduces to (a, b2 ). 

3. If a1 does not reduce to a2, and b1 does not reduce to b2, then ( a1 , b1) does not 

reduce to ( a2 , b2). 

Proof. 1. Suppose that a1 reduces to a2 . Let Cb be the constant loop at b, and"' be an 

orientation at b, and let a : a 1 r--t a2 be a path that establishes the reducibility between 

a1 and a2 . Let a be an orientation at a1 which is shifted by a to the orientation 7J 
u - -

at a2 (symbolically, a~ {3). Let gf; - Jf: (a) =a, and gfz - ff?({3 ) = {3. Since a1 

h (u) 0 - cb -
reduces to a2 , we get that a ~ - {3. n the other hand we have "f ~ "f. If we let 

b b (-) h (Cb) 
92• - f 2• "' = "(, then 'Y ~ 'Y · 

Now' the loop a X cb shifts the orientation a(\ ;:y at ( al ' b) to the orientation 7J (\ 1 at 

(a2 , b). Since 

and 

we have that 

Thus, (a 1 , b) reduces to (a2 , b). 

(g~o x 92•)(at ,b) - Ut• x h.)(at ,b) (a 1\ 1) 

(gf; - if: ) x (gt - ft) (a (\ 1) 

(gf~ - jf; ) (a) 1\ (gt - Jt) (1) = a 1\ 'Y, 
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2. Similar to (1). 

3. A sume that a1 does not reduce to a2, and b1 does not reduce to b2. Let 

t5: (at ,bt ) ~ (a2, b2) be a path uch that ft x h(t5) ~ 91 x 92(8) r l. ndpoints. We 

can write t5 = a1 x a2, where a1 = 7T1(t5) is a path in M1 from a1 to a2, and a2 = 1T2(o) 

is a path in M 2 from b1 to b2 (here 71'1 and 71'2 are the projections on the fi rst and 

the second coordinates, respectively) . Moreove;r , f;(a;) ~ 9·i(a;) rel. endpoints, for 

i = 1, 2. Let a be an orientation at (a1 b1). We can write a= a 1 1\ a2 where a 1 is an 

ori ntation at a 1 and a2 is an orientation at b1 . Assume that ai i hifted by ai to 

- {J - - -
the orientation ,6i, for i = 1, 2. Thus, a>---+ (3 = (31 1\ (32 . If we let 9~;- g.1 (a1 ) = a 1 , 

9~; - f f? ($!) = f3t , 9~~ - f;~ (a2) = a2, and 9~: - f;; (-g2) = (32 then, 

and 

ft(at} 
ow since a 1 does not reduce to a 2 , and b1 doe not reduce to b2 , a 1 >---+ (31 , and 

h(a2) it(at)xh(a2) 
0'2 >---+ (32 . Hence, 0'1 1\ 0'2 · >---+ (31 1\ fJ2' This means that any path between 

(a1 , b1 ) and (a2, b2) cannot establish the reducibil ity betwe n them. Therefore, (a1, b1) 

does not reduce to (a2 , b2). 0 

Corollary 3.3.8 . Let (!J ,9d : M1 ____... 1 and (h, 92): M2 ____... 2 be transver e 

pairs of maps between smooth closed manifolds of the same dimension, and let A and 

B be Nielsen classes of (!1, 91 ) and (h , 92), respectively. Then A x B is defective if 

and only if eithcT A or B is defective. 
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Proof. Assume that A x B is defective. Thus, t,here exists a coincidence point (a, b) 

in A x B that reduces to itself. By part (3) of Lemma 3.3.7, either a or b reduces to 

itself. That is, either A or B i defective. 

Now, as ume that either A or B i defective. Let us assume that A is defective and 

t hat a E A reduces to itself. Let b E B . By part (1) of Lemma 3.3.7, (a, b) E A x B 

reduces to its If. Therefore, A x B is defective. The case where B is defective is done 

similarly. 0 

The next propo ition giv s the emi-index formula for the product map . 

Proposition 3.3.9. Let (!1 , 91) : M1 - . 1 and (h, 92) : M2 - N2 be pairs of 

maps between smooth closed manifolds of the same dimension, and Let A and B be 

Nielsen classes ~f (h , 91) and (h, 92), respectively. Then 

lindi(J1 ,91;A) ·lindl (h ,92;B) , if neither A nor B 

1 _ ( - 1)lindl(f,,g, ;A)·Iindl (h.g2;B) 

2 

are defective, 

otherwise . 

(3.3. 1) 

Proof. Since the semi-index is homotopy invariant, without lose of generality assume 

that (!1 , 91 ) and (h, 92 ) are tran ver e pair . Firstly, up pose that both A and B are 

not defective. L t 

(3.3.2) 

and 

B = { b1 , b2, . .. , be; ?J1, . . . , Yk} (3.3 .3) 
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be decompo itions of A and B , r spectively. It is easy to see that Ax B is a Nielsen 

class for (1'1 x h, 91 x 92 ). Since the numbers s and t are even, Lemma 3.3.7 allow 

A x B to have the following decompo ition 

A xE {(a t, bl), (a1, b2) , . . . , (a1, bt) , (a2, b1 ), (a2, b2) , . .. , (a2, bt), ... , (a., b1), 

(as, b2), .. . , (as , bt ), (zt, 61) , (z1 , b2j , ... , (z1, bt), ... , (z,., b1) , (z,., b2) , ... , 

Thus, 

ext, uppose that either A or B i defective. By Corollary 3.3. A x B is defective. 

We give A and B the decompositions given in Equations 3.3.2 and 3.3.3, respectively. 

Without lose of generality, let us as ume that A is defective and that a 1 is self re

ducible. Then r = 0 orr = 1. We have the following cases 

1. Suppose lindi(J1 ,91 ; A)= 0. Then IAI is even. This implies that lAx Bl = IAI· IBI 

is even. Thus, 

. 1- 1 1 _ ( -1)lindi(/! ,gt ;A) ·Iindi(JM2;B) 

lmdl(!l x /2,91 x 92;A x B) = 0 = -
2

- = 
2 

2. Suppose lindl(!l , 91; A) = 1, and B is defective with lindl(h, 92; B) = 0. T his case 

is similar to the previous case. 



3. Suppose lindl(!l,gl;A) = 1, and B is defective with lindl(f2,g2;B) = 1. Thus, 

IAI and IBI are odd and hence lAx Bl i odd. Therefore, 

. 1 + 1 1 - (-1) lindi(J1 ,91 ;A)· Iindl(hg2;B) 
lmdi(J1 x f2,gl x g2;A x B )= 1 = -

2
- = 

2 

4. Suppose lind I (!1, g1; A) = 1, and B is not defect ive. We hav the following sub 

cases: 

• If lindl(f2,g2; B ) is even the fact that the difference IB I-Iindl(h g2; B) being 

alway even gives that IBI is ven. Hence. lA x B l i even. Thu , 

1 - 1 1 - (-1)1indl(fl,gl ;A)·Iindl(/2.g2;B) 

lindl(h x f2,g1 x g2;A x B) = 0 = -
2

- = 2 

• If lindl(f2 ,g2 ;B) is odd, the fact that the difference IB I-Iindl(f2, g2; B) being 

always even gives that IB I i odd. Hence, lA x B l is odd. Thu , 

1 + 1 1- (-1)lindl(f1,91 ;A) ·Iindl(h.g2;B) 
lindi(J1 x f2 ,g1 x g2;A x B )= 1 = -

2
- = 

2 

Consequently, we get that 

. 1 _ ( - 1) lindl(fl ,91 ;A)·Iindl(/2.92;8) 

lmdi(J1 x f2 , g1 x g2;A x B)= 
2 

0 

Now, we giv~ an example where Nso(J,g ) = 1. 

Example 3.3.10. In Example 3.2.20, we bowed that Nso(f, g)> 0. We show her 

that Nso(J, g) = 1. The. ielsen class B x {x0 } is ine sential. In fact , In Example 
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3.3.2, we have shown that B is ine sential. Thus, lindl(h, g1 ; B) = 0. Sine {x0 } is 

defective, by Proposition 3.3.9 

lindl(h x h 91 x 92; B x {xo}) 
1 _ (- l )lindl{ft,gi;B)·Iindl{h.g2;{xo}) 

2 

Thus { ([p], x0 ) } is the only essential defective such that J is ven. Therefore, N sn(J, g) = 

1. 

The following proposition gives a procedure for the computation of sv(J,g). 

Propo ition 3.3.11. The number- Nsv(J,g) can be computed using the following 

pmcedur-e: 

1. Fix a lift (f, 9) of(!, g) , then apply Remm·k 4.1. 9 to genemte the H -Reidemeister

classes. Pick a representative of each H- Reidemeister class of the form (f, {3 9) 

and {3 E A(N) (we will explain in Chapter 4 why we focus on such representa

tives). 

2. Choose a coincidence po'int Xo off and g, and use it to comput J = lj ( C(J #, 9# )x0 ) I· 

3. Select those representative of the H -Reidemeister classes for which there exist 

Nielsen classes of even J. 

4. Apply Lemma 3. 2. 5 or Proposition 3. 2. ?' to find the e ential defective classes 

within the H -Nielsen classes corresponding to the repre entative determined in 

the previous step. 
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5. For each of these representatives, find th e P.ssential defective Nielsen classes with 

even J that lie inside the corresponding H -Nielsen classes. 

6. Count the Nielsen classes in the la t tep for each of these certain H -Reidemeister 

cla e and denote the resulting number by ED. Then, add these ED's up to 

get the desired number NEo(J,g). 

ext, we show that NEo(f, g) is a ielsen number. We start by showing that the 

three number I , J and S are homotopy invariant. 

Proposition 3.3.12. The number J , I , and S are homotopy invariant. 

Proof. A ume (!,g) : M ----+ N is homotopic to a pair (/,g) : M ----+ N by the 

homotopy-pair (F,G): M x [0, 1] ----+ N. Let .r: E 1>(J,g) and x E 1>(j ,g) be F,C

related coincidence points. Let u: x----+ x be a path such that F(u) "'o G(u). 

(1) J is homotopy invariant: A in the proof of Proposition 3.2.7 the isomorphism 

restricts to the isomorphism 

Con ider the diagram 

C(f#,g#)x ~ C(j#,fl#)x 

j l l j 

j (C(J#,g#)x) ~ j(C(i#,fl#)x), 
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where fi# i th homomorphism induced by u# on the given groups. The diagram is 

commutative and hence fi# is an isomorphism. Therefore, by Proposition 2.1.4 we 

get that l [x) = l [:t). In other words, the number J is homotopy invariant. 

(2) I is homotopy invariant: Fir t , Let u recall 

• In regular coverings, f admits a lift if and only if j does. In other words, 

f#(K(x)) ~ H (f(x)) {:} /#( K(x)) ~ H(}(x)) 

for all x EM. 

• The i amorphism 
_ 1r1(M,x) 1r1(M,i) 
u# : K (x) -+ K (i) 

induces the isomorphism 

We claim that 

Let bE fi# ( C(J #• g#)x). Then, 

b = u#(a) and 1 #(a) = g#(a) :=} b = u#(a) and f#(a) = 9#(a) 

:=} bu#(a)-1 E K(i) and f(a) = g(a) 

:=} b u#(a)-1 = k E K(i) and f(a) = g(a) 

:=} k- 1 b = u#(a) and f(a) = hg(a) for som hE H (f(x)) 

:=} k- 1 b = u#(a) and F(x) }(a)F(x) - 1 = hg(a) 

:=} k- 1 b = u-1 av and }(a) = F(x)- 1 hg(a) F (x) 



=>a= uk-1 bu- 1 and /(a) = F(xt 1 hg(a) F(x) 

=> /(u k-1 bu-1 ) = F(x)- 1 hg(u k- 1 bu-1
) F (x) 

=> / (u) /(k- 1) /(b) /(u-1 ) = F(x)- 1 hg(u) g(k--1
) g(b) g(u-1

) F(x) 

=>/(b)= /(k) /(u-1
) F(x)-1 hg(u) g(k- 1

) g(b) g(u-1
) F(x) }(u) 
~ 

F(u)-1 F(u) 

=> }(b) = /(k) G(u)-1 hg(u) g(k)- 1 g(b) g(u)-1 G(u) 

=>/(b) = }(k) G(u)-1 h G(u) G(u)- 1 g(u) g(k)- 1 g(b) g(u)- 1 G(u) 
"---v-" "---v-" 

G(:t) - 1 G(i) 

=>/(b)= }(k) G(u)-1 h G(u) G(x)-1 g(kt1 G(x) G(x) - 1 g(b) G(x) ..._,__, 
EH(i(x)) EH(}(:t)) EH (j (x)) g(b) 

=>/(b) = g(b) 

=> 7 #(b) = 9#(6) 

=> b E C(} #,9#)x . 

Therefore, 

Similarly, 

which implie that 

Con equently, 

92 

Now, by Propo. ition 2.1.17, and the definition of the number I , we obtain I [xJ = I [:t], 

i.e., the number I is homotopy invariant. 
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(3) S is homotopy invariant: Since both J and I are homotopy invariant, Propo-

sition 2.1.21 gives that S is homotopy invariant. 0 

Corollary 3.3.13. The number NeoU g) is homotopy invariant. In particular, 

Neo(J, g) is a Nielsen number. 

Proof. Propo ition 3.2.7 states that "being defective" is homotopy invariant as is 

"being e sential' . Hence by Proposition 3.3.12 we get that eo(f,g) is homotopy 

invariant. Since it is also non-negative and u. lower bound of cf>(J, g) we get that 

NED (J, g) is a iel en number. 0 

ow we define the Linear Nielsen number N L(f, g) and how that it is indeed a 

Nielsen number. 

Definition 3.3.14. The Linear Nielsen number L(f, g) of the pair (J g) is defined 

to be 

NL(J,g) = N(J, g) - Neo(J,g). 

Proposition 3.3.15. The Linear Nielsen number NL(f, g) of a pair (J, g) is a Nielsen 

number off and g. 

Proof. Obviously, L(f, g) is a nonnegative integer. Since (J , g) is homotopy in

variant, by Corollary 3.3 .13 we obtain that NL(f , g) is homotopy invariant. Also, it 

is a lower bound of the set { I cf>(j, g) I I f .-..- J and g ""' f; }. 0 
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Again, let (h, gl), . .. , ( J RH(f,g), 9RH(f,g)) be representatives of the H -Reidemeister 

classe of the pai r (J, g), and Let r be the number of nonempty H- iclsen classes off 

- -
and g. Without lo e of generality, as ume that (J1,g1) ... , Ur,9r) are the represen-

tative of the H-Reidemeister classe of the pair (f,g) corresponding to the nonempty 

H-Niel en classes. We let p iP s(Jg) denote the set of essential classes in the H-

ielsen class p if! ( j , 9) . We are ready now to prove the main th orcm of this chapter 

which shows that N L( f , g) is a linear combination of the Niel en number of the lifts 

of (J , g) . 

Theorem 3.3.16. Let iVJ and. be connected closed smooth manifolds of the same 

dimension, ( M, p) and ( N, p) be finite regular coverings which correspond to normal 

subgroups J( ~ 1r1 ( M) and H ~ 1r1 ( N), respectively. Let f, g : M ~ N be maps 

- -for which there exist lifts f, g: M ~ N respectively. Suppose the number JA is the 

same for all Nielsen classes A off and g that lie in the same H -Nielsen class. Then, 

L(f g)= l\ (J,g) - (3.3.4) 

Proof. Without lose of generali ty, assume the pairs (h,9t), . .. , (ft,gt) have odd J 

and the pairs (];+1, 9tH), ... , (f,., g,.) have even J , where t ~ r. T hen, 

i=t i=r 
(! ,g)= 2::: lp<I>s(h,gi) I+ L IP<l>s(kgi) I · 

i=l i=t+ l 

T he assumption yield that the number S is the same for all iel en classes in the 

same H -Nielsen class. Hence, by (1) and (3) of Proposit ion 3.2.15, 
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for each i = 1, ... , t . Thus, 

for each i = 1 ... , t . 

On the other hand, for each i = t + 1, . .. , r , let ED(!;, g;) denote the number 

of essent ial def ctive classes in p<P(};,g;), and END(h,gi) denote the number of 

essent ial non-defective classe in p'P(h,g;). It follows from L mma 3.2.16 that 

or 

for i = t + 1, ... , r. Thus, 

Finally, 
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Since N(j, 9) = 0 for the repres ntatives corresponding to empty H- ielsen classes 

and inessential H-Nielsen classes, we get 

NL(f, g)= N(J, g) -

0 

Corollary 3.3. 17. Let M and N be connected closed smooth manifolds of the same 

dimension, ( M , fl) and ( N p) be finite regular coverings which correspond to normal 

subgroups ]( ~ 111 ( M) and H ~ 1r1 ( N), respectively. Let f , g : M ---t N be maps 

- -for which there exist lifts f, g : M ---t N respectively. Suppose the number J A is the 

same for all Nielsen classes A off and g that lie in the same H -Nielsen class. Then, 

Rn(J,g) N(J -) 
N(J, g)= NL(f, g) + Nso(J, g)= L "!.' + NsoU g) . 

i =l S(Ji, gi) 

Example 3.3.1R. From Example 3.3.2, !A = JA = 2. Thu , S(];, 9I) = SA = 1. 

Therefore, N(J1, gi) = NL(fi, g1) + N Eo(h , .IJI) = N(];, g1) + 0 = 1 + 0 = 1. This 

result agree with the fact that A i t he unique essential class of (!J,g 1). 

Example 3.3.19. From Example 3.3.3, !A= JA = 1. Hence, S (h,92) =SA= 1. 

Therefore, N(J'2,g2) = NL(h,g2) + Ngo(h,g:>.) = N(h,92) +0 = 1 +0 = 1. Again, 

this r ult agrees with the fact that A is the w1ique essential class of (h,g2) · 
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Example 3 .3.20. From Example 3.3.10, IA = JA = 2. Thus, S(J, 9) = SA = 1. 

Therefore, N(f,g) = NL(J,g) + NEo(f,g) = N(i,g) + 1 = 0 + 1 = 1. This result 

agree with th fact that A is the unique es entia! class of (J, g). 

R emark 3.3.21. Since all Nielsen numbers are strictly non-negative, it follows triv

ially from the dufinition that the the linear Nzelsen number N L(J, g) acts as a lower 

bound for N (J, g), that is N L(f, g) ::; N (J, g). The point of the remark of course is, 

as usual with lower bounds, that they are easie1· to compute. In fact since N L (J, g) is 

a linear combination of the Nielsen numbers of the lifts of the pair (J, g), the compu

tations are identical with those in Chapter 2. The comparative ase of computation of 

NL(J, g) over N(J, g) is emphasized by the fact. that we do not have a direct method 

for the computation of NED (f, g). In the next section we will, among other things, 

discuss ca es and give examples where N L(f, g) = N (J, g). 

3.4 Applications and More Examples of Theorem 

3.3.16 

This section contains some special cases of Theorem 3.3.16, and some examples. The 

result in th is ection agree with tho e in Section 2.4 when ori ntable manifolds are 

considered. 

Let M and N be clo ed connected mooth manifold of the am dimen ion n 

and let (M,p) and (N, p) be r gular coverings corresponding to the normal subgroups 

K ~ -rr1 ( M) and H ~ -rr1 ( N) of M and N re pectively. We as ume th coverings are 
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fi ni te, i.e. , [1r1(M) : K] < oo and [1r1(N) : H j < oo. Let (J,g) : M ----+ N be a 

pair of maps for which there cxi t a pair of lifts (J, 9) : M ----+ N. We have the 

commutative diagram 

M [_;g N 

Pl lP (3 .4.1) 

M !__g N 

The following result follows directly from Theorem 3.3.16. 

Corollary 3.4.1. Let M and N be connected closed smooth manifolds of the same 
- -

dimension, and f, g : M ----+ N be smooth maps that admit lifts f, g : M ----+ N 

respectively. Suppose the number J is the same for all Nielsen cla ses off and g that 

lie in the same H -Nielsen class. Suppose in add-ition that all es ential Nielsen classes 

corresponding to even J are non-defective. Th~n, 

RH(f,g) N(f- -) 
N(J, g) = NL(f, g)= 2::: _!,!_i . 

i=l S(h, 9i) 

Proof. If the essential Niel en class s corresponding to even J arc non-d fective, then 

NEo(J,g) = 0. The rest follow by applying Theorem 3.3.16. 0 

We begin with the fixed point case. The following propo ition shows that there 

do not exi t defective classes when con idering fixed points. 

Proposition 3. ~1 .2. Suppose M = N, (M, p) = (N, p), and g = 1M. Then, the fixed 

point classes off are non-defective. 
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Proof. Any defective class must have x reduce to itself by P roposition 3.2.7. So, 

let a be a path establishing this reducibility. Then, f (a ) "'O a. Thus, a and f(a) 

induce the same effect on orientations by Propo ition 3.2.7 and w cannot have th 

mismatch required by elf reducibili ty. 0 

The fo llowing Theorem gives the same formula for computing N(J) given in Theo

rem 1.2.13, and illustrates why Theorem 3.3.16 is a generalization of Theorem 1.2.13. 

Theorem 3.4. 3 . Suppose M = , (M, p) = (N, p), f = 1l\l, and all the Nielsen 

fixed point classes that lie in the same H- ielsen cla s have the same number J . 

Then, 

( ) ( ) ~ JC§;) (-) 
N g = NL g = L....t !(-·) N g; . 

i=l 9t 

where r i the numbeT of nonempty H -ReidemcisteT classes of g. 

Proof. By Proposition 3.4.2, we have so(1M,g) = 0. The rest follows by applying 

Propo it ion 2.1.21 and Theorem 3.3.16. 0 

Remark 3.4.4. In TheoTem 3.4.3, if we put g = 1M, then we get the formula 

where a; E A (M). It allows us to compute the fixed point Niel en number N(J) 

in terms of the coincidence Nielsen numbers of a fixed lift of f and the covering 

transformations, which are the lift of g = 1M. 
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Next, we consider the orientable case. The fo llowing lemma shows that there are 

no defective classes when the involved manifolds are orientable. 

Lemma 3.4.5. Let (f,g): M ~ be a pair- of maps between two oriented closed 

smooth n-manifolds. Then, ther-e do not exist defective Nielsen classes of (f, g). 

Pmof. Without lose of generality, assume (f, g) is a tran ver e pair. We give proof 

by contradiction. Accordingly, assume there exists a self reducible point x. By (2) of 

Proposition 3.1.25, index(f,g;x) = -index(J,g;x) . Hence index(J,g;x) = 0 which, 

under our assumptions, contradicts the fact that index(!, g; x) = ± 1 ( ee part (1) of 

Propo ition 3.1.25). 0 

Theor m 3.4.6 states that when orientable manifolds are involved , then Theorem 

2.3.5 and T heorem 3.3.16 coincide. 

Theorem 3.4 .6. Let(!, g) : M ~ N be a pair of maps betw en two oriented closed 

smooth n-manifolds. Suppose the number J is the same for all Nielsen classes that 

lie in the same H- Nielsen class. Then, 

RH(f,g) N(f- -) 
N(f ) = N (f ) = ) i,gi . 

, g L ,g ~ S(Ji,gi) 

Proof. Apply Corollary 3.4.1 and Lemma 3.4.5. 0 

ext, we con ider the case of a universal covering. 

Lemma 3 .4. 7. Assume that M and N are orientable manifold and that ( p) i 

universal. Therefore, tp(J, 9) is a single Nielsen class, and ther i only one J value. 

Let p ip(f, 9) be an essential Nielsen class of f and g. Then, p <P(.f, 9) is defective 

with even J if and only if L(J, 9) = 0. 
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Proof. Assume p 1>(1, g) is defective with even J. Hence, 1>(1 , g) is inessential and 

- - -lindi(J, g; if>(! ,?/;)= 0 which implies L(f, g) = 0. 

Conversely, a.ssume that L (1, g) = 0. Now, .P(j. g) is ines entia!. Hence, p 1>(1, g) 

is defective (otherwise, since pit>(!, g) i essential, we get 1>(1,9) is ential). ow, 

p if>(J, g) is defect ive and es ential, so it has an odd cardinality. If J(1, g) is odd, then 

I if> (J, g) I has odd cardinality from the equation 

given in Propos:tion 2.1.21. Hence, 1>(19) is essential and this i a contradiction. 

Therefore J(J, [f) must be even. 0 

Theorem 3 .4.8. If M and N are orientable 'll?.anifolds, and (M,p) and (N,p) are 

universal, then · 

r 

• NL(f g)= 2:.:: (};. gi) =the number of Reidemeister clas e of repre entatives 
·i=l 

that have non-zero Lefschetz number. 

• N so(!, g) = the number of Reidemeister d asses each with a representative (1, g) 

such that L(1, g) = 0 and p 1>(1, g) is essential. 

Proof. Since the coverings are universal, both f and g can be lift d. Moreover, the 

H - ielsen clas ·e are equal to' the Niels n class~s. So, there is no uniformity require

ment for the nutnber J. Let' (h, gi ) be a reprosentative of a Reid meist r class off 

and g for all i = 1, ... , r , where r i the numb ~r of non-empty Reidemeister classes. 
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Without lose of generality assume L(h, g;) f= 0 for each i = 1, ... , t and 1 :::; t :::; r, 

and L(h, g;) = 0 otherwise. 

(1) Fix i. Since (N,p) is universal , il>(h ,g;) is the only Nielsen class for]; and 

g; . The following are equivalent 

where L(h, g;) denotes the Lefschetz number of the pair (h, g;). Thus, N(h, g;) = 1 

for all i = 1, ... ,t. Moreover, p; 1 p il>(h ,g;) = il>(h,g;) which implies S(J;,g;) = 1, 

for each i = 1, .. . , r. Since the number S is the same (for all Nielsen classes lying in 

the same H-Nielsen class) , so is the number J. Thus, by Theorem 3.3.16 we have 

(2) We have 

Ji is even 

NED(J,g) = 2: ED(h,g; ) 
1::;i::;r 

Ji is even Ji is even 

2: ED(h,g;) + 2: ED(h,gi ). 
l::;i9 t+l ::;t::;!· 
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By Lemma 3.4.7, if Ji is even 

0 1:Si:St 

1 t+1:Si:Sr 

Therefore, Ne0 (f,g) equals to the numb r of Reidcmeister clas e each of which is 

of a repre entative (J, 9) such that L(J, 9) = 0 and p ~ (J, 9) is ess nt ial. 

0 

Corollary 3 .4.9 . Assume that M and N are orientable closed connected manifolds, 

and the coverings are orientable closed connected manifolds such that ( N, p) is uni

versal, then 

(!,g)= NL(f,g) = t, 

where t i given as in T heo!·em 3.4 .. 

Proof. Apply Lemma 3.4.5 and T heorem 3.4.8. 0 

We turn now to the case that the covering space is of J iang type. 

Lem ma 3 .4.10. Suppose that M and N are orientable covering . Assume N is a 

Jiang space or (f gi) is pseudo Jiang for all i = 1, . .. , r , where r i the number of 

non-empty H -Reidemeister classes. Then, L(J, 9) = 0 if and only if all the essential 

Nielsen classes in p ~ (J, 9) are defective with even J . 
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Proof. Assume L(1, 9) = 0. Thus, the class of f and g are inessential. Let A ~ 

p iP(1, 9) be an essential Nielsen classes. Hence, A is defective, and I AI is odd by 

Proposition 3.2.1.5 . If JA is odd, by Proposit ion 2.1.21, I AI is odd for every Nielsen 

class A of 1 and g such that p(A) = A and hence essential. This is a contradiction, 

so therefore, J A must be even . 

For the converse, assume that every essentiaJ Nielsen class A in p iP(1, 9) is defec

tive with even J . Consider the following two cases: 

Case 1: A is essential. Since JA is even and A is defective, we get from [2, Proposition 

3.2.15] t hat A is inessential for every i lsen class A of 1 and g such that p(A) =A. 

Case 2: A is inessential. It follows by Corollary 3.2.19 that A is inessential. 

Consequently, there are no essential Nielsen cbsses for f and g which again implies 

that L(f ,9) = 0. 0 

The general lines of the proof of the next t heorem are quite similar to t hose of 

Theorem 3.4.8. 

- -
Theorem 3.4.11. Suppose M and N are orientable manifolds, N is a Jiang space 

or (h, gi) is pse·udo Jiang for all i = 1, . . . , r , where r is the number of non-empty 

H -Reidemeister classes, and all Nielsen classes that lie in the same H -Nielsen class 

off and g have the same number J. Without lose of generality, assume L(h, gi) =/= 0 

for each i = 1, ... , t and 1 ::;: t ::;: r, and L(h,?j;) = 0 otherwise. Then, 
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and 

Proof. For implicity, we set Ji = J(h , g;). By our assumptions, we have L(h, gi) =f. 0 

if and only if N({; , gi) =f. 0 for all i = 1, ... , r. T hat is, either all the non-empty classe 

are simultaneously essential or simultaneously inessential. Thus, 

On the other hand, 

J i is even 

Nso(J,g) L ED(Ji g,) 
l ::;i$r 

Ji is even Ji is even 

L ED(h g.;) + L ED(h, gi) ' 

Let 1 ::; i::; t and suppose Ji is even. Since L(J,, gi) =f. 0, by Lemma 3.4.10 p i.P (h, gi) 

contains an essential non-defe tive class A. So, for every Niel en clas A ~ i.P (h, gi) 

such that p(A) = A, we have by Theorem 3.2. 12 that 

jindj(};, gi; A)= Ji · jindj(J, g; A) ~ Ji · 1 = Ji ~ 2 . 

However, by our assumptions, all the classes of (h, gi) have the same semi-index 

(in fact they have the same index, but on orient.able manifolds index and semi-index 

agr e). Thus, all of them are non-defective clas ·es since th y have a semi-index great r 

or equal to 2. Hence, every essential iel en ·lass B ~ p i.P(h , gi) is non-defective, 

because if there exists an essential defective Ni '·\sen class B and since Ji is even, th n 

jindj(};,g1 ; B)= 0 for every Tiel en class B ~ i.P (};,gi) uch that p(B) = B which 
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is a contradiction. Consequently, we have got if L(h , gi) "I 0 and Ji is even, then all 

the essential Nielsen classes in p <P (h, gi) arc non-defectiv . T hu , ED(h, gi) = 0 for 

all 1 :::; i:::; t and Ji is even. Therefore by Lemma 3.4.10, we have 

N (f ) = Ji ~ven ED (J-: - .) = ~ l<i>(J:, gi)l 
ED ,g ~ 1,g, ~ _ · 

t+ l ~i~r i=t+l S(Ji, gi) 

0 

Corollary 3.4 .12. Suppose M and N are orientable manifolds, N is a Jiang space 

or (h gi) is p eudo Jiang for all i = 1, . .. r, where r i the number of non-empty 

H -Reidemeister classes, and all Nielsen cla ses that lie in the ame H -Niel en class 

off and g have the same number J . Then, 

Proof. By T heorem 3.4.11 , 

(J, g)= L( f ,g) + 

0 

Corollary 3.4 .13. Suppose M, N, M and N are orientable smooth closed manifolds, 

N is a Jiang space or (h, gi) is pseudo Jiang for all i = 1, .. . , r, where r is the number 

of non-empty H ~Reidemeister classes, and all Nielsen classes that lie in the same H -

Nielsen class off and g have the same number J. Without lose of generality, assume 

L(h, gi) "I 0 for each i = 1, ... , t and 1 :::; t:::; r , and L(h, gi) = 0 otherwise. Then, 



107 

Proof. Apply Lemma 3.4.5 and Theorem 3.4.11 . 0 

T he following example illustrate orne of the results above. Since we are consider

ing the fixed point case, we could , of cour e use Theorem 3.4.3 however we preferred 

to usc Theorem 3.4. to illustrate the general method of computing the coincidence 

iel en number. For the definition of Len Spaces, see Example 2.43 of [12]. 

Example 3 .4.14 . Consider the commutative diagram 

lP 
L(5, 1) 

Pl 
~ L(5, 1) 

(3.4.2) 

where p represents the quotient map. otice thn.t the covering (53 , p) is universal. We 

have A (S3) ~ Z5 . Let w be the primitive fi ft h root of unity. Let f: L (5, 1) -----+ L(5 1) 

defined by f [rei 0 , pei "'] = [rei 60 , p i"'] . Then, f is a well-defined map which 

admits the lift 1 on S3 defined by 1 (r ei 0 p ei·p ) = (r ei 60 p icp). In fact, since 1 is 
an equivariant Z;;.-map (as we will sec soon), f is well-defined. 

-Since J(-1,0) = (1, 0) =!= wt(- 1,0) for any t = 0, 1, 2, 3, 4, we have f =I= 1r,(5,1) 

where 1r,(5 ,1) is ~he ident ity map on L(5 , 1). 

- L(J) = 1 - 6 = -5 =/= 0. 

-Let qt : S3 -----+ S 3 be the map d fined by qt(z 1 z2) = (wt z1 wt z2). Then, q( = 1s3. 

Thus, deg(qt) 5 = deg(qt) = deg(1s3) = 1. Hence, deg(qt) = 1. Thi implies that 

L(1, qt) = - 5 =f- 0, for any t = 0, 1, 2 , 3, 4. 

- The number J depends only on the H - Nielsen class, since each H - Nielsen class 
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consists of one 1 ielsen class (or the fundamenthl group of £ (5, 1) is abelian). 

-Since L(f , qt) i= 0 for each t, Theorem 3.4.8 implies that NED(!, 1£(5,1)) = 0 and 

4 

N(J) = L N(f,qt) = 5, 
t=O 

which is the same result that we obtain if we apply [Theorem 2.5, [5]], the usual Jiang 

space methods for the fixed point case, or Theorem 1.2.13 by J. Jezierski , [15]. 

- It can be shown that 

and 

'P (f ) = { (rwk, z) IrE R +, z E C , k = 0, 1, 2, 3, 4; and r2 + lzl2 = 1} 

Notice that ICI>(J, qt) I = 5, while I'P (f ) I = oo. 



Chapter 4 

Classification of H - Reidemeister 
classes, applications, and examples 

In this chapter, we give a method that in orne cases will clas ify the rcpre entatives 

of the Reidemei ter classes which appear in Equation 2.3.2 or Equation 3.3.4. We also 

give mor examples which illustrate the results of previous chapter . Unless otherwise 

stated, the work in this chapter does not require orientability for the considered 

spaces. 

4 .1 Classification of R eidemeister classes 

In this cction, we discuss to what extent we can characterize the representative lifting 

pairs in Equation 2.3.2 or Equation 3.3.4 in Theorem 3.3.16. 

Let M and N be path connected, lo ally path connected topological manifolds, 

(M,p) and ( p) be regular coverings corresponding to the normal ubgroups K ~ 

n 1 (M) and H ~ n1 (N) of finite index o M and N respectively. Let (!,g) : M --t N 
- - -

be a pair of maps for which there exists a pair of lifts (!, 9) : M --t N. 

- ....... - -
For the rest of this chapter , we write f o. for f o a, and (3 f for (3 o j , where 

109 
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a E A (M ) and fJ E A (N) . 

D efinit ion 4.1.1. Let a E A(M) and (3 E A (N) such that 1 a = (3 f. We write 

[1: a]= (3 . 

Proposition 4. 1.2. The notation [1: ] defines a homomorphism from A (M) to 

A (N). Moreover, [(3 1: a] = (3 · [1: a] · (3- 1 f or every a E A (M) and (3 E A (N ). 

Proof. We have that [1: a] is uniquely determined by 1 and a. That is, [1 : ] is 

well-defined. Clearly, [1 : l A(MJ] = l A (N) · Let cq , a2 E A (M ). Then, 

T hus, 

(J. a 1) · a 2 

([1: n1] · 1) · a2 

[1: n1J · (J. a2) 

= [1: at] · ([1 : a2] · f) 

([1 : at] · [1: a 2]) · 1. 

[1 : a1 · a2] = [1 : a J] · [1: a2] . 

ow, let a E A (M ) and (3 E A (N) . Then 

((3 · 1) · a = (3 · (J. a) 

(3 . ([1: o.J . 1) 
= (3 · [1 : a] · !3-1 

· (3 · 1 
= f3 · [1 : a] -(3- I . ((3 · f) . 
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Thus, 

[,6 ·1: a] = ,6 · [1 : a] · ,e-1 
. 

D 

Definition 4.1.3. We define the group G(1) to be the image of the homomorphism 

[1 : ] in A(N). That is, 

From now on, we fix a lift (1, g) of(!, g). The following proposition is the key to 

our classification. 

- -
Proposition 4.1.4. The lift (!,,61 ·g) is conjugate to (!,,62 ·g) if and only if there 

exists a E A(M) such that 

(4.1.1) 

Proof. Suppose that (1, ,61 ·g) is conjugate to (J, ,62 ·g) . Thus, there exist a E A(M) 

and 'Y E A(N) such that 

{ 
- -

"f·f ·a=f, 

'Y · ,61 · g · a = :J2 · g . 

Hence, 

(4.1.2) 



112 

The first line in Equation 4.1.2 implies that 

(4.1.3) 

Thus, the second line in Equation 4.1.2 along with Equation 4.1.3 implies that 

For the converse, we need to show that Equation 4.1.1 implies that (J,/32 ·g) is 

conjugate to (1, /31 · g) . Actually, 

[1 : a] · (J, fJ2 · 9) · a-1 = ( lT: a] · J. a-1
, [1: a] · fJ2 · g · a-1

) 

= ([1: a]· [1: a-1]· 1, [1: a] · fJ2 · [g: a-1
]· g) 

= (1, /31 . g) . 

Therefore, (1, fJ2 · g) is conjugate to (1, fJ1 · g). 0 

Remark 4.1.5. Proposition 4 .1.4 states that the set of the covering transformations 

[1: a]· /32 · [g : a-1], for a E A ( M), is closely related to the set of the lifts (1, fJ1 ·g) that 

lie in the Reidemeister class represented by (i.e., conjugate to) (1, fJ2g) and vise versa. 

As we will see, it is not necessarily that the two sets be in one to one correspondence 

with each other. So, our next job is to farther investigate the relationship between 

them. 

Definition 4 . 1.6. Let /3 E A ( N). For a fixed pair of lifts (1, g) off and g, the set 

G(1, /3 ·g) ~ A (N) is defined by 
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Lemma 4.1. 7. Let (31, (32 E A(N) . Then, (J, fJ1 · g) is conjugate to (J, fJ2 · g) if and 

only if G(J, (31 · g) n G(J, fJ2 ·g) =I 0. 

Proof. Suppose (J, (31 ·g) is conjugate to (J, (32 ·g). By Proposition 4.1.4, there exists 

o: E A (M) such that (31 = [J: o:] · (32 · [g : (t - 1]. Thus, (31 E G(j, (J2 · g) . Since 

(32 E G(j,(32 ·g) . we get that G(j,(31 ·g) n G(.f,(32 ·g) =I 0. 

Conversely, assume that G(J, (31 ·g) n G(j, (32 · g) -:J 0. This means that there exist 

o:1 , o:2 E A ( M) such that 

Hence, 

fJ1 = [J: 0:11
]' [J: 0:2]. fJ2 ' [g: 0:21

]. [g: o:I]. 

= [J: o:;1 0 o:2] · (32 0 [g: o:;-1 0 o:I]. 

[J: o:;1 . o:2J · !32 . [g : (o:;1. o:2r1J. 

By Proposition 4.1.4, (J, (31 · g) is conjugate to (J, {32 ·g). 0 

Definition 4.1.8. Let (!,g) be a lift of (!,g) r.md (3 E A(N). We define the subset 

6.((3 ) of Li ft(! , g) by 

6. (/3 ) = {1-L (f,(J ?i) = (f.Lf, f-L {J ?i) E Lift(f,g) Il-L E A(N)} 

Lemma 4.1.9. Fix a lift (J,?i) of(f,g) . Then 

1. 6. ((3) = 6. (~) if and only if (3 = ~ . Moreover, 6. ((3) n 6. (~) = 0 if and only if 

(3 =I~. 
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2. Lift(!, g) = U 6({3 ). Thus, the family b. = { 6 ({3)1 {3 E A (N)} is a parti

fJE A (N) 

tion of Lift(!, g). 

3. The set 6 ({3) is a subset of the conjugacy class which includes (J, {3 g). Fur-

thermore, each conjugacy class is a union of some of these 6 ({3) 's. 

4. IRH(f,g)l :S IA(N)I = [n1(N): H]. 

Proof. (1) Let .8, ~ E A (N). Then, 

6((3) = 6(~) => (j,{3g) E 6(~) 

The converse is trivial. 

=> (j ,{3 g) = (J.LJ, J.L~g) for some J.l E A(N). 

=> J = J.LJ and {3 g = J.l ~ g 

=> lfJ = J.l , and hc;nce {3 g = ~ g 

=> {3 =~. 

On the other hand, assume that 6({3) n 6(~) I= 0. Then, there exists J.l E A(N) 

such that (J.LJ, J.l {3 g) E 6 (~) . Hence, there exists (1, E A( N) such that (J.LJ, J.l {3 g) = 

((l,j,(l,~g). Thus, J.LJ = (l,j, and J.Lf3g = (l, ~ ?j. Hence, J.l = (1, and J.L f3 = (1, ~ . So, 

{3 = ~. 

It is obvious that if {3 = ~' then 6 ({3) n 6(~) I= 0. 

(2) Let (h , g1) be a lift of (!,g). Then, there exist {31, fJ2 E A(N) such that h = fJ1 1, 

and g1 = {32 g. Thus, 
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So, (ft,gi) E !J. (f3;1 /3z) ~ U !J.(/3). Since U !J. (/3) ~ Li ft(! , g) , we get that 

Lift(!, g) = U 6.((3 ). Moreover, by (1), the family { 6. (/3)1 (3 E A (N)} is a parti

{JEA~N) 

tion of Lift(!, g). 

(3) The proof follows from Definitions 1.1.11 and 4.1.8. 

(4) By (3) , IRu (f,g)l ~ 16.1 = IA(N)I = [n1(N): H]. D 

Remark 4.1.10. Fix a lift (i,g) of (J, g). Then any other lift (ft,g1 ) is conju

gate to (f, /3 g) for some (3 E A( N). If we define the action of A( M) on the set 

{ !J. (/3)1 /3 E A (N) } from the right by 

6. (/3) ·a= { .u(f,.Bg) a= ,u(f a ,(3ga) ~= (,uf a,,u(3ga)l ,u E A (N)} , 

then the union of the elements of each orbit, under this action, is a conjugacy class. 

D efinition 4.1.11. A set 0 ' ~ Li ft(J ,g) is said to be a set of Reidemeister repre-

sentatives, if each conjugacy class is represented exactly once in 0 ' . 

Proposition 4 .1.12. Let 0 = { (f, /3 . g) I /3 E A (N) } ' and let 0 ' be a subset of 0. 

Then, 0' is the set of Reidemeister representatives, which appear in Equation 2.3.2 

or in Equation c'f.3. 4, if and only if 0.' satisfie.., the following conditions: 

1. Any two d·istinct pairs in 0' are not conj~1gate. 
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2. If we add any (J, {3' · 9) ~ 0' from 0 to 0', then 0' U { (J, {3' · 9)} is not pairwise 

non conjv.gate; that is, (f, {3' · 9) mv.st be conjv.gate to some pair in 0'. 

Proof. Apply Lemma 4.1.9. 0 

So t hen, Proposition 4.1.12 implies t hat we can make a suitable choice of {3 E 

A (N), and use this choice to determine a set of Reiremeister representatives. 

Definition 4.1.13. From now on, we will assume that we have chosen an appropriate 

set of R eidemeister representatives. We v.se the the notation A~ A(N) to denote the 

corresponding choice of f3 's. 

The following theorem allows us to move one step closer to enumerate the H-

Reidemeister representatives. 

Theorem 4.1.14. We have 

.A(N) = U 8(1, f3 · 9). (4.1.4) 
/3EA 

where the v.nion is a disjoint v.nion. 

Proof. It is enough to show that A (N) ~ U G(J, {3 · 9). Let t E A(N) . By the 
/3Ell 

definition of A, (J, t · 9) belongs to the Reidemcister class represented by (J, {3 · 9) for 

some {3 E A. This implies that /3 = [J : a] · {3 · [.9: a-1
] for some a E A (M) . Thus, 

t E G(j,{J · 9). T herefore, /J E U G(J,fJ · 9). The union is disjoint by Lemma 4.1.7 
/3EA 

and the definition of A. 0 
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Corollary 4 .1. 15. The f ollowing equation holds 

IA(N)I = L IG(j,,6 . 9)1 . 
{3EA 

0 

We defin next another set G(J, ,6 · 9) which is related to G(J, ,6 · 9). The new set 

is al o related to L(J, ,6 · 9) as we shall see. Moreover, under certain conditions it is a 

subgroup of A (N). These facts will be useful in computing IAI in orne special case . 

Definition 4.1.16 . Let ,6 E A (-). The set G'(j,,6 · 9) is defined by 

G(J,,6 · 9) = { [J: a]· [,6 · g: a- 1]1 a E A(M) } = G(j,,6 · 9) · {3-1
. 

Lemma 4 .1.17: Let {3 E A (N). Then, 

IG(J, f3 · 9)1 = IG(f, f3 · 9)1. 

Proof. It is easy to see that the function G(l. ,6 · 9) ~ G(J ,6 · 9) defined by [J : 

a] · ,6 · [g: a-1] f-? [J : a] · {3 · [g: a-1] · {3-1 is bijective. 0 

Corollary 4.1.18. We have the following equation 

lA ( -)1 =I: IG(l,o · 9JI. (4.1.5) 
f3EA 

Proof. Apply Corollary 4.1.15 and Lemma 4. 1.17. 0 
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Remark 4 .1.19. The set G (1, {3 · 9) is not necessarily a subgroup of A ( N) since 

it is not always closed under the multiplication, nor does the inverse of an element 

necessarily belong to G (1, {3 · 9). How ever, thP identity 1 N always belongs to this set. 

The main result of this section is the following theorem. For the notation of 

1(1, 9) , where (J, 9) is a lift of(!, g) , see Remark 2. 1.14. 

Theorem 4.1.20. If L(1,!3 · 9) is a normal subgroup of A (M ), for each {3 E A(N), 

then 

IA (N)I = IA (M)I. L 1 
. 

(JEA I (J, {3. 9) 
( 4.1.6) 

A(M) - - _ _ 
Proof Definecp: _ -t G(J,[39) bycp((t ·L(J ,{3 ·9)) = [!: o}{J· [g: o:-1]·[3-1. 

L(J, {3 · 9) 

Let O: t , a2 E A (M) . Then 

0:1 · L(1, f3 · 9) = 0:2 · L(1, {3 · 9) ¢? o:j1 · 0:2 E L(1, {3 · 9) 

¢? [1: o:j1 . o:2] = {3 . [9 : o:j1 . o:2] . {3-1 

¢? [1 : o:j1] · [1: o:2] = !3 · [9: aj1] · [9 : o:2] · !3-1 

¢? [1 : o:2]· ,6 · [9: o:21] = [1 : a1] · !3 · [9: o:j1] 

¢? cp ( 0:1 . L(1, {3 . 9) ) = cp ( 0:2 . L(1, {3 . 9)) . 

Thus, cp is a well-defined injection. Since it is 9bvious that cp is onto, we get that cp 

is bijective. Hence, we get that 

IG(l, [3 9)1 = [A(M) : L(1,!3 · 9)] . 
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Since L(f, (3 · 9) is normal , we further have 

IG(f, 9ll = I~(M)I = IA (M)I . 
' IL(f, f3 · 9)1 I(f , f3 · 9) 

By Corollary 4.1.18, we get 

IA(N)I = IA (M)I . L -1 
. 

(3EA J(j ,{J. 9) 

0 

The next corollary gives conditions for a classification for the Reidemeister classes. 

It follows directly from Theorem 4.1.20. 

Corollary 4 . 1. ~H . Suppose L(f, (3 · 9) is a normal subgroup of A (M), for each (3 E 

A ( N), and I is the same for all H - Nielsen clctsses. Then, 

1. We have 

IAI = IA (.N)I · I. 
IA (M)I 

(4.1.7) 

2. if IA (N)I = IA(M)I, then IAI = I . 

3. if IA (N) I and IA (M) I are prime numbers and not equal, then I = IA(M) I and 

IAI = IA (lV)I . 

Next we give sufficient conditions under which L(f, (3 · 9) is a normal subgroup of 

A (M), for each (3 E A (N) . 

Proposition 4.-1.22. The following hold true 
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1. If G(9) commutes with G(J), then G(J, 9) is a subgroup of A(il). 

2. If G(9) ~ Z(A(N)) , then G(J,/3 · 9) = G(J,g;, for every /3 E A(N). However, 

If G(J) ~ Z(A(N)), then G(J, /3 · 9) is a subgroup which is conjugate to G(jg) 

by /3, for every /3 E A(N). 

3. If G(9) ~ Z(A(N)) or G(j) ~ Z(A(N)) , then L(J,/3 · 9) = L(J,9) , for every 

{3 E A(N), and L(J,g; is a normal subgroup of A(M). 

Proof. (1) Let a, a 1 , a 2 E A(M). Then, 

(rl: ad. [g: a1 1l). (rl: a2]· [g: a2 1l) = [!: al]· (r:q: a11
]· [!: a2J). [g: a21

] 

= [J: ad · (rf: a2J· [9: a11l) · [9: a21
] 

= (rl : a!] · [J: a2J). ([g: a1 1
]· [g: a2 1l) 

= (rl: al] · [J: a2J) . ([9: a21]· [g : a1 1l) 

= [J: a1 · a2] · [g: a21 
· a11

] 

= [J: a1 · a2] · [g: (a1 · cx2)-1
] E G(J, 9) . 

On the other hand, it is easy to see that [J: a] · [g: a-1] has [J: a-1
] · [g : a] E 

G(j, 9) as an inverse. 

(2) Apply Proposition 4.1.2 and Proposition 4.1.22. 

(3) Assume G(9) ~ Z(A(N)) or G(J) ~ Z(A(N)). It is easy to see that L(J, /3 · 9) = 

L(J, 9) for every {3 E A(N) . ow, Let a E L(l, 9). Hence, [J: a] = [g : a] E 
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G(J) n G(g) . Let A E A (M). We need to how that A· a · A- 1 E L(f,g). In fact, 

Therefor , A· a· A-1 E L(f, g). 

[f: A]· [f : a]· [f : A- 1
] 

[f: A] · [f : A-1
]· [f: a] 

= [f:a] 

= [g: a] 

[g : A] · [g : A - 1
] · [g : a] 

= [g : A] · [g : a] · [g : A - 1
] 

[g : A · a · A - 1
] 

0 

4 .2 The case where JA(M)J and JA(N)J are prime 

numbers 

~ -
In this s ction, unless otherwise stated, we study the case whcr IA(M)I and IA(N)I 

are prime numbers. This gives a simpler version of formula 3.4.6. This section 

generalizes [5] . Its flow is similar to that of [5], however we u e the notion of o(f, g) 

rather than th notion of even and odd lifts introduced in [5]. AI o, we generalize 

[Theorem 2.5, [5]] by giving sufficient and necessary condition for our desired formula 

to hold. 

Let M and N be path connected, locally path connected topological paces, (M,p) 

and ( N, p) b regular coverings corr sponding to the normal subgroups K ~ n 1 ( M) 

and H ~ n 1 (N) of M and N re pectively. We assume the coverings are finite, and 
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unless otherwise stated that IA (M)I and IA (N)I are prime numbers. Let (f, g) : 

M ---t N be a pair of maps for which there exists a pair of lifts (J, 9) : M ---t N. 

- -Recall from Definition 2.1.10 if a E A (M), then o(f, 9; a) = 1 provided that 

[J : a] = [9: a]; otherwise, o(J, 9; a)= 0. 

In what follows, we list some geometric and algebraic characterizations for f and 

g to satisfy that o(J,g) = 1. The next lemma does not require that A(M) and A (N) 

have a prime order or even are cyclic. 

Lemma 4 .2.1. Let a E A (M) . Ijo(J,9;a) = 1, then o(l,9;a) = 1 for all a E (a), 

where (a) is the cyclic subgroup of A (M) generated by a . 

Proof. By Proposition 4.1.2, we have [J : ak] = [J: a]k for every a E A (M) and 

every integer k. Hence, 

o(J,g;a) = 1 {:::} [J: a] = [g : a] 

{:::} [J: a]k = [9: a]k 

{:::} [J: ak] = [9: ak] 

{:::} o(J,9;ak)= 1. 

0 

Proposition 4.2.2. Let a E A (M). Then, 

1. We have o(J,9;a) = 1 if and only ifo(J,9;a) = 1 for every a E A (M) . 
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2. If (Jo, g0 ) is another lifting pair of(!, g), then [Jo : a:] = [J: a:] and b (J, g; a:) = 1 

if and only if 8(fo , 9o ; a:) = 1. 

Proof. (1) Since A (M) has a prime order , we have A (M) = (a:) = (a). By Lemma 

4.2.1 , part (1) holds. 

(2) Assume b(j, g; o:) = 1 and [J : a:] [g : a:] = {3 for orne {3 E A (N). Let 

(Jo ,g0 ) be another lift of (!,g). Since A (N) has a prime order and by Remark 4.1.9 

there exist integer k and l such that Jo = (3k J and g0 = {31 g. Hen e, 

- k '":' k - k+ I - k - -
f o a: = {3 1 a: = {3 {3 f = {3 f = {3 {3 f = f3 fo · 

Similarly, we get 9o a: = {3 9o . Thu , [Jo : a:] = [go : a:] = {3 . Therefore, 8 (Jo 9o; a:) = 1. 

The converse can be proved in a similar way, since there are no restrictions on the 

lifting pairs involved. D 

Propo ition 4.2.2 emphasizes that when IA (M)I and lA ( F) I are prime numbers, 

the value of [1: a:] is independent of the selected lift 1 off and the value of 8(1, g; o:) 

is independent of the chosen lift (1, 9) of(!, g) or a: E IA (M) 1. Equivalently, the valu s 

of [1 : a:] and 8(1, g; o:) depend only on f and g. So, Propo ition 4.2.2 allows us to 

generalize Definition 2.1.10 and Notation 4.1. 1 as follows. 

D efinit ion 4 .2.3. Define [f : a:] by [f : a:] = [J : a:], and b(f, g) by b(f g) = 

8 (J, g; a:), where 1 and g are any lifts of f and g re pectively, and a: E A ( M) . 

The next proposition gives a classification of the Reidemeister classes for t he case 

wher IA (M)I and IA (N)I are prime numbers. 
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Proposition 4.2.4. Let f3 E A(N)- {1,v }. Then, there exist exactly IA(N)I"(f,g) 

H -Reidemeister classes each of which can be represented by a pair of lifts off and g 

of the form (J, {Jig) where 0 ~ i ~ IA(N)I"(f,g)- 1. 

Proof. By Remark 4.1.9, the action of A (M) on the sets Cl({Ji), where 0 ~ i ~ 

IA(N)I - 1, places t hem in their conjugacy classes. The number of these classes de

pends on the value of 8(!, g). So, we differentiate between two cases. 

In the first case, we assume that 8(!, g) = 1. Let a E A (M), 0 ~ i ~ IA(N)I - 1, 

and (t J, t {Jig) E Cl ({Ji) . Then, 

((tJ) ·a,(tf3ig) ·a) = (t(Ja),tf3i(ga) ) 

(t [J: a] J, t f3i [g: a] g) = (t [J: a] J, t f3i [J : a] 9) 
( [J: a] t J, [J: a] t {Jig) = [J: a] t (J, {Jig) E Cl({Ji) . 

That is, the action of A(M) on Cl({Ji) carries it back on to itself, i.e., the elements of 

tl({Ji) are conjugate only to themselves for each respective i. Hence, in this case, we 

have IA(N)I conj ugacy classes (namely 6. (f3i), where 0 ~ i ~ IA(N)I- 1). That is, 

t he number of H-Reidemeister classes is IA(N)I, and each H-Reidemeister class has 

(J , {Jig) as a representative for some i. 

In the second case, let us assume 8(!, g) = 0. Let a E A(M) , 0 ~ i ~ IA (N)I - 1, 



and (J J, J (Jig) E 6 ({3;) . Suppose [g : a] = [J : a]t where t > 1. Then, 

( (J J) ·a, (J {Jig) · a ) = (J (J a), J f3t§ a)) 

(J[J : a]J,Jf3i [g : aJg) = (J [J : a] J,Jf3i[J: a]tg) 

(J [J : a] J, J [J: ar {Jig) 

J [J: a] (J, [J: a]t-1 {Jig) E 6 ([J : a r -1 {3i) . 
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That is, the action of a maps 6 ((3i) bijectively onto 6 ([! : a]t-1 {3i), i.e., the elements 

of 6 ((3i) and 6 ([! : a] t- 1 (3i) are conjugate to each other. Since [! : a]t- 1 is fixed 

and A(N) is cyclic , if i runs over the set { 0, 1, ... , IA(N) I - 1} , t hen each of the 

IA (N)i-1 

elements of U 6 ({3;) is conjugate to the ot hers. T hus, in t his case we have only 
i=O 

IA (N)I-1 

one conjugacy class (namely U6({3i)), and hence one H-Reidemeister class, which 
i=O 

of course can be represented by (J, 9). 0 

Next, we present many characterizations for which a pair of maps (!,g) satisfies 

the condit ion 8(J, g) = 1. Afterward, we collect our results in Corollary 4.2. 10. 

For each x E (p (j, g), we have the following diagram: 
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C(J#, 9#)x " n1(M,x) 
9#fi/ 

n 1 (N, J(x)) 
j n1(N, f (x)) 

----7 ----7 ----7 

H(J(x)) 

1 eM (1) 1 eM (2) t e N (3) l 1 

eM (C(J#, 9#)x) 
"i 

H1 (M) 
9r7# 

H1 (N) 
j n1(N, f (x)) (4.2.1) 

----7 ----7 ----7 

H(J(x)) 

'!9-1 l ~ 

A (N) 

where 

• L and I are the inclusion homomorphism on the corresponding groups. 

• eM and eN are the abelianizations on the corresponding groups. 

• 1 in diagram 4.2 .1 denote the identity. 

• The function 9# Jjj 1 is defined by 9# f#1 (a) = 9#(a) f #(a) - 1 for every a E 

n 1 (M, x) . 

The next lemma does not require that IA(M)I and IA (N)I be prime. 

Lem ma 4.2 .5 . If A (N) is abelian, then Diagram 4.2. 1 is commutative with K er] = 

e N(H(J(x))) and eM (C(J#, 9#)x) ~ K er(g#- f #). 
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Proof. Let FM and FN be the commutator subgroups of 11"1 (M, x) and n1 (N, f( x)) 

respectively. 

• Commutativity of box (1): it i obvious that I is well-defined. Let a E C(J#, 9#)x· 

Then, 

• Commutativity of box (2): fir t 1 # is defined such that the diagram 

(4.2.2) 

is commutative. What we need to show is that 1 # is well defined, which i true since 

f #(FM) ~ FN . The arne is true for g#. Therefore, the homomorphism g# - 7 # is 

well defined . ow, Let a E n 1 (M, x). Then, 

eN 0 9# f # 1(a) = eN (g#(a) f#(a)-l) 

eN (g#(a)) +eN (J#(a)- l) 

= eN (g#(a))- eN (!#(a)) 

= g# (eM(a))- 7 # (eAI(a)) 

g# -1 # (e M(a)) 

= g# -1 # o eM(a) . 

• Commutativity of box (3): we have] is defined such that box (3) commutes. To 
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show it is well-defined, it is sufficient to notice that since rrt;{;~)) is abelian, 

FN ~ H(J(x)) . 

• Let bE 7Tt( , f(x)). Then 

8 N (b) E K er (J) ¢:> J ( 8 N (b)) = 0 

¢:> j(b) = 0 

¢:> bE H (J(x) ) 

<=> 8 N(&) E 8 N(H (J(x))) . 

• Let a E C(J#, g#)x · Then, 

f #(a) = 9#(a) => 8 N(J#(a)) = 8 N(J#(a)) 

=> 1 #(8 M(a)) = g#(8M(a)) 

=> g#(8 M(a)) -1 #(8u(a)) = 0 

=> g# -1 #(8M(a)) = 0 

=> 8 M (a) E T< er (g # - 1 #) . 

Therefore, 

D 

The first characterization, for which a pa:r (!,g) sati fies that 8(!, g) = 1, is 

geometric. The condition characterizes the fact 8(!, g) = 1 through the action of 

A (M) on the coincidence set of every pair of lifts (J,g) E Lift(!, g). 
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Proposit ion 4 .2.6. Ass·ume IA(M )I and IA (N) I are prime numbers. The following 

are equivalent: 

1. o(f,g) = 1. 

2. For every (J, 9) E Li ft (f, g), x E <P (J, 9), and a E A (M), we have a(x) E 

<P (J, 9). 

3. There exist (1, 9) E Li f t(!, g), x E <P(j, 9), and a E A (M) such that a(x) E 

<P(i, 9) . 

Proof. • (1) => (2) : Assume o(.f , g) = 1. Let (J, 9) E Li f t(!, g) such that <P(j, 9) =/= 

- -¢, x E <P(f , 9), and a E A (M) . Then, 

J(a(x)) = J a(x) = [J: a] J(x) = [9: a] 9(x) = 9 a(x) = 9(a(x)) . 

That is, a(x) E <t> (f, 9) . 

• (2) => (3) : Trivial. 

• (3) => (1) : Suppose there exist (J, 9) E Lift(!, g), x E <P(J, 9), and a E A (M) 

such that a(x) E <P(j, 9) . Then, 

[J : a] J(x) = J a(x) = J(a(x)) = 9(a(x)) = 9 a(x) = [9: a] 9(x) = [9: a] J(x) . 

Thus, [J: a] = [g: a] and hence o(J, g) = 1. D 
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The second characterization, for which a pair (! ,g) satisfies that 8(!, g) = 1, is 

algebraic. It characterizes the fact 6(!, g) = 1 through relation of the fundamental 

groups of the considered spaces . 

Proposition 4.2.7. Assume IA (M)I and IA(l-)i are prime numbers. The following 

are equivalent: 

1. 6(J,g)=l. 

2. For every (J,g; E Lift(!, g) and x E 'P(j,g), we have 

3. There exist a lift (J. 9) E Lift(!, g) and x E 'P(J, 9) such that 

Proof. • (1) =? (2) :Assume that 6(!, g) = 1. Let (J, 9) E Lift(!, g) and x E 'P(J, 9). 

Put p (x) = x. Let a E 1r1 (M, x) and a be the lift of a at x. Since the covering 

is regular, there exists a E A (M) uch that a(1) = a(x). By Propo ition 4.2.6, 

J(a(x) ) = g(a(x)). Hence, g(a) J(a) - 1 E 1r1 (N, J(x)). Therefore, 

g(a) f(a - l) = g(p (a)) f(p (a-!)) = p (g(a)) p (J(a- 1 
)) 

= P (9(a) J(a-1
) ) E H(J(x)) . 
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That is, 

• (2) =? (3) : Trivial. 

• (3) =? (1) : Assume 

g# 1#1 (n1(M, p (x))) ~ H (J(x)). 

for some lift (JJi) of (J,g) and x E CJ> (j,g). Let ex E A(M) and a : x ---t cx(x) be a 

path in M. We have p (a) is a loop in M at p (x). Thus, there exists b E n1 ( N, J(x)) 

such that g# f#1 (p (a)) = p (b). Hence, 

g(p(a))f(p(a-1
)) =p(b) =} g(p(a)) =p(b) f (p(a)) 

=} P (g(a)) = P (b) P (J(a)) 

=} P (g(a)) = P (b J(a)) . 

However, g(a) and b J(a) are lifts to the same path and having the same initial point 

J(x). Thus, they are homotopic relative endpoints and have the same end point, i.e., 

J(cx(x)) = g(cx(x)) or cx(x) E CJ>(j,g) . By Proposition 4.2.6, we get o(J,g) = 1. 0 

The third characterization, for which a pair (J , g) satisfies o(J, g) = 1, is also 

algebraic. It characterizes the fact 0 (J, g) = 1 through a sequence of homological 

groups and homomorphisms of the involved spaces . 

Proposit ion 4 .2.8 . A ssume IA (M) I and IA (N) I are prime numbers. The following 

are equivalent: 
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1. 8(J,g)=l. 

2. The sequence 

is a chain complex. 

Proof. • (1) =? (2) : Suppose 8(!, g) = 1. Let x E Cf>(f g). By L mma 4.2.5, 

eM (C(J#, g#)x) ~ I< er(g# -7 #). Moreov r let GN(b) E (g# - 7 #)(HI (M)) . Then, 

GN(b) = (g#- 7 #)(8M (a)) for same a E 1r1 (M, x) . 

= g#(8At(a)) -7 #(8M (a)) 

= GN(g#(a)) - GN(J#(a)) 

8 N (g#(a) f #(a)-1
) 

= 8 (g# f# 1 (a)) . 

Since g# f#1(1r1(M,x)) E H (J(x) ), we get that GN(b) E GN( H(J(x))) = I<er]. 

Therefore, th sequence 4.2.3 is a cha in complex. 

• (2) =? (1) : Suppose the s quence 4.2.3 is a chain complex for some (or for 

every) x E Cf>(J, g). Hence, (g# - 7 # )(H1 (M)) ~ GN( H(J(x))) . L t b = g# f#1(a) 

and a E 1r1(M x) Then, 

Thus, GN(b) E e N( H(J(x))) . Since FN ~ H(J (x)), wher FN i the commutator 

subgroup of 1r1(N), we have b E H(J (x) ). That is, g# f#1 (1r 1(M, x )) ~ H(J(x))). It 

follows from Proposition 4.2.7 that 8(J,g) = 1. 0 
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R em ark 4 .2.9. In Proposition 4.2.8, we did not mention the coincidence point off 

and g at which the sequence 4.2.3 is applied because the proposition is true whatever 

the coincidence point off and g is. 

Now, we summarize the previous characterizations in the following corollary. 

Corollary 4 .2.10. Assume IA(M)l and IA(N)l are prime numbers. The following 

are equivalent: 

1. 8(!, g) = 1. 

2. For every (J, g) E Lift(!, g), x E ci>(J, 9), and a E A(M) , we have a(x) E 

ci>(J, 9). 

3. There exist (J, g) E Lift(!, g), x E ci>(f, 9), and a E A(M) such that a(x) E 

ci>(J, 9). 

4. There exist a lift (J,g) E Li ft(! , g) and x E ci>(j,g) such that 

g# f# 1 (1r1 (M,p (x))) ~ H(J(x)) . 

5. For every (j,g) E Li ft(! , g) and x E ci>(i,g), we have 
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6. The sequence 

is a chain complex for every x E i!?(f, g). 

7. The sequence 

is a chain complex for some x E i!?(f, g). 

Proof. Apply Propositions 4.2.6, 4.2. 7, and 4.2 .8. D 

The following corollary generaliz part (3) of Corollary 4.1.21. 

Corollary 4 .2. 11. For every nonempty Nielsen class A off and g, we have IA = 

Proof. Suppo e 8(!, g) = 1 and let A be a nonempty iclsen class of f and g. 

Let x E A and (f,9) be a lift of (!, g) such A ~ pi!?(f 9). By (2), Corollary 

4.2.10 if x E p- 1 (x) n i!?(f 9), then a(x) E i!?(f 9) for every a E A(M). That 

is, p-1(x) ~ i!?(f,9). Therefore, IA = IP-1(x) l = IA(~1)1. 

Suppose now 8(f,g) = 0 . Then, i!?(f,g) = pi!?(f,9). Let x E if?(f,g) and x E 

p- 1 (x) n i!?(f,g). By Proposition 4.2.6, a(x) does not b long to <P(f,9). Thus, 
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IP-1 (x) n <P(J , g) I = 1. This means that for any nonempty Nielsen class A of f and 

g , we have IA = 1. 0 

We now prepare for the main results in this section, Theorems 4.2.16, 4.2.18, and 

4.2.19. For each x E <P(f, g), Consider the diagram: 

;; 
---t 

where the homomorphisms are as in 4.2.1. 

j 
---t 

1r1(M,x) 
K(x) 

l 1 

1r1(M,x) 
K(x) 

7.9-1 l ~ 

A (M) 

( 4.2.4) 

Lemma 4 .2 .12. Let x be a coincidence point off and g . Then, diagram 4.2.4 

commutes, and ker] = GM( K (x)) . 

Proof. The proof is quite similar to Lemma 4.2.5. 0 

Lemma 4.2. 13. Let x be a coincidence point of f and g. In diagram 4. 2.4, the first 

horizontal sequence is a cha-in complex if and only if the second horizontal sequence 

is a chain complex. 
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Proof. As ume C(J#, g#)x ~ ker(j) = K(x). By Lemma 4.2.12 , we have 

Conversely, uppose 8 M (C(J# g#)x) ~ ker) = GA£(I<(x)). Since F111 ~ K (x), we 

0 

Lemma 4 .2.14 . Let x, y E <P(f, 9) b in the same Nielsen class, and let x = p (x) 

and y = p (Y) Then, 

Proof. It is sufficient to show that if C(J#, g#)x ~ I<(x) th n C(J#, 9#)y ~ I<(y). 

Let w : x -----+ y be a path that establishe the l ielsen relation b tween x and y. Put 

w = p (w) . We have the commutative diagram 

l P# P# l 

-rr1 (M,x) ~ -rr1(M,y) 

otice that J(w)# = g(w)# · Let a E n1 (M, y). Then, 

a E C(J# g#)y => w;/(a) E C(J#,g#)x ~ I<(x) 

=> w#1(a) = P#(d) for some dE n1(M, x) . 

=> a = w# P#(d) = P#(w#(d)) 

=> a E P# ( -rr1(M, Y) ) = I< (y). 

0 
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Let a E A (M) and x E ip (J, 9). We define the set a · [X] by {a · Y'l y E [X]}. The 

following proposition is a generalization of a part of [Theorem 2.5, [5]]. 

P roposition 4.2. 15. Assume o(f, g) = 1. Let X E ip(f, g) and X E p- 1(x) n 

ip (J , g). Then, the family {a · [X] I a E A ( M)} is pairwise disjoint if and only if 

C(f#, g#)x ~ K (x) . 

{ ~ ) 

Proof. Assume the family a · [X] I a E A(M) J is pairwise disjoint. Let a E C(f# , g# )x 

and a: x ---t y be the lift of a at x. Hence, y E p-1(x). So, there exists a E A (M) 

such that y = a(x) . Moreover, 

f(a) = g(a) =* f (p (a)) = g(p (a)) 

=* P (!Ca)) = P C9(a)) 

Since x, y E ip(J, 9), we have J(a) ""'o g(a), i.e., [7/1 = [X]. However , y = a(x) . By the 

assumptions, we get a= 1M andy= x. Thus, a= p(a) E P#(1f1(M,x)) = K(x). 

Consequently, C(f#, 9#)x ~ K (x). 

For the converse, suppose C(f#,g#)x ~ K (x) . Assume, for contrary, that there 

exists a E A ( M) such that a =f. 1M and [X] n a · [X] =f. ¢ . Thus, there exists an 

open path a: x ---t a(x) (that is, the endpoints of the path are different) in M such 

that J (a) ""'o g(a). So, we get p (J(a)) "'o p (g(a)) or f (p (a)) "'o g (p (a)). That is, 

p (a) E C(f# , g#)x ~ K (x) . Hence, there exists dE 7f'1 (M,X) such that p (a) = p (d). 

The last statement implies that a(x) = a(1) = d(1) = x and hence a= 1M which is a 

contradiction. Therefore, [X] n a· [X] = ¢ for every a E A ( M)- {1M} , and this in turn 

yields the information that the family {a· [X] I a E A (M) } is pairwise disjoint. 0 



13 

The next two theorems generalize Theorem 2.5, [5]. 

Theorem 4 .2.16. Assume o(f, g)= 1. Let (3 E A ( T)- {lR}· Then, 

l lA ( - )1- I _ . 

(f, g)= JA(M)I . ~ (f, (Jtg) (4.2.5) 

if and only if An (a· A:) = 0 for every a E A(M)- {1M} , (Ji E A (N) for all i, and 

for all A E ;p(/, f3i9) for which p (A) is an essential Nielsen class off and g. 

Proof. Set JA(JVf)J = P and JA(N) J = Q. Assume An a · A= 0 for every a E A(M), 

(Ji E A(-), and A E ;p(J, (Jig) for which p (A) is an essential ielsen class off and 

g. Let us assume first that f m g (i.e,. j is transverse to g). Let A= {xo, ... ,xs } 

be an es entia! ielsen class off and g. Then, there exi ts 0 ::; i ::; Q- 1 such that 

A ~ p iP (J, (Jig) . Let x0 E A and x0 E p- 1(x0 ) n iP(J. (Jig) . Let wj : xo --t Xj be a 

path in M which establishes the ielsen relation between x0 and Xj and j = 0, . . . , s. 

Let 0 be the lift of Wj at x0. Since the homotopy between f (wj) and g(wj) lifts to a 

homotopy between 1(0) and (Ji9(0) , we get that the points Xo , WI (1), ... w8 (1) lie 

in the same icl en class of J and (Jig. On the other hand , since o(f, g) = 1, a · [x0] 

is a! o a lielsen class of J and (3ig for each a E A(M); o by the as umptions, the 

family {[x0] a · [x0], ... , aP-l · [x0l} is mutually disjoint. We show that the union 

P- 1 

of this family is p-1(A). Obviously, U ak · [x0] ~ p-1(A). Let x E p- 1(A). Let 
k=O 

a : x 0 --t p (x) be a path that tablishes the . lielsen relation between x0 and p (x), 

and a be its lift in M at £0. Since a(l) E p-1 (p (x)), there exists 0 ::; k ::; P - 1 

such that a(l ) = ak(x) . Thus, ak(x) E [x0] which implies x E aP- k · [xo]. Therefore, 



139 

P- l 

p- 1(A) ~ U ci · [xa] . 
k=O 

Consequently, we have SA = P. That is, the number S is fixed for a ll Nielsen 

clas es of f and g and equal toP. Since Corollary 4.2 .11 implies that I is also equal 

toP for all Nielsen classes off and g, we get that JA = 1 for all Nielsen classe off 

and g. T hus, Nso(f,g) = 0 and hence by Theorem 3.3.16, and Lemma 4.2.4 we get 

or 

For the conver e, assume 

Q - 1 
1 ~ - . 

(!,g)= p. L,.; N(f,/3'9). 
i=O 

Let [x] be a nonempty Nielsen class off and g. Pick x E p- 1(x) n if?(j,f]ig) for 

P - 1 

som uitable i. As in the above argument we have p- 1([x]) = U cxi · [X]. We 
j=O 

claim that this union is disjoint . Let w([x]) = {[XJ,a· [X], ... ,aP-
1

· [X] } and Ill = 

{ Ill ([x]) I [x] E ~ s(f, g) } , where ~ s(f, g) i ti:e et of all e entia! 1i I en classes of 

f and g. Define th function 

[x] ~ w([x]) . 
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We show that this function is a well-defined bijection. 

• Let [x], [y] E 'iPE(j,g) such that [x] = [y]. Let w : x ~ y be a path that e -

tablishes the ielsen relation and w: x ~ y be its lift at x, where y E p-1(y). Then, 

[X] = [Y] and hence w([x]) = w([y]) . Therefore, the function i well-defined. 

• Suppose w([x]) = w([y]) and let x E p- 1(x )n ti?(j, {Ji 19) andy E p- 1(y)n ti? (j, {Ji29). 

Thus, i 1 = i 2 . Furthermore, there exists j with 0::::; j::::; P - 1 such that [Y] = o:i · [X] . 

Thus, [y] = p ([Y]) = p (o:i · [X]) = p ([X]) = [x]. This implie that the function i one 

to one. 

• Surjectivity is obvious. 

Since the function is bijective we get that l\ll l = N(J, g). ow, LetT denote the 

number of essential classes [x] E ti?(J, g) such that [X] = o:J · [X] for orne j with 

0 ::::; j ::::; P - 1 (and hence for all j with 0 ::::; j ::::; P - 1). In other words, r is the 

number of essential classes [x] such that lw([x])l = 1. So, there exist N(J,g)- r 

elem nts in w each of which has a cardinality of P. Hence, 

N(J,g) - r 

1 - · T 

(

Q- 1 ) 
p . ~ N(J , /]'?f) - p 

T 
(! , g) - p (by the as umption ) 

which yields t hat r = 0. T hat is , [X] n a· [X] = 0 for every o: E A (M), /3i E A(N) , 

and [X] E 'iP(J, {Jig) such that p ([X]) is an es ential iel en class off and g. 0 
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Notice that, although Theorem 4.2.16 give~ a necessary and sufficient condition 

for Equation 4.2.5 to hold, it has a drawback. It uses the et of e ential classes off 

and g the very thing we are supposed to count. The following corollary helps us to 

get around this . 

Corollary 4.2.17. Assume o(f,g) = 1. Let (3 E A(N)- {lR}· If An (a. A) = 0 

for every a E A(M)- {1M}, (3i E A(N) for all i, and for all A E 'iP (J, (3i9), then 

N(J - 1 
, g) - IA (M)I 

IA(Nll-1 

L N(j,(3i9) 
i=O 

Proof. Apply Theorem 4.2.16. 0 

Theorem 4.2.18. If o(J, g)= 0, then N(f, g)= N(jg) . 

Proof. Assume that o(f,g) = 0. By Corollary 4.2.11 , the number I = 1. Since 

J · S = I , we get that J = S = 1 for every nonempty ielsen clas of J and g. Since 

J = 1 is odd, and the same for all classes, we have that so(!, g) = 0. So Theorem 

3.3.16 holds implying that 

IA(N)I0-l - . -

N(f ) = N (f ) = "'"" N(f , (3'9) = N(f 9) = (f--;;"\ 
1 g L 1 g ~ S(f '1i-;;'\ 1 1 g) . 

t=O ' 1- g) 

0 

We sum up Theorem 4.2.16 and Corollary '1.2.17 in the following theorem. 
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Theorem 4.2.19. Let M and N be connected closed smooth manifolds of the same 

dim en ion, and let ( M p) and ( ~, p) be regular coverings corre ponding to the normal 

subgroups K ~ 1r1 (M) and H ~ 1r1 (N) of VI and respectively. Assume the cover-
- ~ 

ings are finite and that IA (M)I and IA (N)I are prime numbers. Let(!, g) : M --t N 
~ -

be a pair of maps for which there exists a pair of lifts (! , 9) : M --t . If either 

6(!, g) = 0 or 6(!, g) = 1 with C(J#, g#)p(x) ~ K(p (x)) for every nonempty Nielsen 

class [X] of (J, {Jig) with 0 :::; i:::; IA(N)I- 1, then 

IAUV)I6U.gl- t 

L N(J, {3i9). (4.2.6) 
i =O 

Proof. Apply Theorem 4.2.1 and Corollary 4.2.17 along with Lemma 4.2.14. 0 

4.3 Examples 

Thi section is devoted to examples. Before giving them , we do some necessary 

preparatory work. The main preparation is to give an explicit formula of the suspen-

sion homeomorphism between the (n + 1)-sphere sn+l and the su pen ion '£Sn. 

Notation 4 .3. 1. We set the following notation which is necessary in this section: 

- The nth unit sphere sn defined by 
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- The upper nth hemisphere sn+ and the lower nth hemisphere sn-: 

sn+ = { (17,t) 117 E R n,t E [0, 1] and 11712 + t2 = 1} 

sn- { (17, t) 117 E R n, t E [-1, OJ, and 1171 2 + t 2 = 1} 

Notice that sn = sn+ Usn- and sn-J = sn+ n sn-. 

- The nth unit disc Dn defin d by 

D" = { (x, .. , Xn) E R" I t lx;l2 :S I} · 

- The unreduced suspension BX of the topological space X , is obtained from X x [ - 1, 1] 

by identifying eu.ch of X x { - 1} and X x {1} to a ingle point (the points are 

different). The elements of '£X are denoted by [x, t] where x E X and t E [-1 1]. 

- We let 

and 

{[x, t]l x E X and t E [0, 1]} , 

{[x,t]lx EX and t E [-1,0]}, 

x+ = [x 1] and x_ = [x, - 1] for all x EX . 

Notice that BX = (BXt U (EX)- and (EX )+ n (BX) - = { [x,O]Ix EX} ~ X . 

- Bf : EX -----+ BY the suspension of the map f : X -----+ Y. 

- Regarding R n+J as Rn x R , we define 

(x, t) ~----+ x to be the projection of Rn+ t on R". 

• 1r + : sn+ -~ D" to be the r striction of :r on sn+. 
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• 1r _ : sn- -----+ Dn to be the restriction of 1r on sn-. 

• T_ : (L:S")- -----+ D n+l by T_ [z, t] = (1 + L) z . 

where (1 - t) z is the scalar multiplication of z by 1 - t. Similarly for (1 + t) z . 

{ 
t/Jtl 

- sgn(t) = 

0 

if t E R - {0} ; 

if t = 0 
is the well known signon function from Real 

Analysis. 

Lemma 4 .3 .2. The maps 1r+ , n_, T+, and T_ are homeomorphisms. Moreover, 

; if z = 0 

; if z -I 0 

; if z = 0 

; if z -I 0 
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Proof. It is not difficult to show that the mentioned maps are homeomorphisms. We 

only point t hat as z approache 0, the element [z/lz l , 1 - lzl] approaches to x+ and 

[z/lzl, lzl - 1 ] approache to x_ although z/lzl diverges. This confirm the continuity 

of T+ 1 and T: 1 at z = 0. 0 

Remark 4 .3.3. Since [x, =F1] = x'f for all X E sn, without loss of generality we write 

T: 1 (z) = [z/ lzl, lzl - 1] and T+ 1 (z) = [z/ lzl , 1 - lzl] for all z E Dn. 

Con ider the figure 

- 1 

(ES")+ ~ Dn+J ~ (sn+l t 
- 1 

(Esnr ~ Dn+l ~ (sn+l)-

The following proposition gives an explicit formula for the homeomorphism be

tween r;sn and sn+l and its inverse. 

Proposition 4.3.4. Let h: L-Sn ~ s n+l be a map defined by hi (ESn)+ = 1r+ o T+ 

and hi p::;sn) - = 7r_ o T_ . Then, his a homeomorphism and it is given explicitly by 

h[z, t] = ( (1 - ltl)z sgn(t) · J 1 - (1 - lt1)2) 

for all [z, t] E ESn, and h- 1 is given by 

Xsgn(t) ; if t = =F1 

[ z/ lzl 
t2 ] gn(t ) · --

1 + :zl 
; if - 1 < t < 1 



146 

or by Remark 4.3.3 

h-
1 (z, t) = [ z/lzl , gn(t) · 1 ~

2

lzl ] 
for all (z , t) E sn+l. 

Proof. It is not difficult to prove our proposition if we recall the following properties 

of sgn(t): 

1. (sgn(t)) 2 = 1 for every t E R - {0}. 

2. sgn(t) · ltl = t for every t E R. 

3. sgn (r(t).sgn(t)) = sgn(t) for every t E R , where r is a nonnegative real valued 

function such that r(t) = 0 if and only if t = 0. 

0 

ow we apply Proposition 4.3.4 to create maps on sn of any degree we wish. We 

start with the following proposit ion. 

Proposition 4.3.5. The map g : sn+1 --t s n+t given by 

( ) 
{ 

(zk / lzlk-1 'Tt) ; if z E C, Tf E n.n-1' lzl2 + 1Tfl2 = 1, 
g z, Tf = 

(O ,Tf) ; ifz = O 

and z =I= 0 

or g(i z i eiO, Tt) = (lzl eikO, Tt ) f or every (z , Tt) E s n+l has the degree k, where k E Z. 
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Proof. L t f : S 1 
--t S1 be the map defined by f( z) = zk. Then , de9(J) = k. Since 

t he suspension map L:n f = ~ f preserves the degree we need only to show that 

n-time 

h o I;n f o h- 1 = g where h the homeomorphism given in Propo ition 4.3.4; this is 

done by t he induction on n. 

For n = 1, we have the map I:j : I:S1 
--t I:S1 is given by 

, { [zk/lzlk- 1
, t] ·if z =I 0 

Ej [z, tj = 

[0, t] ; if z = 0 (t = =f1) 

Let h : I:S1 
--t S2 be the homeomorphism given in Proposition 4.3.4 and (z, t) E S2 

s uch tha t z =I 0. Th n , 

h o l:f o h-
1 (z, t ) = h o L.f [ z/Jzj, s9n(t) · 

1 
~
2

l zl ] = h [ zkjj zjk, s9n(t) · 
1 
~
2

J zj ] 

1 - (1 - --)2 t2 ) 
1 + lzl 

If z = 0, then t = =f l. Hence, 

h o L:f o h- 1(0. =f 1) = h o L:j(x~) = h o L:f [0,.=f1] = h [0, =f 1] = h(x~) = (0, =f 1) . 

Consequently, 9 = h o L:f o h- 1 which implies that 9*, 2 = h*, 2 o L:J*, 2 o h:,~ where 

9*, 2 , h*, 2 , I:J*, 2 and h:,~ are th homomorphisms induced by the corresponding maps 

on the uitable homological groups. L t ~ and \ be t he generator of the homological 
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groups H2(S2) and H2(ES1) resp ctively. Hence, 

9•,2(~) h •. 2 o Ef.,2 o h;,k(~) = h •. 2 o Ef.,2((-1)1 

= h.,2(k(-1)1 )=(- 1 ) 1 k(-1)1 ~=k~ 

where l ==fl. This means that deg(g) = k. 

Suppose our claim is true for n- 1, i.e., the map J: sn---+ sn given by 

. { (zk /lzlk-J, i:) · if z :I 0 
f (z,ry) = , 

(0,7]) ; ifz=O 

for every (z, 7]) E Sn, where z E C and 7] E R n-l, has a degree k. Let (J..L, t) E sn+l 

(use otation 4.3 .1). Write J.L = (z, 1]) where z E C and 1] E R n-I. Assume first ly 

that J.L -I 0. Then 1-L/ 11-LI E sn, J..L/I J..LI = (z/IJ..LI, 7]/ IJ..LI), and IJ..LI2 = lzl2 + li!l2. We have 

two cases: 

• Case 1: If z :I 0. Then, 

h o EJ o h-1 (J.L, t) = h o EJ [(z/1~-LI, 7]/IJ..LI), sgr.,(t) · 1 ~
2

I J..L I ] 

= h [J(z/ IJ..LI , i!/IJ..LI), sgn(t) · 1 ~
2

IJ..LI ] 

[ 
zk t2 ] 

= h ( IJ..LI . lzlk-1, i!/IJ..LI), sgn(t) . 1 + IJ..LI 

[ 
1 zk t2 ] 

= h ~ ( lzlk-1' 7]), sgn(t) . 1 + IJ..LI 

( ( I t
2 I) 1 zk ( t2 ) 

= 1 - sgn(t) . 1 + IJ..LI ~ ( lzlk-1' 7])' sgn sgn(t) . 1 + IJ..LI . 



>vhere without los of generality 7] = (7], t) E R n. 

• Case 2: If z = 0. Then, 

. [ t2 ] h o L,f o h- 1 (J-l, t) = h f(O 7]/ IJ-ll), sgn(t) · 1 + ll-" l 

I t2 
= h (0, 7]/IJ-l l), sgn(t) · 1 + ll-"l 

>.(t) 

= ((1 -1>-(t)l) (0, 7]/11-"l), sgn (>.(t)) · /1 - (1 ~-l >- (t)1)2) 
= ((0, 7]) , t) = (0, ry). 

Secondly, we assume 1-" = 0. Then, z = 0, 7] = 0, and t = =Fl. Hence, 
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h o L,f o h- 1 (0, =J=1) = h o L,f(x'f) = h o L,f[y, =F 1] = h[f(y), =F 1] = (0 =F 1), where 

Consequently, we get that hol:,foh-1 =g. Moreover, since d g(L,f) = deg(f) = k, 

a similar argument shows that deg(g) = k. 

Finally, by mathematical induction, our resul t holds for each positive integer n. D 

Corollary 4.3.6. Let J (k,ll : S3 ---t S3 be the map defined by 

Then, deg(J(k,L)) = k l. 
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Proof. Fir t ly, we show that f (l,L) is of d gree l. Let q : S3 
-t S3 be the map 

defined by q(z1, z2) = (z2, z1) . We have qof(l,t ) = f (L,l ) . Thu d g(q) ·deg(J(l ,t)) = 

deg(qof(l,t)) = deg(J(t,ll). Since deg(J(t,l )) = l by Proposition 4.3.5 and deg(q) = 1, 

we get deg(J(L,t )) = l. 

Secondly, f (k ,t) = f (k, 1lof (l ,t). Hence, d g(J(k,t)) = deg(J(k, 1lof(l,l)) = deg(J(k , 1l ) . 

deg(J(l,t)) = k l. 0 

The following proposition is useful for computing the L f hetz number of a pair 

of maps on the phere S" : 

Proposition 4.3. 7. Let (! , g) : S" -t S" be a pair of maps. Then, the Lefschetz 

number off and g is given by 

L(J,g) = deg(g) + (- 1tdeg(J). 

Proof. We have 

if i = 0, n; 

otherwise. 

Let Di : Hi(S") -t Hn-i(S") be th Poincare' isomorphism. Let ai and ai b 

the generator of Hi(S") and Hi(S") r spectively such that Di(ai) = an-i for each 

i = 0, n . Consider the sequence 
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Denote the composition Dn-iog*o D;;_2io j . by 8 i · By the definition of the Lefschetz 

number of a pair of maps, we can easily see that 

where tr(Gi) is the trace of the linear i amorphism 8 i . Now, 

Go(ao) = Dng• D;;1 j. (ao) 

Dn g* D;;1 (ao) 

Dn g* (an) 

Dn (deg(g) an) 

deg(g) Dn (an) 

= deg(g) a,o 

Thus, tr(8 0 ) = deg(g). Similarly, we get that tr(Gn) = deg(f). Sub tituting t hese 

trace in the above formula we obtain th required result. D 

We arc now ready to give the example that show the usefulness of our results in 

the previous work. 

Example 4.3.8. As in Example 3.4.14, define the map f, g: L(5, 1) -t L(5, 1) by 

f [pei9 , z] = [P i 69 , z] and g[z1, z2] = [z2 , z1]. Both maps are well-defin d , differ from 

the identity map and admit li fts 1 and g defined in the natural way. In addition, 1 and 

g are equivariant under the action of A (S3 ) ~ Z5 on 53
. Since wt · g i homotopic tog 

for all t , we have L(1, wt · 9) =I= 0 for all 0 ::; t ::; 4. By Theor m 3.4. , Nso(f, g) = 0 

and N(f, g) = 5. 



- It can be shown that 

<t> (J,wt · 9)= {(~ e '~;t, w~t e'~;t ) lk=O 1, 2, 3,4} 

for all 0 ~ t ~ 4. Hence l<t>(J, wt · 9) 1 = 5 and I<I> (J g) l = 5 x 5 = 25. 
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- Notice that , although IA(S3 )1 = 5, which is prime, and 8(!, g) = 1 since [f : w] = 

w = [g : w], we cannot apply Theorem 4.2.16 to compute N(f, g) in this example 

because the Niel en classes <t>(J, 9) and w · <t> (J, 9) are not disjoint . 

The following example shows that our formulas sometime giv the be t estima

tion of t he minimum number of coincidence points in t he homotopy classes of the 

con idered maps. 

Example 4 .3.9. We use the same spaces given in Example 3.4. 14. D fi ne the maps 

f and g by f [PJ ei01, P2 ei02] = [Pl ei401 , P2 ei401
] and g[z1, z2] = [z2, zd respectively. 

Both f and g arc well-defined smooth maps which admit the lift f and g defi ned in 

the natural way. 

- We have 8(!, g) = 0 since g (w (z1 , z2)) = w g(z1, z2) and J (w (z1 , z2)) = w4 J(zl , z2), 

or equivalent ly since [f : w] = w4 =!= w = [g : u.:]. Thus, by T heorem 4.2.18 we have 

N(J, g) = N(J, 9) . 

- Since deg(J) = 16 and deg(g) = 1, we get t hat L(J, 9) = 1 - 16 = - 15 =!= 0. Hence, 

(J ,g) = l. 

- otice that <t> (J , 9) = {(~ , ~)} . Thus, I<I>(J.g)l = 1 = (J , g). 

The next example shows that our method might not be good nough to estimat 

t he number of coincidence points of t he maps under consideration . 
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Example 4.3.10. We use the same spaces given in Example 3.4.14. Define the maps 

well-defined smooth maps which admit lifts f and g defined in the natural way. 

-We have o(J g)= 0 sinceg(w(z],Z2)) =wg(zl ,z2) and J(w(z) Z2)) =wi(zl,z2) · 

Thus by Theorem 4.2.18 we have (!,g)= N(J,g). 

- Since deg(J) = ·deg(g) = 1, we get that L(J, 9) = 0. Hence, N(J, g) = 0. 

- Notice that ct> (J, g)= { (z, z) liz I = ~} . Thus, I <I>(!, g)l = 

The following Lemma is u eful in finding the H-Reidemei ter representatives. 

We will u e it in later examples. 

Lemma 4.3.11. Assume the hypothese given in the beginning of Section 4.1. Let 

{3 E A( N) . Then, (J, g) and (J, {3 g) belong to lhe same H - ReidemeisteT class if and 

only if there exist a E A ( M) and~ E A ( N) such that (J, g) a = ~ (J {3 g). Moreover, 

fixing a , uch a ~ is unique. 

Proof. The proof is quite direct from definition of conjugate lifts. 0 

The following example includes covering spaces with covering transformation groups 

of non-prime cardinality. Of course, ince this is a more general case, more work is re-

quired to compute the ielsen numbers. Although the space involved are orientable 

and we could calculate the iel en number by easier method , we use our method to 

demon trate the advantages of our methods. 

Example 4 .3.12. Let J, g : S1 
---t S1 be maps defined by f( z) = z3 and g(z) = z6 

for every z E S 1. Let p , p: S1 ---t S1 be the covering map defined by p (z) = z4 and 
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p (z ) = z6 . The maps f and g admit li fts 1 and g on S1 defined by J( z) = z2 and 

g(z) = z4 re pectively, where z E S1 . We have the commutative diagram 2.4.1. L t 

w be t he 4th primitive root of unity and J.L be the 6th primitive root of unity. Then 

A (S1 p) = (w) and A (S1, p) = (J.L). Since S1 is a Jiang space the number J is fixed 

for all H -Nielsen classes. By Theorem 2.3.5 

N . - " N(1,9) 
L(J, g)- ~ S(1, g) ' 

where the sum runs over all H -Reidemeistcr representative . The next step is to 

chose the H - iclsen classes repre entatives from among (1, g), (1, fl. 9), ... , (1, J.L5 g) 

(some of them may lie in the same H - Reidemeister class). We u Lemma 4.3.11. 

• We tart with the pair (1, 9) : applying the action of A( S 1, p) from the right on 

this pair I ads us to the following: 

- Assume (J, 9) w = J.Lk (1, J.Lj 9) for some j and k with 0 :S k, j :S 5. Then, for every 

z E S1 we have 

=? J.Lk = w2 and J.Lk+j = 1 (for example put z = 1) 

=? J.Lk = w2 and k + j = 0 (mod 6) 

=? k = j = 3. 

The uniqueness in Lemma 4.3.11 guarantees that such k and j are unique. 

- Similarly, we have (1, 9) w2 = (1, 9) and (1, g) w3 = (1, 9) w = J.L3 (1, J.L39) as shown 

before. Thus, we deduce that (!, 9) and (1, J.L3 g) belong to the same H - Niel en class. 

• A similar argument applied to (1, J.L 9) and (j':-, J.L2 9) leads us to deduce that (1, J.L 9) 
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and (1, ;.t4 9) belong to the same H - Reidemeister class and also that (1, ;.t2 9) and (1, ;.t5 9) 

belong to the same H - Reidemeister class, and there are no other equivalences. 

We chose (1 , 9), (1, J.L 9), and (1, ;.t2 9) as our Reidemeister representatives . Since 

rr1(S1 , 1) is abelian, we get by Proposition 2.1.25 that 

So, now we want to compute both 5(1, 9) and N(1, 9) . Since 5 1 is a Jiang space 

and deg (J.Lk: g) = deg(g) for all k with 0 :::; k :::; 5, then J.L k: g is homotopic to g and 

hence L(J, J.Lk 9) = L(1, 9) = 4 - 2 = 2 =f 0 for all k with 0 :::; k :::; 5. T hus, we 

get that N(1, 9) = ldeg(g)- deg(1) 1 = 14- 2! = 2. On the other hand , 1(1, 9) = 

I L(1, 9) I where L(1, 9) = { a E A( Sl, p) I 5 (1, g; a ) = 1} . The work done before while 

searching for the representatives shows that [1: w J = ;.t3 =f 1 = [g : w] and [1: w2 J = 

1 = [g: w2]. Since w rf: L(f, 9) , we have that w 3 = w-1 rf: L(1, 9) either (recall 

that L(1,9) is a subgroup of A (S1 ,p) ). Thus, we get that 1(1,9) = 2. Next, let 

z = 1 E CJJ(1,9), t hen p(1) = 1 E Cf!(j,g). We know that J (1,g) = IJ (C(j#,g#)z=t)l, 

but as in the previous example C(j# , 9#h = I< er(g# - f#) = 0 since 9# - f# is a 

monomorphism. Hence, J (1, 9) = 1. Finally, 

S(f- -;:;~ = I (1, 9) = ~ = 2 
,g) J(f ,g) 1 , 

and hence N(j,g) = 
3 

x 
2 

= 3. This, of course, is the same result obtained if we 
2 . 

used the well known computation methods applied to the J iang spaces. 
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The next example is one of the main examples in this chapter. We start with 

some lemmas from abstract algebra. 

Lemma 4.3.13 . Let G1 and G2 be abelian gmups, Hi and I<i be ubgroup of Gi, 

and 'Pi, 'lj;i : Gi ---t Gi be homomorphism foTi = 1, 2. Then, 

2. Define cplx cp2,'1j;1x 'lj;2: G1 EB G2 ---t G1 EB G2 bycp1x cp2(9J ,92) = (cpl(9I) ,cp2(92)) 

and 'lj;l x 'l/J2(91,92) = ('l/JI(g!) 'l/12(92)) respectively, where 9i E Gi fori= 1, 2 . 

Then, 

C(cp1 X 'P2, 'l/;1 X 'l/12) = C (cpJ, 'l/;1) EB C(cp2, 'l/;2) 0 

. G Gi . G G G1 EB G2 b h l h h. 3. Let ]i : i ---t Hi and J : 1 EB 2 ---t H
1 

EB H
2 

e t e natura omomorp zsms, 

where i = 1, 2 and j 1 x j2 : G1 EB G2 ---t ~: EB ~: is the homomorphism defined 

by J1 x J2(9I , 92) = (j1(9I) j 2(92)) where 9i E Gi and i = 1 2. Then, 

) 
- Gi Gi 

4. Assume 'Pi(I<i) U 'l/Ji (I<i ~ Hi fori = 1, 2. Let ~i , 'l/Ji : I<· ---t H be the 
t t 

homomorphisms induced by 'Pi and 'l/Ji in the natural way r spectively, for i = 

1, 2. Then, cp1 x cp2 and 'l/;1 x 'l/;2 induce homomorphism 'P1 x 'P2 and 'l/11 x 'lj;2 
G1 EB G2 G1 EB G2 . 

from { I< to H H defined m the natural way, and 
f 1EB 2 1 EB 2 

Proof. 1. It is not difficult to see that j 1 x j 2 is an epimorphi m and ker (jl x j2) = 

H 1 EB H 2. The rest follows by the First Isomorphism Theorem. 



2. Let (91 , 92) E G1 EB G2. Then , 

(91,92) E C(<pl X 4'2,'1/Jl X 'I/J2) {:} 4'1 X 4'2(91,92) = '1/Jt X 'I/J2(91,92) 

{:} ( 4'1 (91) 4'2 (92)) = ( 'lj;l (91)' 'I/J2 (92)) 

{:} <p1(91) = 'l/Jt(91) and 4'2(92) = 'l/J2(92) 

{:} 9I E C(<pl,'I/Jt) and 92 E C(<p2,'1/J2) 

{:} (91, 92) E C ( 4'1 , '1/JI) EB C ( 4'2, 'I/J2) . 

Thus, 2 follows. 

3. It is easy to how t hat the following diagram commutes: 

where E is the isomorphism induced by j 1 x j 2 . By part 2, we have 
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j ( C ( <p 1 X 4'2 '1/J 1 X 'l/J2)) = j ( C ( 4'1 '1/J 1 ) E£) C ( 4'2 l/J2) ) ~ f (j ( C ( <p 1 , 'I/J1) E£) C ( 4'2, 'I/J2))) 

= f 0 j ( C ( 4'1 , '1/JI) E£) C ( 4'2, 'l/J2)) = J1 X j2( C ( 4?1, 1/J1) E£) C ( 4'2 'I/J2)) 

= Jt (C(<p1, '1/Jt)) EB J2 (C(<p2, 'I/J2)), 

which means that part 3 is true. 

part 2 to the correspondent group , ubgroup and homomorphism . On the other 

hand , C(<p1 x <p2, '1/Jt x 'I/J2) ~ C(-q51 x -q52, "if 1 x 7i2) holds by the commutativity of the 



diagram: 

K1 EB K2 

E 1 
Gl G2 cplxcp2,1jjlx![;2 
- EB - --t 
K1 K2 

H1 EB H2 

1 E 

G1 G2 
- EB
H l H2 

For orientable manifolds, we recall t he following results. 
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D 

Proposition 4.3.14. {26} A compact connected n-manifold M without boundary is 

orientable if and only if Hn(lv!) i isomorphic to Z (the group of integers). 0 

Corollary 4 .3.15. The real projective plane RP 2 is not orientable, but the Lens 

space L(5, 1) is orientable. 

Proof. The proof follows directly from Proposition 4.3. 14 since H2 (R P 2
) is isomor-

phic to Z2 , and H3 (L (5, 1)) is i omorphic to Z. D 

P roposition 4.3.16. (9} The product of two manifolds is orientable if and only if 

each of them is orientable. 0 

Example 4.3.17. Let f 1 g1 : L(5, 1) --t L(5 , 1) and /2, g2 : 5 1 
--t 51 be maps 

defined by !1 [r1ei01 ,r2ei02 ] = [r1ei601 ,r2ei02], 9I[z1,z2] = [z1 ,z2J, h(ei"") = ei6"", 

and g2 ( ei"") = ei3"". Let p, p : 51 
--t 5 1 be the covering maps defined by p(z) = z2 

and p(z) = z3 rc. pectively, and q : 53 
--t L(5 , 1) be the quotient map that defines the 
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lens space. Define f , g : L(5, 1) x S 1 -----+ L(5, 1) x S1 by f = ! 1 x h and g = 9I x 92· 

We have that q x p, q x p: S 3 x S1 -----+ L(5 1) x S1 are covering maps. Both f and 

g admit lifts J = h x h and g = gJ x 92 where h (ri e;o,, r2 ei02 ) = (rJ eiBO, r 2 ei02 ) 

h(z) = z\ g1 = 15J, and g2(z) = z2 , for z E S1
• Consider the commutative diagrams 

q l 

L(5, 1) 

. l q 

L(5, 1) 

lP 'Pl q x pl 

L(5, 1) X S1 

J.g 
---+ 

f,g 
---+ 

lqxp 

L(5, 1) X S1 

otice that t he pace L(5, 1) x S1 i a orientable connected closed smooth manifold 

and all maps considered are mooth. Moreover, the covering arc regular since the 

fundamental groups of L(5, 1), S1 and £ (5, 1) x S1 arc abelian. Our goal is to compute 

N(f, g) . 

• By Lemma 4.3.13, A (S3 X S1 , q X p) ~ A (S3 , q) EB A (Sl, p) ~ Zs EB z2 ~ zlO. 

Similarly, A (S3 X S1, q X p) ~ A (S3 , q) EB A (S1 , p) ~ Zs EB z3 ~ z l5 · Let w .>. , 

and f.L be the 5th, the 3rd, and the square primitive roots of unity respectively. 

Then, we can write that A (S3 x Sl, q x p) = ((w, f.L)) and A (S3 x S 1
, q x p) = 

((w, .>.)). We choo e the H - Reidemeister representatives among the members of the 

set {(J , (w1, .>.1)g)IO :Sl:S4 and O:St:S2}. Let0:Sk,l:S4and0:St:S2. 
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- -
Since h f-l = h and 92 f-l = 92, we have 

( 1, ( w1
, >.. t) 9) ( w\ f-l) = ( ]; x h ( w\ f-l) , ( w1

, >.. t) 91 x 92 ( wk !-")) 

( ]; wk x ]; f-l , w1 9t wk x >.. t 92 f-l) 

( J;wk x ];, w191 v.-·k x >..t92) = (1, (w1,>..t) 9) (w\lsl) 

( wk ]; x h w1+k ?11 x >.. t 92) 

(wk, l s1 ) (J; x];, (w1, >..t) 91 x92) 

= (wk lsi) (1, (wt , >..t) 9) . 
So we must choose 15 H - Reidemei ter representatives (1, (w1 >..t) 9) for 0 ~ l ~ 4 

and 0 ~ t ~ 2. The H-Reidemeister classes are 6 (w1,N) ( ee Definition 4.1.8 and 

Lemma 4.1.9), where 0 ~ l ~ 4 and 0 ~ t ~ 2. 

• Since The fundamental group of L(5, 1) x S1 is abelian, the numb r J only depends 

on the H - ielsen class. T hus, 

Since (1, (w1, >.. t) 9) is homotopic to (1, 9) and the fundamental group of L(5, 1) x S 1 

is abelian , it follows by Proposition 2.1.25 that 

NL(j, g)= 15 x N([, 9) . 
S(J, 9) 

(4.3. 1) 

• To compute S(1,9), parts (3) and (4) of Lemma 4.3.13 imply that 

and 

! (1,9) = l (h,9J) x l(h ,?h) = 5 x 2 = 10. 
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Thus, 

(4.3.2) 

The computation of N(j,9) and NEo(J,g) in this example depend on t he Lefschetz 

number of (J, 9) which we compute next. We refer t he reader to Chapter 4 of [26] 

for more information about the tensor product, t he external product, and the cap 

product. 

• By the Kunneth Formula for free chain complexes that 

Ha(S3 
X 5 1

) ~ H0(S3) ® Ho(S1
) 9:! Z ® Z 9:! Z 

Hl (S3 
X 5 1

) ~ H0(S3) ® H1 (51
) 9:! Z ® Z 9:! Z 

H2(S3 x S 1
) ~ 0 

H3(S3 
X 51

) ~ H3(S3) ® Ho(S1
) 9:! Z ® Z 9:! Z 

H4(S3 
X 51

) ~ H3(S3) ® HI(S1
) 9:! z ® z 9:! z 

and Hk(S3 x 5 1 ) 9:! 0 for all k 2:: 5 . Let a0 , a 1, b0 , and b3 be the generators of 

H0(S1) , H 1(S1), H0(S3), and H3(S3) respectively. Notice that a1 and b3 are the 

fundamental cia ses of 5 1 and 53 respectively. Then, b0 x ao bo x a1, b3 x ao, and 

re pectively, whu~e x here means the external product of the two homology clas e . 

Moreover up to ign b3 x a 1 i the fundamental class of 5 3 x 5 1
. Thus, we write 

( - 1)£ b3 x a 1 where i = 0 or i = 1, as the fundamental clas of 5 3 x 5 1
. On the 

other hand, let Dk(S1
) : Hk(S 1

) ----+ HI-k(S1 
) , Ds(S3

) : H 8 (S3) ----+ H3-s(S3), 

and Dr(S3 x 5 1) : Hr (S3 x 5 1) ----+ H4_,.(S3 x 5 1
) be the respective Poincare' 
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isomorphisms, where 0 ::; k ::; 1, 0 ::; s ::; 3, and 0 ::; r ::; 4. In addi t ion , let 

ao be the generator of Ho(sl) uch that D0(S 1 )(a0
) = a0 n a1 = a 1 

a l be the generator of H 1(S1
) such that D 1(S1)(a1

) = a1 na1 = a0 , 

bo be the generator of H0(S3) such that D0(S3)(b0
) = b0 n b3 = b3 , and 

b3 be the generator of H3(S3) such that D3(S3)(b3) = b3 n b3 = bo . 

Thu , we have Dk(S1)(ak) = a1_k for 0::; k::; 1 and Ds(S3)(b8
) = b3-s for 0::; s::; 3. 

Let us compute the image of b8 x ak, the external product of cohomology classes, 

under Ds+k(S3 x S 1
), where 0::; k::; 1, 0::; ::; 3, and 0::; s + k::; 4. In fact , 

(b8 X ak) 11 (-1)i (b3 X a1) 

= (-1l(- l )k(J- s) (Wnb3) x (akna1)) 

(- 1l+k(3-s) (Ds(S3)W) X Dk(Sl)(ak)) 

(-1)i+k(J-s) (b3-s X al-k). 

Put x(s, k) = i + k(3 - s). Hence, 

Since Ds+k is an isomorphism , we get that 

or equivalently 

(4.3.3) 

(4.3.4) 

(4.3.5) 

Now, we use Equations 4.3.3 and 4.3.4 (or 4.3.5) in order to compute the trace of the 

linear homomorphism 8£ = D4_£ o g* o D,~~£ o J.. for 0 ::; {::; 4. We show the work 



Dl (S3 
X S 1) 0 g 0 D [ 1 (S3 

X S 1
) 0 i.(b3 X ao) 

= D 1(S3 x S 1
) o go D [ 1 (S3 x S 1)(6b3 x ao) 

= 6 D I ( S 3 
X s 1) 0 g c D[1 

( S 3 
X s I) ( b3 X ao) 

= 6D1 (S3 X S 1 ) og ((- l)x(O,l)(b0 X a1
)) 

= 6 (- l)x(O,I) D1(S3 x S1) o 9*(b0 x a 1
) 

= 6 (- 1)X(O, I) D 1(S3 x S1)(b0 x 2a1
) 

12(-1)x(O,l)D1(S3 x S1)(b0 x a1
) 

12 (-1)X(O,l) (-1)X(O,l) (b3 X ao) 

12 (b3 x ao). 
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Thus, tr(83) = 12. Similarly, we get that tr (Go) = 2, tr(81) = 4, tr(82) = 0, and 

tr(G4 ) = 24. Therefore, 

• It follows that L (J, (w1, ,>._!) 9) =I= 0 for a ll t and l . Hence, NsD(f,g) = 0 and 

N(J,g) = ICoker(9#- J#)l . We have 1r1(S3 x S 1
, ((1, 0), 1)) ~ 7rJ(S1

, 1). If a 1 i the 

generator of 1r1 ( 8 1 , 1), by abu e of language we can wri te 

(9#- J#)(at) = (92# - ];#)(ai ) = 2al - 4al = - 2al . 

That i Im(9#- J#) = 2Z . Therefore ICoker(D'#- J#)l = I :
2

1 = 2 and (J, 9) = 2. 

• Finally, by Equations 4.3.1 and 4.3.2 

2 
N(J, g)= 15 x 2 = 15. 
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The next example is the main example in this chapter b cau e the manifolds 

involv d are non-orientable, and the covering transformations group do not have a 

prime order. In addition, this example show how our results are effective for non-

orientable manifolds. On the other hand, this example also show the way our result 

can be applied in the sense that we compute the Nielsen number of maps between 

non-orientable manifolds in terms of the Nielsen numbers of maps betw en orientable 

manifolds. 

Example 4.3.18. Let h 91 : RP2 
--t RP2 and h,92: S 1 

--t S1 be maps defined 

by !1 [(x,y z)] = [(-x,-y,z)], 91 = 1Rp2 , h(ei"') = ei12"', and 92(ei"') = ei3"'. 

Let p,p : S 1 --t S 1 be the covering maps defined by p(z) = z2 and p(z) = z3 

respectively, an i q : S 2 
--t RP2 be the quotient map that defines the projective 

plane. Define j , !J : R P 2 x S 1 
--t RP2 x S 1 by f = !1 x h and 9 = 91 x 92· We 

have q x p q x p : S2 x S 1 
--t RP2 x S1 arc covering maps. Both f and 9 admit 

lifts J = h x]; and g = g1 x g2, where h(x, y, z) = ( -x, - y, z) for (x, y, z) E S2 

!it= 152, h(z) = z , and g2(z) = z2, for z E S 1
. Consider the commutative diagrams 

q! 

RP 2 

lp fJl 
J,g 
--t 

where fi and gi are lifts of fi and 9i re pectively fori= 1, 2. H re th pac RP 2 x S 1 

is a nonorientable connected closed smooth manifold and all map considered are 

smooth. Moreover, the coverings arc regular since the fundamental groups of RP2 

and S1 and RP2 X S1 are abelian. 
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• By Lemma 4.3.13, A (S2 X S1, q X p) ~ A (S2
, q) EB A (Sl, p) ~ z2 EB Z2 . Simi

larly, A (S2 X S1, q X p) ~ A (S2 , q) EB A (S1, p) ~ z2 EB Zs ~ z6. Let w and A be the 

square and the 3rd , primitive roots of uni ty, respectively. Then, we can write 

and 

A (S2 
X S1

, q X p) = ((w, >-)) = { (d , .x.t) I T= 0, 1 and t = 0, 1, 2} . 

We find H - Reidemeister representativ from among the members of the set 

{ (J, (wr >.I ) 9) ! r = 0, 1 and t = 0, 1 2 } . Of course, we can a pply the same method 

as in t he previous example to how that we have ix Reid mei ter repre ntatives. We 

can however also use Corolla ry 4.1.21. Since the fund amental group of RP 2 x S 1 is 

a belian, the number J depends only on the H - ielsen clas . Since A (M) is abelian 

we have that L(J, (wr , >.I ) 9) i normal for each T = 0, 1 and t = 0, 1, 2. By Corollary 

4.1.21 , the number of H-Reidemeister representatives A qual 6. Notice that I = 4 

is t he only feasible value which gives an integer result . This means that ([, (wr , ;.t) 9) 

i a distinct H - Reidemeister representative for each r = 0, 1 and t = 0, 1, 2. ow, 

we have 

NL( f , g)= t t N([, (wr >.1 ) 9) . 
r=O t= O S(f , (wr , N) 9) 
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homotopic to (J, ( - 15 2, ls2) 9) for each t. Thus, 

L(J, g) (4.3.6) 

= (4.3.7) 

ThenextstepistocomputeS(j,g)andS(J(-ls2,ls2) 9). We tartwithS(J,g). 

• Since S 2 is simply connected, ip(h , 91 ) i the only iels n class for the pair 

(h,9t)· Thus, 

• If u i the generator of 1r1 (S1), we get that (g2#- f 2#) (u) = 3u - 12u = - 9u. 

Thi implies that K eT (92#- h#) = 0. Hence, J(h, 92) = lj (I( eT(g2#- h#)) I = 

1. On the other hand , 

• Parts (3) and ( 4) of Lemma 4.3 .13 imply that 

and 



167 

Thus, 

(4.3. ) 

We don't need tu compute S(J, ( -152, 152) 9), ince, as we will soon ce, N(J, ( -1s2, 1s2) 9) = 

0. 

N xt , we compute N(J,g) and N(J, (-1s2, 1s2) 9). In order to give a variety of 

computation methods, we will not use the Lefschetz numbers of the H -Reidemeistcr 

representatives or Jiang space methods as in the previou examples. Instead, we will 

use the index formula for product maps. 

Each Nielsen clans of (J, 9) has the form 

Ak= {((0,0, 1) 1}),((0,0,- 1) ,/i)} 

where 1-l is the 6th primitive root of unity, and k = 0, 1, 2, 3, 4, 5. Furthermore, since 

index(h, 91 ; { (0. 0, 1) , (0, 0, - 1)}) = 2 (See Example 3.1.14), and {I-lk} i es entia! for 

each k, w have 

Thus, we have 6 es entia! class for (J, 9). Therefore, N (J, 9) = 6. 

On the other hand , each . ielsen class of (J, ( - 15 2, 152) 9) has the form 

wh re k = 0, 1, 2. 3, 4 5. Since ind x(,h, 91 ; { (x, y, O)l x2 + y2 = 1}) = 0 (see Example 

3.3.2), the formula of index of product maps gives that 
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Thus, there are no essential classes for (J, ( - 15 2, 152) 9). That is , 

Substitu t ing N(J,g), N(J, (-152, 152) 9), and S(l,g) in Equation 4.3.6 gives that 

6 
L(J, g)= 3. 2 + 0 = 9. (4.3.9) 

The last step is to compute NED(! g). For this purpo e we study the exis

tence of the e sential defective classes of (f. g) for which J is even. Since the 

pre-image of each such class by the covering map must be a union of inessential 

clas es of the lifts of (! , g) , we focus on the ielsen clas es of (!,g) that corre

spond to the H - Reidemeister representatives of the form (j,(- l 52,N) 9), where 

t = 0, 1, 2. Fixing t, we have shown in Example 3.3.2 that q( {(x2
, y2

, O)l x2 +y2 = 1}) 

is inesential class. That i l·indl(h, g1;q({(x2 ,y2 ,0)I x2 +y2 = 1})) = 0. The 

semi-index formula for product maps implie that lindi(J, g; A) = 0 for any Niel en 

clas A c q x p ( ~(J, ( -152, ,X.t) 9)). That is, there do not exi t essential Nielsen 

classes which correspond to the H - Reidemei ter representative (1, ( - 152 .X.t) 9) 

where t = 0, 1, 2. Hence, NED(!, g)= 0. 

Finally, we get that 

N(J,g) = NL(J,g) +NED(!, g)= 9 + 0 = 9. 
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