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Abstract 

The main contribu tion of this the is is the successful development of a vector floating 

point pro essing unit for high accuracy science computing. For these numerically­

intensive applications, vector proces ing offers simple and t raightforward parallelism 

by execut ing mathematical operations on multiple data elements simultaneously. The 

simple control and datapa th structures of vector processing enable the embedd d 

computing system to attain high performance at low power. 

This vector floating point processing unit includes: a vector register fi le, vector 

floating point arithmetic units, and vector memory uni ts. The cent ral module, a 

vector r gister fil , is divided into twelve lanes. One lane contains 16 vector registers, 

each including 32x32-bit element , a nd is connected to a. fl oating point adder and a 

floating point mul t iplier . By modeling the multi-port register file using configurable 

block RAM on Field Programma ble Gate Arrays (FPGA) target, vector register files 

can efficiently obtain data from external memory and feed data to different ari t hmetic 

uni ts simultaneously. Utilizing the quick carry out path and embedd d multiplier 

macro uni t , the vector floating point arithmetic units can run at over 200 MHz. A 

fl ag r gi ·tcr is used to indicate the calculation sequence for t he sp cific computing 

model. 1oreover, t he embedded Power PC processor not only can easily control 

the calculation flow, but also can support an embedded operat ing sy tern to extend 

a broad range of applications. The prototype is implemented on Xilinx Virtex II 
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Pro devices, and a peak performa.nce of 4.530 GFLOPS at 18 .76 MI-Iz has been 

achieve I. 

First, we pre ent a brief introdu tion to the floating point arithmetic operations , 

including addition , multiplication and multiplier-adder-fu eel. one! the architec­

ture of the vector processing unit and a detailed description of vector function units 

are introduced. foreover , for a specific comput ing application, the appropriate ov r­

lap execution scheme is discussed. In the end, t he performance of each component is 

analyzed , and the time and area ana.lysi of whole system is provid d. 
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Chapter 1 

Introduction 

From the early 1960s, the vector proce ing model wa u eel to ope with data­

intensive a.pJ lication in the scientific omputing area. The basi oncept of vector 

processing is fairly simple and straightforward . A large number of arithmetic units 

(or co-proce sors) a re used to execute mathematical operation on mul t iple data el­

ements imultan ously. Although many upercomputers initially u t ilized vector pro­

ce sor and continually broke t he performance record through t h 19 0 a nd into the 

1990s, the scalar microprocessor-based systems swiftly replac d vector machines in 

t he early 1990s, because they approa. h d or even exceeded t he p rformance of vec­

tor supercomputers at much lower cost·. However , the ve tor a.r hi tccture recent ly 

reemerges in some today's commodity PU designs such a IB I's II proces or, b -

cause t he data. pa ra llelism is always an efficient scheme for t he numerically-intensive 

application . 

As t h number of transistor on integrated circui ts has increased rapidly, an f­

fi cient and cheap vector proce sor an be implemented using th advanced silicon 

C lOS fa brication technology. Field Progra mmable Gate Arrays (FPGAs) is one of 

these mature technologies. The modern FPGA not only can easily implement com-

1 



CHAPTER 1. INTRODUCTION 2 

plex logic function , but also provide rich macro function units , such as digital signal 

processing module , on-chip block memory, input/output (1/ 0 ) controllers , or even 

a complete cala r processor. Moreover , most or all of the functions of a complet 

digital electronic system can b implem nted on this powerful FPGA ch ip. Utilizing 

mature C 10S t chnology, the pecific algorithm are vectoriz d , optimized, and im­

plemented on FPGA platform. For gen raJ-purpose applications, the vector-thread 

(VT) architectural paradigm [1] has b come important for a ll-purpose embedded 

computing. VT architectures unify the vector and multithr aded execution models. 

A la rge amount of structured parallelism can b implemented on VT architectures. 

The ·imple control and datapath t ructures of vector proc sing enable the embedded 

computing system to attain high performance at low pow r. In Lhi the is, a vector 

floating point processing unit is imp! mented on Xilinx FPGA . 

This chapter wi ll introduce the general concept , and discuss a. uitable parallelism. 

The appropriat implementation method will be also dis ussed in the end of this 

chapter. 

Section 1.1 r vi ws floating point number representation and shows the mam 

advantages of IEEE 754 standard for floating point operations. 

Se tion 1.2 compares various forms of microproces or parallelism methods, includ­

ing in truction-level para llelism (Pipeline), thread-level parallelism (Out-of-Order ), 

and vector data parall !ism. 

Section 1.3 analyzes different implementation methods, including Application Sp -

cific Integrat d Circuit (ASIC) and FPGA. Although th ASIC implementation will 

be fas ter and more energy-efficient , the FPGA pla tform leads to a more flexible o­

lution and can be a.sily builL as an mbedded system for a. much wider range of 

applications. 

Section 1.4 summarizes the main cha llenges in our research work and presents 
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Figure 1.1: Floating point number structure 

the organization of this thesis . 

1.1 Basic Concepts of Floating Point Number 

F loating point operations not only are t he basis for scient ific and engineering com pu-

tation , but also are ubiquitous in 3D applicat ion . The most common floating point 

number representation is the expon nt-mantissa method. In this way, a wider range 

of numbers can be represented compared with the fixed point representation. In thi 

chapter , t he IEEE 754 floating point numb r standard [2] wi ll be introduced and th 

main advantages of this representation fo rmat will be discu sed. 

Following the IEEE 754 standard , floating point numbers represent a subset of real 

numbers using three parts: a sign bit , an exponent part, and a mantissa part. Figure 

1.1 show the structure. For different application requirements, IEEE 754 standard 

defines four closely-related formats: single precision, double precision ingle-extended 

precision, and double-extended precision. For four formats , the main difference is the 

width of the exponent part and the fraction par t, and the hidden bit is also different. 
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Table 1.1: IEEE 754 Floating Point Number Formats 

Formats Total bit Sign Exponent Significand Hidden bit 

Single 32 1 23 1 

Double 64 1 11 52 1 

Single extended > 42 1 - - none 

Double extended 80 1 15 64 none 

The actual value of the floating point number is obtain d by multiplying the sign , 

the mantissa, and the exponent part. A floating point number can be described as 

F = s X m X be, ( 1.1 ) 

where s lenotes the floa ting point number sign , e stands for the exponent value, b is 

the base of exponent 1 art , and m stands for the mantissa part. ote that mantissa 

part includes the hidden bit (only if b = 2). 

For instance, 

3E2BDA28 (hex, IEEE 754 single precision) 

= 0 01111100 01010111101101000101000 (binary) 

= (1.01010111101101000101000)2 X 2{01111100- 01111111 )2 

= 0.167824 (dec). 

Wh n the expon nt is non zero, the hidden bit equals on , a nd the mantissa value 

is in the normalized format; otherwise, this bit equals zero , and the mantissa value i in 

t he denorma lized form at. Following the IEEE 754 Standard , a ingle precision number 

is consisted of sign bit , exponent, and s ignificand . The normalization format mean 

t he hide bit of significand is qual to 1, and the value of this number is represented 

by (l.xxx ... x x 2e). For t he partial result of floating point op rations, the value may 
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be form ed as (1x .xxx ... :r x 2e) or (O.xxx ... x x 2e). In this case, we have to a pply 

th post shift ( 1 bit right shift or several bits left shift) and appropriate exponent 

adj u tment to adj ust the result and generate the normalization format according to 

(l..?;XX ... X X 2e) . 

In some special ca. es, the re ult i very small number and the value of expon nt 

part is less than zero. To represent these small values in a certain rang , we can use 

the de-normalization format. In this way, w will et the exponent part as zero, and 

right shift the significand part to form a. de-normalization format as (O.xxx .. . x x 2°) . 

To urn up , for both normalization and de-normalization , we hould check the 

most significand bit of the significa.nd part fir t, and then take appropriate shifting 

operation on the significa.nd part , and adjust the exponent part. 

The first bit is the sign bit to indicate the sign of floating point numbers. The 

exponent part is reiJresenLed in a bias format. For the single precision representation, 

the exponent i bia d by 127 (2e- t - 1, e is the number of the exponent bits), and 

is used to represent both tiny and huge values. The use of a biased exponent format 

makes omparison ea y, because we need not use an extra. ign bi t for Lhe exponent 

part. If the exponent uses the usual representation for sign d values, like the two 's 

complement format , the time complexity for comparison would be imilar to the 

carry lookahead adder. Floating point numbers are equal if and only if their every 

corresponding bit is identical. Leaving out the exceptional values, compari ons on the 

bit patterns can directly determine the rela tive magnitude of floating point numbers. 

To tolerate error , t h IEEE 754 standard also define a set of exceptions. The 

exception formation can be summarized as in Table 1. 2. During the float ing point 

number ca lculation , some exceptional events may occur: 

• Overflow, which arises because the calcula ted result is too large and exceeds 
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Table 1.2: IEEE 754 Exception Definitions 

Type Exponent Mantis a 

Zeroes 0 0 

Denormalized number 0 non zero 

ormalized numbers 1 to 2e- 2 any 

Infini ties 2e - 1 0 

Na s 2e- 1 non zero 

the range of the IEEE representation. The igned infinity valu wi ll be output 

and an appropriate exception sign al wil l be produced. 

• Underflow, which arises because the calculation resul t is too mall and under 

the range of t he IEEE reprc entation. The denormalize l value will be output, 

and an appropriate exception ignal wi ll be produced. 

• Zerodivide which arises when v r a divisor is zero. The igned infinity value 

will be output, and an appropriat exception signa l wi ll be produc d. 

• Operand err r, which arises whenever any operand to an opera tion is a ot a 

umb r ( a ) or the resul t is a n imagina ry, such a sqrt( - 1.0) or log( - 2.0) . 

The igned a value will be output, and an appropriate x I t ion ignal will 

be produced . 

With t he floating point number representation , a fl oating I oint a rithmetic op­

era tion has to complete more tasks t han the corresponding fixed-point a ri t hmetic 

operat ion, such a sign bit determination , exponent calculaLion and adju tment , and 

mantissa part calculat ion and adju tment. Each part r qui res eparate combinational 
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logic uni ts or fixed-point operation components . Therefore, t he implementation of 

t he floating point arithmetic operation is much more complicated than corresponding 

fixed-point ari thmetic operat ion. To speed up the floating point computing process, 

we not only should design independent floating point execution uni ts, but also should 

uti lize d ifferent para llelism methods to optimize the computing syst m archi tecture. 

1. 2 Parallelism in Microprocessors 

For com1 licated scienti fic applications, such as floating point number operations in­

t rodu ed above, the fund amental ways in which advances in technology improve per­

formance are parallelism and locality [3]. This section wi ll introduce the common 

methods employed in microprocessors to implement pa.ralleli m and locali ty im prove­

ment methods. 

1. 2.1 Instruction-level Parallelism 

The basic stages in data proce sing are: loading from memory to r gister , executing 

in arithmetic unit , writing back to register , and storing to memory. Each stage is 

generally performed in a single clo k cycle. If the e stages use different function units 

without hazard , or if the system can provide enough function re ourcc to execute 

t hese tasks, these stag s can be pipelined in a straight forward manner , ·o t hat t he 

fina l result can be acquired a lmo t every clock cycle after the initial latency. This 

overlap execution mode is a classical mode of in truction-level parallel ism. 

Moreov r , t he complicated floating point a rithmetic operation can be easily di­

vided to mult iple sub-function stages, becaus each floating point operation need to 

cope wi t h individual sign , exponent , and mantissa. parts. Thes sub-execution stages 

can also be pipelined and will speed up the whole execution process. 
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The main advantage of the pipelined structure is reducing the total latency of 

a long data queue from input to out put. However , the pipelined structure can not 

reduce the latency for a single task. The pipelined structure improves the throughput 

of the entire workload, a nd make each function unit work more efficiently. 

1.2.2 Thread-level P aralle lism 

The pipelined tructure makes the different function units to operate simultaneously. 

However, a. tructural hazard or data. dependency will cause the stall of pipeline. 

Meanwhi le, the increased t hroughput aggravates the speed gap between processor 

and memory. The function units in the processor still have to wait to be fed data.. 

Increasing the numb r of execution units per processor can directly map multiple tasks 

to the multiple execut ion uni ts . This t rend has resulted in modern microprocessor 

design to integrate multiple cores on a chip, which can exploit thread-level parallelism 

by having sufficient execution resource [4] . 

Anoth r method is the out-of-order execution , which provides an efficient control 

scheme for mult iple threads within a process. In this way, instructions a r sched uled 

dynamica lly and a llowed to complete out of order to keeJ function unit busy. In 

general, out-of-order execution is an exten ion of instruction level pa.ralleli m , because 

the crucial property is the improvement of fun ction unit efficiency. On the other 

hand , out-of-order execution requires sophisticated branch pr diction techniques and 

sophisticated caches . These as o iate units occupy considerable area in a modern 

processor and consume extra. energy. 
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1.2.3 Vector Data Paralle lism 

Instruction- level parallelism and thread-! vel para llel ism require a more complex con­

trol system to avoid structural hazard a nd data dependency. A more straightforward 

parallel mode is data parallelism, which is where the arne operation is performed 

imultaneously on a set of data elements [5]. A vector processor includes multiple 

homogeneous function units to operate on multiple data. Comparing with a scala r 

processor , the number of instructions will be reduced and the instruction decoding 

time will be also reduced. Therefor , vector proc ssing can significantly improv th 

execution effi ciency. 

However vector processing requires a certain amount of time to load data sets 

before it fill s the pipe. To reduce the loading t ime , an appropriate vector register file is 

designed for fast access between sequence operations. A batch of vector operations will 

be pipelined , and this technique is called vector chaining. In this way the data sets can 

he held in regist r fil s, and the overall performance will be dramatically improved. 

Indepcnd nt para llel datapaths can be applied to most scient ific comput ing models, 

a nd vector processing have very good cost/ performance on data parallel codes. 

Figure 1.2 shows t he difference betw en t he three types of parallelism. Within 

each diagram, each box represents one instruction, and each shape within a box rep­

resents one operation. Boxes are grouped by in t ruction stream. For Instruction-level 

parallelism, the possible interactions between concurrent in truction grows quadrat­

ically with the number of parallel instruction . Thread-level parallelism incurs the 

expense of duplicating instruction management logic for each instruction stream, and 

a lso suffers overheads for inter-thread synchronization and communication [5] . There­

fore, we ut ilize a pipelined structure to speed up t he floating point ari t hmetic uniL, 

a nd usc th vector data pa.rallcli ·m to improve the efficiency of the entire comput ing 
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• • r • 

Time • ~ 
l 

... . 

I • • ---< ,----, • ~ .. , . 
Instruction Thread Vector 

Level Level Data 
Parallelism Parallelism Parallelism 

Figure 1.2: Different forms of machine pa.ra.llelism. [5] 

process . 

1.3 Hardware Platforms 

In the previous section , a. brief overview of da t a. parallelism has been provided . An-

oth r important issue in the development of the vector operation unit is the proper 

choice of hardware platforms. Current ly, most popular hardware pla tforms include 

FPGAs and ASICs. This section will provide a. brief discussion of the features and 

applications of different hardware platforms. 

1.3.1 Application Specific Integrated Circuits (ASICs ) 

Application Specific Integrated Circuits (ASICs) are employed in the fully customized 

hardwa re a pproach which heavily focuses on part icular application . A functional 

descrip t ion of digital ASICs will be completed first using a hardware descript ion 

language (HDL), such as Verilog or VHDL, and this process is usually called the 
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Register Transfer Level (RTL) design. The logic synthesis tools can compile the RTL 

design and generate a gate-level netlist, which is next us d to place the cells using 

a placement tool. During this design process, several optimization methods will be 

used to improve the performance, and will be subjected to specified constraints. The 

flexible routing and placing technology reduces the interconnect cost between differ nt 

function uni ts. 

ASICs are generally used to achieve low power consumption and high speed, b -

cause of reduced area and increased speed . However, non-recurring engineering costs 

and the complexity of design tools not only increase manufacturing and design time 

and cost, but also require the designer to possess high r design and optimization 

ski lls. 

1.3.2 Field Programmable Gate Arrays (FPGAs) 

Field P rogrammable Gate Array (FPGAs) are employ d in semi-customized hard­

ware approach which consists of programmable logic components and programmable 

interconnects. In most modern FPGAs, the logic components are implement d by 

RAM-based look-up table (LUT) and can be programmed to perform various logic 

functions. These RAM-based logic components need to load the fun ction configura­

tion during boot-up process, that usua lly takes mantissas of a second. A hierarchy 

of programmable interconnects connect logic components to implement more com­

plex logic functions. As the gate density on integrated circui ts is increased rapidly, 

modern FPGAs not only provide embedded memory module to build fast register or 

on-chip memory, but also implement embedded processor blocks within the FPGA 's 

logic fabric, which only occupy a small die area and consume low power. 

The RTL design and synthesis process for FPGA is similar to the design for ASIC. 
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Based on t chnology-mapped netli ts , the FPGA company's place-and-route software 

will va lidate the map, place and route resul ts via timing analysis , simulation , and 

other v rification methodologie . After the de ign and validation proce , t he binary 

configuration file is generated and can be downloaded to the FPGA chip via a. J oint 

Test Action Group (JTAG) debug port. 

The FPGA implementa tion usually runs slower than an ASIC realization , becau e 

the programmable interconnect module cannot always provid an efficient intercon­

nect solution as in the ASIC platform. However, the FPGA design could be an itera­

tive process, and can be easily re-progra mmed after debugging. T hese advantages not 

only reduce development time, but also provide a great flexibility for various applica­

t ions. The flexibility has evolved to exploit particular forms of parallelism common 

to certain classes of embedded applications. 

For high performance computing applications , FPGA architecture can offer in­

herent parallelism of t he logic resources. A fast register file can be buil t using the 

embedded memory blocks, and a lot of ingle preci ion floating point units can be 

implemented on the FPGA. Considering the c advantages of FPGA, the FPGA is 

well sui ted for implementing the vector processing paradigm. 

1.3.3 Embedded Systems 

With mbedded processors , mu ltipliers , and block memory, an FPGA chip may con­

tain over 400 million transistors. Harnessing a ll this raw computing power requires 

that the developer 's attention moves beyond logic function design into parallel com­

puter system archi tecture. Moreover, t hese hardware components and appropriate 

software modules compose an embedded sy tern , which can be optimized for one or 

a few dedicated applications. 
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The embedded syst m design process incl udes three steps: 

• Architecture onfiguration, which contains target chip selection , base ystem 

building, local bus design , memory on chip configuration, and I/ 0 interface 

design. This st p will determine the system architecture and define the interfac 

between different compon nt . 

• Hardware component design , which contains control unit de ign and function 

uni t design. These hardwar component can be implemented and tested on the 

FPGA platform independ ntly, and then imported to the mbedded system. For 

each component , a wrapper module will be used to customize t he interface and 

connect to t he local bus. 

• Software applicat ion design, which conta ins embedded operating system con­

fi gurat ion , board support package (BSP) development, and application design. 

The software application an be loaded in two ways: initializing Block RAMs 

and running under an embedded operating system. The first approach is faster, 

because the binary code of the software a pplication wi ll be loaded to a memory 

space wit h the hardware configuration. The second method needs operating 

system support and will be more Aexible for debugging. 

1.4 Motivation and Organization of the Thesis 

Many science and engineering applications require high computational accuracy and 

flexibi li ty. For instance, the Earth Simulator contributes to prediction of environ­

mental changes by analyzing the vast volume of the observed data.. A fa t floating 

point comput ing sy tern can provide strong support for these applications. Moreover , 

t he vector-thread (VT) a.rchitectm al pa radigm [1] has become one of the new ways 
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to implement all-purpo e embedded omputing. VT archi tectures unify t he vector 

and multithr aded execution model . A large amounts of structured parallelism can 

be imp! mented on VT architectures. The simple control and datapath structures of 

vector proce sing enable the embedded computing ystem to attain high performance 

at low power. 

The main purpose of this thesis is to study a vector computing scheme for floating 

point operations. The study of vector data parallelism for floating point number com­

pu t ing model is very challenging. T he challenging objectives ar : 1) high t hroughput 

of the floa ting point arithmetic operations, 2) efficiency of local torage access, and 

3) chain ing between a ll function uni ts a nd registers. 

In particula r , t he floating point arithmetic operation arc t ime consuming for 

a ny processor. To minimize the crit ical path delay, quick carry chain and embedded 

multiplier arc ut ilized in the FPGA implementation . 

In order to easily access data on chip , a vector regi ter file is desirable. In this 

t hesis, we also proposed a generic multi-ported register file structure, which can effi­

cient ly load data from the local bus and provides different data elements to multiple 

operat ion units. 

To fmthcr improve the performance of the proposed vector floating point pro­

cessing uni t , we propose several design improvements for FPGA implementation. 

The synthesis results show that the performance is satisfactory in ma ny numerically­

intensive applications , uch as the Ea rth Surfac Simulation Model. 

The rest of this thesis is organized as follows: Chapter 2 presents the basic floating 

point ari thmetic units , including Adder, Multiplier , and Mul t iply-Add-Fused mod­

ules. In this haptcr , we not only present t he structure and algorithm for these fl oating 

point ari t hm t ic uni ts , but also discuss several optimization methods and compare 

these different archi tectures for t hese fast lesigns. A detailed d iscu sion of the vector 
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data para llelism scheme will be given in Chapter 3. The vector archi tecture will b 

introduced fir t , and the heart module, vector register fi le, will be el i cussed in detail. 

For the common floating point operations with two operand we at o present the two 

loader scheme to improve the access performance. Implementa tion and opt imization 

on FPGA devices will be introduced in C hapter 4, and two FPGA platforms of t he 

leader manufactures , Altera and Xilinx , wi ll be compared. Performa nce analysis and 

further discussion will be given in Chapter 5. For each floating point arithmetic units, 

the timing a nalysis wi ll be presented. The extensibility of whole vector floating point 

uni t wil l be eli cu sed , and the bandwidth requirement for our design will be also 

presented. Chapter 6 concludes the thesi · and propose fu ture research direction . 



Chapter 2 

Floating Point Arithmetic 

In th is chapter , we will introduce three important floating point number ari thmetic 

units: t he adder , the multiplier , and the add er-multiplier-fus d unit . In the last 

section the extension to a complex floating point operation will also be discussed . 

2.1 Floating Point Adder 

F loating point addition is a fundam ental operation in many scien tific a nd engineering 

applications. The addition process for two floating point numbers is shown in the 

following expression: 

(s, X m 1 X be1
) ± (s2 x m2 x be2

) 

( 1 X m 1 ± S? X ~) X be1 

- be1- e2 
(2. 1) 

A floating point adder (FADD) consists of a fixed-point subtracter fo r exponents, a. 

fixed-point adder for aligned significands, a ba rrel shifter for potent ia l pre-shi fting 

(alignment) and post-shifting (normalization) , a rounding module, and support ci r­

c ui t ry for sign detection and exponent adjustment. Compared with fixed point ad-

cli t ion, fl oating point addition is more complex becaus differences in the exp onent 

16 
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pa rt require alignment hifting before the mantissa addi t ion, and the subtraction of 

close numbers leads to potentia l left shifting for the result normalization. In detail , 

floating point addition is composed of th following six steps: 

Step 1. Expon nt ubtraction 

(2.2) 

The difference between the exponents will be u ed to align the mantissa pa rt of th 

maller operand. A fixed-point subtracter is used to generate t he subt raction result, 

and the result shou ld be posit ive value. 

(2.3) 

When we complete the subt ract ion , we can easily determine which exponent va.lu is 

the larger one as shown in Eq. 2.3, and this exponent value will be set a.s the partial 

exponent result . 

St p 2. Mantissa alignment 

The barrel shifter[6] is used to quickly align the mantissa. prut. The barrel shifter 

module consi ts of a multiplexer array and can provide the fast hift operation for the 

preshift and postshift modules. The compact barrel shift r , with the encoded control , 

reduces the critical path because it contains few multiplexers. For instance, an 8-bit 

left barrel shifter is shown in the figure 2.1 , which includes 24 2-to-1 multiplex r . 

The delay for the -bit left shifting is three I vel delay of the 2-to-1 multiplexer. 

Step 3. Fixed-point number addition and leading zero ant icipation. 

The carry lookahead adder (CLA) is used for fixed point number addition, and 

the Leading Zero Anticipator (LZA)[7] is used for detecting the post hi[t I its in the 

parallel mode. To reduce the critical path delay, the key module of t he floating point 

adder is the leading zero anticipator, which can predict the left-shifting bits in parallel 
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Figure 2.1: Multiplexer-based 8-bit Barrel Shift Circuit 
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Evaluation cell Buffer cell Buffer cell 

MSB I.Sfl MSB .. I.SB 

Lookahead Adder Leading Zero Anticipator 

Figure 2.2: Im plem ntation sequence of CLA and LZA [7] 

mode. The LZA operates in the opposite direction from the carry lookahead adder , 

and its sch me is similar to the parallel prefix compu tation [8]. Figure 2.2 illustrates 

the implementation s quence of CLA and LZA. 

The LZA can directly determine the number of leading zeros or ones from the 

addition r suits of two input operands. Thi process is building a 1-string fo llowed by 

a 0-string, and an encoder or priority encoder yields the index of the leading 1. The 

P , G , an~ Z signals describe the bit to bit relation of two input operands, A and B. 

The definition is following: 

P = A t!B B , 

G = A • B, 

Z = A+ B, 

The following four cases provide the leading one/ zero resul t of mantissa addition . 

Case1 : A > 0, B > 0, A+ B > 0 

A 0 ... 00 ... 010001 .. . 

B 0 ... 00 ... 000110 .. . 

Z. .. ZZ .. .ZP ZP. .. Carry= 0 

A 0 ... 00 ... 0100100 ... 
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B 0 ... 00 ... 0111010 ... 

Z .. . ZZ .. . ZGPP ... Carry = 1 

Case2: A < 0 B < 0, A + B < 0 

A 1.. .11.. .100000010 .. . 

B 1 ... 11 ... 110000101 .. . 

G ... GG ... GPZZ ... Carry= 0 

A 1.. .11.. .101100 .. . 

B 1.. .11.. .111100 .. . 

G ... GG .. . GPGG .. . Carry= 1 

Ca e3: A > 0, B < 0, A+ B > 0 

A 0 ... 00 ... 01000001010 ... 

B 1.. .11...01000100101... 

P ... PP ... PGZZ ... ZP ... Carry = 0 

Ca.se4: A> 0, B < 0, A+ B < 0 

A 0 ... 00 ... 0111111000010 .. . 

B 1.. .11.. .0111011000100 .. . 

P ... PP ... PZGG ... GP ... Carry = 1 

20 

F igur 2.3 shows the finite-state diagram. The state transition represents a ll 

possible bit to bit relations described above. 

Following t hi fini te state diagram , a component is constructed to generate the 

characteristic string, a nd an encoder is used to count the number of leading ones or 

zeros. 

Step 4. Norm alize significa.nd and aclju.t exponent. 

The normalization for the addi t ion resul t ha.s two possibilitie : one is a. 1 bit right 

shift for th carry out mode; t he other i a multiple bit left shift for close number 

subtraction. For each shift operation, the appropriate adju tment will a lso be done 
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Adjust Encode I\ Adju~t Encode 

G; 

Figure 2.3: Finite state diagram of LZA (modified from a picture in [7]) 

Table 2.1: The Scheme of Rounding to The earest Even Number 

Origin ... z - l+ l z _t G R s 
lbi t right shift ... z - l+2 z - l+l z _t G RVS 

lbit left shift ... z _l G R s 0 

After Normalization ... z - l+ l Z _t z - l- 1 z-l-2 z - l- 3 

on t he partial exponent resul t. 

Step 5. Rounding, normalize, and adjust exponent. 

The rounding module converts intermediate addition results to lower-precision 

form a ts for storage or output. After the first normalization and potential left shifting, 

the rounding scheme is used to adjust the last bi t of the mantissa. and can ca.u e 

adjustment of exponent. Three addi t ional digits are kept and can potentia lly affect 

the rounding resul t. We have the following format output of the mantissa adder: 

G: Guard bit 

R: Round bit 

S: Sticky bit 

Table 2.1 shows the nearest even rounding scheme [9]. The extra. 3 bits at the 

right arc adequate for determining 1 roperly rounded result . 
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The algorithm for nearest even rounding is as follows [9]: 

i f Z-1-1 = 0 or Z_t = Z-t-2 = Z - t- 3 = 0 then 

do nothing; 

else 

add 1 to mantissa; 

endi f ; 

22 

If the potentia.! add one operation causes a carry out, the 1 bit right shift and 

appropriate exponent adjustment will be done. 

Step 6. Sign detection and set flag for exception. 

The Ia t step is sign detection and exception detection . In the worst case, we need 

to compare both the exponent part and the mantissa. part to determine th sign bit . 

For error tolerance, an extra logic module will be used to generate the appropriate 

exception signals: overflow, underflow, or Na. occasions. The generic scheme of the 

floating point adder is depicted in Figure 2.4. 

If it is not necessary to economize on hardware, the dual pa th design can be used 

to reduce one shift step from the generic design , because the pr shift and postshift 

a lways occur in different occasions. Figure 2.5 shows the difference between the single 

path design and dual path design. The shaded module indicates t he slow part in the 

critical path. The single path design includes three slow parts in the critical path , 

but the dual path includes only two slow parts . 

2.2 Floating Point Multiplier 

In contrast to the floating point adder , the algorithm of a floating point multiplier 

(F 1UL) is quite simple. The multiplication process is described by the following 
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Figure 2.4: Block diagram of a floating point adder/ ubt racter (modified from [9]) 
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Figure 2.5: Block diagram of t h single path and t he d ual path d igns (modifi d 

from a picture in [9]) 
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Figure 2.6: Block diagram of a fl oating point multiplier (modified from a picture in 

[9]) 

expre sion: 

(2.4) 

A floating point mul t iplier includes fi ve modul s: exponent adder , fixed point mul-

t iplier , rounding, normalization , and a support module to decide t h sign bi t and 

adjust the exponent . The arithmetic block diagram is illustrat -d in Figure 2.6. 

The fix d point multiplier occupies a lot of die area and caus s a long delay in 

t he critical path , because fixed point multiplication is equivalent to mul t i-operand 

addi t ion. The carry save adder (CSA ) consist of several 1-bit full adders each of 

which computes a ingle sum a nd carry bit based solely on th corresponding bit . 
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In thi way, th three input numbers (two operands and carry in number ) can b 

reduced to two numbers , and the carry adder t ree can redu e the multi-operand to 

two operands. The Wallace tr e [10] i one particular stru tur of the CSA trees. 

Thi · structure reduce the number of op rands in the first ta.gcs. A carry lookahcad 

adder will be u eel in the last stage to add the last two operand and generate the 

final mul t iplication r s ui t. For the single preci ion floating point number, the fixed­

point mu lt iplier part is a 24-bit multiplier. Using the Walla Ttcc structure, the 

compression proce includes 7 steps to r duce 24 operands to 2 operands, hown in 

the following pro ess: 

24 --+ 16 --+ 12 --+ --+ 6--+ 4 --+ 3 --+ 2 

In a fixed point multipl ier, th digits of operand determine the numb r of op­

eration yclcs. A higher radix numb r repre ·entation lead to fewer digit , and t he 

reduction in number of cycles can simplify the CSA Wallace tr c. T he radix-4 Booth 

code[ll] i an ffici ntly method to reduce t he height of the Wallac tr e and shorten 

t he cri t ical path delay. 

When multiplication is done in raclix-4, th two bits (xi+ 1xih are used to d cide 

the multiple: Ox , 1x , 2x, or 3x. However , computing 3x op rand n eels an extra 

add ition operation . A possible solut ion i. adding - 1 x and send a arry of 1 into 

next racl ix-4 digit of the multiplier. In t his way, the rad ix-4 Booth encoding method 

JS hown in Table 2.2. 

U ing the raclix-4 Booth encoding, the initial number of addition operations is 

red uced from 24 to 12, but some add ition operations require the arry-in bit. There­

fo re, an extra partial prod uct is us d to collect these carry-in bit . The total initial 

number of addition operations is 13 and the compression pro e s arc: 

13 --+ 9 --+ 6 --+ 4 --+ 3 --+ 2 

T here a rc only 5 steps in the array, and Figure 2. 7 show · th 5 tage Wallace Tree. 
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Table 2.2: Radix-4 Booth Encoding 

B i+I Bi B i-1 Encode Gin 

0 0 0 0 0 

0 0 1 A 0 

0 1 0 A 0 

0 1 1 2A 0 

1 0 0 -2A 1 

0 1 1 2A 0 

1 0 1 -A 1 

1 1 0 -A 1 

1 1 1 0 0 

For the n-bit traditional multiplier, t he time complexity is nlog(n) , where log(n) is 

the time compl x ity of the n-bit lookah ad adder. Utilized the radix-4 Booth coded 

Wallace tree structure, the t ime complexity is log(2n) + c, where log(2n) i the time 

complexity of the final 2n-bit lookahead adder, and c is the extra delay caused by 

CSA tr e. Therefore, t he time complexity is reduced from nlog(n) to log(n). 

The Booth 's coded Wallace CSA tr e can efficiently shorten t he critical path. 

However, the Wallace tree structure not only occupies large area on th target chip, 

but a lso int roduces large interconnection delay. Modern FPGA chips provide em­

bedded fixed-point multipliers to perform fixed word width multiplication . These 

embedded mult ipliers can also provide fa t interconnection path with oth r function 

units. Karatsuba Mult iplication formu lations [12] are used to exten I these fixed word 

s ize muiLiplier to variable word width mul t ipl iers. For instance the fractional part of 

the s ingle prcci ion floating point number is 24 bits , and the Xilinx embedded multi-
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Figure 2.7: A rad ix-4 Booth coded Wallace tree (modifi d from a pictur in [11]) 
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plier is a 1 -bit fixed-point multiplier. Therefore, the fractional part will be divided 

into a high part an I a low part to use the embedded multiplier. This multiplication 

includes four multiplications, three add it ion , and a few shift rs. If t he fractional part 

is directly divided into a high part (6 bits) and a low part (1 bits). The following 

mathematical manipulation shows th pro ess of the Karat uba. Multiplication: 

A x B 

A= Ahigh X 218 + Atow> 

B = Bhigh X 218 
+Blow 

Ahigl• X Blngh X 236 + Ahigh X Btow X 21 

+ Atow X Bhigh X 2
1 + Atow X Btow· 

(2.5) 

(2.6) 

(2.7) 

This multipli ation includes four multiplications, three add it ions, and a few sh ifters. 

The mu ltiplication r suit is 4 bits , but the u eful part i the high order 27 bits: a 24 

bits mantis a part and 3 extra bits for rounding. To eliminate the u eless low part 

result , we can divide the mantissa part in to the high part (14 bit ) and th low part 

(10 bits). In thi way, the partial mu lt iplication result of two low parts will be shifted 

out from the final result. We can only check if the partial r sult is zero and keep 

one bit as the lo t bit to determine the ti ky bit for rounding. The multiplication 

pro ess 1 hown in the following formulation : 

A x E 

A = Ahigh X 210 + Atow, 

B = nhigh X 210 + Btow , 

A/ugh X Bhigh X 2 20 + A high X Btow X 210 

+ Atow X Bhigh X 210. 

(2. ) 

(2.9) 

(2. 10) 
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In t his way, this multiplication includes three multiplications, two additions, and 

a few shifters, a nd the critical delay wi ll be shortened. Without leading zero check 

and potentia l left s hift , normaliza tion of the floating point multiplier is simpler than 

the floating point adder. Also the except ion detection module will be more compact 

t han tha t from t he adder. 

In order to achieve high t hroughput for the fioating point a ri t hmetic op eration , 

we use a deep pipeline s tructure for t he fl oating point a rithmetic units . The FADD 

is broken into 10 stages, and the F MUL is broken into stages. Al t hough the deep 

pipeline structur will cause longer latency t he throughput of floating point ari t h­

metic units is ignificant ly increased . 

2.3 Floating Point Multiply-Add-Fused (MAF) 

1any scient ific and engine ring application will execute a coh rent cal ulation pro­

cess including d ifi'erent ia l operations . T he floating point mul tiply-add-fused (MAF) 

[13] operation will complete mul t iplication and addi t ion in one execution uni t . In 

this design, ad lition is merged into the add r a rray which is u ed for mul tiplication, 

a nd t he rounding step for the partial mul tiplication resul t i eliminated. In this way, 

t he cri t ical path delay will be shorten d wit h respect to separate multiplication and 

addi t ion. Moreover , a single in t ru tio n, t he IAF, i.e. A x B + C, is capable of 

ha ndling both addi t ion and mul t iplication opera tions, e.g., by d fining B = 1 for 

addi t ion a nd C = 0 for multiplication. 

The main omponents of MAF include: CSA Wallace Tre for multiplication , 

pre-alignment module for opera nd C, CSA for merging , Fixed-point number Adder 

and Leading Zero Ant icipator (LZ ) , normalization module and round ing m od ule. 

F igure 2. illust rates t he structure diagram of a s ingle preci. ion floating point IAF . 
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Ta ble 2.3: Single Direction Shifting for Alignment 

3m+ 2 bit Operand C: 

xx · · · x. OOOO · · · 00 · · · 0 2 bits for Rounding, no shift 
Case 1 

:r:X.XX · ·· XXX· ·· X 

P ar tial Result of A x B 
2m bits 

3m + 2 bi t~ Operand C: 

xx · · · xxx.xx · · · x OO · · · 00 · · · 0 shiftbits = (ea + eb- bias)- ec + (m + 3) 
Case 2 

XX.XX · ·· XXX··· X 

P artia l Result of A x B 
2m bits 

3m+ 2 bits Operand C: 

xx .xx · · · xOO · · · 00 · · · 0 Maximum shift, shi j tbits = m + 2 
Case3 

XX .XX ···XXX· ·· X 

Part ia l Resul t of A x B 
2m bits 

T he exponent logic module calculates the preshift bits, ea+ eb-ec- 100, and generates 

the partia l exponent resul t , max(en + eb - 100 c). 

l\1ost of the components of 'lAF a re extracted from the adder or multiplier. One 

special module is the pre-alignment module. Comparing with the multiplication result 

(Ax B ), t h third operand C may be shift left or right. To simplify the shift proc ss 

and guarantee t h accuracy, the th ird operand C will be extended to 3m+ 2 bits 

by adding a zero string to its end. In t his way, t he potential bi-directional preshift 

becomes a uni-directional (right) shift. 

Tab! 2.3 describes the details of the shift algorithm. Case 1 indicates t he occasion 

t hat the operand C is much large than the multiplication result , and t he operand C 
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Figure 2.8: Block diagram of a. floating point multiply-add-fused (modified from a. 

picture in [11]) 
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need not shift. Case 2 is a common case for preshift , a nd the shift bits are decided 

by the difference between the multiplication resul t and the operand C. Case 3 is 

an extreme case of case 2, and t he maximum shift bits is m + 2. The shift bits 

are determined by the exponent part of operands, and the preshift opera tion can be 

performed in parallel mode with the CSA Wallace t ree. 

2.4 Other Extensions of Floating Point Operation 

Floating point arithmetic not only involves addition a nd mul tiplication , but also 

includes division , logarithmic arithmetic, square- root, and many t rigonometric func­

tions. These ari thmetic functions are generally regarded as slow and complex parts 

in mot implementa t ions. Fortunately, these functions are rarely used in most appli­

cations, and some pas ible solut ion exist when t hese ca mpi x functions need to be 

implemented. The first opt ion i to evaluat the series expansions of t hese complex 

functions by means of addition and mult iplication. Another method is using table 

lookup and interpola tion as an aid in a ri t hmetic computations [9]. 

2.5 Summary 

The float ing point representation is presented in this chapter first , and the IEEE 

754 standard is us d for our designs of floating point ari t hmetic uni ts. Floating 

point addit ion and mul tiplication are the primary floating point arithmetic operation . 

For the floating point adder, we main discuss t he rounding scheme and leading zero 

a nticipation algori t hm. The Radix-4 Booth encoding Wallace t ree and Karatsuba 

mul t ipli a tion method are introduced to improve the performance of t he floa t ing 

point mul tiplier . These fast floa ting point ari t hmetic uni ts can be used as efficient 
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execution units, and a high performance floating point processing unit can be built 

utilizing the vector architecture. 



Chapter 3 

Vector Floating Point Processing 

Unit 

Vector processing is an efficient pa rallel computing mode for data-intensive applica­

tions. A t raditional vector supercomputer includes complex logic chip ·, huge amounts 

of SRAM memory chips , and multiple CPUs. Such supercompu ter not only features 

super performance in scientific and engineering applications , but also has super size 

and power con umption . Utilizing matme CMOS technology, Krst Asanovic built 

the first complete single-chip vector mi roprocessor in 1998 [5]. In todays high p rfor­

mance pro essors, vector processing units cooperate with scalar proces ors to provide 

lmge speedup on data para llel codes. Meanwhile, this compact implementation of a. 

vector processing module is well sui ted to some special applications , such as earth 

s imulation , which deals with a high volume of floating point op rations. This chapter 

presents a detai led description of the architecture of the Vector Floating Point P ro­

cessing Unit (VFPU) , which usc the IEEE 754 standard (single precision) for floating 

point arithmetic operations. 

The basic component of the VFPU con i ts of a. vector register file vector memory 
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units, vector arithmetic units , and a control logic uni t . Section 3.1 is a detailed 

description of the a rchitecture. Se tion 3.2 gives the configuration of a. vector register 

file. Section 3.3 de cribes the vector memory unit , which will comprise the load / a lign 

function and wri te back function . Section 3.4 discusses the floating point a ri t hmetic 

units that a re used as execu tion units . Section 3.5 discusses t he most impor tant 

vector chaining scheme [14]. Vector processing requires high data throughput and 

experiences long startup penalties. The chaining scheme allows a. coherent execution 

on vector lata in t he vector register fil e. These long running vector instructions 

reduce th ra tio of memory acces time to the total execution time. 

3.1 Archi teet ure 

A the standard vector machine needs to consider compatibili ty with scalar instruc­

tions, the control logic is very complicated and constrains the performance. VFPU 

ma inly focu c on vectorizable a mputa tion, a nd the main challenges are improving 

efficiency for m mory access and keeping smooth execution process . 

Figure 3.1 shows an overall block diagram of th VFPU , which contains vec­

tor register fi l (VREG ), vector memory unit (V !IU), vector floa ting point adder 

(VFADD ), vector floating point multiplier (VFMUL), control logic unit , and address 

genera tor. Thre vector function uni ts , VMU, VFADD, and VFMUL , are tructured 

as eight parallel lanes, and communicat e via the central VREG . The number of lanes 

is determined by the target chip size and local bus throughput. 

Considering the logic usage of FPGA chip and bus bandwidth , we select S-lane 

configura tion as t h major configurat ion in th prototyp , and the extensibili ty of 

VFP U will be eli cussed in Cha pter 5. For t he -lane configuration, eight pipelincd 

floa ting point mul t ipliers and eight pipclined floating point adder a rc connected 
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Figure 3.1: Block diagram of a vector Aoating point processing unit (modified from 

a picture in [5]) 
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to the VREG. These xecution units acquire data from the VREG and write th 

resul ts back. Meanwhile, eight vector memory units work between the regist er file 

and internal dat a bus , and the control logic unit controls the access sequence to avoid 

hazards . 

The VREG is the central module of the VFPU. Every vector function unit has an 

independent data access path to the VREG. Since da ta is acquired from the internal 

da ta bus , most of the communication between vector instructions occurs locally which 

greatly improves the data exchange efficiency. 

Vector execution generates an increase used for bandwidth to access the external 

memory. To improve the external memory throughput, the traditional vector ma­

chine employs interleaving and provides adequate buffer to access the memory banks 

[15]. In VFPU, the external memory module is implemented by Double Data Rate 

Synchronous Dynamic Random Access Memory (DDR SDRAM), which can t ransfer 

data on the rising and falling edges of the clock signal. Considering the high data 

transfer rate of DDR SDRAM , VFPU applies a single memory access port and an 

align module to generate the 256-bit internal data bus. In this way, the memory 

control logic is markedly simplified. 

The structure of the control logic uni t is quite simple too, and can be customized 

for any spe ific applications. A fl ag register is used to indicate the calculation e­

quence. Following these status odings in flag register, the appropriate control s ignals 

are generated and sent to the vector function units. Moreover, the modern FPGA 

chip provides an embedded processor, which can be used as a flexible control unit 

and complete more dedicated control tasks. 
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3.2 Vector R egist er F ile 

As locali ty is a key to high-performance vector processor , t he VREG is t he h art 

module of VFPU. Vector function uni ts can access local data on VREG via inde­

pendent access por ts. Meanwhile, continual vector instructions can quickly exchange 

da ta through the VREG . T he size and configuration of the VREG largely affects the 

performance of t h vector processing unit. T herefore, VFPU appears a na tural match 

to intelligent RAM (IRAM) [16] technology, that can dir ctly onvert high on-chip 

memory bandwid th into ent ire system peedup. 

Increasing t he number of vector regi ter increases the spatial locality, which will 

reduce the r quirement to access extem al memory. However , a long VREG wil l 

not only increase the sta rtup overhead , but also will add complexity to specify the 

vector register. Th VREG of VFPU is divided into eight parallel lanes. One lane 

conta ins 16 vector registers , each including 16 32-bi t elements . Modern FPGA devices 

provide la rge numbers of on-chip memory, which can be easily configured in d ifferent 

a rrangements. In Chapter 5, we will compare the performance of VFPU with the 

d ifferent VREG configurations: the number of lanes will be increased from 8 to 12, 

a nd t he number of vector register per lane will be increased from 16 to 32. 

T he VREG enables multi-port data access . To avoid conflict in t he VREG , one 

read and one wri te port are provided per vector memory unit , and two r ad and one 

write ports are provided for each floating point adder and floating point mult iplier. 

Each la ne has five read ports a nd thre wri te ports (5R3W). The general block d i­

agram of t he VREG is shown in F igure 3.2. T he eight lanes can share one set of 

address decoders to generate the word elect signals for different ports. In this way, 

eight lanes operate in parallel mode and perform vector instructions on t he VREG. 

Thus , a ll function units are able to work concurrently. 
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Figure 3.2: Block diagram of a vector register file (modifi d from a picture in [5]) 

3.3 Vector Memory Unit 

The VREG can provide huge computational throughput to exploit t h data para!-

lelism. However, the li mited memory throughput often saturates the VREG . Earli r 

vector su percom pu tcrs [17] use m ul t i-1 ort memory access interface to provide parallel 

data acces service. The interleaved SRAM memory bank can provide high mem­

ory bandwidth wit h moderate latency [15]. To saturate the external memory bu , 

unit- tride loads and tores can transfer multiple word per cycle between memory 

and t he vector regi ter file and limi ted by the available port into the v ctor regi t r 

fi le. Using an unit stride load scheme, the mu lti-word can be loaded from different 

memory banks to VREG in one cycle. However , this unit-stride scheme requires an 

appropriate multi-bank memory ystem , and consequently often increa es the cost 

and logic complexity. 
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For the FPGA device, t he number of I/ 0 ports limits the memory access inter­

face. Therefore, VFPU only has one set of ports to ace ss external memory. Single 

memory access interface requires two step for data transfer between external mem­

ory and VREG: access/align operation between external memory and local data bus 

and load/store operation between the local data bus and VREG . In this way, the 

load/store uni ts can work as a cache for the VREG. Alignment will increase the data 

density and improve the flexibility, but extra registers are required and the operating 

frequency of whole system wi ll be decreased . However , the ac e s/align operation 

·implifies t he memory interface and easily extend to a general data interface via fast 

interconnection technology, such as HyperTransport [1 ] and Gigabit ethernet. In 

th is way, t he data can be easily t ransferr d between different sourc devices . 

The separa te load and store mod ules will t ransfer data b tween local data bu 

and VREG. A special First-In First-Out(FIFO) register with two different bit-width 

data ports will be used to imp! ment the load and store module. Th separate 

load/store module not only avoids the structure hazard, but also effi iently reduces 

the complexity of control logic. 

3.4 Vector Arithmetic Units 

As VFPU focuses on selected cientific applications , vector arithmetic units (VAUs) 

include two primary function units: vector floating point ad ler (VFADD) and vector 

floa ting point mu lt iplier (VFMUL). Each VAU includes eight scalar function units, 

each with two dedicated read ports and one write port to access VREG. Together , 

VAUs can sustain sixteen single precision fl oating point operations per eye! . 

Using a pipelined structure, the throughput of a floating point ari t hmetic opera­

tion can be improved . As describ d in Chapter 2, the time complexity of a. FADD is 
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comparable to t ha t of a. FMUL. Therefore, t he number of pipeline ta.ges for floating 

point add ition a.nd mul t iplication ca.n be simila r. In this way, VAU have the same 

start up overhead and a synchronou execution 1 ace. 

Fine grain division of pipelined implementation increases the work frequency, and 

introduces extra latency for internal data trans£ r. For the FPGA platform, the large 

d isparity between logic delay and interconnection delay limits the pipeline division. 

In Chapter 5, we will compare the performance of pipel ined floating point adders a.nd 

multipliers with d ifferent pipeline division . 

3.5 Chaining 

Vector chaining is a key feat ure of vector proce sing units. The data will be directly 

t ransferr cl between different vector fun ction uni ts without writing back to a register. 

In this way, t he execution of a.rlier vector instructions ca.n overlap with a. sub equent 

vector instruction. In VFPU , th vector chaining has three types depending on the 

different ex cution sequence. Figure 3.3 illustrates these three chaining modes. 

• Load and ari thmetic operation chaining: the vector data is loa.cled from the 

vector load/align uni t, and fed to a subs quent ari thmetic unit . 

• Arithmetic operation and ari thmetic operation chaining: the resul t from ari t h­

metic uni t is fe l to subsequent arithmetic units . 

• Arithmetic operation and store chaining: the result from arithmetic unit is feel 

st ra ight to th store unit. 

For a pipeli ned implementation , vector function units, VMUs and VAUs, run at 

the same freq uency, and t he chaining data t ransfer does not need extra. buffers. Figure 
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3.4 shows the overlapped execution process. When vector data is loaded to VMP on 

the first cycle, a vector add is ready in the subsequent cycle to VFADD. Similarly, 

a vector multiply i ready in the third cycle to VFMUL. This overlapped execut ion 

scheme increases the operation density and forms a long pipeline. 

In the chaining mode, the da ta wi ll rema in in the fa t storage, VREG , for a long 

period , and more arithmetic operations can b directly p rformed on the local data 

set. This extension of function execution process reduces th proport ion of external 

memory a ess. Considering the la rge disparity of speed between execution units and 

external memory access, chaining is the important feature a ffecting the speed of a 

vector processing unit. 
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3.6 Summary 

This chapter present the vector a rchitecture of VFPU, which contains vector register 

fil e (VREG ), vector memory unit (VMU) , vector floating point adder (VFADD ), 

vector floa ting point multiplier (VFMUL) , control logic unit , and address generator. 

In the general prototype, three vector functional uni ts, VMU , VFADD , and VFMUL, 

are structured as eight parallel lanes, and communicate via the central vector register 

file. The control logic unit will control the access sequence to avoid hazards. A fl ag 

regis ter is used in the control logic unit to indicate the calculation s quence. The 

specific control pattern for the selected application is loaded into the flag register 

before running. Following these status codings of the specific control pa t tern , the 

appropria te control signals are genera ted and sent to the vector function uni ts and 

the address generator. Additionally, the modern FPGA device provides an embedded 

processor, which can be set as a flexible control unit and complete more dedicated 

control tasks . 



Chapter 4 

FPGA Implementation 

The FPGAs are the inexpensive and reconfigurable platform to prototype and verify 

the vector processing architecture in hardware. Modem FPGAs have tremendously 

increased both in terms of gate count and circuit speed. Large on-chip block memory 

provides an abundant local storage, and embedding dedicated ari thmetic uni ts and 

general purpose processor cores asily enable high performance computing. Moreover, 

the FPGAs design can incorporate additional ha rd ware and software to monitor any 

logic transaction at run time. Thi · observability enables easy verification of t he cor­

rectness and the efficiency of the vector processing archi tect ure. Considering th 

advantages of cost, power, speed, flex ibili ty, ob ·ervability, reproducibi lity, and credi­

bility, FPGAs become an attractive platform for implementing the parallel processing 

structures [19] . 

This chapter mainly discuss t he implementation platform , appropriate hardware 

s tructures, and optimization methods. In Section 4.1, the basic methodology for 

FPGAs is introduced. Two main FPGA manufacturers, Altera and Xilinx, have dif­

ferent architectures for their FPGAs. Section 4.2 gives a detailed descript ion for each 

component of VFPU. Section 4.3 describes an extension of th VFPU. An embedded 

46 
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system is configured based on the VFPU. Se tion 4.4 proposes an a pplication exampl 

and explains the overlap execution process for that specific calculation instance. 

4.1 D esign Methodology for FPGAs 

The top-down design approach is a. common design method for a digital system. The 

main steps of d igital design are: behavior description, RTL coding, function imu­

Jation , synthesis, formal veri ficat ion, static t iming analysis, placement and routing, 

and configuration and veri fication. 

• behavior description: The 1/ 0 in terface is determined, and t h function block 

diagra m can help to define the r la.tionships among d ifferent modules. 

• RTL coding: The RTL cod ing mainly specifies the archi tecture of t he design 

and detail of logic functions. The embedded dedicated arithmeti modules and 

on-chip block memory should be applied to th implementation for optimization. 

• Simulation: Simulation is used to verify the functionality of th design. The 

corresponding test bench is d igned, and the test data set is generated for 

different testing schemes. 

• Synthe is: Synthesi is not only conver ting the RTL description into a low­

level implementation cons isting of primitive logic gates , but al o e t imates t he 

resource u age and the time delay. 

• Static t iming analysis: Static timi ng a nalysis is used to compute the expected 

t iming of the design. The path from the input to the output with the maximum 

delay i called the cri tical path . T he difference between the required time and 

the a.rri val time is called the slack. Large negative slack implies that the path 
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is too slow; ot herwise, the path is fine, if the slack is a. small negative numb r 

or zero. 

• Placement and routing: Placement is the process of assigning the design com­

ponents to the chip 's core area and can determine th total wire length , timing, 

and resource congestion . Routing is the next process and generates the wires to 

prop rly connect a ll the placed components. After the placement and routing, 

th verification should be done for testing. 

• Configuration and verification: FPGA devices use the configuration memory to 

define the lookup table (LUT) equations, signal rou ting, lOB voltage standard , 

and a ll other a ·pects of the specific design. These configuration memory cells 

wi ll be vola.t il and must bo configured on power-up. For the specific FPGA 

chip , a. corresponding configurat ion pattern wi ll be generated to program con­

figuration memory, instructions for the configuration control logic and data for 

the configuration memory. This binary configuration pattern is called bitstrea.m, 

which can be delivered to the t arget hip through one of the Joint Test Action 

Group (JTAG) , SelectMAP, or Serial configuration interfaces. After configura­

tion , we can usc a. logic a nalyzer and appropriate software debugger to verify 

the logic correctness. 

From th initial concept to specification, through block-level design using top down 

methodology to the implementation and verifica tion , the FPGAs implementation will 

achieve the final design requirements. Altera a nd Xilinx are the two market leaders 

in the FPGA industry. We will briefly discu s their architectures and main feature 

in t he following parts. 
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4 .1.1 Altera FPGA Family 
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Altera Corporat ion mainly provides programmable logic solu t ions. The Altera FPGA 

family includes FLEX serie , Stratix series , Cyclone series, Arria series, and Hard opy 

series . A. FPGA density grows rapidly, the on-chip memory size has increased to over 

1M Byte, and t he nt~mber of ded icated fast adders and mul t ipliers has in reased also. 

For high performance applications , Altera int roduced an embedded processor , io , 

on Stra tix II , Cyclone, and Hardcopy FPGAs. 

Figure 4. 1 shows t he block di agram of Altera FLEX l OK FPGAs [20]. The ba­

s ic logi function unit is the logic element (LE) . In each LE, a 4-input lookup table 

is used to encode any 4-input Boolean function. To implement more complex logic 

functions, a logic array block conne ts a set of LE using the local interconnect bus. 

Recently, Altera created an adaptive logic module (ALM) in its recent FPGAs. Each 

ALM contains a variety of LUTs that can be divided between two adaptive LUTs 
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(ALUTs) . With up to eight inputs to the two ALUT ·, one ALM can implement 

various combina tions of two functions. This ada ptabili ty not only provide advanced 

features with efficient logic ut ilization, but also reduces t he power con umption [21]. 

To speedup the a rithmetic operations, Al tera FPGAs provide a quick carry chain for 

adder , and embed multipliers and digital signal processing (DSP ) modules. T hese 

dedicated ari thmetic uni ts not only opt imize the arit hmetic functions, but also pro-

vide fast paths for data transfer. Additiona lly, Altera FPGAs include rich intercon-

nection resources: local row, colu mn, carry chain , shared ari t hmetic chain , register 

chain , and direct link interconnects. These interconnection resources provid effi cient 

hiera rchical interconnect solut ion . 

The Alt ra Quart us II is a complete design environment and it easily ombines 

wi t h other simula tion and t iming-analysis soft ware. This develop environm nt can 

complete the syntax analysis, synt hesis and t iming analysis. The synthe i resul t can 

help the designer to choose the appropria te FPGA serial product and assign t he I/ 0 

pillS . 
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4.1.2 Xilinx FPGA Family 

Xilinx Corporation is another leading FPGA manufacturer and provides compa.ra.-

ble programmable logic solutions. The Xilinx FPGA family consists of the Virtex 

series, Spar tan series, and Ea.syP a.th series . To improve t he embedded processing 

perform ance, Xil inx also provides dedicated fast adders, embedded multipliers, and 

rich on-chip block memory. A 32-bit soft processor , MicroBlaze, can provide a. fl ex­

ible processor , and t he PowerPC 32-bit hard processors can meet high performance 

requirement. 

Figure 4.3 shows a block diagram for Xilinx Virtex FPGAs. For Xil inx FPGAs, 

the basic logic function unit is t he slice, which includes two logic cell (LC), as shown 

in Figure 4.4. Each LC consists of a. 4-input LUT, carry logic, and a storage element. 

The Configura.ble Logic Block (CLB) collects a set of slices to implement some specific 
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VB 

YO 
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logic function [22]. Therefore , t he numb r of slices is often used to estimate t he 

resource ut iliza tion. The two-L T configuration for a lice not only improves t he 

performance of basic logic units, but a l o reduces t he inter onnection cost by using 

fewer logic units for a specifi c design. In C hapter 5, we wi ll compa re the performance 

of FADD and FMUL with t he different FPGA devices: the Al tcra yclone II and the 

Xilinx Virtex II Pro. 

Xilinx d veloped a powerful au tomatic design software system for logic design , t he 

ISE foundation , and an integrated development environm nt for embedded system 

design, P la tform St udio and the EDK ISE foundation mainly c mpletes the syntax 

checking, synthesis, timing analysis, and generating the binary stream file for FPGA 

configuration. Platform St udio and t he EDK combine t he hardware onfiguration 

and softwar design. Using t hese development ki ts , the de igner not only can easily 
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implement hardware design on FPGAs, but al o can extend the design to an embedded 

sy tern. 

Comparing the performance of FADD and FMUL on Altera and Xilinx FPGAs, we 

choo e t he Xilinx Virtcx II Pro (XC2VP100-6-FF1704) as the target device for VFPU. 

U ing t he 0.131-lm CMOS nine-layer copper process, the Emb ddcd IB I PowerPC 

405 RISC pro ssor blocks are integrated in Virtex-II Pro XC2VP100 to optimize 

high performance designs. The Block SclectRAM memory mo lules provide large 18 

Kb storage clement of t rue Dual-Port RAM, and the tota l on-chip memory ize is 

up to 7 992 Kbits [23]. 

4.2 VHDL Models on FPGAs 

Figure 4.5 shows the RTL schematic diagram of the VFPU, whi h contai ns a VREG, 

a VM , a VFADD , a VFM L, a control logic uni t, and an addre s generator. Th 

data interface to the VFPU is t he memory data port , MDATA[255 downto 0]. The 

corresponding add ress interface is t he memory address port MADD[21 downto 0] . 

For t h VFPU , the external memory module is implemented by Double Data Rate 

Synchronous Dynamic Random A cess Memory (DDR SDRAM), whi h can t ransfer 

data on the rising a nd falling edges of the clock signal. The external memory interface 

has a 256 bit data bus, and a 22 bit addrc s bus, supporting up to 12 l\IB of industry 

standard DDR DRAl\1 . This 12 rB externa l memory i configured as two banks 

of 64 l\ lB each . 

The control ignals include a rc et ignal and an enable signal, which will be 

mapped to the control logic unit and start or clear the calculation procc . Using 

the globa l clock resource on FPGAs, the dedicated clock input is directly feed to the 

low-skew buffers inside t he FPGA for routing clocks. The two flag signals, RW and 
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Figure 4.6: Three port data bank structure 

OE, will indicate the status of the memory interface. 

4.2.1 Register Files 

The on-chip block memory of t he Xil inx Virtcx II Pro FPGA can be configured as 

a t rue dual port RAM module, which includes two sets of address inputs for two 

independent ports. As shown in Figure 4.6, the two dual port RAM modules arc 

combined to form a three-port data bank, which includes 16 x 32-bit data elements. 

Based on this three-port data bank , we can implement th 5R3W register fi le lane 

with extra control logic , which will map the word selection s ignal to t h different 

access ports. 

F igure 4. 7 shows the schematic diagram of the vector regi ter file within one lane. 

In this design , sixteen three-port data banks , each with two read ports and one write 
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port , a re used to support two VAUs and one VMU with a total requirement of 5 reads 

and 3 wri tes per cycle. 

4.2.2 Arithmetic Modules 

In VFPU , th arithmetic units are FADD and FMUL. The combinational logic designs 

of the floating point arithmetic units are implemented first . Based on the timing 

analysis of the combinat ional logic design, the number of stages for the pipelined 

design wi ll be d termined. For the combinational logic design , the speed d pends on 

two cha.racteri t ics : transition time a nd propagation time. The transition t ime is the 

amount of time that output of a. logic unit takes to change from one state to another 

[6], and wi ll be determined by device technology parameters. The propagation delay 

is the a mount of time that it takes for a. change in the input signal to produce a. 

change in the output signal [6], and the longest propagation d lay of a. particular 

path through the overall circuit i call d the critical path delay. 

The basic arithmetic components, such as fixed point two's complem nt adder , 

barrel shifter, carry save adder vVa.llac tree, and rounding module, have been de­

veloped. Using these components , the a ppropriate hierarchical VHDL models of the 

float ing point ar ithmetic un its described above arc implement d . Thes VHDL mod­

els have been verifi d via simulat ion and synt hesized to FPGA device . To reduc the 

critica l path delay of the fixed point adder , the carry lookahead adder is always used 

for fa t ca rry out calculation. However, th interconnect delay of the carry looka.head 

adder on FPGAs rapidly increases with the number of the logic components. Taking 

advantag of dedicated carry chains, t he ripple carry adder is a little faster than the 

carry Iookahcad adder on FPGAs. 

A common implementation of the fixed point multiplier is using the Booth 's coded 
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Figure 4. 7: The schematic diagram of vector register file wit hin one lane (modified 

from a picture in [5]) 
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Wallace carry save adder tree [11] to reduce the critical path delay. However, the Wal­

lace t ree structure not only occupies large area on the FPGA ch ip , but also int roduces 

significant interconnection delay. As fast embedded fixed-point multipliers are em­

bedded on FPGA , the various word width multipliers can be formed by Karat uba 

Multiplication formul a tions [12], and the fast interconnection paths can guarantee an 

effi cient data transfer rate between the function uni ts. 

In an effor t to achieve high throughput of the floating point arithmetic operat ions, 

we usc a deeply pipelined structure for the floating point ari t hmetic uni ts. The 

FADD i broken into 13 stages, and the F ,.fUL is broken into stages. Although the 

deeply pipelined structure will cause long Iaten y, the throughput of the floating point 

ari thmetic uni ts is sign ificantly increa eel . In a pipelined design, a set of data sub­

operation components is connected in series, and t hese components can be executed in 

parallel. The slowest par t determines the pipelined design speed . An output register 

is used to synchronize data for every stage, because the critical path delay of different 

stage. is different. To avoid metastabili ty, the inputs are held on tant for specified 

periods before a nd after the clock puis . 

To verify the functional correctness, a special testbench ha been developed, and 

a Visua l C++ program has been developed to generate extensive te t patterns . This 

a pplication can t ransform a random number from decimal format to IEEE 754 bi­

na ry format, and calcula te the correct re ul t for different floating point operations. 

The test patterns contain random values and xtremity values, uch as zero, infin­

ity, la J, maximum value, and minimum value. The test pattern can be generated 

a utoma ti ally for an a rbitrary size of the data set and stored in IEEE 754 binary 

forma t. 

As visual examples of the arithmetic operations , the simulation waveforms are 

produced by ModelSim. 
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Figure 4.8: A simulation waveform for floating point adder 

Figure 4.9: A simulat ion waveform for floating point multiplier 

Figure 4. shows this situation with 'addsub' signal low, pecifying the addit ion 

operation . Consider the following op ra nds: 

BEC 2CC9 (hex , IEEE 754 single precision) = -0.390967 (dec), 

3F8D11EA (hex , IEEE 754 single precision) = 1.102109 (dec). 

The sum is: 3F360D6F (h x , IEEE 754 single precision) = 0.711142 (dec). 

Figures 4.9 shows a simulation waveform of the mult iplication operation . Consider 

the following operands: 

3E2BDA28 (hex , IEEE 754 single precision ) = 0.167824 (dec), 

406F8855 (hex , IEEE 754 single precision) = 3. 742696 (dec). 

The product is: 3F20CC30 (hex, IEEE 754 single precision) = 0.628116 (dec). 

Figures 4.10 shows a simulation waveform of the multiply-add-fused operation . 

Con ider the following operands: 

3E2BDA28 (hex, IEEE 754 single precision) = 0.167 24 (dec), 
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Figure 4.10: A simula tion waveform for floating point multiplier 

406F8855 (hex, IEEE 754 single precision) = 3.742696 (dec), 

3F062311 (hex, IEEE 754 single preci. ion) = 0.523973 (dec). 

The result is: 3F9377AO (hex, IEEE 754 single precision)= 1.1520 (dec). 

4.2 .3 Memory Access Units 

60 

The memory access units include the load module and t he store module, which are 

implemented by a spe ial FIFO register with two different bit-width data ports. Fig­

ure 4.11 shows the structure of the load module. The load FIFO contains sixteen 

dual port RAM modules, each including two 32 bit data elements. 

The rotate read scheme is used to feed vector data. into th vector register file. In 

t he first cycle, the first 256 bit vector data. is fed to the first load mod ule, and then the 

load module starts to feed each 32 bit data. element to a. vector register in eight cycles. 

During t hese eight cycles, the sequential 256 bit vector data. is rotationally fed to eight 

load modules. In this way, the eight lanes work concurrently and independent ly. 

4.3 Embedded System Configuration 

Based on the VFPU prototype, we can com! ine the on-chip PowerPC 405 proces or 

to configm c an embedded system, which can support an embedded Linux system 
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Figure 4.11: The load FIFO register with two different bit-width data. ports 

and provide more flexibili ty and applicability. Xilinx EDK software integrates the 

hardware configuration and software design. For the Amirix AP1000 PCI platform 

FPGA development board, we can configure the hardware specification: the embed­

ded processor and the bus clock frequency, on-chip cache size, I/0 devices, and debug 

interface. 

Figure 4.12 shows a configuration of the embedded system. 1 he embedded pro­

cessor and high speed components are connected by th processor local bu (PLB), 

which is a high-performance 64-bit address bus and a 128-bit data. bus [24]. The em­

bedded processor wil l generate the flow control pattern and update the flag register 

of VFPU via the PLB. Meanwhile, the embedded processor will control the DDR 

controller to feed or update data from the data cache. 

Based on the embedded Linux system, we can directly use the C language to 

descri be the specific calcu lation model. In this way, the most numerically-intensive 
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applications can be easily vectorized to improve the performance by using the VFPU. 

4.4 Application Example 

The VFPU can be used to implement numerically-intensive problems on an FPGA 

prototyping board. For instance, the Earth Simulator contributes to predict environ­

mental changes by analyzing the vast volume of ob ervat ion data. A general operation 

for seismic a pplications is the distance calculation in 3D space. An illustration of this 

calculation is given below: 

( 4. 1) 

Here, (Xi, Yi , Zi) a nd (Xj, Yj, Z1 ) denote two sets of points. The squar operation can 

be replaced by self-multiplication. The steps of distance calculation are: 

1 Load Xi, 

2 Load Xj , 

3 Subtrac t X j from X i, 

4 Load }~, 

5 Load }j , 

6 Subtract Yj from Yi , 

7 Load Zi 

8 Load Zj, 

9 Subtrac t Zj from Zi, 

10 Mul tip lication of X coordinate value, 

11 Multiplication of Y coordinat value, 

12 Mult iplication of Z coordinate value, 
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13 

14 

15 

Sum of X 2 and Y2 

' 

Sum of Z 2 and (X2 + Y 2 ) 

Store resul t 

64 

Assume t he ize of the point set is n, th latency of FADD is la, the latency of 

FMUL is lm, and every operation uses one cycle. 

For a scalar pipeline processing unit , the instructions will be issued one by one as 

shown in Figure 4. 13, and the operation can not be overlapped. The total number of 

cycles is : 

Cscalar ( n + n + ( n + la) + ( n + lm)) X 3 

+ (n + la) + (n + lm) + n 

15n + 4la + 4lm. (4.2) 

The vector processing unit can execute t hese steps in an overlap mode, and the 

chaining schem can directly transfer data. between different vector function units 

without writing back to registers. Moreover , the eight lanes in the vector processing 

work in para llel a nd can deal with eight data. sets . Therefor , the vector processing 

unit can work almost seventeen times as fast as the scalar processing unit . F igure 

4. 14 illustrates the overlap execution fl ow in one lane of the vector proces ing unit . 

The tota l number of cycles used in one lane of the vector processing unit is: 

C vecior n X 3 + (n + la) X 4 

7n + 4la . (4.3) 

Note t hat the two vector operands wil l be loaded in serial mode. If we add an 

extra. load port to each lane, t he two vector op rands can be loaded in para llel, and 

th LotaJ number of cycles can be r duced to 5n + 5la. Figure 4. 15 shows t he overlap 
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execution flow in one Jane of the vector processing unit with two loaders. However, 

the extra. load ports not only increase the number of I/ 0 ports a.nd control logic, 

but al o increase the disparity of the throughput between local storage a.nd external 

memory. 

Comparing these three execution proces es, we ca.n conclude that the overlap 

significantly improves the efficiency a.nd speedup the execution proces . Using the 

chaining scheme, partial data. can be directly passed to the next function unit without 

register access. Th refore, we not only reduce one cycle from the two overlapp cl steps, 

but a lso ma.y save considerable space on the r gi ter fi le. Moreover , as the chaining 

schem can keep the data. in the vector register file for a. long period , more arithmetic 

operations can be clir ctly performed on the local data.. The extension of function 

execution process reduces the proportion of external memory ace ss. Considering 

the large disparity of speed between execution units and external memory access, 

chaining is the major feature affecting the sp eel of the vector processing unit. 



Figure 4. 16: The chaining overlap execution flow with two loaders 
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Chapter 5 

Performance Analysis 

The main objective of the VFPU design is to minimize critical path delay with a. 

reasonabl resource ut ilization. The synthe is resul ts of the FPGA implementations 

in terms of timing and resource utilization wi ll be presented in this chapter, and then 

t he analysis and t iming optimization methods will be discussed . 

First, we will focus on t he timing performance of the combinational des ign for dif­

ferent a rithmetic units. Second, we wi ll compare the peak work frequency of pipeli ned 

designs with different numbers of stages. Thi rd , we will analyze t he performanc for 

VFPU with d ifferent lane configura tions. In the end of this chapter we will compare 

t he propo ed design with other related work . 

5.1 Performance Analysis for Combinational Im­

plementations 

This section pre ent t he synthesis re ult of the ombinational design for different 

function components. These combinational Implementat ions are synthesized for both 

Altera and Xi li nx FPGA devices. The Altera's target FPGA device (EP2C20F4 4C7) 

70 
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belongs to the Cyclone II Family, which provides 6 ,416 logic elements, up to 622 

usable 1/0 pins, and up to 1,152 Kbits of embedded memory [25]. The synthesis result 

is generated by the Altera.'s integrated development environment software, Quartus II 

7.2. Th Xilinx target FPGA chip (xc2vp100-6ff1704) is one member of the Virtex-II 

Pro Fami ly, which contains up to 99,216 logic cells and supports up to 1,164 user 

1/ 0 pads and up to 7,992 Kbits of block RAM [23]. The synthesis process for Xilinx 

FPGA implementation is generated by the Xilinx's development kit, ISE 8.2i. 

The fixed point adder modules will be analyzed first, because they are t he basic 

components for every arithmetic unit. The t iming performance of the fixed point 

adder has a great effect on the arit hmetic units in VFPU. The fixed point multiplier 

with different structures will be discussed at the end of this section. 

5.1.1 Ripple Carry Adder 

For t he fixed point adder , the propagation of carries is a major imped iment to high­

speed addition [9] . The ripple carry adder directly ripples clown the carry lines of the 

1-bi t full adders to generate the carry out bit. Although t he worst-case delay always 

grows li nearly with the word width , a ripple carry structure is simple and suitable for 

compact applications. 

Table 5. 1 shows the timing performance and resou rce utilization of t he ripple 

carry adder on Altera Cyclone II FPGA device. The pin-to-pin cl lay (tpo) is the 

t ime required for a signal from an input pin to propagate through combinational 

logic and appear at an external output pin. The tpo consists of the cell cl lay for 

combinational logic and t he interconnect delay for t he signal transmission. Table 5. 1 

inclicat s that the cell delay of the ripple carry adder linearly increases with the word 

width. Meanwhile, the interconnect delay also rapidly grows as the number of logic 
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Table 5.1: Performance of the Ripple Carry Adder on Altera Cyclone II 

bds delay logic route LEs pms 

1 10.116 ns 4.177 ns ( 41.29 %) 5.939 ns ( 58.71 %) 4 5 

4 11.856 ns 4.944 ns ( 41.70 %) 6.912 ns ( 5 .30 % ) 9 14 

16 21.897 ns 8.063 ns ( 36.82 % ) 13.834 ns ( 63.18 % ) 33 50 

28 28.851 ns 9.441 ns ( 32.72 % ) 19.410 ns ( 67.28 % ) 57 86 

32 30.078 ns 10.729 ns ( 35.67 % ) 19.349 ns ( 64.33 % ) 65 98 

48 44.592 ns 13.252 ns ( 29.72 % ) 31.340 ns ( 70.28 % ) 97 146 

elements increases. 

The performance of t he ripple carry adder on Xil inx Virtex II Pro is shown in 

Table 5.2. And t he Figure 5. 1 il lustrates the difference between Altcra Cyclone II 

and Xi linx Virtex II Pro. In FPGA devices , various logic functions are implemented 

by 4-input lookup tables (LUTs). The combinational logic function of 1-bit ful l adder 

occupies four LUTs on both Altera. and Xi linx FPGA device , and their cell delays 

a re very close. The logic cell delay on two FPGA devices is at ·arne level, and the 

main difference of the critical path delay depends on the interconnect delay. To 

optimize the timing performance on an FPGA platform, we should not only optimize 

the arch itecture and logic funct ions, but a.J o should consider how tor duce the extra. 

interconnect co t. 

5.1.2 Carry Lookahead Adder 

To reduce the crit ical path delay of fixed point adders, a. commonly used scheme i 

carry lookahea.d addition (CLA), which is a. classical schem featuring logarithmic 
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Table 5.2: Performance of the Ripple Carry Adder on Xilinx Virtex II Pro 

bit delay logic route Slices LUT JOB 

1 5. 102ns 4.083ns (80.0%) 1.019ns (20.0%) 2 4 7 

4 7.683ns 5.022ns (65.4%) 2.661ns (34.6%) 4 8 14 

16 18. 171ns 8.778ns (48.3%) 9.393ns (51.7o/c) 18 32 50 

28 28.659ns 12.534ns (43.7%) 16.125ns (56.3%) 32 56 86 

32 32. 155ns 13.786ns (42.9%) 18.369ns (57. 1 %) 37 64 98 

48 46. 139ns 18. 794ns ( 40. 7%) 27.345ns (59.3%) 55 96 146 

Timing .Analysis for Ripper Carry Adder 

l 4 16 28 32 

bit width 

Figure 5. 1: Comparison of crit ical path delay for Ripple carry adder on Altera and 

Xilinx FPGA device 
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Table 5.3: Performance of the Carry Lookahead Adder on Al tera FPGAs 

bits delay logic route LEs pins 

1 10.116 ns 4.177 ns ( 41.29 %) 5.939 ns ( 58.71 % ) 4 7 

4 12.963 ns 5.296 ns ( 40. 5 % ) 7.667 ns ( 59.15 % ) 14 16 

16 19.77 ns 6.692 ns ( 33.84 % ) 13.086 ns ( 66.16 % ) 63 52 

28 23.341 ns 6.605 ns ( 28.30 % ) 16.736 ns ( 71.70 % ) 105 86 

32 24.447 ns 7.396 ns ( 30.25 % ) 17.051 ns ( 69.75 % ) 119 100 

4 a 25.7 7 n 7.065 ns ( 27.40 % ) 18.722 ns ( 72.60 %) 163 146 

4 b 25.775 ns 9.258 ns ( 35.92 % ) 16.517 ns ( 64.0 %) 180 146 

delay. However , the logic complexity of CLA rapidly increases with the word width, 

a nd the extra. interconnect delay has to be considered . 

Table 5.3 and Table 5.4 show the performance analysis on Altera and Xilinx 

platform, respectively, for the carry looka.hea.d adder with different word widths. 

Similarly, the cell delays on two FPGAs are close, but the interconnect delay on 

the Altera FPGA device increases faster than the Xilinx FPGA device. As discu sed 

in Chapter 4, the differences in the basic logic unit cause the disparity of interconnect 

delay. The Xilinx FPGA device provides two LUTs in one slice and greatly reduces 

the number of !ices for a. complex logi function. The extra basic logic units add 

extra int rcon nect cot to Altera FPGA implementations. Figure 5.2 and Figure 5.3 

illustrate the pro] ortion between cell delay and interconnect delay. 

An interesting point of the synthesis result is the different delays between two 

48-bit CLA with different structures. Figure 5.4 show the block diagram of a 4 -bit 

adder , CLA(b), con tructed using three 16-bit CLAs, and Figure 5.5 illustrates the 

block diagram of a 48-bit adder , CLA(a.), built using one 16-bit CLA and one 32-bit 
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Table 5.4: Performance of the Ca rry Lookahead Adder on Xilinx FPGAs 

bit s delay logic route Slices LUT JOB 

1 5.102ns 4.0 3ns (80.0%) 1.019ns (20.0%) 2 4 7 

4 6.746ns 4.709ns (69.8%) 2.037ns (30.2%) 8 16 16 

16 10.803ns 6.607ns (61.2%) 4.196ns (38.8o/c) 33 61 52 

28 22.854ns 10. 962ns ( 48.0o/c) 11.892ns (52.0%) 47 84 86 

32 26.319ns 12.214ns ( 46.4%) 14.105ns (53.6%) 54 97 100 

48a 25.569ns 11.962ns (46.8%) 13.607ns (53.2%) 79 146 146 

48b 20.028ns 10.057ns (50.2%) 9.971ns (49.8%) 95 173 146 

CLA. Each 16-bit CLA includes 4 4-bit CLA and one lookahead carry genera tor. The 

48-bit CLA(a) includes 12 4-bit adders and 5 lookahead carry generators, a nd the 

48-bi t CLA(b) includes 12 4-bit CLAs and 4 lookahead carry generators. Therefore, 

the critical path delay of 48-bit CLA(b) i slightly larger than 48-bi t CLA(a) . For 

a specific word width , the CLA has multiple possible configura tions from the basic 

4-bit CLA and lookahead carry generator, and the different st ructures have cliff rent 

effects on the logic complexity and route cost. 

The logic level optimization is carried out in the Xilinx ISE platform during the 

synthesis process, and the opt imization has different effects on different structures. 

Considering the optimization efficiency, the FPGA timing performance for CLAs not 

only depend on the word width, but also depends on the structure. Generally, the 

logic level optimization includes two phases: fl a ttening and structuring. The flatten­

ing removes intermediate variables, simplifies boolean equations to a two-level logic 

mode, and reduce the logic delay. Moreover , the critical path can also be shortened 

by duplicating logic during fla t tening. Contrarily, structuring inser ts intermediate 
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Timing Analysis for CV, on .-liTera FPGA 
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variables , generates multi-level logic modules, and saves logic resource. Through 

t hese optimization methods, the final logic level structure possibly achieves a balance 

point of timing and area with the pecific opt imization con traints. The aim of VFPU 

design is to generate a timing driven structuring implementation, and t he Xilinx ISE 

optimization goal is set for speed. After the optimization for speed , the fi nal de ign 

wil l fit b tter to FPGA architecture. 

5 .1.3 Quick Carry Chain 

The ripple carry adder is slower tha n the carry lookahead adder , but its simplicity 

a nd greater modula ri ty may compensate for this drawback. Most modern FPGA 

clcvic . · provide dedica ted signa l pa ths for carry chains t hat connect adj acent LEs 

wit hout using local interconnect paths [20]. In this way, the ripple carry scheme can 

be direct ly used to implement the fixed point adder for arbitrary word width . Table 

5 .5 and Ta ble 5.6 show the performance analysis for fast adders on Altera and Xilinx 

pla tforms. The quick carry chain not only reduces the interconnect delay, but also 

reduces the logic resource utilization. 



C HAPTER 5. P ERFORMANCE ANALYSIS 7 

CLA32 
CLA16 CLA16 Co 

~ 

Cp t l 
CLA 16 . -

4-Bit iookahead carry generator I 

t g p2,47] ~ !![0,31] 

P !32.47J P [O,JI] 

C4s 

4-Bit lookahead carry generator 

Figure 5.5: Building a 4 -bit CLA from 12 4-bit CLAs and 5 lookahead carry gener-

a tors 

Table 5.5: Performance of the Fixed Point Adder with Quick Carry Chain on Altera 

FPGAs 

bits delay logic Toute LEs pins 

1 9.735 ns 4.036 ns ( 41.46 % ) 5.699 ns ( 58.54 % ) 2 5 

4 12.235 ns 5.897 ns ( 48.20 % ) 6.338 ns ( 51.80 % ) 9 14 

16 15.296 ns 6.661 ns ( 43.55 % ) 8.635 n ( 56.45 o/c ) 33 50 

28 16.667 ns 7.135 n ( 42. 1 % ) 9.532 ns ( 57.19 o/c ) 57 86 

32 17.774 ns 8.226 ns ( 46.28 o/c ) 9.548 ns ( 53.72 % ) 65 98 

48 20.023 n 9. 709 ns ( 4 .49 % ) 10.314 ns ( 51.51 % ) 97 146 
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Table 5.6: Performance of the Fixed Poin t Adder wit h Quick Carry Chain on Xilinx 

FPGAs 

bits delay logic route Slices LUT JOB 

1 5.061ns 4.083ns (80.7%) 0.978ns (20.0%) 1 2 7 

4 7.570ns 5.022ns (66.3%) 2.548ns (19.3%) 6 11 14 

16 .97 ns 7.467ns (83.2o/c) 1.5llns (16.8%) 17 33 50 

28 9.476ns 7.965ns (84. 1 %) 1.5llns (15.9%) 29 57 86 

32 9.642ns .131ns (84 .3%) 1.5llns (15.7%) 33 65 98 

4 10.306ns 8.795ns (85.3%) 1.5llns (14.7%) 49 97 146 

Figure 5.6 ill ustrates the t iming performance for the fast adder on Altera and 

Xilinx FP GA devices. As discussed above, the compact basic logic element helps 

Xi linx FP GAs to acquire better timing performance than Altera FPGAs. 

5.1.4 Carry Save A dder 

T he ca rry save adder (CSA) is a. row of 1-bit full adders as a mechanism to reduce 

t hree numbers to two numbers [9] . As every 1-bit fu ll adder always works in parallel 

mode, a nd t he cri t ical path delay of the CSAs with different word width is almost 

close to the delay of t he 1-bit fu ll adder. Table 5. 7 and Table 5. show the performance 

a nalysis for CSAs on Al tera and Xilinx platforms. 

5 .1. 5 Fixed Point M ultiplier 

As descri bed in Chapter 2, the high performance CSA t ree fol lowed by a fa t adder 

can speedup the mul tiplier design to achieve logarithmic t ime mul tiplication . Table 
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Timing Analysis for ~ick Con;.· Chain 

bit 1\idth 

Figure 5.6: Comparison of timing performance for Fast Adder on Altera and Xilinx 

FPGA devi es 

Table 5. 7: Performance of the Carry Save Adder on Altera. FPGAs 

bits d lay logic route LEs pms 

10.716 ns 4.395 ns ( 41.01 % ) 6.321 ns ( 58.99 % ) 15 40 

24 14.040 ns 4.393 ns ( 31.29 % ) 9.647 ns ( 6 .71 %) 4 121 

28 12.537 ns 4.380 ns ( 34.94 % ) 8.157 ns ( 65.06 % ) 55 140 

4 13.232 ns 4.249 ns ( 32.11 %) 8.9 3 ns ( 67. 9 % ) 95 240 
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Table 5. Performance of t he Carry Save Adder on Xilinx FPGAs 

bits delay logic r oute S lices LUT JOB 

5.061ns 4.083ns (80. 7o/c) 0.97 ns (19.3%) 9 15 40 

24 5.405ns 4.083ns (75.5%) 1.322ns (24.5%) 28 4 121 

28 5.061ns 4.083ns (80.7%) 0.97 ns (19.3%) 32 55 140 

4 5.061ns 4.083ns (80.7o/c) 0.978ns (19.3%) 55 95 240 

5.9 and Ta ble 5. 10 show the performance for the fixed point mul t iplier with different 

s tructure on Altera and Xilinx FPGA devices. 

The first structure i a 32-bit full-tree mul t ipl ier, in which the CSA t ree structure is 

an 1-bit adder array. Although t he fu ll-tree structure is not fast enough a nd occupies 

a vast logic resource, it part ia l products reduction t ree is a combinational circui t 

tha t can be easily sliced into pipeline s tages. 

T he second design not only ut ilizes the Wallace Tree structure to reduce logic 

ut ilizat ion , but also uses Radix-4 Booth 's rccoding to handle two bits of the multiplier 

per cycle a nd reduces the crit ical pat h delay. As discussed in Section 2.2, we endeavor 

usc the eml eddcd macro units on FPGAs to r duce t he in terconnection cost. 

The last two designs use the embedded fixed word wid th mult iplier to build various 

word width mul t ipliers . In the Karastura (b), two fast adders are u eel to generate 

t he fina l sum of t hree partia l p roducts. In t his way, t he delay of t he two-step add ition 

is double the delay of the fast adder. To speedup t his proccs , a CSA is int rod uc d 

in t he Kara.s tura (a) to red uce the three part ia l products to two part ial resul ts first , 

a nd t hen a fa t adder can genera te the final result. T he delay consists of one CSA 

d elay and one fast adder delay, and the CSA i faster than any multi-bit fast adder. 

T herefo re, the delay of Karastura (a) is slightly smaller t han K a.rast ura (b) in bot h 
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Table 5.9: P rformance of the Fixed Point Mult iplier on Altera FPGAs 

Full Tree Wallace Tree Karastura (a) Karast ura (b) 

delay 46.150 ns 26.880 n · 23.266 ns 24.913 ns 

16.825 ns 10.451 ns 11.307 ns 12.504 ns 
logic 

( 36.46% ) ( 38.88% ) ( 48.60%) ( 50.19% ) 

29.325 ns 16.429 ns 11.959 ns 12.409 ns 
r-oute 

( 63.54o/c ) ( 61.12% ) ( 51.40% ) (49. 1% ) 

LEs 2033 1318 6 60 

pins 96 96 96 96 

9 X 9M ultiplieT - - 6 6 

Table 5.10: Performance of th Fixed Point Multiplier on Xilinx FPGAs 

Full Tree Wallace Tree Karastura. (a) Ka.rastura. (b) 

delay 28.710ns 13.600ns 11.654ns 12.751ns 

13. 705ns 8.750n 9.698ns 10.850ns 
logic 

(47.7%) (64.3%) (83.2%) (85.1 %) 

15.005ns 4.851ns 1.956n 1.901ns 
r-oute 

(52.3%) (35.7%) (16.8%) (14.9%) 

S li ces 635 678 30 30 

LUT 1105 1252 56 59 

JOB 96 96 96 96 

/IJU LT1 X 1 - - 3 3 
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Figure 5. 7: Comparison of timing performance for 32-bit mul t iplier on Altera and 

Xilinx FPG A devices 

Table 5.9 and Ta ble 5. 10. 

Another advantage of th embedded macro unit is t he greatly improved logic 

utilization. The CSA t ree occupies more than one thousand LUTs for impl ment ing 

a 32-bit mul t iplier , but the Kara.stura design only uses less than one hundred LUTs. 

In this way, more Aoating point arithmetic uni ts can be mapped onto a single FPGA 

to improve t he calcula tion capa bility. Figure 5.7 compares t he cliff renee between 

two FPGA plat forms for 32-bit multiplier. The delay of imp! mentations on Xilinx 

FPGA device a rc a lmost half of Al tera FPGA implementat ion . For the 32-bit fixed 

point mu lt iplier, Xilinx FPGA devices s till show t iming superiority. 

The ni cr properties of Xilinx FPGA implementation for arithmetic units incli-

cate tha t the two LUTs structure of Xilinx FPGA devices is more adapt Lo th logic 

intensive des ign , such as ari thmetic units , because Lhe few resource utilization signif-

icantly reduces t he interconnection cost for the complex logic module . Contrarily, 
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t he simpli fied logic clement of Altera's FPGA devices not on ly is more flexible for 

t hese digital designs without very complicated logic function , but a lso has the less 

power consumption. For instance, many telecommunication applications have very 

complex FSM modules, which require the high speed for statu transfer and wit hout 

very complex logic operation. 

5.2 Performance Analysis for Pipelined Implemen­

tations 

Based on the t iming performance analysis, the combinational designs can be sliced 

into pipelined stages. Alt hough the number of ta.ges speeds up the pipclin d design, 

t he multiple-stage structure a.! o introduces the extra. interconnect and synch roniza­

t ion delays. As the delay of the slowest stage in the pipeli ned design decides the 

maximum work frequency, the proportional delay for every stage i ignifica.ntly im­

portant for the timing performanc of p ipclined implementations. 

In the pipelined implementations, t he output registers are used to synchronize 

output signals in the same stage, and the inpu ts should be held constant for specified 

periods before a nd after the clock pulse to avoid metastability. 

5.2.1 Pipelined Floating Point Adder 

To speed up the pipelin d float ing point adder, t he fast adder with the embedded 

quick carry chain is used for every fixed-point addition. Table 5. 11 shows the timing 

cha racteri t ic for t he pipelined floating point adders on Altera FPGAs. The maximum 

frequency of the -stage pipelined floating point adder achieves 15 .33 MHz. In deeply 

pipcli ncd implementations, such as t h 8- tage floating point adder , some function 
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Table 5.11: Performance of the Pipeli ned Floating Point Adder on Altera FPGAs 

Stag s Frequency Delay LEs Registers pins 

1 37.95 MHz 26.352 n · 71 99 101 

2 73.29 MHz 13.645 ns 745 113 101 

4 127.52 MHz 7.842 ns 736 244 101 

8 158.33 MHz 6.316 ns 756 461 101 

Ta ble 5.12: Performance of the Pipelined F loa ting Point Adder on Xilinx FPGAs 

Stages Delay Frequency Slices Regs 4-LUTs lOs GCLKs 

1 19.964ns 50.090MHz 479 107 921 101 1 

2 10.309ns 97.004MHz 372 123 6 6 101 1 

4 6.040ns 165.577MI-Iz 402 268 746 101 1 

5.39 ns 1 5.271MHz 464 499 805 101 1 

modules wi t h long riticaJ path delay are decomposed to reduce the delay in one 

stage. For instance, the 28-bit mantissa addit ion is divided to two stage with two 

14-bit fixed point adders . 

F igure 5. illustrates the speedup for pipelined implementations on Altera. FPGAs. 

The working frequency rapidly increases from 1-stage design to 4-stage design , and 

the sp - dup is clo e to the ideal theoretical value. However , from 4-st age design 

to 8-stage design, the relative speedup is significantly deer a.sed , because the extra 

interconnect delay restricts the t iming performance of the deeply pipeli ned design. 

Ta bl 5. 12 show the performance of the pipelined floating point a lder on Xilinx 

FPGA . Th maximum work frequency of the eight stages pipelined floating point 
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Figure 5.8: Maximum frequency of t he Pipclined FADD on Altera FPGAs 

Maximum frequency for Xilinx pipelined PfADD 

200 

180 

160 

140 

~ 

N 120 :c 
~ 
» 100 u c:: 
"' :::> 80 0" 

"' ... .... 
60 

--186.271 

~ 
/ 

/ 
/ 

/97.004 
I 

/ I 

./so. o9o 
40 

20 

0 
0 6 8 9 

Stages 

Figure 5.9: Maximum freq uency of the P ipelined FADD on Xilinx FPGAs 



CHAPTER 5. P ERFORMANCE A NALY IS 7 

adder achieves 1 5.271 MHz. As the Xilinx FPGAs have superior interconnect char­

acteristic, the pipelined floating point adder on Xilinx FPGAs is fast r than on Altera 

FPGAs, and the division scheme for eight stag s pipelined design is light ly d ifferent 

between two FPGA platforms. Figure 5.9 illustrates the speedup for pipelined im­

plementations on Xilinx FPGAs. Com paring with the Figure 5. , the t rends of the 

speedup curve on both Altera and Xi linx FPGAs are similar, but the speed of the 

pipeli ned floating point adder on Xilinx FPGAs is higher than on Altera FPGAs. 

5.2.2 Pipelined Floating Point Multiplier 

In contrast to the floating point adder, the floating point mul t iplier ha a simple 

datafl ow and can easily be sliced into multiple stages. The Wa ll ace Tree structure i 

more easily sli eel into multiple pipeline stages for the deeply pipelined design, but it 

a lso occupies vast logic resource and restricts the expansion in the v ctor architecture. 

Therefore , the embedd d fixed point multipliers a re used for mantissa multiplication 

in the pipelined design . Although the embedded fixed point mult iplier can not be 

decompo eel , but its advantage of speed is so distinct that the normalization modu le 

and rounding module become the comparatively slow parts. 

Table 5.13 shows the performance for the pipelined floating point mul t iplier. The 

maximum working frequency of the eight stages pipelined floating point multiplier 

achieves 155.04 MHz. In the eight stag s pipelined design , the 24-bit Karastura 

multiplier is divided to two stages: three part ia l products are generated by embedded 

18 bit mul t iplier in the first stage, and a carry save adder and a fas t adder are us d to 

generate the final resul t. Figure 5. 10 illustrate the speedup of the pipelin d designs. 

Comparing with the pipelined float ing point adder , the speed up curve of the pipelined 

floating point multiplier keeps an increasing trend. 
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Table 5.13: Performance of the Pipelined Floating Point Multiplier on Altera. FPGA 

Stages Frequency Dela.y LEs Registers MUL9 pins 

1 44.9 MHz 22.231 ns 43 9 6 101 

2 6.93 MHz 11.503 ns 448 112 6 101 

4 120.73 MHz .2 3 n 43 225 6 101 

8 155.04 MHz 6.450 ns 463 3 9 6 101 

Maximum f r equency for Altera pipelined PfMUL 
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F igure 5.10: !la.ximum frequency of the Pipelined FMUL on Altera FPGAs 
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Ta ble 5.14: Performance of the Pipelin d Floating Point Multiplier on Xilinx FPGAs 

Stage Delay Frequency Slices Regs 4-LUTs 1UL18 lOs GCLKs 

1 17.814ns 56.136MHz 290 9 557 3 100 1 

2 11.332ns 88.249MHz 285 71 546 3 100 1 

4 7.373ns 135.639 IHz 265 1 4 492 3 100 1 

8 4.883ns 204.813MHz 30 377 55 3 100 1 

Ma ximum f r equency fo r Xilinx p i pel i ned PF MUL 
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Figure 5. 11 : Maximum frequency of the Pipelined FMUL on Xilinx FPGAs 



CHAPTER 5. PERPORMA CE A ALY I 90 

As t he Xi li nx FPGA devic s reta in Lhe superiority for the interconnect delay, t he 

t iming performance of the pipelined floating point multiplier is mu h better than 

Altera FPGA d vices as shown in Tab! 5.13. The maximum working frequency of 

t he -stage pi J lined floating point multiplier achieves 204. 13MHz. Similarly, th 

speedup curv grows almost linearly as shown in Figure 5.11. 

5.3 Performance Analysis for VFPU 

The Xilinx FPGA chip, Virtex II Pro, is cho en as the target platform for the VFPU 

implementat ion to take advantage of the high speed for fl oating point arithmetic 

units. This tion de cribes t he performance and extensibility for the VFPU imple­

mentation with different lane configuration. 

5.3.1 P erformance Analysis 

After synthcsi for Xilinx FPGA Virtcx II Pro (xc2vp100-6ff1704), we can obtain 

the rcsourc utilization and t iming p rformance for the VFPU with d ifferen t lane 

configuration . Table 5.15 shows the d tai led information . The one lane VFPU only 

t akes 1,316 I ices, and the 12-lane VFPU ta ke· 25,994 slices. When th VFPU only 

include a few lanes, fewer than or equal to four, the vector register fil e is direct ly buil t 

on 4-input LUT . The e VFPUs us a part of slices as RAMs, and the maximum 

working frequency can achieve to 217.014 MHz. The -la ne and 12-lane FP s 

include a large loca l torage space a· Lhe vector register file , wh ich i implemented 

by the on-chip block RAMs. In cont ras t with the 4-input LUT as RAM , the block 

RA 'fs a rc connected to logic slices by interconnection resource, which i much lower 

t han the cascad chain between adjac nt slice . Therefore, t h se VFPU are s lightly 

slower and an be clocked as fast as 1 . 76 MHz. Therefore, some more advanced 
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FPGA chips can further improve the timing performance by directly using the LUT 

as the vector register file. 

Considering each lane of t he VFPU can exc u te two ari thmetic operations simul­

taneously, the - lane VFPU can ach ieve a peak performance rate of 3.020 GFLOPS, 

and 12-la ne VFP can achieve a peak performance rate of 4.530 GFLOPS. 

5.3.2 Extensibility Analysis 

While the peak performance rate of the VFPU grows following the number of lanes, 

the external da ta bandwidth will also increase rapidly. Table 5.16 shows the band­

width information for VFPUs with different lane configurations, and lists t he pos ible 

external RAM system and its peak tran fer rate. One of the modern commercial RAM 

modu les, DDR3-1600, can provide up to 12,800 MB/ s peak transfer rate at 200 MHz, 

which can support enough bandwidth for the 16-lane VFPU. tloreover as we scale 

up the number of la nes, we not only should consider the usage of IO pins, bu t also 

should design the dedicated load/align module to sustain peak throughput. 

As discussed in Section 4.4, most vector a ri th metic operation are executed on two 

vector operands, and two loaders an improve the efficiency of the overlap execution 

process. However , t he two vector operands are stored as two sequentia l arrays in the 

external memory. In this way, the two vector load instructions should be sequent ially 

i sued to load two vectors into t he vector register file, and the two loaders have to work 

s imultaneously with two address decoders. The stride and indexed access cheme can 

share one address de oder for two loaders . In fact, a. simple solution is to store two 

vector operands as one vector of the pair of operands. Figure 5. 12 compares two load 

schemes for vector data. We can easily configure the word width to 64 bits and usc 

the high part as one operand a nd the low part as a nother operand . When we generat 
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Table 5.15: P rformance of VFPUs on Xilinx Virtex II Pro 

Lanes 1 2 4 8 12 Available 

Delay (ns) 4.608 4.608 4.608 5.298 5.298 -

Frequency (MHz) 217.014 217.014 217.014 188.768 188.768 -

1316 2816 6282 14000 25994 44096 
Slices 

(2%) (6%) (14%) (31%) (58%) 

1178 3043 7384 18317 35616 88192 
Slice Flip Flops 

(1%) (3%) (8%) (20%) (40%) 

1792 3888 8920 19198 36489 88192 
4-LUTs 

(2%) (4%) (10%) (21%) (41%) 

used as logic 1348 3000 7144 18718 35769 

as Shift registers 60 120 240 480 720 

a RAMs 384 768 1536 - -

0 0 0 48 72 444 
BRAMs 

(0%) (0%) (0%) (10%) (16%) 

3 6 12 24 36 444 
MULT18Xl8s 

(0%) (1 %) (3%) (5%) (8%) 

100 164 292 548 804 1040 
bonded lOBs 

(9%) (15%) (28%) (52%) (77%) 

1 1 1 1 1 16 
GCLKs 

(6%) (6%) (6%) (6%) (6%) 
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Table 5.16: Bandwidth Analysis for VFPUs 

Lanes 1 2 4 8 12 

Word-width (bit) 32 64 128 256 384 

Frequency ( ![Hz) 217.014 217.014 217.014 1 .76 1 .76 

Bandwidth (MB/ s) 868 1,736 3,472 6,040 9,060 

Possible external RAM DDR-200 DDR-266 DDR2-533 DDR2- 00 DDR3-1333 

Work Frequency (MHz) 100[26] 133[26] 133[27] 200[27] 166[2 J 

Transfer ra te (MB/ ·) 1,600[26] 2,100[26] 4,266[27] 6,400[27] 10,667[2 J 

it , we can eas ily organize t he raw da La in pair form and determine the data pattern 

in memory as shown in the low part of Figure 5.12. 

5.3.3 Comparisons to Related Work 

A proto type of the VFPU was successfully implemented on FPGA platform, and the 

performance is respectable. A peak performance of 4.530 GFLOPS at 188.768 MHz 

for the 12-la ne VFPU is achieved on the Xilinx Virtex II Pro XC2VP100. If newer 

and faster FPGAs, such as Xilinx Virtex 5 or Altera Stra tix III , as well as memory 

modu les , such as DDI 3 or XDR [29], are used , we should be albe to obtain much 

higher bandwidths. 

In la rge commercial computing systems, advanced ASIC technology is used to 

achieve high speed and low power consumption . For example, TOSHIBA and SONY 

implemented a 2.44 GFLOPS at 300 11Hz floating-point vector proce sing uni t for 3D 

graphics computing using a 0.18/..lm 4-metal layer technology [30]. For pecific appli-
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cations, such as dynamic ray t racing in image processing, the ASIC implementation 

has estimated peak performance of 361.6 GFLOPS at 400 MHz [31]. Although the 

floating point performance is not the main goal for the genera.! purpose processors, 

they also utilize hyper-thread technology or mul ti-core architecture to optimize the 

system performance in the 3D graphic applications. For instanc , the Int I Pentium 

4 can achieve up to 10.6 GFLOPS for the OpenRT software [31]. The IBl\II Cell pro­

cessor includes eight synergistic processor elements for vector compu ting and have a. 

t heoretical peak performance of 256 GFLOPS. 

Al though the performa nce of our de ign is not at the level of ASIC implemen­

tations, the recurring design proces and fast reconfiguration of FPGA provide a 

great fl exibili ty for various applications. Therefore, advances in FPGA capacity and 

speed can accelerate research in mul t iprocessor architecture and easily emulat high 

performa.nc omputing units, such a. th vector processor, at very low cost [19]. 

ewer designs are also focused on the vectorization and opt imization for sp cific al­

gorithms. For example, a scalable Sparse Matrix-Vector Multiply implementation on 

Xilinx Virtex II 6000-4 can run at 1.5 GFLOPS 140 MHz [32]. 



Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The main contril utions presented in this thesis are the design, implementation , and 

performance eva luation of Aoating poinL ari thmetic units and v tor Aoating point 

units . The FPGA implementation of VFPUs demonstrate that the FPGA plat­

forms a rc well suited to the implementation and evaluation for t h v tor proce sor 

architecture. 

• Vector Architecture Compared with traditional vector sup rcompu ters, vector 

proces or can significant ly reduce the latencies between differ nt function units. 

The v ctor register files are imp! m nted on LUTs in the li e or on-chi p block 

RAJ\ls. Ever function unit an not only qu ick! acccs local torage, but also 

efficient ly exchange data via the chaining scheme. 

Another ontribu tion of this thesis is t he good design choic of a vc tor memory 

uniL that upport two loading port to a cess memory data in pair mode. This 

structur i area-efficient and improves t he efficiency of the overlap execution. 

96 
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• FPGA Implementation Most multi-core microprocessors for high performance 

computing utilize advanced ASIC technology to design and manufacture the 

high peed and low power consumpt ion products. However , recent ext remely 

dense FPGAs create an inexpensive, rcconfigurable, a nd highly pa ra llel plat­

form for th extensive codevelopment of ha rdware and software. The recurring 

design process not only accelerates prototyping a new archi t cture in hardware, 

but also can help to improve the immediate next generation of products by 

considering the feedback from software engineers [19]. 

In addi tional, many floating point arithmetic units can be ma pped onto a single 

FPGA, which means such a. system is les expensive and onsumes less power 

than the general purpose multi-core microprocessors . For example, 24 floating 

point ari thmetic units are mapped onto a. single Xilinx Virtex II Pro FPGA 

device in the design expla in d in thi the ·is . 

• Performance Analysis The detailed anal rsis of t iming p rformance for ombi­

na tional logic design and pipelined design is presented in t his thesis. T he re­

sults demonstra te that an a1 propriate pipeline division can achieve significant 

speedups on t he floating point ari thmetic operations. 

The performance analysis of resource utilization and t iming for VF P Us is pre­

sented , a nd the extensibili ty of VFPUs on FPGA platform i also discussed in 

this thesis. The measurements show t hat the Xilinx Virtex II Pro XC2VP100 

can upport up to a. 12-la.ne VFPU. Fut ure FPGA chips not only can support 

the VFPU with more lan s, but a lso can directly build the vector register fil e 

on LUTs in the slices to a.chiev a. higher speed . The bandwid th analysis shows 

that an external memory module wi th significant ly higher t ran fer rate is also 

required for the extension of t he lane . 
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6.2 Future Directions 

Several r s arch direction can a rise from this work: a primary cache for vector units , 

an expanded embedded system for pccifi application , and a rna ively parallel 

computing model. 

• Emb ddcd System Design 

The Xilinx embedded processor, PowcrPC PPC405, has powerful fixed point 

p rforma ncc, and t he VFPU an ea ily work wi t h the PowerPC or to improve 

the Aoating point performan c. Therefore, a heterogen ou pa ra llel proce or 

archite t ure can be implement d on the FPGA pla tform. Figure 6. 1 shows t he 

block diagram of an embedded system on the Xilinx Virtex II Pro , XC2VP100. 

This sy tern includes a custom IP core (VFPU) , an embcdd d proc ssor (Pow­

crPC PPC405) , a DDR2 RAM cont roller , and a primary cache module buil t 

on block RAMs. The PLB bus is u ed to connect the e high speed compo­

nents. The PowerPC core is the master d evice on this bu , and the VFPU and 

the DDR2 RAM control! r arc th lave devices. In thi · way, the PowerPC 

ore can effi ci ntly issue instru tions a nd control the cxe uLion procedure. The 

Xi linx PowerP processor environment can execute embedded operating sys­

tem , u h a the embedded Linux , or Real-Time Opera ting ystcm , which will 

provid a Aexible programming environment for different a pplication . Based 

on t hi · embedded system , more vcctorized applications can take advantage of 

the VFPU , a nd many computat ion- intensive a pplications can be con idered for 

vectorization to improve the performance. 

In additiona l, a primary cache ca n help to exploi t tempora l locali ty a nd re­

duce memory bandwidth d emands and the dedicated primary cache design can 
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significantly improve the performance of the embedded ystcm. In particula r, 

theca he refill / access decoupling chemc can eliminate many of the mi s st at s 

required in traditional vector ar hi tecturcs, and has the potentia l to achieve 

better performa nce vvit h fewer r sources than tradi t iona l d oupling methods 

[33]. 

• Mas ivcly Parallel System Massively parallel systems arc used to solve large­

scale amputa tion problems for many cience and engineering applications, such 

as earth science imulations . wea pon research, radio astronomy, protein fold­

ing, clima te rc earch, cosmology, a nd drug development. In a massively parallel 

system many individual nodes a.re onnected by high-p rforma.nce intercon­

nect n tworks and communicaL by pa ing messages. Utilizing the quick in­

terconn ction technology, such as I-lypcrTransport [1 ], multiple FPGA chip 

with VFPU an be integra ted on one board to form a p owerful node for t he 

mas iv ly para llel system. These boards can then be q uipped with Gigabit 

Et hernet interfaces and exchange data via a Gigabit Et hcrn t wiLch. 
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