

A Vector Floating Point Processing Unit Design

by

(© Shi Chen

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the
requ cments for the degree of
Master of Engincering.

Faculty of Engincering and Applied Science
Memorial University of Newfoundland

May 14, 2008

ST, JOHN'S NEWFOUNDLAND

Abstract

The main contribution of this thesis is the successtul development of a vector Hoating
point. processing unit for high accuracy science computing. For these numerically-
mtensive applications. vector processing offers simple and straightforward parallelism
by executing mathematical operations on multiple data elements simultancously. The
simple control and datapath structures of vector processing cnable the embedded
computing svstem to attain high performance at low power.

This vector Hoating point processing unit includes: a vector register file, vector
floating point arithmetie units, and vector memory units. The central module, a
veetor register file, 1s divided into twelve lanes. One lane contains 16 vector registers,
cach including 32x32-bit elements, and is connected to a floating point adder and a
floating point multiplier. By modeling the multi-port register file using configurable
block RAM on Ficeld Programmable Gate Arrays (FPGA) target. veetor register files
can efficiently obtain data from external memory and feed data to ditferent arithmetic
units simultancously, Utilizing the quick carry out path and embedded multiplier
macro unit, the vector floating point arithmetic units can run at over 200 Mz A
flag register is used to indicate the caleulation sequence for the specific computing
model. Morcover. the embedded Power PC processor not only can casily control
the caleulation fow, but also can support an embedded operating system to extend

a broad range of applications. The prototype is mmplemented on Xilinx Virtex 11

Pro devices, and a peak performance of 4.530 GFLOPS at 188.768 MHz has been
achieved.

First, we present a brief introduction to the floating point arithmetic operations,
including addition, multiplication, and multiplicr-adder-fused. Scecond. the architee-
ture of the vector processing unit and a detailed description of vector function units
arc introduced. Moreover, for a specitic computing application, the appropriate over-
lap execution scheme is discussed. In the end, the perfornance of cach component is

analyzed, and the time and area analysis of whole system is provided.

111

Acknowledgements

I first thank my supervisors, Dr. Ramachandran Venkatesan and Dr. Paul Gillard,
for their strict academic training and for their advice and encouragement while 1
pursued my interest in digital design. Their invaluable expertise greatly helps e to
immprove my work. | also want to thank Dr. Phillip Bording for research support.

The Computer Engineering Rescarch Laboratory (CERL) 1 Memorial University
of Newfoundland provided a great environment for much of this work based on FPGA
platform. Every graduate student in our laboratory always likes to selflessly help cach
other. Special thanks to Tiangt Wang. Ling Wu, Pu Wang, Liang Zhang, Shengiu
Zhang. Tao Bian, Rui He, and Guan Wang for their precious friendship and generous
support. 1 would like to thauk all of vou who have given your time, assistance and
patience so generously. Extra special thanks to Reza Shahidi, the former laboratory
administrator. for *° la » responsibility for the outstanding computer facilities we
have in CIERL.

I am also indebted to my parents aud my wife, Li Liu. Thank vou for your
unending support, willingness to accept and cagerness to love.

Finally, thanks to Canadian Microelectronies Corporation (CMC) for providing
Xilinx FPGA develop kits. Thanks to Natural Sciences and Engineering Rescarch

Council of Canada (NSERC) for rescarch funding.

v

Contents

Abstract
Acknowledgements
List of Figures
List of Tables

1 Introduction
1.1 Basic Concepts of Floating Point. Number 000000
1.2 Parallelism in Microprocessors o oo
1.2.1 Instruction-level Parallelism
1.2.2 Thread-level Parallelism
1.2.3 Vector wata . arallelism .0 00 0 o0 o000
1.3 Hardware Platforms oo
1.3.1 Application Specific Integrated Circuits (ASICs)
1.3.2 Ficld Programmable Gate Arrays (FPGAs),
1.3.3 Embedded Systems .« . 0L 0 00

1.4 Motivation and Organization of the Thesis

2 Floating Point Arithmetic

ii

iv

x1i

10

10

11

13

16

2.1 Floating Point Addero 16

2.2 Floating Point Multiplier 00000000000 22
2.3 Floating Point NMultiply-Add-Fused (NMAF) - o0 000000000 0. 30
2.1 Other Extensions of Floating Point Operation 33
2.5 Summary ... oL 33
Vector Floating Point Processing Unit 35
3.1 Architecture .. . o oL 30
3.2 Vector Register File . .0 00 000000000000 39
3.3 Vector Memory Unit .0 0000000 10
3.4 Vector Arithmetie Units .. . 0 000 00000000 41
3.5 Chaining 0 oo 12
3.6 SUMINAY o 45
FPGA Implementation 46
4.1 Design Methodology for FPGAs 0000000000000 A7

111 Altera FPGA Family . 0 0 .00 0000000 19

L1020 Xilinx FPGA Family . 000 00 000000 51
1.2 VHDL Nodels on FPGAso 0oL 53

42,1 Register Files . . . 000000000000 55

1.2.2 Arithmetic Modules. .0 00 000000000000 56

4.2.3 Nemory Access Units . o 00 000000000 GO
4.3 Embedded System Configuration .. o o 0 o000 00000 60
4.0 Application Example 0000000 63
Performance Analy J
5.1 Performance Analyvsis for Combinational Implementations 70

vl

5.1.1 Ripple Carry Adder 00000000

5.1.2 Carry Lookahead Adder
5.1.3 Quick Carry Chain
5.1.4 Carry Save Adder 0 0oL
5.1.5 Fixed Point Multiplier 000
5.2 Pertormance Analysis for Pipelined Implementations0 0 0 .
5.2.1 TPipelined Floating Point Adder 0 000000
5.2.2 Pipelined Floating Point Multiplier
5.3 Performance Analysis for VFPU 000000000000
5.3.1 Performance Analysis 0000000
5.3.2 Extensibility Analvsis00
5.3.3 Comparisons to Related Work

Conclusions and Future Work
6.1 Conclusions

6.2 Future Directions L

vii

90
90
91
93

96
96

98

List of Figures

o

o

[aa

-1

o

Floating point number structure 00000000

Different forms of machine parallelism. [5]

Multiplexer-based 8-bit Barrel Shift Cireuit. .00 0 0000000 0.
Inplementation sequence of CLA and LZA 7]
Finite state diagram of LZA (modified from a picture in [7])
Block diagram of a floating point adder/subtracter (modified from [9])
Block diagram of the single path and the dual path designs (modified
from a picture in [9])o
Block diagram of a foating point multiplier (moditied from a picture
m9])
A radix-1 Booth coded Wallace tree (modified from a picture in [11])

Block diagram of a floating point multiply-add-fused (modified from a

picturc in [11]) .. oo

Block diagram of a vector Hoating point processing unit (modified from
apicture in [B]) © .o

Block diagran of a vector register file (modified from a picture in [5])

Vil

18

19

40

3.3

3.4

i
o

Three major chaining modes: (a) arithmetic operation after loading,
(h) arithmetic operation after arithmetic operation, and (c) storing
after arithmmetic operation o000

The overlapped exceution process (modified from a picture in [5])

Block diagram of Altera FLIEX 101X FPGAs [20)
Logic clement structure of Altera FLEX 10K FPGAs 20
Block diagram of Xilinx Virtex FPGAs [22]
Slice structure of Xilinx Virtex FPGAs [22}

VEFPU RTL schematic diagram (mmodified from a picture in [5]) . . .

Three port data bank structureo
The schematic diagram of vector register file within one lane (modified
from a picture in [5])o
A simulation waveform for Hoating point adder
A stiimulation waveform for Hoating point multipher
A simulation waveform for floating point multiplier
The load FIFO register with two different bit-width data ports
Block diagram of an cmbedded system configuration . .00 0oL
The ¢ parison among three different execution flows
The sequential execution flow .0 00 0000000000
The chaining overlap exccution flow 00000

The chaining overlap exccution flow with two loaders

Comparison of critical path delay for Ripple carry adder on Altera and

Xilinx FPGA deviees .. 0 0 o

43

44

60

61

62

60

67

69

73

Delav proportion between logic and route for CLAs on Altera Cyclonell 76

=1

(e

Delay proportion between logic and route for CLAs on Xilinx Virtex

Building a 48-bit CLA from 12 4-bit CLAs and 4 lookahead carry
generators L L
Building a 48-bit CLA from 12 4-hit CLAs and 5 lookahead carry
BENCTAtOTS L
Comparison of timing performance for Fast Adder on Altera and Xilinx
FPGA devices 0 . e
Comparison of timing performance for 32-bit multiplier on Altera and
Xilinx FPGA devices 00 0 000
Maximum frequency of the Pipelined FADD on Altera FPGAs
Maximum frequency of the Pipelined FADD on Xilink FPGAs
Maximum frequency of the Pipelined FMUL on Altera FPGAs
Maximun frequency of the Pipelined FAIUL on Xilinx FPGAs

Comparison of two load schemes for vector data

Block diagram of an embedded systemn with VEPU and — owerPC

70

78

80

83

806

99

List of Tables

1.1 IEEE 751 Floating Point Number Formats00 0.0

1.2 1EEE 754 Exception Definitions .« .. 0 00000000000

2.1 The Scheme of Rounding to The Nearest Even Number 0 0 0 0 0 .
2.2 Radix-4d Booth Encoding o000

2.3 Single Direction Shifting for Aligmment 000000

5.1 Performance of the Ripple Carry Adder on Altera Cyclone 1T .0 . .

5.2 Perforniance of the Ripple Carry Adder on Xilinx Virtex I Pro

5.3 Performance of the Carry Lookahead Adder on Altera FPGAs

5.4 Performance of the Carry Lookahcad Adder on Xilinx I GAs

55 Performance of the Fixed Point, Adder with Quick €y Chain on
Altera FPGAs e

5.6 Performance of the Fixed Point Adder with Quick Carry Chain on

Nilinx FPGAS
5.7 DPerformance of the Carry Save Adder on Altera FPGAs
5.8 Performance of the Carry Save Adder on Xilinxk FPGAs

9 Performance of the Fixed Point Multiplier on Altera FPGAs

(W2

5.10 Performance of the Fixed Point Multiplier on Xilinx FPGAs

5.11 Performance of the Pipelined Floating Point Adder on Altera FPGAs

X1

79
80

]l

5.12 Performance of the Pipelined Floating Point Adder on Xilink FPGAs 85
9.13 Performance of the Pipelined Floating Point Multiplier on Altera FPGAs 838
5. 14 Performance of the Pipelined Floating Point Multiplier on Xilinx FPGAs 89
5.15 Performance of VFPUs on Xilinx Virtex I Pro 92

516 Bandwidth Analysis for VEPUs . 0 0 000 000000000 93

X1

Chapter 1

Introduction

From the carly 1960s. the vector processing model was used to cope with data-
intensive application in the scientific computing area. The basic concept of vector
processing is fairly simple and straightforward. A large number of arithmetic unts
(or co-processors) are used to execute mathematical operations on multiple data el-
cments simultancously. Although many supercomputers initially utilized vector pro-
cessor and continually broke the performance record through the 1980s and into the
1990s, the scalar microprocessor-hased systems swiftly replaced vecetor machines in
the carly 1990s. hecause they approached or even exceeded the performance of vee-
tor supercomputers at much lower costs. However. the vector architecture recently
reemerges in some today’s commodity CPU designs, such as IBN's Cell processor, be-
cause the data parallelism is always an cefficient scheme for the numerically-mtensive
applications.

As the number of transistors on integrated circuits has increased rapidly, an ef-
ficient and cheap vector processor can be implemented using the advanced silicon
CMOS fabrication technology. Field Programmable Gate Arrays (FPGAs) is one of

these mature technologies. The modern FPGAs not only can casily implement com-

CHAPTER 1. INTRODUCTION 2

plex logic functions, but also provide rich macro function units, such as digital signal
processing modules. on-chip block memory, input/output (I/O) controllers, or even
a complete scalar processor. Moreover, most or all of the functions of a complete
digital clectronic system can be mnplemented on this powerful FPGA chip. Utilizing
mature CNOS technology, the specifie algorithims are vectorized, optimized, and im-
plemented on FPGA platform. For general-purpose applications, the vector-thread
(VT) architectural paradigm [1] has become important for all-purpose embedded
computing. VT architectures unify the vector and multithreaded execution models.
A large amount of structured parallelism can be implemented on VT architectures.
The simple control and datapath structures of vector processing enable the embedded
computing system to attain high performance at low power. In this thesis, a veetor
floating point processing unit. is implemented on Xilink FPGAs.

This chapter will introduce the general concepts, and discuss a suitable parallelism.
The appropriate nnplementation method will be also discussed in the end of this
chapter.

Section 1.1 reviews floating point number representation and shows the main
advantages of IEEE 7hH4 standard for floating point operations.

Section 1.2 compares various forms of microprocessor parallelisin methods., includ-
ing instruction-level parallelism (Pipeline). thread-level parallelism (Out-of-Order).
and vecetor data parallelism.

Section 1.3 analvzes different implementation methods, including Application Spe-
cific Integrated Cireuit (ASIC) and FPGA. Although the ASIC implementation will
be faster and more energy-cfficient, the FPGA platform leads to a more flexible so-
lution and can be casily built as an cmbedded system for a much wider range of
applications,

Section 1.4 summarizes the main challenges in our research work, and presents

CHAPTER 1. INTRODUCTION 3

Total width

Exponent width

Exponent

Mantissa

1
e

Significand width

Figure 1.1: Floating point number structure

the organization of this thesis,

1.1 Basic Concepts of Floating Point Number

Floating point operations not only are the basis for scientific and engineering compu-
tation. but also are ubiquitous in 3D applications. The most common floating point
number representation is the exponent-niantissa method. In this way, a wider range
of numbers can be represented compared with the fixed point representation. In this
chapter, the IEEE 751 floating point number standard [2] will be introduced and the
main advantages of this representation format will be discussed.

Following the IEEE 754 standard, floating point numbers represent a subset of real
numbers using three parts: a sign bit. an exponent part, and a n- atissa part. Figure
1.1 shows the structure. For different application requirements, <SEE 754 standard
defines four closely-related formats: single precision, double precision, single-extended
precision, and double-extended precision. For four formats, the main difference is the

width of the exponent part and the fraction part. and the hidden bit is also different.

CHAPTER 1. INTRODUCTION 4

Table 1.1: IEEE 754 Floating Point Number Formats

Formats Total bits | Sign | Exponent | Significand | Hidden bit
Single 32 1 8 23 - 1
Double 64 1 11 52 1
Single extended > 42 1 - - none
Double extended 80 1 15 64 none

The actual value of the Hoating point number is obtained by multiplying the sign.

the mantissa, and the exponent part. A floating point number can be deseribed as
F=sxmxb, (1.1)

where s denotes the floating point nuntber sign, ¢ stands for the exponent value, b is
the base of exponent part, and m stands for the mantissa part. Note that mantissa
part includes the hidden bit (only if b = 2).

For instance,

3E2BDA?28 (hex, IEEE 754 single precision)

= 001111100 01010111101101000101000 (binary)

= (1.01010111101101000101000), x 201111100 0TI,

= 0.167824 (dec).

When the exponent is non zero. the hidden bit equals one, and the mantissa value
1s in the normalized format: otherwise, this bit equals zero, and the mantissa value is in
the denormalized format. Following the IEEE 754 Standard, a single precision number
is consisted of sign bit, exponent, and significand. The normalization format means
the hide bit of significand is equal to 1, and the value of this number is represented

by (L. x 29). For the partial result of floating point operations, the value may
. I g]

(W}

CHAPTER 1. INTRODUCTION

be formed as (le.cer..o x 29) or (Dorae.. x 29 In this case, we have to apply
the post shift (1 bit right shift or several bits left shift) and appropriate exponent
adjustment to adjust the result and generate the normalization format according to
(Lawa..ax 29,

[i1 some special cases. the result is very small number and the value of exponent
part is less than zero. To represent these small values in a certain range, we can use
the de-normalization format. T this way, we will set the exponent part as zero, and
right shift the significand part to form a de-normalization format as (O.raw...r x 2%).

To sum up, for both normalization and de-normalization, we should check the
most signiticand bit of the significand part first, and then take appropriate shifting
operation on the significand part, and adjust the exponent part.

The first bit is the sign bit to indicate the sign of floating point munbers. The
exponent part is represented in a bias format. For the single precision representation,
the exponent is biased by 127 (2¢ 1 — 1, ¢ is the number of the exponent bits), and
is used to represent hoth tiny and huge values. The use of a hiased exponent format
makes comparison casy. because we need not use an extra sign bit for the exponent
part. If the exponent uses the usual representation for signed values, like the two's
complement format, the time complexity for comparison would be similar to the
carry lookahead adder. Floating point numbers are equal if and only if their every
corresponding bit is identical. Leaving out the exceptional values, comparisons on the
bit patterns can directly deterinine the relative magnitudes of floi ng point numbers.

To tolerate error, the IEELR 754 standard also defines a set f exceptions. The
exception formation can be summarized as in Table 1.2, During the Hloating point

number caleulation. some exceeptional events may oceur:

o Overflow, which arises because the calculated result 1s too large and exceeds

CHAPTER 1. INTRODUCTION 0

Table 1.2: IEEE 751 Exception Definitions

Type Exponent | Mantissa
Zoerooes 0 0
Denormalized numbers 0 1O ZCTO
Normalized numbers | 1 to 29— 2 any
Infinities 20—1 0
NaNs 20 -1 1Hon Zero

the range of the IEEE representation. The signed infinity value will be ontput,

and an appropriate exception signal will be produced.

e Underflow, which arises because the calculation result is too small and under
the range of the IEEE representation. The denormalized value will be output,

and an appropriate exception signal will be produced.

e Zerodivide, which arises whenever a divisor is zero. The signed infinity value

will be output. and an appropriate exception signal will be produced.

o Operand crror, which arises whenever any operand to an operation is a Not a
Number (NaN), or the result is an imaginary. such a sqrt(—1.0) or log(—2.0).
The signed NaN value will be output, and an appropriate exception signal will

be produced.

With the floating point number representation, a floating point arithmetic op-
eration has to complete more tasks than the corresponding fixed-point arithmetic
operation. such as sign bit determination. exponent caleulation and adjustinent, and

mantissa part caleulation and ac stment. Each part requires separate combinational

CHAPTER 1. INTRODUCTION 7

logic units or fixed-point operation components. Therefore, the implementation of
the floating point arithmetic operation is much more complicated than corresponding
fixed-point arithmetic operation. To speed up the floating point computing process,
we not only should design independent Hoating point execution units, but also should

utilize different parallelism methods to optimize the computing system architecture.

1.2 Parallelism in Microprocessors

For complicated scientific applications, such as floating point number operations in-
troduced above, the fundamental ways in which advances in technology improve per-
formance are parallelism and locality [3]. This section will introduce the common
methods employed in microprocessors to implement parallelisin and locality improve-

nient methods.

1.2.1 Instruction-level Parallelism

The basic stages in data processing are: loading from memory to register, executing
in arithmetic nnits, writing back to register. and storing to memory. Each stage is
generally performed in a single clock evele. If these stages use different function units
without hazard, or if the syvstem can provide enor 1 function resource to execute
these tasks, these stages can be pipelined in a straightforward manner, so that the
final result can be acquired almost every clock cycle after the initial lateney. This
overlap exccution mode is a classical mode of instruction-level parallelism.
Morcover, the complicated floating point arithmetic operation can be casily di-
vided to multiple sub-function stages. because cach floating point operation needs to
cope with individual sign, exponent, and mantissa parts. These sub-execution stages

can also be pipelined and will speed up the whole execution process.

CHAPTER 1. INTRODUCTION 3

The main advantage of the pipelined structure is reducing the total latency of
a long data queue from input to output. However, the pipelined structure can not
reduce the latency for a single task. The pipelined structure improves the throughput

of the entire workload, and make cach function unit work more efficiently.

1.2.2 Thread-level Parallelisim

The pipelined structure makes the different function units to operate simultancously.
However, a structural hazard or data dependeney will cause the stall of pipeline.
Meanwhile, the increased throughput aggravates the speed gap between processor
and memory. The function units in the processor still have to wait to be fed data.
Iucreasing the number of execution units per processor can directly map multiple tasks
to the multiple execution units. This trend has resulted in modern microprocessor
design Lo integrate multiple cores on a chip, which can exploit thread-level parallelism

by having sufficient exccution resource [4].

Another method is the out-of-order execution. which provides an efficient control
scheme for multiple threads within a process. In this way, instructions are scheduled
dynamically and allowed to complete out of order to keep function units busy. In
general, out-of~order execution is an extension of instruction level parallelism, because
the crucial property is the improvement of function unit efficiency. On the other
hand. out-of-order execution requires sophisticated branch prediction techniques and
sophisticated caches. These associate units occupy considerable arca in a modern

processor and consuine extra energy.

CHAPTER 1. INTRODUCTION 9

1.2.3 Vector Data Parallelism

Instruction-level parallelism and thread-level parallelism require a more complex con-
trol svstem to avoid structural hazard and data dependency. A more straightforward
parallel mode is data parallelism, which is where the same operation 1s performed
simultancously on a set of data elements [5]. A vector processor includes multiple
homogencous function units to operate on multiple data, Comparing with a scalar
processor, the number of instructions will be reduced and the instruction decoding
time will be also reduced. Therefore, vector processing can significantly improve the
exccution efficiency.

However, vector processing requires a certain amount of time to load data sets,
before it fills the pipe. To reduce the loading time, an appropriate vector register file is
designed for fast access between sequence operations. A bateh of vector operations will
be pipelined. and this technique is called vector chaining. In this way, the data sets can
be held in register files, and the overall performance will be dramatically improved.
Independent parallel datapaths can be applied to most scientific computing models,
and vector processing have very good cost/performance on data parallel codes.

Figure 1.2 shows the difference hetween the three types of parallelisin. Within
cach diagrain, cach box represents one instruction, and cach shape within a box rep-
resents one operation. Boxes are grouped by instruction stream. For Instruction-level
parallelisi, the possible interactions between concurrent instruction grows quadrat-
ically with the number of parallel instructions. Thread-level po llelism incurs the
expense of duplicating instruction management logic for cach instruction stream, and
also suffers overheads for inter-thread synchronization and communication [5]. There-
fore, we utilize a pipelined structure to speed up the Hoating pe at arithmetic unit,

and use the vector data parallelisim to improve the cthiciency of the entire computing

Cuarrer 1. INTRODUCTION 11

Register Transter Level (RTL) design. The logie synthesis tools can compile the RT'L
design and generate a gate-level netlist, which is next used to place the cells using
a placement tool. During this design process, several optimization methods will be
used to improve the perforimance, and will be subjected to specified constraints. The
flexible routing and placing technology reduces the interconnect cost between different
function units.

ASICs are generally used to achieve low power consumption and high speed. be-
cause of reduced area and increased speed. However, non-recurring engineering costs
and the complexity of design tools not only increase mannfacturing and design time
and cost, but also require the designer to possess higher design and optimization

skills.

1.3.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are employed in semi-customized hard-
ware approach which consists of programmable logic components and programniable
interconnects. In most modern FPGAs, the logic components are implemented by
RAMN-based look-up table (LUT) and can he programmed to perform various logic
f tions. These R 77 [-based logic components need to load the function cont™ ra-
tion during boot-up process, that usually takes mantissas of a second. A hierarchy
of programmable interconnects connect logic components to implement more con-
plex logie functions. As the gate density on integrated circuits is incereased rapidly,
modern FPGAs not only provide embedded memory module to build fast register or
on-chip memory, but also implement embedded processor blocks within the FPGA's
logic fabric, which only occupy a small die arca and consume low power.

The RTL design and synthesis process for FPGA is similar to the design for ASIC.

CHAPTER 1. INTRODUCTION 12

Based on technology-mapped netlists, the FPGA company’s place-and-route software
will validate the map, place and route results via timing analysis, simulation. and
other verification methodologies. After the design and validation process, the binary
configuration file is generated and can be downloaded to the FPGA chip via a Joint
Test Action Group (JTAG) debug port.

The FPGA implementation usually runs slower than an ASIC realization, because
the programmable interconnect module cannot always provide an efficient intercon-
nect solution as in the ASIC platform. However, the FPGA design could be an itera-
tive process, and can be easily re-programmed after debugging. These advantages not
only reduce development time, but also provide a great flexibility for various applica-
tions. The Hexibility has evolved to exploit particular forms of parallelism common
to certain classes of embedded applications.

For high performance computing applications, FPGA architectures can otfer in-
herent parallelism of the logic resources. A fast register file can he built using the
cmbedded memory blocks, and a lot of single precision Hoating point units can be
implemented on the FPGA. Considering these advantages of FPGA. the FPGA is

well suited for implementing the vector processing paradigi.

1.3.3 Embedded Systems

With embedded processors, multipliers. and block memory, an FPGA chip may con-
tain over [00 million transistors. Harnessing all this raw computing power requires
that the developer’s attention moves bevond logie function design into parallel com-
puter system architecture. Moreover, these hardware components and appropriate
software modules compose an embedded systeni, which can be optimized for one or

a few dedicated applications.

CHAPTER 1. INTRODUCTION 13
The embedded svstem design process includes three steps:

e Architecture configuration, which contains target chip seclection, base svstem
building, local bus design, memory on chip configuration, and I/0O interface
design. This step will determine the system architecture and define the interface

hetween different components,

e Hardware component design, which contains control unit design and function
unit design. These hardware components can he miplemented and tested on the
IFPGA plattform independently, and then imported to the cmbedded system. For
cach component. a wrapper module will he used to customize the interface and

connect to the local bus.

o Software application design, which contains embedded operating system con-
figuration, board support package (BSP) development, and application design.
The software application can be loaded in two wavs: initializing Block RANMs
and running under an embedded operating svstemn. The first approach is faster,
because the binary code of the software application will be loaded to a memory
space with the hardware configuration. The second method needs operating

system support and will be more Hexible for debugging.

1.4 Motivation and Organization of the Thesis

Many science and engineering applications require high computational accuracy and
flexibility. TFor instance, the Earth Simulator contributes to prediction of environ-
mental changes by analyzing the vast volume of the observed data. A fast Hoating
point computing system can provide strong support {or these applications. Moreover,

the vector-thread (VT) architectural paradigm [1] has becomne one of the new wayvs

CHAPTER 1. INTRODUCTION 14

to implement all-purpose embedded computing. VT architectures unify the veetor
and multithreaded execution models. A large amounts of struct ed parallelism can
be implentented on VT architectures. The simple control and datapath structures of
veetor processing enable the cmbedded computing system to attain high perforinance
at low power.

Tlie main purpose of this thesis is to study a vector computing scheme for oating
point operations. The study of vector data parallelism for floating point number com-
puting model is very challenging. The challenging objectives are: 1) high throughput.
of the floating point arithmetic operations, 2) efficiencey of local storage access. and
3) chaining between all function units and registers.

In particular, the foating point arithmetic operations are time consuming for
any processor. To minimize the critical path delay. quick carry chain and embedded
multiplier are utilized in the FPGA implementation.

In order to casily access data on chip, a vector register file is desirable. In this
thesis, we also proposed a generie nulti-ported register file structure, which can cfhi-
ciently load data from the local bus and provides different data clements to multiple
operation units.

To further improve the performance of the proposed veetor floating point pro-
cessing unit, we propose several design improvements for FPGA implementation.
The synthesis results show that the performance is satisfactory in many munerically-
intensive applications, such as the Earth Surface Simulation Model.

The rest of this thesis is organized as follows: Chapter 2 presents the basice floating
point arithmetic units, including Adder, Multiplier, and NMultip ~Add-Fused mod-
ules. In this chapter, we not only present the structure and algoritlnn for these floating
point arithmetic units, but also discuss several optimization ne 1ods and compare

these different architectures for these fast designs. A detailed discussion of the vector

CHAPTER 1. INTRODUCTION 15

data parallehism schieme will be given in Chapter 3. The vector architecture will be
mtroduced first, and the heart module, veetor register file, will be discussed in detail.
For the common floating point operations with two operands, we also present the two
loader scheme to improve the access performance. Implementation and optimization
on FPGA devices will be introduced in Chapter 4, and two FPGA platforms of the
leader manufactures, Altera and Xilinx, will be compared. Performance analysis and
further discussion will he given in Chapter 5. FFor cach floating point arithmetic units,
the timing analysis will be presented. The extensibility of whole vector floating point
unit will be discussed. and the bandwidth requirement for our design will be also

presented. Chapter 6 concludes the thesis and proposes future research directions.

Chapter 2

Floating Point Arithmetic

In this chapter, we will introduce three immportant floating point number arithimetice
units: the adder, the multiplier, and the adder-multiplier-fused unit. In the last

section the extension to a complex floating point operation will also be discussed.

2.1 Floating Point Adder

[Floating point addition is a fundamental operation m many scientific and engineering
applications. The addition process for two floating point mumbers is shown in the
following expression:

Fr£Fyo= (sexmy < 07) & (s x sy x 07)

D)

= (5 xXmyEsy X) x b, (2.1)

v ez
A floating point adder (FADD) consists of a fixed-point subtracter for exponents. a
fixed-point adder for aligned significands, a barrel shifter for potential pre-shifting
(alignment) and post-shifting (normalization). a rounding module, and support cir-
cuitry for sign detection and expouent adjustment. Compared with fixed point ad-

dition, floating point addition is more complex because differences in the exponent

16

CHAPTER 2. FFLOATING POINT ARITHMETIC 17

part require alignment shifting before the mantissa addition, and the subtraction of
close numbers leads to potential left shifting for the result normalization. In detail,
Hoating point addition is composed of the following six steps:

Step 1. Exponent subtraction

Caiff = ler — ey
The difterence between the exponents will be used to align the mantissa part of the
smaller operand. A fixed-point subtracter is used to generate the subtraction result,

and the resnlt should be positive value.
(o = mar(cy,) (2.3)

When we complete the subtraction, we can casily determine which exponent value is
the larger one as shown in Eq. 2.3, and this exponent valne will be set as the partial
exponent result.

Step 2. Mantissa alignment

The barrel shifter[6] is used to quickly align the mantissa part. The barrel shifter
module consists of a multiplexer array and can provide the fast s] t operation for the
preshift and postshift modules. The compact barrel shifter, with the encoded control,
reduces the eritical path because it contains few multiplexers. For instance, an 8-bit
left barrel shifter is shown in the figure ~ 1, which includes 24 2-to-1 multiplexers.
The delay for the 8-bit left shifting is three level delay of the 2-to-1 multiplexer.

Step 3. Fixed-point number addition and leading zero anticipation.

The carry lookahicad adder (CLA) is used for fixed point number addition, and
the Leading Zero Anticipator (LZA) ., is used for detecting the postshift bits in the
parallel mode. To reduce the eritical path delay, the key module of the Hoating point

adder is the leading zero anticipator, which can predict the left-shifting bits in parallel

CHAPTER 2. FLOATING POINT ARITHMETIC 19

Evaluation cell Buffer cell Buffer cell Evaluation cell

/9 V r\(n\ 0/

<
MSB IS8 MSB N 1.8
Lookahead Adder Leading Zero Anticipator

Figure 2.2: Implementation sequence of CLA and LZA [7]

mode. The LZA operates in the opposite direction from the carry lookahead adder,
and its scheme is similar to the parallel prefix computation [8]. Figure 2.2 illustrates
the implenientation sequence of CLA and LZA.

The LZA can directly determine the number of leading zeros or ones from the
addition results of two input operands. This process is building a 1-string followed by
a O-string, and an encoder or priority encoder yields the index of the leading 1. The
P, G, and Z signals describe the bit to bit relation of two input operands, A and B.

The definition is following:

P=AQI0G,
G=4de0,
Z=A+ D,

The following four cases provide the leading one/zero result of mantissa addition.
Casel: A>0,B>0,A+8>0
A 0...00...010001...
B 0...00...000110...
2. 272 . ZPZP. Cary 0

A 0...00...0100100...

CHAPTER 2. FLOATING POINT ARITHMETIC 20

Ié] 0...00...0111010...

2. 07 . ZGPP... Carty = 1
Case2: A <0.8B<0.A+DB <0
A 1...11...100000010...

B 1...11...110000101...

G.GG..GPZZ... Carry = 0

1...11...101100...
1...11...111100...

G.GG..GPGGE... Carry =1
Cased: A>0,B3<0.44+8>0
A ()...00...01000001010...

B 1...11...01000100101...

P.PP.PGZZ. . ZP.. Carry
Cased: A>0,B<0.4+DB <0
A 0...00...0111111000010...

B 1...11...0111011000100...

P.PP.PZGG...GP... Carry
Figure 2.3 shows the finite-state

possible bit to bit relations described

=0

=1
diagram. The state transition represents all

above.

Following this finite state diagram, a component is constru d to generate the

characteristic string, and an encoder is used to count the number of leading ones or

20108,

Step -1 Normalize significand and

adjust exponent.

The normalization for the addition result has two possibilities: one is a 1 bit right

shift for the carry out mode; the other is a multiple bit left shift for close number

subtraction. For cach shift operation,

the appropriate adjustment will also be done

CHAPTER 2. FLOATING POINT ARITIHMETIC 21

Adjust Encode P, Adjust Encode

G,

YAV Puis Guisn

Figure 2.3: Finite state diagram of LZA (modified from a picture in [7})

Table 2.1: The Scheme of Rounding to The Nearest Even Number

Origin AT A G IE S
Ibit right shift o Loy Zoaa | Z G nv>s
1bit left shift w2y G R S 0
After Normalization | ... Z_jwy Z ¢ | Zoioy Z_oi—o Z 4 4

on the partial exponent result.

Step 5. Rounding, normalize, and adjust exponent.

The rounding module converts intermediate addition results to lower-precision
formats for storage or output. After the first normalization and potential left shifting,
the rounding scheme is used to adjust the last bit of the mantissa and can cause
adjustment of exponent. Three additional digits are kept and can potentially affect
the rounding result. We have the following format output of thie mantissa adder:

G: Guard bit
R: Round bit
S: Sticky bit
Table 2.1 shows the nearest even rounding scheme [9]. The extra 3 bits at the

right are adequate for determining properly rounded results.

o
Q]

CHAPTER 2. FLOATING POINT ARITIIMETIC

The algorithin for nearest even rounding is as follows [9]:

ifZ =00rZ_ =27 1 9=27Z__3=0then
do nothing;

clse
add 1 to mantissa;

endi f:

If the potential add one operation causes a carry out, the 1 bit right shift and
appropriate exponent adjustment will be done.

Step 6. Sign detection and set flag for exception.

The last step is sign detection and exception detection, In the worst case, we need
to compare both the exponent part and the mantissa part to determine the sign bit.

For error tolerance, an extra logic module will be used to generate the appropriate
exception signals: overflow, underflow, or NaN occasions. The generic scheme of the
floating point adder is depicted in Figure 2.4,

If it is not necessary to economize on hardware, the dual path design can be used
to reduce one shift step from the generie design, because the preshift and postshift
always occur in different occasions. Figure 2.5 shows the difference between the single
path design and dual path design. The shaded module indicates the slow part in the
critical path. The single path design includes three slow parts in the eritical path,

but the dual path includes only two slow parts.

2.2 Floating Point Multiplier

In contrast to the floating point adder, the algoritlun of a floating point multiplicr

(FMUL) 1s quite simple. The multiplication process is described by the following

CHAPTER 2. FLOATING POINT ARITHMETIC

—

Floatine-voint overands l

Unpack

Subtract ’—c
Exponent

1 I

Selective complement

and possible swap

I I

Align significands

’

L

Leading Zero
Anticipator

Sign ~
Logic | ' Addaigned
™, significands /
y
Adjust < Normalize <
Exponent :
Round
1
Adjust e Normalize
Exponent
v — l
Pack «—

l Sum Difference

Figure 2.4: Block diagram of a floating point adder/subtracter (modified from [9])

CHAPTER 2. FLOATING POINT ARITIMETIC 2

[@s}

Unpack
|
XOR Add
Exponent Multiply
significands
\diust | —
aus Normalize
Exponent L
Round
Adjust Nornalize
Exponent
! |

Pack "

l Product

Figure 2.6: Block diagram of a floating point multiplier (modified from a picture in

[9])
(‘X])I'(‘SHi()I]Z

Fiyox Fy = (spoxmy xU7) x (89 % my x 07

= (&1 X S2) X (g X mg) < b e (2.1)

A Hoating point multiplier includes five modules: exponent adder, fixed point mul-
tiplier, rounding. normalization. and a support module to decide the sign bit and
adjust the exponent. The arithmetic block diagram is illustrated in Figure 2.6.

The fixed point multiplier occupies a lot of dic area and causes a long delay in
the eritical path, because fixed point multiplication is cquivalent to multi-operand
addition. The carry save adder (CSA) consists of several 1-bit {ull adders, cach of

which computes a single sum and carry bit based solely on the corresponding bits.

CHAPTER 2. FLOATING POINT ARITHMETIC 206

In this way, the three input numbers (two operands and carry in number) can be
reduced to two numbers, and the carry adder tree can reduce the multi-operands to
two operands. The Wallace tree [10] is one particular structure of the CSA trees.
This structure reduces the number of operands in the first stages. A carry lookahead
adder will be used in the last stage to add the last two operands and generate the
final multiplication result. For the single precision floating point mumber, the fixed-
point multiplier part is a 24-bit multiplicr. Using the Wallace Tree structure, the
comproession process includes 7 steps to reduce 24 operands to 2 operands, shown in
the following process:
20 16—12—-8—-06—4—3—2

In a fixed point multiplier, the digits of operands determine the number of op-
eration cveles. A higher radix number representation leads to fewer digits, and the
reduction in number of cyeles caur simplify the CSA Wallace tree. The radix-1 Booth
code[11] is an efficiently method to reduce the height of the Wallace tree and shorten
the critical path delay.

When multiplication is done in radix-4, the two bits (£ .0)2 are nsed to decide
the nultiples: Ox, 1x, 2x, or 3x. However, computing 3x operand needs an extra
addition operation. A possible solution is adding —1x and send a carry of 1 into
next radix-1 digit of the multiplier. In this way, the radix-4 Booth encoding method
is shown in Table 2.2

Using the radix-4 Booth encoding, the initial number of addition operations is
reduced from 2.4 to 12, but some addition operations require the carry-in bit. There-
fore, an extra partial product is used to collect these carrv-in bits. The total initial
number of addition operations is 13 and the compression process are:

13—-9—6—-41—3~—2

There are only 5 steps in the array, and Figure 2.7 shows the 5 stage Wallace Tree.

CHAPTER 2. FLOATING POINT ARITHMETIC 27

Table 2.2: Radix-1 Booth Encoding

B, ’ 3 ‘ B, 1| Encode | Cy,
| 0 0 | 0 | 0 0
0 0 1 A 0
0 1 0 A 0
—() 1 l 2A 0
1 0 0 -2A 1
0 1 1 2A 0
1 0 l -A 1
1 1 0 -A 1
1 | | 0 0

For the n-bit traditional multiplier, the time complexity is nlog(n). where log(n) is
the time complexity of the n-bit lookahead adder. Utilized the radix-1 Booth coded
Wallace tree structure, the time complexity is log(2n) 4+ ¢, where log(2n) is the tine
complexity of the final 2n-bit lookahead adder. and ¢ is the extra delay caused by
CSA tree. Therefore, the time complexity is reduced from nlog(n) to log(n).

The Booth's coded Wallace CSA tree can efliciently shorten the critical path.
However, the Wallace tree structure not only occupies large arca on the target chip.
but also introduces large interconnection delay. Modern FPGA chips provide em-
bedded fixed-point multipliers to performn fixed word width multiplication. These
embedded multipliers can also provide fast interconneetion paths with other function
units. Karatsuba Multiplication formulations [12] are used to extend these fixed word
size multiplier to variable word width multipliers. For instance. the fractional part of

the single precision floating point number is 21 bits, and the Xilinx embedded multi-

CHAPTER 2. FLOATING POINT ARITHMETIC 29

plier is a 18-bit fixed-point multiplier. Therefore, the fractional part will be divided
into a high part and a low part to use the embedded multiplier. This multiplication
imcludes four multiplications, three additions, and a tfew shifters. the fractional part
is directly divided into a high part (6 bits) and a low part (18 bits). The following

mathematical manipulation shows the process of the Karatsuba Nultiplication:

. 18 ‘
‘4 - 44/:11}/1 x 27+ Almm (25)
18 BITA
B = B/uy/: x 27+]31011'1 (2())
o306 ! 8
Ax DB = <'lhl_r//: X]3111;111 x 27+ f‘hig/z X ljluu- X 2

s
S
~1

~—

| BIb ;
+ “l]()u' X lilli{]’l x 27+ A/Uu‘ X Bluu'-

This multiplication includes four multiplications. three additions, and a few shifters.
The multiplication result is 48 bits, but the useful part is the high order 27 bits: a 24
bits mantissa part and 3 extra bits for rounding. To eliminate the uscless low part
result, we can divide the mantissa part into the high part (14 bits) and the low part
(10 bits). In this way, the partial multiplication result of two low parts will be shifted
out from the final result. We can only cheek if the partial result is zero and keep
one bit as the ¢ bit to dete = » 7 sticky bit for rom The multiplication

process is shown in the following formulations:

10 .
4 - "h:u;h X 2 + /{[()u'w (28)
10 0
B = B/uyh x 27+ B[uuu (.).9)
)20 H10
Ax B = “"Iu_{]h X ljfugh X 27+ ‘Aht_t]h X ljluu' X 2

) S 10 B
+ “1[()11' X B}H_I]Il X 20 (210)

CHAPTER 2. FLOATING POINT ARITHMETIC 30

In this way, this multiplication includes three multiplications, two additions, and
a few shifters, and the critical delay will be shortened. Without leading zero check
and potential left shift, normalization of the floating point. multiplier is simpler than
the Hoating point adder. Also, the exception detection module will be more compact
than that from the adder.

In order to achieve high throughput for the Hoating point arithmetic operations,
we use a deep pipeline structure for the foating point arithmetic units. The FADD
is broken into 10 stages, and the FNUL is broken into 8 stages. Although the deep
pipeline structure will cause longer latency, the throughput of floating point arith-

metic units is significantly increased.

2.3 Floating Point Multiply-Add-Fused (MAF)

Many scientific and engineering applications will execute a coherent calculation pro-
coss including differential operations. The floating point multiply-add-fused (MAI)
[13] operation will complete multiplication and addition in one execution unit. In
this design, addition is merged into the adder array which is used for multiplication,
and the rounding step for the partial multiplication result is eliminated. In this way,
the critical path delay will be shortened with respeet to separate multiplication and
addition. Morcover, a single instruction, the MAF, i.ce., 4 x B + (. is capable of
handling both addition and multiplication operations, e.g., by defining B = 1 for
addition and " = 0 for multiplication.

The main components of MAF include: CSA Wallace Tree for multiplication,
pre-alignment module for operand C'. CSA for merging. Fixed-point number Adder
and Leading Zero Auticipator (LZ:A). normalization module, and rounding module.

Figure 2.8 illustrates the structure diagram of a single precision floating point NIAT

CHAPTER 2. FFLOATING POINT ARITHMETIC 31

Table 2.3: Single Direction Shifting for Alignment

Case 1

3m + 2 bits

ra---0.0000 - 00

-0

Larrryo-rard U

2m bits

Operand "

2 bits for Rounding, no shift

Partial Result of A x 3

Case 2

3m o+ 2 bits

T x00- 000

ararLcorxy -

2in bits

Operand €

shifthits = (e, + ¢y — bias) — e+ (in + 3)

Partial Result of A x I3

Case 3

3+ 2 bits

.00 00--

-0

Operand C*:

Maximum shift, shiftbits = m + 2

.y

2m bits

Partial Result of A x B

The exponent logic module caleulates the preshift bits, e, 4 ¢, — ¢, — 100, and generates

the partial exponent vesult, mar(c, -+ ey, — 100, ¢,).

Most of the componen

of I 77 F are extracted from the adder or multiplier. One

special module is the pre-alignment moduale. Comparing with the multiplication result

(A x 13), the third operand (" may be shift left or right. To simp v the shift process

and guarantee the accuracy. the third operand ¢ will be extended to 3m + 2 bits

by adding a zero string to its end. In this way, the potential bi-directional preshift

becowmes a uni-directional (right) shift.

Table 2.3 describes the details of the shift algorithim. Case 1 indicates the oceasion

that the operand €' is much large than the multiplication result, and the operand ('

CHAPTER 2. FLOATING POINT ARITIIMETIC 33

need not shift. Case 2 1s a common case for preshift. and the shift bits are decided
by the difference between the multiplication result and the operand (', Case 3 is
an extreme case of case 2, and the maximum shift bits is e + 2. The shift bits
are determined by the exponent part of operands, and the preshift operation can be

performed in parallel mode with the CSA Wallace tree.

2.4 Other Extensions of Floating Point Operation

Floating point. arithmetic not only involves addition and nwltiplication, but also
includes division. logarithmic arithmetic, square-root. and many trigonometric func-
tions. These arithmetic functions are generally regarded as slow and complex parts
in most implementations. Fortunately, these functions are rarely used in most appli-
cations, and some possible solutions exist when these complex functions need to be
mplemented. The first option is to evalnate the series expansions of these complex
functions by means of addition and multiplication. Another method is using table

lookup and interpolation as an aid in arithmetic computations [9].

2.5 Summary

The floating point. representation is presented in this chapter first, and the IEEL
754 standard is used for our designs of Hoating point arithmetic units. Floating
point addition and multiplication are the primary floating point arithimetic operations.
For the floating point adder, we main discuss the rounding scheme and leading zero
anticipation algorithmi. The R lix-1 Booth encoding Wallace tree and IKaratsuba
multiplication method are introduced to improve the performance of the floating

point multiplier. These fast floating point arithmetic units can bhe used as efficient

CHAPTER 2. FLOATING POINT ARITHMETIC 34

exccention units, and a high performance floating point processing unit can be built

utilizing the vector architecture.

Chapter 3

Vector Floating Point Processing

Unit

Vector processing is an efficient parallel computing mode for data-intensive applica-
tions. A traditional vector supercomputer includes complex logic chips, huge amounts
of SRAN memory chips, and multiple CPUs. Such supercomputer not only features
super performance in scientific and engineering applications, but also has super size
and power consuinption. Utilizing mature CMNOS technology, Krste Asanovice built
the first complete single-chip vector microprocessor in 1998 [5]. In todays high perfor-
IMANCe Processors, vector processing units cooperate with scalar processors to provide
large speedup on data parallel codes. Meanwhile, this compact implementation of a
vector processing module is well suited to some special applications, such as carth
simulation, which deals with a high volume of Hoating point operations. This chapter
presents a detailed deseription of the architecture of the Vector Floating Point Pro-
cessing Unit (VEFPU), which use the IEEE 754 standard (single precision) for oating
pomt arithmetic operations.

The basie component of the VEFPU consists of a vector register file, vector menory

CHAPTER 3. VECTOR FLOATING PoOINT PROCESSING UNIT 30

units, vector arithmetic units, and a control logic unit. Section 3.1 is a detailed
description of the architecture. Seetion 3.2 gives the configuration of a vector register
file. Section 3.3 describes the vector memory unit, which will comprise the load/align
function and write back function. Section 3.4 discusses the floating point arithmetic
units that are used as exccution units. Section 3.5 discusses the most important
vector chaining scheme [14]. Veetor processing requires high data throughput and
experiences long startup penalties. The chaining scheme allows a coherent execution
on vector data in the vector register file. These long running veetor instructions

reduce the ratio of memory access time to the total execution time.

3.1 Architecture

As the standard vecetor machine needs to consider compatibility with scalar instruc-
tions, the control logic is very complicated and constrains the performance. VIPU
mainly focuses on vectorizable computation, and the main challenges are hnproving
cfficicney for mienory access and keeping smooth execution process.

Figure 3.1 shows an overall block diagram of ¢ VIFPU, which contains vee-
tor register file (VREG), vector memory unit (VAMU), vector floating point adder
(VFADD). vector floating point multiplicr (VENMNUT " control logic unit, and address
generator, Three vector funetion units, VMU, VFADD, and VFNUL, are structured
as cight parallel lanes, and communicate via the central VREG. The number of lanes
is determined by the target chip size and local bus throughput.

Considering the logic usage of FPGA chip and bus bandwidth, we select 8-lane
configuration as the major configuration in the prototvpe, and the extensibility of
VEPU will be discussed in Chapter 5. For the 8-lane configuration. ecight pipelined

floating point multipliers and eight pipelined floating point adders are conneeted

CHAPTER 3. VECTOR FLOATING POINT PROCESSING UNIT 38

to the VREG. These execution units acquire data from the VREG and write the
results back. Meanwhile, cight vector memory units work between the register file
and internal data bus, and the control logic unit controls the access sequence to avoid

hazards.

The VREG is the central module of the VEPU. Every vector function unit has an
independent data access path to the VREG. Since data is acquired from the internal
data bus, most of the communication between vector instructions occurs locally which

greatly improves the data exchange efficiency.

Vector execution generates an inerease used for bandwidth to access the external
menory. To improve the external memory throughput, the traditional vector ma-
chine employs interleaving and provides adequate buffer to access the memory hanks
(15]. In VFPU, the external memory module is implemented by Double Data Rate
Synchironous Dynamic Random Access Memory (DDR SDRANM), which can transfer
data on the rising and falling edges of the clock signal. Considering the high data
transfer rate of DDR SDRANM. VFPU applics a single memory access port and an
align module to generate the 256-bit internal data bus. In this way, the memory

control logic is markedly simplified.

The structure of the control logic unit is quite simple too, and can be customized
for any specific applications. A flag register is used to indicate the caleulation se-
quence. Following these status codings in flag register, the appropriate control signals
are generated and sent to the vector function units. Morecover. the modern FPGA
chip provides an embedded processor, which can be used as a flexible control unit

and complete more dedicated control tasks.

CHAPTER 3. VECTOR FLOATING POINT PROCESSING UNIT 39

3.2 Vector Register File

As locality is a key to high-performance vector processor, the VREG is the heart
module of VFPU. Vector function units can access local data on VREG via inde-
pendent access ports. Meanwhile, continual vector instructions can guickly exchange
data through the VREG. The size and configuration of the VREG largelyv affects the
performance of the vector processing unit. Therefore, VIFPU appears a natural match
to intelligent RAN (IRAM) [16] technology, that can directly convert high on-chip
memory bandwidth ito entire system speedup.

Increasing the number of vector register increases the spatial locality, which will
reduce the requirement to access external memory. However, a long VREG will
not onlv increase the startup overhead, but also will add complexity to specilty the
vector register. The VREG of VEFPU is divided into eight parallel lanes. One lane
contains 16 veetor registers. cach including 16 32-bit clements. Modern FPGA devices
provide large nunibers of on-chip memory, which c¢an be easily configured in different
arrangements. In Chapter 5. we will compare the performance of VEPU with the
different VREG contigurations: the number of lanes will be increased from 8 to 12,
and the number of vector register per lane will be incereased from 16 to 32.

The VREG enables multi-port data access. To avoid confliet in the VREG, one
read and one write port are provided per vector memory unit. and two read and one
write ports are provided for cach floating point adder and floating point multiplier.
Fach lane has five read ports and three write ports (5R3W). The general block di-
agram of the VREG is shown in Figure 3.2. The ecight lanes can share one set of
address decoders to generate the word select signals for different ports. In this way,
cight lanes operate in paratlel mode and perform vector instructions on the VREG.

Thus, all function units are able to work concurrently.

CHAPTER 3. VECTOR FLOATING POINT PROCESSING UNIT 10

el B =)

Repser

Addresses A\
.. .. Vi i
e, 32 l V2 2
Address A D Q 2 D Q >
Decadens V4 V4 ve
V3 V3 Se
Ve Vs N
9] =
= .
V9 Ve .z
V9o Vio Vo
V1 Vi cessss Vi
Loca Loc
LTl Em' * . Em AR F]
Vi vid Ve
A Vs Vs

| MU | ! VMU |

Figure 3.2: Block diagram of a vector register file (modified from a picture in [5])
3.3 Vector Memory Unit

The VREG can provide huge computational throug put to exploit the data paral-
Ielisn. However, the limited memory throughput often saturates the VREG. Earlier
vector supercomputers [17] use multi-port meniory access interface to provide parallel
data access service. The interleaved SRAN memory banks can provide high mem-
ory bandwidth with moderate lateney [15]. To saturate the external memory bus,
unit-stride loads and stores can transfer multiple words per eyele between memory
and the veetor register file and limited by the available ports into the vector register
file. Using an unit stride load scheme, the multi-word can be loaded from different
memory banks to VREG i one cvele. However, this unit-stride scheme requires an
appropriate multi-bank meniory system, and conscquently often increases the cost

and logic complexity.

CHAPTER 3. VECTOR FLOATING POINT PROCESSING UNIT 41

For the FPGA device, the number of /0O ports limits the memory access inter-
face. Therefore, VEPU only has one set of ports to access external memory. Single
meniory access interface requires two steps for data transfer between external mem-
ory and VREG: access/align operation hetween external memory and local data bus,
and load/store operation between the local data bus and VREG. In this way, the
load/store units can work as a cache for the VREG. Alignment will increase the data
density and improve the flexibility, but extra registers are required and the operating
frequencey of whole svstem will be decreased. However, the access/align operation
simplifies the memory interface and casily extend to a general data interface via fast
interconnection technology. such as HyperTransport [18] and Gigabit cethernet. In
this way, the data can be casily transferred between different source devices.

The separate load and store modules will transfer data between local data bus
and VREG. A special First-In First-Out(FIFO) register with two different bit-width
data ports will he used to implement the load and store module. The separate
load/store module not only avoids the structure hazard. but also efficiently reduces

the complexity of control logie.

3.4 Vector Arithmetic Units

As VFPU focuses on selected scientific applications, vector arithmetic nnits (VAUS)
imclude two primary function units: vector floating point adder (VFADD) and vector
Hoating point multiplier (VFMUL). IBach VAU includes cight scalar function units,
cach with two dedicated read ports and one write port to access VREG. Together,
VAUSs can sustain sixteen single precision foating point operations per cyele.

Using a pipelined structure, the throughput of a floating point arithmetic opera-

tion can be improved. As deseribed in Chapter 2. the time complexity of a FADD is

CHAPTER 3. VECTOR FLOATING POINT ProcESSING UNIT 12

comparable to that of a FNIUL. Thercfore, the number of pipeline stages for floating
point addition and multiplication can be similar. In this way, VAUs have the same
startup overhead and a synchronous execution pace.

['ine grain division of pipelined implementation increases the work frequency, and
mtroduces extra latencey for internal data transfer. For the FPGA platforn. the large
disparity between logic delay and interconnection delay limits the pipeline division.
In Chapter 5, we will compare the performance of pipelined floating point adders and

multipliers with different pipeline divisions.

3.5 Chaining

Vector chaining is a kev feature of vector processing units. The data will be direetly
transferred between different vector function units without writing back to a register.
In this wav, the execution of carlier vector instructions can overlap with a subsequent
vector instruction. In VEPU, the vector chaining has three types depending on the

different execution sequence. Figure 3.3 illustrates these three chaining modes.

e Load and arithnietic operation chaining: the vector data is loaded from the

vector Toad/align unit, and fed to a subsequent arithmetic unit.

e Arithmetic operation and arithmetic operation chaining: the result from arith-

metic unit is fed to subsequent arithietic units.

e Arithmetic operation and store chaining: the result from arithmetic unit is fed

straight to the store unit.

For a pipelined miplementation. vector function units, VMUs and VAUs, run at

the same frequency, and the chaiming data transfer does not need extra butfers. Figure

CHAPTER 3. VECTOR FLOATING POINT PRroOCESSING UNIT 45
3.6 Summary

This chapter present the vector architecture of VFPU, which contains vector register
file (VREG), vector memory unit (VMU), vector foating point adder (VFADD),
veetor floating point multiplier (VENUL), control logic unit, and address generator.
In the general prototype, three vector functional units, VMU, VFADD, and VEMNUL,
are structured as cight parallel lanes, and communicate via the central vector register
file. The control logic unit will control the access sequence to avoid hazards. A flag
register is used in the control logic unit to indicate the calculation sequence. The
specific control pattern for the selected application is loaded into the Hag register
before running. Following these status codings of the specifie control pattern, the
appropriate control signals are generated and sent to the vector function units and
the address generator. Additionally, the modern FPGA device provides an embedded
processor, which can be set as a flexible control unit and comiplete more dedicated

control tasks.

Chapter 4

FPGA Implementation

The FIPGAs are the inexpensive and reconfigurable platform to prototype and verify
the vector processing architecture in hardware. Modern FPGAs have tremendously
increased bothin terms of gate count and circuit speed. Large on-chip block memory
provides an abundant local storage, and embedding dedicated arithmetic units and
general purpose processor cores casily enable high perforinance computing. Morcover,
the FPGAs design can incorporate additional hardware and software to mouitor any
logic transaction at run time. This observability enables casy verification of the cor-
rectness atd the efficieney of the vector processing architeeture. Considering the
advantages of cost, power. speed. flexibility, observability, reproducibility, and credi-
bility, FPGAs hecome an attractive platform for implementing the parallel processing
structures [19].

This chapter mainly discuss the implementation platforms, appropriate havdware
structures, and optimization niethods. In Section 4.1, the basic methodology for
FPGAs is introduced. Two main FPGA manufacturers, Altera and Xilinx, have dif-
ferent architectures for their FPGAs. Section 1.2 gives a detailed deseription for cach

component of VFPU. Section 1.3 describes an extension of the VFPU. An emibedded

46

CHAPTER 4. FPGA IMPLEMENTATION 47

system is configured based on the VEPU. Section 4.4 proposes an application example

and explains the overlap execution process for that specific calenlation instance.

4.1 Design Methodology for FPGAs

The top-down design approach is a connnon design method for a digital system. The
main steps of digital design are: behavior desceription, RTL coding. function simu-
lation, synthesis, formal verification. static timing analvsis. placement and routing,

and configuration and verification.

e bhehavior description: The /0 interface is determined. and the function block

diagram can help to define the relationships among diflerent modules.

e RTL coding: The RTL coding mainly specifies the architecture of the design
and detail of logic functions. The eimbedded dedicated arithmetic modules and

on-chip block memory should be applied to the implementation for optimization.

e Simulation: Simulation is used to verify the functionality of the design. The
corresponding test beneh is designed, and the test data set is generated for

different testing schemes.

e Svnthesis: Synthesis is not only converting the RTL description into a low-
level implementation consisting of primitive logic gates, br - also estimates the

resource usage and the time delay.

e Static timing analysis: Static timing analysis is used to compute the expeceted
timing of the design. The path from the input to the output with the maximum
delay 1s called the critical path. The difference hetween the required time and

the arrival time is called the slack. Large negative slack implies that the path

Cnarrer 4. IFPGA IMPLEMENTATION 48

is too slow; otherwise, the path is fine, if the o wk is a small negative nmumber

Or Zero.

o PPlacement and routing: Placement is the process of assigning the design com-
ponents to the chip’s core arca and can determine the total wire length. timing,
and resource congestion. Routing is the next process and generates the wires to
properly connect all the placed components, After the placement and routing,

the verification should be done for testing.

e Configuration and verification: FPGA devices use the configuration memory to
define the lookup table (LUT) equations, signal routing, IOB voltage standards,
and all other aspects of the specifie design. These contiguration memory cells
will be volatile and must be configured on power-up. For the specitic FPGA
chip. a corresponding contfiguration pattern will be generated to program con-
figuration memory, instructions for the configuration control logic and data for
the configuration memory. This binary configuration pattern is called bitstream,
which can be delivered to the target chip through one of the Joint Test Action
Group (JTAG). SelectMAP, or Serial configuration interfaces. After configura-
tion, we can usc a logic analyzer and appropriate software debugger to verify

the logic correctuess.

From the initial concept to specification, through block-level design using top down
methodology to the implementation and verification, the FPGAs implementation will
achiceve the final design requirements. Altera and Xilinx are the two mmarket leaders
in the FPGA industry. We will briefly discuss their architectures and main features

in the following parts.

CHAPTER 4. FPGA IMPLEMENTATION 51
DLL IC s DLL
VersaRing
g @ |5
» o D le)

m
S g CLBs Jg> 3’3. @
m 7] =3
> @
VersaRing
10Bs
DLL DLL

Figure 4.3: Block diagram of Xilinx Virtex FPGAs [22]

4.1.2 Xilinx FPGA Family

Xilinx Corporation is another leading FPGA manufacturer and provides compara-
ble programmable logic solutions. The Xilinx FPGA family consists of the Virtex
series, Spartan series, and EasyPath series. To improve the embedded processing
performance, Xilinx also provides dedicated fast adders, embedded multipliers, and
rich on-chip block memory. A 32-bit soft processor, MicroBlaze, can provide a flex-
ible processor, and the PowerPC 32-bit hard processors can mect high performance
requirenment.

Figure 4.3 shows a block diagram for Xilinx Virtex FPGAs. For Xilinx FPGAs,
the basic logic function unit is the slice, which includes two logic cell (LC), as shown
in Figure 4.4. Bach LC consists of a 4-input LUT, carry logic, and a storage element.

The Configurable Logic Block (Cl.) collects a set of slices to implenient some specific

CHAPTER 4. FPGA IMPLEMENTATION 53

implement hardware design on FPGAs, but also can extend the design to an embedded
systeni.

Comparing the performance of FADD and FMUL on Altera and Xilinx FPGAs, we
choose the Xilinx Virtex 11 Pro (NC2VP100-6-FF1704) as the target deviee for VFPU.
Using the 0.1372m CMOS nine-layer copper process. the Embedded 1BMN PowerPC
105 RISC processor blocks are integrated m Virtex-11 Pro XC2VP 100 to optimize
high performance designs. The Block Sclect RAN memory modules provide large 13
Kb storage clements of true Dual-Port RANM, and the total on-chip memory size is

up to 7.992 Kbits [23].

4.2 VHDL Models on FPGAs

Figure 4.5 shows the RTL schematic diagrain of the VFPU, which contains a VREG,
a VMU, a VIFADD, a VFMUL. a control logic unit. and an address generator. The
data interface to the VFPU is the memory data port, MDATA[255 downto 0]. The
corresponding address interface is the memory address port, MADDI21 downto 0].
For the VFPU, the external memory module is implemented by Double Data Rate
Syuchronous Dynamic Random Access Memory (DDR SDRAM), which can transfer
data on the rising and falling edges of the clock signal. The external memory interface
las a 256 bit data bus., and a 22 bit address bus, supporting up to 128 MIB of industry
standard DDR SDRAM. This 128 MB external memory is configured as two hanks
of 61 MB cach.

The control signals include a reset signal and an enable signal, which will be
mapped to the control logic unit and start or clear the caleulation process. Using
the global clock resource on FPGAs. the dedicated clock input is directly feed to the

Jow-skew buflers inside the FPGA for routing clocks. The two flag signals, RW and

Cuarrer 4. FPGA INPLEMENTATION

(4 §

FADD FADD FADD FADD FADD FADD FADD FADD

Pz Coneral

Vector
Register

Address SR I . .

Generator

oL ™Il UL UL UL ML POT LT

K g k
A
Laag Lo Laz Loaz Lz
St Ster Spe2 Stere Store
4] Lt < = 2t
4 4

l‘:J
MDATA[255:0

Figure -1.5: VFPU RTL schematic diagram (modified from a picture in [5])

2
e

CHAPTER 1. FPGA IMPLEMENTATION

RAM

16 x 32 1

16 %32

[®- —jwes ooaL s
— ENA

HuTA

et ADDRAND 0}

| & TR LAG 0

Wty DUOBEH 0 b —ny
| (1]

RETR
—— s
[FERATAT) AOLRLE 0
— DL R

wea DOA @) e

ADDRAY 0}

- — DL 0}

wen OOH(3 O jm——————TOTIT TS
—rmn
—jaste

L loww

(I S— — ABORED B

— DIBL R}

Figure 4.6: Three port data bank structure

OL, will indicate the status of the memory interface.

4.2.1 Register Files

The on-chip block memory of the Xilinx Virtex I Pro I'PGA can be configured as
a true dual port RAN module, which includes two sets of address inputs for two
independent ports. As shown in Figure 1.6, the two dual port RAM modules are
combined to folrm a three-port data bank, which includes 16x32-bit data clements.
Based on this three-port data bank, we can nnplement the SR3W register file lane
with extra control logic, which will map the word selection signal to the different
ACCess ports.

Figure 1.7 shows the schematic diagram of the vector register le within one lane.

In this design, sixteen three-port data banks, cach with two read ports and one write

CHAPTER +}. FPGA IMPLEMENTATION 50

port, are used to support two VAUs and one VMU with a total re 1irement of 5 reads

and 3 writes per eyele.

4.2.2 Arithmectic Modules

In VFPU. the arithmetic units are FADD and FMUL. The combinational logice designs
of the floating point artthmetic units are implemented first. Based on the timing
analysis of the combinational logic design, the number of stages for the pipelined
design will be determined. For the combinational logic design, the speed depends on
two characteristics: transition time and propagation time. The transition time is the
amount of time that output of a logic unit takes to change from one state to another
[6], and will be determined by deviee technology parameters. . .ae propagation delay
is the amount of time that it takes for a change in the input signal to produce a
change in the output signal [6]. and the longest propagation delay of a particular
path through the overall circuit is called the eritical path delay.

The basic arithmetic components, such as fixed point two’s complement adder,
barrel shifter, carry save adder Wallace tree. and rounding module, have been de-
veloped. Using these components, the appropriate hierarchical VDL models of the
floating point arithmetic units deseribed above are implemented. These VDL mod-
cls have been verified via simulation and svnthesized to FPGA devices. To reduce the
critical path delay of the fixed point adder, the carry lookahead adder is always used
for fast carry out calculation. However, the interconnect delay of the carry lookahead
adder on FPGASs rapidly increases with the number of the logic components. Taking
advantage of dedicated carry chains, the ripple carry adder is a little faster than the
carry lookahead adder on FPGAs.

A common mnplementation of the fixed point multiplier is using the Booth's coded

CHAPTER 4. FPGA IMPLEMENTATION

~1

(@

1

. \
FADDO \
2 \

;‘_T—\
[

Write Select

= Read X Word Selects
~ Read ¥ Word Selects

Data Bank 0
Wrne Word Seleets

FADDO Read | nable

FMULO Read | oable

-
-

wdl

il

m
7

Y
1{ = VMU Read Fnable

Write Select

.[Read N Word Selects

= Read Y Word Sclects
Data Baak 15
= Write Word Sclects

— — FADDD Read Enable
—
MU O Read Foable
1 {
Y
. - VMU Read Fnable
)] [
NorMULe ’
\ - /
.
; L
- ’ .
AW

Figure 4.7: The schematic

from a picture in [5])

diagram of vector register file within one lane (modified

o
o &

CHAPTER 1. FPGA IMPLEMENTATION

Wallace carry save adder tree [11] to reduce the critical path delay. However, the Wal-
lace tree structure not only occupies large arca on the FPGA chip, but also introduces
significant interconnection delay. As fast embedded fixed-point multipliers are em-
bedded on FPGAs, the various word width multipliers can be formed by Karatsuba
Multiplication formulations [12], and the fast interconnection paths can guarantee an
officient data transfer rate between the function units.

I an cflort to achieve high throughput of the floating point arithmetic operations,
we use a deeply pipelined structure for the floating point arithmetic units. The
FADD is broken into 13 stages. and the FMUL is broken into 8 stages. Although the
deeply pipelined structure will cause long latency, the throughput of the floating point
arithmetie units is significantly increased. In a pipelined design, a set of data sub-
operation components is connected in series, and these components can be executed in
parallel. The slowest part determines the pipelined design speed. An output register
is used to svuchronize data for every stage. becaunse the critical path delay of diflerent
stages is diflerent. To avoid metastability, the inputs are held constant for specthied
periods hefore and after the clock pulse.

To verify the functional correctness, a special testbenceh has been developed, and
a Visual C4-+4 program has been developed to generate extensive test patterns. This
application can transform a random number from decimal format to IEEE 754 bi-
nary format, and calculate the correct result for different Hoating point operations,
The test patterns contain random values and extremity values, such as zero, infin-
ity, NaN, maximum value, and minimum value. The test pattern can be generated
automatically for an arbitrary size of the data set and stored in IEEE 754 binary
format.

As visual examples of the arithmetic operations, the simulation waveforms are

produced by ModelSin.

CHarrer 4. FPGA IMPLEMENTATION 60

[festbenchAmall/a | 3E28DAZE
G- Ntestbench/Aimail/b | 406F 8855
- Nestbench/tmall/c | 3F062311
Q Ntestbench/tmal0/ad | 0
& /testbench/imat/ot
’ Ntestbench/tmal0/ul | 0
v} /estbench/tmal0/nan | 0
Aest 3F937740

=3

Cursor 1

Figure 4.10: A simulation waveform for floating point multiplier

406F8855 (hex, IEEE 754 single precision) = 3.742696 (dec),
3F062311 (hex, IEEE 754 single precision) = 0.523973 (dec).

The result is: 3F9377A0 (hex, IEEE 754 single precision) = 1.152088 (dec).

4.2.3 Memory Access Units

The memory access units include the load module and the store module, which are
implemented by a special FIFO register with two different bit-width data ports. Fig-
ure 4.11 shows the structure of the load module. The load FIFO contains sixteen
dual port RANM modules, each including two 32 bit data elements.

The rotate read scheme is used to feed vector data into the vector register file. In
the first cyele, the first 256 bit vector data is fed to the first load module, and then the
load module starts to feed cach 32 bit data clement to a vector register in eight eyeles.
During these eight eyeles, the sequential 256 bit vector data is rotationally fed to cight

load modules. In this way, the cight lanes work concurrently and independently.

4.3 wmbedded System Confi uration

Based on the VEPU prototype, we can combine the on-chip PowerPC 105 processor

to configure an embedded system, which can support an embedded Linux system

Cuarrter 4. FPGA IMPLEMENTATION 61

&

—rt -

i

}

AEREEL

|-
=

.

Figure 4.11: The load FIFO register with two different bit-width data ports

and provide more flexibility and applicability. Xilinx EDK software integrates the
hardware configuration and software design. For the Amirix AP1000 PCT platform
FPGA development board, we can configure the hardware specification: the embed-
ded processor and the bus clock — equency, on-chip cache size, I/O devices, and debug
mterface.

Figure 4.12 shows a configuration of the embedded systent. The embedded pro-
cessor and high speed components are connected by the processor local bus (PLB),
which is a high-performance 64-bit address bus and a 128-bit data bus [24]. The em-
hedded processor will generate the flow control pattern and update the flag register
of VFPU via the PLB. Meanwhile, the embedded processor will control the DDR
controller to feed or update data from the data caclhe.

Based on the embedded Linux system, we can directly use the C language to

describe the specifie caleulation model. In this way, the most numerically-intensive

CHAPTER 4. FPGA IMPLEMENTATION 063

applications can be easily vectorized to improve the performance by using the VFPU.

4.4 Application Example

The VFPU can be used to implement numerically-intensive problems on an FPGA
prototyping board. For instance, the Earth Sinulator coutributes to predict environ-
mental changes by analyzing the vast volume of observation data. A general operation
for scismic applications is the distance calculation in 3D space. An illustration of this

calculation is given helow:
DQ:(‘\'I-—_\'J)QvL()',f);)2+(Z,—ZJ)2. (L)

Here (XY Z;) and (X, Y], Z;) denote two sets of points. The square operation can

he replaced by self-multiplication. The steps of distance caleulation are:

1 : Load \,.

2 Load X,

3 1 Subtract X from Xj,

1 . Load Y,

5 ¢ Load Y,

6 : Subtract Y, from Y},

7 : Load Z;.

8 : Load Z;.

9 ¢ Subtract Z; from Z,

10 : Multiplication of X coordinate value,
11 = Multiplication of Y coordinate value.

12 ¢ Multiplication of ™ coordinate value,

Cuarrer 4. FPGA IMPLEMENTATION 64

13+ Sum of X% and Y7,
14 : Sum of Z% and (X? 4 Y7?)

15 1 Store result

Assunme the size of the point set is n, the latency of FADD is {,. the latency of
FAUL 15/, and every operation uses one cvele.

For a scalar pipeline processing unit, the instructions will be issued one by one as
shrown i Figure 14.13. and the operation can not be overlapped. The total number of

cveles is:

Ch‘('lllﬂr’ = (H+Il+(ll+[”)+(”+/,,,)) X 3
+ (n+1)+(n+1,)+n

= 15n+ 4, +4l,,. (1.2)

The vector processing unit can execute these steps in an overlap mode, and the
chaining scheme can dirvectly transfer data between different vector function units
without writing back to registers. Moreover, the eight lanes in the vector processing
work in parallel and can deal with cight data sets. Therefore, the vector processing
unit can work almost seventeen times as fast as the scalar processing unit. Figure
4. 14 illustrates the overlap execution flow in one lane of the “tor processing unit.

The total number of cveles used in one lane of the vector processing unit is:

Crvctor = nx3+ (” + [u) x -l

= Tn+l,. (4.3)
Note that the two vector operands will be loaded in sertal mode. If we add an

extra load port to cach lane, the two vector operands can be loaded in parallel, and

the total number of cyeles can be reduced to 5+ 54, Figure -1.15 shows the overlap

CHarrer 4. FPGA INMPLEMENTATION 63

execution flow in one lane of the vector processing unit with two loaders. However,
the extra load ports not only increase the number of 1/O ports and control logic,
but also increase the disparity of the throughput between local storage and external
HCINOTY.

Comparing these three execution processes, we can conclude that the overlap
significantly improves the efficiency and speedup the execution process. Using the
chaining scheme, partial data can be direetly passed to the next function unit without
register aceess. Therefore. we not only reduce one eyele from the two overlapped steps,
but also may save considerable space on the register file. Morcover, as the chaining
schenie can keep the data in the vector register file for a long period, more arithmetic
operations can be directly performed on the local data. The extension of function
execution process reduces the proportion of external meniory access. Considering
the large disparity of speed between execution units and exterual memory aceess.

chaining is the major feature affecting the speed of the vector processing unit.

Chapter 5

Performance Analysis

The main objective of the VFPU design is to minimize critical path delay with a
reasonable resource utilization. The synthesis results of the FPGA implementations
in terms of timing and resource utilization will be presented in this chapter, and then
the analysis and timing optimization methods will be discussed.

First, we will focus on the timing performance of the combinational design for dif-
ferent avithmetic units. Second, we will compare the peak work frequencey of pipelined
designs with different numbers of stages. Third, we will analyze the perforntance for
VEPU with different lane configurations. In the end of this chapter. we will compare

the proposed design with other related work.

5.1 Performance Analysis for Combinational Im-

plementations

This section presents the synthesis result of the combinational design for different
function components. These conbinational Implementations are synthesized for both

Altera and Xilinx FPGA devices. The Altera’s target FPGA device (EP2C20F181C7)

70

CHAPTER 5. PERFORMANCE ANALYSIS 71

belongs to the Cyelone 11 Family, which provides 68,416 logic clements, up to 622
usable I/0 pins, and up to 1,152 Kbits of embedded memory [25]. The synthesis result
is generated by the Altera’s integrated developiment environment software, Quartus 11
7.2. The Xilinx target FPGA chip (xc2vpl00-6£f170-1) is one member of the Virtex-11
Pro Family, which contains up to 99,216 logic cells and supports up to 1,164 user
1/0 pads and up to 7,992 Kbits of block RAM [23]. The synthesis process for Xilinx
FPGA nnplementation is generated by the Xilinx's developmient kit, ISE 8.21.

The fixed point adder modules will bhe analyzed first, hecause they are the basic
components for every arithmetic unit. The timing performance of the fixed point
adder has a great effeet on the arithmetic units in VIFPU. The fixed point multiplier

with different structures will be discussed at the end of this section.

5.1.1 Ripple Carry Adder

For the fixed point adder, the propagation of carries is a major impediment to high-
speed addition [9]. The ripple carry adder directly ripples down the carry lines of the
1-bit full adders to generate the carry out bit. Althiough the worst-case delay always
grows lincarly with the word width, a ripple carry structure is simple and suitable for
compact applications.

Table 5.1 shows the timing performance and resource utilization of the ripple
carry adder on Altera Cyclone 11 FPGA device. The pin-to-pin delay (fpp) is the
time required for a signal from an input pin to propagate through combinational
logic and appear at an external output pin. The ¢, consists of the cell delay for
combinational logic and the interconnect delay for the signal -ansmission. Table 5.1
indicates that the cell delay of the ripple carry adder lincarly increases with the word

width. Meanwhile, the interconnect delay also rapidly grows as the number of logic

~1
(S

CHAPTER 5. PERFORMANCE ANALYSIS

Table 5.1 Perforiance of the Ripple Carry Adder on Altera Cyclone 11

bits delay logic route LEs | pins

1 10116 ns | 4177 ns (41,29 %) | 5939 ns (58.71 %) 1 5

4 11.856 ns | 1.94d ns (L1170 %) | 6.912 ns (58.30 %) 9 14

16 | 21.897 ns | 8.063 ns (1 36.82 %) | 13.834 ns (63.18 %) | 33 50

28 | 28851 ns | 944l ns (32,72 9%) | 19410 ns (67.28 %) | 57 86

32 130.078 us | 10.729 ns (135.67 %) | 19.349 ns (64.33 %) | 65 98

A8 | 41592 ns | 13.252 s (29.72 %) | 31.340 ns (70.28 Y) | 97 146

clements mereases.

The performance of the ripple carry adder on Xilinx Virtex 11 Pro is shown in
Table 52 And the Figure 5.1 illustrates the difference between Altera Cyvelone 11
and Xilinx Virtex 11 Pro. In FPGA devices. various logic functions are implemented
by -input lookup tables (LUTs). The combinational logic function of 1-bit full adder
occupies four LUTs on both Altera and Xilinx FPGA devices, and their cell delays
arc very close. The logic cell delay on two FPGA devices is at same level, and the
main difference of the critical path delay depends on the interconnect delay. To
optimize the timing performance on an FPGA platform, we should not only optimize
the architecture and logie functions, but also should consider how to reduce the extra

mterconnect cost.

5.1.2 Carry Lookahead Adder

To reduce the eritical path delay of fixed point adders, a commonly used scheme is

carry lookahead addition (CLA), which is a classical scheme featuring logarithmie

CHAPTER 5. DPERFORMANCE ANALYSIS 74

Table 5.3: Performance of the Carry Lookalhicad Adder on Altera FPGAs

bits delay logic route LEs | pins

I | 10116 ns | 1177 ns (4129 %) | 5939 ns (58.71 %) S| 7

1 [12963 ns | 5.296 ns (40.85 %) | 7.667 ns (59.15 %) 11 16

16 | 19.778 ns | 6.692 ns (33.81 %) | 13.086 ns (66.16 %) | 63 52

28 123311 us | 6.605 ns (2830 %) | 16.736 ns (7L.70 9%) | 105 | 86

32 | 21017 ns | 7.396 ns (1 30.25 %) | 17.051 ns (69.75 %0) | 119 | 100

A%a | 25787 ns | 7.065 ns (2740 %) | 18722 ns (72,60 %) | 163 | 116

48h | 25775 ns | 9.258 ns (35,92 %) | 16.517 ns (64.08 %) | 180 | 116

delay. However, the logic complexity of CLA rapidly increases with the word width,
and the extra interconnect delay has to be considered.

Table 5.3 and Table 5.4 show the performance analysis on Altera and Xilinx
platform, respectively, for the carry lookahead adder with different ord widths.
Similarly, the cell delays on two FPGAs are close, but the interconnect delay on
the Altera FPGA device increases faster than the Xiline FPGA device. As discussed
in Chapter 1. the differences in the basic logic unit cause the disparity of interconnect
delay. L ae Xilinx FPGA device provides two LUTs in one slice and greatly reduces
the number of slices for a complex logic function. The extra basic logic units add
extra interconneet cost to Altera FPGA implementations. Figure 5.2 and Figure 5.3
illustrate the proportion between cell delay and interconnect delay.

An interesting point of the synthesis result is the different delays between two
A8-bit CLA with different structures. Figure 5.4 shows the block diagram of a 18-bit
adder, CLA(D), constructed using three 16-bit CLAs, and Figure 5.5 illustrates the

block diagram of a 48-bit adder, CLA(a), built using one 16-bit CLA and one 32-bit

-1

(e

CHAPTER . PERFORMANCE ANALYSIS

Table 5.4: Performance of the Carry Lookahead Adder on Xilinx FPGAs

bits | delay logic route Slices | LUT | 10B
| 5.102ns | -L083ns (80.0%) | 1.019ns (20.0%) 2 4 7
1 | 6.746ns | L.709ns (69.8%) | 2.037ns (30.2%) 8 16 16

16 | 10.803ns | 6.607ns (61.2%) | 4.196ns (38.8%) 33 61 52

28 | 22.854ns | 10.962ns (48.0%) | 11.892ns (52.0%) 47 84 86

32 | 26.319ns | 12.214ns (46.4%) | 14.105ns (53.6%) 54 97 100

48a | 25.509ns | 11.962ns (46.8%) | 13.607ns (53.2%) 79 146 116

48h | 20.028ns | 10.057ns (50.2%) | 9.971ns (49.8%) 95 173 146

CLA. Each 16-bit CLA includes 4 -I-bit CLA and one lookahead carry generator. The
48-bit CLA(a) includes 12 4-bit adders and 5 lookahead carry generators, and the
48-bit CLA(D) includes 12 4-bit. CLAs and 1 lookaliead carry generators. Therefore,
the critical path delay of 48-bit CLA(D) is slightly larger than 3-bit CLA(a). For
a specific word width, the CLA has multiple possible configurations from the basic
4-bit CLA and lookahead carry generator, and the different structures have different
effects on the logic complexity and route cost.

The logic level optintization is carried out in the Xilinx ISE platform during the
svnthesis process, and the optimization has different effects on different structures.
Considering the optimization efficieney, the FPGA timing performance for CLAs not
only depends on the word width, but also depends on the structure. Generally, the
logic level optimization includes two phases: flattening and structuring. The flatten-
ing removes intermediate variables, simplifies boolean equations to o two-level logie
mode, and reduces the logic delay. NMorcover. the critical path can also be shortened

by duplicating logic during flattening. Contrarily, structuring inserts imtermediate

ond

CHAPTER 5. PERFORMANCE ANALYSIS (7

cLats [SF crats S | cLale <

' 8247 J &esn 21015

\p{,‘:.-ﬂ] v Pri6.s1) v Pinas)
Cs [Ce
‘ 4-Bit lookahead carry generator

Figure 510 Building a -18-bit CLA from 12 J4-bit CLAs and 4 lookahead carry gener-

ators

variables, generates multi-level Jogic modules. and saves logic resource. Through
these optimization methods, the final logie level structure possibly achieves a balance
point of timing and arca with the specific optimization constraints. The aim of VFPU
design is to generate a timing driven structuring implementation, and the Xilinx ISE
optimization goal is set for speed. After the optimization for speed. the final design

will fit. better to FPGA architecture.

5.1.3 Quick Carry Chain

The ripple carry adder is slower than the carry lookalhicad adder, but its simplicity
and greater modularity may compensate for this drawback. Most modern FPGA
devices provide dedicated signal paths for carry chains that connect adjacent LEs
without using local interconnect paths [20]. In this way. the ripple carry scheme can
be directly used to implement the fixed point adder for arbitrary word width. Table
5.5 and Table 5.6 show the performance analvsis for fast adders on Altera and Xilinx
platforms. The quick carry chain not only reduces the interconnect delay, but also

reduces the logic resource utilization.

CHAPTER 5. PERFORMANCE ANALYSIS 8

CLAl6 CLAlG6 C;

N l i l \ 4
cLals $F |

" 4-Bitlookahead carry generator ‘

. g;:\ziﬁ - '!_?{031]
' Prazan) Piain

' 4-Bit lookahead carry generator J

Figure 5.5: Building a 18-bit CLA from 12 4-bit CLAs and 5 lookahcad carry gener-

ators

Table 5.5 Performance of the Fixed Point Adder with Quick Carry Chain on Altera

I'PGAs

bits delay logic route LEJs | pins

[

1 9.735 ns | 4.036 ns (4146 %) | 5.699 ns (58.54 %) 2

4 12.235 ns | 5.897 ns (48.20 %) | 6.338 ns (51.80 %) 9 11

16 | 15.296 us | 6.661 ns (43.55 %) | 8.635 ns { 56.45 %) 33 50

28 | 16.667 ns | 7.135 ns (42,81 %) | 9.532 ns (57.19 %) 57 86

32 | 17774 ns | 8220 ns (628 Y) | 9548 ns (5372 U) 65 98

—4

48 120,023 ns | 9.709 ns (4849 %) 1 1031 ns (5151 %) | 97 116

|
|

CHAPTER 5.

PERFORMANCE ANALYSIS

79

Table 5.6: Performance of the Fixed Point Adder with Quick Carry Chain on Xilinx

FPGAs

bits | delay logic — route Stices | LUT | 1O
I | 5.06Ins | 4.083us (80.7%) | 0.978ns (20.0%) 1 2 7
4 7.570ns | 5.022ns (66.3%) | 2.548ns (19.3%) 0 11 14
16 | 8.978ns | 7.467ns (83.2%) | 1.511ns (16.8%) 17 33 50
28 | 9.176ns | 7.965ns (84.1%) | 1.511ns (15.9%) | 29 | 57 | 86
32 | 964205 | 8.131ns (84.3%) | L511ns (157%) | 33 | 65 | 98
A8] 10.3060s | 8.795ns (85.3%) | L.ollns (14.7%) | 19 97 146

Figure 5.6 illustrates the ti ing performance for the fast adder on Altera and
Xilmx FPGA devices. As discussed above, the compact basie logic clement helps

Xilinx FPGAs to acquire better timing performance than Altera FPGAs.

5.1.4 Carry Save Adder

The carry save adder (CSA) is a row of 1-bit full adders as a mechanism to reduee
three numbers to two numbers [9]. As every 1-bit full adder always sworks in parallel
mode, and the eritical path delay of the CSAs with different word width 1s almost
close to the delay of the 1-bit full adder. Table 5.7 and Table 5.8 show the performance

analysis for CSAs on Altera and Xilinx platforius.

5.1.5 Fixed Point Multiplier

As described in Chapter 2, the high performance CSA tree followed by a fast adder

can speedup the multiplier design to achieve logarithmie time multiplication. Table

CHAPTER 5. PERFORMANCE ANALYSIS S1

Table 5.8 Performance of the Camy Save Adder on Xilinx FPGAs

bits | delay logic route Slices | LUT | IOB

8 | 5.061ns | 1.083ns (80.7%) | 0.978ns (19.3%) 9 15 10

21 | 5.405ns | 1.083ns (75.5%) | 1.322ns (24.5%) 28 18 121

28 | 5.061ns | 4.083ns (80.7%) | 0.978ns (19.3%) 32 55 140

48 | 5.061ns | -1.083ns (80.7%) | 0.978ns (19.3%) 55 95 240

5.9 and Table 5.10 show the performance for the fixed point multiplier with different
structures on Altera and Xilinx FPGA devices.

The first structure is a 32-bit full-tree multiplier. in which the CSA tree structure is
an 1-bit adder array. Although the full-tree structure is not fast enough and occupies
a vast logie resource, its partial products reduction tree is a contbinational circuit
that can be casily sheed into pipeline stages.

The second design not only utilizes the Wallace Tree structure to reduce logie
utilization, but also uses Radix-4 Booth's recoding to handle two bits of the multiplier
per evcele and reduces the eritical path delay. As discussed in See m 2.2, we endeavor
use the embedded macro units on FPGAs to reduce the interconnection cost.

The last two designs use the embedded fixed word width multiplier to build various
word width multipliers. In the Karastura (h). two fast adders are used to generate
the final sum of three partial products. In this wayv, the delay of the two-step addition
is double the delay of the fast adder. To speedup this process, a CSA is introduced
in the Karastura (a) to reduce the three partial products to two partial results first,
and then a fast adder can generate the Anal result. The delay consists of one CSA
delay and one fast adder delay, and the CSA is faster than any multi-bit fast adder.

Therefore, the delay of Karastura (a) is slightly smaller than Karastura (b) in both

CHAPTER 5.

PERFORMANCE ANALYSIS

Table 5.9: Performance of the Fixed Point Multiplier on Altera FPGAs

Full Tree | Wallace Tree | Karastura (a) | Karastura (b)
delay 46.150 ns 20.880 ns 23.266 ns 21.913 ns
16.825 ns 10451 ns 11.307 ns 12.504 ns
logic
(36.46%) | (38.88%) | (48.60%) (50.19%)
29.325 ns 16.429 ns 11.959 ns 12,409 ns
ronte (63.54%)| (61.129) (51.40%) (19.81%)
LEs 2033 13138 68 60
pins 96 96 96 96
9 x 9N ultiplicr - - 0 0

Table 5.10: Performance of the Fixed Point Multiplier on Xilinx FPGAs

Full Tree | Wallace Tree | Karastura (a) | Karastura (b)
delay 28.710ns 13.600ns 11.65-1ns 12.751ns
13.705ns 8.750ns 9.698ns 10.850ns
logic
(47.7%) (61.3%) (83.2%) (85.1%)
15.005ns 4.851ns 1.9506ns 1.901ns
route
(52.3%) (35.7%) (16.8%) (14.99%)
Slices 635 078 30 30
LuT 1105 1252 00 n9
1013 96 96 96 96
MULTLS x 18 - - 3 3

0.9

o

CHAPTER 5. DPERFORMANCE ANALYSIS 34

the simplified logie element of Altera’s FPGA devices not only 1s more flexible for
these digital designs without very complicated logie function. but also has the less
power constinption. For iustance, many telecomnniunication applications have very
complex FSN modules. which require the high speed for status transfer and without

very complex logic operation.

5.2 Performance Analysis for Pipelined Implemen-
tations

Based on the timing performance analvsis, the combinational designs can be sliced
into pipelined stages. Although the number of stages speeds up the pipelined design,
the multiple-stage structure also introduces the extra interconnect and synchroniza-
tion delays. As the delay of the slowest stage in the pipelined design decides the
maximum work frequency, the proportional delay for every stage is significantly im-
portant for the timing performance of pipelined implementations.

In the pipelined maplementations, the output registers are used to synchronize
output signals in the same stage, and the inputs should be held constant for specitied

periods hefore and after the clock pulse to avoid metastability.

5.2.1 Pipelined Floating Point Adder

To speed up the pipelined floating point adder, the fast adder with the embedded
quick carry chain is used for every fixed-point addition. Table 5.11 shows the timing
characteristic for the pipelined floating point adders on Altera FPGAs. The maximum
frequency of the 8-stage pipelined floating point adder achieves 158.33 NHz. In deeply

pipelined implementations, such as the 8-stage floating point adder, some function

F
e

CHAPTER 5. DPERFORMANCE ANALYSIS

Table 5.11: Performance of the Pipelined Floating Point Adder on Altera FPGAs

Stages | Frequency Delay LEs | Registers | pins
1 37.95 MHz | 26.352 ns | 718 99 101

2 73.29 MIlz | 13.645 ns | 745 113 101

-4 127.52 NHz | 7.842 us | 736 244 101

8 158.33 MHz | 6.316 ns | 756 161 101

Table 5.12: Performance of the Pipelined Floating Point A ler on Xilinx FPGAs

Stages | Delay Frequencey ‘Sli('os Regs | 4-LUTs | 10s | GCLIKs

| 19.964us | 50.090MHz | 479 | 107 | 921 101 1 |

2 10.309ns | 97.00-INHz | 372 123 686 101 1

4 6.040ns | 165.577NHz | 402 208 716 101 1

¥ 5.398ns | 18527 INHz | 16 499 805 101 l

modules with long eritical path delay are decomposed to reduce the delay in one
stage. For instance, the 28-bit mantissa addition is divided to two stages with two
L4-bit fixed point adders.

Figure 5.8 illustrates the speedup for pipelined implementations on Altera FPGAs,
The working frequency rapidly increases from 1-stage design to d-stage design, and
the speedup is close to the ideal theoretical value. However, from -stage design
to 8-stage design, the relative speedup is significantly decreased, because the extra
mterconnect delay restriets the timing performance of the deeply pipelined design.

Table 5.12 shows the performance of the pipelined foating point adder on Xilinx

FPGAs. The maximun work frequency of the eight stages pipelined tloating point

CHAPTER 5. PERFORMANCE ANALYSIS 87

adder achieves 185.271 NMHz. As the Xilinx FPGAs have superior interconnect. char-
acteristic, the pipelined foating point adder on Xilink FPGAs is faster than on Altera
FPGAs. and the division scheme for cight stages pipelined design is slightlyv different
between two FPGA platforms. Figure 5.9 illustrates the speedup for pipelined im-
plenientations on Xilink FPGAs. Comparing with the Figure 5.8, the trends of the
speedup curve on both Altera and Xilinx FPGAs are similar, but the speed of the

pipelined floating point adder on Xilinx FPGAs is 1 her than on Altera FPGAs.

5.2.2 Pipelined Floating Point Multiplier

In contrast to the floating point adder. the floating point multiplier has a simple
dataflow and can casily be sliced into multiple stages. The Wallace Tree structure is
more casily sliced into multiple pipeline stages for the deeply pipelined design, but it
also occupies vast logic resource and restricts the expansion in the veetor architecture.
Therefore. the embedded fixed poiut multipliers are used for mantissa multiplication
in the pipelined design. Although the embedded fixed point multiplier can not be
decomposed, but its advantage of speed is so distinet that the normalization module
and rounding module become the comparatively slow parts,

Table 5.13 shows the performance for the pipelined floating point multiplier. The
maximwun working frequency of the eight stages pipelined floating point multiplier
achicves 155.044 MHz. In the cight stages pipelined design, the 24-bit Karastura
multiplicr is divided to two stages: three partial products are generated by embedded
13 bit multiplier in the first stage, and a carry save adder and a fast adder are used to
generate the final result. Figure 5.10 illustrates the speedup of the pipelined designs.
Comparing with the pipelined floating point adder. the speedup curve of the pipelined

floating point multiplier keeps an mcreasing trend.

CHAPTER 5. DPERFORMANCE ANALYSIS 90

As the Xilinx FPGA devices retain the superiority for the interconnect delay, the
timing performance of the pipelined Hoating point multiplier is much better than
Altera FPGA devices as shown in Table 5.13. The maximum working frequency of
the 8-stage pipelined floating point multiplier achieves 204.813MHz. Similarly, the

speedup curve grows almost lincarly as shown in Figure 5.11.

5.3 Performance Analysis for VFPU

The Xilinx FPGA chip. Virtex 11 Pro. is chosen as the target platform for the VFPU
implementation to take advantage of the high speed for floating point arithmetic
units. This secetion describes the performance and extensibility for the VIEPU imple-

mentation with different lane configuration.

5.3.1 Performance Analysis

After synthesis for Xilinx FPGA. Virtex 11 Pro (xe2vpl00-6H1704), we can obtain
the resource utilization and timing performance for the VFPU with different lane
configurations. Table 5.15 shows the detailed information. The one lane VEPU only
takes 1,316 slices, and the 12-lane VFPU takes 25,994 slices. When the VEPU only
includes a few lanes, fewer than or equal to four, the — ctor register file is directly butlt
on J-input LUTs. These VEPUs use a part of slices as RAMs, and the maximum
working frequency can achieve to 217.014 MHz. The S-lane d 12-lane VFPUs
include a large local storage space as the vecetor register file, which is implemented
by the on-chip block RAMs. T contrast with the J-input LUT as RANL the block
RAMs are connected to logic slices by interconnection resource, which is much slower
than the cascade chain between adjacent slices. Therefore, these VIFPUs are slightly

slower and can be clocked as fast as 188.768 MHz. Therefore. some more advanced

CHAPTER 5. PERFORMANCE ANALYSIS 9]

FPGA chips can further improve the timing performance by directly using the LUT
as the vector register file,

Considering cach lane of the VEPU can exccute two arithmetic operations simul-
tancously, the 8-lane VEPU can achicve a peak performance rate of 3.020 GFLOPS,

and 12-lane VFPU can achieve a peak performance rate of .1.530 GIFLOPS.

5.3.2 Extensibility Analysis

While the peak performance rate of the VFPU grows following the number of lanes,
the external data bandwidth will also increase rapidly. Table 5 5 shows the band-
width information for VEPUs with different lane configurations, and lists the possible
external RAM svstem and its peak transfer rate. One of the modern commercial RAN
modules, DDR3-1600, can provide up to 12,800 MB/s peak transfer rate at 200 NMHz,
which can support enough bandwidth for the 16-lane VFPPU. Morcover. as we scale
up the number of lanes, we not only should consider the usage of 10 pins. but also
should design the dedicated load/align module to sustain peak throughput.

As discussed in Section L most veetor arithmetic operations are executed on two
veetor operands, and two loaders can improve the efficiency of the overlap execution
process. However, the two vector operands are stored as two sequential arrays in the
external memory. In this way, the two vector load instructions should be sequentially
issucd to load two vecetors into the vector register file, and the two loaders have to work
simultancously with two address decoders. The stride and indexed aceess scheme can
share one address decoder for two loaders. In fact, a simple solution is to store two
vector operands as one vector of the pair of operands. Figure 5.12 compares two load
schemes for veetor data. We can casily configure the word width to 64 bits and use

the high part as one operand and the low part as another operand. When we generate

CHAPTER 5.

PERFORMANCIE ANALYSIS

Table 5.16: Bandwidth Analysis for VFEPUs

93

Lanes 1 2 4 8 12
Word-width (bit) 32 Gl 128 256 384
Froqueney (MHz) 217014 | 217010 | 217010 | 188.768 188.768

Bandwidth (MB/s) 808 1.736 3,472 6.040 9,060
Possible external RAM | DDR-200 | DDR-266 | DDR2-533 | DDR2-800 | DDR3-1333
Work Frequency (MHz) | 100[20] 133(20) 133[271 200[27] 166[28]

Transfer rate (NB/s) | 1.600[26] | 2,100[26] | 4.266[27] | 6,400[27] | 10,667[28§]

it, we can casily organize the raw data in pair form and determine the data pattern

in memory as shown in the low part of Figure 5.12.

5.3.3 Comparisons to ..elated Work

A prototvpe of the VEPU was successfully implemented on FPGA platform, and the
performance is respectable. A peak performance of 4.530 GFLC S at 188.768 MHz
for the 12-lane VFPU is achicved on the Xilinx Virtex 11 Pro XC2VP100. If newer
and faster FPGAs, such as Xilinx Virtex 5 or Altera Stratix 1. as well as memory
modules, such as DDR3 or XDR [29], arc used, we should be albe to obtain nmch
higher bandwidths.

In large commercial computing systems, advanced ASICT technology s used to
achieve high speed and low power consumption. For example, TOSHIBA and SONY
implemented a 211 GFLOPS at 300MHz floating-point vector processing unit for 31D

graphics computing using a 0.18;0n l-metal layer technology [30]. For specific appli-

CHAPTER 5. PERFORMANCE ANALYSIS

32 bit
CoXO
Xl !
Lo
[
Xn
Yo
n
64 bit
T
X0 Y
X1 | 3
FYn oY
‘ !
. i
|
+ l

Figure 5.12: Comparison of two load schemes for vector data

VLOAD X,
VLOAD Y,

J\\

h
VLOAD (XY),

1

94

|

CHAPTER 5. PERFORMANCE ANALYSIS 95

cations, such as dynamic ray tracing in image processing, the ASIC nmplementation

has estimated peak performance of 361.6 GFLOPS at 100 MHz [31]. Although the
floating point performance is not the main goal for the general purpose processors.
they also utilize hvper-thread technology or multi-core architecture to optimize the
systen performance in the 3D graphices applications. For instance, the Intel Pentium
1 can achieve up to 10.6 GFLOPS for the OpenRT software [31]. The IBM Cell pro-
cessor includes eight synergistic processor elements for vector computing and have a
theoretical peak performance of 256 GIFLOPS.

Although the performance of our design is not at the level of ASIC implemen-
tations. the recurring design process and fast reconfiguration of FPGAs provide a
great Hlexibility for various applications. Therefore. advances in FPGA capacity and
speed can aceelerate rescarch in multiprocessor architecture and casily emulate high
performance computing units, such as the vector processor, at very low cost [19].
Newer designs are also focused on the vectorization and optimization for specific al-
gorithims. For example, a scalable Sparse Matrix-Vector Multiply implementation on

Xilinx Virtex 11 6000-4 can run at 1.5 GFLOPS 140 NHz [32].

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The miain contributions presented in this thesis are the design, implementation, and
performance evaluation of floating point arithmetic units and vector floating pomnt
units, The FPGA implementation of VFPUs demonstrates that the FPGA plat-
forms are well suited to the implementation and evaluation for the vecetor processor

architecture.

e Vector Architecture Compared with traditional vector supercomputers, vector
processors can significantly reduce the latencies etween ditferent function units.
The vector register files are implemented on LUTSs in the slices or on-chip block
RANMs. Every function unit can not only quickly access local storage, but also

efficiently exchange data via the chaming scheme.

Another contribution of this thesis is the good design choice of a vector memory
unit that supports two loading ports to access memory data i pair mode. This

structure is arca-cfficient and improves the efficiency of the overlap execution.

96

CHAPTER 6. CONCLUSIONS AND Fururie WoRKk 97

e FPGA [mplementation Most multi-core microprocessors for high performance
computing utilize advanced ASIC technology to design and manufacture the
high speed and low power consumption products. However, recent extremely
dense FPGAs create an inexpensive. reconfigurable. and highly parallel plat-
form tor the extensive codevelopment of hardware and software. The recurring
design process not only accelerates prototyping a new architecture in hardware,
but also can help to improve the immediate next generation of products by

considering the feedback from software engineers [19].

In additional, many floating point arithmetic units can be mapped onto a single
FPGA. which means such a system is less expensive and consuines less power
than the general purpose multi-core microprocessors. For example, 24 floating
point arithmetic units are mapped onto a single Xilinx Virtex I Pro FPGA

device in the design explained in this thesis.

e Performance Analysis The detailed analysis of timing performance for combi-
national logic design and pipelined design is presented in this thesis. The re-
sults demonstrate that an appropriate pipeline division can achieve significant

speedups on the Hoating point arithmetic operations.

The performance analysis of resource utilization and timing for VEPUs is pre-
sented, and the extensibility of VFPUs on FPGA platform is also discussed in
this thesis. The measurcments show that the Xilinx Virtex 1T Pro XC2VIP100
can support up to a 12-lane VFPU. Futuve FPGA chips not only can support
the VIFPU with more lanes, but also can directly build the vector register files
on LUTSs in the slices to achieve a higher speed. The bandv 1th analysis shows
that an external memory module with significantly higher transfer rate s also

reuired for the extension of the lanes.

CHAPTER 6. CONCLUSIONS AND FurTurRE WORK 98

6.2 Future Directions

Several research directions can arise from this work: a primary cache for vector units,
an cxpanded cmbedded svstem for specific applications, and a massively parallel

computing model.

e Einbedded System Design

The Xilinx embedded processor. PowerPC PPCH05, has powerful fixed point
perforniance, and the VEPU can casily work with the PowerPC core to improve
the Hoating point perforimance. Therefore. a heterogencous parallel processor
architecture can be implemented on the FPGA platforn. Figure 6.1 shows the
block diagram of an embc led system on the Xilinx Virtex 11 Pro, XC2VP100.
This systemn includes a customn 1P core (VFPU), an embedded processor (Pow-
erPC PPCH05), a DDR2 AN controller, and a primary cache module built
on block RAMs. The PLB bus is used to connect these high speed compo-
nents. The PowerPC core is the master deviee on this bus, and the VEPU and
the DDR2 RAM controller are the slave devices. I this way, the PowerPC
core can officiently issue instructions and control the execution procedure. The
NXilinx PowerPC' processor enviromment can execute cmbe led operating sys-
ten, such as the embedded Linux, or Real-Time Operating Svstems, which will
provide a Hexible programming environment for ditferent applications. Based
on this embedded systenm. more vectorized applications can take advantage of
the VFPU, and many computation-intensive applications can be considered for

vectorization to improve the performance.

In additional, a primary cache can help to exploit temporal locality and re-

duce memory bandwidth demands, and the dedicated primary cache design can

CHAPTER 6. CONCLUSIONS AND Fururre WORK 100

significantly improve the performance of the cibedded system. In particular,
the cache refill faccess decoupling scheme can eliminate many of the miss states
required in traditional vector architectures, and has the potential to achieve
better performance with fewer resources than traditional coupling methods

(33].

o Massively Parallel Svstem Massively parallel svstems are used to solve large-
scale computation problems for many science and engineering applications, such
as carth science simulations. weapons rescarch, radio astronomy, protein fold-
ing, climate rescarch, cosmology, and drug development. In a massively parallel
system, many individual nodes are connected by high-performance intercon-
necet networks and communicate by passing messages. Utilizing the quick in-
terconnection technology. such as HyperTransport [18], multiple FPGA chips
with VIFPU can be integrated on one board to form a powerful node for the
massively parallel system. These boards can then be equipped with Gigabit

Ethernet interfaces and exchange data via a Gigabit Ethernet switch.

References

(1]

[4]

R. Krashinsky, “The vector-thread architecture,” TEEE Micro, vol. 24, no. 6, pp.

84 90, November/December 2004

I. S. Board. "IEEE standard for binary floating-point arithmetic,” New York,

Tech. Rep., 1985.

D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A
Handware/Software Approach, 2nd ed. United States of America, San Francisco:

Morgan Kaufmann, 1999.

D. Geer, *Chip makers turn to multicore processors,” Computer, pp. 11 13, May

2005.

K. Asanovic, “Vector microprocessors.” Ph.D. dissertation, University of Cali-

fornia, Berkeley, 1998.

J. F. Wakerly, Digital Design: Principles and Practices, 3rd ed. United States
. q T

of America, New Jersey @ Prentice Hall, 2005.

2. Hokenck and R. NMontove, “Leading-Zero Anticipator (LZA) in the ibm rise
svsten floating point execeution unit,” . . Jowrnal of Research and Development,

vol. 33, pp. 71 77, Jan. 1990.

101

REFERENCES 102

8]

[9]

[10]

1)

[13]

11

[16]

[17]

R. Ladner and M. Fischer, “Parallel prefix computation,” Association for Comn-

puting Machinery, vol. 27, pp. 831 838, Oct. 1980.

B. Parhami, Computer Arvithmetic: Algorithms and Hardware Designs, 1st ed.

New York: Oxford University Press. 2000.

C. Wallace, "A suggestion for a fast multiplier,” ITEEE Trans. Computers, vol. 1,

pp. 14 17, Feb. 1964.

H. Oh, S. M. Mucller, and C. Jacobi, *A fully-pipelined single-precision floating
point unit in the synergistic processor element of a cell processor.” [EEE Journal

of Solid-State Circuits, vol. 41, pp. 759 771, 2000.

A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by au-
tomatic computers,” Doklady Akad. Nauk SSSR, vol. 14, no. 115, pp. 293 29.1,

19G2.

T. Lang and J. Bruguera, “Floating-point fused multiplyv-add with reduced la-

tenev,” Int. Rep. Univ. Santiago de Compostela (Spain), 2002,

CRAY RESEARCH INC., CRAY-1 Computer System Hardware Reference Man-

wal, 2240004 ed., 1977.

G. Sohi, “High-bandwidth interleaved memories for vector processors - a sunu-
lation study.” [EEE Transactions on Computers, vol. 12, no. 1, pp. 34 44, Jan.

1993.

-

C. Nozyrakis. “Scalable processors in the billion-transistor era: 1IRANL" [EEE
Transactions on Computer, vol. 30, no. 9. pp. 75-78. Sept. 1997,

R. Russel, "The CRAY-1 computer svstem,” Comrmunications of the ACA,

vol. 21, no. 1, pp. 63-72, Jan. 1978.

REFERENCES 103

s

[19]

[20]

23]

HyperTransport Consortinm Technology Corporation, “HyperTransport. 1/0

link specification,” Tech. Rep., 2005.

J. Wawrzyvnek, "Ramp: Rescarch aceelerator for multiple processors,” [EEE

Micro, vol. 27, no. 2, pp. 16 57, 2007,

Altera Corporation, FLEXN 10K Embedded Programmable Logic De-
vice Family Data Sheet, 2003. [Online]. Av lable: hittp

JJwww.altera.com/fliterature/hb/ flex/ fleacl0k pdf

Altera Corporation, Stratir II Deviee Handbook. 20.. [Online]. Available:

http : [/www.altera.com/literature/hb/sta2/strativ2_handbook pdf

Nilinx Corporation, Virter 2.5 V Field Programmable
Gate Arrays, 2001. [Online]. Available: http

/Jwww. xiline.com/support [docurnentation [data_sheets [dsQ031. pdf

Xilinx Corporation. Vieter-1l - Pro and Vietee-11 Pro X Plat-
Jorm FPGAs: Complete Data Sheet. 2007, [Online]l. Available:

hitp [/ www.ciline.com/support [documentation/data_sheets [ds083. pdf

IBN Corporation, 128-Bit Processor Local Bus Architecture Specifica-
fions. version 4.7 ed.. 2007, [Online]. Available: hitp [/ /wwu-

OL.ibm .com [chips/techlib/tcehlibansf[techdoes/ file] PIbBusas 01 _pub.pdf

Altera Corporation, Cyclone [Device Handbook, 2007. [Online]. Available:

hitp: //www.altera.com/fliterature/hb/cyclone2/cyclone2_handbook. pdf
JEDEC Standard, “Double Data Rate (DDR) SDRAN spec-

ification.” Teci. Rep.. 2005. [Online]. Available: hitp

Jjwww. jodecorg/download fscareh [JES T pf

REFERENCES 104

[27] JEDEC Standard, *DDR2 SDRANMI specification.” Tech. Rep., 2005. [Online].
Available: http : /Jwww. jedec.org/download/scarch)JESDT92B.pdf

[28] JEDEC Standard, “DDR3 SDRANM specification,” Tech. Rep., 2007. [Online].
Available: http : //www. jedec.org/download/search]JESDTI3A. pdf

[29] Elpida Corporation, 512M bits XDR DRAM, ¢1033e30 ed., 2007. [Online].
Available: http : /Jwww.clpida.com/pdf s/ E1033 E£30.pdf

[30] N. Ide, *2.44-GFLOPS GFLOPS floating-point vector-processing unit for high-
performance 3D graphics computing.” [EEE Journal of Solid-State Curcuits,

vol. 35, no. 7, pp. 1025 1033, Jul. 2000.

[31] S. Woop and E. Brunvand, “Estimating performance of a ray-tracing ASIC de-
sign.” Proceedings of IEEE Symposium on Interactive Ray Tracing, pp. 7 14,

Sep. 2000.

[32] AL deLorimier and A. DeHon, “Floating-point sparse matrix-vector multiply for
FPGAs.” Proceedings of the 2005 ACM/SIGDA 15th international symposium

on Field-programmable gate arrays. pp. 75 85, 2000.

[33] C. Batten and R. Krashinsky, “Cachie refill/access decoupling for vector ma-
chines.™ Proceedings of the 37th International Symposium on Microarchitecture,

pp. 331 342, Sep. 2004

