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Abstract 

This work presents a ne data hiding scheme with geometric di tortion correction . In a 

data hiding scheme, robu tness of embedded information against geometric distortion i a 

critical issue, since a decoder can be ea ily confused when image size or orientation i 

changed ev n to a mall extent. One of the approache to overcome this problem is to 

rescale and/or rotate the J age back to its original size/orientation. In order to do so the 

decoder needs to know by how much the image has been scaled and rotated. uch 

knowledge of the origin I image would greatly simplify the extraction of embedded 

information. However, huge quantities of images have to be compared by intelligent 

agents to locate the original images. Therefore, there is a strong practical rea on to eek 

robust extraction scheme without access the original images. 

In this approach o separate channels of information are mbedded in a typical 

RGB image by selectil. two of its three color planes a two channels: one for 

synchronization information and the other one for the actual information. 

Synchronization information of the original image is computed by the location of feature 

point extracted by a Ha is-Laplace comer detector and embedded as a watermark into 

the image by a content-b sed watermarking method. Thi synchronization information is 

extracted at the detecti n stage and compared with the calculated synchronization 

infom1ation of the disto image so that the scaling factor and rotation angle can be 

estimated. 

The effecti eness f the presented scheme is evaluated by a ssing it robu tne 

against different geome ric attacks and transformations. The geometric distortion 
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estimation shows best ro ustness in certain ranges of scaling and rotation distortions. The 

proposed scheme exhi its great potential because of the successful detection of 

synchronization informat on. 
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Chapter 1 

Introduction 

Watennarking techniques have recently received considerable attention from the research 

community and from industry. The main dri ing force for watermarking is the concern 

with copyright protection in music film book and software publishing industries. As 

audio, video and other works become available in digital form, perfect copies can be 

made easily. Moreover the growth of the Internet may lead to large-scale unauthorized 

copying. 'Copyright marking' technique that identify the copyright holder of the work 

by embedding a "mark" into host or cover data have been well established. Currently, 

there are copyright marking methods for virtually every kind of digital media: text 

documents [I 2] images [3], video [4 5] audio [6 7] and even 30 polygonal model 

[8]. 
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Other than copyright protection, another important application of watennarking 

techniques is steganography. teganography literally means covered writing' and is 

u ually interpreted as hiding information in other information. Steganography is not a 

new science subject. lt has been widely used over the centuries for analog media but 

today is being applied for digital multimedia contents. xamples include sending a 

message to a spy by marking certain letters in a newspaper using invisible ink, and 

adding sub-p rceptible cho at certain place in an audio recording. teganography 

techniques attract much attention in military communications. Rather than encrypting the 

message, data hiding is used to hide the very existence of the message. This allow 

communication using often enciphered messages without attracting the attention of a 

third party. 

The general model of -v atermarking systems can be described as follows. A 

digital watermarking system consists of two main components: watermark embedder and 

watermark detector. The embedder combines an original copy of digital media called 

cover image, and a collection of bits representing metadata to be added to the cover 

image, named payload and creates the watermarked cover image. The watermarked cover 

image is perceptually identical to the cover image but with the payload embedded within. 

The difference b tween the co er image and the watermarked image is referred to as 

embedding distortion. The payload is not directly added to the original cover image. 

Instead, it is first encoded as a watermark possibly using a secret key. The watermark is 

then modulated I caled, yielding a modulated watermark to make the embedding 

distortion small enough or even imperceptible. 

The watermarked cover image may be subjected to different types of processing 

prior to detection, yielding a corrupted .., atermarked cover image. This corruption 
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whether intentional or incidental is known as an a/lack. The difference between the 

cover image and the watermarked image is referred to as noise. A watermark detector 

either extracts the payload from the corrupted watermarked cover image, or it produces 

some types of confidence measures indicating how likely it is for a given payload to b 

present. The extraction of the payload is done with help of a watermark key. 

Three conflicting aspects are usually u ed to de cribe the requirements of 

watermarking y terns. The robustnes i identified with the probability of decoding error 

or resistance against watermark attacks. The capacity is the maximum payload that the 

watermarking can reliably embed and retrieve. The imperceptibility of watermarking 

s stems is that the watermark embedding process should not introduce any perceptible 

di tortion into the cover image. The tradeoffs among the e three requirements are u ed to 

characterize information hiding chemes. The purposes of various watermarking 

applications determine their different requirements. 

Copyright watermarking aims to identify the copyright holder of work. It should 

be robustly extracted even after undergoing arious accidental and maliciou attacks. In 

other word copyright marking is designed for robustness. Many watermarking scheme 

that handle different attacks have been introduced. However, there is a tradeoff between 

capacity and robustness in copyright marking. The embedded information is usually only 

one binary bit (yes or no) i.e. whether marks have been embedded into cover images or 

not. Unlike copyright watermarking, the purpose of data hiding is to invisibly embed the 

maximum amount of data into a cover image. Typically robustnes requirements are low 

for data hiding purpo e . In tead invisibility and capacity are of prime importance. 

Capacity i an important prop rty becau e it ha a dir ct negative impact on watermark 

robustness. Higher capacity (the amount of information being embedded) causes lower 
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watermark robustness. Usually it i assum d that there are not many robu tness 

requirements in data hiding schemes, except trivial operations such as rotation, caling, 

and translation which are hard to avoid in common image manipulations. 

Anacks can be classified a signal proce sing attacks and geometric attack . Much 

emphasis has been placed on the robustness of common signal processing operations. 

However it has become clear that even very small geometric distortions can prevent the 

detection of a watermark. The geometric attacks can be viewed as losing synchronization 

problem in communication theory. ynchronization is the process of identifying the 

coordinates of an embedded watermark. If the detector's input is watermarked but 

synchronization fails then the embedded watermark will not be detected. Therefore, even 

a slight geometric modification can defeat many existing watermarking algorithms. 

In the first generation of watennarking scheme against geometric distortions 

digital watennarking chemes use pixels frequency or other transfonn coefficients t 

embed the information. In the second generation image features such as the corner and 

feature points are used a an indicator to retrieve the original location of the embedded 

information. 

Among the existing second generation algorithms Masoud presented a method to 

estimate the scaling factor of a previou ly scaled atennarked image and the angle by 

which the image was rotated [9]. he method estimated the image scaling factor and 

rotated angle through how much the feature points scaled and rotated. Therefore it only 

needs to compare the feature point information of the original image and the distorted 

image. Unfortunately, the detector usually does not have prior infonnation of the original 

image. The purpose of this work is to investigate the possibility that the data hiding 

15 



scheme carries not only the large amount information needed to be hidden but also the 

prior information of feature points to estimate the geometric distortion. 

1, .1 System Overview 

Two color paces of RGB images can be considered as two independent channels [I 0]. 

One is the synchronization channel (SC) hich tran mit the prior information of the 

original image and the other is the communication channel (CC) carrying the hiding data. 

ynchronization channel of l 
RGB ima;:.:e:..::e~ ____ ....:...._ _____ --, 

information estimation 

Parse into binary bits 

Feature points e traction 

Image Units Design 

•I Content-based hiding scheme I 
Embedded Synchronization 

channel 1 
Figure I. 1.1 : Overview of ynchronization channel hiding cheme 

An overview of the proposed embedding scheme for the synchronization channel 

is shown in Figure 1.1.1. At the first stage, feature points are extracted and are used to 

obtain both ynchronization information of the original image and construction of image 

units. A content-based watermarking scheme i applied in the synchronization chann I to 

16 



fulfill the requirement of robustness against geometric di tortions. At the last stage, the 

synchronization information of the original image is extracted and that of the actual 

image (distorted image) is calculated. The rescaling factor and rotation angle can be 

e timated by comparing these two sets of synchronization information. 

1' .2 Organization of Thesis 

Chapter 2 clarifies applications of watermarking based on different requirements, refine 

the general information hiding model , and investigates the method of information hiding 

and basic attacks. 

Chapter 3 review the existing watermarking method that are resistant to geometric 

attacks with a concentration on the content-based watermarking scheme since this 

scheme seems to be an excellent choice for improving the robustness against geometric 

distortions. 

Chapter 4 presents a new scheme for data hiding with robustness against scaling and 

rotation distortions. The motivation and the whole watermarking scheme are illustrated. 

A few key problems such as improvement of the feature points extractor imag unit 

design and synchronization information estimation are presented. 

Chapter 5 describes the performance of the scheme and discus es the capability. The 

precision of the feature point extractor and the capability of the scheme are further 

investigated. 
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Chapter 2 

Survey of Watermarking 

Systems 

Watermarking techniques can be clas ified by different criteria, including embedding 

domains [II], use of communications/information analy is [12] and inclusion of 

watermarking security [ 13]. This chapter surveys common embedding method 

watermarking schemes in transform domains and attack resistance methods. 

18 



2.1 Embedding Methods 

Based on the watermark embedding/merging mechanism, mo t watermarking sy tern 

can b imply cia ified into two groups: tho e by linear addition of a pread spectrum 

signal and those by non-linear quantization-and-replace trategy, as described in the 

fo llowing sections. 

2.1.1 Linear Additive of Spread Spectrum Signal 

Additive embedding strategies are characterized by linear modification of the host image 

and correlative processing in the detection stage. 

2.1.1.1 Concept of Spread Spectrum 

The mo t common watermark requirements are invisibility and robustness. The e 

requirements are somewhat contradictory to each other. Good invisibility suggests a low 

embedding strength/energy of the watermark signal which can be on idered as noise in 

the media to avoid perception whereas robustness require high embedding 

trength/energy to help stati tical detection. Therefore, an effective cheme of embedding 

compromising both invi ibility and robu tness is needed. Among many techniqu 

propo ed, spread-spectrum communication theory i the most commonly u ed and has 

proven a good solution for the invi ibility-robustne contradiction. 

Using spread-spectrum communicat ion theory, watermark signals spread in low 

amplitude but in a wide enough bandwidth to hold enough signal embedding 
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strength/energy for detection. Many watermarking technique incorporate the idea of 

pread pectrum communication to additively embed and extract a pseudo-random noise 

pattern [14-19]. The information bits spread by simple repetition [14], error-corrective 

coding [20], or some other transforms and then are modulated with a cryptographically 

ecure pseudo-random noise sequence. The sequence embedded in the cover image can 

be either a Gaus ian noise, a binary data or a small image (a logo"). The spread 

watermark signal is similar to the noise present in images and therefore is hard to detect 

[21]. 

2.1.1.2 Correlation Detector 

For most additive watermarking methods, watermark detection is based on computing the 

linear correlation between the transmitted watermark and the received image and 

comparing the correlation value to a threshold. lf the calculated linear correlation is 

small then a conclusion can be made that the image is not watermarked. Otherwi e, the 

image was watennarked. This decision is usually made based on a threshold. Thu the 

choice of the thre hold influence the probability of false-positive error and false

negative error. The false-po itive error represent the fact that un-marked images are 

detected as marked images, and false-negative error indicate that watermarked images 

are detected as un-marked images. Hence, a lot of effort has been used to devise r liable 

methods to compute predictable correlation thresholds and efficient watermark detection 

y tern [22, 23]. Using two separate p eudo-random noi e pattern could be a solution to 

conceal the requirement of setting a threshold [15] . This increases the probability of a 

correct detection even after the image has been subjected to attacks. 
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2.1.2 Non-linear Quantization Strategy 

The quantization schemes perform non-linear modifications and detect the embedded 

message by quantizing received samples. 

2.1.2.1 Least ignificant Bits (LSB) Method 

Least significant bits (L B) method is the most straight-forward method of quantization 

watermarking embedding scheme [24]. It operates in the spatial domain and replaces th 

least significant bits (L B) of the cover image by quantized watermark bit . The 

watermark is embedded multiple times. Even if most of embedded watermarks are lost 

due to attacks, a single surviving watermark would be considered a succe s. L B has 

proved to be a simple and fairly powerful tool for steganography, however it lacks the 

basic robustness that watermarking application require. 

2.1.2.2 Quantization Index Modulation (QIM) 

Quantization Index Modulation (QIM) refer to a etas of data hiding schemes that 

exploit Costa's famous findings by embedding information in the choices of quantiz r 

[25]. Over the past few years, QTM-based data hiding has received increasing attention 

from the data hiding community. This cia s of techniques embeds the watermark in a 

cover image through quantization· different quantization vectors are used to embed 

different watermark values. Recently proposed QfM schemes include Chen and 

Worn II s QIM and dither modulation [26], Eggers et al. s scalar Costa schemes (SCS) 

[27) and application tailored implementations [28 29). 
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Chen and Womell argue that QIM tructure are optimal wh n the watermark i 

energy-constrained and QlM methods can be considered to be better suited for data 

hiding applications than spread-spectrum-based watermarking methods [26]. 

2.2 Embedding Domain 

A watermark can be embedded into a cover image in a spatial domain. Alternatively, a 

watermark embedding operation can also be carried out in transform domains, such as the 

discrete Fourier tran form (OFT) domain, the full-image (global) discrete eosin 

tran form (OCT) domain the block-based OCT domain the Fourier-Mellin transform 

domain, or the wavelet transform domain. Transform domain watermarking techniques 

apply some invertible transforms to the cover image before embedding watermark. Then 

the transform domain coefficients are modified to embed the watermark and finally the 

inverse transform is applied to obtain the marked image. The major differences between 

the watermarking schemes in frequency domain lie in the different coefficient selection 

trategie . 

2.2.1 Spatial Domain 

The basic linear addition of spread spectrum signals can be applied to embedding one bit 

watermark in patial domain with blind detection. everal proposed spatial domain 

systems are presented as following. The basic scheme is extended in some cases [30-32]. 
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2.2.1.1 Patchwork 

Other than LSB, Patchwork is another spatial domain technique designed to 

imperceptibly embed a single bit of information in a cover image. Patchwork embeds a 

watermark by changing the statistical distribution of luminance values in a set of pseudo

randomly selected pairs of image pixels. Patchwork i an elementary and nonrobu t 

method (30]. 

2.2.1.2 Multiple-bit Additive Algorithms 

Most watermarking applications require more than one bit of information to be 

embedded. The information rate of the watermarking system can be increased by 

introducing additional watermarks. This technique i known a direct mes age coding. 

The multi-bit mes age can be embedded into a cover image by adding watermarks 

representing individual bits of the multi-bit message to the cover, one by one [33). 

Generally, watermarks representing individual bits of a multi-bit message are first 

combined together into a single watermark representing the whole message and then 

added into the cover image. 

Watermarks can be combined together in a couple of different ways. They could 

be tied together in such a way that any individual tile is a watermark representing 

individual mes age bit. This i equivalent to the space division multiplexing. For 

example the watermark can be divided into blocks and each block represents a message 

bit. Alternatively, frequency division multiplexing could be used where watermarks 

representing individual message bits would be placed into disjoint frequency bands. An 

approach analogou to Code Division Multiple Access (COMA) in spread pectrum 
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communications could be applied in a watermarking application [ 15, 16]. In this 

approach each bit is spread across the whole image. The watermarks representing 

individual bits can be combined together without interfering with each other because they 

are selected to be mutually orthogonal [ 18]. 

2.2.2 OCT Domain 

OCT domain watermarking can be classified into Global OCT watermarking and block 

ba ed OCT watermarking. 

2.2.2.1 Global DCT Watermarking 

One of the first algorithms presented by Cox et a/. [ 16] uses the global OCT approach to 

embed a robust watermark in the perceptually significant portion of the Human Visual 

y tern (HVS). Embedding in the perceptual portion of an image has its own advantage 

because most compression schemes remove the perceptually insignificant portion of the 

image. In the spatial domain it represents the least significant bits (LSB). However in the 

frequency domain it repre ents the high frequency components. 

2.2.2.2 Block DCT Watermarking 

The main steps of any block based OCT algorithm can be simplified as following, a 

summarized by Potar et.al [II]: 

I) Segment an image into non-overlapping small blocks e.g. 8*8 block~ 

2) Apply forward DCT to each of these blocks· 
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3) Apply orne block selection criteria (e.g. HV )· 

4) Apply coefficient selection criteria (e.g. highest); 

5) Embed watermark by modifying the selected coefficients; 

6) Apply inverse OCT transform on each block. 

The main difference among mo t algorithm i either in the blo k election criteria or 

coefficient selection criteria. 

2.2.2.3 Perceptual Modeling Strategy 

Based on the perceptual modeling strategy incorporated by watermarking algorithms 

watermarking algorithms in the OCT domain could be classified as algorithms with no 

perceptual modeling, implicit perceptual modeling or explicit perceptual modeling. 

I) No perceptual modeling 

uch algorithms do not incorporate any perceptual modeling strategy while embedding a 

watermark. Examples can be found at [34, 35). 

2) Implicit Perceptual Modeling 

The e algorithms incorporate the transform domain properties for perceptual modeling 

[36 37]. Tho e high-frequency co fficients in transformation domain are select d, 

because they allow strong watermarks to be embedded and result in least perceptual 

distortion [38). DC components satisfy this criterion and hence they can be used. They 

also select those coefficients which are least changed by common image processing 

attacks like low-pass filtering and noise addition. Low frequency AC components a well 

as high rnagnitud DC components ati fy the above criteria and can be selected. 
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3) Explicit Perc ptual Modeling 

The HV properties for perceptual modeling are incorporated in such algorithms [38-40]. 

HYS models allow u to increa e or decrease the strength of a watermark becau e it take 

into account the local image prop rtie fore ample, contra t, brightnes variance, etc. 

2.2.2.4 Comparison of DCT with Spatial Domain 

D T ba ed wat rmarking technique are more robu t compared to spatial domain 

watermarking techniques [16]. Such algorithms are robu t again t simple imag 

processing operations like low pass filtering, brightness and contrast adjustment, blurring 

etc. However they are difficult to implement and are computationally more expensi e. 

At the same time they are weak against geometric attacks like rotation scaling, cropping, 

etc. 

2.2.3 DWT Domain 

Discrete Wa elet Transform (OWT) ba ed watermarking schemes follow the same 

guidelines as OCT based schemes. Ho ever the process to transform an image into its 

tran form domain varie and hence the resulting coefficients are different. Wa elet filter 

are used in wavelet transforms to tran form images. Among the mo t commonly used 

filters are Haar Wavelet Filter Daubechies Orthogonal ilters and Daubechies Hi

Orthogonal Filter [41]. 

As mentioned earlier blind detection doe not require the original image for 

detecting the watermarks, however non-blind detection requires the original image. 

26 



I 

isting wavelet based watermarking algorithms can be classified as blind detection [ 41-

43) and non-blind detection [44-46). 

2.2.3.1 Advantages and Disadvantages of DWT over DCT 

OWT and OCT are the most popular domains for watermarks. In general, OWT produce 

images with more invisible watermarks and higher storage capacity [47). OWT is 

superior to OCT in terms of the applicability in the HVS [II). With the standardization of 

JP G-2000 and the decision to use wavelet-based image compression instead of 0 T

based compression, watermarking techniques operating in the wavelet transform domain 

have become more attractive to the watermarking research community. Moreover, 

analysis is provided to show that for common attacks uch as spatial cropping and 

compression, the wavelet-domain, which tends to isolate these distortions, is one of the 

best in which domains to embed the information. 

However, the computational complexity of OWT is higher than OCT [42). As 

Feig [48] pointed out it only take 54 multiplications to compute OCT for a block of 8*8, 

unlike the wavelet calculation which depends upon the length of the filter used, and is at 

least one multiplication per coefficient. 

2.2.4 OFT Domain 

Adding a watermark to the OFT magnitude coefficient was proposed by O' Ruanaidh et 

a/. [49). OFT domain has been explored by researchers becau e it offer robustne 

against geometric attacks like rotation, scaling, cropping, translation etc. 
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The DFT of a real image is generally a complex value, which results in the phase 

and magnitude representation of images. The best location to embed the watermark in the 

DFT domain is the mid-frequency [50]. The major advantage of OFT over DWT and 

OCT i that DFT is rotation scaling and translation (RST) invariant. Hence DFT can be 

applied in watermarking schemes again t geometric distortions, whereas in DCT and 

DWT and in the spatial domain watermarks are difficult to extract after geometric 

distortions. 

2.3 Attack Analysis Methods 

Research in digital watermarking ha progressed along two paths. While new 

watermarking technologies are being developed some researchers are also investigating 

different ways of attacking digital watermarks. Common attacks to watermark usually 

aim to destroy the embedded watermark or to impair its detection. ince the more 

specific information known about the family of possible attacks the better a system can 

be designed to re i tit some re earcher have selected to work on modeling and resisting 

attacks on watermarks. These approaches concentrate on qualifying and quantifying 

attacks and their effects, and involve developing countermea ure again t them. 

2.3.1 Blind Removal Attacks 

Blind removal attacks aim at completely removing a watermark from a cover image 

regardless of secret keys. These approaches consider the inserted watermark as noise with 
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a given statistic and attempt to estimate the original cover image. Blind remo al attack 

as a means of robustness assessment are widely investigated in traditional watermarking 

studies. hese include addition of noi e compression/filtering attacks geometric 

distortions etc. Early researches explored the counter-measures against attacks such as 

compression filtering or noise addition. Selection of appropriate coefficient for 

watermark embedding in a transformation domain is one of the well established counter

measures. More recently geometric distortions have been of great interest to 

watermarking specialists. Proposed counter-measures include embedding a template, i.e. 

an extra signal for synchronization of the embedder and detector [51] and embedding a 

watermark signal in an invariant domain [49] a ell a ynchronizing by image self

regi tration [52 53]. 

2.3.2 Attacks Based on Key Mapping Function 

Estimation 

This class of attacks can be considered as security attacks. Recently, orne attempt 

address the concept of watermarking schemes from a cryptanalytic point of view. All the 

information about watermarking schemes is public, and security relies only on the u e of 

secret keys. If the secret key is known by attackers the watermarking scheme's security 

is broken. For attackers, it may not be possible to discover the secret key since usually 

the mapping function (input is the secret key, and the output is the watermarked image) 

designed o as to not be easily invertible. Hov ever, knowledge of the mapping function 

may be enough for the attacker's purpose. For example when the attacker has knowledge 
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about the watermarking scheme used, he can try to obtain an estimate of the 

transformation through obser ation of the outputs of the emb dder and/or decoder. 

2.3.2.1 Averaging Attacks 

The main flaw of spread-spectrum chemes in terms of security is that the same pseudo

random pattern is embedded repeatedly. Statistical averaging attacks are based on the fact 

that if multiple image with the arne embedded watermark are available it i po ible to 

estimate the watermark by averaging all those images. 

As a solution everal watermarks are randomly selected to prevent averaging 

attacks [54). Another possible olution [55] recognizes the security advantages of using 

image-dependent key . The author pre ent a method for generating a Gau ian vector 

which is depending on both a secret key and a robust ha h function of the cover image 

[55]. 

2.3.2.2 Watermark Removal Filtering 

Knowing the algorithms, attackers can resort to more powerful attacks, since they ar 

able to play in the embedding domain. More sophi ticated attacks than classical content 

tran formation rely on noi e removal filtering, in particular if suitable statistical models 

of original features and watermark images are available. For example Voloshynovskiy el 

a!. [56] have developed a watermark removal filter based on maximum likelihood or 

maximum a posteriori probability criteria. In practice, attackers look for the best 

approximation of the original document, by a uming that the watermark can be viewed 
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as disturbing noise. Similarly Wiener filtering can be adopted to try to separate the 

watermark and the host document. 

A possible countermeasure, suggested by Su et a/. [57], is to follow the Power 

pectrum Condition stating that the power spectrum density of the watermark hould be 

shaped like the one of cover images. Another possibility, proposed by Pateux eta/. [58], 

is to embed the watermark signal and then to elf-attack the resulting watermarked image 

by a Wiener filter. This highly diminishes the efficiency of watermark removal filters. 

2.3.2.3 Sensitivity Analysis Attacks 

Sensitivity analysis attacks constitute a powerful family of watermark removal attacks. 

They exploit the vulnerability in some watermarking protocols: the attacker's unlimited 

access to the watermark detector. For example, attackers may be motivated to remove 

watermarks from a watermarked home video copy in order to produce an unlimited 

number of illegal copies and resell them. Attackers make use of the detector to extract 

information about the watermark and subsequently 'remove" it. Since most detector 

decide on the presence or absence of the watermark by comparing the correlation value 

with a threshold, attackers decide to find the threshold using test images differing from 

each other by changes in luminance of a few pixels. With thi knowledge of the detector 

the image space can be divided into those areas that give correlator outputs less than the 

threshold and those are greater than the threshold. So attackers can find the tangent to the 

curve that divides these two regions, which involves testing all pixel position . Now that 

the tangent is known, attackers can subtract just enough out of the luminance of the 

original image to give a negative detection result and very small perceptual difference. 

This process can be iterated if the attacker is not satisfied with the perceptual damage. 
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Several approaches to resi ting the sensitivity attack have been proposed. The 

countermeasure [59] is based on randomization of detected results in a defined interval 

b tween ' watermarked ' and 'not watermarked regions [60]. It also suggests converting 

the decision boundary to a fractal curve [61]. Howe er, the fractalization does not change 

the outline of the decision boundary· therefore, it is still pos ible to estimate the 

embedded watermark signal in order to destroy it. 
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Chapter 3 

Counter-attacks of Geometric 

Distortion 

3.1 Introduction 

A watermark' re i tance to geometric attack i the ability to with tand an arbitrary 

displacement of all or some of its pixels by a random amount. It i a fundamental issue in 

watermark system design [62]. A geometric attack can render virtually any watermarking 

application useless. The robustne s of watermarks to geometric manipulation can b 

compared to losing synchronization in a communication system, since the detection of 

marks requires a synchronization step to locate the embedded mark in the content. 

Unintentional geometric attacks includ image-processing manipulations su h as scaling 
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images for a web site, printing and scanning marked documents changing a digital 

vi.deo s aspect ratio, and cropping an image to extract a region of interest. Resizing and 

rotating are al o basic manipulations in image edition and require a synchronization step 

for the detection of marks. Although sp cific schemes try to circumvent these attacks, a 

significant portion of existing algorithms fail to survive even such apparently imple 

modifications. 

Most of the propo ed technique in the early 1990's can be classified, based on the 

frequency domains in which watermarks are embedded, into methods using OCT domain 

OWT domain, and OFT domain, etc. Frequency domain based watermarking algorithms 

have been extensively studied to improve the robustness against certain signal 

proces ings, such as JPEG and/or other compre sion techniques, noise addition and 

lowpass filtering [63 64]. However reliable detection of frequency-based watermark is 

impeded when synchronization is lost as a result of geometric transformations. Although 

watermarking using spread spectrum in a transformed domain is very r sistant to 

amplitude distortions and additive noise, it becomes fragile if the starting point for 

decoding is flost. Counter attack methods against geometric distortion have attract d 

more attention from recent watermarking research groups. 

Compared to methods u ing frequency domain , patial watermarking methods 

are a bett r option for prevention of geometric attacks because they target at specific 

locations in images. Although spatial watermarking is less resilient to certain signal 

processing attacks, it allows extraction of information related to the spatial distortions of 

pixels. With thi information the image can be resynchronized after undergoing 

geometric transformation. 
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In the past ten years, the under tanding of geometric attack ha been ignificant 

improved. This chapter attempts to review exi ting watermarking methods against 

geometric transformations. More literature reviews about geometric attacks can be found 

at [62, 65]. 

3.2 Effects of Geometric Distortions 

ffects of geometric di tortions on watermarking embedding scheme are hown in 

Figure 3.2.1. The image rotation leads to lo s of synchronization i.e. the detector fails to 

locate the watermark. 

Watermark inside 

the rotated image 

(b) 

Detector Confused??? 

Watermark expected by 

the detector 

(c) 

Figure 3.2.1: Global geometric di tortion effect 

In Figure 3.2.1 (a) represents the watermarked image, (b) shows the in erted 

watennark and (c) is the watermark expected by the detector. The detector lost the 

ynchronization after the geometric distortion. The correlation cannot be perfonned 
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b cau e the randomly generated equence and the embedded equencc are not 

synchroniz d a hown in (b) and (c). 

The additi e and quantization cheme a major watermarking embedding 

chemes are affected in different manners as illu trated below. A majority of propo ed 

additi e wat rmarking algorithms operate on principle analogou to spread- p trum 

communications. A p eudo-random sequence which is generated using a secret key i 

in erted into image . During e traction th arne p udo-random sequence i correlated 

with the e timated patt m e. tracted from image . The watermark is said to be pre ent if 

the computed correlation e ceed a cho en thre hold value. Among this general cia s of 

watermarking chem ther are everal ariant that include choice of a pecific domain 

for watermark in ertion e.g. spatial, D T v avelet, etc; and enhancements of the ba ic 

cheme to improve robu tne and r duce i ible artifact . The computed correlation 

depends on the alignment of the pattern regenerated and the one e tracted from the image. 

Thu prop r nchronization of the two pan rn i criti al for the v atermark det tion 

pr ce s. ypically thi synchronization is provided by the inherent g ometry of the 

image, where p ud -random sequence are a umed to be placed on the arne image 

geometry. Wh n a geometric manipulation is appli d to the watermarked image the 

underlying geom try i di torted which on n r ult in the de- nchronization and 

failure of the watermark detection proce . imilarl in a quantization cheme the 

marked component cannot be locat d due the fact that initial locations depend on 

external coordinate . Thu the decoding of the mark is impossible. 
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3.2.1 Classification of Geometric Distortions 

Geometric manipulation ranges from simple scaling rotation and aspect ratio changes to 

more complicated random geometric distortions. Generally geometric distortions can be 

cia sifted as global geometric distortion and local geometric distortion. 

Global geometric distortions commonly appear in image manipulations, such a 

rotation translation cropping, and composition. These transformations are applied on th 

whole image, and in many ways can be easily represented by a mathematical operation. 

Local geometric distortion are e pecially de igned to de nchronize the mark 

without visual changes. Khun and Petitcolas [65] have developed a benchmark called 

tirMark containing different attacks. One of the first attacks developed by this program 

i composed of local random geometric distortions that permit us to defeat many cia ical 

watermarking schemes without vi ible alterations. 

According to Kutter [66], digital watermarking embedding schemes can be 

classified into two generations. In the first generation the location of the watermark to be 

embedded is decided by pixel or coefficient of frequency transform domains, while in 

the second generation the location is determined based on the notion of image feature. In 

the following sections, major watermarking schemes against geometric distortions are 

pre ented, which are classified as counter-attack of the fir t generation and the second 

generation. 
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3.3 Methods of the First Generation 

The first generation watermarking methods are characterized by image geometry 

searching for recovery of synchronization information. Four major methods in thi 

category are di cussed below. 

3.3.1 Exhaustive Random Search 

A geometric transformation such as rotation or scaling can be modeled as an affine 

transformation function with several parameters. Given enough sets of matching point 

the function parameter can be derived . One obvious candidate solution to the 

synchronization problem is to perform an exhaustive random search over the spac 

containing the et of acceptable attack parameters. By doing so, the solution to the 

synchronization problem v ill be the one that optimizes a certain cost function, uch a 

the root-mean-square (RM ) error between the original and watermarked image or the 

RMS error b tween coordinate value for corresponding pixel locations in the original 

and possibly attacked image. The search space cardinality determines the resolution 

achieved by the ynchronizer and also the computational cost of the performing. The 

larger the earch pace, the more accurate the synchronizer outcome, but it also require 

more computation [62]. 
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3.3.2 Template-based Synchronization 

Another solution to counter geometr ic attacks is to identify the attack' s transformation by 

retrieving artificially embedded template . Templates are reference patterns known at 

both the embedder and detector, which are added to the image in addition to the 

watermark. The detector can synchronize the watermark by using knowledge about the 

template to identify geometric transformations. 

Template-based synchronization ha been proven to be effective under global 

attacks. The template can be inserted into both spatial and frequency domain. Templates 

embedded in the Fourier transform domain can be applied to render the method robust 

against general linear transformations, as described by Pereia and Pun [67]. In their 

method templates are localized in a ring-shape area corresponding to the middle 

frequencies of the image spectrum. Eight evenly distributed coefficients are selected and 

their magnitudes are increased to generate templates. At the detection stage, the location 

of the template can be detected by searching eight maxima value within the ring area. The 

affine transformation can be identified by matching the initial location of templates and 

the detected location of local maxima. Fleet and Heger [68] use watermark projection on 

a set of sinusoids that appear as peaks in the frequency domain and these dots are used to 

synchronize the watermark. 

However, becau e these peaks are easy to see, an attacker can identify them and 

then easily rip the template off the watermarked image. Another problem with thi 

solution is that, because it requires the insertion of a template in addition to the data

carrying watermark, this approach is likely to reduce the image fidelity . Furthermore, all 

watermarked images share a common template and therefore are susceptible to collusion 
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attacks which estimate and remove the templates from the watermarked images and thu 

restrict the invertibility of any geometric distortions [69]. 

3.3.3 Periodic Insertion of the Mark 

An interesting approach to counter geometric distortion is to add redundancy during the 

embedding process. This redundancy can be used to localize the position of the signature 

and to improve the detection. Thts approach doesn ' t use templates but relies on the 

watermark s autocorrelation properties to achieve synchronization. Generally speaking 

the watermark is designed such that its autocorrelation function contains several peaks. 

On the receiver-end side, the decoder correlates the received watermarked image with 

itself and u es the knowledge about the autocorrelation function's periodic nature to 

synchronize the watermark. 

Kutter [70] uses space diversity (that is, vertical and horizontal shifts to embed 

repeated versions of the watermark) to estimate the attack parameters and invert them 

before detection. A periodic mark is embedded in the luminance of images. A cross-

correlation function of the image allow the localization of the different peaks generated 

by the periodic mark, and consequently the identification of the geometric tran form. 

Hartung et a/. [71] also devises a method that periodically inserts the watermark to 

circumvent Stirmark attacks. 

This method has great potential but it is not flawle s. Watermark detection in this 

method is dependent on the successful identification of the geometric distortion and the 

detection of the watermark after inversion of the distortion, and thus involving additional 

process and reducing the invertibility of geometric di tortion [72]. 
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3.3.4 Normalization Methods 

Yet another approach to address geometric distortions is the ' normalization ' of a cover 

image prior to watermark embedding. After embedding, the image is restored to its 

original geometric state prior to distribution. Upon receipt the image i again normalized 

prior to detection. Unlike scaling to a canonical size the normalization must be invariant 

to the expected geometric distortions. 

Images are normalized by their geometric moments [73]. In this way watermarks 

are hidden by modifying image content iteratively to produce the mean value of everal 

invariant moments in a predefined range. The watermark detector verifies the presence of 

the watermark by checking the mean value of these moments. This scheme can resi t 

orthogonal transformations and general affine transformations. 

Howe er, ince the image normalization proce is applied to the entire image, it 

would be sensitive to cropping and local region distortion [52]. 

3.3.5 Embedding Domain lnvariance 

A more elegant approach to achieve robustness against loss of synchronization is to us 

transformations that map the image information into an invariant domain. The most 

commonly used transformations depend on the properties of Fourier transformation. 

Combining a Fourier transform with a log-polar map results in invertible rotation 

translation and scale invariant representation [74] . However the exponential nature of 

the inver e log-polar mapping causes a lo s of image information in the discrete space 

[49]. 
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orne other domains are invariant to tran lation alone. lt's well known that OFT 

domain's magnitudes are invariant against translations in the space domain. Lin eta!. [72] 

have presented a method that achieves robustness to global RST attacks. The method 

e plait the translation invariance of the DFT magnitude pectrum and the propertie of 

log-polar mapping. Their method embeds the watermark in location along the log-radius 

axi obtained by mapping th DFT magnitude pectrum to a log-polar coordinate sy tern. 

Thu rotations are mapped to the watermark' s cyclic hift. ince the detector i ba ed on 

the normalized correlation coefficient it compensates for scaling attacks. However, this 

OFT based method lacks robustness to cropping and localized attacks. 

3.4 Methods of the Second Generation -

Feature-Based Methods 

The second generation method is al o called 'content-based watermarking scheme . 

Media contents represent an invariant reference for geometric transformations so that 

referring contents can solve the problem of ynchron ization. The location of the signature 

is not related to image coordinates, but image semantics. This method does not rely on 

the pre ence of a template which an attacker can era e to confu e the watermark decoder 

but rather on salient imag featur s. The ynchronization ba ed on image features ( dge 

corner connected components texture, and so on) relies on the ability to identify certain 

feature points in an image before and after an attack. If enough points establish 

corre pondence it is possible to invert the attack. 
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In the feature point based approach, the feature points detected in the original 

image are used to form local regions for embedding. At the detection end, the feature 

points are expected to be robustly distributed at the corresponding positions. The 

common framework is that some kind of image units such as blocks [75] meshes [52 53], 

or disks [76] are extracted as carriers for embedding. The construction of these patches is 

based on the extracted feature points. Each image unit I patch in an image can be treated 

a a small image and the watermark is embedded into each image patch. 

Patch locations are extracted by clustering feature points using the adaptive K

mean clustering method and retrieving several large regions where most feature point 

are located [77]. These regions are fit by ellipsoids and their bounding rectangles are used 

a the patch to embed or detect the signature. However, segmentation based feature 

selection is sensitive to some image modifications such as image cropping and 

translation ofthe image. 

Alghoniemy and Tewfik [9] use edges as feature points to estimate attack 

parameters. They estimate edges from the image wavelet maxima computed via a 

multiresolution-level decomposition of the image. Based on the computation of the 

average edge standard deviation ratio and the average edge angle difference, they 

e timate the scaling factor and rotation angle respectively. This method doe n't rely on 

the original cover image s presence during detection. However, this method requires 

prior information about the cover image. 

In Bas et a/. s approach [53] patch locations are based on salient feature points 

and patches are constructed by feature points Delaunay tessellation. In order to 

formulate patches for watermark embedding and detection, feature points are extracted by 

applying a Harris corner detector. The set of extracted feature points is decomposed into 
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a et of disjoint triangles through Delaunay tessellation. If the et of extracted feature 

points in the original image and distorted images is identical, applying Delaunay 

tessellation will be an efficient method to divide the image. D launay tes ellations are 

invariant to spatial filtering and geometric distortions in particular scaling and rotation. 

ach triangle can be treated as a patch. The signature is embedded into the patch by 

applying a classical additive watermarking method on the spatial domain. 

Tang and Hang [52] has introduced a synchronization approach by using the 

intensity-based feature extractor and image normalization. ln general, the object in the 

normalized image are invariant to small image modification and thi approach focu es 

on this fact. They u e a method called the Mexican hat wavelet scale interaction which 

determine feature points by identifying the intensity change of the image and i mor 

robust to patial di tortions. ub equently disks are constructed with the extracted 

feature points being their center and normalized in order to be invariant to rotation, 

translation, and partial filtering of the image. They use these normalized disk a patche 

for watermark embedding and detection. 

Rongen et a/. [78] has presented a method drawing several line cro ing the 

images. Locations of those lines depend on whether large percentage feature pixels are 

near a line. Finally it applies small modifications so most feature points lie on the lin . 

The watermark can be detected by checking whether most salient points can be found on 

specified lines. 

In general, method based on image features are robust to errors and attacks. 

Since the framework depend on the rep atability and accuracy of the feature point 

detector , most of the algorithms fail to ensure repeatability under a broad range of image 
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processing operations. Morea er these methods are difficult analyze theoretically. Hence, 

their use in commercial applications might be restricted [79]. 
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Chapter 4 

Data Hiding Scheme with 

Geometric Distortion Estimation 

4.1 System Introduction 

The motivation for the proposed scheme is derived from a pecific requirement for 

robustne s against geometric distortion in data hiding applications. A general overview of 

the scheme as well as details of involved technique i given below. 
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4.1.1 Scheme Motivation 

ln order to resi t to geometric attacks, it is necessary for a recovering algorithm to 

determine what operation (translation, rotation) has been applied to produce tampered 

images. Image regi tration can be an efficient recovering algorithm, which i mapping th 

received image to an original cover image to determine locations where the watermark is 

embedded. Image registration is a minor problem if the original image is available to the 

watermark det ctor. However, in watermarking applications, it is u ually impo ibl to 

retrieval the original co er image among the huge image database, since detector do not 

have access to the original cover image. So the registration process can not be performed. 

In thi case, some author have propo cd different methods to estimate transformations 

that the image has undergone and to rever e their effect. To estimate these 

transformations some reference is needed. Invariant image contents (feature points, 

edge , etc.) can fulfill this requirement. Invariant image contents in cover image can be 

used as reference information. The locations in distorted images can be determined a 

actual information. Distortion transformations can be estimated without accessing the 

cover image, if both reference information and actual information are available. 

These methods of estimating distortion transformations by reference information 

and actual information appear advantageous. However, there are some difficulties when 

these methods come to practical applications. Although these methods do not require the 

original cover image, they sti ll need some prior information reference information about 

the cover images. In other words, geometric distortion estimation is not fea ible 

technologically, if reference information is absent. 
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This work atms to investigate the possibility of embedding the reference 

information as part of the watem1ark to cover images. The reference information 

contained in the watermarked image can be easily extracted and decoded by the detector. 

Therefore, the geometric distortion scaling and rotation, can be achieved by comparing 

the reference location and actual location without accessing any information about the 

cover tmages. 

4.1 .2 Presentation of the Proposed Algorithm 

As is well known RGB images have three color spaces red green and blue. ach color 

space can be considered as one independent channel [I 0]. Two channels are selected in 

this work. One channel (communication channel) carries a large amount of information to 

be embedded, and the other one (synchronization channel) is used to check whether the 

image has been accidentally rotated or re caled. 

The scaling factor and rotation angle can be estimated from feature points. The 

scaling factor can be approximated by comparing the deviation of the feature points from 

mean of fi ature point b fore and after caling. Rotation angle can be calculated by 

comparing the average angle between feature point in the fir t quadrant before and after 

rotation. The deviation and average angles of original feature points can b elected a 

reference information. 
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Cove~image 

ynchronization channel of cover 
image 

Calculate reference location of the 
cover image 

Embed the referenc location 
information as watermark in 

synchronization channel 

Watermarked synchronization 
channel 

Communication channel of cover 
image 

Embed large information as 
watermark in communication 

channel 

Watermarked communication 
channel 

f------+• Watermarked image 

Figure 4.1.1: Embedding tage 

he main flow chart for the embedding and extraction stages are shown in Figure 

4.1.1 and Figure 4.1.2 respectively. In the embedding stage, reference information 

which is ba ed on statistics information related to feature points, is embedded as a 

watermark into the synchronization channel. ontent-based watermarking scheme, which 

has very high robustness against geometric distortion is used in the embedding and 

detection of the synchronization channel. While many data hiding schemes are available 

for embedding the information to be hidden into the communication channel thi work 

focuses on design and evaluation of the embedding scheme for a synchronization channel. 

In the detection stage the geometric distortion i estimated in the synchronization 

channel before the e traction of embedded information in the communication channel. 

The synchronization information of the transformed image (actual information) can b 

calculated and that of original image (reference information) can be extracted. With the 
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availability of synchronization information for both original and distorted images the 

distortions can be easily estimated and then corrected. 

Watermarked image after transmission 

+ 
ynchronization channel of 

watermarked image 

Calculate actual information o 
watermarked image 

Achieve reference information 
by watermark extraction 

Estimate Scaling factor and rotation angle by reference 

information and actual information 

Correct Cover Image back to original 
scale and/or orientation 

watermarked image 

Extract large amount image embedded in 
communication channel 

Figure 4.1.2: Detection tage 

Due to the robustness requirement of the reference information, a content-ba ed 

watermarking cheme is applied at synchronization channel as shown on Figure 4. 1.3 . 

Content-ba ed synchronization markers are essentially composed of three building blocks. 

First, a set of feature points are extract d. Then, elementary patches, triangles, are formed 

based the set of extracted feature points. Finally the watermark, containing the reference 

information will be inserted into each triangle repeatedly. In order to fit within different 

shapes of individual triangles, the reference location information is spread into a pre-

defined tandard triangle, e.g. an i oscele right triangle and the standard triangle is 

warped into the shape of individual triangle . 
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Figure 4.1.3: nchronization channel emb dding cheme 

everal vital techniques of the yst m, uch a referenc information generation 

robu t fi ature point e traction and element patche (triangle ) formation are pre ntcd in 

n t ection . he ,. hole embedding and e traction diagram i de cribed a ,. ell. 

4.2 Reference Information 

Image rotation and imag rescaling are the mo t common geometric di tortions during 

image manipulation. Ma oud [9] pre nted a method to e timate the scaling fa tor of a 

previou ly caled image and the angle by which the image ha been rotated. The main 

idea can be ummarized as follows. 

The average distance of feature point (i.e., (x,, y,) , a shown in Figure 4.2.1) from 

the center of gravity of the extracted feature point i.e., (x
0 

Yo) i : 
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where N is the total number of feature points 

The scale factor r can be estimated by: 

Where a, and a
0 

repre ent the average distances of feature points in the distorted image 

and in the original image, respectively. The average distance in the original image ( a
0

) i 

elected as reference information for the scaling factor. 

The average of angles e," (as how on Figure 4.2.2) which are the angles in th 

fir t quadrant of the feature points in the original image is: 

The rotation angle estimation e is given by 

e = eo - e' ' 

where eo and e' re pectively represent the average angles in the first quadrant of th 

feature points of the original and the di torted image. The a erage angle of the original 

image (eo) can be selected as reference information for the rotation factor. 
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) 

Figure 4.2. I: Average di tance of feature point from the gravity center 

Figure 4.2.2:Rotation angle e timation 

In the original work of estimating the rotation angle and scaling factor [9] 

Ma oud as umes that the decoder has prior information regarding the original image 
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information reference information a
0 

and en. That i to ay that both the encoder and 

the decoder hould agree beforehand upon specific ao and eo values for which th 

watermark is inserted and detected at the e alue . Howe er it i not pra tical sine the 

decoder usually does not ha e prior information about the original image. Thi the i 

presents a olution in which refer nee information a
0 

and eo can be emb dded as part 

of watermark. Most of the effort of this thesis focuses on how to embed and extract the 

reference information. 

4.3 Feature Point Extraction 

Feature point e traction play a key point in thi cheme. The robu tne of both the 

reference information and cont nt-ba ed atermarking cheme is ba d on robu t feature 

point extraction. To improve the robu tne of feature point extraction, the Harri -

Laplacian feature point detector i modified. 

4.3.1 Harris Corner Detector 

Feature pointe traction has been well tudied by orne image processing re earch group . 

eature point extraction was first developed for computer vision and reconstruction but 

is also employed in data-base retrie al a a de criptor of image . Edge and corn r 

detector are popular in image proce ing and can be employed for feature point 

extraction. Major feature point extraction techniques u ed in watermarking application 
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uch a the Harris corner detector, the Susan corner detector and the Achard-Rouquet 

detector, are compared in [53). The Harris corner detector ha shown the best geometric 

stability under different transformations, such as image rotation, illumination 

tran formation and perspective deformations (53 80). 

In general, the Harris corner detector generates the econd moment matrix using 

image gradients and then combines eigenvalues of the moment matrix to compute a 

corner-strength whose local maxima indicate corner position . The second moment 

matrix is Ex.y = (x,y),u(x y)r with 1-' = [Lx.x Lx. ] L represents image gradient alone 
Lx.y Ly.y 

the x and y axi . Ex.y can be considered as a local auto-correlation function of the image 

with a shape factor 1-' a depicted in Figure 4.3.1. Corner can be di tingui hed if there 

are significant changes in all directions. Harris [81] gave a new definition of the detector 

function based on eigenvalues A, and ~ of the second moment matrix Ex.y . To avoid 

computing the eigenvalue of ,u, the new criterion is based on the trace and determinant 

of ,u: Tr(,u) =A,+~ = Lxx + Lyy, Det(IJ) =A,·~ = LxxL> - L~ . The comer-strength an 

be represented by RH: RH = Del(IJ) - kTr 2 (1J) where parameter k is an empirical con tant 

normally in the range of 0.04-0.06 [81). Feature point e traction is achieved by applying 

a threshold on RH and searching for local maxima. 

(a)Fiat Region: No change 
in all directions 

(b)Edge: No change 
along the edge 

(c)Corner: Significant 
change in all directions 

Figure 4.3.1: Auto-correlation function in different ca e 
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The second moment matrixE_.,J' is represented by an ellip e, which is formed based on 

eignvalue A, and A.z of E_.,y as depicted in Figure 4 .3 .2(a). After the image rotation, the 

orientation of this ellipse is changed but the shape remains the same, since the eigenvalue 

of E_.,y are invariant with respect to imag rotation [80, 82]. Hence comer detector i 

invariant with respect to image rotation. 

(a) llipse E •.)' 
(b) Ellipse rotates but its shape (i.e. 

eigenvalues) remains the same 

Figure 4.3.2: Harri corner detector is invariant to image rotation 

However, the Harris comer detection i ensitive to changes in image scaling a 

illustrated in Figure 4.3.3. The line in Figure 4.3.3 (b) represents the one from Figure 

4.3.3 (a) but in the presence of a scale factor of 0.5. All points along the line in (a) will 

be cia ified as edges. In (b) after caling edge of the line are getting sharper and one of 

them turns to be a comer. 

cale factor 0.5 

(b) 

Figure 4.3.3: Harris corner detector is non-in ariant to image scale 
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The feature points can be lost significantly when an image undergoes geometric 

distortions if the Harris corner detector is directly applied on the image. Therefore some 

measurements must be employed to improve the robustness of the feature point detector. 

4.3.2 Scale Space Theory Improvement 

Several authors have propo ed some ways to improve the feature point detector when 

using the Harris corner detector in watermarking applications. A simple enhancement is 

done by u ing a pre-filtering smoothing operation [53]. An n x n mask repre ented 

b M,=-[:.~:· 1

1

1 
n x n 

I · · · 1 

improves the robustness against signal processing noi e. 

However, this average filter may introduce ringing problems into the image a it 

corre ponds to a sine function in the frequency domain which allows certain higher 

frequencies to pass through the filter. Another way ha emerged which performs Harris 

corner detector on both a cover image and a transformed image [1 0]. A set of feature 

points existing in both images are selected as feature points. The robustness is improved 

by obtaining table points in both the cover image and the transformed image. 
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Figure 4.3.4: cale space representation of Harris-Laplace 

In order to improve the robu tne of the feature point e tractor, the scale space 

theory is adopted in this scheme. In image indexing, retrieval recognition applications 

feature point extractor with scale space improvement has been studied to build robust 

feature descriptors. The Harris-Laplacian detector was first pre ented by Mikolajczyk [83] 

for obj ct recognition. Th de criptor detection isba ed on two tep . 

The first step is to compute interest points by the Harris corner detector at several 

scale levels. The scale-space is computed using a Gaussian function, where an image is 

filtered by Gaussian functions of different scales and then different image are formed . A 

scale-space representation for the Harris function can be built a hown in Figure 4.3.4. 

Images at different scales are built along the z axis. 

The second step is to select points which a local measure (the laplacian) is 

maximum along the z axi . The scale of elected feature points i called the characteristic 

scale. Local descriptors (such as ellipse, which are constructed based on the eigenvalue of 

the Harris corner detector) could be constructed at characteristic scales. Those descriptors 

can be applied a robust indices for image matching. 
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The Harris-Laplace detector has b en proven to be invariant to image rotation, 

scaling, translation. However, the approach is an exhaustive search over feature point if 

every feature point needs a search for the characteristic scale along the scale space. The 

Harris-Laplace detector i designed for object recognition and the characteristic local 

structure is required. In this work the Harris-Laplace detector can be simplified to 

improve the efficiency. The Harris-Laplace is used to keep comers which can be dete ted 

in the same location but on different cale . 

First, the second moment matrix of Harris comer detector in scale space can be 

defined by: 

here a 1 is the integration scale a 0 is the differentiation scale 

Lx LY are the derivatives computed in the direction x, y ,respectively. 

a a 
Lx(x,y a) = (-g(a))*/(x y) Ly(x, y,a) = (-g(a))*I(x,y) ax 8y 

he Gau ian kernel u ed h re a uniform cale- pace kernel 

The matri describes the gradi nt distribution in a local neighborhood of a point. The 

differentiation scale a 0 determines the size of the Gaussian kernels, which are u ed for 

computation of local derivatives. Averaged derivative are then obtained by smoothing 

with a Gaussian window, the size ofwhich is dependent on the integration scale a , . 
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In this work, the pre-selected scales o-1 = ~'o-0 , where t (i = 1· .. N, as the 

maximum scale) is the scale factor between successive levels. The matrix 11(x,y o-,) i 

computed with the integration scale o-1 = o-1 and the local differentiation cale 

o-0 = ·o-1' where s is a constant factor. The corner-strength RH can be calculated by the 

trace and the determinant of this second moment matrix: 

Local maxima of RH in the 8-neighborhood of a point determine the location of corner 

points. A threshold is used to reject those rna ima whereRH i mall. 

Next, a more compact representation is achieved by selecting feature points 

existing at the same location at all scales. These feature points are scale-invariant. 

allowing is an example of detecting a feature point along different scales where 

pre-selected o-1 =0.25 the number of total scales n is 4 the scale factor between 

successive levels ~ is 0.25 and the constant factor s = l. The integration scale o-1 = o-, and 

the differentiation scale o-0 = so-1• 

Feature points extracted at different cale are presented in Figure 4.3.5(a). The 

four markers with different style and color represent the feature points extracted at 4 

different scales. Only tho e feature points existing at all scales are elected, a 

highlighted red in Figure 4.3.5(b). Feature points are detected by checking' hether two 

points corre pond using the criterion that the error in relative location does not exceed I 

pixel in the coarse resolution image. 
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(a)D tecting featur point along fJ ur cale 

(b)Feature p int e i ting at th arne 
location but different cal ar pre er cd. 

Figure 4.3.5: elect feature point e. i ting in four cale pace 

To h the gain compared t the non- calc in ariant mcth d, parameter m 1n 

[84] i adopt d t aluatc the apabilit to pre erve the feature point for the tandard 

llarri detect r and the m dified Harri -Lapla ian detector. The parameter m i a 

rep atabilit c re, computed as a rati betv c n th numb r f point-t -p int 
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correspondences that can be established for detected points in two images and the number 

of feature points present in the original image: m = NP,.. I N,m, where Nm1 denotes the 

number of feature points present in the initial image, and P"' represents the number of 

pre erved feature points after the image undergoes scaling transformation. When m i 

equal to I all of the feature points are pre erved. 
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The experiments were done on I 0 equence of real images. In each tested image 

a et of feature points (set I) is extracted. Ten different scaling operations (at scaling 

factors of 0. 7, 0.8 0.85 0.9 0.95 1.05, 1.1 I. I 5 1.2 1.3) are then performed and 

another et of feature points (set 2) extracted. The images then undergo an inver e 

transformation in order to compare feature points set 2 with set I at the same scale, so 

that there-extraction rate m can be calculated. The experiments were done on 12 image 

(Appendix A) and the m values of three images (one for each testing cia s) are presented 

as examples in Figure 4.3.6. It is suggested that the Harris method modified with the 

scale space theory has higher re-extraction rate than the standard Harri method. 

4.4 Embedding Unit Design 

Two method are commonly used for embedding unit design. In one method several 

large regions are retrieved by adaptive K-mean feature points clu tering. The e region 

are fit by ellipsoids and their bounding rectangles are used as embedding units. However 

the effectiveness of thi method is dependent on the contents, object and textures of the 

image and therefore it is not applicable to high textured images due to the difficulty in 

electing appropriate regions. urthermore, this method is sen itive to certain image 

processings such as cropping and filtering which may alter the image contents. Another 

m thod, which is adopted in this work, uses 0 launay tes ellation to decompose an 

image into a set of disjoint triangles. Delaunay tessellation i a fundamental 

computational geometry structure. For a given set of points the Oelaunay triangulation 

provides a set of lines connecting each point to it natural neighbors. 
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There are several rea ons why Delaunay tessellation is used. First of all, the 

patches formed during Delaunay tessellation can spread throughout the image and do not 

overlap and therefore the embedding scheme so established shows large capability and 

low bits error. econdly the te sellation has local properties: if a vertex disappears, th 

te ellation is only modified on connected triangles. Thirdly, each vertex is associated 

with a stable area. The tessellation is not modified when the verte i moving inside this 

area. 

The main consideration for embedding watermark into image units is the 

robustness of the image units. At the detection tage feature points are expected to be 

robustly distributed at corresponding position at which the feature points were extracted 

at the embedding stage. As a fact that the feature point detector is en itive to even a 

small change of pixel value close to the feature point feature points redetections could 

be affected by watermark insertion itself. Methods to prevent the loss of tessellation 

triangles have to be de igned. 

In this work, instead of u mg vertices of Delaunay te ellation triangle 

themselves, relative reference vertices are calculated in our scheme as hown in Figure 

4.4.1 (a). Let A, B, C be three vertices of a Delaunay tessellation triangle, P is the centroid 

of a triangle, the relative reference vertices are E F G 

wherePE I PA = PG I PC = PF I PB = a a is a predefined parameter. 
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c 

(a) Modified Delaunay 
te ellation triangle 

(c Triangle Redetection, bove ' Without modification ', 
Bottom With modification' 

Figure 4.4.1: Modification of the Delaunay triangl 

mce e tracted Delaunay te ellation triangles are hrunk moderate! b 

introducing the parameter a , the robu tne of feature point red tecti n i improved 

significant! b a oiding embedding a watermark at the location of comer . Moree er, 

the modified triangle method can a oid the uperpo ition of ignal between adjacent 

triangle which could cause se ere problem when dec ding the embedd d information. 
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In the experiment, an a value of 0.9 is selected because it produces triangles with 

limited loss of capability while small enough for the triangles to avoid the location of 

feature points. Therefore, the a 0.9 is the tradeoff of the triangles embedding capability 

and robustness. 

In order to demonstrate the superiority of modified triangle decomposition a 

comparison is made with the original method under the same embedding strength. In 

Figure 4.4.1(c) the top three images show triangle redetection with Delauay te ellation 

and the bottom images show the redetection with modified Delaunay tessellation. The 

two images on the left present the watermarked images and the two in the middle pres nt 

the embedded watermarks. The images on the right how the re-extracted Delaunay 

triangles. It is seen that several feature points are falsely detected in the scheme without 

modification while all the feature points are preserved with the modified triangl 

embedding scheme. More examples of modified the triangle decomposition effects on re

extracting elementary triangle can be found at Appendix . 

4.5 Correlation-Based Multiple Bits 

Embedding Method 

The extracted reference information is repeatedly embedded into each image unit 

(Delaunay triangle). Ignoring triangle warping, each image unit can be regarded as an 

individual cover image of small size. This section explains the mechani m of the ba ic 

correlation-ba ed multiple bits embedding and extraction scheme. The overall embedding 
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and extracting cheme involving triangle warping is presented in details in the ne t 

section. 

To design a robust and imperceptible multiple bit embedding scheme, techniques 

of spread pectrum communication are combined within watermark generation. To 

succe sfully decode the watermark image restoration techniques are employed. Image 

restoration is used to obtain an approximate estimate of the original cover image from the 

watermarked image. This promotes the estimation of the embedded watermark that wa 

added to the cover in addition to allowing the scheme to be a blind watermarking cheme. 

inally because the watermark signal is of low power and the restoration process i not 

perfect the estimate of the embedded ignal could be poor, resulting in an embedded 

signal bit error rate (BER) that is rather high. To compensate, the watermark signal i 

encoded using a low-rate error-control code before embedding. This conglomeration of 

communication and image processing techniques provides a method of reliable blind 

image watermarking scheme. 

4.5.1 Watermark Generation 

The fundamental concept of watermarking is to embed information (watermark) into a 

digital cover image imperceptibly. The watermark signal can be treated as noise is the 

cover image which hould be imp rceptible and undetectable. pread spectrum 

techniques are adopted based on this requirement. 

In spread spectrum communication, a narrow band ignal i transmitted over a 

much larger bandwidth such that the signal energy present in any single frequency is 

undetectable. This can be accomplished by modulating the narrowband waveform v ith a 
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wideband waveform, uch a white noi e. In this., ork the watermark is modulated with 

a binary p eudo-noise (PN) signal, ince the binary pseudo-noise (PN) signal is wideband 

waveform and therefore the energy of its modulation with the watermark in any one 

frequency band is low and therefore difficult to detect [75] . Moreover the watermark bits 

are patially spread by a large factor cr (chip-rate) for additional redundancy. This 

spreading is accomplished by embedding one bit of the watermark into cr pixels of the 

image. 

PN ignal 

(p
1
).p

1 
e (-I. I} 

preading with 
factorcr 

Watermark ~1 bits {a
1
},a

1 
e (-1 + I} 

1 
____ _. 

1 

Modulali n 

Figure 4.5.1: Spread pectrum watermark generation 

Watermark Sequence 

{wl} 

In order to understand the effect of spread pectrum techniques the general model 

for this method to derive the watermark sequence is shown in Figure 4 .5.1. Let N be the 

total number of pixels in a cover image. Let cr be the chip-rate used to spread the 

information bits. Let L be the length of information bits which could be embedded in the 

cover image, and then the chip-rate cr = N I L . A sequence of information bits {a) 

a1 e {-1,1} hastobeembeddedintotheimage.Forexample infigure4.5.1, {a1} = [1-1 

1 I] inotherwords L=4 ifgivenN=512 then cr = 512/4 = 128. 
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This discrete watermark signal {a, } is spread by the chip-rate cr to obtain the 

spread sequence{b,} :b, = a
1 

wherej ·crSi<(j+l)·cr. The spread sequence {b,} is 

then modulated by a pseudo-noi e (PN) sequence with N bits{p,} p1 e {-I I}. This PN 

sequence{pJ, serving for frequency spreading is generated by a wideband pseudorandom 

noise generator with a secret key K. This secret key is known by both the embedder and 

extractor. The modulated signal is scaled with a factor a: 

where w1 is the spread spectrum watermark bits, which is arranged into a matrix with 

size equal to the image size. 

Original Image 

{vi} 

caled with a 
fact r a 

Watennarked { v;} 

Watennark w, 

Figure 4.5.2: Watermark in ertion 

As shown in Figure 4.5.2 the spread spectrum -. atermark bit w, are added to the image 

pixel value v1 , yielding a watermarked image, v; : 
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4.5.2 Watermark Extraction 

The watermarked image i then transmitted in orne manner to the extractor, ho 

maintains the arne ke K a the embedder. At the extractor the embedded watermark 

mu t be extracted from the r eived watermarked image in order to be decoded. To do 

thi image restoration technique , which filter mo t of the low-power emb dded ignal 

from the watermark d image, are implemented within the system to obtain an e timate of 

the original co er image. By ub equently ubtracting the restored image from the 

received\ atermarked image an estimate of the embedded signal is acquir d. 

The general process of the spread pectrum extractor i de crib d a hown in 

Figure 4.5.3. Assume that the watermarked image is v; = v, + w, where w, i emb dded 

watermark. Filtering operations can be u ed to r tore th original cover imag v
1 

and 

,.. 
restored image i expr d a v, . An e timate of the embedded ignal w', i acquired b 

ubtracting the restored cover image from the watermarked image: 

I I 1\ o 

\V I = V1 - Vt ~ V1 - V1 = W
1

• 

,.. 
he re tored image v, can be obtained using a variety of image proce ing filter u h a 

mean and iener filter . Effect of the wiener filter a particular filter u ed in thi cheme 

on information extraction are demon trat d in th ne t ection. 

Once obtained from the image rc toration w', i then demodulated with an 

identical cop of the p eudorandom widcband cqucnc {p,} u ed at th embedder. The 

generation of {p,} i accompli hed by the po e ion of a common ke , which i u d a 
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a seed for duplicate random number generators. The two signal are modulated {p, · w',} 

and summed over a window of length equal to the chip ratecr yielding the correlation 

sum s, for the j'" watermark bit as depicted below: 

Window I 

Window j 

WindowN 

lfthe estimated watermark signal w·, can be approximated by w, , the above summation 

function can deduce following formulas: 

_ {J+I)·<r-1 . , _ (J+~-1 • = (J+~r-1 
2 

• . 

sf - I P1 w 1 - L P1 wl L P, a b, ' 
/apcr l • j •('r I •J-u 

s :::: cr · a · b = cr · a · a1 . J I 

Because rc > 0 a > 0, p,2 = 1 and a, =± I embedded bits can be retrieved: 
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Filtered Ver ion 
Watcnnarkcd { v' } {w) 

Demodulation 

Re-generated { p,} 

Figure 4.5.3: Extracting stage 

Correlation 
with windows 
Length as cr 

1 
-1 
1 
1 

For each summation window, the extracted watermark bit 1s I if the summation 1s 

positive and -I if it i negative. The retrieval scheme is shown in Figure 4.5.3. 

4.5.3 Adaptive Noise-Removal. Filtering 

To improve watermark extraction the major part of the cover image is estimated and 

removed from the watennarked image. Filtering can be considered as a denoising 

operation and allow separation of the image component from the mark components. As 

stated earlier, the re tored image can be obtained with a variety of image processing 

filters. 

The Wiener filter in Lee s algorithm [85] is a good option for adaptive noi e-

removal filtering and i adopted in this work. It gives a low overall mean-squared error 

(M ) between the filtered image and the watermarked image, thus providing a re tored 

cover image that is much like the original cover image. Wiener adaptive noi e-remo al 

filter uses a pi elwi e adaptive wiener method, ba ed on tatistic estimating from a local 
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neighborhood of each pixel. The Wiener filter estimates the local mean and variance 

around each pixel 

where v' (n.,~) is the watermarked image that has been degraded by constant power 

additive noise (watermark) 1J is the N-by-M local neighborhood of each pixel in the 

/\ 

image v' (n1 n2 ). Based on these pixelwise estimations, an estimated image v(n.,n2 ) can 

be achieved by 

where 8 2 is the notse vanance which is approximated by the a erage of all local 

estimated variance . 

An example of effects of the Wiener filter is given below. One information bit 

{a} = {-1} is going to be embedded into following cover image v (presented as matrix, 

size as I 0* I 0): 

175 133 156 156 156 154 156 175 164 147 

137 129 153 158 192 211 149 166 174 105 

135 130 192 167 196 219 225 189 103 185 

145 133 200 168 127 106 215 127 105 180 

130 133 147 94 164 194 221 109 185 184 

113 135 172 97 129 183 159 96 178 181 

130 131 163 143 150 176 163 106 177 216 

141 146 143 113 105 178 111 177 174 214 
123 114 lOS 190 155 167 212 176 218 146 
200 101 104 96 155 164 190 140 153 152 
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Firstly a pseudo random sequence P = {p.} p . E {-1, I} i = 1 .. · 100 , is generated by key 
1 1 

K = 25. Then this p eudo random sequence P is modulated with information bit {a} = 

{-I} and is embedded into th cover image v. The watermarked image v' is derived as: 

176 132 157 155 155 153 157 176 165 148 

13 6 128 154 159 191 212 150 165 175 104 

134 129 193 166 197 220 226 190 102 184 

144 134 199 169 128 105 216 126 104 181 

131 132 H8 95 163 193 222 110 184 185 

112 134 171 96 128 182 160 95 177 182 
131 130 162 142 151 175 162 107 178 217 

140 145 142 112 104 179 112 178 173 215 

122 113 106 191 154 166 213 175 219 147 

199 100 103 95 156 163 191 139 152 153 

At the detection stage watermarked image v is filtered with the Wiener filter to get the 

,., 
e timated cover image v, : 

117 113 124 133 138 137 138 146 13 6 108 

110 149 153 170 179 184 183 167 157 101 

104 150 159 173 17~ 183 179 161 148 138 

107 149 152 162 159 186 179 164 152 148 

100 145 142 144 140 166 156 155 149 156 

92 139 134 139 147 171 156 155 159 162 

101 141 137 134 141 150 150 149 169 187 

102 132 138 141 153 157 163 168 179 187 

104 130 123 129 147 160 168 172 172 136 

123 89 85 92 131 145 162 132 134 124 

inc the Wiener filter can not completely remove all the embedded watermarks, 

,., 
the e timated cover image v; differ to orne extent from the original cover image. The 

e timated signal w'1 is achieved by watermarked matrix subtracting the filtered matrix w', 

,., 
= v -v, : 
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59 19 33 22 17 16 18 30 29 40 

2? -21 1 -11 12 27 -33 -2 18 3 

30 -2 1 H -7 26 37 46 26 -'IS '15 
38 -16 4? ? -32 -81 37 -39 -48 33 

31 -13 6 -49 23 27 66 -45 35 29 

19 -5 3? -44 -19 11 4 -60 18 20 

30 -11 25 7 10 25 12 -'12 9 30 
38 12 4 - 28 - 49 22 - 51 9 - 5 28 

18 -17 -17 62 7 6 'IS 2 46 11 
76 12 17 3 25 19 29 6 18 30 

Finally, the estimated signal w , is modulated with the original pseudo random 

sequence P . The summation of the modu Ia ted values is -5 .0868. o the extracted 

embedded bit can be classified as -1 which is the same as the embedded information bit 

{a} ""- 1. 

Correlation 
value 

0.8 

0.6 

0.4 ~ I~ IV 

0.2 v w v II v w 0 
\1 

~ 
V-

-0.2 v 
-0.4 

-0.6 

Key value 
-0.8 

0 10 20 30 40 50 60 70 60 90 100 

Figure 4.5.4: Extraction results without Wiener filter 

76 



Correlation 
30 

value 
25 

20 

15 

10 

5 

0 

L---L-~--~--~--~--~---L--~--~--~ 

ey value 
10 20 30 40 50 60 70 80 90 100 

Figure 4.5.5: Result after wiener filter, key=25 

Another example i given with the embedded information as {a} = {+I}. We can 

generate I 00 different random sequence with I 00 different keys. The random sequen e 

generated by key K = 25 (x axis) is embedded into the co er matrix. Of the I 00 random 

sequences tested only the sequence that \ as originally embedded should yield a high 

corr lation output at the detection stage because the arne random sequence a the one 

u ed in embedding tage can be regenerated by K = 25. ffects of Wiener filtering are 

represented by Figure 4.5.4 and Figure 4.5.5. The results indicate that Wiener filtering 

enable the detection of the embedded bits, i.e. the correlation value reaches a peak at key 

of value of 25 wherea u ing clas ical correlation detection alone can not give any 

di tinguishable peak. 
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4.5.4 Error-Control Coding 

ince image restoration does not result in a perfect copy of the original cover image and 

the embedded watermark signal is low power, the estimate of the embedded watennark 

signal could be poor. The result of the demodulated signal may have a substantial number 

of bit errors, indicated by a high embedded signal bit error rate. Therefore, to allow for 

uboptimal performance of the signal e timation proces the use of low-rate error-control 

codes is adopted to correct bit errors. 

Any error-correcting code that is capable of correcting the high bit error rate can 

be u ed. Among various error-correcting coding algorithms, a decoder based on 

convolutional coding and soft-decision Vit rbi decoding algorithm [20] is selected in this 

scheme for error correction due to several reasons. First of all the watennarking scheme 

with low signal-to-noise ratio (SNR) can be con idered a a noisy channel in the 

communication theory while the watermark can be considered as an additive white 

gauassian noise (A WON). Therefore the convolutional coding with soft-decision Veterbi 

decoding algorithm, which has strong correcting capability towards A WON, is suitable 

for the propo ed watermarking scheme. econdly ince the sizes of patches in content

based watermarking schemes are relatively mall, the sy tern requires good performances 

of the decoding algorithm at low implementation cost. Among the existing coding and 

decoding algorithm in watermarking application it has been that the combination of 

convolutional encoding and soft-decision Viterbi decoding serves as an effective error

correcting coding for content-based watennarking schemes [77]. 
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4.5.5 Triangle Warping 

The extracted reference information is spread into a standard triangle by the basic 

correlation-based multiple bits embedding and extraction scheme described above. Then 

the standard triangle is warped to fit into each extracted Delaunay triangle. Warping a 

triangle into another triangle can be done via affine transformation followed by cubic-

spline interpolation. The cubic- pline interpolation pre erves high frequencies of image 

signals, where embedded watermarks are located. 

In order to warp a Delaunay triangle T0 into a standard triangle 7;, , an affine 

transformation A that satisfies the mapping of every vertex (x, y.) in Ts into its 

corresponding vertex (xd yd ) in T0 is calculated. ince the angles are descending, o the 

transformation is unique as sho\ n in Figure 4.5.6. The affine transformation A i 

expressed as the following equation and the six real parametersa,b, c d ,e, f are obtained 

by inserting three pairs of known vertices. 

~ $ ---- .. _ ~ 
·-- - ---.. -.. ~ 

.· -,_.. ~ ---- -· -·· / 
/ 

/ - .-· 
<.D - -· 

Figure 4.5.6: Orientation of the triangles 
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This affine transform A permits us to model geometric transformation, such a 

rotations scaling operations or shearing effects and also allows us to transform any point 

of the triangle ~ into a corresponding point of the triangles TD . A cubic-spline 

interpolation process is applied on the neighborhood of the affine point to obtain the pixel 

value. 

Similarly, the six parameters corresponding to the affine transformation A-1
, a 

process that maps the vertexes of the standard triangle into those of the Delaunay triangle 

can be computed. 

4.6 Embedding Scheme 

After extraction of Delaunay triangles and reference information a
0 
and eo, the reference 

information is merged into each Delaunay tessellation triangle. The whole embedding 

cheme i given in Figure 4.6.1 and the main formatting and merging steps are 

ummarized as follows: 

tepl: Reference information a
0 

and e o are represented by Nb -bit binary antipodal 

vectorb = (b1 ... bN) ,b, E{- 1,1} 'v' i E {I, ... ,Nb}. 

tep2: Vector b is encoded by a convolutional encoder, resulting in the N< -bit 

antipodal coded vector c. 
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tep3: Vector c i then duplicated into a N . -bit vectorc' , where N . = cr * Nc and cr 
c c 

is called the expansion window or the pread factor. 

Step4: Byapseudorandomsequence p = (p1 ···PN. ) p, = {-II} 
< 

Vie {I, ... Nc.} , c is modulated into vector : s, = p, · c, . s is the signal actually 

embedded. 

tep 5: A standard triangle T.. is defined as a 96*96 iso celes right-triangle. The 1-D 

equence sis arranged into the shape of a standard triangle T.. . 

tep 6: the standard triangle T.. is warped into the shape of each Delaunay triangle 0J to 

obtain Tmap . 

Step 7: Tmap and T0 are added together to obtain a marked triangle with an embedding 

strength and perceptual mask as presented in [77]. 
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ynchronization information 

Convolutional encoder 

Marked Triangle 

Figure 4.6.1: Embedding scheme 
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4. 7 Extracting Scheme 

The detection scheme is shown in Figure 4.7.1. imilar to the embedding stage the 

elaunay triangles and synchronization information (a, , B' ) are redetected and the tep 

of extraction of embedded information a
0 

and B" from each Delaunay triangle can be 

ummarized as following: 

Step 1: The redetected T0 is warped into the shape of standard triangle ~ . 

Step 2: The pre-defined Wiener filter is applied to filter much of the low-power 

embedded signal to estimate the original mes age. By subsequently subtracting the 

re tored image from the received embedded image, an estimate of the embedded signal 

sis acquired. 

Step 3: The noise equence pis regenerated. 

Step 4: c i estimated from the formula: 

(k+l)·cr-1 (k+l)·cr-1 (k+~r-1 

I (p, ·s,) - ( I p,)·E( 2_. s,) = cr ·ck Vk e {l ... Nc}. 

Step 5: The embedded mes age a
0 
and Bo i decoded by Viterbi soft-decision (76]. 
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Figure 4. 7.1: E tracting scheme 
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Chapter 5 

Performance and Discussion 

The objective of this chapter i to show the robustnes of the propo ed scheme again t 

rotation and scaling distortion. The experimental et-up for the cheme i di cu sed and 

the results from our implementation and its performance analysis are presented. The 

factors that seem to affect the performance of the scheme are also di cussed. Furthermore 

some theoretical and practical limitations of our scheme are pre ented in thi chapter a 

well. 

5.1 Experiment Procedure 

The tests were proce sed on 12 different images representing different classes of 

contents. he te t databa e is hown in Appendix A. Variou categorie of image have 

been cho en. orne images (Lena, Man, Couple Pentagon) include very di tinctive 
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corners and other images (Baboon Boat, Aerial Bridge) have textured areas with high 

frequency components while the other images (Moon urface Car, Hare Pepper ) 

include large homogeneous areas. 

The general frame ork of our scheme can be summarized as three basic steps. 

First, for each test image, a set of Oelaunay triangles is formed by feature points. Next 

watermarks with the same embedding weight factor generated from referenc 

information for each test image, are embedded into the test image by the proposed feature 

ba ed watermarking method. Then a equence of geometric distortion eating and 

rotation, is applied to each watermarked image. t the detection stage the reference 

in formation i extracted from each Delaunay triangle of the sequence of di torted image . 

The number of triangle in which the reference information can be successfully extracted 

reflects the robustness of the data hiding cheme. 

This fact that our geometry-invariant watermarking scheme can be functionall 

partitioned into three modular blocks allows independent evaluation of each essential 

building block. In addition the partitioning also allows us to analyze the requirement for 

each component individually. Fir t, the precision of geometric di tortion estimation ba ed 

by the reference location information has to be guaranteed. econd, the extraction of 

elementary triangles has to be robu t. Finally the capability of content-ba ed 

watermarking scheme must be high enough to embed the location reference information. 

Tn following sections, performance of the propo ed scheme on each module i 

presented, and then a discussion of the requirements on each block is followed by 

analysis of the presented scheme to meet these requirements. 
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5.2 Geometric Distortion Estimation 

In thi tep geometric di tortion is e timated by comparing the emb dded location 

r fer nee information (feature point location of original images) with the actual location 

information (feature point location of tran formed image ). Feature p ints are extracted 

b scale-space adapted Harris corner detection. The performance and a di cus ion of the 

requirements on thi geometric distortion e timator are presented in thi ection. 

5.2.1 Rotation and Scaling Estimation Results 

The eating factor i appro imated by the dges tandard Deviation Ratio ( DR) which 

i achie ed by comparing the de iation of the feature point location before and after the 

attack has been performed. The rotation angle i appro imated by A erage dge Angle 

Difference (AEAD). 

Figure 5.2.1 show an example of th extracted feature point from an original 

image and the image with scaling factor 0.8. Figure 5.2.2 illu trate the location of 

tracted feature point from an original image and the image with a rotation factor of 5 

degree . The aling and rotation e timation can be achieved by comparing r ferenc 

I cation of the e feature point . The location of mo t red dots in di torted image (b) 

which represent the c tracted feature points remain unchanged compared to those in the 

original image (a . 

The robu tne of our geometric di tortion e timator i e aluated byte ting n the 

testing image databa e. For example, a caling operation of 120% and rotation of 5 
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degree are performed on our testing image database. Figure 5.2.3 (a) and Figure 5.2.3 (b) 

show the estimated scale factor and the estimated rotated angle for each image, 

respectively. The estimated distortion factors of all tested images given as circles, appear 

clo e to the actual factors of 1.2 and 5, respectively, for scaling factor and rotation angle. 

Figure 5.2.1 (a) Original image (b) Image caled 0.8 

Figure 5.2.2: (a) Original image (b) image rotated 5 degree 
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Figure 5.2.3: Estimation re ults of 13 testing images 
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As stated earlier the testing image database is classified into three categories 

each containing four images with similar characteristics. Each image is analyzed for its 

quared Error (SE) at scaling factors ranging from 0.7 to 1.3 and rotation angles ranging 

from - 15· to I 5" as follows: 

where Va i the value of the actual distortion factor, i.e. scaling factor and V, is 

the value of the estimated distortion factor. Means quared Error (M ) is then obtained 

by averaging of four images for each category and hown in Figure 5.2.4. 

The lowe t M E value i ob erved when the scaling factor is close to 1. M E 

value increases with increasing scaling distortion which is defined as the degree to which 

the image is rescaled. The first class has the lowest MSE, thus providing the be t 

estimate of geometric distortion· whereas the second and third cia ses do not differ 

significantly. 

Rotation distortions exert similar effects on MSE i.e. the smaller the rotation 

distortion angle, lower theM E value is. It is noticeable that when the rotation angle i in 

the range from -5 to 5 M E is the lowest for all categorie . During thi range the fir t 

class provides the best estimate among all categories. At higher rotation angles (<-5 or 

>5) M increa es remarkably and haws no significant different among the three 

categories. 
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As indicated from experimental result , the geometric distortion estimator can 

achieve promising results in a certain range of rotation and scaling distortion. everal 

important element can also be deduced from experiments: 

I) With increasing scaling and rotation distortion, the accuracy of geometric distortion 

estimation decreases rapidly. This is cau ed by significant lo s of the embedded 

feature points. 

2) The estimated rotation angle is accurate in a relatively mall range due to the fact 

that the rotation factor i only estimated by a erage angle of feature points in the 

first quarter. 

3) Images with distinctive corners (the fir t class) have the best e timate of th 

geometric di tortion while the estimate of caling and rotation factor for image 

with highly textured areas or large smooth areas is le s accurate. This i mainly due 

to the fact that feature points in such image areas can be significantly missing after 

undergoing geometric distortion. 

5.2.2 Requirements of Proposed Scheme 

This ection discus es whether the accuracy of the geometric distortion estimation meet 

the requirements of the cheme. The results indicate that geometric distortion estimate 

has satisfactory performance under a certain range of scaling and rotation. Rotation at 

larger angle lead to reduced accuracy of the geometric distortion estimation which 

depends on the stati tical distribution of feature point in the fir t quarter; alteration of the 

distribution of feature points occur during rotation at larger angles. Therefore, thi 
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geometric distortion estimator i more applicable to data hiding cheme in which large 

rotation is not commonly seen. 

Data hiding requires the maximum amount of data to be embedded invisibly into 

a cover image. Little re earch has been carried out to investigate the basic robustne s 

against geometric di tortion in data hiding schemes. Generally, higher capacity (the 

amount of information being embedded) is associated with lower watermark robustness. 

While many tudies focus on the capacity watermark robustness of the data hiding 

heme again t geometric distortion has been ignored. It ha been as umed that data 

hiding schemes do not require high robustness. However, distortions uch as resizing and 

rotation frequently occur during image manipulation and adver ely affect the extraction 

of embedded data. This makes it difficult to the design of a data hiding scheme robu t 

against geometric distortions while keeping high capacity. 

This work aims to improve the robu tness against geometric attacks in data hiding 

applications wher the geometric distortions caused accidentally by image manipulations 

are fine scaling and slight rotation. This geometric distortion estimation method pro ide 

good accuracy in the case of slight distortion and therefore offers a possible elution to 

counter geometric distortion in data hiding application. 
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5.3 Robustness of Extracted Element 

Triangles 

After testing the geometric distortion estimator the robustnes of the element triangl 

extractor is evaluated in this ection. As mentioned in the Ia t chapter since extracted 

feature point are bound to the image content, this set of points is used to divide the 

image into triangle patches, which are warped into a standard geometry ensuring the 

exact synchronization during insertion and extraction. The focus in the analy is of the 

requirements for this module is primarily on the repeatability of the image tessellation 

into elementary triangles. 

5.3.1 Experimental 

Extractor 

Set-up of the Feature Point 

The feature point extractor provides a large set of candidate points from which a smaller 

subset i selected a feature points based on the trength of the detector re pon e. To 

obtain a homogeneous distribution of feature points in an image, a common technique is 

to select local maxima of the edge/corner-detector responses in a defined local 

neighborhood for each feature point. lt is important to define the size of the 

neighborhood. If thi ize i too mall, the di tribution of the different feature point is 

concentrated on textured areas. If the size of neighborhood is too large, the feature point 

become isolated. 
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In thi work, a circular neighborhood is u ed to a oid increa ing detector 

anisotropy. he center of the neighborhood is the considered pi el. To be robu t to 

eating operations, the circle diameter depends on the image dimen ion = w+h . The 
r 

integer wand h repre ent re pecti el the image width and height. The neighborhood 

ize i quantized by the r value. 

(a) y = IOO (b) r =30 (c) y= IO 

Figure 5.3.1 : T riangle di t r ibut ion controlled by y 

In order to in e tigate the influence of parameter y on the formation of 

elementary triangle , different y values are u ed in the feature point extractor. Higher y 

value re ult in a higher number of e tracted el mentary triangles, which i not de ired in 

thi ca e owing to the reduced size of triangle and thus deficient embedding reference 

information. Howe er, the r alue hould be high enough to obtain a proper number of 

triangle for reference information embedding. Among different y alue u ed for the 12 

tested images in this work a homogeneous repartition is achieved near the r value of 0, 

where a et of well di tributed elementary triangle with rea enable ize i obtained. 

Three et of elementary triangle e tracted from the image baboon at y alue of 100 

30 and 10, fore ample, are demonstrated in Figure 5.3.1. 



.-------------------- -·---

5.3.2 Performance of the Elementary Triangles 

Extraction 

The mo t important criterion of the elementary triangle extraction module is the 

repeatability rate after undergoing rotation and eating. The feature point extraction 

module extracts synchronization markers which are robu t to geometric manipulations 

and to other content-preserving signal processing operations. It is a challenging task to 

find feature point extractors which produce repeatable results under the broad range of 

image processing operations. 

In this test geometric distortion attacks (rotation scaling) are also applied on the 

12 selected test images. As an example the set of extracted elementary triangles of the 

man image under several different geometric di tortions is shown in Figure 5.3.2. M re 

examples of testing the robustness of elementary triangle extractor can be found at 

ppendix B. If the difference between the patches from the original image and the 

patches from the attacked image was le s than two pixel the patche are regarded as 

having been correctly redetected. These small mi alignments can be compensated by 

searching some pixels around position of the patches originally found during watermark 

detection. In particular prior to comparison we reversed the coordinates of the patches in 

the attacked image into coordinates in the original image by calculating their inver e 

transform. 
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Watermarked image 

2 degree rotation 

15 degree rotation 

Figure 5.3.2:E tracted lem ntary triangle of differ nt attack 
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Table 5.3.1: Redetection ratio (%) under rotation di tortious 

Second Cia s 

Man ouplc Pentagon Baboon Boat Aerial Bridge Moon Hare Peppers 

81 77 76 65 58 54 

51 58 

54 51 

48 45 

30 29 

41 'W 41 31 27 29 29 21 

26 27 26 14 II 10 13 12 

28 24 22 16 12 14 13 12 11 

19 22 18 II 10 

18 11 13 11 

Table 5.3.2: Redetection ratio (%)under caling di tortions 

First Class Second Class Third Class 

Lena Man Couple Pentagon Baboon Boat Aerial Bridge Moon Hare Car Peppers 

Scaling 0.95 71 69 67 60 53 58 51 50 50 52 38 53 

~caling 1.05 ~9 70 68 63 - ~1 54 53 44 "9 :w ~~ ~9 48 
~ 

.·, I ~ f 
Scaling 0.9 58 59 57 50 48 5 1 48 46 ~6 47 37 45 

fScallng 1.1 .~;, P~. 51 55 53 lSI 47 43 4r- 143 -:/~1~1.·~8 43 -
!Scaling 0.85 37 32 40 36 127 20 21 22 l2t 25 23 17 

~callng 1.15 125·' 23 26 25 15 13 14 11 1~" 11 IS -
~ 

!Scaling 0.8 19 22 2 1 20 14 II 12 10 II 10 9 12 

~ling 1.2 121 19 21 22 .: IS 13 11 12 10~1 9 11 

!Scaling 0.7 13 16 15 19 14 12 10 9 7 10 7 8 

IScalmg 1.3 11~4.-;::-'': .. 17 14 17 15 13 --::::-11 10 If :~ 9-w.<r ~ 9 -
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Re ults are expre ed a the redetection ratio of triangles, which is the ratio of the triangl 

number detected in the di torted image to that in the original image. The distortion 

include ten different rotation angle (-25, -10, -5, -2, -I, I, 2, 5, 10 , 25) and 

t n scaling factors (0.7, 0.8 0.85, 0.9, 0.95 1.05, 1.1 1.15 1.2 1.3) and the re ultant 

redetection ratio are pre ented in Table 5.3.1 and Table 5.3.2, re pectively, for varied 

rotation angles and caling factor . Con i tent with the previou evaluation of geometric 

di tortion e timator the test image databa e i grouped into the same cia e : images with 

distinctive corner (fir t clas ) images with highl te tured areas ( econd cia ) and 

image with large mooth area (third cia ). 

The results suggest that robustness of the extracted elementary triangle depends 

on the content of the image . The first cia has the highe t redetection ratio be au e the 

images contain sharp corners which contribute to robustness again t geometric di tortion . 

Lower redetection ratios are observed in the econd class (textured images) and the third 

class (large smo th area) due to lo s of the featur points. 

The results al o indicate that higher extents of distortion give rise to lov er 

rcdetection ratio. Nevertheless a already mentioned large distortions arc not frequently 

occurring in data hiding application and hence the propo ed elementar triangle 

c traction appears an appealing method for redetection of the embedded reference 

information. 
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5.4 Embedding Reference Information 

into Elementary Triangles 

In this stage, the reference information is par ed into 20 bits binary data and inserted into 

elementary triangles. The capability of the proposed reference infonnation hiding cheme 

and the distortions introduced by the proces of triangle warping are analyzed. 

5.4.1 Experimental Set-Up for Embedding Scheme 

The set of extracted feature points is u ed to divide the image into elementary triangles 

and each elementary triangle is warped into a tandard triangle. As indicated earlier the 

watermark is embedded into the tandard triangle and then the tandard triangle i 

unwarped to obtain the watermarked version of the elementary triangle. There are 

di tortions in the embedded watermark information introduced by the process of triangle 

warping. 

During the embedding stage the tandard triangle T. is warped into the shape of 

each Delaunay triangle T0 to obtain Tmop while each Delaunay triangle T0 is warped back 

into the hape of the standard triangle so the recei er can extract the reference 

information from each triangle. Warping of triangles into a standard triangle (for instance 

an i osc les right triangle) is achieved via affine-tran formations. 
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(size as 96*96). 

(a) 

Case I: The 
Delaunay triangle 
contains 2835 pixels 
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W-arpe-d in-to a______. \ Delaunay triangle 

(b) 

j Warped back to 
standard shape 

Case 2: The 
Delaunay triangle 
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~. 

Case 3: The 
Delaunay triangle 
contains 209 pixels 

L~·· •· J("~l~'l< ··l('lf'f. .. 
(d) (e) 

Figure 5.4.1: Triangle warping di tortions 

The Delaunay triangle size is one of the important factors influencing re-

extraction of the embedded reference information. The effe.ct of warping individual 

Delaunay triangles of different sizes into a standard triangle is given in Figure 5.4.1. 

Figure 5.4.1 (a) shows the original standard triangle and Figure 5.4.1 (c) (d) (e) show the 

resultant triangles after the transformations of the standard triangle into different sized 

Delaunay triangles. It is indicated that minimum di tertian of the reference information 

by transformation is obtained when the size of the Delaunay triangle is close to that of the 

standard triangle. 

pread reference information ignals are employed in this experiment ince 

affine tran formations are a blurring proce s and the embedded information bit may be 
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lost during this proces . Repeated spreading of reference information bits into a block can 

help recover the lost information bits as the extracted reference information bit in a block 

rather than a single bit is determined. In this experiment, the reference information 

ignals are spread on 2*2 pixel blocks. 

5.4.2 Evaluation of Data Hiding Scheme 

Two classes of geometric distortion scaling at I 0 different scales( 0. 7 0.8 0.85 0.9 

0.95, 1.05 1.1, 1.15, 1.2, 1.3) and rotation at 10 different angles ( -25, -10, -5, -2, 

-I, I, 2, 5, I 0, 25) are te ted on the image database to evaluate the embedding and 

extraction cheme. The robustne s of the embedding and extraction cheme i measured 

as the Number of Extracted Reference Information ERJ) which is defined as the 

number of triangles in which the embedded reference information can be redetected. The 

number of extracted triangles from the original image and ERJ of images after 

different geometric attacks are pr sented in Table 5.4.1 and Table 5.4.2. The result 

suggest that NERJ is inver ely associated with the distortion extent. Among the image 

groups the fir t class exhibits the highe t ERl. 

Table 5.4.1: NERI under rotation di tortion 

Triangle Number 
NERJ after rotation 

of Original image -25 -10 -5 -2 -1 1 2 5 10 25 

Lena 48 4 10 15 14 21 23 22 20 10 7 

Man 67 6 11 14 21 27 29 21 14 10 9 

ouple 59 7 10 13 22 26 27 18 15 II 5 

Pentagon 93 3 13 17 28 31 26 24 17 14 2 

Baboon 76 0 8 12 14 19 17 16 9 3 I 
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Boat 63 0 5 13 12 16 15 16 11 4 0 

Aerial 98 2 4 9 11 21 18 13 11 3 0 

Bridge 85 0 2 7 13 20 21 10 9 2 0 

Moon surface 47 3 9 12 14 17 15 16 9 8 4 

Hare 45 0 5 9 11 12 14 10 7 4 2 

Car 62 2 7 8 II 14 13 12 6 2 0 

Peppers 50 3 6 8 11 12 10 8 4 3 2 

Table 5.4.2: NERI under scaling di tortions 

Triangle Number 
NERl after scaling 

ofOriginal image 0.7 0.8 0.85 0.9 0.95 1.05 1.1 1.15 1.2 1.3 

Lena 48 5 9 13 17 19 20 17 12 10 8 

Man 67 3 11 15 17 21 19 11 7 6 3 

Couple 59 4 7 10 17 19 18 14 10 7 3 

Pentagon 93 2 5 12 14 16 18 14 11 9 2 

Baboon 76 0 4 9 II 16 15 13 6 3 I 

Boat 63 0 3 10 9 14 12 ll 8 3 0 

Aerial 98 0 2 7 9 14 15 10 7 3 0 

Bridge 85 0 2 5 9 15 16 5 4 2 0 

Moon surface 47 0 4 7 9 12 10 II 4 5 2 

Hare 45 0 3 7 9 10 12 8 6 4 2 

Car 62 2 7 8 10 13 12 11 5 2 0 

Pepper 50 2 4 5 8 10 7 5 2 3 0 

5.4.3 Discussions 

The rotation angle and scaling factor can be calculated by comparing the extracted 

reference information and the actual information of the distorted images. In a practical 

implementation, the specific embedded reference information is usually unknown and the 
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e, tractor can not determine if the extracted information bit match the original embedded 

reference information. In order to id ntifY the embedded reference information a number 

of 20 bit binary data equences are extracted from each individual triangle and the e 

equence are ompared. The presence of t\! o or more identical equence ERI ;?:. 2) 

confirms succes ful e traction of the original embedded information. In this work the 

NERI values are higher than 2 within certain ranges of geometric distortions e.g. the 

rotation angle from- I o· to I o· (Table 5.4.1) and the caling factor from 0.8 to 1.2 (Table 

5.4.2). 

5.5 Limitations in Practice 

Thi preliminary work provide a pos ible means of improving the robustne s again t 

geometric distortion while keeping a high capacity in the data hiding scheme, and hed 

light on embedding multiple bits information through feature-ba ed watermarking. 

However limitations exist in practical implementations one of which is as discus ed 

earlier that the geometric distortion e timator i only robust again t a certain range of 

di tortion and thus more applicable in data hiding application . It should be noted al o 

that the images under in estigation are re tricted to be RGB color images which ha e 

more than two color space , as required by the embedding cheme. 

In addition to rotation and scaling other di tortions such a horizontal and vertical 

hearing (re eating the image along X and Y axis to different e tents) were al o taken 

into consideration. However one of the factors inhibiting the hearing distortions from 

being examined in the proposed scheme is that the loss of redetectable elementary 
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triangles occurs during horizontal and vertical shearing di tortion. More specifically 

shearing distortions modify the relative positions of the extracted feature points and 

consequently alter the tessellation of Delaunay triangles formed; whereas this is not the 

ca e for rotation and eating distortion in which Delaunay triangulation is independent 

from the image scales and rotation angles. A good example is that, as shown in Figure 

5.5.1, shearing the image along the vertical direction causes varied formation oftriangles 

in the distorted images not corresponding to that in the original image. 

A 

A 

D 
D 

Figure 5.5.1: Effects of a pect ratio change on Delaunay triangulation 

Another reason for not considering hearing di tortion in this scheme i that 

introducing one more distortion factor (X and Y shearing factors rather than caling 

factor) may increase the information length required, which possibly exceeds the 

capability of the cheme. 

5.6 Contributions and Remarks 

This work investigates an image data hiding cheme that counterattacks rotation and 

scaling distortions. The first contribution of this work is that it presents a method of 

105 



embedding geometric reference information into the cover image by a content-ba ed 

watermarking scheme. This is accomplished by selecting two color spaces of RGB 

images as two channels ( C and CC channels) to carry geometric reference information 

of the original image and the information intended to be emb dded. In SC channel. a 

content-ba ed watermarking scheme is used to embed the reference information which 

can be calculated from the extracted feature points of the original image. The scaling 

factor and the rotation angle of the image can be estimated and corrected by comparing 

reference information of the original image and actual information of the tran formed 

image. The capability and robustness of the cheme are evaluated by asse ing the three 

building blocks of the entire scheme. Two or more patches against geometric di tortion 

among the multiple redundant embedding patches in C channel are required for 

uccessful reference information extraction. imulation results indicate that the 

embedding and e traction scheme of C channel show atisfactory performance against 

certain range of rotation and scaling di tortion . 

The econd contribution of this work is that it provide an e timate of geometric 

distortion without accessing the original image, which is not available in Masoud s 

method. It is assumed in Masoud s method that the decoder had prior information 

regarding the original image maxima namely the scale factor and the rotation angle. 

However thi i not always true since the detector is not always able to locate a specific 

image from the huge image databa e. Ma oud s method is improved in our work by 

hiding the prior information about the original image as part of the watermark into the 

image so that the prior information remains in the image regardless of distortions. 

The third contribution i that it initiate the u e of a simplified Harris-Laplace 

feature point detector instead of standard Harris feature point detector; the former wa 
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suggested according to the results of re-extraction rate a better detection technique with 

high robustness against scaling distortion by applying the scale space theory. 

Another contribution of thi work is that it adopt relative reference vertice of 

Delaunay tessellation triangles to form the elementary embedding triangles. Because the 

detector is sensitive to any change of pixels near feature points relative reference 

vertices can avoid modification of the ensitive areas and thus improve the stability of the 

detector. The u e of shrunk Oelaunay tessellation triangles is found effective in 

maintaining the redetection ratio of elementary triangles. 

Last but not the least, this work explores the possibility of replacing binary data 

with multiple bits by means of a content-ba ed watermarking scheme for expanded 

applications. ontent-based watermarking scheme is found to be a good option not only 

for copyright protection and for data hiding as well. 

5.7 Directions for Future Work 

One important finding is that the feature based embedding scheme propo ed in this ork 

while being robust against geometric distortions, exhibits a capability of more than one 

bit, suggesting that u e of the propo ed cheme can be extended to any application 

requiring short embedding information such as a serial number of fingerprint. In the 

fingerprint applications, the detector must successfully extract the embedded sequence 

numbers in order to track the user who leak the fingerprint. The scheme propo ed in thi 

work is of atisfaction at this point, implicating its use in fingerprint applications alike. 
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Moreover the ch me can be integrated into any exi ting data hiding heme for RGB 

image , ince only one channel of RGB image i needed hence impr ving their 

robu tnes again t geometric di tortion . 

A already di cu ed, limitations of the data hiding scheme include the limited 

range of distortion in \ hich accuracy of geometric di tortion estimation i guaranteed. 

Further inve tigation is required to achieve an extended distortion range and thu enhance 

the effectivenc of the g ometric di tort ion e timator. he effectivene of thee timator 

an be further enhanced by increa ing the robustnes of feature point detection which i 

p iti el corr lat d with the redetection ratio of elementary triangles. earching for 

more stable feature points and more r liable e traction algorithms under e ere geometric 

di tortion i a nece ity. More studies on scale pace theory are recommended for 

improvement of redetection ratio of feature points. 

With re pe t to the accuracy of geometric di tortion estimation po ible oar e 

estimation of caling and rotation can be minimized and even eliminat d u ing an 

e hau tive earch method i.e. a hierarchical arch u ing e timated cale fa tor and 

rotation factor to I calize the range of the earch and to refine the e timate by ear hing 

around the e value . 

Mean hile, further re earch on cnhan ing th embedding capability of the cheme 

can be carried out e.g. by introducing more pov erful error correcting code in th 

embedding and e traction cherne. Although the combination of convolutional encoding 

and oft-deci i n Viterbi de oding i the mo t commonly used error-correcting coding in 

ontent-based atermarking studies a used in thi work other technique can be 

inve tigated fi r an optimized error corre ting method. imilarly po ibilitie of u ing 

other noise rerno al filter than the Wien r filter can be e plored. 
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Appendix A: Testing Image Database 

Category 1: 

Lena Man 

Couple Pentagon 

Category 2: 

Baboon Boat 
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Aerial Stream and bridge 

Category 3: 

Moon surface Hare 

Car Peppers 
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Appendix B: Triangle Redetection under Geometrical distortions 

(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles {b) Rotating 2" (c)Scaling 0.9 (d) Rotating 15" (e) Scaling 0.75 

48 38 29 23 12 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2" (c)Scaling 0.9 (d) Rotating 15• (e) Scaling 0.75 

67 49 39 22 28 
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(a) Original Redetected triangles (identical to the original triangles) under di tortions 

Triangles (b) Rotating 2• (c)Scaling 0.9 (d) Rotating 15· (e) Scaling 0.75 

74 49 43 21 18 
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(a) Original Redetected triangle (identical to the original triangle ) under di tort ions 

Triangles (b) Rotating 2• (c) Scaling 0.9 (d) Rotating 15· (e) Scaling 0.75 

73 40 37 19 14 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2• (c) Scaling 0.9 (d) Rotating 15" (e) Scaling 0.75 

56 34 27 18 II 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

riangles (b) Rotating 2• (c)Scaling 0.9 (d) Rotating 15" (e) Scaling 0.75 

70 41 36 13 8 
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(a) Original Rcdetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2• (c)Scaling 0.9 (d) Rotating ts• (e) Scaling 0.75 

74 45 38 17 13 
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(a) Original Redetected triangles {identical to the original triangle ) under di tortions 

Triangles {b) Rotating 2• (c)Scaling 0.9 (d) Rotating 15· (e) Scaling 0.75 

79 48 36 16 10 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2• (c)Scaling 0.9 (d) Rotating 15· (e) Scaling 0.75 

47 29 22 12 7 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2' (c)Scaling 0.9 (d) Rotating 15' (ef Scaling 0.75 

51 30 24 16 9 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2• (c)Scaling 0.9 (d) Rotating 15• (c) Scaling 0.75 

72 39 27 18 8 
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(a) Original Redetected triangles (identical to the original triangles) under distortions 

Triangles (b) Rotating 2" (c)Scaling 0.9 (d) Rotating I 5" (e) Scaling 0.75 

44 23 20 18 7 
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Appendix C: Modification of Delaunay Triangle 

Embeded Watermark Embeded Watennark 

Original Image Watennarked Image Watermarked Image 

Triangles of Orignal Image Triangles of Watennarked Image Triangles of Watennarked Image 

(a) (b) (c) 

Modification of the Delaunay triangle :(a) extract triangle from original image (b) re-extract 

triangle from watermarked image (embedding with modified Delaunay triangles) (c) re-extract 

triangle from watermarked image (embedding with no-modified Delaunay triangle ) 
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.------------------------------------------------

Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

·-,· 

·~ ~-... 

\~ lfo 
>·· .. , ··~'' -
·~.<..~ ... .MA 

.· ~'~ :'t 
~ ; . . . 
W' ' .... _ lo' 

.... 'i.._"!:···'" , .. .,.. . 
.-~.---' --~\ 

Triangles of Orignal Image Triangles of Watermarked Image Triangles of Watermarked Image 

(a) (b) (c) 

Modification of the Delaunay t r iangles: (a) extract triangle from original image (b) rc-extract 

triangle from watermarked image (embedding with modified Delaunay triangles) (c) rc-extract 

lriangle from watermarked image (embedding with no-modified Delaunay triangles) 
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.-------------------------------------------------- ---- ---

Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(a) (b) (c) 

Modification of tbe Delaunay triangle :(a) extract triangle from original image (b) re-extract 

triangle from watermarked image (embedding with modified Delaunay triangles) (c) re--extract 

triangle from watermarked image (embedding with no-modified Delaunay triangles) 
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Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles of Watermarked Image Triangles of Watermarked Image 

(a) (b) (c) 

Modification of the Delaunay triangles: (a) extract triangle from original image (b) re-extract triangle from 

watermarked image (embedding wilh modified Delaunay triangles) (c) re-extract triangle from watermarked 

image (embedding with no-modified Delaunay triangles) 
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Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(a) (b) (c) 

Modification of the Delaunay triangles: (a) extract triangle from original image (b) re-e ·tract triangle from 

' atermarked image (embedding" ith modified Dclaunay triangles) (c) re-extract triangle from watermarked 

image (embedding with no-modified Delaunay triangles) 
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Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(a) (b) (c) 

Modification of the Delaunay triangle : a) e tract triangle from original image b) re-e tract triangle from 

-. atennarked image (embedding\ ith m dified Delaunay triangles) (c) re-e tract triangle fr m watennarked 

image (embedding with no-m dified elaunay triangl ) 
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Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(a) (b) (c) 

Modification of the Delaunay triangle : (a) extract triangle from original image (b) re-e tra t triangle from 

watermarked image (embedding with modified Oelaunay triangle) (c) re-extract triangle from watermarked 

image (embedding with no-modified Delaunay triangles) 
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Original Image 
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Embeded Watermark 

Watermarked Image 
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Embeded Watermark 

Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(b) (c) 

Modification of the Delaunay triangle :(a) e tract triangle from original image {b) rc-cxtract triangle from 

watermarked image (embedding with modified Delaunay triangles) (c) re-e tract triangle from watermarked 

image (embedding with no-modified Delaunay triangles) 

135 



Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(a) (b) (c) 

Modification of tbe Delaunay triangles: (a) extract triangle from original image (b) re-extract triangle from 

watermarked image (embedding>; ith modified Delaunay triangles) (c) re-extract triangle from watermarked 

image (embedding with no-modified Dclaunay triangl ) 
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Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 

(a) (b) (c) 

Modification of the Oelaunay triangles: (a) e tra t triangle from original image (b) r~extract triangle from 

watermarked image (embedding with modified Delaunay triangles) (c) re-e. tract triangle from watermarked 

image (embedding with no-m dified Delaunay triangles) 
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Embeded Watermark Embeded Watermark 

Original Image Watermarked Image Watermarked Image 

Triangles ofWatermarked Image Triangles ofWatermarked Image 
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Modification of the Delaunay triangles: (a) extract triangle from original image (b) re-extracltrianglc from 

watermarked image (embedding' ith modified Delaunay triangles) (c) re-extracltriangle from watermarked 

image (embedding with no-modified Delaunay triangles) 
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Triangles ofWatermarked Image Triangles ofWatermarked Image 
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Modification of the Delaunay triangle : (a) extract triangle from original image (b) re-extra t triangle from 

watermarked image (embedding with modified Delaunay triangles) (c) re-e tract triangle from watermarked 

image (embedding with no-modified Delaunay triangles) 
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