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Abstract

The propensity of utilizing Euclidean distance metrics when calculatin spatial
statistics generally ignores the underlying connectivity between the features under
analysis. A procedure is developed to compensate for the distance discrepancies iherent
in spatial statistics algorithms by tempor ly transforming the model features into an
alternate distance metric space that more realistically represents the functional
connectivity distance between spatial elements.

Comparative statistical analysis results between the adjusted and un-adjusted
spatial arrangements suggest that statistical measures that are strictly distance based can
display dramatic differences in e m itude of these results. Global autocorrelation
measures display much less variation while local autocorrelation measures can result in

regions of expanded spatial clustering.
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1. Introduction
1.1 Introduction

Tobler (2001, para.l) asserts, “The earth is shrivelling as it shrinks”,
encapsulating the idea that “in contemplating relations between places on the earth ... it
1s often not the geodetic distance that is most important but rather the time or cost which
must be overcome. Some places are now closer but others are relatively further away”.
Massey (1991, p. 24) notes a similar me-space compression” and the “‘spatial
disruption” that globalization has on the local sense of place. These observations suggest
that the concept of human occupied space is amorphous and influenced by available
transportation options.

Physical interaction between communities is reflected in the transportation
linkages between them. Settlement implicitly suggests a semi-permanent location in
which infrastructure develops to facilitate efficacy and convenience, which in turn
encourages continued social and economic expansion opportunities. Connectivity within
and between communities is fashioned by transportation infrastructure whose forms
reflect their historical development context. At sufficient scale, these connective
frameworks exhibit topological and network characteristics. Planned commun es
typically display regular geometric forms while unrestricted development trends towards
more composite forms, particularly in areas with complex geomorphology. In older
communities, original footpaths or desire lines (Bachelard, 1969) often determine
subsequent street configurations. The morphology of the resulting connectivity
framework between communities affects the logistics of physical human interaction

between them. Radical shifts in prevailing transportation technology can render
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traditional pathways obsolete while imposing new ones. Interconnectivity frameworks
between communities can play an influential role in social, political, and economic

relationships.

The implementation of regional socio-economic policy is often a nebulous
process driven by competing economic, social, and political factors operating largely
outside quantitative decision frameworks. Recently however “governments are
increasingly being called upon to be 1 ire accountable for results” (Sivagnanasothy,
2010). Such developments have given rise to the concept of evidence informed
management decision processes that go beyond the mere tallies of inputs, activities, and
outputs towards measures of outcomes and impacts (ibid). These processes can change
the internal culture of policy decision-making agencies by imposing transparency and
accountability obligations. Thus, quantitative methods are increasingly used to justify
policy decisions

Spatial analysis is becoming pervasive as a suite of powerful analytical techniques
that offer quantifiable support for dec  on makers. During its development, spatial
analysis has addressed several complex issues (such as spatial autocorrelation) that
emerge during model abstraction processes. Spatial statistics have their origins in the
application of traditional statistical techniques to the attributes of spatially distributed
phenomenon. One concern of this approach is based on the idea that spatial statistics
contravene geography’s only tenet; that of Tobler’s ‘first law of geography’, in which
nearer objects tend to be more similar than those further away (Tobler, 1970).

Mainstream statistical theory is fundamer ‘ly1 ed on the assumption of complete
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e Determination of alternate (vector equivalent) coordinates (from each point of
origin) to ear  of the other points based on travel distance along an existing
transportation network.

e Application of a unique polynomial transformation (rubber-sheeting) to the

Cartesian grid and polygon base map to visualize the associated relative
displacement effects of the transformation

The second phase of t| research examines the effects of this transformation
methodology on a selection of spatial statistics within two broad categories:

e Proximal distance based measures; and

e Spatial autocorrelation measures that examine attribute (non-spatial)
numerical characteristics associated with point locations.

In short, selected spatial statistics :ults are compared under two spatial metrics to

highlight the effects that an alternate road distance metric have on these measi :s.

1.3 Thesis organization

This research paper is divided into ur sections. The following section be; 1s with an
acknowledgement of methodological issues of applying classical statistical theory to
spatial differentiation. A case is subsequently put forth by way of literature re* w to
support the rationale of utilizing an alternate distance metric as a means of mitigating the
effects of ignoring spatial context within spatial statistic analyses.

The methodology section develops a procedural technique to compensate for the
additional (but often unacknowledged) distance inherent in road network vs. straight-line
distance. The proposed technique tt  porarily transforms a set of points to reflect the
actual magnitude of the road distance between points rather than the straight-line distance

between them.
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The results and discussion section contrasts the results of selected spatial statistics
utilizing a normal arrangement of points with the distance compensated spatial
arrangement. A simple comparison between rest s obtained using the two distance
metrics is intended to highlight the differing conclusions that may be drawn by
considering a compensated distance metric.

The conclusion reiterates the sug :stion that location based analyses shoul consider
pragmatic distances between point features and not merely the minimum spati ~ distance
between them. Available transportation options largely determine the physical interaction
between communities. Consideration of physical connectivity can enhance the reliability

of spatial modeling.
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2. Literature review
2.1 Introduction

Recent attempts towards the bridging of cultural and physical geography represent
a return to geography’s more holistic roots. In antiquity, geography was an all-
encompassing endeavour, literally “to describe or write about the earth”, via ¢ tography,
philosophy, mathematics, and literature. The academic discipline specialization that
following the scientific revolution (i.e., physical sciences, biological sciences, social
sciences, and humanities), avoided the study of reality in its totality, thus orpt iing
geography precisely because of its broad focus. Geography has survived asa« ¢ line
by bridging the human and physical sciences largely by reclaiming “location™ as a
centrally defining concept.

As a multi-disciplinary field, geography has often applied techniques developed
in other areas to spatially distributed | enomena. Individuals such as Von Thiinen sought
generalized (nomothetic) econometric insights into specific (ideographic) phenomenon
by way of idealized distance decay models. While such idealized models suffer from self-
imposed restrictions, location and dis ice were reinforced as major determining factors
in spatial interaction.

Geography’s quantitative response to criticisms of its research validity during the
1950s resulted in a new paradigm, heavily dependant on analytical methods of classical
statistical theory. This reinvigorated legitimacy revalidated distance and proximity as a
primary means of differentiating spatially distributed phenomena. Attempts at
implementing aspatial techniques from other fields encountered difficulties when

geography’s spatial aspect was introduced into the adopted techniques. Such is the case
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concept of naive geography (Egenhofer & Mark, 1995) where more human-based

techniques are under development to facilitate more ‘natural’ information transferral.
It is in the scientific realm where the concept of distance expands into 1ulti-

dimensional domains and where it is subject to definitions that are more rigorous.

Mathematically, a distance function (metric) defines the distance between ele ents of a

set, which defines the metric space. Space is simply a “set” that contains elements
(points). A metric space requires a “metric” to numerically quantify two points in the
space and map them to a number. A distance metric is required and defined in such a way
that the shortest distance between any two points is a straight line and must obey three

mathematical properties (Table 1).

Table 1: Mathematical conditions required for distance metrics.

Function Property Explanation
d(a,b)>=0 Non-negativity | Distance is always pos_itlve Or Z€ro.
d(a,b)y=d(b,a) Symmetry The distance between a and b is the same in
either direction.
d(a,b)+d(b,c)>=d(a,c) Triangle The shortest distance between two points is a
inecmality straight line.

Distance calculations within a omogeneous Euclidean metric are easily
determined by Pythagorean methods but when the analysis space becomes non-Euclidean
such as hyperbolic, elliptical, or otherwise non-planar, Euclid’s parallel postulate must be
modified, resulting in what is referred to as absolute or neutral ge«  :try. Such non-
Euclidean relationships allow for topological associations that facilitate alternate linkages

between objects within the topological space. See Figure 2.
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Ignoring the contextual determinants that establish topological relationships, spatial
statistics essentially discounts the actual distance metric by substituting the minimum
Euclidean (as the crow flies) distances between point features. It is more realistic to study
spatial statistics at the human scale within a network rather than a Cartesian framework.
Consequently, this paper proposes to evaluate the concept of transforming the underlying
metric space between point features (on a non-regular transportation matrix) to
compensate for the effects that actual travel distance have on measures of spa 1l

dependency.

2.4 Alternative distances

Shu et al. (2001) contend, “In geographic space, it is well known that spatial
behaviors of humans are directly driven by their spatial cognition, rather than by the
physical or geometrical reality”. Furthermore, “In the past work, the physical or
Euclidean distances are used very often. In practice, many inconsistencies are und
between the cognitive distance and the physical distance”. Cognitive distance is the
perceptually estimated distance betw 1 two locations. Individual experience shapes
cognitive distance estimations so that “physical distance is mostly overestimated or
underestimated in the process of human atial cognition and spatial behaviors” (Qi et al.,
2006, p. 408). An intuitive response to this discrepancy is to use travel time as a surrogate
measure for travel distance. People ofter :ply in time units in response to questions of
travel distance.

On a more philosophical level, the seminal work ‘The Production of Space”
(Lefebvre, 1974) has influenced current urban studies into ‘socially produced spaces’, as

opposed to natural or absolute space. Lefebvre’s contention that space is a social
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construction based on values and social production of meanings and thus affecting spatial
practices and perceptions has provided researchers such as Harvey (1990) and Low
(2006) a means of conceptualizing space and distance outside the norms of quantifiable
space. Advances in communication and transportation technologies are changing modern
concepts of distance, space, and time (Massey, op. cit.), a development that lends itself to
analysis by network-topology methodologies rather than geometries of absolute locations.

Interactive events typically start with a conscious determination of a de nation
from an implicit origin. Familiarity with the regional context determines the degree of
conscious route planning involved. A routine journey, such as a daily commute, requires
less planning than travelling to an un niliar destination. Once established, the network
rules and connectivity will determine the particulars of the route traversed. Perception of
the planned route at an overview scale is linear, but at local human scales, the network
details introduce changes in course direction while simultaneously accumulating distance.
This exemplifies the issue at hand. Analysis techniques that ignore the functional extra
distance between origin and destination events will overstate the degree of association
between them by assuming the points are nearer than they functionally are, introducing
erroneous topology, as well as confounding aspects of proximity and adjacency.
Essentially, the orthogonal Cartesian metric does not reflect the reality of the true travel
distance and network connectivity between locations.

A conceptual model is essential to visualize and manipulate the approac to this
research topic. Physically analogous models can help to visualize the dynamics of a
changing distance metric. The basic components of the proposed model are a set of

spatially arranged point features, a connective network, and a terrain surface wherein
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space. To an orbiting external onlooker however, the individual is observed on a
spherical surface traveling in an arc. These two viewpoints are considered intrinsic and
extrinsic respectively. In addition to a manifold’s intrinsic geometry, they al¢ have a
geometry inside other spaces, an extrinsic geometry, that depends on how they are
mapped into another space. This premise will form the basis of the transformation
technique developed in the following section.

Conceptually, this model is suitable for comparing spatial relationships between
two different distance metrics. Theoretically, any point on the left hand torus in Figure 4
can be mapped by way of a function to an equivalent corresponding location on the right
hand torus (i.e. they are topologically equivalent) but the transformation would require
unique transformation parameters for each point. Unfortunately, the complexity involved
in the differential calculus necessary for su  a continuous transformation precludes the
utility of this approach. DeCarlo (1998) determined that approximately seventy shape
parameters are required to describe a piecemeal torus to mug transformation. However, a

similar approach using a two-dimension reference grid can greatly simplify = process.

™
-C-8
\.,,/’/ \

Figure 4: Topologically equivalent torus manifolds (Source: Lee, p. 5).

Caveat lector - a coordinate t  sformation is a conversion from one system to

another fo describe the same space. The technique proposed for this research is to

transform to an alternate metric space to facilitate a (geostatistical) calculation and then
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return to the original (metric) space. The topological ‘space’ remains the same but the
change in the distance metric results in an alternate spatial arrangement of the features
(similar to deflating a beach ball). Notwithstanding this ‘same space’ criterion, the
following will utilize the alternate space merely as a surrogate for (geostatistical)

calculation purposes.

Standard linear transformation techniques that employ coordinate shift, scaling,
rotation, or skew are ill suited to situations where the transformation varies along the
vector for each set of points on the surface (Figure 5). Similarly, a first order affine
transformation, (which scales differently along different orthogonal axes) is inadequate,
because the displacement is of constant distance and direction. Higher order polynomial
transformations (warps or u-order transformations), will vary to the degree of 1e number
of points under consideration resulting in complex surfaces. Proper transformation
techniques require that the differences bi  veen the coordinate systems be mathematically
systematic. ‘Rubber-sheeting’ is a suitable n-order transformation technique for current
purposes due to its local, rather than y )bal manifold transformation properties. “Rubber-
sheeting is a procedure for adjusting the coordinates of all the data points in a dataset to
allow a more accurate match between known locations and a few data points within the
dataset. Rubber-sheeting preserves the interconnectivity between points and objects
through stretching, shrinking, or reorienting their interconnecting lines” (de Smith et al.,

2008: p. 18).
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The plausibility of using a spatial weights matrix (W) to address this issue is
intuitive but was determined to be of limited utility. The focus of the spatial weights
matrix is adjacency : d relative proximity between point or polygon features, determined
by the linear Euclidean distances between points (or centroids) (de Smith et al., 2008).
Such a matrix could compensate for distance discrepancies if distance is the only
transformation variable under consideration. The counter-argument maintains that only a
subset of spatial statistics is concerned solely with distances between features. More
often, it is a particular attribute of the fe. ire set that is the subject of investig ion.
Typically, spatial weights matrices adjust the relative weight of a particular feature
attribute and not the spatial metric between features.

Distance between communities : rarely a matter of “as the crow flies”. Even in the
regular urban grid environment, methods such as rectilinear or Manhattan geometry are
often employed to more accurately simulate real-world conditions. In this vein, the
following analysis will endeavour to more realistically simulate the reality of

transportation connectivity betweeni :gularly distributed rural communities.

2.7 Spatial statistics

Many spatial statistics are global : nature meaning that the resulting indices are
relevant to the entire selection of the spatial elements under examination. The more
fundamental spatial « istic indices such as standard distance, average nearest
neighbour, and (global) spatial autocorrelation indices are essentially determined by
geometrically derived methods, wholly ¢ ermined by the distance metric of the spatial
model. More complex statistical measures such as Local Indicators of Spatial

Autocorrelation [LISA], (Anselin, 1995) and Geographically Weighted Regression
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(GWR), (Fotheringham et al., 2002), conduct systematic localized examination across the
analysis space and are thus intuitively more suited to real world contexts where discrete
features are unique with respect to their relationship to their neighbours. The following
sections will use this categorical distinction between global and local statistics to examine

the relative effects of alternate distance metrics on both.

2.7.1 Fundamental global statistics indices

Spatial analysis of the distribution of point features must address methodc gical
issues that arise due to the spatial dimension of their location. Often there are unobserved
(or unacknowledged) environmental factors, both discrete and ubiquitous, that play
determining roles in the relationship between spatial features. Point Pattern Analysis is a
suite of investigative methodologies used to uncover underlying patterns within an
analysis region. Generally, these patterns are determined by whether or not they vary
from an assumed random spatial distt ation. Spatial indices such as standard distance
provide measures for the aggregate (; Hbal) dataset. Such measures reinforce e

assumption of uniformity within the analysis area.

2.7.1.1 Standard distance

Bachi (1963) characterizes standard distance as “a simple, intuitive measure of
the dispersion ... obtained by averaging all distances between all possible pairs of cases”

(p. 86). Standard distance measures the degree to which features are concentrated or

Vf'( 2
. . standard distance < 4— .
dispersed around the points by way of: n where d is the

distance to a given point (coordinates x, y) from the mean centre (X, ¥ ) and # is the total

number of points. The standard distance can also consider a weighting attribute such as
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population that will result in a population-weighted distance. Thus, alternate distance
metric should produce considerably different results particularly in weighted cases due to

the increased leveraging effect of the weighting value.

2.7.1.2 Average nearest neighbour

The theoretical basis of the average nearest neighbour statistic is much  ore than
the averaging of nearest neighbour distances as its label implies. It is actually, “a measure
of the manner and degree to which the distribution of individuals in a population on a
given area departs from that of a random distribution” (Clark & Evans, 1954, p. 445).
The average nearest neighbour statistic calculates a nearest neighbour index based on the
average distance from each feature to its nearest neighbouring feature:

N Min(d,
d(NN) = Z[#] where ! n(d;)) is the distance between each point and its nearest
i=1

neighbour, and N is the number of points in the distribution. The process is s¢ :itive to
area manipulation and boundary effects as acknowledged by Clark and Ev s (1954) and

reiterated by Pinder et al. (1979 p. 430-31).

2.7.2 Spatial autocorrelation indices

Spatial autocorrelation aro 1 the concept of temporal autocorrela n where
time series data are not independent of their own historical values. Spatial autocorrelation
extends the concept from the temporal to the spatial dimension.

The origins of spatial autocorrelation analysis were global in nature but recent
trends are towards localized examination of spatial dependency that tacitly acknowledges
Tobler’s law regarding spatial association and focuses on the unique local nature of

spatial relationships. Thus, spatial autocorrelation is relevant to both global and local
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complicating travel factors combine to extend the functional association distance between
communities.

The seminal work of Cliff and Ord (1973; 1981) extended the work of Geary (1954),
Moran (1950), and others by providing a means of testing for departure from random

spatial pattern in attr ute values (Getis, 1995, p. 247).

2.7.2.1 Various measures of spatial autocorrelation
Getis (2007) lists the following techniques for measuring spatial autocorrelation:
e Moran’s / (a global covariance representation)
e Geary’s ¢ (a global differences representation)
e R (across product representation)
e QGetis and Ord’s G (a global mult licative representation)
e Ripley’s K (a cumulative pairs over distance representation)
e pA (autoregressive coefficients in various regression representations)
e Getis and Ord’s G; and G*; (local cluster representations)
e Anselin’s /; and ¢; (local indicators of spatial association (LISA) statistics)

e Ord and Getis’s O (a local representation taking into account global
autocorrelation)

e 1/A (the inverse of the semivariogram; i.e., the correlogram
(adapted from Getis, 2007, p. 494)

Such a listing suggests the extensive research interest that conducted on this topic and
the potential importance it is anticipated to have for the future of spatial analysis within
geography.

The prevalence of the global vs. local distinction is important. Within geostatistical

parlance, global measures calculate 2 distance pairings simultaneously while )cal
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measures calculate distance pairings within a finite distance constraint. Getis and Ord
(1996, p.262) caution that utilizing global (geostatistical) measures over large areas
“contributes little meaning in such situations” while “any global statistic measure at a
large scale of analysis provides little useful information” (ibid., p. 261-262). Local
measures however, determine dependence in localized areas of the study area, typically
up to predetermined distance from each feature. The focus of the current analysis on
distance will examine whether the ef :ts are similar for each category (global : d local)

given the fundamental role distance ] . on autocorrelation statistics.
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3. Methodology

3.1 The effects of alternate distance metrics on spatial statistics
measures

The following will develop and utilize a non-linear transformation technique to
facilitate a more realistic determination of functional distances between network point
features. The process develops a temporary alternative spatial distance metric 1at will
allow spatial statistics to more pragmatically consider the associations between spatially
distributed features. Euclidean proximity is adjusted to compensate for actu: travel
distance between communities resuli g in a truer representation of neighbours within a |
connective network while avoiding potential topological errors from consideration in

spatial statistic calculations.

3.2 Spatial context of the analysis area

The island of Newfoundland is the easternmost part of North America. It currently
has some 750 identifiable communities. Most are adjacent to the ruy :d coastline and
connected by some 7000 kilometres ¢ road transportation infrastructure (Figi : 7). The
community distribution, clearly influenced by access to the shoreline, reflects the

historical development prior to the construction of * road system.
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road building projects that followed confederation with Canada was a concerted effort at
modernization by facilitating the establishment of regional growth centres and
discouraging the administrative challenges of servicing hundreds of scattered coastal
settlements.

The present configuration of the road network, largely determined by the location
of the pre-existing settlements, reflects the ubiquitous reliance on access to marine
resources. Consequently, the irregular coastline contains numerous incidences where two
settlements are separated by a short distance across a body of water, but which require a
much longer distance to realize by road travel. The spatial relationship betwe: such
communities can be misrepresent¢ in Euclidean models due to unacknowledged
topographical and hydrological barriers. An additional source of distance error is the
disregard of additional vertical travel distance imposed by often-rugged terrai  In Figure
8 the distance between communities A a | B is a planimetric Euclidean distance of
approximately two kilometres via the 1000 meter grid but the road network travel
distance is approximately ten kilometres and likely more if elevation distance is
considered. Road network connectivity between A and B can only be realized via the
intermediate community C. Communities A and B are not topolc cally adjacent

neighbours within a road network context.
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monotonic given the intervening metric space is isotropic. When the spatial metric
becomes non-isotropic (as is proposed here), non-monotonic circumstances v | arise
with respect to the original Euclidean arrangement but which will remain monotonic in
the alternate transformation. From a Euclidean perspective B is between A and C in
Figure 8. After the proposed transformation however, C will be between A and B, being
restricted to the imposed road network. While both remain monotonic within their
perspective metrics, each appears non-monotonic to the other. This is a transitory issue
because the transformation is reverse after analysis calculations are conducted.

Figure 9 highlights the discrepancy between the two distance measures of
Euclidean and vector equivalent under consideration. The local area of Figure 8 is
expanded to a regional context to illustrate ¢ increase in the Euclidean distance vectors
from this area to all other insular comm  ties. Figure 9b illustrates the vector equivalent
of Figure 9a compensated for actual road distance.

The summary statistics show near twofold increase in distance measures
suggesting that the choice of metric will have similar considerable effect ono zr

distance related statistics.
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Total vector length: 79,095 km. Total vector length: 139,550 k.

Mean: 233 km. Mean: 412 km.

Standard Deviation: 14 km. Standard Deviation.: 27 kn.

Figure 9a: Sample community Euclidean distance vectors Figure 9b: Sampte community displacement vectors
(Cartesian grid metric). equivalent (road distance metric).

Figure 9: Sample radial vector adjustment.

3.3 Procedure

The basis of this analysis is the transformation of a set of feature points within a
Euclidean metric to an alternate, spatially adjusted metric that is determined by the actual
travel distances between points. The process requires two versions of a point feature
dataset (Figure 9), one in a standard Euclidean metric (Figure 9a) and a second
transformed metric to straighten the connecting paths into an equivalent vectc (Figure
9b). Spatial adjustments must be calculated separately for each point serving as the origin
because each point is unique in the configuration of its distance relationship to all other
points.

The initial task is to create a network dataset incorporating the point fe: ires with a
topological road network. A network origin-to-destination model produces a 1e feature

layer that calculates e travel distance between all point sets on the road network. Note
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that the graphical display of the results (Figure 9b) is a straight-line representation of the
travel distance and not the actual network path between the points. The calculated travel
distance value is stored in the feature attribute table; a favourable result because the
geometry of the graphical representation is essentially the equivalent linear (Euclidean)
distance between points that, when transformed, will n " e the distances between features
equivalent to the network distance between them.

GIS maintains feature attribute information in tabular form. In additic to non-
spatial information, this table can cor in relevant spatial information as well. By editing
the original point features attribute table, it is a relatively simple matter to determine the

alternate point coordinates via simple Pythagorean and trigonometric methods.

Extra distance
(a~b) — (a-b) added

Network 1 to (a-b).
(a~b). c
'. 9 ;)
_____ o7 4y
,/’ ~ e
V )’
/ d
/ 7
N/ b -
Y \ - Extended distance
( .
: \./ (x.y) (b-c).
\-
N \
(¢
N/
\ .
J' Euclidean vector
ke (a-b).
/
: a

Figure 10: Transformation geometry.

The proposed oint displacement rocedure requires that the vector (a ) between

the existing Euclidean points a and b in Figure 10 be extended along the same vector by
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the additional distance inherent via the actual road path (a~b) and repositioned at point c.
For each scenario neighbouring points are extended from each point of origin (a) to
reflect the path of the actual road distance (a~b). The position of the displaced points is
determined for each record by calculating new endpoint coordinate values in the feature
attribute table. The existing coordinates (x,y) as well as the vector displacement (a-b),
and direction (a) are geometrically deter ined for each feature in the Euclidean feature
attribute table. The origin-destination network analysis results provide the alt. 1ate
vector displacement (a~b) facilitating the calculation of the new point coordinates of the
displaced destinations (x’,y’). After the calculation, the feature attribute table contains
value fields for the original point coordinates with the original distance and bearing, as
well as the coordinates of the displaced points with the adjusted distances (a-c). Each
record now has two sets of alternate coordinates (x,y and x’,y’) which will form the basis
of a transformation matrix using the coordinates of the point features as control points.

Rubber-sheeting is an n-order transformation technique developed to merge
spatial information of inaccurate or unknown map parameters into one of known
parameters. Typical applications include the integration of maps produced under differing
standards, especially historical m: _ . of varying positional accuracy. The key to this
technique is identifying and determining the coordinates of ‘control points’ in both map
projections. The control points serve as anchors while allowing the relative metric space
between features to vary by shrinking and stretching the metric space between them
accordingly.

Rubber-sheeting requires a transformation matrix containing pairs of original and

displaced coordinates. The coordinate value pairs for the study area (previously
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calculated as indicated) is simply exported as a tab-delimited text file for use in 1e
spatial adjustment process. For each point of origin, the resulting table matrix provides
two sets of coordinates for all other points; the first in the original space and the second
for the alternate space adjusted for the road distance. Conceptually, this may be
visualized by an elastic grid or web where the intersections are stretched relative to each

other.

The transformation procedure employed the following methodology:

e A topological network matrix is constructed and utilized to calculate travel
distances between all commu ties represented as points on the matrix.

e Directions - calculated m all poin of origin to their respective destination
communities.

e Vectors - calculated from all  ints of origin to all their destinations by direction
(calculated direction) and magnitude (calculated distance).

Thus, for example the Euclidian distance for Admiral’s Beach to St. Anthony is
507 kilometres at az  ath 342 degrees. The road distance straight-line equivalent
maintains the same bearing (to maintain relative point arrangements) but substitutes the
actual road distance of 1038 kilometres, in effect doubling the actual distance that would
be normally be used in adjacency calculations.

Given that distance between point features is the primary focus, an alternate
analysis path was briefly considered in the early stages of this research, the merits of
which may be of passing interest here. While traversing a road network, direction may
seem irrelevant considering it is predetermined by the topologic properties of the network

itself. If direction is rendered immaterial, a conceptual model could be reduced to a one-
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dimensional representation along the positive number line. Figure 11 displays the concept

of transferring the magnitude of the direction vectors to the positive number line.

Figure 11: One dimensional distance transformation.

A one dimensional approach may be of limited value in visualizing distance to
weighted centres but most spatial statistics consider direction and enclosing area during

calculation, which restricts the utility of this one dimensional approach.

3.4 Transformation of the Cartesian grid

While the points representing 1€ communities have been transformed, the
underlying gec _ , hy doesnotyet 1¢ this new relationship. An accompanying
similar transformation of the underlying Cartesian grid is warranted to highlight the
degree of the transformation. The res ! in a non-linear projection producing a novel
visualization that reflects the varying effects of road network travel distance from a
particular community to all other communities. Figure 12 for example shows e
accelerating warping effect that actual road travel distance has on a Cartesian reference

grid centered on Admiral’s Beach. The warping effect is at a minimum near the origin but
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is progressively more distorted as distant accumulates due to the non-linear increase in

distance to more remote points. Figure 13 includes the underlying geography.

Figure 12: Admiral's Beach origin. Distance-compensated Cartesian grid.

Figure 13: Admiral's Beach origin. Distance-compensated grid and landmass.

Such transformation measures are of limited utility over large gec aphical areas.
Distortion effects increase as distance increases from the point of origin. As a result,
spatial analyses over large geographic areas rarely produce meaningful results. A local

spatial focus will increase the relevance of the transformation process.

3.5 Procedure classification

The proposed transformative visualization process is a synthesis of various
techniques employed to spatially adjust a relative network relationship. As such, it is

ambiguous as to how to categorize this geo-visualization process. Fundamentally, it is a
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spatial transformation from an orthogonal matrix grid (mesh) to a varying non-orthogonal
matrix. From this basis, it suggests a similar tact in recent cartogram research where mesh
transformation methods adjust the vertices of a polygon mesh while retaining relative
topological integrity of adjacent areas (Keim et al., 2005; Andrieu et al. 2007). The focus
of this paper however is on relative displacement of point features within a variable
metric space, more suggestive of a linear or distance cartogram classification than a
continuous area cartogram. Linear cartograms are pseudo-schematic with relaxed
topological characteristics. The model proposed here actually enforces topological
integrity as utilized by spatial statistics algorithms while maintaining accurate distances.
Cartograms are typically qualitative visual aids and not vehicles for quantitative analysis.
In a multi-disciplinary approach, this proposed procedure borrows concepts from
a variety of fields (mathematics, ecology, and physics) to address a geospatial issue. A
broad description such as radial adjustment of vectors in Euclidean networks succinctly
captures the procedure of compensating for alternate distances by straightening travel

distances into vector equivalents.
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4. Results and discussion

4.1 Comparative results

Section 4 compares the results of selected spatial statistics for a sampling of
communities whose spatial proximity measures have been modified to reflect avel
distances between them. Communitii  were chosen to represent features from a variety of
relative locations (cc¢ ral and peripheral) within the analysis region. The choice of spatial
statistics is somewhat arbitrary but those chosen were selected to highlight the effects on
the analysis of certain population cohorts that are often of particular concern to social
policy initiatives. Broad measures of population characteristics such as dependency ratios
are often employed in the early stages of policy development to obtain a comparative
measure of community viability from wl h to develop equitable policy strategies.

Regional policy analyses often utilize spatial frameworks imposed by a priori data
collection processes that aggregate information into convenient collection units. Such
restriction precludes any alternate dif  entiation based on the original un-aggregated
information. This much-maligned circumstance is most evident in census enumerations
where information is aggregated into seemingly random areas for confidentiality reasons.
For population researchers, this is an example of the “tyranny of an artificially imposed
and fixed set of census geographies” (Openshaw & Rao, 1995) that dilutes the quality of
the original information. Still, administrative units are considered by policy personnel to
be an equitable means of resource allocation despite the trouble they create for spatial
analysts. Nevertheless, conveniently available information is frequently used without
consideration of scale and aggregation manipulation issues such as those inherent in the

Modifiable Area Unit Problem (Openshaw, 1984). Despite the quasi-arbitrary nature
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surrounding the establishment of administrative areas, there is often an underlying
rationale influenced by factors other than efficient spatial analysis. Agencies at
establish administrative areas do so to facilitate their own internal mandate. Third party
agencies that attempt to leverage pre-existing administrative geographies often find them
ill-suited to their own particular needs. Despite any shortcomings of imposing
administrative areas within a re_ )n, they can foster the perception of a certain degree of
homogeneity within the regions and can lead to the eventual adoption of the externally
imposed defining characteristics. Communities exist within a myriad of these
administrative structures, all of which function pragmatically, if not practically for their
originally intended purposes. Unfortunately, efficacy often requires the utilization of pre-
existing administrative structures.

The subsequent examples will examine the effects of using alternate distance
metrics for communities in the Avalon] 1insula on the Island of Newfoundland. The
Avalon area is perhaps the most consistently distinct regional administrative ar¢  >f the
Province given its peninsular geography. F.  current purposes, the Avalon is considered a

discrete, self-contained administrative area. The particulars of the physical model are:

e Landmass: 9000 km®

e Coastline: 1640 km.

¢ Road network: 4800 km.

e Number of community points: 81

e 5000 metre reference grid: 21,600 km*

The following results focus on two cat  ries of spatial statistics. The first
category considers purely distance-based measures. These techniques are applied to the

spatial distribution of the community point features only. The second category is those
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measures that consider non-spatial attributes with respect to distance. The principal
attributes derive from aggregate census returns, primarily age cohorts, which are
associated with the point re; :entations of the communities. For demonstration
purposes, the selected attributes are those that are pertinent to dependency ratios (i.e.
relative youth, adult, and aged : : cohorts). While it is possible to analyse the results for
all possible community permutations, it is more effective to examine the effects of the
proposed technique by individual case. = ¢ utility of this research is anticipated to be in
determining whether policy decisions arrived at via geo-spatial analysis is equally valid
when the analysis space is adjusted for distance effects. It can aid in resource allocation
scenarios or in situations where distance decay is important. It also allows a community
specific focus for examining the relative effects of distance on community interaction and

relationships.

4.2 Overview of transforn tion results
Figure 14 displays an overview of the relative change in metric space using the

foregoing methodology. Figure 14a shows the spatial arrangement of the communities in
a normal Cartesian metric space. The transformation results (F~ ires 14b, 14c¢, and 14d)
show the relative ch  :einn : e om Cartes 1to vector road di ince for
selected communities. The communities of origin were chosen to examine the effects of
relative location within the spatial analysis area. The choices include a community near
the centre of the spatial configuration, Whitbourne, (Figure 14b), and two communities

near the extremities, Bay de Verde, (Figure 14¢) and Wabana, (Figure 14d).
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The relative degree of transformation varies considerably across the analysis space.
The central feature transformation F* ire 14b displays relatively less overall shape
distortion than the peripheral community points due to the extra distances required to
connect to all other communities. Peripheral points accumulate greater overall connection
distances due to their relative location with respect to other communities. Centralized
locations result in a radial distortion pattern while peripheral locations display more
linear distortion trends. These general observations are manifest in the distance statistics
as well.

The following baseline case (in a normal Euclidean space) and three alternate
scenarios will form the basis of a comparative spatial analysis into the effects of utilizing
the proposed alternate transformation procedure. Each of the transformations is subjected

to the noted analytical techniques followed by a general commentary of the results.

4.3 Selected spatial statistics
4.3.1 Distance only statistics
4.3.1.1 Standard distance

Figure 15 shows the relative increase in standard distance calculations for
communities that result from the transformation process. The standard distance of the
points in a normal projection space is 48.25 km., a value that increases by between 40
and 100 percent (68 t0102 km.) over = various point sets (Table 2, Appendix). 7 =se
higher distance values contain  plications for analyses that utilize the standard distance
measure. Distances are always greater in transformed metrics under the present scenarios

due to the positive cumulative distance increases introduced by the transformation.
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4.3.1.2 Average nearest neighbour

Figure 16 displays the average nearest neighbour results for the selected
transformed communities. Unsurprisingly, observed and expected mean distances
increase significantly due to the extra distances imposed between the community points.

Interestingly, the clustering significance confidence interval increases from 95%
to 99% for all the transformed results despite the fact the points are moving apart relative
to each other. The arrangement of the points in normal Euclidean space is relativi -
compact and denser at that scale. By exy 1ding the distance metric, the clustering is
accentuated as indicated by the change in z-score and the clustering significance from
<5% to <1% for all scenarios. The dynamics of this process may be conceptu: zed by
considering the points to be on an elastic surface such as a balloon. Initially the points
appear either random or clustered, but inflating (stretching) the surface can result in a
reversal of the initial observation. ...e effect is further enhanced if the deformation is not
directionally uniform as is the case under study. See Figure 17 for an example of

enhanced clustering in the alternate metric.

Results and Discussion 45







e Pam

Figure 17b: 99% probability of clustering in transformed

Figure 17a: 95% probability of clustering in normal spacc space

Figure 17: Average nearest neighbour exaggerated clustering, Placentia (common scale).

4.3.2 Distance and count statistics

Spatial analysis is more often interested in the distribution of attribute
characteristic than merely the spatial location of features. Determining patterns in the
spatial distribution of quantifiable characteristics is the principal concern of spatial
analysis. Clustering analysis is a suite of fundamental exploratory spatial data analysis
techniques that evaluate the spatial distribution of attributes and determines whether the
patterns are statistically significant from a random distribution. The primary
autocorrelation techniques examine attribute values while considering their spatial
relationships to the other features (Wulder n.d.). Since all measures use Euclidean
distances, it is reasonable to expect that all autocorrelation measures will overstate the
degree of adjacency. The remainder of section 4.3.2 will compare various autocorrelation
results for the selected communities in both Cartesian and transformed metric spaces
using 2001 census population counts as the attribute of interest. The first row of each

table shows the results of the unadjusted spatial metric.

4.3.2.1 Spatial autocorrelation (Moran’s I)

Figure 18 shows the results for the global Moran Statistic I for the 2001

population for the selected communities. As expected, there is a significant increase in
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the search threshold for the transformed arrangements. Under the normal space scenario
there is a less than 1% expectation that the distribution of the population values is due to
chance. Similar results are evident for the central location (Figure 18b Whitbourne) and
one of the peripheral communities (Figure 18d Wabana) which both show higher Moran
values and z-scores. The exception is the peripheral community of Bay de Verde (Figure
18c), which was expected to have similar values to the other peripheral community of
Wabana (Figure 18d). On reflection, the choice of inverse distance weighting in the
‘conceptualization of spatial relationship’ option may explain this result. The two
peripheral communities differ greatly with respect to their relationship to the major

population centre of St. John’s. Wabana is adjacent while Bay de Verde is furthest away.
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4.3.2.2 High/Low clustering (Getis and Ord General G)

Figure 19 show the results for the Getis and Ord General G spatial autocorrelation
statistic. Under the normal metric, (Figure 19a) the results suggest a 95% probability of
high value clustering. The probability increases to 99% for the results of the
representative central feature case (Figure 19b, Whitbourne). The two extremity cases
(Bay de Verde, Figure 19c, and Wabana, Figure 19d) offer conflicting results similar to
the Moran index. Considering both are extreme case scenarios, similar results were
expected. It is speculated that this result is due to the multiplicative nature of this statistic.
The Wabana case (Figure 19d) is near the highest concentration of larger communities
while the Bay de Verde case (Figure 19¢) is furthest from the major population centre of
St. John’s. The choice of ‘inverse distance’ as the most appropriate option for the
‘conceptualization of 1e spatial relationship’ within the GIS module leverages closer
communities while diminishing those further away. It is proposed that this resulted in the
case near the high population area (Figure 19d, Wabana) being more affected than was
the case at the most extreme distance from it (Figure 19¢c, Bay de Verde). In any event,
the results confirm that changing the distance metric between a set of points can produce

various results for the General G statistic.
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4.3.3 Distance and ratio value statistics

Policy analysis often attempts to determine whether localized areas display
significant variance for a derived attribute value. Comparative analysis requires
standardized values to counteract the effect of larger centres overwhelming smaller ones.
Comparison between populations of varying size is commonly achieved by calculating
proportional values rather than absolute counts.

Changing demographics often requires a change in focus for service delivery
depending on the demographic mix of a population. Growth in the relative youth
component of a population is a harbinger of developing educational and recreational
needs while an increasing aged popu ion may suggest a pending demand for support
structures that cater to this group. Clusters of communities that display similar pending
social needs will rank higher in the delivery of regionalized services under fiscal cost
benefit considerations.

The urban rural divide has always been a contentious issue in social pi cy. The
expectation of minimum levels of social services regardless of population density
requires a normalizing approach to compensate for population weighting effects.
Comparison of populations that differ greatly in size 1s accomplished by examining
relative proportions (or incidence) of population characteristics to highlight relevant areas
and by subsequently taking into account the absolute numbers when considering policy
implementation. Large population centres will inevitably overwhelm smaller settlements
when count data is utilized but both:  on a more equitable footing when ratio values are

used.
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Dependency ratios are useful statistics to determine the overall status of a
population. In general, it istl ratio of the dependent component of a population to the
(economic) supporting component. Closer examinations may use either the youth or aged
components as a sub grouping. . cmporal analysis of these ratios can reveal trends with
respect to anticipated change in dependent groups.

The remainder of this section will examine the dependency ratios for selected
communities within the study area. The analysis will focus on whether clustering results
are markedly changed by using the alternate distance metric procedure previously

outlined.

4.3.3.1 Cluster and outlier analysis - Anselin’s Local Moran’s I. Total d endency
ratio 2006.

Figures 20 to 22 are the rendering results' of the cluster and outlier analysis -
Local Moran’s I, (LISA) of the total dependency ratio results from the 2006 census. Each
figure displays the normal Euclidean sults on the left with a comparison to each of the

alternate community transformation result on the right.

! The following results uses a Z-Score rendering technique designed for use with Cluster and Outlier as well as ot Spot
analyscs. I'he Z renderer creates a layer file with % scores rendered in the following manner:

7. scores below =2 standard deviations are rendered dark blue.
7. scores between —2 and ~1 standard deviations are cyan.

7. scores between —1 and +1 standard deviations are neutral.
Z, scores between 1 and 2 standard deviations are orange.

7. scores above 2 standard deviations are bright red.
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Overall, the alternate metric results are indistinguishable from those calculated
under the Euclidean metric. The communities for which Local Moran’s I is signi :ant
(z>1.96) are consiste ly determined under all alternate metrics. The result is somewhat
surprising in light of the observations for the global Moran statistic that suggest
clustering is accentu: :d due to the relative expansion of the intervening metric space.
The outcome suggests that Local Moran statistic is less sensitive to changes in the

alternate metric.

4.3.3.2 Getis and Ord Gi* (Hot sp ) analysis rendering. Total dependency ratio,
2006.

Figures 23 to 25 show the results of the Getis and Ord Gi* statistic for the total
dependency ratio from the 2006 census. The Getis and Ord Gi* measure identifies
clusters of high and low values unlike the LISA statistic which does not differentiate in

this manner.
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The most noticeable difference between these two measures is the marked
increase in the extent of clustering under the Gi* statistic near the point of origin of each
transformation. Although these two statistical measures are not comparable, both :spond

similarly to changes in distance metrics.

4.3.4 Comparative results: Dependency ratios

Analysis using alternate visualizations is cumbersome and potentially confusing.
Section 4.3.4 will address this issue by avoiding the alternate metric display but
substituting the alternate values in the normal metric visualization. The result will present
an alternate version ¢ analysis res ts calculated within the alternate metric. The
examples will examine dependency ratios under the two metric spaces but will only
visualize them in normal space, essentially highlighting the differences that result from
the two metrics.

Dependency ratios are useful indices that allow comparisons of populations with
respect to the relative proportions of general age groups. Broadly, it is measure of the
relative ratio between the economica ' dependent proportions (i.e. the youth and aged)
of a population to the economically productive (working age) component. Often the
dependent  mp: 2 :«d arately when focusing on either the youth or

aged age groups.

4.3.4.1 Getis and Ord Gi* results

The following example will offer a descriptive comparison of Getis and Ord Gi*

analysis for total, youth, and aged « wdency ratios within the study area. The alternate

°

distance metric is centred on the provinci: ital ¢ |, of St. Jo' s, i.e. s e

v

adjusted using St. John's as the centi  point. The capital city location was chosen to
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examine a scenario where the major population centre served as the origin of the
transformation proce ire rather than examining a relative position within an:  work (i.e.

central, peripheral) considered previously.

4.3.4.1.1 Aged dependency ratio

Figure 26 shows the rendered results of the aged dependency ratio under the
normal metric case. A comparison with the alternative metric space values in Figure 27
show a strengthening of the significant low value clustering in the St. John’s area. Several
peripheral but marginally significant communities (those within an index values range
between 1 and 2) under the nor al metric become highly significant (greater than 2)
under the alternate metric. At the same time, several normally insignificant values (0 to 1)
near the periphery of the significant clusters (west of Wabana) become marginally
significant (1 to 2). These results suggest that the extent of the clustering increases due to

utilization of the alternate distance metric.
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5. Conclusions

Spatial statistics have enabled geographers to begin modeling the processes that

underlie spatial phenomenon. Many of the statistical techniques developed are relevant to

field phenomenon (geostatistics) or to discrete population phenomenon (point pattern
analysis) where the intervenir ~ distance metric between observations is unifo iy
isotropic. The connectivity among features is often restricted to pathways that mitigate
the effort required to traverse a given space. When the assumption of underlying
homogeneity is invalid, measures should be taken to compensate for the distance
measures used in spatial statistics analysis. The geometry of the connectivity network
often determines the distance between features, not the minimum linear distance.
Harvey Miller’s forum address to the Annals of the Association of American
Geographers (2004) notes that shortest path relations between all pairings of features in
geo-space are the minimum-cost routes for physical movement or virtual interaction

between objects. Furthermore:

In most of the geographic and related literature, nearness is typically
defined based on the straight-line segment connecting two locations, that
is, the Euclidean distance for the location pair. This is only one possibility.
There are an infinite number of shortest-path relations that obey the metric
space conditions of symmetry, non-negativity, and triangular inequality ...
If we are willing to relax these metric requirements so that only the
triangle inequality condition holds, the resulting space is a quasi-metric.
This can still support measurement and spatial analysis ...Nearness is a
central organizing principle of geo-space, but it is not required to be a
function of Euclidean, metric, or even an empty space. There is a wide
range of analytical and computational techniques for representing and
analyzing these spaces and no reason in principle why they should not be
part of a standard GIS toolkit. (I ller, 2004, para.1)

Conclusions
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The Abel Pri is the Nobel Prize equivalent for mathematics, (there being no
Nobel Prize in mathematics). Since the inaugural Abel Prize in 2003, five of the eight
laureate citations inc de reference to advances in spatial research areas, in particular,
manifolds, topology, and geometry. Mikhail Gromov was awarded the 2009 Prize for,
among other things, “the notion of distance which he has introduced in completely
surprising situations and exploited with elegance” (Hansen, 2010). Renewed
mathematical interest in distance and alternate metrics is an area that holds potential

interest for spatial sti stics as well.

The research objective was to evaluate whether the substitution of a variable road
distance metric into spatial statistics calculations would render results that are more
meaningful. The foregoing research has shown that the radial transformation of point sets
to reflect actual linear distances between features can have varying effects on spatial
statistic calculations, depending on the type of data under analysis. Spatial statistics that
are primarily distance based, such as standard distance and average nearest neighbour,
show greater impacts due to the proposed transformation technique than other statistical
subgroups such as the various global spatial autocorrelation measures, primarily due to
the normalizing tendency of the latter. Certain autocorrelation measure such as Getis and
Ord Gi* were shown to enhance the extent and significance of spatial clustering.

The foregoing has noted a lacuna of investigation into the analysis of alternate
distance metrics within the field of ‘ography and has outlined a pragmatic procedure to
compensate for alternate distances when calculating spatial statistics. The procedure

utilizes a variable distance metric that enforces the utilization of network distance
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measures as well as precludes the consideration of topological inconsistencies that result
from conducting spatial analyses without regard for underlying topological determinants.

While the initial heuristic intent was an interim transformation to calculate certain
distance-dependent spatial statistics, visual aspects of the resulting transformations may
also offer insight into perception of travel distance. The approach may also hold potential
for other alternate distance metrics such as interactive social distance where physical

proximity may be irrelevant.
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