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Abstract 

The propensity of utilizing Euclidean distance metrics when calculating spatial 

statistics generally ignores the underlying connectivity between the features under 

analysis. A procedure is developed to compensate for the distance discrepancies inherent 

in spatial statistics algorithms by temporarily transforming the model features into an 

alternate distance metric space that more realistically represents the functional 

connectivity distance between spatial elements. 

Comparative statistical analysis results between the adjusted and un-adjusted 

spatial arrangements suggest that statistical measures that are strictly distance based can 

display dramatic differences in the magnitude of these results. Global autocorrelation 

measures display much less variation while local autocorrelation measures can result in 

regions of expanded spatial clustering. 
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1. Introduction 

1.1 Introduction 

Tobler (2001, para.1) asserts, "The earth is shrivelling as it shrinks", 

encapsulating the idea that " in contemplating relations between places on the earth . .. it 

is often not the geodetic distance that is most important but rather the time or cost which 

must be overcome. Some places are now closer but others are relatively further away". 

Massey (1991, p. 24) notes a similar "time-space compression" and the "spatial 

disruption" that globalization has on the local sense of place. These observations suggest 

that the concept of human occupied space is amorphous and influenced by available 

transportation options. 

Physical interaction between communities is reflected in the transportation 

linkages between them. Settlement implicitly suggests a semi-permanent location in 

which infrastructure develops to facilitate efficacy and convenience, which in tum 

encourages continued social and economic expansion opportunities. Connectivity within 

and between communities is fashioned by transportation infrastructure whose forms 

reflect their historical development context. At sufficient scale, these connective 

frameworks exhibit topological and network characteristics. Planned communities 

typically display regular geometric forms while unrestricted development trends towards 

more composite forms, particularly in areas with complex geomorphology. In older 

communities, original footpaths or desire lines (Bachelard, 1969) often determine 

subsequent street configurations. The morphology of the resulting connectivity 

framework between communities affects the logistics of physical human interaction 

between them. Radical shifts in prevailing transportation technology can render 
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traditional pathways obsolete while imposing new ones. Interconnectivity frameworks 

between communities can play an influential role in social, political, and economic 

relationships. 

The implementation of regional socio-economic policy is often a nebulous 

process driven by competing economic, social, and political factors operating largely 

outside quantitative decision frameworks. Recently however "governments are 

increasingly being called upon to be more accountable for results" (Sivagnanasothy, 

201 0). Such developments have given rise to the concept of evidence informed 

management decision processes that go beyond the mere tallies of inputs, activities, and 

outputs towards measures of outcomes and impacts (ibid). These processes can change 

the internal culture of policy decision-making agencies by imposing transparency and 

accountability obligations. Thus, quantitative methods are increasingly used to justify 

policy decisions 

Spatial analysis is becoming pervasive as a suite of powerful analytical techniques 

that offer quantifiable support for decision makers. During its development, spatial 

analysis has addressed several complex issues (such as spatial autocorrelation) that 

emerge during model abstraction processes. Spatial statistics have their origins in the 

application of traditional statistical techniques to the attributes of spatially distributed 

phenomenon. One concern of this approach is based on the idea that spatial statistics 

contravene geography' s only tenet; that of Tobler's ' first law of geography', in which 

nearer objects tend to be more similar than those further away (Tobler, 1970). 

Mainstream statistical theory is fundamentally based on the assumption of complete 
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spatial randomness. Despite being initially restricted by non-random aspects of spatially 

distributed phenomenon, spatial statistics has endeavoured to develop techniques such as 

geographically weighted regression (Fotheringham et al., 2002) that are compliant with 

classical statistical theory; a basis that has proven to be essential for academic 

respectability. The casual adoption of techniques from other research areas such as 

geostatistical kriging (Matheron, 1965) cannot simply be applied to social issues without 

a considered evaluation of the assumptions inherent in the physical model. Model 

parameterizations often do not transfer well from physical to social models. 

The following research addresses a minutia common in the implementation of 

spatial statistics ... that of using straight-line distance between discrete spatial features 

rather than a more realistic connectivity route distance between those features. Pidwirny 

(2006) contends that "geographers generally conceptualize two types of space: (1 ) 

concrete space represents the real world or environment, and (2) abstract space models 

reality in a way that distils much of the spatial information contained in the real world" . 

The latter abstraction process, while often necessary, can also eliminate critically 

detrimental components of the environment. 

Figure 1 highlights the abstraction between concrete (hidden metric) space and 

the topological representation (observable network topology) typically used by spatial 

statistics. Terrain is rendered isotropic and actual physical connectivity is ignored. Undue 

attention to the spatial location ofthe features themselves, while ignoring their spatial 

context, contributes to an over-simplification of the spatial model. The rationale of 

substituting a Pythagorean distance as a proxy for actual network connection distance is 

valid only when the path represents the actual physical connectivity. Such circumstances 
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arise when techniques are adopted without a thorough evaluation of the empirical 

implications. This particular issue stems from the origins of distance calculations in raster 

data sets. Early work in interpolation was concerned with developing methods to impute 

field values from (random) samples. The resulting techniques are routinely applied to 

population (not sample) data sets in vector environments. 

Observable network topology 

Figure 1: Hidden metric spaces influence the structure and function of complex networks (Source: 
Boguna et al.) 

It is thus proposed that a relative spatial adjustment of the intervening distance 

metrics between features should more accurately reflect the true spatial nature between 

them. 

1.2 The objective 

The primary objective is to evaluate whether selected spatial statistic measures 

derived using suitable alternate distance metrics, will result in more intuitive outcomes 
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for community spatial model relationships when they are based on road network 

connectivity. Non-intuitive results can lead stakeholders to question the merits of spatial 

analysis due to logical inconsistencies brought about by using unsuitable distance 

metrics. Mitigating this issue would encourage the increased utilization of spatial 

statistics within network models. 

This research examines the effects of utilizing alternate distance metrics on selected 

spatial statistics by proposing a method to transform spatial point feature within a 

Euclidean space into an adjusted spatial metric that compensates for the unacknowledged 

additional distance burden imposed by transportation networks. Comparative analysis of 

the results from both metrics is examined to assess whether the differences are of any 

consequence in the interpretation of the selected spatial indices. 

The selected statistics represent three category types based upon the nature of attribute 

information under consideration. The first type simply examines the spatial distance 

relationship between features. The second type uses count data associated with the point 

locations, while the third category considers ratio value attributes. 

The initial step involves the development of a systematic means of adjusting the 

spatial distance metric relationship between point features given the unique spatial 

association each feature has to other points within the spatial network. Each point feature 

will serve as the origin of its own particular distance metric, adjusting the relative 

distance of its neighbours along existing direction vectors. The following approach is 

utilized: 

• Calculation of the Euclidean distance and direction between all point features 
within a transportation network structure. 
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• Determination of alternate (vector equivalent) coordinates (from each point of 
origin) to each of the other points based on travel distance along an existing 
transportation network. 

• Application of a unique polynomial transformation (rubber-sheeting) to the 
Cartesian grid and polygon base map to visualize the associated relative 
displacement effects of the transformation 

The second phase of the research examines the effects of this transformation 

methodology on a selection of spatial statistics within two broad categories: 

• Proximal distance based measures; and 

• Spatial autocorrelation measures that examine attribute (non-spatial) 
numerical characteristics associated with point locations. 

In short, selected spatial statistics results are compared under two spatial metrics to 

highlight the effects that an alternate road distance metric have on these measures. 

1.3 Thesis organization 

This research paper is divided into four sections. The following section begins with an 

acknowledgement of methodological issues of applying classical statistical theory to 

spatial differentiation. A case is subsequently put forth by way of literature review to 

support the rationale of utilizing an alternate distance metric as a means of mitigating the 

effects of ignoring spatial context within spatial statistic analyses. 

The methodology section develops a procedural technique to compensate for the 

additional (but often unacknowledged) distance inherent in road network vs. straight-line 

distance. The proposed technique temporarily transforms a set of points to reflect the 

actual magnitude of the road distance between points rather than the straight-line distance 

between them. 
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The results and discussion section contrasts the results of selected spatial statistics 

utilizing a normal arrangement of points with the distance compensated spatial 

arrangement. A simple comparison between results obtained using the two distance 

metrics is intended to highlight the differing conclusions that may be drawn by 

considering a compensated distance metric. 

The conclusion reiterates the suggestion that location based analyses should consider 

pragmatic distances between point features and not merely the minimum spatial distance 

between them. Available transportation options largely determine the physical interaction 

between communities. Consideration of physical connectivity can enhance the reliability 

of spatial modeling. 
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2. Literature review 

2.1 Introduction 

Recent attempts towards the bridging of cultural and physical geography represent 

a return to geography's more holistic roots. In antiquity, geography was an all­

encompassing endeavour, literally "to describe or write about the earth", via cartography, 

philosophy, mathematics, and literature. The academic discipline specialization that 

following the scientific revolution (i.e., physical sciences, biological sciences, social 

sciences, and humanities), avoided the study of reality in its totality, thus orphaning 

geography precisely because of its broad focus. Geography has survived as a discipline 

by bridging the human and physical sciences largely by reclaiming "location" as a 

centrally defining concept. 

As a multi-disciplinary field, geography has often applied techniques developed 

in other areas to spatially distributed phenomena. Individuals such as Von Thtinen sought 

generalized (nomothetic) econometric insights into specific (ideographic) phenomenon 

by way of idealized distance decay models. While such idealized models suffer from self­

imposed restrictions, location and distance were reinforced as major determining factors 

in spatial interaction. 

Geography's quantitative response to criticisms of its research validity during the 

1950s resulted in a new paradigm, heavily dependant on analytical methods of classical 

statistical theory. This reinvigorated legitimacy revalidated distance and proximity as a 

primary means of differentiating spatially distributed phenomena. Attempts at 

implementing aspatial techniques from other fields encountered difficulties when 

geography's spatial aspect was introduced into the adopted techniques. Such is the case 
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with spatial statistics where the theoretical basis of statistical theory assumes complete 

(spatial) randomness, an assumption often at odds with the reality of many spatially 

distributed phenomena. Openshaw (1984, p. 6) is critical ofthe Faustian dependence on 

'plagiarized' techniques that have 'blinkered' geography over recent decades "at the 

expense of geographical considerations". For example, notwithstanding the dismissal of 

environmental determinism, there are instances where environmentally deterministic 

constraints are relevant, such as transportation networks, often constructed under fiscal 

and engineering restraints. Underlying environmental constraints can influence the 

context of spatial distributions and should be of concern to geographers rather than 

ignoring them for the expediency of adopted analysis techniques. 

2.2 Alternate metrics 

Despite widespread acknowledgement ofthe importance of spatial differentiation 

in geospatial analysis, the intervening distance metric between features is rarely 

considered. The propensity for utilizing the universal Euclidean distance metric over all 

analysis scales can superimpose the distance metric of the Cartesian plane onto features 

in the environment that actually have intrinsic alternate distance metrics. Such is the case 

when a road network determines the distance between communities but spatial analysis is 

conducted on the spatial distribution of communities as if the road network did not exist, 

using instead the direct line distance between them. This distance assumption has been 

inappropriately coined "as the crow flies" (as anyone who has observed foraging crows 

will attest). 

Modest literature exists on alternate distance metrics within the field of 

geography. Other fields, less indoctrinated to rectilinear grids, appear more inclined to 
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consider alternate distance metrics. Ecological sciences in particular utilize water (river) 

distances along the central channel of streams and rivers, similar to the familiar highway 

mile system (Ganio et al., 2005; Gardner et al., 2003; Lyon et al. , 2008; and Curriero, 

2006). Linear referencing systems (LRS) such as dynamic segmentation are familiar 

distance metrics in transportation and utility network applications (Puu & Beckmann, 

2003). Genetic researchers utilize non-Euclidean distances for separation of 

chromosomes and genes within the three dimensional structure of the DNA double helix 

(Bozkaya & Ozsoyoglu, 1997). Alternate distance metrics are central to multi­

dimensional scaling, popular in marketing and data mining research (Borg & Groenen, 

1997). 

2.3 Distance 

Distance is perhaps the most central and intuitive attribute of spatial relationships. 

Despite an innate sense of distance, human distance cognition is often distorted by spatial 

and temporal perception. More specifically, distance is a quantifiable description of the 

space that separates objects. The measurement units are typically either a physical length, 

a period of time, or in relation to an arbitrary criteria, (e.g. "two doors down"). These 

latter types of distances are typically used during normal human interaction where a more 

relevant reference frame is warranted. The long-standing debate as to whether geographic 

space is quantifiably distance based or intuitively topological is perhaps dependent on the 

type and scale ofthe application. Jiang (1998, p. 54) states that "Human thinking is not 

metric based" but "maps are the most efficient and effective way of communicating 

metric properties oflarge scale space". Thus, as in most debates, both sides have valid 

arguments for their positions. The two opinions are currently being reconciled in the 

Literature review 10 



concept of naive geography (Egenhofer & Mark, 1995) where more human-based 

techniques are under development to facilitate more 'natural ' information transferral. 

It is in the scientific realm where the concept of distance expands into multi-

dimensional domains and where it is subject to definitions that are more rigorous. 

Mathematically, a distance function (metric) defines the distance between elements of a 

set, which defines the metric space. Space is simply a "set" that contains elements 

(points). A metric space requires a "metric" to numerically quantify two points in the 

space and map them to a number. A distance metric is required and defined in such a way 

that the shortest distance between any two points is a straight line and must obey three 

mathematical properties (Table 1 ). 

Table J: Mathematical conditions required for distance metrics. 

Function ProJ:!erU: Ex(!lanation 

d(a,b)>=O Non-negativity Distance is always positive or zero. 

d(a,b)=d(b,a) Symmetry The distance between a and b is the same in 
either direction. 

d( a, b )+d( b, c )>=d( a,c) Triangle The shortest distance between two points is a 
inequality straight line. 

Distance calculations within a homogeneous Euclidean metric are easily 

detem1ined by Pythagorean methods but when the analysis space becomes non-Euclidean 

such as hyperbolic, elliptical, or otherwise non-planar, Euclid' s parallel postulate must be 

modified, resulting in what is referred to as absolute or neutral geometry. Such non-

Euclidean relationships allow for topological associations that facilitate alternate linkages 

between objects within the topological space. See Figure 2. 

Literature review 11 



Figure 2: Lines and points in Euclidean (1), elliptical (2), and hyperbolic (3) geometries (Source: 
Pedersen 2005). 

Irregular network connectivity imposes a variable distance metric contrary to that 

assumed by most categories of spatial statistics. Most spatial statistic processes assume a 

barrier-free Euclidean separation between features that, while over-emphasizing the 

strength of local relationships, can also result in forcing a neighbour relationship where 

none exists. Figure 3 presents the typical spatial model primitives for the Avalon 

Peninsula of Newfoundland. Most spatial statistic calculations will utilize attributes of the 

point features (Figure 3a) outside the context of the restricting environment imposed by 

the road connectivity matrix (Figure 3b) and the landmass configuration (Figure 3c) . 
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Figure 3a: Point features Figure 3b: Linear features Figure 3c: Areal features 
(locations) (constraints) (barriers) 

Figure 3: Avalon Peninsula spatial model features. 
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Ignoring the contextual determinants that establish topological relationships, spatial 

statistics essentially discounts the actual distance metric by substituting the minimum 

Euclidean (as the crow flies) distances between point features. It is more realistic to study 

spatial statistics at the human scale within a network rather than a Cartesian framework. 

Consequently, this paper proposes to evaluate the concept of transforming the underlying 

metric space between point features (on a non-regular transportation matrix) to 

compensate for the effects that actual travel distance have on measures of spatial 

dependency. 

2.4 Alternative distances 

Shu et al. (2001) contend, "In geographic space, it is well known that spatial 

behaviors of humans are directly driven by their spatial cognition, rather than by the 

physical or geometrical reality". Furthermore, "In the past work, the physical or 

Euclidean distances are used very often. In practice, many inconsistencies are found 

between the cognitive distance and the physical distance". Cognitive distance is the 

perceptually estimated distance between two locations. Individual experience shapes 

cognitive distance estimations so that "physical distance is mostly overestimated or 

underestimated in the process of human spatial cognition and spatial behaviors" (Qi et al., 

2006, p. 408). An intuitive response to this discrepancy is to use travel time as a surrogate 

measure for travel distance. People often reply in time units in response to questions of 

travel distance. 

On a more philosophical level, the seminal work 'The Production of Space" 

(Lefebvre, 1974) has influenced current urban studies into 'socially produced spaces', as 

opposed to natural or absolute space. Lefebvre's contention that space is a social 
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construction based on values and social production of meanings and thus affecting spatial 

practices and perceptions has provided researchers such as Harvey (1990) and Low 

(2006) a means of conceptualizing space and distance outside the norms of quantifiable 

space. Advances in communication and transportation technologies are changing modem 

concepts of distance, space, and time (Massey, op. cit.), a development that lends itself to 

analysis by network-topology methodologies rather than geometries of absolute locations. 

Interactive events typically start with a conscious determination of a destination 

from an implicit origin. Familiarity with the regional context determines the degree of 

conscious route planning involved. A routine journey, such as a daily commute, requires 

less planning than travelling to an unfamiliar destination. Once established, the network 

rules and connectivity will determine the particulars of the route traversed. Perception of 

the planned route at an overview scale is linear, but at local human scales, the network 

details introduce changes in course direction while simultaneously accumulating distance. 

This exemplifies the issue at hand. Analysis techniques that ignore the functional extra 

distance between origin and destination events will overstate the degree of association 

between them by assuming the points are nearer than they functionally are, introducing 

erroneous topology, as well as confounding aspects of proximity and adjacency. 

Essentially, the orthogonal Cartesian metric does not reflect the reality of the true travel 

distance and network connectivity between locations. 

A conceptual model is essential to visualize and manipulate the approach to this 

research topic. Physically analogous models can help to visualize the dynamics of a 

changing distance metric. The basic components of the proposed model are a set of 

spatially arranged point features, a connective network, and a terrain surface wherein 
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each set of primitives require spatial adjustment with respect to inherent restrictions 

imposed by either of the other feature types. 

Several techniques offer avenues for investigating a means of compensating for 

irregular geometric transformation between alternate metric spaces. Mathematical 

approaches, (including algebraic topology, differential geometry, matrix algebra, and 

geometric transformation) offer computational procedures for spatial transformations 

however; most transformation techniques employ a linear or other simplistic uniform 

alteration to the distance metric during transformation. The aim of the proposed approach 

is to allow the distance metric to vary while maintaining relative direction. The intention 

is to develop a method of transforming a point set into an alternate metric space to reflect 

road network connectivity between communities. 

2.5 Manifolds 

The following will examine whether the concept of manifolds can provide a 

conceptual basis for examining points in Euclidean and alternate spaces. 

A manifold is a topological space that is locally Euclidean (i.e., around every 
point, there is a neighbourhood that is topologically the same as the open unit ball 
in Rn). To illustrate this idea, consider the ancient belief that the Earth was flat as 
contrasted with the modem evidence that it is round. The discrepancy arises 
essentially from the fact that on the small scales [sic] that we see, the Earth does 
indeed look flat. In general, any object that is nearly "flat" on small scales is a 
manifold, and so manifolds constitute a generalization of objects we could live on 
in which we would encounter the round/flat Earth problem, as first codified by 
Poincare. More concisely, any object that can be "charted" is a manifold. 
(Rowland, 2010, para.1) 

It is useful to situate the observer' s point of view with respect to manifold 

characteristics. A manifold is a type of space wherein near every point of space there is a 

coordinate system like that in Euclidean space. An individual traveling in a straight line 

on the surface ofthe earth experiences the environment as if it were a normal Euclidean 
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space. To an orbiting external onlooker however, the individual is observed on a 

spherical surface traveling in an arc. These two viewpoints are considered intrinsic and 

extrinsic respectively. In addition to a manifold's intrinsic geometry, they also have a 

geometry inside other spaces, an extrinsic geometry, that depends on how they are 

mapped into another space. This premise will form the basis of the transformation 

technique developed in the following section. 

Conceptually, this model is suitable for comparing spatial relationships between 

two different distance metrics. Theoretically, any point on the left hand torus in Figure 4 

can be mapped by way of a function to an equivalent corresponding location on the right 

hand torus (i.e. they are topologically equivalent) but the transformation would require 

unique transformation parameters for each point. Unfortunately, the complexity involved 

in the differential calculus necessary for such a continuous transformation precludes the 

utility of this approach. DeCarlo (1998) determined that approximately seventy shape 

parameters are required to describe a piecemeal torus to mug transformation. However, a 

similar approach using a two-dimensional reference grid can greatly simplify the process. 

Figure 4: Topologically equivalent torus manifolds (Source: Lee, p. 5). 

Caveat lector - a coordinate transformation is a conversion from one system to 

another to describe the same space. The technique proposed for this research is to 

transform to an alternate metric space to facilitate a (geostatistical) calculation and then 
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return to the original (metric) space. The topological ' space' remains the same but the 

change in the distance metric results in an alternate spatial arrangement of the features 

(similar to deflating a beach ball). Notwithstanding this ' same space ' criterion, the 

following will utilize the alternate space merely as a surrogate for (geostatistical) 

calculation purposes. 

Standard linear transformation techniques that employ coordinate shift, scaling, 

rotation, or skew are ill suited to situations where the transformation varies along the 

vector for each set of points on the surface (Figure 5). Similarly, a first order affine 

transformation, (which scales differently along different orthogonal axes) is inadequate, 

because the displacement is of constant distance and direction. Higher order polynomial 

transformations (warps or n-order transformations), will vary to the degree of the number 

of points under consideration resulting in complex surfaces. Proper transformation 

techniques require that the differences between the coordinate systems be mathematically 

systematic. ' Rubber-sheeting' is a suitable n-order transformation technique for current 

purposes due to its local, rather than global manifold transformation properties. "Rubber­

sheeting is a procedure for adjusting the coordinates of all the data points in a dataset to 

allow a more accurate match between known locations and a few data points within the 

dataset. Rubber-sheeting preserves the interconnectivity between points and objects 

through stretching, shrinking, or reorienting their interconnecting lines" (de Smith et al. , 

2008:p.l8). 
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Linear Transformations Second and Third Order Transformations 

Figure 5: Grid transformations (Source: Klinkenberg, 2009). 

It is important to note that the alternate metric space will be unique for each point 

serving as the origin to all other points. This process is more easily visualised by the 

transformation of a ruled surface that changes non-uniformly across the surface. Non-

linear transformation of the grid allows the retention of relative point displacement. 

2.6 Connectivity 

Connectivity between features can utilize alternative distance metrics such as 

rectilinear Manhattan distance, spherical distance, or travel time. Often spatial statistics 

tacitly assumed that features displaying Euclidean adjacency are proximate neighbours as 

well. In circumstances such as point locations on a dense regular grid, this proximation 

assumption can often be ignored without serious consequence, but there are situations 

where adjacent features are not necessarily neighbours. Natural and artificial barriers 

influence the magnitude of the distance metric as well as restrict the connectivity between 

spatial features. 

Figure 6 illustrates a model of a series of network nodes on an irregular shaped 

surface representing a series of communities connected by a road network in a coastal 

environment. Any number of algebraic, geometrical, or statistical methods can analyze 

the spatial arrangement of the points in such a model but most methods will disregard the 

environmental restrictions imposed on the connectivity between the spatial features. 
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Figure 6: Euclidean distance (A-B) vs. network distance (A-C-0-E-B). 

The isotropic Euclidean distance A-B does not reflect the transportation network 

path A-C-D-E-B necessary to travel between them. Neither are features A and D adjacent 

neighbours in a network context given the restrictions imposed by the model's 

environment. When such situations arise, spatial associations should be adjusted to 

maintain logical consistency with the reality of the underlying spatial model. The 

additional burden of this manual intervention process is often neglected when local 

knowledge of the underlying spatial context is incomplete. Current Geographical 

Information Systems (GIS) can easily produce spatial statistics but the simplicity of using 

these tools belies the complexity of the processes they utilize. These methods can be lax 

in their assumptions regarding the functional associations between features. Many spatial 

analysis techniques assume a Euclidean metric that facilitates Pythagorean methods to 

calculate relative position and distance. When spatial features are functionally located at 

greater distances, statistical results are exaggerated because the distance between features 

is minimized. 
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The plausibility of using a spatial weights matrix (W) to address this issue is 

intuitive but was determined to be of limited utility. The focus of the spatial weights 

matrix is adjacency and relative proximity between point or polygon features, determined 

by the linear Euclidean distances between points (or centroids) (de Smith et al., 2008). 

Such a matrix could compensate for distance discrepancies ![distance is the only 

transformation variable under consideration. The counter-argument maintains that only a 

subset of spatial statistics is concerned solely with distances between features. More 

often, it is a particular attribute of the feature set that is the subject of investigation. 

Typically, spatial weights matrices adjust the relative weight of a particular feature 

attribute and not the spatial metric between features. 

Distance between communities is rarely a matter of"as the crow flies" . Even in the 

regular urban grid environment, methods such as rectilinear or Manhattan geometry are 

often employed to more accurately simulate real-world conditions. In this vein, the 

following analysis will endeavour to more realistically simulate the reality of 

transportation connectivity between irregularly distributed rural communities. 

2.7 Spatial statistics 

Many spatial statistics are global in nature meaning that the resulting indices are 

relevant to the entire selection of the spatial elements under examination. The more 

fundamental spatial statistic indices such as standard distance, average nearest 

neighbour, and (global) spatial autocorrelation indices are essentially determined by 

geometrically derived methods, wholly determined by the distance metric of the spatial 

model. More complex statistical measures such as Local Indicators of Spatial 

Autocorrelation [LISA], (Anselin, 1995) and Geographically Weighted Regression 
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(GWR), (Fotheringham et al., 2002), conduct systematic localized examination across the 

analysis space and are thus intuitively more suited to real world contexts where discrete 

features are unique with respect to their relationship to their neighbours. The following 

sections will use this categorical distinction between global and local statistics to examine 

the relative effects of alternate distance metrics on both. 

2.7.1 Fundamental global statistics indices 

Spatial analysis of the distribution of point features must address methodological 

issues that arise due to the spatial dimension of their location. Often there are unobserved 

(or unacknowledged) environmental factors, both discrete and ubiquitous, that play 

determining roles in the relationship between spatial features. Point Pattern Analysis is a 

suite of investigative methodologies used to uncover underlying patterns within an 

analysis region. Generally, these patterns are determined by whether or not they vary 

from an assumed random spatial distribution. Spatial indices such as standard distance 

provide measures for the aggregate (global) dataset. Such measures reinforce the 

assumption of uniformity within the analysis area. 

2.7.1.1 Standard distance 

Bachi (1963) characterizes standard distance as "a simple, intuitive measure of 

the dispersion . . . obtained by averaging all distances between all possible pairs of cases" 

(p. 86). Standard distance measures the degree to which features are concentrated or 

f(~ cf2 ) 
standard d istance :: ..!.V __ _ 

dispersed around the points by way of: 11 where dis the 

distance to a given point (coordinates x, y) from the mean centre ( x, y) and n is the total 

number of points. The standard distance can also consider a weighting attribute such as 
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population that will result in a population-weighted distance. Thus, alternate distance 

metric should produce considerably different results particularly in weighted cases due to 

the increased leveraging effect of the weighting value. 

2.7.1.2 Average nearest neighbour 

The theoretical basis of the average nearest neighbour statistic is much more than 

the averaging of nearest neighbour distances as its label implies. It is actually, "a measure 

of the manner and degree to which the distribution of individuals in a population on a 

given area departs from that of a random distribution" (Clark & Evans, 1954, p. 445). 

The average nearest neighbour statistic calculates a nearest neighbour index based on the 

average distance from each feature to its nearest neighbouring feature: 

~ Min(d) 
d(NN) = .L) u ] where Min(dij) is the distance between each point and its nearest 

i :I N 

neighbour, and N is the number of points in the distribution. The process is sensitive to 

area manipulation and boundary effects as acknowledged by Clark and Evans (1954) and 

reiterated by Pinder et al. (1979 p. 430-31 ). 

2. 7.2 Spatial autocorrelation indices 

Spatial autocorrelation arose from the concept of temporal autocorrelation where 

time series data are not independent of their own historical values. Spatial autocorrelation 

extends the concept from the temporal to the spatial dimension. 

The origins of spatial autocorrelation analysis were global in nature but recent 

trends are towards localized examination of spatial dependency that tacitly acknowledges 

Tobler's law regarding spatial association and focuses on the unique local nature of 

spatial relationships. Thus, spatial autocorrelation is relevant to both global and local 
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analysis and may serve as a bridging template for localized consideration of other 

statistical measures. By shifting the focus of global statistics to more local levels, the 

unique circumstances of the local area' s contribution to the overall spatial patterns can be 

quantified. Notwithstanding the potential benefits of the global approach, the fact remains 

that distance is the major contributing factor in autocorrelation analyses. 

Distance between discrete features in spatial autocorrelation analyses is calculated 

as the minimum Euclidean distance between the features, essentially ignoring the actual 

connectivity through the intervening space, which is determined by the reality of the 

underlying environment. 

Spatial autocorrelation is one ofthe relatively small set of techniques 
which deals with both locational and attribute information . .. A pair of 
spatial features, for example two cities, may be similar or dissimilar in 
attributes, and their proximity will determine how similar they are in 
spatial location. In its broadest sense, spatial autocorrelation compares the 
two sets of similarities. If features which are similar in location also tend 
to be similar in attributes, then the pattern as a whole is said to show 
positive spatial autocorrelation. Conversely, negative spatial 
autocorrelation exists when features which are close together in space tend 
to be more dissimilar in attributes than features which are further apart. 
And finally the case of zero autocorrelation occurs when attributes are 
independent of location. (Goodchild, 1988, p.4) 

In its simplest form, spatial autocorrelation is based on grid adjacency measures 

where 'neighbourliness' is determined by whether entities share a common border such 

as on the squares of a chessboard. The game board analogy used in the theoretical 

development of this concept, has resulted in retained vestigial chess terminology such as 

rook, king, and queens-case versions of adjacency contingent on whether conditions for 

inclusion are met by the movement rules of the chess pieces. It is from this grid-based 

theoretical development that distance calculations between features often utilize simple 
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row and column differences to determine the geometric Pythagorean distance. Such an 

assumption minimizes the Euclidean space between elements and presumes uniformity 

across the intervening space between two points. While this assumption is reasonable for 

situations where the intervening space between points are indeed homogeneous, it is at 

odds with the reality of applications of spatial autocorrelation involving non-regular 

networks such as in the case of discrete community points along a road network. While 

communities may be spatially close, physical barriers and difficult topography can often 

complicate their connectivity and effectively lengthen the distance between them. 

Raining (1990) remarks on spatial stationarity considerations between lattice and 

non-lattice case models, noting "the concept of stationarity is of questionable value for 

processes operating on irregularly scattered point sites or across continuous space . . . 

even ifthere exists an underlying continuous space process which is stationary ... inter­

area relationships for such irregular systems ... have implications for how spatial 

dependency is represented" (p. 69). The representations are various graph structures 

(edges and weights) used to examine non-lattice proximity and interaction including 

Gabriel graphs, Delaunay triangulation, central place system of sites, and directed 

neighbourhood system (p. 72). Raining notes, ' the use of proximity criteria seems most 

appropriate where inter-site connections in terms of flow of information and material are 

not limited to special transportation networks ... The use of interaction data, on the other 

hand, often reflects the presence of distinct transportation networks by which information 

and material flow between sites' (pp. 70-71 ). 

Aniostropy, or directional bias is a fundamental consideration when determining 

distances between communities given that limited connectivity and a host of 
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complicating travel factors combine to extend the functional association distance between 

communities. 

The seminal work of Cliff and Ord (1973; 1981) extended the work of Geary (1954), 

Moran (1950), and others by providing a means oftesting for departure from a random 

spatial pattern in attribute values (Getis, 1995, p. 247). 

2.7.2.1 Various measures of spatial autocorrelation 

Getis (2007) lists the following techniques for measuring spatial autocorrelation: 

• Moran's I (a global covariance representation) 

• Geary's c (a global differences representation) 

• R (a cross product representation) 

• Getis and Ord's G (a global multiplicative representation) 

• Ripley's K (a cumulative pairs over distance representation) 

• pA. (autoregressive coefficients in various regression representations) 

• Getis and Ord's G; and G*i (local cluster representations) 

• Anselin' s I i and c i (local indicators of spatial association (LISA) statistics) 

• Ord and Getis's 0 (a local representation taking into account global 
autocorrelation) 

• 1/A, (the inverse ofthe semivariogram; i.e., the correlogram 

(adapted from Getis, 2007, p. 494) 

Such a listing suggests the extensive research interest that conducted on this topic and 

the potential importance it is anticipated to have for the future of spatial analysis within 

geography. 

The prevalence ofthe global vs. local distinction is important. Within geostatistical 

parlance, global measures calculate all distance pairings simultaneously while local 
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measures calculate distance pairings within a finite distance constraint. Getis and Ord 

(1996, p.262) caution that utilizing global (geostatistical) measures over large areas 

"contributes little meaning in such situations" while "any global statistic measure at a 

large scale of analysis provides little useful information" (ibid., p. 261-262). Local 

measures however, determine dependence in localized areas of the study area, typically 

up to predetermined distance from each feature. The focus of the current analysis on 

distance will examine whether the effects are similar for each category (global and local) 

given the fundamental role distance has on autocorrelation statistics. 
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3. Methodology 

3.1 The effects of alternate distance metrics on spatial statistics 
measures 

The following will develop and utilize a non-linear transformation technique to 

facilitate a more realistic determination of functional distances between network point 

features. The process develops a temporary alternative spatial distance metric that will 

allow spatial statistics to more pragmatically consider the associations between spatially 

distributed features. Euclidean proximity is adjusted to compensate for actual travel 

distance between communities resulting in a truer representation of neighbours within a 

connective network while avoiding potential topological errors from consideration in 

spatial statistic calculations. 

3.2 Spatial context of the analysis area 

The island of Newfoundland is the easternmost part ofNorth America. It currently 

has some 750 identifiable communities. Most are adjacent to the rugged coastline and 

connected by some 7000 kilometres of road transportation infrastructure (Figure 7). The 

community distribution, clearly influenced by access to the shoreline, reflects the 

historical development prior to the construction of the road system. 
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Figure 7: Insular Newfoundland. Settlement distribution and road connectivity. 

Insular settlement is historically tied to prevailing transportation technologies. 

The birch canoe technology of the indigenous, semi-nomadic Beothuk allowed their 

seasonal exploitation of the riverine, estuarial, and littoral environments. The marine 

interests of the colonizing Europeans, in contrast, restricted their exploitation to the 

coastal and inshore areas thus constraining their settlement expansion along the coastline. 

Eventual attempts during the nineteenth and twentieth centuries to "open up" the interior 

by way of a rail line proved financially disastrous and eventually futile. The extensive 

Methodology 28 



road building projects that followed confederation with Canada was a concerted effort at 

modernization by facilitating the establishment of regional growth centres and 

discouraging the administrative challenges of servicing hundreds of scattered coastal 

settlements. 

The present configuration of the road network, largely determined by the location 

of the pre-existing settlements, reflects the ubiquitous reliance on access to marine 

resources. Consequently, the irregular coastline contains numerous incidences where two 

settlements are separated by a short distance across a body of water, but which require a 

much longer distance to realize by road travel. The spatial relationship between such 

communities can be misrepresented in Euclidean models due to unacknowledged 

topographical and hydrological barriers. An additional source of distance error is the 

disregard of additional vertical travel distance imposed by often-rugged terrain. In Figure 

8 the distance between communities A and B is a planimetric Euclidean distance of 

approximately two kilometres via the 1000 meter grid but the road network travel 

distance is approximately ten kilometres and likely more if elevation distance is 

considered. Road network connectivity between A and B can only be realized via the 

intermediate community C. Communities A and B are not topologically adjacent 

neighbours within a road network context. 
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Figure 8: Example of Euclidean vs. road network distance. 

Within living memory, the effect of changes in the prevailing transportation 

technology has altered community interaction dynamics. The supplanting of the 

traditional maritime connectivity by an overland option has fostered new connections in 

some cases, while diminishing them in others. 

In order to compensate for distance issues inherent in the recently imposed 

connectivity framework, spatial relationships between communities should be 

transformed into a geometric space that translates the meandering road network into a 

vector representation. In effect, straighten the connecting road between two settlements 

into a single vector equivalent. The approach will resolve the intrinsic distance 

presumption issue of certain spatial statistics analysis. To reiterate, the proposed non­

regular alternative metric is only relevant to single point of origin at any given time. 

Transformations using alternate spatial metrics can result in changes in the topological 

relationships between features. The Euclidean distance between points is inherently 
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monotonic given the intervening metric space is isotropic. When the spatial metric 

becomes non-isotropic (as is proposed here), non-monotonic circumstances will arise 

with respect to the original Euclidean arrangement but which will remain monotonic in 

the alternate transformation. From a Euclidean perspective B is between A and C in 

Figure 8. After the proposed transformation however, C will be between A and B, being 

restricted to the imposed road network. While both remain monotonic within their 

perspective metrics, each appears non-monotonic to the other. This is a transitory issue 

because the transformation is reversed after analysis calculations are conducted. 

Figure 9 highlights the discrepancy between the two distance measures of 

Euclidean and vector equivalent under consideration. The local area of Figure 8 is 

expanded to a regional context to illustrate the increase in the Euclidean distance vectors 

from this area to all other insular communities. Figure 9b illustrates the vector equivalent 

of Figure 9a compensated for actual road distance. 

The summary statistics show a near twofold increase in distance measures 

suggesting that the choice of metric will have similar considerable effect on other 

distance related statistics. 
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Total vector length: 79,095 km. 
Mean: 233 km. 
Standard Deviation: 14 km. 

Figure 9a: Sample community Euclidean distance vectors 
(Cartesian grid metric). 

Figure 9: Sample radial vector adjustment. 

3.3 Procedure 

Total vector length: 139,550 km. 
Mean: 4 12 km. 
Standard Deviation.: 27 km. 

Figure 9b: Sample community displacement vectors 
equivalent (road distance metric). 

The basis of this analysis is the transformation of a set of feature points within a 

Euclidean metric to an alternate, spatially adjusted metric that is determined by the actual 

travel distances between points. The process requires two versions of a point feature 

dataset (Figure 9), one in a standard Euclidean metric (Figure 9a) and a second 

transformed metric to straighten the connecting paths into an equivalent vector (Figure 

9b). Spatial adjustments must be calculated separately for each point serving as the origin 

because each point is unique in the configuration of its distance relationship to all other 

points. 

The initial task is to create a network dataset incorporating the point features with a 

topological road network. A network origin-to-destination model produces a line feature 

layer that calculates the travel distance between all point sets on the road network. Note 
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that the graphical display of the results (Figure 9b) is a straight-line representation of the 

travel distance and not the actual network path between the points. The calculated travel 

distance value is stored in the feature attribute table; a favourable result because the 

geometry of the graphical representation is essentially the equivalent linear (Euclidean) 

distance between points that, when transformed, will make the distances between features 

equivalent to the network distance between them. 

GIS maintains feature attribute information in tabular form. In addition to non-

spatial information, this table can contain relevant spatial information as well. By editing 

the original point features attribute table, it is a relatively simple matter to determine the 

alternate point coordinates via simple Pythagorean and trigonometric methods. 

Network path 
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Figure 10: Transformation geometry. 
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The proposed point displacement procedure requires that the vector (a-b) between 

the existing Euclidean points a and b in Figure 1 0 be extended along the same vector by 
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the additional distance inherent via the actual road path (a~b) and repositioned at point c. 

For each scenario neighbouring points are extended from each point of origin (a) to 

reflect the path of the actual road distance (a~b). The position of the displaced points is 

determined for each record by calculating new endpoint coordinate values in the feature 

attribute table. The existing coordinates (x,y) as well as the vector displacement (a-b), 

and direction (a.) are geometrically determined for each feature in the Euclidean feature 

attribute table. The origin-destination network analysis results provide the alternate 

vector displacement (a- b) facilitating the calculation of the new point coordinates of the 

displaced destinations (x' ,y'). After the calculation, the feature attribute table contains 

value fields for the original point coordinates with the original distance and bearing, as 

well as the coordinates of the displaced points with the adjusted distances (a-c). Each 

record now has two sets of alternate coordinates (x,y and x' ,y ' ) which will form the basis 

of a transformation matrix using the coordinates of the point features as control points. 

Rubber-sheeting is an n-order transformation technique developed to merge 

spatial information of inaccurate or unknown map parameters into one of known 

parameters. Typical applications include the integration of maps produced under differing 

standards, especially historical maps of varying positional accuracy. The key to this 

technique is identifying and determining the coordinates of 'control points' in both map 

projections. The control points serve as anchors while allowing the relative metric space 

between features to vary by shrinking and stretching the metric space between them 

accordingly. 

Rubber-sheeting requires a transformation matrix containing pairs of original and 

displaced coordinates. The coordinate value pairs for the study area (previously 
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calculated as indicated) is simply exported as a tab-delimited text file for use in the 

spatial adjustment process. For each point of origin, the resulting table matrix provides 

two sets of coordinates for all other points; the first in the original space and the second 

for the alternate space adjusted for the road distance. Conceptually, this may be 

visualized by an elastic grid or web where the intersections are stretched relative to each 

other. 

The transformation procedure employed the following methodology: 

• A topological network matrix is constructed and utilized to calculate travel 
distances between all communities represented as points on the matrix. 

• Directions - calculated from all points of origin to their respective destination 
communities. 

• Vectors - calculated from all points of origin to all their destinations by direction 
(calculated direction) and magnitude (calculated distance). 

Thus, for example the Euclidian distance for Admiral ' s Beach to St.. Anthony is 

507 kilometres at azimuth 342 degrees. The road distance straight-line equivalent 

maintains the same bearing (to maintain relative point arrangements) but substitutes the 

actual road distance of 1038 kilometres, in effect doubling the actual distance that would 

be normally be used in adjacency calculations. 

Given that distance between point features is the primary focus, an alternate 

analysis path was briefly considered in the early stages ofthis research, the merits of 

which may be of passing interest here. While traversing a road network, direction may 

seem irrelevant considering it is predetermined by the topologic properties of the network 

itself. If direction is rendered immaterial, a conceptual model could be reduced to a one-
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dimensional representation along the positive number line. Figure 11 displays the concept 

oftransferring the magnitude of the direction vectors to the positive number line. 

d 
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/ 

/ 
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b 

Figure 11: One dimensional distance transformation. 

A one dimensional approach may be of limited value in visualizing distance to 

weighted centres but most spatial statistics consider direction and enclosing area during 

calculation, which restricts the utility of this one dimensional approach. 

3.4 Transformation of the Cartesian grid 

While the points representing the communities have been transformed, the 

underlying geography does not yet reflect this new relationship. An accompanying 

similar transformation of the underlying Cartesian grid is warranted to highlight the 

degree of the transformation. The result in a non-linear projection producing a novel 

visualization that reflects the varying effects of road network travel distance from a 

particular community to all other communities. Figure 12 for example shows the 

accelerating warping effect that actual road travel distance has on a Cartesian reference 

grid centered on Admiral ' s Beach. The warping effect is at a minimum near the origin but 
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is progressively more distorted as distant accumulates due to the non-linear increase in 

distance to more remote points. Figure 13 includes the underlying geography. 

Figure 12: Admiral's Beach origin. Distance-compensated Cartesian grid. 

Figure 13: Admiral's Beach origin. Distance-compensated grid and landmass. 

Such transformation measures are of limited utility over large geographical areas. 

Distortion effects increase as distance increases from the point of origin. As a result, 

spatial analyses over large geographic areas rarely produce meaningful results. A local 

spatial focus will increase the relevance of the transformation process. 

3.5 Procedure classification 

The proposed transformative visualization process is a synthesis of various 

techniques employed to spatially adjust a relative network relationship. As such, it is 

ambiguous as to how to categorize this geo-visualization process. Fundamentally, it is a 
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spatial transformation from an orthogonal matrix grid (mesh) to a varying non-orthogonal 

matrix. From this basis, it suggests a similar tact in recent cartogram research where mesh 

transformation methods adjust the vertices of a polygon mesh while retaining relative 

topological integrity of adjacent areas (Keirn et al., 2005; Andrieu et al. 2007). The focus 

of this paper however is on relative displacement of point features within a variable 

metric space, more suggestive of a linear or distance cartogram classification than a 

continuous area cartogram. Linear cartograms are pseudo-schematic with relaxed 

topological characteristics. The model proposed here actually enforces topological 

integrity as utilized by spatial statistics algorithms while maintaining accurate distances. 

Cartograms are typically qualitative visual aids and not vehicles for quantitative analysis. 

In a multi-disciplinary approach, this proposed procedure borrows concepts from 

a variety of fields (mathematics, ecology, and physics) to address a geospatial issue. A 

broad description such as radial adjustment of vectors in Euclidean networks succinctly 

captures the procedure of compensating for alternate distances by straightening travel 

distances into vector equivalents. 
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4. Results and discussion 

4.1 Comparative results 

Section 4 compares the results of selected spatial statistics for a sampling of 

communities whose spatial proximity measures have been modified to reflect travel 

distances between them. Communities were chosen to represent features from a variety of 

relative locations (central and peripheral) within the analysis region. The choice of spatial 

statistics is somewhat arbitrary but those chosen were selected to highlight the effects on 

the analysis of certain population cohorts that are often of particular concern to social 

policy initiatives. Broad measures of population characteristics such as dependency ratios 

are often employed in the early stages of policy development to obtain a comparative 

measure of community viability from which to develop equitable policy strategies. 

Regional policy analyses often utilize spatial frameworks imposed by a priori data 

collection processes that aggregate information into convenient collection units. Such 

restriction precludes any alternate differentiation based on the original un-aggregated 

information. This much-maligned circumstance is most evident in census enumerations 

where information is aggregated into seemingly random areas for confidentiality reasons. 

For population researchers, this is an example of the "tyranny of an artificially imposed 

and fixed set of census geographies" (Openshaw & Rao, 1995) that dilutes the quality of 

the original information. Still, administrative units are considered by policy personnel to 

be an equitable means of resource allocation despite the trouble they create for spatial 

analysts. Nevertheless, conveniently available information is frequently used without 

consideration of scale and aggregation manipulation issues such as those inherent in the 

Modifiable Area Unit Problem (Openshaw, 1984). Despite the quasi-arbitrary nature 
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surrounding the establishment of administrative areas, there is often an underlying 

rationale influenced by factors other than efficient spatial analysis. Agencies that 

establish administrative areas do so to facilitate their own internal mandate. Third party 

agencies that attempt to leverage pre-existing administrative geographies often find them 

ill-suited to their own particular needs. Despite any shortcomings of imposing 

administrative areas within a region, they can foster the perception of a certain degree of 

homogeneity within the regions and can lead to the eventual adoption of the externally 

imposed defining characteristics. Communities exist within a myriad of these 

administrative structures, all of which function pragmatically, if not practically for their 

originally intended purposes. Unfortunately, efficacy often requires the utilization of pre­

existing administrative structures. 

The subsequent examples will examine the effects of using alternate distance 

metrics for communities in the Avalon Peninsula on the Island ofNewfoundland. The 

A val on area is perhaps the most consistently distinct regional administrative area of the 

Province given its peninsular geography. For current purposes, the Avalon is considered a 

discrete, self-contained administrative area. The particulars of the physical model are: 

• Landmass: 9000 km2 

• Coastline: 1640 km. 

• Road network: 4800 km. 

• Number of community points: 81 

• 5000 metre reference grid: 21 ,600 km2 

The following results focus on two categories of spatial statistics. The first 

category considers purely distance-based measures. These techniques are applied to the 

spatial distribution of the community point features only. The second category is those 
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measures that consider non-spatial attributes with respect to distance. The principal 

attributes derive from aggregate census returns, primarily age cohorts, which are 

associated with the point representations of the communities. For demonstration 

purposes, the selected attributes are those that are pertinent to dependency ratios (i.e. 

relative youth, adult, and aged age cohorts). While it is possible to analyse the results for 

all possible community permutations, it is more effective to examine the effects of the 

proposed technique by individual case. The utility of this research is anticipated to be in 

determining whether policy decisions arrived at via geo-spatial analysis is equally valid 

when the analysis space is adjusted for distance effects. It can aid in resource allocation 

scenarios or in situations where distance decay is important. It also allows a community 

specific focus for examining the relative effects of distance on community interaction and 

relationships. 

4.2 Overview of transformation results 

Figure 14 displays an overview of the relative change in metric space using the 

foregoing methodology. Figure 14a shows the spatial arrangement of the communities in 

a normal Cartesian metric space. The transformation results (Figures 14b, 14c, and 14d) 

show the relative change in metric space from Cartesian to vector road distance for 

selected communities. The communities of origin were chosen to examine the effects of 

relative location within the spatial analysis area. The choices include a community near 

the centre of the spatial configuration, Whitboume, (Figure 14b ), and two communities 

near the extremities, Bay de Verde, (Figure 14c) and Wabana, (Figure 14d). 
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Fi1mre 14a. Community distribution in normal Euclidean metric space . 
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Figure 14b. Transformation result of central communi ty (Whitbourne). 
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Figure 14e. Transformation result of peripheral community (Bay de Verde) . 
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Figure 14d. Transformation result of peripheral community (Wabana). 

Figure 14: Alternate distance metrics for selected communities (common scale). 
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The relative degree of transformation varies considerably across the analysis space. 

The central feature transformation Figure 14b displays relatively less overall shape 

distortion than the peripheral community points due to the extra distances required to 

connect to all other communities. Peripheral points accumulate greater overall connection 

distances due to their relative location with respect to other communities. Centralized 

locations result in a radial distortion pattern while peripheral locations display more 

linear distortion trends. These general observations are manifest in the distance statistics 

as well. 

The following baseline case (in a normal Euclidean space) and three alternate 

scenarios will form the basis of a comparative spatial analysis into the effects of utilizing 

the proposed alternate transformation procedure. Each of the transformations is subjected 

to the noted analytical techniques followed by a general commentary of the results. 

4.3 Selected spatial statistics 

4.3.1 Distance only statistics 

4.3.1.1 Standard distance 

Figure 15 shows the relative increase in standard distance calculations for 

communities that result from the transformation process. The standard distance of the 

points in a normal projection space is 48.25 km., a value that increases by between 40 

and 100 percent (68 to 102 km.) over the various point sets (Table 2, Appendix). These 

higher distance values contain implications for analyses that utilize the standard distance 

measure. Distances are always greater in transformed metrics under the present scenarios 

due to the positive cumulative distance increases introduced by the transformation. 
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Fig ure ISc: Bay de Verde transformation . 
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Figure ISd: Wabana tra nsformation. 

Standard distance: 48.25 km. 
Increase from Cartesian: 0.00 km. 
Increase percent: 0.0% 

Standard distance: 71.30 km . 
Increase from Cartesian: 23.05 km. 
In crease percent: 4 7. 8% 

Standard distance: 75.03 km. 
Increase from Cartesian: 26.78 km. 
Increase percent: 55.5% 

Standard distance: 97.82 km. 
Increase from Cartesian: 49.57 km. 
Increase percent: I 02.7% 

F igure I S: Standa rd dista nce results (common scale). 
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4.3.1.2 Average nearest neighbour 

Figure 16 displays the average nearest neighbour results for the selected 

transformed communities. Unsurprisingly, observed and expected mean distances 

increase significantly due to the extra distances imposed between the community points. 

Interestingly, the clustering significance confidence interval increases from 95% 

to 99% for all the transformed results despite the fact the points are moving apart relative 

to each other. The arrangement of the points in normal Euclidean space is relatively 

compact and denser at that scale. By expanding the distance metric, the clustering is 

accentuated as indicated by the change in z-score and the clustering significance from 

<5% to <1% for all scenarios. The dynamics of this process may be conceptualized by 

considering the points to be on an elastic surface such as a balloon. Initially the points 

appear either random or clustered, but inflating (stretching) the surface can result in a 

reversal of the initial observation. The effect is further enhanced if the deformation is not 

directionally uniform as is the case under study. See Figure 17 for an example of 

enhanced clustering in the alternate metric. 
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Figure 16a: ormal projection 
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Figure 16b: Whitbourne transformation. 
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Figure 16c: Bay de Verde transformation. 
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Figure 16d: Wabana transformation. 

Observed Mean Distance: 5.85 
Expected Mean Distance: 6.65 
Nearest Neighbour Ratio: 0.8800 
Z Score: -2.065 
p-value: 0.0389 
Signi ficance:<5% clustered 
Percent change from baseline: 0% 

Observed Mean Distance: 7.45 
Expected Mean Distance: I 0.14 
Nearest Neighbour Ratio: 0. 7349 
Z Score: -4.563 
p-value: 0.000005 
Signi ficance: < I% clustered 
Percent change from baseline: 27.35% 

Observed Mean Distance: 7.85 
Expected Mean Distance: 10.98 
Nearest Neighbour Ratio: 0. 7150 
Z Score: -4.905 
p-value: 0.00000 I 
Signi ficance: < I% clustered 
Percent change from basel ine: 34.19% 

Observed Mean Distance: I 0.49 
Expected Mean Distance: 13.23 
Nearest Neighbour Ratio: 0. 7916 
Z Score: -3.587 
p-value:0.000334 
Significance: < I% clustered 
Percent change from baseline: 79.32% 

Figure 16: Average nearest neighbour results (common scale). 
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Figure 17a: 95% probability of clustering in normal space 
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Figure 17b: 99% probability of clustering in transformed 
space. 

Figure 17: Average nearest neighbour exaggerated clustering, Placentia (common scale). 

4.3.2 Distance and count statistics 

Spatial analysis is more often interested in the distribution of attribute 

characteristic than merely the spatial location of features. Determining patterns in the 

spatial distribution of quantifiable characteristics is the principal concern of spatial 

analysis. Clustering analysis is a suite of fundamental exploratory spatial data analysis 

techniques that evaluate the spatial distribution of attributes and determines whether the 

patterns are statistically significant from a random distribution. The primary 

autocorrelation techniques examine attribute values while considering their spatial 

relationships to the other features (Wulder n.d.). Since all measures use Euclidean 

distances, it is reasonable to expect that all autocorrelation measures will overstate the 

degree of adjacency. The remainder of section 4.3.2 will compare various autocorrelation 

results for the selected communities in both Cartesian and transformed metric spaces 

using 2001 census population counts as the attribute of interest. The first row of each 

table shows the results of the unadjusted spatial metric. 

4.3.2.1 Spatial autocorrelation (Moran's I) 

Figure 18 shows the results for the global Moran Statistic I for the 2001 

population for the selected communities. As expected, there is a significant increase in 
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the search threshold for the transformed arrangements. Under the normal space scenario 

there is a less than 1% expectation that the distribution of the population values is due to 

chance. Similar results are evident for the central location (Figure 18b Whitbourne) and 

one of the peripheral communities (Figure 18d Wabana) which both show higher Moran 

values and z-scores. The exception is the peripheral community of Bay de Verde (Figure 

18c ), which was expected to have similar values to the other peripheral community of 

Wabana (Figure 18d). On reflection, the choice of inverse distance weighting in the 

'conceptualization of spatial relationship' option may explain this result. The two 

peripheral communities differ greatly with respect to their relationship to the major 

population centre of St. John's. Wabana is adjacent while Bay de Verde is furthest away. 
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. 
; . : 

: '( ., 
{ ·: .,· . . :-t 

• • : 

' . . \ 
: . 

. ~ 
Figure 18b: Whitbourne transformation . 
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Fig ure 18c: Bay de Verde tra nsformation. 
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Figure 18d: Waba na tra nsformation. 

Signi ficance: < I% clustered 
Moran's Index: 0.1124 
Expected Index: -0.0 125 
Variance: 0.0015 
ZScore: 3. 133 
p-value: 0.0017 
search threshold: 14.8km 

Signi ficance: < I% clustered 
Moran's Index: 0.1479 
Expected Index: -0.0 125 
Variance: 0.0013 
Z Score: 4.383 
p-value: 0.0000 I 
search threshold: 26.05km 

Signi tlcance: somewhat clustered- random 
Moran's Index: 0.0477 
Expected Index: -0.0 125 
Variance: 0.0027 
Z Score: 1.148 
p-value: 0.2508 
search threshold: 26. 70km 

Significance: < I% clustered 
Moran's Index: 0. 1263 
Expected Index: -0.0125 
Variance: 0.00 11 
ZScore: 4.129 
p-value: 0.00003 
search threshold: 33.68km 

Figure 18: Moran's l results, 2001 Population, (common scale). 

Results and Discussion 49 



4.3.2.2 High/Low clustering (Getis and Ord General G) 

Figure 19 show the results for the Getis and Ord General G spatial autocorrelation 

statistic. Under the normal metric, (Figure 19a) the results suggest a 95% probability of 

high value clustering. The probability increases to 99% for the results of the 

representative central feature case (Figure 19b, Whitbourne). The two extremity cases 

(Bay de Verde, Figure 19c, and Wabana, Figure 19d) offer conflicting results similar to 

the Moran index. Considering both are extreme case scenarios, similar results were 

expected. It is speculated that this result is due to the multiplicative nature of this statistic. 

The Wabana case (Figure 19d) is near the highest concentration of larger communities 

while the Bay de Verde case (Figure 19c) is furthest from the major population centre of 

St. John's. The choice of 'inverse distance' as the most appropriate option for the 

' conceptualization of the spatial relationship' within the GIS module leverages closer 

communities while diminishing those further away. It is proposed that this resulted in the 

case near the high population area (Figure 19d, Wabana) being more affected than was 

the case at the most extreme distance from it (Figure 19c, Bay de Verde). In any event, 

the results confirm that changing the distance metric between a set of points can produce 

various results for the General G statistic. 
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Figure 19a: Normal projection 
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Figure 19b: Whit bourne tra nsformation. 
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Figure 19c: Bay de Verde tra nsformation. 
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Significance: <5% high clustered 
Observed General G: 0.00003 
Expected General G: 0.0000 1 
Variance: 0 
Z Score: 2.359 
p-value: 0.0 183 
search threshold: 14.84 km. 

Significance: < I% high clustering 
Observed General G: 0.00003 
Expected General G: 0.000009 
Variance: 0 
Z Score: 3.548 
p-value: 0.0003 
search threshold: 26.05 km . 

Significance: no apparent clustering 
Observed General G: 0.0000 I 
Expected General G: 0.000009 
Variance: 0 
Z Score: 0.506 1 
p-value: 0.6 127 
search threshold: 26.70 km. 

Significance: < 1% high clustering 
Observed General G: 0.00002 
Expected General G: 0.000006 
Variance: 0 
Z Score: 4.372 
p-value: 0.0000 I 
search threshold: 33.68 km . 

Figure 19: Getis and Ord General G results, 2001 population (common scale). 
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4.3.3 Distance and ratio value statistics 

Policy analysis often attempts to determine whether localized areas display 

significant variance for a derived attribute value. Comparative analysis requires 

standardized values to counteract the effect of larger centres overwhelming smaller ones. 

Comparison between populations of varying size is commonly achieved by calculating 

proportional values rather than absolute counts. 

Changing demographics often requires a change in focus for service delivery 

depending on the demographic mix of a population. Growth in the relative youth 

component of a population is a harbinger of developing educational and recreational 

needs while an increasing aged population may suggest a pending demand for support 

structures that cater to this group. Clusters of communities that display similar pending 

social needs will rank higher in the delivery of regionalized services under fiscal cost 

benefit considerations. 

The urban rural divide has always been a contentious issue in social policy. The 

expectation of minimum levels of social services regardless of population density 

requires a normalizing approach to compensate for population weighting effects. 

Comparison of populations that differ greatly in size is accomplished by examining 

relative proportions (or incidence) of population characteristics to highlight relevant areas 

and by subsequently taking into account the absolute numbers when considering policy 

implementation. Large population centres will inevitably overwhelm smaller settlements 

when count data is utilized but both are on a more equitable footing when ratio values are 

used. 
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Dependency ratios are useful statistics to determine the overall status of a 

population. In general, it is the ratio of the dependent component of a population to the 

(economic) supporting component. Closer examinations may use either the youth or aged 

components as a sub grouping. Temporal analysis of these ratios can reveal trends with 

respect to anticipated change in dependent groups. 

The remainder of this section will examine the dependency ratios for selected 

communities within the study area. The analysis will focus on whether clustering results 

are markedly changed by using the alternate distance metric procedure previously 

outlined. 

4.3.3.1 Cluster and outlier analysis- Anselin's Local Moran's I. Total dependency 
ratio 2006. 

Figures 20 to 22 are the rendering results 1 of the cluster and outlier analysis -

Local Moran' s I, (LISA) of the total dependency ratio results from the 2006 census. Each 

figure displays the normal Euclidean results on the left with a comparison to each of the 

alternate community transformation result on the right. 

I The following results uses a Z-Scorc rendering technique designed for use with Cluster and O utlier as well as Hot Spot 
analyses. The Z renderer creates a layer file with z scores rendered in the following manner: 

Z scores below -2 standard deviations are rendered dark blue. 

Z scores between -2 and - 1 standard deviations are cyan. 
• Z scores between -1 and + 1 standard deviations are neutral. 

Z scores between 1 and 2 standard deviations are orange. 
Z scores above 2 standard deviations are bright red. 
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Figure 20a: Nonnal projection. Figure 20b: Whitbourne transfonnation . 
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Figure 20: Cluster and outlier analysis - Anselin's Local Moran' s I. Total dependency ratio 2006. 
Wbitbourne transformation (common scale). 
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Figure 21 a : Normal projection. Figure 21 b: Bay de Verde transformation . 
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Figure 21: Cluster and outlier analysis - Anselin' s Local Moran' s I. Total dependency ratio 2006. 
Bay de Verde transformation (common scale). 
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Figure 22a: Normal projection. Figure 22b: Wabana transformation . 
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Figure 22: Cluster and outlier analysis- Anselin's Local Moran' s I. Total dependency ratio 2006. 
Wabana transformation (common scale). 
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Overall, the alternate metric results are indistinguishable from those calculated 

under the Euclidean metric. The communities for which Local Moran's I is significant 

(z> 1.96) are consistently determined under all alternate metrics. The result is somewhat 

surprising in light of the observations for the global Moran statistic that suggest 

clustering is accentuated due to the relative expansion of the intervening metric space. 

The outcome suggests that Local Moran statistic is less sensitive to changes in the 

alternate metric. 

4.3.3.2 Getis and Ord Gi* (Hot spot) analysis rendering. Total dependency ratio, 
2006. 

Figures 23 to 25 show the results of the Getis and Ord Gi* statistic for the total 

dependency ratio from the 2006 census. The Getis and Ord Gi * measure identifies 

clusters of high and low values unlike the LISA statistic which does not differentiate in 

this manner. 
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Figure 23a: Normal projection Figure 23b: Whitboume tiansformation 
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Figure 23: Getis and Ord Gi* analysis rendering. Total dependency ratios 2006. Whitbourne 
transformation (common scale). 
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Figure 24a: Nonnal projection 
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Figure 24b: Bay de Verde transfonnation 
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Figure 24: Getis and Ord Gi* analysis rendering. Total dependency ratios 2006. Bay de Verde 
transformation (common scale). 
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Figure 25a: Normal projection. Fil!:ure 25b: Wabana transformation. 
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Figure 25: Getis and Ord Gi* analysis rendering. Total dependency ratios 2006. Wabana 
transformation (common scale). 
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The most noticeable difference between these two measures is the marked 

increase in the extent of clustering under the Gi * statistic near the point of origin of each 

transformation. Although these two statistical measures are not comparable, both respond 

similarly to changes in distance metrics. 

4.3.4 Comparative results: Dependency ratios 

Analysis using alternate visualizations is cumbersome and potentially confusing. 

Section 4.3.4 will address this issue by avoiding the alternate metric display but 

substituting the alternate values in the normal metric visualization. The result will present 

an alternate version of analysis results calculated within the alternate metric. The 

examples will examine dependency ratios under the two metric spaces but will only 

visualize them in normal space, essentially highlighting the differences that result from 

the two metrics. 

Dependency ratios are useful indices that allow comparisons of populations with 

respect to the relative proportions of general age groups. Broadly, it is measure of the 

relative ratio between the economically dependent proportions (i.e. the youth and aged) 

of a population to the economically productive (working age) component. Often the 

dependent components are determined separately when focusing on either the youth or 

aged age groups. 

4.3.4.1 Getis and Ord Gi* results 

The following example will offer a descriptive comparison of Getis and Ord Gi * 

analysis for total, youth, and aged dependency ratios within the study area. The alternate 

distance metric is centred on the provincial capital city of St. John's, i.e. distances are 

adjusted using St. John's as the central point. The capital city location was chosen to 
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examine a scenario where the major population centre served as the origin of the 

transformation procedure rather than examining a relative position within a network (i.e. 

central, peripheral) considered previously. 

4.3.4.1.1 Aged dependency ratio 

Figure 26 shows the rendered results of the aged dependency ratio under the 

normal metric case. A comparison with the alternative metric space values in Figure 27 

show a strengthening of the significant low value clustering in the St. John's area. Several 

peripheral but marginally significant communities (those within an index values range 

between 1 and 2) under the normal metric become highly significant (greater than 2) 

under the alternate metric. At the same time, several normally insignificant values (0 to 1) 

near the periphery of the significant clusters (west ofWabana) become marginally 

significant (1 to 2). These results suggest that the extent of the clustering increases due to 

utilization ofthe alternate distance metric. 
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Figure 26: Getis and Ord Gi*. Aged 
dependency ratio. Normal metric values. 

4.3.4.1.2 Youth dependency ratio 
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Figure 27: Getis and Ord Gi*. Aged 
dependency ratio. Alternate metric values. 

Youth dependency results (Figure 28 and Figure 29) show similar but more 

localized results. The extension of the high value clustering (near St. John's) reinforces 

the low value clustering of the previous aged dependency ratio results since both 

proportions ofthe population are inversely related. There is some expansion of localized 

significance where low significant neighbours become marginally significant after 

adjustment. 
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Figure 28: Getis and Ord Gi*. Youth 
dependency ratio. Normal metric values. 

4.3.4.1.3 Total dependency ratio 
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Figure 29: Getis aodOrd Gi*. Youth 
dependency ratio. Alternate metric values. 

Total dependency ratio combines both dependent groups and as such is a more 

general comparative measure of economic dependency in the population. The results 

(Figure 30 and Figure 31) show most of the change is in the upper centre (west of 

Wabana) where there is a noticeable increase in marginally significant high value 

neighbours. The lack of any high significance in the upper right (near St. John's) where 

youth and aged were formerly high, suggests a balancing effect between the youth and 

aged components. The overall dependency ratio is less variable than the individual 

dependent components at this scale. 
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Figure 30: Getis and Ord Gi*. Total 
dependency ratio. Normal metric values. 

4.3.5 Results conclusion 
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Figure 31: Getis and Ord Gi*. Total 
dependency ratio. Alternate metric values. 

The consideration of alternate distance metrics can enhance spatial patterns that may 

be understated using a normal distance metric. The previous example has shown that an 

alternate distance metric can augment the degree of clustering observed for Getis and Ord 

Gi* analysis. It is not intended to conclude that the alternate metric is in any way superior 

to established methodology or that it provides better results. What is suggested is that 

under circumstances where interaction between communities is determined by road 

network connectivity, the incorporation of an alternate distance metric can mitigate 

concerns regarding straight line vs. actual travel distances. 
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5. Conclusions 

Spatial statistics have enabled geographers to begin modeling the processes that 

underlie spatial phenomenon. Many of the statistical techniques developed are relevant to 

field phenomenon (geostatistics) or to discrete population phenomenon (point pattern 

analysis) where the intervening distance metric between observations is uniformly 

isotropic. The connectivity among features is often restricted to pathways that mitigate 

the effort required to traverse a given space. When the assumption of underlying 

homogeneity is invalid, measures should be taken to compensate for the distance 

measures used in spatial statistics analysis. The geometry of the connectivity network 

often determines the distance between features, not the minimum linear distance. 

Harvey Miller' s forum address to the Annals of the Association of American 

Geographers (2004) notes that shortest path relations between all pairings of features in 

geo-space are the minimum-cost routes for physical movement or virtual interaction 

between objects. Furthermore: 

In most of the geographic and related literature, nearness is typically 
defmed based on the straight-line segment connecting two locations, that 
is, the Euclidean distance for the location pair. This is only one possibility. 
There are an infinite number of shortest-path relations that obey the metric 
space conditions of symmetry, non-negativity, and triangular inequality ... 
If we are willing to relax these metric requirements so that only the 
triangle inequality condition holds, the resulting space is a quasi-metric. 
This can still support measurement and spatial analysis ... Nearness is a 
central organizing principle of geo-space, but it is not required to be a 
function of Euclidean, metric, or even an empty space. There is a wide 
range of analytical and computational techniques for representing and 
analyzing these spaces and no reason in principle why they should not be 
part of a standard GIS toolkit. (Miller, 2004, para.l) 
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The Abel Prize is the Nobel Prize equivalent for mathematics, (there being no 

Nobel Prize in mathematics). Since the inaugural Abel Prize in 2003, five of the eight 

laureate citations include reference to advances in spatial research areas, in particular, 

manifolds, topology, and geometry. Mikhail Gromov was awarded the 2009 Prize for, 

among other things, "the notion of distance which he has introduced in completely 

surprising situations and exploited with elegance" (Hansen, 201 0). Renewed 

mathematical interest in distance and alternate metrics is an area that holds potential 

interest for spatial statistics as well. 

The research objective was to evaluate whether the substitution of a variable road 

distance metric into spatial statistics calculations would render results that are more 

meaningful. The foregoing research has shown that the radial transformation of point sets 

to reflect actual linear distances between features can have varying effects on spatial 

statistic calculations, depending on the type of data under analysis. Spatial statistics that 

are primarily distance based, such as standard distance and average nearest neighbour, 

show greater impacts due to the proposed transformation technique than other statistical 

subgroups such as the various global spatial autocorrelation measures, primarily due to 

the normalizing tendency of the latter. Certain autocorrelation measure such as Getis and 

Ord Gi * were shown to enhance the extent and significance of spatial clustering. 

The foregoing has noted a lacuna of investigation into the analysis of alternate 

distance metrics within the field of geography and has outlined a pragmatic procedure to 

compensate for alternate distances when calculating spatial statistics. The procedure 

utilizes a variable distance metric that enforces the utilization of network distance 
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measures as well as precludes the consideration of topological inconsistencies that result 

from conducting spatial analyses without regard for underlying topological determinants. 

While the initial heuristic intent was an interim transformation to calculate certain 

distance-dependent spatial statistics, visual aspects of the resulting transformations may 

also offer insight into perception of travel distance. The approach may also hold potential 

for other alternate distance metrics such as interactive social distance where physical 

proximity may be irrelevant. 
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Appendix 1 - Selected standard distance results. 

Table 2: Standard distances. 

Standard Increase Communi!} OfOrigin distance (l,m.)2 pet 
(l,m.) 

St. V incent's-St. Stephen's-Peter's River 68.25 20.00 41.5% 

Point Lance 68.46 20.21 41 .9% 

St. Shott's 69.05 20.80 43.1% 

Coli net 70.48 22.23 46.1% 

Gaskiers-Point La Haye 70.72 22.47 46.6% 

Witless Bay 71.01 22.76 47.2% 

Branch 71.23 22.98 47.6% 

Whitboume 7 1.30 23.05 47.8% 

St. Mary's 7 1.72 23.47 48.6% 

Bay Bulls 71.77 23.52 48.7% 

Holyrood 71.94 23.69 49.1% 

Mount Carmel-Mitchell's Brook-St. Catherines 71.99 23.74 49.2% 

St. Joseph's 72.27 24.02 49.8% 

Riverhead, St. Mary's Bay 73.26 25.01 51.8% 

Old Perlican 73.83 25.58 53.0% 

St. Bride's 74.08 25.83 53.5% 

Hant's Harbour 74.55 26.30 54.5% 

South River 74.76 26.51 54.9% 

Colliers 74.94 26.69 55.3% 

Winterton 74.94 26.69 55.3% 

Bay De Verde 75.03 26.78 55.5% 

Clarke's Beach 75. 14 26.89 55.7% 

Harbour Main-Chapel Cove-Lakeview 75.27 27.02 56.0% 

Heart's Content 75.63 27.38 56.7% 

Conception Harbour 76.00 27.75 57.5% 

Whiteway 76.07 27.82 57.7% 

Avondale 76.15 27.90 57.8% 

Spaniard's Bay 76.27 28.02 58.1% 

New Perl iean 76.27 28.02 58.1% 

2 Standard distance for unadjusted points is 48.25 km. 
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Standard 
Increase 

Communit~ OfOrigin distance 
(km.)2 pet 

(Jun.) 

Heart's Delight-Islington 76.76 28.51 59.1% 

Heart's Desire 76.89 28.64 59.4% 

Bay Roberts 77.02 28.77 59.6% 

Carbon ear 77.02 28.77 59.6% 

North River 77.06 28.81 59.7% 

St. John's 77.29 29 04 60.2% 

Victoria 77.36 29.11 60.3% 

Mount Pearl 77.76 29.51 61.2% 

Cupids 77.94 29.69 61.5% 

Admiral's Beach 78.29 30.04 62.3% 

Logy Bay-Middle Cove-Outer Cove 78.3 1 30.06 62.3% 

Placentia 78.37 30.12 62.4% 

Brigus 78.44 30.19 62.6% 

Salmon Cove 78.49 30.24 62.7% 

Harbour Grace 79.09 30.84 63.9% 

Petty Harbour-Maddox Cove 79. 19 30.94 64.1% 

Trepassey 79.27 31.02 64.3% 

Small Point-Broad Cove-Blackhead-Adam's Cove 79.30 31.05 64.3% 

Bishop's Cove 79.54 31.29 64.8% 

Portugal Cove South 79.80 31.55 65.4% 

Upper Island Cove 80 02 31.77 65.8% 

Biscay Bay 80.46 32.21 66.8% 

Bryant's Cove 80.72 32.47 67.3% 

Paradise, Conception Bay 81.37 33.12 68.6% 

Ferryland 81.69 33.44 69.3% 

Torbay 82.55 34.30 71.1% 

Cape Broyle 83.28 35 03 72.6% 

Flatrock 83.42 35.17 72.9% 

Conception Bay South 83.52 35.27 73.1% 

Fox Harbour, Placentia Bay 84.10 35.85 74.3% 

Aquaforte 8478 36.53 75.7% 

Renews-Cappahayden 85.67 37.42 77.6% 

Portugal Cove-St. Philips 86.44 38.19 79. 1% 

Fermeuse 86.54 38.29 79.4% 

Port Kirwan 86.80 38.55 79.9% 

Pouch Cove 87. 11 38.86 80.5% 

Bauline 90.33 42.08 87.2% 

Wabana 97.82 49.57 102.7% 

Ccs lr 102.45 54.20 112.3% 
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Appendix 2- Selected average nearest neighbour results. 

Table 3: Average nearest neighbour. 

Obscncd l:xpcctcd mean Nearest z-scorc p-\aluc s1gmlicam:c pet 
mean distance neighbour change 
distance rat1o lrom 

basdmc 
Basehne--Euchdean 5.85 6.65 0.880055 -2.06517 0.038907 <5% clustered 0% 

.~ 

Admiral's Beach 8.68 12.87 0.674734 -5.6003 11 0 < I% clustered 62.30% 

Bay Roberts 7.85 10.03 0.782445 -3.745789 0.00018 <1% clustered 59.60% 

Branch 8.76 11.70 0.748402 -4.331923 0.0000 15 <I% clustered 47.60% 

CCS IR 10.65 14.06 0.757404 -4.1 76922 0.00003 <I% clustered 11230% 

Flatrock 8.82 12.90 0.683892 -5 .442637 0 < I% clustered 72.90% 

Old Perlican 7.6 1 10.86 0.70076 -5.152204 0 < I% clustered 53.00% 

Placentia 7.80 11.72 0.665364 -5.761638 0 < I% clustered 62.40% 

Portugal Cove South 8.96 12.71 0.705401 -5.072303 0 < I% clustered 65.40% 

St. Vincent's 8.06 11.64 0.692402 -5.296117 0 < I% clustered 41.50% 

Whitboume 7.45 10.14 0.734976 -4.56309 0.000005 < I% clustered 47.80% 
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