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note that Sutradhar (2003) considered GQL estimation of 3 for stationary longitu-
dinal data under a « ss of a1 )-correlation structures, whereas, as mentioned above,
in the present section, we have chosen the noun-stationary AR(1) correlation models

only.

1.1.3.1 GQL es nation of the regression effects 3
Suppose that the repeated responses, whether binary or count, have a non-stationary

corrclation structure defined as
Ci=(cy): T xT

with ¢, as a known suitak  function of p, z;; and z,, which, for convenience. we
express as
;= h(p.xy, 2,0, (1.23)

Cyy

'h’ being a known suitable functic . To be specific, for the non-stationarv Poisson
AR(1) model (1.21), ¢, has the form given by (1.22). For a non-stationary binary
correlation model (1.27) to be discussed in the next subsection, the form of ¢, is
shown in (1.31). Further, let A; = diagloi, -, O, -+« oupr] with oy = V(Yy).
Under the Poisson AR(1) model (1.21) oy = e = exp(x;,/3), and under the AR(1)
type binary model (1.27) oy has the formula oy = V(Yi) = pa(1 — pege) with po =
exp(zyB)/[1 exp 0]

Now, for ¥; = A}/QCiA}/“’, one ay write the GQL estimating cquation for 4 as

& Oy o SN N

N a_ﬁzi (v — ) = ;){iAiEi (yi — 1) = 0. (1.24)
[Sutradhar (2003)] where X, (2, -, Ta, -+, Typ) is the (p x T) covariate matrix,
with x; = (g1, Ty -+ ,mitp)/. Here (1.24) is an unbiased estimating cquation,
because of the fact = at for X;Aizfl = B, = (biw) (say), E(bi, Yo+ + by, Yor) =
biuyptir + -+ + bigppeir for all uw =1,...,p, where p;, = F(Yy,).

Note that in D, Ui (i1, i) and g = (g1, -+, i) as mentioned

carlier. Further note that when the p paramneter in C; matrix involved in the GQL






P(Yit =1 | yi,t—l) = /\i,t|!—l(yi,t—1)

= pi+ p(Yir—1 — pig—1), for =2,---T. (1.26)

Since i and p; 1 arc the functions of /3, for convenience we rewrite the con  tional

probability function A; y;—1(¥i¢—1) as
Aigle-1(8, p) = i + p(Yi-1 — Hig—1)- (1.27)
It follows from (1.27) that

E(Yn) = Ey,E(Yi|Ya)
= By, [t + p(Yir — pir)]

= Hi2,
by the property that Ey, (Y;1) = pi. It then implies recursively that
E(Yy) e = exp(zyB)/[1 + exp(x, ). (1.28)
Similarly
var(Yy) = E(Y2) = [E(Y))

— E(Y) - [EY)]

= llit(l - Iuit) = Oi s (1-29)

by (1.28) for all t = 1,---,T. Next, the covariances may be obtained in the similar

fashion. For example,

cov(Yi, Yi,z—l) = E(YizYi,t—l) — figfli—1
Ev, . Y EYa | Y1)l tagtioa
EYz,r—l [Yl.i—l{.“il + p(yi.t—l Lt —1)}]

= pﬂi‘t—l(l - Mi,z—l) = 0it—1,t-1- (1-30)
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In Chapter 5, we carry oo the DBCWGQL inferences as in Chapter 4. but deal
with desig based incomplete longitudinal count data. This thesis concludes in Chap-

ter 0.



Chapter °

Incomp! te .ongi udinal n:iry

Model

In some of the longitudinal studies, it may happen that a few respouses from some
individuals are missing during the data collection period. Let RR; be a responsc
indicator variable at met (t = 1,---,T) for the i-th (i = 1,---, K"} individual, so

that
1, if y; is observed
Ry = (2.1)

0, otherwise.

Note that it is quite appropriate to assume that all individuals in the longitudinal

study provide the ronses at the first time point ¢t = 1. Tln  in notation.
Ry=1forali=1,---, K.

Under the assumption that had there been no missing response, the longitudinal bi-
nary data would follow the probab ty model given in (1.26). Thus, the first response

y;1 for the é-th individual follows a binary distribution with parameter
iy = P(Yiy = 1) = exp(z;, 8)/[1 + exp(x;, 3)], denoted by v, ~ bin(p).

-

foralli=1.---, K.
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2.1 Missir Data Process Beyond he First Re-
sponse

Note that the longitudinal responses for ¢ = 2,--- T can be missing either in an
intermittent fashion or monotonically. For simplicity, we owever assume in the
thesis that the missingness occur in a monotonic pattern only. That is, the response

indicators satisfy the followir relationship
Ril 2R122 2 Rit 2 2Ri7'-

Let y§ = (yir,--- ,yiT)/ now 1ote the complete data vector for the i-th individual
and r{ is the corresponding complete covariate matrix. We however assume that
is known cven if some of the  ponses are missing. Thus we will use x; for 2f. Given
Ri= (Ry, -, RiT)’, the com] e data vector yf can be partitioned as 4§ = (Yoi, Yrni ).
where y,; are the values of yf that are observed and ¥,,; denotes the components of
y¢ that are missing. Next, let a = (a, - -, @) denote the vector of parameters of the
non-response model so that  R; | ¢, x;, o) denote the prob: ility distribution of R,
given y¢ and «. Here z; = (x;y, -, Ty, - ,:rl-T)/ is the T" x p covariate matrix with
x; is the p-dimensional co -iate vector corresponding to y;. In this notation, the

responses are MCAR if
P(R; |y, 25,0) = P(Ry | 4, ) (2.2)
(i.c., missingness does not di :nd on the values of the data y¢) and they are MAR if
P(R; |y, wi o) = P(Ri | yoi, 2i, @) (2.3)
(i.c., missingness depends only on the components y,; of yf that arc observed, and

not on the component that are missing). Finally, the missing data mechanism is

nonignorable, if
P(R; | yf, i, ) = P(Ri | Yois Ymis Ti, @) (2.1)

that is. the probability of non-response depends on the missing values, y,,;. and/or

unobserved responses. In the monotonic missing response case, onc may illustrate



































































Table 2.2: Simulated mean (SM), simulated standard error (SSE) and simulated mean
squared error (SMSE) for the MUWMM, MUWGEE(T) and MUWGEE(I) estimates
with 3, = 32 = 0.0, @ = 4; under AR(1) longitudinal correlation structure for binary
data with selected 10wn values of p, based on 1000 sinulations

mUWMM | MUWGEE(T) | MUWGEE(I)

p  Statistic I8 3 31 o 0 3y
0.0 DIVl -U.UUD  U.UZD | -uuuo 0.025 [-0.005 0.025
SN 0.409 0.660 | 0.408 0.661 | 0.408 0.661

SMSE | 01687 0436 | 0.167 0.437 | 0.167 0.437

0.2 DIvL v.uoy  v.009 | 0.007 -0.132 | 0.059 0.010
SSE 0.405 0.658 | 0.408 0.655 | 0.405 0.661

SMSE | 0.168 0.433 | 0.166 0.446 | 0.168 0.437

0.4 SM 0.084 0.099 | -0.037 -0.225 | 0.083 0.099
SSE 0 5 0678 0404 0.644 | 0.415 0.679

SMSE | 0 9 0470 | 0.165 0.466 | 0.179 0.471

0.6 SM 0.104 0.370 | -0.070 -0.216 | 0.103 0.372
T S nme n o TTm T T 0.668

0.584

0.736

0.648
0 9RD

























20

values of «, namely a = 1, 2, 3, and 4, and obtained the so-called likelihood estimate
of a as in Table 2.7. Note tt . the likelihood (2.47) based simulated estimates of «
appeared to be skew  specially when « is large. Thus the simulated median (SMed)

appears to reflect well the true value of the o parameter.
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= FEy,,, Yie1p(1 = p) + pir — pptac—] + Vv ooy e + p(yi—1 — Hig—1)]
= p(1=p)By,,_,(Yir1) + prie = oz + PV, o (Yigo1)
= ppig—1 = P pig F e — PHi P i
= . (3.4)
Next by using the dynamic odel (3.1), one may show that
E(Yityi,t—l) = EY“Al ’/itY;.t—l | }/i.tfl]
= By, Y1 E(Ya | Yie 1)l
Ev,  Wie—i{pa + o(Yiicr — prig-1)}]
= Witktigmr + p(ptig—1 — 12 _y) = PIE,
= Plig—1  Uighlir—1. (3.5)
By similar calculation, it may be shown that for t < t'
E(YyYy) = P(tlft)ﬂit T ighhyy - (3.6)

Hence, it follows that
cou YY) = o I (3.7)

implying that the correlation between y;; and y,, is given by

, _ 1/2
corr(Yy, Yy ) = pt = [/—/jl—t/] fort <t
it

as pointed out in (1.22).
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repeated response ators may be assumed to be correlated following a suitable
correlation structure v ercas :have assumed that they arc independent conditional
on the past responses. These and other similar generalizations are however beyond

the scope of the pre 1t the:
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