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ABSTRACT 

Limit load analysis is an essential tool in engineering analysis. Several methods 

were developed for both the upper and lower bound limit load multipliers. Several 

methods are developed with the objective of having a simplified analysis procedure to 

evaluate the limit load without the use of complex inelastic analysi . The recently 

developed lower bound solutions are either conservative or have some limitations in their 

applications. The redistribution node method was developed earlier as a lower bound 

limit load solution using the iterative elastic finite element analysis. It was applied to 

several two dimensional problems. 

In the present work, the iterative R-Node method is introduced as a tool to 

calculate the lower bound limit load of a component. The method interprets the 

redistribution of the stress to find the reference stress which is used to calculate the limit 

load. The applicability of the iterative R-Node method to complex three dimensional 

problems is investigated. This includes applications with three dimensional shell and 

solid brick elements. Single and multiple loads are also applied to. Also, the results are 

used to help in the stress classification of the finite element analysis results according to 

the American Society of Mechanical Engineers codes. 

Finally, the reference volume limit load analysis was developed in previous 

research using the m 0 upper bound solution. It was shown that it has a high convergence 

rate when compared to the other analysis methods. In this work, the method is 

redeveloped using the classical upper bound multiplier. The applicability of the method is 

verified for complex three dimensional geometries modeled using shell and solid 

elements. 
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CHAPTER I 

INTRODUCTION 

1.1 General Background 

Limit load analysis is an important tool in the design process of mechanical 

components to ensure their functionality within their operating conditions. It determines 

the load that would cause plastic collapse. In addition, it helps in providing an assessment 

of the behavior of the component for other modes of failure. Also, by applying the 

appropriate boundary conditions and geometrical behavior, limit analysis can provide an 

assessment of the integrity of a mechanical component during operation. 

Limit loads are mainly determined using elastic-plastic analysis. For simple cases 

of loadings and geometrical configurations, exact limit loads can be determined using 

analytical approaches. For complex problems, some assumptions are made to ultimately 

attempt an approximate analytical solution. Such procedures are categorized into lower

bound and upper-bound solutions. More complex problems are solved using iterative 

numerical methods such as the finite element analysis. Although the elastic-pia tic 

analysis gives a relatively accurate solution, it consumes a huge amount of time and 

requires advanced computing resources. In addition, considerable input and experience 

are required in defining the convergence criteria of the solution and the conditions for the 

limit load. 

The complexity of the inelastic numerical solution and the significance of the 

limit load calculated in the design of mechanical components motivated the development 

of alternative simplified methods. Several approaches have been developed to calculate 

the limit load. The basic and simple analysis procedure is the linear elastic analysis which 

is used in several approaches to find the upper and lower bound limit loads. The ASME 
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codes have set some guidelines to interpret the results of a linear elastic analysis and 

categorize the stresses in primary, secondary and peak stresses. These categories are used 

to find a design load that will avoid most of the fai lure modes. Inelastic analysis may be 

used to verify the results of the categorization. 

Other robust methods are being developed to find the exact limit load solution by 

using iterative elastic analyses. These methods have been developed extensively over the 

past decades. They utilize the approximate approaches of elastic modulus adjustment 

procedures to investigate the stress redistribution until the distribution corresponding to 

collapse state is reached. The main concern in the repeated elastic methods is their 

convergence. It is necessary to be able to confidently use a tool guaranteeing a result 

within an acceptable range of error and minimum computational effort. In addition, the 

simplified tools should be applicable to all types of geometries and load types. 

1.2 Limit Load Analysis 

Knowing the stress field at any stage of the redistribution, Mura [I] has developed 

the lower bound multipliers m' which was then used to develop multipliers m 1° and m~ 

as upper bound solution and ma and m f3 as lower bound solution. The most commonly 

used multiplier is the classical lower bound multiplier ( m L) in which the limit load is 

calculated based on the maximum stress and the yield criteria. Mura used the upper 

bound m1° and mL to calculate m' which was shown to be a lower bound solution. 

Similarly, Mangalaramanan and Seshadri [2] developed the m a method, and Seshadri 

and Indermohan [3] developed the m f3 method as lower bound solutions. 

Seshadri and Fernando [4] developed the R-Node as a tool to find the reference 

stresses in a component and their locations. This is done by comparing the overall stress 

distribution in every redistribution analysis iteration to the original elastic analysis. 

2 
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Hence, the limit load would be directly proportional to the reference stress as explained 

in earlier research. The reference stress has an advantage of being in direct equilibrium 

with the externally applied load. Therefore, it is shown to be a lower bound solution. 

At the state of collapse, a component could have large dead zones (zero stress) 

and part of it will have both elastic and plastic stresses. This dead zone might not 

necessarily be evident in the initial stress analysis. However, due to the softening of the 

volume that has stresses beyond the yield value, the remaining elastic zone will tend to 

relax. Seshadri and Mangalaramanan [5] observed that the limit load multipliers 

calculated based on the portion of the total volume (the reference volume) that has non

zero stress at the state of collapse would be equal for every iteration starting from the first 

elastic analysis. Hence, they developed a procedure in which the reference volume IS 

calculated starting from the second iteration of the redistribution analysis. 

1.3 Objective of the thesis 

The purpose of this research is to extend the application of the robust limit load 

methods. The objectives are: 

I. Verification of the applicability of the R-Node method as a lower-bound 

solution to various types of problems. A complete computational algorithm 

for the R-Node determination is developed such that it can be incorporated in 

commercial finite element codes for 2D and 3D geometries. 

2. The development of the R-Node method in finding the limiting value of a 

single load in a component subjected to multiple loads. This is achieved by 

performing several successive limit load analyses using the R-Node procedure 

which is made feasible through the fast convergence behavior of the R-Node 

analysis. 

3 
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3. Propose the use of the R-Node stress as a stress classification tool for the 

ASME codes by virtue of the method being a lower bound technique for the 

reference stresses. The reference stresses are classified as primary stresses, 

and their locations are used to define the stress classification lines for the 

ASME guidelines. 

4. The concept of the reference volume is derived usmg the classical upper 

bound solution and its use as the most accurate solution among the different 

methods is verified. 

1.4 Organization of the thesis 

Chapter 1 illustrates the significance of the limit load analysis and the currently 

used methods for calculating the limit load multipliers. The objectives and organization 

of this thesis are presented. 

Chapter 2 details a literature review of the methods used in stress redistribution 

and limit load multiplier calculations. Their basis and assumption are clearly stated. The 

elastic modulus adjustment procedure which is used in the R-Node analysis method is 

demonstrated. The stress classification procedure according to the ASME codes is 

explained in details. The advantages and disadvantages of the above methods are 

illustrated. 

The reference stress concept is the basis of the R-Node method. The concept is 

illustrated in details in chapter 3. The use of the reference stress in the assessment of the 

creep deformation is illustrated and applied to sample problems. The derivation of the R

Node analysis method using the reference stress concept is explained. 

In chapter 4, the iterative R-Node method is introduced. Details of the suggested 

method are illustrated. In addition, the algorithm for the pre-processing, solution and 

4 
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post-processing numerical procedures of the analysis are explained. The procedures are 

used to solve some problems showing its applicability to different geometries, element 

types and levels of complexity. 

In general, pressure components are subjected to several loads simultaneously. 

The use of the R-Node analysis method is extended in chapter 5 to find the limit value of 

a single load in a system of other fixed loads is explained. The procedure is verified for a 

cantilever beam modeled using plane elements. Hence, a pipe bend subjected to internal 

pressure and bending moments is analyzed to find the limit moment for different values 

of the internal pressure. 

The reference volume concept was introduced in previous work as a tool for 

calculating the limit load. The method calculate the upper bound multiplier, m 0 , based on 

the active volume of the considered component that undergoes plastic deformation. This 

accelerates the convergence of the limit load analysis. In chapter 6, the reference volume 

concept is redeveloped using the classical upper bound multiplier, mu. 

Chapter 7 illustrates the use of the R-Node method in stress classification. The 

advantages of the method are explained in comparison to the presently used stress 

classification procedure. The method is applied to several problems modeled usmg 

different element types. The results of the analysis are presented to clarify the benefits of 

using the R-Node method in the ASME stress classification procedure. 

Finally, chapter 8 summarizes the advantages of the proposed methods and the 

original contributions of the thesis are listed at the end of the chapter. Suggestions are 

also provided for carrying out future work along the lines of this thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

Several approaches have been developed in order to calculate the limit load of 

components. The common method is to perform an elastic-plastic analysis of the 

component, and to determine the response to the applied load. The ASME code has some 

guidelines for calculating the limit load from the results of the elastic-plastic analysis. 

However, the inelastic methods of stress analysis can have several complexities. 

Therefore, robust methods are desirable in order to simpli fy the stress analysis procedure 

and for limit load estimation. 

In the past decades, the Elastic Modulus Adjustment Procedure (EMAP) was 

developed in which linear elastic analysis is employed to find the inelastic-like stress 

distribution due to a given applied loading. The method was used mainly for the 

estimation of the limit load. The GLOSS method was also developed by utilizing the 

elastic modulus modification concept to find the stress redistribution due to multiaxial 

creep relaxation. Hence, the stress distribution is used to calculate the reference stress, 

which can be used to calculate the limit load. 
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2.2 Robust Methods in Stress Distribution Analysis 

2.2.1 The Elastic Compensation Method (ECM) 

The aim ofECM is to establish an inelastic-like stress field by modifying the local 

elastic modulus in order to obtain the necessary stress redistribution. Numerous sets of 

statically and kinematically admissible distributions can be generated in this manner, 

which enable calculation of both lower and upper bounds limit loads. 

Mackenzie and Boyle [6] used the concept behind the GLOSS R-Node method to 

develop a procedure for modifying the elastic modulus in several iterations to reach a 

statically admissible stress field equivalent to that of the limit case. At the limit state, 

further modulus modification in the elastic modulus will not affect the stress distribution. 

The elastic modulus of each element in the linear elastic finite element scheme is 

modified as 

(2.1) 

where a-arb is an arbitrary non-zero stress value less than the maximum stress in the 

structure, a~k is the equivalent stress and i is the iteration index ( i = 1 for the initial 

elastic analysis). To guarantee the convergence of the stress redistribution, the arbitrary 

stress darb is calculated using the expression 

(2.2) 

In order to make use of equation (2.2) for the FEA solution, it can be written as 

(2.3) 
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This formula describes how the elastic modulus at a location with the equivalent 

stress CJ'~k is updated every iteration. This procedure continues until suitable convergence 

of a subsequent iteration is achieved. 

2.2.2 The Equivalent Strain Energy Density (ESED) Method 

Molski and Glinka [7] used the concept of total strain energy to find the plastic 

stress and strain in notch root equivalent to the elastic stress-strain field. The strain 

energy per unit volume in an elastic stress distribution is given by 

(]'2 
U=-

2£ 
(2.4) 

When the stress at the notch root increases beyond yield, plastic deformation 

occurs. For a given load, it is assumed that the ratio of the energy absorbed in an ela tic 

response to that in an elastic-plastic response does not change due to small plastic region. 

The relatively high volume of the elastic material surrounding the small plastic zone 

controls the amount of strain energy absorbed by the plastic zone. However, the material 

stress-strain relationship is used to determine the strain energy absorbed at the notch root. 

If elastic-perfectly plastic material model is used, the total strain in a plastic zone will be 

given as 

(2.5) 

The strain energy per unit volume in the plastic zone will be 

(]'2 

u = - y +CJ' & 
2E y p 

(2.6) 

Hence, equating the total strain energies of the elastic stress distribution shown in 

equation (2.4) and the plastic redistribution shown in equation (2.6), the plastic strain can 

be expressed as 
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(2.7) 

The secant modulus Es in the plastic zone is now expressed as the ratio of the 

yield stress to the total strain &, resulting in the following equation 

(2.8) 

where E is the actual elastic modulus. Adibi-Asl et a! [8] used equation (2.8) to modify 

the elastic modulus in the EMAP. The finite element implementation of the equation is 

expressed as 

(2.9) 

where E; is the elastic modulus of element k at increment i . CY
0

, 6 is similar to equation 

(2.1 ). Figure 2.2 shows a graphical interpretation of the ESED method. 

a ei ------------

················ ... 

Fig. 2.2: Schematic of the ESED method 
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2.3 Limit Load Analysis 

The limit load analysis is performed using either linear elastic or elastic-plastic 

analysis. In the linear elastic analysis, the load is applied to a component with an arbitrary 

value, and a multiplier is calculated using the generated stress field. Hence, the limit load 

is given by 

(2.10) 

where m is the limit load multiplier and P is the applied load. There are several 

methods that have been developed to calculate the limit load multiplier as an upper or a 

lower bound. The most commonly used method is the classical lower-bound multiplier, 

which is given by 

(J 
m - .v 

L - [ (Je lnax 
(2.11) 

where [ a-e]max is the maximum equivalent stress calculated when applying the arbitrary 

load P. Hence, the limit load will generate a stress distribution that will be all below the 

yield limit. 

2.3.1 Mura's Lower Bound Theorem 

Mura et al [1] have utilized the variational principles to evaluate a lower bound 

multiplier for a component subjected to prescribed surface tractions. The solution is 

based on the assumption of a perfectly plastic material. The classical lower bound 

solution is based on the concept of having a statically admissible stress field within the 

yield surface. The solution based on Mura's theorem eliminates this by using the concept 

of the integral mean of yield criterion. Mura et al [ 1] showed that a lower bound solution 

for the safety factor m can be achieved by minimizing the functional 

10 
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(2.12) 

where v, is the velocity, s!i is the stress deviation for the actual solution of a limit case, 

'F; is the traction on the surface denoted by ST , and cr , R,, m , ,u and tp are the 

Lagrangian multipliers. cr is a point-function defining the mean stress, R, is a point-

function defining the reaction on the surface Sv, m is the safety factor, ,u is the scalar 

of proportionality, and tp is the y ield parameter. f ( s!i ) is the yield function defined as 

(2. 13) 

where k2 = cr; / 3 . The Lagrangian multipliers are employed in order to determine the 

minimal conditions of the functional. Taking the variation of the functional yields the 

natural conditions 

1 ( ) - 8f · V (2. 14) 2 v . . + v .. - ,u - In 
1.) j.l a 

s!i 

,u ?.. O (2.15) 

( s!i + 8!J.cr) 
1 

= 0 in V (2.16) 

(s!i+ t5!icr)n, = mi; in ST (2.1 7) 

( s!i +o!icr )n, = R, in Sv (2.18) 

f ( s !i ) + tp2 = 0 in V (2.19) 

,Utp = 0 in V (2.20) 

o ijv i.j = 0 in v (2.2 1) 
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(2.22) 

(2.23) 

Equation (2.14) is the plastic flow potential, equations (2.16) to (2.18) are the equilibrium 

conditions, and equations (2.21) to (2.23) define a kinematically admissible velocity 

field. Conditions (2.19) and (2.20) define the admissible domain of the stress field, i.e. 

(2.24) 

(2.25) 

Hence, for example, a stress field that is at the limit state would satisfy condition (2.24). 

Considering an arbitrary solution expressed in terms of the actual solution as 

v~ = v; + 8vi' s~ = siJ + 8siJ, ... , the equilibrium equations being a requirement for a 

statically admissible stress field can be written as 

(2.26) 

(2.27) 

(2.28) 

Hence, using the above equilibrium equations, the functional F can be found for an 

arbitrary stress field using the actual solution expressed as 

F = m - f,u[t &ij8sij+ (8lf') 2]dv- f8,u [f (sn+(lf'0 r]dv 
v v 

(2.29) 

Also substituting with the arbitrary solution into the funcational and 

integrating yields 

F = m0
- f,u[f( sn+(lf'0 t]dv 

v 
(2.30) 

The integral mean of yield criterion for an arbitrary solution can be expressed as 
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fLi [!(sn+(qJ0r]dv = o 
v 

(2.31) 

Hence, 

(2.32) 

Since the first integral in equation (2.29) is a definite positive value, it follows that 

F ~ m - foJL[f(s~ )+(qJ0 r ] dv 
v 

(2.33) 

Since JL0 = JL + OJL, equation (2.31) can be written as 

- JoJL[!(sn+(qJ0 r ]dv = JJL[!(sn+(qJ0 r]dv 
v v 

(2.34) 

Substituting the equation (2.34) into (2.33) and taking the maximum of the integrand 

F ~ m+max[f(sn+(qJ
0r] fJLdV 

v 
(2.35) 

Since 

m = J :J;v;dS = J( sij + oijO" )n;v;dS = J( sij + oijO" )ds + J( sij + oijO") v;,1dS 
~ s v v 

= Jsij +( vi,J + v1,; )dv = JsijJLsijdV = 2e JJLdV 
(2.36) 

v v v 

Rearranging equation (2.36) 

JJLdV = m2 
v 2k 

(2.37) 

Substituting equation (2.37) into equation (2.35) 

(2.38) 

Rearranging equation (2.38) gives a lower bound multiplier m' expressed as 
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(2.39) 

2.3.2 Classical upper bound multiplier 

The classical upper bound solution is based on the comparison of the response of 

an assumed solution to a postulated collapse mechanism achieved by a kjnematically 

admissible solution. Considering a body subjected to some distribution of tractions T 

the factor m by which the loading can be increased before the solid collapses ( m is 

effectively the factor of safety) is estimated. It is assumed that the component will 

collapse when subjected to loading mT. Assuming sif is the deviatoric stress of the exact 

solution and iif is a kjnematically admissible solution for the given problem, it can be 

deduced using Schwarz's inequality that 

(2.40) 

On the basis that (JY = ~3siJsiJ /2 for the exact solution, equation (2.40) becomes 

(2.41) 

Using the principle of virtual work and integrating both sides gives 

J(Ji.dV - J mi;u;dA ~ o (2.42) 
v sf. 

Assuming an elastic stress field s~ calculated using the elastic modulus 

adjustment procedures corresponding to the loading T , the energy balance using the 

principle of virtual work yields 
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v SF 

Substituting equation (2.43) into equation (2.42) 

fai;dv - m fs~t;dv~o 
v v 

Rearranging gives 

This equation is translated to the finite elements form as 

m, =a y N 

Laek£ekVk 
k= l 

2.3.3 The m0 Upper Bound Multiplier 

Chapter 2: Literature Review 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Mangalaramanan and Seshadri [2] have developed an upper-bound multiplier 

from Mura' s formulation. Considering an arbitrary state of stress, equation (2.12) can be 

written as 

F = m0
- f ,u0 [!( sn+( qJ

0 r ]dv 
v, 

(2.47) 

It was shown that the Von Mises yield criteria can be expressed as 

(2.48) 

Substituting equation (2.48) into equation (2.47) gives 

15 



Chapter 2: Literature Review 

(2.49) 

Applying the stationary conditions for the above functional given by oF = 0 leads to 

(2.50) 

The expression for m0 can be obtained as 

(2.51) 

This equation is translated into a summation form in order to be applied using the result 

of a finite element analysis. The finite element form of equation (2.51) is 

(2.52) 

where a-ek and &ek are the stress and strain at the centroid of element k m a model 

comprising N elements. 

Pan and Seshadri [9] have modified the above equation to account for the effect of 

variable flow parameter, f.J. . The new multiplier is given by 

(2.53) 

Substituting for the secant modulus E. = a-ef &e , nf; becomes 
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tBek;:;ek 
N (2.54) 

L:CekO"ek~ 
k: l 

2.3.4 The ma -Method 

The ma -method is an improved technique for obtaining the lower bound limit 

load that was developed by Seshadri and Manglaramanan [2] using Mura's lower bound 

formulation. It is based on the idea of finding an intem1ediate multiplier between the 

lower (m') and upper (m0
) bound solutions. Mura's lower bound multiplier (m') is given 

by 

(2.55) 

Using the EMAP or the ECM methods, both ( m') and upper (m0
) are calculated for 

every iteration of stress redistribution. Therefore, the closer the stress di tributions are to 

the limit state, the closer the multipliers will be to the exact solution. 

An independent iteration variable (; is assumed to characterize continous 

redistribution. Figure 2.3 is a schematic plot of the multiplier as a function of the iteration 

variable. 
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Multipliers 

Fig. 2.3: The variation ofthe upper bound and the lower bound multipliers 

with the iteration variable 

The lower bound multiplier expressed in terms of finite differences is given by 

, ( am ' J 0 
[ am ' J 1 !1m = --

0 
!1m + -- 1:1 -

am (, a-'- mL 
mL '' 

From equation (2.55) the partial derivatives are expressed as 

(2.56) 
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(2.57) 
= 

The fin ite differences in equation (2.56) are expressed as 

(2.58) 

1 l I 
!:t.-=---

mL rna mL 

Substituting equations (2.57) and (2.58) into equation (2.56) gives 
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(2.59) 

Rearranging the coefficients of ma gives 

(2.60) 

where 

A = (:~ J +4(:]' -1, B =-8m"( :l C = 4 (:? (2.61) 

Solving the above polynomial for the larger positive value of ma gives 

(2.62) 
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2.3.5 The GLOSS R-Node Method 

The Generalized Local Stress Strain (GLOSS) R-Node analysis, developed by 

Seshadri (1991 ), is a simple systematic method for inelastic evaluation of components 

and structures on the basis of two linear elastic finite element analyses. The component is 

divided in to "local" and "remainder" regions. The local region undergoes inelastic 

deformation and the remainder region of the component remains elastic. This method 

relates the inelastic multiaxial stress redistribution in the local region to the uniaxial 

stress relaxation process, and assumes that the relation locus is linear for small to 

moderate plastic zone size. Inelastic response of the local region due to plasticity is 

simulated by artificially lowering its stiffness. Then the inelastic strain can be estimated 

from the two analysis results per point on the effective stress-strain curve. 

The GLOSS analysis is based on the follow-up analysis due to creep relaxation. 

The creep and elastic strain rates are is given by 

& = Bd' i = _I ( d CY. J 
c ' e E dt 

0 

(2.63) 

Since the total strain is fixed during creep relaxation, it can be deduced that 

(2.64) 

where I is the constraint or follow-up parameter. Hence, the relaxation modulus can be 

expressed in terms of A as 

E =_I 
r A -1 

(2.65) 

where Er =E) E0 . The relaxation modulus is calculated using two linear elastic finite 

element analyses. The first analysis is carried out for a given component configuration 

that is subjected to various mechanical and thermal loadings, on the assumption that the 

entire material is linear elastic. The second analysis is then carried out after artificially 
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reducing the elastic modulii of all elements that exceed the yield stress, assummg an 

elastic-perfectly plastic constitutive relationship as follows 

(2.66) 

This is based on the assumption that the inelastic elements soften in a deformation 

controlled mode although, in reality, some follow-up might be present. All other elements 

in the component are left unchanged. 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

8 = 90 Load control 

/ 
I 

I 

: 8 = 0 Deformation control 

Fig. 2. 1: GLOSS diagram 
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2.4 Stress Classification 

2.4.1 Definition of Stress Classification 

Overview 

The stress fields obtained by linear elastic finite element analyses are estimated on 

the basis of the combined applied load and the reaction forces. Also, the generated 

stresses must be interpreted according to ASME Section III [10] which has outlined some 

guidelines for dividing the stresses into several parts according to the applied loadings 

and/or geometrical conditions. Each part is compared to an allowable limit. ASME has 

specified three different levels of allowable stresses which are given as S'", f S m , and 

3Sm where S, is the basic allowable stress calculated according to the material 

properties and a design safety factor. Each part or a combination of parts of the total 

stress is compared to one of the allowable stress levels. The main stress categories in 

pressure components are primary, secondary and peak stresses. The primary stress 

category is further divided into primary membrane and primary bending. ASME Section 

III [ 10] gives the allowable limit for each of these categories, and their combinations. 

Hence, it is necessary to identify a clear procedure to divide the total stresses obtained by 

finite elements analysis into the various stress categories defined by the ASME. Figure 

2.4(a) shows a typical stress distribution across the thickness of an axisymmetric finite 

element model of a nozzle connected to a spherical head. It shows bow the total stress is 

divided into the different categories of stress, where the total stress distribution calculated 

based on elastic analysis. 
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Ring 

6 

(a) 

(b) 

Fig. 2.4: Schematic diagram of sample results of stress analysis. 

Using the finite element analysis results, the total stress is monitored at certain 

points and the distribution is then plotted as shown in Fig. 2.4(b ). Hence, in order to find 

the values of the different categories of stress, "stress classification procedures" have 

been developed in conjunction with the ASME Section III guidelines in order to compare 

the results with the suitable allowable limits. 
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Criteria for Stress Categories 

The ASME Section III includes the basic stress classification procedure according 

to the location, origin, and type. Hence, for the general pressure components, it describes 

the different stress categories according to these three aspects. Table 2.1 is part of Table 

NB-3217-1 of ASME Section III which describes the categorization of some selected 

components. 

Investigation of these criteria allows the assignment of the stress to the proper 

classification, i.e., P,n general primary-membrane stress; P~. local primary-membrane 

stress; P~. + ~ primary membrane plus primary bending stress; P~. + Pb +Q , primary 

plus secondary stress; and P~. + ~ +Q + F , total stress. The influence of location can be 

demonstrated by the following example. 

Table 2.1 : Portion of ASME Section III - Table NB-3217-1 

Vessel Location Origin of Stress Type of Stress Classification 
Component 

Cylindrical or Shell plate remote Internal pressure General membrane pm 
spherical shell from 

discontinuities Gradient thm plate Q 
thickness 

Axial thermal Membrane Q 
gradient 

Bending Q 

Junction with head Internal pressure Membrane PL 
or flange 

Bending Q 

Nozzle Nozzle wall Internal pressure General membrane pm 

General membrane PL 

Bending Q 

Peak F 

Differential Membrane Q 
expansion 

Bending Q 

Peak F 
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Outline ofTwo-Dimensional Stress Classification 

The actual classification for two-dimensional stresses is carried out in three steps. 

First, the stress components are calculated on any desired plane. Second, the total stress is 

divided into membrane, bending, and peak and labeled primary, secondary, or peak 

according to location, origin, and type as discussed above. Finally, having classified the 

components, the principal stresses and stress intensities are calculated. 

2.4.2 Method of Classifying Stresses 

Stresses Calculated on a Line 

The first step in the classification of stresses resulting from an axisymmetric 

solution using quadrilateral elements based on constant strain triangles is calculating 

stresses on a desired plane in the axisymmetric model. The plane is represented by a line 

in the cross section being modeled and will be called a "stress classification line" or 

simply a "stress line" in what follows. The stress line is described either by two nodes on 

opposite surfaces of the vessel or by the coordinates of two such points. Stresses in the 

global coordinate directions are calculated at evenly spaced points along the stress line by 

extrapolation or interpolation. 

The final step in the presentation of stresses for classification is to rotate them to a 

local coordinate system which is parallel and perpendicular to the stress line. Having 

stresses on any desired plane in the vessel, the next step is to divide the total finite 

element stress into membrane, bending, and peak categories. Several unsuccessful 

methods tried will be discussed before listing the methods being used. 
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Extrapolat iOn 
- by numer1cal 

mtegratron 

Fig. 2.5: Methods for eliminating peak stress. 

After arriving at definitions for normal membrane, bending, and peak stresses, the 

actual calculations are straightforward. The following definitions were used for normal 

stresses: 

Membrane stress - The constant portion of normal stress such that pure moment acts on a 

plane after the membrane is subtracted from the total stress. 

Bending stress - The variable portion of normal stress equal to the equivalent linear stress 

or equal to the total stress minus membrane in areas where no peak stresses exist. 

Peak stress - The portion of the normal stress which exists after subtracting membrane 

and bending from the total stress. 
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Peak stress 

Bending stress 

Membrane stress 

Fig. 2.6: Definition of bending and peak stress. 

The value of the membrane stress is calculated by dividing the volume under the 

total stress distribution by the area over which the stress acts. Since the total stress 

distribution is described by discrete points, the volume is calculated by integration of 

parabolas which pass through each three consecutive stress values and extend one radian 

in the circumferential direction as shown in Fig. 2.6. With the above definition of 

membrane stress, the positive and negative volumes under the curve of total tress minus 

membrane are equal and the resultant moment of the stress distribution can be calculated 

by summing moments about any point. It is to be noted that the bending stress definition 

depends on the presence or absence of peak stress. If peak stresses are present, the 

bending stress distribution is equal to the equivalent linear stress distribution. As defined 

by ASME Section III, the equivalent linear stress is "the linear stress distribution which 
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has the same net bending moment as the actual distribution." If peak stresses are not 

present, the bending stress is equal to the total stress minus membrane stress. The 

equivalent linear distribution is demonstrated in Fig. 2.6. Also demonstrated in this figure 

is the calculation of peak stress. For shear stress, the membrane portion is defined and 

calculated the same as the normal membrane stress. A bending stress is not calculated. 

The peak stress is set equal to the total stress minus membrane stress. These procedures 

are deficient in that there is a lack of a procedure for linearizing shear stress. 

2.4.3 Stress Linearization in ABAQUS 

An option is available in the ABAQUS commercial code that performs a stress 

classification along a predefined path. The path defmed by two nodes within the model as 

shown in Fig. 2.7. 

-~:_Nz 
\-v2 

Fig. 2.7. Coordinates ofCross Section 

The procedure is split into mam routines, one for the non-axisymmetric 

(cartesian) cases and one for the axisymmetric cases. The program splits the stresses into 

membrane (constant), bending (linear slope along the path) stresses and peak stresses. For 

the cartesian case, the membrane stress is given by 

29 



Chapter 2: Literature Review 

1 ~ 
a "'=- J a .dx 

I t I S 

-~ 

(2.67) 

where cr; is a stress component, t is the length of the path and x s is the coordinate 

along the chosen path. The magnitude of bending stress at the extreme points of the path 

is given by 

(2.68) 

It must be noted that the bending stress at the extremes will be opposite in sign. Hence, 

the peak stress at any point along the path will be 

crP = cr. - (cr"' + crh) 
I I I I 

(2.69) 

where cr; is the total stress calculated in the finite element analysis. 

As for the axisymmetric case, the membrane and the bending stresses are 

calculated in the same manner taking into account the curvature about the axis of 

symmetry and the local curvature within the component. Hence, in this case, the stress 

components do not have similar equations as it was in the non-axisymmetric case. Figure 

2.8 shows the direction notations and the geometry used in calculated the linearized 

stresses. 

30 



Chapter 2: Literature Review 

y 
y 

Neutral Surface 

'--------------- x,R '---------------x,R 

(a) (b) 

Fig. 2.8: (a) Axisymmetric Cross-Section and (b) Geometry used for 

Axisymmetric Evaluations 

The membrane and bending stress classes in the y-direction are given by 

where 

t 2 cos(¢) 
X =---'-~ 

1 I 2R c 

(2.70) 

(2.71) 

is the distance of the neutral bending surface from the center line. If the bending effect 

along the path is ignored, the membrane component is given by 

(2.72) 

Finally, in the hoop direction, the stresses are given by 
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The peak stress for the axisymmetric cases is calculated as in the non-axisymmetric case 

using equation (2.69). 

2.5 Summary 

There are several limit load calculation methods that are based on linear elastic 

finite element analysis. Most of these methods are upper bound that converges to the 

exact solution after several redistribution iterations. The convergence issue was addressed 

with development of different redistribution algorithms. The classical lower bound 

solution will always give a safe limit load. However, in cases with high geometrical 

discontinuities, it would give a highly conservative solution. In addition, the classical 

lower bound solution is very sensitive to the redistribution algorithm as it was observed 

in previous research. It is necessary to establish a lower bound solution that would 

overcome the problems of the classical lower bound solution. In the next chapter, the 

concept of the reference stress is illustrated and used to demonstrate the use of the R

Node method as one that gives a lower bound solution. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

3.1 Overview 

A major concern in the calculations of limit loads is the accuracy of the estimates 

and their reliability. It is shown that the upper bound solutions are robust and provide 

accurate solutions for the limit loads after several iterations of stress redistribution. 

However, lower bound solutions are required for design. In this chapter, the reference 

stress method that is used in the assessment of creep behavior of a component is 

illustrated. Hence, the reference stress is used as a basis to explain the R-Node concept 

which is used to develop a robust lower bound limit load method. 

3.2 Reference Stress 

The Reference Stress Method (RSM) has been proven to be successful by its 

extensive use in the various integrity assessments of components and stmctures with and 

without defects for both below and within the creep range of temperatures. 

One of the approximate methods of reference stress determination relies on prior 

knowledge of limit loads for various configurations and loadings. This is shown by 

interpreting the results of creep analysis and tests. Initially, a mechanical component will 

behave elastically in response to an applied load. It is assumed to undergo creep 

deformation according to Norton's (power law) constitutive relation 

i =Ba'' c (3.1) 

The total strain rate is expressed as 
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(3.2) 

where £e is the elastic, £c is the creep strain rates and B and n are the parameters of the 

creep law. Hence, the stress rate can be expressed as 

(3.3) 

£ is derived using the deformation of the component, which is expressed as a function of 

the applied load and the stiffness of the component. The latter depends on the geometry 

and the material properties. The solution of equation (3.3) yields a function of stress 

versus time, having the creep law exponent n as a parameter, which will have the form 

shown in Fig. 3.1. 

t 

Fig. 3.1: Convergence of the stress towards the stead state. 

O'ss is the steady state stress field that is approached due to creep deformation and is 

dependent on n . The steady state stress field can be derived by setting c.T to zero 

implying no changes in the stress field. Hence, equation (3 .3) becomes 

(3.4) 

34 



Chapter 3: Theoretical Background 

Having the total strain rate i expressed in terms of the applied load, the stead state stress 

is found with n as the only parameter. 

The total work done by an external load applied to surface S can be equated to 

the internal strain energy rate of the total volume V of the component and is expressed as 

W = fPudS = fO'idV (3.5) 
s v 

Since the steady state stress minimizes the work done, O'ss can be found by minimizing 

W for all stress fields that are in equilibrium with the externally applied load. 

The value of n controls that amount of redistribution of stresses within the 

component. n = 1 simulates the pure elastic behavior of the material. At higher values of 

the exponent, peak stresses vanishes as a result of creep deformation, while smaller 

values of the stress increase to balance the externally applied load. Figure 3.2 shows a 

sample steady state stress distribution across the section of beam subjected to bending for 

different values of n [31] . 

Bending 

Stress 

lf----~----'1 ~ 
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Fig. 3.2: Steady state stress distribution across a beam. 

It can be noted that the distributions of the bending stress illustrated in Fig. 3.2 

intersect at the vicinity of the same point at which the stress remains constant throughout 

the redistribution process. This point is referred to as the "skeletal point" and the 

corresponding stress is the "reference stress" ( o-ref ) . Using this concept, Sim [11] has 

observed that the steady state stress field for n = oo in a creep test has the same shape as 

that in the case of plastic collapse. In this case, just before plastic collapse, the stress is 

constant across the section as at the yield limit and in direct equilibrium with the load, 

which is the case with the creep deformation problem having the o-ref as the constant 

stress across the section. This yields the relation between the reference stress and the 

limit load for a perfectly plastic material which is expressed as 

(3.6) 

where P is the applied load and PL is the limit load. Analysis has shown that the steady 

stress is approached after a period of redistribution of 

O"rcf t =-
ref £ · c 

£ ref 

(3.7) 

The reference stress was first calculated by Soderberg [ 12] in 1941 in which the 

multiaxial creep behavior was related to the uniaxial creep behavior. It was observed that 

there were some points where the stress did not change with the different redistribution of 

the stresses based on the creep exponent. The reference stress was found to be in direct 

equilibrium with the applied load. Subsequently, several analytical methods were 

developed to calculate these reference stresses. 
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3.3 Sample Problems 

3.3.1 Cantilever beam 

A detailed analysis of the beam problem is shown to verify the reference stress 

method and its use to assess the creep behavior of a component. In order to derive the 

stress rate function using equation (3.3), the strain rate is first evaluated as a function of 

the applied load. Assuming that the plane sections of the beam remain plane, the total 

strain rate can be expressed as 

& = KZ (3.8) 

where K is the curvature of the beam which is time dependant. Webster and Ainsworth 

[13] showed that, from the equilibrium of the stress with the externally applied load, it 

can be deduced that 

3A " 
K = - 3 Ja-"zdz 

d 0 

Hence, substituting in equation (3.8), the stress rate is expressed as 

. 3EA " " ( J 
d 

a- = y z Ja- zdz- EAa-

(3.9) 

(3 .10) 

The steady state stress field may be obtained directly from equation (3.1 0). Since 

the stress is constant in the steady state phase, the stress rate in equation (3.1 0) will be 

zero, which eliminates that elastic component of the strain rate in equation (3.2). Solving 

for the steady state stress gives 

( 
M )( 1 ) ( z )1/n (Y - -- 1+- -

ss- Bd2 2n d 
(3.11) 

It is evident that the stress distribution is only influenced by the exponent n. At n = oo, 

a-ss becomes a-ref , which yields 
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M 
(j =-

ref Bd2 (3.12) 

This indicates that, knowing the reference stress, the steady state stress distribution can 

be assessed without a complete creep analysis. Using equation (3.11), the creep strain rate 

at the steady state stage is expressed as 

(3.13) 

Or, in terms of the creep strain rate at the skeletal point for n ~ oo, expressed as 

(3.14) 

Considering the creep law, the work rate in the steady state can be expressed 

using equation (3.5) as 

d d 

Wmin = B f a sJdz = 2B f asJdz 
-d 0 

d 
(3.15) 

= 2B fAcr"+1 dz ss 
0 

Using equation (3. 11) of the steady state stress, the minimum work rate is expressed as 

(3.16) 

Another method to find the minimum work rate equivalent to the steady state is to 

consider the stress field of cr ref corresponding to n ~ oo. In addition, a uniform 

distribution of the creep strain rate across the beam section of &ref. Substituting in 

equation (3.3) yields 
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(3.17) 

Comparison of Wrer and W sp with Wmin shows that equation (3.16) is a conservative 

solution for the work rate that is calculated using the reference stress. 

Knowing the reference stress and the equivalent creep strain rate, the total strain 

after time t during the steady state at the skeletal point can be expressed as 

(J 
=~+Ec £ ref 

(3 .18) 

Having the plane section remain plane during deformation, the total strain is assumed to 

be varying linearly across the beam, with the creep strain at the skeletal point as E~r. The 

maximum total strain may be expressed as 

(3 .19) 

For n - H£; the elastic stress at the outer fibers will be CY ref and the elastic strain will be 

CYrer /E. This yields the maximum creep strain to be 

_ ( 1 J CY ref ( 3 J c E - - --+ - E max 2 £ 2 ref 
(3.20) 

The difference between equation (3.14) and (3 .20) shows that the redistribution period 

leads to an extra creep strain of CYrer/2£. 
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3.3.2 Thick cylinder 

The thick cylinder problem illustrates the use of the reference stress methods in 

axisymmetric bodies. Figure 3.3 shows a schematic of the problem considered. The 

cylinder is subjected to internal pressure and p . The internal and external radii are 'i and 

ro, respectively. 

Fig. 3.3: Thick walled cylinder subjected to internal pressure 

The equilibrium of small element yields 

(3 .21) 

The axial stress is balanced with internal pressure applied ends of the cylinder. Hence, 

ro 

2Jr J 0"0 rdr = 7rlj
2 
p (3 .22) 

For small deformation, the hoop and radial strain rates are expressed m terms of 

deformation as 

· c W 
&o =

r 

· c aw 
8 =

r ar 

(3.23) 

(3.24) 
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where w is the radial displacement. In addition, the condition for constant volume yields 

(3.25) 

Substituting equations (3.23) and (3.24) into equation (3.25) gives the solution for the 

deformation rate as 

. c 
w =- (3.26) 

r 

where C is a constant that does not depend on the radius but is a function of time. 

Webster and Ainsworth [13] have shown that the time strain hardening for the cylinder i 

expressed as 

· c - · c - J3 A-"F( ) &0 - - & - - a t 
r 2 (3 .27) 

where (j is the von Mises stress which is expressed as 

(j = J3 (a - a) 
2 0 r 

(3.28) 

The elastic component is ignored to find the steady state stress as shown in the cantilever 

beam. Substituting equations (3 .28) and (3.26) in equation (3 .27), Webster and Ainsworth 

[13] gives 

0" - 0" = cr-21" B r I (3.29) 

where a-0 - a-, = C..r-21" is a constant which is readily obtained by integrating the 

equilibrium equation (3.21) and applying the boundary conditions for the radial stress 

given as 

a I --p 
r r = fj 

(3.30) 
a I = 0 r r=ro 

This yields the radial stress a-, and the hoop stress a, expressed as 
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(3.31) 

(3 .32) 

It can be deduced that the radial stress distribution is not strongly influenced by the value 

of n because of the imposed boundary conditions, while the hoop stress distribution 

changes from negative slope for n < 2 to positive slope for n > 2 with a constant value at 

n = 2. Figure 3.4 shows the radial distribution of the hoop stress calculated using 

equation (3.32) for different values of n. As it was the case in the beam section shown in 

Fig. 3.2, the stress distributions intersect at the skeletal point defining the reference stress. 

O"o 

1.0 

n-+oo 

n = !O 
n = 5 

n =2 

n=L 

r 

Fig. 3.4: Distribution of the hoop stress through the thickness of the thick 

cylinder for different values of the creep exponent. 

The equivalent von Mises stress derived by substituting equations (3 .31) and 

(3.32) in equation (3.28) which yields 
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- J3 
(Y = - p 

2 

[(r; /ro)2/n - (1 -2jn)(r; /r)2/n ] 

[l - (r; /ro)2/n] 

[ (r; /r )2/n - (r; /ro)2/n J 
+ =----;:-----c--=---= 

[t - (r; /ro)2/n ] 

= 
J)p [( r; /r)2/n] 

- n [t- (r; /ro)2/n] 

(3 .33) 

The distribution of the equivalent stress through the thickness is similar to that of the 

hoop stress, except that the stress distribution tends to constant for n ~ oo as shown in 

Fig. 3.5. 

r-------= ......... ~~§2~~;====== n __,oo 

.:==::----- n = 10 n = 5 
n = 2 

n = l 

Fig. 3.5: Distribution of the normalized equivalent stress through the 

thickness of the thick cylinder for different values of the creep exponent. 

The creep strain rate is then derived using equations (3.27) and (3 .33) as 

r 

(3.34) 
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The limit load of the cylinder is derived for a perfectly plastic material as 

(3.35) 

Using equation (3.6), the reference stress is derived as 

(3 .36) 

The location of the skeletal point is found by setting the equivalent stress in equation 

(3 .33) for n = 1 equal to the reference stress in equation (3.36). This yields the radius of 

the skeletal point as 

2ln(ro/'i) 

[t - (r;/ ro)
2

] 

(3.37) 

Using the reference stress, the total strain can be expressed in form shown in 

equation (3.18) in the beam problem. The strain is assumed to vary inversely to the 

square of radius in the cylinder wall. Hence, using the accumulated reference creep strain 

and its location, the maximum strain at the inner radius is expressed as 

E = [ r.p J
2 

( (]"ref + E c J 
max £ ref 

'i 
(3 .38) 

which consists of both the elastic component (a-ref/ E) and the creep component. Again, 

this indicates excessive deformation due to stress redistribution 

3.4 The Redistribution Node Method 

Understanding the significance of the reference stress, it can be observed that the 

analytical methods may not be possible in complex problems. Besides, using Sim's 

approximation given by equation (3.6) requires a prior knowledge of the limit load which 
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may not be readily available for all structures. Seshadri and Fernando [4] showed that the 

insensitivity of the reference stress to the creep parameters has more to do with its load

control nature. The deformation-control stresses are redistributed throughout the 

component with the spread of inelastic action. 

Seshadri and Fernando [4] have used the reference stress concept to develop the 

R-Node method utilizing the GLOSS analysis [4] and the EMAP [6] to redistribute the 

stresses. The R-Node stresses are load-controlled stress and, therefore, are directly 

proportional to the applied load. Hence, any two stress distributions satisfying 

equilibrium with the externally applied loads will intersect at the R-Nodes locations. This 

is because redistribution of stresses reduces deformation-control stresses, at locations 

such as geometrical discontinuities, and increases other zones to preserve the equilibrium 

of the applied loads. 

Therefore, the R-Node analysis method compares the von Mises equivalent stress 

field of the initial elastic analysis to the redistributed stress and the points where the 

equivalent stress remains constant after the redistribution are set to be the redistribution 

nodes (R-Nodes). The elastic modulus adjustment is performed using the equation 

( 

CJa )q 
Eki+l = - Eki 

' Uek,i ' 
(3.39) 

Where aa is an arbitrary stress selected to be within the range of stresses in the 

component. This adjustment is made to the whole element, aek,i is the equivalent von 

Mises stress at the centroid of element k at iteration i and Ek,i is the elastic modulus of 

element k at iteration i. The exponent q controls the amount of redistribution within the 

element. A detailed development of these formal basis for the elastic modulus adjustment 

and related procedures has been provided by Pouter and co-workers [ 14-16]. The 

generalized approach has similarities to the elastic modulus adjustment procedures and 

can be better described as "linear matching methods" where a sequence of linear 

solutions is matched to the nonlinear problem. The elastic modulus adjustment methods 

rely on the convergence of the specific moduli adjustment procedure. This problem was 
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also addressed by Ponter et al. [ 15], who showed that the convergence of suitable 

matching methods is theoretically guaranteed for practically important yield functions. 

Another analysis is performed using the modified elastic modulus. This step 

would be repeated several times to go closer to the stress distribution of the limit solution 

due to the applied load. In every step of the EMAP, the stress distribution is compared 

with that of the initial elastic analysis. Hence, in each stage, the R-Node stress will be the 

intersection of the stress distribution with the initial one. Using the load-controlled 

nature, the R-Node stresses are expressed as 

(JR -Node = aP (3.40) 

where a is a proportionality constant that depends on the geometrical properties and the 

nature of the applied load. Since the stress redistribution using the elastic modulus 

adjustment generates a stress field almost equivalent to that at the state of collapse, the R

Node stress in equilibrium with an arbitrary load is equivalent to the yield stress in 

equilibrium with the limit load. Hence, 

Eliminating the proportionality constant, the limit load is expressed as 

Uy 
mR- Node = _....£....___ 

CTR- Node 

(3.41) 

(3.42) 

Mangalaramanan and Seshadri [2] have used the R-Node analysis to find the limit 

load of different components. Seshadri [17] has used the R-Node analysis to generate the 

limit curve of a cantilever beam subjected to both an axial force and a bending moment, 

which was done by estimating the limit value of both loads at specific ratios. 

3.5 Summary 

The Reference Stress Method (RSM) is a useful tool in the evaluation of the creep 

deformation of components. It is shown that the RSM is a simple and an effective method 

46 



Chapter 3: Theoretical Background 

for finding the steady state stress and the total creep deformation without the complex 

creep analysis. It gave results for the work done and energy dissipation within l 0% error. 

This gave an evaluation of the accuracy of determining the steady state stress and strain. 

The skeletal points are those at which the stress remams constant after 

redistribution independent on the constitutive parameters. Hence, the stress at the skeletal 

point for small values of the creep law exponent is equal to that for high values (near 

infinity) of the exponent. Since, the stress field at high values of the creep exponent 

represents the reference stress field , the stress at skeletal point, which is constant, 

represent the reference stress for any value of the constitutive parameters. 

The reference stress method initiated the R-Node concept for limit load 

calculation using finite element analysis in which redistribution of the stres is performed 

using linear elastic analysis. This is achieved by modifying the modulus of elasticity at 

the integration points in the component simulating the softening of the material due to 

creep deformation. Hence, comparing two simple elastic analyses, the R-Nodes are 

located and the values of the R-Node stress are found which helps in calculating the limit 

load of the component. In the next chapter, the algorithm of the R-Node method is 

explained in details showing its capability of being integrated in commercial finite 

element analysis programs. 
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CHAPTER 4 

ITERATIVE R-NODE ANALYSIS METHOD 

4.1 Overview 

The R-Node stresses are those that are in equilibrium with the externally applied 

load and, thus, are load controlled stresses as described by Seshadri and Marriott [ 18], 

and are linearly proportional to the externally applied load. A single R-Node stress 

through the thickness of a pressure component indicates a dominant membrane stress as 

the case of a thick cylinder shown in the previous chapter, while a pair of R-Node 

stresses indicates a dominant bending stress. 

A statically determinate structure will collapse with the formation of a single 

plastic hinge, while an indeterminate structure requires higher number of plastic hinges, 

depending on its degree of indeterminacy, to collapse. The distribution of the R-Node 

stresses has several peaks throughout the domain. The average of these peaks remains 

almost constant with the redistribution of the stresses since the R-Node stresses are load

controlled. The peaks of the R-Node stresses are at the hinge locations or plasticity 

initiation location defining the collapse state. 

Seshadri and Fernando [ 4] demonstrated the collapse of an indeterminate beam to 

illustrate the concept behind the R-Node peaks. Figure 4.1 (a) shows the indeterminate 

beam with the expected plastic hinge locations. The collapse in the beam is approached 

first by the formation of a plastic hinge at point A , followed by another plastic hinge at 

point B . Figure 4.1 (b) shows the distribution of the R-Node stresses along the beam. 

The collapse of the beam can be represented by the two bar model shown in Fig. 4.1 (c). 

Hence, the load that would cause the first plastic hinge in the indeterminate beam will be 

that which will cause the short bar in the two-bar model to collapse, and the load to cause 
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the second plastic hinge will be that which will cause both bars to collapse. The stress in 

the first bar will be the first R-Node peak stress O"n1 at point A, and the that of the 

second bar is the other R-Node peak stress O"n 2 • The cross section sectional area of the 

bars are selected to satisfy the equilibrium equation 

(4. 1) 

At the state of collapse, the equilibrium requirement is expressed as 

(4.2) 

where (jn is a combined R-Node effective stress. It can be deduced from equations (4. L) 

and ( 4.2) that 

(4.3) 

where 14 =A,j(A, +~)and fl?_ = ~/(~ + ~).Using the condition that the deflection 

of the two bars is equal, the R-Node stresses in the bars are expressed as 

(4.4) 

Substituting equation ( 4.4) into ( 4.3), the limit Load can be expressed as 

(4.5) 

Seshadri and Fernando [4] have studied two cases for equation (4.5) to derive the R-Node 

effective stress (jn . In case 1, it is assumed that EJL, = E2/L2 . This yields 

PL = [A,+ ~]O"Y from equation (4.5). Hence, from equations (4.4), the R-Node stresses 

wiLL be equal and expressed as 

(4.5a) 
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This can be considered to be a trivial solution since there is no unique R-Node stress for 

every bar. 

In case 2, it is assumed that A1 = ~ =A. The R-Node stresses from equations 

(4.4) can be expressed as 

(4.5b) 

Substituting equation (4.5b) in equation (4.5), the R-Node effective stress can be 

expressed as the arithmetic average of the R-Node stresses given by 

(4.6) 

This illustrates the fact that, since at collapse the stress at the pia tic hinges is the 

yield stress for an elastic-perfectly plastic material, therefore the redistribution analysis 

makes the peak R-Node stress approach the same average value as shown in Fig. 4.1 (b). 

Hence, for a general problem, the R-Node effective stress can be expres ed as 

N 

LCYn; 
ern = .1=!.__ (4.7) 

N 

where ern; is the R-Node stress at peak i and N is the number of peaks. Hence, the limit 

load can be expressed as 

(4.8) 
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Location along the beam 
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-- Initial R-Node stress 

distribution along the beam 

------ R-Node stress distribution 

along the beam at the state 

of collapse 

Fig. 4. 1: (a) Schematic diagram of the indeterminate beam. (b) Expected 

distribution of the R-Node stress along the beam for the initial and an 

intermediate iteration. (c) Two-bar model representing the collapse of the 

indeterminate beam. 

The R-Node stress distribution may not be always easy to interpret as it is theca e 

for the indeterminate beam shown in Fig. 4.1 (b). The approximate extrapolation of the 

stresses within an element may cause the R-Node stress distribution to have some virtual 

peaks at several locations in the component. Seshadri [ 19] illustrates the distribution of 

the R-Node stress in a torispherical head shown in Fig. 4.2. The comparison of the first 

and second analysis showed to have 4 peaks for the R-Node stresses. However, further 

redistribution of the stresses eliminated the virtual R-Nodes and real ones remained. This 

shows the transient nature of the virtual R-Nodes. 
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Fig. 4.2: (a) Torispherical head configuration. (b) R-Node stress 

distribution for the first and second iteration [ 19]. 
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The iterative R-Node limit load analysis method developed in the present work 

uses the maximum R-Node peak instead of the average of all the peaks. The use of the 

maximum R-Node has two advantages: 

1 - Guarantees having a real R-Node stress peak avoiding any inaccuracy due to virtual 

R-Node stress peaks. 

2 - From equation (4.7), the average R-Node stress has the feature 

(4.8a) 

Hence, the limit load based on the average R-Node stress is always greater than or 

equal that based on the maximum R-Node peak. This guarantees a lower bound 

solution for the limit load_ 
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4.2 Iterative R-Node Analysis Algorithm 

The R-Node stress values and locations are computed by comparing the stress 

distribution of two elastic analyses. In the first analysis, the stresses are computed using 

the actual modulus of elasticity of the material used. In the second analysis, the elastic 

modulus is adjusted using any of the methods explained earlier in chapter 2 and a new 

stress distribution is calculated. In this research, a code is written for the iterative R-Node 

method to be used in ABAQUS. In the developed algorithm, the elastic modulus is 

adjusted at the integration points as opposed to the centroid used earlier in the R-Node 

analysis method. This gives a better definition of the stress variation within the element 

and thus improves the results for coarse mesh. The iterative R-Node method is used with 

different types of elements to verify its applicability. 

In implementing the R-Node analysis in ABAQUS, a user-defined FORTRAN 

subroutine UMA T for the material is created. Figure 4.3 shows a flow-chart describing 

the subroutine. 

Set £ '" to 
actual elastic 

modulus 

Yes 

Update £ '" 
using a. and ~----' 

a'" e 

Calculate the 
stress 

components 

Calculate and 

store a'; 

Fig. 4.3: Flow-chart of UMA T subroutine. 

Finish 
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The UMA T subroutine is called for every Gaussian integration point. The total 

and incremental strains are passed as parameters to the subroutine, the stress components 

are calculated according to Hooke's law and the equivalent stress is calculated according 

to von Mises criteria. At the beginning of the analysis, during the first increment, there is 

no change in the elastic modulus. The calculated equivalent stress and the initial value of 

the elastic modulus are stored for every Gaussian integration point. If it is not the first 

increment, the program checks if it is the first call for the subroutine in that increment. If 

so, the subroutine calculates the arbitrary stress according to equation (2.3) using the 

stored stress which would be that of the previous increment. In any case, the subroutine 

proceeds to calculate the new elastic modulus for the associated material calculation 

point. This is done by the equation 

E ".i+l = ( a a . Jq E n.i 

a .n.l 
(4.9) 

where a-.
11

; is the equivalent stress at the integration point n , E" ; is the elastic modulus , , 

stored during the previous increment and 0"
0 

is the arbitrary stress calculated at the first 

call of the subroutine during the current increment. q is a redistribution constraint factor 

which controls the amount of redistribution for every iteration. A value of zero 

suppresses the redistribution and a value of 1.0 adjusts the elastic modulus according to 

the actual value of the stress. For the iterative R-Node analysis method, the value of q ts 

assumed to be 1.0. 

Once the analysis is performed, a Python script is called to read the results and 

find the R-Node locations and stress value. The script reads the values of the extrapolated 

stress at the nodes for every element. It compares the stresses calculated in the fir t 

iteration with that in the other iterations. Figure 4.4 shows a plane quadrilateral element 

illustrating the distribution of the stress within the element for the first and second 

iterations. The comparison is done within the adjacent nodes in the elements. Hence, for 

the element shown in Fig. 4.4, an R-Node is found between nodes 1 and 2, and between 

nodes 3 and 4. 

54 



Chapter 4: Iterative R-Node Analysis Method 

R-Nodes Stresses 

R-Nodes Locations 

X 

Iteration I 
2 

Iteration 2 

Fig. 4.4: Schematic diagram showing the procedure for calculating the R

Node stress and location in a plane element using the stress distribution 

within the element. 

The procedure is also used to find the R-Node stresses and locations in a solid 

brick element by handling every pair of adjacent nodes separately. 

Mangalaramanan and Seshadri [2] have showed that the factor m0 can be useful 

in assessing whether or not limit stress distribution is being approached during successive 

elastic iterations. m0 should monotonically decrease and converge for a stress 

redistribution that is approaching a limit state. Hence, 

(4.10) 

Should this not occur, i.e., if there is an increase in the value of m0 as compared to its 

value during the previous iteration, then the theorem of nesting surfaces ([2]) would be 

violated implying that the stress distributions are not on a redistribution path leading to 

limit state. In this case, based on several trials, a slower redistribution rate would improve 

achieve condition (4.10). A value of q in equation (4.9) less than 1.0 will slow down the 

redistribution and, hence, the convergence rate. The response of a redistribution analysis 
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to the change in q varies according to the geometry and the applied load. Hence, the 

selection of the value of q is based on trials and observation. 

4.3 Applications 

The simple problem of a thick cylinder modeled using plane strain elements is 

also analyzed using the iterative R-Node method. In addition, to illustrate the effect of 

indeterminacy of the structure, a detailed analysis of the indeterminate beam is illustrated. 

Finally, an oblique nozzle studied experimentally by Sang et a! [20] is analyzed using the 

R-Node method and the results are compared to the experimental values. The oblique 

nozzle is modeled using shell elements. 

4.3.1 Thick Plane-Strain Cylinder 

The thick cylinder is modeled using 4-noded plain strain elements. The inside 

diameter of the cylinder is assumed to be 6 in. and the outside diameter is 18 in. The 

elastic modulus is 30xl06 psi and Poisson's ratio is 0.49. The value ofthe Poisson' s ratio 

is selected near 0.5 to account for the incompressibility of the material due to plastic 

expected plastic deformation. An arbitrary pressure of 100 psi is applied. A quarter of the 

cylinder is modeled as shown in Fig. 4.5. Figure 4.6 shows the redistribution ofthe stress 

through the wall thickness. It can be seen that the stresses approach a single value which 

is the expected distribution at collapse. Figure 4.7 shows the convergence of the limit 

load multipliers indicating the exact solution, upper bound, lower bound and the iterative 

R-Node analysis. It can be observed that the R-Node solution converged efficiently to the 

solution derived using equation (3.35), and faster than the classical lower bound solution. 
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. ' 

Fig. 4.5: Meshing of the plane-strain cylinder with 6 inches inner diameter 

and 18 inches outer diameter. 
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Fig. 4.6: Stress redistribution through the cylinder wall using elastic 

compensation methods. 
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Fig. 4.7: Comparison of the convergence of the limit load multipliers 

calculated for the thick cylinder. 

4.3.2 Indeterminate Beam 

The beam modeled in this example is solved both analytically and using the R

Node method to find the collapse load. The length of the beam is 20 inches with unit 

height and width. The beam is subjected to a distributed load as shown in Fig. 4.8. For 

the finite element mesh, the plane stress elements are used. 

For the R-Node analysis, the user-defined subroutine UMA T developed earlier is 

used with the modification of the stress-strain relation to account for the plane stress 

formulation to define the behavior of a user material. 
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Fig. 4.8: Schematic diagram of the indeterminate beam with length of20 

inches and unit height and depth subjected to distribution load. 

The problem is solved analytically by Mendelson [21]. The bending moment due 

to the distributed load is expressed as 

(4.1 0a) 

The equation for the load to cause the initial yield is given by 

(4.11) 

for a unit height and depth. In addition, the load to form the first hinge is given by 

(4. 12) 

and the load to cause collapse is given by 

W _ 11.65M0 _ 1 7.48My _ 2 .91CTy 
LL - Lz - Lz - ~ (4. 13) 

where My is the moment that causes initial yielding and M0 is the moment that causes a 

full plastic hinge in the beam. 

Figure 4.9 shows the von Mises stress distribution through the beam for the first 

and last iteration at point A. It is observed that the stress distribution at the last iteration 

tends to have a uniform value corresponding to the hinge formation at the state of 

collapse. The point of intersection with the initial stress distribution indicates the R-Node 

location and stress value at the specified section. Figure 4.10 shows the distribution of the 

R-Node stress along the beam. This is done by checking for the R-Node stress at every 
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section along the beam. It is observed that there are two peaks for the R-Node stress. In 

the first iteration, the peaks are not equal indicating a sequence of hinge formation in a 

collapse mechanism. Hence, a hinge will be formed first at point A, and then another 

hinge is formed at point B. 
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Fig. 4.9: Comparison of equivalent stress distribution along the height of 

the beam in the initial iteration to that in the last iteration of stress 

redistribution. 

For a perfectly plastic material, when the hinge is fom1ed the stress remains 

constant at the yield limit ay. Therefore, at the collapse state, the stress at the hinges will 

have the same value. This is indicated by the R-Node stress distribution at the Ia t 

iteration shown in Fig. 4.10 as R-Node stress peaks approach an average value. 

Considering only maximum R-Node peak, Fig. 4.11 shows the convergence of the limit 

load using classical upper bound solution, the classical lower bound solution and the 

iterative R-Node method, compared to the analytical solution expressed by equation 

(4.13). 
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Fig. 4.1 0: R-Node stress distribution along the beam for the first and last 

iteration of the redistribution analysis. 

..... 
. ~ 
c. 
"" :; 
E 

"'0 
ro 

_Q -.E 
~ 

C Analytical lterati-..e R-Node " mL 

3.5 ~--~--~----~--~----~--~--~----~--~--~ 

3 

2.5 

2 

1.5 

1 
0 2 

' >.. 

.d 

ff 

L _L_ 

4 6 

., .. 
" 0 

~'I 

--'--
8 10 

Iteration 

0 " 0 " 0 

" 
!' "II 1\ It 

ij 
,. I< !I 

'----'- '--- j_ 

12 14 16 18 20 

Fig. 4.11: Comparison of the convergence of the limit load multipliers of 

the indeterminate beam. 
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4.3.3 Oblique Nozzle 

The oblique nozzle has numerous parameters in its geometry which affect its 

overall strength. Figure 4.12 shows a cross-section of an oblique nozzle connected to a 

pressure vessel that was used for experimental and numerical analysis of the stress 

distribution and the limit load by Sang et al [20] . The basic geometrical parameters are 

the nominal diameters and thickness of the vessel, the diameter and thickness of the 

nozzle and the oblique angle. The model is analyzed for its limit pressure and compared 

with the experimental results presented by Sang et al [20]. 

The geometry consists of a pressure vessel with two torispherical heads, with a 

closed nozzle connected at 30° angle as shown in Fig. 4.12. The inner diameter of the 

vessel is 60 em and the outer diameter of the nozzle is 32.5 em. The length of the shell is 

2.4 meters. The length of the nozzle along the center line is 60 em. The thickness of the 

vessel and the nozzle is 6 mm. The geometry is meshed using S4 4-noded shell elements 

with 4 integration points as shown in Fig. 4.13. The model is analyzed using the iterative 

R-Node method, the results of which are compared to experimental values from Sang et 

al [20], the classical upper-bound and classical lower-bound solutions. 

The subroutine used in this problem is the same as that used in the previous 

example. The limit load calculated using the iterative R-Node analysis compares well 

with the experimental value as shown in Fig. 4.14 and summarized Table 4.1 . The 

discrepancy in the value of the load to cause the initial yield is due to the fact that, in 

Sang et al [20], the stress is measured at a point that is slightly farther from the point of 

maximum stress. 
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Fig. 4.12: Schematic diagram of the oblique nozzle as modeled by Sang et 

al [20]. 

Fig. 4.13 : Mesh of the oblique nozzle using shell elements. 
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Fig. 4.14: Comparison of the convergence of the limit load multipliers of 

the oblique nozzle. 

Table 4.1: Oblique nozzle analysis results 

Load 

PY (MPa) 

PLL (MPa) 

Iterative R-Node 

0.40 

1.45 

m~1 = 5.299, m~~2 = 5.286 => m~1 - m~2 > 0 

PLL /1.5 = 0.98 MPa 

* Experimental result from [20] 

4.4 Summary 

Elastic-Plastic FE 

1.00 

1.48* 

The iterative R-Node method is implemented in the ABAQUS commercial finite 

element analysis program through a user defined material. In the developed code, the 

constitutive relation is calculated at the integration points according to the stress history. 

Thus, a redistribution of the stresses is calculated at several increments until a steady 
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state is reached showing the stress distribution at the state of collapse. The R-Nodes 

location and stress values are calculated after the redistribution analysis is performed by 

comparing the stress field of each increment to that of the first increment which is 

performed using the actual material properties. 

The developed algorithm is applied to several problems of different forms of 

finite element simulations. It is applied first to a thick cylinder modeled using plane strain 

elements and an indeterminate beam problem modeled using plane strain elements, the 

results of which are compared to the respective analytical solution. The method is also 

applied to a complex oblique nozzle problem modeled using shell elements, the results of 

which are compared to experimental results. It is shown that the R-Node analysis results 

compared well with other limit load analysis methods using the same simplified linear 

analysis method. In the next chapter, the R-Node analysis method is applied to further 

complex problems of multiple loads. 
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SEQUENTIAL MULTIPLE LOADS 

5.1 Overview 

If multiple loads are applied, the limit value of each load would have the same 

form as equation (2.1 0) provided that the R-Node stress would be evaluated on the basis 

of the application of the combined loads. If it is required to determine the limit of one of 

the loads while fixing the others, the analysis is performed several times with different 

trials of the loads until the required fixed load is achieved. A imple procedure i 

illustrated that directs the trials towards the required solution. 

5.2 Iterative Limit-Load Analysis 

A sample problem of the cantilever beam subjected to two different loads is 

considered to help illustrate the procedure. Figure 5.1 illustrates the beam being subjected 

to both an axial force and a distributed load. The reaction moment at point A is 

expressed as 

WL2 

M = -
2 

(5.1) 
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Fig. 5.1 : Schematic diagram of the cantilever beam with length of20 

inches and unit height and depth subjected to distribution load and axial 

force. 

Figure 5.2 illustrates the limit curve of the beam. To find the limit distributed load 

for a fixed axial force ~, an initial R-Node analysis step will be attempted using an 

arbitrary distributed load combined with the required fixed force which is indicated by 

point A. This will give a value for m which is the multiplier for this combination of loads 

to give the combined limit load which would be at point A '. This value of m will be used 

in another R-Node analysis using the same fixed axial force ~ , but with the limit 

distributed load calculated at point A'. This loading is indicated by point B. The procedure 

will be applied to move from point B to points C and D. The more the iterations, the 

closer one gets to the exact solution. However, by several trials of load combinations, it 

was found that about 4 to 5 iterations would give an appropriate result. 

If the fixed axial force is small, the initial distributed load value used in the R

Node analysis would affect the number of iterations required to reach the final answer. If 

the initial value of the distributed load is small, the number of iterations will be large. 

This is because initial value of the combination of the two loads is far from the actual 

limit curve. To overcome this problem, an initial value must be estimated for the 

distributed load that would be close enough to the final answer in order to have a 

minimum number of iterations. A good estimate can be obtained by initially assuming a 

linear limit line as shown in Fig. 5.3. The linear limit line is found by calculating the limit 

distributed load and axial force separately using two R-Node analyses. Point A is the 

intersection of the vertical axis at P' = ~ , which is the fixed axial force, and the linear 
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limit line. Knowing point A, the iterative R-Node procedure could be applied. It can be 

seen from Fig. 5.3 that the number of iterations is reduced when compared to the scheme 

shown in Fig. 5.2, reaching a solution very close to the analytical value. 

Fig. 5.2: Iterative-limit load analysis illustrated on the limit curve of the 

determinate beam. 
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Fig. 5.3: Iterative-limit load analysis with an improved estimate of the 

initial value illustrated on the limit curve of the determinate beam. 

5.3 Applications 

The procedure of the iterative limit load analysis is applied to the cantilever beam 

as illustrated in the previous section. Its results are compared to the analytical solution. 

Another example that is used to illustrate the use of the procedure is the problem of a 

pipe bend subjected to both internal pressure and bending moment. The pipe bend has 

been a problem of great interest in many researches. It has a very complex response to in

plane and out-of-plane moments. Also, the variation of the limit moment with the change 

in the internal pressure has been of great interest and has been studied numerically and 
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analytically. In the present work, the pipe bend is analyzed for in-plane bending moment 

using the R-Node and the iterative R-Node analysis. The results of the analysis is 

compared to previous work done by Shalaby and Younan [22) and Mourad and Younan 

[23] who analyzed the pipe bend as a stand alone component checking for the effect of 

the internal pressure on the in-plane and out-of-plane limit moment, respectively. Also, 

the results of the R-Node analysis will be compared to that of Chattopadhyay [24) who 

analyzed the pipe bend analytically, and developed a limit equation for the moment and 

the internal pressure. 

5.3.1 Cantilever Beam Model 

In this model, a sample cantilever beam illustrated in Fig. 5.1 is modeled having a 

length of 20 inches, a height of 1 inch and a depth of l inch. The elastic modulus i 

30x 106 psi, the yield strength is 30x 103 psi and the Poisson' s ratio is 0.49. The model is 

developed using 4-node plane stress elements. On the basis of several trials, it was found 

that the R-Node stress can be found with an acceptable accuracy u ing 11 nodes across 

the height of the beam. Therefore, the beam is divided into 200x l 0 elements. 

The nodes at the fixed end are constrained in the x-direction, and only the mid 

point along that side is constrained in the y-direction. The nodes at the free end are 

coupled together in a way such that the slopes of the lines between the adjacent nodes 

would be equal. A variable pressure is applied along the free edge equivalent to the 

designated combination of moment and axial force. 

First, different combinations of the bending moment and axial force are applied to 

the beam to demonstrate the iterative R-Node analysis and generate the limit curve of the 

beam. Also, the limit load is calculated using the classical upper-bound multipliers given 

by equation (2.46) and the classical lower-bound multiplier given by equation (2.11) that 

use the same results of the finite element analysis. The results of the finite element 

analysis are compared to the exact solution which is governed by the equation 
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(5.2) 

where MY is the moment to cause initial yielding in bending and ~ is axial force to 

cause initial yielding in tension. 

Then the iterative limit load analysis using the iterative R-Node method is used to 

find the limit moments for different value of the axial force. These results are compared 

to that of equation (5.2). The problem is analyzed using the Elastic Modulus Adjustment 

Procedure by Seshadri and Fernando [4]. Figure 5.4 shows a sample calculation for the 

limit multiplier of the beam subjected to a distributed load of 90 N/m and an axial force 

2000 N. The results show that the R-Node analysis converges effectively as a lower 

bound towards the exact solution, which is also approached by the upper bound solution. 

~ -- Analytical R-Node mL mu I 

0.75 

0.7 

0.65 

0.6 
.~ g. 0.55 
'3 
E 0.5 '0 
l1l 
.Q " , . - 0.45 .E 
::::; - '\- I\ I" 1\ 1\ 

0.4 ~ 

0.35 

0.3 

0.25 L _!__ 

0 5 10 15 
Iteration 

Fig. 5.4: Limit load multiplier of the cantilever beam subjected to 90 N/m 

distributed load and 2000 N axial load. 
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Figure 5.5 shows the limit curve comparing the analytical solution to the R-Node 

and iterative limit load analysis. The R-Node analysis is performed for different 

combinations of the axial force and the bending moment. The iterative limit load analysis 

is performed for arbitrarily selected values of the axial force to find the limit moment. 

The figure illustrates the convergence of the iterative R-Node analysis as well as the 

iterative limit load analysis to the analytical solution of the limit curve for all 

combinations of the load. 
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Fig. 5.5: Limit curve of the cantilever beam. 

5.3.2 Pipe Bend Model 

The pipe bend to be analyzed in the present work is similar to that presented by 

Mourad and Younan [23]. The bend factor h of the elbow is defined as 

(5.3) 

where R is the radius of curvature of the elbow' s center-line, t is the pipe wall thickness 

and r is the mean pipe radius. The bend factor of the elbow presented in the present work 
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is 0.1615, which is the one selected by Mourad and Younan [23], the nominal pipe radius 

is 8 in, the thickness is 0.4307 in and the bend radius is 24 in. Mourad and Younan [23] 

have modeled the elbow standalone using the special 2-node elbow element. However, in 

the present work, it is modeled using shell elements to be able to apply the Elastic 

Modulus Adjustment Procedures. In order to be able to apply a moment to circular edge 

of the elbow, the nodes at the edge must be coupled together to a single point at which 

the load is applied. However, this would prevent the edge from deforming freely (either 

warping or ovalization). Therefore, two pipes connected to the elbow, as illustrated in 

Fig. 5.6, are modeled so that the load would be applied to the end of the pipe and, thus, 

transferred to the elbow allowing its the edge to deform without any constraints. The 

length of the pipes would be four times the diameter in order to reduce the effect of the 

pipe ends on the response of the elbow. It must be noted that a standalone elbow would 

give more conservative results for the limit load of the bending moment as Mourad and 

Younan [23] have indicated. 

The model used for elastic-plastic material is meshed using 4-node shell element 

with 5 section points along the thickness. Figure 5.7 shows the mesh for the whole 

geometry. The model is fixed at one end as indicated in Fig. 5.6. The material model used 

is elastic-perfectly plastic Stainless Steel 304 having an elastic modulus of 28.1 x 106 psi, 

a yield stress of 39.44x 103 psi and a Poisson's ratio of 0.28 at room temperature. The 

model used for the EMAP has the same configuration except that the shell element shall 

have 10 layers and a Poisson's ratio of 0.49. The layers are introduced to be able to find 

the R-Node stress through the thickness as explained earlier in Section 4.2. 
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Fig. 5.6: Schematic diagram of the pipe bend. 

The model is analyzed for the limit in-plane closing and out-of-plane moments, as 

indicated in Fig. 5.6, at various internal pressure levels. The assumed pressure range 

would start from zero to the pressure to cause initial yielding. The limit loads are 

calculated using the elastic-plastic analysis, iterative R-Node and the other limit load 

analysis methods used in the beam problem to verify the convergence of the R-Node 

analysis for combined loading of the component. Then, the limit curve for in-plane and 

out-of-plane moments is generated using elastic-plastic analysis and R-Node analysis for 

comparison. The iterative limit load analysis is used to find the limit moments at specific 

values of the internal pressure. The results of the iterative R-Node analysis are compared 

to the generated limit curve. 
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Fig. 5.7: Meshing of the pipe bend. 

The results of the R-Node analysis of the pipe bend compared well with the other 

analysis methods. Figure 5.8 shows the limit load multipliers calculated from the results 

of EMAP analysis. The R-Node analysis converged as a lower bound to the solution 

estimated by the elastic-plastic analysis and the upper bound multipliers. Also, it was 

observed that the classical lower bound solution tends to diverge just after the second 

iteration because of several sources of local high stress points in the complex structure 

due to the complexity ofthe geometry. 
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Fig. 5.8: Limit load of the pipe bend. 

As it is expected, the limit moment decreases with an increase in the internal 

pressure. This is indicated in Figs. 5.9 and 5.10 showing the limit curve of the in-plane 

and out-of-plane moment, respectively, versus the internal pressure for the pipe bend 

estimated using the R-Node and plastic analysis. The results of the iterative limit load 

analysis are also shown illustrating their match with the plastic analysis. Table 5.1 shows 

the number of iterations used to calculate the in-plane and out-of-plane moments using 

the iterative limit load analysis. It can be observed from Table 5.1 that the solution 

converges faster for small values of the pressure and, consequently, small values of the 

slope of the limit curve. The same observation was made from the results of the limit load 

analysis of the in-plane and out-of-plane moment. 
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Fig. 5.9: The limit curves of the in-plane closing moment versus the 

internal pressure of the pipe bend. 

I o R-Node x Iterative R-Node o Plastic I 

2500 
I 

d, 0 0 I 
<> t<> 0 ¥ 0 <> : 0 D o *'0 ,....., 

·= 2000 0 0 

~ 
0 

<IJ O ' 
0 ~ 0 

o <Po 

~ I 6Jo~ 
1500 "<> ' g » o 

E 
I Q O I 

0 0 <> 
E I 
II) 1000 _j 
c 
"' a. 

<.!. 
9 
:5 500 _ _! 
0 I 

0 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Internal pressure (psi) 

Fig. 5. 10: The limit curves of the out-of-plane moment versus the internal 

pressure of the pipe bend. 
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Table 5.1: Number of R-Node iterations versus pressure 

Number of iterations 

Internal pressure (psi) In-plane Out-of-plane 

400 2 3 

800 3 4 

1200 3 4 

1600 4 5 

5.4 Summary 

Limit load analysis methods determine the multipliers for all loads that are 

applied to a component. In cases where the component is subjected to other fixed loads in 

addition to the applied load, the solution to the limit multiplier will not be accurate if all 

the loads are considered in a single analysis. Hence, the iterative limit load algorithm is 

suggested in which several analyses are made while changing the load being studied and 

fixing the other loads. The procedure is verified through the analytical solution of the 

cantilever beam subjected to bending and axial load and the non-linear solution of the 

pipe bend subjected to internal pressure along with in-plane and out-of-plane moments. 

The R-Node is used in these problems being a lower bound solution. In the next chapter, 

another application of the R-Node method in the design of pressure components is 

illustrated in which it is used as a tool for stress classification to find the design according 

to the ASME codes. 
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STRESS CLASSIFICATION 

6.1 Overview 

The ASME Code Section III and Section VIII (Division 2) provide stress 

classification guidelines to interpret the results of a linear elastic finite element analysis. 

These guidelines enable the splitting of the generated stresses into primary, secondary 

and peak stress. The code gives some examples to explain the suggested procedures. 

Although these examples may reflect a wide range of applications in the field of pressure 

vessel and piping, the guidelines are difficult to use with complex geometries. Hence, it 

would of great advantage to have a detailed general procedure for stress classification. In 

the present work, the R-Node method illustrated earlier is used to investigate the primary 

stresses and their locations in both simple and complex geometries. The method is 

verified using the plane beam and axisymmetric torispherical head. Also, the method is 

applied to analyze 3D straight and oblique nozzle modeled using both solid and hell 

elements. The results of the analysis of the oblique nozzle are compared with recently 

published experimental data. 

6.2 Stress Classification Techniques 

6.2.1 Stress Linearization in FE Programs 

An option is available in the ABAQUS [25] commercial code that performs a 

stress classification along a predefined path. The path defined by two nodes within the 

model as shown in Fig. 6.1. 
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Fig. 6.1: Coordinates of Cross Section 

The procedure is divided into main routines for planar and 30 applications. The 

program splits the stresses into membrane (uniform), bending (linear slope along the 

path) stresses and peak stresses. For the cartesian system of coordinates, the membrane 

stress is given by 

~ 
m I f2 d 

0"; = - 0"; xs 
t -~ 

(6.1) 

where O"; is a stress component, t is the length of the path (thickness) and xs is the 

coordinate along the path. The magnitude of bending stress at the extreme points of the 

path is given by 

(6.2) 

It must be noted that the bending stress at the extremes will be opposite in sign. 

Hence, the peak stress at any point along the path will be 

(6.3) 

where O"; is the total stress calculated in the finite element analysis. 
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6.2.2 R-Node Analysis 

The R-Node analysis determines the reference stress in a component using two 

linear elastic stress analyses. An initial. elastic analysis is performed from which the 

results are used for the second analysis. The modulus of elasticity is modified throughout 

the entire structure at every Gaussian integration point of every element. The 

modification is made using the EMAP [6] formu la which is expres ed as 

E,J+l = (~]q E,.; 
a eiJ ,I 

(6.4) 

Subsequently, a second linear elastic analysis is performed using the modified 

elastic modulus. The result of the elastic analyses shows the redistribution of stress as 

explained by Seshadri (17]. Figure 6.2 shows the GLOSS analysis diagram. 

I 
I 
I 
I 
I 
I 

8 = 90 Load control 

: 8 = 0 Deformation control 

Fig. 6.2: GLOSS diagram. 

The points where the stress is not affected by redistribution of the stresses are in 

direct equilibrium with the externally applied load, or are load controlled. These points 

are defined as the R-Nodes. Seshadri [17] has shown that, in order to ensure that the R-

81 



Chapter 6: Stress Classification 

Node stress is converging as a lower bound solution, successive distributions should meet 

the following conditions 

max [ (CJ) J ~ S e r- node m 
(6.5) 

(6.6) 

where 

(6.7) 

The magnitude of R-Node stresses m a component tends to be high at the 

locations of plastic hinges or plasticity initiation, known as R-Node stress peaks, and 

becomes smaller elsewhere. Hence, a system that fails due to the formation of a single 

hinge can be represented by a one-bar model in which collapse occurs when the R-Node 

stress reaches the yield limit. In the case of a system with more than one hinge, it can be 

represented by a multi-bar model. In this case, collapse occurs when the average of the R

Node peaks reaches the yield limit [4]. When several iterations of the redistribution are 

performed, the R-Node peak stresses all approach the same value. The final value of the 

R-Node stress peaks after several redistribution iteration approaches the reference stress 

corresponding to plastic collapse. 

Since the R-Node stresses are load-controlled, it is equivalent to the pnmary 

stress calculated using the ASME guidelines. In the case of pure membrane stress, there 

will be no redistribution in the stresses, which makes the R-Node stress to be equal to the 

membrane stress. In the case of pure bending, the R-Node stress will be less than the 

maximum elastic value according to the "shape factor" as indicated in Fig. 6.3. 
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Fig. 6.3: Bending stress distribution of the initial elastic and redistribution 

analyses. 

In the case of a combined membrane and bending stresses, the location of the R

Node shifts from the location found using the pure bending as shown in Fig. 6.4. 

Therefore, the R-Node can be used to find the primary stress as an equivalent quantity by 

combining both the membrane and the bending components. In this case, the R-Node will 

be limited to the allowable stress sm according to equations (6) and (7). 

P., 

.............................. 

Fig. 6.4: Membrane plus bending stress distribution of the initial elastic 

and redistribution analyses. 
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6.2.3 Elastic-Plastic Analysis 

The elastic-plastic analysis is used to verify the results of the stress-classification 

method (stress linearization and R-Node analysis). This is achieved by finding the load 

that causes the first hinge from the non-linear analysis as compared to the maximum 

equivalent primary membrane stress Peq and the maximum R-Node peak stress. In 

addition, the collapse load enables an evaluation of the acceptable design load. 

6.3 Proposed Methodology 

It appear that the current stress cia sification tools may have their limitations in 

the analysis of complex geometries. Therefore, it is suggested that the R-Node method be 

added as a tool to find the primary stress within a component in conjunction with other 

classification tools. In this paper, an analysis procedure is proposed to illu trate the u e of 

the R-Node method. 

1. A linear elastic FE analysis is carried out to find the load that causes initial 

yielding. 

2. The results of the linear elastic analy is are used in conjunction with the tres 

linearization tool in ABAQUS post-processor to fmd Pm, Pb and F. 

3. Another linear elastic analysis is carried out in conjunction with EMAP [6] to 

locate the R-Nodes in the pressure component. The maximum R-Node equivalent 

stress is identified and limited to Sm. This ensures satisfaction of both Pm and Pb. 

4. A complete elastic-plastic analysis is carried out in order to compare result 

obtained by the foregoing methods. 

The proposed methodology is applied to four problems for the purpose of verification and 

to illustrate its applications. 
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6.4 Applications 

The example of the indeterminate beam is used to verify the procedure. 

Subsequently, it is used to analyze an axisymmetric model of a pressure vessel with 

torisperical head, and full 3D shell model of an oblique nozzle that is welded to a 

pressure vessel. 

The stress classification methods outlined earlier in both ASME and ABAQU 

are demonstrated mainly with plane geometries (plane stress, plane strain and 

axisymmetric problems). In the present work, two geometries are u ed to demonstrate the 

use of the R-Node in stress classification. The first is for a thick cylinder created using 

plane strain elements and the second is for a nozzle connected at 90° to spherical shell. 

The models are analyzed for their elastic responses. The result are then used to perform 

the stres classification according to the ASME guideline and the ABAQUS 

linearization procedure. An R-Node analysis is performed for the two models to check for 

the primary stresses and compare the results. The detailed analysis of the problem of the 

nozzle is published by Kroenke [26] illustrating the stress cia ification lines and the 

detailed analysis according to the ASME guidelines. 

6.4.1 Indeterminate Beam 

The analytical solution of the indeterminate beam problem is hown in section 

4.3.2 where the loads that cause initial yield, first hinge and the collapse load are found. 

The length of the beam is 20 in with unit height and width. The beam is subjected to a 

distributed load as shown in Fig. 6.5. The model is meshed using plane stress elements 

for the elastic modulus adjustment procedure. 

The model is also analyzed using the R-Node method. The results of the initial 

elastic analysis are used for stress linearization carried out using the ABAQUS code. 

Also, in implementation of the R-Node analysis, the user-defined ubroutine UMA T 
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developed earlier to define the behavior of a user material is used. In this subroutine, the 

modulus of elasticity is adjusted for every Gaussian integration point according its value 

in the previous increment using equation (2.3). Since it is required to find the R-Node 

stress with no redistribution in the stresses, the value of q is assumed to be 0.1 in order to 

minimize the stress redistribution. 

w 

Fig. 6.5: Schematic diagram of the indeterminate beam. 

The R-Node location is found by comparing the stress distribution of the initial 

elastic analysis with that of the next EMAP iteration. The comparison is carried out for 

each pair of adjacent nodes of every element. Thus, whenever there is an intersection, it 

would represent an R-Node location. 

The results of all the analyses are shown in Table 6.1. The value of the load that 

causes initial yielding, Wy, is calculated analytically using equation (4.11) and from the 

results of the linear elastic analysis. It is compared to the value of the calculated design 

load Wdesign that is evaluated using stress classification and R-Node methods (primary 

stress :5 Sm). Also, the load that causes the first hinge, Wh1 , is calculated analytically 

using equation ( 4.12) and using the results of the elastic-plastic analysis. Besides, the 

same load is calculated using the stress classification and R-Node methods by limiting 

the equivalent primary membrane and the R-Node stresses to the yield limit. These 

results are compared to verify the validity of the R-Node method. 

The R-Node and stress linearization analyses are carried out at several sections 

along the beam. Figure 6.6 shows the result of the analyses as well as the maximum 

bending stress at every section. It can be seen that the R-Node stress value matches well 
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with the value of P,q. If the value of the maximum R-Node stress is limited to the yield 

stress, the load will be 155.6 lb/ in, which is the load that causes the first hinge as 

explained earlier. It compares well with those calculated using the analytical (150 lb/in), 

stress classification (153.5 lb/ in) and elastic-plastic analyses (153.3 lb/in). 

Table 6.1 : Indeterminate beam analysis. 

Load Analytical Stress classification 

w;lesign (lb/in) 102.3 

wy (lb/ in) 100.0 

whl (lb/in) 150.0 153.5 

W LL (lb/in) 2 18.3 

m~=l = 1.668208, m~zl = 1.668202 => m~.1 - m~_2 > 0 

WLL / 1.5 = 145.53 1b/in 

R-Node 

103.8 

155.6 

Elastic-Plastic FE 

98.9 

153.3 

222.0 

If the maximum R-Node stress is limited to the allowable stress Sm, the load will 

be I 03.8 lb/ in, which compares well with that calculated using the stress classification 

analysis, as well as the load that will initiate yielding, as shown in Table 6.1. 
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Fig. 6.6: Primary stress distribution along the beam. 

In an attempt to extend the understanding of the behavior of the R-Node stress in 

comparison to that of the stress linearization, the beam is loaded axially to introduce a 

membrane component to the stress distribution across the section of the beam. The results 

are observed for different combinations of load values in order to generate the interaction 

curve between the axial and bending loads. Figure 6. 7 shows the generated curves 

comparing the results of the normalized loads calculated using analytical solution of the 

bending stress using equation (4.10a), numerical stress linearization and R-Node analysis. 

It can be seen that the result of the stress classification and linearization generates a 

discontinuous curve since it is actually generated using two different curves - one for 

limiting the bending stress and the other for limiting the membrane stress. 
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- Analytical ---·Stress Linearization --- R-Node 
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Fig. 6.7: Primary stress for combined membrane and bending loads. 

However, the R-Node stress curve depends on the combined loading, and, thus, is 

a continuous curve having a similar trend joining the two maximum points of loads. This 

explains the fact that the design load calculated using the R-Node analysis is slightly 

lower than that using other methods in cases of high bending and membrane loading, 

which is due to comparing of a discontinuous curve to a continuous one. 

6.4.2 Axisymmetric Pressure Vessel 

In this problem, an axisymmetric model of a pressure vessel with a torispherical 

head is developed as shown in Fig. 6.8. It is analyzed using elastic-plastic FEA, stres 

linearization method and the R-Node method. The vessel is subjected to an internal 

pressure. As Seshadri and Fernando [4] have explained, this geometry is expected to 

collapse after the formation of three hinges whose locations are schematically shown in 

Fig. 6.8. Hence, three R-Node peaks are expected at these locations. 
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In the R-Node analysis, the same subroutine defined earlier in the beam problem 

is used after adjusting the various equations to account for the axisymmetric behavior. 

The R-Nodes are checked for every element as explained earlier. Figure 6.9 shows the 

maximum elastic stress, equivalent membrane stress and the R-Node stress along the 

walls of the vessel starting from the crown of the head. It can be observed that the results 

of the R-Node compares well with that of stress classification. Some discrepancies may 

occur due to the fact that, at all sections of the vessel walls, there are both membrane and 

bending stresses. Hence, as discussed earlier in the beam problem, at points where there 

are high values of both stresses, the R-Node stress would be higher, and, at points of 

dominating bending stress, the R-Node stress would be slightly lower. 

A 

B 

c 

Fig. 6.8: Schematic of the geometry with the expected hinge locations. 

Table 6.2 shows the results of the analyses. It is seen that there is a slight 

discrepancy between loads calculated using the R-Node and the stress classification 

methods. This arises due to the combination of both high bending and small membrane 

stresses. Also, the design load calculated using both the R-Node and the stress 

classification methods are slightly higher than the initial yield because of the existence of 

secondary stresses in the component. 
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Load 
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Fig. 6.9: Primary stress distribution along the vessel wall. 

Table 6.2: Axisymmetric pressure vessel analysis. 

Stress classification R-Node Elastic-Plastic FE 

p design (psi) 1626.7 1781.2 

PY (psi) 

P h i (psi) 

P LL (psi) 

2440.1 

m;0• 1 = 1 2.653, m~.2 = 12.561 ~ m?.1 -m~.2 > 0 

P LL /1.5 = 1888.89 M Pa 

6.4.3 Straight Nozzle 

267 1.8 

1623.6 

2700.0 

2833.3 

The R-Node stress and location is a characteristic of the structure and it is 

independent on the analysis model. In this problem, a 90° nozzle connected to a 

cylindrical shell is analyzed using the R-Node method in two different models. In the first 

model, the geometry is simulated using quadratic solid tetrahedron elements and, in the 

second model, it is simulated using quadratic layered shell elements. Figure 6.10 shows a 
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schematic diagram of the geometry. The inside diameter of the shell is 30 mm and that of 

the nozzle is 100 mm. The wall thickness throughout the geometry is 6 mm. It is intended 

to have a large thickness in order to be able to have an acceptable mesh of solid element 

with adequate number of elements through the wall thickness. The layered shell elements 

are used instead of conventional ones so as to be able to find the R-Node stress and 

location through the thickness as explained by Fanous et a! [27] . In order to have an 

acceptable number of stress calculation points across the thickness, 6 layers with 3 

section points in each layer are used in the shell elements. 

A 

----------===r -----------------.... 
/.· R Internal 

' m 

i 
.:····i . . . 

/ 1 Pressure ! 
• ..v t 

- · · - · J · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - · - - - ·~ · - · - · -
! 
I 

Fig. 6.10: Schematic diagram of the straight nozzle with Rm = SOmm and 

rm = 15mm. 

The subroutine used earlier in the beam problem to modify the modulus of 

elasticity at the Gaussian integration points is similar to that used for the shell with slight 

modification to account for the number of layers. In this problem, the results of R-Node 

analysis are compared to limit load values. Hence, R-Node analysis is performed using 

q = 0.1 to find the design load. In addition, iterative R-Node analysis is performed to find 

the limit load (as explained by Fanous et al [27].) 
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The R-Node analysis of the first (solid) model showed that the maximum R-Node 

stress is 13.1 MPa at section A indicated in Fig. 6.1 0. This was found to compare well 

with the value of the equivalent membrane stress calculated using the stress classification 

method. Also, the maximum R-Node stress calculated using the second (shell) model i 

found to be 14.0 MPa at section A as well. Table 6.3 summarizes the results of the 

calculated loads. 

Table 6.3: Straight nozzle analysis. 

Load 

p design {MPa) 

~, (MPa) 

P LL (MPa) 

Stress classification 

17.76 

Pu fl.5 = 2 1.83 MPa 

Solid model 

R-Node 

22.90 

6.4.4 Comparison of Analysis methods 

Elastic-plastic 

12.19 

33.51 

Shell model 

R-Node Elastic-plastic 

2 1.42 

13.77 

32.75 

Table 6.4 shows a comparison between the computation times for the elastic

plastic analysis and the R-Node analysis. The linearization procedure involved 

insignificant computation times but the time consumed in analyzing the problem depends 

on the experience of the analyst and the ability to locate the appropriate stress 

classification lines and planes. 

Table 6.4: Analysis times (seconds). 

Problem R-Node Elastic-Plastic FE 

Axi symmetric 
24 2 19 

pressure vessel 

Oblique nozzle 89 356 

Straight nozzle 427 2070 
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6.5 Summary 

The stress classification methods of the ASME codes require some experience in 

order to find the suitable locations and directions of the stress classification lines. The R

Node method is illustrated as a tool for stress classification to fmd the primary stress. The 

locations and values of the R-Node stresses are found by comparing two linear elastic 

analyses with minimum redistribution. The suggested analysis method has shown to be 

very effective in several applications in 2D and 3D modeling. It gave results with high 

accuracy, especially in cases with single type of stresses, when compared to the currently 

used stress classification method. 
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CHAPTER 7 

THE REFERENCE VOLUME CONCEPT 

7.1 Overview 

Seshadri and Mangalaramanan [5] have observed that, if plastic collapse occurs 

over a localized region of the mechanical component or structure, m0 will be 

significantly overestimated if it is calculated on the basis of the total volume, Vr . 

Furthermore, the corresponding mL, which is calculated based on a single element that 

has the maximum equivalent stress in the component, will be underestimated. During 

local collapse, plastic action is confined to a sub-region of the total volume, and the 

remainder region, being still elastic, will become a zone with zero stress and strain. 

Hence, the magnitude of the upper bound multiplier ( m 0
) would depend on the sub-

volume, Vp, where 

(7.1) 

within which the elements are arranged in the order of 

(7.2) 

where (a~k) 2 Vk is the denominator of equation (2.52) of m0
. 

Since, the classical upper bound multiplier, 7n.u , is widely used in many 

applications, the concept of the reference volume is developed in the present work using 

the classical upper bound multiplier mu instead of m0 . With reference to equation (2.46) 

of the classical upper bound multiplier mw it can be deduced that the elements are 

arranged in the order of 
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(7.2a) 

An iteration variable t; is introduced in such a way that infinitesimal changes to 

the element elastic modulus of the various elements during the second and subsequent 

linear elastic FEA would induce a corresponding change !lt; . The magnitude of !lt; 

would, of course, depend on the nature of the modulus-adjustments. 

The value of mu based on the total value would decrease with increasing t; a 

illustrated in Fig. 7.1 while approaching the final solution. It can be assumed that, in 

every iteration, mu is split into a constant value and a variable portion that vanishes with 

increasing t; . Hence, 

mil= me +11m (7.3) 

where me is the constant part. 

m" 

11m 

me ____ _j_l __ ---=============== 

Fig. 7.1: Variation of m
11 

with Elastic Iterations 

It was observed that the vanishing part represents the zone in the component that is not 

affected by the plastic deformation occurring in the highly stressed zone, and thus, in the 
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state of collapse, its stress level tends towards zero. When comparing the value of m, to 

mL, it is noticed that the former is calculated based upon the total volume and the latter is 

calculated based upon an infinitesimal volume with the highest stress value. The 

schematic ofvariation of m" and m' with the iteration variable, s, is shown in Fig. 7.2. 

Therefore, for some volume VR, where ~~ < VR ~ Vr , the multiplier m, would be 

invariant, i.e., m,,1 = m,,2 • Hence, equation (7.3) can be written as 

(7.4) 

1n, 

m,(v') 

Fig. 7.2: Variation of m, and m' with linear elastic iterations [2] 

The elastic modulus adjustment procedures tend to make the stress within the 

component to a uniform value equivalent to the selected arbitrary stress. On the other 

hand, the strain distribution tends to high values in the reference volume zone and 

vanishes in the remaining volume. Hence, assuming the strain in the remaining volume to 

be zero, m, is expressed as 
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Hence, in terms of finite elements, the multiplier will be 

NR 

Ic.kVk 
k = l 

mil = ()" y --:-N:-"-R =----

I c.ko-ek vk 
k= l 

where N R is the number of elements in the reference volume. 

(7.5) 

(7.6) 

To find the reference volume, the elements are sorted according to equation (7.2a) 

and m
11 

is calculated using equation (7.6) starting with N R = 1 (single element) until 

N R =N T (total volume). This is done for every iteration and m il is plotted versus the 

considered volume as shown in Fig. 7.3. The intersecting point between iteration (; and 

(; + 1 will be the solution for iteration (; + 1 . 

(; = 3 

VR/VT 

Fig. 7.3: Determination of Reference Volume 
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7.2 Applications 

7.2.1 Indeterminate Beam 

Being a complex problem with an analytical solution, the indeterminate beam is 

selected to illustrate the reference volume analysis. At the state of collapse, the plastic 

hinges are formed at locations A and B shown in Fig. 7.4. Hence, the regions of the 

hinges have stresses in the plastic range while the rest of the beam will have a near zero 

stress distribution. 

w 

A 

\<E------- L -----;;.J 
Fig. 7.4: Schematic diagram of the indeterminate beam. 

The dimensions and the material used in this problem is the same as that used in 

section 4.3.2. Using the results of the stress redistribution analysis, the elements are 

sorted according to equation (7.2a). Hence, the upper bound multiplier is calculate based 

on several selected partial volumes VP using the equation 

fc.dV 

m" = o-Y 
Vp (7.7) 
Jc.o-.dV 

Vp 

for different ratios of VP /Vr . A plot of the variation of the mu with the considered for a 

number of iterations is shown in Fig. 7.5. It is noticed that the variation of the multiplier 

tends diminish beyond a certain volume at which all the curves intersect. Figure 7.6 

shows a plot of the calculated values of the multiplier versus the iteration variable. It can 
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be noticed that the curve tends to flatten to a constant value as the volume decrease to a 

value just below 40% of the total volume. By comparing the first two iterations of the 

analysis, the reference volume was found to be that which is defined the stress greater 

that 7,415 psi illustrated in Fig. 7.7 which was found to be 34.5% of the total volume. 

Also, the value of the multiplier approach the classical lower bound as the partial volume 

tends to the minimum value which is the volume of the element having the highest stress. 

3 .5 

Iteration 4 

3 
Iteration 6 

'--
~ 

2.5 a. 
.;::; 

Iteration 8 :i 
E 
-o 
l1J 
~ 

E 
2 

~ 

1 5 

Fig. 7.5: Variation of the mu with the volume at different iterations 

Figure 7.8 shows the results of the analysis comparing the classical upper bound, 

classical lower bound, R-Node and reference volume solutions. It can be observed how 

the multiplier calculated using the reference volume converged as an upper bound 

solution faster than the other methods. 
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Fig. 7.6: The upper bound multiplier of the indeterminate beam calculated 

based on selected partial volumes. 

Fig. 7.7: Shaded diagram of the FE model of the indeterminate beam 

showing the reference volume (black area) and the remainder volume 

(gray area.) 
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Fig. 7.8: Comparison ofthe convergence of the limit load using reference 

volume method with other limit load analysis methods. 

7.2.2 Thick Plane-Strain Cylinder 

The von Mises stress distribution within the walls of a thick cylinder has a high 

value at the inner radius and a low value at the outside radius. The redistribution analysis 

flattens the stress to a uniform value across the thickness. Due to the simplicity of the 

problem, the upper bound limit load calculated using finite element has a very high 

accuracy. On the other band, the R-Node method shows a slightly slower convergence 

than the upper bound solution. This is observed by slowing down the redistribution using 

a value of q = 0.1 in the elastic modulus adjustment procedure. Figure 7.9 shows the 

meshing of the thick cylinder. Plane strain elements are used in the meshing. Figure 7.10 

shows the results of the analysis of the limit load multiplier using the reference volume 

compared to the other methods for the thick cylinder described in chapter 4. It can be 

observed that the reference volume method gave a more accurate and faster solution 

compared to the R-Node and the classical lower bound methods. This is because the 
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reference volume is equal to the total volume of the pipe since collapse occurs when the 

whole thickness undergoes plastic deformation. 
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Fig. 7.9: Meshing of the plane-strain cylinder 
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Fig. 7.10: Results of the analysis of the thick cylinder 
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7.2.3 Axisymmetric Pressure Vessel 

The Pressure Vessel problem was illustrated earlier and it was shown to have 

three hinges form at the collapse state the locations of which are shown in Fig. 7 .11. The 

value of q is selected to be 1 in order to achieve the stress distribution of the collapse 

state in a small number of iterations. Figure 7.12 shows the results of the analysis 

comparing the classical limit load multipliers with that calculated using the reference 

volume and the R-Node methods. 

B 

c 

Fig. 7.11: Schematic of the geometry with the expected hinge locations. 
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Fig. 7.12: Meshing of the plane-strain cylinder 

7.2.4 Oblique Nozzle 

A complex problem that has been considered in many researches is the analysis of 

an oblique nozzle attached to a pressure vessel. Sang et al [20] has conducted a set of 

experiments and elastic-plastic finite element analysis to monitor the complete stress 

distribution and find the limit load of the problem. The reference volume procedure is 

applied to the oblique nozzle presented by Sang et al [20] to compare its results. Also, the 

problem is solved to using other limit load analysis procedure to observe the convergence 

of the reference volume analysis. Figure 7.13 shows the geometry of the nozzle. 
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Fig. 7.13: Schematic diagram ofthe cross-section of an oblique nozzle 

used for experimental analysis by Sang et al. [20]. 

The inside diameter and thickness of the vessel are 600 mm and 6 mm, 

respectively. The outside diameter and thickness of the nozzle are 325 mm and 6 mm, 

respectively. The oblique angle is 30°. The length of the shell is 2400 mm and the length 

of the nozzle is 600 mm. The finite element model is prepared using 4-noded layered 

shell elements with 20 layers. Fig. 7.14 shows the meshing of the described geometry. 

Half of the geometry is considered making use of the symmetrical characteristic. 
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Fig. 7.14: Meshing of the oblique nozzle. 

Treating each layer of the shell element as a separate element, the elements and 

their layers are sorted according to the centroid stress. Figure 7.15 shows a plot of the 

convergence of the calculated multipliers for various partial volumes. It can be noticed 

that the reference volume is confined within a very small part of the total volume, which 

is near 2-5% of the total volume. This is because the collapse of the whole structure will 

occur when just the joint of the nozzle to the vessel suffers complete plastic deformation. 

Fig. 7.16 shows that the calculated multiplier compares well with the experimental values 

estimated by Sang et al [20]. 
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Fig. 7.16: Comparison of the limit load multipliers. 
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7.3 Summary 

The limit load analysis using the finite element method requires several stress 

redistribution analysis, especially with highly complex problems. Using the fact that only 

part of the structure suffers full plastic deformation, the concept of the reference volume 

is introduced in which the upper-bound limit load multiplier is calculated based on part of 

the total volume. This is performed by comparing the variation of the upper-bound 

multiplier for two linear elastic analyses with increasing volume starting with the 

elements having the highest centroid stress. The results of the reference volume analysis 

method compares well with the analytical and experimental solutions of several problems 

with high accuracy and convergence rate. 
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CHAPTER 8 

CONCLUSION 

Robust methods for the analysis of limit loads are useful tools in the design and 

assessment of components subjected to mechanical loads. The R-Node method is 

developed to determine the lower bound limit value of single and multiple loads applied 

to a component. The applicability of the method in a wide range of problems and its use 

in the interpretation of FEA results is investigated. 

The R-Node method is implemented in the ABAQUS program for several uses 

and applications. A code is developed for 2D plane, 30 shell and solid elements to 

perform the elastic modulus adjustment at the Gaussian integration points. A post

processing code is also developed to search for the maximum R-Node peak by comparing 

the iterations of elastic analysis. The method is used to find the limit load of an plane 

stress indeterminate beam, thick plane strain cylinder, axisymmetric vessel and an 

oblique nozzle modeled using shell elements. It was shown that the R-Node method gives 

a true lower-bound limit load. 

An algorithm is formulated to find the limit value of a single load applied in a 

system of loads. In this algorithm, a number of limit load analysis iterations are 

performed with a systematic change in the load of interest until the limit value is reached. 

The algorithm was verified with simple problems and compared to analytical solution, 

and applied to the problem of bending of a pipe bend under internal pressure being a 

complex problem in the field of pressure component analysis. The problem is modeled 

using 30 layered-shell elements. The method showed to be effective and gave accurate 

solutions in few number of limit load analysis iterations. 
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The R-Node stresses, shown to be in direct equilibrium with the load, are shown 

to be an effective tool for stress classification to find the primary stresses component 

subjected to a single or multiple loads. By performing highly constrained stress 

redistribution, the R-Node stresses represent the load-controlled at the initial elastic 

phase. Hence, limiting the maximum R-Node stress to an allowable stress gives a design 

load. The procedure is applied to 2D plane geometries and 30 shell and solid geometrie 

and the results compared well with that calculated using the ASME guidelines and the 

stress linearization tools in the ABAQUS commercial FEA program. 

The concept of the reference volume is developed as a technique to find the limit 

load of component by considering the effect of only kinematically active part using the 

classical upper-bound multiplier. The procedure is shown in details and applied to the 

indeterminate beam and thick cylinder as plane problems, and the oblique nozzle as 

complex 3D geometry in the field of pressure vessel and piping. The concept of the 

reference volume is verified numerically by showing the change convergence rate of the 

limit load calculated using partial volumes. It i shown the method gives results with very 

high accuracy compared to the other methods using few numbers of elastic iterations. 

In this thesis, several theories are used that have been developed in previous 

work. The original contributions made in the thesis are: 

1. The implementation of the elastic modulus adjustment procedure for stress 

redistribution using the results at the Gaussian integration points. This i 

relevant to programming the R-Node analysis method and improving its 

results 

2. The extension of the lower bound solution of the R-Node analysis for finding 

the limit value of a single load in a system of multiple loads. 
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3. The use of the R-Node method as a tool to find the primary stress that is 

equivalent to the membrane and bending primary stress in the ASME stress 

classification procedures. 

4. Application of the reference volume using the classical upper-bound limit load 

theory as opposed to the use of the m0 multiplier. This enables calculation of 

a more accurate limit load solution in a reduced computational time. 

The R-Node method is applied and verified using the plane, axisymmetric, full 

integration 3D shell and solid elements in the present work. For future work, the method 

can be tested for other types of elements as well as those of higher orders. Further 

investigations are required to validate the method for orthotropic and anisotropic 

materials. Finally, further development of the algorithms of the subroutines presented in 

the present work can help in incorporating the R-Node in commercial codes. 
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APP E NDIX A 

USER-DEFINED MATERIAL 

A. I Plane stress 

c 

c 

c 

SUBROUTINE UMAT(STRESS , STATEV, DDSDDE , SSE , SPD , SCD , 
1 RPL , DDSDDT , DRPLDE , DRPLDT , 
2 STRAN , DSTRAN , TIME,DTIME,TEMP, DTEMP , PREDEF , DPRED , CMNAME, 
3 NDI , NSHR, NTENS , NSTATEV , PROPS , NPROPS , COORDS,DROT , PNEWDT, 
4 CELENT , DFGRDO , DFGRD1 , NOEL , NPT , LAYER, KSPT , KSTEP,KINC) 

INCLUDE ' ABA PARAM . INC ' 

CHARACTER*8 CMNAME 
REAL K (2000 , 8) 
DIMENSION STRESS (NTENS) , STATEV(NSTATEV) , 

1 DDSDDE(NTENS , NTENS) ,DDSDDT (NTENS ), DRPLDE(NTENS) , 
2 STRAN(NTENS) , DSTRAN(NTENS) , TIME( 2 ) , PREDEF(1),DPRED(1), 
3 PROPS (NPROPS) , COORDS(3),DROT(3 , 3 ) , DFGRD0(3 , 3) , DFGRD1(3,3), 
4 S (2000 , 8) , CINC (2 000 , 8 ) 

PARAMETER (ONE=1 . 0DO, TW0=2 . 0D0) 
M=1 
I = O 
IF (KINC . LE . 1) THEN 

K (NOEL , NPT) =1. 0 
CINC(NOEL , NPT) =1 

END IF 
NE=PROPS (3) 
NL=PROPS (4) 
IF (KINC . NE . CURRENTINC) THEN 

CURRENTINC=KINC 

END IF 

ST1= 0 
ST2=0 
IF (KINC . GT . 1) THEN 

DO I=1,NE*NL 

END DO 

SS= (S (I, 1) +S (I , 2 ) +S (I, 3) +S (I, 4)) / 4 
STl=STl+SS*SS 
ST2=ST2+1 

END IF 
SREF= (ST1/ST2 ) **0 . 5 
print * , sreF, STl,ST2 

IF (KINC .GT. CINC(NOEL, NPT)) THEN 
CINC(NOEL , NPT ) =KINC 
SR=SREF 
S1=S(NOEL , NPT) 
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Appendix A: User-Defined Material 

K (NOEL , NPT) =K (NOEL ,NPT ) *((SR/S1)**0.75) 
END IF 

END IF 
I F (KINC . GT . 1) THEN 

E=PROPS (1 ) *K(NOEL, NPT ) 
ELSE 

E=PROPS (1) 
END IF 
ANU=E / (1+PROPS (2 )) / (1-PROPS( 2 ) ) 
AMU=E/2/ (0NE+PROPS (2) ) 
DO I=1 , NTENS 

END DO 

DO J=1 , NTENS 
DDSDDE(I , J)=O . ODO 

END DO 

DDSDDE (1,1) =ANU 
DDSDDE (2 , 2 ) =DDSDDE (1 , 1) 
DDSDDE (3 , 3 ) =AMU 
DDSDDE (4 , 4 ) =0 
DDSDDE (S , S ) =O 
DDSDDE (6 , 6)=0 
DDSDDE (1, 2 ) =PROPS (2 ) *ANU 
DDSDDE (1, 3 ) =0 
DDSDDE (2 , 3 ) =0 
DDSDDE (2 , 1 ) =DDSDDE (1 , 2) 
DDSDDE (3 , 1 ) =0 
DDSDDE (3 , 2 ) =0 

DO I=1 , NTENS 

END DO 

RETURN 
END 

STRESS (I ) =O 
DO J =1 , NTENS 

STRESS(I)=STRESS(I)+DDSDDE(I , J ) * (STRAN (J)+DSTRAN(J)) 
END DO 

SEQ= (STRESS (1)-STRESS (2 )) **2+(STRESS (2 ) -0)**2 
SEQ=SEQ+( 0-STRESS (1 )) **2 
SEQ=SEQ+6*(STRESS(3 ) **2+0+0) 
SEQ= (O. S*SEQ)**O . S 
S(NOEL , NPT)=SEQ 

A.2 Plane strain 

c 

c 

SUBROUTINE UMAT (STRESS,STATEV, DDSDDE , SSE , SPD , SCD, 
1 RPL , DDSDDT , DRPLDE , DRPLDT , 
2 STRAN , DSTRAN , TIME , DTIME , TEMP , DTEMP , PREDEF , DPRED,CMNAME, 
3 NDI , NSHR,NTENS,NSTATEV, PROPS , NPROPS , COORDS , DROT , PNEWDT, 
4 CELENT , DFGRDO , DFGRD1 , NOEL, NPT , LAYER, KSPT,KSTEP,KINC) 

INCLUDE ' ABA PARAM . INC ' 
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Appendix A: User-Defined Material 

CHARACTER*8 CMNAME 
REAL K (2000 , 8 ), KK 
DIMENSION STRESS (NTENS) , STATEV(NSTATEV), 

1 DDSDDE (NTENS , NTENS ) , DDSDDT (NTENS ),DRPLDE(NTENS) , 
2 STRAN (NTENS ), DSTRAN (NTENS) , TIME(2) , PREDEF(1 ), DPRED(1) , 
3 PROPS (NPROPS ), COORDS(3) , DROT (3 , 3 ), DFGRD0(3 , 3) , DFGRD1(3 ,3), 
4 S (2000 , 8 ), CINC(2000 , 8) 

PARAMETER (ONE=1 . 0DO , TW0=2 . 0DO) 
M=1 
I=O 
IF (KINC . LE . 1) THEN 

K (NOEL , NPT)=1 . 0 
CINC (NOEL , NPT) =1 

END IF 
NE=PROPS (3 ) 
NL=PROPS(4) 
IF (KINC . NE . CURRENTINC) THEN 

CURRENTINC=KINC 

END IF 

ST1=0 
ST2=0 
IF (KINC . GT . 1) THEN 

DO I=1 , NE*NL 
SS= (S ( I , l ) +S(I , 2 )+S(I, 3)+S (I,4)) /4 
KK= (K( I , 1 ) +K(I , 2 )+K(I, 3)+K (I , 4))/4 
ST1=ST1+SS*SS/KK 
ST2=ST2+SS/KK 

END DO 
END IF 
SREF= (ST1/ST2 ) **1 
prin t * , sreF, ST1,ST2 

IF (KINC . GT . CINC (NOEL , NPT )) THEN 
CINC (NOEL,NPT ) =KINC 

END IF 

SR=SREF 
S1=S (NOEL , NPT) 
K(NOEL , NPT) =K (NOEL ,NPT)*( (SR/S1)**0 . 5) 

IF (KI NC . GT . 1) THEN 
E=PROPS(1 ) *K(NOEL, NPT ) 

ELSE 
E=PROPS (1) 

END IF 
ANU=E/ (1+PROPS (2 )) / (1 -TWO*PROPS(2 )) 
AMU=E/2/ (0NE+PROPS(2) ) 
DO I=1 , NTENS 

DO J=1 ,NTENS 
DDSDDE(I , J)=O.ODO 

END DO 
END DO 
DDSDDE (1, 1 ) = (1-PROPS(2) ) *ANU 
DDSDDE (2 , 2 ) =DDSDDE(1 ,1) 
DDSDDE (3 , 3 ) =0 
DDSDDE (4 , 4 ) =AMU 
DDSDDE (5 , 5 ) =0 
DDSDDE (6 , 6 ) =0 
DDSDDE (1 , 2 ) =PROPS (2 ) *ANU 
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DDSDDE (1 , 3 ) =PROPS (2 )*ANU 
DDSDDE (2 , 3 ) =PROPS (2 ) *ANU 
DDSDDE (2 , 1 ) =PROPS (2 ) *ANU 
DDSDDE (3 , 1 ) =PROPS (2 ) *ANU 
DDSDDE (3 , 2 ) =PROPS (2 ) *ANU 

DO I=1 , NTENS 
STRESS(I)=O 

Appendix A: User-Defined Material 

DO J=1 , NTENS 
STRESS(I)=STRESS(I)+DDSDDE(I,J)*(STRAN(J)+DSTRAN(J)) 

END DO 

RETURN 
END 

END DO 

SEQ= (STRESS (1)-STRESS (2) ) **2+(STRESS (2 ) -STRESS(3))** 2 
SEQ=SEQ+(STRESS (3 )-STRESS(1) ) **2 
SEQ=SEQ+6* (STRESS (4)**2+0+0) 
SEQ= (O. S*SEQ)**O . S 
S (NOEL , NPT)=SEQ 

A.3 Axisymmetric 

c 

c 

c 

SUBROUTINE UMAT (STRESS , STATEV , DDSDDE , SSE , SPD, SCD , 
1 RPL , DDSDDT , DRPLDE,DRPLDT , 
2 STRAN , DSTRAN,TIME,DTIME, TEMP,DTEMP,PREDEF, DPRED,CMNAME, 
3 NDI , NSHR , NTENS , NSTATEV , PROPS ,N PROPS , COORDS , DROT,PNEWDT , 
4 CELENT , DFGRDO , DFGRD1 , NOEL, NPT , LAYER, KSPT , KSTEP , KINC) 

INCLUDE ' ABA PARAM . INC ' 

CHARACTER*8 CMNAME 
REAL K (SOOO , 8) , Q, KK , VK, SS 
DIMENSION STRESS (NTENS) , STATEV (NSTATEV), 

1 DDSDDE (NTENS,NTENS),DDSDDT(NTENS) , DRPLDE(NTENS), 
2 STRAN (NTENS) , DSTRAN(NTENS ),TIME (2 ), PREDEF(1),DPRED(1), 
3 PROPS (NPROPS),COORDS(3) , DROT(3 , 3) , DFGRD0(3 , 3),DFGRD1(3 , 3) , 
4 S (SOOO , 8) , CINC (SOOO , 8 ), VOL(5000 , 4 ) 

PARAMETER (ONE=1.0DO , TW0=2 . 0D0) 
M=1 
I =O 
IF (KINC .LE . 1 ) THEN 

K(NOEL , NPT ) =1 . 0 
CINC (NOEL, NPT)=1 

END IF 
NE=PROPS (3) 
NL=PROPS (4) 
IF (KINC .NE. CURRENTINC) THEN 

CURRENTINC=KINC 
ST1=0 
ST2=0 
IF (KINC .GT. 1) THEN 
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DO I=1 , NE*NL 
SS= (S ( I , 1 ) +S (I , 2 ) +S (I, 3 ) +S (I, 4)) /4 

VK= (VOL(I , 1 )+VOL (I , 2 )+VOL ( I , 3 )+VOL ( I ,4) )/4 
KK= (K (I , 1 ) +K ( I , 2 ) +K(I , 3)+K ( I , 4))/4 
ST1=ST1+SS*SS 

END IF 

ST2=ST2 +1 
END DO 

END IF 
SREF= (ST1/ST2 ) **0 . 5 
print * , sreF, ST1 , ST2 

IF (KINC .GT. CINC (NOEL , NPT )) THEN 
CINC (NOEL , NPT ) =KI NC 
SR=SREF 
S1=S (NOEL , NPT) 

C K (NOEL ,NPT)=K (NOEL , NPT)*((SR/S1)**0. 75 ) 
C K (NOEL,NPT)=K (NOEL , NPT)* (2*SR*SR/(SR*SR+S1*S1 )) 

c 

Q=1 
K(NOEL , NPT) =K (NOEL , NPT)*((SR/S1)**Q) 

END IF 
IF (KINC . GT . 1) THEN 

E=PROPS (1 ) *K(NOEL, NPT) 
ELSE 

E=PROPS (1) 
END IF 
ANU=E/ (1+PROPS (2) ) / (1 -2*PROPS (2 )) 
AMU=E/2/ (0NE+PROPS (2 )) 
DO I=1 , NTENS 

DO J=1 ,NTENS 
DDSDDE(I , J)=O . ODO 

END DO 
END DO 
DDSDDE (1 , 1 ) =ANU*(1-PROPS( 2 )) 
DDSDDE (2 , 2 ) =DDSDDE(1,1) 
DDSDDE (3 , 3 ) =DDSDDE(1,1) 
DDSDDE (4 , 4)=AMU 
DDSDDE (S, S ) =O 
DDSDDE ( 6 , 6 ) =0 
DDSDDE (1 , 2 ) =PROPS (2 ) *ANU 
DDSDDE (1 , 3 ) =PROPS (2 ) *ANU 
DDSDDE (2 , 3 ) = PROPS (2 ) *ANU 
DDSDDE (2 , 1 ) =DDSDDE (1, 2 ) 
DDSDDE (3 , 1 ) =DDSDDE (1,3) 
DDSDDE (3 , 2 ) =DDSDDE(2,3) 

DO I=1 ,NTENS 

END DO 

STRESS (I)=O 
DO J =1,NTENS 

STRESS(I) =STRESS ( I ) +DDSDDE ( I , J ) * (STRAN( J)+DSTRAN(J)) 
END DO 

SEQ= (STRESS (1 ) -STRESS (2 )) **2+(STRESS (2 ) -STRESS(3) ) **2 
SEQ=SEQ+ (STRESS (3 ) -STRESS (1))**2 
SEQ=SEQ+6*(STRESS(4 ) **2+0+0) 
SEQ= (O. S*SEQ)* *O . S 
S (NOEL ,NPT) =SEQ 
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RETURN 
END 

VOL(NOEL,NPT);COORDS(1) 

Appendix A: User-Defined Material 

A.4 Layered shell 

c 

c 

c 

c 

SUBROUTINE UMAT(STRESS , STATEV, DDSDDE , SSE , SPD , SCD , 
1 RPL, DDSDDT , DRPLDE , DRPLDT , 
2 STRAN , DSTRAN , TIME,DTIME,TEMP , DTEMP , PREDEF , DPRED , CMNAME, 
3 NDI , NSHR, NTENS , NSTATEV,PROPS , NPROPS , COORDS , DROT , PNEWDT , 
4 CELENT , DFGRDO , DFGRD1 , NOEL,NPT , LAYER , KSPT , KSTEP , KINC) 

INCLUDE ' ABA PARAM . INC ' 

CHARACTER*8 CMNAME 
REAL K(90000 , 8) 
DIMENSION STRESS(NTENS) , STATEV(NSTATEV), 

1 DDSDDE (NTENS , NTENS),DDSDDT(NTENS) , DRPLDE(NTENS) , 
2 STRAN (NTENS ), DSTRAN(NTENS) , TIME(2) , PREDEF(1) , DPRED(1) , 
3 PROPS (NPROPS ), COORDS (3) , DROT (3 , 3 ) , DFGRD0(3 , 3) , DFGRD1(3 , 3 ), 
4 S(90000 , 8) , CINC(90000 , 8 ) 

PARAMETER (0NE=1 . 0DO, TW0;2 . 0DO ) 
M=1 
I=O 
NE;PROPS (3 ) 
NL=PROPS (4 ) 
NNOEL=NOEL+NE*3*(LAYER-1)+NE*(KSPT-1) 
IF (KINC . LE . 1) THEN 

K(NNOEL , NPT) ; 1 . 0 
CINC (NNOEL , NPT ) =1 

END IF 
IF (KINC . NE. CURRENTINC) THEN 

CURRENTINC=KINC 
ST1=0 
ST2=0 
IF (KINC . GT. 1) THEN 

DO I =1,NE 

END DO 

DO J =1,NL 
SS=S(I+NE*3*( J -1)+NE , 1) 
SS=SS+S(I+NE*3*(J-1)+NE , 2 ) 
SS=SS+S (I+NE*3*(J-1)+NE,3) 
SS=SS+S (I+NE*3*(J-1)+NE , 4) 
SS=SS/4 
ST1=ST1+SS*SS 
ST2=ST2 +1 

END DO 

END IF 
SREF= (ST1/ST2 )**0 . 5 
SREF=100000000 
print * , sreF,ST1,ST2 
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c 

END IF 
IF (KINC . GT . CINC(NNOEL , NPT)) THEN 

CINC(NNOEL ,NPT)=KINC 

END IF 

SR=SREF 
Sl=S (NNOEL,NPT) 
K(NNOEL , NPT)=K(NNOEL , NPT)*((SR/Sl)**O.S) 

IF (KINC . GT . 1) THEN 
E=PROPS(l)*K(NNOEL , NPT) 

ELSE 
E=PROPS (1 ) 

END IF 
ANU=E/(1+PROPS (2) )/(1-PROPS (2 )) 
AMU=E/2/ (0NE+PROPS(2)) 
DO I=1 , NTENS 

END DO 

DO J=1,NTENS 
DDSDDE (I,J)=O.O DO 

END DO 

DDSDDE(1 , 1) =ANU 
DDSDDE (2 , 2 ) = DDSDDE(1 , 1) 
DDSDDE (3 , 3 ) =AMU 
DDSDDE ( 4 , 4)=0 
DDSDDE (S , S ) =O 
DDSDDE ( 6 , 6 ) =0 
DDSDDE ( l , 2 ) =PROPS (2 )*ANU 
DDSDDE (1 , 3 ) =0 
DDSDDE (2 , 3 ) =0 
DDSDDE (2 , 1) = DDSDDE(1 , 2 ) 
DDSDDE (3 ,1) =0 
DDSDDE (3 , 2 ) = 0 

DO I =1 , NTENS 

END DO 

STRESS(I)=O 
DO J=1 ,NTENS 

STRESS(I)=STRESS(I)+DDSDDE(I, J )*( STRAN(J)+DSTRAN(J)) 
END DO 

SEQ= (STRESS (1)-STRESS (2 ) )* *2+ (STRESS (2 ) -0)**2 
SEQ=SEQ+ (0-STRESS(1))** 2 
SEQ=SEQ+6* (STRESS(3)** 2+0+0) 
SEQ= (O. S*SEQ )**O . S 
S(NNOEL , NPT) =SEQ 

RETURN 
END 

A.5 Solid 

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE , SPD , SCD, 
1 RPL , DDSDDT ,DRPLDE,DRPLDT , 
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c 

c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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2 STRAN , DSTRAN , TIME , DTIME , TEMP , DTEMP , PREDEF, DPRED, CMNAME , 
3 NDI,NSHR, NTENS , NSTATEV, PROPS ,NPROPS , COORDS , DROT , PNEWDT , 
4 CELENT , DFGRDO , DFGRD1 , NOEL, NPT,LAYER,KSPT,KSTEP,KINC) 

INCLUDE ' ABA PARAM .INC ' 

CHARACTER*8 CMNAME 
REAL K (200000 , 8) 
DIMENSION STRESS(NTENS) , STATEV(NSTATEV), 

1 DDSDDE(NTENS , NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
2 STRAN (NTENS) , DSTRAN(NTENS ), TIME(2) , PREDEF (1) , DPRED(1) , 
3 PROPS (N PROPS ), COORDS (3 ), DROT (3 , 3) , DFGRD0(3 , 3),DFGRD1(3 , 3 ), 
4 S (200000 , 8) , CINC (200000 , 8) 

PARAMETER (ONE=1 . 0DO , TW0=2 . 0D0) 
M=l 
I=O 
IF (KINC .LE. 1 ) THEN 

K (NOEL , NPT) =l . O 
CINC(NOEL, NPT) =l 

END IF 
NE=PROPS (3) 
NL=PROPS (4) 
IF (KINC .NE . CURRENTINC) THEN 

CURRENTINC=KINC 
STl=O 
ST2=0 
IF (KINC . GT . 1) THEN 

DO I=l ,NE 
SS=S (I, 1) 
SS=SS+S ( I , 2) 
SS=SS+S ( I , 3) 
SS=SS+S (I , 4) 
SS=SS/4 
STl=STl+SS*SS 
ST2=ST2+1 

END DO 
SREF= (ST1/ST2 ) **0 . 5 
SREF=2 0000 

END IF 
print * , sreF, ST1,ST2 

END IF 
IF (KINC . GT . CINC(NOEL , NPT)) THEN 

S (NOEL,NPT)=SEQ 

END IF 

CINC(NOEL , NPT) =KINC 
SR=SREF 
Sl=S (NOEL, NPT ) 
K(NOEL ,NPT ) =K (NOEL , NPT)* (( SR/S1)**0.5) 

IF (KINC . GT . 1 ) THEN 
E= PROPS (l) *K(NOEL, NPT) 

ELSE 
E=PROPS (l) 

END IF 
ANU=E/(l+PROPS( 2 ) ) / (l-2 *PROPS( 2 )) 
AMU=E/2/ (0NE+PROPS(2) ) 
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DO I=l , NTENS 
DO J=l , NTENS 

DDSDDE (I , J)=O.ODO 
END DO 

END DO 
DDSDDE (l , l ) =ANU* (l-PROPS(2)) 
DDSDDE (2 , 2 ) =DDSDDE( l,l ) 
DDSDDE (3 , 3 ) =DDSDDE(l ,l) 
DDSDDE (4 , 4 ) =AMU 
DDSDDE (S , S ) =AMU 
DDSDDE (6 , 6 ) =AMU 
DDSDDE (l , 2 ) =PROPS (2 )*ANU 
DDSDDE (l, 3 ) =PROPS (2)*ANU 
DDSDDE (2 , 3 ) =PROPS (2 ) *ANU 
DDSDDE (2 , l)=DDSDDE(l,2) 
DDSDDE (3 ,l) =DDSDDE( l, 3) 
DDSDDE (3 , 2 ) =DDSDDE(2 , 3) 

DO I =l , NTENS 
STRESS (I)=O 
DO J=l ,NTENS 

STRESS(I) =STRESS(I)+DDSDDE(I , J ) * (STRAN (J )+DSTRAN(J)) 
END DO 

END DO 
SEQ= (STRESS (l) -STRESS (2 )) **2+(STRESS( 2 )-STRESS (3))**2 
SEQ=SEQ+ (STRESS (3 )-STRESS (l)) **2 
SEQ=SEQ+6* (STRESS (4 ) **2+STRESS(5)** 2+STRESS( 6 )** 2 ) 
SEQ= (O. S*SEQ ) **O . S 
S (NOEL , NPT ) =SEQ 

RETURN 
END 
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APP E NDI X B 

POST-PROCESSING SCRIPTS 

B. I Plane Stress and Plane Strain 

ABAQUS Python Script 

from abaqusConstants import * 
from o dbAccess i mport * 
from string import * 
odb =openOdb ( 1 bea ml . odb 1 

) 

sy=30000 
fl=op e n ( 1 beaml 1. txt 1 , 

1 w 1
) 

sl= [) 
el= [) 
vke= [ ) 
nlayers=l 
nelem=len(odb . rootAssembly . instances[ 1 PART-1 -1 1

) . e l ements ) 
e l e ms =odb . rootAssembly . instances[ 1 PART-1-1 1

) . e l ements 
nods=odb . rootAssembly . instances [ 1 PART- 1 - 1 1

) . n odes 
fori in range (nelem): 

sl=sl+ [OJ 
nl=el e ms [ i ) . connectivity[0] -1 
n2=e l e ms [ i ) . connectivity[ l ) -1 
n 3=e l e ms [i) . connectivity [ 2) -1 
n4=e l e ms [i) . connectivity [ 3)-1 
xl=nods[nl) . coordinates [ O) 
yl=nods[nl) . coordinates [!) 
z l =nods[nl) . coordinates [ 2) 
x2=nods[n2) . coordinates [ O] 
y2=nods[n2 ) . coordinates [!) 
z2=nods[ n 2 ) . coordinates [ 2 ) 
x3=nods[ n 3 ) . coordinates [ O] 
y3=nods[n3) . coordinates [!) 
z3=nods [n 3 ) . coordinates [ 2 ) 
x4=nods[n4) . coordinates [ O) 
y4=nods[n4) . coordinates [!) 
z4 =nods[n4) . coord inates [ 2 ) 
ll= ( (x2 - x1)**2+ (y2-y1)** 2 +( z2-z1 ) **2 ) **0 . 5 
1 2= ( (x3-x2 ) **2+ (y3-y2 ) ** 2 +( z3-z2 )** 2 ) **0 . 5 
13= (( x 4-x3 ) **2+ (y4 - y3 ) ** 2+( z4-z3 )** 2 ) **0 . 5 
14= (( xl-x4 ) **2+ (yl-y4)** 2 +( zl-z 4) **2 )** 0 . 5 
1 5= (( x3-x1 ) **2+ (y3-yl ) ** 2 +( z3-z1 ) **2 ) **0 . 5 
v=0.25* (( 11+12 +1 5 ) * (-11 +12+1 5 )*(11-12 +1 5 )*( 11+1 2-15 ) )**0 . 5 
v =v+0. 25 * ( (1 3+14+1 5 ) * (-13+14+1 5 )*(13-14+1 5 ) * (13+14 -15 )) **0 . 5 
vke=vke+ [v) 

numiter= l e n( odb . step s [ 1 Step- 1 1
) . frames ) - 1 

a =str (ne l e m) +", l ," +str (numiter )+", O, O,O,O\n " 
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fl.write (a) 
svl=odb . steps[ ' Step-1 ' ] . frames[l] . fieldOutputs[ ' S '] . values 
for j in range (numiter) : 

sv=odb.steps [ ' Step-1 ' ] . frames [ j +l ] . fie l dOutputs[ ' S ' ] . values 
svc=odb . step s[ ' Step-

1 ' ] . frames[j+l] .fieldOutputs[ ' S ' ] . getSubset(position=CENTROID) . values 
evc=odb . steps[ ' Step-

1' ] . frames [ j +l ] . fie ldOutputs[ ' E ' ] . getSubset(position=CENTROID) . values 
Sr=O 
sl 1=0 
sl 2=0 
s2 1=0 
s2 2=0 
maxs=O 
print ( " I teration " +str(j+l) ) 
maxsrn=O 
for i in range (nelem) : 

vk=vke [i]/nlayers 
for kin range(nlayers) : 

se=svc[nel em*k+i] . mises 
ee=evc[nel em*k+i] . mises 
a=str (se )+","+str (ee ) +","+str(vk)+" \n " 
fl . write (a) 

sl=[svl [ (ne l em* k+ i)*4+0] . mises]+[svl[ (nelem*k+i)*4+1] . mises]+ [svl 
[ (ne l e m*k+i )*4+2] .mises]+ [svl [ (nelem*k+i ) * 4+ 3] . mises] 

s2= [ sv [ (nelem*k+ i ) * 4+0 ] . mises] + [ sv [ (ne l em*k+i ) *4+1] . mises] + [ sv [ (n 
elem*k+i ) *4+2] .mises]+[sv[ (ne l em*k+i ) *4+3] . mises] 

for nl in range ( 3) : 
s l _ l =s l[nl] 
s2 l =s2 [nl] 
if maxs<s2 1 : 

maxs=s2 1 
for n2 in range(3-nl ): 

sl_ 2=sl[ n2+nl+l ] 
s2_ 2=s2[ n 2+nl+l ] 
if s2 l<>sl 1 : 

dsl= (s2 1-sl l ) /abs (s 2 1-sl 1 ) 
e lse: 

dsl=O 
if s2 2<>s l 2 : 

ds2= (s2 2-sl 2 ) /ab s (s2 2-sl 2 ) 
else : 

ds2=0 
srn=O 
al=sl 2-sl 1 
bl=sl 1 
a2 =s2 2-s2 1 
b2 =s2 1 
if abs (a2-al ) >0 . 0001 : 

xs=abs ( (b2-bl) /(al-a2 ) -0.5) 

else : 

if xs<0 . 75 : 
srn= (al*b2-a2*bl)/(al-a2) 

if abs(bl-b2 ) <1: 
srn=sl 1 
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if j==O : 

if srn>maxsrn : 
maxsrn=srn 
rne=i 
rnl=k 
rns=nl 

if maxs<s2[13] : 
maxs=s2 [13] 

maxsrn=O 
a=str (maxsrn )+" ,"+str (rne ) +"," +str(rnl)+ " , " +str(rns)+","+str(maxs 

) +" \n " 
fl . write (a ) 

fl . close 
odb . close () 

B.2 Axisymmetric 

ABAQUS Py thon Script 

from abaqusConstants import * 
from odbAccess import * 
from string import * 
odb=openOdb( ' nozzlel . odb ') 
sy=30000 
fl=open (' nozzlel l . txt ', ' w ') 
sl= [] 
el= [] 
vke= [] 
nlayers= l 
ne lem=len (odb.rootAssembly . instances[ ' PART-1-1 ' ] . e l e ments ) 
m2=0 
elems=odb . rootAssembly . instances[ ' PART-1-1 ' ] . elements 
nods=odb . rootAssembly . instances[ ' PART-1 - 1 ' ] . nodes 
for i in range (ne l em) : 

sl=sl+ [O] 
nl=e lems [i] . connectivity[0]-1 
n2=elems [i] . connectivity[l]-1 
n3=elems [ i] . connectivity[2]-l 
n4 =e lems [i] .connectivity [ 3]-l 
xl=nods[nl] . coordinates[O] 
yl=nods[nl] . coordinates[!] 
zl=nods[nl] . coordinates[2] 
x2=nods[n2] . coordinates[O] 
y2=nods[n2] . coordinates[!] 
z2 =nods[n2] . coordinates[2] 
x3=nods[n3] . coordinates [ O] 
y3=nods[n3] .coordinates [!] 
z3=nods[n3] . coordinates [ 2 ] 
x4 =nods [n4] . coordinates [ O] 
y4 =nods [n4] . coordinates [!] 
z4=nods [n4] . coordinates [ 2 ] 
ll= (( x 2-xl ) ** 2+ (y2-yl ) **2+ (z2-zl ) **2 ) **0 . 5 
1 2= ( (x3-x2 ) **2+ (y3-y2 )** 2 + (z3-z2 )* *2 )* *0 . 5 
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13=((x4-x3)**2+(y4-y3)**2+(z4-z3)**2)**0 . 5 
14= ((x1-x4)** 2+(y1-y4)** 2 +( z1-z4 )* *2 ) **0 . 5 
1 5= (( x3-x1 ) **2+(y3-y1)**2+(z3-z1)**2)**0 . 5 
v =0 . 25* ((11+1 2 +1 5 ) * (-l1+12+15 ) * (11-12+15)*(11+12-15))**0 . 5 
v=v+0. 25* ((1 3+14+1 5 )*(-1 3+14+1 5 ) * (1 3-14+15 ) * (13+14-15))**0 . 5 
v=v* (x1+x2+x3+x4)/4 
vke=vke+ [v] 

numiter=len(odb . steps [ ' Step-1 ' ] . frames )-1 
a=str(nelem)+", 1 ,"+str(numiter )+" , O, O, O, O\n " 
fl.write(a) 
sv1=odb . step s [ ' Step-1 ' ] . frames[1] . fieldOutputs [' S ' ] . values 
for j in range (numiter): 

sv=odb . step s [' Step-1' ] . frames [ j +1] . fieldOutputs[ ' S ' ] . values 
svc=odb . steps [ ' Step -

1 ' ] . frames [ j +1] .fieldOutputs[ ' S ' ] . getSubset(position=CENTROID) . values 
evc=odb. steps[ ' Step-

1 ' ] . frames [ j +1] . fieldOutputs[ ' E ' ] . getSubset(position=CENTROID) . values 
Sr=O 
s1 1=0 
s1 2=0 
s2 1=0 
s2 2=0 
maxs =O 
print( " Iteration "+str(j+1) ) 
maxsrn=O 
fori in range (nelem) : 

vk=vke[i]/nlayers 
for k in range (n layers ) : 

se=svc[nelem*k+i] . mises 
ee=evc[nelem*k+i] . mises 
a =str (se )+" , "+str (ee)+"," +str(vk ) +" \n " 
fl.write(a) 

s1=[sv1 [ (nelem*k+i ) *4 +0] . mises] +[sv1[(nelem*k+i)*4+1 ] . mises]+[sv1 
[(nelem*k+i )*4+ 2] . mises]+[sv1[ (nelem*k+ i ) *4+3] . mises] 

s 2=[ sv[ (ne l e m* k+i ) *4+0] . mises]+[sv[ (nelem*k+i)*4+1] . mises]+[sv[ (n 
elem*k+ i ) *4 +2] . mises]+[sv[ (nelem*k+i ) *4+3] . mises] 

for n1 in range (3 ): 
s 1_1=s1[n1] 
s2_1=s2 [n1 ] 
if maxs<s2 1: 

maxs=s2 1 
for n2 in range(3-n1 ): 

s1_2 =s1[n2+n1+1] 
s2 2=s2[ n 2+n1+1] 
if s2 1<>s1 1 : 

ds1= (s2 1 -s1 1 ) / abs(s 2 1 -s1 1) 
else : 

ds1=0 
if s2 2<>s 1 2 : 

ds2= (s2_ 2 -s1 2 ) /abs (s 2 2-s1 2 ) 
else: 

ds2=0 
srn=O 
a1=s1 2-s1 1 
b1=s1 1 

128 



Appendix B: Post-Processing Scripts 

if j==O : 

a2=s2 2 - s2 1 
b2=s2 1 
if abs(a2-a1)>0 . 0001 : 

xs=abs ( (b2-b1)/(a1-a2)-0 . 5) 

e l se : 

if xs<0 . 75 : 
srn= (a 1 *b2-a2*b1)/(a1-a2) 

if abs(b1-b2 ) <1 : 
srn=s1 1 

if srn>maxsrn : 
maxsrn=srn 
rne=i 
rnl=k 
rns=n1 

if maxs<s2[13) : 
maxs=s2[13 ) 

maxsrn=O 
a=str (maxsrn )+","+str (rne )+","+str (rnl ) +","+str (rns)+ " ,"+str(maxs 

)+" \n " 
fl . write (a ) 

f 1 . c l ose 
odb . close () 

MatLab Graphing 

st = i mportdata (' b eam1 1. txt ', ', '); 
nelem=st (l,l); 
niter=st (1 , 2 ); 
nlayer=s t(1 , 2 ); 
niter=st (1, 3 ); 
sy=30000 ; 
for i=1 :1:niter ; 

mu 1=0 ; 
mu 2=0 ; 
m(i,1) =2 . 2 ; 
m( i , 2 ) =s y/st (1+ (nelem+1)*i ,1); 
m( i , 3 ) =s y/st (1+ (nelem+1) *i , 5 ); 
step (:, :, i ) =sortrows(st (2+(ne l e m+1)*( i-1 ) : 2+ (ne1em+1)*(i-1)+nelem-

1 , 1 : 7 )); 
vt=sum (step( :, 3 , i )); 
vti=O ; 
for k=ne l e m:-1 : 1 

s=step(k,1, i ); 
v =step (k , 3 , i) ; 
step (k , 2 , i ) =s/step (k, 2 , i ); 
e =step (k , 2 , i) ; 
vti=vti+v; 
step (k , 4 , i ) =s*v/e ; 
step (k , S , i ) =s*s*v/e ; 
mu_ 1=mu_ 1+step(k,4, i ); 
mu_2=mu_ 2+step (k, 5 , i) ; 
step (k , 6 , i ) =vti ; 
step (k , 7 , i ) =sy* ((mu 1/mu 2 ) A1); 

e nd ; 
m(i , 4) =step(1,7 , i ); 
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end ; 

if i>l 
nl = 1 ; 
n2 = 1 ; 
difl=sign (step(n2 , 7 , i )-step (n1 , 7 , 1 )) ; 
vl=vt ; 
v2=vt ; 
mvl=O ; 
while mv l ==O 

dif2=sign (step(n2 , 7 , i )-step(n1 , 7 , 1 ) ) ; 
if difl==dif2 

if v2<vl 
while v2<vl 

vl=vl-step (n1 , 3 , 1) ; 
nl=nl+l ; 

end; 
else 

end ; 

while v l <=v2 
v2=v2-step (n2 , 3 , i) ; 
n2=n2+1 ; 

end; 

else 
mvl =step(n2 , 7 , i ); 

end; 
else 

end; 

mvl=Inf ; 
end ; 
m(i , S) =mvl ; 

figure ! = figure ; 
axes l = axes (' Parent ', figurel ); 
xlabel (axesl , ' Iteration ' ) ; 
ylabel (axesl , ' Limit load multiplier '); 
box(axesl , ' on '); 
hold (axesl , ' all '); 
plotl = plot (m); 
set (plotl (2 ), ' Marker ', ' x '); 
set (plotl (3 ), ... 

' Marker ', ' square ' , .. . 
' MarkerSi ze ', 3 ); 

set (plotl ( 4) , .. . 
' Marker ', ' o ', .. . 
'MarkerSize ' , 3 ); 

set (plotl (5 ), ' Marker ','.'); 

%% Create l egend 
l egend! = legend ( ... 

axes l , {' Analytical ', ' R-Node ' , ' m_ c ' , ' m_u ', ' m_ v '}, ... 
' Location ', ' NorthOutside ', ... 
' Orientation ', ' horizontal ' ); 
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B.3 Layered Shell 

ABAQUS Python Script 

from abaqusConstants import * 
from odbAccess import * 
from string import * 
odb=open0db( ' nozzle3 . odb ' ) 
sy=30000 
f1=open( ' nozz1e3 1 . txt ', ' w' ) 
s1= [ J 
e1=[] 
vke= [ J 
nlayers=6 
nelem=len(odb . rootAssembly . instances[ ' PART-7-1 ' ] . elements) 
m2 =0 
elems=odb . rootAssembly . instances[ ' PART-7 - 1 ' ] . elements 
nods=odb . rootAssembly . instances [ ' PART-7-1 ' ] . nodes 
fori in range (nelem) : 

s1=s1+[0] 
n1=elems[i] .connectivity[0] -1 
n2=elems [i] . connectivity[1]-1 
n3=elems [i] . connectivity[2]-1 
n4=elems [i] . connectivity[3]-1 
x1=nods[n1] . coordinates [ O] 
y1=nods[n1 ] . coordinates [ 1] 
z1=nods[n1 ] . coordinates [ 2 ] 
x2=nods[n2] . coordinates[O] 
y2=nods[n2] . coordinates[1] 
z2=nods[n2] . coordinates[2] 
x3=nods[n3] . coordinates[O] 
y3=nods[n3] . coordinates [ 1] 
z3=nods[n3] . coordinates (2] 
x4 =nods[n4] . coordinates [ O] 
y4=nods[n4 ] . coordinates [1] 
z4=nods[n4 ] . coordinates [ 2 ] 
11= (( x2-x1 ) **2+ (y2-y1 ) **2+ ( z2 - z1 }** 2 }** 0 . 5 
12= (( x3-x2 ) **2+ (y3-y2 } **2+ {z3-z2 ) **2 ) **0 . 5 
13= (( x4-x3 ) **2+ (y4-y3 ) **2+ (z4-z3 ) **2 ) **0 . 5 
14=( (x1-x4 ) **2+ (y1-y4}**2+(z1-z4 ) **2)**0 . 5 
15= ((x3-x1)**2+(y3-y1 }**2+ (z3-z1 )** 2 )** 0 . 5 
v= 0 . 25* ((11+1 2+15 ) *( - 11+12+15)*(11-l2+15)*(11+12-15))**0 . 5 
v=v+0.25*( (1 3+14+15 ) * (- 13+14+15)*(13-14+15)*(13+14 - 15))**0.5 
v =v*0 . 006 
vke=vke+ [v] 

numiter=len(odb . steps [ ' Step-1 ' ] . frames ) -1 
a=str(nelem)+ "," +str(nlayers)+"," +s tr(numiter) +", O, O,O,O\n " 
fl . write (a ) 
sv1=odb . steps[ ' Step-1 ' ] . frames [1] . fieldOutputs [ ' S ' ] .values 
for j in range (numiter) : 

sv=odb . steps[ ' Step-1 ' ] .frames[j+1 ] .fieldOutputs[ ' S'] . values 
svc=odb.steps [' Step-

1 ' ] . frames [j+1] . fie1d0utputs[ ' S ' ] . getSubset(position=CENTROID) . values 
evc=odb . steps [' Step-

1 ' ] . frames[j+1] . fieldOutputs[ ' E ' ] . getSubset(position=CENTROID) .values 
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Sr=O 
s1 1=0 
s1 2=0 
s2 1=0 
s2 2=0 
maxs=O 
print (" Iteration " +str (j+1)) 
maxsrn=O 
fori in range (ne l em): 

vk=vke[i]/nlayers 
for kin range(nlayers ): 

se=svc[nel em*k*3 +nelem+i] . mises 
ee=evc[nelem*k*3+nelem+i] . mises 
a=str (se)+ ","+str (ee )+ " ," +str(vk*(1+ (2 . 5-k)/6 ) )+ " \n " 
fl . write (a) 
for sl in range (4 ): 

s1=[sv1[(nelem*4*k*3+nelem*4*0+i*4+sl)] . mises ] 

s1=s1+ [sv1 [ (nelem*4*k*3+nelem*4*1+i*4+sl)] . mises] 

s1=s1+[sv1 [ (nelem*4*k*3+nelem*4*2+i*4+sl ) ] . mises] 
s2= [sv[ (nelem*4*k*3+nelem*4*0+i*4+sl)] . mises] 

s2=s2+[sv[ (nelem*4*k*3+ne l em*4*1+i*4+sl)] . mises] 

s2=s2+ [sv [ (nelem*4*k*3+ne l em*4*2+i*4+sl)] .mises] 
for n1 in range(2) : 

s1_1=s1[n1] 
s2 l =s2[nl] 
if maxs<s2 1: 

maxs=s2 1 
n2=n1 +1 
s 1_2=s1 [n1+1] 
s2_2=s2[n1 +1] 
if s2 1<>s1 1: 

ds1= (s2 1-s1 1) /abs (s 2 1-s1 1 ) 
else : 

ds1=0 
if s2 2<>s 1 2 : 

ds2 = {s2 2 - s1 2 ) /abs (s2 2-s1 2 ) 
e l se : 

ds2=0 
srn=O 
a1=s1 2-s1 1 
b1=s1 1 
a2=s2 2 - s2 1 
b2=s2 1 
if abs (a2-a1 ) >0 . 0001 : 

xs=abs ( (b2-b1)/(a1-a2 ) -0 . 5) 

else : 

if xs<=O .S: 
srn= (a 1*b2-a2*bl)/(al-a2) 

if abs (bl-b2 ) <0 . 0001 : 
srn=s1 1 

if srn>maxsrn : 
maxsrn=srn 
rne=i+ l 
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rnl=k+1 
rns=sl+1 

if maxs<s2 [1 2) : 
maxs=s2[12) 

for s l in range (3 ): 
s 1=[sv1 [(ne l em*4*k*3 +nelem*4*sl+i*4+0)) .mises] 

s1=s1+ [sv1 [ (nelem*4*k*3+nelem*4*sl+i*4+1) ) . mises) 

s1=s l+[ sv1[(ne l em*4*k*3+nelem*4*sl+i*4+2 ) J . mises) 

s1=s1+[ sv1 [( nelem*4*k*3+nelem*4*sl+i*4+3 ) ) . mises) 
s2= [sv[ (nelem*4*k*3+nelem*4*sl+i*4+0)) . mises) 

s2=s2 +[sv[(ne l em*4 *k*3+nel em* 4* s l+ i* 4+1)) .mises) 

s2=s2 +[ sv [ (nelem*4*k*3+nelem*4*sl+i*4+2)) .mises) 

s2=s2+[ sv [ (nelem*4*k*3+nelem*4*sl+i*4+3)) . mises) 

if j==O : 

for n1 in range(4) : 
s1_1=s1[n1) 
s2_1=s2[nl) 
if n1<3 : 

n 2=n1 +1 
else : 

n 2=0 
s 1_2=s1[n2) 
s2 2=s2[n2) 
if s2 1<>s1 1 : 

ds 1= (s2 1-s1 1) /abs (s2 1-s1 1) 
else : 

ds1=0 
if s2 2<>s 1 2 : 

ds2= (s2_ 2-s1_ 2 ) /abs (s 2_ 2 -s1 2 ) 
else : 

ds2=0 
srn=O 
a 1=s1 2-s1 1 
b1=s 1 1 
a2=s2 2-s2 1 
b 2=s2 1 
if abs (a2-a1 ) >0.0 00 1 : 

xs=abs((b2-b1)/(a1-a2 )-0 . 5) 

else : 

if xs<=0 . 75 : 
srn= (a1*b2-a2*b1)/(a1-a2) 

if abs (b1-b2 ) <0 . 0001 : 
srn=s1 1 

if srn>maxsrn : 
maxsrn=srn 
rne=i+1 
rnl=k+1 
rns=sl +1 

ma xsrn=O 
a =str (maxsrn)+ ","+str (rne )+","+str(rnl ) +","+str(rns)+ " , " +str(maxs 
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fl . write(a) 
f l.close 
odb . close () 

MatLab Graphing 

st = imp ortdata ('nozzle3 l . txt ', ', '); 
nelem=st (l,l); 
nlayer=st (1, 2 ); 
niter=st (1 , 3 ); 
sy=339400000 ; 
for i=l:l : niter ; 

mu 1=0 ; 
mu_2=0 ; 
m(i , l)=1 . 48 ; 
m(i , 2 ) =sy/st (l+(nelem*nlayer+l)*i ,l ); 
m(i , 3 ) =sy/st (l+( nelem*nlayer+l )* i , 5) ; 
step (:, :, i ) =sortrows(st( 2+(nele m*nlayer+l)*(i-

1) : 2+(nelem*nlayer+l)* (i-l)+nelem*nlayer-1 , 1 : 7 )) ; 
vt=sum (step (:, 3 , i )); 
vti=O; 
for k=nelem*nlayer :-1 : 1 

s=step (k,l, i) ; 
v=step (k , 3 , i) ; 
step (k , 2 , i ) =s/step(k , 2 , i ); 
e=step (k , 2 , i) ; 
vti=vti+v; 
step (k , 4 , i ) =s*v/e ; 
step (k , S , i ) =s*s*v/e ; 
mu_ l =mu_ l+step(k , 4 , i) ; 
mu_ 2=mu_ 2+step(k, S,i) ; 
step (k, 6 , i ) =vti ; 
step (k, 7 , i ) =sy* ((mu 1/mu 2 ) Al ) ; 

end ; 
m(i , 4) =step(1 , 7 , i ); 
if i>l 

nl =l; 
n2 =1 ; 
difl=sign(step(n2,7 , i ) -step (n1 , 7 , 1 )); 
vl=vt ; 
v2=vt ; 
mvl=O ; 
while mvl==O 

dif2=sign (step(n2 , 7 , i ) -step (n1, 7 , 1)) ; 
if difl==dif2 

if v2<vl 
while v2<vl 

v l =vl -step (n1 , 3 ,1); 
nl=nl+l ; 

end ; 
else 

end ; 

while vl<=v2 
v2=v2-step (n 2 , 3 , i) ; 
n2 =n2+1; 

end; 
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end ; 

e l se 
mvl=step(n2 , 7 , i ); 

end ; 
end; 
m( i , 5 ) =mv1; 

else 
mvl=Inf; 

end ; 
m(i, S ) =mvl ; 

fi gurel = figure ; 
axes1 = axes (' Parent ', figurel ); 
xlabel (axes l, ' Iteration ' ) ; 
ylabel (axes1 , ' Limi t load mul tipl ier '); 
box(axesl, ' on '); 
hold (axesl , ' all '); 
plotl = plot (m) ; 
set (plot1 (2 ), ' Marker ',' x '); 
set (plotl (3 ), ... 

' Marker ', ' square ', . .. 
' MarkerSi ze ', 3 ); 

set (plotl ( 4) , .. . 
' Marker ', ' o ', .. . 
' Marke rSize ', 3 ); 

set (plotl (5) , ' Marker ','.'); 

%% Create legend 
legendl = l egend ( . . . 

axesl , { ' Experimental ', ' R-Node ', ' m_c ', ' m_u ', ' m_v '}, . . . 
' Location ', ' NorthOutside ', .. . 
' Orientation ', ' horizontal ' ) ; 

B.4 Solid 

from abaqusConstants import * 
from odbAccess import * 
from string import * 
odb=op e n0db( ' nozzle4 . odb' ) 
sy=300 00 
fl =open (' nozzle4 l. txt ', 'w') 
sl= [] 
el= [] 
vke= [ ] 
nlayers= l 
nelem= l en (odb . rootAssembly . instances[ ' PART-7- 1 ' ] . e l e ment s ) 
elems=odb.root Assembly.instances[ ' PART-7-1 ' ] .elements 
nods=odb . rootAssembly . instances[ ' PART-7 - 1 ' ] .nodes 
for i in range (nelem): 

s1=s l+ [0 ] 
vke=vke+[l] 
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numiter=len(odb.steps[ ' Step-1 ' ] . frames )-1 
a=str(nelem)+ ",1 , " +str (numiter)+", O, O, O,O\n" 
fl . write(a) 
sv1=odb . steps[ ' Step-1 ' ] . frames[1) . fie ldOut puts['S') . values 
for j in range (numiter) : 

sv=odb . steps[ ' Step-1 ' ) .frames[j+1) . fie ldOutputs[ ' S ' ] . values 
svc=odb . steps[ ' Step-

1 ' ] . frames[j+1] . fie1d0utputs[ ' S ' ] . getSubset(position=CENTROID) . values 
Sr=O 
s1 1=0 
s1 2=0 
s2 1=0 
s2 2=0 
maxs =O 
print( " Iteration " +str(j+1)) 
maxsrn=O 
for i in range (nelem) : 

vk=vke[i]/nlayers 
for kin range(nlayers) : 

se=svc[nelem*k+i) . mises 

s1=[sv1 [(nelem*k+i)*4+0] .mises)+[sv1[(nelem*k+i)*4+1 ] . mises]+[sv1 
[ (nelem*k+i)*4+2] .mises]+ [sv1[ (nelem*k+i)*4+3 ] . mises) 

s2=[sv[ (nelem*k+i)*4+0] .mises]+[sv[ (nelem*k+i)*4+1) . mises)+[sv[ (n 
elem*k+i ) *4+2] . mises] + [sv [ (nelem*k+i) *4+3) . mises] 

if i==O : 
se=(s2[0]+s2[1)+s2(2]+s2[3])/4 

print(str(s2[0]) ,str(s2 [1)), str (s2[2]) , str (s2[3))) 
ee=O 
a=str (se)+ ","+str (ee )+","+str(vk)+"\n " 
fl . write(a) 
for n1 in range(3) : 

s1_ 1=s1[n1] 
s2 1=s2[n1] 
for n2 in range(3-n1) : 

s1_2=s1[n2+n1+1] 
s2 2=s2[n2+n1+1] 
srn=O 
a1=s1 2-s1 1 
b1=s1 1 
a2=s2 2-s2 1 
b2=s2 1 
if abs(a2-a1)>0 . 0001 : 

xs=abs((b2-b1)/(a1-a2)-0 . 5) 

e l se : 

if xs<0.75 : 
srn= (a1*b2-a2*b1)/(a1-a2) 

if abs (b1-b2 ) <1 : 
srn=s1 1 

if srn>maxsrn: 
maxsrn=srn 
rne=i+1 
rnl=k+1 
rns=n1 

a =str (maxsrn)+ ","+str(rne)+","+str (rnl )+","+str(rns)+" \n" 
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