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Abstract 

Edge searching is a combinatorial game played on graphs. The aim is to con t ruct a 

search strategy to catch an intruder hidden in the graph independent of his actions. 

If the intruder has a diffused form then searching corresponds to cleaning the graph. 

A related problem consists of minimizing the number of searchers used in this search. 

Various versions of edge searching have been introduced in the past depending on how 

searchers and the intruder can move. In this dissertation we define Weighted Search 

and Fast Search as two new variants and answer some complexity and xtremality 

problems. 

Weighted Search corresponds to cleaning a contaminated graph where edges may 

have different capacities. The main result we have is that Weighted Search is an P­

complete problem. We also give comparison results uch as bounds on the weighted 

search number in terms of related graph parameters including pathwidth. We char­

acterize those graphs which two searchers can clean. 

Fast S arch is an internal monotone search where no edg is traversed more than 

once in a non-weighted graph. We present a linear t ime algorithm to compute a fast 

earch strategy for a given tree. We investigat the fast arch strategie for bipartite 

graphs. 

The construction of k-searchable graphs, tho e graphs which k searchers can clean, 

has been of major interest. Graphs that are 1, 2 or 3-searchable have been completely 

characterized previously, whereas characterizing 4-searchable graphs was left as an 



open problem. We solve this problem partially and give insights for future work. 
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Chapter 1 

Introduction 

Edge searching is a pursuit evasion game played on graphs. In the past two decades 

there has been fundamental work devoted to this topic by scientists in many diverse 

fields, but mainly in discrete mathematics, operations research and computer science. 

We consider the problem of constructing a search plan in order to find a person lost 

in a system of caves which can be represented as a graph. Equivalently, we aim to 

clean a network of tunnels filled with noxious gas using as few cleaners as possible. In 

this chapter we define the problem mathematically and mention some of the related 

results and applications. We introduce Weighted Search and Fast Search as two new 

models in which we address different aspects of the problem. These two models are 

motivated by theory and application. In the first section we give the basic definitions 

and notations that we shall use throughout t he text. 

1.1 Terminology 

A graph is a pair G = (V, E) where V is the set of vertices and E is the set of dges 

of G. The edges are unordered pairs of elements of V. We will normally denote an 

edge e = { u, v} as e = uv . Two vertices are adjacent if there is an edge connecting 
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CHAPTER 1. INTRODUCTION 

them. If e = uv, then we say that u and v are the end vertices of th edge e and e 

is said to be incident to each of th m. Thus an edge e = uv contains both it end 

vertices u and v. 

For a graph G = (V E ) the order of G is lVI and th ize of G is IE!. Here the 

vertical lines around the set denote the cardinality of the set. 

A multigraph is a graph which may have parallel edges, i.e. 3e1 , e2 E E where 

e1 =f. e2 but both have the same end vertices. A reflexive graph is a graph which may 

have loops, i.e. 3e E E where e = uv and u = v. 

The number of edges that contain a vertex v is called the degree of v, denoted by 

deg( v). ote that a loop at a vertex u will contribute two to the degre of u . 

A path of length n, denoted as Pn, is a graph with vertex t V = { Vo, VJ, .. . , vn} 

and edges e; = v;V;+J for every i = 0, .. . , n- 1 hence Pn = eoe1 ... en-1 · H re 

the internal vertices are v1, . . . , Vn-l and the internal edges ar e1, e2, ... , en-2 . Th 

number of edg s of a path is its length. 

A suspended path in a graph G is a path of length at least 2 such that all internal 

vertices of the path have degree 2. 

A graph is connected if there is a path between any two of its vertice . 

For given graphs G = (V, E), G' = (V', E'), if V' ~ V E' ~ E and for every 

e = uv E E', u, v E V' , then G' is called a subgraph of G. Furth rmore G' is called 

the subgraph induced by V' if G' contains all edges of G that join two vertices in V'. 

If v E V' then clegG' ( v) denotes the degree of v in G'. 

For n ~ 2, the graph Cn := Pn-l U Vn_1vo is called a cycle of 1 ngth n. The girth 

of a graph G is the minimum length of a cycle that is a subgraph of G. 

An edge whir:h joins two vertice of a cycle but is not itself an edge of the cycle is 

a chord of that cycle. 

A graph is acyclic if it does not contain any cycles. A connected acyclic graph is 

called a tree. If a vertex of a tree has degre one, then it is called a leaf. An dge 
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CHAPTER 1. INTRODUCTIO 

e = uv is called a pendant edge if deg( v) = 1. 

The set of vertices adjacent to a vertex v is called the neighborhood of v and is 

denoted by N(v). 

A graph G' is said to be a subdivision of a graph G if G' is obtained from G by 

subdividing its edges, that is by replacing the edges by path of length two (which i 

equivalent to inserting a vertex of degree two on every edge). 

For a connect d graph G, we define the distance d(u , v) between two v rtices u 

and v as the length of any shorte t u - v path. 

A circuit is an alternating list of vertices and edges v0 ei VI, . .. , k, vk such that 

(1) for 1 ::::; i ::::; k, the edge ei has endpoints vi-I and Vi, 

(2) for 1 ::::; i < j ::::; k, ei i= ej, and 

(3) Vo = Vk· 

An Eulerian circuit in a graph is a circui t containing all the edges. 

The complete graph on n vertices denoted Kn , is the graph where d(u v) = 1 for 

every u, v E V. A clique in a graph G is a set of pairwise adjacent v rtices. 

The complete bipartite graph on m+n vertices, denoted as Km,n• is the graph with 

vertex et V ="It) UV2 where VI = {VI , V2, ... , Vm } and 1/2 = { UI, U2, ... , Un} are called 

the bipartition sets, and the edge set E = { eij = viuj li = 1, ... , m j = 1, . . . n}. 

The (Cartesian) product of two graphs G and H , denoted GDH (or G x H) has 

vertex set V(G) x V(H), and (vi, wj) is adjacent to (vh wk) if either 

(1) vi is adjacent to vh in G and Wj = Wk or, 

(2) Wj is adjflcent to wk in H and vi = v,.. 

Hence, GDH is obtained by taking n copies of H and joining corresponding ver­

tices in different copies whenever there is an edge in G. In particular G = 'PmD'Pn is 

called an m x n grid. 

A graph G = (V, E, w) is called a weighted graph if each edge e of G is assigned a 

nonnegative number w(e) called the weight of e. In this thesis we as ume that the 
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CHAPTER 1. I TRODUCTIO 

weights assigned are positive integers. 

Given two weighted graphs G = (V, E, w) and G' = (V' E', w') if G and G' have 

the same underlying graphs, i.e. V = V' and E = E' then G' i said to be lighter 

than G when w'(e) :::; w(e) VeE E. 

We say that G' = (V', E', w') is a subgraph of G = (V, E, w) when V' ~ V, E' ~ E 

and for every e = uv E E', u, v E V' and w'(e) = w(e) Ve E E' . For given weighted 

graphs G = (V, E, w) and G' = (V' , E', w') , if V' ~ V, E' ~ E and w'(e) :::; w(e ) VeE 

E' th n G' is a lighter subgraph of G. 

In order to define a minor of a given graph we need two operation : edge deletion , 

which corresponds to deleting an edge e, and edge contraction, which corre ponds to 

deleting an edg e = uv and id ntifying the vertices u and v. Th econd operation 

corre ponds to replacing an edge e = uv with a new vertex v' which is adjacent to all 

of the former neighbors of u and v. 

For given graphs G = (V, E) and G' = (V' , E'), G' is call d a minor of G if G' 

can be obtained from G by a series of edge deletions or contraction . Similarly given 

w ighted graphs G = (V, E, w) and G' = (V', E', w'), we ay that G' is a lighter 

minor of G , if G" is a minor of G, considering the corresponding und rlying graphs, 

and w'(e) :::; w(e) VeE E'. 

A vertex is called a cut vertex if its removal makes the graph di connected. A graph 

is biconnected (or two-connected) if it has no cut vert ices. A biconnected component 

of a graph is a maximal biconnected subgraph. 

An edge and a cycle are example of biconn ·cted compon nts. Obs rve that every 

edge belongs to exactly one biconnected component. A vertex may belong to more 

than one biconnected component, in which case it is a cut-vert x. 

A path addition [52] to G is the addition of a path of length at least n 2: 1, between 

two vertices of G introducing n- 1 new vertic s; the added path is called an ear. An 

ear decomposition is a partition of E into sets H0 , H 1 , H2 . . . Hk uch that H0 is a 
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CHAPTER 1. INTRODUCTION 

cycle, and Hi is a path addition to the graph formed by H 0 , H 1 , ... , Hi-l· 

Theorem 1 [53] A graph is biconnected if and only if it has an ar d composition. 

The s t of biconnected components of a graph G forms a graph called the block 

graph which has as its vertices the biconnected components and cut vertices of G, 

and there is an edge between two vertices if one of them is a cut vertex and the other 

is a biconnected component containing that vertex. 

Theorem 2 [28] The block graph of a connected graph is a tre . 

A valid coloring of a graph G = (V E) is a labeling f : E -+ F where F = 
{1 2 ... , k}. The labels are called the colors and IFI is the number of colors used by 

the coloring f. 

A graph is said to be planar if it can be drawn in the plane o that its edge 

intersect only at their end vertices. A drawing of a planar graph G is call d a planar 

embedding of G. 

Two graphs G = (V, E) and G' = (V', E') are aid to be isomorphic if there is a 

bijective mapping f from the vertex et V to the vertex set V' such that e = uv E E 

if and only if e' = f(u)f(v) E E', VeE E. The mapping f i called an isomorphism. 

We denote the fact that G and G' are isomorphic by G ~ G'. 

The ceiling of a number n is th smallest integer greater than or equal to n, 

denoted r n l· 
Let (Q, +) be a finite group with identity element 0. Let S ~ (Q\ {0}) such that 

S = - S , that is a E S if and only if -a E S . Recall that -a denotes the inverse of 

ain(Q,+). 

The Cayley graph [3] on a group g with connection set (or generating set) S , 

denoted as Cay(Q, S) , is the graph that is constructed as follows: 

(1) Each element of g corresponds to a vertex vi, and, 

(2) There exists an edge joining vi and vi if and only if vi = Vj +a where a E S . 
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CHAPTER 1. I TRODUCTIO 

Asp cial class of Cayley graphs is those on cyclic groups. A circulant graph, denot d 

as circ(n, S), is the Cayley graph Cay(Zn, S) where Zn is the abelian group of integers 

modulo n. 

1. 2 Edge Search 

Assume that we want to secure a system of tunnels from a hidd n intruder who 

is trying to avoid us and has unbounded speed. We mod l this system as a finite 

connected graph G = (V, E) where junctions correspond to vertic and tunn I 

correspond to edges. We will launch a group of searchers into th sy tern in order to 

catch the intruder. 

We assume that every edge of G is contaminated initially and our aim is to clean 

the whole graph by a sequence of steps. At each step we are allowed to do one of the 

moves defined below. 

Definition 1 The following actions that build up an edge search are call d the moves; 

(1) Place a searcher at a vertex, 

(2) Remove a searcher from one vertex and place it on another v rtex (a 'jump") 

(3) Slide a earcher from a vertex along an edge to an adjacent vertex. 

ote that placing multiple searchers on any vertex is allowed. We do not pose 

any restriction on the number of searchers us d. 

For a given graph it is a natural question to ask what is the smalle t value of k 

with which we can clean the graph. Next we define this term formally. 

Definition 2 If a searcher slides along an edge e = uv from u to v , then the edge e is 

cleaned if either (i) another searcher is stationed at u, or (ii) all oth r edges incident 

to u are already clean. An edge search strategy is a combination of the moves so that 

the tate of all edges being simultaneously clean is achieved, in which cas we ay 
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CHAPTER 1. INTRODUCTION 

that the graph is cleaned. The least number of searchers needed to clean the graph 

is the edge search number of the graph and is denoted s(G) . 

All models of searching in this work are variations of edge searching, so we will 

normally omit the term "edge". 

The problem becomes cleaning the graph using the fewest searchers. In this re­

spect, we are interested in the optimal search strategies, those that use only s( G) 

searchers. If an optimal search strategy i not known, w approximate the search 

number by relating it to other graph parameters, such as minimum degr e, or oth r 

search numbers, such as weight d search number. 

otice that even once an edge is cleaned , it may not necessarily be true that it 

will remain clean until the end of the search strategy. In other words, an edge can be 

cleaned at some step and at a later step it can get contaminated again. 

Definition 3 If a searcher is stationed at a vertex v, then we say that v is guarded. 

If a path does not contain any guarded vertex, then it is called an unguarded path. If 

there is an unguarded path that contains one endpoint of a contaminated edge and 

one endpoint of a cleaned edge e, then e gets recontaminated. 

Hence, a clean edge remains clean as long as every path from it to a contaminated 

edge is blocked by at least one searcher. 

The edge search problem has many variants based on, for instance, how s archers 

move or how the edges are cleaned. We will next int roduce the three main variants 

that are of interest to us. 

If we are not allowed to remove a searcher from the graph , then we have an internal 

search strategy, in which case each move is either to place a searcher at a vertex, or, to 

slide a searcher from a vertex along an edge, to an adjacent vertex. This is equivalent 

to the case where the 2nd move in Definition 1 is not allowed. 

If we insist that once an edge becomes clea.n it must be kept clean until the end 
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CHAPTER 1. INTRODUCTION 

of the searching . strategy, then such a strategy will be called monotonic. Hence for 

every step of a monotone strategy the set of cleaned edges is a subset of the set of 

cleaned edges at the next step. In other word , each edge should be cleaned once. 

If, on the other hand , the set of clean edges induces a connected subgraph of G 

after each step of the strategy, then the strategy will be a connected on . 

The minimum number of searchers needed for an internal , monotone or a con­

nected strategy are denoted as is( G) , ms(G) and cs(G) resp ctively. A strategy may 

combine any of these. Hence, for example, mis(G) will correspond to monotone 

internal search number which is defined analogously. 

The following equation that summarizes the relationship between the search num­

bers is given in [8] . For an extended version of this paper see [9]. We should mention 

that through personal communication with the authors of [ ] we are informed that 

it is possible that the inequality mis(G) ~ cs(G) fails to be true for some graphs 

although known to hold for many classes of graphs. 

Theorem 3 [8] For a connected graph G = (V, E), we have 

s(G) = is(G) = ms(G) ~ mis(G) ~ cs(G) = ics(G) ~ mcs(G) = mics(G). (1.1) 

There are gra.phs for which the inequalities are strict [4 8] . The smallest graph 

found so far for which is(G) < mis(G) is given in [4, 56]. 

There are many variants of edge searching that consider one or mor of the con­

straints defined above. In this work we introduce two new models: Weighted Search 

and Fast Search. We will also partially answer some op n problems regarding edge 

searching. 
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CHAPTER 1. INTRODUCTION 

1.3 Previous Work and Applications 

The edge searching problem is an extensively studied graph theoretical problem. Its 

origins date back to the late 1960s in the works of Breisch [14]. It was first faced 

by a group of spelunkers who were trying to find a per on lost in a system of caves. 

They were interested in the minimum number of people they needed in the searching 

team. Parsons [42, 43] was the first one to formalize it as a mathematical probl m 

in 1976. He defined it as a nondiscrete problem where the searchers and the intruder 

are allowed to move according to continuous functions. In 19 2, Petrov [45] defined 

searching independently. Golovach [24] proved the equivalence of this cont inuous 

problem to the discrete one we are considering. 

One of the major problems of edge search is to characterize the graphs G such 

that s( G) ~ k for a fixed positive interger k. A graph G is said to be k-searchable if 

s(G) ~ k . It haS been shown in [37] that finding whether a graph G is k-searchable, 

i.e. solving the EDGE SEARCH! G problem for G is P-complete. 

Let k be a fixed positive integer. We say that a graph H is a forbidden minor 

for k-searchable graphs if k < s(H) and if any minor of H has s arch number at 

most k. For fixed k, the set of forbidden minors for k-searchable graphs is called th 

obstruction set. 

The theory on graph minors built by Robertson and Seymour [47, 48] implies that 

the obstruction set is finite for minor closed families. Furthermore, it is known that 

edge searching is closed under the taking of minors [42]; that is, if G contains H as 

a minor, then s(H) ~ s(G). Therefore the obstruction set for k-searchable graphs is 

finite whenever k is fixed. 

On the other hand no general method is known for constructing an obstruction 

set. Further, the size of such a set is not known either except for som initial cases. 

The obstruction sets for k = 2 and k = 3 are given in [37]. However a construction of 

the obstruction set is not known for any fixed k ~ 4. We partially answer this open 
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CHAPTER 1. INTRODUCTION 

problem in Chapter 4. For results on obstruction sets of graphs with small search 

numbers refer to [50]. 

Node search and digraph search are two major variants of dge search. In node 

search, which is introduced by Kirousis and Papadimitriou [32, 33], we are only al­

lowed to place searchers on vertices and remove searchers from vertices. In this mod l 

an edge is cleaned when there are searchers on both of its end points. By reduction 

from edge search it is shown that node search is NP-complete [11] . It can be seen 

that the edge search number and node search number cannot differ by more than one 

[32] , namely, if ns( G) denotes the node search number of a graph, then 

ns( G) - 1 :::; s( G) :::; ns( G) + 1. (1.2) 

Digraph search is defined as the search problem defined on directed graphs. It i 

mainly motivated by a graph parameter called directed treewidth [29]. Furthermore, 

there are variety of search models on directed graphs which may have different rules 

depending on how the intruder or the searchers traverse the directed edges [6, 41]. 

The NP-completen ss of a directed search model is giv n by Yang and Cao [54]. 

Mixed search is defined as a combination of edge search and node earch [11]. In 

this model an edge becomes clean either when both its end points are guarded by 

searchers or when a searcher slides along it properly. Using mixed search it has been 

shown [11] that forcing a search to be monotonic does not change the search number 

hence we can always assume that edge search strategies are monotonic. A different 

proof of monotonicity is given by LaPaugh [34]. Similarly, monotonicity does not 

require more searchers in node search and in mixed search [11] . 

The relationships between the various search strategies ment ioned in Section 1.2 

is examined in [8]. For a recent survey on graph searching and its variants, see [23]. 

For a book on search games, see [1]. 

We consider guaranteed search strategies; that is, those that capture the intruder 

regardless of its moves. For a probabilistic approach where randomized algorithms 
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CHAPTER 1. INTRODUCTIO 

are utilized, see [30]. 

The cops a~d robber model, defined in [40] and [51], is a search model with 

complete information, i.e., the intruder and the searcher know each other ' location. 

Initially the searchers are located on vertic s and then the intruder chooses a vertex. 

First a subset of searchers move followed by the move of the intruder. After thi they 

alternate moves. A move is to slide along an edge or along a loop. For a graph G 

the minimum number of cops that guarantee a. winning strategy for the cops is the 

cop number of G. Deciding whether a given graph has cop number at most k, for a 

given integer k, can be done in polynomial time [10]. In [26] it is shown that infinite 

chordal graphs do not neccessarily possess a strategy that guarentees a win for the 

cop(s). An algorithmic characterisation of finite cop-win graphs is given in [27]. 

The complexity of edge searching and its variations invoked intere t in solving 

these problems on special classes of graphs. ode search and edge search algorithms 

are given for some subclasses of chordal graphs in [44]. 

Due to its closeness with the layout problems, the problem is related to widely 

utilized graph parameters such as pathwidth [19, 31], cutwidth [36], bandwidth [22, 

46], linearwidth [12], treewidth [15, 49] and topological bandwidth [35]. It has strong 

connections with the cutwidth of a graph which arises in VLSI circuit design [16] and 

with the gate matrix layout problem [39] . For instance, the search number of a graph 

G equals its cutwidth when G has maximum degree 3 [36]. The pathwidth is node 

search number minus one [32]. 

The problem and its variants are related to many applications such as network 

security [7]. In this application, we consider the capture of a possibly ho tile intruder 

in a given network by software agents. The intruder is arbitrarily fast and has access 

to information about the position of the agents. They all move along the network 

links. The problem is to construct the agents' strategy to capture the intruder in an 

efficient way, which corresponds to minimizing the number of agent used. A similar 
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CHAPTER 1. INTRODUCTION 

application is addressed in robotics for its applications in search and rescue [25]. A 

typical example for this case is collision avoidance and air traffic control. 

Edge search is not only interesting theoretically but also has application in com­

binatorial problems [39] such as pebble games that are played on directed acyclic 

graphs. In a pebble game, initially there are no pebbles on the graph. At every move 

either a pebble is placed on a vertex with no pebble, or a pebble is deleted from a 

pebbled vertex. The game ends when all vertices of the graph are pebbled and no 

pebble is left on the graph. A translation between search problems and pebble game 

is given in [32] . They show that the minimum number of pebbles used in a monotonic 

pebble game is equal to the node search number of a graph. 

1.4 Weighted Search 

Assume that we use a graph to represent a system of gates (which corre pond to ver­

tices) and pipes (which correspond to edges) where pipes may have different prioriti s 

(depending on size or location). Let us consider these pipes to be full of poison gas. 

Then we can think of edge searching as cleaning the system of poison gas. If one gate 

is left open and if gas leakage can occur through that gate then gas will contaminate 

every pipe that it can reach; that is, all connected pipes with open gates. When a 

pipe becomes recontaminated, it will do so to its capacity; that is, even if a recon­

taminated pipe had been partially (or entirely) cleaned, it must now be fully cleaned 

again. 

Motivated by the gas leakage scenario we define weighted search on weighted 

graphs. Conside{· a team of searchers (or sweepers) and a finite connected graph G 

with positive integer weights which represent the maximum amount of contamination 

of edges. Again we assume that the graph is contaminated initially and our aim is to 

decontaminate or clean the whole graph by a sequence of steps. At each tep we are 
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allowed to do one of the following moves: placing a searcher at a vertex, removing a 

searcher from a vertex or sliding a searcher along an edge. The moves are the same 

as those for edge. search, whereas the rules for cleaning are slightly different. 

ote that, when all edge weights are equal to one, then the weighted edge searching 

problem becomes the edge searching problem. 

Definition 4 If a searcher slides along an edge e = uv from u to v, then the current 

positive weight of the edge e is decreased by one if (i) another searcher is stationed at 

u, or (ii) all other edges incident to u have weight 0 and the current weight of e is 1, 

or (iii) u is a leaf. 

When a searcher moves from a leaf u to an adjacent vertex, it is not possible to 

contaminate the graph through u due to the nature of the system and h nc we do 

not need to place a searcher at u. When an edge has weight w(e), it means that a 

searcher has to slid along eat least w(e) times and decrease the weight at each move. 

Assume that the weight of an edge e is decreased after some st ps. Then we say 

that e is clean if its weight i reduced to zero and partially clean otherwise. We 

note that this does not guarantee that the weight will remain reduced , because of 

a possible recontamination. If there is an unguarded path that contains one end 

point of a partially clean or a contaminated edge and one end point of e, th n e g ts 

recontaminated. If e gets recontaminated, its weight goes back to w (e), its original 

value. If in the system there occurs a gap in which an intruder (which may have 

a diffused form as in the gas leakage scenario) can ent r a pipe (i.e. contaminate 

an edge), then we can no longer consider that pipe as clean (and not ev n partially 

clean). Recontamination occurs instantly and t.here is no order of recontamination. 

A weighted edge search strategy is a combination of the moves defined above that 

reduces all edge weights to zero. We say that the graph is cleaned when the state of 

all edge weights being zero simultaneously is achieved. The least number of searchers 

13 
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required in the Keighted edge search strategy is the weighted search number which is 

denoted by ws(G). 

Weighted searching is a reasonable extension of the searching problem, as in many 

"real-world" situations, an edge in a graph may represent a pipe or a corridor. Tra­

ditional edge searching is not robust enough to deal with situations where particular 

edges may be more important or may require more effort (be it cost or time) to be 

cleaned. To return to Breisch 's original problem [14], a tunnel in a cave may be quite 

constricted, allowing only a single searcher through, or broad, requiring several passes 

to search effectively. 

In another search model the edges and vertices have di similar weights [7] for 

internal connected search. The rules of this model is different from the weighted 

search defined in this thesis. 

A weighted graph is said to be k-searchable if ws(G) ~ k. The decision problem 

for the weighted case can be stated as below. 

WEIGHTED SEARCH! G: 

Instance A weighted graph G = (V, E, w) and a positive int ger k. 

Question Is G k-searchable? 

By transformation from the MI IMUM CUT INTO EQUAL SIZED SUBSETS prob­

lem which is known to be NP-complete we see that WEIGHTED SEARCHING is 

P-hard. We will show in Section 2.4 that this decision problem is in fact NP­

complete. 

1. 5 Fast Search 

In the majority of networks the tasks relating to cleaning the tunnels are very costly 

or t ime consuming. Therefore a good strategy to search a network would require it 
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to be monotone; that is one would not have to return to edges already examined. 

On the other hand, the cost of a searcher used in a search strategy may be low 

in some search scenarios. Hence we may use more searchers to reduce the time spent 

for searching. However, at some point we will have loaded the graph with enough 

searchers that no more searchers would decrease the time needed to clean the graph. 

Here we are interested in such a case. 

Therefore, one definition of an efficient way to clean a graph would be to do o 

in the minimum number of steps using the le& t number of searchers. In particular, 

each edge would be traversed exactly once. First we place a given set of k searchers 

on a subset of V. Here, we again allow multiple searchers to be placed on a vertex. 

T hen the moves we are allowed to do are of type (3) of Definition 1, i.e., sliding. 

We define this new version of edge searching to be fast searching. A fast search 

strategy for a gr~ph G = (V, E) is a sequence of lEI moves that cl an G. The fast 

search number of G is the least number of searchers for which a fast search strategy 

exists, and is denoted s1(G). Consequently, this must be an internal monotone search 

where no edge is traversed more than once. 

We accordingly introduce the following decision problem: 

FAST SEARCHI G: 

Instance A graph G = (V, E) and a positive integer k. 

Question Is SJ(G)::; k? 

We give a linear time algorithm for the FAST SEARCH! G probl m when it is 

restricted to trees. 

The minimum length of time needed to search a graph using a given number of 

searchers is a complicated problem and there has not b en much work devoted to this 

topic. In [5], the authors define one-tick search number of a graph as the minimum 

number of searchers needed to capture the intruder in their first move according to 
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Figure 1.1: A first example 

the cops and robber model. They show that one-tick node earch number is equal to 

the domination number for any graph. 

Consider a function that gives the cost of searching a graph. Among other pa­

rameters, it would depend on the number of searchers and the total time spent for 

searching the graph. We give a formal definition and some analy i of this function 

in Chapter 3. 

1.6 A first example 

Consider the graph G = (V, E) in Figure 1.1. To demonstrate the s arch models we 

have introduced so far, we next give an edge search and a fast search for G. We al o 

give a weighted search strategy for a particular weight distribution as igned to the 

edges in G. 

Observe that given a finite reflexive multigraph G, for all of th search models we 

have introduced, there exists a corresponding search strategy for G that uses a fini te 

number of searchers. This also holds for weighted graphs. 

H reafter CJi denotes the ith s archer used in the search strategy. 
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An Edge Search Strategy 

Place three searchers, a I , a 2 and a 3, on VI· Slide ai along el and t hen along e 2 . 

This cleans ei and e2. Slide a 2 along e3 and clean e3 . Slid a 2 along e5 and clean e5. 

ext slide a 3 along e4. ow a 2 and a 3 are both on v4. Slide a 3 along 6 and clean e6 . 

Remov a 2 from ·v4 and place it on v5 . First lide a3 along e7 and t hen slide a 2 along 

e8 . Remove ai from v3 and place it on v8. There are two search rs on v at this step. 

Let a I slide along en , e10 and then along e9 in this order. This cleans all dges by 3 

searchers. In fact , since G has a forbidden minor for k = 2, we know that 3 :::; s( G) 

[37]. Thus s(G) = 3. 

A Weighted Search Strategy 

Let G' be the weighted graph with the underlying graph G in Figure 1.1 and 

w(e) = 3, 'r/e E E. ote that the following weighted search strategy using 4 searchers 

can also b applied to a weighted graph with a.rbitrary edge weights all of which are 

not less than 3. 

Place two searchers a 1 and a 2 on VI· Place a 3 on v2 and a4 on v3. Let ai slide 

along e1 three times and clean it. Repeat the arne for e2 and e3 . Since all edge 

incident to v2 are clean at this step we can remove a3 from v2 and place it on V4. 

ext let ai clean e4 and then e5 by keeping other searchers on th ir places. otice 

that after this is done ai is on v3. Remove a 1 from v3 and place it on v4. Remove 

a 2 from v1 and place it on v5 . Also remove a4 from v3 and place it on v8 . Clean e6 

by a 1. Remove 0'3 from v 4 and place it on VG. Next clean e7, es and eg by sliding a1 

along them as many times as needed. Remove a 2 from v5 and place it on V7. Remove 

a1 from v5 and place it on v6. Finally clean ew and en by a1. 

Thi gives us a weighted search that uses 4 searchers. In fa t , it is a simple 

exercise to show that we need at least four earchers to clean a fir t vertex. Therefore 

ws(G) = 4. 

A Fast Search Strategy 
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Place three searchers, a 1 , a2 and a3 , on v1 . Place a4 on v5 and a 5 on v6 . Clean v1 

by sliding a1 along e1, then a2 along e3 and a3 along e4 . ext clean e2, e5 and e6 by 

a3. Then clean e7 and e9 by a4. Finally clean e8 , e11 and e10 by a3. Thus we have a 

fast search strategy that cleans the graph using 5 searchers. 

Observe that since an edge can be traver ed only once in a fast search strategy, 

only one of the three searchers can cross through e6 and thus only one searcher can 

be t ransformed from the left part to the right . Also, we need at least three searchers 

to clean the left side or the right side. This implies that 5 ::::; sf (G). Hence sf (G) = 5. 

Remark 1 In this text unless it is explicit ly stated otherwise we consider simple 

connected graphs. Our results can nat urally bE' extended to disconnected graphs. For 

a disconnected graph G, we let s(G) = maxs(C' ) where G' is a connected component 

of G. We define ws(G) for disconnected graphs similarly. On the other hand s1(G) = 

L, s1(G' ) where G' is a connected component of G. This is b cause of fast search 

being internal. 

Remark 2 Let S denote any search strategy for G. Assume that a denotes one of 

the searchers used in S . We say that v is the start vertex for a, if a is initially placed 

on v according to the strategy S . We say t hat u is the end vertex for a , if a stop at 

u (and never moves again). 
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Chapter 2 

Weighted Search 

In traditional edge searching the aim i to clean all of the dge in a graph employing 

the least numb r of searchers. It is as umed that each edge of th graph is cleaned in 

the same way and initially each edge has equal contamination that an be consid red 

a weight of one. In this chapter we modify the problem and consider it on graphs 

with arbitrary positive integer weights as igned to their edg . We giv bounds on the 

weighted search number in terms of related graph parameters including pathwidth. 

We characterize the graphs for which two earcher are sufficient to clean all edges. 

We show that for every weighted graph the minimum number of earchers needed 

for a not-necessarily-monotonic weighted search strategy is enough for a monotonic 

weighted search strategy, where each edge i cleaned only once. This result proves 

the P-completcness of the problem. 

2.1 Preliminaries 

Let G = (V, E, w) be a weighted graph. Let w0 (e) := w(e) denote the initial weight 

or contamination of the edge e E E. We denote the contamination of e at step i 

of a weighted search as wi (e). Initially all edges are assum d to be contaminated, 
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therefore w(e) ~ 1, Ve E E . 

If wi(e) = 0, then the weight of edg e is zero at step i and we say that e is clean 

at step i. ote that even if the weight of an edge is zero at orne step the edge may 

be recontaminated at a later point. A vertex u will be said to be clean if all edges 

incident to u are clean. 

An exposed vertex is a vertex that has at least two edges incident with it , one of 

which is either clean or partially clean and the other is not clean. For a weighted search 

Son G, the number of exposed vertices after the i th step is denoted as wexs(G, i). 

Let t be the number of steps used in S. The maximum number of exposed vertices is 

denoted as mwexs(G) = max1 ~i9{wexs(G,i)}. Observe that 

mwex5 (G) ~ ws(G). (2.1) 

Note that foi· an unweighted graph G the weighted search numb r, ws(G), is 

computed by taking all edge weights equal to one. Similarly, given a weighted graph, 

s(G) corresponds to the search number of the underlying unweighted graph. Observe 

t hat for any weighted graph G we have: 

s(G) ~ ws(G). (2.2) 

We can consider internal , monotone or connected weighted search strategies for a 

weighted graph. The corresponding search numbers are d noted as iws(G), mws(G) 

and cw (G) respectively. Let us give the following result that state that an internal 

search does not require more s archers than a not-necessarily internal search for a 

weighted graph. 

T heorem 4 If G = (V, E, w) is a weight d graph, then 

ws(G) = iws(G) . 
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P ROOF. Assume that a searcher jumps from u to v according to a weighted search 

strategy for G. Let P be a path that connects u and v. Such a path exists since G is 

connected. Hence in the internal search the searcher can go from u to v along P by 

a serie of moves (slides). Hence any weighted search strategy can be converted to a 

weighted internal search. • 

An analog of Equation 1.2 that relates node search number and weighted search 

number is given in the next theorem. 

Theorem 5 If G is a weighted graph, then 

ns(G)- 1 ~ ws(G) ~ ns(G) + 1. 

PROOF. The Equations 1.2 and 2.2 imply that ns(G)- 1 ~ s(G) ~ ws(G). On 

the other hand, assume that we are given a monotone node search for the underlying 

unweighted graph G. Recall that monotonicity does not increase the node search 

number [32]. L t e be cleaned at step i. Thus there must be a s archer on both end 

points of eat step i . We construct the weighted search by using an extra earcher, CT, 

to slide along the edge w(e) times at steps i 1 i2, . .. iwo(e)· Thi will reduce the weight 

of e to zero. Thus in weighted search in addition to the steps that make up the node 

search for the underlying unweighted graph, for every e E E we will have the steps 

i 1 , i2, ... , iwo(e) for some i . At the next step of the weighted search, we remove CT and 

place it to one of the end points of the next edge to be cleaned according to the node 

search. We apply this to all edges of th weighted graph. Hence w (G) ~ ns(G) + 1. 

• 
ext we give examples of weighted graphs and their weight d arch numbers. 

otice that a graph may have three different weighted search number depending on 

the weight distribut ion. 

Example 1 Path of length n : The search number is s(Pn) = 1 whereas 
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ws(Pn) = 

1, if w(e) = 1 VeE E or when n = 1 and w(e) i arbitrary; 

2, if n 2: 2, 3e E E such that w(e) 2: 2 and w(ei) ~ 2 where 

i = 1, ... , (n- 2) , and when w(eo) or w(en-1) are arbitrary; 

3, otherwi e. 

Example 2 Loop l: We know that s(l ) = 2. For any edge weight we see that 

ws(l) = 2. 

E xample 3 Cycle of length n: For ev ry Cn, observe that (Cn) = 2. Also note 

that 

! 
2, if w(e) = 1 VeE E; 

ws(Cn) = 4 if 3e1 , e2 , e3 E E, each of weight at least 3; 

3, otherwise. 

Example 4 Edge searching a weighted graph is not the same as edge searching an 

unweight d multigraph where each dge e of weight w(e) is replaced with w(e) parallel 

edges. One example is the path of length two where both edge have weight 3. Then 

the corresponding unweighted multigraph, with 3 vertices and 6 edges has search 

number 3 whereas the weighted graph has earch number 2. 

2.2 Bounds on Weighted Search Number 

In this s ction we give results that relate the weighted search number with oth r 

parameters. Fir t we will consider the complete graph . For n 2: 4 we know that 

s(Kn) = n [42]. 

Lemma 6 For n 2: 4, we have 

n + 1, when all edges have weight at least 3, 

otherwise. 
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PROOF. Ob erve that since s(Kn) = n, we haven~ ws(Kn)· 

First let uv = e E Kn such that w(e) ~ 2. Place a searcher on ev ry vertex except 

for u. This accounts for n- 1 s archers. Place the nth searcher ern , on v. Clean 

all edges incident to v other than e by ern. Remove ern and place it on v. ow the 

only contaminated edge incident to v is e and there are two earcher located on v: 

cr1 and ern· At this step, say i, let ern slide along e from v to u. Since w(e) ~ 2, 

wi(e) ~ 1. Hence we can clean e by sliding cr1 along e. This cl ans v. Now there is a 

searcher located on every vertex except for v and u contains two searchers. Hence w 

can clean all the remaining contaminated edges by keeping a search r on each vertex 

except for v, and by sliding ern along these edges. Thus, in this case, w (Kn) = n. 

A sume that all dges have weight at least 3. Placing a earch r on each vertex 

and cleaning the edges by the (n + 1)th searcher gives us a weighted search strategy 

that uses n + 1 searchers. Hence n ~ ws(Kn) ~ n + 1. We show that n searchers 

are not nough to clean weighted Kn. Notice that to clean a first v rtex we need a 

searcher to guard v, a searcher for each neighbor and another searcher to slide along 

the edges. Thi uses n + 1 searchers. Hence a first vertex can nev r be cleaned by n 

searchers. • 

It is known [42] that if H is a minor of G, then 

s(H) ~ s(G). 

However, this result does not hold for monotone search [17]. The following theorem 

implies hat weighted search is also minor closed. 

Theorem 7 If H = (V', E', w') is a lighter minor of G = (V, E w) where G and H 

are weighted reflexive multigraph , then 

ws(H ) ~ ws(G). 

PROOF. Assume that G is cleaned according to a strategy S . Let f : V ---+ V' 

be the function that is associated with the edge contraction and deletions which 
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transform G to H. Assume that S uses m searchers. Using S and f, we construct a 

weighted search S' for H so that S' use m searchers. 

We order the vertices of G on which the earcher are placed during S as v1 v2 , ... , 

Vm, where vis are not neces arily distinct. When searching H , we place the searchers 

on vertices f(vi), Vi = 1, . .. , m, at the arne step as they appeared in the strategy 

S. If f (vi) = f (vj), for i =!= j, w place both searchers on the same vertex. It is 

clear that whenever we clean an dge e E G and e is not deleted from H , we can also 

cl an e E H by moving the searcher according to S. In detail, when a searcher a 1 

moves from u to v, we will move the earcher on f(u) to f(v). Wh n f(u) = J(v), we 

do not do anything. If f(u) and f(v) are not adjacent, the earcher on f(u) move 

along a path to f(v). If a 1 can move from u to v in G without occurrence of any 

recontamination on e = uv, there will also be no recontamination when a 1 leaves 

f(u). The validity of this operation is due to the placement of th earchers on H. 

Note that there may be edges that are cleaned in H before th y were cleaned in G 

according to S, nevertheless this does not falsify the weighted arch since we do 

not necessarily construct S' as an internal or a monotone search. Th refore, the e 

modifications will give us a weighted search trategy for H without requiring more 

searchers. • 

2.2.1 Weighted Search Number and Search Number 

We start with t.wo bounds comparing the search number of the graph with the 

weighted search number. They are shown by modifying th earch trategy for the 

underlying unweighted graph. 

T heorem 8 For a weighted reflexive multigraph G 

ws(G) ::; s(G) + 2. 
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PROOF. Assume that Sis a search strategy that use s(G) searchers to clean G. 

We will give a search strategy S' that cleans the weighted G using s( G)+ 2 searchers. 

To construct S' we start with Sand modify it. Since the underlying graph i cl aned 

by s(G) searchers we can assume that there is a certain time when an edge e = uv 

is cleaned for the last time. Hence according to S a searcher, O"o, must traverse th 

dge e either fro:n u to v or from v to u. Without loss of generality, we can assume 

that it is cleaned from u to v . When cleaning the weighted graph we place another 

searcher, 0'1 , on u and hold it on u . Then O"o slides along e, as it would according 

to S. The weight of the edge e will be reduced to zero by the second extra searcher, 

0'2 , which slides along e back and forth. Sine e was arbitrary we clean the weighted 

graph in this way. Note that no recontamination will occur, since s(G) searchers were 

assumed to be sufficient to clean G. • 

In Examples 1 and 3, we saw that for certain distributions of w ights equality 

holds in Theorem 8. In fact, these graphs constitute an infinite family of such graphs. 

Together with Equation 2.2, Theorem 8 implies that s(G) ::; ws(G) ::; s(G) + 2 

for any reflexive multigraph G and any weight distribution associated with its edges. 

The next theorem improves this bound for certain weight distributions. 

Theorem 9 Let G = (V, E, w) be a weighted reflexive multigraph. If w(e) ::; 2 VeE 

E , then 

ws( G) ::; s( G) + 1. 

PROOF. As in the proof of Theorem 8, if an edge e = uv is cleaned from u to v 

according to a monotone search strategy, S, we will place an extras archer on u in 

S' and reduce the weight by 1 according to S. Then the extra searcher will clean the 

edge from u to v in S'. • 

Let us denote the minimum vertex degree of a graph G by o (G). It has been 

shown in [17] that s( G) ;::: o( G) + 1 for a connected graph G whose minimum d gree 
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is at least 3. Below is a stronger result for weighted search number. 

T heorem 10 Let G = (V, E, w) be a weighted graph. If w(e) > 3 Ve E E and 

8(G) ;::: 3, then 

ws(G) ;::: 8(G) + 2. 

PROOF. We know that ws(G) ;::: s(G) ;::: 8(G) + 1. Consider a search trategy Son 

G and let the first vertex cleaned be u. As a first case as umc that u is of minimum 

degr e. We claim that S u es at least 8(G) + 2 searchers. If the graph indue d by 

N(u) forms a clique, then we know from Lemma 6 that we need at least 8(G) + 2 

searchers to clean u, and we arc done. Hence assume that the graph induced by N(u) 

does not form a clique. Let the last cleaned edge that i incident to u be e = uv. 

Then u together with all the remaining 8(G) - 1 vertices adjacent to u must each 

contain a searcher and there must be one more carcher . Hence all 8(G) + 1 earcher 

are used. Notice that all vertices have minimum degree at l ast 3, hence none of th 

8(G)- 1 searchers located on th 8(G)- 1 adjacent vertices can be moved. This is 

due to the fact that to be able to remove as archer from v E N(u), all neighbors of 

v other than u must be in N(u) and we need IN(u) l + 2 = 8(G) + 2 searchers. Hence 

the validity of our claim is shown. Since all the edges have weight at least 3, the 

searcher on u cannot be moved either. Therefore, u cannot be cleaned, sine e = uv 

cannot be cleaned by a single free searcher and a searcher on u, because all vertice 

have degr e at least 3. 

Otherwi e, if u is not of minimum degree, then there are at least 8(G) + 1 vertice 

adjacent to u. Since the weights of the edge are at least 3, when u is cleaned u 

tog ther with all its neighbors must contain a searcher, and there must be one more 

searcher to clean the edges incident to u. This makes in total at least 8 (G) + 3 

s archers. Hence the theorem is proved. • 
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2.2.2 Weighted Search Number and Pathwidth 

Pathwidth is a widely utilized graph parameter in pursuit evasion games including 

edge searching. 

Definition 5 A path decomposition of a reflexive graph G = (V, E) is a equence 

X 1 , X2 , ... , Xr of subsets of V such that the following conditions hold: 

2. VeE E , :Ji E {1 , 2, ... , r} uch that Xi contains every end vertex of e, 

In the definition, the first condition means that all vertices of the graph should 

be covered by the decomposition. The second condition implies that all edge are 

covered. The last condition can be regarded as a connectivity condition as once a 

vertex is included in a set, it should remain in all successive sets if it is to reappear. 

D efinition 6 The width of a path decomposition X 1 , X2 , ... , Xr for a graph G is 

max IXil - 1 where i = 1, ... , r. The pathwidth of a graph G, denoted by pw(G), is 

the minimum h ~ 0 such that G has a path decomposition of width h. 

Example 5 Let G = Pn with V = {v0,vi , ... ,vn}· Then XI = {v0 vi},X2 

{VI, v2}, ... , Xn = { Vn- I, Vn} is a path decomposition and I Xi I = 2, Vi = 1, 2, . .. , n. 

Condition two of the definition of a path decomposition implies that pw(Pn) ~ 1. 

Thus pw(Pn) = 1. Recall that s(Pn) = 1. If H is a weighted path with all edge 

weights equal to one, then pw(H) = ws(H) = 1. 

Example 6 For a cycle Cn with v = {vo, VI, ... , Vn- I}, observe that xl = {vo, VI, v2 }, 

x2 = {vo,V2,v3}, . . . ,Xn- l = {vo ,Vn-2,Vn-d gives us a path decomposition. Hence 

pw(Cn) ::; 2. As ume that there exists a path decomposition of width one. Rene all 
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sets are of size at most two. Also, each vertex must be contained in two consecutive 

sets. But this cannot hold for each Vi where i = 0, 1, . . . , n without violating the third 

condition. Thus 1 < pw(Cn)· Therefore pw(Cn) = 2. 

Hence we observe that for Cn all of the three terms are equal, namely, pw(Cn) = 

s(Cn) = ws(Cn) = 2. 

Given a graph G, finding the pathwidth of G is an P-hard problem in general 

[2]. On the other hand , if we are given a fixed k, then deciding whether pw(G) ::; k 

can be solved linearly [13]. 

Theorem 11 [19] For any graph G, pw(G) ::; s(G) ::; pw(G) + 2. 

We need another definition before we give the main resul t of this part. 

Definition 7 A vertex separator of G is a set of vertice , the removal of which makes 

the graph disconnected. A layout of a graph G = (V , E), where lVI = n, is a one to 

one mapping L from V to { 1, 2, ... , n}. A partial layout of G is a one to one mapping 

L' from a subset 11' of V to {1 , 2, ... , n'} where n' = JV' J. Given a partial layout L' , we 

define Vu(i) := {v E V: :Ju E V such that uv E E and L'(v) ::; i and either L '(u) > 

i or L'(u) is undefined}. For a given partial layout L' where Jdomain(L') l = n', the 

vertex separation of G with respect to L' is defined as vsu(G) := max{JVu(i)J : 1::; 

i::; n'}. The vertex separation of G is vs(G) = min{vsL(G): Lis a layout of G}. 

Theorem 12 [31] For any graph G , vs(G ) = pw(G). 

In Theorem 13 we will prove that the same bounds in Theorem 11 also hold for 

weighted edge searching. In the algorithm, for a partial layout L' where domain(£') = 

V' and 1 ::; i ::; JV' J we define the partial layout Li as t he one that assumes the same 

values for the v rtices in {L'- 1(1) , L'- 1 (2) , . .. , U- 1(i)} and undefined el ewhere. An 

edge e = uv is dangling in L' when u E V' and v ~ V'. A vertex u is active in a 

part ial layout L' if u E V' and u is incident to a dangling edge. 
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Theorem 13 For any weighted reflexive multigraph G, 

pw(G) ~ (G) ~ w (G) ~ pw(G) + 2. 

PROOF. The lower bound is t rivial due to Theorem 11 and Equation 2.2. 

To show the upper bound, we give an algorithm that is derived from Lemma 2.2 

in [19]. The algorithm will take as input a weighted graph G, a layout L of G and it 

will result in all P-dges of G b ing simultaneously clean. It will us at mo t vsL( G)+ 2 

searchers. The result follows due to Theor m 12. 

Algorithm WS(G, L) 

for i := 1 to lVI 
do 

let v := L - 1(i); 

place a searcher ~1 at v ; 

for u E V such that L(u) < i and e = uv E E 

do 

end 

place a searcher ~2 at u ; 

clean e by sliding ~2 along c back and fort h w(e) t imes ; 

remove ~2 ; 

end 

for ev_ery loop e = vv E E 

do 

place a searcher ~2 at v ; 

sli de ~2 along e back and fort h w(e) t imes ; 

remove ~2 ; 

end 

remove searchers from the vertices that are not act i ve in Li; 
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First observe that at the end of ith iteration the set of active vertice has size no 

more than lvs LJ G) 1- Hence the number of searchers that remain on th graph at the 

end of every iteration is no more than the search number of the graph. 

Notice that before the beginning of the ith iteration of the outer do loop, the 

subgraph induced by the domain of L i-I is cleaned. Furthermore, at each vertex in 

the domain of L i -I there is exactly one searcher and there are no other searchers on 

G. This is why no recontamination occurs during the second do loop. By induction 

we see that G is cleaned as a result of Algorithm WS(G, L). Note also that at each 

iteration of the algorithm there are at most vsL(G) + 2 searchers on G ince at each 

iteration the algorithm calls for at most two searchers other than the ones on at most 

vsL(G) vertices. Hence for an optimal layout, Algorithm WS(G, L) will use at most 

vs(G) + 2 searchers. • 

Example 7 Consider Kn with vertex set V = {vi,v2, . .. ,vn}· Naturally, XI = V 

is a path decomposition with width n- 1. Also, by Theorem 11 s(G) ~ pw(G) + 2, 

thus n- 2 ~ pw(G) ~ n- 1. 

Assume that X 1, X2 , . .. , X r is a path decomposition for Kn such that IXi l ~ n-1. 

It is easy to see that subsets of size at most k for k < n- 1 can not form a path 

decomposition for Kn. Thus assume that IXil = n - 1 for every i E {1 2, . .. r } . 

Let VI rt. xl and V2 rt. x 2. Since VI and V2 are adjacent vertices, there exists i E 

{3, 4, ... , r } such that v1, v2 E Xi. Hence by definition v2 E X 2, a contradiction . 

Therefore pw(Kn) = n - 1. 

Let GI be the weighted Kn with all edge weights equal to two. We have seen that 

ws(GI) = n. Thus ws(GI) = pw(G1) + 1. 

Furthermore, if G2 is the weighted Kn with all edge weights equal to three, then 

ws(G2) = pw(G'l) + 2. 
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2. 3 Restricted Weighted Search 

We now consider graphs that can be cleaned by small numbers of searchers. In this 

section we will consider weighted reflexive multigraphs. 

2.3.1 Redqction in Weighted Graphs 

First, let us give the conditions for a graph to have weighted edge search number 

equal to one. 

Theorem 14 For a weighted graph G, ws(G) = 1 if and only if G is either a path 

with n edges where all edges have weight one, or G is a single edge of an arbitrary 

weight. 

For the proo~ note that for ws(G) to be 1, G cannot have a vertex v such that 

deg(v) > 2, in which case we need at least two searchers to clean v . The same 

argument shows that G cannot have more than one edge of weight greater than one. 

We will introduce the notion of a containment relation between two weighted 

graphs for which we will define a set of rules. 

D efinition 8 We say that G reduces to G' if G' is obtained from G by applying a 

series of the following rules, called reduction rules ; 

(1) Any suspended path with edge weights 1 is reduced to a single edge of weight 

1. 

(2) In a suspended path the consecutive internal edges that hav weight 2 are 

reduced to a single edge of weight 2. 

If G and H reduce to the same graph, then we say that G and H have the same 

reduction. 

Th first rule in Definition 8 implies that , in the reduced graph, there are no 

degree 2 vertices whose incident edges both have weight 1. For instance, a path Pn 
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Figure 2.1: Forbidden configurations A , B , C, D , E and F. 

where all edges have weight 1, will reduce to a single edge of weight 1. A cycle Cn 

where all edges have weight 1, will reduce to a loop. 

It is a simple exercise to see that any search strategy for a graph G can be trans­

formed into a sea.rch strategy that uses the same number of searchers for the reduced 

G and vice versa . Hence, we have the following result . 

Lemma 15 If G and H have the same reduction, then ws(G) = ws(H ). 

D efinition 9 Given two weighted graphs G and H , we say that G contains F if 

there exists a weighted graph H such that 

(1) G and H have the same reduction , and 

(2) F is a lighter minor of H. 

Recall that weighted searching is minor closed due to Theorem 7. This result and 

Lemma 15 imply that whenever G contains F then ws(F) :::; ws(G). We make use 

of t his observation in the proof of Theorem 16. 

2.3.2 2-Searchable Graphs 

Here we are going to characterize graphs for which ws(G) :::; 2. R call that for any 

fixed k , the obstruction set is finite since weighted search is minor closed . 

T heorem 16 For any reduced graph G, the following are equivalent: 

32 



CHAPTER 2. WEIGHTED SEARCH 

1. ws( G) ::; 2 

2. G either does not contain any of the configurations A, B, C, D, E, F given in 

Figure 2.1 or the following conditions hold simultaneously: 

(a) G docs not contain any edge e that is not a loop or a pendant edge and 

w(e) > 2, 

(b) G does not contain any 2-cycle having an edge of weight greater than 1, 

(c) G does not contain the graphs D, E and F where any two pendant dges 

with a common end are replaced with a loop of weight 1, 

(d) Every vertex of degree two in graphs B, E and F has an edge incident to 

it with weight 1 and the other edge with weight 2. 

3. G consists of a path with vertex set { v1, v2, .. . , vn } together with th following 

conditions: 

(a) The only edges between vis are the ones between each con ecutive pair and 

they can either be a single edge of weight at most 2 or a pair of edges of 

weight 1. 

(b) There may be pendant edges or loops of arbitrary weight attached to each 

V;. 

PROOF. We will prove the equivalence by showing that {1)-=*{2)-=*{3)-=*{1) 

(1)-=* {2) . None of the graphs that satisfy condition (2) have weighted earch number 

less than 3. The result follows since weighted edge searching is minor clo ed 

due to Theorem 7. Let us show for instance that ws(A ) > 2. We show that 

two searchers do not suffice to clean A . 

If the first vertex cleaned has degree one, then there are two cases to consider . 

When the second cleaned vertex has degree 3, the two searchers are stuck at 
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the remaining two vertices of degree 3. Otherwise, if the second clean d vertex 

has degree one, both searchers are stuck at the other end points of the pendant 

edges. 

If the first vertex cleaned has degree 3, then we need at least 3 searchers. 

{2)=*{3) . G does not contain C , hence there are no chords in G. By Theorem 1 

edges or cycles are the only possible biconnected components of G. Because of 

condition (2b), edges of the cycles can only have weight 1. On the other hand, 

G does not contain A , hence at most two vertices of a cycle can have degree 

at least 3. This implies that the only biconnected components of G are paired 

edges with weight 1, loops and edges with arbitrary weight. Then by Theorem 

2, G must. be a tree together with paired edges of weight 1 and loops of arbitrary 

weight. Due to condition (2a) , the internal edges of the tree can have weight 

at most 2. The result follows if we show that when all of the vertices of degr 

one are removed, the resulting graph is a path, with possible loop or pair d 

edges that have weights as described in (3) . Assume that it is not true. Then, 

there must be a vertex of G that has three different neighbors none of which 

is a leaf. When none of these neighbors have degree l ss than three, G would 

contain D together with condition (2c). Similarly when all of the e neighbors 

have degree two, G would contain B together with condition (2d). Wh none of 

these neighbors has degree two, G would contain E together with condition (2c) 

or (2d). Finally, when two of these neighbors both have degree two, G would 

contain F together with condition (2c) or (2d). Since all of these configurations 

are forbidden, we arrive at a contradiction. Therefor , G has the form given in 

(3). 

{3)=*{1) .The first vertex V I can be cleaned by putting both searchers on VI, th n by 

keeping one of the searchers on v1 and cleaning the incident loops or leaves by 
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• 

the other searcher. Then both search rs can either move along the edge that 

connects v1 to v2 or each can move along one of the paired edges of weight 1. 

The same procedure can be applied to v2 and in this way one can clean the 

whole graph . 

2.4 Monotonicity of Weighted Search 

In this section, we will show that if there exists a w ighted search strategy for a 

weighted graph G using at most k searchers, then there exists a monotonic weighted 

search strategy for G using at most k searchers. The crusade method is a widely 

used proof method to show monotonicity in edge searching or its variants. Here the 

terminology is similar to that used in [11] . 

2.4.1 Pairs of Crusades 

Notice that when sliding a searcher along an edge e = uv from u to v , if no recon­

tamination is possible from u, then either e becomes clean or the current weight of e 

decreases from k to k- 1, where k > 1, in which case we say that partial cleaning i 

done. 

At step i, let th set of cleaned edges corr spond to Ai, the set of partially cleaned 

edges correspond to ~ and let Zi be the set of vertices where at least one searcher is 

located. In the edge search there may be mor than on searcher locat d at a vertex, 

hence we consider Zi to be a multiset. Set difference, namely, Zi \ { u} corresponds to 

removing one copy of u from the multiset Zi. 

A weighted search strategy S that uses n steps for a weighted graph G = (V, E, w) 

can be recorded as a sequence of a triples of s ts 

S = (Ai, ~ , Zi)~0 
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such that Ai ~ E,Pi ~ E\Ai , Zi ~ V for 0 ~ 'i ~nand Ao =Po= Pn = 0,An =E. 

If v E V is incident with at least one edge in Ai U Pi and at least on edge in E\Ai, 

then v E Zi· 

The following are the only possible situations we may encounter during a weight d 

edge search: 

1. Placing new searchers: A= A-1, Zi 2 Zi-1, Pi= Pi-1· 

2. Recontamination: 

• by sliding a searcher along an edge: Ai ~ Ai-l, Zi = (Zi-1 \ { u}) U { v }, 

3. Partial Cleaning: For uv = e E E such that w(e) 2: 2, Ai =Ai- l, 

Zi = (Zi- 1\ {u}) U {v} and Pi= ,_ ' - ,_ ' 
{ 

P 1 2 < w · 1(e) < w(e) 01 .. 

Pi-1 U {e}, Wi-1(e) = w(e) . 

4. Cleaning: For uv = e E E , Ai = Ai-l U {e}, Zi = (Zi-1\{u}) U {v} and 

pi= { Pi- 1\ {e}, 2 ~ w~e) or; 

Pi- 1, w(e)- 1. 

We break up the steps of the strategy so that at most one action i done at each 

move. In this way, in each move we force that at most one edg gets cleaned, partially 

cleaned or contaminated. 

We define a connectivity function 6 properties of which will be used in the next 

sections. For a given edge set E and a vertex ~et V, for A ~ E, P ~ E\A, 6(A , P) 

denotes the set cf vertices in v· that have at least two edges, e1 and e2 incident to it 

such that e1 E A. U P and e2 E E\A. 

In edge searching, if A is the set of clean edges and P is the set of partially clean 

edges at some instant, then 6(A, P) would correspond to the et of exposed vertices. 

Recall Equation 2.1 which states that every exposed vertex must contain a searcher. 
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In this section we will need the following lemma. 

Lemma 17 [Submodulari ty] For given pairs of subsets of E, (A, P ), (B , R) wh re 

P ~ E\A and R ~ E \ B , the following holds: 

i6((A n B ),.(P n R)) i + j6((A u B ), (P u R))i :S I6((A, P)i + i6(B , R)j. (2.3) 

PROOF. We consider three cases. Assume that ei and e2 are any two edges 

incident with u . 

CASE 1. u E 6((A n B), (P n R)) and u E 6((A U B ), (P U R)) : Since u E 

6((A n B), (P n R)), :lei E (A n B) U (P n R) and hence e1 E AU P and ei E BU R. 

FUrther, since u E 6((AUB), (PUR)), 3e2 E E\(AUB) and hence e2 E (E\A)n(E\B). 

These observations imply that u E b(A, P) and u E o(B , R). 

CASE 2. u E o((A n B), (P n R)) and u rf. 6((A U B), (P U R)) : First, since 

(A n B)u (PnR) ~ A UP and (A n B) U (P n R) ~ B U R, u E 6((An B),(P n R)) 

implies that 3e1 E (A U P) and e1 E (B U R). rurthermore, u E o((An B ),(P nR)) 

implies that :Je2 E E\ (A n B ). ote that since u rf. o((AU B), (P UR)) u has no edge 

incident with it that is not in AUB. Therefore e2 E (AUB )\(AnB) = (A\B)U(B\A), 

and hence e2 E A \B or e2 E B\A. The previous observation implies that e2 E E\B 

or e2 E E\A. These imply that u E 6((A, P) or u E o((B, R). 

CASE 3. u rf. 6((A n B), (P n R)) and u E o((A U B ), (PUR)): Similar to th 

first two parts, u E o((A U B ), (P U R)) implies that u E o(A, P) or u E o(B , R). • 

Consider a weighted search strategy for a given graph G = (V, E, w). For a se­

quence of pairs of subsets of the edge set E , (X o, Yo), (XI, Yi ), ... , (X n, Yn), wher 

}i ~ E\Xi, for 0 :S i :S n and Xo = Yo = Yn = 0, Xn = E, consider the e­

quence (X0 , XI , ... , X n), where 'Vi = 0, 1, . . . , n and 't:/e E Xi, there exists a step 

j such that Wj(e) = 0. Then (X0 , XI , . . . , Xn) is called a crusade associated with 

(X o, Yo) , (X1 , Y1 ), ... , (X n, Yn) if for alll :S i :S n 

(2.4) 
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We say that a crusade uses at most k searchers if I8(Xi, Y;)l ::; k for all 0 ::; i::; n. 

A crusade is progressive if the X/s form a nested sequence, i.e., X0 ~ X1 ~ · · · ~ 

Xn and, for a ll 1 ::; i ::; n, 

(2.5) 

Lemma 18 If u;s( G) ::; k, then there exists a crusade using at most k searchers. 

PROOF . Let ws(G) :S k and let (Ao , Po , Zo), (A1, P1 , Z1), ... , (An, Pn, Zn) be a 

weighted search strategy for G. Then IZi l ::; k for 0 ::; i ::; n. From the definition of 

8(- · ), we know that if v E 8(Ai, Pi) then v is an exposed vertex. Hence Equation 

2.1 implies that 8(Ai , Pi) ~ Zi and thus I8(Ai, ~) I ::; IZi l ::; k. Each Ai corresponds 

to a set of clean edges at step i, hence VeE Ai , 3j ::; i such that Wj(e) = 0. Equation 

2.4 holds because of the definition of a weighted search since each step corresponds 

to only one action. Therefore associated with (Ao, Po), (A1, P1), ... , (An, Pn), the 

sequence A0 , A1 , ... , An is a crusade that uses at most k searchers. • 

Lemma 19 If there exists a crusade using at most k searchers, then there exists a 

progressive crusade using at most k searchers. 

PROOF. To each sequence of pairs (X0 , Y0) , (X1, Y1), . . . , (XN, YN) one can asso­

ciate two numbers a(N) = 2:~0 (18(Xi, Y;)l+1 ) and b(N) = 2:~0 IXil· Among a ll cru­

sade (X0 , X1, ... , X N) using at most k searchers and associated to (Xo, Yo ), (X1, Yi ), 

... , (XN, YN) we will pick the one for which 

1. a(N) is minimum and 

2. b(N) is minimum subject to condition (1). 

We denote such a crusade by C = (Xo, X1 , .. . , Xn). 

If IYi\Yi- 1l =.- 1, then IXi\Xi-11 = 0 due to Equation 2.4. Instead, assum that 

IYi\Yi-1l = 0 anrl IXi\Xi-11 = 0. Then IYi+I \ Yi-1l ::; 1 and IXi+l \Xi-1l::; 1. There­

fore (X 0 , X1 , . .. , Xi-1, Xi+l , ... , Xn) is a crusade with respect to (Xo, Yo), (X1 Yi ) .. 
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., (Xi- I, Yi-I), (Xi+l> Yi+I) , . . . , (Xn, Yn)· For this sequence a(N) takes a smaller value 

than for C, which contradicts our assumption. Therefore I Xi \Xi-II = 1. 

We only need to show that Xi's form a nested sequence. Observe that if 

then (Xo,XI, ... ,Xi-I,Xi-IUXi,Xi+I, ... ,X n) is a crusade with resp ct to (X 0 , Y0 ), 

(XI, Yi ), ... , (Xi-I , Yi- I), (Xi-I U Xi , Yi- I U Yi) , . .. , (Xn, Y,~ ). For this sequence a(N) 

takes a smaller value than for C, hence 

(2.6) 

Combining Equations 2.3 and 2.6, we have 

From the result above we observe that (X0 , XI , . .. , Xi_2, Xi-I n Xi, Xi, .. . , X n) is a 

crusade with respect to (Xo , Yo) , (XI , YI ), .. . , (Xi-2, Yi-2) , (Xi-I n Xi, Yi-I n Yi), 

(Xi, Yi), ... , (Xn, Yn) · From the minimality of b(N) for C we must have 

2.4.2 Monotonicity 

Showing that weighted searching is monotonic; that is proving that a monotonic 

weighted search does not require more searchers, will make us conclud on the mem­

bership of the WEIGHTED EDGE SEARCHI G problem in the P class. In gen­

eral , monotonicity is a crutial property for proving complexity resul ts of the decision 

problems. 

Before giving Theorem 22, which is the main result of this chapter we need two 

lemmata. The first one implies that from a weighted search strategy, we can alway 
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construct another weighted search strategy that has only one partially cleaned edge 

at every step and at the same time it does not require more searchers. 

Lemma 20 If there exists a weighted earch sti·ategy S = (A, Pi, Zi)i=o for a weighted 

graph G = (V, E, w) that uses k searchers, then there exists a weighted search trat­

egy S' = (Aj, Pj, Zj)~0 for G such that IPJI ::; 1 Vj = 0, 1, ... , m and S' uses k 

searchers as well. FUrthermore, for S' the following hold: 

1. If e E PJ and w1(e) = 1, then w1+l(e) = 0, PJ+l = 0 and Aj+1 = Aj U {e}. 

2. If P' = P~ 1 = {e} then A'- = A'. 1 . 
J J- ' J J-

PROOF. From S, we construct the required strategy S' that u es the same number 

of searchers to clean G. First, if an edge e = uv, w(e) ~ 2 is partially cleaned at step 

i in S by sliding a searcher 0'1 from u to v, inS' we remove 0'1 from u and place it on 

v . We modify S' step by step so that according to its final version G will be cleaned. 

While modifying S' we only need to consider edges that have capacity at least two, 

since edge of unit capacity are never in any Pj. 

In S during the steps that reduce the weight of an edg e = uv there is a step 

that results in enough searchers on the ends of e to clean e. If this happen at th 

kth st pin S, then during S' the cleaning can be done succe siv ly in tead of the kth 

step. So inS' we will have w(ekJ = w(e)- 1, w(ek2 ) = w(e)- 2, . . . , w(ekwc•J- l) = 1 

and w(ekwC•l) = 0. We have to show that we can clean every edge in this way. 

If a searcher 0'1 ends up on u in S after the kth step but 0'1 nd up on v # u in 

S' after the kw(e)th step then we remove 0'1 from v and place it on u at step k w(e)+l 

and kw(e)+2 · 

Let 0 b the first edge with weight at least 2 that gets cl an d in S. If eo = uv 

is a pendant edge, where deg(v) = 1, th n we need at least two earchers to clean it, 

sine w( 0 ) ~ 2. If these two searcher are put on one or both ends of eo for the first 
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time at step kin strategy S, inS' we clean eo in steps k1, k2, . .. , kw(eo) by 1 tting one 

of them guard u and the other slide on e until it becomes clean. 

If e0 is not a pendant edge, then we need at least 3 searchers, two to guard the 

ends of e0 and one to slide along e0 , when w(e0 ) ~ 2. If these thr searchers are 

put on ends of e0 for the first time at step k in strategy S, in S' we clean e0 in step 

k1, k2, · · ·, kw(eo) · 

Assume that we continue cleaning edges according to S and construct S' in this 

way. Let e = uv be the next edge that is cleaned according to S at st p i . 

Note that e might have been cleaned and contaminated during S before step i. 

But we know tho.t there exists a step j < i inS such that w1_1(e) = w(e), Wj(e) = 

w(e)- 1, wi_1(e) = 1,wi(e) = 0 and there exists no k such that j < k < i and 

wk(e) = w(e). ln other words, e does not become recontaminated between step j and 

step i . 

If e is not a pendant edge, then just before the ith step, there must be at least 

one searcher located on each of u and v. 

CASE 1. e is not a pendant edge and w(e) = 2 

At some step, say j in S, w1_I(e) = 2 and w1(e) = 1. Here j is a step between 

the last time e was cleaned and the ith step. 

(1) If at the jth step two searchers were located on u and v, one on each vertex, 

and a third searcher was sliding along e, either from u to v or from v to u, in S' w 

can clean e in two steps, j 1 and j 2 , using the same three earchers. 

(2) If at the (j - 1)th step two searcher , a 1 and a2, were located on u and at 

the jth step one searcher, a2 , slid along e from u to v, there are two possibilitie 

to reduce t he weight from 1 to 0. If a third searcher slides along e at step k, then 

we clean e in S' in two step , k1 and k2 , with these 3 earch rs. Otherwise a2 may 

slide along e from v to u at step k (or a 1 may slide along from u to v at step k, 

which can be transferred to S' similarly) . Notice that all of the edges incident to v 
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are contaminated at step j (since they are on an unguarded path to a contaminated 

edge e). FUrthermore at step k- 1 all edges incident to v, except for e, must be clean. 

Otherwise when a 2 slides along e from v to u it would not be partially cleaning e. 

Hence, all edges incident to v, except for e must be cleaned between the jth step and 

the kth step and they all have weight 1. At some step l , such that j < l < k, one of 

those edges, say e1, gets clean by a searcher a3 sliding along 1 ither starting from 

v or ending at v. Therefore in S' , we clean e in steps h, l2 where a3 slides two times 

along e. 

CASE 2. e is not a pendant edge and w(e) 2: 3 

Since the number of searchers n eded for reducing the weight from 3 to 2 and 2 

to 1 is the same as reducing the weight from n to n - 1 and from n - 1 to n - 2 for 

n;::: 3, it is enough to consider the case w(e) = 3. 

At some point, say j during S, Wj_ 1(e) = 3 and wj(e) = 2. If this is done by using 

three searchers, then e can be cleaned inS' in three steps j 1 , j 2 , j3 which would replace 

the jth step of S. If in the jth step two searchers, a 1 and a 2 , are u ed by placing 

both of them on u and sliding one of th m to v, after this step, u or v cannot be left 

unguarded. Hence, to reduce the weight from 2 to 1 we need one more searcher, say 

a3 which is going to slide along e at step k in S . Accordingly, in S', we replace step 

k with steps k1 , k2 , k3 where a 3 slides back and forth along e. 

If e = uv is a pendant edge where deg(v) = 1, we consider two cas s. 

CASE 3. e = uv is a pendant edge and w(e) = 2 

The weight of e should go from 2 to 1 in S at some step, say at k. If this is done 

by a searcher a 1 sliding from u to v, then there must be another searcher on u. In 

S' , we replace the kth step with steps k1, k2 in which a 1 slides back and forth along 

e twice. 

If the weight of e is reduced from 2 to 1 by a searcher a 1 sliding from v to u, then 

after this step u inust always be guarded by a searcher. There are two ways to reduce 
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the weight from 1 to 0. 

Another earcher, say a2 , may slide along e at the kth step of S. In S' we replace 

the kth step with steps k1, k2 in which a 2 slides back and forth along e twice. 

In S, all the edges incident to u may get clean and a1 may !ide back from u to 

v . Then during cleaning of an edge e1 =/= e incident to u, there mu t be a searcher a2 

either sliding from u or ending at u, say at the lth step. Accordingly, in S', just after 

the lth st p , we ·insert steps l 1 and l2 in which a2 guards u and a1 slides twice back 

and forth along e. 

CASE 4. e = uv is a pendant edge and w(e) ~ 3 

Again, we only need to consider the case w(e) = 3. At some step the weight of e 

should go from 3 to 2 during S say at step j. 

If this is done by a searcher a 1 sliding from u to v, then th re must be another 

searcher on u. In S' , we replace the jth step with steps j 1, j2,j3 in which a 1 slides 

back and forth along e three times. 

If a searcher a1 slid from v to u to reduce the weight of e from 3 to 2, then, after 

this step u cannot be left unguarded, otherwi e the edge would be recontaminated . 

Now to reduce the weight from 2 to 1 another searcher , say a 2 has to !ide along e. 

If this happens at the kth step of S, inS' we replace the kth step with step k1 , k2 , k3 

in which a2 slides back and forth along e. • 

Lem ma 21 As ume that Sis a weight d search strategy for G = (E, V, w) that us s 

k searchers. Then there exists a progressive crusade (Xo X1 , ... , Xn) as ociated with 

(Xo , Yo) , (X1 Y1) , .. . , (Xn, Yn) , where Yi ~ E\Xi, for 0 ~ i ~ n that uses at most k 

searchers such that both the following condit ions hold: 

1. If IYi\Yi- 1l = 0, then either 

(a) Yi = 0, Yi- 1 = 0,Xi\Xi- 1 = {e}, and w(e) = 1, or; 

(b) Yi = 0, Yi-1 = {e}, Xi\Xi-1 = {e}, and w(e) ~ 2. 
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2. If IYi\Yi-1! = 1, then Yi-1 = 0, Yi = {e}, Xi\Xi-1 = f/J ,Xi+1\Xi = {e}, and 

w(e) ~ 2. · 

PROOF. Using the procedure given in the proof of Lemma 20, we construct a 

weighted search (A~, P! , Z;) such that IP!I ~ 1, Vi. Next we delete th (A~, P!, Z;)'s 

for which !Pfl = 1 and :3j =/= i such that (Aj , Pj) = (A~, P!) except for the (A~ P!, Z:)'s 

such that wi(e) = 1 where {e} = P;. We apply Lemmata 18 and 19 to this reduced 

sequence and obtain a progressive crusade. The two conditions of the theorem follow 

from the construction of S' and the implications of Lemma 20 if we let X i = Ai and 

Yi = Pi. If two consecutive partially cleaned set are empty, then S' is cleaning an 

edge of weight 1, which corresponds to part 1(a) . Part 1(b) is the sam as part (1) of 

Lemma 20. In both of them an edge e which is partially clean at step i - 1 b comes 

clean at step i . Finally, during the consecutive steps where an edge is partially cleaned 

no other edge is cleaned. This is part (2). • 

In the proof Theorem 22 we will consider the indice of the ets Xi and Yi as 

levels. Hence the levels consist of steps. An i th level may not correspond to the ith 

step in the strategy due to the construction of the progressive crusade in the proof of 

Lemma 21. 

Theorem 22 If there exists a weighted search S using at most k searchers for a 

weighted graph G, then there exists a monotone edge earch S' using at most k 

searchers for G. 

PROOF. Lemma 20 implies that from S we can construct a weighted search S' that 

uses at most k searchers and IP!I ~ 1 for every step i . Lemma 21 ensures that there ex­

ists a progressive crusade Xo, X 1, ... , Xn associated with (Xo, Yo), (X1, Y1) , ... (Xn, Yn) 

which can be obtained from S' and it uses at most k searchers. We construct a 

monotone weighted search strategy inductiv ly that cleans the edges in the order 

e1 , e2 , ... , em, where for each ei there exists i such that Xi\Xi-l = {ej}· Assume 
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that we cleaned the edges e1, e2 , ... e1_ 1 in this order and no edge oth r than these is 

cleaned. Assume that we finished cleaning e1_ 1 at the end of (i - 1)th level. We show 

that in the next steps we will clean e1. We will use the implications of Lemma 21. 

We consider three cases. 

CASE 1. IYi\Yi- 1l = 0, Yi = 0, and Yi- 1 = 0. Here Xi\Xi-1 = {e!} , and 

w(e1) = 1. We show below that the discussion given in [11] implies that e1 can be 

cleaned with at most k searchers. A weighted mix d search is defined as a combination 

of weighted edge search and node search. According to nod searching when w( e) = 1, 

e is cleaned when there are searchers at both of its ends. 

First we show the induction step for a weighted mix d search, then we show how 

to convert it to a weighted search. 

Assume that G has no pendant edges. Let N = {u ,v} where el = uv. If IN U 

8(Xi_1, Yi- 1)1 '5:. .k, then we can put searchers at the end points of e1 to clean it. 

Otherwise, IN U b'(Xi- 1, Yi- d l > k . Since b'(Xi-1, Yi-1) '5:. k , N i. b'(Xi- 1, Yi- 1)· Let 

v E N\8(Xi_1, Yi-1). Then none of the neighbors of v are in Xi-1, hence v E 8(X i , Yi). 

If u tf: 8(Xi- l , Yi-d, then none of the neighbors of u and v are in Xi- I· Therefore 

u E 8(Xi , Yi), hence e1 is cleaned by node search. 

If u E 8(Xi_1, Yi- 1) and all neighbors of u except for e1 are in X i- 1, then the 

searcher on u can slide along e1 to clean it. If u E 8(Xi- I, Yi- 1) and not all of the 

neighbors of u except for e1 are in Xi_1, then u E 8(Xi, Yi). Hence, e1 is cleaned by 

node searching. 

If G has pendant edges, then observe that if G' is obtained from G by adding a 

loop of weight 1 to all its vertices, G and G' will have the same mixed search numbers. 

Next, we show how to convert a weighted mixed search to a weighted edge search . 

Given G construct G' by replacing each edge e of weight 1 by a path P = ee' of length 

two with edge weights 1. Since G and G' have the same reduction, they have the 

same mixed search number as well. 
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If e1 = uv is cleaned by node search at step i, then just before it is cleaned, there 

must be searchers on u and v . In the weighted edge search S' , we will replace the ith 

step with 3 steps. If e' was contaminated befor~ step i in S, in S' we will remove the 

searcher a on v, put it on u and slide it along f;1. If e' was cleaned b fore step i in S, 

in S' we will slide the searcher a on v along e to u, remove it from u and put it on v. 

As a result, e1 is cleaned using at most k searchers. 

CASE 2. Y; = 0, Y;_1 = {el}· We have w(el);::: 2. We consider the cases wheth r 

e1 is a pendant edge or not. 

( 1) If e1 is not a pendant edge, then at the ( i - 1) th level, there should be at least 

one searcher on each end of e1, say a 1 on u and a 2 on v . If I6(Xi_1 , Y;_1) I+ 1 ~ k, then 

we can finish the cleaning of e1 by the searcher that is free, i.e., the one that is not on 

any exposed vertex. Otherwis I6(Xi_1 , Yi- 1)1 + 1 > k and since I6(Xi-J, Yi-1) 1 ~ k, 

we must have I6(Xi_1, Yi- dl = k . There are four subcases to consider wh n e1 is not 

a pendant edge. 

In the first subcase let each of t£ and v have at least one edge incident to them 

other than e1 that is already clean, hence in Xi_1 . Then before the (i - 1)th level 

there must be two searchers located on each of u and v. In this case, the only way 

that e1 became partially clean for the first time is that a third searcher, other than 

the ones on u and v, slid along e1• Hence, e1 can be cleaned by this third searcher in 

the next steps. 

Consider together the subcase where there are no clean edges incident to u or v 

and the subcase where only one of the end points of e1, say u, has an edge incident to 

it that is clean and an edge that is contaminated. In both of these cases the expos d 

vertices in level i -1 are the same as in level i, hence 6(Xi_1 , Yi- 1) = 6(Xi, Y;). H nee 

none of the searchers can move from their places during the teps between these levels. 

On the other hand, we know that IXi\Xi_1 1 = {el}. But there is no po sible way to 

clean e1 when none of the searchers are moving. Hence we arrive at a contradiction. 
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The last subcase is where all edges other than e1 incident to one of the end points 

of e1, say u, are already clean and all edges incident to v are contaminated. We know 

that u E 8(Xi_1 , yt_1 ) and u ~ 8(Xi, Yi) since at level i all edges incident to u are in 

Xi (since X i's are nested). The only way this can happen is that either wi-J (e1) = 1, 

and we are done,. or wi_1(e1) > 1 and a third searcher slides along e1 to clean it totally 

during the steps ' between these levels, which is impossible if c5(Xi_1 , Yi- 1) = k ince 

none of the searchers can move. 

(2) If e1 is a pendant edge, let deg(v) = 1 and deg(u) > 1. We only need to 

consider two subcases. When there is at least one edge incident to u that is clean and 

hence in Xi_ 1 , then before the (i - 1)th level t here must have been a searcher, say a 1 , 

located on u. As in the previous subcase, the only way for e1 to become partially clean 

is that a searcher other than a 1 , say a 2 , slides along e1 at the step that corresponds 

to level i- 1. Hence, e1 can be cleaned with a 2 together with a 1 which will be kept 

on u as a guard. 

Finally, if all edges incident to u other e1 are contaminated, observe that u E 

8(Xi_1 , Yi- 1) = 6(Xi, Yi). This implies that none of the earchers could move during 

the steps between the levels i- 1 and i, which contradicts I Xi \Xi-1l = { et }· 

CASE 3. IYi\Yi-1l = 1. We have Yi-1 = 0, Yi = {et} . We know that Xi\Xi-1 = 

0, Xi+ 1\ Xi = { et}, and w (e) ~ 2. This case reduces to the previous case by shifting 

all the observations to the levels i and i + 1. Applying the same procedures w can 

finish the cleaning of e1 at the successive steps after level i. • 

Theorem 22 implies that ws(G) = mws(G). From this we d duce that the 

WEIGHTED SEARCHING problem belongs to P, since we only ne d to guess in 

which order the edges are cleaned and then to check whether the edges can be clean d 

according to this sequence using at most k s archers. In Section 1.4 we noted that 

the problem is NP-hard. It follows from these two observations that the problem is 

NP-complete. Hence we have the following. 
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Corollary 23 The WEIGHTED SEARCHING problem is NP-complete. 

This complexity result leads to many possible research direction . A constant 

factor approximation algorithm with a small constant factor is desirable. Another 

direction would be restricting the weighted earching problem to particular classes of 

graphs. 
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Chapter 3 

Fast Search 

In this chapter we consider fast searching as a variant of the edge searching problem. 

Fast searching corresponds to an internal monotone search in which ev ry edge is 

traversed exactly once and the searchers are not allowed to jump. We present a linear 

time algorithm to compute the fast search number of trees. We investigate the fast 

search number of complete bipartite graphs. We also propose a general cost function 

for evaluating search strategies that utilizes both searching and fast searching. 

3.1 Preliminaries 

For any graph G, it is immediate from the definitions in Section 1.5 that s( G) ::; s J( G). 

The gap s1(G) - s(G) is zero for some graphs. We continue by observing that thi 

holds for Kn· 

For K n, the complete graph on n vertices, where n 2 4, recall that s(Kn) = n 

[42]. 

Lemma 24 For every n 2 4, SJ(Kn) = n. 

PROOF. Label the vertices v1, v2, . . . , Vn· Place the first n-1 searchers, a1 , a2 , . .. , a n-1 
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Figure 3.1: I< - e where e = v1v2. 

on v1 and the nth searcher, O'n, on v2. First clean v1 by sliding all th earchers located 

on it . 

When n is even, the Kn- l induced by { v2, v3 , · · · , vn} contain an Eulerian circuit 

which is cleaned by O'n and there is no contaminated edg left. 

When n is odd, O'n cleans the Eulerian circuit contained in the K n_2 induced by 

{ v2, v3 · · · , Vn- d. At this step , the only containinated edg are those incident to Vn 

and there is a searcher on each neighbor of Vn and two searcher on v2. We clean Vn 

by sliding all there searchers, except for O'n, to Vn· • 

Furthermore, it is known that the edge search number is critical for complete 

graphs, that is , deleting any single edge from Kn will reduc th search number by 

on [17]. ext we show that this also holds for the fast search number. 

Lemma 25 For any e E E(I<n), SJ(I<n- e) = n- 1. 

PROOF. Let Kn - e = (V, E) . Label the vertices v1 , v2, ... , Vn o that for v1 v2 E 

V, deg(vi) = deg(v2) = n- 2. Refer to Figure 3.1 when n = . Place the first n- 2 

search rs on v2 and the (n - 1)th searcher on Vn- 1· 

As a first case, let n be odd. Let all n - 2 searchers on v2 slide along the dges 

incident to v2. In this way v2 is cleaned. ext we are going to clean the K n-2 induced 
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by {v3,v4 , · · · ,vn}· Since Kn-2 has an Eulerian circuit, we can clean the graph by 

moving the (n - 1)th searcher as the first n - 2 searchers remain in th ir places. 

Finally, we let the n - 2 searchers move to v1 n.nd finish cleaning. 

Otherwise, let n be even. Using n- 2 searchers we clean v2 as in the previous case. 

ext we clean an Eulerian circuit in Kn-3, induced by { v3, v4 , . .. , Vn-1}, using the 

(n-1)th searcher, an_1, starting from and ending at Vn_1 . Then a n-i may slide along 

Vn- IVn and then VnVI· Now, the only contaminated edge incident to Vn-1 is Vn-JVI 

and hence O"n-3 may slide along that edge and clean Vn-l · The only contaminated 

edges left in the graph are those of the induced K2,n_4 where the bipartition sets ar 

{vi ,vn} and {v3,v4, · · · ,vn-2}· The induced K 2,n-4 can be cleaned by keeping O"n-1 

and O"n-2 on v 1 and Vn resp ctively and letting O"n-3 slide along the edges. Hence the 

graph is cleaned. • 

On the other hand, s 1 (G) -s( G) can be arbitrarily large for some graphs. Consider 

K1,n, the complete bipartite graph with bipartitions of size 1 and n. Th n s(K1,n) = 2 

wh reas s1(K1,n) = f~l For this example the ratio SJ(G)/s(G) is also notably larg . 

Furthermore, there are graphs for which the connected fast search number may 

be much larger than the fast search number. Construct G' by subdividing every edge 

of K 1,n · Then for every n 2: 2, s(G') = 2, SJ(G') = 1~1 whereas th connected fast 

search number is n- 1 (see Figure 3.2). oticc that this graph has a much smaller 

ord r than the one in [55] . 

Let V0 be the set of vertices in G with odd degree. Ob erve that for each vertex 

v E V0 , there exists a searcher for which v is either a start or end vertex. Otherwise 

one of the edges incident to v would be traversed at least twice. 

Since it is possible that a searcher starts at a vertex in V0 and stops at another 

vertex in Vo, we have the following lemma. 
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Figure 3.2: The subdivisions of K l,4 and K1 ,n· 

Lemma 26 If \10 is the set of odd degree verti"es in a graph G, then 

!Vol < S (G). 
2 - I 

Example 8 Let G = Pm_1DPn- l be an m x n grid , where m, n E Z. Lemma 26 

implies that m + n- 4 ~ s1(G). We demonstrate a fast search that uses m + n- 2 

searchers. Label the vertices of G so that Vij is the jth vertex in the i th row. Figure 

3.3 exemplifies this labeling by v44 , v45 and v46 . 

Place two searchers, a1 and a 2, on Vn and a searcher on each of V12 , V13, . .. , V1(m - l) 

and V21 , V31 , .. . , V(n-l) l , denoted a3, a 4, ... , a m and a~ , a~ , . .. , a~_2 respectively. This 

accounts for 2 + m- 2 + n- 2 = m + n- 2 searchers. We construct a fast search so 

that each ai, i = 1, 2, . .. , m cleans a column and each aj,j = 1, 2 . .. , n- 2 cl ansa 

row. 

The strategy starts with cleaning the first column. First let a 1 slide along e = 

v 11 v21 . Then let a2 slide along e = v 11 v 12 and then let a~ slide along e = v21 v22. We 

repeat this for all i = 2, 3, . . . , (n- 1) so that we fir t let a 1 !ide along e = vi1 V(i+l)l 

and then let a~ slide along e = V(i+l)lV(i+l )2 . Finally we let a 1 slide along e = vn1Vn2· 

At this point, the first column and the fir t edge of every row is clean. Also, there 

is a searcher on ev ry vertex of the second column. We cl an the second column by 

a 2, third column by a 3 and so on by a similar fashion. Figur 3.3 shows how the fast 
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I 

o, - - - - - - - - - - -- ->-

I 

02 - - 1.- - - - - ..., - - - 1.- - - - - .., - -- ->-

I 

~ /----~--~~-_-_...,._-_-_-~-------~~._--~~->-~., 

Figure 3.3: Illustration of Example 8 form= 9 and n = 7. 

search strategy proceeds. Each ai, i = 1, 2, ... , m follows a vertical arrow and each 

aj, j = 1, 2, ... , n- 2 follows a dashed horizontal arrow. 

Thus we have 

As we mentio?ed earlier, the theory built on graph minors plays an important role 

in edge searching and many variants of edge s arching are minor closed. However this 

Figure 3.4: The graph G on the left and its sub graph H on the right where s J( G) = 3 

and s1(H) = 5. 
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Figure 3.5: The graph G on the left and its subgraph H on the right where s1(G) = 5 

and s1(H) = 6. 

is not true for fnst searching. Figure 3.4 shows an example where G has a smaller 

fast search number than its subgraph H. Hence fast searching is not ven subgraph 

closed. otice t.hat H has more odd vertices than G and due to Lemma 26 this 

result is easy to achieve. On the other hand , Figure 3.5 shows an instance where the 

subgraph has more even vertices than the original graph, but has a higher fast search 

number. 

Next we give an example that shows that the difference can be arbitrarily large. 

Example 9 Let K n be a complete graph on n vertices where n is odd and n 2: 5. Let 

G = K nDK 2 be the Cartesian product of K n and K 2 . Let H be the graph obtain d 

from G by deleting n- 1 edges between the two maximal cliques in G. Thus, all 

vertices in G have odd degree n, and in H , two vertices have odd degree n and all 

other 2n - 2 vertices have even degree n- 1. We can show that n ~ SJ(G) ~ n + 2 

and s1(H) = 2n- 1. Thus, the difference s1(H )- SJ(G) can be arbitrarily large. 

Even more interesting, let G = K nDPm, where Pm is a path on m 2: 2 edges, and 

let H be a subgraph of G that is a path of m+ 1 copies of Kn wh re any two cons cutive 

K n are connected by a single edge. Then we can show that SJ(G) ~ n + m + 1 and 

s1(H) = n(m + 1) - m. Hence, the ratio s1(H )j s1(G) can be arbit rarily large. 

Following the development of edge searching it is interesting to characterize graphs 

where s1(G) is small. If k searchers are enough to fast search G, then we say that G 
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is k-fast-searchable. 

We define reduction here as reducing any path with consecutive vertices of d gree 

two to a single edge. Thus there is no vertex of degree 2 in the reduced graph. ote 

that reduction does not change the fast earch number and that 1(G) = 1 whenever 

G can be reduced to a single edge. 

The characterization of graphs G such that s(G) :::; 2 is given in [37] . For the 

characterization of graphs G such that s 1 (G) :::; 2, we have the following result . 

Theorem 27 For any graph G, s1(G) :::; 2 if and only if when G i reduced it consists 

of a path with vertex set { v0 , VI, ... , vn} together with the following conditions: 

1. For every i = 1, . . . , n- 2 there are exactly two parallel edge between each pair 

of consecutive vertices V; and Vi+I· 

2. For every i = 1, ... , n- 1 there may be an arbitrary number of loops attach d 

to each v;. 

3. If vo and VI (resp. Vn-I and vn) are connected by a sing! edg , there may also 

be a pendant edge attached to v1 (resp. Vn-I); else if vo and VI (resp. Vn-I 

and vn) are connected by two parallel edges, then any number of loops can be 

attached to v0 (resp. vn) · 

Remark 3 In order to construct reduced biconnected 3-fast-searchable graphs, we 

notice that JVol :::; 6 by Lemma 26. AI o observe that the set of tart vertices for 

the 3 searchers cannot have size 3. Thi is due to the biconnectedne s of the graph. 

Thus JVol :::; 4. We further conjectur that a biconnected 3-fast- earchable graph has 

at most 2 odd vertices. 
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3.2 Trees 

EDGE SEARCH! G is P-complete for general graphs [37] and planar graphs with 

maximum degree three [3 ]. However there exist polynomial t ime algorithms to solve 

EDGE SEARCH! G when restircted to trees [37] . In this section we show that 

FAST SEARCH! G is solvable in linear time when restircted to tree and construct 

the corresponding fast search strategy. 

For any graph G = (V, E) since :Lvevdeg(v) = 2IEI we know that t he number 

of odd degree vertices in G must be even. For a tree T, the following algorithm 

partitions T into edge disjoint paths such that both of the end vertices of each path 

have odd degree in T. 

Algorithm TP(T) 

1. Initially i = 1. 

2. Arbitrarily elect a leaf u in T. Let uv E E(T) be the dge incident to u. Mark 

uv with color i and set T +- T- uv. 

3. If v is an isolated vertex in T, then go to Step 4; otherwise, let vw E E(T) be 

an dge incident to v . Mark vw with color i , T +- T- vw, v +- w and go to 

Step 3. 

4. If there is no leaf in T, then stop· otherwise, set i +- i + 1 and go to Step 2. 

Lemma 28 The Algorithm TP(T) defines a valid coloring for T and the edges with 

the a rne color form a path such that the two end vertice of this path have odd 

degree. 

PROOF. Let 'e E T. In St p 2 when e gets a color , it is d leted from the graph 

and th algorithm proceeds. Thus every dge gets a color at most one . Also the 
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algorithm continues as long as there is a leaf in T, thus every edge is color d. Hence 

every edge is colored exactly once. 

The edge that are assigned the same color always form a connected subgraph of 

the original tree T due to Step 3. Denote that graph as Pi for the i th color. Sine a 

tree is acyclic, no vertex is repeated in Pi, therefore Pi is a path. 

Initially one end vertex of P1 is the leaf chosen by the algorithm at Step 2, thus it 

has odd degr e. The edges are colored 1 according to TP(T) until an isolat d vertex 

is reached in the deformed T which has to be a leaf in T. Hence both nd vertices of 

P1 have odd degree. ote that after we delete each edge of P1 from T, the odd-even 

degree state of each vertex in T does not change except for the nd vertices of P1. 

Thus a leaf vertex chosen by the algorithm as a start vertex for P2 and the other end 

vertex of P2 found by the algorithm corresponds to either a leaf in the original Tor a 

vertex with odd degree in T. This holds for every Pi, 2 ::; i. Hence both end vertices 

of every path have odd degree in T. • 

Using the decomposition of Algorithm TP(T), we can compute a fast search strat­

egy for a tre T as follows. 

Algorithm FS(T) 

1. Call Algorithm TP(T) . Let k beth number of colors used by TP(T) and P;, 1 ::; 

i ::; k, be the path formed by all edges with color i. 

2. For each P; , 1 ::; i ::; k, place searcher ai on one end of P;. 

3. Arbitrarily select a searcher, ay a; , on a leaf, and slide it along Pi until it stop 

at a vertex v that 

(a) has degree 1 in T, or, 

(b) has degree more than 2 in T and which contains only the searcher ai , or, 

(c) is the other end vertex of P;. 
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4. Update T by deleting from T all edges cl aned by ~i in Step 3 after ~i slides 

along these edges of~ . If T contains no edges, then stop ; otherwi e go to Step 

3. 

In Figure 3.6 th application of Algorithm TP(T ) and three it rations of Step 3 of 

Algorithm FS(T ) are illustrated . 

We now prove the correctness of Algorithm FS(T ) by using a count ing argum nt. 

Lemma 29 In Algorithm FS(T ), if T has at least one edge in Step 4, then when the 

procedure goes back to Step 3, there must exist a path Pi such that the searcher ~i 

on a vertex u E V(Pi) can clean an edge of Pi incident to u by sliding along this edge. 

PROOF. We will assume t he opposite of the statement and show that it leads u 

to a contradiction. Suppose that in Algori thm FS(T ) there is a moment at which T 

has at least one edge and every searcher is located on an isolated vertex or a vertex 

of degree more than 2 which is occupied by only one searcher . Thus no searcher can 

move. 

For any searcher ~i, 1 ::; i ::; k, located on an isolated vertex, we know that all 

the edges of Pi has been cleaned and deleted. Let F be the forest obtained from 

T by deleting all isolated vertices. Note that each searcher on F must be located 

on a vertex that is occupied by only one searcher and is incident with at least two 

differently colored edges in T . 

Since every connected component in F contains at least one s archer, we know 

that each pair of leaves in F is incident to different colored edges. Thus, the number 

of different colors in F is greater than or equal to the number of leaves in F. 

Furthermore since the degree of every guarded vertex is more than 2, every com­

ponent has at least 2 leaves. Hence the number of leaves in F is strictly greater than 

the number of searchers on F. 

Thus, the number of distinct colors in F is greater than the number of searcher 
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Figur 3.6: Th tree algorithm: (a) A tree. (b) An exampl of path found by 

Algorithm TP(T). (c) Searcher initial placements that al o d fine the direction 

according to which the edges of each path will be cleaned. (d) State of the graph 

where th dashed edges are clean due to partial application of Algorithm FS(T). 
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on F. This con_tradicts the fact that each path of edges with th same color in F 

must have one s archer. • 

From the above two algorithms we can fincl the fast search number of a tree. 

Theorem 30 If Tis a tree and V0 is the set of vertices in T with odd degree, then 

(T) _ IVai 
Sf - 2. (3.1) 

PROOF. Let k be the numb r of colors used by Algorithm TP(T). It follows from 

Lemma 2 that Algorithm TP(T ) decomposes T into k edge disjoint paths~ ' 1 ~ i ~ 

k, uch that the two end vertice of each path have odd degree in T. From Lemma 29, 

we can u e k searchers to clean T in such a way that each path Pi is cl aned by one 

search r sliding from one end of the path to the other end. Thus s1(T) ~ k =¥· On 

the oth r hand, it follows from Lemma 26 that SJ(T) ~ Dfl. Therefore, J(T) = Dfl . 
• 
Theorem 31 Both Algorithm TP(T) and Algorithm FS(T) can be imp! mented with 

linear t ime. 

PROOF. By the depth-first-search algorithm on trees, we know that Algorithm 

TP(T) can b implemented with linear time. For Algorithm FS(T), Steps 1 and 2 take 

linear time. In Step 3, after a searcher slides along an edge, we can delete this edg 

immediately. Since each edge is deleted exactly once, we know that Steps 3 and 4 

take linear time. • 

Let us construct a tree for which the gap between the search number and the fast 

search number is large. From this example we find an infinite family of such graphs. 

D efinition 10 For a tree T = (V, E), we say that a subtree T' ofT is a branch ofT 

at v E V if v has degree one in T' and T' is a maximal subtree wi th this property. 

We quote the following lemma from Parsons' initial paper [42]. 

60 



CHAPTER 3. FAST SEARCH 

Figure 3. 7: The trees T1 , T2 and T3 constructed in Example 10. 

Lemma 32 [42] For any tree T and po itive integer k, k + 1 ~ (T) if and only if T 

has a vertex v at which there are three or more branches that have earch number k 

or more. 

Example 10 Let T1 = K 1,3 . Take three copies of T1 and choos a vertex of degree 

one from each copy. To construct T2 id ntify these three vertice . Continue in an 

inductive fashion. Thus Tk i con tructed from three copies of Tk- 1 by identifying a 

vertex of degree one from each copy. Figure 3.7 depicts T1, T2 and T3 . 

We show that s(Tk) = k + 1 for all k 2: 1. Observe that s(T1) = 2 and s(T2 ) = 3. 

Assume that s(Ti) = i + 1 for all i ~ k- 1. Lemma 32 implies that k + 1 ~ s(Tk). Call 

the vertex of Tk obtained by identifying a vertex of degree on from each thr e copy 

of Tk- 1 as v. We place a searcher at v and clean each copy of Tk- l incident to v by 

k -1 searchers, which is pos ible due to the induction hypothesis. Thus s(n) = k+ 1. 

AI 0 each vertex inn is of degree 1 or 3. Thus V(Tk) = Vo(n). Since IV(Tk)l = 

3k + 1, by Theorem 30 s1(Tk) = 3ki1
. 
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3.3 Complete Bipartite Graphs 

In this section we consider complete bipart ite graphs K m,n. m ~ n, and characterize 

their fast search number. We tart with the following initia l case , where m ~ 2 or 

m=4. 

Lemma 33 If 1 ~ m ~ n, then 

r~l , m = 1, 

2 

3 

m= n = 2, 

m = 2,n ~ 3, 

6, m = 4,n ~ 4. 

We quote the following theorem on the search number of complete bipartite graph . 

Theorem 34 [4] If 3 ~ m ~ n, then s(Km,n) = m + 2. 

The next lemma gives an upper bound for even m where m ~ 6. 

Lemma 35 If 6 ~ m ~nand m is ven then SJ( K m,n) ~ m + 3. 

PROOF. Let Km,n havebipart ition V1 = {vJ,V2,···,vm} and V2 = {uJ u2, ... un }· 

We con truct a fast search strategy that u es m + 3 search r . 

Denote the searchers as cr1, cr2, ... , O'm+3. We clean the v rtices in the order 

u 1 ,u2 .. . ,Un-J,VJ,V2, . . . ,vm, Un when n is even, and u1,u2, ... ,Un-2,v4 Vs, . . . , Vm, 

Un-1, V2, V1, Un, V3 when n is odd. 

First, place cr1 on v1 cr2 on v 2 and 0'3 on v3 (Figure 3. ). Then place 0'4, crs, ... , O'm+3 

on u 1 and th n clean u1 by these searchers so that cr4 will be on v1 , cr5 will be on 

v2, .. . , and O'm+J will be on Vm · We keep u4 , crs, ... , O'm+3 on t heir respective vertice 

unt il just before the end of the strategy. We clean u2, u3, ... , Un- l by moving O'J, cr2 

and cr3. Slide cr1 along the edge e = v1 u2, slide cr2 along the edg e = v2u2 and 0'3 
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Figure 3. The initial placement of the searcher for K 6,9 according to L mma 35. 

along the edge e = v3u 3. Keeping a 2 on u2 and a 3 on u 3, we clean all the edges b -

tween { v4 , Vs, ... vm} and { u2 , u3} by a1 . Hence a 1 visits the following vertice in the 

given order: u2 , v4 ,u3,Vs u2,v6 u3 , ... Vm- J, u2 , vm,u3. After thi a1 will end up on 

u3 since the graph induced by { v4 Vs, ... , vm} and { u2 , u3 } contain an Eulerian path 

and l{v4, vs, ... ,vm}l is odd. ext, a 1 will slide along u3v1. Th only contaminated 

edge incid nt to u2 is u 2v3, hence a2 may slide along u2v3 and clean u2. Similarly a3 

may slide along u3v2 and clean u3 . Henc u2 and u3 are clean d. 

Next we cl an u4 and us imilarly. Slide a1 along th edg e = v1u4, a2 along 

e = v3u 4 and a3 along the edge e = v2us. Ke ping a2 on u4 and a 3 on us, we cl an 

all the edges b tween {v4 ,v5 ... , vm} and {u4 , '1..ts} by at. Then, a1 !ide along usv1 , 

a 2 slides along u 4v2 and a3 slides along usv3. 

In the same way we clean u6 and u7 , us and u 9, and so on. If n i even after 

cleaning Un- 2 and Un-J we let ai slide along e = Vi-3Un cl aning Vi-3 for all i = 
4, 5, ... , m + 3. In this way we finish cleaning 11 11 • When n is odd , we follow a similar 
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strategy. • 

The next theorem shows that th bound in Lemma 35 i best po i ble. 

Theorem 36 lf6 ~ m ~nand m i even, then JU<m,n) = m + 3. 

PROOF. Lemma 35 states that SJ(Km,n) ~ m + 3. Also, Theorem 34 implies that 

m + 2 = s(Km,r•) ~ SJ(Km,n), we only need to show that m + 2 earchers do not 

suffice to fast search Km,n· We will use proof by contradiction. Suppa e that there 

exists a fast search strategy to clean Km,n that uses m + 2 s arch rs . Let Km,n have 

bipartition Vi and V2 with lVII = m and IV2I = n. Let ui be the fir t cl aned vertex 

and t be the step at which ui i cleaned. We now consider the case that u1 E V2. The 

case when u 1 E Vi can be proved similarly. 

Since at t, only u1 is cleaned and all v rtices in V1 are contaminated , each vertex 

of Vi must b occupied by at least one earcher. Let u denote th e searchers as 

a3, a 4, ... , am+2· This accounts for m earchers. We show that no strategy can clean 

the graph u ing m + 2 searchers by con idering each placement of th earcher ai 

and a2. 

CASE 1. Both of a I and a2 ar on Vi. 

CASE 1.1: Suppose that a 1 and a2 are on the same v rtex, ay v1 . Since fast 

searching is a monotone search and none of the searchers are located on u2 , u3, · · · , Un , 

we see that all dges incident to th e v rtices are contaminat d. Since th re are no 

parallel edges, we can slide a 1 and a2 only to different vertice in 112, ay u2 and u3. 

After this step it is not possible to move any of the searcher since they are all on 

vertices that have more than one contaminated edge incident to them. 

CASE 1.2: Suppose that ai and a 2 are on different vertice , ay V I and v2 respec­

tively. First assume that a1 and a2 slide to the same vertex, ay u2, at steps t + 1 

and t + 2 respectively. Then a2 may leav u2 and slide to any vertex oth r then VI or 

v2 in V1, say v3 at step t + 3. After thi st p a1 is stuck on u2 . At step t + 4, a 2 may 
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slide to any vertex other than u1, u2 in V2 and it is stuck at that vertex. 

Otherwi e, let a 1 and a2 slide to different vertices, say u2 and u3. But since u2 

and u3 have at least two contaminated edges incident to them, neither a 1 nor a2 can 

move. Therefore all searchers are trapped at step t + 2. 

CASE 2. Both of a 1 and a2 are on \12. 

CASE 2.1: Suppose that a 1 and a2 are both on u 1. one of the searchers can 

move since u1 is clean and no edge is traversed twice. 

CASE 2.2: Suppose that a 1 and a2 ar on the same vertex u2 =f u1 . If u2 has 

more than two contaminated edges incident to it , then all earch r are stuck after 

at mo t two steps since only one of the searcher , say a 1 can leave u2 a2 is stuck 

after thi t p and a 1 is stuck at step t + 2. If u2 has exactly two contaminated edges 

incident to it , then u2 can be cleaned in the next two steps. At the end of step t + 2, 

a 1 and a2 are located on cliff rent vertices, say v1 and v2 in Vi. If both of a1 and a2 

move to different vertices in V2 , then they ar both unable to move. Hence assum 

that a 1 slides along v1 u3 and a2 slides along v2u3. Since all edges incident to u3 were 

contaminated before step t + 4, only one searcher can leave u3 at tep t + 5. Hence at 

most ix step later all searchers are stuck. If u 2 has exactly one contaminated edge 

incid nt to it , only one searcher, say a 1 , can leave u2 and th other earcher is stuck. 

Similar to the previous cases, a 1 is also stuck after two steps. 

CASE 2.3: Suppose that a 1 and a2 are on different vertices, say u2 and u3 respec­

tively, where u2 and u3 are both different from u1. The searcher a1 (resp. a2) can 

leave the vertex ·u2 (resp. u3) if and only if u2 (resp. u3) has exactly one contami­

nated edge incident to it. When a 1 and a2 move to the same vertex in ~, this subcase 

reduces to Subcase 1.1 , and all searchers are stuck after at most 4 steps. Similarly 

when a1 and a2 move to different vertices in V1 , it reduces to Subcase 1.2. and all 

searchers ar stuck after at most 6 st ps. 
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CASE 2.4: Suppose that a1 is on u1 and a2 is on u2 , where u2 is different from u1. 

ow a 1 cannot move since all edges incident to u 1 are clean . If there i more than 

one contaminated edge incident to u2 , then a 2 cannot move. Otherwi e, a 2 can slid 

along the only contaminated edge incident to it, say e = u2v1 , at step t + 1. At the 

next step, either. a 2 or a3 , say a 2, can !ide along any contaminated dge incident to 

v1 say v1u3 . But none of t he searchers can move after this tep. 

CASE 3. The searcher a 1 is on v1 E Vi and a2 is on a vertex in v;. 
CASE 3.1: Suppose that a2 i on u1. Then a2 is trapped on u 1 and a1 can make 

at most two moves. 

CASE 3.2: Suppose that a2 is on u 2 =I u 1 . If u 2 has only one contaminated edge 

incident to it , then there are two cases to consider. If that contaminated edge is V1 u2 

and it is cleaned next, then the problem reduces to Subca e 1.1 if a2 slides to v1 or 

it reduces to Sub case 2.2 if a 1 slides to u 2 . If v1 u2 is not cleaned in the next step , 

then the only s archer tha t can move is a 1 and all the searchers are stuck aft er this 

step. Otherwi e if the contaminated edge i v2n2, then a2 may slide along that edge 

and all searchers have t he sam po it ions as in Subcase 1.2. If u2 has exactly two 

contamina ted edge incident to it, then the searchers are stuck after at most one step 

in the case that none of the e contaminated edges are incident to v1 (only a1 can 

move once). Otherwise, a 2 and a 1 are both unable to move at step t + 3. If there ar 

three contaminated edges incident to u2 , then t he problem reduces to Subcase 1.2. • 

ow we con ider the complete bipart ite graphs Km,n wh re 3 ~ m ~ n and m 

is odd. Let us fi r t give the following upper bound which can be obtained using the 

arne strategy used in Lemma 35. 

Lemma 37 If 3 ~ m ~ n where m is odd and n is even, then SJ(Km,n) ~ n + 3. 

During the stra tegy given in Lemma 35, we cleaned the graph by decomposing it 

into K 2,m-3's and the parity of m- 3 allowed us to use the same searcher in the next 
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K2,m_3. However in this case when m is even, the parity of m- 3 forces us to us a 

different searcher for all K 2,m_3 to fast earch the graph if the same trategy is used. 

We know from Theorem 34, that m + 2 = s(K m,n) :$ J(Km,n) · On the other 

hand, when m is odd , Lemma 26 state that 1(Km,n) is bounded below by m;n when 

n is odd and by I when n is even. This gives us another lower bound for SJ( K m,n)· 

Next we give another upper bound which improves Lemma 37 for orne m and n . 

Lemma 38 If 3 :$ m :$ n where m is odd , then 

PROOF. Let K m,n have bipartition vl = {vl, v2, ... Vm} and v2 = {ut , u2, ... 'Un }· 

CASE 1: n=4k+ l. Placemsearcherson u 1 anddenotethem asa2,a3, . . . ,am+l · 

Place a searcher. say a 1, on v1 and a searcher on each of u2 and u3, denoted as am+2 

and O"m+3 respectively. Place a searcher on each of u41+2 and 1£41+3 for l = 1, .. . , k - 1. 

In this way we use 2 new searcher for every 4 vertice in V2 \ u 1. In total we use 

m + 1 + n2l earchers. 

Fir t clean u 1 so that each vertex in V1 contains a earcher, xcept for v1 which 

contain two searchers. Let a 1 traver e all edges of the Eulerian graph induced by 

{v1,v2, .. . ,Vm-d and {u2, u3} and hence clean ·it. ow O"m+2 may lide along u2vm 

and O"m+3 may slide along U3Vm and clean U2 and U3 . 

Next I t O"m+2 lide along VmU4 and O"m+3 :;!ide along VmU5· Again, let a1 clean 

all edg s of th Eulerian graph induced by { Vt v2,. . . Vm- d and { u4, u5}. This a! o 

cleans u4 and u5 . 

We clean the graph by repeating thi procedure for all of 1£41+2 and U41+3 wher 

= 1, .. . , k- 1. First clean the Eulerian graph induced by { VJ, v2, ... , Vm- d and 

{ u41+2, u41+3} with a1. Move the searcher on ·u4l+2 along U41+2Vm, Vm u41+4 and t he 

search r on u41+3 along u41+3vm , vmu41+5. Then clean the Eulerian graph induced by 

{ V1, v2, .. . , Vm-d and { 1£41+4 1£41+5} with a1. 
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CASE 2: n = 4k + 2. Place th s ar hers as in Case 1 hence m + 1 + n22 = m + ~ 

searchers are placed on the graph. Cl an all vertices in V2 xcept for Un with th 

same trat gy used in Case 1. Ob erve that the only contaminated edge are the on 

incid nt to Un and there is a earcher located on each vertex in V1. We let u2 slide 

along v 1un and clean v 1. Then let u3 slide along v2un and cl an v 2 . imilarly we clean 

all vertices in V1 and finally clean Un. 

CASE 3: n = 4k + 3. Once again place the searchers as in Case 1. Place another 

searcher on Vm· Hence we used m + 1 + n23 + 1 = m + n~l s ar hers. e the sam 

trategy as in ase 1 to clean every vert x in V2 except for Un-1 and Un. ow there is 

a searcher on every vertex in V1 except for v1 and Vm on which there are two earcher . 

Then we let the t.wo searchers on Vm slide along the only contaminated edge incident 

to Vm which are llmUn- J and VmUn, hence cleaning Vm . Finally u1 clean the Eulerian 

graph induced by {v1, v2 , . . . , Vm-1} and {un - J, un} · In this way the graph is cleaned. 

CASE 4: n = 4k. Place a searcher on every vertex in { VJ, v2, .. . , Vm- 1, UJ, u2 , .. . , 

u2k} and place a second searcher, say u1, on v1. Hence we u em+~ earchers. W 

let u 1 clean the Eulerian graph induced by { Vt, v2, .. . Vm- d and { UJ, u2, .. . u2k}. 

Then let each searcher Um+i located on u i E { u1 , u2 , ... , u2k} lid along UiVm and 

clean { u 1, u 2 , ... , u 2k}. Next let each <7m+i !ide along Vm u2k+i and cl an Vm. ow 

each vertex in { u2k+l• u2k+2 , .. . , un } contains a searcher. Th n we let <7J clean the 

Eulerian graph induced by { v 1 ,v2, . .. ,Vm-d and { u2k+l u2k+2, ... ,un} · This clans 

every vertex in K m,n · • 

Let us summMize the results on th fast search number of a complete bipartit 

graph K m,n when m is odd. Th orem 34 and L mmata 26 37 and 3 imply that 

when m i odd, n is even and 3 ~ m ~ n, we have 

max { m + 2, ~ } ~ SJ(/<m,n ) ~min { n + 3, m + ~ } . (3.2) 
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W hen m and n are odd and 3 ~ m ~ n, we have 

{ 
m+n } n+l max m + 2, -

2
- ~ SJ(Km,n) ~ m + -

2
-. (3.3) 

3.4 Cost Function 

Given a graph G = (V, E) , lets be the number of searchers used in a earch strategy 

to clean G. Certainly, s(G) ~ s. For each valu of s, ther is a strategy that cleans G 

in the minimum number of steps; that is, the minimum time. We define the minimum 

number of teps for each s to be t( s). Certainly, I El ~ t( s) . 

In some real-life scenarios, the cost of a searcher may be relatively low in compar­

ison to the cost of allowing an intruder to be free for a long p riod of t ime. Thus, 

it may be beneficial to use more earcher than s(G). Since the minimum number of 

steps to clean a graph is lEI (each edge must be cleaned) , it will never be neces ary 

to us more searchers than the minimum needed to clean the graph in lEI steps. So 

we can bound the number of searchers above by s1(G) giving s ~ SJ(G) . 

Wh n we construct a cost function for earching we may con ider the following 

parameters: 

• a: Cost per searcher. 

• (3: Cost per searcher per step. 

• r: Cost per step . 

Several combinations of the parameters above can be con idered. Fomin and 

Golovach [21] introduced a cost function in the node earching probl m which is 

the sum of the number of searcher in every step of the node search process. For a 

fixed graph G, we choose to consider th following cost function in the edge searching 

problem: 

Cc(s, t) =as+ (3st + "(t, (3.4) 
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where s(G) ~ s ~ SJ(G) and t = t(s) 2: lEI. Instead of trying to minimiz s, which 

corresponds to (edge) searching or to minimize t, which corresponds to fast earching, 

we may attempt to minimize Cc. However , in order to formulate th e problems (and 

bounds) it is necessary to know both the earch number and the fast earch number. 

Consid r the n-star, K 1,n, where n 2: 3. We recall that (I<1,n) = 2, and that 

SJ(Kt,n) = l~l It is not difficult to see that if 2 ~ s ~ 1~1, th n the minimum 

number of steps for such a strategy i t( s) = 2n- 2s. (The searchers would begin at 

distinct leaves of the graph, and then traverse the edges to the c ntral vertex, using 

s move . They would then use 2 move moving out from and then back towards the 

central vertex, for each of n - 2s pendant edges. Finally each earcher would move 

out from the central vertex along one of the s remaining pendant edge ). 

Substituting !nto Equation 3.4, we obtain 

cf(l n (s) =as+ /3s(2n- 2s) + r (2n - 2s) = - 2/3s2 +(a+ 2n/3- 2r)s + 2nr. (3.5) 

But this is clearly a quadratic function in s, which has a maximum value at its crit ical 

point. We obtain its minimum value at the minimum or maximum value for s, that 

is when either = 2 or s = l~l (Both are possible depending on choice of a , /3 and 

r) · 

More informally, the cost of cl aning the n-stars is minimiz d by either treating 

it as an edge searching problem, when searchers are exp nsive and time is cheap, 

or by tr ating it as a fast searching problem when searcher ar cheap and time is 

xpensive. 
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Chapter 4 

On the Characterization of 

4-Searchable Graphs 

In this chapter we return our attention to edge searching. We give results on th 

extremality characterizations of 4-searchable graphs. Thi was po ed as an open 

problem in [37] where author noted the difficulty of the que tion. The first section 

deal with the preliminary re ults and definitions. In the cond ection we give 

the main result proven in this chapter which is the complete characterization of 4-

searchable biconnected outerplanar graphs. Finally, we present r suits related to th 

forbidd n minor characterizations of 2-outerplanar graphs. 

4.1 Prelim inaries 

Befor giving the definitions and notation that will be u ed in thi chapter let u 

present the following result which re tricts our attention to planar graphs when con­

structing the obstruction set for 4-searchable graphs. 

Theorem 39 If s( G) :=:; 4, then G i a planar graph. 
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PROOF. Let s(G) ~ 4. We know that s(K 5) = 5. Also Theorem 34 implies that 

s(K3,3) = 5. Assume that G contains K3,3 or K 5 as a minor. Since edge searching i 

minor closed, s(G) ;:::: 5. This is a contradiction. Hence neither K3,3 nor K5 can be a 

minor of G. Therefore G must be a planar graph. • 

For brevity we look at reduced graphs those that are obtained from replacing 

every suspended path with a single edge with the same end points. As w noticed 

before, r duction does not change the search number. 

In this chapter, all of the graphs that we consider are reduced multigraphs. There­

fore, we hereafter omit the description "reduced multigraph ; reduced multigraphs 

will simply be called graphs. 

D efinition 11 A graph is said to be oute;planar, or 1-oute;planar, if it can be drawn 

in the plane in such a way that all vertices are on the boundary of the unbounded 

face, i.e., the outer face. A k-outerplanar graph is defined recursively. For k > 1, a 

graph is k-outerplanar if there exists a planar embedding of G which has an outer 

face so that by removing the vertices on the outer face , we get a (k- 1)-outerplanar 

graph. 

ote that not every planar graph is outerplanar. For in tance, 1<4 is planar but 

not outerplanar. 

D efinition 12 A tent is a multigraph 3C3, i.e., each consecutive vertex of C3 i 

connected with three parallel edge (Figure 4.1). A house i a multigraph H = (V, E) 

where V = V(C4) = {v0 ,v1,v2,v3} and E = E(C4) U { e5 = VoVJ,e6 = vovi} . Given a 

house H , the dge e = v2v3 where degH(v2 ) = degH(v3) = 2 is called the base of the 

house. 

It is known that the boundary of the outer face of a biconn cted outerplanar graph 

is a panning cycle [52]. Assume that G is a biconnected outerplanar graph. We fix 

an embedding of G and label its v rtices as v1, v2 , .. . , Vn so that they con ecutively 
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Figure 4.1: On the left: A tent. On the right: A hou e with thi k base edge. 

lie on a cycle. Here we denote the graph induced by the verti cs {vi, vi+J, ... , Vj } as 

P ij . Thus P ij denotes the boundary path from vi to Vj togcth r with all the chords 

between the vertices in {vi, vi+1, ... , Vj}. 

Let vi and Vj be two vertic sofa biconnected outerplanar graph G. Denote the two 

graph indue d by the boundary path joining vi and Vj as ? 1 := P ij and ? 2 := Pji· 

Hence vi and Vj are the only common vertices of ? 1 and ?2. 

If neither P1 nor ? 2 hav a tent or a house as a minor such that the base of the 

house is a chord of P1 or ? 2 , th n we ay that G is a generalized bipolar graph. The 

vertices Vi and Vj are called the poles of G. 

4.2 4-Searchable Outerplanar Graphs 

In thi section we present the charact rization of 4-searchable biconnected outerplanar 

graphs. 

Th orem 40 For a biconnected outerplanar graph G the following arc equivalent: 

1. s(G) ~ 4. 

2. G does not contain any of the graphs in Figure 4.2 as a minor. 

3. G is a generalized bipolar graph. 

PROOF. We label the v rtice of Gas v1 , v2 , ... , Vn such that they onsecutiv ly 

lie on a cycle. We show that (1)~(2)~(3)~(1). 
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Figur 4.2: Forbidden minors for an outerplanar graph with search number 4. 

(1}~(2) . All of the graph in Figure 4.2 have earch numb r t rictly greater than 

4. Henc they cannot be minor of a graph G where s(G) ~ 4. T hey are al o 

maximal in the sense that any minor of these graphs ha arch number at mo t 

4. 

Without loss of gen rality we may assume a monoton tratcgy [34]. Let us 

show that s(G) > 4 for the left mo t graph in Figure 4.2. T he graph G has 

6 vertices and 27 edges. Label the ver tic s as in Figure 4.2. If a earch start 

with cleaning a vertex v with I (v)l = 4, then it will u eat l ast 5 searcher . 

Since the graph is symmetric, we can start with any vertex v with I (v)l = 2. 

H nc let the first vertex cleaned be VI· To clean v1 we n ed at least 4 searchers. 

When VI is cleaned , we must k ep one searcher on each of v2 and v6 . Hence 

there are two free searchers. Ob erve that these two fre earcher do not suffic 

to clean any other vertex. Hence a second vertex cannot be cleaned u ing only 

4 searchers. Thus s( G) > 4. 

AI o notic that deleting any vertex or edge from G or ontracting any edge 

will reduc the search number to 4. Hence G is a forbidden minor. 

Similar arguments suffice for the other graph in Figur 4.2. 

(2)~ (8}. Assume that G does not contain any of the graph in Figure 4.2 as a 
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minor. Let P := P;,j be the graph induced by a maximal length boundary path 

with end vertices v; and v1 such that P does not contain a tent or a house as 

a minor. Let v;_1 be adjacent to v; and vi- I tj:. P. Also let VJ+I be adjacent 

to v1 and Vj+l tj:. P . We denote the boundary path induced by V(P) U V' for 

V' ~ V(G) asP+ V'. 

Since P is maximal, P + { Vi-I} will contain a tent (or a hou e) as a minor. 

Similarly P + {vJ+1} will contain a tent (or a house) as a minor. Since G is 

outerplanar, these tents (or houses or a tent and a hou e) are edg disjoint. 

Let P' b the the graph induced by the boundary path joining Vj+I and Vi-I 

thus P' = P1+l,i- l , and P' is disjoint from P. Then P' cannot contain any tent 

or house as a minor since otherwise G would have one of the graphs in Figure 

4.2 as a minor by the discussion in the previous paragraph. 

Assume that P' + {vi} has a tent or a house as a minor. Denote that minor 

as H . Then v; E H , since P' does not contain a hous or a tent as a minor. 

Further , there exists a vertex u E { VJ+ 1 , v1+2 , . .. , Vi-2} uch that uv; E E( H ). 

Thu v;_1 has no neighbor in P other than vi, since G i outerplanar. Hence 

P + {v;_I} is a longer boundary path without any tent or a house as a minor, 

contradicting the maximality of P. Therefore P' + { v;} do not have a tent or 

a hou e as a minor. 

Similarly P' + {v1} cannot have a tent or a house as a minor either. Hence 

P' + { v;, v1} does not contain any tent or a house as a minor. Thu none of the 

boundary paths connecting v; and v1, namely, P and P' + {Vi v1}, contain a 

tent or a h0use. 

T herefore G is a generalized bipolar graph with vi and v1 as poles. 

(3)==} {1). Let G be a generalized bipolar graph and without loss of generali ty assume 

that v1 and V; are the poles of G. Let P1 and P2 be the two boundary paths 
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v 
I 

Figure 4.3: A biconnected generalized bipolar graph with poles v1 and vi · 

connecting v1 and vi. First we put a searcher on each of v1 and V11 • Denote them 

as a 1 and a2 . Clean all the edges between v1 and V 11 by a third searcher, say a3 . 

During th search we always keep a 1 on P1 and a 2 on P2 as guards. The oth r 

two searchers are used to clean boundary edges, edges parallel to the boundary 

edges and cross chords connecting a vertex in P1 with a vertex in P2 . By the 

outerplanarity of G, the cross chords can always be cleaned using a searcher 

while the others are used to guard its end vertices. 

We show how to clean P1 using a 1 , a3 and a4 where the vert ices are clean d con­

secutively. Similarly one cleans P2 using a2 , a3 and a4 . Assume that v1, v2 , . . . , Vj- l 

are cleaned and let a 1 be on Vj . 

CASE 1: There are no cross chords incident to vi. 

If v1 has at most two contaminated edges incident to it , say e1 = v1v1+1 and 

e2 = v1vk, we put a3 on v1 and we clean v1 by sliding a 1 along e1 and a3 along 

e2 . If k = j + 1, both searchers are on v1+1 and we proceed to clean Vj + l · If 

k = j + 2,· we put a4 on Vj+1 and clean all the dges between Vj +l and V j +2 

by a4 . There are no cross chords incident to Vj+ l due to the outerplanarity. 

Hence v1+1 is cleaned. Else if k 2: j + 3, since P1 does not contain a house, the 
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• 

boundary path connecting Vj+I and vk can be cleaned with two earchers for 

which we use a 1 and 0'4 . 

If Vj has more than two contaminated edge all of which ar incident to one of 

VJ+I or vk where k 2: j + 1, the path connecting Vj and vk and all edge induced 

by { vj,Vj+L ... ,vk} can be cleaned by a 1,a3 and a4 since there are no houses 

or tents contained as a minor. 

Otherwis , assume that Vj has at least thr e contaminated dg incident to it 

and that these edges are incident to at least three distin t vertice on P1 other 

than Vj· L t the last vertex be Vk o that e = VjVk i contaminated and k 2: j +3. 

Th only boundary edge in P jk that may have at least two edge parallel to 

them arc e1 = VjVJ+1 and e2 = vk- I vk, since otherwise P1 would contain a hou e 

as a minor. Hence we put a 3 on Vj as a guard and let a 1 and 0'4 clean P jk and 

all edges incident to Vj. 

CASE 2: Th re is a cross chord = v 1vi incident to Vj wher v1 E P 2. 

We cl an P2 until a 2 reaches v1• We let a 1 stay on Vj and a 2 tay on v1 as guard 

and we clean e and all dges parallel to it by a 3 . 

We r peat this procedure until either a 1 reaches v; and 0'2 reaches Vi- 1, or, 0'2 

reaches v; and a 1 reaches vi+l· Finally we clean th r maining contaminated 

edges, i.e., those that ar between v; and v;_1 in the form r case, and those that 

are b tweell v; and Vi+ l in the latter case. Hence the graph is cleaned using 4 

earchcrs . 
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4.3 On 4-Searchable 2-0uterplanar Graphs 

In the previous section we have given the obstruction set for out rplanar graphs. Here 

we will give the partial results for the obstruction set for 2-outerplanar graphs. Our 

intention is to generalize the character of uch a set for any k inc any finite graph 

is k-outerplanar for some k . 

As noted before, for a fixed k the set of forbidden minors of k-searchable graph 

is finite. Nevertheless, the construction of the elements of th ob truction set and it 

size are unknown. Furthermore it is shown that from a finite d cription of a minor 

clo ed family of graphs, there is no general algorithm to comput the ob truction set 

[20]. 

Before we state our next theor m, we introduce a notation for 2-outerplanar graphs 

G. First fix a planar embedding of G. One can deduce from Definition 11 that the 

vertex set V of a. biconnected 2-outerplanar graph G can be partitioned into two s ts 

~ and v2 so that: 

(1) the elements of V1 induce an outerplanar graph, and, 

(2) the elements of V2 are tho e that are in the boundary face of G. 

According to this definition we denote the class of biconnect d 2-outerplanar 

graphs G with partition sets~ and V2 where n1 = 1~1 and n2 = IV2I as O[n11n2]. 

Note that a graph may belong to two diff rent classes dep nding on it embeddings. 

Here out of all pos ible emb ddings in O[n1 , n2] of a 2-outerplanar graph, we choo 

the one which minimizes n 1. 

Let F denote the set of biconnected forbidden minors for 2-outerplanar 4- earchable 

graph . ote that F does not have any element of order 3 or le S1 thus FnO[l , 2] = 0. 

The next theorem shows that there is a unique graph that i a forbidden minor 

in each of the first three classes of interest. 

T heorem 41 The graphs G1 1 G2 and G3 in Figure 4.4 are el ments of F 1 where 
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F is the set of biconnected forbidd n minors for 2-outerplanar 4-searchable graphs. 

Furthermore, they satisfy the following quations: 

{GI} = F n 0[1 , 3], 

{G2} = Fn0[1 , 4], 

{G3} = F n 0[1 5]. 

(4.1 ) 

(4.2) 

(4.3) 

PROOF. We will use analysi by cases to how that G1 , G2 and G3 are forbidden 

minors for a 4-searchable 2-outerplanar graph. 

The symmetry of G1 allows us to clean the vertices in any order. Since we need 

at least 5 searche!·s to clean a first vert x, G1 is not 4-searchabl . D leting any vertex 

or contracting any edge would re ult in a graph with 3 verticc that i clearly 4-

searchable. AI o, deleting at I ast one edge we obtain a 4-scarchable graph. From 

thi argument it follows that G1 is the unique lement in F n 0[1, 3], ince any minor 

of G1 in 0[1, 3] is 4-searchable and any graph in 0[1, 3] that is not 4- earchable will 

contain G1 as a minor. 

We can quickly analyze all s arch strategies for G2 that us only 4 searchers and 

see that after cleaning a first vertex all searchers are stuck. Contracting any edg 

would result in a minor of G 1 or a 4-searchable graph. Similarly, deleting an edge 
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or a vertex would give a graph with search number at most 4. Hence G2 E F. To 

see that any graph G E 0[1, 4] that is not 4-searchable contains either G1 or G2 as a 

minor we consider the following cases: 

CASE 1: Consecutive vertices on the boundary are connected by at least t hree 

parallel edges. 

If the vertex v0 that is not on the boundary has at most 2 neighbor , then G is 

4-searchable. If v0 has at least 3 neighbors, then G is either 4-searchbale or contains 

G1 or G2 as a minor. 

CASE 2: At least two consecutive vertex on the boundary are connected with at 

most two parallel edges. Verification is done in a similar way to CASE 1. 

Thus {G2 } = F n 0[1 , 4] . 

To show the last equality we consider four cases for an arbit rary graph G E 0 [1, 5]: 

CASE 1: There are no chords between non-consecutive vertices. 

CASE 1.1: All consecutiv vertices on th boundary are connected with at most 

2 parallel edges. 

We give a search strategy that cleans all such graphs by using 4 searchers only. 

Place two searchers a1 and a 2 on the center vertex v0 and one searcher on each of 

two adjacent boundary verti es v1 and v 2 . Clean all edges between vo, v1 and v2 by 

a 1 keeping all other searchers on their initial places. Remove a 1 and place it on v2 . 

Th n let the other searcher located on v2 slide along the boundary edge connecting 

it to v3 . Since there are at most two such vert ices, there is at most one contaminated 

edge incident to v2 . Clean thi edge by sliding a 1 along it. ow a1 can clean all 

edges between v3 and v0 . We repeat this until we reach v1. Hence all uch graphs are 

4-searchable. 

CASE 1.2: At least two consecutive vert x on th boundary are conn cted with 

at least 3 parallel edges, at least 2 others are connected with at most two parallel 

edges. 
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(a) (b) 

(c) (d) 

Figure 4.5: Subcases considered in Theorem 41. 

Case analysis similar to the previous cases bows that all graph in thi subca e 

are ith r 4-searchable or they contain G1 or G2 as a minor. 

CASE 1.3: All consecutive vertice in the boundary are connect d with at least 3 

parallel edg s. 

Observe that G3 belongs to this case. It is not possible to clean this graph using 

4 searchers. Also deleting any vertex or contracting any edge will result in a 4-

searchable graph. If we delete any edge on the boundary we can cl an the graph with 

4 archer u ing the strategy given in CASE 1.1. Hence G3 E F . Ob erve that any 

non 4-s archable graph G belonging to this subcase that is not a minor of G3 is a 

supergraph of G3 or it contains G1 or G2 as a minor. Hence G3 is the only such graph 

that belongs to this subcase. 

CASE 2: There are chords between non-consecutive vertice . 

There are at most two uch chords. In Figure 4.5 all such possible graphs are 
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shown where the dotted edges may or may not exist. Although in Figure 4.5 for 

simplicity we put a ingle edge between any two consecutive vert x, they may be 

connected with any number of parall 1 edges. Again a long case analy is similar 

to the previou ones reveals that all graph that belong to the ubcases are either 

4- earchable or they contain G1 or G2 as a minor. 

Th refore { G3 } = F n 0[1, 5]. • 

Using a similar discussion a in the proof of Theorem 41 w can show that the 

graphs G5, G6 a~d G7 given in Figure 4.6 are in the set F. Th v rification that thes 
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graphs are indeed forbidden minors is done by case analysi which becomes tediously 

long as the order of the graph increases. Although it seems that the e graphs are 

the unique forbidden minors in their respective classes, we do not prove this, because 

of the growth of the number of cas to consider as the number of chords between 

non-cons cutive vertices increases. 

To close this chapter we give the other graphs in F that we have found so far . By 

analyzing these graphs we point out the difficulty of the characterization of graphs 

in F n O[n1 , n2] as n 1 or n2 increase. Thus we do not claim that thi i the complete 

characterization of F. 

We collected the figures so that G, H E F are given in the arne figure where 

G E O[n1 n2] and HE O[n1 , n3]. Here n2 and n3 are not nece sarily equal. 

Figure 4.7 shows five graphs that belong to F n 0[2, k], 3 ::; k. We give some of 

the graphs in F n 0 [3, k], 3 ::; k in Figure 4.8. The last figure in this section, Figur 

4.9, shows graphs in F n 0 [4, k], 4 ::; k. 

Although orne of them share some common features, the elements ofF are irreg­

ular in general. otice that all forbidden minors we have given in Figure 4.7 induce 

a conn cted graph when the vertices on the boundary face were d leted. This also 

holds for most of the graphs in Figure 4 . . In contrast the graph G18 in Figure 4. 

is a forbidd n minor in 0[3, 9] which induces an independent s t of vertices when th 

outerface is deleted. 

Ob erv that most of the forbidden minors given here are highly symmetric. On 

the other hand some of them, such as G12 and G15 , are not. 
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Figure 4.7: Forbidden minors in 0 [2, k], 3 ~ k. 
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Figure 4.8: The graphs G13, G14, ... G1s· 
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Figur 4.9: The graphs G19 , G2o and G21 in [4, k] for 4 ~ k . 
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Chapter 5 

Conclusion and Future Directions 

In the first section we summarize the main results presented in this work and po e 

related open problems and som future directions which ari e from our work. The 

final section is devoted to a future direction which estimates the search number of 

circulant graphs of prime order. 

5.1 Conclusion and Open Problems 

The research pr sented in this dis ertation covers complexity re ults, cxtremali ty char­

acterizations and comparisonal bounds for edge searching and two of its variation . 

An open problem of edge searching is partially solved. 

In Chapter 2, we introduce a new weighted version of the edge earching problem. 

Our motivation is that there may be networks ·where links have different capaciti 

or importance factors . In this setting d contamination is not the same for all edges. 

For any graph G, Theorem 13 implies that the pathwidth and th w ighted edge 

search number may differ by at most 2. Thi result improv s the bound in Theorem 

11. Furthermore, since pw(G) :::; s(G) :::; ws(G) :::; pw(G) + 2, if s(G) = pw(G) + 2, 

we have (G) = ws(G). From this result a characterization of graph for which any 
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weight distribution would give the same search number and w ight d search numb r 

can be obtain d. For in tance; when G = K 3,3 , we have (G) = 5 and pw(G) = 3, 

thus w (G)= 5 for any edge weights for G. 

Theorem 16 in Section 2.3 gives equivalent characterization of 2-s arch able weight­

ed graphs. It identifies the forbidden graphs containm nt of which prevents the 

weighted search number to be at most two and explains how all such graphs are 

structured. 

The characterization of unweighted graphs G for which th s arch number is at 

most 3 is done in [37] and it is more complicated than the characterization of graph 

G for which s( G) ::; 2. One po ible future aim i to find a chara terization theorem 

for 3- earchable weighted graphs. 

The major result of Chapter 2 is Theorem 22, namely, for any weighted graph 

G, we have ws(G) = mws(G) [57]. Thus for every weighted graph G th re exists a 

monotonic weighted search that uses the same number of search rs as a non-monotonic 

weighted search. Combining Th orem 22 and Theorem 4 we g t 

ws(G) = iw (G) = mws(G). 

The main implication of Theor m 22 is the NP-completene s of the weighted 

searching problem. There are variou complexity problems ari ing from h re. Whether 

the problem is still NP-complete when restricted to trees or planar graphs r mains 

open. A r lated problem is to to find out if the problem is polynomially solvable for 

special classes of graphs, such as chordal graphs. 

Secondly, monotonicity implie that one can alway u e a monotonic strategy 

without any increase on the number of searchers. This i important since when 

considering edg searching problems it is mo t often simpler to work with a monotonic 

strategy. Monotonicity is also advantageous when ther are costs relat d to moving 

along an edge and to the numb r of moves. If sliding along an edg i very costly, a 

monotonic trategy would be de ir d. 
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There ar various future directions arising from weighted search. One version 

of a weighted search may consider earch rs having differ nt cleaning capacities. In 

addi t ion to edges, we can also put weights on vertices and combine weighted edge 

search and weighted node search. 

In Chapter 3. we introduce fast earching as a variant of edge earching. We 

demonstrate fast search strategies wi th several examples. We how that a fast search 

strategy for a tree can be computed in linear t ime. We also propose a cost function 

that generalize the searching problem. 

We prove several results on the fast search number of complete bipartite graphs. 

When m is even and 6 ~ m ~ n, we have s JU<m,n) = m + 3. When m is odd 

and 3 ~ m ~ n the results ar summarized by Equat ion 3.2 and 3.3. The gaps in 

Equations 3.2 and 3.3 may be large depending on m and n. The fasts arch number 

of Km,n can be further studied to revise these lower and upper bounds. It remains 

open to reduce these gaps to a small constant which do s not depend on m and n. 

It would also be interesting to inve tigate the fast search number of other clas es 

of graph , such as Cartesian products. In par ticular, the bounds given in Example 

for grid may be improved . Besides the fact that much is known about the search 

number of these graphs, knowing the fast search number will allow us to examine cost 

functions as well. 

Theorem 31 implies that the FAST SEARCHING problem is linear when restricted 

to trees [1 ]. Theorem 30 st ates that the fast search number of a tree can be found 

from its degree sequence. 

We have the following conjecture. 

Conjecture 1 FAST SEARCH! G problem is P-complete for gen ral graphs. 

W can consider variants of fast searching. In fast searching each edge may only 

be traversed once. In another model, one can consider the ase wher for a given 
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po itive integ r k, each edge of a previously specified subset of edges may be traversed 

at most k t imes. This scenario is applicable for instance, to graphs with a small sized 

cut set which divides the graph into two almost equal size par ts. Another variant of 

the problem may specify the earch r ' start vert ices. 

Chapter 4 is devoted to characterization of forbidden minor for a 4-searchable 

graph. The characterization for s(G) ~ k i not known for any fixed k ~ 4 [37]. 

Theorem 40 gives the complete list of forbidden graphs and characterizes all bicon­

nected 4-sear hable outerplanar graphs. However we only have partial results on the 

obstruction set for a 2-outerplanar 4-searchable graphs. One future direction is to 

complete this set. 

We further have the following conjectur 

Conjecture 2 If G E 0 [1, k] and 10 ~ k, then G is not a forbidden minor for a 

4-s archable 2-outerplanar graph. Equivalently; 

F n 0 [1, k] = 0, v k ~ 10. 

It would be interesting to know whether or not there are forbidden minors for 

biconnected k-outerplanar 4- earchable graphs for k ~ 3 that do not contain any 

graph in the obstruction set of outerplanar or 2-outerplanar 4-searchable graphs. 

Once the biconnected forbidden minors are known, to complet the haracteriza­

t ion it remains to find out where the graphs with a small r search number can be 

attached . This is much simpler than finding the obstruction set. 

5.2 A Future Direction 

As a fu ture direction of edge searching we consider edge searching of circulant graphs 

of prime order and state our conjecture. Let p be a prim numb r and consider th 
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Figure 5.1: The circulant graph circ(17; 3 4) and cir (17; 1, 7) 

circulant graph circ(p,S) where S C (Zp\{0}). Thus the computations are done 

modulo p. 

Notic that circ(p, S) is a Han1iltonian cycle when lSI = 2. Thus ( circ(p, S)) = 2 

if lSI = 2 and 3 ~ p. Nevertheles , the calculation of the earch number of circ(p, S) 

g ts complicated rapidly as the siz of th et S increases. 

For brevity, w denote a circulant graph G = circ(p, S) with conn ction set S = 

{a, - a, b, - b} as circ(p; a, b), wher 1 ~a< b ~ ~· 

Consider circ(p; a, b). Place 2b searchers on the following vertic s: v 1, v2 , ... , vb and 

Vn- b+l , Vn- b+2 , ... , v,.. Label these searchers as a 1, a2 , . . . , a2b resp ctively. Place a 2b+1 

on v 1 and cl an all the edges with both end vetices in { Vn-b+l , Vn- b+2, . . . , v,., v 1, v2 , . . . , 

vb}· The only contaminated edg incident to v1 is v 1v b+1 , thu 1 t a 1 slide along 

this edg and clean v1. Next 1 t a1 cl an all the edges with both end vetices in 

{vn- b+t,Vn- b+2 , ... , vn,v2, . .. , vb,vb+d· Now a2 can slide along V2Vb+2 and clean v2. 

We clean v1, v2 , . .. , vb in the same way. We repeat this shifting of searcher on 

v1 , v2 , . . . , vb to vb+l, v b+2, . .. , v2b for every group of b consequtive vertex and clean 
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the whole graph. Thus we have the following resul t : 

Theorem 42 If p is a prime number and 1 :::; a < b :::; ~, then 

s(circ(p;a,b)):::; 2b+ 1. 

In order to consider isomorphic circulant graphs, we use multiplication in Zp· Let 

f : { 1, 2, ... , p} --t { 1, 2, .. . , p} so that f ( n) = ( n - 1) a + 1 w h re 1 :::; a < ~. It 

is a simple observation that f is an isomorphism between circ(p; a, b) and circ(p; 1, c) 

where 1 :::; a < b :::; ~ and c = ba-1. Here a- 1 denotes the multiplicative inverse 

of a with respect to the cyclic group (Zp, ·). Thus for every circulant graph G with 

connection set of size 4, there exists an integer c where 2 :::; c :::; ~ such that G is 

isomorphic to circ(p; 1, c). 

From this argument it follows that the graphs in Figure 5.1, circ(17;3, 4) and 

eire( 17; 1, 7) , ar isomorphic and thus they have the sam search number and this 

number is bounded above by 9 by Theorem 42. 

Furthermore, we can show similarly that for any k ~ 1, 

circ(p; 1, c)~ circ(p; k, ck) . 

Thus when analyzing the circulant graphs circ(p; a, b) , it i sufficient to look at 

circulants circ(p; k, ck) for ev ry k ~ 1 and 2 :::; c :::; ~. 

The following conjecture gives a bound on the product of an el ment of Zp and a 

positive integer less than or equal to the ceiling of the root of p. 

Conjecture 3 For every prime p and every integer i = 1, 2, .. . , ~, there exists an 

integer j, 1 :::; j :::; r v'Pl such that either 

ij :::; r .JPl (mod p), 

or, 

p- ij:::; r /Pl (mod p). 
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We have a Maple code that mininimizes the maximum de ired product. This 

ongoing code shows that Conj cture 3 holds for up to the 6000th prime. Thus by 

Theorem 42 and the isomophisms we have given, the following i true for the first 

6000 primes: 

s(circ(p, S)) ~ 21 JPl + 1 (5.1) 

for every circulant graph, circ(p,S ), where S ~ (Zp\{0}), lSI~ 4. 
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