

ALGORITHMIC COMPLEXITY AND EXTREMALITY

CHARACTERIZATIONS FOR EDGE SEARCHING AND ITS

VARIATIONS

by

© OznurYa§ar

A Thesis Submitted to the School of

Graduate Studies in partial fulfillment of

the requirement for the degree of

Doctor of Philosophy

Department of Mathemat ics and Statistics

Memorial University of N ewfoundland

May 2008

St. J ohn's ewfoundland

Abstract

Edge searching is a combinatorial game played on graphs. The aim is to con t ruct a

search strategy to catch an intruder hidden in the graph independent of his actions.

If the intruder has a diffused form then searching corresponds to cleaning the graph.

A related problem consists of minimizing the number of searchers used in this search.

Various versions of edge searching have been introduced in the past depending on how

searchers and the intruder can move. In this dissertation we define Weighted Search

and Fast Search as two new variants and answer some complexity and xtremality

problems.

Weighted Search corresponds to cleaning a contaminated graph where edges may

have different capacities. The main result we have is that Weighted Search is an P­

complete problem. We also give comparison results uch as bounds on the weighted

search number in terms of related graph parameters including pathwidth. We char­

acterize those graphs which two searchers can clean.

Fast S arch is an internal monotone search where no edg is traversed more than

once in a non-weighted graph. We present a linear t ime algorithm to compute a fast

earch strategy for a given tree. We investigat the fast arch strategie for bipartite

graphs.

The construction of k-searchable graphs, tho e graphs which k searchers can clean,

has been of major interest. Graphs that are 1, 2 or 3-searchable have been completely

characterized previously, whereas characterizing 4-searchable graphs was left as an

open problem. We solve this problem partially and give insights for future work.

ii

Acknowledgements

First and foremost, I would like to express my gratitude to my supervi or Dr. D.

Dyer for providing his valuable time and expert opinions. Our various meetings and

reading courses have given me invaluable mathematical insights. His encouragement

and constant guidance were my main support.

I wish to express my warm and sincere thanks to my supervisor Dr. M. Kon­

dratieva and Dr. D. Pike for theoretical and professional advice and experience shar­

ing. I also would like to acknowledge all my supervisors for their instrumental guid­

ance and financial support throughout my doctoral d gre

I would like to thank my examination committee; Dr. R. J. owakowski Dr.

Clarke and Dr. N. Shalaby for their comments on the results presented here and

suggestions about future directions.

I would like to thank Dr. B. Yang for our numerous discussions and for sharing

his insightful comments. I am grateful to Dr. D. Morgan and . McKay for fruitful

di cussions.

Many thanks to Dr. P. Booth and Dr. S. 'Kocab1y1k as members of my super­

visory committee. I am also greatly indebted to many teachers in the past; Dr. T.

Erlebach for getting me interested in combinatorial mathematics, Dr. N. Shalaby for

introducing me to design theory. I also thank the School of Graduate Studies and the

Department of Mathematics and Statistics for financial support and its m mbers for

moral support.

iii

I also want to thank idil , Jason, Bursin, Michelle, Oktay, Onar, ~ule, Ayhan, Ali

Kerem, Bora, Ann, i§tar, Burcu, Lili , Vicki and Xiande for their friendship during

my years in St. John's. And my friends outside of St. John's; Zelha, Evren, Yeliz,

Mert, Willi , J an, Matus and Peter. Many thanks to my family and my partner Qagn

for their continued support.

iv

List of Figures

1.1 A first example 16

2.1 Forbidden configurations A, B , C, D, E and F. 32

3.1 K 8 - e where e = v1v2 50

3.2 The subdivisions of Kl,4 and K 1,n· . 52

3.3 Illustration of Example 8 form= 9 and n = 7. . 53

3.4 The graph G on the left and its subgraph H on the right where SJ(G) =

3 and s1(H) = 5. 53

3.5 The graph G on the left and its subgraph H on the right where st(G) =

5 and s1(H) = 6. 54

3.6 The tree algorithm: (a) A tree. (b) An example of paths found by

Algorithm TP(T) . (c) Searchers' initial placements that also define the

direction according to which the edges of each path will be cleaned.

(d) State of the graph where the dashed edges are clean due to partial

application of Algorithm FS(T). 59

3.7 The trees T1 , T2 and T3 constructed in Example 10. 61

3.8 The initial placement of the searchers for K 6,9 according to L mma 35. 63

4.1 On the left: A tent. On the right: A house with thick base edge. . 73

4.2 Forbidden minors for an outerplanar graph with search number 4. 74

v

LIST OF FIGURES

4.3 A biconnected generalized bipolar graph with poles v1 and vi .

4.4 Graphs G1, G2 and G3

4.5 Subcases considered in Theorem 41. .

4.6 Graphs G4 , Gs , G6 and G7

4.7 Forbidden minors in 0[2, k], 3 ::; k.

4.8 The graphs G13, G14 , ... G1s·

4.9 The graphs G1g , G2o and G21 in [4, k] for 4::; k.

5.1 The circulant graphs circ(17;3,4) and circ(17; 1, 7).

vi

76

79

81

82

84

85

86

91

Contents

Abstract

A cknowledgements

List of Figures

1 Introduction

1.1 Terminology

1.2 Edge Search

1.3 Previous Work and Applications .

1.4 Weighted Search

1.5 Fast Search . .

1.6 A first example

2 Weighted Search

2.1 Preliminaries

2.2 Bounds on Weighted Search Number

2.2.1 Weighted Search Number and Search Number

2.2.2 Weighted Search Number and Pathwidth

2.3 Restricted Weighted Search

2.3.1 Reduction in Weighted Graphs

Vll

iii

vi

1

1

6

9

12

14

16

19

19

22

24

27

31

31

CONTENTS

2.3.2 2-Searchable Graphs . ..

2.4 Monotonicity of Weighted Search

2.4. 1 Pairs of Crusades

2.4.2 Monotonicity

3 Fast Search

3.1 Preliminaries

3.2 Trees

3.3 Complete Bipartite Graphs .

3.4 Cost Function

4 On the Characterization of 4-Searchable Graphs

4.1 Preliminaries

4. 2 4-Searchable Outerplanar Graphs

4.3 On 4-Searchable 2-0uterplanar Graphs

5 Conclusion and Future Directions

5.1 Conclusion and Open Problems

5.2 A Future Direction

Bibliography

Index

viii

32

35

35

39

49

49

56

62

69

71

71

73

78

87

87

90

93

99

Chapter 1

Introduction

Edge searching is a pursuit evasion game played on graphs. In the past two decades

there has been fundamental work devoted to this topic by scientists in many diverse

fields, but mainly in discrete mathematics, operations research and computer science.

We consider the problem of constructing a search plan in order to find a person lost

in a system of caves which can be represented as a graph. Equivalently, we aim to

clean a network of tunnels filled with noxious gas using as few cleaners as possible. In

this chapter we define the problem mathematically and mention some of the related

results and applications. We introduce Weighted Search and Fast Search as two new

models in which we address different aspects of the problem. These two models are

motivated by theory and application. In the first section we give the basic definitions

and notations that we shall use throughout t he text.

1.1 Terminology

A graph is a pair G = (V, E) where V is the set of vertices and E is the set of dges

of G. The edges are unordered pairs of elements of V. We will normally denote an

edge e = { u, v} as e = uv . Two vertices are adjacent if there is an edge connecting

1

CHAPTER 1. INTRODUCTION

them. If e = uv, then we say that u and v are the end vertices of th edge e and e

is said to be incident to each of th m. Thus an edge e = uv contains both it end

vertices u and v.

For a graph G = (V E) the order of G is lVI and th ize of G is IE!. Here the

vertical lines around the set denote the cardinality of the set.

A multigraph is a graph which may have parallel edges, i.e. 3e1 , e2 E E where

e1 =f. e2 but both have the same end vertices. A reflexive graph is a graph which may

have loops, i.e. 3e E E where e = uv and u = v.

The number of edges that contain a vertex v is called the degree of v, denoted by

deg(v). ote that a loop at a vertex u will contribute two to the degre of u .

A path of length n, denoted as Pn, is a graph with vertex t V = { Vo, VJ, .. . , vn}

and edges e; = v;V;+J for every i = 0, .. . , n- 1 hence Pn = eoe1 ... en-1 · H re

the internal vertices are v1, . . . , Vn-l and the internal edges ar e1, e2, ... , en-2 . Th

number of edg s of a path is its length.

A suspended path in a graph G is a path of length at least 2 such that all internal

vertices of the path have degree 2.

A graph is connected if there is a path between any two of its vertice .

For given graphs G = (V, E), G' = (V', E'), if V' ~ V E' ~ E and for every

e = uv E E', u, v E V' , then G' is called a subgraph of G. Furth rmore G' is called

the subgraph induced by V' if G' contains all edges of G that join two vertices in V'.

If v E V' then clegG' (v) denotes the degree of v in G'.

For n ~ 2, the graph Cn := Pn-l U Vn_1vo is called a cycle of 1 ngth n. The girth

of a graph G is the minimum length of a cycle that is a subgraph of G.

An edge whir:h joins two vertice of a cycle but is not itself an edge of the cycle is

a chord of that cycle.

A graph is acyclic if it does not contain any cycles. A connected acyclic graph is

called a tree. If a vertex of a tree has degre one, then it is called a leaf. An dge

2

CHAPTER 1. INTRODUCTIO

e = uv is called a pendant edge if deg(v) = 1.

The set of vertices adjacent to a vertex v is called the neighborhood of v and is

denoted by N(v).

A graph G' is said to be a subdivision of a graph G if G' is obtained from G by

subdividing its edges, that is by replacing the edges by path of length two (which i

equivalent to inserting a vertex of degree two on every edge).

For a connect d graph G, we define the distance d(u , v) between two v rtices u

and v as the length of any shorte t u - v path.

A circuit is an alternating list of vertices and edges v0 ei VI, . .. , k, vk such that

(1) for 1 ::::; i ::::; k, the edge ei has endpoints vi-I and Vi,

(2) for 1 ::::; i < j ::::; k, ei i= ej, and

(3) Vo = Vk·

An Eulerian circuit in a graph is a circui t containing all the edges.

The complete graph on n vertices denoted Kn , is the graph where d(u v) = 1 for

every u, v E V. A clique in a graph G is a set of pairwise adjacent v rtices.

The complete bipartite graph on m+n vertices, denoted as Km,n• is the graph with

vertex et V ="It) UV2 where VI = {VI , V2, ... , Vm } and 1/2 = { UI, U2, ... , Un} are called

the bipartition sets, and the edge set E = { eij = viuj li = 1, ... , m j = 1, . . . n}.

The (Cartesian) product of two graphs G and H , denoted GDH (or G x H) has

vertex set V(G) x V(H), and (vi, wj) is adjacent to (vh wk) if either

(1) vi is adjacent to vh in G and Wj = Wk or,

(2) Wj is adjflcent to wk in H and vi = v,..

Hence, GDH is obtained by taking n copies of H and joining corresponding ver­

tices in different copies whenever there is an edge in G. In particular G = 'PmD'Pn is

called an m x n grid.

A graph G = (V, E, w) is called a weighted graph if each edge e of G is assigned a

nonnegative number w(e) called the weight of e. In this thesis we as ume that the

3

CHAPTER 1. I TRODUCTIO

weights assigned are positive integers.

Given two weighted graphs G = (V, E, w) and G' = (V' E', w') if G and G' have

the same underlying graphs, i.e. V = V' and E = E' then G' i said to be lighter

than G when w'(e) :::; w(e) VeE E.

We say that G' = (V', E', w') is a subgraph of G = (V, E, w) when V' ~ V, E' ~ E

and for every e = uv E E', u, v E V' and w'(e) = w(e) Ve E E' . For given weighted

graphs G = (V, E, w) and G' = (V' , E', w') , if V' ~ V, E' ~ E and w'(e) :::; w(e) VeE

E' th n G' is a lighter subgraph of G.

In order to define a minor of a given graph we need two operation : edge deletion ,

which corresponds to deleting an edge e, and edge contraction, which corre ponds to

deleting an edg e = uv and id ntifying the vertices u and v. Th econd operation

corre ponds to replacing an edge e = uv with a new vertex v' which is adjacent to all

of the former neighbors of u and v.

For given graphs G = (V, E) and G' = (V' , E'), G' is call d a minor of G if G'

can be obtained from G by a series of edge deletions or contraction . Similarly given

w ighted graphs G = (V, E, w) and G' = (V', E', w'), we ay that G' is a lighter

minor of G , if G" is a minor of G, considering the corresponding und rlying graphs,

and w'(e) :::; w(e) VeE E'.

A vertex is called a cut vertex if its removal makes the graph di connected. A graph

is biconnected (or two-connected) if it has no cut vert ices. A biconnected component

of a graph is a maximal biconnected subgraph.

An edge and a cycle are example of biconn ·cted compon nts. Obs rve that every

edge belongs to exactly one biconnected component. A vertex may belong to more

than one biconnected component, in which case it is a cut-vert x.

A path addition [52] to G is the addition of a path of length at least n 2: 1, between

two vertices of G introducing n- 1 new vertic s; the added path is called an ear. An

ear decomposition is a partition of E into sets H0 , H 1 , H2 . . . Hk uch that H0 is a

4

CHAPTER 1. INTRODUCTION

cycle, and Hi is a path addition to the graph formed by H 0 , H 1 , ... , Hi-l·

Theorem 1 [53] A graph is biconnected if and only if it has an ar d composition.

The s t of biconnected components of a graph G forms a graph called the block

graph which has as its vertices the biconnected components and cut vertices of G,

and there is an edge between two vertices if one of them is a cut vertex and the other

is a biconnected component containing that vertex.

Theorem 2 [28] The block graph of a connected graph is a tre .

A valid coloring of a graph G = (V E) is a labeling f : E -+ F where F =
{1 2 ... , k}. The labels are called the colors and IFI is the number of colors used by

the coloring f.

A graph is said to be planar if it can be drawn in the plane o that its edge

intersect only at their end vertices. A drawing of a planar graph G is call d a planar

embedding of G.

Two graphs G = (V, E) and G' = (V', E') are aid to be isomorphic if there is a

bijective mapping f from the vertex et V to the vertex set V' such that e = uv E E

if and only if e' = f(u)f(v) E E', VeE E. The mapping f i called an isomorphism.

We denote the fact that G and G' are isomorphic by G ~ G'.

The ceiling of a number n is th smallest integer greater than or equal to n,

denoted r n l·
Let (Q, +) be a finite group with identity element 0. Let S ~ (Q\ {0}) such that

S = - S , that is a E S if and only if -a E S . Recall that -a denotes the inverse of

ain(Q,+).

The Cayley graph [3] on a group g with connection set (or generating set) S ,

denoted as Cay(Q, S) , is the graph that is constructed as follows:

(1) Each element of g corresponds to a vertex vi, and,

(2) There exists an edge joining vi and vi if and only if vi = Vj +a where a E S .

5

CHAPTER 1. I TRODUCTIO

Asp cial class of Cayley graphs is those on cyclic groups. A circulant graph, denot d

as circ(n, S), is the Cayley graph Cay(Zn, S) where Zn is the abelian group of integers

modulo n.

1. 2 Edge Search

Assume that we want to secure a system of tunnels from a hidd n intruder who

is trying to avoid us and has unbounded speed. We mod l this system as a finite

connected graph G = (V, E) where junctions correspond to vertic and tunn I

correspond to edges. We will launch a group of searchers into th sy tern in order to

catch the intruder.

We assume that every edge of G is contaminated initially and our aim is to clean

the whole graph by a sequence of steps. At each step we are allowed to do one of the

moves defined below.

Definition 1 The following actions that build up an edge search are call d the moves;

(1) Place a searcher at a vertex,

(2) Remove a searcher from one vertex and place it on another v rtex (a 'jump")

(3) Slide a earcher from a vertex along an edge to an adjacent vertex.

ote that placing multiple searchers on any vertex is allowed. We do not pose

any restriction on the number of searchers us d.

For a given graph it is a natural question to ask what is the smalle t value of k

with which we can clean the graph. Next we define this term formally.

Definition 2 If a searcher slides along an edge e = uv from u to v , then the edge e is

cleaned if either (i) another searcher is stationed at u, or (ii) all oth r edges incident

to u are already clean. An edge search strategy is a combination of the moves so that

the tate of all edges being simultaneously clean is achieved, in which cas we ay

6

CHAPTER 1. INTRODUCTION

that the graph is cleaned. The least number of searchers needed to clean the graph

is the edge search number of the graph and is denoted s(G) .

All models of searching in this work are variations of edge searching, so we will

normally omit the term "edge".

The problem becomes cleaning the graph using the fewest searchers. In this re­

spect, we are interested in the optimal search strategies, those that use only s(G)

searchers. If an optimal search strategy i not known, w approximate the search

number by relating it to other graph parameters, such as minimum degr e, or oth r

search numbers, such as weight d search number.

otice that even once an edge is cleaned , it may not necessarily be true that it

will remain clean until the end of the search strategy. In other words, an edge can be

cleaned at some step and at a later step it can get contaminated again.

Definition 3 If a searcher is stationed at a vertex v, then we say that v is guarded.

If a path does not contain any guarded vertex, then it is called an unguarded path. If

there is an unguarded path that contains one endpoint of a contaminated edge and

one endpoint of a cleaned edge e, then e gets recontaminated.

Hence, a clean edge remains clean as long as every path from it to a contaminated

edge is blocked by at least one searcher.

The edge search problem has many variants based on, for instance, how s archers

move or how the edges are cleaned. We will next int roduce the three main variants

that are of interest to us.

If we are not allowed to remove a searcher from the graph , then we have an internal

search strategy, in which case each move is either to place a searcher at a vertex, or, to

slide a searcher from a vertex along an edge, to an adjacent vertex. This is equivalent

to the case where the 2nd move in Definition 1 is not allowed.

If we insist that once an edge becomes clea.n it must be kept clean until the end

7

CHAPTER 1. INTRODUCTION

of the searching . strategy, then such a strategy will be called monotonic. Hence for

every step of a monotone strategy the set of cleaned edges is a subset of the set of

cleaned edges at the next step. In other word , each edge should be cleaned once.

If, on the other hand , the set of clean edges induces a connected subgraph of G

after each step of the strategy, then the strategy will be a connected on .

The minimum number of searchers needed for an internal , monotone or a con­

nected strategy are denoted as is(G) , ms(G) and cs(G) resp ctively. A strategy may

combine any of these. Hence, for example, mis(G) will correspond to monotone

internal search number which is defined analogously.

The following equation that summarizes the relationship between the search num­

bers is given in [8] . For an extended version of this paper see [9]. We should mention

that through personal communication with the authors of [] we are informed that

it is possible that the inequality mis(G) ~ cs(G) fails to be true for some graphs

although known to hold for many classes of graphs.

Theorem 3 [8] For a connected graph G = (V, E), we have

s(G) = is(G) = ms(G) ~ mis(G) ~ cs(G) = ics(G) ~ mcs(G) = mics(G). (1.1)

There are gra.phs for which the inequalities are strict [4 8] . The smallest graph

found so far for which is(G) < mis(G) is given in [4, 56].

There are many variants of edge searching that consider one or mor of the con­

straints defined above. In this work we introduce two new models: Weighted Search

and Fast Search. We will also partially answer some op n problems regarding edge

searching.

8

CHAPTER 1. INTRODUCTION

1.3 Previous Work and Applications

The edge searching problem is an extensively studied graph theoretical problem. Its

origins date back to the late 1960s in the works of Breisch [14]. It was first faced

by a group of spelunkers who were trying to find a per on lost in a system of caves.

They were interested in the minimum number of people they needed in the searching

team. Parsons [42, 43] was the first one to formalize it as a mathematical probl m

in 1976. He defined it as a nondiscrete problem where the searchers and the intruder

are allowed to move according to continuous functions. In 19 2, Petrov [45] defined

searching independently. Golovach [24] proved the equivalence of this cont inuous

problem to the discrete one we are considering.

One of the major problems of edge search is to characterize the graphs G such

that s(G) ~ k for a fixed positive interger k. A graph G is said to be k-searchable if

s(G) ~ k . It haS been shown in [37] that finding whether a graph G is k-searchable,

i.e. solving the EDGE SEARCH! G problem for G is P-complete.

Let k be a fixed positive integer. We say that a graph H is a forbidden minor

for k-searchable graphs if k < s(H) and if any minor of H has s arch number at

most k. For fixed k, the set of forbidden minors for k-searchable graphs is called th

obstruction set.

The theory on graph minors built by Robertson and Seymour [47, 48] implies that

the obstruction set is finite for minor closed families. Furthermore, it is known that

edge searching is closed under the taking of minors [42]; that is, if G contains H as

a minor, then s(H) ~ s(G). Therefore the obstruction set for k-searchable graphs is

finite whenever k is fixed.

On the other hand no general method is known for constructing an obstruction

set. Further, the size of such a set is not known either except for som initial cases.

The obstruction sets for k = 2 and k = 3 are given in [37]. However a construction of

the obstruction set is not known for any fixed k ~ 4. We partially answer this open

9

CHAPTER 1. INTRODUCTION

problem in Chapter 4. For results on obstruction sets of graphs with small search

numbers refer to [50].

Node search and digraph search are two major variants of dge search. In node

search, which is introduced by Kirousis and Papadimitriou [32, 33], we are only al­

lowed to place searchers on vertices and remove searchers from vertices. In this mod l

an edge is cleaned when there are searchers on both of its end points. By reduction

from edge search it is shown that node search is NP-complete [11] . It can be seen

that the edge search number and node search number cannot differ by more than one

[32] , namely, if ns(G) denotes the node search number of a graph, then

ns(G) - 1 :::; s(G) :::; ns(G) + 1. (1.2)

Digraph search is defined as the search problem defined on directed graphs. It i

mainly motivated by a graph parameter called directed treewidth [29]. Furthermore,

there are variety of search models on directed graphs which may have different rules

depending on how the intruder or the searchers traverse the directed edges [6, 41].

The NP-completen ss of a directed search model is giv n by Yang and Cao [54].

Mixed search is defined as a combination of edge search and node earch [11]. In

this model an edge becomes clean either when both its end points are guarded by

searchers or when a searcher slides along it properly. Using mixed search it has been

shown [11] that forcing a search to be monotonic does not change the search number

hence we can always assume that edge search strategies are monotonic. A different

proof of monotonicity is given by LaPaugh [34]. Similarly, monotonicity does not

require more searchers in node search and in mixed search [11] .

The relationships between the various search strategies ment ioned in Section 1.2

is examined in [8]. For a recent survey on graph searching and its variants, see [23].

For a book on search games, see [1].

We consider guaranteed search strategies; that is, those that capture the intruder

regardless of its moves. For a probabilistic approach where randomized algorithms

10

CHAPTER 1. INTRODUCTIO

are utilized, see [30].

The cops a~d robber model, defined in [40] and [51], is a search model with

complete information, i.e., the intruder and the searcher know each other ' location.

Initially the searchers are located on vertic s and then the intruder chooses a vertex.

First a subset of searchers move followed by the move of the intruder. After thi they

alternate moves. A move is to slide along an edge or along a loop. For a graph G

the minimum number of cops that guarantee a. winning strategy for the cops is the

cop number of G. Deciding whether a given graph has cop number at most k, for a

given integer k, can be done in polynomial time [10]. In [26] it is shown that infinite

chordal graphs do not neccessarily possess a strategy that guarentees a win for the

cop(s). An algorithmic characterisation of finite cop-win graphs is given in [27].

The complexity of edge searching and its variations invoked intere t in solving

these problems on special classes of graphs. ode search and edge search algorithms

are given for some subclasses of chordal graphs in [44].

Due to its closeness with the layout problems, the problem is related to widely

utilized graph parameters such as pathwidth [19, 31], cutwidth [36], bandwidth [22,

46], linearwidth [12], treewidth [15, 49] and topological bandwidth [35]. It has strong

connections with the cutwidth of a graph which arises in VLSI circuit design [16] and

with the gate matrix layout problem [39] . For instance, the search number of a graph

G equals its cutwidth when G has maximum degree 3 [36]. The pathwidth is node

search number minus one [32].

The problem and its variants are related to many applications such as network

security [7]. In this application, we consider the capture of a possibly ho tile intruder

in a given network by software agents. The intruder is arbitrarily fast and has access

to information about the position of the agents. They all move along the network

links. The problem is to construct the agents' strategy to capture the intruder in an

efficient way, which corresponds to minimizing the number of agent used. A similar

11

CHAPTER 1. INTRODUCTION

application is addressed in robotics for its applications in search and rescue [25]. A

typical example for this case is collision avoidance and air traffic control.

Edge search is not only interesting theoretically but also has application in com­

binatorial problems [39] such as pebble games that are played on directed acyclic

graphs. In a pebble game, initially there are no pebbles on the graph. At every move

either a pebble is placed on a vertex with no pebble, or a pebble is deleted from a

pebbled vertex. The game ends when all vertices of the graph are pebbled and no

pebble is left on the graph. A translation between search problems and pebble game

is given in [32] . They show that the minimum number of pebbles used in a monotonic

pebble game is equal to the node search number of a graph.

1.4 Weighted Search

Assume that we use a graph to represent a system of gates (which corre pond to ver­

tices) and pipes (which correspond to edges) where pipes may have different prioriti s

(depending on size or location). Let us consider these pipes to be full of poison gas.

Then we can think of edge searching as cleaning the system of poison gas. If one gate

is left open and if gas leakage can occur through that gate then gas will contaminate

every pipe that it can reach; that is, all connected pipes with open gates. When a

pipe becomes recontaminated, it will do so to its capacity; that is, even if a recon­

taminated pipe had been partially (or entirely) cleaned, it must now be fully cleaned

again.

Motivated by the gas leakage scenario we define weighted search on weighted

graphs. Conside{· a team of searchers (or sweepers) and a finite connected graph G

with positive integer weights which represent the maximum amount of contamination

of edges. Again we assume that the graph is contaminated initially and our aim is to

decontaminate or clean the whole graph by a sequence of steps. At each tep we are

12

CHAPTER 1. INTRODUCTION

allowed to do one of the following moves: placing a searcher at a vertex, removing a

searcher from a vertex or sliding a searcher along an edge. The moves are the same

as those for edge. search, whereas the rules for cleaning are slightly different.

ote that, when all edge weights are equal to one, then the weighted edge searching

problem becomes the edge searching problem.

Definition 4 If a searcher slides along an edge e = uv from u to v, then the current

positive weight of the edge e is decreased by one if (i) another searcher is stationed at

u, or (ii) all other edges incident to u have weight 0 and the current weight of e is 1,

or (iii) u is a leaf.

When a searcher moves from a leaf u to an adjacent vertex, it is not possible to

contaminate the graph through u due to the nature of the system and h nc we do

not need to place a searcher at u. When an edge has weight w(e), it means that a

searcher has to slid along eat least w(e) times and decrease the weight at each move.

Assume that the weight of an edge e is decreased after some st ps. Then we say

that e is clean if its weight i reduced to zero and partially clean otherwise. We

note that this does not guarantee that the weight will remain reduced , because of

a possible recontamination. If there is an unguarded path that contains one end

point of a partially clean or a contaminated edge and one end point of e, th n e g ts

recontaminated. If e gets recontaminated, its weight goes back to w (e), its original

value. If in the system there occurs a gap in which an intruder (which may have

a diffused form as in the gas leakage scenario) can ent r a pipe (i.e. contaminate

an edge), then we can no longer consider that pipe as clean (and not ev n partially

clean). Recontamination occurs instantly and t.here is no order of recontamination.

A weighted edge search strategy is a combination of the moves defined above that

reduces all edge weights to zero. We say that the graph is cleaned when the state of

all edge weights being zero simultaneously is achieved. The least number of searchers

13

CHAPTER 1. INTRODUCTIO

required in the Keighted edge search strategy is the weighted search number which is

denoted by ws(G).

Weighted searching is a reasonable extension of the searching problem, as in many

"real-world" situations, an edge in a graph may represent a pipe or a corridor. Tra­

ditional edge searching is not robust enough to deal with situations where particular

edges may be more important or may require more effort (be it cost or time) to be

cleaned. To return to Breisch 's original problem [14], a tunnel in a cave may be quite

constricted, allowing only a single searcher through, or broad, requiring several passes

to search effectively.

In another search model the edges and vertices have di similar weights [7] for

internal connected search. The rules of this model is different from the weighted

search defined in this thesis.

A weighted graph is said to be k-searchable if ws(G) ~ k. The decision problem

for the weighted case can be stated as below.

WEIGHTED SEARCH! G:

Instance A weighted graph G = (V, E, w) and a positive int ger k.

Question Is G k-searchable?

By transformation from the MI IMUM CUT INTO EQUAL SIZED SUBSETS prob­

lem which is known to be NP-complete we see that WEIGHTED SEARCHING is

P-hard. We will show in Section 2.4 that this decision problem is in fact NP­

complete.

1. 5 Fast Search

In the majority of networks the tasks relating to cleaning the tunnels are very costly

or t ime consuming. Therefore a good strategy to search a network would require it

14

CHAPTER 1. INTRODUCTION

to be monotone; that is one would not have to return to edges already examined.

On the other hand, the cost of a searcher used in a search strategy may be low

in some search scenarios. Hence we may use more searchers to reduce the time spent

for searching. However, at some point we will have loaded the graph with enough

searchers that no more searchers would decrease the time needed to clean the graph.

Here we are interested in such a case.

Therefore, one definition of an efficient way to clean a graph would be to do o

in the minimum number of steps using the le& t number of searchers. In particular,

each edge would be traversed exactly once. First we place a given set of k searchers

on a subset of V. Here, we again allow multiple searchers to be placed on a vertex.

T hen the moves we are allowed to do are of type (3) of Definition 1, i.e., sliding.

We define this new version of edge searching to be fast searching. A fast search

strategy for a gr~ph G = (V, E) is a sequence of lEI moves that cl an G. The fast

search number of G is the least number of searchers for which a fast search strategy

exists, and is denoted s1(G). Consequently, this must be an internal monotone search

where no edge is traversed more than once.

We accordingly introduce the following decision problem:

FAST SEARCHI G:

Instance A graph G = (V, E) and a positive integer k.

Question Is SJ(G)::; k?

We give a linear time algorithm for the FAST SEARCH! G probl m when it is

restricted to trees.

The minimum length of time needed to search a graph using a given number of

searchers is a complicated problem and there has not b en much work devoted to this

topic. In [5], the authors define one-tick search number of a graph as the minimum

number of searchers needed to capture the intruder in their first move according to

15

CHAPTER 1. I TRODUCTION

v1 v
6

e e7 e
4 10

v2 v7

e e
5 8

v3 vs

Figure 1.1: A first example

the cops and robber model. They show that one-tick node earch number is equal to

the domination number for any graph.

Consider a function that gives the cost of searching a graph. Among other pa­

rameters, it would depend on the number of searchers and the total time spent for

searching the graph. We give a formal definition and some analy i of this function

in Chapter 3.

1.6 A first example

Consider the graph G = (V, E) in Figure 1.1. To demonstrate the s arch models we

have introduced so far, we next give an edge search and a fast search for G. We al o

give a weighted search strategy for a particular weight distribution as igned to the

edges in G.

Observe that given a finite reflexive multigraph G, for all of th search models we

have introduced, there exists a corresponding search strategy for G that uses a fini te

number of searchers. This also holds for weighted graphs.

H reafter CJi denotes the ith s archer used in the search strategy.

16

CHAPTER 1. lNTRODUCTION

An Edge Search Strategy

Place three searchers, a I , a 2 and a 3, on VI· Slide ai along el and t hen along e 2 .

This cleans ei and e2. Slide a 2 along e3 and clean e3 . Slid a 2 along e5 and clean e5.

ext slide a 3 along e4. ow a 2 and a 3 are both on v4. Slide a 3 along 6 and clean e6 .

Remov a 2 from ·v4 and place it on v5 . First lide a3 along e7 and t hen slide a 2 along

e8 . Remove ai from v3 and place it on v8. There are two search rs on v at this step.

Let a I slide along en , e10 and then along e9 in this order. This cleans all dges by 3

searchers. In fact , since G has a forbidden minor for k = 2, we know that 3 :::; s(G)

[37]. Thus s(G) = 3.

A Weighted Search Strategy

Let G' be the weighted graph with the underlying graph G in Figure 1.1 and

w(e) = 3, 'r/e E E. ote that the following weighted search strategy using 4 searchers

can also b applied to a weighted graph with a.rbitrary edge weights all of which are

not less than 3.

Place two searchers a 1 and a 2 on VI· Place a 3 on v2 and a4 on v3. Let ai slide

along e1 three times and clean it. Repeat the arne for e2 and e3 . Since all edge

incident to v2 are clean at this step we can remove a3 from v2 and place it on V4.

ext let ai clean e4 and then e5 by keeping other searchers on th ir places. otice

that after this is done ai is on v3. Remove a 1 from v3 and place it on v4. Remove

a 2 from v1 and place it on v5 . Also remove a4 from v3 and place it on v8 . Clean e6

by a 1. Remove 0'3 from v 4 and place it on VG. Next clean e7, es and eg by sliding a1

along them as many times as needed. Remove a 2 from v5 and place it on V7. Remove

a1 from v5 and place it on v6. Finally clean ew and en by a1.

Thi gives us a weighted search that uses 4 searchers. In fa t , it is a simple

exercise to show that we need at least four earchers to clean a fir t vertex. Therefore

ws(G) = 4.

A Fast Search Strategy

17

CHAPTER 1. INTRODUCTION

Place three searchers, a 1 , a2 and a3 , on v1 . Place a4 on v5 and a 5 on v6 . Clean v1

by sliding a1 along e1, then a2 along e3 and a3 along e4 . ext clean e2, e5 and e6 by

a3. Then clean e7 and e9 by a4. Finally clean e8 , e11 and e10 by a3. Thus we have a

fast search strategy that cleans the graph using 5 searchers.

Observe that since an edge can be traver ed only once in a fast search strategy,

only one of the three searchers can cross through e6 and thus only one searcher can

be t ransformed from the left part to the right . Also, we need at least three searchers

to clean the left side or the right side. This implies that 5 ::::; sf (G). Hence sf (G) = 5.

Remark 1 In this text unless it is explicit ly stated otherwise we consider simple

connected graphs. Our results can nat urally bE' extended to disconnected graphs. For

a disconnected graph G, we let s(G) = maxs(C') where G' is a connected component

of G. We define ws(G) for disconnected graphs similarly. On the other hand s1(G) =

L, s1(G') where G' is a connected component of G. This is b cause of fast search

being internal.

Remark 2 Let S denote any search strategy for G. Assume that a denotes one of

the searchers used in S . We say that v is the start vertex for a, if a is initially placed

on v according to the strategy S . We say t hat u is the end vertex for a , if a stop at

u (and never moves again).

18

Chapter 2

Weighted Search

In traditional edge searching the aim i to clean all of the dge in a graph employing

the least numb r of searchers. It is as umed that each edge of th graph is cleaned in

the same way and initially each edge has equal contamination that an be consid red

a weight of one. In this chapter we modify the problem and consider it on graphs

with arbitrary positive integer weights as igned to their edg . We giv bounds on the

weighted search number in terms of related graph parameters including pathwidth.

We characterize the graphs for which two earcher are sufficient to clean all edges.

We show that for every weighted graph the minimum number of earchers needed

for a not-necessarily-monotonic weighted search strategy is enough for a monotonic

weighted search strategy, where each edge i cleaned only once. This result proves

the P-completcness of the problem.

2.1 Preliminaries

Let G = (V, E, w) be a weighted graph. Let w0 (e) := w(e) denote the initial weight

or contamination of the edge e E E. We denote the contamination of e at step i

of a weighted search as wi (e). Initially all edges are assum d to be contaminated,

19

CHAPTER 2. WEIGHTED SEARCH

therefore w(e) ~ 1, Ve E E .

If wi(e) = 0, then the weight of edg e is zero at step i and we say that e is clean

at step i. ote that even if the weight of an edge is zero at orne step the edge may

be recontaminated at a later point. A vertex u will be said to be clean if all edges

incident to u are clean.

An exposed vertex is a vertex that has at least two edges incident with it , one of

which is either clean or partially clean and the other is not clean. For a weighted search

Son G, the number of exposed vertices after the i th step is denoted as wexs(G, i).

Let t be the number of steps used in S. The maximum number of exposed vertices is

denoted as mwexs(G) = max1 ~i9{wexs(G,i)}. Observe that

mwex5 (G) ~ ws(G). (2.1)

Note that foi· an unweighted graph G the weighted search numb r, ws(G), is

computed by taking all edge weights equal to one. Similarly, given a weighted graph,

s(G) corresponds to the search number of the underlying unweighted graph. Observe

t hat for any weighted graph G we have:

s(G) ~ ws(G). (2.2)

We can consider internal , monotone or connected weighted search strategies for a

weighted graph. The corresponding search numbers are d noted as iws(G), mws(G)

and cw (G) respectively. Let us give the following result that state that an internal

search does not require more s archers than a not-necessarily internal search for a

weighted graph.

T heorem 4 If G = (V, E, w) is a weight d graph, then

ws(G) = iws(G) .

20

CHAPTER 2. WEIGHTED SEARCH

P ROOF. Assume that a searcher jumps from u to v according to a weighted search

strategy for G. Let P be a path that connects u and v. Such a path exists since G is

connected. Hence in the internal search the searcher can go from u to v along P by

a serie of moves (slides). Hence any weighted search strategy can be converted to a

weighted internal search. •

An analog of Equation 1.2 that relates node search number and weighted search

number is given in the next theorem.

Theorem 5 If G is a weighted graph, then

ns(G)- 1 ~ ws(G) ~ ns(G) + 1.

PROOF. The Equations 1.2 and 2.2 imply that ns(G)- 1 ~ s(G) ~ ws(G). On

the other hand, assume that we are given a monotone node search for the underlying

unweighted graph G. Recall that monotonicity does not increase the node search

number [32]. L t e be cleaned at step i. Thus there must be a s archer on both end

points of eat step i . We construct the weighted search by using an extra earcher, CT,

to slide along the edge w(e) times at steps i 1 i2, . .. iwo(e)· Thi will reduce the weight

of e to zero. Thus in weighted search in addition to the steps that make up the node

search for the underlying unweighted graph, for every e E E we will have the steps

i 1 , i2, ... , iwo(e) for some i . At the next step of the weighted search, we remove CT and

place it to one of the end points of the next edge to be cleaned according to the node

search. We apply this to all edges of th weighted graph. Hence w (G) ~ ns(G) + 1.

•
ext we give examples of weighted graphs and their weight d arch numbers.

otice that a graph may have three different weighted search number depending on

the weight distribut ion.

Example 1 Path of length n : The search number is s(Pn) = 1 whereas

21

CHAPTER 2. \VEIGHTED SEARCH

ws(Pn) =

1, if w(e) = 1 VeE E or when n = 1 and w(e) i arbitrary;

2, if n 2: 2, 3e E E such that w(e) 2: 2 and w(ei) ~ 2 where

i = 1, ... , (n- 2) , and when w(eo) or w(en-1) are arbitrary;

3, otherwi e.

Example 2 Loop l: We know that s(l) = 2. For any edge weight we see that

ws(l) = 2.

E xample 3 Cycle of length n: For ev ry Cn, observe that (Cn) = 2. Also note

that

!
2, if w(e) = 1 VeE E;

ws(Cn) = 4 if 3e1 , e2 , e3 E E, each of weight at least 3;

3, otherwise.

Example 4 Edge searching a weighted graph is not the same as edge searching an

unweight d multigraph where each dge e of weight w(e) is replaced with w(e) parallel

edges. One example is the path of length two where both edge have weight 3. Then

the corresponding unweighted multigraph, with 3 vertices and 6 edges has search

number 3 whereas the weighted graph has earch number 2.

2.2 Bounds on Weighted Search Number

In this s ction we give results that relate the weighted search number with oth r

parameters. Fir t we will consider the complete graph . For n 2: 4 we know that

s(Kn) = n [42].

Lemma 6 For n 2: 4, we have

n + 1, when all edges have weight at least 3,

otherwise.

22

CHAPTER 2. WEIGHTED SEARCH

PROOF. Ob erve that since s(Kn) = n, we haven~ ws(Kn)·

First let uv = e E Kn such that w(e) ~ 2. Place a searcher on ev ry vertex except

for u. This accounts for n- 1 s archers. Place the nth searcher ern , on v. Clean

all edges incident to v other than e by ern. Remove ern and place it on v. ow the

only contaminated edge incident to v is e and there are two earcher located on v:

cr1 and ern· At this step, say i, let ern slide along e from v to u. Since w(e) ~ 2,

wi(e) ~ 1. Hence we can clean e by sliding cr1 along e. This cl ans v. Now there is a

searcher located on every vertex except for v and u contains two searchers. Hence w

can clean all the remaining contaminated edges by keeping a search r on each vertex

except for v, and by sliding ern along these edges. Thus, in this case, w (Kn) = n.

A sume that all dges have weight at least 3. Placing a earch r on each vertex

and cleaning the edges by the (n + 1)th searcher gives us a weighted search strategy

that uses n + 1 searchers. Hence n ~ ws(Kn) ~ n + 1. We show that n searchers

are not nough to clean weighted Kn. Notice that to clean a first v rtex we need a

searcher to guard v, a searcher for each neighbor and another searcher to slide along

the edges. Thi uses n + 1 searchers. Hence a first vertex can nev r be cleaned by n

searchers. •

It is known [42] that if H is a minor of G, then

s(H) ~ s(G).

However, this result does not hold for monotone search [17]. The following theorem

implies hat weighted search is also minor closed.

Theorem 7 If H = (V', E', w') is a lighter minor of G = (V, E w) where G and H

are weighted reflexive multigraph , then

ws(H) ~ ws(G).

PROOF. Assume that G is cleaned according to a strategy S . Let f : V ---+ V'

be the function that is associated with the edge contraction and deletions which

23

CHAPTER 2. WEIGHTED SEARCH

transform G to H. Assume that S uses m searchers. Using S and f, we construct a

weighted search S' for H so that S' use m searchers.

We order the vertices of G on which the earcher are placed during S as v1 v2 , ... ,

Vm, where vis are not neces arily distinct. When searching H , we place the searchers

on vertices f(vi), Vi = 1, . .. , m, at the arne step as they appeared in the strategy

S. If f (vi) = f (vj), for i =!= j, w place both searchers on the same vertex. It is

clear that whenever we clean an dge e E G and e is not deleted from H , we can also

cl an e E H by moving the searcher according to S. In detail, when a searcher a 1

moves from u to v, we will move the earcher on f(u) to f(v). Wh n f(u) = J(v), we

do not do anything. If f(u) and f(v) are not adjacent, the earcher on f(u) move

along a path to f(v). If a 1 can move from u to v in G without occurrence of any

recontamination on e = uv, there will also be no recontamination when a 1 leaves

f(u). The validity of this operation is due to the placement of th earchers on H.

Note that there may be edges that are cleaned in H before th y were cleaned in G

according to S, nevertheless this does not falsify the weighted arch since we do

not necessarily construct S' as an internal or a monotone search. Th refore, the e

modifications will give us a weighted search trategy for H without requiring more

searchers. •

2.2.1 Weighted Search Number and Search Number

We start with t.wo bounds comparing the search number of the graph with the

weighted search number. They are shown by modifying th earch trategy for the

underlying unweighted graph.

T heorem 8 For a weighted reflexive multigraph G

ws(G) ::; s(G) + 2.

24

CHAPTER 2. WEIGHTED SEARCH

PROOF. Assume that Sis a search strategy that use s(G) searchers to clean G.

We will give a search strategy S' that cleans the weighted G using s(G)+ 2 searchers.

To construct S' we start with Sand modify it. Since the underlying graph i cl aned

by s(G) searchers we can assume that there is a certain time when an edge e = uv

is cleaned for the last time. Hence according to S a searcher, O"o, must traverse th

dge e either fro:n u to v or from v to u. Without loss of generality, we can assume

that it is cleaned from u to v . When cleaning the weighted graph we place another

searcher, 0'1 , on u and hold it on u . Then O"o slides along e, as it would according

to S. The weight of the edge e will be reduced to zero by the second extra searcher,

0'2 , which slides along e back and forth. Sine e was arbitrary we clean the weighted

graph in this way. Note that no recontamination will occur, since s(G) searchers were

assumed to be sufficient to clean G. •

In Examples 1 and 3, we saw that for certain distributions of w ights equality

holds in Theorem 8. In fact, these graphs constitute an infinite family of such graphs.

Together with Equation 2.2, Theorem 8 implies that s(G) ::; ws(G) ::; s(G) + 2

for any reflexive multigraph G and any weight distribution associated with its edges.

The next theorem improves this bound for certain weight distributions.

Theorem 9 Let G = (V, E, w) be a weighted reflexive multigraph. If w(e) ::; 2 VeE

E , then

ws(G) ::; s(G) + 1.

PROOF. As in the proof of Theorem 8, if an edge e = uv is cleaned from u to v

according to a monotone search strategy, S, we will place an extras archer on u in

S' and reduce the weight by 1 according to S. Then the extra searcher will clean the

edge from u to v in S'. •

Let us denote the minimum vertex degree of a graph G by o (G). It has been

shown in [17] that s(G) ;::: o(G) + 1 for a connected graph G whose minimum d gree

25

CHAPTER 2. WEIGHTED SEARCH

is at least 3. Below is a stronger result for weighted search number.

T heorem 10 Let G = (V, E, w) be a weighted graph. If w(e) > 3 Ve E E and

8(G) ;::: 3, then

ws(G) ;::: 8(G) + 2.

PROOF. We know that ws(G) ;::: s(G) ;::: 8(G) + 1. Consider a search trategy Son

G and let the first vertex cleaned be u. As a first case as umc that u is of minimum

degr e. We claim that S u es at least 8(G) + 2 searchers. If the graph indue d by

N(u) forms a clique, then we know from Lemma 6 that we need at least 8(G) + 2

searchers to clean u, and we arc done. Hence assume that the graph induced by N(u)

does not form a clique. Let the last cleaned edge that i incident to u be e = uv.

Then u together with all the remaining 8(G) - 1 vertices adjacent to u must each

contain a searcher and there must be one more carcher . Hence all 8(G) + 1 earcher

are used. Notice that all vertices have minimum degree at l ast 3, hence none of th

8(G)- 1 searchers located on th 8(G)- 1 adjacent vertices can be moved. This is

due to the fact that to be able to remove as archer from v E N(u), all neighbors of

v other than u must be in N(u) and we need IN(u) l + 2 = 8(G) + 2 searchers. Hence

the validity of our claim is shown. Since all the edges have weight at least 3, the

searcher on u cannot be moved either. Therefore, u cannot be cleaned, sine e = uv

cannot be cleaned by a single free searcher and a searcher on u, because all vertice

have degr e at least 3.

Otherwi e, if u is not of minimum degree, then there are at least 8(G) + 1 vertice

adjacent to u. Since the weights of the edge are at least 3, when u is cleaned u

tog ther with all its neighbors must contain a searcher, and there must be one more

searcher to clean the edges incident to u. This makes in total at least 8 (G) + 3

s archers. Hence the theorem is proved. •

26

CHAPTER 2. WEI GHTED SEARCH

2.2.2 Weighted Search Number and Pathwidth

Pathwidth is a widely utilized graph parameter in pursuit evasion games including

edge searching.

Definition 5 A path decomposition of a reflexive graph G = (V, E) is a equence

X 1 , X2 , ... , Xr of subsets of V such that the following conditions hold:

2. VeE E , :Ji E {1 , 2, ... , r} uch that Xi contains every end vertex of e,

In the definition, the first condition means that all vertices of the graph should

be covered by the decomposition. The second condition implies that all edge are

covered. The last condition can be regarded as a connectivity condition as once a

vertex is included in a set, it should remain in all successive sets if it is to reappear.

D efinition 6 The width of a path decomposition X 1 , X2 , ... , Xr for a graph G is

max IXil - 1 where i = 1, ... , r. The pathwidth of a graph G, denoted by pw(G), is

the minimum h ~ 0 such that G has a path decomposition of width h.

Example 5 Let G = Pn with V = {v0,vi , ... ,vn}· Then XI = {v0 vi},X2

{VI, v2}, ... , Xn = { Vn- I, Vn} is a path decomposition and I Xi I = 2, Vi = 1, 2, . .. , n.

Condition two of the definition of a path decomposition implies that pw(Pn) ~ 1.

Thus pw(Pn) = 1. Recall that s(Pn) = 1. If H is a weighted path with all edge

weights equal to one, then pw(H) = ws(H) = 1.

Example 6 For a cycle Cn with v = {vo, VI, ... , Vn- I}, observe that xl = {vo, VI, v2 },

x2 = {vo,V2,v3}, . . . ,Xn- l = {vo ,Vn-2,Vn-d gives us a path decomposition. Hence

pw(Cn) ::; 2. As ume that there exists a path decomposition of width one. Rene all

27

CHAPTER 2. WEIGHTED SEARCH

sets are of size at most two. Also, each vertex must be contained in two consecutive

sets. But this cannot hold for each Vi where i = 0, 1, . . . , n without violating the third

condition. Thus 1 < pw(Cn)· Therefore pw(Cn) = 2.

Hence we observe that for Cn all of the three terms are equal, namely, pw(Cn) =

s(Cn) = ws(Cn) = 2.

Given a graph G, finding the pathwidth of G is an P-hard problem in general

[2]. On the other hand , if we are given a fixed k, then deciding whether pw(G) ::; k

can be solved linearly [13].

Theorem 11 [19] For any graph G, pw(G) ::; s(G) ::; pw(G) + 2.

We need another definition before we give the main resul t of this part.

Definition 7 A vertex separator of G is a set of vertice , the removal of which makes

the graph disconnected. A layout of a graph G = (V , E), where lVI = n, is a one to

one mapping L from V to { 1, 2, ... , n}. A partial layout of G is a one to one mapping

L' from a subset 11' of V to {1 , 2, ... , n'} where n' = JV' J. Given a partial layout L' , we

define Vu(i) := {v E V: :Ju E V such that uv E E and L'(v) ::; i and either L '(u) >

i or L'(u) is undefined}. For a given partial layout L' where Jdomain(L') l = n', the

vertex separation of G with respect to L' is defined as vsu(G) := max{JVu(i)J : 1::;

i::; n'}. The vertex separation of G is vs(G) = min{vsL(G): Lis a layout of G}.

Theorem 12 [31] For any graph G , vs(G) = pw(G).

In Theorem 13 we will prove that the same bounds in Theorem 11 also hold for

weighted edge searching. In the algorithm, for a partial layout L' where domain(£') =

V' and 1 ::; i ::; JV' J we define the partial layout Li as t he one that assumes the same

values for the v rtices in {L'- 1(1) , L'- 1 (2) , . .. , U- 1(i)} and undefined el ewhere. An

edge e = uv is dangling in L' when u E V' and v ~ V'. A vertex u is active in a

part ial layout L' if u E V' and u is incident to a dangling edge.

28

CHAPTER 2. WEIGHTED SEARCH

Theorem 13 For any weighted reflexive multigraph G,

pw(G) ~ (G) ~ w (G) ~ pw(G) + 2.

PROOF. The lower bound is t rivial due to Theorem 11 and Equation 2.2.

To show the upper bound, we give an algorithm that is derived from Lemma 2.2

in [19]. The algorithm will take as input a weighted graph G, a layout L of G and it

will result in all P-dges of G b ing simultaneously clean. It will us at mo t vsL(G)+ 2

searchers. The result follows due to Theor m 12.

Algorithm WS(G, L)

for i := 1 to lVI
do

let v := L - 1(i);

place a searcher ~1 at v ;

for u E V such that L(u) < i and e = uv E E

do

end

place a searcher ~2 at u ;

clean e by sliding ~2 along c back and fort h w(e) t imes ;

remove ~2 ;

end

for ev_ery loop e = vv E E

do

place a searcher ~2 at v ;

sli de ~2 along e back and fort h w(e) t imes ;

remove ~2 ;

end

remove searchers from the vertices that are not act i ve in Li;

29

CHAPTER 2. WEIGHTED SEARCH

First observe that at the end of ith iteration the set of active vertice has size no

more than lvs LJ G) 1- Hence the number of searchers that remain on th graph at the

end of every iteration is no more than the search number of the graph.

Notice that before the beginning of the ith iteration of the outer do loop, the

subgraph induced by the domain of L i-I is cleaned. Furthermore, at each vertex in

the domain of L i -I there is exactly one searcher and there are no other searchers on

G. This is why no recontamination occurs during the second do loop. By induction

we see that G is cleaned as a result of Algorithm WS(G, L). Note also that at each

iteration of the algorithm there are at most vsL(G) + 2 searchers on G ince at each

iteration the algorithm calls for at most two searchers other than the ones on at most

vsL(G) vertices. Hence for an optimal layout, Algorithm WS(G, L) will use at most

vs(G) + 2 searchers. •

Example 7 Consider Kn with vertex set V = {vi,v2, . .. ,vn}· Naturally, XI = V

is a path decomposition with width n- 1. Also, by Theorem 11 s(G) ~ pw(G) + 2,

thus n- 2 ~ pw(G) ~ n- 1.

Assume that X 1, X2 , . .. , X r is a path decomposition for Kn such that IXi l ~ n-1.

It is easy to see that subsets of size at most k for k < n- 1 can not form a path

decomposition for Kn. Thus assume that IXil = n - 1 for every i E {1 2, . .. r } .

Let VI rt. xl and V2 rt. x 2. Since VI and V2 are adjacent vertices, there exists i E

{3, 4, ... , r } such that v1, v2 E Xi. Hence by definition v2 E X 2, a contradiction .

Therefore pw(Kn) = n - 1.

Let GI be the weighted Kn with all edge weights equal to two. We have seen that

ws(GI) = n. Thus ws(GI) = pw(G1) + 1.

Furthermore, if G2 is the weighted Kn with all edge weights equal to three, then

ws(G2) = pw(G'l) + 2.

30

CHAPTER 2. WEIGHTED SEARCH

2. 3 Restricted Weighted Search

We now consider graphs that can be cleaned by small numbers of searchers. In this

section we will consider weighted reflexive multigraphs.

2.3.1 Redqction in Weighted Graphs

First, let us give the conditions for a graph to have weighted edge search number

equal to one.

Theorem 14 For a weighted graph G, ws(G) = 1 if and only if G is either a path

with n edges where all edges have weight one, or G is a single edge of an arbitrary

weight.

For the proo~ note that for ws(G) to be 1, G cannot have a vertex v such that

deg(v) > 2, in which case we need at least two searchers to clean v . The same

argument shows that G cannot have more than one edge of weight greater than one.

We will introduce the notion of a containment relation between two weighted

graphs for which we will define a set of rules.

D efinition 8 We say that G reduces to G' if G' is obtained from G by applying a

series of the following rules, called reduction rules ;

(1) Any suspended path with edge weights 1 is reduced to a single edge of weight

1.

(2) In a suspended path the consecutive internal edges that hav weight 2 are

reduced to a single edge of weight 2.

If G and H reduce to the same graph, then we say that G and H have the same

reduction.

Th first rule in Definition 8 implies that , in the reduced graph, there are no

degree 2 vertices whose incident edges both have weight 1. For instance, a path Pn

31

CHAPTER 2. WEIGHTED SEARCH

A 8

<D
". F C D E

Figure 2.1: Forbidden configurations A , B , C, D , E and F.

where all edges have weight 1, will reduce to a single edge of weight 1. A cycle Cn

where all edges have weight 1, will reduce to a loop.

It is a simple exercise to see that any search strategy for a graph G can be trans­

formed into a sea.rch strategy that uses the same number of searchers for the reduced

G and vice versa . Hence, we have the following result .

Lemma 15 If G and H have the same reduction, then ws(G) = ws(H).

D efinition 9 Given two weighted graphs G and H , we say that G contains F if

there exists a weighted graph H such that

(1) G and H have the same reduction , and

(2) F is a lighter minor of H.

Recall that weighted searching is minor closed due to Theorem 7. This result and

Lemma 15 imply that whenever G contains F then ws(F) :::; ws(G). We make use

of t his observation in the proof of Theorem 16.

2.3.2 2-Searchable Graphs

Here we are going to characterize graphs for which ws(G) :::; 2. R call that for any

fixed k , the obstruction set is finite since weighted search is minor closed .

T heorem 16 For any reduced graph G, the following are equivalent:

32

CHAPTER 2. WEIGHTED SEARCH

1. ws(G) ::; 2

2. G either does not contain any of the configurations A, B, C, D, E, F given in

Figure 2.1 or the following conditions hold simultaneously:

(a) G docs not contain any edge e that is not a loop or a pendant edge and

w(e) > 2,

(b) G does not contain any 2-cycle having an edge of weight greater than 1,

(c) G does not contain the graphs D, E and F where any two pendant dges

with a common end are replaced with a loop of weight 1,

(d) Every vertex of degree two in graphs B, E and F has an edge incident to

it with weight 1 and the other edge with weight 2.

3. G consists of a path with vertex set { v1, v2, .. . , vn } together with th following

conditions:

(a) The only edges between vis are the ones between each con ecutive pair and

they can either be a single edge of weight at most 2 or a pair of edges of

weight 1.

(b) There may be pendant edges or loops of arbitrary weight attached to each

V;.

PROOF. We will prove the equivalence by showing that {1)-=*{2)-=*{3)-=*{1)

(1)-=* {2) . None of the graphs that satisfy condition (2) have weighted earch number

less than 3. The result follows since weighted edge searching is minor clo ed

due to Theorem 7. Let us show for instance that ws(A) > 2. We show that

two searchers do not suffice to clean A .

If the first vertex cleaned has degree one, then there are two cases to consider .

When the second cleaned vertex has degree 3, the two searchers are stuck at

33

CHAPTER 2. WEIGHTED SEARCH

the remaining two vertices of degree 3. Otherwise, if the second clean d vertex

has degree one, both searchers are stuck at the other end points of the pendant

edges.

If the first vertex cleaned has degree 3, then we need at least 3 searchers.

{2)=*{3) . G does not contain C , hence there are no chords in G. By Theorem 1

edges or cycles are the only possible biconnected components of G. Because of

condition (2b), edges of the cycles can only have weight 1. On the other hand,

G does not contain A , hence at most two vertices of a cycle can have degree

at least 3. This implies that the only biconnected components of G are paired

edges with weight 1, loops and edges with arbitrary weight. Then by Theorem

2, G must. be a tree together with paired edges of weight 1 and loops of arbitrary

weight. Due to condition (2a) , the internal edges of the tree can have weight

at most 2. The result follows if we show that when all of the vertices of degr

one are removed, the resulting graph is a path, with possible loop or pair d

edges that have weights as described in (3) . Assume that it is not true. Then,

there must be a vertex of G that has three different neighbors none of which

is a leaf. When none of these neighbors have degree l ss than three, G would

contain D together with condition (2c). Similarly when all of the e neighbors

have degree two, G would contain B together with condition (2d). Wh none of

these neighbors has degree two, G would contain E together with condition (2c)

or (2d). Finally, when two of these neighbors both have degree two, G would

contain F together with condition (2c) or (2d). Since all of these configurations

are forbidden, we arrive at a contradiction. Therefor , G has the form given in

(3).

{3)=*{1) .The first vertex V I can be cleaned by putting both searchers on VI, th n by

keeping one of the searchers on v1 and cleaning the incident loops or leaves by

34

CHAPTER 2. WEIGHTED SEARCH

•

the other searcher. Then both search rs can either move along the edge that

connects v1 to v2 or each can move along one of the paired edges of weight 1.

The same procedure can be applied to v2 and in this way one can clean the

whole graph .

2.4 Monotonicity of Weighted Search

In this section, we will show that if there exists a w ighted search strategy for a

weighted graph G using at most k searchers, then there exists a monotonic weighted

search strategy for G using at most k searchers. The crusade method is a widely

used proof method to show monotonicity in edge searching or its variants. Here the

terminology is similar to that used in [11] .

2.4.1 Pairs of Crusades

Notice that when sliding a searcher along an edge e = uv from u to v , if no recon­

tamination is possible from u, then either e becomes clean or the current weight of e

decreases from k to k- 1, where k > 1, in which case we say that partial cleaning i

done.

At step i, let th set of cleaned edges corr spond to Ai, the set of partially cleaned

edges correspond to ~ and let Zi be the set of vertices where at least one searcher is

located. In the edge search there may be mor than on searcher locat d at a vertex,

hence we consider Zi to be a multiset. Set difference, namely, Zi \ { u} corresponds to

removing one copy of u from the multiset Zi.

A weighted search strategy S that uses n steps for a weighted graph G = (V, E, w)

can be recorded as a sequence of a triples of s ts

S = (Ai, ~ , Zi)~0

35

CHAPTER 2. WEIGHTED SEARCH

such that Ai ~ E,Pi ~ E\Ai , Zi ~ V for 0 ~ 'i ~nand Ao =Po= Pn = 0,An =E.

If v E V is incident with at least one edge in Ai U Pi and at least on edge in E\Ai,

then v E Zi·

The following are the only possible situations we may encounter during a weight d

edge search:

1. Placing new searchers: A= A-1, Zi 2 Zi-1, Pi= Pi-1·

2. Recontamination:

• by sliding a searcher along an edge: Ai ~ Ai-l, Zi = (Zi-1 \ { u}) U { v },

3. Partial Cleaning: For uv = e E E such that w(e) 2: 2, Ai =Ai- l,

Zi = (Zi- 1\ {u}) U {v} and Pi= ,_ ' - ,_ '
{

P 1 2 < w · 1(e) < w(e) 01 ..

Pi-1 U {e}, Wi-1(e) = w(e) .

4. Cleaning: For uv = e E E , Ai = Ai-l U {e}, Zi = (Zi-1\{u}) U {v} and

pi= { Pi- 1\ {e}, 2 ~ w~e) or;

Pi- 1, w(e)- 1.

We break up the steps of the strategy so that at most one action i done at each

move. In this way, in each move we force that at most one edg gets cleaned, partially

cleaned or contaminated.

We define a connectivity function 6 properties of which will be used in the next

sections. For a given edge set E and a vertex ~et V, for A ~ E, P ~ E\A, 6(A , P)

denotes the set cf vertices in v· that have at least two edges, e1 and e2 incident to it

such that e1 E A. U P and e2 E E\A.

In edge searching, if A is the set of clean edges and P is the set of partially clean

edges at some instant, then 6(A, P) would correspond to the et of exposed vertices.

Recall Equation 2.1 which states that every exposed vertex must contain a searcher.

36

CHAPTER 2. WEIGHTED SEARCH

In this section we will need the following lemma.

Lemma 17 [Submodulari ty] For given pairs of subsets of E, (A, P), (B , R) wh re

P ~ E\A and R ~ E \ B , the following holds:

i6((A n B),.(P n R)) i + j6((A u B), (P u R))i :S I6((A, P)i + i6(B , R)j. (2.3)

PROOF. We consider three cases. Assume that ei and e2 are any two edges

incident with u .

CASE 1. u E 6((A n B), (P n R)) and u E 6((A U B), (P U R)) : Since u E

6((A n B), (P n R)), :lei E (A n B) U (P n R) and hence e1 E AU P and ei E BU R.

FUrther, since u E 6((AUB), (PUR)), 3e2 E E\(AUB) and hence e2 E (E\A)n(E\B).

These observations imply that u E b(A, P) and u E o(B , R).

CASE 2. u E o((A n B), (P n R)) and u rf. 6((A U B), (P U R)) : First, since

(A n B)u (PnR) ~ A UP and (A n B) U (P n R) ~ B U R, u E 6((An B),(P n R))

implies that 3e1 E (A U P) and e1 E (B U R). rurthermore, u E o((An B),(P nR))

implies that :Je2 E E\ (A n B). ote that since u rf. o((AU B), (P UR)) u has no edge

incident with it that is not in AUB. Therefore e2 E (AUB)\(AnB) = (A\B)U(B\A),

and hence e2 E A \B or e2 E B\A. The previous observation implies that e2 E E\B

or e2 E E\A. These imply that u E 6((A, P) or u E o((B, R).

CASE 3. u rf. 6((A n B), (P n R)) and u E o((A U B), (PUR)): Similar to th

first two parts, u E o((A U B), (P U R)) implies that u E o(A, P) or u E o(B , R). •

Consider a weighted search strategy for a given graph G = (V, E, w). For a se­

quence of pairs of subsets of the edge set E , (X o, Yo), (XI, Yi), ... , (X n, Yn), wher

}i ~ E\Xi, for 0 :S i :S n and Xo = Yo = Yn = 0, Xn = E, consider the e­

quence (X0 , XI , ... , X n), where 'Vi = 0, 1, . . . , n and 't:/e E Xi, there exists a step

j such that Wj(e) = 0. Then (X0 , XI , . . . , Xn) is called a crusade associated with

(X o, Yo) , (X1 , Y1), ... , (X n, Yn) if for alll :S i :S n

(2.4)

37

CHAPTER 2. WEIGHTED SEARCH

We say that a crusade uses at most k searchers if I8(Xi, Y;)l ::; k for all 0 ::; i::; n.

A crusade is progressive if the X/s form a nested sequence, i.e., X0 ~ X1 ~ · · · ~

Xn and, for a ll 1 ::; i ::; n,

(2.5)

Lemma 18 If u;s(G) ::; k, then there exists a crusade using at most k searchers.

PROOF . Let ws(G) :S k and let (Ao , Po , Zo), (A1, P1 , Z1), ... , (An, Pn, Zn) be a

weighted search strategy for G. Then IZi l ::; k for 0 ::; i ::; n. From the definition of

8(- ·), we know that if v E 8(Ai, Pi) then v is an exposed vertex. Hence Equation

2.1 implies that 8(Ai , Pi) ~ Zi and thus I8(Ai, ~) I ::; IZi l ::; k. Each Ai corresponds

to a set of clean edges at step i, hence VeE Ai , 3j ::; i such that Wj(e) = 0. Equation

2.4 holds because of the definition of a weighted search since each step corresponds

to only one action. Therefore associated with (Ao, Po), (A1, P1), ... , (An, Pn), the

sequence A0 , A1 , ... , An is a crusade that uses at most k searchers. •

Lemma 19 If there exists a crusade using at most k searchers, then there exists a

progressive crusade using at most k searchers.

PROOF. To each sequence of pairs (X0 , Y0) , (X1, Y1), . . . , (XN, YN) one can asso­

ciate two numbers a(N) = 2:~0 (18(Xi, Y;)l+1) and b(N) = 2:~0 IXil· Among a ll cru­

sade (X0 , X1, ... , X N) using at most k searchers and associated to (Xo, Yo), (X1, Yi),

... , (XN, YN) we will pick the one for which

1. a(N) is minimum and

2. b(N) is minimum subject to condition (1).

We denote such a crusade by C = (Xo, X1 , .. . , Xn).

If IYi\Yi- 1l =.- 1, then IXi\Xi-11 = 0 due to Equation 2.4. Instead, assum that

IYi\Yi-1l = 0 anrl IXi\Xi-11 = 0. Then IYi+I \ Yi-1l ::; 1 and IXi+l \Xi-1l::; 1. There­

fore (X 0 , X1 , . .. , Xi-1, Xi+l , ... , Xn) is a crusade with respect to (Xo, Yo), (X1 Yi) ..

38

CHAPTER 2. WEI GHTED SEARCH

., (Xi- I, Yi-I), (Xi+l> Yi+I) , . . . , (Xn, Yn)· For this sequence a(N) takes a smaller value

than for C, which contradicts our assumption. Therefore I Xi \Xi-II = 1.

We only need to show that Xi's form a nested sequence. Observe that if

then (Xo,XI, ... ,Xi-I,Xi-IUXi,Xi+I, ... ,X n) is a crusade with resp ct to (X 0 , Y0),

(XI, Yi), ... , (Xi-I , Yi- I), (Xi-I U Xi , Yi- I U Yi) , . .. , (Xn, Y,~). For this sequence a(N)

takes a smaller value than for C, hence

(2.6)

Combining Equations 2.3 and 2.6, we have

From the result above we observe that (X0 , XI , . .. , Xi_2, Xi-I n Xi, Xi, .. . , X n) is a

crusade with respect to (Xo , Yo) , (XI , YI), .. . , (Xi-2, Yi-2) , (Xi-I n Xi, Yi-I n Yi),

(Xi, Yi), ... , (Xn, Yn) · From the minimality of b(N) for C we must have

2.4.2 Monotonicity

Showing that weighted searching is monotonic; that is proving that a monotonic

weighted search does not require more searchers, will make us conclud on the mem­

bership of the WEIGHTED EDGE SEARCHI G problem in the P class. In gen­

eral , monotonicity is a crutial property for proving complexity resul ts of the decision

problems.

Before giving Theorem 22, which is the main result of this chapter we need two

lemmata. The first one implies that from a weighted search strategy, we can alway

39

CHAPTER 2. WEIGHTED SEARCH

construct another weighted search strategy that has only one partially cleaned edge

at every step and at the same time it does not require more searchers.

Lemma 20 If there exists a weighted earch sti·ategy S = (A, Pi, Zi)i=o for a weighted

graph G = (V, E, w) that uses k searchers, then there exists a weighted search trat­

egy S' = (Aj, Pj, Zj)~0 for G such that IPJI ::; 1 Vj = 0, 1, ... , m and S' uses k

searchers as well. FUrthermore, for S' the following hold:

1. If e E PJ and w1(e) = 1, then w1+l(e) = 0, PJ+l = 0 and Aj+1 = Aj U {e}.

2. If P' = P~ 1 = {e} then A'- = A'. 1 .
J J- ' J J-

PROOF. From S, we construct the required strategy S' that u es the same number

of searchers to clean G. First, if an edge e = uv, w(e) ~ 2 is partially cleaned at step

i in S by sliding a searcher 0'1 from u to v, inS' we remove 0'1 from u and place it on

v . We modify S' step by step so that according to its final version G will be cleaned.

While modifying S' we only need to consider edges that have capacity at least two,

since edge of unit capacity are never in any Pj.

In S during the steps that reduce the weight of an edg e = uv there is a step

that results in enough searchers on the ends of e to clean e. If this happen at th

kth st pin S, then during S' the cleaning can be done succe siv ly in tead of the kth

step. So inS' we will have w(ekJ = w(e)- 1, w(ek2) = w(e)- 2, . . . , w(ekwc•J- l) = 1

and w(ekwC•l) = 0. We have to show that we can clean every edge in this way.

If a searcher 0'1 ends up on u in S after the kth step but 0'1 nd up on v # u in

S' after the kw(e)th step then we remove 0'1 from v and place it on u at step k w(e)+l

and kw(e)+2 ·

Let 0 b the first edge with weight at least 2 that gets cl an d in S. If eo = uv

is a pendant edge, where deg(v) = 1, th n we need at least two earchers to clean it,

sine w(0) ~ 2. If these two searcher are put on one or both ends of eo for the first

40

CHAPTER 2. WEIGHTED SEARCH

time at step kin strategy S, inS' we clean eo in steps k1, k2, . .. , kw(eo) by 1 tting one

of them guard u and the other slide on e until it becomes clean.

If e0 is not a pendant edge, then we need at least 3 searchers, two to guard the

ends of e0 and one to slide along e0 , when w(e0) ~ 2. If these thr searchers are

put on ends of e0 for the first time at step k in strategy S, in S' we clean e0 in step

k1, k2, · · ·, kw(eo) ·

Assume that we continue cleaning edges according to S and construct S' in this

way. Let e = uv be the next edge that is cleaned according to S at st p i .

Note that e might have been cleaned and contaminated during S before step i.

But we know tho.t there exists a step j < i inS such that w1_1(e) = w(e), Wj(e) =

w(e)- 1, wi_1(e) = 1,wi(e) = 0 and there exists no k such that j < k < i and

wk(e) = w(e). ln other words, e does not become recontaminated between step j and

step i .

If e is not a pendant edge, then just before the ith step, there must be at least

one searcher located on each of u and v.

CASE 1. e is not a pendant edge and w(e) = 2

At some step, say j in S, w1_I(e) = 2 and w1(e) = 1. Here j is a step between

the last time e was cleaned and the ith step.

(1) If at the jth step two searchers were located on u and v, one on each vertex,

and a third searcher was sliding along e, either from u to v or from v to u, in S' w

can clean e in two steps, j 1 and j 2 , using the same three earchers.

(2) If at the (j - 1)th step two searcher , a 1 and a2, were located on u and at

the jth step one searcher, a2 , slid along e from u to v, there are two possibilitie

to reduce t he weight from 1 to 0. If a third searcher slides along e at step k, then

we clean e in S' in two step , k1 and k2 , with these 3 earch rs. Otherwise a2 may

slide along e from v to u at step k (or a 1 may slide along from u to v at step k,

which can be transferred to S' similarly) . Notice that all of the edges incident to v

41

CHAPTER 2. WEIGHTED SEARCH

are contaminated at step j (since they are on an unguarded path to a contaminated

edge e). FUrthermore at step k- 1 all edges incident to v, except for e, must be clean.

Otherwise when a 2 slides along e from v to u it would not be partially cleaning e.

Hence, all edges incident to v, except for e must be cleaned between the jth step and

the kth step and they all have weight 1. At some step l , such that j < l < k, one of

those edges, say e1, gets clean by a searcher a3 sliding along 1 ither starting from

v or ending at v. Therefore in S' , we clean e in steps h, l2 where a3 slides two times

along e.

CASE 2. e is not a pendant edge and w(e) 2: 3

Since the number of searchers n eded for reducing the weight from 3 to 2 and 2

to 1 is the same as reducing the weight from n to n - 1 and from n - 1 to n - 2 for

n;::: 3, it is enough to consider the case w(e) = 3.

At some point, say j during S, Wj_ 1(e) = 3 and wj(e) = 2. If this is done by using

three searchers, then e can be cleaned inS' in three steps j 1 , j 2 , j3 which would replace

the jth step of S. If in the jth step two searchers, a 1 and a 2 , are u ed by placing

both of them on u and sliding one of th m to v, after this step, u or v cannot be left

unguarded. Hence, to reduce the weight from 2 to 1 we need one more searcher, say

a3 which is going to slide along e at step k in S . Accordingly, in S', we replace step

k with steps k1 , k2 , k3 where a 3 slides back and forth along e.

If e = uv is a pendant edge where deg(v) = 1, we consider two cas s.

CASE 3. e = uv is a pendant edge and w(e) = 2

The weight of e should go from 2 to 1 in S at some step, say at k. If this is done

by a searcher a 1 sliding from u to v, then there must be another searcher on u. In

S' , we replace the kth step with steps k1, k2 in which a 1 slides back and forth along

e twice.

If the weight of e is reduced from 2 to 1 by a searcher a 1 sliding from v to u, then

after this step u inust always be guarded by a searcher. There are two ways to reduce

42

CHAPTER 2. WEIGHTED SEARCH

the weight from 1 to 0.

Another earcher, say a2 , may slide along e at the kth step of S. In S' we replace

the kth step with steps k1, k2 in which a 2 slides back and forth along e twice.

In S, all the edges incident to u may get clean and a1 may !ide back from u to

v . Then during cleaning of an edge e1 =/= e incident to u, there mu t be a searcher a2

either sliding from u or ending at u, say at the lth step. Accordingly, in S', just after

the lth st p , we ·insert steps l 1 and l2 in which a2 guards u and a1 slides twice back

and forth along e.

CASE 4. e = uv is a pendant edge and w(e) ~ 3

Again, we only need to consider the case w(e) = 3. At some step the weight of e

should go from 3 to 2 during S say at step j.

If this is done by a searcher a 1 sliding from u to v, then th re must be another

searcher on u. In S' , we replace the jth step with steps j 1, j2,j3 in which a 1 slides

back and forth along e three times.

If a searcher a1 slid from v to u to reduce the weight of e from 3 to 2, then, after

this step u cannot be left unguarded, otherwi e the edge would be recontaminated .

Now to reduce the weight from 2 to 1 another searcher , say a 2 has to !ide along e.

If this happens at the kth step of S, inS' we replace the kth step with step k1 , k2 , k3

in which a2 slides back and forth along e. •

Lem ma 21 As ume that Sis a weight d search strategy for G = (E, V, w) that us s

k searchers. Then there exists a progressive crusade (Xo X1 , ... , Xn) as ociated with

(Xo , Yo) , (X1 Y1) , .. . , (Xn, Yn) , where Yi ~ E\Xi, for 0 ~ i ~ n that uses at most k

searchers such that both the following condit ions hold:

1. If IYi\Yi- 1l = 0, then either

(a) Yi = 0, Yi- 1 = 0,Xi\Xi- 1 = {e}, and w(e) = 1, or;

(b) Yi = 0, Yi-1 = {e}, Xi\Xi-1 = {e}, and w(e) ~ 2.

43

CHAPTER 2. WEIGHTED SEARCH

2. If IYi\Yi-1! = 1, then Yi-1 = 0, Yi = {e}, Xi\Xi-1 = f/J ,Xi+1\Xi = {e}, and

w(e) ~ 2. ·

PROOF. Using the procedure given in the proof of Lemma 20, we construct a

weighted search (A~, P! , Z;) such that IP!I ~ 1, Vi. Next we delete th (A~, P!, Z;)'s

for which !Pfl = 1 and :3j =/= i such that (Aj , Pj) = (A~, P!) except for the (A~ P!, Z:)'s

such that wi(e) = 1 where {e} = P;. We apply Lemmata 18 and 19 to this reduced

sequence and obtain a progressive crusade. The two conditions of the theorem follow

from the construction of S' and the implications of Lemma 20 if we let X i = Ai and

Yi = Pi. If two consecutive partially cleaned set are empty, then S' is cleaning an

edge of weight 1, which corresponds to part 1(a) . Part 1(b) is the sam as part (1) of

Lemma 20. In both of them an edge e which is partially clean at step i - 1 b comes

clean at step i . Finally, during the consecutive steps where an edge is partially cleaned

no other edge is cleaned. This is part (2). •

In the proof Theorem 22 we will consider the indice of the ets Xi and Yi as

levels. Hence the levels consist of steps. An i th level may not correspond to the ith

step in the strategy due to the construction of the progressive crusade in the proof of

Lemma 21.

Theorem 22 If there exists a weighted search S using at most k searchers for a

weighted graph G, then there exists a monotone edge earch S' using at most k

searchers for G.

PROOF. Lemma 20 implies that from S we can construct a weighted search S' that

uses at most k searchers and IP!I ~ 1 for every step i . Lemma 21 ensures that there ex­

ists a progressive crusade Xo, X 1, ... , Xn associated with (Xo, Yo), (X1, Y1) , ... (Xn, Yn)

which can be obtained from S' and it uses at most k searchers. We construct a

monotone weighted search strategy inductiv ly that cleans the edges in the order

e1 , e2 , ... , em, where for each ei there exists i such that Xi\Xi-l = {ej}· Assume

44

CHAPTER 2. WEIGHTED SEARCH

that we cleaned the edges e1, e2 , ... e1_ 1 in this order and no edge oth r than these is

cleaned. Assume that we finished cleaning e1_ 1 at the end of (i - 1)th level. We show

that in the next steps we will clean e1. We will use the implications of Lemma 21.

We consider three cases.

CASE 1. IYi\Yi- 1l = 0, Yi = 0, and Yi- 1 = 0. Here Xi\Xi-1 = {e!} , and

w(e1) = 1. We show below that the discussion given in [11] implies that e1 can be

cleaned with at most k searchers. A weighted mix d search is defined as a combination

of weighted edge search and node search. According to nod searching when w(e) = 1,

e is cleaned when there are searchers at both of its ends.

First we show the induction step for a weighted mix d search, then we show how

to convert it to a weighted search.

Assume that G has no pendant edges. Let N = {u ,v} where el = uv. If IN U

8(Xi_1, Yi- 1)1 '5:. .k, then we can put searchers at the end points of e1 to clean it.

Otherwise, IN U b'(Xi- 1, Yi- d l > k . Since b'(Xi-1, Yi-1) '5:. k , N i. b'(Xi- 1, Yi- 1)· Let

v E N\8(Xi_1, Yi-1). Then none of the neighbors of v are in Xi-1, hence v E 8(X i , Yi).

If u tf: 8(Xi- l , Yi-d, then none of the neighbors of u and v are in Xi- I· Therefore

u E 8(Xi , Yi), hence e1 is cleaned by node search.

If u E 8(Xi_1, Yi- 1) and all neighbors of u except for e1 are in X i- 1, then the

searcher on u can slide along e1 to clean it. If u E 8(Xi- I, Yi- 1) and not all of the

neighbors of u except for e1 are in Xi_1, then u E 8(Xi, Yi). Hence, e1 is cleaned by

node searching.

If G has pendant edges, then observe that if G' is obtained from G by adding a

loop of weight 1 to all its vertices, G and G' will have the same mixed search numbers.

Next, we show how to convert a weighted mixed search to a weighted edge search .

Given G construct G' by replacing each edge e of weight 1 by a path P = ee' of length

two with edge weights 1. Since G and G' have the same reduction, they have the

same mixed search number as well.

45

CHAPTER 2. WEIGHTED SEARCH

If e1 = uv is cleaned by node search at step i, then just before it is cleaned, there

must be searchers on u and v . In the weighted edge search S' , we will replace the ith

step with 3 steps. If e' was contaminated befor~ step i in S, in S' we will remove the

searcher a on v, put it on u and slide it along f;1. If e' was cleaned b fore step i in S,

in S' we will slide the searcher a on v along e to u, remove it from u and put it on v.

As a result, e1 is cleaned using at most k searchers.

CASE 2. Y; = 0, Y;_1 = {el}· We have w(el);::: 2. We consider the cases wheth r

e1 is a pendant edge or not.

(1) If e1 is not a pendant edge, then at the (i - 1) th level, there should be at least

one searcher on each end of e1, say a 1 on u and a 2 on v . If I6(Xi_1 , Y;_1) I+ 1 ~ k, then

we can finish the cleaning of e1 by the searcher that is free, i.e., the one that is not on

any exposed vertex. Otherwis I6(Xi_1 , Yi- 1)1 + 1 > k and since I6(Xi-J, Yi-1) 1 ~ k,

we must have I6(Xi_1, Yi- dl = k . There are four subcases to consider wh n e1 is not

a pendant edge.

In the first subcase let each of t£ and v have at least one edge incident to them

other than e1 that is already clean, hence in Xi_1 . Then before the (i - 1)th level

there must be two searchers located on each of u and v. In this case, the only way

that e1 became partially clean for the first time is that a third searcher, other than

the ones on u and v, slid along e1• Hence, e1 can be cleaned by this third searcher in

the next steps.

Consider together the subcase where there are no clean edges incident to u or v

and the subcase where only one of the end points of e1, say u, has an edge incident to

it that is clean and an edge that is contaminated. In both of these cases the expos d

vertices in level i -1 are the same as in level i, hence 6(Xi_1 , Yi- 1) = 6(Xi, Y;). H nee

none of the searchers can move from their places during the teps between these levels.

On the other hand, we know that IXi\Xi_1 1 = {el}. But there is no po sible way to

clean e1 when none of the searchers are moving. Hence we arrive at a contradiction.

46

CHAPTER 2. WEIGHTED SEARCH

The last subcase is where all edges other than e1 incident to one of the end points

of e1, say u, are already clean and all edges incident to v are contaminated. We know

that u E 8(Xi_1 , yt_1) and u ~ 8(Xi, Yi) since at level i all edges incident to u are in

Xi (since X i's are nested). The only way this can happen is that either wi-J (e1) = 1,

and we are done,. or wi_1(e1) > 1 and a third searcher slides along e1 to clean it totally

during the steps ' between these levels, which is impossible if c5(Xi_1 , Yi- 1) = k ince

none of the searchers can move.

(2) If e1 is a pendant edge, let deg(v) = 1 and deg(u) > 1. We only need to

consider two subcases. When there is at least one edge incident to u that is clean and

hence in Xi_ 1 , then before the (i - 1)th level t here must have been a searcher, say a 1 ,

located on u. As in the previous subcase, the only way for e1 to become partially clean

is that a searcher other than a 1 , say a 2 , slides along e1 at the step that corresponds

to level i- 1. Hence, e1 can be cleaned with a 2 together with a 1 which will be kept

on u as a guard.

Finally, if all edges incident to u other e1 are contaminated, observe that u E

8(Xi_1 , Yi- 1) = 6(Xi, Yi). This implies that none of the earchers could move during

the steps between the levels i- 1 and i, which contradicts I Xi \Xi-1l = { et }·

CASE 3. IYi\Yi-1l = 1. We have Yi-1 = 0, Yi = {et} . We know that Xi\Xi-1 =

0, Xi+ 1\ Xi = { et}, and w (e) ~ 2. This case reduces to the previous case by shifting

all the observations to the levels i and i + 1. Applying the same procedures w can

finish the cleaning of e1 at the successive steps after level i. •

Theorem 22 implies that ws(G) = mws(G). From this we d duce that the

WEIGHTED SEARCHING problem belongs to P, since we only ne d to guess in

which order the edges are cleaned and then to check whether the edges can be clean d

according to this sequence using at most k s archers. In Section 1.4 we noted that

the problem is NP-hard. It follows from these two observations that the problem is

NP-complete. Hence we have the following.

47

CHAPTER 2. WEIGHTED SEARCH

Corollary 23 The WEIGHTED SEARCHING problem is NP-complete.

This complexity result leads to many possible research direction . A constant

factor approximation algorithm with a small constant factor is desirable. Another

direction would be restricting the weighted earching problem to particular classes of

graphs.

4

Chapter 3

Fast Search

In this chapter we consider fast searching as a variant of the edge searching problem.

Fast searching corresponds to an internal monotone search in which ev ry edge is

traversed exactly once and the searchers are not allowed to jump. We present a linear

time algorithm to compute the fast search number of trees. We investigate the fast

search number of complete bipartite graphs. We also propose a general cost function

for evaluating search strategies that utilizes both searching and fast searching.

3.1 Preliminaries

For any graph G, it is immediate from the definitions in Section 1.5 that s(G) ::; s J(G).

The gap s1(G) - s(G) is zero for some graphs. We continue by observing that thi

holds for Kn·

For K n, the complete graph on n vertices, where n 2 4, recall that s(Kn) = n

[42].

Lemma 24 For every n 2 4, SJ(Kn) = n.

PROOF. Label the vertices v1, v2, . . . , Vn· Place the first n-1 searchers, a1 , a2 , . .. , a n-1

49

CHAPTER 3. FAST SEARCH

Figure 3.1: I< - e where e = v1v2.

on v1 and the nth searcher, O'n, on v2. First clean v1 by sliding all th earchers located

on it .

When n is even, the Kn- l induced by { v2, v3 , · · · , vn} contain an Eulerian circuit

which is cleaned by O'n and there is no contaminated edg left.

When n is odd, O'n cleans the Eulerian circuit contained in the K n_2 induced by

{ v2, v3 · · · , Vn- d. At this step , the only containinated edg are those incident to Vn

and there is a searcher on each neighbor of Vn and two searcher on v2. We clean Vn

by sliding all there searchers, except for O'n, to Vn· •

Furthermore, it is known that the edge search number is critical for complete

graphs, that is , deleting any single edge from Kn will reduc th search number by

on [17]. ext we show that this also holds for the fast search number.

Lemma 25 For any e E E(I<n), SJ(I<n- e) = n- 1.

PROOF. Let Kn - e = (V, E) . Label the vertices v1 , v2, ... , Vn o that for v1 v2 E

V, deg(vi) = deg(v2) = n- 2. Refer to Figure 3.1 when n = . Place the first n- 2

search rs on v2 and the (n - 1)th searcher on Vn- 1·

As a first case, let n be odd. Let all n - 2 searchers on v2 slide along the dges

incident to v2. In this way v2 is cleaned. ext we are going to clean the K n-2 induced

50

CHAPTER 3. FAST SEARCH

by {v3,v4 , · · · ,vn}· Since Kn-2 has an Eulerian circuit, we can clean the graph by

moving the (n - 1)th searcher as the first n - 2 searchers remain in th ir places.

Finally, we let the n - 2 searchers move to v1 n.nd finish cleaning.

Otherwise, let n be even. Using n- 2 searchers we clean v2 as in the previous case.

ext we clean an Eulerian circuit in Kn-3, induced by { v3, v4 , . .. , Vn-1}, using the

(n-1)th searcher, an_1, starting from and ending at Vn_1 . Then a n-i may slide along

Vn- IVn and then VnVI· Now, the only contaminated edge incident to Vn-1 is Vn-JVI

and hence O"n-3 may slide along that edge and clean Vn-l · The only contaminated

edges left in the graph are those of the induced K2,n_4 where the bipartition sets ar

{vi ,vn} and {v3,v4, · · · ,vn-2}· The induced K 2,n-4 can be cleaned by keeping O"n-1

and O"n-2 on v 1 and Vn resp ctively and letting O"n-3 slide along the edges. Hence the

graph is cleaned. •

On the other hand, s 1 (G) -s(G) can be arbitrarily large for some graphs. Consider

K1,n, the complete bipartite graph with bipartitions of size 1 and n. Th n s(K1,n) = 2

wh reas s1(K1,n) = f~l For this example the ratio SJ(G)/s(G) is also notably larg .

Furthermore, there are graphs for which the connected fast search number may

be much larger than the fast search number. Construct G' by subdividing every edge

of K 1,n · Then for every n 2: 2, s(G') = 2, SJ(G') = 1~1 whereas th connected fast

search number is n- 1 (see Figure 3.2). oticc that this graph has a much smaller

ord r than the one in [55] .

Let V0 be the set of vertices in G with odd degree. Ob erve that for each vertex

v E V0 , there exists a searcher for which v is either a start or end vertex. Otherwise

one of the edges incident to v would be traversed at least twice.

Since it is possible that a searcher starts at a vertex in V0 and stops at another

vertex in Vo, we have the following lemma.

51

CHAPTER 3. FAST SEARCH

Figure 3.2: The subdivisions of K l,4 and K1 ,n·

Lemma 26 If \10 is the set of odd degree verti"es in a graph G, then

!Vol < S (G).
2 - I

Example 8 Let G = Pm_1DPn- l be an m x n grid , where m, n E Z. Lemma 26

implies that m + n- 4 ~ s1(G). We demonstrate a fast search that uses m + n- 2

searchers. Label the vertices of G so that Vij is the jth vertex in the i th row. Figure

3.3 exemplifies this labeling by v44 , v45 and v46 .

Place two searchers, a1 and a 2, on Vn and a searcher on each of V12 , V13, . .. , V1(m - l)

and V21 , V31 , .. . , V(n-l) l , denoted a3, a 4, ... , a m and a~ , a~ , . .. , a~_2 respectively. This

accounts for 2 + m- 2 + n- 2 = m + n- 2 searchers. We construct a fast search so

that each ai, i = 1, 2, . .. , m cleans a column and each aj,j = 1, 2 . .. , n- 2 cl ansa

row.

The strategy starts with cleaning the first column. First let a 1 slide along e =

v 11 v21 . Then let a2 slide along e = v 11 v 12 and then let a~ slide along e = v21 v22. We

repeat this for all i = 2, 3, . . . , (n- 1) so that we fir t let a 1 !ide along e = vi1 V(i+l)l

and then let a~ slide along e = V(i+l)lV(i+l)2 . Finally we let a 1 slide along e = vn1Vn2·

At this point, the first column and the fir t edge of every row is clean. Also, there

is a searcher on ev ry vertex of the second column. We cl an the second column by

a 2, third column by a 3 and so on by a similar fashion. Figur 3.3 shows how the fast

52

CHAPTER 3. FAST SEARCH

I

o, - - - - - - - - - - -- ->-

I

02 - - 1.- - - - - ..., - - - 1.- - - - - .., - -- ->-

I

~ /----~--~~-_-_...,._-_-_-~-------~~._--~~->-~.,

Figure 3.3: Illustration of Example 8 form= 9 and n = 7.

search strategy proceeds. Each ai, i = 1, 2, ... , m follows a vertical arrow and each

aj, j = 1, 2, ... , n- 2 follows a dashed horizontal arrow.

Thus we have

As we mentio?ed earlier, the theory built on graph minors plays an important role

in edge searching and many variants of edge s arching are minor closed. However this

Figure 3.4: The graph G on the left and its sub graph H on the right where s J(G) = 3

and s1(H) = 5.

53

CHAPTER 3. FAST SEARCH

Figure 3.5: The graph G on the left and its subgraph H on the right where s1(G) = 5

and s1(H) = 6.

is not true for fnst searching. Figure 3.4 shows an example where G has a smaller

fast search number than its subgraph H. Hence fast searching is not ven subgraph

closed. otice t.hat H has more odd vertices than G and due to Lemma 26 this

result is easy to achieve. On the other hand , Figure 3.5 shows an instance where the

subgraph has more even vertices than the original graph, but has a higher fast search

number.

Next we give an example that shows that the difference can be arbitrarily large.

Example 9 Let K n be a complete graph on n vertices where n is odd and n 2: 5. Let

G = K nDK 2 be the Cartesian product of K n and K 2 . Let H be the graph obtain d

from G by deleting n- 1 edges between the two maximal cliques in G. Thus, all

vertices in G have odd degree n, and in H , two vertices have odd degree n and all

other 2n - 2 vertices have even degree n- 1. We can show that n ~ SJ(G) ~ n + 2

and s1(H) = 2n- 1. Thus, the difference s1(H)- SJ(G) can be arbitrarily large.

Even more interesting, let G = K nDPm, where Pm is a path on m 2: 2 edges, and

let H be a subgraph of G that is a path of m+ 1 copies of Kn wh re any two cons cutive

K n are connected by a single edge. Then we can show that SJ(G) ~ n + m + 1 and

s1(H) = n(m + 1) - m. Hence, the ratio s1(H)j s1(G) can be arbit rarily large.

Following the development of edge searching it is interesting to characterize graphs

where s1(G) is small. If k searchers are enough to fast search G, then we say that G

54

CHAPTER 3. FAST SEARCH

is k-fast-searchable.

We define reduction here as reducing any path with consecutive vertices of d gree

two to a single edge. Thus there is no vertex of degree 2 in the reduced graph. ote

that reduction does not change the fast earch number and that 1(G) = 1 whenever

G can be reduced to a single edge.

The characterization of graphs G such that s(G) :::; 2 is given in [37] . For the

characterization of graphs G such that s 1 (G) :::; 2, we have the following result .

Theorem 27 For any graph G, s1(G) :::; 2 if and only if when G i reduced it consists

of a path with vertex set { v0 , VI, ... , vn} together with the following conditions:

1. For every i = 1, . . . , n- 2 there are exactly two parallel edge between each pair

of consecutive vertices V; and Vi+I·

2. For every i = 1, ... , n- 1 there may be an arbitrary number of loops attach d

to each v;.

3. If vo and VI (resp. Vn-I and vn) are connected by a sing! edg , there may also

be a pendant edge attached to v1 (resp. Vn-I); else if vo and VI (resp. Vn-I

and vn) are connected by two parallel edges, then any number of loops can be

attached to v0 (resp. vn) ·

Remark 3 In order to construct reduced biconnected 3-fast-searchable graphs, we

notice that JVol :::; 6 by Lemma 26. AI o observe that the set of tart vertices for

the 3 searchers cannot have size 3. Thi is due to the biconnectedne s of the graph.

Thus JVol :::; 4. We further conjectur that a biconnected 3-fast- earchable graph has

at most 2 odd vertices.

55

CHAPTER 3. FAST SEARCH

3.2 Trees

EDGE SEARCH! G is P-complete for general graphs [37] and planar graphs with

maximum degree three [3]. However there exist polynomial t ime algorithms to solve

EDGE SEARCH! G when restircted to trees [37] . In this section we show that

FAST SEARCH! G is solvable in linear time when restircted to tree and construct

the corresponding fast search strategy.

For any graph G = (V, E) since :Lvevdeg(v) = 2IEI we know that t he number

of odd degree vertices in G must be even. For a tree T, the following algorithm

partitions T into edge disjoint paths such that both of the end vertices of each path

have odd degree in T.

Algorithm TP(T)

1. Initially i = 1.

2. Arbitrarily elect a leaf u in T. Let uv E E(T) be the dge incident to u. Mark

uv with color i and set T +- T- uv.

3. If v is an isolated vertex in T, then go to Step 4; otherwise, let vw E E(T) be

an dge incident to v . Mark vw with color i , T +- T- vw, v +- w and go to

Step 3.

4. If there is no leaf in T, then stop· otherwise, set i +- i + 1 and go to Step 2.

Lemma 28 The Algorithm TP(T) defines a valid coloring for T and the edges with

the a rne color form a path such that the two end vertice of this path have odd

degree.

PROOF. Let 'e E T. In St p 2 when e gets a color , it is d leted from the graph

and th algorithm proceeds. Thus every dge gets a color at most one . Also the

56

CHAPTER 3. FAST SEARCH

algorithm continues as long as there is a leaf in T, thus every edge is color d. Hence

every edge is colored exactly once.

The edge that are assigned the same color always form a connected subgraph of

the original tree T due to Step 3. Denote that graph as Pi for the i th color. Sine a

tree is acyclic, no vertex is repeated in Pi, therefore Pi is a path.

Initially one end vertex of P1 is the leaf chosen by the algorithm at Step 2, thus it

has odd degr e. The edges are colored 1 according to TP(T) until an isolat d vertex

is reached in the deformed T which has to be a leaf in T. Hence both nd vertices of

P1 have odd degree. ote that after we delete each edge of P1 from T, the odd-even

degree state of each vertex in T does not change except for the nd vertices of P1.

Thus a leaf vertex chosen by the algorithm as a start vertex for P2 and the other end

vertex of P2 found by the algorithm corresponds to either a leaf in the original Tor a

vertex with odd degree in T. This holds for every Pi, 2 ::; i. Hence both end vertices

of every path have odd degree in T. •

Using the decomposition of Algorithm TP(T), we can compute a fast search strat­

egy for a tre T as follows.

Algorithm FS(T)

1. Call Algorithm TP(T) . Let k beth number of colors used by TP(T) and P;, 1 ::;

i ::; k, be the path formed by all edges with color i.

2. For each P; , 1 ::; i ::; k, place searcher ai on one end of P;.

3. Arbitrarily select a searcher, ay a; , on a leaf, and slide it along Pi until it stop

at a vertex v that

(a) has degree 1 in T, or,

(b) has degree more than 2 in T and which contains only the searcher ai , or,

(c) is the other end vertex of P;.

57

CHAPTER 3. FAST SEARCH

4. Update T by deleting from T all edges cl aned by ~i in Step 3 after ~i slides

along these edges of~ . If T contains no edges, then stop ; otherwi e go to Step

3.

In Figure 3.6 th application of Algorithm TP(T) and three it rations of Step 3 of

Algorithm FS(T) are illustrated .

We now prove the correctness of Algorithm FS(T) by using a count ing argum nt.

Lemma 29 In Algorithm FS(T), if T has at least one edge in Step 4, then when the

procedure goes back to Step 3, there must exist a path Pi such that the searcher ~i

on a vertex u E V(Pi) can clean an edge of Pi incident to u by sliding along this edge.

PROOF. We will assume t he opposite of the statement and show that it leads u

to a contradiction. Suppose that in Algori thm FS(T) there is a moment at which T

has at least one edge and every searcher is located on an isolated vertex or a vertex

of degree more than 2 which is occupied by only one searcher . Thus no searcher can

move.

For any searcher ~i, 1 ::; i ::; k, located on an isolated vertex, we know that all

the edges of Pi has been cleaned and deleted. Let F be the forest obtained from

T by deleting all isolated vertices. Note that each searcher on F must be located

on a vertex that is occupied by only one searcher and is incident with at least two

differently colored edges in T .

Since every connected component in F contains at least one s archer, we know

that each pair of leaves in F is incident to different colored edges. Thus, the number

of different colors in F is greater than or equal to the number of leaves in F.

Furthermore since the degree of every guarded vertex is more than 2, every com­

ponent has at least 2 leaves. Hence the number of leaves in F is strictly greater than

the number of searchers on F.

Thus, the number of distinct colors in F is greater than the number of searcher

58

CHAPTER 3. FAST SEARCH

Figur 3.6: Th tree algorithm: (a) A tree. (b) An exampl of path found by

Algorithm TP(T). (c) Searcher initial placements that al o d fine the direction

according to which the edges of each path will be cleaned. (d) State of the graph

where th dashed edges are clean due to partial application of Algorithm FS(T).

59

CHAPTER 3. FAST SEARCH

on F. This con_tradicts the fact that each path of edges with th same color in F

must have one s archer. •

From the above two algorithms we can fincl the fast search number of a tree.

Theorem 30 If Tis a tree and V0 is the set of vertices in T with odd degree, then

(T) _ IVai
Sf - 2. (3.1)

PROOF. Let k be the numb r of colors used by Algorithm TP(T). It follows from

Lemma 2 that Algorithm TP(T) decomposes T into k edge disjoint paths~ ' 1 ~ i ~

k, uch that the two end vertice of each path have odd degree in T. From Lemma 29,

we can u e k searchers to clean T in such a way that each path Pi is cl aned by one

search r sliding from one end of the path to the other end. Thus s1(T) ~ k =¥· On

the oth r hand, it follows from Lemma 26 that SJ(T) ~ Dfl. Therefore, J(T) = Dfl .
•
Theorem 31 Both Algorithm TP(T) and Algorithm FS(T) can be imp! mented with

linear t ime.

PROOF. By the depth-first-search algorithm on trees, we know that Algorithm

TP(T) can b implemented with linear time. For Algorithm FS(T), Steps 1 and 2 take

linear time. In Step 3, after a searcher slides along an edge, we can delete this edg

immediately. Since each edge is deleted exactly once, we know that Steps 3 and 4

take linear time. •

Let us construct a tree for which the gap between the search number and the fast

search number is large. From this example we find an infinite family of such graphs.

D efinition 10 For a tree T = (V, E), we say that a subtree T' ofT is a branch ofT

at v E V if v has degree one in T' and T' is a maximal subtree wi th this property.

We quote the following lemma from Parsons' initial paper [42].

60

CHAPTER 3. FAST SEARCH

Figure 3. 7: The trees T1 , T2 and T3 constructed in Example 10.

Lemma 32 [42] For any tree T and po itive integer k, k + 1 ~ (T) if and only if T

has a vertex v at which there are three or more branches that have earch number k

or more.

Example 10 Let T1 = K 1,3 . Take three copies of T1 and choos a vertex of degree

one from each copy. To construct T2 id ntify these three vertice . Continue in an

inductive fashion. Thus Tk i con tructed from three copies of Tk- 1 by identifying a

vertex of degree one from each copy. Figure 3.7 depicts T1, T2 and T3 .

We show that s(Tk) = k + 1 for all k 2: 1. Observe that s(T1) = 2 and s(T2) = 3.

Assume that s(Ti) = i + 1 for all i ~ k- 1. Lemma 32 implies that k + 1 ~ s(Tk). Call

the vertex of Tk obtained by identifying a vertex of degree on from each thr e copy

of Tk- 1 as v. We place a searcher at v and clean each copy of Tk- l incident to v by

k -1 searchers, which is pos ible due to the induction hypothesis. Thus s(n) = k+ 1.

AI 0 each vertex inn is of degree 1 or 3. Thus V(Tk) = Vo(n). Since IV(Tk)l =

3k + 1, by Theorem 30 s1(Tk) = 3ki1
.

61

CHAPTER 3. FAST SEARCH

3.3 Complete Bipartite Graphs

In this section we consider complete bipart ite graphs K m,n. m ~ n, and characterize

their fast search number. We tart with the following initia l case , where m ~ 2 or

m=4.

Lemma 33 If 1 ~ m ~ n, then

r~l , m = 1,

2

3

m= n = 2,

m = 2,n ~ 3,

6, m = 4,n ~ 4.

We quote the following theorem on the search number of complete bipartite graph .

Theorem 34 [4] If 3 ~ m ~ n, then s(Km,n) = m + 2.

The next lemma gives an upper bound for even m where m ~ 6.

Lemma 35 If 6 ~ m ~nand m is ven then SJ(K m,n) ~ m + 3.

PROOF. Let Km,n havebipart ition V1 = {vJ,V2,···,vm} and V2 = {uJ u2, ... un }·

We con truct a fast search strategy that u es m + 3 search r .

Denote the searchers as cr1, cr2, ... , O'm+3. We clean the v rtices in the order

u 1 ,u2 .. . ,Un-J,VJ,V2, . . . ,vm, Un when n is even, and u1,u2, ... ,Un-2,v4 Vs, . . . , Vm,

Un-1, V2, V1, Un, V3 when n is odd.

First, place cr1 on v1 cr2 on v 2 and 0'3 on v3 (Figure 3.). Then place 0'4, crs, ... , O'm+3

on u 1 and th n clean u1 by these searchers so that cr4 will be on v1 , cr5 will be on

v2, .. . , and O'm+J will be on Vm · We keep u4 , crs, ... , O'm+3 on t heir respective vertice

unt il just before the end of the strategy. We clean u2, u3, ... , Un- l by moving O'J, cr2

and cr3. Slide cr1 along the edge e = v1 u2, slide cr2 along the edg e = v2u2 and 0'3

62

CHAPTER 3. FAST SEARCH

u, o,;. 0:~· ··· o m +J

Li.z

o , v,

UJ

l1i v2
u4

0 VJ 3
us

v4

116

v5
u7

v6
llg

119

Figure 3. The initial placement of the searcher for K 6,9 according to L mma 35.

along the edge e = v3u 3. Keeping a 2 on u2 and a 3 on u 3, we clean all the edges b -

tween { v4 , Vs, ... vm} and { u2 , u3} by a1 . Hence a 1 visits the following vertice in the

given order: u2 , v4 ,u3,Vs u2,v6 u3 , ... Vm- J, u2 , vm,u3. After thi a1 will end up on

u3 since the graph induced by { v4 Vs, ... , vm} and { u2 , u3 } contain an Eulerian path

and l{v4, vs, ... ,vm}l is odd. ext, a 1 will slide along u3v1. Th only contaminated

edge incid nt to u2 is u 2v3, hence a2 may slide along u2v3 and clean u2. Similarly a3

may slide along u3v2 and clean u3 . Henc u2 and u3 are clean d.

Next we cl an u4 and us imilarly. Slide a1 along th edg e = v1u4, a2 along

e = v3u 4 and a3 along the edge e = v2us. Ke ping a2 on u4 and a 3 on us, we cl an

all the edges b tween {v4 ,v5 ... , vm} and {u4 , '1..ts} by at. Then, a1 !ide along usv1 ,

a 2 slides along u 4v2 and a3 slides along usv3.

In the same way we clean u6 and u7 , us and u 9, and so on. If n i even after

cleaning Un- 2 and Un-J we let ai slide along e = Vi-3Un cl aning Vi-3 for all i =
4, 5, ... , m + 3. In this way we finish cleaning 11 11 • When n is odd , we follow a similar

63

CHAPTER 3. FAST SEARCH

strategy. •

The next theorem shows that th bound in Lemma 35 i best po i ble.

Theorem 36 lf6 ~ m ~nand m i even, then JU<m,n) = m + 3.

PROOF. Lemma 35 states that SJ(Km,n) ~ m + 3. Also, Theorem 34 implies that

m + 2 = s(Km,r•) ~ SJ(Km,n), we only need to show that m + 2 earchers do not

suffice to fast search Km,n· We will use proof by contradiction. Suppa e that there

exists a fast search strategy to clean Km,n that uses m + 2 s arch rs . Let Km,n have

bipartition Vi and V2 with lVII = m and IV2I = n. Let ui be the fir t cl aned vertex

and t be the step at which ui i cleaned. We now consider the case that u1 E V2. The

case when u 1 E Vi can be proved similarly.

Since at t, only u1 is cleaned and all v rtices in V1 are contaminated , each vertex

of Vi must b occupied by at least one earcher. Let u denote th e searchers as

a3, a 4, ... , am+2· This accounts for m earchers. We show that no strategy can clean

the graph u ing m + 2 searchers by con idering each placement of th earcher ai

and a2.

CASE 1. Both of a I and a2 ar on Vi.

CASE 1.1: Suppose that a 1 and a2 are on the same v rtex, ay v1 . Since fast

searching is a monotone search and none of the searchers are located on u2 , u3, · · · , Un ,

we see that all dges incident to th e v rtices are contaminat d. Since th re are no

parallel edges, we can slide a 1 and a2 only to different vertice in 112, ay u2 and u3.

After this step it is not possible to move any of the searcher since they are all on

vertices that have more than one contaminated edge incident to them.

CASE 1.2: Suppose that ai and a 2 are on different vertice , ay V I and v2 respec­

tively. First assume that a1 and a2 slide to the same vertex, ay u2, at steps t + 1

and t + 2 respectively. Then a2 may leav u2 and slide to any vertex oth r then VI or

v2 in V1, say v3 at step t + 3. After thi st p a1 is stuck on u2 . At step t + 4, a 2 may

64

CHAPTER 3. FAST SEARCH

slide to any vertex other than u1, u2 in V2 and it is stuck at that vertex.

Otherwi e, let a 1 and a2 slide to different vertices, say u2 and u3. But since u2

and u3 have at least two contaminated edges incident to them, neither a 1 nor a2 can

move. Therefore all searchers are trapped at step t + 2.

CASE 2. Both of a 1 and a2 are on \12.

CASE 2.1: Suppose that a 1 and a2 are both on u 1. one of the searchers can

move since u1 is clean and no edge is traversed twice.

CASE 2.2: Suppose that a 1 and a2 ar on the same vertex u2 =f u1 . If u2 has

more than two contaminated edges incident to it , then all earch r are stuck after

at mo t two steps since only one of the searcher , say a 1 can leave u2 a2 is stuck

after thi t p and a 1 is stuck at step t + 2. If u2 has exactly two contaminated edges

incident to it , then u2 can be cleaned in the next two steps. At the end of step t + 2,

a 1 and a2 are located on cliff rent vertices, say v1 and v2 in Vi. If both of a1 and a2

move to different vertices in V2 , then they ar both unable to move. Hence assum

that a 1 slides along v1 u3 and a2 slides along v2u3. Since all edges incident to u3 were

contaminated before step t + 4, only one searcher can leave u3 at tep t + 5. Hence at

most ix step later all searchers are stuck. If u 2 has exactly one contaminated edge

incid nt to it , only one searcher, say a 1 , can leave u2 and th other earcher is stuck.

Similar to the previous cases, a 1 is also stuck after two steps.

CASE 2.3: Suppose that a 1 and a2 are on different vertices, say u2 and u3 respec­

tively, where u2 and u3 are both different from u1. The searcher a1 (resp. a2) can

leave the vertex ·u2 (resp. u3) if and only if u2 (resp. u3) has exactly one contami­

nated edge incident to it. When a 1 and a2 move to the same vertex in ~, this subcase

reduces to Subcase 1.1 , and all searchers are stuck after at most 4 steps. Similarly

when a1 and a2 move to different vertices in V1 , it reduces to Subcase 1.2. and all

searchers ar stuck after at most 6 st ps.

65

CHAPTER 3. FAST SEARCH

CASE 2.4: Suppose that a1 is on u1 and a2 is on u2 , where u2 is different from u1.

ow a 1 cannot move since all edges incident to u 1 are clean . If there i more than

one contaminated edge incident to u2 , then a 2 cannot move. Otherwi e, a 2 can slid

along the only contaminated edge incident to it, say e = u2v1 , at step t + 1. At the

next step, either. a 2 or a3 , say a 2, can !ide along any contaminated dge incident to

v1 say v1u3 . But none of t he searchers can move after this tep.

CASE 3. The searcher a 1 is on v1 E Vi and a2 is on a vertex in v;.
CASE 3.1: Suppose that a2 i on u1. Then a2 is trapped on u 1 and a1 can make

at most two moves.

CASE 3.2: Suppose that a2 is on u 2 =I u 1 . If u 2 has only one contaminated edge

incident to it , then there are two cases to consider. If that contaminated edge is V1 u2

and it is cleaned next, then the problem reduces to Subca e 1.1 if a2 slides to v1 or

it reduces to Sub case 2.2 if a 1 slides to u 2 . If v1 u2 is not cleaned in the next step ,

then the only s archer tha t can move is a 1 and all the searchers are stuck aft er this

step. Otherwi e if the contaminated edge i v2n2, then a2 may slide along that edge

and all searchers have t he sam po it ions as in Subcase 1.2. If u2 has exactly two

contamina ted edge incident to it, then the searchers are stuck after at most one step

in the case that none of the e contaminated edges are incident to v1 (only a1 can

move once). Otherwise, a 2 and a 1 are both unable to move at step t + 3. If there ar

three contaminated edges incident to u2 , then t he problem reduces to Subcase 1.2. •

ow we con ider the complete bipart ite graphs Km,n wh re 3 ~ m ~ n and m

is odd. Let us fi r t give the following upper bound which can be obtained using the

arne strategy used in Lemma 35.

Lemma 37 If 3 ~ m ~ n where m is odd and n is even, then SJ(Km,n) ~ n + 3.

During the stra tegy given in Lemma 35, we cleaned the graph by decomposing it

into K 2,m-3's and the parity of m- 3 allowed us to use the same searcher in the next

66

CHAPTER 3. FAST SEARCH

K2,m_3. However in this case when m is even, the parity of m- 3 forces us to us a

different searcher for all K 2,m_3 to fast earch the graph if the same trategy is used.

We know from Theorem 34, that m + 2 = s(K m,n) :$ J(Km,n) · On the other

hand, when m is odd , Lemma 26 state that 1(Km,n) is bounded below by m;n when

n is odd and by I when n is even. This gives us another lower bound for SJ(K m,n)·

Next we give another upper bound which improves Lemma 37 for orne m and n .

Lemma 38 If 3 :$ m :$ n where m is odd , then

PROOF. Let K m,n have bipartition vl = {vl, v2, ... Vm} and v2 = {ut , u2, ... 'Un }·

CASE 1: n=4k+ l. Placemsearcherson u 1 anddenotethem asa2,a3, . . . ,am+l ·

Place a searcher. say a 1, on v1 and a searcher on each of u2 and u3, denoted as am+2

and O"m+3 respectively. Place a searcher on each of u41+2 and 1£41+3 for l = 1, .. . , k - 1.

In this way we use 2 new searcher for every 4 vertice in V2 \ u 1. In total we use

m + 1 + n2l earchers.

Fir t clean u 1 so that each vertex in V1 contains a earcher, xcept for v1 which

contain two searchers. Let a 1 traver e all edges of the Eulerian graph induced by

{v1,v2, .. . ,Vm-d and {u2, u3} and hence clean ·it. ow O"m+2 may lide along u2vm

and O"m+3 may slide along U3Vm and clean U2 and U3 .

Next I t O"m+2 lide along VmU4 and O"m+3 :;!ide along VmU5· Again, let a1 clean

all edg s of th Eulerian graph induced by { Vt v2,. . . Vm- d and { u4, u5}. This a! o

cleans u4 and u5 .

We clean the graph by repeating thi procedure for all of 1£41+2 and U41+3 wher

= 1, .. . , k- 1. First clean the Eulerian graph induced by { VJ, v2, ... , Vm- d and

{ u41+2, u41+3} with a1. Move the searcher on ·u4l+2 along U41+2Vm, Vm u41+4 and t he

search r on u41+3 along u41+3vm , vmu41+5. Then clean the Eulerian graph induced by

{ V1, v2, .. . , Vm-d and { 1£41+4 1£41+5} with a1.

67

CHAPTER 3. FAST SEARCH

CASE 2: n = 4k + 2. Place th s ar hers as in Case 1 hence m + 1 + n22 = m + ~

searchers are placed on the graph. Cl an all vertices in V2 xcept for Un with th

same trat gy used in Case 1. Ob erve that the only contaminated edge are the on

incid nt to Un and there is a earcher located on each vertex in V1. We let u2 slide

along v 1un and clean v 1. Then let u3 slide along v2un and cl an v 2 . imilarly we clean

all vertices in V1 and finally clean Un.

CASE 3: n = 4k + 3. Once again place the searchers as in Case 1. Place another

searcher on Vm· Hence we used m + 1 + n23 + 1 = m + n~l s ar hers. e the sam

trategy as in ase 1 to clean every vert x in V2 except for Un-1 and Un. ow there is

a searcher on every vertex in V1 except for v1 and Vm on which there are two earcher .

Then we let the t.wo searchers on Vm slide along the only contaminated edge incident

to Vm which are llmUn- J and VmUn, hence cleaning Vm . Finally u1 clean the Eulerian

graph induced by {v1, v2 , . . . , Vm-1} and {un - J, un} · In this way the graph is cleaned.

CASE 4: n = 4k. Place a searcher on every vertex in { VJ, v2, .. . , Vm- 1, UJ, u2 , .. . ,

u2k} and place a second searcher, say u1, on v1. Hence we u em+~ earchers. W

let u 1 clean the Eulerian graph induced by { Vt, v2, .. . Vm- d and { UJ, u2, .. . u2k}.

Then let each searcher Um+i located on u i E { u1 , u2 , ... , u2k} lid along UiVm and

clean { u 1, u 2 , ... , u 2k}. Next let each <7m+i !ide along Vm u2k+i and cl an Vm. ow

each vertex in { u2k+l• u2k+2 , .. . , un } contains a searcher. Th n we let <7J clean the

Eulerian graph induced by { v 1 ,v2, . .. ,Vm-d and { u2k+l u2k+2, ... ,un} · This clans

every vertex in K m,n · •

Let us summMize the results on th fast search number of a complete bipartit

graph K m,n when m is odd. Th orem 34 and L mmata 26 37 and 3 imply that

when m i odd, n is even and 3 ~ m ~ n, we have

max { m + 2, ~ } ~ SJ(/<m,n) ~min { n + 3, m + ~ } . (3.2)

6

CHAPTER 3. FAST SEARCH

W hen m and n are odd and 3 ~ m ~ n, we have

{
m+n } n+l max m + 2, -

2
- ~ SJ(Km,n) ~ m + -

2
-. (3.3)

3.4 Cost Function

Given a graph G = (V, E) , lets be the number of searchers used in a earch strategy

to clean G. Certainly, s(G) ~ s. For each valu of s, ther is a strategy that cleans G

in the minimum number of steps; that is, the minimum time. We define the minimum

number of teps for each s to be t(s). Certainly, I El ~ t(s) .

In some real-life scenarios, the cost of a searcher may be relatively low in compar­

ison to the cost of allowing an intruder to be free for a long p riod of t ime. Thus,

it may be beneficial to use more earcher than s(G). Since the minimum number of

steps to clean a graph is lEI (each edge must be cleaned) , it will never be neces ary

to us more searchers than the minimum needed to clean the graph in lEI steps. So

we can bound the number of searchers above by s1(G) giving s ~ SJ(G) .

Wh n we construct a cost function for earching we may con ider the following

parameters:

• a: Cost per searcher.

• (3: Cost per searcher per step.

• r: Cost per step .

Several combinations of the parameters above can be con idered. Fomin and

Golovach [21] introduced a cost function in the node earching probl m which is

the sum of the number of searcher in every step of the node search process. For a

fixed graph G, we choose to consider th following cost function in the edge searching

problem:

Cc(s, t) =as+ (3st + "(t, (3.4)

69

CHAPTER 3. FAST SEARCH

where s(G) ~ s ~ SJ(G) and t = t(s) 2: lEI. Instead of trying to minimiz s, which

corresponds to (edge) searching or to minimize t, which corresponds to fast earching,

we may attempt to minimize Cc. However , in order to formulate th e problems (and

bounds) it is necessary to know both the earch number and the fast earch number.

Consid r the n-star, K 1,n, where n 2: 3. We recall that (I<1,n) = 2, and that

SJ(Kt,n) = l~l It is not difficult to see that if 2 ~ s ~ 1~1, th n the minimum

number of steps for such a strategy i t(s) = 2n- 2s. (The searchers would begin at

distinct leaves of the graph, and then traverse the edges to the c ntral vertex, using

s move . They would then use 2 move moving out from and then back towards the

central vertex, for each of n - 2s pendant edges. Finally each earcher would move

out from the central vertex along one of the s remaining pendant edge).

Substituting !nto Equation 3.4, we obtain

cf(l n (s) =as+ /3s(2n- 2s) + r (2n - 2s) = - 2/3s2 +(a+ 2n/3- 2r)s + 2nr. (3.5)

But this is clearly a quadratic function in s, which has a maximum value at its crit ical

point. We obtain its minimum value at the minimum or maximum value for s, that

is when either = 2 or s = l~l (Both are possible depending on choice of a , /3 and

r) ·

More informally, the cost of cl aning the n-stars is minimiz d by either treating

it as an edge searching problem, when searchers are exp nsive and time is cheap,

or by tr ating it as a fast searching problem when searcher ar cheap and time is

xpensive.

70

Chapter 4

On the Characterization of

4-Searchable Graphs

In this chapter we return our attention to edge searching. We give results on th

extremality characterizations of 4-searchable graphs. Thi was po ed as an open

problem in [37] where author noted the difficulty of the que tion. The first section

deal with the preliminary re ults and definitions. In the cond ection we give

the main result proven in this chapter which is the complete characterization of 4-

searchable biconnected outerplanar graphs. Finally, we present r suits related to th

forbidd n minor characterizations of 2-outerplanar graphs.

4.1 Prelim inaries

Befor giving the definitions and notation that will be u ed in thi chapter let u

present the following result which re tricts our attention to planar graphs when con­

structing the obstruction set for 4-searchable graphs.

Theorem 39 If s(G) :=:; 4, then G i a planar graph.

71

CHAPTER 4. ON THE CHARACTERIZATIO OF 4-SEARCHABLE GRAPHS

PROOF. Let s(G) ~ 4. We know that s(K 5) = 5. Also Theorem 34 implies that

s(K3,3) = 5. Assume that G contains K3,3 or K 5 as a minor. Since edge searching i

minor closed, s(G) ;:::: 5. This is a contradiction. Hence neither K3,3 nor K5 can be a

minor of G. Therefore G must be a planar graph. •

For brevity we look at reduced graphs those that are obtained from replacing

every suspended path with a single edge with the same end points. As w noticed

before, r duction does not change the search number.

In this chapter, all of the graphs that we consider are reduced multigraphs. There­

fore, we hereafter omit the description "reduced multigraph ; reduced multigraphs

will simply be called graphs.

D efinition 11 A graph is said to be oute;planar, or 1-oute;planar, if it can be drawn

in the plane in such a way that all vertices are on the boundary of the unbounded

face, i.e., the outer face. A k-outerplanar graph is defined recursively. For k > 1, a

graph is k-outerplanar if there exists a planar embedding of G which has an outer

face so that by removing the vertices on the outer face , we get a (k- 1)-outerplanar

graph.

ote that not every planar graph is outerplanar. For in tance, 1<4 is planar but

not outerplanar.

D efinition 12 A tent is a multigraph 3C3, i.e., each consecutive vertex of C3 i

connected with three parallel edge (Figure 4.1). A house i a multigraph H = (V, E)

where V = V(C4) = {v0 ,v1,v2,v3} and E = E(C4) U { e5 = VoVJ,e6 = vovi} . Given a

house H , the dge e = v2v3 where degH(v2) = degH(v3) = 2 is called the base of the

house.

It is known that the boundary of the outer face of a biconn cted outerplanar graph

is a panning cycle [52]. Assume that G is a biconnected outerplanar graph. We fix

an embedding of G and label its v rtices as v1, v2 , .. . , Vn so that they con ecutively

72

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

Figure 4.1: On the left: A tent. On the right: A hou e with thi k base edge.

lie on a cycle. Here we denote the graph induced by the verti cs {vi, vi+J, ... , Vj } as

P ij . Thus P ij denotes the boundary path from vi to Vj togcth r with all the chords

between the vertices in {vi, vi+1, ... , Vj}.

Let vi and Vj be two vertic sofa biconnected outerplanar graph G. Denote the two

graph indue d by the boundary path joining vi and Vj as ? 1 := P ij and ? 2 := Pji·

Hence vi and Vj are the only common vertices of ? 1 and ?2.

If neither P1 nor ? 2 hav a tent or a house as a minor such that the base of the

house is a chord of P1 or ? 2 , th n we ay that G is a generalized bipolar graph. The

vertices Vi and Vj are called the poles of G.

4.2 4-Searchable Outerplanar Graphs

In thi section we present the charact rization of 4-searchable biconnected outerplanar

graphs.

Th orem 40 For a biconnected outerplanar graph G the following arc equivalent:

1. s(G) ~ 4.

2. G does not contain any of the graphs in Figure 4.2 as a minor.

3. G is a generalized bipolar graph.

PROOF. We label the v rtice of Gas v1 , v2 , ... , Vn such that they onsecutiv ly

lie on a cycle. We show that (1)~(2)~(3)~(1).

73

CHAPTER 4. 0 THE CHARACTERIZATIO OF 4-SEARCHABLE GRAPHS

Figur 4.2: Forbidden minors for an outerplanar graph with search number 4.

(1}~(2) . All of the graph in Figure 4.2 have earch numb r t rictly greater than

4. Henc they cannot be minor of a graph G where s(G) ~ 4. T hey are al o

maximal in the sense that any minor of these graphs ha arch number at mo t

4.

Without loss of gen rality we may assume a monoton tratcgy [34]. Let us

show that s(G) > 4 for the left mo t graph in Figure 4.2. T he graph G has

6 vertices and 27 edges. Label the ver tic s as in Figure 4.2. If a earch start

with cleaning a vertex v with I (v)l = 4, then it will u eat l ast 5 searcher .

Since the graph is symmetric, we can start with any vertex v with I (v)l = 2.

H nc let the first vertex cleaned be VI· To clean v1 we n ed at least 4 searchers.

When VI is cleaned , we must k ep one searcher on each of v2 and v6 . Hence

there are two free searchers. Ob erve that these two fre earcher do not suffic

to clean any other vertex. Hence a second vertex cannot be cleaned u ing only

4 searchers. Thus s(G) > 4.

AI o notic that deleting any vertex or edge from G or ontracting any edge

will reduc the search number to 4. Hence G is a forbidden minor.

Similar arguments suffice for the other graph in Figur 4.2.

(2)~ (8}. Assume that G does not contain any of the graph in Figure 4.2 as a

74

CHAPTER 4. ON THE CHARACTERIZATION OF4-SEARCHABLE GRAPHS

minor. Let P := P;,j be the graph induced by a maximal length boundary path

with end vertices v; and v1 such that P does not contain a tent or a house as

a minor. Let v;_1 be adjacent to v; and vi- I tj:. P. Also let VJ+I be adjacent

to v1 and Vj+l tj:. P . We denote the boundary path induced by V(P) U V' for

V' ~ V(G) asP+ V'.

Since P is maximal, P + { Vi-I} will contain a tent (or a hou e) as a minor.

Similarly P + {vJ+1} will contain a tent (or a house) as a minor. Since G is

outerplanar, these tents (or houses or a tent and a hou e) are edg disjoint.

Let P' b the the graph induced by the boundary path joining Vj+I and Vi-I

thus P' = P1+l,i- l , and P' is disjoint from P. Then P' cannot contain any tent

or house as a minor since otherwise G would have one of the graphs in Figure

4.2 as a minor by the discussion in the previous paragraph.

Assume that P' + {vi} has a tent or a house as a minor. Denote that minor

as H . Then v; E H , since P' does not contain a hous or a tent as a minor.

Further , there exists a vertex u E { VJ+ 1 , v1+2 , . .. , Vi-2} uch that uv; E E(H).

Thu v;_1 has no neighbor in P other than vi, since G i outerplanar. Hence

P + {v;_I} is a longer boundary path without any tent or a house as a minor,

contradicting the maximality of P. Therefore P' + { v;} do not have a tent or

a hou e as a minor.

Similarly P' + {v1} cannot have a tent or a house as a minor either. Hence

P' + { v;, v1} does not contain any tent or a house as a minor. Thu none of the

boundary paths connecting v; and v1, namely, P and P' + {Vi v1}, contain a

tent or a h0use.

T herefore G is a generalized bipolar graph with vi and v1 as poles.

(3)==} {1). Let G be a generalized bipolar graph and without loss of generali ty assume

that v1 and V; are the poles of G. Let P1 and P2 be the two boundary paths

75

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

v
I

Figure 4.3: A biconnected generalized bipolar graph with poles v1 and vi ·

connecting v1 and vi. First we put a searcher on each of v1 and V11 • Denote them

as a 1 and a2 . Clean all the edges between v1 and V 11 by a third searcher, say a3 .

During th search we always keep a 1 on P1 and a 2 on P2 as guards. The oth r

two searchers are used to clean boundary edges, edges parallel to the boundary

edges and cross chords connecting a vertex in P1 with a vertex in P2 . By the

outerplanarity of G, the cross chords can always be cleaned using a searcher

while the others are used to guard its end vertices.

We show how to clean P1 using a 1 , a3 and a4 where the vert ices are clean d con­

secutively. Similarly one cleans P2 using a2 , a3 and a4 . Assume that v1, v2 , . . . , Vj- l

are cleaned and let a 1 be on Vj .

CASE 1: There are no cross chords incident to vi.

If v1 has at most two contaminated edges incident to it , say e1 = v1v1+1 and

e2 = v1vk, we put a3 on v1 and we clean v1 by sliding a 1 along e1 and a3 along

e2 . If k = j + 1, both searchers are on v1+1 and we proceed to clean Vj + l · If

k = j + 2,· we put a4 on Vj+1 and clean all the dges between Vj +l and V j +2

by a4 . There are no cross chords incident to Vj+ l due to the outerplanarity.

Hence v1+1 is cleaned. Else if k 2: j + 3, since P1 does not contain a house, the

76

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

•

boundary path connecting Vj+I and vk can be cleaned with two earchers for

which we use a 1 and 0'4 .

If Vj has more than two contaminated edge all of which ar incident to one of

VJ+I or vk where k 2: j + 1, the path connecting Vj and vk and all edge induced

by { vj,Vj+L ... ,vk} can be cleaned by a 1,a3 and a4 since there are no houses

or tents contained as a minor.

Otherwis , assume that Vj has at least thr e contaminated dg incident to it

and that these edges are incident to at least three distin t vertice on P1 other

than Vj· L t the last vertex be Vk o that e = VjVk i contaminated and k 2: j +3.

Th only boundary edge in P jk that may have at least two edge parallel to

them arc e1 = VjVJ+1 and e2 = vk- I vk, since otherwise P1 would contain a hou e

as a minor. Hence we put a 3 on Vj as a guard and let a 1 and 0'4 clean P jk and

all edges incident to Vj.

CASE 2: Th re is a cross chord = v 1vi incident to Vj wher v1 E P 2.

We cl an P2 until a 2 reaches v1• We let a 1 stay on Vj and a 2 tay on v1 as guard

and we clean e and all dges parallel to it by a 3 .

We r peat this procedure until either a 1 reaches v; and 0'2 reaches Vi- 1, or, 0'2

reaches v; and a 1 reaches vi+l· Finally we clean th r maining contaminated

edges, i.e., those that ar between v; and v;_1 in the form r case, and those that

are b tweell v; and Vi+ l in the latter case. Hence the graph is cleaned using 4

earchcrs .

77

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

4.3 On 4-Searchable 2-0uterplanar Graphs

In the previous section we have given the obstruction set for out rplanar graphs. Here

we will give the partial results for the obstruction set for 2-outerplanar graphs. Our

intention is to generalize the character of uch a set for any k inc any finite graph

is k-outerplanar for some k .

As noted before, for a fixed k the set of forbidden minors of k-searchable graph

is finite. Nevertheless, the construction of the elements of th ob truction set and it

size are unknown. Furthermore it is shown that from a finite d cription of a minor

clo ed family of graphs, there is no general algorithm to comput the ob truction set

[20].

Before we state our next theor m, we introduce a notation for 2-outerplanar graphs

G. First fix a planar embedding of G. One can deduce from Definition 11 that the

vertex set V of a. biconnected 2-outerplanar graph G can be partitioned into two s ts

~ and v2 so that:

(1) the elements of V1 induce an outerplanar graph, and,

(2) the elements of V2 are tho e that are in the boundary face of G.

According to this definition we denote the class of biconnect d 2-outerplanar

graphs G with partition sets~ and V2 where n1 = 1~1 and n2 = IV2I as O[n11n2].

Note that a graph may belong to two diff rent classes dep nding on it embeddings.

Here out of all pos ible emb ddings in O[n1 , n2] of a 2-outerplanar graph, we choo

the one which minimizes n 1.

Let F denote the set of biconnected forbidden minors for 2-outerplanar 4- earchable

graph . ote that F does not have any element of order 3 or le S1 thus FnO[l , 2] = 0.

The next theorem shows that there is a unique graph that i a forbidden minor

in each of the first three classes of interest.

T heorem 41 The graphs G1 1 G2 and G3 in Figure 4.4 are el ments of F 1 where

7

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

F is the set of biconnected forbidd n minors for 2-outerplanar 4-searchable graphs.

Furthermore, they satisfy the following quations:

{GI} = F n 0[1 , 3],

{G2} = Fn0[1 , 4],

{G3} = F n 0[1 5].

(4.1)

(4.2)

(4.3)

PROOF. We will use analysi by cases to how that G1 , G2 and G3 are forbidden

minors for a 4-searchable 2-outerplanar graph.

The symmetry of G1 allows us to clean the vertices in any order. Since we need

at least 5 searche!·s to clean a first vert x, G1 is not 4-searchabl . D leting any vertex

or contracting any edge would re ult in a graph with 3 verticc that i clearly 4-

searchable. AI o, deleting at I ast one edge we obtain a 4-scarchable graph. From

thi argument it follows that G1 is the unique lement in F n 0[1, 3], ince any minor

of G1 in 0[1, 3] is 4-searchable and any graph in 0[1, 3] that is not 4- earchable will

contain G1 as a minor.

We can quickly analyze all s arch strategies for G2 that us only 4 searchers and

see that after cleaning a first vertex all searchers are stuck. Contracting any edg

would result in a minor of G 1 or a 4-searchable graph. Similarly, deleting an edge

79

CHAPTER 4. ON THE CHARACTERIZATIO OF 4-SEARCHABLE GRAPHS

or a vertex would give a graph with search number at most 4. Hence G2 E F. To

see that any graph G E 0[1, 4] that is not 4-searchable contains either G1 or G2 as a

minor we consider the following cases:

CASE 1: Consecutive vertices on the boundary are connected by at least t hree

parallel edges.

If the vertex v0 that is not on the boundary has at most 2 neighbor , then G is

4-searchable. If v0 has at least 3 neighbors, then G is either 4-searchbale or contains

G1 or G2 as a minor.

CASE 2: At least two consecutive vertex on the boundary are connected with at

most two parallel edges. Verification is done in a similar way to CASE 1.

Thus {G2 } = F n 0[1 , 4] .

To show the last equality we consider four cases for an arbit rary graph G E 0 [1, 5]:

CASE 1: There are no chords between non-consecutive vertices.

CASE 1.1: All consecutiv vertices on th boundary are connected with at most

2 parallel edges.

We give a search strategy that cleans all such graphs by using 4 searchers only.

Place two searchers a1 and a 2 on the center vertex v0 and one searcher on each of

two adjacent boundary verti es v1 and v 2 . Clean all edges between vo, v1 and v2 by

a 1 keeping all other searchers on their initial places. Remove a 1 and place it on v2 .

Th n let the other searcher located on v2 slide along the boundary edge connecting

it to v3 . Since there are at most two such vert ices, there is at most one contaminated

edge incident to v2 . Clean thi edge by sliding a 1 along it. ow a1 can clean all

edges between v3 and v0 . We repeat this until we reach v1. Hence all uch graphs are

4-searchable.

CASE 1.2: At least two consecutive vert x on th boundary are conn cted with

at least 3 parallel edges, at least 2 others are connected with at most two parallel

edges.

80

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

(a) (b)

(c) (d)

Figure 4.5: Subcases considered in Theorem 41.

Case analysis similar to the previous cases bows that all graph in thi subca e

are ith r 4-searchable or they contain G1 or G2 as a minor.

CASE 1.3: All consecutive vertice in the boundary are connect d with at least 3

parallel edg s.

Observe that G3 belongs to this case. It is not possible to clean this graph using

4 searchers. Also deleting any vertex or contracting any edge will result in a 4-

searchable graph. If we delete any edge on the boundary we can cl an the graph with

4 archer u ing the strategy given in CASE 1.1. Hence G3 E F . Ob erve that any

non 4-s archable graph G belonging to this subcase that is not a minor of G3 is a

supergraph of G3 or it contains G1 or G2 as a minor. Hence G3 is the only such graph

that belongs to this subcase.

CASE 2: There are chords between non-consecutive vertice .

There are at most two uch chords. In Figure 4.5 all such possible graphs are

1

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

shown where the dotted edges may or may not exist. Although in Figure 4.5 for

simplicity we put a ingle edge between any two consecutive vert x, they may be

connected with any number of parall 1 edges. Again a long case analy is similar

to the previou ones reveals that all graph that belong to the ubcases are either

4- earchable or they contain G1 or G2 as a minor.

Th refore { G3 } = F n 0[1, 5]. •

Using a similar discussion a in the proof of Theorem 41 w can show that the

graphs G5, G6 a~d G7 given in Figure 4.6 are in the set F. Th v rification that thes

2

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

graphs are indeed forbidden minors is done by case analysi which becomes tediously

long as the order of the graph increases. Although it seems that the e graphs are

the unique forbidden minors in their respective classes, we do not prove this, because

of the growth of the number of cas to consider as the number of chords between

non-cons cutive vertices increases.

To close this chapter we give the other graphs in F that we have found so far . By

analyzing these graphs we point out the difficulty of the characterization of graphs

in F n O[n1 , n2] as n 1 or n2 increase. Thus we do not claim that thi i the complete

characterization of F.

We collected the figures so that G, H E F are given in the arne figure where

G E O[n1 n2] and HE O[n1 , n3]. Here n2 and n3 are not nece sarily equal.

Figure 4.7 shows five graphs that belong to F n 0[2, k], 3 ::; k. We give some of

the graphs in F n 0 [3, k], 3 ::; k in Figure 4.8. The last figure in this section, Figur

4.9, shows graphs in F n 0 [4, k], 4 ::; k.

Although orne of them share some common features, the elements ofF are irreg­

ular in general. otice that all forbidden minors we have given in Figure 4.7 induce

a conn cted graph when the vertices on the boundary face were d leted. This also

holds for most of the graphs in Figure 4 . . In contrast the graph G18 in Figure 4.

is a forbidd n minor in 0[3, 9] which induces an independent s t of vertices when th

outerface is deleted.

Ob erv that most of the forbidden minors given here are highly symmetric. On

the other hand some of them, such as G12 and G15 , are not.

3

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

Figure 4.7: Forbidden minors in 0 [2, k], 3 ~ k.

4

CHAPTER 4. ON THE CHARACTERIZATION OF 4-SEARCHABLE GRAPHS

Figure 4.8: The graphs G13, G14, ... G1s·

5

CHAPTER 4. 0 THE CHARACTERIZATIO OF 4-SEARCHABLE GRAPHS

Figur 4.9: The graphs G19 , G2o and G21 in [4, k] for 4 ~ k .

6

Chapter 5

Conclusion and Future Directions

In the first section we summarize the main results presented in this work and po e

related open problems and som future directions which ari e from our work. The

final section is devoted to a future direction which estimates the search number of

circulant graphs of prime order.

5.1 Conclusion and Open Problems

The research pr sented in this dis ertation covers complexity re ults, cxtremali ty char­

acterizations and comparisonal bounds for edge searching and two of its variation .

An open problem of edge searching is partially solved.

In Chapter 2, we introduce a new weighted version of the edge earching problem.

Our motivation is that there may be networks ·where links have different capaciti

or importance factors . In this setting d contamination is not the same for all edges.

For any graph G, Theorem 13 implies that the pathwidth and th w ighted edge

search number may differ by at most 2. Thi result improv s the bound in Theorem

11. Furthermore, since pw(G) :::; s(G) :::; ws(G) :::; pw(G) + 2, if s(G) = pw(G) + 2,

we have (G) = ws(G). From this result a characterization of graph for which any

87

CHAPTER 5. CONCLUSIO AND FUTURE DIRECTIO S

weight distribution would give the same search number and w ight d search numb r

can be obtain d. For in tance; when G = K 3,3 , we have (G) = 5 and pw(G) = 3,

thus w (G)= 5 for any edge weights for G.

Theorem 16 in Section 2.3 gives equivalent characterization of 2-s arch able weight­

ed graphs. It identifies the forbidden graphs containm nt of which prevents the

weighted search number to be at most two and explains how all such graphs are

structured.

The characterization of unweighted graphs G for which th s arch number is at

most 3 is done in [37] and it is more complicated than the characterization of graph

G for which s(G) ::; 2. One po ible future aim i to find a chara terization theorem

for 3- earchable weighted graphs.

The major result of Chapter 2 is Theorem 22, namely, for any weighted graph

G, we have ws(G) = mws(G) [57]. Thus for every weighted graph G th re exists a

monotonic weighted search that uses the same number of search rs as a non-monotonic

weighted search. Combining Th orem 22 and Theorem 4 we g t

ws(G) = iw (G) = mws(G).

The main implication of Theor m 22 is the NP-completene s of the weighted

searching problem. There are variou complexity problems ari ing from h re. Whether

the problem is still NP-complete when restricted to trees or planar graphs r mains

open. A r lated problem is to to find out if the problem is polynomially solvable for

special classes of graphs, such as chordal graphs.

Secondly, monotonicity implie that one can alway u e a monotonic strategy

without any increase on the number of searchers. This i important since when

considering edg searching problems it is mo t often simpler to work with a monotonic

strategy. Monotonicity is also advantageous when ther are costs relat d to moving

along an edge and to the numb r of moves. If sliding along an edg i very costly, a

monotonic trategy would be de ir d.

CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS

There ar various future directions arising from weighted search. One version

of a weighted search may consider earch rs having differ nt cleaning capacities. In

addi t ion to edges, we can also put weights on vertices and combine weighted edge

search and weighted node search.

In Chapter 3. we introduce fast earching as a variant of edge earching. We

demonstrate fast search strategies wi th several examples. We how that a fast search

strategy for a tree can be computed in linear t ime. We also propose a cost function

that generalize the searching problem.

We prove several results on the fast search number of complete bipartite graphs.

When m is even and 6 ~ m ~ n, we have s JU<m,n) = m + 3. When m is odd

and 3 ~ m ~ n the results ar summarized by Equat ion 3.2 and 3.3. The gaps in

Equations 3.2 and 3.3 may be large depending on m and n. The fasts arch number

of Km,n can be further studied to revise these lower and upper bounds. It remains

open to reduce these gaps to a small constant which do s not depend on m and n.

It would also be interesting to inve tigate the fast search number of other clas es

of graph , such as Cartesian products. In par ticular, the bounds given in Example

for grid may be improved . Besides the fact that much is known about the search

number of these graphs, knowing the fast search number will allow us to examine cost

functions as well.

Theorem 31 implies that the FAST SEARCHING problem is linear when restricted

to trees [1]. Theorem 30 st ates that the fast search number of a tree can be found

from its degree sequence.

We have the following conjecture.

Conjecture 1 FAST SEARCH! G problem is P-complete for gen ral graphs.

W can consider variants of fast searching. In fast searching each edge may only

be traversed once. In another model, one can consider the ase wher for a given

9

CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS

po itive integ r k, each edge of a previously specified subset of edges may be traversed

at most k t imes. This scenario is applicable for instance, to graphs with a small sized

cut set which divides the graph into two almost equal size par ts. Another variant of

the problem may specify the earch r ' start vert ices.

Chapter 4 is devoted to characterization of forbidden minor for a 4-searchable

graph. The characterization for s(G) ~ k i not known for any fixed k ~ 4 [37].

Theorem 40 gives the complete list of forbidden graphs and characterizes all bicon­

nected 4-sear hable outerplanar graphs. However we only have partial results on the

obstruction set for a 2-outerplanar 4-searchable graphs. One future direction is to

complete this set.

We further have the following conjectur

Conjecture 2 If G E 0 [1, k] and 10 ~ k, then G is not a forbidden minor for a

4-s archable 2-outerplanar graph. Equivalently;

F n 0 [1, k] = 0, v k ~ 10.

It would be interesting to know whether or not there are forbidden minors for

biconnected k-outerplanar 4- earchable graphs for k ~ 3 that do not contain any

graph in the obstruction set of outerplanar or 2-outerplanar 4-searchable graphs.

Once the biconnected forbidden minors are known, to complet the haracteriza­

t ion it remains to find out where the graphs with a small r search number can be

attached . This is much simpler than finding the obstruction set.

5.2 A Future Direction

As a fu ture direction of edge searching we consider edge searching of circulant graphs

of prime order and state our conjecture. Let p be a prim numb r and consider th

90

CHAPTER 5. CONCLUSIO AND FUTURE DIRECTIONS

Figure 5.1: The circulant graph circ(17; 3 4) and cir (17; 1, 7)

circulant graph circ(p,S) where S C (Zp\{0}). Thus the computations are done

modulo p.

Notic that circ(p, S) is a Han1iltonian cycle when lSI = 2. Thus (circ(p, S)) = 2

if lSI = 2 and 3 ~ p. Nevertheles , the calculation of the earch number of circ(p, S)

g ts complicated rapidly as the siz of th et S increases.

For brevity, w denote a circulant graph G = circ(p, S) with conn ction set S =

{a, - a, b, - b} as circ(p; a, b), wher 1 ~a< b ~ ~·

Consider circ(p; a, b). Place 2b searchers on the following vertic s: v 1, v2 , ... , vb and

Vn- b+l , Vn- b+2 , ... , v,.. Label these searchers as a 1, a2 , . . . , a2b resp ctively. Place a 2b+1

on v 1 and cl an all the edges with both end vetices in { Vn-b+l , Vn- b+2, . . . , v,., v 1, v2 , . . . ,

vb}· The only contaminated edg incident to v1 is v 1v b+1 , thu 1 t a 1 slide along

this edg and clean v1. Next 1 t a1 cl an all the edges with both end vetices in

{vn- b+t,Vn- b+2 , ... , vn,v2, . .. , vb,vb+d· Now a2 can slide along V2Vb+2 and clean v2.

We clean v1, v2 , . .. , vb in the same way. We repeat this shifting of searcher on

v1 , v2 , . . . , vb to vb+l, v b+2, . .. , v2b for every group of b consequtive vertex and clean

91

CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS

the whole graph. Thus we have the following resul t :

Theorem 42 If p is a prime number and 1 :::; a < b :::; ~, then

s(circ(p;a,b)):::; 2b+ 1.

In order to consider isomorphic circulant graphs, we use multiplication in Zp· Let

f : { 1, 2, ... , p} --t { 1, 2, .. . , p} so that f (n) = (n - 1) a + 1 w h re 1 :::; a < ~. It

is a simple observation that f is an isomorphism between circ(p; a, b) and circ(p; 1, c)

where 1 :::; a < b :::; ~ and c = ba-1. Here a- 1 denotes the multiplicative inverse

of a with respect to the cyclic group (Zp, ·). Thus for every circulant graph G with

connection set of size 4, there exists an integer c where 2 :::; c :::; ~ such that G is

isomorphic to circ(p; 1, c).

From this argument it follows that the graphs in Figure 5.1, circ(17;3, 4) and

eire(17; 1, 7) , ar isomorphic and thus they have the sam search number and this

number is bounded above by 9 by Theorem 42.

Furthermore, we can show similarly that for any k ~ 1,

circ(p; 1, c)~ circ(p; k, ck) .

Thus when analyzing the circulant graphs circ(p; a, b) , it i sufficient to look at

circulants circ(p; k, ck) for ev ry k ~ 1 and 2 :::; c :::; ~.

The following conjecture gives a bound on the product of an el ment of Zp and a

positive integer less than or equal to the ceiling of the root of p.

Conjecture 3 For every prime p and every integer i = 1, 2, .. . , ~, there exists an

integer j, 1 :::; j :::; r v'Pl such that either

ij :::; r .JPl (mod p),

or,

p- ij:::; r /Pl (mod p).

92

CHAPTER 5. CONCLUSION AND FUTURE DIRECTIO S

We have a Maple code that mininimizes the maximum de ired product. This

ongoing code shows that Conj cture 3 holds for up to the 6000th prime. Thus by

Theorem 42 and the isomophisms we have given, the following i true for the first

6000 primes:

s(circ(p, S)) ~ 21 JPl + 1 (5.1)

for every circulant graph, circ(p,S), where S ~ (Zp\{0}), lSI~ 4.

93

Bibliography

[1] S. Alpern and S. Gal, The theory of search games and rendezvou International

Series in Operations Research and Management Science 55 Kluwer Academic

Publishers Boston, 2003.

[2] S. Arnborg, D.G . Corneil , and A. Pro kurowski , Complexity of finding embed­

dings in a k -tree, SIAM J. Alg. Disc. Meth ., 8 (1987) pp. 277- 2 4.

[3] B. Alspach, Cayley Graphs in Topics in Algebraic Graph Theory, Edi ted by L.

W. Bein ke and R. J. Wilson, Cambridge University Pr s , 2004.

[4] B. Alspach, D. Dyer , D. Hanson, and B. Yang, Lower bound on edge searching,

P roceedings of the 1st International Symposium on Combinatoric , Algorithms

Probabilistic and Experimental Methodologie (ESCAPE'07), L cture notes in

Comput r Science, Vol. 4614, Springer-V rlag (2007) pp. 516- 527.

[5] B. Alspach, D. Dyer , D. Hanson , and B. Yang, Time constrained graph searching,

Theoretical Computer Science - Special Issue on GraphS arching, Vol. 399 Issue:

3 (200) pp. 158- 168.

[6] J. Barat , Directed path-width and monotonicity in digraph searching, Graphs

Combin. , 22 (2006) pp. 161-172.

94

BIBLIOGRAPHY

[7] L. Barriere, P. Flocchini , P. Fraigniaud, and N. Santoro, Capture of an intruder

by m obile agents. Proceedings of the 14th annual ACM sympo ium on Parallel

algorithms and architectures (2002) pp. 200- 209.

[] L. Barriere, P. Fraigniaud, . Santoro and D. Thiliko Searching is not Jumping,

Proce dings of the 29th Workshop on Graph T heoretic Concepts in Computer

Science (WG '03), Lecture notes in Computer Science, Vol. 2 0, Springer-Verlag

(2003) pp.34- 45.

[9] L. Barriere P. Fraigniaud . Santoro and D. Thilikos, Connected and Internal

Graph Searching, URL: citeseer.i t.psu.edu/636007.html.

[10] A. Berarducci and B. Intrigila, On the Cop Number of a Graph, Advances in

Appl. Math. 14 (1993) pp. 389- 403.

[11] D. Bienstock and P. Seymour, Monotonicity in Graph Searching, lournal of Al­

gorithms 12 (1991) pp. 239- 245.

[12] H. L. Bodlaender and D. M. T hilikos, Computing small search numbers in linear

time, Technical Report o. UU-CS-199 -05, Dept. of Computer Science Utrecht

University (1998) .

[13] H. L. Bodla. nder and T . Kloks, Efficient and constructive algorithms for the

pathwidth and treewidth of graphs J . Algorithms, 21(2) (1996) pp. 35 - 402.

[14] R. L. Breisch , An intuitive approach to speleotopology, Southwe tern Cavers 6

(1967) pp. 72- 7 .

[15] L. S. Chandran and T. Kavitha, The treewidth and pathwidth of hypercubes,

Discrete Mathematics 306 (2006) pp. 359- 365.

[16] F. Chung, On the cutwidth and the topological bandwidth of a tree, SIAM J .

Algebraic Discrete Methods 6 (19 5) pp. 26 - 277.

95

BIBLIOGRAPHY

[17] D. Dyer , Sweeping Graphs and Digraphs, PhD Thesis, Simon Fraser University,

2004.

[1] D. Dyer , B. Yang and b . Y~ar On the Fast Searching Problem, Lecture Totes

in Computer Science 5034 Springer-Verlag (200) pp. 143-154.

[19] J. A. Ellis, I. H. Sud borough, J . S. Thrner, The Vertex S eparation and Search

Number of a Graph, Information and Computation 113 (1994) pp. 50- 79.

[20] M. Fellows, M. A. Langston, On search, decision and efficiency of polynomial

time algorithms, In 21th ACM Symp. on T heory of Computing (19 9) pp. 501-

512.

[21] F . V. Fomin and P. A. Golovach, Graph searching and interval completion, SIAM

Journal on Discrete Mathematics 13 (2000) pp. 454- 464.

[22] F. V. Fomin, P. Heggern s and J . A. Telle, Graph searching, elimination trees,

and a genemlization of bandwidth, Algorithmica 41 (2004) pp. 73- 7.

[23] F. V. Fomin and D. M. Thilikos, An annotated bibliography on guaranteed graph

searching Theoretical Computer Science, Special Issu on Graph Searching, sub­

mitted on Nov. 2007.

[24] P. A. Golovach , Equivalence of two formalizations of a search problem on a graph

(in Russian), Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (19 9) pp. 10- 14.

Translation in Vestnik Leningrad Univ. Math. 22, no. 1, (19 9) pp. 13- 19.

[25] L. J . Guiba Jean-Claude Latombe, Steven M. LaValle David Lin, Rajeev Mot­

wani , A Visibility-B ased Pursuit-Evasion Problem, International Journal of Com­

putational Geometry and Applications 9, No: 4/ 5 (1999) pp. 471- 493.

[26] G. Hahn, F . Laviolette, . Sau rand R.E . Woodrow, On cop-win graphs, Discrete

Math. 25 (2002) , pp. 27-41.

96

BIBLIOGRAPHY

[27] G. Hahn and G. MacGillivray, A note on k-cop, l-robber game on graphs, Dis­

crete Math. 306 (2006) pp. 2492- 2497.

[2] F. Harary and G. Prins, The block-cutpoint-tree of a graph, Publ. Math. Debrecen

13 (1966) pp. 103- 107.

[29] T . Johnson, N. Robertson, P. Seymour and R. Thomas, Directed tree-width,

Journal of Combinatorial Theory Series B, 82 (2001) pp. 13 - 154.

[30] V. i~ler , S. Kannan, and S. Khanna, Locating and capturing an evader in a

polygonal environment, Springer Tracts in Advanced Robotic 17 (2005) pp.

251- 28.

[31] . G. Kinnersley, The Vertex Separation Number of a graph equal its path-width,

Information Processing Letters 42 (1992) pp. 345- 350.

[32] L. M. Kirousis and C. H. Papadimitriou, Searching and Pebbling, Theoretical

Computer Science 47 (19 6) pp. 205- 21 .

[33] L. M. Kirousis and C. H. Papadimitriou, Interval Graph and Searching, Disc.

tlath. 55 (19 5) pp. 1 1- 184

[34] A. S. LaPaugh, Recontamination does not help to search a graph, Journal of

ACM, 40 (1993) pp. 224- 245.

[35] F. S. Makedon, C. H. Papadimitriou and I. H. Sudborough, Topological Band­

width, SIAM Journal Algebraic Di crete lethods 6 (19 5) pp. 41 - 444.

[36] F. Makedon and H. Sudborough, Minimizing width in linear layout, Lecture note

in Computer Science, Vol. 154, Springer-Verlag (1983) pp.47 - 490.

[37] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. John on, C. H. Papadimitriou,

The Complexity of Searching a Graph, Journal of ACM, 35 (19) pp. 18- 44.

97

BIBLIOGRAPHY

[38] B. Monien and I. H. Sudborough, Min-Cut is NP-complete for edge weighted

trees, Theor tical Computer Science 58 (1988) pp. 209- 229.

[39] R. H. Mohring, Graph Problems Related to Gate Matrix Layout and PLA Folding,

in G. Tinnhofer et al. eds., Computational Graph Theory Springer, Computing

Supplementum 7 (1990) pp. 17- 32.

[40] R. J. Nowakowski and P. Winkler, Vertex-to-vertex Pursuit in a Graph, Discrete

Math. 43 (1983) pp. 235- 239.

[41] R. J. Nowakowski, Search and sweep numbers of finite directed acylic graphs,

Discrete Applied Mathematics, 41 (1993) pp. 1- ll.

[42] T. D. Parsons, Pursuit-evasion in a graph, Theory and Applications of Graphs,

L cture otes in Mathematics, Springer-Verlag (1976) pp.426- 441.

[43] T. D. Parsons, The search number of a connected graph, in Proceedings of the

Ninth Southeastern Conference on Combinatorics, Graph Theory and Comput­

ing, vol. XXI of Congress. umer. Utilitas Math. (197) pp. 549- 554.

[44] S.-1. Peng, C. Y. Tang M.-T. Ko, C.-W. Ho and T.-s. H u , Graph Searching on

Some Subclasses of Chordal Graphs, Algorithmica 27(3) (2000) pp. 395- 426.

[45] . Petrov, A problem of pursuit in the a,bsence of information on the pursued,

Differentsial'nye Uravneniya 1 (19 2) pp. 1345- 1352.

[46] D. Rautenbach, Lower bounds on treespan, Inf. Proces . Lett. Vol. 96 o. 2 (2005)

pp. 67- 70.

[47] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a Forest, Journal

of Combinatorial Theory, Series B 35 (1983) pp. 39- 61.

9

BIBLIOGRAPHY

[48] N. Robertson and P. D. S ymour, Graph minors- a survey, in: I. Anderson (Ed.),

Surveys in Combinatorics, Cambridge University Press, Cambridge (19 5) pp.

153- 171.

[49] . Robertson and P. D. S ymour, Graph minors. II. Algorithmic Aspects of

Tree- Width, Journal of Algorithm 7 (19 6) pp. 309- 322.

[50] D. M. Thilikos, Algorithms and Obstructions for linear-width and related search

parameters, Discrete Appl. Math. 105 (2000) pp. 239- 271.

[51] A. Quilliot, These d 'Etat, Universite de Paris VI, 19 3.

[52] D. B. West, Introduction to Graph Theory, Prentice Hall , 1996.

[53] H. Whitney, Congruent graph and the connectivity of graph , Amer. J. Math.

54 (1932) pp. 150- 168.

[54] B. Yang and Y. Cao, Digraph Strong Searching: Monotonicity and Complexity,

in AAIM (2007) pp. 37- 46.

[55] B. Yang, D. Dyer, and B. Alspach, Sweeping graphs with large clique number,

Proceedings of 15th International Symposium on Algorithms and Computation

(ISAAC'04) , R. Fleischer and G. Trippen Eds. , Lecture Note in Computer Sci­

ence, Vol. 3:H1, Springer-Verlag (2004) pp. 908- 920.

[56] B. Yang D. Dyer, and B. Alspach, Sweeping graphs with large clique number, To

appear in Discrete Mathematics.

[57] b. Y~ar , D. Dyer, D. A. Pike and M. Kondratieva Weighted Edge Searching,

To appear in Discrete Applied Mathematics.

99

Index

ith searcher CTi, 16

k-fast- earchable, 55

k-outerplanar, 72

active, 2

acyclic, 2

adjac nt , 1

base, 72

biconnected, 4

block graph, 5

branch, 60

Cayley graph 5

chord, 2

circuit, 3

circulant graph eire(n , S), 6

clean edge, in weighted search, 13

clique, 3

color 5

complete bipartite graph Km,n, 3

complete graph Kn , 3

connect d, 2

connection set S, 5

containment relation, 32

crusade, 37

cut vertex, 4

cycle Cn 2

dangling, 2

degree deg(v) 2

ear decomposition 4

edge contraction, 4

edge deletion, 4

end vertex for CJ , 1

end vertices, 2

Eulerian circuit, 3

exposed vertex, 20

fast search number 1(G) , 15

fast earch strategy, 15

forbidden minor, 9

generalized bipolar graph 73

girth, 2

graph G , 1

grid , 3

guarded vertex, 7

100

INDEX

house, 72

incident to, 2

isomorphic, 5

layout , 2

leaf, 2

lighter minor, 4

lighter subgraph , 4

lighter than, 4

minor, 4

moves, in edge search, 6

multigraph 2

neighborhood, 3

obstruction et, 9

order, 2

outerplanar, 72

partial layout , 28

partially clean edge, 13

path addition, 4

path decomposition, 27

path of length n Pn, 2

pathwidth pw(G) , 27

pendant edge, 3

planar, 5

pole, 73

product of two graphs GDH , 3

progressive crusade, 38

reduction in weighted graphs, 31

reflexive graph, 2

ize, 2

start vertex for CJ , 1

subdivision , 3

suspended path, 2

tent 72

tree, 2

valid coloring, 5

vertex separation vs(G) , 2

vertex separator, 28

weighted graph G = (V, E, w), 3

101

