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Chapter 1

Introduction

Mathematical models can be used to make predictions about specific behaviours and
future activity of contaminated systemns. Two mathematical mnodels have been de-
veloped here to predict the effect that certain environinental char :s have on the
mercury content of food fish. To date, the majority of mercury models have been sta-
tistical models or mass-balance nmodels that do not use dynamical systems analysis
but, rather, rely on ass  ing various values to parameters and running simulations
using modeling software (Harris & daly, 1998; Hudson, Gherini, Watras & Porcella,
1994; MacRury, Graeb, >hunson & Clements, 2002).

These are the first dynamical systems models developed to study mercury be-
haviour in aquatic systems. her dynamiical systems models for contamination of
aquatic systems have typically dealt with toxicants that cause very different system
behaviour than mercury. ...ese models focus on population depletion factors caused

by the introduction of a strong toxicant, including increased death rate due to toxi-
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organic methyl mercury (National Research Council, 2000). Mercury and its unique
properties have been known for thousands of ye s. In many cultures, mercury was
thought to have magical properties and eveun to prolong life. The ancient Greeks used
nercury in ointments and the Romans  ed it in cosmetics. By 500 BC. mercury was
being used to make amalgams with other metals. In more recent times, mercury has
been used in a variety of different products including thermometers, barometers, neou
signs, energy efficient compact fluorescent light bulbs. automobile sensors, herbicides,
and some medications including laxatives and antidepressants. The practice of using
niercury in medications and herbicides was largely discontinued when toxic effects of
mercury were discovered. There are still some cultures, however, in which mercury is
used for folk medicine and ceremonial purposes, and it is still used in dental amalgains
in many places.

In the 19th century it was discovered that exposure to high levels of mercury can
cause serious health effects in humans. Since then, research has shown many harmful
effects of mercury exposure including productive impairent, growth inhibition,
developmental abuormalities, personality changes, and altered behavioural responses
(Beckvar, Field, Salazar & Hoff, 1996). Pregnant women need to monitor mercury
consumption because mercury can be transferred to the fetus and can interfere with
brain development of the embryo (Clarkson, 1994). In extreme cases, 1en people are
exposed to very high levels of mercury, scrious neurological damage can result includ-
ing numbness in limbs and lips. slurred speech, constricted vision, severe personality
changes, and even death.

There is increasing evidence that even low levels of mercury can have significant

13



effects on human health. Recent studies have demonstrated reproductive and cardio-
vascular problems in humans that have been exposed to mercury (National Rescarch
Council, 2000). The1  -known case of human mercury exposure occurred in Mina-
mata, Japan in the 1950s when a chew: il plant began dumping mercury-containing
waste into Minamata Bay. Local people that were catching and eating fish from the
bay began to exhibit very stran  symptoms and behaviour including sensory im-
pairment, constriction of visual fields, hearing loss, and speech disturbaunces (Eisler,
1987). Eventually it was determined that mercury in fish was the cause of the problem
but, by that time, thousands of p  »le had been affected. A similar mercury poison-
ing event occurred in Canada in the 1960s, in the English-Wabigoon River system in
northwestern Ontario. In this case, a chemical plant was discharging approximately
3000 1bs of mercury annually between 1962-1970 (Fimreite & Reynolds, 1973). As
a result, many First Nations people who ate fish from the English-Wabigoon system
experienced health problems associated with mercury poisoning. In addition to the
human health issues, there was a scrious economic effect whereby commercial fish-
ers lost their source of livelihood  mercury levels in the fish they caught exceeded

comuercially acceptable limits.

1.2 Mercury in lake systems

Lakes obtain mercury from atmospheric deposition and from soil leaching. with the
majority coming from atmospheric dep  tion (Watras et al., 1995; Fitzgerald, Mason,

Vandal & Dulac, 1994). Mercury enters the atmosphere through both natural and
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anthropogenic means. Mercury is released naturally from the earth’s crust through
volcanic activity, weatheri  of ro i and from the oceans. A significant portion of the
atmospheric mercury burden is a result of anthropogenic activities including mining,
coal combustion, incineration of nmerct _ -containing items and metal smelting.

The mercury cycle is complex 2 Figure 1.1). The forms of mercury most abun-
dant in the atmosphere are elemental mercury (Hg®) and inorganic mercury (Hg[II}).
Elenmental mercury has a high vapour pressure. * s low solubility, does not combine
with inorganic or organic ligands, and is not available for methylation. Inorganic
mercury is primarily bound to particulates and organic substances, and makes up
most of the mercury that is released into the enviromnent. When inorganic mercury
is deposited in aquatic systems, it can be transformed into methyl mercury (Houck &
Cech, 2004). Methyl mercury (Ct 1g™) is the nost toxic form of mercury (National
Research Council, 2000). It is extremely mobile, very stable, and can easily penetrate
membranes in living organisms (Houck & Cech, )04).

Mercury has been observed worldwide in a variety of lake environments including
many that have no local sources of mercury. Mercury can be transported long dis-
tances in the atmosphere due to a long atmospheric residence time of approximately
one year (Fitzgerald, 1989). Mercury occurs in the atmospherc almost entirely in
its elemental form (Fitzgerald et al., 1994; Porcella, 1994) which can be oxidized to
mercuric ion Hg[lI] by photocatalytic reactions (Brosset, 1987). Although inorganic
Hg/[IT] and methyl mercury constitute < 2% of the total mercury concentration in air.
the majority of atmospheric mercury deposition is in one of these forms with the vast

majority being deposited as inorganic Hg[II] (Watras et al., 1994). Methyl mercury
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is produced in lake systems by methylation of Hg II]. This process is usually bacteri-
ally mediated and occurs mostly i organic-rich compartments of aquatic ecosvsters
such as sediments, organic nutrients in the water column and periphyton communities
(Eisler, 2006; Xun. Campbell & Rudd, 1937). A small amount of methylation also
occurs within the gastrointestinal tract and ou the external slime layer of fish (Rudd,
Furutani & Turner, 1980; McKone, Young, Bache & Lisk, 1971).

Ouce Hg[l1] is in lake water. it can be reduced to elemental Hg®, methylated in the
water column to form methyl mercury, or buried = sediment (Winfrey & Rudd, 1989;
Porcella, 1994; Houck & Cech, 2004). Hg" that forms in lake water is eventually lost
to the atmosphere via evasion (Winfrey & Rudd, 1989). Once methyl mercury has
formed in the water column it is available for intake by lake biota and some will be
bloaccumulated by organisms at the bottom of the food web and then biomagnified
up the food web. Methyl mercury th.  does not enter the food web will either be
further methylated to dimethylmercury (CH3HgCHj3) which is quickly released from
lakes (Winfrey & Rudd, 1989). or will be demethylated to form Hg® and methane
(Begley, Walts & Walsh, 1986).  nally, Hg II] that is buried in sediment can be
methylated to form methyl mercury which can be released into the lake water and
is again bioavailable (Matilainen, Verta, Niemi & Uusi-Rauva, 1991). In addition to
atmospheric deposition, methyl mercury can enter lakes directly thre gh water runoff
from terrestrial environments and watersheds (Verta et al., 1995; Hultberg, Iverfeldt
& Lee, 1994). Methyl mercury is also removed from lakes via tributaries and ground
water.

Methyl mercury production in lake water can be affected by euvironmental fac-
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1.3 Mercury in fish

Methyl mercury is biom 1ified through the food web (Beckvar, Field, Salazar &
Hoff, 1996). This means that methyl mercury concentration increases with increasing
trophic position. Methyl mercury in lakes and streams can be absorbed or ingested by
organisms at the base of the food chain. This me yl mercury can then be transferred
up through the aquatic food > into top predator fish. As a result, piscivorous fish
are exposed to higher concentrations of methyl mercury than fish that feed on lower
trophic organisms such as invertebrates.

The majority of mercury entering lake systems is in an inorganic form (Watras
et al., 1994). Once inorganic mercury is deposited into a lake it can be converted
to methyl mercury by microorganisms, primarily anaerobic bacteria (Compeau &
Bartha, 1985). Methyl mercury can be taken in by aquatic organisms either directly
from water via gill membranes du g respiration, or through food sources (de Freitas,
Gidney, McKimmon & Norstrom, 1975; Sarica et al., 2004; Hall, Bodaly, Fudge. Rudd
& Rosenberg, 1996) with the majority (> 90%) coming from food sources (Beckvar
et al., 1996; Hall et al., 1996). While both inorganic mercury and methyl mercury
can be taken in by aquatic organisms, methyl mercury is accumulated more quickly
because it has a much slower depuration rate. As a result, approximately 95% of
mercury contained in fish is methyl mercury (Bloom, 1992). For this reason, and
because of methyl mercury’s: ociated toxic effects, this is the form of mercury that
we are concerned with in this study.

Methyl mercury accumnulation can be affecte by diet. Fish undergo dietary
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changes due to season, habitat change, and life history development. These changes
can affect methyl mercury exposure and accumulation. Lake temperature and season
affect accumulation rates directly by changing fish metabolic rate, and indirectly by
influencing methylation rates which alter inethyl mercury availability (Verta et al.,
1994).

The fish that humans eat are typically the top predators. Top predator fish
contain the most methyl mercury due to biomagnification. For this reason, methyl
mercury contained in fish can be a seri s health concern. Health Canada’s guideline
for maximuni mercury content in commercial marine and freshwater fish is 0.5 parts
per million (ppm). While fish are considered a healthy food choice because they are
high in protein and low in saturated fat, certain fish species consumed in Canada are
known to exceed the 0.5 ppm guideline. As a result, the Canadian Food Inspection
Agency has advised consumers, es  ially pregnant women and childreu. to limit the

consumption of certain fish due to methyl mercury content (Health Canada, 2002).

1.4 Mercury = 7 abra or

Elevated levels of mercury in Canadian lakes is a recognized problem. Across the
country, fish have been found coutaining methyl mercury levels exceeding the recom-
mended guideline of 0.5 ppm set by  alth Canada (Anderson, Scruton, Williams
& Pavne, 1995; Drvsdale, Burgess. d’Entremont, Carter & DBrun, 2005; Weech,
Scheuhammer, Elliott & Cheng, 2004). This is particularly a concern for comnmu-

nities that consume fish on a regular basis. The Innu population in Labrador is one
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such group of people. The Innu ] »ple consun fish from local lakes almost daily

(Laura Atikessé, personal communication, March 11, 2008).

Figure 1.2: Labrador study lakes

The work in this tl focuses on four Bori  forest lakes in Labrador. In con-
sultation with the Innu, these lakes were chosen due to frequent food fish harvesting.
The properties of these lakes are typical of the hundreds of thousands of Boreal forest
lakes in Canada. The lake characteristics and native fish species are presented in
Table 1.1 and lake locations are shown in Figure 1.2. There are no point sources
of mercury pollution nearby, yet some fish from these lakes were found to contain
elevated levels of mercury (Roux, 2008). This poses an increased health risk to fre-

quent fish consumers (like the In' ), thus establishing a need for long-term research
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Name Lake area | pH | Location Native Fish Species
(krm™

No Name Lake | 27.40 5.0 | 0z41'8 05 24 W | brook  trout,  longnose
sucker, northern pike and
white sucker

Rocky Pond 6.21 5.9 | 52°46°N,59°35'W | brook  trout,  longnose
sucker, northern pike and
white snelker

Shipiskan 17.21 6.3 | 54°39'N,62°24°W | lake trourt, 1ougnose sucker,
northern pike and whitefish

Panch ZU.00 6.0 | 53°15’N,59°04’W | brook  trout, lougnose
sucker, northern  pike.
Atlantic  salmon,  white
sucker ]

Table 1.1: Lake characteristics and native fish species

on mercury contamination and the consequence for human health.

1.4.1 Native fish speci

All fish described in this section are harvested and eaten by the Innu year-round. The

information provided was taken from Scott and Crossman (1973) unless otherwise

noted.

Northern pike (Esoz lucius) are native to all the study lakes. Northern pike are

a large, long-lived fish

:cies that have been reported to live up to 30 years. and to

grow well over 1 m long. Adult pike are classed as ommivorous carnivores becausec

they will eat any living vertebrate that they can get their jaws around.

Lake trout (Salvelinus namaycush) are native to many lakes in Labrador, but were

caught in only one of the study lakes. The lake trout is one of the world’s largest



freshwater fish and can grow to well over a metre in length (Ryan, 1988). This is
a long-lived fish that often lives 15 to 25 years. The lake trout is a top predator in
the study lakes and prefers to eat fish but will eat other food if necessary, including
aquatic and terrestrial insects, freshwater sponges, and small mammals.

Brook trout (Salvelinus fontinalis), one of the most popular game fish in eastern
Canada, were caught in three of the four study lakes. They are carnivorous and
eat a variety of food including plankton, insects, worms, snails, mice and some fish
with prey size increasing with size of -out (Ryan, 1988). Brook trout are much
sinaller than northern pike, growing to an aver : length of 25-30 centimetres, and
are typically short-lived (< 5 years). Brook trout 3 preyed upon by the top predator
fish in the study lakes.

The white sucker (Catostomos comersonii) was found in three of the four study
lakes. These fish are bottom feeders that are only moderately active in the daytime
with active feeding taki: place n  *sunrise and sunset. The diet of this fish consists
primarily of chironomids, trichopt 1, and mollusks. The white sucker is a food item
for top predator fish in the study lakes.

The longnose sucker (Catostomos catostomos) was found in all the study lakes.
This fish is a bottom feeder and feeds exclusively on benthic invertebrates including
amphipods, trichoptera, and gastropods. This fish is preyed upon by top predator
fish in the study lakes.

The Atlantic salmon (Salmo salar) native to the basin of the North Atlantic
Ocean. It is found throughout Ni  foundland and Labrador but was caught in only

one of the study lakes. The Atlantic sa.  n is an anadronious fish, however, a number
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of populations throughout Newfoundland and Labrador arc landlocked, including the
salmon in this study. Salmon typically feed upon aquatic insect. larvae of chironomids,
mayflies, caddisflies, bla«  ies, and stoneflies, as well as some terrestrial insects. The
Atlantic salmon is well-known  ound the world as both a game fish ar  a commercial
species. The salmon population in the Labrador study lake is preyed upon by northern
pike.

Lake whitefish (Coregonus clupeaformis) are native to many lakes in Labrador but
were caught in only one of the study lakes. Lake whitefish are a cool water species
and a bottom feeder, consuming a variety of aquatic insect larvae, mollusks, and
amphipods. The lake whitefish is one of the most valuable commercial freshwater fish

in Canada and are preyed on by top predator fish in the study lakes.



Chapter 2

Modeling with dvnamical systems

Dynamical systems moc s are useful tools for studying complex systems that change
over time. Ordinary differential equations (ODEs) describing system behaviour are
used to show the evolution of the rstem over time. ODEs can sometimes be solved
(e.g., if they are linear) but usually are too complex to solve explicitly. In the latter
case, dynamical system techniques are used to obtain information about the solution
without actually solving the system explicitly. Dynamical systems techniques can be
used to make predictions about future activity and performance of systems under var-
lous scenarios and to show loy  terin b aviour. Because biological systems typically
involve complicated interactions beyond simple proportionality between coinponents,
they are said to be fund.  mutally non™ ‘ar: a nonlinear OI'"" model and a dynain-
ical systems solution approach is leal for the analysis of such systems. A Boreal
lake containing mercury can be modeled as a dynamical system of several interacting

variables including fish biomass, fish mercury content, and lake mercury content. The






stabilities of the fixed poiuts

Further analysis performed in this study involves phase portrait analysis of the
system to determine qualitative t  ectory behaviour and bifurcation analysis to as-
sess systeni behaviour change when selected system parameters are varied. Maple
software is used to determine 1 fixed points and eigenvalues. The remainder of this
chapter provides background infor itic necessary for understanding the mathemat-
ical analysis used in this study. An introductory text on dynamical systems theory

such as Boyce and DiPrima (2005) or ! -ogatz (2001) will provide more details.

2.1 Fixed points of ¢_stem

A fixed point is a location in phase space where the system state is motionless. Phase
space is the set of all possible states of the system. The path in phase space that
a dynamical system solution follov is called an orbit or phase trajectory. An orbit
begins at an initial point and has an orientation consistent with increasing values of
time. A fixed point is a type of orbit 1at is just one point in phase space as the
system changes with time. Fixed oints represent equilibrium solutions, also known
as steady state solutions. In the current study, t.  value of the system variables (. e..
fish biomass, fish mercury content, and lake mercury content) will be constant at the
fixed point, even though mercury is still entering and leaving the lake, and fish are
still reproducing and dyi

Definition Consider the nonlinear system of ordinary differential equations



d.’L‘i
dt

= fi(x)a (21)

fori=1,...,n
where f; are non-linear functions of X, and x = (1, ..., ).

A fized point T € R" is a point for which

fi@) =0 (:

!\J
I
~—

foralli=1,...,n

In other words, the point T corresponds to a solution at which the system does
not undergo any change.

A fixed point (or equilibri 1) is said to be stable if all sufficiently small distur-
bances damp out in time. Otherwise, it is said to be unstable.

Definition A fized point T is said to be stable if, given ¢ > 0, there is a § > 0 such
that every solution x = ¢(t) of the system (2.1) which at t = 0 satisfies [p(0) — 7| < 6
exists and satisfies |p(t) —T| < € for allt > 0. A fized point that is not stable is said
to be unstable.

In other words, if s stable ”~ ed point, then all solutions that start sufficiently
close (within the distance ¢ ) to T stay close (within the distance ¢).

Definition A fired point s said to be asymptotically stable if it is stable and,
in addition, |¢(t) —Z| 0 ast — oc.

If T is an asymptotically stable fixed point, then all solutions that start sufficiently

close to T will approach



In the model analysis in Chapter 4, fixed points denoted as "stable” may be
technically referred to as "asymptotica - stable”.

Eigenvalue analysis can be performe to deterniine the stability property of typical
fixed points. In order to do this. an understanding of linear algebra techniques and

ideas is required.

2.2 Linear systems of ODEs

A system of n simultanec  linear algebraic equations in n variables,

a)ry + a2 + ... + Q1py = b1

ATy + Analo + oo + Gondn — bn
can be written as

Ax=Db
where the n x n matrix  and the vector b are given, and the components of x are
to be determined.

The equation

Ax=D
can be viewed as a linear transforinatic  that transforms a given vector x to a given
vector b. To find such vectors we set = AX, where A is a scalar proportionality
factor. We then seek solutions of the equations

Ax =X

or

o
o.4]



(A-2D)x=0
where I is the identity matrix. The latter equation has nonzero solutions if and only if
A is chosen so that det(A —AI) = 0. This equation is called the characteristic equation
and values of A that satisfy this equation are called eigenvalues of the matrix A. In
other words, the eigenvalues of A are the roots of the characteristic equation.

The eigenvalue problem for syster of linear algebraic equations is related to
solutions of linear differential equations. Solutions of linear differential equations can
be determined using the eigenvalue problem for algebraic equations as follows.

A system of n linear differential equations

.i'l = au(t)zl + (112(1:).272 —+ ...+ aln,(t).rn

Tn = am ()T + an2(B)z2 + ... + @nn(t)zn

can be written in matrix notation as

% = A(t)x (2.3)

where z, = ¢,(t),..., 5, = @,(t) are the components of the vector x = ¢(t) and
an(t), ..., @nn(t) are the elements of ¢ n x n matrix A(t). The eigenvalues of a
matrix A can be used to find sol' ons for differential equations whereby system 2.3
has solution x(t) = e*v if and only if, for the matrix A, ) is an eigenvalue and v its

corresponding eigenvector.




2.3 Analysing systems of nonlinear ODEs

A system of nonlinear ODEs may have several fixed points. For nonlinear systems
there is often no way to calculate explicit solutions so we instead try to determine
the qualitative behaviour of the solutions. Near the fixed point, a typical nonlinear
system behaves like a linear systemn and can be approximated by linearized equations.
Linearizing about a fixed point gives a more qu: tative measure of stability.

System behaviour can be graphically represer d using a phase portrait. A phase
portrait is a pictorial view in phas¢ ace showing fixed points and all the qualitatively
different orbits of the system. Fig 2.1 1is an example of a phase portrait. This phase
portrait shows one (asymptotically) stable fixed point with an orbit spiralling inward

towards it.

Figure 2.1: Phase portrait
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2.4 Stability -f a fixed point

Linearizing a set of nonlinear equations about a fixed point provii  insight to lo-
cal behaviour. Stability properties of the fixed point can be found by studying the
eigenvalues of the linearized system. Eigenvalues associated with a fixed point can
either be real or complex. In the case of real eigenvalues, if one or more eigenvalues
are positive the solution is unstable and will move away from the fixed poiut with
time. When all eigenvalues are negative, the solution is stable and tends toward the
fixed point with time. Complex e  wvalues cause oscillatory behaviour of the systein
solution. In the case of complex eigenvalues, the fixed point is stable when the real
parts of the eigenvalues are negative, and is unstable otherwise. Oscillations decay
over time if the fixed point is  ble, and grow over time if the fixed point is unstable.
The frequency of the osci  ionsis dete 1ined by the complex part of the eigenvalues.

When a fixed point is (asymptotically) stable, all solutions starting near the fixed
point approach it as t — oco. When fixed point is unstable (i.e., one or more
eigenvalues have positive real parts) somc or all solutions starting near the fixed
point will move away from it ast  oc. Thus, the stability of a given fixed point can

be determined from direct inspection of the eigenvalues.

2.5 Bifurcation anal;, __s

Bifurcation theory involves studying changes in the qualitative structure of solutions
of differential equations as parameters arc varied. Often when parameter values are

varied there is no qualitative change in systemn behaviour. However, sometimes just
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a slight change to a parameter value results in major changes to system behaviour
including fixed point creation or destruction, or fixed point stability changes. These
qualitative changes in system dynainics are calle bifurcations and the values where
they occur are bifurcation points.

Bifurcation analysis is a useful tool that provides information regarding systemn
behaviour even when parameter values are not known precisely. It is also used to
show how sensitive the model is to variations in values of the parameters. Systein
behaviour changes resulting from ifurcations can be shown graphically using a bi-
furcation diagram. A bifurcation diagram is a graphical depiction of locations and
stability properties of fixed point solutions as a function of a parameter. Fixed point
stability is shown on the bifurcation diagram by using a solid curve for stable solutions

and a dotted curve for unstable solutions (see Fire 2.2).
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Figure 2.2: Bifurcation ¢ jram showing a transcritical bifurcation




There are different types of bifurcations which result in different types of changes
to system behaviour. The type of bifurcation observed in this paper is a transcriti-
cal bifurcation. Transcritical bifurcatioc  occur when two fixed points intersect and
exchange their stability properties. In this model, we see that slight perturbations
to the harvesting parameter cause an exchange in stability between two fixed points
whereby a fixed point that was stable becomes unstable and siimultaneously a previ-
ously unstable fixed point becomes stable. Figure 2.2 is an exainple of a bifurcation
diagram showing a transcritical bifurcation. The phase space variable is X and the
bifurcation parameter is p. Figure 2.2 shows an exchange of stability at (p, X) = (1,1)
where two fixed point solutions intersect and exchange stability.

In this study two models are analysed. The first illustrates the situation of inethyl
nlercury moving between a si: e fish species and the lake, and the second considers
methyl mercury moving between two species of fish and the lake, as well as the
predator-prey dynamics between e fish species. The model analysis for each model

is as follows:
1. Solve the system for fixed points.
2. Determine fixed point stability using eigenvalue analysis.
3. Generate phase portraits to show orbits from different initial conditions.
4. Plot numerical solutions of system variables ith respect to time.

5. Generate bifurcation diagrams to show changes in fixed point solutions as a

control parameter is varied.
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6. Change model to incorporate seasonal {periodic) behaviour of certain parame-

ters.
7. Re-generate phase diagrams to show seasonal effect on the orbits.

8. Re-generate nuierical solutions with respect to time to show seasonal effect.

Dynamical systems theory is applie differently in the case of seasonal (periodic)
parameters because the ODE system in this case is nonautonomous. The geomet-
ric qualitative analysis discussed in this chapter caunot be effectively extended to
nonautonomous systems because the concepts of fixed point and stability are less
straightforward. In order to apply dynamical systemns theory to nonautonomous sys-

tems Floquet Theory is required, which is beyond the scope of this thesis.
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3.1 Single-species model

The single-species model is 3-dimensional. It describes the biomass of the fish popula-
tion (X ) occupying the highest trophic position, and the interactions between methyl
mercury in the lake water \. , and in t  fish population (U). System variables are
listed in Table 3.1 along with a description and units.

There are several assunptions involved with this model. Firstly, in this model
we are only concerned with average, adult fish. This means juvenile fish are not
considered. Since we are only concerned with ‘erage, adult fish. we ignore any
effects related to biodilution (fast-grow g fish accumulating less wercury). Further,
some studies have also shown that in ¢ ain fish, mercury is accumulated greater in
the early years (Edwards, Trudel & Mazumder, 2005). However, we do not consider
age-related changes in methyl mercury accumulation explicitly in the model because
we are not looking at individual sh but, rather, we are concerned with the total
biomass in a cross-section of time.

Secondly, in this model we are  su ing that the reproduction rate is unaffected
by methyl mercury in the population. We make this assuinption because, although
there have been some studies showing a negative effect on reproduction with mercury
exposure (Heisinger & Green, 1975), these studies were performed in water containing
unrealistically high mercury concentrations (between 10-40mg/L mercuric chloride,
1.8mg/L methyl mercury).

Furthermore, we assume rates of mercury methylation and accumulation are the

same throughout the lake. That is, we do not explicitly consider differences in methy-
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Equation 1 — Popt tion bion ;s

The first equation represents population biomass (X). This equation describes growth
of a typical single-species population that is regulated by density-dependant factors
such as limitations of food supply (Hastings, 1997). It is comprised of three terms:
one term to account for growth and two terms to account for population loss. The first
terin represents population growth where r is the intrinsic growth rate. The second
term represents the restriction put on population growth due to the carrying capacity
of the surrounding environment, & The third term in the equation represents the
death rate of the population duc to harvesting by humans, where h; is the rate of
harvesting. There is no parameter in this equation for natural death rate because it
has been reported that in our study lakes there is very little natural death — the fish in
these lakes are long-lived fish that are eventually harvested. If the situation changed
in such a way that natural deaths were occurring, an adjustment to the estimated

value of h; would be required such that /; = harvesting rate + natural death rate.

Equation 2 — Methyl mercury in water

The second equation represents the total mcthyl mercury in the lake water (7°). This
equation is composed of four terms: two for methyl mercury removal and two for
methyl mercury input. The first terin represents methyl mercury that is removed
from the lake through natural processes, where d is the rate at which methyl mer-
cury is removed via sediment burial and demethylation. The second termn represents

methyl mercury that is transferre from fish into the lake through excrction. Methyl
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mercury is eliminated from fish through an exponential decay process where g, is the
rate of methyl mercury excretion  d is obtained from analysis of half-life measures.
The term f is the rate methyl mercury is input to the lake via direct deposition,
methylation in the water colunm. and from sediment. The final term represents
methyl mercury that is removed from the lake due to uptake by lake biota. The
paraneter ¢ is the rate that methyl mercury is taken in by the fish via the food web.

In this model we make the simplifying assumption that all parameters are constant
rates. In a realistic setting, however, the parameters f and d vary depending on
season. In this thesis, seasonal ¢f ‘ts on these parameters are discussed in section

4.4.1.

Equation 3 - Methyl mercury in h

The third equation rep  mts the total methyl mercury contained in the fish popu-
lation (U). This equation is comprised of three terms: one for methyl mercury input
and two for methyl mercury removal. The first term represents methyl mercury that
enters the fish population via the food web where « is the rate that methyl mercury is
bicaccumulated through the food web. The second term represents methyl mercury
removed from the population via excretion, this term is necessary to maintain mass-
balance in the system. The final term represents methyl mercury that is removed
as a result of harvesting where hy 1s the Larvesting rate and p, is the relative size
of harvested fish compared with general population. The parameter p, adjusts
the amount of methyl mercury removed based on the size of fish that are typically

harvested.
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3.1.2 Description of model aram ers

This model contains eight parameters wlicli are rate constants for various aspects
of the system. A description of each parameter is given in Table 3.2, along with
units; the estiinated parameter vi 1es used in this thesis can be found in Table 3.3.
This section provides information related to the meaning and significance of each
parameter, and how the parameter value was obtained. Valucs of the rate constants
for the study lakes were unava .ble. However, a literaturc review provided values for
several rate constants in other lak  with similar characteristics including native fish
species, lake process behaviour, temperature, size. depth and pH. Parameter values
related to mercury contamination proce es were abundant in the literature but many
parameters related to population biology were not as readily available.

The parameter r is the intrinsic growth rate of the fish population. This is the
growth rate in the absence of any limiting factors. In the absence of density-dependent
effects, if r > 0, the population grows exponent vy, if » < 0 the population decays
expouentially, and if r ) the population is stationary. There was no data available
for the intrinsic growth rates of the fish populations in the study lakes so the value
of » = 2 was chosen for the purpose of this study.

The parameter £ is the carrying capacity of the fish population. This parameter
restricts population  >wth based on the carrying capacity of the surrounding envi-
ronment. Estimating this parameter can be difficult because there is often very little
information available to quantify what size population a lake can support. The fish

populations in the Labrador study lakes are relatively undisturbed since there is no
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known disease and the rate of harvesting is small. For this reason. it is likely that
the fish populations in these lakes are at, or very near, their carryiug capacity. This
means that a current bioniass esti  ate can be used to approximate the value for .
The population biomass for our study lakes was estimated from biomass data for
other similar northern lakes. Values for fish biomass range greatly from < 10 kg-ha™!
up to > 300 kg-ha™! in northern lakes . .umenshine, Lodge & Hodgson, 2000; Trip-
pel & Harvey, 1986; Rask & Arve ., 1985; Hanson & Leggett, 1982). Hanson and
Leggett (1982) performed a literature review and reported on 20 lakes and ponds with
various surface area, mean depth and geographic distribution. Biomass estimates for
a significant portion of t. e lakes falls within the range of 100-400 kg-ha=! so the
value of k = 200 kg-ha=! (or 20 tonnes-kin=2) was chosen for this study.

The mercury elimination paran  er gi, is the rate that methyl mercury is removed
from the population via excretion. The process of methyl mercury elimination from
fish is biphasic: the first, st-clearing component represents the portion of ingested
methyl mercury that is not absorbed by the epithelium and has a half-life of days to
weeks, while the second, slow-clearing component cousists of methyl inercury mainly
associated with muscle tissue and has a half-life of months to years (de Freitas et
al., 1975; Ruohtula & Miettinen, 1975; Jarvenpaa, Tillander & Miettinen, 1970).
The majority of ingested methyl mercury (70-80%) is eliminated via the second,
slow component when fish are given a single dc  of mercury. Further, it has been
suggested that fish which e chronically exposed to methyl mercury excrete it almost
exclusively from the slow component (Krammer & Neidhart, 1975). For this reason, we

only consider the second, slow-clearing component of methyl mercury climination in

41



this model.

The value of g, = 0.42 was calculated based on a half-life for methyl mercury
elimination of 2 years (Ruohtula & Miettinen. 1975; Miettinen. Tillander, Rissanen,
Miettinen & Ohmomo, 1969; Jarvenpaa et al., 1970). Calculations can be found in
Appendix 6.1.1.

There is no published data regarding harvesting rates in our study lakes. To
compensate for this, a numerical s itivity analysis was performed oun the harvesting
parameters. This analysis demonstrated that the model results arc not sensitive to
the harvesting parameter value as long as the harvesting rate does not exceed the
population growth rate (r), which is the case in the study lakes. Of course, if the
harvesting rate is larger than the intrinsic growth rate, the population will tend to
extinction over time. It is known that the harvesting paraineters are greater than zero
(since some harvesting occurs) but s than one (since harvesting rates are fairly low
in the area), so the value h; = 0.6 was chosen.

The parameter p; indicates the relative size of the harvested fish compared with
the general fish population. Fish that are harvested tend to be of average size or
greater since smaller fish avoid nets or escape from nets more often and fishers target
larger fish. Studies have shown that older and larger fish contain more mercury
(Drysdale et al., )} 1. If it were alw s average size fish that were harvested the
value of p; would be 1. In our case, value of p; = 1.2 was chosen because the
harvested fish tend to be of greater th  average size.

The parameter fisthe e thatnethyl mercury is input to the lake. Somie methyl

mercury enters the lake system through runoff. wetland drainage and directly from
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the atmosphere, while the majority is a result of within-lake methylation of inorganic
mercury (Hg[IT]). Hg[Il] is methylated 1 the water columnn, in lake sediment, and
in the intestines and external slime layer of fish (McKone et al., 1971; Rudd et al.,
1980). Alethyl mercury released from the sediment is likely produced in the top
layers of sediment since most of the me yl mercury produced in deeper sediments is
destroyed through demethylation proc  es before it can reach the sediment surface
aud be released into the lake (Wright & Hamilton, 1982).

The value of f was estimated | sed on studies performmed in other northern lake
systems. Rate of methyl mercury input from the sedunent layer was estimated to
be 5.4g MeHg kin=2-yr~! based on measured values from Clay Lake, Ontario (Wright
& Hamilton, 1982). Methyl mercury input from direct atmospheric deposition was
estiimated to be 0.1 g MeHg-km™2.yr~! based on Verta et al.’s (1994) measurement

I was

of Boreal lakes in southern Finland. The value of f = 5.5 g MeHg-km=2-yr~
obtained by summing the individual methyl mercury input rates. [ was unable to find
suitable data pertaining to v hylation rate within the water column. While Xun
et al. (1987) obtained measurements of this rate, the methods used do not measure
natural rates of methylation activity but. rather, provide rates under experimentally
manipulated settings (i.e., varied pH, mercury concentration, etc). Most studies
suggest that methylation rates in the water column are low (Eckley & Hintelmann,
2006: Lucotte. 1999). Consequen -, mercury methylation within the water column
is not a component of the estimated value for f in this model. Furthermore. inethyl

mercury produced within the gastrointestinal tract and on the external slime layer

of fish is considered insignificant compared with other inputs (Hall et al., 1996) and
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e the model can be applied to l: s where trophic structure of the fish populations

1s unknown

e the model does not require a separate bic 1ss and methyl niercury equation

for each trophic level.

If the model did include separate biomass and methyl mercury equations for each
trophic level the added complexity would make it very difficult to analyse the model.
Further, the model would be less accurate due to an increased munber of unknown
parameters associated with the extra equations. The time delay for the methyl mer-
cury to make its way through the food web is ignored. For the purpose of this study

a was estimated to be 0.1 km?-tonne™! fish-yr~!.

3.2 Predator-prey o« 21

The predator-prey model is a 5-dimensional model deseribing fish biomass and mer-
cury flux. The first two equations describe the biomass of the predator (Y) and
prey (X) populations, while the last three equations describe methyl mercury move-
ment between lake water and fish (7), and between fish populations (V, U). System
variables are listed in Table 3.4 along with variable description and units.

The model is as follows:

X =rX(1- %) 2 XY Iy

Y = p, XY — hY

T=—-dT + U+ gV +f—aXT+ 1 -=bUYp,






-

Equation 1 — Prey population biomass

The first equation represents the prey population biomass. This equation describes
growth of a typical population that is regulated by density-dependent factors (e.g.
linitations of food supply) and predation by other species. It is comprised of four
terms: one term to account for growth and three terms to account for population
loss. The first term represents population growth where 1 is the intrinsic growth rate.
The sccond termn represents the restriction on population growth due to the carrying
capacity of the surrounding environment, k. The third term represents the loss of
prey biomass due to predation where p, is the predator functional response. The
fourth term represents the death 2 of the population due to harvesting by humans
where h, is the rate of harvesting. There is no parameter in this equation for natural
death rate because it has been reported that there is very little natural death in the
study lakes. The fish in these lakes are long-lived fish that are eventually harvested. If
the situation were to change such that natural deaths were occurring, an adjustment

to the value of A; would be required where h; = harvesting rate + natural death rate.

Equation 2 — Predator population biomass

The second equation is the Lotka-Volt  a equation for predator population biomass.
This equation is ¢ " ad of two terms: one to account for growth aud one to
account for loss. The first term represents the increase in predator population as
a result of predation on prey where the constant p, is the rate of predation (or

predator functional response). Since only a portion of food consumed by the predator
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is converted to predator biomass, the food conversion efficiency is given by ¢. The
second term represents the death rate of the predator population due to harvesting
by humans where h, is the predator harvesting rate. Like the single-species niodel,
there is no natural death rate based on reports that there is very little natural fish

death in the study lakes.

Equation 3 — Methyl mercury in water

The third equation represents the total methyl mercury in the lake water. This equa-
tion is composed of six terms: two for  z2rcury removal and four for mercury input.
The first term represents methyl mercury that is removed from the lake through nat-
ural processes, where d is the rate methyl mercury is removed via sediment burial and
demethylation. The second and third terms in this equation represent methyl mercury
that is eliminated from the fish populations through excretion, and immediately input
to the lake. Methyl mercury is eliminated from fish through an exponential decay
process where g) and g, are the rates of methyl mercury excretion. These parameters
were obtained from analysis of the ilf-life of the exponential decay. The fourth term,
f, 1s the rate methyl mercury is input to the lake via direct deposition, methylation
in the water column, and from sediment. The fifth term represeuts methyl mercury
that is remnoved from the lake due to ingestion by lake biota. The parameter a is the
rate that methyl mercury is taken = by the fish via the food web. The sixth and final
term represents methyl mercury that is ingested into the predator population via pre-
dation (where p, is the rate of predation) but is not absorbed. The process of methyl

mercury assimilation is biphasic in which the first commponent involves a portion of
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ingested methyl mercury being excreted very quickly. The constant b represents the
portion of methyl mercury that is assimilated by the fish and, thus, (1 —b) is the
amount of methyl mercury that is excreted by the predator fish into the lake during
the fast component of assimilation.

It is important to note that the : e of methyl mercury assimilation is much
different and greater than biomass assimilation rate (i.e., b > ¢). When food is
digested, soime of the food energy is required for metabolisin, some is excreted, and
sonte is used for growth (Weatherley & Gill, 1987). The parameter ¢ denotes the
portion that is used for growth (i.e., the growth efficiency). The e that methyl
mercury is assimilated from food . en, or the methyl mercury assimilation efficiency
from food (b), is quite different. Methyl mercury forms covalent bonds with proteins
so b is expected to vary with protein  similation (Trudel, Tremblay, Schetagne &
Rasmussen, 2000). Fish have a high rotein requirement for growth and protein
can be approximately 70% of fish calories (Weatherley & Gill. 1987, p.28). Methyl
mercury assimilation rate is related to the protein assimilation rate but is not directly
related to the food conversion efficiency which is why the estimmated values of b aud ¢

are so different.

Equation 4 — Methyl mercury in prey population

The fourth equation represents the methyl mercury contained in the prey population.
This equation is comprised of four terins. The first terin represents methyl mercury
that enters the fish population via the food web where « is the rate that methyl

mercury is bioaccumulated through the food web. The second term is the methyl




mercury that is removed from the prey population as a result of predation (i.e.. when
a predator eats a prey fish the methyl mercury contained in that fish is no longer in
the prey population). The third terin is methyl mercury removed from the population
via cxcretion - this term is neces 7 to maintain mass-balance in the system. The
fourth term is the portion of methyl mercury removed from the prey population (and
the entire system) due to harvesting, where h; is the harvesting rate and p; is the

relative size of harvested fish com  ed with the general population.

Equation 5 — Methyl mercury in} 2dator population

The fifth equation represents methyl mercury contained in the predator population.
This equation is comprised of three terms. The first term is methyl mercury that
is assimilated from the prey populatic as a result of predation. The second term
represents the elimination of  :thyl mercury from the fish via excretion. The third
term is the portion of mercury removed from the -edator population (and the entire

system) due to harvesting.

3.2.2 Description of par meters

The model contains fourteen parameters which are rate constants for various aspects
of the system. Eight of t! : parameters are the same as in the single-species model
(see Section 3.1.2). Units and ad ription of the additional six parameters are given
in Table 3.5. The estimated par icter values used in this thesis can be found in
Table 3.6.

In order to analyse the factors influencing rate of resource utilization by predator
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size of harvested fish is often aver L sometimes greater than average.

Food conversion efficiency, or growth efficiency, is the conversion of absorbed food
into new tissue (Kelso, 1972). Food conversion efficiency for adult northern pike
ranges between 0.24 - 0.27 depending . season (Diana. 1979). For the purpose of
this model, the rate of ¢ = 0.25 was chosen.

Mercury assimilation rates have been reported to range between 70-90% (de Fre-
itas et al., 1977). The value of b = 0.8 was chosen in this studyv based on the reasoning
that methyl mercury forms covalent bounds with proteins and, therefore, imethyl mer-
cury assimilation is expected to vary with protein assimilation (Trudel et al., 2000).
Protein assimilation is approximately 80% in carnivorous fish (Brett and Groves,
1979). The value of b = 0.8 also corresponds with results from studies performed on
rainbow trout, (Salmo gairdneri), by Rodgers and Beamish (1982) in which mercury
assimilation was found to range b ween 70-80%.

The values for the remaining parameters are the same as in the single-species

model (see Table 3.3).

3.3 Seasonal effect n models

A harsh climate causes the Labrador study lakes to freeze for approximately 7-8
months of the year (Scruton, 1984). During this frozen period, the decreased tem-
peratures and ice cover on the lake causes feeding rate (p,), metabolic processes and
nercury processes to slow d¢ . A decrease in metabolic rate causes a change to

several of the model rate constants including methyl mercury bioaccumulation (b),



food conversion efficiency (¢) and  thyl mercury eliimination (g, and g).

In terms of mercury processes, ice cover on the lake prevents methyl mercury fromn
being deposited directly —m the atmy  shere or through run-off and decreases the
amount of methyl mercury leaving the lake system via tributaries. In addition, the
decreased lake temperature causes methylation and demethylation processes within
the lake to slow down which means less methyl mercury is relcased from, and buried
in, sediment. Overall, methyl mercury  >ut (f) and output (d) rates slow down. In
the spring, when temperature increases, snow and ice that has accumulated on the
lake surface throughout the winter begins to melt. During this melting period methyl
mercury enters the lake at a much higher rate. At the same time. metliyl mercury
tributary removal rate increa  and methvlation processes within the lake speed up.

In order to mathematically analyse what effect parameter seasouality has on
the system, the models were changed slightly such that the seasonal parameters
(b. ¢, pry g1, g2, f and d) are multiplied by a periodic function. The function
0.5(sgu(sin 27t — 0.5)) + 7/6 (where sgn refers to the sign of the tenn; sgn(r) = +1
when r is positive and —1 when z is negative) is a positive function that exhibits
periodic behaviour alternating b wveen 0.67 and 1.67 (refer to Figure 3.1). This
function ensures that terms containing seasonal parameters are multiplied by 0.67
two thirds of the time (8 months/year) and are multiplied by 1.67 the rest of the time
(4 months/year). Incorporating this function in the model this way mimics the effect

of seasonal temperature cha s and spring snow melt.

(1]
(1)
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F 1re 3.1: Seasonal function

3.3.1 Single-species model with sc sonal effects

In order to analyse the effect of sonal behaviour, the single-species model from

Section 3.1 was modified as follows:

X
4 :rX<1—%>—th

dt

dT

T —dPT + y®U + f& — aXT
d T

d_(; =aXT — dU —pih U

where ® = 0.5(sgn(sin 27t — 0.5)) + %
The system equations are identical to the equations in Section 3.1 except that the

seasonal parameters are now multiplied by the -~ -periodic function ®.
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3.3.2 Predator-prey mo 3l -ith st sonal effects

In order to analyse the effect of s o1 behaviour, the predator-prey model from

Section 3.2 was modified as follows:

dX X

—=rX{1—-—=—) = XY —hX

7 r ( k) XY — hy

dY

— = cPp, ®XY — hyY

dt C p 2

dr , .
= —d®T + g1PU + 20V + f® — aXT + (1 — bP)UY p, P
% =aXT -UYp,® — g®U — pi U

% =bdUYp, P — g2 ®V — pyhoV

dt

where ® = 0.5(sgn(sin27t  0.5)) 1
The system equations are identical to the model equations in Section 3.2 except

that the seasonal parameters are now multiplied by the time-periodic function $.




Chapter 4

Solving the system

A mathematical software program, Maple. was used to assist in obtaining fixed points

and eigenvalues in the followi sections.

4.1 Single species model

To review. here is the sii e-spec  equation system from section 3.1:

X =rX (1— %) - X

T —dT+qU [ 1XT (4.1)

U=oXT - qgU—phU

Fixed points are found by setting the time derivatives to zero and solving for
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system variables.

4.1.1 Stability ar lysis

The following two fixed points were obtained for the single-species systen:

(X, T,U) = <0, §,0> (4.2)
(X.T.T) = ( (r= M) frlg 1+p1hl)~ﬁl-(v-_h.)_) 03
T o Q

where ¢ = dr(g; + p1h1) + prhiak(r — Iy)

Fixed point (4.2) rep  mts « nction of the fish population and its associated
methyl mercury content. We are interested in analysing the stability of this fixed
point to determine all possible conditions that will allow for the population to tend
toward extinction. In order to analyse the stability of this fixed point we must look
at the sign of the eigenvalues. The following eigenvalues for (4.2) were obtained:

A2s =71 —hy,—d, —g1 — pithu

If all eigenvalues are negative the fixed point is stable, otherwise it is unstable. It
is clear from looking at the eigenvalues that A, and A3 are negative since all system
parameters are positive. \; will be negative (and consequently, fixed point (4.2)
stable) if r — h; < 0. In other words, the population will tend toward extinction if
and only if it is overharvested (i.e.. h; > r). If the population is not overharvested,
since only one of the three eigenvalues is positive, this fixed point can be classified

as a saddle point. When the population is overharvested (i.e., r —hy < 0), Ap is
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negative and this fixed point is a s Hle node. It is unlikely that this fixed point will
be reached anytime soon in the study lakes because current harvesting rates are fairly
low aud population biomass is fairly high so there is no known danger of extinction.

Fixed point (4.3) is biologically meaningful if and only if r — A, > 0. Thus we
only need to discuss the stability of (4.3) under the assumption r > h;.

The eigenvalues for fixed point 4.3 are:

A= —(r—hy)and A3 = —%(a +/3), where o = dr + ak(r — hy) + qir +prlyr
and 8 = a? — 4dr¥(g, + pihy) — dakrpihy (r — hy).

Since we have assumed r > hy, A} < 0, and hence, the stability of 4.3 is determined
by analysis of the remaining eigenvalues. In order to analyse Ay and A3 we consider
« and . Now, since r  hy > 0, we obtain o = dr + ak(r — hy) + gir + prhir > 0.
If 3 <0 then Aoy = —5- £ v where ~v is a positive, real number. In this case, Aa
and \; are complex conjugates with negative real parts so fixed poi 4.3 is a stable
spiral-node.

After performing some algebra (sce appendix 6.2.1), it was found that 3 < 0 if
and only if w? < 4g,7*(d — p1h;) where w = dr + akr — akhy + gi7 — prhar.

Further to this, if pthy > d, 8 > 0. It is important to note that, while pyh; > d
guarantees (3 > 0, the reverse  not true. ..at is, if pjh; < d it is possible that 3 > 0
if w? > 4g:7%(d — pihy).

If3>0 A <0sin a V/3>0.
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If 3>0, \s <0if and only if &« = /3 >0« > /7.

a > /B e a> /o —dar-g) + pim) — dakrpinr — hy)

= 4dr¥(g, + p1h)) + dakrp b (r — hy) > 0 (4.4)

Inequality (4.4) is true (and therefore Ay < 0) when r  &; > 0. Hence. when
r —hy > 0, fixed point 4.3 is stable since all eigenvalues are negative or complex with
negative real parts.

To sunnnarize, the single-species model predicts the existence of two fixed points
(4.2 and 4.3). The first fixed point (4 is indicative of the situation in which the
population has gone extinct and all that is left in the system is methyl mercury
contained in the lake water. This fixed point is a stable node when the population is
overharvested (i.e., hy > r) and an unstable saddle point otherwise.

The second fixed point (4.3) is po ive and stable when the population is not
overharvested (i.e., r > hy) and is neg  ve and unstable otherwise. When stable, it
is a spiral-node if 5 < 0 and a node otherwise.

When parameter values applicable to the study lakes (listed in Table 3.3) are

substituted into the single-species model, the resulting fixed points are:




The corresponding ¢ :nvalues -e:

Extinction Aoz =-—03,-1.1,14 (4.7)

Viable population Arag = —0.6,-22,-14 (4.8)

It is clear upon direct inspection of the fixed points and eigenvalues that fixed
point 4.5 is an unstable saddle point, a  fixed point 4.6 is a stable node. Hence, it is
predicted that the values of the v iables will directly approach fixed point 4.6 over

time.

4.1.2 Phase portrait analy:

In the previous section it was determined (through eigenvalue analysis) that when
parameter values applicable to the Labrador study lakes (see Table 3.3) are substi-
tuted in the model, fixed point 4.6 is a stable node. Figure 4.1 shows the location
and stability of this fixed point.

The phase portrait consists of two trajectories beginning at different initial condi-
tions. The trajectories flow through phase space and eventually arrive at the stable
node. The initial conditions were chosen based on data from the study lakes. The
initial conditions used to generate . .gure 4.1 are as follows:

(X0.T0.Uy) = (66,7.4.23)

(Xo. Ty, Uy) = (50, 13, 18)







t (years)

Figure 1.2: Time series plot of X, T and U

(4.6). The population biomass (X) grows immediately and increases until equilibriuin
is reached. Methyl mercury contained in the lake water (7°) increases initially then
decreases until reaching ec  ibrium. Methyl mercury in the population (U) decreases
until equilibrium is reached.

The long-termn b ° vic  of the methyl mercury concentration within the pop-
ulation (l—,’( versus time) is shown in Figure 4.3. . .is diagram was generated using
the initial condition (Xo, To. Up) (10,6, 16). The final predicted methyl mercury
concentration for the fish population is 4 g MeHg-tonne ! fish or 0.4 parts per mil-
lion (ppm). This is lower than the mercury concentration limit considered by Health
(Canada to be safe for human consumption. The predicted 1nercury concentration of
0.4 ppm is lower than field observations for predator fish in Labrador lakes (Anderson

et al., 1995; Roux, 2008). This cor | be due to the model’s simplification of methyl

niercury intake through the food pathway. All methyl mercury obtained through the
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food web is addressed with the param :r a. The predator-prey model discussed in
Section 4.2 considers more complicated interactions between methyl mercury and the

food web.

1.0

Concentration
0.75

0.t
0.25
0
0 5 10 15
t (years)

Figure 4.3: Population methyl mercury concentration over tinie

4.1.4 Numerical ¢ asitiv y nalysis

In order to determine the param s for which the model is most sensitive, a nu-
merical sensitivity analysis was performed on each parameter. For each individual
parameter, a range of values (within 20% of the value estimated in this study) was
assigned and the resulting model behaviour was observed. In particular, fixed point
values, eigenvalues, and le  .h of time taken to reach equilibrium were compared us-
ing different parameter sets. Num  al ranges tried for cach parameter can be found

in Table 4.1.
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T=—-dT +qU+ @V + f—aXT+(1-bUYp,
U=aXT-UYp, — qU — pihiU

V=bUYp, — gV  pahoV

Fixed points are found by setting the time :rivatives to zero and solving for

system variables.

4.2.1 Stability nalysis

Three fixed points were obtained for the predator-prey system. The first two fixed

points are as follows:

ﬁimﬁﬂzmagm) (4.9)
(X.Y.T.U.V) = (k("' ; hl)‘O, Jrig ;—plhl)’ fak(ra‘ hl),()) (4.10)

where ¢ = dr(g) + p1h1) + prhiak(r — h)

Fixed point 4.9 represents extinction of both the predator and prey populations
and the associated methyl mercury. Fixed point 4.10 represents extinction of the
predator population and its associated methyl mercury. The third fixed point repre-
sents coexistence of both populations.  1e coexistence fixed point is very long and
cumbersome and, thus, is located in the appendix (6.2.2). There is no known danger
of extinction iu the study  =s currently because harvesting rates are fairly low and
population biomasses are fairly h wever, we are still interested in analysing

the stability of fixed points 4.9 and 1€  determine all possible conditions that will
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In order to analyse Ay and A5, we must consider o and 3. Now, since » — h; > 0,
we obtain & = —ak(r — hy) —r(d+ g+ p1hy) < 0.

System behaviour will change depending if 3 is negative or positive. It is importaut
to uote that 3 here has the same value as 3 associated with fixed poiut 4.3 discussed
in section 4.1.1 (single-species model). Therefore, using the same reasoning as was
used in section 4.1.1, 3 < 0 if and only if w? < 4g,r*(d — p1h,) where

w = dr + akr — akh, + g;7 — p1hyr. Similarly, based on further reasoning from
section 4.1.1, the condition pyh; > d guarantees 3 > 0. However, if this condition

does not hold it is still possible 3 0 if w? > 4g,7%(d — p1hy).

Case 1: >0
If3>0,M=gp(a+VB) <0 an onlyifa++/3<0ea<—-/B
o < —‘\/Bﬁ o < \/Q2 - 4d7‘2(91 +p1h1) —4ak7'p1h1(7' — h])

= 4d7‘2(91 +p1h1) -+ Lkrplhl(r — hl) >0 (*)
Inequality (*) is true (and therefore Ay < 0) when r — Ay > 0.
The final eigenvalue, A5 = 5-(a — y/B) < 0 since a < 0 and /3 > 0. Thus, in the
case of 3 > 0, fixed point 4.10 will be stable if
(i) r—h >0
(i) kepe(r —hy) <rThsy
Case 2: <0

If 3 < 0 then Ay5 = 5= (£ v2) where 7 is a positive real number. In this case, A4

and A5 are complex conjugates wi  negative real parts so fixed point 4.10isa  ible
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spiral-node.

To summarize the behaviour of fixed point 4.10, when r — h; < 0 this fixed poiut
is a negative, unstable saddle point. If »— h; > 0, the fixed point will be stable if and
only if kep.(r — hy) < rha, and will be an unstable saddle point otherwise. Further,
when this fixed point is stable it will exhibit spiral behaviour when 3 < 0.

The third and final fixed point occurs when both predator and prey populations
coexist. In order to determine necessary conditions for a positive cocxistence equi-
librium, each component of the fixed point was analysed (see appendix 6.2.2 for

coexistence fixed point).

—  ha
i) X=—7>0
Py
— kep(r—hy) —rhy ,
(i) Y = keps(r =) =rhe > 0 if and only if 7 — hy > 0 and kep,(r — hy) > rhe

kep?

(iii) T > 0if r — hy; > 0 and kepo(r — hy) > rho
(iv) U > 0if r — hy > 0 and kep,p by > rhy
(V) V>0ifr—hy >0, kepgprhy > . and kepr(r — hy) > rhs
Hence, it was determined that the coexistence fixed point will be positive when

the following conditions are 1

T—hl >0 (—111)

kepe(r — hy) > rhe (4.12)
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ATC‘pIpll'l] > rhy (413)

The eigenvalues for this fixed point are very long and extremely messy, making it
impractical to determine stability analytically. Alternatively, stability analysis was
performed numerically by testing ranges of parameter values and observing system
behaviour (see Table 4.2 for par: ter ranges  ed).

When the intrinsic growth rate was set to be greater than the harvesting rate
(i.e., 7 > hy), three of five eigenvalues tested were negative and real for all parameter
values tested, while the remaining 7o eigenvalues were complex with negative real
part, indicating that this fixed point is a stable, spiral-node in this case. Whenu the
harvesting rate was chosen to be great than the growth rate (i.e., by > 7), at least
one eigenvalue became positive indicating this fixed point is unstable in this case.

In summary, the predator-prey model predicts the existence of three fixed points,
two of which are associated with popul on extinction (4.9 and 4.10), and one that is
associated with population coexis 1ce. The fixed point associated with extinction of
both species (4.9) is positive and is stable when the prey population is overharvested
(i.e., condition 4.11 not held) ar unstable otherwise. The fixed point associated
with extinction of only the predator population (4.10) is negative and unstable when
the prey are overhar  .ed. ...cn the prey are not overharves , this fixed point is
positive and will be stable if and only if condition 4.12 does not hold. Finally, the
coexistence fixed point is positive  1en conditions 4.11, 4.12. and 4.13 are met, and

is negative otherwise. This fixed point is stable when conditions 4.11, 4.12; and 4.13
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are 1et.
When parameter values applicable to Labrador lake svstems (listed in Table 3.6)

are substituted into the predator-prey model, the resulting fixed points are:

ALY, T.U, V) =(0,0.18.3,0,0) (4.14)
(X.Y,T,U.V)=(18.7.0,3.9,7.2,0) (4.15)
(X,Y.T.U,V)=(8,29,74.3.2,19) (4.16)

The corresponding eigenvalues are:

Total extinction Aogas = —0.3,—-1,1.5,-0.6,-1.1
Predator extinction Alo2s4s = —2.6,—-0.5,-1.5.-1.1,0.8
Coexistence A2345 = —0.3+0.67, 0.3 — 0.62, 2.1, —-1.5, -0.5

It is clear upon direct inspection of the fixed points and eigenvalues that fixed
points 4.14 and 4.15 are unstable and 4.16 is stable in the case of the study lakes.
Therefore, it is predicted that the values of the variables will imove away from the total
extinction and predator extinction fi:  points. and will ¢ roach the coexistence
fixed point (4.16) over time. Since there is a complex conjugate pair of eigenvalues
with respect to the coexistence d point, trajectories are predicted to oscillate,
spiralling in toward coexistence. Extinction is not currently a threat in Labrador so

this behaviour is expected. Fixed points 4.14 and 4.15 arc likely stable fixed poiuts



in other lake systems that are subject to mercury contamination and overharvesting
of fish populations. The results from this study 1 be used, with proper buffers, for

setting harvesting quotas in such  es.

4.2.2 Phase portrait analysis

Phase portraits are useful for visualizing locations and stabilities of fixed points.
Figure 4.4 shows the location and stability of the coexistence fixed point,

In the previous section it was « ermined (through eigenvalue analysis) that this
fixed point is a stable spiral-node when parameter values applicable to Boreal lake
systemis are used. The three ph portraits (4.4(a), 4.4(b), and 4.4(c¢)) show the
predator-prey systewn solution in 3-dimensional space from three different perspec-
tives. The phase portraits consist of one trajectory beginning at the initial condition:

(X0, Yo, 1o, Uy, Vo) (8,7,0.8,4,6)

The trajectory spirals through phase space and eventually arrives at the stable

spiral-node.

4.2.3 Time series analy: ;

Time series graphs are useful for showing how long a system takes to reach a fixed
point. Figure 4.5 is a time seric  plot of the system variables versus tiine using the
parameter values listed in the Table 3.6 and the initial condition (Xy, Yy, Ty, Up, Vo) =

(8,7,0.8,4,6).
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Figure 4.4: Phase portrait for predator-prey model from three perspectives
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Figure 4.5: Time series plot of system variables. Colours are as follows: X red, Y
black, T blue, U green, and V orange.

It takes approximately 15-20 years to reach the coexistence equilibrium. There
is some oscillation of the trajectory before the equilibrimn is reached. This is ex-
pected since it was determined in  ction 4.2.1 that eigenvalues associated with the
coexistence fixed point are complex valued.

The long-term behaviour of the methyl mercury concentration within the popula-

U

% versus time and YZ versus  e)isshown  Figure 4.6. This diagram was gen-

tions (
erated using the initial condition (X, Yo, Ty, Uy, Vo) = (8,7,0.8,4,6). The final pre-
dicted methyl mercury concentration for the prey population is 0.40 g MeHg-tonne ™!
fish or 0.40 parts per million (ppm), and 0.655 g MeHg-tonne™" fish or 0.655 ppm
for the predator population. The values are realistic when compared to measured

field data (Anderson et al, 1995; Roux, 2008). ..e final prey population mercury

concentration is below the mercury limit «  id 1 safe by Health Canada and the
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predator population mercury concentration is above the safe limit, for average size
fish. The concentration of methyl ‘rcury is higher in the predator population than

in the prey population due to biomagn :ation.

Predator
Concentration

0. Prey

0 5 10 15 20

t {years)

Figure 4.6: Methyl mercury concentration in fish populations over time. Prey methyl
mercury shown in orange and predator methyl mercury shown in green.

4.2.4 Numerical sensitivity analysis

A numerical sensitivity analysis w.  performed on each parameter in order to deter-
nine to  ich paran t. ] is most sensitive. For  c¢h parameter in the
predator-prey model. a ra: - of © 1es (within 20% of the values estiinated in this
study) was assigned and the resulting fixed points, eigenvalues, and time to reach
equilibrium were observed. Numerical ranges tr 1 for each parameter can be found

in Table 4.2. The results of the predator-prey model sensitivity analysis were similar
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to population biology (X and Y) occurred when the population growth rate () was
varied. However, even in this case overall system behaviour remained the same. The
most significant changes to methyl mercury-related system variables were caused by
changing methyl mercury input to the lake system (f). As f increased. T, U and
V increased in direct proportion to f. This is an unusual result since the system is
clearly nonlinear.

Methyl mercury concentration in the prey population did not change very much
throughout the sensitivity analysis. The predator population concentration was sensi-
tive to the rate of methyl mercury input ( f) with concentrations ranging from 0.5-0.34.
This is fairly significant because at the lowest input rate (f = 4.4) the concentration
is within Health Canada’s thi  10ld for safe consumption but at the higher input rate
(f = 6.6) methyl mercury concentration exceeds the limit.

The most notable effect on time taken to reach equilibrium occurred when a change
was made to the predator functio:  respouse (p;). As p, increases, the svstem takes

longer to reach equilibrium.

4.2.5 Bifurcation ar ysis - varyir A,

In order to deterinine the effects of prey harvesting, we vary the value of Ly and
examine the resultih  changes in fixed points. Figure 4.7 shows how the X, Y . T.U
and V coordinates of the fixed point change as the parameter i, is varied. These
diagrams also show ranges of /1, for which cach fixed point is stable (denoted by red
line). It is clear from the bifurcation diagram that transcritical bifurcations occur at

hy = 1.36 and at hy = 2.
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Figure 4.7: I rcation diagrams (h; varied)
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At both bifurcation points the system is undergoing an exchange of stability.
When hy is low (h; < 1.36), the coexi nce fixed point is stable. During this time
the prey harvesting rate is low enough that both predator and prey fish populations
survive in the lake system. As h; increases past iy > 1.36, system stability sl s to
fixed point 4.10 and Y =V = 0. At this point. harvesting of the prey has increased
to the extent that the predator population has become extinct due to increased com-
petition for food, and any methyl mercury associated with the predator population
has left the system. As h, increases further, the prey population biomass quickly de-
creases which causes U to decrcase. Fi \ly, when h, > 2. the extinction fixed point
(1.9) gains stability. At this point bo  prey and predator populations are extinct
and the only mercury in the lake system is contained in the lake water (Figure 4.7(c)).

It is important to note that the bifurcation diagrams verify resul  of the stability
analysis. The stability analysis (see section 4.2.1) showed that fixed point 4.14 is
stable if and ouly if A} > r. The bifurcation diagrams clearly show that when h; > r
(where r = 2 in this case) both predator and prey populations are extinct and fixed
point 4.14 is stable. Further, the stability analysis showed that fixed pomt 1.15 is
stable if and only if kep,(r—hy) < rhy. This condition is satisfied only when 2y > 1.36.
The bifurcation diagrams clearly —>w at when h; > 1.36 the predator population
is extinet and fixed point 4.15 is stable.

In summary, the bifurcation diagrams show that the coexistence fixed point will
be stable until the prey harvesting rate increases past a certain threshold (h; = 1.36
in this case) at which point the predator population will become extinct. Further, if

the harvesting rate increases past a second thr wold (h; = 2 in this case) the prey
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population will also become extinct.

While the bifurcation analysis using h; does not pertain directly to methyl mercury
behaviour within the systeni, it is interesting from a population biology perspective.
The bifurcation diagrams show clearly at what harvesting rates the populations be-
come in danger of extinctionn. F  vesting rates are relatively low in the Labrador
study lakes, however, this information could be used (with careful buffering) to set

harvesting rates in other lakes.

4.3 Comparison of he models

The system equations of the single-species and predator-prey models look quite differ-
ent. However, most of : princif  u 1 for model construction are the same. The
difference between these models is that the predator-prey model includes a second
population and the associated mercury flux interactions. This small (but important)
difference in the model changes some of " :lor  2rm system behaviour.

In terms of stability, the predator- :y model has one more fixed point than the
single-species model. Fixed points in both models are very similar in that each model
has one fixed point reps  nting population survival, and one fixed point representing
population  inction. The single Hecies system has only one fixed point represent-
ing survival of the population whereas the predator-prey model has two, one fixed
point representing both predator and 2y population survival, and one fixed point
representing survival of only the prey population. When parameter values applicable

to the study lakes are used, inction :ed points are unstable in both models and

81



population existence fixed points are stable.

Both models require the condition » —h; > 0 in order to maintain systein stability.
If this condition is not held, the extinction fixed point becomes stable. In the predator-
prey model there are additional conditions required to ensure the coexistence fixed
point remains stable (refer to section 4.2.1).

Phase portraits generated using parameter values relevant to the study lakes show
stable systemn behaviour long-term in b 11nodels. The survival fixed point is a stable
node in the single-species system and, thus, this fixed point is approached directly.
The coexistence fixed point is a stable spiral point in the predator-prey model, and
so this system exhibits periodic behaviour as the fixed poiut is approached.

In terms of time taken to reach equ brium, the single-species system approaches
its fixed point much faster t 1 the predator-prey system. 7-8 years versus 15-20
years. It is no surprise that the single-species system achieves equilibrium faster since

it is a node rather than a spi point.

4.4 Seasonal ffect n mode ;

The following subsections contain mathematical analyses of the seasonal models de-

scribed in sections 3.3.1 and 3.3.2.

82



4.4.1 Sir “e-species model with seasonal effects
Phase portrait analysis

Figure 4.8 is a phase portrait of the sii  e-species system with seasonal effects. The
phase portrait consists of one trajectory begiuning at an initial condition (X, Ty, Up) =
13,3,3). The phase portrait shows that after some initial fluctuation the trajectory
begins to follow a periodic orbit, or a limit cycle. The model predicts that when
winter temperatures and spring snowmelt are considered, the system will never reach

a fixed point but, rather, will exhibit cyclical behaviour around the fixed point.
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Figure 3: Ph: portrait of single-species model with s effects




Time series analysis

The time series graph shown in Figure 4.9 was generated using parameter values
listed in Table 3.3 and the initial condition (Xy, 7o, Us) = (13,3,3). This diagram
shows that the methyl mercury-rc  ed variables T and U exhibit periodic behaviour
long-term (shown in blue and green sectively) but the fish biomass (X, shown
in red) does not. This result is expected since the model was constructed with the
assumption that methyl mercury does not affect population growth rate, and the
biological parameters affected by seasonality are predator-prey paraweters (b, ¢, p,)
which are not included in this model.

The time series graph showss ificantly more variation in 7" than in /. Through-

~1 compared

out the limit cycle the value of 7' fluctuates by approximately 1.5 g-yr
with 0.4 g-yr~! for U. The value  both variables fluctuates around the fixed point
identified in the single-species mo  without seasonal effects. In this model, 7" fluctu-
ates between approximately 4-5.4 compared with 4.6 g in the single-species systemn
(see Section 3.1}, and U fluctuates between 5.5-5.9 g compared with 5.7 g.

The methyl mercury concentration predicted in this model ranges from 0.39-0.42
ppm throughout the cycle. This concentration corresponds to the metlyl mercury
con : of 0.4 t by the single-species model without seasonal ef-
fects. Once again, this concentr on is somes ~ at lower th  field measurements
(Anderson et al., 1995; Roux. )08). One reason for this could be the lack of system
interactions in the single-species model. Tlie 1nissing predator-prey interactious may

k]

cause the results to be reliable. discrepancy could also be a result of the
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generality of the seasonal function. Applying the same seasonal square wave func-
tion to all seasonal parameters is prol Hly not an accurate portrayal of the systein
behaviour. Changing the model in this manuer can provide a general idea as to qual-
itative changes to the systemn behaviour caused by seasons, however it is unlikely to

provide accurate quauntitative results.
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Figure 4.9: Timne series plot of single-species model variables (with seasonal effects).
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Figure 4.10: Detail of time series plot of seasonal single-species model variables.
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4.4.2 Predator-prey model with s¢ sonal effects
Phase portrait ar ysis

Figure 4.11 is a phase portrait of the predator-prey system with seasonal effects. This
phase portrait consists of one trajectory beginning at an initial condition. It is clear
from the phase portrait that the model exhibits cyclical behaviour when the se  nal
effects of cold winter temperatur and spring snowmelt are introduced, eventually
approaching a limit cycle. ...eir al ndition used to generate the phase portrait
is:

(XOa }/07 T()v UO& 1/0) = (14, 2, 3, 25, 1)

Time series analysis

Figure 4.12 shows a time series graph for the predator-prey model with seasonal
effects. The graph was generated using the parameter values in Table 3.6 and the
initial condition (X, Yy, Ty, Up, Vo) = 4,2,3,2.5,1). From this diagram we can
see that all variables exhibit long-term periodic behaviour when seasonal effects are
introduced.

Figure 4.12 shows that the limit cycle behaviour will be achieved within approxi-
mately 15 years. The variables range around the fixed point identified in the predator-
prey model without si  onal effects. The range of variable magnitude throughout the
cycle is fairly small.

Furthermore, methyl mercury concentrations within the fish populations are al-

most identical to the concentrations i the predator-prey model without seasonal
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Figure 4.11: Phase portrait  predator-prey model with seasonal effects

effects. For the prey population, concentration ranges from approximately 0.36-0.41
ppm in this model compared to 0.4 ppm in the predator-prey model in Section 3.2,
and the predator population concentr on is 0.65 ppm at both the cycle high and
low compared to 0.655 ppm in the predator-prey model without scasonal effects.

It is intercsting to note that the niethyl mercury concentration within each fish
population does not change much bet :en the cycle high and low points. This is

a realistic result when compared with measured field data since field data does not
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Figure 4.12: Time series plot of predator-prey model variables with seasonal effects.

show a significant difference in methyl mercury concentration at different timnes of the

year.
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Variable Seasonal model | Seaso: . model | No seasonal effect
cycle high cycle low (fixed point value)

X (tonneskm=) | 8.7 7.2 8

Y (tonnes-km=?) | 3.1 2.6 2.9 T

T (g-km™?) RO 6.8 7.4 ]

U (g-km™2) 0.0 12,6 3.2

V (g-km™?) 20 | 1.7 1.9 ]

Table 4.3: Comparison of variable magnitude between predator-prey model with sea-
sonal effects (Section 4.4.2) and predator-prey model without seasonal cffects (Section

3.2)



Chapter 5

Discussion

Two dynamical systems models were developed and analysed in this study. The first
nodel considered methyl mercury _mamics between a lake environment and a single
fish population, while the second model incorporated a predator-prey relationship
between two fish species, d the associated methyl mercury behaviour.

The developinent and analysis of the models described lere are quite different
than those of previous methyl mercury models. The majority of methyl mercury
models to date have been isti  models or mass-balance models that do not use
dynamical systems methc  of analysis. Prior to this, the only dynamical systeins
models developed for con nination of aquatic systeins dealt with toxicants that kill
fish populations.

The predator-prey models developed here predict systein behaviour more accu-
rately than the single-species mod«  when model results arc compared with field data.

This was expected since the pred. Hr-] y models contain more system interactions
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thus, better reflecting the actual behaviour in the enviromment. For this reason, the
reniainder of this discussion is focused on the predator-prey models.

Overall, the predator-prey model predicts the lake system will reach equilibriuni in
about 15-20 years if conditions remain the same. When the system is at equilibrium,
mercury levels in prey fish will be safe for human consumption (0.4 ppm) however,
niercury content in predator fish will exceed consumption guidelines for fish that are
average size and above (0.655 ppm). This means that, if environmental conditions
renain the same, fish in top trophic levels should be consumed with caution. Con-
sunmiption may need to be limited such that top predator fish are eaten less often, or
not at all. This may be a concern for the Innu in particular since fish arc a significant
part of their diet. Many fish may still be caten with no problem but intake of top
predator fish may need to be monitored. That I ag said, it is important to bear in
mind that the model predictions are very general and that sone lakes. even some spe-
cific areas within lakes, have different fish mercury concentrations than others. This
means that fish obtained from certain arcas may be safer than others. The model
results should be used in conjunction with field data when making recommendations
to fish consumers.

When seasonal effects on system parameters are incorporated into the model,
the systemn exhibits cyclical behaviour rather than approaching a fixed point. The
seasonal model predicts the system will attain limit cycle behaviour within 15 ycars.
This model predicts final mercury concentrations very similar to that of the predator-
prey model without seasonal effects included. While this model provides a general

idea as to qualitative changes to systt  behaviour caused by seasonal effects, more
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work needs to be performed on the seasonal function applied to each parameter in
order to obtain accur. : quantitative results.

If atmospheric mercury emissions were to decrease there would almost certainly
be a related change to methyl mercury within the lake system. It is difficult to anal-
yse changes to atmospheric mercury emissions directly using the model described
here because the model considers methyl mercury input to the lake and atmospleric
emissions consist primarily of Hg? and Hg[IT'. The relationship between the amount
of Hg” and Hg[Il' deposited in a :c and the subsequent methyl mercury produced
1s not siimple and is poorly understood. However, the model described here can pro-
vide information regarding changes to system behaviour that result from a change to
methyl mercury input. The mode ows that fish methyl mercury concentrations are
positively correlated with methyl zreury input. More specifically, methyl mercury
input must decrease by 25% in order for predator fish to have methyl mercury concen-
trations at 0.5 ppm or Hwer ( alth Canada guideline for safe human consumption).
Furthermore, if methyl mercury input increases by 35%, prey fish methyl mercury
concentrations will exceed the guideline.

The models described here were developed with the Labrador study lakes in mind,
however, these models can be applied to other e environments fairly easily. The
model equations can remain the same for any lake that has been subjected to mercury
contamination, however, paraneter values may need to change. Further, if the lake
being studied is not subjected tol  ves g, natural death rates should be substituted
for harvesting rates.

In addition to lake systeins, the mo s described here can be applied to reservoir
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systems with minor adjustments. To model a reservoir system, a change to the
methyl mercury input term in the lake mercury equation (T) is required such that,
in addition to the constant methyl mercury input (f), there is a large initial methyl
wercury input. This large input represents methyl mercury that is released from soil
when the reservoir is initially flooded.  1ce this change has been made to the model,
the same analysis techniques can be used for the reservoir system. Field data has
shown that the time required for fish methyl mercury levels to return to background
levels in northern Boreal reservoirs is actually quite close to the return time predicted
by the mmodel in the study. Return times have been observed to be approximately 25
years in Labrador reservoir systems (Anderson et al., 1995) compared with a return
time of approximately 15 - 20 rs predicted by this model. If the model were
adjusted to include a large initial 1ethyl mercury input the return times predicted
by the model would likely match i d observations even more closely.

While the models developed he are valid a1 robust, there are several ways they
can be improved. Further research in both mercury flux and population behaviour in
lake systems could improve model accuracy.

First of all, more accurate parameter estimations will improve the accuracy of
the model predictions. In particular, the value of paraneters related to population
dynamics (e.g. 7, k,pz,c) wo d  -ult to estimmate from literature data. Scnsitiv-
ity analysis showed that the prec or-prey model is most sensitive to the predator
functional response (p,) so this param ris a good candidate for further research.

Secondly, both models in this study assunie that methylation and methyl inercury

accumulation rates are the same rc hout the entire lake. However, some field
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studies in Labrador have shown that these rates are different in pelagic zones than
in littoral zones. [t would be very interesting (and practical) to incorporate this into
the model. This would certainly increase the accuracy of the model, although it is
uncertain what (if any) change to the model results would occur.

Finally, the models developed here ignore a t e delay that occurs from the point
that mercury is excreted from fish as inorganic mercury and the time it is again
available for uptake as methyl mercury. Incorporating this timme delay would certainly
improve model accuracy, however, it would cornplicate the model equations and more
complex mathematical analysis techniques would be required.

Future work could also include Poincaré map analysis of the models. This type
of analysis can be used to further study the system’s approach to equilibrium or the

transition to limit cycle behaviour in the case of the seasonal systein.
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Chapter 6

Appendix

6.1 Parame calc ¢ ions

6.1.1 Estimation of g, ¢ d g»

The methyl mercury removal process wi i fish exhibits exponential decay belaviour.
The methyl mercury half-life is the amount of time taken for half the total methyl
mercury contained within a fish to be removed. Calculatious for estimated value of
g1 and g» are as follows:

M(t) = Mye M (%)

where M (%) is the amount of methyl mercury observed in the population at time
t, My = M(0) = the initial amount of methyl mercury, and A is the rate of decay per
unit tine.

It follows that the methyl mer vy half-life can be defined in the following way.
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For the decaying methyl inercury, we kuow tl

% = 1 where ¢ = half-life of inethyl mercury = 600 days (Miettinen et al., 1969).

By substituting into equation (*) we get

M@ 1 -t
Mo 2 €
In(3) =Ilne
() =-xt

A = 888 days = 0.00115/day
0.00115/day * 365.25 days/year = 0.42/year

0.42/year is the estima 1 value used for g, and ¢,

6.1.2 Estimation of d

..e value of total methyl mercury removed from the lake (d) was calculated to be
the sum of methyl mercury remo due to sediment burial (d,), demethylation in
the water column (d,), and tributi -~ or  low (d3).

d:d1+d2+d3

Sediment burial (d,)

‘atras et al. (1994) found that me yl mercury was buried at a rate of 91 ng-m=2-yr—!

in the sediment of Litt  Rock Lake, Wisconsin. Using this rate, methyl mercury lost
through sediment burial in the stv - lakes is:

No Name: 2743 x1 m? *911 m 2yr ! =25 gyr ! out of 7.4 g total = d
= 0.3yr!

Panch: 20.65 x 10°m? * 911 m ™ 2yr~! = 1.9 yr~! out of 13.5 g total = dy =
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0.14yr™!

Rocky Pond: 6.21 x 10°m? * 91 ngm=2-yr™! = 0.5 g-yr~! out of 0.8 g total = ds =

0.6yr!

Shipiskan: 17.21 x 100 2 * 91 ngm~2yr~t = 1._ g-yr~! out of 55 g total = da

0.02yr!

The mean of these four values is d; = 0.27yr™!

Demethylation in the water cc 1mn (d3)

Demethylation in the water coluinn occurs at such a low rate that it was omitted in

the calculation of d (i.e., dy = 0).

Tributary removal (d3)

There was no suitable data availal  on rates of methyl mercury removal from trib-
utaries and is assumed to be sma in our lakes. The rate dy was assumed to be
negligible in this analysis.

Thus, the value of d was calculated to be:

d=027yr} +0+ 0~ 0.3yr™!
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