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Abstract 

PP ARy is a nuclear hormone receptor and master regulator of lipid metabolism 

and adipogenesis. PP ARy regulates these processes through the recruitment of a diverse 

set of transcriptional coregulators in a tissue and time specific manner. This study 

focused on characterizing the interaction between PP ARy and mesoderm induction early 

response 1 (MIERl), a transcription factor that has been shown to interact with other 

nuclear hormone receptors and regulate target gene expression. Glutathione S transferase 

pull-down assays have revealed that PPARy interacts with both MIERla and p through 

the common SANT domain. Coimmunoprecipitations in HEK-293 (human embryonic 

kidney cells) confirmed that this interaction occurs in vivo. A transcriptional reporter 

assay using luciferase regulated by the PPAR response element (PPRE) demonstrated 

that MIERl a and p cause a ligand-independent 2-fold activation of PP AR-driven 

transcriptional activity and this was similar to the 3-fold activation observed with a 

known PPARy coactivator (PGCl-a). Thus, MIERl interacts with PPAR in a ligand­

independent manner through its SANT domain, and activates PPARy-mediated 

transcriptional activity. PCR analysis showed that MIERl mRNA expression is 

upregulated in 3T3-Ll pre-adipocytes during their differentiation into adipocytes. As 

well, immunocytochemistry revealed that MIERl a is highly expressed specifically in 

differentiated 3T3-Lls. Future work will determine the exact role of MIERl in 

adipogenesis, using shRNA to knockdown MIERla in the well-established 3T3-Ll 

differentiation system. 
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CHAPTER 1 - Introduction 

1.1 Genera/Introduction 

1.1.1 The Central Dogma: DNA 7 RNA 7 Protein 

The genome of a particular cell dictates the proteins that could potentially be 

expressed in that given cell at a particular period in the existence of that cell. However, 

the information in the genome must be translated into the expression of a set of proteins. 

The mechanism by which the cell translates this information is referred to as the central 

dogma in cellular biology. Succinctly, deoxyribonucleic acid (DNA) from the nucleus is 

transcribed into messenger ribonucleic acid (mRNA) that is subsequently translated into 

protein. 

1.1.2 Transcription 

Transcription is the synthesis of RNA from the template strand of DNA, and 

allows for a mobile copy of the information stored in the genome to be translocated to the 

cytoplasm for translation. The major enzyme responsible for transcription is the RNA 

polymerase. In eukaryotic cells, there are three different RNA polymerases - RNA 

polymerase I synthesizes ribosomal RNAs (rRNA), polymerase II synthesizes mRNAs 

and polymerase III the transfer RNAs (tRNA). The RNA polymerase II can bind to a 

region of the DNA referred to as the promoter region, with the aid of other proteins 

referred to as transcription factors. Specifically, the polymerase binds to a region 
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referred to as the TAT A box, with a sequence of 5 ' -TAT AAA-3' . Prior to binding by the 

polymerase, a TAT A-binding protein (TBP) recognizes the TATA box in a complex with 

transcription factor for polymerase II, fraction D (TFIID). This complex serves as a 

binding site for other transcription factors including TFIIA and TFIIB, which recruit the 

polymerase in complex with TFIIF. Once bound to the DNA, the RNA polymerase is 

changed into its active form by the binding of TFIIE and TFIIH, and moves along the 

DNA in a 3' to 5' direction while a protein called DNA helicase unwinds the double­

stranded molecule. The RNA polymerase assembles a complementary strand of RNA 

using nucleotides that form a proper base pair with the nucleotide of the strand of DNA 

being transcribed. The DNA re-winds itself into a double-stranded molecule and the 

mRNA is left as a single strand. This mRNA is sometimes shuttled to the cytoplasm 

where processing can occur. However, most of the eukaryotic mRNA processing occurs 

in the nucleus. There are three main processing steps; addition of a 5' methylguanosine 

cap, addition of a 3' polyadenosine (poly(A]) tail, and RNA splicing. The 5' cap 

prevents degradation of the mRNA by exonucleases and plays a role in initiation of 

mRNA translation. The 3' poly (A) tail serves as a docking site for proteins involved in 

processing at the 3' end of the mRNA. 

The last processing step of the mRNA includes removal of introns (non-coding 

regions), and this is referred to as RNA splicing. As with transcription itself, RNA 

splicing requires precision and a host of enzymes to ensure that not a single nucleotide of 

the exon sequence is lost, or mistranslation of the mRNA could occur. Splicing usually 

occurs co-transcriptionally, where the splicing factors could interact with the 
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transcriptional machinery1
• Once this processing is complete, the mature mRNA is 

shuttled to the cytoplasm where it can then pass the genetic information on in the form of 

protein via the process referred to as translation. This study focuses on a novel 

transcription factor that is intimately tied to the process of transcription - Mesoderm 

Induction Early Response 1 (MIERl). 

1.2 Mesoderm Induction Early Response 1 (MIER1) 

1.2.1 MIER1 Structure/Function 

Mesoderm Induction Early Response 1 was first isolated in Xenopus laevis as a 

gene that was intimately involved in development. The expression levels of Xmi-er 1 

were upregulated after the induction of mesoderm differentiation by fibroblast growth 

factors (FGF)2
. A comparison of the amino acid composition of this isoform with the 

subsequently discovered human ortholog showed 91% similarity on the whole and 100% 

similarity in the common internal domains. This gene encodes a nuclear protein that has 

been shown to act as a transcriptional regulator. 

Further study into the structure of mier 1 revealed a number of splice variants of 

the same gene. The chromosomal position is human Chr 1 p3 1 .2, and mier 1 spans 63 Kb 

and consists of 17 exons. Of these exons, there is one skipped exon, a facultative intron 

and three polyadenylation signals that together can produce 12 different transcripts 

encoding six proteins3
. The six isoforms have a common internal domain but variable N­

and C- terminal regions. Specifically, there are three different N-terminal and two C-
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terminal variants. The C-terminal variants arise from the use of a facultative intron, and 

produce the two main isoforms, MIERla and MIERlp. Of these two, only MIERlP has 

a nuclear localization signal (NLS) while MIERla remains mainly in the cytoplasm4
. 

This does not rule out the possibility that MIERla could be shuttled into the nucleus via 

interaction with other nuclear proteins (e.g. HDACl). MIERla may also differ in 

subcellular localization depending upon cell type. 

MIER I a contains in its C-terminus, an L:XXLL motif that is not found in 

MIERI p. This motif has been shown to function as a nuclear hormone receptor 

interaction domain in many different coregulators for the nuclear receptors, including 

RIP-140, SRC-I, TIF-2 and CBP/p3005
. 

Some of the domains in MIERI are very similar to other transcriptional 

regulators. There is a well characterized acidic activation domain common to the a- and 

P- forms of MIERI, as well as an ELM2 domain and a common SANT domain6 (Figure 

I). 

The SANT domain of MIERl is found in many other transcriptional regulators; 

the acronym actually originates from the proteins in which it was initially found: .S.WI3, 

ADA2, N-CoR and TFIIIB. The SANT domain has been implicated in protein-protein 

interactions, DNA binding and even recruitment of histone acetyltransferases and 

deacetylases, and thus its function in a specific protein must be determined. The SANT 

domain is actually a small motif, with approximately 50 amino acids and is often found in 

nuclear receptor corepressors7
• It has been hypothesized that the SANT, bromodomains 
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hMIER1a (1-433aa) - J-c 
hMIER1 ~ (1-512aa) N-

CJ a C-tenninus (411- 433 aa) ... Acidic activation domain 

- SANT domain (283-331 aa) ~ C-tenninus ( 411 - 512 aa) 

ELM-2 domain (180- 264 aa) 

Figure 1: Domain Structure of MIERl 

Figure 1 depicts the two most common forms of MIERl, MIERla. and MIERl~. These 
two proteins share a common set of domains listed above, except MIER 1 ~ has an 
alternate C terminus that arises via the use of a facultative intron. 
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and chromodomains actually read what has been referred to as the histone code 7. The 

histone code hypothesis is based on the fact that specific histone tail modifications, such 

as acetylation, methylation, phosphorylation and/or ubiquination can make up a code that 

will determine the transcriptional state of the particular genes 7• In the case of the SANT 

domain, it has a binding preference for unmodified histone tails - therefore its interaction 

with the unacetylated tails could block the binding of histone acetyltransferases (HATs). 

Also, deacetylation of histone tails could increase binding of SANT -domain containing 

proteins7
• 

The ELM2 domain has been found in many different proteins, often in 

conjunction with the SANT domain. It has been found in a number of transcriptional 

corepressors, including atrophin 2 8, MTA (metastasis associated family), and CoREST 9. 

Several studies have shown that the ELM2 domain is involved in directly binding histone 

deacetylases I and 2 (HDACI /2) 10
•

11
• A recent study on the function of the ELM2 and 

SANT domains has revealed a distinct mechanism by which the ELM2 domain recruits 

HDACl/2 and the SANT domain recruits G9a (histone methyltransferase), resulting in 

deacetylation followed by stable methylation of histone H3-lysine 9 in atrophin 212
• 

Since MIERl contains both of these domains, and has been shown to have an affinity for 

both HDACI /2 and G9a13
, it may function as a transcriptional repressor in a similar 

manner. 

The presence of the acidic activation domain at the N-terminus 14 gave reason to 

believe that MIERl would act as a potent transcriptional activator. However, further 

study using the G5tkCAT reporter plasmid and GAL4-fused MIERla and~ showed that 
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the two isoforms actually function as powerful transcriptional repressors in a number of 

different cell lines 15
• It was subsequently determined that repression occurred through 

two distinct mechanisms. The first is recruitment of HDACl to the ELM2 domain of 

MIER1 16
• The second is via the SANT domain, where MIERl binds to certain 

transcription factors (Spl) and displaces them from their respective binding site 17
• 

Other putative domains have been identified in MIERl. A study on Xenopus 

laevis xMIERl indicated there was a proline-rich region that matched the consensus for 

the Src homology 3 (SH3) binding domain 18
• In fact, mutation of proline 365 completely 

eliminated the effects of xMIERl on development18
• These SH3 binding domains are 

usually found in proteins that interact with other proteins via proline-rich peptides, to 

mediate assembly of larger protein complexes. Some examples of SH3 domain 

containing proteins include those involved in tyrosine kinase signaling, cytoskeletal 

organization, and various enzyme complexes19
• 
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1.3 Peroxisome Proliferator-Activated Receptor (PPAR) 

1.3.1 PPAR 

The superfamily of nuclear hormone receptors consists of three types: steroid 

receptors, non-steroid receptors, and orphan nuclear hormone receptors for which there is 

no known binding partner or ligand. The steroid receptors include the androgen receptor 

(AR), estrogen receptor (ER), glucocorticoid receptor (GR), progesterone receptor (PR) 

and mineralocorticoid receptor (MR). The non-steroid receptors include the vitamin D 

receptor (VDR), retinoic acid receptor (RAR), retinoid X receptor (RXR) and the 

peroxisome proliferator-activated receptors (PP AR). Some orphan nuclear hormone 

receptors include PNR (photoreceptor cell-specific nuclear receptor), TLX, TR2 and 4 

(thyroid hormone receptors 2 and 4) and NURR1 20
. 

The peroxisome proliferator-activated receptors (PPARs) have an integral role in 

lipid and glucose metabolism, and have been also implicated in a variety of carcinomas21
-

25 . Both overexpression of PPARy as well as loss-of-function mutations in ppary have 

been implicated in colorectal cancer21
• PP AR~/8 has been shown to stimulate lung 

cancer cell growth via the PI3-kinase pathway and inhibition of the phosphatase and 

tensin homolog (PTEN)26
. 

There are three isoforms of PP ARs including PP ARa., PP ARP/8 and PP ARy that 

are expressed in various tissues of the body. PPARa. is found mainly in the liver, muscle, 

heart and kidneys27
,2

8
. Much less is known about PP AR~/8, which is widely expressed 

throughout the body including the brain, adipose tissue, liver, muscle, vascular smooth 
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muscle cells and endothelium29
. PP ARy is expressed mainly in adipose tissue, with some 

expression also occurring in human skeletal muscle, heart 30 and macrophages3 1
. 

There are three isoforms of PPARy, PPARyl , PPARy2 and PPARy3. Both 

pparyl and ppary3 encode the same protein, while PPARy2 contains an extra 30 amino 

acids at the NH-2 terminus32
. While PPARy1 is ubiquitously expressed, PPARy2 is 

expressed mainly in adipose tissue33
. Perhaps the most infamous function of PP ARy2 is 

in relation to Type 2 diabetes. Under normal conditions, PP ARy2 can be activated by 

ligands (thiazolidinediones) to promote insulin sensitivity thereby improving the 

condition of those affected by diabetes34
. However, the exact mechanism by which 

PP ARy2 promotes insulin sensitivity has yet to be elucidated. 

1.3.2 Structure ofPPARs 

The overall structure of the PP ARs is similar to that of other nuclear hormone 

receptors. Moving from the N-terminus to the C-terminus, the PPAR gamma gene 

encodes an AlB domain that stimulates ligand-independent transcriptional activity, which 

is also called the activation function 1 (AF-1) domain35
. This domain also contains 

conserved MAP-kinase phosphorylation serine sites32
. Next is the C domain which 

contains the DNA binding domain (DBD) consisting of two zinc fingers that facilitate 

site-specific binding of the receptor to the hormone response element (HRE). In the case 

of PPARy, this response element is called the PP ARy response element (PPRE). The 

DBD contains a carboxyl-terminal extension (CTE) of the zinc finger domain that 
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recogruzes the 5'extension of the direct repeat 1 (DRl), which contributes to the 

specificity and polarity of PPAR DNA binding32
. As will be discussed in detail, PP AR 

response elements (PPRE) consist of a hexameric nucleotide direct repeat of the 

recognition motif 5'-AGGTCA-3' spaced by one nucleotide, and PPAR binds the 5' 

direct repeat36
. This is in contrast to what is normally seen for heterodimeric partners of 

the retinoid X receptor (RXR), which tend to bind at the 3' DR. 

The D domain is a hinge region that contains the DNA binding domain (DBD), 

however this domain has also been implicated in ligand binding37
• It is highly conserved 

among the PPARs, and may be involved in nuclear localization32
. In 2005, it was 

discovered that PP ARa is regulated in part by protein kinase C (PKC), through PKC­

phosphorylation sites located near the hinge region38
• There are a number of other post­

translational modifications that affect PPAR. For example, insulin induces both PPARa 

and PP ARy phosphorylation which in turn, leads to an increase in PP AR transcriptional 

activity39
. The mitogen-activated protein kinase pathway can also phosphorylate PPARy, 

via stimulation by a-adrenergic signals39
. Certain ligands for the receptor can also lead 

to ubiquination and subsequent proteasomal degradation. 

Domain E contains the ligand binding domain (LBD) that facilitates dimerization 

with the retinoid X receptor (RXR) and also binding of a wide range of ligands. The 

LBD of PPARy is hydrophobic, and larger than that of other nuclear receptors, allowing 

for more promiscuous ligand binding affinity40
. Also found here is the activation 

function 2 (AF-2) domain that binds to specific cofactors to facilitate transcriptional 

regulation. More specifically, it is involved in ligand-dependent transcriptional 
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activation. Both the D and ElF domains have been shown to interact with Heat Shock 

protein 90 (HSP90), where it acts as a repressor of both PP ARa and PP ARB/8 activity41
• 

There are a number of ligands thought to bind this domain of PP ARy (Table I). Of the 

endogenous ligands, there is not a single ligand that has a very high affmity for PP ARy; 

the highest affinity ligand for PPARy would be 15-deoxy-~-12, 14-prostaglandin J242
. 

Other less specific ligands include the fatty acids and other eicosanoids. 
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Table I: PPARy coregulators and ligands 

PPARy PPARy Endogenous Synthetic Ligands 
Coactivators Corepressors Ligands 
CBP/p300 RIP140 Eicosanoids (e.g. Thiazolidinediones 

15-deoxy-~-12, 14- (e.g. rosiglitazone, 
SRC-1, 2, 3 NCoR prostaglandin J2) troglitazone, 

pioglitazone, 

PGC-la, p SMRT Fatty acids (e.g. cigli tazone) 
lauric acid, 

PBP arachidonic acid, Non-steroid anti-
linoleic acid, inflammatory drugs 

PRIP linolenic acid) (NSAIDs) (e.g. 
aspirin) 

PRIC285 
Statins (e.g. 

BAF60c 
Atorvastatin, 
Rosuvastatin, 
simvastatin) 
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AlB c D E 

N- . -C 

AF-1 AF-2 

DNA binding domain 

LigaDd biDding domain 

Figure 2: Domain Structure of PPARy 

The AlB domain at the N-terminus is responsible for ligand-independent transcriptional 
activity. The C domain contains the DNA binding domain (DBD) that allows PPARy to 
recognize and bind the PPAR response element (PPRE). The D domain is a hinge region 
that allows for folding of the protein and the E domain contains the ligand binding 
domain (LBD). The ligand-binding domain along with the AF-2 domain is responsible 
for ligand-dependent transcriptional activation and also facilitates heterodimerization 
with the retinoid X receptor (RXR). 

13 



1.3.3 Classical Model for PPARy Function 

Non-steroid nuclear hormone receptors have been implicated in a variety of 

cellular processes including apoptosis, cellular proliferation, and cell cycle regulation43
. 

PP ARy specifically has been associated with tissue repair and inflammation. It has also 

been implicated in a variety of human diseases including Type II diabetes (PPARy), 

leukemia, colon carcinoma, bone cancer and atherosclerosis21
'
44

'
45

. The general model for 

PP AR action is conserved among the three isoforms and is triggered by ligand binding to 

the LBD. After ligand binding, PPAR heterodimerizes with the retinoid X receptor 

(RXR) and binds to PPREs. 

The retinoid X receptor is a ligand-activated nuclear hormone receptor, of which 

the retinoids or vitamin A derivatives are the major endogenous ligand 46
. Some of the 

nuclear hormone receptors that RXR binds are PP ARs, liver X receptors (LXR), vitamin 

D receptors (VDR), and the famesoid X receptor (FXR)46
. An interesting difference 

between the heterodimerization of PP AR with RXR as opposed to other nuclear receptors 

that partner with RXR is that while normally RXR preferentially binds the 5' direct 

repeat sequence of the particular hormone response element (HRE), in the case of PPAR­

RXR, PP AR prefers to bind this 5' sequence. The significance of this difference has not 

been elucidated. 

Binding to PPRE requires that a ligand bind to either PP AR or RXR, although 

when both receptors are bound by ligand the transcriptional regulation is usually 

enhanced47
. These PP AR response elements consist of a hexameric nucleotide direct 
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repeat of the recognition motif 5'-AGGTCA-3 ' spaced by one nucleotide48
. During 

ligand binding, activation and heterodimerization, the complex recruits coregulators 

( coactivators or corepressors) to regulate expression of a variety of genes. 

Nuclear receptor coregulators are a family of approximately 300 proteins that 

interact directly or through other proteins with DNA-binding transcription factors to 

facilitate regulation of gene transcription. These coregulators consist of coactivators 

(function to activate gene transcription at a particular promoter) and their negative 

counterpart, the corepressors. These coregulators function in a multicomponent protein 

complex to assist the cell in regulating the subreactions that together define the process of 

transcription. As mentioned in the introduction to transcription, this process includes 

unwinding of DNA from histones, assembly of a large complex including polymerase II, 

initiation, elongation, RNA splicing and terminiation. 

As if the number of coregulators was not enough to lead to the precise regulation 

of target gene transcription, coregulators are also controlled by posttranslational 

modifications of either the coregulator itself, or the associated nuclear receptor. These 

modifications may include phosphorylation (as in the case of PP ARy), methylation, 

acetylation, SUMOylation or ubiquitination49
. These posttranslational modifications 

could be a type of code, allowing for the huge diversity of human gene transcripts that 

cannot be explained by the number of genes alone. 

It is human nature to categorize things, and labeling certain proteins as 

coactivators or corepressors is no exception. However, some of these factors could serve 

as both coactivators and corepressors, depending upon the circumstances. For example, 
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SMRT and NCoR are potent transcriptional repressors for a number of nuclear 

receptors50
-
52

. However, both SMRT and NCoR function as transcriptional activators for 

TRa (thyroid receptor) through their binding to negative hormone response elements in 

the promoter region53
. Another example, albeit indirect, is SRC-3. SRC-3 has been 

defined as a growth coactivator in the breast, but can function as a growth repressor in the 

lymphocytes via cytoplasmic sequestering of IKK (IKB kinase) and ultimately inhibiting 

NF-KB54
. 

When an agonist binds PP AR (or in some cases, RXR), the complex between 

PPAR and the corepressor(s) dissociates allowing for the recruitment of coactivators. If 

bound by an antagonist, the receptor can recruit corepressors. For the PP AR-RXR 

complex, these two receptors are bound together, even in the absence of agonist55
. These 

coregulators can then either recruit histone acetyltransferases (HATs) or deacetylases 

(HDACs) to modify the chromatin to regulate gene transcription (Figure 3). In some 

cases, these coregulators actually possess either HAT or HDAC activitl6
• 
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Figure 3: Model for PPAR ligand binding and activation of transcription 

PPARy forms a complex with retinoid X receptor, and until bound by ligands are inactive and interact with 
a variety of corepressors containing histone deacetylase (HDAC) activity. When ligands for either PPAR 
(e.g. troglitazone) or retinoid X receptor (e.g. 9-cis retinoic acid) are present, the heterodimer releases the 
corepressors complex and recruits coactivators. These coactivators may have histone acetyltransferase 
(HAT) activity, or recruit HATs to unwind the DNA and allow for efficient transcription of target genes. 
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1.3.4 Adipogenesis 

Until recently, adipose tissue was disregarded as nothing more than a storage 

depot for excess energy for the body. However in recent years it has achieved a more 

exciting role, as a bona-fide endocrine organ57
. The adipocytes that make up the adipose 

tissue are highly specialized cells that respond to environmental stimuli by secreting 

some of the major bio-regulatory hormones of the body, collectively referred to as 

adipokines58
. Over 50 adipokines have been described, as of 2008. Some of the major 

hormones secreted by this endocrine organ include leptin, adiponectin and resistin. 

White adipose tissue (W AT), in concert with the pancreas and the liver, plays a central 

role in the regulation of energy homeostasis. The dysregulation of either of these 

endocrine organs results in a variety of afflictions including diabetes, hypertension and 

dyslipidemia59
. 

There are two types of adipose tissue, white adipose tissue (W AT) and brown 

adipose tissue (BAT) that function to regulate metabolic processes in the body. WAT 

functions to store energy in the form of triacylglycerol, and can release this stored energy 

upon stimuli from external sources60
. BAT, however, dissipates energy in the form of 

heat to maintain body temperature (thermoregulation)61
• More specifically, the BAT 

phenotype is characterized by a large number of mitochondria that express uncoupling 

protein 1 (UCP-1 ). UCP-1 functions to "uncouple" the electron transport chain from 

energy production, essentially leading to the production of heat62
• Human adipose tissue 

is mainly W AT, with some BAT found mainly in newborns. Recently, it has been 
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discovered that BAT is found in adult humans, and functions much the same as it does in 

rodents (who possess large amounts of BAT). The main depots in adult humans are in 

the supraclavicular and the neck regions, with lesser amounts in the paravertebral, 

mediastinal, para-aortic, and suprarenal areas63
. This BAT could be a target for metabolic 

disease treatments. 

In the case of W AT, adipogenesis occurs when undifferentiated, fibroblast-like 

pre-adipocytes are differentiated into mature adipocytes64
. This process occurs via a 

complex cascade of transcriptional events that leads to the upregulation of PP ARy along 

with a few other key adipogenesis factors including CCAA T/enhancer-binding proteins 

(C/EBPs) and adipocyte determination and differentiation dependent factor 1/sterol 

response element-binding protein 1c (ADD1/SREBP1c)65
. This process of adipogenesis 

is the main biological system used in this particular study; the 3T3-Ll fibroblast model is 

described here. 

1.3.5 3T3-L1 Model System for Adipogenesis 

3T3-Ll cells are a continuous strain of the common mouse embryonic fibroblast 

3T3 cells, which have been developed through clonal isolation66
. Since these cells 

differentiate into mature adipocytes following confluency and treatment with specific 

drugs (Dexamethasone, 3-isobutyl-1-methylxanthine [IBMX], Insulin), they provide a 

well-established model for studying adipogenesis67
• 
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PPARy and the CCAAT/enhancer binding proteins (C/EBPs) are the maJor 

regulators of adipogenesis and the formation of white adipose tissue68
. Stimulation of 

adipogenesis involves initiation via dexamethasone, IBMX, fetal bovine serum (FBS) and 

insulin. Specifically, the IBMX stimulates C/EBPP while the dexamethasone stimulates 

C/EBP869
. The IBMX is an inhibitor of cAMP and cGMP phosphodiesterases - the 

turnover of cAMP in the cell is essential for C/EBPP response to particular transcription 

factors70
. 

These C/EBP proteins begin to accumulate in the cells within 1-4 h of 

adipogenesis induction, but do not become active until hyperphosphorylated by a 

cyclin/cdk complex. This cyclin D3 is increased during differentiation of 3T3-Ll 

adipocytes, which then forms a complex with Cdk2 71
. Once activated, C/EBP proteins 

can bind to the pparypromoter at consensus C/EBP binding sites and aide in the initiation 

f 
. . 72 

o transcnpt10n . 

The primary cocktail ofiBMX, Dex, and FBS applied to 3T3-Ll pre-adipocytes 

causes the upregulation of C/EBPP and C/EBP8. These proteins then stimulate the 

expression of PP ARy while at the same time activating a cascade leading to the synthesis 

of PPARy ligands68
. Activated PPARy subsequently binds to the hormone response 

element for PP AR, PPRE, of adipogenic target genes that include, for example, 

adiponectin, leptin, fatty acid binding protein, and lipoprotein lipase73
•
74

. 

A number of chromatin-modifying proteins have been shown to be involved in 

the process of adipogenesis. Since MIERl interacts with chromatin-modifying proteins, 
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and adipogenesis regulation involves chromatin modification, a brief review of these 

epigenetic regulatory mechanisms is required (Figure 4). 

C/EBPP is a transcription factor that until phosphorylated is unproductively 

bound to the ppary2 and cebpa promoters. When the cell enters quiescence at 

approximately Day 2 of differentiation, the SWI/SNF chromatin remodeling complex is 

recruited which allows for transcription of PP ARy. C/EBPP also stimulates 

C/EBPa transcription which in turn activates its target genes by interacting with a 

SWI/SNF complex. More important is the epigenetic regulation of PP ARy activity from 

this point forward, since it is the only factor described to date that is both necessary and 

sufficient to promote adipogenesis 75
. 

In the undifferentiated cell, PP AR is bound to the promoter of target genes in a 

repressive complex, which includes retinoblastoma (Rb) and HDAC3. Phosphorylation 

of Rb allows for the dissociation of this complex, while ligands for PP AR (ie. 

troglitazone) stimulate PPAR to recruit coactivators like CBP/p300. At the level of the 

cell cycle, PPAR is also regulated by Cyclin D3-CDK6. This kinase phosphorylates 

PP AR at the AlB domain, causing increased transcription of the adipogenic target 

genes76
. 
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Figure 4: Epigenetic regulation of the effects of C/EBP and PPAR on adipogenesis 

After initiation of adipogenic program, C/EBP~ becomes phosphorylated and upreguJates 
C/EBPa on Day 2 of adipogenesis. C/EBPs upregulate PPARy2 expression which is 
regulated in part by the cyclin/cdk complex and phosphorylation of Rb. The PPARy 
ligands allow for the release of corepressor complexes (Rb/HDAC3, 
CyclinD1/HDACl/HDAC3/SUV39Hl, and NCOr/SMRT) and stimulate PPAR to recruit 
coactivators (CBP/p300). PPARy binds to the PPRE of target adipogenic gene 
(adiponectin, leptin, fatty acid binding protein, lipoprotein lipase, etc), which continue to 
accumulate in the cytoplasm of differentiating 3T3-Ll cells after Day 6. Retrieved from 
(Musri et al., 2007) 44 with modifications. 
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1.3.6 PPARy and Type 2 Diabetes 

Type 2 Diabetes is a metabolic disorder that results in hyperglycemia (abnormally 

high blood sugar levels). This is most often the direct result of low levels of circulating 

insulin or an increased resistance to the effects of insulin in various tissues with no 

compensatory production. There are three subtypes of diabetes; type 1, type 2, and 

gestational diabetes (during pregnancy). All three forms are associated with a reduction 

in P-cell function in the Islets of Langerhans in the pancreas. Type 1 is the result of an 

autoimmune attack on the P-cells, while Type 2 relies on higher than normal insulin 

resistance in potential insulin-responsive tissues. More specifically, this is resistance to 

insulin-stimulated glucose uptake78
. In the case of Type 2 diabetes, development of this 

affliction involves some loss of P-cell function, in addition to the insulin resistance 

mentioned above. The role of adipose tissue in Type 2 diabetes has also been widely 

studied79
• Gestational diabetes occurs when pregnancy hormones affect the individual's 

insulin sensitivity - usually there is a genetic predisposition 80 
. 

In 1995, PPARy was identified as the receptor responsible for the insulin­

sensitizing effects of the thiazolidinedione (TZD) class of drugs81
. However, the exact 

mechanism by which the TZDs increase insulin sensitivity is unknown. A few 

hypotheses have been proposed. The first hypothesis is referred to as the " lipid steal" 

hypothesis82
, and suggests that TZDs are likely to act on adipose tissue by enhancing its 

capacity to act as a depot for dietary fatty acids. This keeps the lipids in adipocytes and 

away from other insulin-sensitive tissues such as skeletal muscle83
. 
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Another way TZDs could enhance insulin sensitivity is through modifying the 

profile of hormones secreted from adipose tissue. More specifically, TZDs increase 

adiponectin (one of the adipokines secreted by adipose tissue) gene expression and 

plasma protein levels84
. Adiponectin plasma levels also correlate directly with insulin 

sensitivity, and thus this mechanism could be how TZDs exert their effect. If PPARy2 is 

regulated in some way by MIERl , it is possible that MIERl may serve as a potential 

target for Type 2 diabetes treatment. 

1.4 Purpose of this Study and Objectives 

Since MIERl a has been shown to interact with nuclear hormone receptors 

ERa/p85
, RXRa86 and RARa/p/y86

, it is possible that it also interacts with the PPAR 

isoforms since they share a very similar domain structure. There has also been evidence 

that MIERla plays a role in the regulation of ERa activated transcription (unpublished 

data). Given the above information, the purpose of this study was to determine if 

MIERla interacts with PP ARy both in vitro and in vivo and whether or not this 

interaction affects the regulation of transcription of PP ARy target genes. Since 

PP ARy is the master regulator for adipocyte differentiation, the role of MIERl in 

this process was investigated. 
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Objective 1: Determination of a possible interaction between MIERJ and the P PAR 

isoforms 

GST pulldown assays were completed with GST-MIERla or GST-MIERl~ and in vitro 

translated 35S-labeled PPARy to determine the possibility of an interaction between 

PPARy and MIERl . 

Objective 2: Identification of the region of MIERJ responsible for interaction with the 

PPAR isoforms (PPARyand PPARjJ/6) 

To further characterize the interaction between PPARy and MIERl, GST-MIERl 

deletion constructs were used to determine the region of MIERl responsible for the 

interaction. 

Objective 3: Characterization of the in vivo interaction between MIERJ and the P PAR 

isoforms 

A human embryonic kidney cell line (HEK-293) was transfected with MIERla or 

MIERl~ and PPAR, and coimmunoprecipitations were conducted in order to determine 

whether MIERl interacts with PPARy and PPAR~/8 in vivo. 

Objective 4: Characterization of the role of MIERJ in PPRE-dependent transcription 

MIERl has been shown to act as a potent transcriptional regulator via the use of both the 

ELM2 and SANT domains for recruitment of transcription factors and histone modifiers. 

For example, MIERl has been shown to regulate ERE-driven transcription87 and has the 

ability to recruit HDACl through the ELM2 domain. As well, since MIERl contains a 

SANT domain common to many coregulators, it may regulate PPAR-dependent 

transcription. 
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Objective 5: Determination of the role of MIERJ in Adipogenesis 

Since PPAR is a master regulator of adipogenesis, and if MIERI regulates PPAR, it may 

play a vital role in the differentiation process. We examined the mRNA levels ofMIERl 

by RT-PCR and protein expression using immunocytochemistry (ICC) over the time 

course of adipocyte differentiation. Immunocytochemical analysis of differentiated 3T3-

Ll cells was performed to determine if MIERI was being expressed specifically in the 

cells forming lipid droplets. Furthermore, confocal microscopy was used to determine if 

colocalization ofMIERla and PPARy occurred in adipocytes. 
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CHAPTER 2 - Materials and Methods 

2.1 Plasmids 

A. pcDNAflagppary2, pSVsportppary2, pBABEpuro ppar{J/8 

These plasmids were purchased from Addgene. Both pSV sport ppary2 

(Spiegelman, B.) and pBABE puro ppar{J/8 (Spiegelman, B.) were used to transfect 

HEK-293 cells for immunoprecipitation. 

B. CS3+MT, CS3+MT-mierl a//] 

CS3+MT is a myc-tagged vector and was a gift from Drs. David Turner and 

Ralph Rupp (University of Michigan). Hmier 1 a and p were cloned into this vector by 

Corinne Mercer. 

C. GST-mierl a//] 

Deletion constructs of MIERl a and p were cloned by Zhihu Ding into the pGEX 

vectors (containing a GST-tag for GST-pulldown assays) (Amersham). 

D. pGL3-Basic 

This plasmid (Promega) lacks the eukaryotic promoter and enhancer sequences 

required for transcriptional activation and it is used as a control for background luciferase 

activity. 

E. pPPRE-X3-TK-luc 

This plasmid was purchased from Addgene (Spiegelman, B.). This plasmid 

contains three PPAR response elements (PPREs) upstream of the luciferase reporter gene. 
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F. pSV-~Gal 

This plasmid was purchased from Promega (Hall, 1983). It encodes the bacterial 

~-galactosidase enzyme under control of the constitutive Rous Sarcoma virus promoter 

and it is used as a way to normalize for transfection efficiency. The ~-galactosidase (~­

gal) assay measures the ability of ~-galactosidase to convert o-nitrophenyl-13-D­

galactopyranoside to 0-nitrophenol (which can be measured at 415nm with a 

spectrophotometer). 
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2.2 In vitro Transcription-Translation (TnT) 

In order to produce proteins for use in GST pull down assays, coupled 

transcription-translation reactions were performed using a TnT kit (Promega) as per 

protocol obtained from the manufacturer. Briefly, plasmid DNA is incubated with rabbit 

reticulolysate and the required amino acids. In order to make radiolabeled protein, amino 

acids deficient in methionine are added instead of all the amino acids. To this particular 

reaction, e5S]-methionine is added for incorporation into the protein. To make both 

radiolabeled and non-radiolabeled protein at the same time, a mastermix was first 

prepared in 1. 7ml centrifuge tubes and separated prior to the addition of e5s]-methionine. 

The following reaction components were added in order, with a quick vortex between 

each reagent: 75 !ll rabbit reticulolysate, 6 Ill TnT reaction buffer, 3 !ll amino acids minus 

methionine, 57 !ll DEPC water, 3 !ll of ribonuclease inhibitor (RNA Guard; Amersham 

Biosciences) and 6 !ll T7 polymerase. From this mastermix, 44 !ll was put in a 1.7 ml 

tube for the non-radiolabeled TnT production. The following was then added to the non­

radiolabeled tube: 1.5 !ll amino acids minus methionine, 2.5 !ll amino acids minus leucine 

and 1 !ll of plasmid DNA. 10 !ll of e5S] methionine was added to the remaining 

mastermix. From the mastermix, 49 !ll were put in another 1.7 ml tube for the 

radiolabeled protein production, and 1 !ll of plasmid DNA was added. In place of 

plasmid DNA, 1 !ll of DEPC water was added to the negative control TnT. All three 

reactions were incubated at 30°C for 90 min. 
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In order to determine the efficiency of the reaction, TCA (trichloroacetic acid) 

precipitation assays were conducted. In this case, 2 Ill of the TnT product was incubated 

with 98 Ill of a IN NaOH/2%H20 2 solution at 37 °C for 10 min. Subsequently, 900 Ill of 

25% TCA/2% casamino acids (Merck) was added to each reaction and they were 

incubated on ice for 30 min. These are amino acids hydrolyzed from casein. The 

resultant precipitate was collected via filtration onto filter paper and dissolved in 

Biodegradable counting scintillant (Amersham) and counted in a liquid scintillation 

counter (Beckman LS 3801). 

2.3 GST Pull down Assay 

2.3.1 Glutathione Sepharose 4B Beads 

Glutathione Sepharose 4B beads (GE-Biosciences) were prepared according to 

manufacturers instructions. After gentle mixing of original 75% slurry of beads, 1.33 ml 

was dispensed into a 15 ml falcon tube. This solution was centrifuged at 500 x g for 5 

min. The supernatant was aspirated off and the beads were washed with 1 0 ml of cold 

PBS. Again, the solution was centrifuged at 500 x g for 5 min and the supernatant 

removed by aspiration. The beads were then resuspended in 1 ml of 1 x PBS containing 

0.2% azide to produce a 50% slurry of beads that were stored at 4 °C. 
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2.3.2 GST -fusion protein production 

Glycerol stocks of transformed BL21 cells were streaked onto an ampicillin plate 

and left to grow at 3 7 °C overnight. The next morning, this plate was removed from heat 

and placed at 4 °C until the afternoon. At this time, a single colony was used to inoculate 

a 5 ml culture ofluria broth (LB) medium [10 g peptone, 5 g yeast, 10 g NaCl, 1 L dH20 , 

autoclaved] plus ampicillin (50!-lg/ml). This was left at 37 °C overnight, shaking. The 

next morning, 250m! of LB + ampicillin was inoculated with 1 ml of the overnight 

culture. This was grown up for approximately 4 h, at which point the optical density 

(OD) at 595 nm was verified to be between 0.6 and 0.8 using a spectrophotometer. Next, 

25 !-ll of 1M IPTG (isopropyl-~-D-thiogalactopyranoside) was added to induce the 

production of protein and this culture was left shaking at 3 7 °C for another 3 h. The 

culture was then transferred aseptically into a 250 ml Nalgene bottle and centrifuged at 

4000 rpm at 4 °C for 1 0 min. Supernatant was removed and pellet was resuspended in 5 

ml ice-cold 1 x PBS. The suspension was transferred to a 50 ml falcon tube, and 50 !-ll of 

the protease inhibitor 0.2 M PMSF (phenylmethylsulphonyl fluoride) was added. The 

sample was then placed on ice and sonicated for 2 min with 30 sec bursts, after which the 

sample was transferred to a 30 ml Corex tube. To the sonicated sample, 500 !-ll of 10% 

TritonX-100 in 1 x PBS was added and the sample was centrifuged at 10,000 rpm at 4 °C 

for 15 min. The supernatant was transferred into 1. 7 ml tubes in 1 ml aliquots and stored 

at -70 °C. The concentration of these fusion proteins was determined by SDS-P AGE 

(sodium dodecyl sulfate - polyacrylamide gel electrophoresis). 
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2.3.3 Isolation and detection of GST -fused proteins 

50 J.!l of a 50% slurry of Glutathione Sepharose 4B beads was dispensed into 

clean 1.7 ml tubes. The beads were washed twice with 1 ml of 1 x PBS. Briefly, 1 ml of 

1 x PBS was added to beads, vortexed lightly and centrifuged for 1.5 min at 5,000 x g to 

pull the beads to the bottom of the tube. The supernatant was aspirated off by vacuum. 

After washing, 250 J.!l of soluble GST-fused protein was added to each tube with beads. 

To bring the total volume to 1 ml, 700 J.!l of 1 x PBS+ PI (protease inhibitors) was added 

to the sample and rotated at 4 °C for 1 hour. After incubation, the beads were washed x 5 

with 1 x PBS + 0.2% NP-40 (lgepal; Sigma). To the washed beads, 30 J.!l of 2 x SSB 

(Sodium dodecyl sulfate [SDS] Sample Buffer) was added and the samples were vortexed 

lightly then boiled for 3 min to denature the proteins. The samples were allowed to cool 

on ice for 2 min before centrifugation at 5000 x g for 3 min to bring the beads to the 

bottom of the tube. These supernatants were then run on an 8% SDS-PAGE gel and 

stained with Coomassie Blue Stain (Coomassie Blue; Biorad) for 1 hour. The gel was 

then destained overnight in 1 L of destain (740ml dH20, 200 ml methanol, 60 ml glacial 

acetic acid) and dried under vacuum for 90 min. 
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2.3.4 GST pull down assay 

GST pulldown assays were used in order to determine if the proteins in question, 

that is, PPARy and MIER1 , interact in vitro. PPARy and ERa were labeled with e5S]­

methionine incorporation via the transcription/translation reactions described previously. 

Prior to the start of the GST pull down, GST pull down buffer was prepared as follows. 

A 300 ml solution was made (0.4 mM Iris, pH 7.5, 150 mM NaCl, 1 mM EDTA and 

10% glycerol). This stock was frozen at -20°C until use. On the day of use, an aliquot 

was made up to 0.5% Bovine serum albumin (BSA) from powder and 0.2% NP40. 

Another aliquot was made up to 0.2% NP40 and 1 x PI (protease inhibitors). 

For each reaction in the GST pull down, 50 f.!l of a 50% slurry of Glutathione­

sepharose beads were washed twice with 500 f.!l of GST pull down buffer + BSA + 

NP40. Briefly, buffer was added and tubes were vortexed lightly then centrifuged at 

5000 x g for 1.5 min to pull the beads to the bottom and allow aspiration of the buffer by 

vacuum. Subsequently, beads were resuspended in 500 f.!l of GST pull down buffer+ 

BSA + NP40 + Pl. The beads were then rotated for 1 h at 4°C with the GST-fused 

MIER1 proteins as indicated in the corresponding figures. 

After incubation, beads were washed seven times with 1 ml of GST pull down 

buffer(- ) BSA (+) NP40. Beads were then resuspended in 1 ml GST pull down buffer 

(+) BSA (+) NP40 (+) PI along with e5S]-methionine labeled PPARy or ERa TnTs 

(1 00,000 cpm) and rotated another 2 h at 4°C. Beads were subsequently washed x 4 with 

1 ml of GST pull down buffer (-) BSA ( +) NP40, x 4 with 1 ml of GST pull down buffer 

33 



(-) BSA (-) NP40 and an additional x 2 with I ml of 150 mM NaCl. The last wash was 

aspirated off completely and the beads were resuspended in 30 J-Ll of 2 x SSB (SDS 

sample buffer [0.125 M Tris HCl, 2% SDS, 5% P-mercaptoethanol, 20% glycerol]) + 

bromophenol blue (dye). The samples were boiled for 3 min, centrifuged to collect the 

beads at the bottom of the tube, and the supernatant was loaded on an 8% SDS­

polyacrylamide gel. Samples were subsequently analyzed using autoradiography. 

PPARy and ERa input lanes (total PPAR or ER transfected into cells) were loaded with 

l/201
h of the volume used in each reaction. 

2.4 Cell culture 

Cell culture was performed in order to determine if PPARs and MIER1 interact in 

vivo. Here, human embryonic kidney cells (HEK-293) were cultured in Dulbecco's 

Modified Eagle Medium (Gibco) supplemented with 10% serum [25% fetal bovine serum 

(FBS) and 75% calf serum (CS)], 1% Na-pyruvate and 0.5% penicillin/streptomycin. 

Also, a substrain of mouse embryonic fibroblasts (3T3-L1) that undergo a pre-adipocyte 

to adipocytes conversion after stimulation were obtained from the American Type 

Culture Collection (A TCC) and grown up at 3 7 °C in 5% C02 in DMEM containing 10% 

calf serum. These 3T3-L1 cells were subcultured every 3 days by first aspirating media 

from the 100 rnm culture vessel. Next, cells were washed with 10 ml of 1 x PBS and this 

was aspirated and replaced with 1.5 ml of a 1% trypsin/EDT NPBS solution. The culture 

vessel was swirled lightly to promote detachment of cells, and these were resuspended in 
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8.5 ml of media. 1 ml of this resuspension was added to a new 100 mm culture vessel 

already containing 9 ml of media for an ~ 1:10 subcultivation ratio. Both HEK-293 cells 

and 3T3-L1 cells were grown at 37°C and 5% C02. 

To initiate differentiation of 3T3-Ll cells, DMEM containing 10% fetal bovine 

serum (FBS), 0.5% penicillin/streptomycin (Pen/Strep ), and 1% Na-pyruvate was 

supplemented with 0.5 mM isobutyl-methylxanthine (IBMX) and 1 ~M Dexamethasone 

(Dex) purchased as a component of the Adipogenesis Assay Kit (Chemicon, ECM950). 

2.5 Transfections: HEK-293 cells 

Cells were seeded into 6-well plates at a density of 5 x 105 cells/well 24 h prior to 

transfection. All transfections were performed in triplicate in 6-well plates with 6 ) . .d 

Lipofectamine and 6 ~I of PLUS reagent per well, according to manufacturer's 

instructions (Life Technologies Inc.) along with indicated amounts of DNA. Complexes 

were left on cells for 4 h, and then the medium containing Lipofectamine and PLUS was 

aspirated from the cells and replaced with 2 ml of supplemented DMEM. Cells were 

allowed to grow for an additional 24 h, at which point a potent and specific ligand for 

PP ARy, 20 ~M Troglitazone (Sigma), was added to the cells in DMEM. This 

troglitazone was purchased from Sigma in powder form, and was dissolved in DMSO to 

a final stock concentration of 11.3 mM and stored at -20°C. Alternatively, vehicle alone 

(dimethylsulfoxide, DMSO) was dissolved in DMEM and added to the cells. The final 
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concentration ofDMSO administered to cells did not exceed 0.1% DMSO in DMEM. 24 

h later the cells were harvested according to protocols designed for each type of 

subsequent experiment (ie: luciferase assay, western blot, immunoprecipitation). 

For in vivo immunoprecipitation (IP) assays, HEK-293 cells were transfected 

(per well) with 0.5 f.!g each ofpSVsport PPARy2, and pCS3+MT-MIERla or pCS3+MT 

(empty vector). 48 h post transfection, cells were lysed as follows. Each well was 

washed x 2 with 1ml of 1 x PBS. For each condition, two of the three wells were 

extracted with lml of 1 x Triton solution diluted from a 10 x stock (0.1 M Tris pH 7.5, 

0.1 M EDTA, 0.2% sodium-azide, 10% Triton X-100 in dH20). Immediately prior to 

immunoprecipitation, 100 f.!l of 100 x PI was added to the 1 x Triton lysis solution. The 

third well was extracted in 500 f.!l of 2 x SSB. Once solutions were added to the cells, 

they were scraped gently with cell lifters (Fisher Scientific) and incubated on ice for 20 

min. Subsequently, lysate was pulled through a lml syringe x 20 in order to shear the 

DNA. The lysate was transferred to labeled, chilled 1. 7 ml tubes. The cellular debris 

was removed by centrifugation at 12,000 x g for 10 min at 4 °C. The supernatant was 

transferred to another chilled 1.7 ml tube. For immunoprecipitation, 1.5 f.!g (7.5 f.!l) of 

PPARy antibody (Santa Cruz, H-1 00) was added to 1 ml of cell lysate and rotated at 4 °C 

overnight. 

After the overnight incubation, 50 f.!l of a 50% slurry of Protein G beads 

(Amersham) was added to the samples and they were left to rotate at 4 °C for 1 h. After 

rotation, beads were washed three times with the 1 x Triton solution (with 1 x PI), and 

twice with 150 mM NaCl. After each wash, beads were centrifuged at 500 x g for 1 min 
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to pellet the beads. The beads were then resuspended in 30 J.!l of 2 x SSB plus 

bromophenol blue dye and boiled for 3 min. The beads were then centrifuged again (as 

described above) and the resulting supernatant was loaded on an 8% SDS-PAGE gel. 

Gels were run for approximately 1.5 h at 30 rnA in order to separate out the component 

proteins and molecular weight markers. Once the gels were run, they were washed for a 

total of 15 min in a total of 1 L of 1 x Transfer buffer [200m! 5 X stock (60.54g Tris, 

288.4 g glycine, and 3L dH20), 200 ml of 100% methanol, and 600 ml dH20] with 

frequent washes to remove as much SDS as possible. The separated proteins were then 

transferred for 2 hat 60 V onto a Hybond-ECL nitrocellulose membrane (Amersham) as 

described previousll8
. Subsequently, the membrane was blocked in 5% skim milk 

powder II x TBS-T [20 mM Tris pH 7 .6, 150 mM NaCl, 0.1% Tween-20, and dH20] at 

room temperature for 1 h. Western blot analysis was performed with a 1:1000 dilution of 

mouse monoclonal anti-myc (Day 7, obtained from 9E10 cells) antibody89 in 5% skim 

milk, shaking overnight at 4°C. Subsequent to overnight agitation, membranes were 

washed for 1 h with a total of 1 L of 1 x TBS-T, then agitated with a 1:3000 dilution of 

sheep anti-mouse conjugated to horseradish peroxidase (HRP) secondary antibody 

(Amersham) in 5% skim milk powder/1 x TBS-T for 1 h. Lastly, the membranes were 

washed for another 1 h at room temperature with frequent washes for a total of 1 L 1 x 

TBS-T, then analyzed with ECL Western Blotting System and visualized on Hyperfilm 

ECL (Amersham). 
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2.6 Reporter Assay 

2.6.1 PPRE-Luciferase Assay 

HEK-293 cells were seeded at a density of 5 x 105 cells/well in 6-well dishes 24 h 

prior to transfection. Transfections were performed as described in Section 2.5 with 0.5 

J..Lg of PPRE-X3-TKLuc (PPARy response element with luciferase), 0.5 J..Lg of PPARy2 

and combinations of myc-mier 1 a, myc-mier 1 fJ and/or pgcl-a (known PP ARy 

coactivator). 24 h post-transfection, cells were treated with 20 J..LM troglitazone (PP ARy 

ligand) or vehicle alone (DMSO) for another 24 h. Subsequently, cells were lysed in 1 x 

cell lysis buffer (provided in Luciferase Assay Kit, Promega). Cell lysate was then 

transferred into 1.7 ml tubes and spun at 12,000 rpm for 10 sec at room temperature. The 

supernatant was then transferred to a clean 1. 7 ml tube and stored at -70 °C until use. On 

the day of luciferase readings, cell lysate was kept on ice and the luciferase assay 

substrate, luciferin (Promega), was brought to room temperature in a covered water bath 

for a minimum of 30 min. Luciferase activity was then read in a Monolight 2010 

Luminometer (Analytical Luminescence Laboratory) by mixing 10 J..Ll of cell lysate with 

50 J..Ll of luciferase assay substrate. All readings were normalized to transfection 

efficiency using the p-galactosidase assay described here. For example, the relative 

luciferase units were divided by the p-galactosidase reading for each sample. 
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2.6.2 ~-Galactosidase Assay 

HEK-293 cells were transfected as previously described with the plasmids given 

above, along with 0.2 ~J.g of pCMV-pgal. 10 IJ.l of the extracted protein in cell lysis 

buffer was then added to 1.7 ml tubes, and incubated with 200 J.d P-gal buffer [100% Z­

buffer (16.1g/L Na2HP04*7H20, 5.5 g/L NaH2P04*H20, 0.75 g/L KCl, 0.246 g/L 

MgS04*7H20), 4g/L ONPG (o-nitrophenyl-P-D-galactopyranoside), and 0.27% P­

mercaptoethanol) at 37 °C for 3 min (until a yellow color developed). The reaction was 

halted by adding 200 IJ.l of 1 M Tris, pH 11.0 and the absorbance was read in a plate 

reader at 415 nm. 

2. 7 Adipogenesis Assay 

A substrain of mouse embryonic fibroblast 3T3 cells referred to as 3T3-L1s 

(ATCC) were initiated to differentiate into fully formed adipocytes in this assay. First of 

all , the 3T3-L1s were seeded at a density of 6 x 104 cells/well in a 24-well plate, with 

each condition done in triplicate. There were a total of nine sets of three, seeded into 

three separate 24-well plates in order to facilitate extraction with minimal exposure to 

possible contaminants. These cells were cultured in regular 3T3-L1 propagation media 

(DMEM containing 10% calf serum, 1% sodium pyruvate (NaPyr] and 0.5% 

penicillin/streptomycin). The next day was set as Day 0, and on this day the first set of 
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triplicates was trypsinized and pelleted for storage at -80°C until all of the cells had been 

collected. 

To trypsinize these cells, the media was aspirated from each well and the cells 

were washed with 1 ml of 1 x PBS. Subsequently, 400 ).ll of a solution of 1 x PBS + 

EDT A + 1 % trypsin was added to each well, and the plate was rocked gently to facilitate 

the detachment of cells from the bottom of the well. To this solution of trypsin and 

detached cells, 600 )..tl of 3T3-Ll propagation media was added and the solution was 

pipetted up and down over the bottom of the well. The cells were then transferred to a 

1.7 ml tube, and centrifuged at room temperature in a table-top microcentrifuge at 5,000 

rpm for 5 min. The trypsin solution was then aspirated off and the pellet was washed in 1 

x PBS, centrifuged again at 5,000 rpm for 5 min, and stored at -80°C until further use. 

On Day One, all of the remaining 3T3-L1s that were seeded into 24-well plates 

were initiated to undergo differentiation using the 3T3-L1 maintenance media (described 

in Section 2.4) that was also supplemented with a final concentration in media of 1 ).lM 

dexamethasone and 0.5 mM isobutyl-methylxanthine. These cells were left overnight 

and on Day Two, the second set of triplicate wells of 3T3-Lls were trypsinized, 

centrifuged and stored for further use. On Day Three, all of the cells were treated with 

3T3-Ll maintenance media supplemented with a final concentration of 10 ).lg/ml insulin. 

Two days later, media was replaced with 3T3-Ll maintenance media and this was 

repeated every two days until all the cells had been collected. Cells were trypsinized and 

pelleted for storage every other day. 
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- -------- ------------------- ---------------------- -------

2.7.1 RNA Extraction 

The RNA (ribonucleic acid) was extracted from the collected 3T3-Ll cells using 

procedures described in the Qiagen RNeasy Mini Kit (Qiagen, Missisauga, Canada). 

Pelleted 3T3-L1 cells were obtained from cryogenic storage, and 350 ~-tl of Buffer RLT 

(Qiagen) was added to each sample. The lysate was then pulled through a 1 ml insulin 

syringe x 10 in order to shear the cells. Next, 350 ~-tl of 70% ethanol was added to the 

homogenized lysate, and this was mixed via pipetting. The sample was then transferred 

to an RNeasy spin column (Qiagen) attached to a 2 ml collection tube, and centrifuged at 

8000 x g for 15 sec. After discarding the flow-through, 700 ~-tl of Buffer RW1 (Qiagen) 

was added and again the tubes were centrifuged as noted above. Then 500 ~-tl of Buffer 

RPE was used to wash the spin column membrane, and this too was centrifuged through 

and discarded. To dry the membrane, the spin column was transferred to a new 2 ml 

collection tube and centrifuged at full speed for 1 min. Elution of RNA from the column 

into a new 1.5 ml collection tube was done by adding 30 ~-tl of RNase-free water to the 

column and spinning it at 8000 x g for one minute. RNA yield was then determined 

using a spectrophotometer and measuring the absorbance at both 260 nm and 280 nm. 

The absorbance at 260 nm is used to give the RNA concentration by using that value in 

the following calculation: 

Concentration of RNA [f.lg] = 40(extinction coefficient) x A 260 x dilution factor 
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The purity of each sample was then determined by calculating the ratio of A26ol A28o. A 

number close to 2 gives an indication of relative purity 90
. The concentration of RNA for 

each sample was required in order to make eDNA from the same amount of total RNA. 

2.7.2 Precipitating RNA 

One tenth ofthe volume of3 M sodium acetate, pH 5.2 was added, along with 2.5 

x the volume of 100 % ethanol. This solution was placed at -80°C for 2.5 h, then taken 

out and centrifuged at 4 °C for 20 min to pellet the RNA. The pellet was then washed 

with 70% ethanol, vortexed, and centrifuged again at 4 °C for 20 min. The ethanol was 

then carefully decanted and the pellet was left to air dry on a paper towel, before being 

resuspended in an appropriate volume of DEPC water for further use. 

2.7.3 Reverse-transcriptase PCR (RT-PCR) 

For each sample and negative control, 1 jlg of total RNA was diluted in 10 Ill 

using DEPC water. These samples were then incubated at 65 °C in a PCR thennocycler 

for 10 min, and then transferred directly to ice. To the sample tubes, 12 Ill of the 

mastermix solution listed below was added. To each of the negative control tubes, 12 Ill 

of the mastennix solution was added, along with 10 Ill of dH20. 
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Table 2: Mastermix for Reverse Transcription 

Reagent Amount/tube (J!I) Number of Tubes ( I. IX) 

5 X First Strand Buffer 4 79.2 

100 ng/J.ll Random Primers 2 39.6 

lOOmMDTT 2 39.6 

( dithiothreitol) 

1 OmM total dNTPs 2 39.6 
(nucleotide triphosphates) 
MMLV-RT (Moloney 19.8 
Murine Leukemia Virus-
Reverse Transcriptase) 
RNA Guard 19.8 

H20 Only in negative control. 

The sample tubes containing the mastermix were then incubated at 37 °C for 75 min and 

then the enzymes were heat inactivated at 95 °C for 15 mjn. The resulting eDNA was 

then used in PCR reactions with primers for the specific genes of interest. In this case, 

primers were designed againstppary2, human /3-actin (hbac) , and mierl. 
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Table 3: Primers for PCR 

Gene of Interest Nucleotide Sequence Size of 

Amplicon 

mier 1 forward CAA GGG CTG AAG GCC TAT GG 

mier 1 reverse CCA AAT CGT GTT TGC TGA GC 150 bp 

ppart2 forward CAAGAATACCAAAGTGCGATCAA 

ppart2 reverse GAG CTG GGT CTT TTC AGA ATA ATA AG 68 bp 

h-bac forward ATC TGG CAC CAC ACC TTC TAC AA T GAG CTG 

CG 150 bp 

h-bac reverse ATC GCT GGG GTG TTG AAG GTC TC 

Both ppary2 and mier 1 primers were used in the following PCR cycles using 2 !J.l of 

eDNA from each sample. Each sample reaction included 0.1 !J.l Taq DNA polymerase, 2 

j..LJ of lO mM dNTPs (nucleotide triphosphates), 1 j..Ll of MgCh (magnesium chloride), 2.5 

!J.l of 10 X PCR reaction buffer and 1 j.!l of each primer diluted to 200 ng/j..Ll. H20 was 

added to a final volume of 25 !J.l. 
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Table 4: PCR program 

Temperature CC) 

94 

60 

72 

94 

60 

72 

30 

The samples were run on a 

bromide (EtBr). For /3-actin , 

Table 4) were run. This was d 

Time (seconds) No. of Cycles 

240 

30 

60 26 

30 

30 

300 

100 ml , 1.6% agarose gel and visualized with ethidium 

mRNA levels are high so only 20 cycles (as described in 

one to ensure that the PCR reaction was in the linear range. 
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2.7.4 Western Blot for Adiponectin over course of adipocyte 
differentiation 

3T3-L1 cells were seeded at a density of 6 x 105 cells/well in 60 mm culture 

dishes and initiated to undergo differentiation as described in Section 2. 7. Cells were 

collected from the 60 mm dishes every second day as follows. 60 mm culture dish was 

washed x 1 with 3 ml of 1 x PBS. This was aspirated from cells and replaced with 300 J.!l 

of 2 x SSB. Cells were scraped with a cell scraper and incubated on ice for 20 min. The 

lysate was then transferred to a 1.7 ml tube and the lysate was pulled through a 1 ml 

syringe x 10. The resulting cell lysate was spun down at 12, 000 rpm for 10 min, and 

supernatant was transferred to a chilled 1.7 ml tube. For samples from Day 2 to Day 14, 

10 J.!l of dH20 + bromophenol blue was added to 30 J.!l of lysate (to dilute out the 2 x 

SSB) and all 40 J.!l were loaded on an 8% polyacrylamide gel. For ~-actin, 15 J.!l of each 

sample was diluted in 10 J.!l of dH20 +bromophenol blue and all 25 J.!l were loaded on 

the gel. The gel was run as described in Section 2.5 under Immunoprecipitation, and 

transferred for 2 hat 60 V. The membrane was probed using a 1:2000 dilution of anti-

adiponectin polyclonal antibody (Abeam, ab3455) for 3 hat room temperature. A 1:2000 

dilution of DAR-HRP secondary antibody (Amersham) was used and the results were 

visualized by ECL detection. For the ~-actin blot, a 1:4000 dilution of anti-~-actin 

monoclonal antibody was added to the membrane for 1 h at room temperature. SAM-

HRP was added at a dilution of 1 :4000 for 1 h at room temperature. 
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2.7.5 Oil Red 0 staining 

Lipid droplets form in 3T3-Ll cells as they differentiate into mature adipocytes. 

In order to determine that the organelle-like structures inside the cells were lipid droplets, 

cells were stained with Oil Red 0. This is a lipophilic dye that stains lipid droplets bright 

red. Cells were seeded at a density of 4 x 105 per well in 6-well culture dishes and 

initiated to undergo adipogenesis as described in Section 2.7, except cells were not 

trypsinized every second day but maintained in maintenance media. On Day 22 of 

adipogenesis, cells were stained with Oil Red 0 as per the protocol outlined in the 

Adipogenesis Assay Kit (Chemicon, ECM950). Briefly, cells were washed x 2 with 1 ml 

of 1 x PBS. This was aspirated and replaced with 1 ml of Oil Red 0 solution (0.36% Oil 

Red 0 solution in 60% isopropanol) and this was incubated for 15 min at room 

temperature. Stain solution was then aspirated and wells were washed x 3 using 2 ml of 

wash solution (Chemicon, 90360) each time. The wash solution was aspirated from the 

wells and pictures were taken at 8x magnification under the Olympus dissecting 

microscope. For quantification of lipid content, a dye extraction solution (Chemicon, 

90359) could be added to the wells (1 ml in a 6-well culture dish). After agitation for 

approximately 15-30 min, extracted dye could be removed from the well and placed in a 

96-well culture dish for quantification in a plate reader. Optimal absorbance for Oil Red 

0 is 520 run (Chemicon, Adipogenesis Assay Kit), but it can also be quantified with 

lower efficiency at 490 nm. A blank well lacking cells was subjected to the same 

protocol in order to account for nonspecific binding of the Oil Red 0 to the culture dish. 

47 



2. 7.6 Immunocytochemistry 

In order to determine whether MIERl was specifically upregulated in 

differentiating cells, 3T3-L1 cells were first seeded in 8-well chamber slides (BD 

Biosciences, Falcon) at a density of 1 x 105 cells/well. The next day, cells were confluent 

and ready to be differentiated according to the methodology described in the 

Adipogenesis Assay section. On Day 4 or Day 14 of differentiation, culture slides were 

removed from the incubator and washed in 250 ml of 1 x PBS and subsequently fixed by 

adding 200 j...Ll of 4% paraformaldehyde to each well and incubating in a moist container 

for 30 min. After incubation, cells were washed x 2 in a beaker containing 250 ml of 1 x 

PBS and then placed in a 250 ml beaker of 0.1 % Triton in 1 x PBS for 5 min. The 0.1 % 

Triton/PBS was aspirated from wells, and replaced with 200 j...Ll of 5% donkey serum 

Blocking Buffer (Normal Donkey Serum diluted in 1 x PBS). Cells were incubated in 

this blocking buffer for 1 h, after which point they were washed as described above in a 

250 ml beaker of 1 x PBS. After aspirating the excess PBS from each well, primary 

antibody was added to each well. In this case, anti-MIER1a antibod/ 1 or anti-MIER1P 

antibody was added at a final dilution of I :500 in 3% BSA/PBS (Bovine Serum Albumin, 

RIA Grade) in a final volume of 200 j...Ll per well. Primary antibody was left on overnight 

at 4 °C, after which point the antibody was aspirated from each well and slides were 

immersed x 1 in 500 ml of 0.1% Triton/PBS for 5 min. Slides were then washed x 1 with 

200 j...Ll of 1 x PBS per well. After aspirating the excess PBS, 200 j...Ll of 0.6% hydrogen 

peroxide (H20 2) was added to each well. This was done to inactivate any endogenous 
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peroxidase from the cells. This was incubated at 4 °C for 30 min. Following this 

incubation, Donkey-anti-rabbit horseradish-peroxidase (DAR-HRP) antibody was diluted 

1:200 in a 3%BSAJPBS solution and 200 j..ll added to each well. This secondary antibody 

was incubated for 1 h at 4 °C. After incubation, cells were again washed x 1 with 500 ml 

of 0.1% Triton/PBS, and then with 200 j..ll of 1 x PBS for 5 min. Again, excess PBS was 

aspirated from cells and 3,3 '-diaminobenzidine (DAB)(Sigma) was diluted in deionized 

water (1 pellet Urea H202, 1 pellet DAB per ml of dH20) and added to each well. This 

catalyzes a reaction between the peroxidase attached to the secondary antibody, 

producing a brownish chromagen product that can be visualized under a microscope. 

This reaction was left to proceed for 10 min, after which time the excess DAB was 

aspirated from cells and the slides were subsequently washed in 1 x PBS and incubated 

there for 3 min. The excess PBS was aspirated and the gasket was carefully detached 

from the slide. To each well of the slide, a few drops of 10% glycerol diluted in 1 x PBS 

was added and a coverslip was placed over the slide. This coverslip was sealed with 

clear nail polish and left to dry for approximately 20 min. Staining was visualized using 

an Olympus BH-2 compound microscope and pictures were taken using the CoolSnap 

camera and software system, at SOx magnification in both brightfield and phase contrast. 
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2.7.7 Immunofluorescence 

To look at possible co localization of both MIER1 a and PP ARy in differentiating 

3T3-L1 cells, immunocytochemistry was performed using fluorescent-linked secondary 

antibodies. 3T3-L1 cells were seeded and differentiated as per methodology in the 

Adipogenesis Assay. On Day 11 of adipogenesis, culture slides were removed from the 

incubator and washed in 250 ml of 1 x PBS (see ICC) and subsequently fixed by adding 

increasing amounts of 4% paraformaldehyde to each well. The cells were incubated in 

paraformaldehyde for 15 min, then washed twice in a 250 ml beaker of 1 x PBS. Slides 

were then incubated in a 0.1% Triton/PBS solution for 10 min. After this incubation, 

200 I-ll of 5% donkey blocking buffer (5% donkey serum diluted in 1 x PBS) was added 

to each well, and this was incubated for 30 min. After the incubation, cells were again 

washed in 1 x PBS. The excess PBS was aspirated from culture slides and replaced with 

primary antibodies. In this case, a 1:500 final dilution of anti-MIER1 a antibody (Leo 

purified polyclonal antibody, Bleed 1) and a 1: 100 dilution of PP ARy monoclonal 

antibody (E-8, Santa Cruz) were mixed together in 3% BSA/PBS to a final volume of 2 

ml. To each well of the culture slide, 200 I-ll of this antibody solution was added and left 

for overnight incubation at 4°C in a container with paper towels soaked in 1 x PBS. 

The next day, the primary antibody solution was aspirated from all wells and the 

culture slide was washed in 0.1% triton/PBS in a 250 ml beaker. The excess solution was 

aspirated from each well and replaced with 5% donkey blocking buffer for another 15 

min incubation. Cells were briefly washed in 1 x PBS and then secondary antibody was 

prepared and added. For this particular experiment, a 1:200 dilution of both FITC-DAR 
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(fluorescein isothiocyanate- donkey-anti-rabbit) and CY3-DAM (cyanine3-donkey-anti­

mouse) were diluted in 3% BSA/PBS and 200 ~I ofthis solution was added to each well. 

Cells were incubated with conjugated antibodies for one hour and covered in tin foil since 

the fluorescent antibodies are light sensitive. After the 1 h incubation, the antibodies 

were aspirated from the cells and the culture slides were washed x 1 in 0.1% Triton/PBS 

in a 250 ml beaker. This was done twice, incubating the slides for 10 min in 0.1% 

Triton/PBS each time. After the second wash, a 1:5000 dilution of DAPI (4', 6-

diamidino-2-phenylindole) which stains DNA was added to each well of the culture slide, 

and incubated for 10 min. After incubation, this was aspirated from the wells and the 

slide was washed two times in 1 x PBS. Once these washes were complete, the excess 1 

x PBS was aspirated from cells and the gasket was carefully removed. To each well of 

the slide, a few drops of 10% glycerol diluted in 1 x PBS was added and a coverslip was 

placed over the slide. This coverslip was sealed with clear nail polish and left to dry for 

approximately 20 min. Fluorescent staining was visualized by confocal microscopy 

using an Olympus Fluoview Confocal microscope, and images were analyzed and saved 

using the associated Fluoview program. 
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CHAPTER 3- Results 

3.1/n Vitro interaction between MIER1 a and MIER1Pwith PPARy2 

In order to determine whether MIERla and/or MIERl p interact in vitro with 

PP ARy2, a set of GST -pull downs were completed using in vitro translated e5s]-labeled 

PPARy2 and GST-fused MlERla and MIERlp. For this experiment, GST-fused deletion 

constructs (Figure 5) of MIERla were used along with e5S]-labeled PPARy2. As a 

positive control for these assays, in vitro translated e5S]-labeled ERa was used since it 

has been shown to interact strongly with MIER1 92
. 

For each of these GST pulldowns, a constant amount of in vitro translated 35S­

labeled PPARy2 was used (100,000 cpm). For the MIERl GST-fusion constructs, 

equimolar amounts of protein were used in each case. To account for differences in the 

molecular weights of each of the fusion proteins (mass effect), the amount of protein was 

adjusted according to the largest molecular weight fusion construct (which was 

MIERl p). These relative amounts for each protein are shown on the Coomassie Blue 

stained polyacrylamide gels immediately under the autoradiography image (Figure 6B 

and 7B). 

These initial GST pulldowns showed that PP ARy2 interacts with both the a and p 

forms of MIERl (Figure 6A, lanes 4, 5), however it interacts more strongly with 

MIERla (Figure 6A, lane 4). Another set of GST pulldowns were completed to 
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determine which domains ofMIERl were responsible for the interaction between the two 

proteins (Figure 6 and 7). 

PPARy interacts most strongly with ~19 of MIER1, which is only the SANT 

domain (Figure 7, lane 6), and does not interact with ~ 11 which lacks the SANT domain 

completely (Figure 7, lane 2). These data show that PPARy interacts with the SANT 

domain of MIERla. The SANT domain is located in the C-terminus of MIER1 , but 

PPARy also interacted weakly with ~4 (Figure 6, lane 2) which is the N-terminus of 

MIERl. This is not background, since the GST protein alone did not bind to PPARy. 

There was an interaction between PPARy2 and the region of theN-terminus (MIER1~4, 

aa 1-283) that did not possess the SANT domain. There may be two binding sites 

between PPARy and MIERl. 

The PPARy TnT (shown in the input lane of Figure 6A) runs slightly lower than 

the bands observed from the interaction between MIERla and PPARy. The ERa input 

lane also runs slightly lower than the interaction band in the positive control lane. It is 

unclear why this occurred. 

53 



,.-----------------------------

op 
Oa 

!!.9 

!!.10 

flll 

!!.16 
!!.17 

418 

419 

0 100 200 300 

Figure 5: GST-fused deletion constructs of MIERla and~ 
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This diagram shows the GST-fused MIERla and MIERlP deletion constructs that were 
used in the GST pulldowns given in Figure 2 and Figure 3. Blue bar represents the 
ELM2 domain, red - SANT domain, dark green - C-terminus of MIERlp, light green ­
C-terminus of MIERla. 
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Figure 6: GST pulldown showing interaction between PPARy and MIERla and~ 

GST fusion proteins were prepared according to protocol given in Materials and Method 
section. Equimolar amounts of the fusion proteins (not exceeding 1 ~g) were incubated 
with e5S]-labeled PPARy protein (1 00,000 cpm) and purified by binding to glutathione 
sepharose beads (Amersham). The protein complex was then separated from the beads 
and run on an SDS-P AGE gel. The gel was dried and exposed to film overnight. Figure 
6A shows the GST pulldown exposed to film, and Figure 6B indicates the Coomassie 
Blue-stained gel that shows the relative amount of protein loaded for each lane. The Jane 
labeled GST does not contain a MIER 1 deletion construct, but contains the GST tag 
alone. BSA is bovine serum albumin and is used as a control for protein amounts loaded. 
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Figure 7: GST pulldown showing interaction between PPARy and pieces of MIERla 

GST fusion proteins were prepared according to protocol given in Materials and Methods 
section. Equimolar amounts of the fusion proteins (not exceeding 1 J..Lg) were incubated 
with e5S]-Iabeled PPARy protein (100,000 cpm) and purified by binding to glutathione 
sepharose beads (Arnersham). The protein complex was then separated from the beads 
and run on an SDS-PAGE gel. The gel was dried and exposed to film overnight. Figure 
7 A shows the GST pulldown exposed to film, and Figure 7B indicates the Coomassie 
Blue-stained gel that shows the relative amount of protein loaded for each lane. Figure 
7 A shows the GST pulldown exposed to film, and Figure 7B indicates the Coomassie 
Blue-stained gel that shows the amount of protein loaded for each lane. 
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3.2 In Vivo Interaction between MIER1 and PPARs 

3.2.1 MIER1a. and MIER1~ interact with PPARy2 in HEK-293 cells 

To determine whether the interaction observed in vitro (GST pulldown assays) 

was also occurring in vivo, HEK-293 cells were transiently transfected with pCS3+MT 

vector (Myc-tagged empty vector), pCS3+MT-mierl a or pCS3+MT-mierlP and pSV­

sport-ppary2. Cell extracts were immunoprecipitated with anti-PPAR polyclonal 

antibody and probed with anti-Myc93 antibody to detect MIERI. In each experiment, 

expression of MIERI was verified in whole cell lysates which were run alongside the 

immunoprecipitates. Cell extracts were also subjected to immunoprecipitation with anti­

PPARy polyclonal antibody (Santa Cruz, H-100) followed by Western blot analysis with 

9E10 antibody. Both MIERla and MIERI p immunoprecipitated with transfected 

PPARy in HEK-293 cells (Figure 8 and 9, respectively). These studies indicate a strong 

in vivo interaction between MIERla or p and PPARy. 

The molecular weight of the bands for myc-MIER1a and myc-MIER1P was 

approximately 100 and 110 kDa, respectively. While the true molecular weight of 

MIERI a is 60kDa, the untagged protein actually runs higher on a gel due to an acidic 

domain near the N-terminus94
•
95

. This, taken together with the myc-tag which adds 

approximately 14 kDa to the molecular weight of the protein of interest, can account for 

the difference in molecular weight observed in the western blot. These proteins run at the 

same molecular weight shown in previous publications96
. 
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Figure 8: PPARy2 interacts with MIERta. in HEK-293 cells 

HEK-293 cells were seeded at a density of 5 x 105 cells/well of a 6-well plate and grown 
in DMEM for approximately 18 h. Cells were then transfected with 0.5 J.lg of pCS3+MT 
vector, pCS3+MT -mier 1 a and pSV -sport-ppary2 or ERa.. Cell lysates were prepared 
(and irnmunoprecipitated) as described in detail in the Materials and Methods section, 
and loaded directly onto the gel (lanes 1-8) for western blot. In vitro translated MIER 1 
was loaded as a positive control. The position of marker proteins is indicated to the left. 
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Figure 9: PPARy2 interacts with MIERI~ in HEK-293 cells 

HEK-293 cells were seeded at a density of 5 x 105 cells/well of a 6-well plate and grown 
in DMEM for approximately 18 h. Cells were then transfected with 0.5 ~g of pCS3+MT 
vector, pCS3+MT-mierl a, or pCS3+MT-mierljJ and pSV-sport-ppary2. Cell lysates 
were prepared (and immunoprecipitated) as described in detail in the Materials and 
Methods section, and loaded directly onto the gel (lanes 1-7) for western blot. The 
position of marker proteins is indicated to the left. 
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3.2.2 MIER1a. and MIER1~ interact with PPAR~/o in HEK-293 cells 

Both MIER1a and MIER1P immunoprecipitated with transfected PPARP/8 in HEK-293 

cells (Figure 10, 11 respectively). These studies indicate a strong in vivo interaction 

between MIER1a or p and PPARP/8. To determine this, HEK-293 cells were transiently 

transfected with pCS3+MT vector, pCS3+MT -mier 1 a or pCS3+MT -mier 1 fJ and 

pBABEpuro ppar{J/5. Expression of Myc-tagged MIER1a and p was verified for each 

experiment by Western blot analysis of whole cell lysate (extracted in 2 X SSB) using 

9El 0 antibody and run alongside the immunoprecipitation results. Cell extracts were 

also subjected to immunoprecipitation with anti-PPARP/8 polyclonal antibody (H-74, 

Santa Cruz) followed by Western blot analysis with anti-Myc 9EIO. 
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Extract 

Figure 10: PPAR~/o interacts with MIERla in HEK-293 cells 

HEK-293 cells were seeded at a density of 5 x 105 cells/well of a 6-well plate and grown 
in DMEM for approximately 18 h. Cells were then transfected with 0.5 1-lg ofpCS3+MT 
vector, pCS3+MT-mierl a or pCS3+MT-mierlfJ and pBabe-puro-pparfJ/5. Cell lysates 
were prepared as described in detail in the Materials and Methods section, and loaded 
directly onto the gel (Lanes 1-8) for western blot. In vitro translated MIERl was loaded 
as a positive control. The position of marker proteins is indicated to the left. 
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Figure 11: PPAR~/o interacts with MIERl~ in HEK-293 cells 

HEK-293 cells were seeded at a density of 5 x 105 cells/well of a 6-well plate and grown 
in DMEM for approximately 18 h. Cells were then transfected with 0.5 1-lg of pCS3+MT 
vector, pCS3+MT -mier 1 a or pCS3+MT -mier 1 f3 and pBABEpuro ppar fJ/8. Cell lysates 
were prepared as described in detail in the Materials and Methods section, and loaded 
directly onto the gel (Lanes 1-6) for western blot. 
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3.3 Ligand-Independent Interaction between MIER1 and PPARy2 

3.3.1 MIER1a and MIER1~ interact with PPARy2 in HEK-293 cells, 
independent of troglitazone treatment 

To determine whether the interaction between PPARy2 and MIERla and MIERlP is 

dependent on the presence of ligand, HEK-293 cells were transiently transfected with 

pCS3+MT vector (Myc-tagged empty vector), pCS3+MT-mierl a or pCS3+MT-hmierl,B 

and pSV-sport-ppary2 or pBABEpuro pparB!t5. 24 h after transfection, cells were treated 

with 20 j.!M Troglitazone or vehicle alone (DMSO). Cell extracts were subjected to 

immunoprecipitation with anti-PPARy2 antibody (Santa Cruz, H-100) or anti-PPARP/8 

(Santa Cruz, H-74) followed by Western blot analysis with 9E10 antibody. Both 

MIER1a and MIERlP immunoprecipitated with transfected PPARy2 in HEK-293 cells 

in the presence or absence of Troglitazone (Figure 12). This indicates that the interaction 

is ligand-independent, in the case of troglitazone. Similarly, PP ARP/8 also interacts with 

MIER1 a and p, independent of troglitazone action (Figure 13). Further experiments are 

required to determine if the troglitazone-independent action of MIER1 applies in the 

presence of other PP ARy ligands. 
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Figure 12: PPARy2 interacts with MIERla and~ in HEK-293 cells independent of ligand 

HEK-293 cells were seeded at a density of 5 x 105 cells/well of a 6-well plate and grown 
in DMEM for approximately 18 h. Cells were then transfected with 0.5 )lg of pCS3+MT 
vector, pCS3+MT-mierl a or pCS3+MT-mierl,B and pSV-sport-pparr2 24 h later, cells 
were treated for 24 h with 20 ).!M of Troglitazone or dimethyl sulfoxide (DMSO). Cell 
lysates were prepared as described in detail in the Materials and Methods section, and 
loaded directly onto the gel (Lanes 1-6) for western blot. 
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Figure 13: PPAR [3/o interacts with MIERJa. and f3 independent of ligand 

HEK-293 cells were seeded at a density of 5 x 105 cells/well of a 6-well plate and grown 
in DMEM for approximately 18 h. Cells were then transfected with 0.5 )..lg of pCS3+MT 
vector, pCS3+MT-mierl a or pCS3+MT-mierl,B and pBabe-puro-PPAR,B/5. 24 h later, 
cells were treated for 24 h with 20 )..lM of Troglitazone or dimethyl sulfoxide (DMSO). 
Cell lysates were prepared as described in detail in the Materials and Methods section, 
and loaded directly onto the gel (Lanes 1-4). Figure 11 shows a western blot with no 
immunoprecipitation of PP ARB/8 with CS3+MT indicating that the interaction is 
MIER1-specific, and is not dependent on the myc-tag. 
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3.4 Effect of MIER1 on PPRE-dependent Transcription 

3.4.1 MIER1a. and MIER1~ serve as transcriptional activators of PPRE­
dependent transcription 

Since both MIER1 a and MIER1 p were found to interact with PP ARy2 in vitro and in 

vivo, we wished to determine what effect (if any) this interaction had on the ability of 

PPAR to activate transcription at the PPRE. HEK-293 cells were transfected using the 

reporter construct pPPRE-X3-TK-luc (Tk: thymidine kinase; Luc: luciferase) along with 

either pCS3+MT, pCS3+MT-mierla, pCS3+MT-mierlp, or pSVsport-pgc-la. PGC-

1a, a known PPARy2 coactivator, was transfected into HEK-293 cells to serve as a 

positive control. All HEK-293 cells were transfected with pSVsport ppary2. These 

HEK-293 cells were incubated for 24 h, and then treated with 20 ).!M Troglitazone or 

dimethylsulfoxide (DMSO, vehicle). After an additional 24 h, these cells were lysed and 

harvested for luciferase assays as described in detail in the Materials and Methods 

section. The effects of MIERla and MIERI p can be determined by comparing the 

relative luciferase units (RLUs) for these samples to those for the Myc-tagged CS3+MT 

empty vector. P-galactosidase assays were performed to normalize to transfection 

efficiency, as described in Materials and Methods. In three separate experiments done in 

triplicate, expression of MIERl a or MIER1 p resulted in stimulation of PP AR-dependent 

activity by approximately 2-fold (Figure 14 and 15). This stimulation occurred in the 

presence and in the absence of 20 ).!M Troglitazone (PPAR ligand). More specifically, 
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troglitazone stimulates in all cases and this is augmented by PGC-1 a , MIER1 a or 

MIER1 ~· In addition, both MIER1a and MIERl ~stimulated a similar 2-fold increase in 

the absence of ligand; this was comparable to stimulation by PGC-1a (Figure 15). 
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Figure 14: MIERla and ~activate PPARy promoter activity in the presence and absence of PPARy 
agonist (Troglitazone) 

HEK-293 cells were transfected with 0.5 ~tg of pPPRE-X3-TK-luc reporter plasmid, 0.5 
~g of CS3+MT vector, pCS3+MT-mierl a, pCS3+MT-mierl {3, or pSVsport pgc-Ja and 
pSVsport ppary2. PGC-la is a known PPARy2 coactivator, and it was transfected into 
HEK-293 cells to serve as a positive control. Cells were treated with either 20 ~M 
Troglitazone or DMSO (vehicle). Cells were harvested approximately 48 h after 
transfection and the amount of relative luciferase units (RLU) was determined as 
described in Materials and Methods. Values were normalized by measuring tran fection 
efficiency (f3-galactosidase assay). Each of these bars represents an experiment repeat d 
three times in triplicate, and error bars are given. Student t-tests were conducted to 
detennine significance (p<0.05, compared to CS3+MT for each treatment). 
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Figure 15: MIERla. and P activate PPARy promoter activity in the presence and absence of PPARy 
agonist (fold-change) 

The results of the luciferase assay displayed in Figure 14 have been nonnalized to show 
average fold change as opposed to relative luciferase units (RLU). Specifically, 
CS3+MT (empty vector) was set as 1, and the fold change for each condition was 
compared to the empty vector. Each of these bars represents an experiment repeated 
three times in triplicate, and error bars are given. Student t-tests were conducted to 
detennine significance (p<0.05, compared to CS3+MT for each treatment). 
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3.4.2 MIER1a Activates PPRE-dependent Transcription in a Dose­
dependent Manner 

Since MIERl a led to activation of PPRE-dependent transcription, it was important to 

ensure that this activation was a specific result of the overexpression of MIER1. Specific 

effects would increase with increasing concentration of MIERI a , therefore, varying 

amounts of MIERl a were transfected into HEK-293 cells and the luciferase activity was 

measured. Amounts of 0.25, 0.5, 0.75 and 1 ).!g ofMIER1a were transfected into HEK-

293 cells along with the pPPRE-X3-TK-luc reporter plasmid and pSVsportppary2. 

Figure 16A demonstrates a dose-dependent increase in PPRE-dependent transcription, 

both in the presence and absence of troglitazone. Figure 16 B and C indicate the relative 

amounts of myc-mier I a transfected into the cells for each condition. 
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Figure 16: A- Dose-dependent increase in PPRE-dependent luciferase activity B & C: Western blot 
for MIERla in HEK-293 cells used for luciferase assay (B: + DMSO, C: +Troglitazone) 

HEK-293 cells were transfected with 0.5 J...Lg ofpPPRE-X3-TK-luc reporter plasmid, 0.5 
J...Lg ofCS3+MT vector, pSVsportppary2 and increasing amounts ofpCS3+MT-mierla as 
indicated in the above figure. Cells were treated for 24 h with either 20 J..!M Troglitazone 
or DMSO (vehicle). Cells were harvested approximately 48 h after transfection and the 
amount of relative luciferase units (RLU) was determined as described in Materials and 
Methods. Values were normalized by measuring transfection efficiency (p-galactosidase 
assay). Each ofthese bars represents an experiment repeated three times in triplicate, and 
error bars are included. 
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3.4.3 9-cis Retinoic Acid, a ligand for retinoid X receptor, has no effect on 
the ability of MIERta. to activate PPRE-driven transcription 

In order to determine whether a ligand for the retinoid x receptor (RXR) could affect the 

ability of MIERla to bind to PPARy2 and activate transcription at the PPRE, HEK-293 

cells were transfected as described in Figure 15, and treated with 1.0 x 10-8 M 9-cis 

retinoic acid (or ethanol). These results rely on the presence of endogenous RXR in 

HEK-293 cells97
, since RXR was not transfected into the cells. The results show that 

MIERla activated PPRE-driven transcription to the same level (no significant 

difference) in the presence and in the absence of 9-cis retinoic acid. 
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Figure 17: 9-cis retinoic acid has no effect on MIERla ability to increase PPAR-dependent 
transcription 

HEK-293 cells were transfected with 0.5 1-1g of pPPRE-X3-TK-Iuc reporter plasmid or 
pGL3-basic, pSVsport ppary2 and 0.5 ~tg of CS3+MT vector or pCS3+MT-mierl a. 
Cells were treated with either 1.0 x 1 o·8 M 9-cis retinoic acid or ethanol (vehicle). Cells 
were harvested approximately 48 h after transfection and the amount of relative luciferase 
units (RLU) was detennined as desc1ibed in Materials and Methods. Values were 
nonnalized by measuring transfection efficiency. Each of these bars represents an 
experiment repeated three times in ttiplicate, and enor bars are included. 
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3.5 Changes in mRNA levels of MIER1 over the course of adipogenesis 
in 3T3-L1 cells 

In order to determine the biological significance of an interaction between 

PPARy2 and MIER 1a, 3T3-L1 cells were seeded in 24-well plates and initiated to 

undergo adipogenesis. Cells were harvested every second day until all of the cells had 

been harvested (16 days total). RNA was extracted from the cells and eDNA was made 

to perform semiquantitative RT-PCR for levels of mier1 mRNA and ppary2 mRNA over 

the course of adipogenesis. ppary2 increases over the course of adipogenesis 98
, while 

mier 1 mRNA levels increase concomitantly. Hmier 1 mRNA levels are low at Day 0 and 

increase up to Day 6 and then level off. ppary2 mRNA levels continue to increase from 

Day 0 up to Day 10-12 and start to level off. /]-actin was used as a load control and the 

levels after 20 cycles were equal, indicating saturation of the amplification. The primer 

pair used for mier 1 amplifies both the a- and P- isoforms. 
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Figure 18: ppary2 and mierl mRNA levels increase concomitantly over the course of adipogenesis 

3T3-L1 cells were initiated in 24-well plates to undergo adipogenesis, and cells were 
harvested every second day as described in Materials and Methods. /]-actin was used as a 
control (20 cycles). Both pparr and mierl were amplified with 26 cycles. Equal 
amounts of eDNA were used for each PCR reaction. 
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3.6 Determination of differentiating versus non-differentiating 3T3-
L1 cells 

Differentiation into mature adipocytes is determined by the presence of lipid 

droplets in the cell. The lipid droplets appeared as clear, birefringent, subcellular 

organelles. Lipid droplets were visible under phase contrast microscopy and were 

confirmed to be lipid droplets by Oil Red-O staining (Figure 19). In the case of 

immunocytochemistry, the lipid droplets appeared under the microscope as circular areas 

with no staining inside (Figure 21 ). Intracellular lipid droplets were first observed at 

approximately Day 4 of adipogenesis and continued until the end of the experiment (Day 

14). Since not all of the cells had differentiated, incubating them in maintenance media 

for an extended period of time would result in the accumulation of even more 

differentiated adipocytes. Cells were initiated upon confluence, and the number of cells 

in a particular well remained constant over the course of adipogenesis. Only the number 

of cells differentiating into adipocytes (forming lipid droplets) increased. 

Adiponectin is expressed as the cells differentiate into mature adipocytes 99
, and is 

a frequently-used adipogenic marker. Adiponectin is upregulated as 3T3-L1s 

differentiate into mature adipocytes; therefore a western blot was performed for 

adiponectin using the cell lysate obtained over 14 days of adipogenesis (see Section 2.7). 

Figure 20 indicates that adiponectin is upregulated at approximately Day 8 of 

adipogenesis and continues to accumulate until Day 14. 
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Figure 19: 3T3-Ll cells stained with Oil Red 0 at Day 22 of adipogenesis 

3T3-Ll ceJis were seeded into 6-weJI culture dishes and initiated to undergo adipogenesis 
as described in Materials and Methods. On Day 22 of adipogenesis, cel ls were stained 
according to the protocol for Oil Red 0 stain obtained with the Adipogenesis Assay Kit 
(Chemicon, ECM950) (Section 2.7.5). Pictures were taken under a dissecting scope at 8x 
magnification. 
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Figure 20: Western Blot of Adiponectin over 14 days of adipogenesis 

3T3-Lls were seeded into 60 mrn dishes and initiated to undergo adipogenesis as 
described in Materials and Methods (Section 2.7.4). Cell lysates were collected every 
second day as described in Section 2.7.4, and a western blot was perfonned on the lysate 
using a 1 :2000 dilution of anti-adiponectin antibody (Abeam, ab3455). 
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3. 7 Immunocytochemical analysis of MIER1 a localization in 3T3-L1 
cells undergoing adipogenesis 

In order to determine whether MIER1a is expressed specifically in 3T3-L1 cells 

that are differentiating into mature adipocytes, 3T3-L1s were induced to differentiate as 

described in detail in the Materials and Methods. On Day 4 and Day 14 of the adipogenic 

program, chamber slides were stained with either purified anti-MIER1a- or ~-specific 

antibody or purified preimmune antibody. Cells that contained lipid droplets (as 

determined by phase contrast microscopy and Oil Red-O staining (Figure 19)) were the 

only cells that stained for MIER1a (Figure 21). There was no staining for MIER1~ in 

either differentiated or undifferentiated 3T3-L1 cells (Figure 22), indicating that MIERla 

is the important isoform in adipogenesis. 

Cytoplasmic staining of MIER1a was observed in 3T3-L1s undergoing 

adipogenesis. Specifically, phase contrast was used to visualize the cells that were 

undifferentiated and that had not been positively stained. Cells that had not yet 

differentiated did not stain for MIER1a (phase contrast microscopy, Figure 21), and 

those differentiated adipocytes were on top of the fibroblast (pre-adipocyte) layer due to 

the accumulation of triglycerides. These adipocytes became more rounded as they 

accumulated lipid droplets and were much larger than the underlying, undifferentiated 

fibroblasts. As well, the accumulating lipid droplets started out as tiny drops inside a 

cell, then as more developed, fused to form one large lipid droplet that filled nearly the 

entire cytoplasm of the adipocyte (late differentiation). It was also noticed that the 

differentiation of adipocytes in one area of the chamber slide would lead to more 
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adipocytes differentiating in that same area. It appears that the differentiating cells 

secrete factors that help stimulate neighboring fibroblast cells (pre-adipocytes). If cells 

were left to differentiate for too long (23 days - data not shown), the adipocytes would 

start to lift off the plate in the middle of a section of very late differentiated adipocytes. 

Immunofluorescence was performed at Day 11 of adipogenesis. Anti-MIER1a 

purified polyclonal antibody (Leo, Bleed 1) and anti-PPARy monoclonal antibody (Santa 

Cruz, E-8) were used for detection of each protein. The majority of MIER1a staining 

was cytoplasmic, and found only in the differentiated 3T3-L1 cells. For PPARy, the 

staining was both nuclear and cytoplasmic (Figure 23). Colocalization of both proteins 

was observed in the nucleus of a small minority of differentiated 3T3-Ll cells (Figure 

23). The bottom three panels of Figure 23 show subcellular localization of PPARy, 

MIERla, and their colocalization in the nucleus of a differentiating 3T3-L1 cell. This 

phenomenon was only observed in a small percentage of differentiated adipocytes - these 

adipocytes appeared to be at a later stage in differentiation (larger cells, fused lipid 

droplets). The majority of the differentiated cells expressed MIERla in the cytoplasm, 

and PPARy was expressed in both the nucleus and the cytoplasm (Figure 23, top panel). 
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Figure 21: M JERI a is expressed in early and late differentiating 3T3-L1 adipocytes 

3T3-Ll cells were seeded in 8-well chamber slides and initiated to undergo adipogenesis 
as described in Materials and Methods. On Day 4 and Day 14 of adipogenesis, cells were 
stained using an anti-MIERla polyclonal antibody (labeled Day 4, Day 14) or a pre­
immune polyclonal antibody and visualized by DAB (dark brown-red stain) staining of 
horseradish peroxidase-linked secondary antibody (Donkey anti-rabbit-HRP). Pictures 
were taken at 50x magnification under both brightfield (Column A) and phase-contrast 
(Column B). Figures include pictures of2 wells for preimmune, Day 4, and Day 14. 
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Figure 22: MIERI~ is not expressed in early or late differentiating 3T3-Ll adipocytes 

3T3-Ll cells were seeded in 8-welJ chamber slides and initiated to undergo adipogenesis 
as described in Materials and Methods. On Day 4 and Day 14 of adipogenesis, cells were 
stained using an anti-MIERI~ polyclonal antibody or a pre-immune polyclonal antibody 
and visualized by DAB (dark brown-red stain) staining of horseradish peroxidase-linked 
secondary antibody (Donkey anti-rabbit-HRP). Pictures were taken at 50x magnification 
under both brightfield (left column) and phase-contrast (right column). 
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Figure 23: MIERlcx and PPARy are colocalized in differentiated 3T3-Ll cells 

3T3-Ll ce!Js were seeded in 8-well chamber slides and initiated to undergo adipogenesis 
as described in Materials and Methods. On Day 11 of adipogenesis, cells were stained 
using an anti-MIER1a polyclonal antibody and an anti-PPARy monoclonal antibody 
(Santa Cruz, E-8) and visualized using FITC-DAR and CY3-DAM secondary antibodies, 
respectively, and confocal microscopy. Green fluorescent staining indicates MIERla 
(A) and red fluorescent staining indicates PPARy (B). Panel C on the right shows 
colocalization (yellow) of both proteins. 
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CHAPTER 4 - Discussion 

The purpose of this study was to determine the implications of an interaction 

between PP ARy2 and the transcriptional co regulator, MIERl. Since PPARy2 is one of 

the master regulators for adipogenesis (differentiation of precursor cells into mature, 

lipid-filled adipocytes), MIERl may also play a role in this important physiological 

process. 

Peroxisome proliferator-activated receptors (PP ARs) have been shown to play an 

integral role in the control of energy homeostasis in the body, especially through their 

ability to sense environmental cues (e.g. free fatty acids) and translate that into a cellular 

response and augmentation of gene expression. PP AR family members interact with a 

number of cofactors in order to either increase or decrease transcriptional activity at 

target genes through various mechanisms, one of these being its binding to the PPRE. In 

this study, a transcriptional coregulator that has previously been shown to act as a 

transcriptional repressor (MIERl) has been determined to function as a transcriptional 

activator for PP ARy2. Moreover, the ability of MIERl to bind to and activate PP ARy2-

dependent transcription is characteristically similar to that of a known PP ARy2 

coactivator, PGC-la (PPARy coactivator 1 alpha). Not only do mRNA levels of mierl 

increase over the same time period as ppary2 during adipogenesis, but the expression of 

MIERl protein in differentiating adipocytes follows the same trend as shown by 

immunocytochemistry at two distinct time periods over the course of adipogenesis (early 

and late). 
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PGC-1 a is a coactivator that functions as a platform for the recruitment of 

regulatory protein complexes that can affect gene transcription in a multitude of ways 100
• 

Just as PGC-1 a can recruit proteins with histone acetyl transferase (HAT) activity (ex: 

CREB-binding protein/p300, steroid receptor coactivator-1 [SRC-1]), MIERl has been 

shown to interact with CBP/p300 (one of these histone-modifying proteins)101
• In fact, 

both MIER1 101 and PGC-la 102 interact with CBP/p300 via their amino-terminal region. 

Given the similarity between these proteins and others which will be discussed in detail 

as they arise, it is logical to predict that MIERl may serve as a novel coactivator for 

PPARy2. 

While it has been shown that MIERI interacts with other nuclear hormone 

receptors, there was no indication that MIERI interacted with PPARy up to this point. 

Initial pulldowns gave evidence that PPARy2 interacted with both MIERla and 

MIERlp, although the interaction was stronger between PPARy2 and MIERla than with 

MIERlp . More specifically, more MIERla bound to PPARy2 than MIERlp. This was 

not dependent upon protein mass, and is similar to what has been shown with MIERl P 

and ERa as well 1 03
• 

The difference between the a and p forms of MIERI lies within the C-terminal 

domain. This is the location of the LXXLL motif in MIERl a that is not present in 

MIER 1 p. Since PP ARy2 interacted with both the isoforms, the LXXLL motif was 

determined to be an unlikely interaction site for the two proteins. As has been previously 

shown with a wide variety of LXXLL-containing proteins, this motif is not always 
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required for an interaction with nuclear hormone receptors104
•
105

. In the case of the 

protein inhibitor of activated STAT family (PIASy), the LXXLL domain is not required 

for the interaction between the corepressors and STATl , but is essential for the 

transrepression of STATl activity105
• Recently, the LXXLL-motif was ruled out as a 

potential interaction site between MIER 1 and ERa 106
. Since PPARy and 

PP AR~/8 interact with both isoforms of MIER 1 (Figures 8, 9, 1 0 and 11 ), this rules out 

the LXXLL-motif as the interaction site between these two proteins. However, LXXLL 

may be contributing to the stronger binding between MIERI a and PP ARy compared to 

MIER1~ . The fact that MIERI~ interacts less strongly with PPARy than MIER1a (which 

contains the LXXLL motif) is evidence that cooperative binding with the LXXLL 

domain may allow for a stronger interaction between MIER1 a and PP ARy. 

While the LXXLL motif is one explanation for the stronger binding between 

MIER1a and PPARy, the presence of a longer C-terminus on MIER1~ may also be 

important. The tail of MIER1 ~ may be folding in such a way that it blocks the binding to 

a specific site in the C-terminus. In this case, the data indicates that MIERla and~ are 

interacting with PP ARy through their common SANT domain. Therefore this specific 

site that ~ could be partially blocking is the SANT domain of MIERl. 

The SANT domain is found in many nuclear hormone corepressors, including 

NCoR and CoREST and SMRT107
• In these proteins, and other chromatin-remodelling 

proteins, the SANT has been shown to function in binding and regulating histone 

deacetylases (HDACl However, the SANT domain also has a function in binding 

histone acetylases (HAT), G9a (histone methyltransferase) and even histones directly7
•
108

• 
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In this case, MIER1 is serving as a coactivator for PP ARy2. One of the ways MIER1 

could stimulate PPRE-dependent transcription is via recruitment of proteins with HAT 

activity. Since MIER1 has already been shown to interact with CBP/p300 (unpublished 

data) which contains HAT activity, it may be stimulating activity by recruiting CBP/p300 

to the PPRE. As mentioned in recent publications, the SANT domain has been implicated 

in using the histone code in order to regulate transcription7
• 

While the interaction with PPARy2 was stronger with the C-terminus (GST­

fusion construct ~ 9) of MIER1 than theN-terminus (GST-fusion construct~ 4), there 

was still an interaction between PPARy2 and the N-terminus. The region of the N­

terminus used for the puJidown (MIER1~4, aa 1-283) did not possess the SANT domain 

at all. This indicates that there may be multiple binding sites for PP ARy2 and MIER1 . 

For example, MIER1 may fold into a specific conformation that allows it to bind PPARy2 

via the SANT domain and another area of theN-terminus. This type of interaction has 

been shown recently with CCPG (Constitutive Coactivator ofPPARy) and PPARy, where 

both the C- and N-terminus interact with PPARy 109
• As well, CBP/p300 has been 

shown to bind PPARy2 via both the AF-1 and the AF-2 domains - allowing for both 

ligand-dependent and ligand-independent activation of transcription 11 0
• 

Future studies should use deletion constructs of PP ARy2 in a GST pulldown 

experiment in order to determine what domain(s) ofPPARy2 interact with MIERl. This 

will better define the interaction between the two proteins and also explain how MIERI 

may be stimulating transcription at the PPRE. The GST pulldown is an in vitro assay that 
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uses deletion constructs of a protein of interest, so the tertiary structure of that region may 

be affected. As well, there may be accessory proteins involved in the binding of PP ARy 

to MIERla, which are not present in the in vitro assay. For these reasons, an in vivo 

assay is required to better characterize the interaction. These possibilities may explain 

why the interaction between PPARy and either MIERla or~ was of similar intensity in 

vivo, contrary to what was observed in the GST pulldowns. This indicates that there may 

be some protein present in HEK-293 cells that may be facilitating the interaction between 

MIERla and ~. and PPARy2. In fact, preliminary studies have shown that MIERla 

interacts with RXR in vitro86
. PP ARy and RXR are obligate heterodimer partners, and 

interact with each other even in the absence of ligand 111
• RXR may therefore be 

facilitating the interaction between PPARy and MIERl. Future studies using cell lines 

lacking RXR (or siRNA-mediated knockdown of RXR) should be completed in order to 

determine the effect of RXR on the ability of MIERl to bind PP ARy in vivo. 

The interaction of PP AR~/8 with MIERl was expected, since all of the PP AR 

isoforms have the same basic nuclear receptor structure112
. As well, the entire PPAR 

family of nuclear receptors have been implicated in similar metabolic processes112
• 

However, PPAR~/8 is the only PPAR in the family that is not a target of current drugs for 

metabolic disorders 113
• PP AR~/8 has been implicated in reducing weight gain, increasing 

skeletal muscle metabolic rate and endurance, and improving insulin sensitivity and 

cardiovascular function 113
• Most importantly, since many drugs targeting PPARy lead to 

atherogenic inflarnmation 114
, a protein that could target both PPARy and PPAR~/8 would 
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be ideal. In fact, newer drugs for Type 2 diabetes are targeting both proteins in an effort 

to thwart the side effects of PPARy agonists alone 115
• MIERl may therefore be a 

potential dual agonist for metabolic disorders. The effects of MIERl on PPAR~/8 are 

outside the scope of this project, but future studies should aim to better characterize this 

interaction. 

To determine whether the interaction between MIERla and ~ and PPARy2 was 

ligand dependent, HEK-293 cells were treated with the thiazolidinedione, Troglitazone. 

Troglitazone is an agonist for PP ARy which binds to the AF2 ligand-binding domain and 

is used in the treatment of Type 2 Diabetes. It can target PP ARy2 in the pancreas, 

skeletal muscle, and adipose tissue. Troglitazones mechanism of action, as a 

thiazolidinedione, involves the recruitment of GLUT4 receptors to the surface of cells in 

adipose tissue 116 which allows for more efficient uptake of glucose and effectively 

lowering blood-glucose levels. At the molecular level, as a ligand for PP ARy2, it binds 

to PP AR at the ligand-binding domain and facilitates a conformational change that allows 

for the release of corepressor complexes and the recruitment of coactivator complexes. 

The interaction between MIERl and PP AR was ligand independent, when cells 

were treated with troglitazone for a period of 24 h. A similar ligand-independent 

interaction is observed with a known PP ARy2 coactivator (PP AR gamma coactivator-1 

alpha, PGC-la) 117
. The LXXLL motif is common for ligand-dependent interactions 117

, 

and since the LXXLL motif was not responsible for the interaction between MIERl and 

PPARy2, the data fits this theory. More recently, CCPG (Constitutive Coactivator of 

PPARy) has been shown to also interact with PP ARy2 independent of the LXXLL 
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domain 118
• A 24 h treatment time is quite long when looking at transient interactions, 

therefore further studies should look at the treatment with ligand over a shorter time 

period (e.g. 1.5 h) to determine immediate effects of ligand on the interaction between 

PP AR and MIER1. 

Since the interaction between the two isoforms of MIER1 and PP ARy2 have been 

confirmed in HEK-293 cells, the next step was to determine what effect this interaction 

had on the genomic function of PP ARy2. Our data demonstrates that MIER1 can 

function as a potent PP AR coactivator, with a similar stimulation of transcription as that 

seen with PGC-1 a . Similar to PGC-1 a, this stimulation occurred in both the presence 

and absence of troglitazone. This is in contrast to the ligand-dependent stimulation 

observed with most nuclear receptor-coactivator complexes119
•
120

• Without MIER1a 

transfected into HEK-293 cells, treatment with troglitazone led to a significant increase in 

PPRE-dependent transcription, as expected. However, in the presence of MIER1 a and 

troglitazone, the fold activation above that seen with empty vector (CS3+MT) alone was 

the same as that seen with MIER1a alone. In other words, MIER1a augments activation 

at the PPRE independent of ligand - it functions as a novel coactivator. This ligand­

independent activation of transcriptional activity should be further investigated between 

MIER1 and PPARy. 

Since our data does not rule out the possibility that there are other PP ARy2 

ligands present in HEK-293 cells that are bound to PPARy2 and allowing for the 

recruitment of MIERI to the coactivator complex. PGC-1a was used as a positive 
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control, and as expected for a PPARy2 coactivator, it augmented the activation of 

transcription at the PPRE in the presence and absence of troglitazone. In the absence of 

MIERl there was a 7-fold increase in transcriptional activity at the PPRE when the cells 

were treated with troglitazone. This is expected since troglitazone is a ligand for PP AR 

and allows for recruitment of coactivators (in this case, endogenous coactivators) and 

transcription ofthe luciferase gene. 

The data shows that MIERla and~ interact with PPARy2 independent of ligand 

as seen with PGC-la 121
, and these proteins also increase transcriptional activity similar to 

PGC-la. The PGC-la protein has features (motifs) in common with MIERl in that it 

contains a number of nuclear receptor boxes, such as the LX:XLL motif122
. PGC-1 a also 

contains a potent activation domain near the N-terminus, that can interact with other 

transcriptional coactivators 117
, as does MIER1 123

. Future work should aim to look at 

whether the increase in transcriptional activity with MIERla or ~ is synergistic with 

PGC-1 a. If there is indeed a synergistic effect, it may suggest that MIERl a or ~ are a 

part of a much larger transcriptional activation complex that also includes PGC-1 a. 

Previous work has shown that the mediator complex, a multiprotein complex of 

coactivators, is required to bridge the transcription factors to the transcriptional 

machinery and plays a pivotal role in adipocyte differentiation by coactivating PP ARy 124
. 

MIERl , as a coactivator for PPARy2, is likely involved in this complex. This can be 

determined by interaction studies with other components of this complex, including 

MEDl,TRAP220 and DRIP205 124
• 
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Since PP ARy forms an obligate heterodimer with RXR, it was necessary to 

determine whether a ligand for RXRa had any effect on the ability ofMIERl to stimulate 

PPRE-dependenet transcription. There was no significant difference between activation 

by MIERI a in the presence or absence of 9-cis retinoic acid (Figure 17). This suggests 

that MIERl may be stimulating transcription solely via its binding to PP ARy and not 

indirectly via binding to RXR. Conversely, there was no increase in activation of PPRE­

driven transcription after the addition of 9-cis retinoic acid in the control cells (lacking 

MIERI) either. This means that 1) the 9-cis retinoic acid is not working, 2) there are 

other endogenous ligands for RXR present in HEK-293 cells, or 3) RXR is the limiting 

protein in the system since it is not transfected into the cells. Other studies have shown 

that in cells transfected with the PPRE and treated with 9-cis retinoic acid alone, there 

was no significant increase in PPRE-driven transcription125
. In all of the PPRE-luciferase 

assays completed in this study, the use of HEK -293 cells provided endogenous retinoid x 

receptor (RXR) which is an obligate partner for PP ARy to regulate transcription. At the 

same time, since RXR was not transfected into HEK-293 cells, the amount of 

endogenous RXR is the rate limiting component of this system which could be 

attenuating the amount of transcriptional activation seen with MIERI a or ~· If the cell 

had access to unlimited amounts of RXR (via overexpression), MIERla or~ may cause 

an even greater increase in transcriptional activity at the PPRE. While these results 

suggest that MIERI is acting independent of ligand for either PPARy or RXR, the rate­

limiting factor in these cells is the presence of endogenous RXR. Since RXR was not 

transfected into these cells, but PPARy was transfected in (in excess), further studies are 
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required to determine if the activation by MIER1 a is actually higher than that shown in 

Figures 14, 15, 16, and 17. 

It is well known that one of the most important physiological roles of PP ARy2 is 

in the process of adipogenesis68
. The dysregulation of this process can result in the 

development of cardiovascular disease, obesity and most notably, diabetes126
. Since both 

isoforms of MIER1 (a and p) caused significant activation of PPRE-driven transcription 

via interaction with PP ARy2, it was important to elucidate the biological relevance of this 

interaction. The 3T3-Ll model for adipogenesis has been well-established, and both 

MIER1 overexpression and knockdown studies (described in detail in Future Studies 

section) could be performed in this system. 

PPARy2 increases over the course of adipogenesis via a complex set of regulatory 

mechanisms127
• More specifically, after the induction of differentiation (Day 1) with a 

cocktail of IBMX, Dex and fetal bovine serum (FBS), ppary2 mRNA levels increase up 

to approximately Day 8, and then level off127
• As a positive control, this exact trend was 

exhibited after PCR analysis of ppary2 mRNA levels over 16 days of differentiation 

(Figure 16). Other coactivators have exhibited a similar trend over the course of the 

differentiation process in 3T3-Ll cells. For example, ADDl/SREBP-1 mRNA levels are 

upregulated very early on in the adipogenic program128
. ADD1 is a helix-loop-helix 

transcription factor that is expressed in differentiating adipocytes and regulated during 

differentiation of cultured adipocyte lines 129
• A novel coactivator for PPARy, CCPG, 

has recently been shown to increase from Day 0 of adipogenesis and peak at Day 4130
• 
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This coincides with the pattern of expression observed for MIERl (Figure 18). The 

importance ofMIERl in the regulation of adipogenesis has yet to be elucidated. 

The importance of coactivators in the adipogenesis program cannot be stressed 

enough, and determining all of the components involved in the regulation of this 

differentiation process is paramount to understanding how adipose tissue acts as an 

endocrine organ. The expression of specific coactivators at specific times during this 

program can determine the ultimate fate of the specific cell. For example, PGC-1 a , 

which bears many similarities (physically and functionally) to MIERl , can induce the 

conversion of white adipose tissue (W AT) into brown adipose tissue via the upregulation 

of uncoupling protein 1 (UCP-1) 131
. UCP-1 is involved in the dissipation of energy as 

heat, and brown adipose tissue is abundant in rodents and human newborns, but very little 

in human adults. It is likely that the conversion of W AT to BAT (or at least, a BAT 

phenotype) could have therapeutic advantages in human adults132
. Specifically, the 

induction of UCP-1 could increase fatty acid oxidation and lead to a decrease in fat 

mass 133
. This is evidence that the expression of specific coactivators can contribute to the 

phenotype of adipose tissue and have implications in disease. If MIER1 acts like PGC-

1 a, it may be functioning as a switch to transform pre-adipocytes into brown adipose 

versus white adipose tissue. 

Since the mRNA levels of MIER1 increase from Day 0 of adipogenesis up to Day 

6 and then levels off, the next step was to look in vivo at the cells by 

immtmocytochemistry. Cells were stained on Day 0, Day 4 and Day 14 of adipogenesis 

using an anti-MIER1a or ~ antibody and visualized by DAB staining. On Day 0 of 
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adipogenesis, there were no differentiated adipocytes and staining for MIERla and p was 

not observed. On Day 4 of adipogenesis, some staining of MIERla was observed, but 

there was no MIERlP detected. On Day 14 of adipogenesis, MIERla staining was much 

stronger than on Day 4, but no staining was observed for MIERlp. Therefore, MIERla 

is most likely the isoform involved in adipogenesis. Further work in characterizing the 

role ofMIERl in adipogenesis should focus on the a-isoform. 

Only the 3T3-L 1 cells that were differentiating/differentiated had MIERl protein 

present - underlying undifferentiated cells did not contain MIERl. This was determined 

via phase-contrast microscopy, which allowed the observer to note underlying 3T3-Ll 

fibroblasts that had not changed morphology or begun to acquire lipid droplets in the 

cytoplasm, and were not positive for MIERl a. The phase-contrast pictures are given 

along with the brightfield pictures, showing birefringent lipid droplets in the cytoplasm of 

differentiated adipocytes (Figure 21 , 22). These lipid droplets could also be discerned by 

staining with Oil Red 0 (Figure 19). Another way of determining that the cells were 

differentiating (aside from visual cues) was the production of a known adipogenic 

protein, adiponectin. This protein is produced by differentiated 3T3-Ll cells, and was 

detected via western blot (Figure 20). It was not detected by western blot until Day 6, 

which is expected since the differentiated adipocytes did not appear until Day 4 and 

would require some time to produce detectable levels of adiponectin. At the same time, 

since only a subset of the cells were differentiating, the protein may have been present 

but undetectable. 
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Since the MIERl protein levels start to increase and are still increasing up to Day 

6 after initiation, and MIERl a serves as a coactivator for PP ARy2, it is likely that 

MIERl is involved in the second stage (differentiation) rather than the first stage 

(determination) of adipogenesis. The adipogenesis process is initiated by the IBMX­

stimulated upregulation of C/EBPP and the DEX-stimulated upregulation of 

C/EBP8. These proteins in turn facilitate the transcription of both C/EBPa and PP ARy2 

(which is considered the second or differentiation stage of adipogenesis). C/EBPa is 

expressed at approximately Day 2 of adipogenesis, and is then phosphorylated (activated) 

by Cyclin D3-Cdk2 complex and can bind to and activate transcription of pparyi34
. 

Therefore, MIERla levels are at their peak when PPARy2 levels are high and activating 

transcription of target genes that contain a PPRE. This is further evidence that MIERl a 

is a potent transcriptional activator for PP ARy2 and is found in the "right place at the 

right time" to serve this purpose. 

The localization of MIERla m these 3T3-Ll adipocytes appears to be both 

cytoplasmic and nuclear, with the majority of staining around the lipid droplets. Since 

the cytoplasm in late differentiated adipocytes is merely a thin layer surrounding the lipid 

droplets, MIERl a is concentrated in this area. This is consistent with earlier work that 

has shown MIERla is localized in the cytoplasm ofNIH-3T3 cells135
, which are the cells 

from which the 3T3-Ll cells were derived. However, localization of MIERl is cell type 

dependent89
. There may be a regulating complex that shuttles MIERl to and from the 

cytoplasm. Others have shown that PP ARy2 staining in adipocytes during the later stages 
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of adipogenesis is concentrated around the forming lipid droplets, indicating a 

colocalization between these two interacting proteins in adipocytes95
. This is different 

from the expression pattern in other cell types, where PPARy is mostly nuclear136
•
137

. 

Consistent with the literature, Figure 23 indicates that the majority of PPARy staining is 

localized to the nucleus, with some PP ARy present in the cytoplasm. Again, since the 

cytoplasm is greatly reduced due to the formation of lipid droplets, it is somewhat 

difficult to discern the exact pattern of staining. As well, the data shows that the temporal 

expression of MIERla protein occurs concomitantly with PPARy expression. This is 

interesting, since the localization of MIER I a in neoplastic breast tissue is cytoplasmic, 

but nuclear in normal breast tissue89
. The reason for this has not yet been elucidated, but 

it has been shown that xMIERl is retained in the cytoplasm by some sort of cytoplasmic 

anchoring protein, via the acidic activation domain 138
• 

Taken a step further, mammary adipose tissue has been shown to secrete factors 

(adipokines) that, compared to other stromal cell-secreted factors, is able to promote 

increased cell motility, migration and the capacity for angiogenesis139
• Therefore, not 

only is MIERla implicated in breast cancer via its interaction with the estrogen receptor 

(ER), but it may also play a role through its interaction with PP ARy in mammary adipose 

tissue. 

The immunofluorescence assay to look at colocalization clearly showed that both 

MIERla and PPARy were colocalized in the nucleus of a subset of differentiated 3T3-Ll 

cells. This was restricted to large, terminally differentiated adipocytes. This is important 

if MIERI a is acting as a coactivator for PP ARy-mediated transcription, since it must be 
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present in the nucleus to directly regulate gene transcription. Further studies are required 

to determine the proportion of these differentiated 3T3-Ll cells that have subcellular 

localization of both PPARy2 and MIERla, to further define the relationship between 

these two proteins. 

Since the majority ofMIERla staining is cytoplasmic, and PPARy in 3T3-Lls is 

also cytoplasmic, a mechanism of non-genomic action of MIERl a may be possible. 

PP ARy has a number of non-genomic effects via signal transduction pathways. Most 

recently described is the effect of MAPK kinases on PPARy subcellular localization 136
• 

MEKs can translocate to the nucleus (where PPARy normally resides), but are rapidly 

exported out of the nucleus by their nuclear export signal (NES). As they are exported 

from the nucleus they take their interacting partner, PPARy, into the cytoplasm as well136
• 

MIERla may be performing a similar role late in the adipogenic program when PPARy 

is no longer required. 

There was less PPARy and MIERla present in terminally differentiated (late) 

adipocytes at Day 16, as revealed by immunofluorescence analysis (data not shown). This 

follows what is observed in the literature, since PP ARy2 has transcribed the required 

genes for the differentiation portion of the adipogenic program and is no longer useful to 

the mature adipocyte. At the same time, MIERla, functioning as a coactivator for 

PP ARy2, would be redundant after adipogenesis has occurred. Further studies should 

follow the subcellular localization ofMIERla and PPARy over each day of adipogenesis 
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to determine the exact mechanism by which these proteins influence the subcellular 

location of each other. 

Proposed mode/for MIER1 activation ofPPARy2 

The localization of MIERla in 3T3-Ll cells appears to be mainly cytoplasmic, 

while PP ARy2 is both nuclear and cytoplasmic. Since PP ARy2 exerts some of its effects 

in the nucleus and MIERla has been shown to act as a coactivator for PPARy2, the 

localization of MIERl could fit with this coactivator theory. However, the transcription 

assays in this study were undertaken in HEK-293 cells, while the localization ofMIERla 

was determined in 3T3-Ll cells. While this is one possible mechanism for PP ARy 

stimulation by MIERla, the subcellular localization of MIERla in HEK-293 cells 

should be determined to support this model. The exact mechanism by which MIERl a 

exerts its effect on PP ARy2 has yet to be elucidated, but based on the similarity of 

MIERla to one of the well-characterized coactivators for PPARy2 (PGC-la) this 

mechanism is one possibility. 

The mechanism of action for PGC-la involves binding ofPPARy2, followed by a 

conformational change that allows docking of other coactivators that contain histone 

acetyltransferase activity (e.g. CBP/p300, SRC-1). This has been referred to as the 

"spring-trap" model140
, since PPARy2 opens up like a trap-door to provide more binding 

sites for other transcriptional co factors. Since MIER 1 a has been shown to interact with 

CBP/p300 and has a similar fold-activation of PPRE-driven transcription, it may be 

acting as a coactivator for PP ARy2 in a similar mechanism as PGC-1 a. 
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Based on the large amount of cytoplasmic staining for MIERla observed in 

differentiated 3T3-Ll cells, a mechanism of non-genomic action of this protein should 

also be discussed. MIERla has been determined to contain the well characterized EF­

hand, which is a calcium (Ca2+) binding site. EF-hand proteins have been implicated in 

the non-genomic pathways associated with nuclear receptors. For example, the 

Modulator ofNongenomic Activity of ER (MNAR) is a scaffolding protein containing an 

EF -hand that can affect ER interaction with Src tyrosine kinases and can lead to 

stimulation of the MAPK pathway141
• In the case of PPARy, it has been demonstrated in 

vascular smooth muscle cells that PP AR agonists rapidly induce ERK activation and c­

fos mRNA expression, suggesting a non-genomic function of these ligands142
. However, 

it has not been determined whether this non- genomic signaling is PP ARy dependent or 

independent. Immunofluorescence has demonstrated that PP ARy is present in both the 

cytoplasm and in the nucleus (Figure 21), consistent with the findings in the literature 

which show PP ARy2 surrounding the lipid droplets in later stages of adipogenesis 143
• 

HMI-ERla, with the EF-hand domain, may regulate its non-genomic effects through 

calcium signaling pathways in the cell. It has also recently been discovered that MIERla 

also contains a calmodulin binding site (O'Day, D., personal communication, 2008), that 

together with the EF-hand could allows MIERla to serve as a signaling intermediate in 

calcium-dependent pathways. 

Another possibility is that MIERl may be regulating the subcellular localization 

of PPARy2, similar to PPARy2 shuttling via interaction with MAPK kinases136
• Since 
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PP ARy2 surrounds the lipid droplets at later stages of adipogenesis 143
, and MIERI a 

staining is mainly cytoplasmic (specifically surrounding lipid droplets), it may be acting 

as an anchor to keep PP ARy2 in the cytoplasm. In the very late stages of adipogenesis, 

when the cells are full of lipid and there is virtually no visible cytoplasm left, MIERI a 

may move into the nucleus (as shown in Figure 23, bottom panel) and regulate PPARy2-

dependent transcription. 

Implications 

The implications of an interaction between PPARy and MIERla are significant 

and seem to be intimately tied to hormone signaling between adipose tissue, the pancreas, 

and the rest of the body. Ligands that activate PPARy in both adipose tissue and the 

pancreas have been made famous via their ability to reduce insulin resistance and 

hyperglycemia in type 2 diabetes144
• Recent work on the location of MIERl in mouse 

tissues has shown that MIERI a is highly expressed in the Islets of Langerhans in the 

pancreas. Combined with this study which has shown MIERla is expressed in 3T3-Ll 

adipocytes, MIERl is in the right places to serve as a target for type 2 diabetes therapy. 

While its role in the pancreas has not yet been elucidated, the possibility that MIERla 

activates PPARy transcriptional activity in 3T3-Ll adipocytes suggests it may do the 

same in the ~-cells of the pancreas. It has been shown that troglitazone (an agonist for 

PP ARy2) actually functions in part by maintaining or preserving ~-cell mass 145
. 
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It would be interesting to see if MIERl a is downregulated in the f3-cells of the 

pancreas or adipose tissue in type 2 diabetes. This would provide a mechanism whereby 

loss of MIERla would result in decreased activity of PPARy (a hallmark of type 2 

diabetes) and progression of the disease. The MIERla knockdown experiments 

suggested in future studies should demonstrate the requirement for MIERla in the 

adipogenic program. It is hypothesized that a knockdown of this coactivator for PP ARy2 

would prevent the differentiation process. Taken a step further, a reduction in the level of 

MIERla in both the pancreas and the adipose tissue would dysregulate PPARy2 activity 

and eventually lead to type 2 diabetes. 

As mentioned briefly in the model for MIERl a activation of PP ARy2, MIERl a 

has an EF-hand involved in calcium binding. If we look at the role of the f3-cells in 

insulin secretion, a role for MIERla is not difficult to discern. It has been shown that B­

cells sense glucose through its metabolism. This results in an increase in the A TP/ ADP 

ratio, which closes the KArP channels and leads to plasma membrane depolarization, the 

influx of Ca2+, and, finally, insulin secretion146
. This influx of calcium may trigger 

MIERl a to bind to PP ARy2 and initiate transcription of key target genes involved in the 

release of insulin from the f3-cells (e.g. uncoupling protein-2, UCP-2). Therefore, 

MIERI a may serve as a novel therapeutic target for type 2 diabetes through its regulation 

of PPARy2 transcriptional activity in these particular endocrine organs (adipose tissue 

and pancreas). 
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Future Studies 

While much progress has been made in terms of the biological function of MIERl 

in regulating PPARy2 activity and the process of adipogenesis, more work is required to 

determine the exact mechanism by which MIERla activates PPARy2. Once this 

mechanism has been extensively characterized, the potential for MIERl to serve as a 

novel therapeutic target for Type 2 Diabetes or obesity can be determined. Given below 

are some of the experiments that should be completed or are in progress in order to probe 

deeper into possible mechanisms ofMIERl activity. 

4.9.1 Determine the domain ofPPARy2 that interacts with MIER1 

To determine the exact mechanism by which MIERI interacts with and activates 

PP ARy2, it is necessary to determine which domain of PP ARy2 is involved in the 

interaction between these two proteins. The best way to determine this interaction site 

would be through irnmunoprecipitation using deletion constructs of PP ARy2. These 

deletion constructs have been used in another study to assess the interaction domain 

between PPARy2 and CCPG147
. 

4.9.2 Demonstrate in vivo interaction between PPARy2 and MIERl a 

The in vivo interaction between PPARy2 and MIERI a has been demonstrated in 

this study via the transfection of HEK-293 cells with both PPARy2 plasmid and myc-

103 



tagged MIERla plasmid, followed by subsequent immunoprecipitation and immunoblot. 

However, this involves overexpression of both proteins in the cell. A better way to 

confirm this interaction would be to do an immunoprecipitation and immunoblot relying 

on endogenous levels of both proteins in the cell, since this is more physiologically 

relevant. For this experiment, a cell line that expresses both PPARy2 and MIERla 

would have to be used. Since both of these proteins are present at high levels during 

adipogenesis in 3T3-L 1 cells, this would be an excellent cell line to use. 

4.9.3 Determine the effect shRNA-mediated reduction in MIERla levels 
has on adipogenesis 

MIERla has been shown here to act as a transcriptional activator for PPARy2, 

with strikingly similar characteristics to another known coactivator, PGC-1 a. Also 

determined here is the fact that MIERl protein and mRNA levels increase over the course 

of adipogenesis in a pattern comparable to that seen for PPARy2 protein and mRNA 

levels. Therefore the exact role of MIERla in this differentiation process must be 

determined. Future work is in progress in using short hairpin RNA (shRNA) developed 

against specific regions of MIERla. These shRNA will be transfected into 3T3-Ll 

preadipocytes in order to knockdown expression levels of MIERla and determine the 

effect on adipogenesis. In another study that looked at a novel coactivator for PPARy2, 

the knockdown of that protein (CCPG) resulted in significantly less adipocyte 

differentiation as measured by Oil Red-O staining of lipid droplets and western blot of 
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adipocyte-specific markers adiponectin and perilipin148
• It is hypothesized that a 

knockdown of MIERl a , which functions as a transcriptional activator for PP ARy2, will 

either prohibit or severely impair the differentiation of 3T3-Ll fibroblasts into mature 

adipocytes. 

4. 9.4 Determine other biologically relevant functions of MIER1a­
mediated activation of PPARy2 

While the majority of research on PP ARy2 has focused on adipogenesis and 

implications of PP ARy2 for type 2 diabetes, there are a number of other biological 

functions for this nuclear receptor. Specifically, PP ARy2 plays an important role in the 

pancreatic islet cells and it has been recently discovered that MIERla is expressed in the 

islets of Langerhans in the mouse pancreas149
• The first thing to determine here is 

whether PPARy2 and MIERla are colocalized in the same types of cells in the islets 

(either the a , p or o cells) using immunohistochemistry and co-staining with either 

glucagon, insulin or somatostatin for the specific cells of the islets. From there, further 

work could focus on the exact role ofMIERl a on PPARy2 function in the pancreas. 

An exciting field of research has been focusing on mouse models, and it would be 

advantageous to this study if a conditional knockout mouse was generated - specifically, 

knockdown of MIERla in the pancreas or in the adipose tissue. The phenotype of this 

knockout mouse would provide more insight into the function of MIERl in the 

aforementioned metabolic regulation processes. Similarly, the effect of overexpressing 

MIERl in a mouse model that has Type 2 diabetes could also be determined. There is 
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virtually no limit to the amount of data that could be harvested from mouse models like 

this. If results of these expression experiments in mice mirror the data obtained thus far 

with PPARy and MIERla, this brings MIERla to the forefront of potential drug targets 

for a wide array of metabolic disorders. 
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