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ABSTRACT 

The thesis presents the results of an analytical and experimental investigation of 
~ ';"~ 

the fatigue behaviour of tubular T-joints, using a linear fracture mechanics 

approach. The analytical studr includes the development of a finite element com-

·~ puter program to analyse tubular joints. with/without weld toe cracks. The 

experimental ii1vestigatioD .. consists of quantifying the effects . of sea water, tem­

perature, frequency, load ratio and wave form on fatigue crack-growth~rates in 

CSA G40.21 M 350 WT steel, which has been= proposed for the Canadian 

Ofshore. 

The actual curved surface and the brace/chord intersection are approximated by 
: •., ., 

· ..... 

the assemblage of flat quadrilateral and triangular plate elements for two dimen-

sional analysis. The analysis uses a plane stress element to account for membrane 

stiffness and a plate bending element to account for flexural stiffness. For three 

dimensional analyses, chord/brace/weld regions are modelled !_Ising incompatible 
>. 

brick and prism elements. In order to reduce the computer storage requirements 

as well as the solution costs, the region of high stress gradient is analysed using 

the rezone technique. Hot SP.ot stress and stress concentration factors obtained 

from these analyses are compared with the experi~~ntal values available in the 
. .~ 

literature. 

To study the effect of a shallow weld toe crack on through-thickness and surface 

=stress redistribution, the region at the vicinity of the crack is modelled using spe-

cial elements which produce singular stress fields at the crack front. The crack-
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· t · t ·t f t d t · d b · th k · II t1p s ress m ens1 y ac ors are e ermme y comparmg e crac -tip stresses, 

obtained from the analyses, with the available theoretical solutions. 

Fatigue crack-growth-rate data and material coefficients, C and m, for various 

temperature, load ratio and frequency ranges are obtained from compact tension 

specimen t~sts in air as well as in sea water. Knowing the crack-growth behaviour 

in the b~~, metal, the through-thickness-cracking lives of tubular T.-joints are 

predicted analytically using the modified Paris' equation ·and· the estimated lives 
.-::-:.~-;: .. >·~··· ~ :. ..... 

are compi\red with reported experimental results. The accuracy of the computer 
» " 

progr:am and the validity of the proposed method for predicting fatigue life or 
-~.::: ....... :. ...... , .... 

tubular jOints are checked by testing a prototype tubular T-joint. :, 

-~·· 

:, 

i ,· 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The offshore exploration for oil has con.fronted the designers of fixed and floating 

structures with more complex fatigue problems. These offshore structures are sub-

jected to alternating wave loads. In particular, the joints (intersections of tubular 

members) experience very high stresses due to geometric discontinuities in welded 

connections, and the local stress concentration at brace-chord intersections plays 

a major role in determining the fat~gue life of the joints. The current procedure 

for the design of steel offshore structures against fatigue requires an accurate 

,r:===::.~ .. knowledge of the stress distribution in tubular joints whereas the traditional 
'/ '~ .,/' ~ 

design based on the S-N curves required only the calculation of maximum hot 

spot stress or strain. Moreover the method currently employed for fatigue life 

estimation assumes that no defects or flaws are present in the structure prior to 

service and then makes allowance for both crack initiation and propagation. But 

this method proves to be inefficient owing to the following reasons. The nature of 

offshore structures is such that the regions of high stress concentration and resi-

dual stresses coincide with the areas where flaws are most likely to be present. In 

addition, the stress required for fatigue crack initiation is much higher than that 

necessary for crack propagation. Consequently, if a flaw is present prior to ser-

vice11:crack growth will be rapid which will give a much shorter fatigue life than 

: j 



that given by the currently employed methods. 

In view of the above, it would be more appropriate to assume that incipient sur-

face cracks are always present in welded tubular joints. These incipient surface 

cracks will grow during service, eventually causing failure of the member. Com-

putations based on this assumption could be used to estimate the life of the 

structure or the inspection interval before repair is necessary. The linear fracture 

mechanics approach based on the stress concentration existing near the crack tip 

and the use of a suitable fatigue crack growth expression provides a more realistic 

method for fatigue life determination. The investigation of crack propagation at 

the chord-brace intersection, in the weld toe region of tubular joints, is a complex 

three-dimensional problem because the crack propagates rapidly along the weld, 

while the penetratio,n into the thickness direction is relatively slow. 

The theoretical stress analyses produced so far have shown that the stresses in 

front of the crack can be characterized by a term known as the stress intensity 

factor K. The uncertainty in predicting the stresses (at the intersection) and the 

fatigue life, due to the extremely complex geometry near the intersection, has 

prompted initiation of extensive research programmes. As a result .~gr the 

difficulties experienced in obtaining a closed-form solution for the stress intensity 

factors of various structural configurations, several approximate three dimen-

sional methods such as direct potential and finite element methods have been 

,used for the stress analysis of finite-thickness fracture specimens containing 

through-thickness cracks. These results cannot directly be used by the designer 
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since the results vary for different specimen configurations, and a separate 
;~ 

analysis has to be carried out for the specimen configuration under consideration. 

The stress distribution close to the crack front is dominated by the presence of 

the stress-free crack surfaces at the crack tip. The square root singularity is 

present in the existing solutions, regardless of the other features of the geometry 

of the member. The magnitude of each component of the crack tip stresses is 

directly proportional to the stress intensity factor K. 

Observation of fatigue crack growth indicates that a certain amount of growth 

occurs in each cycle. The fracture of small ligaments ahead of the crack tip can 

be thought of as a minute brittle fracture occuring on each tensile load applic:q 
~~ ~· 

tion. The crack growth rate process can b~ ~broken into three states (Fig. 1.1): (i) 

threshhold - below a certain stress intensity level cracks will not grow (this is 

analogous to crack initiation in the fatigue process d~scription), (ii) stable crack 

propagation, and (Hi} rapid or unstable crack propagation (analogous to the 

failure portion of the fa~igue process). The stable crack propagation stage is of 

most interest to the designer carrying out an analysis to determine the fatigue life 

of a joint. 

1.2 Purpose of this Research 

The earlier S-N curves used in the design of offshore structures were developed 

from onshore welded fabrication design curves and used a nominal member stress 

which enabled the fatigue life to be quickly assessed. \Vith ti~e, it was necessary 
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to include in the design stress such effects as weld toe stress concentration and 

the high stresses produced by the local bending of the chord and the brace at 

the intersection. To date many: long term tests on full scale steel joints have been 

completed, and further tests are underway to pr.oduce S-N cury_es for the design 

of tubular joints. Factors being studied include thickness, internal/external 

stiffeners, environment and post-weld heat treatment. 

Fractur,e mechanics can be used effectively to establish the criteria for the design, 

inspection and repair . of offshore platforms. The ~racture mechanics design metho-

do logy assumes that a crack-like defect exists at the 1ntefsection of the brace and 

the chord. The rates of extension of this crack along the surface and through the 

t~ickness are dependent on the initial crack shape, the mean stress, the type of 
... 

loading and the stress concentration factors at the weld toe. The application of 

linear··.· elastic fracture mechanics for fatigue life prediction is based on the .. 

assumption of linear elastic material behaviour near the crack tip. While the 

stress and strain distributions around the crack tip control the crack initiation 

and propagation and remote boundaries, the nature of applied loading and 

environment affect only the intensity of the local stress field. The initial defect 

size ai, is normally considered as a surface imperfection due to welding, and its 

value significantly influences the accurate determination of fatigue life. 

The fracture mechanics approach to fatigue life estimation considers many 
,·, 

param~ters compared to the traditional ·S::N curve and the PM cumulative dam-

age rule methods, viz., 



. 6. '·' 
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··.:·:·· 

(a) the initial depth of defect, ~ 

(b) the critical crack depth defining the failure of the joint, ar 
1,: 

(c) the stress intensity factor, K, for the crack 

(d) the fatigue crack growth data for the material subjected to actual 

environmental service loading. 
~ ',", 

The main goal of a fracture mechanics approach (to assess the strength of struc-

tures containing crack-like defects) is to determine the so-called stress intensity 

factor, which is a function of the structure's geometry and the load character. 

This quantity has been evaluated for a number of idealized situations by analyti-

cal techniques, and these values provide useful guidance for designers. Unfor-

tunately, the welded tubular joints are of such complex shapes that the determi-

nation of the stress intensity factor necess~~ates recourse to SOII}e approximate , :.:_:,~< 
. 1!.-

numerical approach, and the finite element method is very appropriate for this 
. ... 

task. To make use of the stress intensity factor in the fatigue life prediction of 

tubular joints, a knowledge of crack-growth data for the material is essential. 

The objective of the present investigation is to predict the fatigue life of tubular 

joints analytically, knowing the crack growth characteristics of the base metal in 

various environmental conditions. 

1.3 Scope of the Investigation 

As will be shown in Chapter 2 there is a need to develop a generalized finite ele-

ment method to study the stress fields in the hot spot area of tubular joints, con-

sidering the through-thickness variation and the effect of shallow weld toe crack 
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on stress redistribution, and to determi11e the stress intensity factors; this study 
·:') 

seeks to fill this need. The analytical study includes the development of com-

puter software for a two-dimensional analysis of uncracked tubular joints and for 

a three-dimensional analysis of cracked and uncracked tubular joints. To study 

the"" effect of . weld toe cracks on the stress redistribution and to determine the 
~ . 

··~ 
cor~'esp·ouding stress intensity factors, the joint is modelled using special singular 

~- elements along with solid incompatible elements. The crack growth characteris-

tics of the base metal G40.21 M 350 WT, which has been proposed for the Cana­

dian East ·coast offshore region, is determin:ed experimentally (using CT Speci-
\~· 

mens), and this data is used to predict the fatigue life of tubular joints analyti-

cally. The analytically predicted fatigue life is verified experimentally by testing 

~ prototype tubular joint. In order to achieve this goal, a physical pro~}em is 

selected, and the abote::-~eiltioned procedures are carried out sequentially . 
.ji 

In Chapter 3, a two-dimensional finite element analysis of a tubular T-joint is 

discussed. The joint is discretized using an automatic mesh generation technique. 

Triangular and quadrilateral elements are used for the analysis of the joint. 

Plane stress elements are used to accou~t for membrane stiffness while plate 

bending elements are used to account for flexural stiffness. The distribution of 

surface stresses along the critical sections and the stress concentration factors are 

investigated. 

Chapter 4 describes a three-dimensional analysis of the joint which accounts for 

the through~thickness variation of stresses. The joint is modelled using 8-noded 

•. 
:: ~ :.• .. 
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and 6-noded incompatible elements to improve flexural characteristics. In order to 

reduce computer storage requirements as well as solution costs {due to the large 

number of degrees-of-freedom associated with the entire joint analysis} the rezone 

technique is used to analyse the hot spot region. The region of high stress gra-

dient and the weld zone are reanalysed using force and displacement methods. 

The boundary force/displacement values at the plate-to-solid-element transition 

zone, obtained from the two-dimensional analysis, are distributed between the 

\Puter and inner surface nodes of the solid elements in such a way as to maintain 

the boundary force equilibrium and the displacement compatibility. The results 

obtained from both the entire and the rezoned analyses are compared with the 

two dimensional analysis. 

The effect of a weld toe crack on th~ stress distribution in the tubular joint is dis-

cussed in Chapter 5. The joint is discretized using special singular elements 

around the crack front. The singular elements are surrounded by solid incompati-

ble elements. By comparing the stresses at the crack tip obtained from this 

analysis with the theoretical solutions available, the stress intensity factors are 

determined. 

To make use of the stress intensity factor in the fatigue life prediction a 

knowledge of the crack growth data for the material is essential. The compact 

·· tensi~n specimens (CTS) are tested both in air and in sea water to evaluate the 

effect of colder sea water on the fatigue crack propagation. The effects of load 

ratio, frequency and temperature on the crack growth rate under constant ampli-
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tude loading are discussed in Chapter 6. 

Based on the fatigue crack growth rate pattern in the base metal for ditrer~nt 
' " 

environmental conditions and the stress intensity factor obtained from the finite 

element analysis, the fatigue life of the joint is predicted using linear fracture · 

mechanics approach in Chapter 7. 

(j 

In order to verify the proposed model, a prototype test is carried out on a large 

scale tubular T-joint. The results of this test and the comparison with numeri-

cally computed values are given in Chapter 8. The contribution to the field of 

research, the general conClusions and the scope for the further research are out-

lined in Chapter 9. 

'.· 



CHAPTER2 ·' 

LITERATURE REVIEW' 

·' ' 

2.1 Introduction 

In offshore structures, which are generally of tubular construction, the intersec-

tion of the chord and the brace induces high local stresses adjacent to the con-

necting weld, and it is here that fatigu'e damage will generally occur. Therefore, 

the fatigue analysis is highly dependent on the accuracy with which this high 

local stress at the h~t spot can be cal~ulated. During the past decade there has 

been considerable development in the method used for the assessment of the 

fatiguE? of offshore structures. Extensive research programmes have been carried 

out in the United Kingdom and Europe to determine the appropriate S-N curve 

to be used in design and on the definition of stress and life. To understand the 

effect of thickness and environment on fatigue life, many researchers have 

increasingly used fracture mechanics concepts to explain the crack growth 

J>ehaviour of tubular joints. 
ji 
,( 

The study of fatigue crack gr9wth around the weld toe region of a tubular joint 

is an extremely complex problem, and the experimental and analytical investiga-

tions ?f this problem are both costly and time consuming. For this reason, much 

of the work to date has been concerned with the testing and analysis of welded 

plate specimens. Much more analytical and experimental work needs to be carried 

; . i ·. ·~ 

. ·.· . .... r. 
'' j, 

•. ·~ 
: r 
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out before the fracture mechanics procedures for tubular joints can be formalized 

into a final design methodology. The available literature related to the present 

research has been reviewed under two distinct categories, e·.g., analytical and 

experimental investigation. 

2.2 Analytical Investigation 

Because of the relative complexitY:fof the geometrical configuration of tubular 
)\ . 

intersections as well as the thin-sh~!l theory governing their behaviour, :r,eliable 
I! 

prediction of the stresses in such joints by analytj~~l techniques has proven to be 

difficult. The finite element method seems to offer the best natural solution for 

mode;lling complex geometries and boundary conditions. Early attempts to apply 

finite element methods to the stress analysis of tubular intersections were some-

what hindered by the computational demands generated by too many elements. 

This difficulty was overcome by third-generation computers with their larger cen-
~; 

tral memory and faster computing speed. 

The finite element method would at first appear to be· ideal for studying the elas-

tic behaviour of structures containing crack-like defects. Ho~ever, problems arise . ·. ' · 

when one tries to model the near crack tip stress field using finite elements. This 

is due to the singularity at the crack tip, which in ::: practice has a small plastic 

region at its tip. Finite elements in their basic form are unable to represent this 

crack tip singularity and thus produce poor results when applied to fracture 

problems, unless extremely fine meshes are used. Many attempts have been made 

to overcome the inability of finite elements to represent the cta.ck tip singularity 
.. ~ ... --:;-... -,· 

.-·., 
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by developing special elements which incorporate the required stress singularity 

iti their formulation. 

The analytical investigation can be reviewed in four separate subsections i.e., (a) 

mesh generation technique- (through which the input data for any finite element 

analysis are generated), (b) analysis of shell structures without crack and the 

related finite el_ement procedure, (c) semi-~mpirical parametric equation- (used to 

determine the hot spot stress concentration in tubula;~Joints), (d) analysis of elas)~\{ .· 
.... H 

u 

tic con~luua with cracks and the related finite element procedure. 

2.2.1 Mesh generation 

Computer-oriented mesh generators, which serve as pr~processors to finite el~ 

ment programs, have been developed by several investigators to reduce the 
/' 

amount of time involved in the subdivision of a:·-cqmplex structure into finite el~ 
J' .;·/ 

ments. 'Mesh generation' refers to the automatic 'generation of nodal coordinates 

and nodal and element numbers based on a minimal amount of user-supplied 

data. Automation reduces errors, and the solution accuracy may in'(!liease because 

a computer-generated mesh is more regular than one manually prepared by a 

user. Such codes are generally not available to an engineer in a sm!t\Lor medium 

size firm or to a researcher in view of the proprietar.fonature of most of the codes . 
. ;-~7 

Felipp~(1972) developed a Fortran subroutine_ to generate the alphanumeric 

image of an arbitrary two-dimensional finite element mesh on a li1.o- printer. The 

plotting can be used for fast on-line display of nodal points, elements, boundary 

; . . . . . . 

. .. 
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conditions and loads during the input data processing stage of a finite element 

analysis. A code was devised by Adamek(1973) for automatic mesh generation 

schemes, utilizing the techniques of mapping from a local non-dimensional system 

of reference into the global cartesian system of reference. An interactive graphic 

system was developed by Bousquet and Yates(1973) for use with the finite ele-

ment programs in a production analysis environment. 
\\ 

A relatively straight forward mesh generation·-:' program based on the iso-

parametric mapping concept was developed by Durocher(l979). The program gen-

erated node numbers, coordinates, and element connectivity information for five 

commonly used 2-D elements. User-defined superelements were subdivided into 

3-node/6-node triangular or into 4-node/8-node isoparametric quadrilateral ele-

ments. A procedure for the interactive modelling of two and three dimensional 

finite element grids was presented by Hoffman(l983). The grids were generated by 
·~· 

specifying the key points, boundary or intersection lines, surfaces and regions. 

The general process of displaying a two dimensional representation of a three 
·;. t. 

dimensional model was discussed. Based on the maxilnum model dimension, the -

dimensions of the displayed area and the position on the screen at which the 

object is to be placed, an initial screen/object orientation ra,~io was determined. 

2.2.2 Finite element stress analysis 

Finite element concepts for-:the representation of generally curved thin shells can 

be classified into three groups, i.e., the faceted form using fiat elements, curved 

'· 
,,/ shell elements formulated directly from appropriate thin shell theories and 

·, · 
•. ;.! 

~ . . : ! .. .. . 
' '. 

•, 
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isoparam~trlc solid elements specialized t6:.: t.a~'kle_.thin shells. The g~~erally better 

performance of the higher-order elements cannot always be exploited and often is 

outweighed by their complexity in use. Clough and Tocher(l965) studied the 

relative accuracy provided by seven different types of finite elements in the 

approximate analysis of plate bending. The stiffness matrices for three rectangu-

lar and four triangular elements were considered. Analyses were made with each 
,. 

of'these elements for the central deftection in eight different rectangular plate sys-

terns using five different mesh sizes. The twelve-term polynomial rectangular ele-

ment and the compatible triangular element w·~re found to give results which 

converged towards the correct answer as the mesh size was refined; but the com-

patible triangular elements gave relatively poor results for very coarse mesh sys-

terns, being too stiff. Clough and Johnson(1968) presented an approximate 

numerical analysis procedure for solving thin shells. The shell was idealized as an 

assemblage of triangular flat plate finite elements having both membrane and 

flexural stiffness properties. Five examples were presented demonstrating the ver-

satility of the procedure for analyzing different shell configurations. Ahmad et 

al(l970) presented a general formulation for curved, arbitrarily shaped, thick shell 

finite elements. 

~-

Five typical joints were modelled;;:.:~y Greimann et al(1973) using finite elements: ,, 
II 

three by manually laying out the ITfesh and two using an automatic mesh genera-

tion program. The finite eiement idealizations were then used as input in the 
)} 

computer program STAR.fJYNE. The results were compared with experimental 
~! 

stress analysis results of scale models and were found to agree to within 20 

' '. ~ ·~.· .. 
·.· , "£.-...:·· .... '::"·~ · 

.. ·· . .. :;. 

·.: .: 
i . . · : .-: , 

·• 
- :·. 
.. · 
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percent. Miller and Trammell(l974) developed a computer program, as a design 

,r 

tool, for analyzing --a. ring-stiffened tubular . joint with multiple non-intersecting ,. 

branch members. :J 
:, 

Acceptable triangular membrane element formulations were g1ven for various 

degrees of higher-order elements, using either the displacement function itself or 

the displacement function and various .orders of its derivatives. One could 

employ a simple formulation based on a comP.~~~ cubic polynomial (Thomas and 
,. 

Gallagher 1974) or a highly accurate but computationally expensive formulation 
·:~ .. ' 

such as that based on a 21-term polynomial (Dawe 1975). Irons(l976) developed 

semiloof curved shell elements which have three translational degrees of freedom 

at corner and mid-side nodes and one normal rotation at the two Gauss points 

along each side. 

There are a number of general purpose programs available for shell analysis, e.g. 
~ 

ASAS, ASKA, NASTRAN, STRUDL. The ASAS (Atkins Stress Analysis System) 

has flat faceted, quintic shell and semiloof curved shell elements. The flat facet 

element combines the constant strain triangle and the conforming linear bending 

strain triangle. It has six degrees of freedom at each vertex. The quintic shell ele-

ment is a higher-order curved shell element formulated directly from thin shell 

theories. A total of 54 geometric parameters are required to describe each ele-

ment. The semiloof elements are general curved triangles and quadrilaterals 

developed by Irons(l976). The ASKA (Automatic System for Kinematic Analysis) 

library has three shell elements, e.g., three noded flat shell elem.ent, six noded and 

' i · ; .. . 

\ · . . . 
! : . · . 

. : .... 
·; 

;. :• 

' . ,. 
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three noded curved shell elements. For the displacement the si.x-noded element 

uses a complete fifth-order polynomial whereas the three-noded curved element 

uses an incomplete fifth-order polynomial. The NASTRAN (NAsa STRucturiil l' 

ANalysis) program has facet type fiat, triangular and quadrilateral shell elements. 

The STRUDL (STRUctural Design Language) library has two shallow shell ele-

ments, e.g. three and four node elements. These elements have three translational 

and two rotational degrees of freedom at each node. ,., 

Liaw et al(l976) described the application of 3-D isoparametric elements to the 

analysis of welded tubular connections. It was concluded that the three-

dimensional isoparametric elements, when implemented in an efficient and versa-

tile computer program, could provide more accurate values of stress concentra-

tion factors than would be possible using fiat plate finite elements. A new pro-

cedure using curved thick shell finite element was developed overcoming the 

approximation of the geometry of the structure and the neglect of shear deforma-

tion. Several illustrated examples ranging from thin to thick shell applications 

were given to assess the accuracy of the solution attainable (Zienkiewicz 1977). 

Radenkovic(l981) obtained the stresses for a T-joint in tensio11 using thin/thick 

shell and brick elements. The magnitudes of stress were almost the same for all 

three element cases. SE'veral large codes, i.e., ASAS, SESAM 69, SATE and 

TITUS were used for the stress analysis during the course of the research on 

tubular/shell structures. But little direct comparison was established between the 

codes. 

• M ' ,,'• I 
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Two types of three-dimensional isoparametric elements were used by Hoffman 

and Sharifi {1980) for tubular joint analysis. Various incompatible modes were 

introduced into the stiffness formulations of these elements to improve their 

flexural behaviour. Three and one incompatible even shape functions were incor-

pprated into the 8-noded brick and the 16-noded thick shell elements, respec-., 
tively. In the irregular mesh, the incompatible brick element was more satisfac-

tory than the basic element. Parkhouse(1981) suggested an improved modelling 

of tube wall intersections using brick elements. The joints away from the inter-

section were modelled using an 8-noded quadrilateral curved shell element 

whereas the intersection area was modelled using a 20-noded brick element. 

Structural continuity between the two types of element was achieved by the shar-

ing of the translational degrees of freedom at common nodee and by additional 

constraints imposed on certain degrees of freedom for effective flexural continuity. 

The results were compared with thin-shell analysis. 
:. -< 

Dijkstra(Hl81) compared the results of strain measurements and finite element 

calculations of X-joints. The SATE (Structural Analysis using Thin shell finite · 

Elements) and ASK.A programs were used for the analysis of the joints. For joints 

with thickness ratio 0.5, all results were close together, and the maximum 

difference at the initiation point was 15 P .. ercent. But for joints with equal thick-
·. 

ness, the calculated values were overestimated by 30 percent. Gibstein and 

Moe(1981) compared numerical and experimental stress analysis results for T, Y . . 

and K-joints. The analysis was carried out by means of 'NV332', which is a 

thick/thin shell program using 8-node superparametric quadrilateral shell 

:i 
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elements. It was observed that the stress distribution and stress concentration 

· factor (SCF) values for the Y and K-joints were sensitive to the boundary and 

load conditions in the analysis. The calculated SCF values for the chord side, 
·1 ;·, 

based on the maximum stress value~"'"".a.i'the ·~earest Gaussian point to the inter-

section, were in good agreement with the experimental data. But for the brace 

the difference was found to be 20 percent. 

Shiyekar et al(1982) used the degenerate 20-node isoparametric brick element for 

the stress analysis of a T-joint. The ill-conditioned stiffness matrix due to the 

higher stiffness properties in the thickness direction in comparison to the other 

two directions was eliminated. The stiffness properties of the joint were deter-

mined ignoring the strain energy of the stresses normal to the midsurface of the 

shell. 
·-~ 

2.2.3 Parametric formulae (:::. 

The fatigue performance of tubular joints is a function of the stress r~nge to 'F'~ 

which the joint is subjected. The highest stress range will occur at the point 

a&ound the brace/ chord intersection where the largest stress concentration factor 

(SCF) occurs. Therefore the determi~ation of these geometric SCFs, which are 

themselves a function of the joint stiffness and the applied loading, has occupied 

.0::· 

the increasing attention of many investigators. These geometric stress 'con centra-

tion factors are estimated from parametric equations that are based on either 

extensive finite element stress analyses or experimental dat'a from acrylic model 
.r ... ·~~: 

tests. Exis~ting SCF pafametric formulae cover r3nly single plane simple joint 
._\ 
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types, and there are no such formulae for complex joints or loading. 

Based on the results of experimental and numerical analyses, parametric formulae 
'-~ 

were determined and presented in the familiar form (Fig. 2.1)·::·::·\, 

\ 
SCF = C anl f3n2 'f3 f14 ~5 (sin 9)n6 (2.1) 

where a, /3, 1, r, ~ are non-dimensional joint parameters (defined in Fig. 2.1), C, .... 

n1, n2, n3, n4, n4, n6 are constants and 0 is the intersection angle between the 

members. Many investigators presented an empirical equation for the determina-

tion of the SCFs e.g. Beale and Toprac(1967), Visser(1974). But the most 

significant contribution was made after this. Kuang et al(1977) developed the 

most complete collection of ;formulae applicable to (i) T and Y-joints under axial 

loading, (ii) K and KT-joints under balanced axial loadlng and (iii) K-joints ~ith 

in-plane bending applied to one brace. These formulae were liased on finite ele-

" 
ment analysis results and gave the SCFs at the location adjacent to the intersec-

tion line of the mid-surface of the · brace and chord. Wordsworth and 

Smedly(1978) produced parametric formulae covering T, Y and X-joints based on 

acrylic model test results. Based on their finite element analyses, G,ibstein( 1978) 

also produced parametric formulae, which are applicable to T-joints . 
.. ~. 

·,. '. \ 

.... ' .. ~-:~- ' -<~ 
'-··-·~·-

Irvine(1981) compared the performance of two semi-empirical parametric equa-

tions ~for the stress concentration factors. It was concluded that the SCFs 
\~ 

obtained using Smedley's equation were more conservative than those of Kuang. 
-.. 

Both sets or equations could underpredict SCF values for axial and out-of-plane 
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bending load cases in joints with equal wall thickness. Generally, Kuang's equa-

tion underpredicted SCF values in X-joints. For complex joints, the designers 

have to use the simple joint formulae as best as they can. Factors are applied to 

terms within the formulae to account in some way for the geometrical complexity 

of the joints with no real justification for the actual factors used. Existing 

parametric formulae suitably factored are utilized for complex joints, e.g., ring-

stiffened joints (Lloyd's Register 1983). For an out-of-plane bending load the 

effective thickness of the chord wall (which will give equivalent area of chord and 

stiffener) is substituted in the existing parametric formulae, whereas for in-plane 

and axial load cases, individual consideration is required. For overlapped joints, 

the lower limit for the separation between the braces is substituted into the exist-

ing formulae. 

Dharmavasan and Dover{l984) presented a new set of stress distribution formulae 

for predicting the stresses in simple joints under multi-mode loading. Their for-

mulae overpredicted the SCFs by as much as 20 percent. Efthymiou and Dur-

kin(1985) developed parametric equations for estimating the SCFs in overlapped 

tubular T, Y and K-joints under all relevant load cases, based on finite element 

stress analysis results. Significant reduction in chord SCFs· for overlapped K­

joints under balanced axial loading was observed. The benefit of overlapping was 

more pronounced in joints with 90~/45° brace inclinations than for 45°/45° incli­

nations. No beneficial effect was observed in overlapped K-joints under in-plane 

;? bending loads. Edwards and Fessler( 1985) presented parametric equations for cast 

tubular T and Y-joints, based on the strain-gauged and photo-elastic model tests, 

.... 

· .. ·: 
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of the form 

SCF = C f(a) f(,B) f(O) 'fl pn2 tt3 (2.2) 

for several positions around the braces due to axial, in-plane and out-of plane 

bending load cases. In Eqn. 2.2, a, {3, "f, p, T are non-dimensional joint parame-

ters, C, nl, n2, n3 are constants, . and (J is the angle between the members. The 

SCFs of these joints were 40-60 percent o·r the predicted values for similar weh.lwJ 

joints. 

2.2.4 Analysis of crack problems 

A crack in a solid can be stressed in three different modes (Fig. 2.2). Normal 

stresses give rise to the 'opening mode' denoted as mode I; the displacements of 

the crack surfaces are perpendicular to the plane of the crack. In-plane shear 

results in mode ll or the 'sliding mode'; the displacements of the crack surfaces 

;,;;·re in the plane of the crack and perpendicular to the leading edge of the crack. 

:; The 'tearing mode' or mode ill is caused by out-of-plane shear; crack surface dis- ,,, .. 
~.-;..-:/ . 

,...-;/ 

placements are in the plane of the crack and parallel to the leading edg~·:6f.th; 
Ji;::::".::l 
,I 

crack. The quantitative measure of the severity of a crack is given by the stress 

intensity factor, K, which characterizes the intensity of the stress field in a small 

region surrounding the leading edge of the crack. 

Finding the stress intensity factor in front of a crack is a very heavy numerical 

task. Even with the best algorithms, the accuracy of the calculation is not always 

satisfactory. It should also be noted that the stress intensity factor depends 

..:_: 

! . 
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heavily on the boundary conditions fairly distant from the crack front, so that for 

a complex geometry it would be necessary to take into account the whole struc-

ture of the joint. For a three-dimensional elastic continua with cracks, Kassir 

and Sih(l966) obtained the stress field near the crack front by solving Navier's 
:~ ... 

equations of equilibrium subjected to appropriate boundary conditions. Due to 

the complexity of the problem, stress fields around the crack front in a three-

dimensional continua were available for only a few restricted classes of problems 

such as penny-shaped and elliptic cracks in an infinite solid. Hartranft and 

Sih(l969) showed that the stresses uxx , Uyy anA uxy had a squar~root singularity 
·· ..... ~ 

at the crack front, and Uzz and the two transverse shear stresses u1., and Uxz were 

finite throughout the plate. For specimens of finite thickness with through-

thickness cracks, some attempts were made by Sih(1971) to obtain the stress dis-

tribution close to the crack front, but the solutions have been found to be 

intractable in closed-form. 

Using triangular singular elements, Tracey(l971) obtained, for two typical 

cracked configurations, stress intensity factors which were within 5 percent of the 
· .. ' '! ) 

accepted values. Blackburn(l973) proposed a six-node triangular element which 

had terms in its displacement shape functions which were proportional to the 

square root of the distance along lines emanating from a singular vertex. Tra-

cey(197 4) formulated a finite element model for the three-dimensional analysis of 

an elastic continua with a crack front state in combined opening and sliding 

modes. Special elements which embed the inverse square-root singularity along 

the crack front were suggested. The sing~lar elen.J.ent used wa:s a six-node vvedge 

:-·: 

·~. 

· .. 

,·, 

: J 
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focused onto the front. The crack front was taken as rectilinear, and a group of 

singular elements were used about each segment. Adjacent to the singular ele­

ments, eight node brick elements were used. A compact ten~ion plate specimen 

was analyzed based on the above formulation. 

Bergan and Aamodt{1974) obtained the stress intensity factor for a semi-elliptical 

surface crack in a plate by computing the.strain energy release rate for the crack. 

They ·used a 20-node isoparametric solid element in modelling the plate. Bar-

soum( 1976) proposed a general curved element · of arbitrary shape for the crack 

analysis of both thick and thin shells. The singularity c~n these elements was 

achieved by placing the mid-side nodes.near the crack tip at the quarter point. A 

simply supported rectangular cracked plate in bending was solved for the stress 

intensity factor, and the error was 5 percent. 

Raju and Newman(1977) calculated the stress intensity factors for most of the 

commonly used notched specimens using a three-dimensional finite element for-

mutation. A three-dimensional singular element in the shape of a pentahedron, 

similar to that developed earlier by Tracey, was used at the crack front. A nodal 

for~ce method was developed and used to evaluatE\ the opening mode stress inten-

sity factors along the crack front. The effects of specimen thickness and length on'· 

the stress intensity distributions were investigated. Blackburn and Hellen{1977) 

calculated the stress intensity factors for an edge-cracked plate containing 

penny-shaped and semi-circular surface cracks and subjected to opening and tear-

ing mode loadings. Computed displacements at the vertex .and mid-side nodes 
. <::·-

-~- -
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-.~ ... . 

around the crack tip by .the finite element analysis were compared with the classi-
( 

cal solution. Special elements were used at the .tip to represent the variation of 
. ,, ::•'' 

. ..: . ., 

the displacements · with respect to the square root of the dista~ce from the tip. 
!· 

These were compatible with the surrounding quadratic elements. The calculated 

stress intensity factors were accurate to within 4 percent of known solutions. 
., 

Albrecht and Yam ada( 1977) reviewed an alternate approach for rapid calculation 

of stress intensity factors. The procedure required the finite element computation 

of stresses for uncracked body. Then the geometry correction factors for crack 

and finite width correction were considered for final calculation of stress intensity 

factors. Without sacrificing the advantage of simplicity and conformability of 

Blackburn's six-node element for modelling the crack tip, a minor adjustment in 

the interpolation field w~. proposed by Morris and Becker(1978), which permit.ted 
·' . 

a quadratic variation in the singular part of displacement. Using a convenient 
:, ""' ·;. -... ; __ 

co-ordinate .· system, the integrations were done exactly in the radial direction. 

The shape functions provided both constant strain capability and conformability 

with the quadratic isoparametric elell)ents. 
:t 

::.:· 

G,ifford and Hilton{1978) extended the ·finite element method to direct calculation 
·.\. 

·~~~ 

of co'mbhied opening and sliding modes' stress intensity factors fo.s axisymmetric 

and plak.ar structures. :The 12-node isoparametric quadrilateral element was made 

into aspecial crack-tip element, with one corner corresponding to the crack-tip. 

In addition to no.dal displacements, the opening · ~nd the sliding modes~ . stress 
. ~ . ~ 

intensity factors were the basic unknowns in this element and . were "calculated 

..... 
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directly. The results varied from approximately 3 percent less than to 7 percent 

more than the reference value. The accuracy of the results was not highly seusi-

tive to changes in the finite element mesh. 

Alwar and Ramachandran(1983) investigated the variation of the stress intensity 
' 

factors for finite plates across the plate4hi~kne~s..:.- using finite element techniques. 
, .. , . 
· ... ~ ... ;;:-._. 

The crack tip region was represented by degenerate triangular quarter-point 

prism elements, having the required square root singularity for all normal stresses 

and in-plane shear stress at the crack tip. A convergence study for the variation 

of the stress intensity factors was made by using two, three and four layers of 

elements across half the thickness of the plate and also by reducing the crack tip 

element size and increasing the degrees-of-freedom for a single layer. For a thin 

plate, the variation was found to be linear. However, for thicker plates, the varia-

tion was nonlinear. 

A finite element method, utilizing quadrilateral elements, was developed by Kuo-

Kuang et al(1983) to determine the opening mode stress intensity factor ,. for a 

single-edge notched beam. Hermitian interpolation functions were used to 

describe the displacements in the regular elements, and William's stress function 

was used to develop the singular element. Bell et al(l984) analysed a welded 

plate joint for a series of crack shapes and crack depth. The crack tip regions 

were mod'elled using the degenerate isoparametric element developed by Bar-

soum(1976). The effects of crack shape, crack depth and weld angle on the stress 

intensity factors were investigated and the results presented. 
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2.3 Experimental Investigation 

Determination of the fatigue crack propagation curve is an integral part of the 

fracture mechanics design approach. To predict the minimum fatigue life of 

structural components and to establish the safe inspection intervals, an under-

standing of the fatigue-crack propagation rate is required. Most fatigue crack 

growth tests are conducted by subjecting a cracked specimen to constant-

amplitude cyclic-load. The incremental increase of crack length is measured, and 

the corresponding number of elapsed load cycles is recorded. The data are 

presented as a plot of crack length, 'a' vs. total number of elapsed load cycles;· 

'N'. An increase in the magnitude of cyclic-load results in a decrease of the 

fatigue life of specimens having identical geometry. Furthermore, the fatigue life 
- ~ ·.::-===-~::·::::.::.::--. ... 

/-;;::::. -:::: · • ¥." • .....:...-- ·· ·--, -~ 

of a specimen subjected to .. a .fixed constant-amplitude cyclic load decreases as the 
\ :_' 

length of the initial crack is increased. The influence of load ratio (minimum 

load/ maximum load) on the fatigue crack growth rate cannot be easily assessed 

because the functional dependence of crack growth rate da/ dN on load ratio R 

varies greatly with the growth region. This indicates that several underlying 

phenomena control the observed R-effect. Crack closure is known to occur during 

fatigue crack growth and undoubtedly influences the R-dependence particularly 

at low growth rate. The experimental investigation can be classified into three 

sub-sections, i.e. standard specimens, plated joints, tubular joints. 

2.3.1 Standard specimens 

To generate fatigue crack growth data for a particular material, arbitrarily 
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shaped small scale specimens may be employed. Realistically, however, a limited 

number of specimen types are preferred (Fig. 2.3). Alternative specimen 

geometries can be used for the test method, provided that well established stress 

intensity calibrations for the specimens are known. The various investigations 

conducted so far using standard specimens are discussed below. 

,. 
The effects of salt and distilled water environments on the fatigue crack growth 

rate of a pin-loaded single-edge notch specimen were evaluated by Vosikov-

sky(1975) for a X-65 pipe-line steeL: Tests were conducted under cathodic and 

free corrosion potential conditions, and a distinct pattern in the functional depen-

dence of growth rates on stress intensity factor range, ~K, and frequency was 

found. At free corrosion, the growth rates in distilled water were identical to 
,-, 

~ I , .,.. 

those in salt water. Using a consistent technique, Kikukswa et al(l976) obtained 

extensive data indicating that compressive loading at R = -1 could either 

increase, decrease or have no effect on fatigue crack growth rates compared to 

data at R = 0. Sasski et al(1977) found the fatigue crack growth rate for R < 0 

to be mixed. A comparison of these data with others is complicated by the fact 

that the procedure used to compute ~K for R < 0 is not .if\vays specified, i.e., 

whether or not the compressive portion of the loading cycle was included in the 

computation of 6-K. 

Using co_mpact tension specimens, Hudak et al(1978) examined the influence of 

load ratio over a wide range of fatigue crack growth rates. Tests were conducted 

on 2219-T851 aluminium at R values of -1, 0.1, 0.3, 0.5 and 0.8 in air at a room 
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temperature of 24°C. Low da/dN values were strongly sensitive to the applied 

1·; stress intensity factor range and became diminishingly sn{aU as the threshold 

stress intensity range, AKeh' was approached. In this growth rate region, both 

da/dN and AKeh were stongly R-dependent. At intermediate growth rates, 

da/dN was much less dependent on both AK and R . . At high growth rates, 
" ~. 

da/dN was again strongly dependent on both AK and R. The inOuences of tern-

perature and frequency on crack growth rate were studied for both aluminium 

and lONi steel in laboratory air. Tests ·were carried out for a temperature and 

frequency 'ranges or ~z,a~c to 121°C and 0.01 Hz to 200 Hz, respectively. The 
,· ... .. . . 

temperature dependence vari~\l with test frequency. Tests at lower frequencies 
. ~f 

were less sensitive to changes in temperature. The results suggested that, for a 

gi-ven test frequency, changes in temperature caused a par,allel shift of data along 

the dafdN axis. 

Claude et al( 1980) carried out experimentalcwork on E36-Z ::.steel specimens for 

various crac~ widths usi~g compact tension specimens fabricated from both 

parent material and heat affected zone. The rate of propagation of a crack 

recorded in the heat affected zone, for a given level of stress intensity factor, was 

much slower than in the parent material. The propagation of the_ surface crack in 
·:. 

,. 
the direction perpendicular to a curved fronted crack seemed to depend not on 

the shape of the front but on the local value of the stress int._en_sity factor. 

Stephens et al( 1980) reviewed the low temperature fatigue ir'behavior of steels. 

Many steels showed increased fatigue crack growth resistance in stable and 

unstable growth regions as the temperature was lowered. The effects of 

:.: 
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temperature, frequency, mean stress and intermittent immersion on fatigue crack 

growth were studied by Morgan et al(1981) on structural steel compact tension 

specimens with through-thickness cracks. The crack growth rates were men.sured 

at two sea water temperatures, i.e. 5° and 20°C. Crack growth rates of freely 
· . i 

corroding structural steel in sea water were described by an upper bound of six 

times the growth rat€s observed in air. Load ratio had no effe,ct on crack~ growth 

rates in air, but ratios greater than 0.7 resulted in the maximum observed growth 

rates in sea water. Intermittent immersion, temp~rature and load wave form had 

a relatively small effect on crack growth. Haagensen et al(1981) studied the delay 

effects caused by single peak overloads on BS4360 grade D steel using multiple 

single edge specimen (MSEN) with six parallel cracks. The crack propagation rate 

was observed to be higher in sea water than in air. 

Scholte and Wildschut(1981) studied the crack propagation in normalized C-Mn 

steel under constant amplitude loading using single edge notched specimens 

loaded in four' point bending. In sea water the crack growth rate was about three 

times higher than in air. As the crack growth rate increased, the magnitude ()f 

the influence of sea water decreased and finally vanished. The crack propagation 

rate in sea water at R = 0.5 appeared to be only slightly higher than that at R 

= 0.1. Austen et al(l981) observed the crack growth rates in aqueous environ-

ments to be faster in the intermediate region due to localized hydrogen embrittle--

ment. There was also an additional environmental effect due to crack tip blunting 

by metal dissolution on the growth rate behaviour, most noticeably ~.n ;,the initial · 

reg1on. In sea water, crack tip blunting provided increased resistance to 

' · .. ~~ ~!t 
•. :.~·.· · 
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initiation in comparison to air for all type of steels. Without crack tip blunting, 

the effect or the presence of sea water was to promote even greater rates of 

growth. 

-
Using pin-loaded single-edge notched specimens, Vosikovsky et al(lQ83) studied 

the effect of cold artificial sea water on fatigue crack growth in structural steel ,at 

constant load amplitude. At the free corrosion potential, room temperature 

growth rates in sea water and in salt water (3.5 percent NaCl solution) were com-

parable. In the intermediate AK range, the growth rates in both solutions were 

about four times higher than those in air. · A drop in sea water temperature to 

0°C resulted in a reduction of the intermediate AK range growth rate by a factor 

of two at stress ratios slightly less than 0.5. The fatigue crack growth rates in 

-;: coldi: sea water {0°C) under free cor~psion potential were only marginally higher 

than ~the growth rates in air at room temperature. 

2.3.2 Plated joints 

.. ~ ' 
Clear evidence of a tendency for fatigue strength to decrease with increasing 

plate thickness was obtained by Gurney(l97Q). Somewhat in contrast to this, 

other hand, Booth(1978) showed a significant decrease in strength with thickness, 

_from Ill to 97 MN/m2 at 2X106 cycles, in his ' tests on 25 mm thick and 38 mm 

thick transverse load-carrying fillet welds subjected to bending. To study the 

plate thickness effect, Berge and Engesvik(1981) carried out fatigue tests on non-

, .. .. 
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load carrying fillet welds in structural steel subjected to axial tension. At a stress 

range of 150 MPa and zero load ratio, the fatigue endurance was found to 

decrease significantly with increasing plate thickness. 

Holmes and Booth(1Q81) carried out fatigGe tests on a transverse load-carrying 
/! 

joint and a longitudinal non-load-carrying joint under environmental and random 

loading conditions. The joints were manufactured from 38mm steel plate con-:·~. 

forming to BS431?'J grad 50 D specification. It was observed that a free corrosion 

environment reduced the fatigue lives of welded joints by a maximum amount of 

40. percent. This influence was not increased by alternate immersion/exposure 

conditions. Zwaans et al(1Q81) performed fatigue tests on welded T-shaped speci-

mens subjected to bending loads. Two load spectra were used, e.g., Gaussian and 

Rayleigh distributions. For both spectra it was observed that the fatigue lives in 

sea water were smaller than the lives in air by a factor of 2.2. 

Walker(1Q81) reviewed the results of the U.K. Offshore Steels Research Project 

(UKOSRP). It was concluded that the fatigue life of a welded plate joint under 

freely corroding conditions in sea water was only 50 percent of the life in air. The 

rate of fatigue crack propagation in sea water at high stress ratios was seen to be 

considerably greater than that in air. Gurney(1Q83) summarised the revised 

fatigue design rules. The influences of plate thickness, weld shape, stress relief 

and environment were taken into account in the design of welded joints. Vosikov-

sky and Rivard(1984) reported crack growth rate results for eight 26 and 52 mm 

thick T-plated joints. A crack depth of 0.5 mm was taken as the initiation value. 

·'· , 

·: . ~ 



/-:-· .. 

- 34-

The initiation periods were observed to be about 22-31 percent of the total life. 

After initiation, the fatigue crack growth curves were almost linear up to 85 per-

cent of the total life. 

'• 

Berge(1985) investigated the effect of plate thickness on the fatigue strength of 

transverse non-load carrying fillet welds subjected to axial loading. The thickness 

effect was found to follow a power law with a decrease in fatigue strength of 40 

percent when the plate thickness was increased from 12.5 mm to 80 mm. Fatigue 
==::.::-.-.-~-=- . 

lives and crack growth were measured on 16, 26, 52, 78 and 103 mm thick T-

plated joints, loaded in three-point bending under constant load amplitude (Vosi-

kovsky et al 1985). The effect of plate thickness was reflected in both the initia-

tion and the propagation lives. The dependence of the number of starting cracks 

and their subsequent rate of coalesc~nce on the stress range and the plate thick-

ness was also observed. 

2.3.3 Tubular joints 

Due to the increased use of circular hollow sections in offshore applications in the 

U.S.A. during the sixties, a number of investigations were carried out regarding 

the joint strength under fatigue loading e.g. by Bouwkamp(1966), Natarajan and 

~'D?.prac( 1968} and Marshall( 197 4). At about the same time Kurobane( 1969) 
!I 
i ~ 

st~rted fatigue tests on tubular joints in Japan. From these tests, codes and 

design curves such as the API and A WS design curves were derived based on the 

punching shear .. method or the hot spot strain concepts. 

· . . \ . .. 
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The exploitation of natural gas and oil under deeper and rougher are~, such as 

the North Sea, required very large structures and the use of thick plate steels. 

The lack of data regarding the fatigue behaviour of larger tubular joints made it 

apparent that a complete test program would be needed to provide knowledge 

which could be used by designers. With the already existing program of the 

UKOSRP as a basis, a large European research program was set up and executed. 

This program was sponsored by the European Coal and Steel Community 

(ECSC). The fatigue behaviour of the tubular joint.s investigated by the various 

researchers is discussed below. 

Hibbered and Dover( 1g77) conducted fatigue tests on tubular T-joints under ran-

dom in-plane bending. The crack growth was analysed, and a satisfactory life 

estimation was made using the fracture mechanics approach. Dover et al( lg78) 

concluded from tests on tubular joints under out-of-plane bending that the 

fatigue crack growth propagation life forms the major part of the fatigue life of 

joints. Dover and Holdbrook(lg7g) observed the crack-depth growth rate to be 

nearly constant for much of the total life of welded tubular T-joints. Iwasaki et 

al(l97g) reported increase in both fatigue crack initiation and propagation lives 

for TY-joints with overlapped braces. Ring stiffeners were not effective in improv-

ing the crack initiation life but were found to be more effective in increasing the 

crack propagation life. An increase in the chord dimension produced a reduction 

in fatigue performance (Wylde and McDonald 197g). Specimens with 457 mm 

chord diameter and 16 mm wall thickness showed a reduction in fatigue strength 

of 40 percent at an endurance level of 106 cycles, compared to the results 

. ·. ·, ·:. 
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,• : : :.: 
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obtained from specimens with chord diameter and wall thickness of 168 mm and 

6 mm, respectively. 

Dijkstra and de Back{l980) performed fatigue tests on 40 tubular T and X-joints. 

It v.::~as found that, after initiation, crack propagates along the weld toe and, at a 

later stage, branches away from the weld toe into the chord wall. \Vhen a surface 

crack length exceeded 1/4 of the brace diameter, a through crack usually 

occurred. The life time of the tests in artificial sea water was about 0.4 times the 

life time of the tests in air. There was no difference in the fatigue life time 

between cathodically protected and unprotected specimens. But there was a 

difference in initiation and crack growth. The initiation of a visible crack 

occurred at about 25 percent of the life time of the specimens. Gibstein( 1981) 

presented fatigue test results carried out at Det Norske Veritas. It was found that 

both the depth and the length of cracks in tubular joints were approximately 

linear functions of the number of cycles. 

Donald et al(l981) presented the results of T-joint tests m air carried out at 

NEL. It was observed that there was a decrease in fatigue life with an increase in 
i· 

the size of the joint. Constant compressive chord loadihg with cyclic axial and 

in-plane bending brace loads could increase the fatigue life by a factor of 5.7. 
::~;\ . 

Brandi(1981) presented fatigue test results f6i~:<~2 stiffened and unstiffened Y-

joints, carried out in Italy. The joints were stiffened by means of three internal 

rings. It was observed that the stiffened joints could sustain a load y.rhich was 4 

times higher than the load the unstiffened joints could sustain, and they could 
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still have almost the same or even longer life. The crack propagation time was 

also very high in the stiffened joints. 

Wylde(l981) presented fatigue test results for K and KT-joints under axial and 

out-of-plane bending. Specimens were tested with and without overlapping 

braces. The brace overlap was observed to be beneficial under axial loading but 

had no effect in the out-of-plane bending case. Damilano et al(l981) presented 

fatigue test results for twelve stiffened and unstiffened Y-joints, conducted in 

Italy. It was observed, in case of stiffened joints with three internal rings, that 

the difference between the through-crack life and the complete failure life was 

comparable with the life till through-crack. 

Fatigue crack depth was monitored duri~g tests on tubular Y-joints (Dover and 

Dharmavasan 1982). No rapid acceleration in crack-depth growth rate was 

observed. Gowda(1983) investigated the fatigue behaviour of monopod tubular 

joints in air and seawater environments. The joints, having 318.7 mm chord 

diameter, were fabricated from ASTM A36 steel. Two out of seven joints were 

tested under pseudo-random loading, and the others were tested under constant 

amplitude loading. The visibl~ crack initiation period was observed to be in the 

range of 38-64 percent of the joint lives. The measured fatigue lives were shorter 

than those ofT or Y-joints of 'comparable dimensions. 

Mitsui et al(l984). tested six types of stiffened and unstiffened tubular K-joints 

under axial loading. All specimens were fabricated from STK 41 grade steel, and 

the chord outer diameter for all specimens was 457.2 mm. It was observed that 
-~-~ 
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either a pad plate on the chord or wing plates stiffened by ring and rib plates had 

beneficial effects in the improvement of the fatigue resistance. Ryan et al{l984) 

proposed new design recommendations for the fatigue life of tubular joints from 

thickness effect considerations, based on 73 tests conducted in France. The range 

of joint thickness was from 5 mm to 80 mm. A size effect was evident in the 

results. The effect was indicated as mainly due to thickness. The resulting 

fatigue design curve was expressed as 

Log N = 12.29 - 3.00 Log Sr (2.3) 

The thickness effect was represented as 

(2.4) 

where sr is the stress range on the reference design curve and sr * is the stress 

range of a joint with thickness T mm. Wylde(l984) reviewed the results of 

fatigue tests carried out in the UK. It was concluded that fatigue cracks, typi-

cally about 5 mm in length, could be detected visually at less than 10 percent of 

the total fatigue life in many of the specimens. Initially fatigue cracks propagated 

more rapidly along the surface of the specimens than in the through-thickness 

direction. The tubular joints tested retained their stiffness until the final 10 per-

cent of total life. Van Delft et al(1985) evaluated European fatigue test data on 

about 200 large-size welded T, K and KT tubular joints with/without overlaps. 

The diameter of the chord of the joints tested varied from 168 to 1830 mm. 

Investigations were pursued into the effects of sea water, cathodic protection lev-
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els, material thickness, stress history and fatigue life improvement techniques on 

fatigue lire. The scale factor was found to be a dominating factor. The fatigue 

life in sea water was found to be only 1/3 of the life in air. 

2.4 Summary 

In the literature reviewed above, most of the finite element analyses of tubular 
\:r.· 

joints are ba.Sed on two dimensional plate/shell elements, which neglect the dis-

placement variation across the shell thickness (Kuang et al 1977, Clayton & Mar-

tin 1980, Dijkstra 1981, Gibstein and Moe 1981). The stress concentration factor 

is underestimated on the chord side and is overestimated on the brace side due to 

the lack of three di~ensional representation of the chord/brace intersection. 

Several general purpose programs, such as ASAS, ASKA, NASTRAN, STRUDL, 

SATE are available for shell analysis; but these package programs cannot be used 

to analyse the crack front region which has squaf.e root singularity in the stress 

field. The stress intensity factors already 'B:vailable in the literature are obtained 

from finite elemept analyses for a number of idealized· cases such as plates, CT 
~·?.~~~ 

specimens and notched beams (Tracey 1974, Bergan and Aamodt 1974, R~j ti>:and 
._, ... 

Newman 1977, Blackburn and Hellen 1977, Alwar arid. Ramchandran 1983, Kuo-

Kuang et al 1983). To the author's best knowledge, no finite element analysis 

exists in the literature for the stress intensity factor of a crack situated in a 

three-dimensional field of PXternal stress concentration (e.g., presence of weld toe 
/ ~ .. ·;-..:::-::-

cracks at_.the high stress concentration regions of the tubul~t':joints). 
;;;;:'.-.:::. 

·~- , .. 
'\. . 
/:~ ' ~\.. ... . 

A knowledge of crack growth data for the materiai is essential for the fatigue life 
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prediction, based on LEFM approach. Most of the studies reported are for the 

steel plates Fe 510 DD, according to Euronorm 25-72 or to the equivalent 

national standard of the individual European country (Claude et al 1Q80, Walker 

1Q81, Holmes and Booth 1Q81). Since the chemical composition of each steel 

differs from one another, the CJ:~-ck growth data from the above tests cannot be 
\/ 

used in our study which used CSA G40.21 M 350 WT steel; no study has 

reported the crack growth data for1the same. 

i! 
j! 

In addition, very few studies hav.e examined the crack growth in the prototype -o-
.... 

tubular joints analytically and experimentally (Hibbered and Dover 1Q77, Dov~r 
h 
J. ,. 

and Dharamavasan 1Q82). But in these studies, the stress intensity factors ~re 
/· 

.. ·.· ; ·. 

determined approximately in terms of factors· dependent on crack shape;:-lo-a:.ding, 

joint geometry and hot spot stress without analytically modelling the crack. 

Hence there is a need for carrying out an analysis for the stress· intensity factors 

of an embedded weld toe crack in a tubular specimen. The crack growth charac-

teristics of the base metal ( CSA G 40.21 M 350 WT) are required for the fatigue 
li 
--:-:..,_ ....... __ _...-:;. 

life--estimation of the tubular T-joints. Finally the predicted fatigue life must be 

che~ked with the experimental value obtained from the test on a prototype speci-

men. The present study seeks to meet this need. 
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CHAPTER3 

TWO DIMENSIONAL ANALYSIS 

3.1 Introduction 

Three stress levels i.e. nominal stress, geometric stress and local stress can be dis-

tinguished according to the analytical approach used for a tubular joint. A global 

analysis of the joint, viewing it as a network of beams, yields the forces and the 

bending moments in the members. Using the conventional strength of materials 

calculations, the nominal stresses in the straight tubular section can be deduced. 

An analysis of th'e joint in terms of the intersection of thin shells, where each 

component is represented by its mean surface, yields the forces in the walls neces-

· · sary to ensure the compatibility of the displacements along the line of the inter-

section. The stresses in the walls, obtained from the theory of thin shells, are 
.~. 

termed as the geometric stresses since they correspond to an ideal joint geometry. 

A numerical approach based on the theory of thin shells gives the geometric 

stresses and therefore direct access to geometric stress concentration factor, K 0 . 

The finite element method has the advantage of giving not only the value of peak 
::::: 

geometric stress but also its precise position as well as a pattern of the stress dis-

tribution in the entire zone of shell intersection. 

~:. .... 

This chapter deals with a variant of the automatic discretization procedure 

(developed specifically for this study) and the subsequent analysis of a tubular 

·. ·~ ,: . 
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T-joint using plate bending and membrane elements. 

3.2 Discretization 

Automation in the data preparation reduces errors, and the solution accuracy 

may increase because a computer-generated mesh is more regular than one manu-

ally prepared by the user. Hence a computer software is developed for discretizing 

the tubular T-joint using an automatic mesh generation technique. For the 

present investigation, the loads acting on the T-joint are restricted to axial load 

and in-plane bending. Because of this, the advantage of symmetry is taken into 

consideration in discretization and only half of the T-joint is considered for 

modelling. The following procedures are adopted for the mesh generation: 

(a) A fine mesh is utilized near the intersection between the chord and 

brace, where the stress gradient is sharp. 

(b) A coarser mesh is used at the ends of both the chord and the brace 

where the stresses are small. 

(c) The nodes are numbered in such a way as to minimize the incidence of 

elements and thereby reduce the band width of the global stiffness 

matrix. 

The stuctural model considered is shown in Fig. 3.1. An oxyz coordinate system 

is defined at the left of the model. The model consists of seven sections. For each 

section some key points are defined by setting either a cartesian coordinate or an 

: · : ;:~ <~ ·!:· : 
· : ·: ·.: .. . :·' ,,, ·; 
.. ·. -··:· . 
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0 

Fig. 3.1 Regions ofT-joint model for mesh generation. 
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angle. For example, they-coordinates of the bottom nodes of sections 1, 2 and 6 

and the lower curve nodes of section 3 are specified. For ser.ti~n 4, the z coordi-

nates of the side nodes are specified. The coordinates of the nodes at the inter-
:• 

section of the brace and the chord are generated. The nodal coordinates are gen-
~ \I 

erated section-wise, and the\.pode ~umbers are generated by assigning the proper 

indices corresponding to a particular section. All sections are combined· together 

using the common node matching technique between the sections. Then the node 

numbers are rearranged for the complete model in a way so as to have the 

minimum band width. For the nodal connectivity of the elements, the node 

numbering sequences are defined in an anti-clockwise direction (Fig.3.2). 

In order to plot the generated mesh for the model, the x, y and z axes~}fe rotated 

through angles a , {3 and 1 in three stages to attain the new axis systems ox'y'z', 

ox"y"z" and ox y z respectively (Fig. 3.3). The relation between oxyz and ox Y z 

coordinates can be written as 

(3.1) 

where 

( A ) = ( ~ CO~Q - S~Q ) 

0 sina cosa 

(3.2) 

~ . .. .. .. : ··: 
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K 
K 

J 1 

Fig. 3 ·2 Node numbering sequences. 
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Fig. 3.3 Rotation of coordinate system axes for mesh genera­
tion. 
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(3.3) 

(3.4) 

Using Eqn.(3.1), the coordinates of the nodal points are transformed into a new 

oxyz coordinate system, which are then used in plotting the discretized model of 

the tubuJ.ar T-joint. 
'. ' · .. · 

3.3 Element Stiffness Formulation 

The most .critical step in two-dimensional stress analysis is the evaluation of the 

stiffness properties of an individual element. It is assumed that the elements are 

interconnected only at their corner roints. Two types of elements stiffnesses are 

considered in this analysis: membrane stiffness which relates for,c;,es and displace-
~ . i 

ments in the plane of the elements, and the plate bending stiffness which takes 

account of displacements for out-of-plane deformations. The membrane and 

flexural sti.ffnesses are represented without coupling using plane stress and plate 

bending elements; this idealization is justified since only small deformations are 

assumed to occur under the applied loads. 

3.3.1 Plate bending element 

The triangular element stiffness matrix is derived usmg area coordinates. The 

area coordinates Li , Lj , Lk of any point P in the triangle are defined as the ratio 
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of the area, ~i, of the subtriangles subtended at that point, to the total area, ~~ 

of the triangle i.e. Li = ~i I ~ (Fig.3.4). The linear relation between the set or 

area coordinates and the cartesian system is given by 

. : .; 

(3.5) 

Inversion of Eqn.(3.5) gives the area coordinates as 

(3.6) 

where 

ai = XjYk - XkYj 

bi = Yj- Yk 

Cj = Xk- Xj (3.7) 

1 X· I Yi 
1 

1 ~=- X· Yj 2 J 

1 xk Yk 

The transverse displacement, wi, and the rotations, Oxi and Oyil at each corner 

node about the x and y axes of an element are taken as the nodal degrees of free-

dom in the flexural element stiffness derivation (Fig.3.5). The displacement 

within the element can be described in the form (Bazeley et al 1965) 

.. _: 
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--------~------~ I \ 

{Xj ,yi) 

Fig. 3.4 Triangular area coordinate . 
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Fig. 3.5 Bending element. 
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w = .81Li + .82Lj + ,83Lk + .84 (Li2Lj + ~ LiLjLk) 

+ .85( Li Lj2 + ~ Li1j1k ) + .86( 1/Lk + ! LiLjLk) 

+ fi7( 1j1k2 + ! 1iLj1k ) + fis ( LfLi + ! Li1jLk) 

+ fi9( Lk1i2 + ! 1iLjLk) 

Substituting the nodal values of 

(3.8) 

(3.9) 

foi-:the i, j and k nodes, the constants {3 11 {j2,. ••• {39 and hence the shape functions, 

Ni, Nj, Nk are determined. For node ·i , the shape function, Ni can be written as 

-· ., ., ., ., 
1· + L·-L· + 1·-Lk - 1·1·- - 1·Lk-l I J I I J l 

bk ( 1·21· + .!. L·1·1k ) - b· ( LkL·2 + .!. 1 ·1·1k } 
I J 2 IJ J l 2 lJ 

(3.10) 

ck ( 1·21· + .!. L·1·1k )- c · ( 1kL·2 + .!. 1·L·1k ) 
I J 2 lJ J I 2 IJ 

The strain displacement relation for the element is written in terms of nodal dis-

placements as 

82w --
8x2 

a hi 

-{ €J = 82w 
[ Bi B· Bk] --- - { abj l ay2 J 

82w 
abk 

2-
axay 

{3.11) 
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W· I 

aw 
-(-)· ay I 

( aw )· 
ax I 

(3.12) 

As the shape function, Nil is a polynomial in the area coordinates, the 

differentiation with respect to x, y is performed as 

aN. 3 aN- aL. 1 aN- aN. aN. I 

E 
I _!. 2~ { bi aL: + bi aL~ + bk aL~ ) -= -ax BL· ax j=l J 

(3.13) 

oN· 3 oN· BL· 1 oN· aN. aN-
__!. = E I J ( l l I 

BL· ay - 2~ Cj aLl + Cj BL2 + ck aLa ) ay j=l J 

The terms in the [BI matrix remain as polynomials in the area coordinates. The 

flexural element stiffness matrix is obtained using the general expression 

. [ kb ] = t I I [ B IT [ D I [ B I dA 
A 

where t = the thickness of the element and [D] = the elasticity matrix. 

r. 
' : 

(3.14) 

. . ; .. . 
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For an isotropic plate, [D) is given by 

Et3 

l 0 1 = 12 ( 1-v) 

1 v 0 

v 1 0 

0 0 1-v 
2 

/ . 

--

(3.15) 

Equation 3.14 is a polynomial in the area coordinates and is integrated here using 

the relation . 

(3.16) 

3.3.2 Membrane element 

The nodal displacements u and v along the x and y axes of an element are taken 

as the nodal degrees of freedom (Fig.3.6). The displacements within an element 

are expressed in terms of nodal values as 

u = L·u· + L·u· + Lkuk I l J J 

v = L·v· + L·v· + Lkvk I I J J 

in which shape functions are 

N·=L· I I 

N·=L· J J 

. Nk = Lk 

The strain-displacement relations are 

'I ,. 

(3.17) 

(3.18) 
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Vi 

Degrees -of · Freedom 

Fig. 3.6 Membrane element. 
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\np\ane Force~ ond Deformations 
BendinQ Forces and Deformations 

Fig. 3.7 Assembly of six degrees-or..:rreedom. 
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au 
ax 

{ 'mi l { €} = ov 
[ Bi B· Bk] ay - J amJ 

~~-! 
au+ av amk 

ay ax 

where 
:..:· 

aN. 
I 

0 ax 

[ Bi] 
aN. 

0 I - ay 
aN. 

I 
aN. 

I 

':-::.::. ay ax ,. 

~ ~' 
{ ami } = {:: } :·~. 

· C 

The ~embrane element stiffness matrbc is determined using the expression 

[ km ] = t f f [ B ]T [ D ] [ B ] dA 
A 

where [D] is the elasticity matrix, which is given by 

{D]- E 
- (1-z?) 

1 v 0 
v 1 0 

00 (1-v) 
2 

3.3.3 Assembly of six degrees of freedom 

(3.Hl) 

(3.20) 

(3.21) 

(3.22) 

For in-plane action, the state of strain at each node i is uniquely described in 
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terms of the u and v displacements at the node by stiffness matrices or the type 

(3.23) 

where 
·;.:· . 
::. 

(3.24) 

:i 

For bending, the state of strain is expressed in tenp.s': or the nodal displacement in 

the z-direction; w, and the two rotations, Ox and ()Y (Fig.3.7). The stiffness matrix 

is of the form 

(3.,f5) 

where 

(3.26) 

j ~, 
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The flexural and membrane effects are combined using the relation 

where 

The element stiffness matrix is made up of the following submatrices: 

[ k ] 18Xl8 
[ 

[ km lsxs 
= [ 01 

[ 0 1 

[ o I 
J kb Jgxo 

[ 0 l 

(3.27) 

(3.28) 

The terms in this matrix corresponding . to (Jz direction are zero. This causes a 
,_. 

singularity problem with the computat~onal algorithm. The singularity is avoided 

by modifying the element stiffness matrix before assembly by the following equa-

tion (Zienkiewicz et al 1968) 

{ 

Mzi l ( 1 - 0.5 - 0.5 ) { (Jzi l 
. Mzj = a E V - 0.5 1 - 0.5 Ozj 

Mzk - 0.5 - 0.5 1 Ozk 

(3.30) 

where 
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E = the modulus of elasticity 

V = element volume, and -:\~ 
; , 

. ·.~· .... ,, 
l! 

·•, -· ··.;: 
: ::~ : ·: 

a = small number, typically irvtlle=ri.~~ge of w-6 to 10-2 

'-· 

A quadrilateral el~ment with thirty degrees-of-freedom can be obtained by com-

bining four triangular subelements. Static condensation can then be used to 

exclude the degrees-of-freedom associated with the interior node to obtain an ele-

ment stiffness matrix of size 24 by 24 (Fig.3.8). 

3.4 Results and Discussion 
•.' 

A computer program based on the finite element formulation given in section 3.3 

is developed for the two dimensional analysis of the tubular T-joint. The stresses 

are obtained at the centroid of each element~ The joint parameters are given in 

Table 3.1. Figu~:·e 3.9 shows the schematic of the T-joint model analysed. Finite 

element meshes for different regions and the complete discretised m~del are 

shown in Figs. 3.10 and 3.11. The convergence of this formulation occ.;urs when 

the aspect ratios of the elements are in the range of 0.6 to 1.5. For this formula-

tion, the stresses converge with a discretization error of O(h2), where h is the ele-

ment size (Zienkiewicz 1977). The total number of elements and nodes con-

sidered in this study are 416 and 464, respectively. All translational and rota-

tional degrees-of-freedom have been restrained for the nodes at each end of the 

chord i.e. along lines CD and EF. The x translational, and the y and z rotational 

degrees-of-freedom for the nodes along the edges AB, BC, DE, FG, GH and BIG 
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Table 3.1 Joint parameters. 

D 

(mm) 

850 

T 

(mm) 

32 

d !3=­D 

0.5 

D = Chord diameter 
d = Brace diameter 
T = Chord thickness 
t = Brace thickness 

t 
i=-

T 

0.5 

D 
"(=-

2T 

13.2 

L = Length of chord between supports 

2L 
a=-

D 

8.4 

C) 

--
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Assembly of 

Si~th ·Degree 

~--------of Freedom 

~ -.• 

w,B~.By 

Bending Element 
u,v,w 1 

8.,. ,By ,Bz, 

Static 

Condensation 
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,_,- I \ 
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I 
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30 D.O .F. 

Fig. 3.8 Assembly of triangular element to form quadrila­
teral element. 
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A H 
I 

425 0 
0 
0 -

!i 8 1 G ,- ~ -
---.--------~ .. 

F 

0 ---- It) -
CD 

0l .. __________ 3_s_o_o ________ ~t 
t = 16 

All Dimensions ·ore in mm. T =32 . 

Fig. 3.9 Schematic ofT-joint model. 
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are restrained by the symmetric consideration. The results are for the following 

material properties of steel: Young's Modulus, E = 2.1 x 105 MN/m2 and Pois-

son ratio, v = 0.3. The joint is analysed for two different loads acting on the 

brace - (i) axial compressive load of 1 MN and (ii) in-plane load of 0.1 MN. The 

normalized deformed shapes of the joint for the two cases are shown in Figs. 3.12 

and 3.13. The variations of the maximum principal stresses for both cases at cer-

tain critical locations (Fig. 3.14) are shown in Figs. 3.15 - 3.22. The stress concen-

. tration factors for the chord and the brace at .the crown and saddle points due to 
' \ -· 
\'. 

... .:~ .. 
axial compressive and in-plane bending loads are shown in Table 3.2. It can be 

noted that the stress concentration factors for the joint due to axial compressive 

and tensile loads at brace are same from stress analysis point of view. The calcu-
~_;; 

lated stress c!!O~tration factors are compared with the published literature 

based on experimental work and finite element analysis (Irvine 1981b; Clayton 

and Martin 1980} and the parametric equations (Wordsworth and Smedly 1978; 

Gibstein 1978; Kuang et ril 1977). The parameters of the joint analysed by Clay-

ton and Martin are a= 13.5, {3 = 0.5, r = 0.5, 1 = 12.1 whereas those of the 

joint analysed by Irvine are a= 10.5 , /3 = 0.53, :r = 0.51 and 1 = 13.4. 

3.4.1 Chord stresses 

~· · 

In the chord, measured and predicted stress concentration factors show good gen-

eral agreement. Under an axial load, the peak stress occurs ~t the saddle point. 
. -:~;=· 

There is a reversal of the principal stress along line-4 (Fig. 3.21). In the case of 
· -·~ 

.. = .. 
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Table 3.2 Stress concentration factors. 

Chord Side Brace Side 

Axial 

Crown Saddle 
Line-3 Line-4 

2.968 7.004 

2.656 6.277 

In-plane 
Bending 

Crown Saddle 
Line-3 Line-4 

1.35 0.977 

~ ~-. 

'~ 

1.07 0.8 

Axial 

Crown Saddle 
Lioe-1 Line-2 

4.18 7.68 
3.96• 7.04• 

3.69 6.8 

In-plane 
Bending 

Crown Saddle 
Line-1 Line-2 

3.36 0.58·1 
2.34• 0.481• 

2.92 0.497 

·.• 

2.41• 6.02• 2.08• 0.427• 

6.7 2.6 9.3 3.0 

5.8 2.0 7.1 1.7 

7.7 1.2 

3.097 7.439 2.38 2.951 5.686 2.499 

6.7 2.2 2.065 

6.9 1.9 2.358 
.. 

~;::;::.....~~~ .. 
. · ... 

* With correction for brace rotation and translation 
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Fig. 3.14 Characteristic lines of the joint. 
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Fig~ 3.15 Pri~cipal stress distri~.!!tion: brace, line 1 - axial 
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F~g. 3.i6 Principal stress distribution: brace, line 1 - in-plane 
; __ .: bending. 
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Fig·. 3.17 Principal stress distribution: brace, line 2 - axial 
lead. 
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2- 0 FE analysis 
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Fig. 3.18 Principal stress distribution: brace, line 2 - in-plane 
bending. 
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2- D FE analysis 
Without plu~ 

·-· With plug 
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Fig. 3.19 Principal stress distribution: chord, line 3 - axial 
load. 
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2-0 FE analysis 
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Fig.· 3.20 Principal stress distribution: chord, line 3- in-plane 
bending. 
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2- D FE analysis 
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Fig . . 3.21 Principal stress distribution: chord, line 4 - axial 
load. 
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an in-plane bending load, the P~;ak stress occurs at the crown (Table 3.2). The 

stres~. gradient !lear the intersection in line-3 is less compared to that on brace 

line-1. 

3.4.2 Brace stresses 

{·::::,_..,_c.:,_~:~': :::::::,. 

'J 

In the brace, measured and predicted stress concentrations factors are not in good 

::-:'agreement. The finite element analysis tends to overestimate the brace-side SCFs 

due to the displaced brace/chord intersection. Loading in the brace distorts the 

chord, as shown in Fig. 3.23. The degree of oval~ing of the chord is influenced pri-

marily by the brace loading and the chord stiffness. Hence;· the wall rotation at 

the end of tb.e brace is dictated by the chord. The thickness of the chord wall 

and its resistance to shear results in the brace end rotating about and translating 

from a point, a, within the chord in between the chord-brace mid surface inter-

section and the point above, b, on the chord upper surface. T~ interpret the finite 

element results in terms of the physical model stress values, the entire brace finite 

element representation must be translated from the mid surface intersection to 

the point b. 

Irvine(1980) calculated this shift, A, and found it to be 

1 
A=-T-p+q 

2 
(3.31) 

where T is the chord wall thickness and p is a small positive correction factor. It 
(; 

can be expressed in terms of the j()int parameters as 

-.:.::::.: ·:.:::::··.:.:-.. 
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Fig. 3.23 Schematic of displacements on the plane of sym-
metry (Irvine 1980). ·:, 
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·. T T4 

{ 

·. 3 l 
p = 0.0163 7f + 0.2g7 {Jt T (3.32) 

The term q in Eqn.3.31 is a small positive correction for the weld profile. For this 

joint, p equals 0.23 T. The most significant part of the formula for A is 1/2 T. 

Assuming q = p for the joint under investigation, the value of A is 16 .mm. · 

The modified stress concentration factors for the brace side are tabulated in 

Table 3.2. These are in good agreement with the experimental values reported in 

the literature. The brace stresses after axial shifting are shown in Figs. 3.24 -

3.27. 
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Fig. 3.24 Modified principa l stress distribution after axial 
shifting: brace, line 1 - in-plane bending. 
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Fig. 3 .25 Modified principal stress distribution after axial 
shifting: brace, line 1 - axial load. 

1::0 

: ' : . i . 

.. . ·.· i · 

. ~-; 

.'. i. 

. 1· 
I 

; 

~ ': 



- 4.0 

N~ - 3 .0 
....... 
z 
:! 

N 
0 -Cl) 

Cl) 

~ - 2.0 -Cl) 

0 
c. ·-(,) 
c:: 
.... 
a. 

-1.0 

0 .0 

\ 
\ 
\ 
\ 
\ 
\ 

-80-

2- 0 FE analysis 

Without pluo 

--With pluo 

\ 
\ 
\ 

-- ------ -------
0.0 0 .2 " 0.4 0.6 0.8 1.0 

Distance from intersection (m) 

Fig. 3.26 Modified principal stress distribution after axial 
shifting: brace, line 2- axial load. 
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4.1 Introduction 

CHAPTER4 

THREE DIMENSIONAL ANAJ..;YSIS 
II 
j/ 

The tubular joint is analysed using the plate element in Chapter 3, in which the 

joint is idealized by the midsurface of the chord and the brace. The thickness of 

the shell is used only in the computation of the membrane and the flexural 

stiffnesses. It is not considered in the physical modelling of the joint and the con-

sequent through-thickness variation of the displacements and the resulting 

stresses. The plate · element idealisation also does not permit the consideration of 

the weld profile and the actual intersection. These limitations of the plate finite 

element modelling are overcome by three dimensional modelling of the T-joint. 

This chapter presents the necessary theory and the results for the three dimen-

sional idealisation of the joint including the weld reinforcement, based on the 

modeJling of (i) entire T-joint and (ii) region around the hot spot using rezone 

technique. 

4.2 Modelling of Entire Joint 

The .entire joint is discretized using the same mesh generation technique discussed 

in the previous chapter. The weld dimensions used for the modelling are shown in 

Fig. 4.1. The chord/brace surface and the weld regions are discretized using 8-
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Fig. 4.1 Modelling of weld at chord/brace intersection. 
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node and 6-node three dimensional elements respectively. The discretized model 

is shown in Fig. 4.2. 

4.2.1 Element stift"ness formulation 

The displacements ui , vi and wi at each node along the x, y and z axes are taken 

as the nodal degrees-of-freedom. The faces of the 8-node brick element (Fig. 4.3) 

are defined by the local coordinates e , '1 , ~ = ± 1. The global coordinates are 

defined as 

8 
x= ~ 

i==l 
8 

Y= ~ 
i==l 
8 

Z= E 
i==l 

N- X· I I 

N-y· 1 I (4.1) 

N· Z· . 1 I 

where xi , Yi and zi are the element nodal point coordinates and Ni is the shape 

function, which is given by 

1 
Nj = 8 ( 1 + eej ) ( 1 + ,,i ) ( 1 + s-~i ) (4.2) 

To improve the flexural characteristics of the 8-node isoparametric brick ele-

ments, three incompatible modes are introduced into the displacement interpola-

tion functions. The global displacements u , v and w at any point within the ele-

ment can be expressed as (Wilson et al 1973), 

: :. , ' 

:.~ 
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Fig. 4.2 Three dimensional finite element mesh for the joint. 
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y 

Fig. 4.3 Three dimensional 8-noded element. 
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8 3 
u ~ N·U· + ~ gj Q• - 1 1 J 

i=l j=l 

8 3 
v - ~ N·V· 1 1 + E gj ,Bj (4.3) 

i=l j=l 

8 3 
w - ~ N·W· + ~ gj '"tj 1 I 

i=l j=l 
'. 

where gj(j=l, 2, 3) are the additional .shape functions for the incompatible ele-

ment and aj , ,Bj and '"tj are generalized displacement coordinates. The first group 

of terms of the right hand side of Eqn. 4.3 represents the polynomial correspond-

ing to the basic element. The displacements due to the terms in the polynomial 

of the basic element are continuous across the interface of the element, but those 

due to the second group of terms in Eqn. 4.3 are not necessarily continuous 

across the element boundaries. The incompatible shape functions gj are given as 

gl = ( 1- ~2) 

g2 = ( 1- '72) 

g3={l-~) 

The stress-strain relations are 

where [D1 is the elasticity matrix, which is given by 

(4.4) 

(4.5) 

; 

~ . 

' . ~ . 
: 1" 
.i 

. ~ ' 

. ' 

. ' 
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v v 
(1- v) (1- v) 

1 v 
(1 - v) 

1 

0 0 

0 0 

0 0 
(1 - 2v) 

0 
2(1 - v) 

(1 - 2v) 
2(1- v) 

. The strain-displacement relation or the element can be written as 

where 

f } - [ ]T f ·-l 2. 1i - ui vi wi , or 1 _ 1 , .... , ,~ 

are the element nodal displacements, and 

0 

0 

0 

0 

0 

(1- 2v) 
2(1- v) 

(4.6) 

(4.7) 

(4.8) 

(4.Q) 

are the element generalized coordinates due to the incompatible modes. The sub-

matrices [B1] and [B2] contain the derivatives of the functions, N and g, respec­

tiv~ly. The general forms of the submatrices {Bd and {B2J are give~-.:.:byf:-=~ 

-~~~-­
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oN· I 
0 0 ax 

oN. 
0 1 

0 ay 
aN. 

0 0 I -
[ Bli] = az 

/ ' . . •. aN. aN. 1 . ..... 
1 I 

0 -oy ax 
( 4.10) 

aN. aN. 
0 I I - ( az ay 

" oN· aN.· 'i 
Jt I 

0 I {( 

az ax 
and 

agi 
0 0 ax 

0 
agi 

0 
8y 

0 0 
8gi - '.· 

[ B2i] 
az 

- agi agi (4.11) 
- 0 ay ax 
agi 8gi ···-

0 -j: az lJy ·::"-~:-::.:_::::'; . ... 
agi lJgi 

.,. 

0 -az ax 

The global and the local derivatives of the shape functions are related by the 

equation 

.. ... 
aN. aN. I I 

ax ae 
aN. 

[ J ] - 1 
aN. I I 

(4.12) lJy -
OfJ 

aN. I aN. 
I 

az -a) 

/ ' 

t . j 
l 
\ 

' ~ . }. 
... : ,. 

! · ! 
i I. 
' !l r• 

I 
t .. 
I 

..! 
; l 

I 
. : I 
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where ( J] is the Jacobian matrix, which is given by 

aN. 
I; ae· xi 

aN. 
E ae· Yi 

aN· 
'E ae· zi 

[ J] aN. aN. aN. 
- 'E ar/ Xj E--..!. Y· E a,/ Zj a'l • 

aN. 
E 8)1 Xj 

aN. 
I; B)• Yi 

BN· 
E B<;l Zj 

The equilibrium equations for the element can be written as 

_.j} 
. -

where 
lo 

[ ~~] [ ~~] 1 
[ K21 ] [ K22 ] j 

1 1 1 

(Kij 1 = I I I r B; 1T r n 1 r B; 11 J 1 de dTJ ds-
- 1 -1 -1 

(4.13) 

(4.14) 

(4.15) 

are the submatrices of the element stiffness matri.x. {F 1} is the element load vee-

tor containing equivalent nodal forces. {F 2} represents the forces, in terms of the 

element general~zed coordinates, contributed by thermal loading; in the present 

case {F 2} = {0}. Before assembling the global stiffness matrix, the incompatible 

degrees-of-freedom {~} in Eqn. 4.14 are condensed out to get the resulting equa-

tion !.-·' 

{4.16) 

.. 
. . . ... ~ 

.· i ' 
. '' ! 

; ~ 
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where 

(4.17) 

Equation 4.16 is used to assemble the global stiffness matrix, and nodal displace-

ments are then computed. The incompatible degrees-of-freedom {~} are ca.lcu-

lated as 

( 4.18) 

Knowing the displacements {a1} and {a2} , the element strains and the 

corresponding stresses are obtained using Eqns. 4.7 and 4.5 respectively. 

The stiffness matrix of the fi.node incompatible prism element is derived from the 

8-node incompatible brick element by coalescing the nodes 1, 2 and 5, 6 (Fig. 

4.4). 

4.3 Modelling of Hot Spot Region Using Rezone Technique 

The rezone technique is used to reduce the computer storage requirements as well 

as the solution costs that result from the large number of degrees-of-freedom 

associated with 3-dimensional elements. It is used here to obtain an accurate esti-

mate of the surface and the through-thickness stresses at the intersection of the 

~race and the chord and also the weld reinforcement effects. The hot spot region 

around the weld toe and the weld reinforcement are modelled using three dimen-

sional incompatible 8-node and 6-node elements. Using the results of the two 
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dimensional analysis, the boundary nodal forces/displacements are obtained as 

discussed in section 4.3.1. The surface stresses at the critical location or the 

brace--chord intersection including the through thickness distribution are com-

pared with those obtained from the three dimensional modelling of the entire 

joint. 

4.3.1 Rezone section 

Typical rezoned regions, around the saddle point and the crown point at the 

brace/chord intersection, are shown in Figs. 4.5 and 4.6. A schematic example or 

a typical plate-to-solid element transition is shown in Fig. 4.7, in which one inner 

surface and one outer surface node of the brick element are assigned to each plate 

element node. Therefore, the plate element's boundary solutions (the displace-

. ~ 
ments or the forces) are applied entirely to the brick element nod0~; defined at the ;} 

inner and the outer surfaces of the shell (Fig. 4.8). The shell surface normal direc-

tions for all nodal locations at the plate-to-solid transition are defined as the 

cylinder radius vector through the transition node. The six boundary variables 

are distributed between two 3-D element nodes maintaining boundary compatibil-

ity of displacement or boundary force equilibrium. 

The directional cosines cos o, cos /3 and cos 1 are defined in the xyz cartesian sys-

tern as shown in Fig. 4.9: This xyz coordinate system is moved from one transi-

tion node to another along the brace as well as along the chord centre lines, so 

i 
'· I 

' 1 
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BRACE 

S • SAOOt.£ POINT 

CHORD ( • 

Fig. 4.5 Rezone section at saddle point. 
~·· 

WELO 

C • CROWN POINT 

REZONE SECTION 

CHORD 

Fig. 4.6 Rezone section at crown point. 
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Fig. 4.7 Plate-to-solid element transition. 
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Fig. 4.8 Expanded view of plate-to-solid element transition. 

Fig. 4.9 Shell surface local coordinate system definition. 
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that the outward surface normal vector is the same as the radius vector. The 

coordinates X0 , Yo , Z0 and Xj , Yi , zi of the outer and the inner surface transition 

nodes, correspondiiig to the plate node with coordinate (x,y,z), are 

t 
X0 = x + 2 cos a 

t 
y 0 = y + 2 cos {3 

·-

t 
Z0 = z + 2 cos "{ (4.19) 

t 
X·= X-- COS a 

1 2 

t 
· Yi = Y - 2 cos {3 

t 
Z· = Z-- COS"' 

1 2 I 

where t is the shell thickness and x, y, z are the plate element nodal coordinates 

at the transition. 

4.3.2 Displacement transformation (Morgan 1979) 

The boundary displacements, applied to the surface nodes of the brick element at 

the transition, are derived from the combined translation and rotation of the 

matching plate element node. The initial position vector of the surface node is 

defined by the outward normal vector, which connects the plate element node to 

the outer surface node of the solid element (Fig. 4.10). The projection of this 

position vector onto the x-z plane, ny, makes an inclination, >.1x, with the z-axis 

which is given ~y 
· .. ' 

Ayx - sin-• [ cos a ] 
sin {3 

(4.20) 

,. , -
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.1 cos a 
2 

~:------Louter node of 
solid element 

ptote node 

\ ' .. 

\\ Fig. 4.10 Translation of surface node due to rotation of plate 
node about Y-axis. 

t . . 
- sm r 2 

plate node 

Fig. 4.11 Translation of surface node due to rotation of plate 
node about Z-axis. 
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Due to the y-axis rotation of the plate element node, ()Y , the position vector, ny, 

of the surface node is rotated to a new position, Iiy', causing a. partial translation 

in the x-direction, u0 (0y), given by 

(4.21) 

Similarly the x-direction translation due to rotation about the z-axis (Fig. 4.11), 

is given by 

(4.22) 

where 

, _ . _1 ( cos a ] 
"zx- SID • 

· Sin '1 
(4.23) 

So the total displacement in the x-direction of the outer surface node of the solid 

element, u0 , due to the x-translation (u), y-rotation (Oy) and z-rotatioti .(Oz) of the 

plate node is 

(4.24) 

The total displacements, v0 and W0 , in the y and z directions can be derived in a 

similar manner. By assuming a rigid body movement of the solid element edge, 

the total x, y and z-displacements of the inner s·urface node, ui , vi and wi, can 

.~lso be obtained. Th~' surface n~de displacements are 

t·; . 

u0 = u + ~ [ sin {3 sin ( Ayx + By ) + sin 1 sin ( Azx - Oz ) - 2 cos a ) 

·=:.. . 



where 

- gg-

v 0 = v + ~ [ sin "'/ sin ( >.zy + fJ1 ) + sin a sin .( Axy - (Jx ) - 2 cos {j } 

w 0 = w + ~ [ sin a sin ( Azx + Ox ) + sin {j sin ( Ayz - (JY ) - 2 cos "'} 

ui = 2u- U 0 

Yj = 2v- V0 

wi = 2w- w0 

). . -1 [ c~s a ] 
yx =Sin sm {3 

X,1 = sin-
1 

[ ~: .~ '] 

\ . -1 [ co. s "'/ ] "xz = Sln sm a 

\ . -1 [ co. s Q ] "zx = sm 
sm "'/ 

Axy = sin-1 [ cos {j ] 
sin a 

>. . -1 [ c?s "'! ] 
yz = Sln Sln {3 

(4.25) . 

(4.26) 

4.3.3 Force transformation (Morgan Hl79) 

Derivations of the force transformation relations are considerably more involved 

than those of the displacement transformations. There are only two orthogonal 

coordinate directions, which are used to balance the plate element's midplane 

moments with 3-D element's surface nodal forces. Forces applied to the third 

coordinate direction (in line with the surface normal vector) would not produce 

moment~ about the midplane, since the force line intersects that node. Since 

there are three moments and three forces associated with the plate element's 

node, a special shell coordinate system is established in order to balance the 

moments with the surface forces. There would be no component of moment 

parallel to the shell normal vector due to the fact that the plate element carries 

no in-plane rotational stiffness. By defining a local shell normal vector, the 

!I ., 
! · 
I 

·1 
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>t 
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surface nodal forces are determined such that equilibrium is preserved for the 

three components of force and the two components of moment in the plane of 

local shell tangent as shown in Fig. 4.9. The x'-axis of the local coordinate system 

is set parallel to the shell normal vector, and the z'-axis is constrained to remain 

in a plane parallel to the y-z cordinate plane. From the direction cosines of each 

of the primed directions relative to the global axis, shown in Fig. 4.12, the primed 

forces and moments become 

F x' = F x cos o + F y cos f3 + F z cos "( 

F y' = F x cos p + F Y cos ¢ + F z cos e 
! . . . . 1r 

F z' = F y cos (b + 2 ) + F z cos b 

Mx' = Mx cos o + My cos {3 + Mz cos 1 = 0 

My' = - Mx sin a + My cos o cos b + Ma cos a sin b 

Mz' = Mz cos b ~ M1 sin b 

(4.27) 

,, 

The angles a, f3 and "fare known direction angles of the shell normal vector. The 

angles p, ¢, () and b are determined from the imposed constraints of the coordi-

nate system. Since z' is parallel to the y-z plane, the y' coordinate would be in the 

plane defin~.? by the x-x' axes. The direction angle p is given by 

1r 
p=a+-

2 
( 4.28) 

The remaining direction angles are determined by reference to spherical geometry 

(Fig. 4.13). Using the Napier's rules for right spherical triangles, the angles b, ¢ 

.-. 
. \ 

.. : 
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Fig. 4.12 Forces transformed to local shell surface coordinate 
system. 
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Fig. 4.13 Use of spherical trigonometry to solve for azimuth 
angle b. 
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and fJ are given as 

I b I = sin-1 
( Vsin2 {3- cos2 {3 ctn2 a ) 

<P = cos-• ( cos a cos b ) 

0 = cos-1 ( cos /;t sin b ) 

(4.29) 

By pres~rving the equilibrium of force and moment, the inner and outer surface 

nodal forces are 

Fx' 
Fx'o = 2 

Fy' Mz' 
p, =-+-yo 2 t 

''"Fz' My' p, =---
z 0 2 t 

."":~ · .. 

Fy'i = Fy,_ Fy'o (4.30) 

'·· 

F z'i = F z' - F z'o 

Finally the equilibrium forces are transferred back to the global_. system so that 

they can be used as · input for the 3-D rezone model. The results of this last 

transformation a!'e as follows: 

F xo = F x'o cos a - F y'o sin a 

F xi = F x'i cos a - F y'o sin a 

F yo = F x'o cos /3 + F y'o cos cr cos b - F z'o sin b 

F yi = F x'i cos f3 + F y'i cos cr cos b - F z'i sin b 

F 20 = F x'o cos 1 + F y'o cos cr sin b + Fz'o cos b 

Fzi = Fx'i cos 1 + Fy'i cos cr sin b + Fz'i cos b 

(4.31) 

Thus substituting Eqn. 4.27 into Eqn. 4.30 and then Eqn. 4.30 into Eqn. 4.31 

leads to the forces which are applied to the inner and outer surface nodes of the 

transition boundary of the 3-D rezone model of the joint. 

• i 
I 
: 
j 
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4.3.4 Boundary conditions 

The element stiffness matrices are assembled to obtain the global stiffness of the 

rezoned model. The interior displacement vector for the rezoned model is deter-

mined for imposed boundary displacements/forces, obtained from _the 2-D solu-

tion. For a rezoned model with n degrees-of-freedom, the force-displacement rela-

tions can be written as 

(4.32) 

By imposing m boundf;.ry displacements, 61 = {31 , ...... , Om= /3m, at the transition 

nodes, Eqn. 4.32 becomes 

where 

1 0 0 01 

0 K(m+l)(m+l) K(m+l)n 6(m+l) -

0 Kn(m+l} Knn On 
.... 

f'(m+l) = f(m+t)- K(m+l)t f3t - •···• - K(m+l)m 13m 

f' n = fn - Knt f3t - ···•· - Knm 13m 

f3t 

f1(m+l) (4.33) 

f1n 

(4.34) 

The unknown displacements, 6m+l , ..... , 6n, are obtained by solving the equation 

.·.: 
J ' 

. " 

. -~ . 
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(4.35) ,, 

4.4 Results and Discussion 

~· ~- i ;/;:.·;,.·" 

A computer program based on the formulation presented in sections 4.2 and 4.3 
) I 

I' 
" 

is developed for the three dimensiona1~nalysis of (i) the entire joint and (ii) the 

\\ 
rezoned section. The entire joint is ftr~t analysed for axial and in-plane bending 

·.,,_ 

loads. Using 3-D elements based on the above mentioned formulation, the 

discretization error in the stresses can be expected to converge at the same rate 

as the plate eletilent formulation, i.e., of order O(h2). So the joint is discretized 

by keeping the aspect ratios of 3-D elements in the same r~.nge as that of the 
:::~ :I 

1\ 
' I 

plate elements. The total number of elements, nodes and degrees-of-freedom in 

the discretized model are 516, 1102 and 3306 respectively. The saddle point 

rezoned model is analysed for an axial load in the brace, and the results are com-

pared with those obtained from the 3-·D model of the entire joint. The total 

number of elements, nodes and degrees-of-freedom for the rezoned analysis are 

1Q2, 416 and 1248 respectively. The discretization of the rezoned model is shown 

in Fig. 4.14. Since the main interest is to obtain the stress distribution at the 

outer surface of the shell, the stresses are computed at the nodes and are aver· 

aged between the elements that are connected at the nodes. 

1 

\ 

. > 

:') 

•.' 
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Fig. 4.14 Three dimensional finite element mesh for rezoned 
section or the joint at saddle point. 
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4.4.1 Entire'joint analysis 

The variation of the maximum surface stress at saddle point due to the axial load 

is shown in Fig. 4.15a. The results from the two dimensional analysis extend 

through the weld toe positions up to the intersection of the chord and the brace 

midsurfaces. For the chord side, both two and three dimensional analyses give 

similar variation of stresses (Fig. 4.15b) to that reported by Parkhouse(l981}. The 

saddle point hot spot stress, obtained from the three dimensional analysis of the 
i -

joint without plug, is 20 percent higher than that of the two dimensional analysis 

result. The three dimensional analysis for the no plug case gives a hot spot stress 

on the brace side which is only 3 percent higher than the two dimensional 

analysis. The stress variation agrees reasonably well with that reported by Park­

house (Fig.4.15c ). The hot spot stress concentration factors for the joint arlgiven 

in Table 4.1. 

The stress variation along the weld surface is shown in Fig. 4.15a. From the 

chord weld toe, the stress decreases up to a certain point and then starts increas-

ing and reaches a maximum value at the brace weld toe (Fig.4.15d). This trend 

compares well with that reported by Morgan(l979). The variation of the stress 

concentration factors (SCFs) near the saddle point for the axial load 3-D case 

compares well with measured values reported by de Back and Vaessen U981) 

(Figs. 4.15e and 4.15f). Figure"4.16 shows the stress distribution across the weld 

reinforcement and the brace wall at the saddle point due to axial load. A rapid 

decrease in stress across the weld leg is observed in contrast to the nearly 

· . . 
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,. 
Table 4.1 Hot spot stress concen~ration factors. 

Methods 

Present 
3-D analysis 
(run model) 

Present 
Rezoned 
analysis 

Experiment 
(Clayton & 

' Martin 1980) 

Experiment 
(Irvine 198lb) 

Axial In-plane bending 
Chord Brace Chord Brace 

Crown Saddle Crown Saddle Crown Saddle Crown Saddle 

2.2 6.448 .2.55 7.08 1.306 1.79 

2.09• 4.57• 2.34* 5.41* 

7.53 9.83 

5.8 7.1 2.0 1.7 

7.7 1.2 

*In the analysis plug stiffness is. included 

r? 
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. Fig. 4.15a Maximum surface stress variation at saddle point 
due to axial compressive load. 
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Fig. 4.15c Stresses along line-2 {Parkhouse 1981). 
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fig. 4.15d Transverse·O: midsection strain levels for the 
TEXGAP-3D solutions (Morgan 1979). 
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Fig. 4 .15f Stress distribution along line-2 due to axial load. 
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Fig. 4.16 Stress distribution across the weld and brace wall 
at saddle point due to axial compressive load~~ ~ 
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constant value through the brace wall. 

The stress values at the crown point obt.ained from the two dimensional analysis 

are lower than the 3-D values on the chord side but higher on the brace side (Fig:~·· 

4.17). A gradual increase in stress is observed to occur along the weld surface 

from the chord to the brace weld toe. The through-thickness variation of stress 

across the weld and the brace (Fig. 4.18) is similar to that observed at the saddle 

point. The hot spot stresses at the· weld toe computed from the three dimen-

sional analysis are higher than the 2-D values on both the chord and the brace 

sides at the crown point (Fig. 4.19). However the stress gradient obtained from 
.}) 

{ the three dimensional analysis on the brace side is steeper than that given by the 

two dimensional analysis. The stress variations across the weld and the brace 
., 

(Fig. 4.20) are similar to those obtained for the case of axial load.' 

4.4.2 Rezoned analysis 

The forces and the displacements at the boundary nodes of the rezoned region 

are calculated as discussed in section 4.3.2. For an axial load case these 

forces/displacements are imposed at the boundary of the rezoned region. Figure 

4.21 shows the stress variation in the chord along line-2. The stress variation 

along line-2 of the brace is shown in Fig. 4:22. From the figures, it can be seen 

that the stress magnitudes differ considerably from those predicted by 3-D 

analysis of the entire joint, especially on the brace side. 
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Fig. 4.19 Maximum surface stress variation at crown point 
due to in-plane bending load. 
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Fig. 4.21 Comparison of entire joint mod.el and rezoned sec­
tion analyses results along Iine-4. 
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CHAPTERS 

. ANALYSIS OF WELD TOE CRACKS 
' ··· 

:..~·-.r,: 

5.1 Introduction 

The fract\lre mechanics method has recently become an important analysis tool 

for offshore structurai design and fabrication. All tubular joints have weld toe 

defects, either built in unintentionally during fabrication or initiated by the ser-

vice conditions. The d~fects will affect the resistanc~ of the joifts against fracture 

or fatigue crack propagation. Surface flaws initiate at the weld toe of the tubular 

intersection areas and propagate under environmental loads along the thickness 

and surface directions·. A good way to model such flaws is to represent them as 

cracks. A quantitative measure of the severity of such a crack is given by the 

stress intensity factor, K, which characterizes the intensity of the stress field in a 

small region surrounding the leading edge of the crack. The shape of a propagat-

ing crack is influenced by both the local stress state and the material properties 

near the tubular intersection area. 

For an efficient treatment of such a complicated problem, it is essential that an 

accurate engineering mode! be developed based on an accurate knowledge of the 

local stresses and on the crack driving force. It must take into account the 

. effects of geometry and loading conditions on these parameters. The need for an 

exp.iidt consideration of surface flaw geometry in the fatigue analysis of tubular 
.. ::..· 

~·· ·- -· 
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f! 
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joints l;JSing fracture mechanics requires a radically different approach from the 

conventional S-N curve method, which is based 6n a one dimensional parameter, 
. \ 

. ' ~ •. 

i.e., stress concentration factor. The new approach requires an understanding of 
the detailed stress distribution through the chord thickness as well as along the 

· ~ surface near the tubular intersection in the presence of a weld toe crack. 

Closed-form analytical solutions exist for idealized geometries containing cracks, 
. . 

but for all practical problems a numerical solution must be obtained. They are 

particularly difficult to achieve for cracks at geometrical discontinuities like tubu-

lar intersections, where changes in the cross-sectional dimensions of the member 

produce nonuniform stress fields not related to the presence of the crack. The 

difficulties are further compounded by the three-dimensional aspect of both th~ .. 

structural configuration and the crack shape . 

This chapter deals with the three dimensional finite element analysis of the tubu-

lar joint with weld toe cracks and the determination of the corresponding stress 

intensity factors. 
._ ; 

·· 5.2 Modelling of the Joint 
! ~ 

It is well known that the saddle point and crown point regions of a tubular T­

joint .ire critical for axial and in-plane bending loads, r~spectively. Because of 

., 
•.: 

this, weld toe cracks are modelled here at the saddle point region for an axial .· ~· · 

.:load case and at the .. crown point region for a~ in-planibending case. Loads are 

applied such that the V.·.~ld toe cracks are in the o.pening mode in both cases. In 
, .. , -...:":: ... . . . -: 

,, 

.-:.~ ... ~ 
-:~.: -· 

, , 
~>.:­

..:~·r·· 
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the literature it has been observed that the crack initiation as well as the part-

through-thickness propagation in tubular joints make up a major portion of the 

fatigue life of the joint. During the fatigue testing of the tubular joints, the part-

through-thickness crack growth rate was observed to be almost constant (Dover 
)I 

and Holdbrook 1979, Dover and Dharmavasan 1982, Gowda 1983). 

So it.~ will · be more realistic to represent the part-through-thickness crack growth 

rate using the stress intensity factor corresponding to the 50 percent d.eep weld 

toe crack. In the present study, the part-through-thickness weld toe crack is 

modelled as a shallow crack having a maximum depth equal to one half the 

thickness of the chord, and the length of the crack is assumed to be 80 mm. The 

latter is based on the experimental results (Wylde 1984). The initial surface flaw, 

whose depth is very small, is modelled as a line of singularity at the weld toe and 

is termed herein the incipient crack. 

5.3 Finite Element Idealization 

The chord/brace surface away from the weld toe crack region is dis~retized using 

three dimensional incompatible elem>nts discussed in the previo~1·""-ch~pter. The 

~~dge-shaped singular element developed by Tracey(1974) is used for modelling 
. ; 

near the crack front region. This element exhibits a square root singularity (Fig. 

5.1). It is obtained by collapsing one face of the 8-node brick element and by 

·choosing appropriate displacement interpolation functions. Brick and wedge ele-

n:~ents are considered in the parametric region 0 < · ~,71,"1< 1. Brick nodes ~' 2, ... 

8 take the ~ fJ 1 positions 000, 100, 110, 010, 001, 101, 111 and 011, respectively. 
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Fig. 5.1 Singular wedge element. 
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The mapping function for the physical global cartesian co-ordinate x is given in 

terms of the nodal co-ordinates as (Tracey 1974) 

.. 

X = X 1 ( 1 - e ) ( 1 - '1 ) ( 1 - 1 ) + X2 e ( 1 - '7 ) ( 1 - 1 ) 

+ x3 e TJ ( 1 - 1 ) + x4 ( 1 - e ) '1 ( 1 - 1 ) 

+ Xs ( 1 - € ) ( 1 - '1 ) 1 + Xs e ( 1 - '1 ) 1 

+ X7 e TJ 1 + Xg ( 1 -:- e ) ~ 'j :; (5.1} 

where x1 , x2 , •.. x8 are the x-coordinates of nodes. In the same way, relationships 

can be written for the y and z-coordinates. The wedge element has only six 

nodes, but the mapping function is nonetheless valid if one makes x1 = x4 and 

x5 = x8• The general form of the interpolation function for the displacement 

component u is given as (Tracey 1Q7 4) 

where 

u = ud 1 - r ) ( 1 - '1 ) ( 1 -1 ) + u2 C( 1 - ,-'7 ) ( 1 - 1 ) 
·.· ·-· . 

+ u3 r '1 ( 1 - 'j ) + u4 ( 1 - r ) ,., ( 1 - 1 ) 

+ Us ( 1 - f ) ( 1 - '7 ) 'j + Us f ( 1 - '1 ) 'j 

+ U7 f '7 'j + Ug ( 1 - f ) '7 'j 

1 

f = e2 for displacement components Ux and Uy 

= e for COmponent Uz 'along crack edge. 

(5.2) 

Equation 5.2 considers eight degrees-of-freedom, but for the wedge u1 = u4 and 

u5 = u8• From Eqn. 5.2 it can be seen that local ux , uy displacement components 

depend on the square root of e, whereas Uz depends on e only. This results in a 

1/Vr distribution for the local strain components €xx , Eyy and €xy on a local 

·· plane perpendicular to the crack edge and non-singular variations of 
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fu , fzx and f 3y throughout the wedge, where r is .~he radial distance from the 

crack tip. 

For modelling the region at the vicinity of a crack in a three dimensi0na_l struc-
.: ._· 

tural model, one may need 5- and 4-noded singular elem~nts. These elements can 

be obtained b"y collapsing different side\' ·of the prism as indicated b Fig.5.2. It is 

observed that on any local xy plane ·perpendicular to the crack edge, the displace-
::: 

ment interpolation functions satisfy singularity constraints. The embedded ellipti-

cal crack front is modelled as a number of straight line segments. Each straight 

crack edge is surrounded by singular elements. These in turn are surrounded by 

incompatible brick and prism elements. Figure 5.3 shows the schematic arrange-

ment of elements around the crack across any cross-section at the weld toe. The 

three-dimensional discretization of the crack region is shown in Fig. 5.4. 

· 5.4 Determination of Stress Intensity Factor 

Due to the axial and in-plane bending loads·; the fracture will be predominantly_ 

in crack opening mode or mode I. The stress distribution at a point (whose coor-

dinate is r,O) in the immediate vicinity or a curved crack front (Fig. 5.5) for this 

mode I is as follows (Fenner and Mihsein 1984}: 

K1 0 ( . () . 30 ) 
uxx =-cos- 1-sm- sm-V21IT 2 2 2 

K :c. 

1 () ( . () . 38 ) 
Uyy = -J21IT-== COS 2 1 +SID 2 510 2 

::· 

, . 
·' 

2v K1 () 
(j - cos-zz- .ffii 2 

(5.3) 
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I. Incompatible brick element 

2. incompatible pnsm ~,lement 
3 . singular element 

:.• 

1 

y 

X 

Fig. 5.3 Schematic arrangement of three types of element 
around crack front. 
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f'ig. 5.4 Three-dimensional discretization of the crack regi? n. , 
!.: 
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Fig. 5.5 Fracture modes. 
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K1 0 . 0 30 
rxy .·. .Jiiiii. cos 2 sm 2 cos 2 
Tyz = Txz = 0 

The crack tip stress intensity factor, K1, can be evaluated on three convenient 

lines i.e. in front of the crack((}= 0), on the crack face(O = 1r) and normal to the 

crack( 9 = 7r/2). The normal stress, aYY' in front o(, the crack is 
,\ 

1 (5.4) 

(2m) 2 

From the calculated stresses at two points, lying in front of the crack and very 

close to the front, the stress intensity factors are calculated using Eqn. 5.4. Then 

the crack-tip stress intensity factor, K1, is obtained by extrapolating linearly to r 

=0. 

5.5 Results and Diseussion 

'"·'~·:; The variation of the maximum principal stress( up) along the chord surface at the 
·' " 
saddle and crown points is examined. Results are obtained for axial and in-plane 

bending loads and for the following cases: i) a joint without a crack, ii) a joint 

with an incipient crack and iii) a joint with a crack with depth equal to one half 

of the thickness or the chord at the weld toe. For the axial load case, Fig. 5.6 

shows that the stresses near the weld toe region in the presence of an incipient 

·. crack at the saddle point are as much as twice those or the joint without a crack. 

The stress magnitude rapidly decreases away from the crack front but is always 

greater than that of a joint without a crack. For a joint with a finite depth 

'. 
! . . . 
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Joint without crack 

- + - Joint with mctptent crack at 
weld toe 

• --1--. Joint with crack depth equal 
the thickness at weld toe 

to half 

\ 
3.0 ~ " 

\ 
\ 
\ . \ ,, 
''h 

"' ., 
X 1.0 \ 
"\ \. 

0.0 \ 
o.o 0.3 

distance (m) 

··-

Fig. 5 .6 Stress variation along chord surface at saddle point 
in presence or weld toe crack due to axia l load. 
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crack, the stress distribution in the region remote from the crack almost matches 

that of a joint with an incipient crack. Near the crack the stress decreases con-

siderably, which is evident from the presence of free surface of the crack face. 

This agrees well with the phenomenon of hot spot strain drop observed during 

fatigue testing of the tubular joints, reported in the literature (de Back and 

Vaessen 1981). For the in-plane bending case, Fig. 5.7 shows that the stresses 

near the weld toe region of a joint with an incipient crack at the crown point are 

slightly greater than those of a joint without a crack. A decrease in stress near 

the weld . toe in the presence of a crack with a depth equal to one half of the 

thickness is observed similar to the axial load case. Away from the weld toe, the 

magnitudes of stress are almost the same for all three cases. 

The normal stress (uy) variations along the brace at the saddle and crown points 

are presented in Figs 5.8 and 5.9. At the weld toe of the brace, the stress magni-

tude due to an incipient crack is considerably less than that of a joint without a 

crack.The stress magnitude near the weld toe, for the case of finite depth, is ver~~· 
1', 

much less compared to the other two cases and is nearly the same in regions 

away from the weld toe. The stress variation along the brace surface at the crown 

point in the presence of an incipient crack is about 14 percent higher than that of 

a joint without a crack. In the case of a finite depth crack, the magnitude of 

stress is higher than the other two cases in the region away from the weld toe . 
. ': 

Figures 5.10 and 5.11 show the variation of the stress, normal to the crack front 

(uyy), across the thickness of the chord at the saddle and crown points. For both 
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Joint without crock 

- •- Joint with in'ciptent crack at weld toe 

.-.-. Joint with crack depth equal to half 
the thickness at weld toe 
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Fig. 5.7 Stress variation along chord surface at crown point 
in presence of weld toe crack due to in-plane bend­
ing load . 
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Joint without crack 

- +- Joint with incipient crack at 
weld toe 

• Joint with crack depth equal to 
half the thickness at weld toe 

0 .1 
lml 

--­·-. 

0 .2 

Fig. 5.8 Stress variation along brace surface at saddle point 
in presence or weld toe .~rack due to axial load. 
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2.0 Joint without crack 

--•- • Joint with Incipient crack at weld toe 

-••-· Joint with crack depth eQual to half 
the thickness at weld toe 
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Fig. 5.9 ' stress variation along brace surface at crown point 
in presence of weld toe crack due to in-plane bend­
ing load. 



: ~ 
.· : 

.. ... ... 
::~ 

l 

-N 
E 
' z 
~ 

N 
0 --

1/'1 
1/'1 
Q,) 
~ -en 

\ 
\ 

\ 
\ 

\ 
\ 

-138-

"oint without crack 

_ ... _ Joint with inc1p1ent crock at 
weld toe 

C: · --t•~· Joint with crack depth equal to 
half the thickness at weld toe 

' ' ', 
' ' ' ' 
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Fig. 5.10 Through-thickness stress variation in front of weld 
toe crack at saddle point due to axial load . 
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Jomt wi1hou1 crack 

- •-- Jo1nt with ;f'ICIP•ent crack at weld toe 

Joint with crack depth equal to half the 
thickness at weld :toe 

10 20 

Chord wall thickness (mm) 

Fig. 5.11 Th1·ough-thickness stress variation in front of weld 
toe r.:rack at crown point due to in-plane bending 
load. 
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axial and in-plane bending loadings, the stress is tensile at the outer surface and 

compressive at the inner surface of the uncracked joint. The presence of the 

crack changes the stress field into an entirely tensile field. The stresses across the 

chord wall (in front of the cracks) are much higher than those of a joint without 

a crack. The crack tip stress intensity factors for the incipient and the 50 per- . ; 

~~ 
cent of thickness cra~k:;4e 42.6 MNni\.3/ 2 and 55.6 MNm-3/ 2 for axial loading 
~~- . . "\ 

and 9.31 MNm·3/ 2 and 11.09 MNm-312 for in-plane bending, respectively. The 

corresponding hot spot stresses due to axial and in-plane bending loads are 306.1 

MNfm2 and 86.4 MN/m2. The stress intensity factors corresponding to the 50 

percent of thickness cracks are compared in Fig. 5.12 with experimental results 

reported by Dover and Dharmavasan(1982). 
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1.6r--------------------..., 
1.4 

T- joint,_.. - axial 
Y- joint· inplane bendinq 
(Dover and Dharam'lasan 1982) 

·-~-

.. 

~~ ~ b a Axial (computed) 

II 

~ ·, 

In- plane ----
bending {computed) 

Crack Depth, a/ Chord Thickness, t 

Fig. 5.12 Comparison of computed Y. with reported experi­
mental variation. 



CHAPTER6 

FATIGUE CRACK PROPAGATION IN BASE METAL 

6.1 Introduction 

A knowledge of the fatigue-crack-growth rates, in air and in s~awater, and the 

stress intensity factors (computed) corresponding to the weld toe defects are ·.~· 
~ a 

essential to predict the fatigue life of offshore tubular structures. Fac~ors which ;~ 

can influence the resistance of a material to corrosion fatigue can be separated 

into mechanical, environmental and metallurgical factors. Mechanical variables 

which govern crack-growth-rate are principally frequency, stress ratio, wave form 

and range of stress in tensity factors. Environmental factors include temperature, 

degree of aggression, electro-chemical potential difference and marine fouling. The 

metallurgical factors arise essentially from the steel production,:processes, quality 
·-!..._; 

and production route. 

Hence there is a need to generate quantitative fatigue-crack-growth information 

which can be used in design and in making decisions concerning fabrication, 

operation and protection. But the testing of large-scale and small-scale tubular 

joints is both costly and time consuming compared to small scale tests on CT, 

WOL, CCT, SET and other specimens. The small scale tests have the advantage 

of relative simplicity and the ability to investigate a number of variables in a rea-

sonable time. During the past decade extensive research programmes have been 
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in progress, particularly in Europe, on quantifying the effects of loading and 

environmental parameters on fatigue-crack growth, as applied to offshore prod uc­

tion and exploration platforms. Most of the tests were conducted at tempera­

tures which prevail in the North Sea. {S°C to l2°Q), or at room temperature. The 
'·' 

temperature of most Canadian offshore waters (0° to S°C) is lower than that of 

the North Sea. 

This chapter presents the results o·f some fatigue-crack-propagation tests on small 

scale specimens in air and in sea water, under constant amplitude loading. The 

effects of temperature, frequency, load ratio and wave form on the crack-growth-

rate are studied. The Compact Tension (CT) specimen is selected for the fatigue-

crack-growth-rate tests for the following reasons: ASTM E647-81 favours the CT 

specimen use, whose planar dimensions scale can be chosen proportional to the · 

size. Moreover, its larger height to width ratio provides increased resistance to 

out-of-plane cracking and arm break off, while testing at high loads. 

6.2 Experimental Proeedure 

Fatigue-crack-growth rates are measured for Compact Tension specimens with 24 

mm thickness and 101 mm net width (Fig. 6.1). The specimens with the starter 

notch perpendicular to the rolling direction are prepared from 26 mm thick steel 

plate, manufactured to CSA G40.21 M 350 WT specification, by oxygen cutting. 

The specimens are notched in two steps: first by saw-cutting and then by miller 

cutter, specially ground to contain an included angle of 30°. The chemical compo-

sition and the mechanical properties of the plate are given in Table 6.1. 
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Table 6.1 Chemical composition and mechanical properties 

of CSA G 40.21 M 350 WT steel. 

Chemical composition: elemental weight(%) 

c Mn p s Si others 

0.22 o.8LL5 ,:0.03 0.04 o.1slo.4 0.1 

Mechanical properties 

Yield strength (MN/m?~)- 405 
Ultimat~ tensile strength (MN/m2

) 513 .,.,_ 
~%} 29 Elon~a:tion 

.... 

·,, 

: '": 

. -~ 

'} 
_;·. 
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ALL. DIMENSIONS ARE IN MILLIMETRES 

B = 24.0 

NET WIDTH = 101.0 
Tt-41CKNESS B = 24.0 
TOTAL WIDTH C = 1.2 5 W 

HEIGHT H :: 1.2 5 W 

45.0 

D= 0 25 W:: 25.0 

I 25.0! W= lQI.O 

126.0 

HOLE DtA D = 0.25 W = 25.0 

I 

o\ 
• I \0 , 
~ : 
l\ 
~ -

1 

~i 
~ ~ - · 
ll l 

:x:: . 
i 

i 
' 

NOTCH WIDTH N = 0.065 W MAX 

EFFECTIVE NOTCH LENGTH M = 0.4 W 

EFFECTIVE CRACK LENGTH a = 0.45 W 

Fig. 6.1 Compact tension specimen. 

t: 
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. ·::~) : 
'/ .. · · 

Tests are carried out under constant amplitude loading on a closed-loop servohy-

draulic Materials Testing System (MTS) using a tension to tension loading (Fig. 

6.2). Thirteen tests are carried out in air inside the laboratory cold room for vari-

ous temperatures (-l5°C to 4°0), load ratios (0.05- 0.3) and frequencies (0.05 Hz 

- 2.0 Hz). To study the.-~ffect of sea water on crack-growth-rate, eleven specimens 

are tested in natural sea water. The temperature of the sea water for ten of 

these specimens is maintained at 0°0, using a recirculation system (Fig. 6.3). 

Load ratios and frequency ranges for the sea water tests are 0.05 to 0.3 and 0.05 

Hz to 0.5 Hz, respectively. All tests are carried out under sinusoidal loading 

except one under saw tooth loading. A detailed schedule of the variables for the 

crack-growth-rate data generation is given in Table 6.2. 

6.3 Data Anl\,lysis Procedures 

Two separate computational procedures are necessary to analyze fatigue-crack 

growth data, so that the results can be expressed in a useful, geometry-

independent form. One of these procedures is the computation of the stress inten-

sity factor range, ~K, from the discrete crack length measurements and the load-

ing variables for the test specimen. The other involves computing the instan-

taneous fatigue-crack-growth-i"ate, (da/dN)iJ from the discrete measurements of 

crack length (ai) and the elapsed fatigue cycles (Nil· Typically, both operations 

are conducted on 18-25 data points per test. 

6~3.1 Computation of ~K 

The variation in the stress intensity factor in a. fatigue cycle, ~K, is defined using 
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Table 6.2 Schedule of variables for crack-growth-rate 

data generation. 

(CT specimen, material: CSA G40.21 M 350 WT) .. 

Sp. No. Temp., T Load Freq., f Envir. 
(oC) ratio, R (Hz) ... 

1 4 0.1 0.2 A 
2 4 0.1 0.5 A 
3 4 0.1 2.0 A 
4 4 0.1 0.1 A 
5 4 0.2 0.2 A 
6 4 0.3 0.2 A 
7 4 0.05 0.2 A 
8 4 0.1 0.05 A 
g 0 0.1 0.2 A 

10 -5 0.1 0.2 A 
;;:~: 11 -10 . 0.1 0.2 A 

12 -15 0.1 0.2 A 
13 3 0.1 0.2 A 
14 21 0.1 0.2 sw 
15 0 0.1 0.2 sw 
16 0 0.1 0.2 sw 
17 0 0.2 0.2 sw 
18 0 0.3 0.2 sw 
19 0 0.1 0.1 sw 
20 0 0.1 0.05 sw 
21 0 0.1 0.5 sw 
22 0 0.3 0.2 sw 
23 0 0.05 0.2 sw 

*24 0 0.1 0.1 sw 

* saw tooth loading 

A: Air 

SW: Sea Water 
::; . 
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LOAD 
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rJI' fl SPECIMEN 
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COOLER . .. 
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Fig. 6.3 Schematic diagram of CT specimen under test with 
recirculation system. 
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only the positive portion of the loading cycle based on the common physical con-

cept that the stress intensity factor is equal to zero when the crack (aces are 

closed. For the compact tension specimen, .6-K is calculated using the following 

expression (ASTM E647-81) 

.6-P y'ai 
( .6-K )i = B W X 

[ 29.60- 185.5 [; 1 + 655.7 [; J'- 1017 [; 1· + 638.9 l; 1· ] 
(6.1) 

where .6-P is the applied load range and a; is the instantaneous crack length. B 

and W are the ~pecimen's thickness and net width, respectively (Fig. 6.1). 

6.3.2 Crack-growth-rate evaluation 

The instantaneous crack-growth-rate (da/dN)i is computed by fitting a 2nd order 

polynomial (parabola) to sets of seven successive da~a points. The form of the 

equation for the local fit is as follows (Hudak et al 1978): 

(6.2) 

where ' 

(6.3) 

and ai is. the fitted value of crack length at Ni. b0, b1 and b2 are the regression 

.. parameters which are determined by the least squares method. The rate of crack 

---
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growth at Ni is obtained from the derivative of the above parabola, which is 

given by 
' ·· '· . 

( 
da 2bl + 8b2N 
dN )~, = N N 

.., i+3- i-3 
(6.4} 

The value of ~K associated with this da/dN value is computed using the fitted 

crack length, ~it corresponding to Ni. 

6.4 Results and Dis~U:ssfo·~ , 

The fatigue-crack-growth data (a vs. N) obtained from 24 tests· in air and in sea 

water are shown in Figs. 6.5- 6.11. Figure 6.4 shows the fractured compact ten-

sion specimens~,~The crack-growth-rate data are presented graphi~ally ·and alge-

braically. The graphical method consists of log-log plots of da/dN as a function 

of ~K to display wide-range data. The computed initial and fin~l crack-growth-

rates and the stress intensity factor ranges for the specimens are given in Table 

6.3. A regression::curve based on the least squares method is fitted to each set of 

experimental crack-growth-rate data (da/dN, ~K) using Paris' equation 

da/ dN = C ( AK )m (6.5) 

The correlation coefficients obtained from the statistical analyses of the data 

points are in the range· of 0.98 and above for a vs. N curves and o·:ss to 0.98_. for 

da/ dN vs. D.K curves. The lower correlation values for da/ dN vs. AK curves are 
. 

obtained for tests 1, 4 and 21; in all the other cases, it is well over 0.90. The .-;; 

coefficients C and m, obtained from linear regression for each specimen, are given 
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Table 6.3 Initial and final crack-growth-rates and stress intensity 

-·. 

,'f 

factor ranges for CT specimens. 

Sp. No. 

1 
2 
3 
4 
5 
6 
7 
8 
g , 

10 
11 
1~ 

13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

daLdN {mLcycle} 
Initial 

.163E-06 

.268E-06 

.278E-06 
.490E-06 
.352E-06 
.153E-06 
.384E-06 
.406E-06 
.780E-06 
.309E-06 
.290E-06 
.283E-'06 
.285E-06 

.637E-06 

.453E-06 

.349E-06 

.386E-06 

.266E-06 

.449E-06 

.747E-06 

.545E-06 

.266E-06 

.580E-06 

.626E-06 

Final 

.845E-06 

.146E-05 

.UBE-05 

. 143E-05 

.969E-06 

.589E-06 

.783E-06 

.776E-06 

.331E-05 

.112E-05 

.854E-06 

.112E-05 

.720E-06 

.117E-05 

.770E-06 

.128E-05 

.780E-06 

.779E-06 

.127E-05 

.117E-05 

.164E-05 

.838E-06 

.139E-05 

. 151E-05 

) · ~ ... 
~- __ ,.· 

~K (MNm-312} 

Initial Final 
--

33.08 57.57 
33.44 64.03 
30.42 58.88 
43.80 67.58 
36.54 58.11 
25.91 47.54 
43.59 57.01 
39.01 50.81 
3~:68 60.33 

··. \"' 
61.05 35.30'-"" ,, 

34~09 53.69 
33.75 56.23 
35.28 53.56 

36.84 55.02 
37.52 '' 48.58 
34.20 60.48 
30.79 49.91 
26.01 47.02 
34.31 61.62 
34.06 49.45 
41.99 63.08 
26.72 43.05 
38.26 67.38 

r . 

36.45 62.03 

' . 

-. 

I; 
~ : 
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Fig. 6.7 Crack growth data. in air: T = 4°C, r = 0.2 Hz and 
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.-·in Table 6.4. The data obtained from specimen no .. 23 are not ;:cpnsid,ered. for dis-: .·: .... _ .(/~)-!__•.:\-~ ?.. ·: . ··• ·r : ' ,·• , .• ..,~. . . ·... . . .. 
. · ~--:- ... .. .. . .~~ ... ~. ~·:. :· ... .. ··::j.-r : .... l ·.~~:·:: : . ... , • 

cussion' be~.a~se tp.e:.s~.~ water. temperature d'i(F not jemain steady due to pract.i~.!al 
.~ .. . :;; ~ · . . :~.-,i-·~ :.:-. :-··• .. r{. ·;:· ·~· "'" .\ f ' '. • I 

problems. The c~ack~growth-rate data a~e discuss~d below. 
:..:.•: 

6.4.1 Crack-growth-rates in air 

The temperature dependence of the fatigue crack-growth-rates in air on the stress 

···:.::.: :. :.:::.-:.·:.- ; : 

intensity factor range is shown in Fig. 6.12, for a ~tress ratio R = 0.1 and fre-

quency of 0.2 Hz. There is no significant decrease in the crack-growth-rate at 6.K 

= 50 MNm-312 as the temperature is lowered from 4°C to -l5°C. From Fig. 

6.13, it can be seen that the crack-growth-rate (growth per cycle) increa:ses by 15 

percent at ~K = 45 MNm-312 as the frequency increa.~~ from 0.05 Hz to 2.0 Hz, 

but at the upper 6.K range the effect is not- significant. The results of the tests 

with different R-values are presented in Fig. 6.14. Comparing these results, it can 

be noticed that at a stress intensity factor range of 45 MNm-312 .,the crack-

growth-rate increases by 19 percent as the load ratio increases from 0.05 to 0.2. 

6.4.2 Crack-growth-rates in sea water 

The fatigue-crack-growth-rates for 21 °C and 0°0 are shown in Fig. 6.15. A 

decrease in growth-rates at the lower stress intensity factor range by 43 percent is 

observed when the temperature is reduced from 21°C to 0°C. This is probably 

due to the decrease in corrosion reaction rates with decreasing temperature. In 

the upper ranges of 6-K, the effect of temperatui·e is negligible. The effect of fre-

-~·~'.. 
quency on the fatigue-crack-growth-rates iri':.:a~a water is shown in Fig. 6.16. From 

these results it can be seen that at the higher 6.K ranges, the effect of frequency 
.1) 

} 
,j? 

... ;.:. 
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Table 6.~, Coefficie.nts C and m for CT specimens. 
U I 

!• 

c m Sp. No. 
(m/cycle) 

1 .274£-10 2.598 
2 .396E-10 2.507 
3 .102E-09 2.263 
4 .265E-10 2.598 
5 .174E-09 2.131 
6 .195E-09 : .. -:-~ 2.074 
7 .753E-10 

'~~· · 
2.296 .. _, . 

8 . 105E-09 2.223 
9 .408E-10 2.757: 

10 .457E-10 2.475 
11 .566E-10 2.407 
12 .578E-10 2.402 
13 .397E-10 2.490 

14 .287E-08 1.509 
15 .617E-10 2.419 
16 .429E-10 2.513 
17 .194E-08 1.524 
18 .447E-09 1.947 

(! 19 .121E-08 1.675 
20 .120E-07 1.166 
21 .843E-11 2.959 
')') .... .117E-09 2.300 
23 .727E-09 1.822 
24 .775E-09 1.826 

·=-· 

-

-:i 

':..1 
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is less, whereas at ~K = 35 MNm-312 the growth per cycle decreases by 58 per-

cent as the frequency increases from 0.05 Hz to, 0.5 Hz, because the environmen-
;;:. ·- . il 

tal action decreases due to shorter crack : OP~hing ti~~. Figure 6.17 shows the 
'·>·-.... . ·' ' 

effect of load ratio on the fatigue-crack-growth-rates in sea water. The effect of 

the loading wave form on the crack-growth-rates is shown in Fig. 6.18. The 

crack-growth-rates due to the saw-tooth wave form loading are about 15 percent 

higher than the rates due to the sinusoidal loading . . 

6.4.3 Influence of sea water 

In Fig. 6.1Q the results of the tests in sea water (at R = 0.1 and r = 0.05 Hz) ar~. 

compared with the results of the tests carried out in air. This figure shows a 

significant inftuence of the environment with a crack-growth-rate in sea water up 

to 2.7 times as high as in air at ~K = 3S MNm-312 and T = 0 to 4°C. This may 

be due to the effect of anodic dissolution as well as the hydrogen embrittlement. 

At high ~K range, crack propagation rate is so fast that the mechanical cracking 

dominates the hydrogen embrittlement and anodic dissolution effects; hence the 

influence is less. As the frequency increases from 0.05 Hz to 0.5 Hz at the 0.1 

load ratio, the inftuence of sea water on crack-growth-rates is seen to be reduced 

(Figs. 6.1Q-6.22). At ~K = 3S MNm-312, the crack-gi~wth-rates in sea water are 

1.71, 1.17 and 1.06 times as Q.igh as in air for frequencies of 0.1, 0.2 and 0.5 Hz, 

respectively. Also, it can be seen that at a frequency of 0.2 Hz, the influence of 
. ~ . 

sea water on crack-growth-rates slightly increases as the load ratio increases 

(Figs. 6.21, 6.23 and 6.24). Little effects of load ratio on the crack-gro'\\•tb-rates 

~. both in air and in sea water are observed. 
J ' ~> 
;-;,::.. 
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= 0.2 and r = 0.2 Hz. 
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8.4.4 Comparison with published result~ 

In Fig. 6.25 the result of the test performed in air at R = 0.05 during the present 

investigation is compa.red with the results obtained by Vosikovsky and 

Rivard(1Q81) for X-65 pipe-line steel at R = 0~05 and . by Scholte ~nd Wild­

,eh~t(1981) for :Euronorm ll3-72 Grade Fe E355 KT steel at R = 0.1. The figure 
" -··•r.} : 

shows there is a good agreement with ·the reported results. The fatigue crack-
~ . 

· "''gr~:wth-rate in sea water at R = 0.05 and f = 0.2 Hz is compared with other ... 

published results (Thorpe et al 1982, Vosikovsky et al 1983) in Fig. 6.26. The 
•' 

difference i)l results is probably due to the artificial sea water as well as to the 

different materials used in the other two investigations. The crack-growth-rate in 

sea water is about a factor of 2.7 higher than in air, which shows good agreement 

with the results obtained by Scholte and Wildschut (1981), by Johnson et al 

(1978) . and ~y Vosikovsky: et al (1983). The reduction in the growth-rate in sea . 

water by 1.7 times as the temperature is reduced from. 21°C to 0°C is comparable 

with results reported by Vosikovsky et ~~ {1983). During tests in sea water at R 

= 0.3, a slightly higher crack-growth-rate is obtained than at R = 0.1. This is in 

~ccordance with results obtained by other investigators (Johnso~. et al 1978, Vosi­

kovsky 1980, Vosikovsky et al 1983). As shown in Fig. 6.27, a slight increase in 

'm' with a reduction in 'C' is observed during the fatigue-crack propagation. The 

relation C = 2 X 10-6 / ( 78.029 )m is obtained from the base metal results~ 

which is similar to the relation shown by Lieurade (1985) for E36-Z steel. This 

relationship appears to be a basic relationship for CSA G40.21 M 350 WT steel, 

except in the lower crack growth rate region. 
/.: 
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CHAPTER7 

FATIGUE LIFE ESTIMATION 

7.1 Introduction 

Observations of marine and offshore structures during service tell us that cracks 
:: . . 

may be present as initial production cracks and/or as growing fatigue cracks. 

These cracks are likely to have a significant influence on the strength of tubular 

members; this effect is not considered in toda.y's common design practice. The 

traditional approach to the design of offshore tubular structural components sub-

jected to cyclic loading has utilized S-N (stress range, S, versus number of cycles 

to final failure, N) data. The method assumes that the 'hot spot stress' character-

izes the tube stress field during the entire growth of a crack from start of life to 

failure and 'failure' has three definitions: viz., Nl corresponding to the first indi-

cation of cracking (by visual measurement or strain ga~ges), N2 corresponding to 

through tube wall cracking and N3 corresponding to the end of test (considerable 

reduction in stiffness). .· 

Apart from this assumption, the S-N curve has a number of other limitations. 

Data have to be extrapolated to cover the very high cycle range or to allow for 

time dependen~ secondary effects, like corrosion. Moreover, the S-N approach 

does not separate out crack initiation and cannot be applied t~, the determination 

of the life-expectancy of a tubular joint with a crack-like defect of a known size. 
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So there is no clear way of calculating the fatigue life without understanding the 

fatigue mechanism. Hence a more comprehensive model of fatigue growth in 

tubular joints must be developed. This chapter presents the application of linear 

elastic fracture mechanics to the fatigue life estimation of a. tubular joint. 

7.2 Linear Elastic Fracture Mechanics (LEFM) Approach 

The generalized Paris' equation (Eqn. 6.5) can be applied to any cracked body in 

the stable growth region. The:: effect , of a difference in: geometry can be incor­

porated in the solution of the stress intensity factor, K, which describes the stress 

environment at the crack-tip. For two different geometries ot the same material, 

the stress distribution will be identical if the stress intensity factor, K, is the 

same. Therefore, once the values of the coefficients C and m in Eqn. 6.5 have 

been established from laboratory crack propagation tests on small scale sped-

mens, the equation can be applied to tubular joints of the same material having 

the same fracture mode. 

The number of cycles, N, required to propagate the weld toe crack from an initial 

-... depth, ai to a final depth, 3£, is obtained by integrating Eqn. 6.5 as 

(7.1) 

This equation contains five distinct parameters, i:e., (i) the initial weld toe defect 
. 

size, ai, (ii) the depth, ar, of the crack defining failure of the joint, (iii) the varia-

tion of the stress intensity factor range, ~K, for the joint with an embedded 
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moving crack front, (iv} the coefficient, C and (v} the coefficient, m, relating the 

crack-growth-rate to the stress intensity factor range of the material for various 

environmental conditions. Coefficients C and m are obtained from small scale 

tests and have been discussed in the previous chapter. Various factors which can 

influence the prediction of fatigue life based on LEFM approach are (a} magni-

tude of the residual stresses present at the weld toe, (b) reentrant angle of the 

weld, (c) size of the plastic zone and (d) initial defect size. In this study, except 

the initial defect size all the other effects have been neglected. 

/ 

'1.2.1 Initial defect size and failure depth 

To date, only a moderate effort has been made to study the effect of crack initia-

tion at welds on the fatigue life of offshore structures. Since the initial defect size 

is comparable with the size of the plastic zone size, the linear elastic fracture 

mechanics conditions will not apply until the crack has progressed some distance. 

Engesvik(1982) has suggested that the size of this region of plasticity is of the 

same order as the typical grain size, i.e., approximately 0.01 mm, and that the 

initial crack size, ai should be greater than the plastic zone size. Based on the 

relationship between initial defect size, plate thickness and weld sizes in a fillet 

welded joint, reported by Burdekin(1981), the initial weld toe defect-:.depth, ail 

can be assumed to be 1 mm for a 32 mm thick chord wall. 

The choice of hilure life is largely determined by the requirement. In the design 
\ .. ,-

,. of non-redundant structures, no loss of stiffness can be tolerated. This limits life 
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to N2. In a redundant structure N3 is frequently employed. However, for inspec-

tion, it is necessary to find a crack so that it can be repaired before reaching 

these failure sizes. The aim here may be to limit the crack size corresponding to a 

life of Nl; however it is very difficult to know exactly to what extent offshore 

inspection could find such a crack in the large welded areas present in offshore 

struCtures. As far as crack growth analysis is concerned, it would be difficult to 

follow crack behaviour as break through of the ch~rd wall occurs'-'a.t the weld toe. 

Taking all these into account, the final depth, a,, of the weld toe crack should be 

taken as the chord wall thickness, T. 

7 .2.2 Fatigue life 

Observations suggest that fatigue cracks present in the tubular. joints grow 

steadily through the wall thickness at a fairly constant rate (Dover and Dharma-

vasan 1g82, Gowda lg83). Since the loading in the brace is either an axial load 

(tensile) or an in-plane bending load, the weld toe crack propagation will be 

predominantly in the opening·mode. So it would be more realistic to represent 

the part-through-thickness crack-growth-rate for a tubular joint using the mode-l 

stress intensity factor range corresponding to an embedded weld toe crack having 

a maximum depth equal to one half of the chord ~all thickness. The stress inten­

sity factor range can be expressed in terms of the stress intensity factor of the 

cracked tubular joint as follows 

(7.2) 

It should be noted that the above equation is valid only for positive R, i.e. when 
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the loading is tensile to tensile. When R is negative (loading is tensile to compres-

sive), crack closure takes place during the compressive portion of the loading 

cycle and only the tensile portion is responsible for the crack propagation. So for 

R < 0, ~K, will be K1 only. The number of loading cycles to failure, N, is given 

by 

(7.3) 

where C and m are the crack-growth parameters obtained from CT specimen 

tests, T is chord wall thickness, ~ is the initial defect size, R is the load ratio of 

the constant amplitude loading cycle and K 1 is the analytically obtained opening 

mode stress intensity factor corresponding to the maximum fluctuating load. 

7.3 Results and Discussion 

The hot spot stress ranges are calculated using the peak stress obtained from the 

analysis as the maximum stress and the minimum stress (calculated from the 

peak stress using the load ratio) for each case. The hot spot stresses and the 

stress intensity factors for other load magnitudes for the joint can be calculated 

from the present linear analysis results. The estimated through-thickness-

cracking lives of a tubular T-joint with 1 mm initi~l weld toe defect depth, due 

to axial as well as in-plane bending loads in both air and sea water, are tabulated 

in Tables 7.1 - 7.4. The life of the joint, for a particular temperature, load ratio 

and frequency, is calculated using the corresponding C and m values from Table 

6.4. 
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Table 7.1 Estimated fatigue life of tubular T-joint 

in air due to axial load. 

S.No. Hot spot Temp., T Freq., r Load Number of 
stress ra~ge (OC) (Hz) ratio, R cycles, N 

{MNLm2) 

1 275.5 4 0.2' 0.1 4.35E+04 
2 275.5 4 0.5 0.1 4.2gE+04 
3 275.5 4 2.0 0.1 4.32E+04 
4 275.5 4 0.1 0.1 4.4gE+04 
5 244.8 4 0.2 0.2 5.47E+04 
6 214.2 4 0.2 0.3 7.g6E+04 
7 2go.8 4 0.2 0.05 4.55E+04 
8 275.5 _.-, 4 0.05 0.1 4.g1E+04 
g 275.5 ----5 0.2 0.1 4.21E+04 

10 275.5 -10 0.2 0.1 4.44E+04 
11 275.5 -15 0.2 0.1 4.43E+04 

-.... ,.-

Table 7.2 Estimated fatigue life o_f"'tubular T-joint in 
~ 

air due to in-plane bending load. 

'. -~ Hot spot Temp., T Freq., r Load ;Number of 
S.No. 

stress range (OC) (Hz) ratio, R cycles, N 
{MNLm2

) -· 

1 77.7 4 0.2 0.1 2.86E+06 
2 77.7 4 0.5 0.1 2.44E+06 
3 77.7 4 2.0 0.1 1.66E+06 
4 77.7 4 0.1 0.1 2.95E+06 
5 6g,l 4 0.2 0.2 1.70E+06 

.. 
6 60.5 4 0.2 0.3 2.:i6E+06 
7 82.1 4 0.2 0.05 1.84Ej:.·o6~ 

8 77.7 4 0.05 0.1 ,,h7-7E+06 
g 77.7 -5 0.2 0.1 I' E ' -~~.27 +06 

10 77.7 -10 0.2 0.1 2.15E+06 
11 77.7 -15 0.2 0.1 2.13E+06 

/~;;/ 
'~ . 

·' 
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Table 7.3 Estimated fatigue life of tubular T-joint 

in sea water due to axial load • 

. ~\ 
1 .• --· 

S.No. Hot spot Temp., T Freq., f Load Number of 
stress range (OC) (Hz) ratio, R cycles, N 

{MN[m2} 

1 275.5 21 0.2 !: 0.1 2.94E+04 ,\ 

2 275.5 0 0.2 il 0.1 3.87E+04 .. 
3 244.8 0 0.2 II 0.2 4.91E+04 I· ?' 'I 

4 214.2 0 0.2 0.3 5.55E+04 ;i 

1: 
5 275.5 0 0.1 0.1 3.64E+04 (! 
6 275.5 0 0.05 0.1 2.69E+04 ). 

·1. 

7 275.5 0 0.5 0.1 3.44E+04 1: 
j i 

8 :--==.t;/ 5.83E+04 
:i 

214.2 0 0.5 0.1 f/ 

'• ~-~~:.·-:.'' {.: 

Table '7.4 Estimated fatigue life of tubular T-joint in sea " 

water due to in-plane bending load. 

S N . H~t spot Temp., T Freq., f Load Number of 
·-··-· 

. 0. I t (oC) (Hz) ratio, R cycles, N ~:.:::-~-~ess range 
<:·/:- -·-fMN[m2} 

1 77.7 21 0.2 0.1 0.33E+06 
2 77.7 0 0.2 0.1 2.22E+06 
3 69.1 0 0.2 0.2 0.57E+06 
4 60.5 0 0.2 0.3 1.28E+06 
5 77.7 0 0.1 0.1 0.54E+06 
6 77.7 0 0.05 0.1 1.76E+06 

-· 
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The estimated lives are compared in Fig. 7.1 with the experimental data obtained 

from Dutch T-joint specimens with 32 mm thick chord wall, p = 0.5 and r = 0.5 

(Irvine 1981c, de Back and Vaessen 1981). The mean line of experimental data 

reported by lrvine(1981c) was obtained from the fatigue tests on tubular T-joints 

with 32 mm thick chord wall with various joint parameters, whereas the lives 

reported by de Back and Vaessen(l981) are for the joints having approximately 

same parameters as of the present investigation. At higher stress · range lin the 

present case due to axial loading), the_ estimated lives show good general agree­

ment with the experimental life reported by de Back and Vaessen(1981). Slight 

underestimation can be justified due to the fact that the initiation life, which is 

about 30 percent of the crack-through life for this particular joint (de Back and 

Vaessen 1981) is not taken into account in the life calculation using LEFM. 

The estimated '1ives at lower stress range, induced by in-plane bending load at 

brace, are not in:good agreement with the reported experimental data. The incon-

sistancy in the results can be explained due to the use of inappropriate 

'coefficients C and m in the life calculation. Because these lives correspond to the 

lower range of stress intensity factor range, the coefficients C and m should be 

obtained from the CT specimen's crack-growth-rate data at lower stress intensity 

factor ranges. Moreover, at lower stress intensity factor ranges, the crack-

growth-rate in base metal is higher than that in heat affected zone (Lieurade 

1985). As the stress intensity factor range increases, the difference between the 

base metal and the as-welded condition crack-growth-rates reduces. So the 

fatigue lives at lowe·~ stress intensity factor ranges are underestimated . 
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- mean line or exp. data (Irvine 1Q8lc) 
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Fig. 7.1 Comparison of estimated fatigue life of tubular T­
joint with reported experimental S-N data. 



CHAPTERS 

EXPERIMENTAL vERIFICATION 

8.1 Introduction 

~ ~ 

In order to check the stress analysis results generated by the developed computer 

program as well as the proposed model for predicting the fatigue life of a tubular 

joint through analytical procedures using crack-growth data from CTS tests, a 

prototype test is carried out on a large scale tub~lar T-joint. · Joint parameters 

are given in Table 8.1. The material selected for the fabrication is CSA G 40.21 

M 350 WT steel. 

For loading purposes, a horizontal self-straining frame is built (Fig. ~tl). The 

load is applied by a servohydraulic actuator of capacity 3000 KN. The specimen 

is connected to a load cell by a swivel joint, in order to minimize the load eccen-

tricity. The actuator is supported from the top of the loading frame by a free 

floating support consisting of springs and rods. The specimen is supported by a 

saddle assembly at both ends of the chord. Both ends of the chord are bolted on 

to end plates, which are connected to the loading frame through pin supports. 

8.2 Instrumentation 

In order to study the· strain distribution at the critical regions of the joint during 

both the static and the fatigue tests, the specimen is extensively strain-gauged, 

both outside and inside using delta gauges. The exact positions for the st~ain 

. ; ~·: ... 

·, ,_;: 
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Table 8.1 Joint parameters or the specimen tested. 

Type of 

Joint 

Tee 

D T d 
{3=-

D 
(mm) (mm) 

Ql4 lQ 0.5 

D = Chord diameter 
d = Brace diameter 
T = Chord thickness 
t = Brace thickness 

t D 
r=-

T 7=-2T 

1.0 24.05 

L = Length of chord between supports 

, ' .~ 

2L a=n 

6.33 

i 
i .. 



-192-



i 

I 

:. 193-

gauges on the inner surface of the chord are determined using the ultrasound 

method. One quarter of the chord surface near to the intersection is instrumented 

with th1·ee rows of strain rosette. Moreover
1 

saddle and crown· point regions are 

instrumented for both the chord and the brace sides. The schematic arrangement 

of the strain gauges on the outer and inner surfaces of the chord is given in Fig. 

8.2. Altogether, the specimen is instrumented with 276 strain gauges. The weld 

toe crack-depth profile is monitored during the fatigUe test using a multiple AC .. 
. Jl ·::-'"' ... 

potential technique. The spacing of the probes (each ·~·~onsisting of one active pair 

and reference pair) .is varied from 6 mm to 24 mm. N_ear to the saddle point, a 
" 

closer spacing of the probes is adopted to ensure that crack initiati?n is detected 

and monitored properly. Eaci{ active or reference pair consists of two spot-

welded copper-coated steel wires. The scliematic arrangement of the ACPD 

probes on the specimen is shown in Fig. 8.3 .. 

8.3 Data Acquisition 

Strains (due to static and fatigue loads) and AC potentials (for monitoring the 

crack · depth during the fatigue test) are measured using an automatic data 

acquisition system1 consisting of a MINC 11 computer1 a crack micro gauge, 

Keithley scanners and a strain gauge signal indicator. Strain gauges from the 

specimen are c,onnected to the strain gauge signal indicator unit via the scanner. 

The analog signals from the conditioners are transmitted to the comB_uter 

through A/D convertors. A low current with a high frequency AC field from the 

crack microgauge is impressed on the specimen at a distance of 400 mm from the 

weld. The AC probes are connected to the crack microgauge through the 

. ::;::":::~ 
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Fig. 8.2 Schematic arrangement of strain gauges on outer 
and inner surfaces of chord . 
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Fig. 8.3 Schematic arrangement of ACPD pro.bes on the 
specimen. 
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scanner. The distribution of the AC field along the weld toe is scanned periodi­

cally to determine the crack depth growth. The analog signal from the crack 

microgauge is transmitted to the computer through the A/D converters. The 

block diagram for the entire data acquisition system is shown in Fig. 8.4. 

8.4 Test Procedure 

The specimen is loaded in a static test up to a load of 315 KN to determine the 

stress dis~~ibution and the stress concentration factors. The fatigue test is com-

menced after completion of the static test. The maximum and minimum cyclic 

loads are selected to obtain a desired hot spot stress range of 250 MN/m2• The 

joint is tested unde/~onstant amplitude loading at a load ratio, R = 0.16, and 

frequency, f = 3 Hz. During the fatigue test, strains and AC fields along the 

weld are measured periodically in order to monitor the crack growth and the 

stress redistribution. The entire measurements and the testing procedure are con-

trolled by the computer. 

8.5 Results and Discussion 

Before the static test, ·the thickness of the brace wall is measured at three loca-

tions, and the wall thickness is found to be non-uniform. The maximum and 

.:: minimum thicknesses of the brace wall are found to be 20.55 mm and 17.02 mm, 

respectively. The average thickness is f<?und to be 18.86 mm. The uniaxial strain 

gauges are mounted on a location at 8 equidistant points around the brace cir-

cumference, away from the weld. The variation of uniaxial strain along the brace 

circumference for two static loads is shown in Fig. 8.5. From the figure, it can be 
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seen that the ratio of maximum to minimum uniaxial strains along the brace sur-

face is about 2. The figure also shows the variation of wall thickness along the 

brace circumference. 

Since the load acting on the joint is axial, only quarter of the joint is modelled 

for analysis from symmetry consideration. The joint is discretized using 3-D ele-

ments. In order to find out the mode I crack~tip stress intensity factor, 

corresponding to a part-through-thickness weld toe crack, the joint with a shal-

low crack at the sad~le point is analysed. The maximum depth of the crack 

equals to quarter .of the chord thickness. The length of the crack is assumed to 

be 20 mm. 

The experimental hot spot stresses are obtained by extrapolating stresses linearly 

to the weld toe. The variation of hot spot stress concentration factors alo~g 

brace/ chord intersection is shown in Fig. 8.6. From the experiment, a higher hot 

spot stress concentration factor value of 25.23 at the bottom saddle point 

(corresponding to the thinner brace wall position) is obtained, compared to a 

value of 22.17 at the top saddle point (corresponding to the thicker brace wall 

position). Whereas, a value of 16.34 for the hot spot stress concentration factor 

is obtained from the analysis. But the experimentally obtained hot spot stress 

concentration factors based on the approximate nominal stress computed from 

the uniaxial strain measurements are 17.45 and 24.56 for bottom and top saddle 

points, respectively. The variation of stress concentration factor (SCF) along the 

chord and brace surface at the saddle point is shown in Fig. 8.7. Away from the 
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weld, the SCFs obtained from both analysis and experiment are comparable. 

The crack-tip stress intensity factor, calculated from the displacements in front 

of the crack is 18.21 MNm-3/ 2• Corresponding saddle point hot spot stress is 298 

MN/m2
, which is the maximum hot spot stress obtained from the fatigue test. 

The through-thickness cracking life of the joint is estimated using Eqn. 7.3. The 

values of C and m are used as 0.102 x 10-D mfcycle and 2.263, obtained from 

the small scale specimen measurements at a temperature of 4°C and a load ratio 

of 0.1 (refer Chap. 6). The estimated through-thickness-cracking life of the joint, 

with an initial weld toe defect depth of 0.5 mm, is 3.79 X 105 cycles for a hot 

spot stress range of 250 MNfm2• 

The first weld toe crack is detected near the top saddle point of the joint after 

1.0 X 105 cycles. The drop in uniaxial strain (on the _chord surface at the saddle 

point) is observed to be 13 percent at this stage. The second weld toe crack is 

detected afterwards near the bottom saddle point of the joint after a total 

number of 1.8' X 105 cycles. The top-side crack is observed to propagate at a 

substantially faster rate than the bottom-side crack, untill it reaches a depth of 

17.07 mm at the saddle<point. Corresponding number of elapsed cycle is 4.12 

X 105 cycles. After this st~ge, the top-side crack is observed to propagate 

predominantly along the wel~ toe, whereas bottom-side crack propagates both 

across the chord wall n.nd along the weld toe. 

The number of cycles, required for a weld toe crack to grow from an initial depth 

of 0.5 mm to a final depth of 17.07 mm, is predicted to be 3.39 X 105 cycles for 
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this joint with same hot spot stress range. Con~:idering the initiation life of the 

joint as 1.0 X 10
5 

cycles, the error in prediction is 6.5 percent. Underestimation 

of the stress concentration factor and overestimation of the stress intensity factor 

may be the possible reason for such a close life prediction. \~ 
. ~ 
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CHAPTER9 

GENERAL DISCUSSION AND CONCLUSIONS 

9.1 Contribution to the Field of Research 

The contribution of the present study to the fatigue analysis of offshore tubular 

joints is as ~;scussed below. 

A computer software based on the finite element formulations, discussed in 

Chapters~· 3, 4 and S, has been developed to investigate the stress fields in the hot 

spot regions of tubular joints (with or without weld toe cracks). Though various 

auth~rs have analysed general crack problems using special finite elements in the 

past, no attempts were made to analyse welded tubular joints, containing weld 

toe cracks. The analyses of the joint discussed in Chapter S are the first of their 

kind. 

In Chapter 6, the quantitative fatigue-crack-growth information and the material 

coefficients, C and m, for CSA G40.21 M 350 WT steel, proposed for the Cana-
:::: 

dian offshore region, have been obtained. The effects of environmental and 

mechanical variables on· fatigue-crack-growth-rates in this base metal have been 

studied. 

In the past, some researchers have discussed the fracture mechanics approach to 

fatigue life estimation of tubular joints. But no attempts were made to illustrate 

the applicability of the approach using analytically obtained crack-tip stress 

. . ·. 
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intensity factors. The fatigue life of tubular joint has been predicted (discussed 

in Chapter 7), for the first time, based on the fatigue-crack-growth pattern in the 

base metal and on the analytically obtained stress intensity factor. The predic­

tion has been checked by the experimental results on a large tubular T-joint. 

9.2 Conclusions 

A comprehensive study of the fatigue behaviour of tubular T-joints using the 

linear fracture mechanics approach is presented. .A computer software is 

developed for the finite element analysis of tubular joints. Results are presented 

:"' 
. . ··-ror axial and in-plane bending load cases. The stress concentration factors in the 
' ' J ' 

~~.f:"--=-~ 
\}' chord side, obtained from the two dimensional analysis, show good agreement 

with the measured values reported in the literature. Some difference is observed 

between the brace side SCFs and the measured values reported in the lit~rature. 

This is probably due to the displaced brace/chord intersection. Modified SCFs on 
/I 

brace side, based on Irvine's recommendation, are comJ~rable with the rep~rted 

values. 

The brace/chord intersection reg10n including the weld at the saddle point is 

analysed Jor an axial load case using the rezone technique. The imposed boundary 
\\ 

values at the plate-to-solid element transition are obtained from the two dime~~ 

sional analysis. The stresses obtained from the rezoned analysis differ from the 

three dimensional analysis of the entire joint by 5 - 38 percent for various points 

of interest. The deviation in the stresses is probably due to a plate-to-solid transi 
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tion boundary effect. 

Three dimensional stress analysis of the entire joint is done having assumed an 
' • ·\,_ 

idealized shape of the weld reinforcement. For the chord sid';, both the two and 

the three dimensional' analyses give a variation of stress which resembles that 

reported in the literature. In the case of a joint without a plug, the hot spot 

stress concentration factor at saddle point on the chord side is 20 percent higher 

than that obtained from the two dimensional analysis. But on the b_race side it is 
~ ... · . 

only 3 percent higher than the two dimension~S analysis results. In the case of a 

joint with a plug, the stresses near the weld toe ~re smaller than those of the 

joint without a plug. Because of the extra ~.tiffness contribution from the plug, 

the magnitude of the stress concentration is smaller than that of the joint 

. without a plug . 
.. -:;::::# 

. , 

Three dimensional finite element analysis results are presented for the joints, con-

taining incipient and shallow weld toe cracks. In the case of a shallow crack, -the 

stresses away from the weld toe on the chord surface are slightly greater than 

those of a joint with an,.~incipient crack. But near the weld toe, the stresses 

decrease considerably due to the presence of the free surface of the crack face and 
. ' 

are less than those of the uncracked joint. For a joint with cracks the trend of 

surface stress variation along the chord at the crown point, due to in-plane bend-

ing, is similar to that at the saddle point due to axial loading. 

The stresses across the chord wall, in front of the cracks, are much higher than 

those of a joict without a crack, at both saddleand crown points. At the vicinity 
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of cracks, the stressses are high and approximately of the same magnitude. The 

crack-tip stress intensity factors obt~ined from the analyses are slightly higher 
' ·' 

· > ,,.· :.: than the reported experimental results. 

The effects of sea water, temperature, frequency, load ratio and wave form on the 

fatigue crack-growth-rate in CSA G ' ,~0.21 M 350 WT steel are studied over a 6-K 
II r· 4 .· . . 

range of 35 to 70 MNm-312
• Maximt-m. increase in;: crack-growth-rate by a factor 

l_t 

of 2.7 is observed in sea water at 6-K = 35 MNm-31! . f = 0.05 Hz and R = 0.1, 
. :~:~'!'s ~ 

compared to air at a temperature of 0 to 4°C. With frequency increase to 0.5 Hz 

. the difference in g;.·owth-rate almost disappears. The crack-growth-rate at AK = 
35 MNm-3

/
2 is reduced by 1.7 times, when temperature of sea water decreases 

from 21°0 to 0°C. In air, no significant effect of temperature in the range of -15 

to 4°0 is observed. Strong effect of frequency is observed in sea water at low 6-K . ... 

At .c:lK = 35 MNm-312
, an increase in growth-rate by a fact~r of 2.3 results when 

frequency drops from 0.5 to 0.05 Hz. In air, the effect of frequency is negligible. 

The stress ratio \in the range from 0.05 to 0.3 has no significant influence on the 
1) 

·' )/ 

growth-rate.:~ither in sea water or in air. ;;: 

The fatigue life of a tubular T-joint is predicted using the linear f.!acture mechan-

ics approach. The fatigue crack-growth-rates for tubular joints are determined 

using the stress intensity factors corresponding to a 50 percent of thickness weld 

toe crack and the material coefficients C and m obtained from the small scale 

specimen tests: At the higher hot spot stress range, the estimated lives show good 

general agreement with the experimental results available in the literature as well 

as with the test reported in Chapter 8. 
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A prototype tubular T-joint is tested in order to check the stress analysis results 

and to verify the proposed method for predicting the fatigue life. 

0.3 Scope for Further Research 

Useful extensions of the present study are as rollows: 

(a) The analysis can be extended to the direct calculation of the stress 

intensity factor, ~y taking it as a b~ic unknown along with the nodal 

degrees-of-freedom at the element level. : ;-

(b) 
... --:, :: ·.:_~ 

To investigate the effect of a weld toe crack on stress redistribution, as --
the crack front moves ahead, the substructuring capability can be incor-

porated into the computer program, so as. to assist in determining the 

proper SIFs and the direction of crack front propagation. 

(c) Crack-growth-rates in the weld metal can be studied using compact ten-

sion specimens. 

(d) Crack-growth-rate data can be generated at the lower stress intensity 

factor range level. :/ ';: .:.: 
).~~~ · 

:·:::1· 

(e) Crack-growth retardation due to overloading can be investigated ~yiri'g·· 
li ·, ~ 
n. standard specimens. u 

/;:.;.::. 
•I 
1.11_ 

·_-;..;). ' 

·~u-r~--
. •If 

·" 

... ·. 
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