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ABSTRACT 

Amino acids are members of a unique group of compounds that exist in solution as 

zwitterions. Yet the thermodynamic properties of aqueous amino acids have not been 

measured at temperatures above 343 K. The amino acids studied in this work have been 

chosen based on their hydrothermal stability and their solubility in water. A series of batch 

experiments confirmed that aqueous a-alanine, glycine, and proline were stable on the time 

scale required for our measurements at the temperatures, pressures, and molalities required 

for this work. 

The apparent molar volumes V<P of aqueous a-alanine, P-alanine, and proline have 

been determined using platinum vibrating tube densitometers at temperatures from 298 K 

to 523 K and at pressures from steam saturation to 30 MPa. Values of the standard partial 

molar volumes vo for the aqueous amino acids increase with temperature, then deviate 

toward negative values at temperatures above 398 K, consistent with an increase in the 

critical temperature in the solutions relative to water. The apparent molar heat capacities Cp,<!J 

of aqueous a-alanine, P-alanine, glycine, and proline have been determined using a 

differential flow calorimeter and a Picker flow microcalorimeter at temperatures from 298 

K to 498 K and at pressures from steam saturation to 30 MPa. Values of the standard partial 

molar heat capacities C ; for the aqueous amino acids increase with temperature, then deviate 

toward negative values at temperatures above 373 K to 423 K, also consistent with an 
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increase in the critical temperature in the solutions relative to water. The values of both vo 

and C ; increase with increasing pressure. Comprehensive equations to describe the standard­

state properties over the experimental temperature range are reported. 

The deviation toward negative values by vo and C; is opposite to the behaviour 

predicted by the correlations developed by Shock and Helgeson ( Geochim. Cosmochim. 

Acta. 54, 915-945, 1990) and Amend and Helgeson (J Chem. Soc., Faraday Trans. 93, 

1927-1941, 1997). The temperature dependence of vo and C ; predicted using the very recent 

functional-group additivity model of Y ezdimer eta!. ( Chem. Geol. 164, 259-280, 2000) is 

only in qualitative agreement with the experimental results. The contribution to vo and C; 

from the solvent polarization by the large dipole moment of the zwitterions deviates toward 

negative infinity as Tc is approached, in a manner similar to the experimental values of vo 

and C ; for each of the aqueous amino acids. While this agreement is qualitatively consistent, 

it is not quantitatively consistent, which suggests that the non-electrostatic hydration effects 

are of similar magnitude to the solvent polarization effects. 

The acid/base dissociation constants for aqueous a-alanine have been determined 

from 423 K to 523 K using a UV -visible spectrophotometer and the colorimetric indicators 

developed by Xiang and Johnston (J Sol. Chem. 26, 13-30, 1997) and Ryan eta!. (J Phys. 

Chem. 101, 1827-1835, 1997). The dissociation constants that were estimated with the 

functional-group additivity model ofYezdimer et al. (Chem. Geol. 164, 259-280, 2000) and 

those obtained from the isocoulombic extrapolation of room temperature data were found to 
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be an upper limit for the measured values. The contribution ofnon-zwitterionic forms of the 

aqueous amino acids to the experimentally determined values of vo and C; were negligible 

at all but the highest temperatures. 

In this work, the first experimentally determined apparent molar volumes V<fl for 

aqueous a-alanine, P-alanine, and proline were obtained at T :?: 343 K. The first 

experimentally determined apparent molar heat capacities Cp, 4> for aqueous amino acids at 

T ~ 328 K were obtained in this work. The first experimentally determined acid/base 

dissociation constants for aqueous a-alanine obtained at T ~ 423 K were also obtained in this 

work. 
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effective molal extinction coefficient for Nap- at a given value of A 
effective molal extinction coefficient for NapH at a given value of A 
effective molal extinction coefficient for x-at a given value of A 
5000 cm3·kg·1 

1500K 
solvent parameter equal to 228 K 
standard partial molar adiabatic compressibility 
standard partial molar isothermal compressibility 
standard partial molar isothermal compressibility of ionization for an 
aqueous species 
standard partial molar isothermal compressibility of polarization for a 
dissolved ionic species 
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/:1solvK/ dipole 

P w, Td 

Pw 
0 

standard partial molar isothermal compressibility of polarization for a 
dissolved neutral dipolar species 
-10000 cm3·kg·•; wavelength 
conversion factor between different possible aqueous standard states 
correction factor for the standard partial molar Gibbs free energy 
correction factor for the standard partial molar entropy 
dipole moment 
gas phase dipole moment 
permanent dipole moment of aqueous molecule k 
vector sum of the dipole moment of aqueous molecule k and the dipole 
moments due to all of the neighbouring molecules 
temperature independent coefficient characteristic of an aqueous ion or 
electrolyte at a given pressure 
contribution to 3 o due to functional group i 
standard state term 
solution density 
solvent density 
density of a sample solution at the temperature of the delay line in the 
differential flow calorimeter 
density of a reference fluid at the temperature of the delay line in the 
differential flow calorimeter 
density of water 
temperature independent coefficient characteristic of an aqueous ion or 
electrolyte at a given pressure; overall weighted standard deviation 
obtained from a least squares fit 
standard deviation associated with a molar dielectric increment 
standard deviation associated with a dipole moment 
uncertainty associated with vo at 298.15 K 
uncertainty associated with vo at temperatures other than 298.15 K 
resonance period of a solution in the densitometer U-tube 
resonance period of water in the densitometer U-tube 
reaction potential 
solvent parameter equal to 260.0 MPa 
temperature and pressure dependent Born coefficient 
temperature and pressure independent effective Born coefficient 
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CHAPTER 1.0 INTRODUCTION 

1.1 The Importance of Amino Acids. 

The properties of amino acids in hydrothermal solutions are of intense interest to 

biochemists and geochemists interested in understanding the metabolic processes in 

thermophilic bacteria and the possible mechanisms for the origin of life at deep ocean vents. 

Spies et al. (1980) divide deep ocean vents into two broad classes: Galapagos-type 

vents and sulfide-mound hot-water vents. The most common type of hydrothermal vent is 

the Galapagos-type vent. These vents are characterised by - 290 K vent water in - 275 K 

surroundings. The fauna associated with the Galapagos-type vents include crabs, white 

clams, and giant tube worms and is their most visible feature. Sulfide-mound hot-water vents 

are characterised by- 650 ± 30 K vent water in - 275 K surroundings. The vent water is 

ejected through a limited number of chimneys or stacks with a relatively high velocity either 

as a clear fluid, or as a plume of white or black suspended particles. The discovery of these 

high temperature vents marked the first time that liquid water at temperatures well in excess 

of 373 K had been found in open contact with the biosphere. Since the high pressures, which 

permit these superheated conditions, counteract some of the destructive effects of high 

temperature on biochemical systems, it is reasonable to wonder whether thermophilic 

organisms exist in these high temperature vents. The extreme environment created by the 

high temperature vents resembles the conditions thought to have existed on primitive Earth, 

and it has been postulated that these vents were the source of life on Earth. Bada et al. 



(1995), Baross and Deming (1983), Crabtree (1997), Miller and Bada (1988), Ranganayaki 

et al. (1977), Shock (1990), Shock (1992), Trent et al. (1984), and Yanagawa and Kojima 

(1985) have considered various aspects of this hypothesis. However, all of these studies lack 

reliable, experimentally determined, thermodynamic data for biomolecules, including amino 

acids, under hydrothermal conditions. 

Amino acids exist in solution primarily as zwitterions as demonstrated by the 

calculations given in Section 4.5. As such, their properties are intermediate between ions, 

which carry an overall non-zero charge, and neutral organic species, which have little or no 

localization of charge. Tanger and Helgeson (1988) and Shock and Helgeson (1988) have 

developed a revised version of the Helgeson-Kirkham-Flowers (HKF) model capable of 

predicting the thermodynamic properties of aqueous ions and electrolytes at elevated 

temperatures and pressures. Shock (1990, 1992, 1995), Shock and Helgeson (1990), and 

Amend and Helgeson (1997) have extended the revised HKF model to predict the 

thermodynamic properties of aqueous organic species. Although this model includes 

predictions for amino acids, the predictive correlations are based on the limited amount of 

high temperature data available in 1988. Moreover, the failure of Shock, Helgeson, and 

Amend to consider the zwitterionic nature of the aqueous amino acids suggests that the 

extrapolated results are very uncertain at high temperatures. Except for the very recent 

measurements ofthe standard partial molar volumes for glycine, by Hakin et al. (1998), there 

are no experimental values for the thermodynamic properties of aqueous amino acids above 
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348 K in the literature. The lack of reliable, experimentally determined, thermodynamic data 

for amino acids under hydrothermal conditions has allowed these questionable predictions 

to remain untested. 

The goal of this research is to determine the thermodynamic properties of aqueous 

amino acids at high temperatures and pressures and to use these data to identify the 

contribution of major solvation effects. 

1.2 Thermodynamics of Aqueous Solutions. 

1.2.1 Thermodynamic Relationships. 

The Gibbs free energy of reaction !l.GT.~ at a given temperature T and pressure p can 

be used to calculate the equilibrium constant K T. p associated with the reaction at the specified 

conditions. 

InK 
T, p 

- !l.G o 
T, p 

RT 
(1.2.1.1) 

Here R is the gas constant. Expressions for the change in !l.Gr .~ with respect to temperature 

and pressure are given in equations (1.2.1.2) and (1 .2.1.3), respectively. 

( a!J.G;P J o --·""- = -lls ar r .p 
p 

(1.2.1 .2) 

( a!J.G
0 l __ 1_·, -'--p =!J.V o 

a T,p 
'P T 

(1.2.1.3) 
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Here l:!Sr ,0p is the entropy of reaction and I:! V / Pis the standard partial molar volume of 

reaction at the temperature and pressure of interest. Integration of equations (1.2.1.2) and 

(1.2.1.3) yields the following expression for l:l.Gr.0p: 

(1.2.1.4) 

T, is the reference temperature (usually taken to be 298.15 K) and p, is the reference pressure 

(usually taken to be 0.1 MPa). l:!Gr;,pr is the Gibbs free energy of reaction at the temperature 

and pressure of reference. If the system under consideration remains at constant pressure then 

the temperature dependence of l:!Sr ,0p can be expressed as: 

( 
_al:!_s_;,_P) = _l:!_c P_o 

ar p r 
(1.2.1.5) 

Here l:!C; is the standard partial molar heat capacity of reaction at the temperature and 

pressure of interest. Integration of equation (1.2.1.5) gives: 

IT /:iC 0 

!:iS ; , P =!:iS ; ,, pr + -;- dT (1.2.1.6) 

1.2.2 Apparent Molar Volumes. 

The molar volume of a pure solvent is denoted as V~ and has units of cm3·mol·1• Add 

n2 moles of a solute to n1 moles of the pure solvent and the volume of the resulting solution 
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is denoted as Vsol which has units of cm3
• The apparent molar volume V<l> of the solute is 

defined as the change in the volume ofthe solution when n2 moles of a solute are added to 

n1 moles of pure solvent, per mole of the solute. This concept is expressed mathematically 

as follows: 

(1.2.2.1) 

If 1000 g of solvent is considered, then equation (1.2.2.1) becomes: 

(1.2.2.2) 

Here M 1 is the molar mass of the solvent and m is the molality of the solution. Expressing 

V.p in terms of density p rather than volume using: 

yields: 

M 
V = -

p 

V =( lOOO(pl -p)l +( M2l 
<P (mppl) P 

(1.2.2.3) 

(1.2.2.4) 

Here p and p1 are the densities of the solution and solvent, respectively and M2 is the molar 

mass ofthe solute. 
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1.2.3 Apparent Molar Heat Capacities. 

Likewise, the apparent molar heat capacity Cp, 4> of the solute is defined as: 

• C -n C C = p,so/ 1 p,l 
p , q, n 

2 

(1.2.3.1) 

Here cp, sol is the heat capacity of the solution with units J·K1 and cp~ I is the molar heat 

capacity of the pure solvent with units lmol-1·K1_ If 1000 g of solvent is considered, then 

equation (L2.3.1) becomes: 

(1.2.3.2) 

Expressing cp, sol and cp~ I as specific heat capacities gives: 

\

lOOO(c - c 1 )1 
C = M c + P p, 

P.<l> 2 P m 
(1.23.3) 

where cP and cp. 1 are the specific heat capacities of the solution and solvent, respectively. 

1.2.4 The Density Model. 

It was observed by Franck (1956, 1961) that the ionization constant K of many 

aqueous species exhibits approximately linear behaviour at elevated temperatures and 

pressures when log K is plotted against log Pw for a very wide range of Pw· This observation 

led Marshall and Franck (1981) to develop the following expression to represent the 

ionization constant ofwater at temperatures up to 1273 K and at pressures up to 1000 MPa. 
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( d2 d3 d4l ( d6 d,l logK= d +-+-+- + d +-+- logp 
1 T T2 T3 5 T T2 w 

(1.2.4.1) 

Here dl> db d3, d4, d5, d6, and d7 are fitting parameters, and Pw is the density of water. Mesmer 

eta!. ( 1988) later demonstrated that equation ( 1.2.4.1) can be used as a general expression 

to represent most ionization and ion-pairing reactions. 

Equation (1.2.4.1) can be used to obtain expressions for other thermodynamic 

quantities. An expression for !J.Go, the Gibbs free energy of ionization for an aqueous species 

was obtained through the following elementary relationship: 

!J.G o = -RT InK (1.2.4.2) 

Hence: 

!J.G o = - 2.303RT[( d + d2 
+ !i + ~1 + ( d + d

6 
+ !_y__]log p l 

1 T T2 T3 5 T T2 w 
(1.2.4.3) 

Similarly, an expression for the enthalpy of ionization for an aqueous species t::.Jr was 

obtained from the relation: 

!J.H o = a(~ l 0 -r'[__§_( !J.G oll 
a(~) ' Dr r , 

(1.2.4.4) 

Hence: 
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[ 2d 3d ( 2d l l ( d d l llH o = -2.303R d +-3 +-4 + d +-7 logp -RT 2a d +~ +-7 

2 T T2 6 T w w s T T2 
(1.2.4.5) 

Here aw = - (llpw) (apw laT)p is the expansitivity coefficient of water. Expressions for the 

standard partial molar heat capacity of ionization llC ;, the entropy of ionization llSo, the 

standard partial molar volume of ionization ll vo, and the standard partial molar isothermal 

compressibility of ionization IlK/ were obtained for an aqueous species from the 

relationships: 

llc 0 =( allH 0 J 
p ar (1.2.4.6) 

p 

(1.2.4.7) 

(1.2.4.8) 

(1.2.4.9) 

Hence: 

[2d3 6d4 ( 2d,l l llC o =2.303R-+- + - logpw 
P T2 T3 T2 

( 2d7l ( d6 d,l( aa l -Rex 2d T-- -RT 2 d +-+- __ w 
w s T 5 r 2 ar 

T P 

(1.2.4.10) 

[ 
d3 2d4 ( d7l l ( d6 d7] lls o =2.303R d - - - - + d - - logp - RTa d + - + -

I 2 3 5 2 w w s T T2 T T T 
(1.2.4.11) 
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(1.2.4.12) 

AK o =RT(d + d6 +!!!.._] ( apwl 
T 5 T 2 3 T 'P T 

(1.2.4.13) 

Here Pw = (1/pw)(Bpw/Bp)r is the compressibility coefficient of water. In practice the d3, d4, 

d5, and d7 fitting parameters are often set equal to zero when modelling systems at 

temperatures less than 573 K. Therefore, a simplified form of the density model used by 

authors such as Anderson eta/. (1991) can be summarized as follows: 

(1.2.4.14) 

(1.2.4.15) 

(1.2.4.16) 

AC o = - RTd ( Bawl 
p 

6 ar (1.2.4.17) 
p 

(1.2.4.18) 

(1.2.4.19) 

(1.2.4.20) 
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1.3 Solvation Models. 

1.3.1 Solute Hydration. 

The Gibbs free energy t1salvGa associated with transferring a species from an ideal gas 

into solution at infinite dilution can be expressed as: 

(1.3.1.1) 

Here G ;q is the Gibbs free energy of the aqueous species (hypothetical 1 molal standard 

state), and G i~tr is the intrinsic gas phase Gibbs free energy of the species (0.1 0 MPa, ideal 

gas). The term t1solvGs~ is the change in the Gibbs free energy arising from the difference in 

standard states between the gas phase and solution (Ben-Naim, 1987), 

(
RTm

0

p l !l. 
1 

G s; = R T ln w 
so v 0 

p 

(1.3 .1.2) 

where m 0 = 1 mol·kg·1 andp 0 = 0.1 MPa. 

The Gibbs free energy of solvation IJ.solvG o arises in part as a result of configurational 

changes in the water caused by the presence of the solute. These are commonly identified 

with two major effects, the long-range polarization of water caused by the localized charge 

distribution within the solute !l.solvGp~l> and short-range hydration effects arising from the 

hydrogen-bonded "structure" of water in the immediate vicinity of the solute t1sotvGh;dr· 

(1.3.1.3) 

When a dissolved species has a significant charge distribution, as in the case of ions 

and zwitterions, there is a polarization of the bulk solvent due to long-range interactions 
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between the dissolved species and the solvent molecules. The electric field produced by the 

charge distribution within the solute polarizes surrounding solvent molecules. If the solvent 

molecules have a permanent dipole moment, they will orient themselves around the dissolved 

species. These long-range interactions can be mode11ed by using an extension of the Born 

continuum model as discussed by Bottcher (1973). In this model a dissolved species is 

represented by a collection of discrete charges qk contained in a cavity embedded in a 

structureless polarizable dielectric continuum that represents the solvent. The collection of 

charges induces a reaction potential in the dielectric continuum that in tum acts back on the 

dissolved charges. The energy of interaction ofthe solute with its environment is simply the 

difference in the reversible work required to form the charge distribution in the presence of 

the dielectric continuum, relative to that in a vacuum. Thus, the Gibbs free energy of 

polarization l:::.solvGp~l may be expressed as: 

(1.3.1.4) 

where <I>ir k) is the reaction potential. Expansion of this summation gives the following: 

/:::.Go = /:::. Go+/:::. G o +/:::. Go +/:::.Go + .. . 
solv pol solv Born solv d1pole solv quadrupole solv octopole 

(1.3.1.5) 

Here l:::.solvGB~m is the ionic contribution to the Gibbs free energy of polarization, l:::.solvGd~pole 

is the dipole contribution to the Gibbs free energy of polarization, l:::.solvGq~adrupole is the 

quadrupole contribution, l:::.solvGo~topote is the octopole contribution, and so on. l:::.solvGB~rn is 

discussed further in Section 1.3.2.1 and l:::.sotvGd~pole is discussed further in Section 1.3.2.2. 
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The hydration term b..solvG11~, represents the effect of perturbations in the solvent near 

the solute where both the finite size of the solvent and the short range interactions between 

the solvated species and the surrounding solvent molecules are important. These short range 

interactions may include hydrogen bonding between the solute and the nearest solvent 

molecules and perturbations of the bulk solvent structure in the immediate vicinity of the 

solute. b..solvGh~lr is difficult to model and is often represented by an empirical function. The 

solvation process is illustrated in Figure 1.3.1.1. 

The standard partial molar volume vo of an aqueous species is related to the Gibbs 

free energy of the aqueous species G ;:q through the following expression: 

(1.3.1.6) 

Combining equation (1.3 .1.6) with equations (1.3.1.1) and (1.3.1.3) yields the expression: 

V o = Vo + b. Vo+!l Vo + b. Vo 
zntr solv ss solv pol solv hydr 

(1.3.1.7) 

The corresponding expression for the standard partial molar heat capacity C Po of an 

aqueous species can be obtained from the expression: 

(1.3 .1.8) 

Combining equation (1.3 .1.8) with equations (1.3.1.1) and (1.3.1.3) yields the expression: 

C
0

= C
0 +A Co +b.. Co +A Co 

p p, intr solv p, ss solv p, pol solv p , hydr 
(1.3.1.9) 
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a) Ionic Species b) Dipolar Species 

Figure 1.3 .1 .1 Schematic diagram of the solvation process. 
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1.3.2 Long Range Polarization. 

1.3.2.1 Born Equation. 

Often, when the dissolved species is ionic, only the first term in the !l.sotvGp~t 

summation is significant and therefore all other terms can be neglected. This leads to the well 

known Born equation for the Gibbs free energy of polarization for a dissolved ionic species 

8solvGB~rn (Born, 1920): 

-(Ze)
2
NA ( (Er-1)] 8 Go = 

solv Born 
81tE r e 

o e r 

(1.3.2.1) 

Here Z is the ionic charge, e is the charge on an electron, NA is Avogadro's number, er is the 

solvent dielectric constant, E0 is the permittivity of free space, and re is the effective radius 

of the dissolved species, i.e. the radius of the cavity in the bulk solvent. All quantities are in 

SI units. 

Equation (1.3.2.1) can be used to obtain expressiOns for a number of other 

thermodynamic quantities. An expression for the enthalpy of polarization for a dissolved 

ionic species 8sotfin~rn was obtained through the elementary relationship: 

8 H 0 
:::: solv Born 

(1.3.2.2) 

p 
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Hence: 

/1 H o = -(Zei NA [ l -(_!_]-_I_( aerl1 
so/v Born a 81te r e e 2 T o e r r P 

(1.3.2.3) 

Expressions for the standard partial molar heat capacity of polarization !:J..solvC/ Born• the 

entropy of polarization !:J..sot.SB~m• the standard partial molar volume of polarization !:J..solv V8~rn• 

and the standard partial molar compressibility of polarization !:J..solvKT~Born are obtained from 

the relationships: 

[ 
a11 H o l /1 C o _ solv Born 

solv p , Born - aT p 
(1.3.2.4) 

[
/1 Go l /1 S o = _ solv Born 

so/v Born aT 
p 

(1.3.2.5) 

[ 
a11 a o J /1 V o = solv Born 

so/v Born a 
'P T 

(1.3.2.6) 

[
/1 vo l A o solv Born 

L.1 K --
solv T, Born - ap T 

(1.3.2.7) 

Hence: 

(1.3.2.8) 

(1.3.2.9) 
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&,.,,v ;.m o -~:::;A ( :; ) ( ~; l r (1.3.2.10) 

&,.,A •• rn o -~:~';A ( :~ )( ~; l:-( ::) ( ::•: L1 (1.3.2.11) 

1.3.2.2 Dipole Solvation. 

The Gibbs free energy of polarization for a dissolved neutral species reflects only the 

multipole moment terms in equation (1.3.1.5) since the first term is equal to zero. Often, 

when the neutral species is dipolar, only the second term in the llsolvGp~l summation is 

significant and therefore all other terms can be neglected. Beveridge and Schnuelle (1975) 

gave the following expression for the Gibbs free energy of polarization for a dissolved 

/l Go J.l 2 NA ( (1-e ) ) 
solv dipole r 

4m:r3 (2e +l) 
o e r 

(1.3.2.12) 

Here fl. is the dipole moment of the charge distribution. 

have been derived from equation(l.3.2.1) by Shock eta/. (1992), Cobble and Murray (1977), 

and Wood et al. (1981), to our knowledge similar expressions for llsolv Hd~pole• llsolv C/dipole• 

expression for llsotvGd~pote found in equation (1.3.2.12) with the standard thermodynamic 
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identities to obtain expressions for each of the thermodynamic quantities listed above. 

Expressions for the standard partial molar properties of solvent polarization for neutral 

dipolar species were derived from the relationships: 

(
/1 G

0 l a sotv T dipole 

a(~) 
(1.3.2.13) 

p 

(
a a H o l /1 C o = solv d1pole 

solv p,dipole ar p 
(1.3.2.14) 

( /1 G

0 l /1 S o = _ solv dipole 
solv dlpole ar 

p 

(1.3.2.15) 

( 
aa G o ) /1 V o = solv d ipole 

solv dlpole a 
'P T 

(1.3.2.16) 

(
/1 v o l /1 Ko = _ solv dipole 

solv T, d ipole ap T 
(1.3.2.17) 

to yield: 

(1.3.2.18) 

17 



1:1 c 0 
solv p,dipole 

_ NA [[2T~(l-e,)](~l +[2T(l -e,)](a~J 2 1 (1.3.2 .1 9) 
4ne r 3 (2e +1) aT 2 (2e +1) aT 

oe r p r p 

(1.3.2.20) 

~ 2 

NA ( _3 l ( ae l /l Vo = _r 
solv dipole 3 2 a 

4ne r (2e +1) 'P r 
o e r 

(1.3.2.21) 

(1.3.2.22) 

1.3.3 The Revised Helgeson-Kirkham-Flowers Model for Ionic and Organic Species. 

Figures 1.3 .3 .1 and 1.3 .3 .2 illustrate the standard partial molar volumes measured by 

Shvedov and Tremaine ( 1997) for aqueous dimethylamine and dimethy !ammonium chloride, 

respectively. The behaviour of the vo data obtained for dimethylamine is typical of that 

observed for many aqueous non-electrolytes. Similarly, the behaviour of the vo data obtained 

for dimethylammonium chloride is typical of that observed for aqueous ions. The values of 
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Figure 1.3.3.1 The standard partial molar volumes of V o of 
dimethylamine determined by Shvedov and 
Tremaine (1997). Symbols are the fitted 
isotherms:O, 10 MPa; 0, steam saturation 
pressure. Lines are fitted values. 
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Figure 1.3.3.2 The standard partial molar volumes of V o of 
dimethylammonium chloride determined by 
Shvedov and Tremaine (1997). Symbols are 
the fitted isotherms:O, 10 MPa; 0 , steam 
saturation pressure. Lines are fitted values. 



vo for aqueous ions pass through a shallow maximum and then decrease sharply at 

temperatures above 573 K. The values of vo for aqueous non-electrolytes show the opposite 

behaviour. In the limit as the temperature increases toward the critical temperature of water, 

the values of vo for aqueous ions increase toward +oo and the values of vo for aqueous non­

electrolytes decrease toward -oo. Although the direction of change in the values of vo are 

opposite for aqueous ions and non-electrolytes, the manner in which they change is very 

similar. As the pressure increases the values of vo for aqueous non-electrolytes decrease and 

the values of vo for aqueous ions increase. For both ions and non-electrolytes the magnitude 

of the pressure dependence increases with increasing temperature due to the increase in the 

compressibility of water. Similar behaviour is observed for the standard partial molar heat 

capacities of aqueous ions and non-electrolytes (Biggerstaff, 1988; White et al., 1987). 

Helgeson and Kirkham (1976) and Helgeson et al. (1981) realised that the high 

temperature behaviour of vo and C Po for aqueous ions and electrolytes could be described 

with the Born equation discussed in Section 1.3.2.1. Therefore, they developed a pragmatic 

"equation-of-state" based on the Born equation. The revised Helgeson-Kirkham-Flowers 

(HKF) model has been used successfully to predict the standard partial molar thermodynamic 

properties of aqueous ions and electrolytes up to T = 723 K and p = 500 MPa. 

Helgeson et al. (1981), Tanger and Helgeson (1988) and Shock and Helgeson (1988) 

considered each standard partial molar property of an aqueous ion or electrolyte to be a 

combination of a non-electrostatic term and an electrostatic term. Therefore, the standard 
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partial molar volume vo was defined as: 

0 /l 0 t::.. 0 
v = vnon -electrostatic + velectrostatic (1.3.3.1) 

where: 

(1.3.3.2) 

/l 0 =ll 0 
velectrostatic solv vpol (1.3.3.3) 

Helgeson (1988) demonstrated that /l V~on-etectrostatic could be represented empirically as: 

u = a+ --A o ~( 1 l Vnon -electrostatic T -E> (1.3.3.4) 

To ensure that the revised HKF model is consistent with the pseudo-critical point of 

supercooled water, the solvent parameter E> was set equal to 228 K. The terms a and ~ 

correspond to temperature independent coefficients characteristic of an aqueous ion or 

electrolyte at a given pressure. 

a = a +a ( -
1 J 

1 2 '¥ +p 
(1.3.3.5) 

~ = a + a (-1 l 
3 4 '¥ +p 

(1.3.3.6) 

where'¥ is a solvent parameter equal to 260.0 MPa. a~> a2, a3, and a4 are temperature and 

pressure independent parameters characteristic of an aqueous ion or electrolyte. For aqueous 
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ions and electrolytes l:iV~tectrostatic was represented by a modified Born transfer model: 

(1.3 .3.7) 

where w is the temperature and pressure dependent Born coefficient, er is the dielectric 

constant of the solvent, and Q is the Born function. 

(Z e)
2 

NA 
w=---

8rce r 
o e 

(1.3 .3.8) 

(1.3.3.9) 

The term -wQ is equivalent to the term l:isotvVB~m discussed in Section 1.3.2.1. In the revised 

HKF model re = r + (0.94A)Z where r is the crystallographic radius. Therefore, equation 

(1.3.3.1) can be rewritten as: 

Similarly, the standard partial molar heat capacity C ; was defined as: 

01:10 1:10 
C p = C p , non - electrostatic + C p , electrostatic (1.3.3.11) 

where: 

1:1 0 0 1:1 0 1:1 0 
cp, non -electrostatic = cp, intr + solvcp, hydr + solvcp, ss (1.3 .3.12) 
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I:J.C p~ electrostatic = I:J.solvC p~ pol (1.3.3.13) 

and Helgeson (1988) demonstrated that tJ.c;,non-etectrostatic could be represented empirically as: 

0 - ( 1 )
2 

( 1 )
3

[ ( 'P+pll i:J.C p, non - electrosta tic - c 1 + c2 T _8 - 2T T _8 a3(p -p ,) + a4ln ~ 'P +p' (1.3.3.14) 

where c1 and c2 are temperature and pressure independent parameters characteristic of an 

aqueous ion or electrolyte and p ,. is the reference pressure which is usually 0.1 MPa. For 

aqueous ions and electrolytes I:J.C ;electrostatic is represented by a modified Born transfer model: 

o (awl ( 1 -e,l ( 32 wl I:J.CP electrostatic =WTX +2TY - - T -- --
' 3T e 3T 2 

p r p 

(1.3.3.15) 

(1.3.3.16) 

y = _!_ ( 3ln e, l 
E ar 

r p 

(1.3.3.17) 

The term wTXis equivalent to the term I:J.sotvCp~Bom discussed in Section 1.3.2.1. Therefore, 

equation (1.3.3.11) can be rewritten as: 
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(awl rl -e](a2wl +wTX+2TY -. - - T __ r --

dT e ar 2 
p r p 

(1.3.3.18) 

As illustrated by Figures 1.3.3.1 and 1.3.3.2 the temperature and pressure dependent 

standard partial molar properties for aqueous non-electrolytes are virtually a mirror image 

of the standard partial molar properties for aqueous ions and electrolytes. This symmetrical 

behaviour exhibited by the aqueous non-electrolytes and electrolytes suggests that the 

equations of state used for aqueous ions and electrolytes could be conveniently used as fitting 

functions to represent the temperature and pressure dependence of the standard partial molar 

properties ofneutral aqueous organic species. Shock and Helgeson (1990) recognized these 

similarities and extended the use of the revised HKF model to neutral aqueous organic 

species. This use of the Born equation for neutral aqueous organic species was not based on 

any physical model. The following expressions were given by Shock and Helgeson (1990) 

to predict the standard partial molar volume vo and heat capacity C Po of a neutral aqueous 

. . 
orgamc spec1es. 

V
0

= a +a(-l )+[a +a(-1 )](-1 )-wQ 
1 2 tp +p 3 4 tp +p T-8 e 

(1.3 .3.19) 

(1.3.3.20) 
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The temperature and pressure dependent Born coefficient CcJ in equations (1 .3.3.1 0) and 

(1.3.3.18) was replaced with a temperature and pressure independent effective Born 

coefficient we in equations (1.3.3.19) and (1.3.3.20). 

w e (1.3 .3.21) 

Here Ze is the "effective charge" on the neutral aqueous organic species. For neutral aqueous 

organic species we is a fitting parameter that can be either positive or negative. According 

to equation (1.3 .3.21), a negative value for we will result in an effective charge on the 

dissolved species that is an imaginary number, reinforcing the point that equations (1.3 .3.19) 

and (1.3.3.20) have no physical reality. 

The revised HKF model as modified by Shock and Helgeson (1990) allows for the 

prediction of standard partial molar thermodynamic properties of neutral aqueous organic 

species up to T = 1273 K and p = 500 MPa. To give the revised HKF model predictive 

capabilities, it was fitted to all available temperature and pressure dependent experimental 

data for neutral aqueous organic species. The values of the fitting parameters were then 

correlated with the room temperature thermodynamic data that were available for each of the 

fitted species. 

The applicability of the model is severely restricted since its predictive capabilities 

are based on the limited number of neutral aqueous organic species for which there were 

temperature and pressure dependent thermodynamic data available in 1988. Table 1.3.3.1 
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summarizes these species and the temperature and pressure range of their thermodynamic 

data. The danger in using such a limited number of species to determine predictive 

correlations for any model arises from the non-uniformity of the species themselves. The 

model is being applied to neutral organic species as different as hydrocarbons which remain 

non-polar in aqueous solution (Shock, 1995), carboxylic acids which are polar (Shock and 

Helgeson, 1990), and the amino acids which exist as highly polar zwitterions in aqueous 

solution (Amend and Helgeson, 1997). The temperature and pressure dependence of the 

thennodynamic properties of these compounds can be very different. 
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Table 1.3.3.1 The experimental data used by Shock and Helgeson (1990) to develop the 
predictive correlations for the revised HKF model as modified for neutral . . 
aqueous orgamc spectes. 

Species Thermodynamic Property Temperature Range Pressure Range 
K MPa 

Methanol vo 274.15-323.15 0.] 

Ethanol vo 274.15- 323.15 0.1 

1-Propanol vo 274.15-323.15 0.1 

2-Propanol vo 274.15-323 .15 0.1 

1-Butanol V" 273.65 - 323.15 0.1 

2-Butanol vo 273.65 - 323.15 0.1 

l-Pentanol vo 274.15-323 .15 0.1 

CH3COOH vo 283.15-313.15 0.1 

CzH4 vo 298.22- 716.52 20.0- 34.6 

HCOOH c o 
p 293.15-393 .1 5 0.1 

CH3COOH c,; 283.15-393.15 0.1 

CH3CH2COOH c o 
p 293.15-403.15 0.1 

C2H4 c o 
p 302.10 - 722.21 18.1 -32.5 
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1.4 Yezdimer-Sedlbauer-Wood Functional Group Additivity Model. 

Several authors have shown that the standard partial molar thermodynamic properties 

of aqueous solutes can be predicted with reasonable accuracy near ambient conditions using 

functional group additivity (Cabani et al., 1981; Hoiland, 1986; Gianni and Lepori, 1996). 

Criss and Wood (1996) and Inglese et al. (1997) have demonstrated that functional group 

additivity maintains its accuracy at temperatures up to 523 K and pressures up to 28 MPa. 

Recent work by Y czdimcr et al. (2000) has led to the development of a new functional group 

additivity model capable of predicting standard partial molar thermodynamic properties of 

many aqueous organic species at temperatures up to 623 K and at pressures up to 100 MPa. 

Any standard partial molar thermodynamic property of a solute 3 o can be written as: 

N 

3 ° = (1 - Z) ( 3 ss + A) + L n ; 3 ~ 
i ~ l 

(1.4.1) 

Here Z is the charge on the solute, 3ss is the standard state term, N is the total number of 

distinct functional groups in the solute, n; is the number of occurrences of functional group 

i in the solute, and 3 ~ is the contribution to 3 a due to functional group i. The factor ( 1 - Z) 

ensures that there is a standard-state term for each particle (ionic or neutral) in solution. This 

factor also ensures that equation (1.4.1) is consistent with the hydrogen convention scale for 

aqueous ions; 3 a (H+) = 0. A is a conversion factor between different possible aqueous 

standard states. For the hypothetical 1 molal standard state: 

(1.4.2) 
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(1.4.3) 

Here Ac is the correction factor for the standard partial molar Gibbs free energy, A5 is the 

correction factor for the standard partial molar entropy, Mw is the molar mass of water, and 

mo is equal to 1 mol·kg-1• A is equal to zero for all of the other standard partial molar 

thermodynamic properties. 

The Yezdimer-Sedlbauer-Wood functional group additivity model for aqueous 

organic species uses the equations of state developed by Sedlbauer et al. (2000) to model the 

behaviour of 8~ . Sedlbauer et al. based their equations of state on the following expression 

for the standard partial molar volume of functional group i: 

(1.4.4) 

where Vw is the molar volume of water; Vs~ is the standard partial molar volume arising from 

the difference in standard states between the gas phase (0.1 MPa, ideal gas) and solution 

(hypothetical 1 molal solution); while Pw and Pw are the density and compressibility 

coefficient of water. The terms 8 = 1500 K, A= -10000 cm3·kg-1
, tJ = 5000 cm3·kg-' are 

coefficients that do not depend on the solute. The terms ai, hi> ci, and d, are functional-group­

specific adjustable parameters. The charge on functional group i determines the value of oi. 

o, =l 

0.35ai Z = O 

0 Z=l (1.4.5) 

- 0.645 Z = -1 
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The standard partial molar Gibbs free energy of formation of functional group i is given as: 

J
r Jr cig 

+ T !:J. I S/
0 

[T ,p ] + cpigl dT- T ~ dT so v r r , T (1.4.6) 

T, T, 

where Tr is the reference temperature (usually taken to be 298.15 K) and Pr is the reference 

pressure (usually taken to be 0.1 MPa). !l.1G~ [ Tn p,] and !:J.1S~ [J:., p,] are the standard partial 

molar Gibbs free energy and entropy of formation for functional group i at T,. and Pr· 

!l. ,01.,S~[T,, p,.] and !:J.solv H~ [T, , p,] are the standard partial molar entropy and enthalpy of 

solvation. !:J.solv G~ is the standard partial molar Gibbs free energy of solvation of functional 

group i and c~: ; is the molar heat capacity of functional group i in the ideal gas state. 

The standard partial molar enthalpy and entropy of formation of functional group i 

were expressed as: 

(1.4.7) 

J
r cig 

!:J.!S/ "- !:J.!S/ [1',,p r) + !:J.solvS/ - !:J.solvS/ [T, ,p r] + T ; 
1 

dT ( 1.4.8) 

T, 

Here !l.1H~ [ Tr, p,.] is the standard partial molar enthalpy of formation of functional group i 

at T, and p,. . !l.sotv H~ and !l.sotv S~ are the standard partial molar enthalpy and entropy of 

solvation of functional group i. The standard partial molar heat capacity of functional group 
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i was given as: 

c 0 = D. c 0 . + c ig 
p,1 solv p , 1 p, 1 

(1.4.9) 

where D.sotv C~. 1 is the standard partial molar heat capacity of solvation of functional group 

i. The standard partial molar Gibbs free energy, enthalpy, entropy, and heat capacity of 

solvation of functional group i were expressed as: 

+ d {G _ G ig _ /:l G o) + H carr _ T S carr 
1 \ w w solv ss 1 1 

fl. H 0 = - RT 2 [a . +b (eitp,._ l) +c e 81r +O(el.p,. _ l)J( apwl 
sa/v I I I I I ar 

+d. (H - H ig - D. H a ) + R T 8 c . e 8'r ( p w l 
1 w w solv ss 1 T 

p 

H 
carr 

+ . 
I 

D. 1 S
0

=-R[(a +c .e 81r-b .- O)p + (~](e 11 P,. _ 1) +( 01l(e"P,._l)l 
so v l I l I J w U' A 

- R r[a . +b . (e itp,. - 1) + c e 8/T + 0 (e l. p,.- 1)] ( apw l + S carr 
I I I I ar I 

p 

31 

(1.4.10) 

(1.4.11) 

(1.4.12) 



-2RT( apwl [a . +b.(e~P"'-1)+c.e 81T +O(e'-P"'-l)-c .e 81r (~) l aT , , , , , T 
p 

- R T 2 [a . + b . ( e ~ Pw - 1 ) + c .e fl iT + 0 ( e ;.. Pw - 1 ) ] ( 32 p w l 
l l l l ar2 

p 

+ d (c _ C ig _ /1 C o ) + C corr 
i p, w p, w solv p, ss p , l 

(1.4.13) 

Here Gw, Hw, Sw. and Cp, w are the molar Gibbs free energy, enthalpy, entropy, and heat 

capacity of water. c;,~, H~g' S!;, and C;fw are the molar Gibbs free energy, enthalpy, entropy, 

and heat capacity of water in the ideal gas state at 0.1 MPa. !:J.solv G 5°5 , !:J.solvHs
0
, l1so1v S s

0
s, and 

!:J.solv C ;ss represent the change in the standard partial molar Gibbs free energy, enthalpy, 

entropy, and heat capacity arising from the difference in standard states between the gas 

phase (0.1 MPa, ideal gas) and solution (hypothetical 1 molal solution). 1-ft,.,. and Sf'"' are the 

corrections to the standard partial molar enthalpy and entropy of functional group i. 

The change in the standard partial molar Gibbs free energy arising from the difference 

in standard states between the gas phase and solution was given as: 

(1.4.14) 

where p o = 0.1 MPa. The standard state corrections for all other thermodynamic properties 

can be obtained in the usual manner from equation (1.4.14). 
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The correction to the standard partial molar enthalpy, heat capacity, and entropy of 

functional group i were expressed as: 

H corr = 
I 

C corr ::: 
p , l 

l ( 2 2] ( l 1 T -T T-0 
e. (2T - 8)(T. -T) + _ _ _:_ +(T - 0) 2 ln 

I c c 2 c r -0 
c 

( 
2 2] g .(T -Tc ) 

C + 
1 +(T - T)(e .-g .T) 

H, I 2 C I I C 

( 
T-0 l +e (0 - T )ln 

I c r -e 
c 

0 

c H, < 

e (T - T ) 2 
I C 

T - 0 
Z =O; T <Tc 

cr-r)l g . + -e_i j 
c I T- 8 

0 
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(1.4.15) 
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S corr = 
I 

Tc T (T - ") T -e 
r 

[ 
2
] ( J ( e 2] ( J j e i T - T c - 8 ln T c + c 8 ln T c - 8 

0 

c" "·' 

Z =O; T<T" 

Z o~- 0; T<Tc 

(1.4.1 7) 

Here Tc = 647.126 K is the critical temperature of water, e is a solvent parameter equal to 

228 K, ei and gi are functional group specific adjustable parameters. CH, i and Cs, i are 

integration constants for the ionic groups that can be obtained from experimentally 

determined values of the standard partial molar enthalpy and entropy of solvation of 

functional group i. Y ezdimer et al. (2000) obtained the following expression for the ideal gas 

heat capacity of functional group i using the method outlined by Reid et al. (1987). 

(1.4.18) 

The terms t1a i, 1:1b i, 1:1c;, and 1:1d i are functional group specific parameters. These parameters 
, ' ' ' 

are summarized in Table 1.4.1. 
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Table 1.4.1 Parameters used in the calculation of the ideal gas heat capacity of 
functional group i. 

functional !1 . IO·' a, I !1b i . 10 !1 . 104 
C,l 

!1 . 107 
d,l 

Group (J-K1·rnol-1
) (J·K2·mol-1

) (J·K3·rnol-1
) (J·K4·mol-1

) 

C (hydrocarbon) -4.425 3.1004 -4.74 2.2835 

H (hydrocarbon) 2.125 -1.0604 2.09 -1.0835 

CONH2 3.35 0.258 1.283 -0.9474 

coo 2.41 0.427 0.804 -0.687 

COOH 2.41 0.427 0.804 -0.687 

NH2 2.69 -0.412 1.64 -0.976 

NH + 
3 2.69 -0.412 1.64 -0.976 

OH 2.57 -0.691 1.77 -0.988 

Amino 5.1 0.015 2.444 -1.663 
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1.5 Experimental Apparatus for Measurements Under Hydrothermal Conditions. 

1.5.1 Vibrating-Tube Densitometer. 

It was first demonstrated by Kratky eta!. (1969) that the density of a fluid can be 

obtained by measuring the natural vibrational frequency of a tube containing that fluid. By 

flowing the fluid through the vibrating tube Picker et al. (1974) demonstrated that density 

measurements could be made quickly with ppm precision. Commercial versions of the 

vibrating tube densitometer were developed for use at temperatures up to 423 K. Recently, 

Wood and coworkers (Albert and Wood, 1984; Wood et al., 1989; Majer et al., 1991) 

constructed a high temperature and pressure version of the vibrating tube densitometer 

capable of operation up to 673 K and 40 MPa. The use of a flow system reduces the 

residence time ofthe sample solutions in the vibrating tube densitometer. Thus increasing 

the temperature range for compounds with limited hydrothermal stability. The high 

temperature and pressure densitometer is not commercially produced and there are fewer 

than a dozen working instruments worldwide. The densitometers used in this work are 

described in Sections 2.3 and 2.4, respectively. 

The density of the fluid in all vibrating-tube densitometers is determined from the 

usual expression: 

(1.5.1.1) 

where p and Pw are the densities of the fluid and the reference fluid, respectively; 't and 'tw 

are the resonance periods for the fluid and water, respectively; and Kd is a characteristic 
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constant which is determined by calibration with two reference fluids, usually dry nitrogen 

gas, water, or aqueous NaCl. The densities of water and the standard solutions ofNaCI were 

obtained for our work from the equations of state reported by Hill (1990) and Archer (1992), 

respectively. Apparent molar volumes, V.p, were calculated from these densities according 

to the definition: 

V =[ lOOO(pw -p)l +( M2l 
<P (rnppw) p 

(1.5.1.2) 

where m is the molality and M2 is the molar mass of the solute. 

1.5.2 Differential Flow Calorimeter. 

It is difficult to measure apparent molar heat capacities using batch calorimeters 

because large corrections are required for the heat capacity of the calorimeter cell and for 

vapor pressure effects. Picker et af. (1971) developed the first differential flow calorimeter 

based on a design that incorporates twin flow cells that are connected in series. The 

differential flow calorimeter is shown schematically in Figure 1.5.2.1. To measure heat 

capacities at high temperatures and pressures, Wood and coworkers (Smith-Magowan and 

Wood, 1981; White and Wood, 1982) constructed a high temperature and pressure version 

of the Picker flow microcalorimeter. The differential flow calorimeters used in this work are 

described in Sections 2.5 and 2.6, respectively. 

The mass flow rate of a fluid in a flow calorimeter cell is denoted F111 • If the power 
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Figure 1.5.2.1 Schematic diagram of the differential flow calorimeter. 
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required to increase the temperature of the fluid in the cell by llT is W, then the specific heat 

capacity of the fluid can be expressed as: 

w 
c =--

p F llT (1.5.2.1) 
m 

where cP is the specific heat capacity of the fluid, which has units of J-K'g·'- The differential 

flow calorimeter is based on a twin cell design in which the reference cell in the calorimeter 

contains the solvent (water) and the working cell contains the sample solution. The 

temperature change in the reference cell is set equal to the temperature change in the working 

cell so that: 

c W F p, w _ 1 m2 

cP WzFml 
(1.5.2.2) 

where cp, wand cP are the specific heat capacities of the reference fluid and sample solution. 

Here W1 is the power required to increase the temperature of the reference fluid by !:J.T; W2 

is the power required to increase the temperature of the sample solution by the same llT; and 

F1111 and Fm2 are the mass flow rates of the reference fluid and sample solution, respectively. 

The use of a tubular delay line to connect the two cells in series causes the volumetric flow 

rates at the interface between the two fluids to be equal. 

F Vi = F V2 ( L5.2.3) 

where F v1 and F n are the volumetric flow rates of the reference fluid and sample solution 

in the delay line, respectively. The corresponding mass flow rates, F 1111 and F 1112, can be 

39 



calculated from the relationship: 

Fml Fm2 
(1.5.2.4) 

where Td is the temperature of the delay line, Pw. Td and Prd are the densities of the reference 

fluid and sample solution at T= Td. Combining equation (1.5.2.2) with equation (1.5.2.4) and 

setting w2 = WI + !l w gives the expression: 

( ~Wl ( Pw,rdl c = c 1 + -- --
P p,w W p 

1 Td 

(1.5.2.5) 

Small fluctuations in the flow rate have little effect on !l W since the reference and working 

cells are connected in series. Any change in W1 caused by a fluctuation in the flow rate will 

be mirrored by a change in W2• Equation (1.5.2.5) is valid only if all of the applied power 

was used to increase the temperature of the fluids in the cells. In practice, some of the applied 

power was used to heat the material surrounding the cell through convection, radiation, and 

conduction. Therefore, a heat-loss correction factorf(White et al., 1982) was introduced into 

equation (1.5.2.5). 

( ~Wl ( Pw,rdl c = c 1 +j-- - -
P p , w W p 

I Td 

(1.5.2.6) 

Apparent molar heat capacities Cp. !I> can then be calculated according to the equation: 

( 
lOOO(c - c )l 

C =M C + p p , w 
p, <J> z P m . 

(1.5.2.7) 

An absolute calibration similar to that described by White and Wood (1982) was used 
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to determine the heat-loss correction factor fat each temperature and pressure. In this 

calibration both the working cell and reference cell contained water driven by a single pump. 

Changes in the heat capacity of the water in the working cell were simulated by injecting 

additional water into the working cell using a second pump. This resulted in an increase in 

the mass flow rate of the water in the working cell. Since cP == c P. w and p Td == Pw, Td' then 

equation (1.5.2.6) can be rewritten as: 

(1.5.2.8) 

where 11Fm is the change in the mass flow rate from Fml· 

1.5.3 UV-Visible Spectrophotometer 

The temperature dependent acid/base dissociation constants for an aqueous amino 

acid are most easily determined by measuring the pH of an amino acid buffer solution. 

Electrodes have been developed to measure the pH of aqueous solutions at high temperatures 

and pressures (MacDonald et al., 1992). However, it is often difficult to use these electrodes 

in conjunction with a flow system. The use of a flow system for compounds with limited 

hydrothermal stability is desirable since it extends the range of temperatures over which 

measurements can be made. 

Recently, Bennett and Johnston (1994) developed a high temperature and pressure 

flow system for use with any commercially available UV-visible spectrophotometer at 

temperatures up to 713 K and pressures up to 35 MPa. Acid/base dissociation constants have 
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been measured for several colorimetric indicators that are stable in subcritical and 

supercritical water (Ryan et al., 1997; Xiang and Johnston, 1997; Xiang and Johnston, 1994). 

The UV -visible absorption spectrum of a solution containing one of these colorimetric 

indicators can be used to determine the pH of the solution as a function of temperature. The 

amino acid solutions are particularly well suited for pH determination with colorimetric 

indicators since the amino acid solutions do not absorb at the wavelengths that characterize 

the colorimetric indicators. 

An aqueous colorimetric indicator can exist in either the protonated form HX or the 

deprotonated form x-. The equilibrium can be summarized as: 

HX Klndicator X + H- (1.5.3.1) 

where K1ndicator is the molar equilibrium constant. From equation (1 .5.3.1) the following 

expression is obtained for the molarity ofH+: 

[H +) = K fndicalor [HX) = K!ndicatorm HX 
(1.5.3.2) 

[X-] mx -

The concentration of a solute can be converted from molarity to molality by dividing the 

molarity of the solute by the density of the solution. At a constant temperature and pressure 

the UV -visible absorption spectrum for a solution containing only HX will obey the 

express10n: 

(1.5 .3.3) 
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where A is the wavelength, A(A) is the absorbance at a given A, and EHx(A) is the effective 

molal extinction coefficient for HX at a given value of A. The effective molal extinction 

coefficient is equal to the product of the molar extinction coefficient, the path length of the 

cell, and the density of the solution. For a solution containing only x-: 

(1.5.3.4) 

where Ex-(A) is the effective molal extinction coefficient for x-at a given value of A. At a 

constant temperature and pressure the UV -visible absorption spectrum for a solution 

containing both HX and x-will obey the expression: 

(1.5.3.5) 

The value of e11x(A) can be determined at a given temperature and pressure by measuring the 

UV -visible absorption spectrum for a solution containing only HX at a known molality. 

Similarly, the value of £x-(A) can be determined at a given temperature and pressure by 

measuring the UV -visible absorption spectrum for a solution containing only x-at a known 

molality. The molality of HX and x-present in a solution containing both forms of the 

indicator can then be determined from the UV-visible absorption spectrum of that solution. 

The temperature dependent values of K1ndicator have been determined for a number of 

hydrothermally stable colorimetric indicators. Acridine, P-naphthoic acid, and P-naphthol 

have been studied by Ryan et al. (1997), Xiang and Johnston (1997), and Xiang and Johnston 

(1994), respectively. Of these colorimetric indicators only acridine and P-naphthoic acid 
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have suitable values of pK1ndicator for use in this work. The acidic and basic structures of 

acridine and P-naphthoic acid are illustrated in Figure 1.5.3.1. 

The equilibrium constant for the protonation of acridine KA~;idine was measured at 

24.13 MPa and 298.15 K :;:; T :;:; 653.15 K (Xiang, 1996; Ryan et al. , 1997). The value of 

K Acridine can be represented by the expression: 

1nKAcrr'dr·ne ~ -12.43 -3663 .04 ( _!_ __ 1 ]-( 15874.31) ( J_- 1 l (1.5.3.6) 
T T T E 78.38011 r r 

Here T,. = 298.15 K is the reference temperature and er is the solvent dielectric constant. The 

equilibrium constant for the deprotonation of P-naphthoic acid K p-naphtlroic was measured at 

34.47 MPa and 298.15 K ::::; T ::::; 673.15 K (Xiang and Johnston, 1997) and can be represented 

by the expression: 

1ogK . = _ 13 _553 +( 7.824·10
3
]-( 1.704·10

6
] +( 6.3 18·10

7
] + 

~ ·naphihorc T T 2 T 3 

(1.5.3.7) 
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Figure 1.5.3.1 The stmcture of acridine and P-naphthoic acid in the acidic and basic 
forms. 
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1.6 Amino Acids Under Hydrothermal Conditions. 

1.6.1 Experimental Requirements. 

When determining the suitability of an amino acid for use in high temperature and 

pressure densitometry and calorimetry, a number of points must be considered. 

First, the aqueous amino acid must be thermally stable up to a temperature of at least 

573 K. Any hydrothermal reactions that occur will alter the concentration of the aqueous 

amino acid and will introduce new species into the solution. The measured apparent molar 

properties will then contain contributions from both the unreacted amino acid and the thermal 

reaction products. Therefore, knowledge of the identity, molality, and apparent molar 

properties of the thermal products would be required to obtain the apparent molar properties 

of the amino acid. Often the molalities of thermal products cannot be determined exactly and 

their apparent molar properties are unknown. Sometimes the them1al reaction product itself 

cannot be conclusively identified. 

Second, the amino acid must have a solubility that does not decrease as the 

temperature increases from 298 K to 573 K. A decrease in the solubility of the aqueous 

amino acid with increasing temperature could allow the most concentrated solutions at room 

temperature to become supersaturated at the higher operating temperatures of the 

densitometer and calorimeter. The resulting precipitate could block the platinum U-tube in 

the densitometer or the platinum cells in the calorimeter. 

Finally, the amino acid must have a solubility of at least 0.3 mol·kg·1 at 298 K to 
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allow accurate extrapolation to infinite dilution. To determine the standard partial molar 

properties of the aqueous amino acids, the apparent molar properties must be known as a 

function of molality. If the concentration range is very narrow, then obtaining a reliable 

extrapolation to infinite dilution will be difficult. In addition, the uncertainty associated with 

the measured apparent molar properties increases as the molality decreases. For a sparingly 

soluble amino acid, the large uncertainties associated with the measured apparent molar 

properties and the narrow concentration range will translate into an unacceptably large 

uncertainty in the measured standard partial molar properties. 

1.6.2 Choice of Amino Acids for Hydrothermal Measurements. 

A search of the relevant literature revealed only a few studies that have been 

conducted to investigate the hydrothennal stability of amino acids. Abelson ( 1957), Bada and 

Miller (1970), Povoledo and Vallentyne (1964), Vallentyne (1964), Vallentyne (1968), and 

vVhite (1984) have measured approximate first-order rate constants for the decomposition 

of several dilute aqueous amino acids at the temperatures and pressures used in this work. 

The rate constant k for the decomposition can be described by the Arrhenius equation. 

(1.6.2.1) 

Here A is the Arrhenius frequency factor, EA is the activation energy in cal·mol-1, R is the gas 

constant equal to 1.9872 cal·K1·moi-', and Tis the absolute temperature. Table 1.6.2.1 

summarizes the values of A and EA reported in the studies listed above. For comparison 
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purposes Table 1.6.2.1 includes an estimated half-life t112 for each of the aqueous amino acids 

at 573 K. Of the amino acids listed in Table 1.6.2.1, only glutamic acid, proline, glycine, 

phenylalanine, a-alanine, and leucine have enough hydrothermal stability to be useful at the 

experimental residence times, temperatures, and pressures used in this work. 

The temperature-dependent solubility data for these thermally stable amino acids 

were found in a compilation by Greenstein and Winitz ( 1961) and are displayed in Figure 

1.6.2.1. Although the solubility of each candidate amino acid increases with temperature, it 

is clear that glutamic acid, phenylalanine, and leucine are insufficiently soluble in water to 

be of use. Therefore a-alanine, proline, and glycine are the "best" model systems for 

studying the properties of amino acids under hydrothermal conditions. 

A series ofbatch experiments, described in Section 2.2, confirmed that a-alanine and 

proline are suitable for study at the temperatures, pressures, and molalities used in this work. 

Glycine was found to be significantly less stable. The structures of a-alanine, glycine, and 

proline are illustrated in Figure 1.6.2.2. Figure 1.6.2.2 also includes the structure ofP-alanine 

which was included in this study for comparative purposes. 
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Table 1.6.2.1 The Arrhenius frequency factor A and activation energy EA for the thermal 
decomposition of selected amino acids as a function of temperature and the 
calculated half-lives t112 at 573 K. 

Amino Acid Source A EA I (cal·moi·1
) t 1;2 I (hour)t 

Glutamic Acid Povoledo and 1.2X109 35700 6.74 
Vallentyne (1964) 

Proline Vallentyne (1968) 1.5xl012 42400 1.91 

Glycine Vallentyne (1964) 1.4- 2.1 

Phenylalanine Vallentyne ( 1964) 1.7x 108 30750 0.592 

a-Alanine Vallentyne ( 1964) 3.0x1013 44020 0.401 

Leucine Vallentyne (1968) 1.7x1014 45200 0.197 

Arginine·HCl Vallentyne (1968) 1.2x 105 19800 5.72xi0·2 

Serine Vallentyne (1964) 4.0x109 29330 7.40x 10·3 

Threonine Vallentyne (1964) 1.9x 1012 33800 7.84x 1 o-4 

Aspartic Acid Bada and Miller 2.2xl014 36820 9.67xi0·5 

(1970) 

tThe half life refers to the time required for the concentration of an aqueous amino acid to 
decrease by one half. 

Note: 1 cal = 4.184 J. 
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Figure 1.6.2.1 The solubility of L-proline, glycine, DL-a-alanine, DL-glutamic acid, 
L-phenylalanine, and L-leucine plotted against temperature. 0 , L-proline; 
( ), glycine;O, DL-a-alanine; \1, DL-glutamic acid; l:l., L-phenylalanine; 
<>, L-leucine 
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Figure 1.6.2.2 The structure of ex-alanine, P-alanine, glycine, and proline. 
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1.6.3 Thermodynamic Data in the Literature. 

A search of the relevant literature identified a number of studies that have been 

conducted to measure thermodynamic quantities for aqueous a-alanine, P-alanine, glycine, 

and proline. Although the majority ofthese studies were limited to 298.15 K, several were 

conducted as a function of temperature between 278.15 K and 343.15 K. The results of these 

studies are summarized in Tables 1.6.3 .1 and 1.6.3.2. Our literature review also identified 

temperature dependent values of the molar dielectric increment 6 and the dipole moment 11 

for a.-alanine, P-alanine, glycine, and proline. These are summarized in Table 1.6.3.3. 
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Table 1.6.3.1 Standard partial molar volumes vo and standard partial molar heat 
capacities C; of aqueous a-alanine, P-alanine, glycine, and proline at 0.1 
MPa as found in the relevant literature. 

ex-Alanine P-Alanine Glycine Proline 

T l (K) vo I (cm3·mol·') 

278.15 58.64 ± 0.02 c 41.07 ± 0.01 c 80.43 ± 0.02 c 

41.2 bb 

283.15 41.9 bb 

288.15 59.73 ± 0.01 c 57.48 ± O.OP 42.29 ± 0.02 c 81.71 ± 0.02 b 
59.67 ± 0.18 e 57.0 ± 0.2 aa 42.48 e 81.57 ± 0.01 c 

59.9 ± 0.1 j 42.4 ± 0.1 1 81.93 ± 0.01 g 

42.5 ± 0.2 aa 
42.4bb 

291.15 60.2 ± 0.1 d 57.6 ± 0.31 42.9 ± 0.1 d 

293.15 42.8 bb 

297.15 60.65 ± 0.1P 43.39 ± 0.1 P 

298.15 60.52 ± 0.01 c 58.3 ± 0.21 43.19 ± 0.01 c 82.61 ± 0.02 b 
60.5 ± 0.1 d 58.71 ± 0.01 g 43.4 ± 0.1 d 82.50 ± 0.01 c 

60.47 ± 0.03 e 58.25 ± 0.02 m 43.26 e 83.13 ± o.o2 g 
60.4 ± 0.1 j 58.63 ± 0.48 ° 43.09 ± 0.05 h 82.46 ± 0.05 h 

60.42 ± 0.02 I 58.28 ± 0.1 s 43.3 ± 0.1 j 82.5 ± 0.21 
60.50 ± 0.02 m 58.5 ± 0.3 1 43.19 ± 0.02 1 82.65 ± 0.03 k 

60.54 ± 0.09 ° 58.7 " 43.23 ± 0.01 Ill 82.63 ± 0.05 1 

60.45 ± 0.01 q 59.65 z 43.17 ± 0.02 " 82.68 ± 0.02 n 

60.50 ± 0.07 r· 57.9 ± 0.2 aa 43.33 ± 0.12 ° 82.83 ± 0.08 ,. 
60.47 ±0.}5 58.72 dd 43.25 ± 0.01 q 81.0 " 
60.3 ± 0.2 1 43 .19±0.02 ,. 
60.6 " 43.5 ± 0.2 1 

60.61 dd 43.3" 
42.9 ± 0.2 aa 

43.22 cc 
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a-Alanine P-Alanine Glycine Proline 

308.15 60.96 ± 0.02 c 59.06 ± O.OP 43.81 ± 0.02 c 83.22 ± 0.02 c 

61.2 ± 0.1 d 59.25 >' 44.0 ± 0.1 d 83.62 ± 0.02 g 
60.9 ± 0.1 i 43.8 ± O.l i 
61.16Y 43.87Y 

313.15 61.14 ± 0.13e 59.1 ± 0.31 44.01 e 83.64 ± 0.01 b 

61.2 ± 0.15i 59.54Y 43.9 ± 0.1 1 83.6 ± 0.21 

61.35Y 44.00Y 

318.15 61.46 ± 0.02 c 59.75Y 44.00 ± 0.03 c 83.86 ± 0.04 c 

61.5±0.l d 44.3 ± 0.1 d 
61.46Y 44.15 >' 

323.15 61.6\Y 59.84>' 44.25 >' 

328.15 61.53 ± 0.11 e 59.2 ± 0.31 44.51 e 84.46 ± 0.03 b 

61.6 ± 0.21 44.3 ± 0.1 j 84.5 ± 0.31 

333.15 61.85Y 60.03>' 44.38 >' 

343.15 62.24>' 60.18Y 44.47 >' 

T l (K) CPo I (J·mol· 1·K1
) 

278.15 99.37 dd 16.90 dd 

288.15 126.3 e 15.2 e 161.4 ± 0.3 b 

298.15 141.2 e 73 .2 ± p 37.6 e 177.9 ± 0.4 b 
145.2 ± 1P 81.2 ± 8.4 w 36.7 ± 1 p 172.3 ± 0.9 k 
141.4 ± 0.2 q 76.44 dd 39.2 ± 0.4 '1 170 ± 3 x 
142.5 ± 1 s 61.1±8.4 w 
147.7 ± 2.1 w 47 ± 5x 
141 ± 4x 44 ± 3x 
146 ± 5 X 31.4 ee 

140.96 dd 

167.4 ee 

303.15 150 ± 25 v 91 ± 7 v 43 ± 20 v 22s ± 1r 

305.15 153.6 ± 2.1 \V 91.2 ± 8.4 w 65.3 ± 4.2 w 
146.8 dd 86.2 dd 
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ex-Alanine P-Alanine Glycine Proline 

313.15 153.r 97.65 dd 57.8 e 197.6 ± 0.4 6 

153.39 dd 

328.15 166.5 e 76.4 e 226.5 ± 6.7 b 

bHakin et al. (1997); c Kikuchi et al. (1995); d Chalikian et al. (1994); e Hakin eta!. ( 1994); 
fChalikian eta!. (1993); gWadi and Goyal (1992); Jt Belibagli and Ayranci (1990); 1Kharakoz 
(1989); k Jolicoeur eta!. (1986); 1 Mishra and Ahluwalia (1984); "' Ogawa et al. (1984); 
nvliegen et al. (1984); °Cabani et al. (1981); PDiPaola and Belleau (1978); q Jolicoeur and 
Boileau (1978); rMillero eta!. (1978); s Ahluwalia et al. (1977); I Shahidi and Farrell (1978); 
UKirchnerova et al. {1976); v Prasad and Ahluwalia (1976); wcabani et al. (1977); xspink and 
Wadso (1975); YGopal et al. (1973);Z Pepela and Dunlop (1972); aanevine and Lowe (1971); 
66 Tyrrell and Kennerley (1968); cc Ellerton et al. (1964); dd Gucker and Allen (1942); ee Zittle 
and Schmidt (1935). 
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Table 1.6.3.2 Standard partial molar isothermal compressibilities K/ and standard 
partial molar adiabatic compressibilities K s o of aqueous ex-alanine, 
P-alanine, glycine, and proline at 0.1 MPa as found in the relevant literature. 

T l (K) 

278.15 

288.15 

291.15 

298.15 

308.15 

313.15 

318.15 

328.15 

K/ 
cm3·mol-1·GPa-1 

KTO 

cm3·mol-1·GPa-1 

ex-Alanine 

-39.78 ± 0.07 a -39.48 ± 0.07 * 

-31.01 ± 0.07 a -29.11 ± 0.07. 
-30.4 ± 0.2 e -28.5 ± 0.2. 

-27.7 ± 0.2 b -25 .6 ± 0.2. 

-25.16± 0.07 a -23.00 ± 0.07 • 
-24.2 ± 0.2 b -22.0 ± 0.2 * 

-20.2 ± 0.8 c 

-25.1 ± 0.2 e -22.9 ± 0.2. 
-24.74 ± 0.181 -22.58 ± 0.18 * 
-21.6 ± 0.5 g -19.4 ±0.5 * 
-25.03 ± 0.13 h -22.87 ± 0.13 • 
-26.80) -24.64 . 

-20.87 ± 0.11 a -19.02±0.11 . 
-20.2 ± 0.2 b -18.3 ± 0.2. 

-19.8 ± 0.2 e -18.2 ± 0.2. 

-17.85 ± 0.18 a -16.61 ± 0.18. 
-17.5 ± 0.2 b -1 6.3 ± 0.2. 

-16.8 ± 0.4 e -1 6.2 ± 0.4 . 
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Kso 

cm3·moi-1·GPa-1 
K/ 

cm3·mol-1·GPa·1 

P-Alanine 

-30.0 ± 0.4 d -26.9 ± 0.4 . 

-26.3 ± 0.4 d -23.3 ± 0.4. 
-26.36 ± 0.11 f -23 .39 ± 0.11* 
-21 .5 ± 0.7 g -18.5 ± 0.7* 
-27.69) -24.72. 

-21.0 ± 0.5 d -19.7 ± 0.5 . 

-18.7 ± 0.5 d -19.5 ± 0.5* 



K o s Kro K o s Kro 

cm3·mol-'·GPa-1 cm3·moJ-'·GPa-' cm3·mol-1·GPa-' cm3·mol-'·GPa-' 

T l (K) Glycine Proline 

278.15 -35.28 ± 0.05 {/ -35.00 ± 0.05 • -44.14 ± 0.04 {/ -43.84 ± 0.04 . 

288.15 -31.66 ± 0.04 a -29.78 ± 0.04. -32.96 ± 0.05 a -30.89 ± 0.05 • 
-31.3 ± 0.4 e -29.4 ± 0.4. 

291.15 -28.4 ± 0.2 b -26.3 ± 0.2. 

298.15 -26.50 ± 0.1 0 a -24.17 ± 0.10 • -24.11 ± 0.04 a -21 .38 ± 0.04. 
-25.4 ± 0.2 b -23.1 ± 0.2 . -23.4 ± 0.4 e -20.7 ± 0.4 . 

-20.8 ± 0.8 c -23.25 ± 0.11 h -20.52 ± 0.11 • 
-26.6 ± 0.2 e -24.3 ± 0.2. 
-27.16 ± 0.36 1 -24.83 ± 0.36 • 
-25.0 ± 0.6 g -22.7 ± 0.6 . 
-27.00 ± 0.44 h -24.67 ± 0.44 • 
-27.19 1 -24.86 . 

308.15 -23.59 ± 0.05 a -21.29 ± 0.05. -18.14 ± 0.03 a -15.20 ± 0.03. 
-22.5 ± 0.2 b -20.2 ± 0.2 b 

313.15 -22.4 ± 0.2 e -20.2 ± 0.2 . -12.7±0.4 e -9.7 ± 0.4. 

318.15 -21.56 ± 0.12 a -19.52 ± 0.12 • -15.19 ± 0.04 a -12.24 ± 0.04 . 
-20.5 ± 0.2 b -18.5 ± 0.2* 

328.15 -20.3 ± 0.2 e -1 8.6 ± 0.2 . -9.4 ± 0.3 e -6.7 ± 0.3. 

a Kikuchi et al. (1995); b Chalikian et al. (1994); c Yayanos (1993); d Chalikian eta!. (1993); 
e Kharakoz (1991 ); f Ogawa et al. (1984); g Cabani et al. (1981 ); h Millero et al. (1978); 
JGucker et al. (1950); * values of K 7° calculated from the corresponding standard partial 
molar adiabatic compressibilities as described in Section 7.1. 
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Table 1.6.3.3 Molar dielectric increments o and dipole moments Jl of aqueous solutions 
of a.-alanine, P-alanine, glycine, and proline at 0. 1 MPa. 

o I (m3·mol-1) Jl t I (Debye) o I (m3·mol-1) f.l t I (Debye) 

Tl (K) a.-Alanine P-Alanine 

273.15 30.4 ± 1.5 d 17.4 ± 0.4 37.9± 1.9d 19.4 ± 0.5 

283.15 27.9± lA d 17.0 ± 0.4 36.5 ± 1.8 d 19.4 ± 0.5 

291.15 23 .57 j 15.82 42.25 j 21. 19 

293 .15 25.5 ± 1.3 d 16.5 ± 0.4 34.6 ± 1.7 d 19.2 ± 0.5 

298.15 23 .5 b 16.0 27.9 ± 0.2 a 17.4 ± 0.1 

298.15 23.2 e 15.9 35.0 g 19.5 

298.15 23.16 / 15.87 34.56 / 19.39 

298.15 27.7 i 17.4 

303.15 32.4 ± 1.6 d 18.9 ± 0.5 

313.15 22.0 ± 1.1 d 15.9±0.4 31.0 ± 1.6 d 18.8 ± 0.5 

323.15 21.3 ± 1.1 d 15.8 ± 0.4 30.0 ± 1.5 d 18.8 ± 0.5 

Tl (K) Glycine Proline 

291.15 23 .0 ) 15.6 

293.15 20.0 ± 1.0 c 

298.15 24.0 ± 0.6 a 16.2 ± 0.2 21 h 15 

298 .15 24 b 16 

298.15 22.58 / 15.67 

298.15 26.4 i 16.9 

313.15 17.7 ± 0.9 c 

a Edward et al. (1974); bKirchnerova et al. (1976); cshepherd and Grant (1968); d Aaron and 
Grant (1967); e Osborn (1945); f Wyman and McMeekin (1933); g Devoto (1933); h Devoto 
(1931); ; Devoto (1930); 1Hederstrand (1928); tvalues ofthe dipole moment f.l calculated 
from the corresponding molar dielectric increment o according to equation (7.2.14) as 
described in Section 7 .2. 
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1.7 Experimental Objectives. 

The goal of this research is to determine the thermodynamic properties of aqueous 

ammo acids at high temperatures and pressures and to use these data to identify the 

contribution of major solvation effects. To accomplish this goal a number of more specific 

objectives were defined. 

• determine the most suitable amino acids for use under hydrothermal conditions. 

• measure V4> of aqueous a-alanine, P-alanine, and proline and calculate vo. 

• measure Cp. 4> of aqueous a-alanine, ~-alanine, glycine, and proline and calculate C ; . 

• fit an appropriate equation of state to the experimental results. 

• compare experimental values of vo and C; with predicted by both the revised HKF 

model and the Yezdimer-Sedlbauer-Wood functional group additivity model. 

• measure the temperature dependent speciation of the aqueous amino acids studied 

in this work and compare with predicted values. 

• determine the contribution to the experimental values of va and C ; by the 

non-zwitterionic forms ofthe aqueous amino acids. 

• estimate the contribution of solvation effects to vo and C po· 

Based on the literature search described in Sections 1.6.1 and 1.6.2 aqueous a­

alanine, proline, and glycine were selected to be the "best" model systems for studying the 

properties of amino acids under hydrothermal conditions. A set of batch experiments, 
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described in Sections 2.2 and 3.1 confirmed their thermal stability at our experimental 

temperatures and pressures. Although less stable under hydrothermal conditions, P-alanine 

was also included in this study for comparative purposes. 

The apparent molar volumes V<l> of aqueous a-alanine, P-alanine, and proline were 

determined with platinum vibrating tube densitometers in our laboratory at temperatures 

from 298 K to 523 K and at pressures in excess of steam saturation (Sections 2.3, 2.4, and 

3.2). The standard partial molar volumes vo were determined isothermally from the apparent 

molar volumes (Section 3.2). It was found that the values of vo increased with increasing 

temperature and then deviated toward negative values at temperatures above 398 K in a 

manner similar to aqueous ions and electrolytes. 

The apparent molar heat capacities Cp, <!> of aqueous a-alanine, P-alanine, glycine, and 

proline were determined with the differential flow calorimeter at Universite Blaise Pascal at 

temperatures from 323 K to 498 K and at pressures in excess of steam saturation (Sections 

2.5, 2.6, and 3.3). These results were then used to determine standard partial molar heat 

capacities C ; (Section 3.3), The values of C ; increased with increasing temperature and then 

deviated toward negative values at temperatures above 373 to 423 K, in a manner similar to 

that observed for va, 

The molality, temperature, and pressure dependence of the apparent molar properties 

are most conveniently represented by an equation of state. In the first attempt to model the 

experimentally determined data, both the density model and the revised HKF model were 
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fitted to the Vcr(m, T,p) results (Section 3.4.2). Although the density model reproduced the 

Vc!J results better than the revised HKF model (Section 4.2), it could not simultaneously 

represent Vcr(m, T,p) and Cp. cp(m, T,p) with sufficient accuracy. Therefore, the density model 

was extended to include a number of additional temperature and/or pressure dependent terms 

and was fitted to the isothermally determined values of vo and C ;rather than to the entire 

data set of V<l> and Cp. <1>· The results are given in Section 3.4.3. 

The experimentally determined values of vo and C; were compared to the values 

predicted by both the revised HKF model (Section 4.3) and the Yezdimer-Sedlbauer-Wood 

functional group additivity model (Section 4.4.1 ). The deviation toward negative values by 

va and C; is opposite to the behaviour predicted by the revised HKF model. Although the 

Yezdimer-Sedlbauer-Wood functional group additivity model predicts the deviation toward 

negative values, it is only in qualitative agreement with the experimental results. The 

experimentally determined values of vo and C Po were used to recalculate the parameters for 

the amino acid functional group used in the Yezdimer-Sedlbauer-Wood functional group 

additivity model (Section 4.4.2). However, insufficient flexibility in the equation of state 

used in this model prevented any significant improvement in its prediction of V 0 and C po· 

Three methods were used to determine the temperature dependent speciation of the 

aqueous amino acids (Section 4.5.1 ). The speciation of aqueous a.-alanine was determined 

from measurements made using high temperature and pressure UV -visible spectroscopy and 

colorimetric indicators (Sections 2.7, 3.5, and 4.5.5). This is one of the first studies to use the 
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colorimetric indicators developed by Johnston and coworkers (Ryan et a!., 1997; Xiang and 

Johnston 1997; Xiang and Johnston, 1994). The speciation was also estimated from room 

temperature data assuming constant heat capacities for the isocoulombic equilibria among 

the various forms of the aqueous amino acid (Section 4.5.2). A second estimate was obtained 

using the Yezdimer-Sedlbauer-Wood functional group additivity model (Section 4.5.3). 

When the measured and estimated values were compared, it was found that the estimated 

values represented an upper limit for the degree of dissociation of an aqueous amino acid 

(Section 4.5.6). 

The contribution to the experimentally determined values of vo and C ;by the non­

zwittcrionic forms of the aqueous amino acids were estimated using the degree of 

dissociation and the standard partial molar properties for the ionic and neutral forms of each 

amino acid estimated using the Yezdimer-Sedlbauer-Wood functional group additivity model 

(Section 4.5.4). It was found that the contribution of neutral and ionic species to the 

experimental values of c; and vo became significant only at temperatures above 373 K. 

Even at these temperatures the contributions were estimated to be no greater than± 0.2 

cm3·mol-1 and -2 J-K-1·mol-1• 

The contributions to the experimentally determined values of vo by the intrinsic 

molar gas phase volume, the partial molar volume of polarization, the molar volume due to 

standard state correction, and the molar volume of hydration were calculated and it was 

found that there is qualitative agreement between the partial molar volume of polarization 
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and the vo values (Sections 4.6.1 to 4.6.4). By increasing the effective radius used in the 

estimation of the partial molar volume of polarization the temperature dependence of the 

molar volume of hydration can be greatly decreased (Section 4.6.5). It was also found that 

there is qualitative agreement between the partial molar heat capacity of polarization and the 

C; values (Section 4. 7). 

63 



CHAPTER 2.0 EXPERIMENTAL 

2.1 Materials. 

DL-a-Alanine was obtained from BDH (Assay 98.5% to 100.5%) and from Aldrich 

(Assay 99%), P-Alanine was obtained from Aldrich (Assay 99+%), and Glycine was 

obtained from Aldrich (Assay 99+%). Before use, the a-alanine, P-alanine, and glycine were 

recrystallized according to the method of Perrin and Armarego (1988). Each compound was 

dissolved in a minimum amount of hot water (T = 343 K). The resulting solutions were 

filtered while hot to remove any insoluble materiaL Hot ethanol (T= 333 K) was then added 

slowly to the hot filtrates until a 60/40 ethanol to water ratio was obtained. The resulting 

precipitates were allowed to digest for five hours at which time the white solids were 

collected and washed w1th cold water followed by cold ethanol. The purified a-alanine, P­

alanine, and glycine were dried under vacuum, over Drierite, for 120 hours at room 

temperature. 

L-Proline was obtained from Aldrich (Assay 99+ %). Before use, an attempt was 

made to recrystallize the proline according to the method of Perrin and Armarego (1988). 

This method failed to precipitate any purified proline and therefore the following modified 

method was employed. The proline was dissolved in a minimum amount of hot anhydrous 

ethanol (T = 333 K). The resulting solution was filtered while hot to remove any insoluble 

materiaL Warm, anhydrous diethyl ether was then added slowly to the hot filtrate until the 
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first permanent cloudiness was obtained. The resulting precipitate was allowed to digest for 

five hours at which time the white solid was collected and washed with cold ethanol 

followed by cold diethyl ether. The purified proline was dried under vacuum, over Drierite, 

for 120 hours at room temperature. 

Sodium hydroxide solution 50% w/w (Certified) was obtained from Fisher Scientific 

and used to prepare a 0.099165 ± 0.000006 mol·kg·• stock solution. The concentration of the 

stock solution was determined in triplicate by pH titration against potassium hydrogen 

phthalate (Analar, Analytical Reagent). Trifluoromethanesulfonic (triflic) acid was obtained 

from Alfa Aesar (Assay 99%) and used to prepare a 0.097918 ± 0.000007 mol·kg·1 stock 

solution. Glacial acetic acid (Certified AC.S.) was obtained from BDH and used to prepare 

a 0.20034 ± 0.00018 mol·kg·1 stock solution. Phosphoric acid (Certified AC.S.) was 

obtained from Caledon and used to prepare a 0.19983 ± 0.00001 mol·kg-1 stock solution. The 

concentration of each stock solution (triflic acid, acetic acid, and phosphoric acid) was 

determined in triplicate by pH titration against tris(hydroxymethyl)aminomethane (Aldrich, 

Assay 99.9+%). A buffer solution of a-alanine m(H2A+) = 0.048974 mol·kg·1 and m(HA±) 

= 0.050483 mol·kg·1 was prepared by adding triflic acid to a stock solution of a-alanine (m 

= 0.19898 mol·kg-1). A second buffer solution of a-alanine m(A-) = 0.049658 mol·kg·1 and 

m(HA±) = 0.049680 mol·kg·• was prepared by adding aqueous sodium hydroxide to a stock 

solution of a-alanine (m = 0.19898 mol·kg-1). A buffer solution of phosphoric acid m(H2PO:;) 

= 0.049293 mol·kg·1 and m(H3P04) = 0.049279 mol·kg·1 was prepared by adding aqueous 
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sodium hydroxide to a stock solution of phosphoric acid. A buffer solution of acetic acid 

m(CH3COO) = 0.049838 mol·kg-1 and m(CH3COOH) = 0.049776 mol·kg-1 was prepared by 

adding aqueous sodium hydroxide to a stock solution of acetic acid. 

NaCl (Fisher Scientific, Certified A.C.S., Crystal) was dried at 473 K for 20 hours 

prior to use. DL-a-alanyl-DL-a-alanine (Aldrich, Assay 98 %), L-prolyl-glycine (Sigma), 

L-prolyl-hydroxy-L-proline (Sigma), butylamine (Aldrich, Assay 99+ %), ethylamine 

hydrochloride (Aldrich, Assay 98 %), 2-naphthoic acid (Aldrich, Assay 98 %), and acridine 

(Aldrich, Assay 97 %) were used without further purification. Degassed, nanopure water 

(resistivity> 8 MQ·cm) was used in all of the experiments. 

2.2 Hydrothermal Stability Tests. 

2.2.1 Apparatus 

Batch experiments to determine the hydrothermal stability of the aqueous amino 

acids were conducted in sealed Pyrex tubes (-17 em long, 6 mm outside diameter, 1 mm 

wall thickness) contained in an oven designed for this purpose_ 

The oven used in the batch experiments is shown in Figure 2.2.1. The oven consisted 

of a cylindrical brass block into which thirteen holes had been drilled. The radius of each 

hole was slightly larger than the radius of the Pyrex tubes and each hole was approximately 

15 em deep. The brass block was capped by a removable cylindrical aluminum block 

containing an identical set of holes with an approximate depth of 2.5 em. The core was 
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Figure 2.2.1 Schematic diagram of the oven used in the batch exp eriments. 
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surrounded by a cylindrical ceramic heater that was controlled by an OMEGA CN76030 

Temperature Controller. An insulated stainless steel container surrounded both the heater and 

the core to prevent heat loss and to contain explosion debris. This oven configuration 

required approximately twenty minutes to warm from room temperature to 523 K. 

The tubes were prepared from 40 em lengths of Pyrex tubing that were subsequently 

cut in half using a fine-tipped oxygen torch. The use ofthe torch also served to seal one end 

of each 20 em tube produced. The batch experiments were conducted using one molal amino 

acid solutions. Each aliquot of amino acid solution was sealed in a Pyrex tube such that the 

ratio of solution to air in the tube was approximately 1 : 2. This allowed more than sufficient 

space for thermal expansion and it reduced the frequency of explosion. 

2.2.2 Methods. 

To obtain meaningful results from the batch experiments it was necessary to keep the 

time taken to heat the amino acid samples, from room temperature to 523 K, as brief as 

possible. In order to place the sealed tubes in the oven, the aluminum cap had to be removed. 

If the oven was preheated to 523 K before the tubes were added, a dangerously large thermal 

gradient was produced in the tubes. The bottom portion of each tube quickly came to thermal 

equilibrium with the brass block. The top portion of each tube remained in thermal 

equilibrium with the atmosphere until the aluminum cap was replaced. Although the interval 

between loading the tubes into the brass block and replacing the aluminum cap was kept 
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small, the large thermal gradient resulted in a one hundred percent explosion rate. Therefore, 

the following procedure was developed for the loading, heating, and sampling of the tubes. 

At the start of each run ten tubes containing the same amino acid solution were loaded into 

the oven, which was at room temperature. Once the tubes were secured, the oven was heated 

from room temperature to 523 K over a period of approximately 20 minutes. Several tubes 

were removed from the oven after 90 minutes and the remaining tubes were removed after 

72 hours. Visua1 observations were made when the solutions were hot (523 K) and when the 

solutions had cooled to room temperature. The concentrations of the amino acids and their 

decomposition products were measured at room temperature using a Beckman 121MB 

Amino Acid Analyser as described in Section 2.8. 

2.3 Density Measurements at High Temperatures and Pressures. 

2.3.1 Apparatus. 

Density measurements were made at high temperatures and pressures using the 

platinum vibrating-tube densitometer constructed by Xiao (1997). During the course of this 

project the core of the densitometer was completely rebuilt by the author. The design of the 

densitometer is essentially that given by Albert and Wood (1984) as modified by Corti et al. 

(1990) and described in detail by Xiao et a!. (1997). The densitometer is shown 

schematically in Figure 2.3.1 and discussed briefly below. 

The U-shaped vibrating tube in this densitometer (2 mm outside diameter, 0.2 mm 
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Figure 2.3.1 Schematic diagramofthe densitometer. 1, platinum U-shaped vibrating tube; 
2, densitometer cell body; 3, Inconel rods for sensing and driver current; 4, 
permanent magnet; 5, RTD; 6, brass oven; 7, thermal insulation; 8, stainless 
steel container; 9, heat exchanger; 10, aluminum preheater; 11, aluminum 
heat shield; 12, brass heat shield; 13, back-pressure regulator; 14, stainless 
steel reservoir; 15, sampling loop; 16, injection loop; 17, pump; 18, pre­
pressurizing pump. 
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wall thickness) was fabricated from an alloy (90% platinum+ 10% iridium). To house the 

U-tube, a slot (10 em long, 3 em wide, and 2.75 em deep) was machined into a cylindrical 

brass block (20 em long, 5.5 em diameter). The ends of the U-tube exited through two holes 

machined into the brass cylinder and were secured in these holes with silver solder. Two 

Inconel rods (0.3 mm diameter) were mounted on the U-tube with ceramic adhesive and were 

connected to a feedback amplifier using fine silver wires. A permanent, horseshoe magnet 

was attached to the brass cylinder such that the Inconel rods rested between its poles. The 

temperature of the brass cylinder was measured by a 100 Q platinum RTD located in a hole 

machined along the axis ofthe brass cylinder. The temperature was monitored by a Hewlett­

Packard 3478A multimeter. The RTD was calibrated to an estimated accuracy of 0.02 K by 

measuring the ice point of water and the freezing points oftin and lead (supplied by NIST 

as standard reference materials). This assembly constituted the core of the densitometer. 

Two strands of insulated heating wire (nickel + chromium) were wound around a 

cylindrical brass block (30 em long, 20 em o.d., 5.5 em i.d.) in a symmetrical counter-current 

configuration to minimize electromagnetic inductance. This large brass cylinder and its 

insulated heating wires were placed in an insulated stainless steel container. This assembly 

constituted the oven of the densitometer into which the core was placed. The oven 

temperature was controlled by an Omega CN2011P2-D3 temperature controller and was 

measured by a 100 Q platinum RTD located near the outer circumference of the large brass 

cylinder. Stable temperature control was provided by both the large thermal mass ofthe large 
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brass cylinder and the insulation surrounding it. The fluctuation in temperature measured by 

the RTD in the core remained less than 0.03 Kat T= 523 K. 

Exterior to the core, the inlet and outlet ends of the densitometer U-tube came 

together to form a heat exchanger as shown in Figure 2.3 .1. Between the heat exchanger and 

the entrance to the core the inlet tube passed through a small aluminum cylinder that served 

as a preheater. The aluminum cylinder is surrounded by a Chromalox heater that was 

controlled to 0.2 K by an Omega CN76122 temperature controller. The temperature of the 

preheater was measured by a 100 Q platinum RTD located near the outer circumference of 

the aluminum cylinder. The heat exchanger, preheater and associated tubing were wrapped 

in insulation to prevent heat loss. 

An Isco 260D high pressure pump delivered water to the system at a constant 

volumetric flow rate (0.0117 mL·s-1 for aqueous proline and aqueous P-alanine, 0.00833 

mL·s-1 for aqueous a-alanine). A two-position six-port valve was used to direct the flow of 

water either directly into the densitometer, to act as a reference fluid or into a 15 cm3 

injection loop to force the sample solution into the densitometer. The injection loop was 

constructed from 3.2 mm o.d. PEEK tubing (Upchurch Scientific)- The sample solution was 

loaded into the injection loop using a second two-position six-port valve and a filling syringe 

and was pre-pressurized to the system pressure by an HPLC pump. The pressure of the flow 

system was maintained by a nitrogen filled cylinder and a back-pressure regulator (Tescom 

model 26-1722-24). The system pressure was measured by an Omega PX623 pressure 
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transducer and an Omega DP41-E process indicator. 

The design for the electronic circuit was based on the phase-locked loop described 

by Wood et al. (1989). The period of vibration was measured with a Hewlett-Packard 5316A 

universal counter. 

2.3.2 Methods. 

Aqueous NaCl and water were used to calibrate the densitometer at each temperature 

and pressure using the literature values of Archer (1992) and Hill (1990), respectively. 

Seven to thirteen 15 mL sample solutions of a-alanine and proline were injected into 

the densitometer along with approximately 300 mL of water from the Isco pump at each 

temperature and pressure at which measurements were made. The effluent from the 

densitometer was collected in a stainless steel reservoir under an atmosphere of nitrogen at 

the operating pressure of the densitometer. At the conclusion of a set of measurements the 

reservoir was emptied into a sample vial that was under an atmosphere of nitrogen at ambient 

pressure so that the solutions could be analysed for thermal decomposition products. The 

procedure for P-alanine was similar, except that the effluent samples were collected in a 

sampling loop that was added to the densitometer on the output side of the core. A two­

position six-port valve was used to direct the flow of the effluent either directly into the 

stainless steel reservoir or into the reservoir through the 3 cm3 sampling loop. The sampling 

loop was constructed from 3.2 mm o.d. PEEK tubing (Upchurch Scientific). As the sample 
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solution passed through the sampling loop it was diverted to a nitrogen filled syringe. The 

effluent was analysed for the presence of thermal products using a Beckman 121MB Amino 

Acid Analyser. 

2.4 Density Measurements at Room Temperature. 

The density measurements made at 298.10 K and 0.1 MPa were obtained using a 

Sodev 03D vibrating-tube densitometer equipped with a platinum cell. The design of the 

densitometer is essentially that given by Picker eta/. (1974). A Sodev CT-L circulating bath 

was used to maintain the temperature of the densitometer to within ± 0.01 K . The 

temperature of the densitometer was measured by an Omega 44107 thermistor that had been 

calibrated with a Hewlett-Packard 2804A quartz-crystal thermometer traceable to NIST 

standards. Aqueous NaCl and water were used to calibrate the densitometer at each 

temperature and pressure using the literature values of Archer ( 1992) and Hill ( 1990), 

respectively. 

2.5 Specific Heat Capacity Measurements at High Temperatures and Pressures. 

2.5.1 Apparatus. 

Specific heat capacity measurements were made at high temperatures and pressures 

using the differential flow calorimeter at Universite Blaise Pascal in Clermont-Ferrand, 

France. The design of the calorimeter is described by Hnedkovsky et a/. (1999). The 
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calorimeter is shown schematically in Figure 2.5.1 and discussed briefly below. 

The two matched cells in this calorimeter (200 mm length, 2 mm outside diameter, 

0.4 mm wall thickness) were fabricated from a platinum-iridium alloy tube. One cell is 

referred to as the reference cell and the other is referred to as the working cell. The centre 

section of each cell was wrapped tightly with a nichrome coaxial heater (ThermoCoax, 0.5 

mm outside diameter) that was silver soldered directly to the cells. A 100 Q RTD was 

attached to the inlet end of the cell with high temperature ceramic cement (OmegaBond 600). 

A second 100 Q RTD was attached to the outlet end of the cell with high temperature 

ceramic cement (OmegaBond 600). A similar arrangement ofRTDs was used in the working 

cell. The cells were positioned in separate cavities that had been machined into a rectangular 

aluminum block. A platinum-iridium alloy transport tube (1.2 mm outside diameter, 0.2 mm 

wall thickness) was welded into each end of each cell. To ensure that the temperature of the 

fluid entering each cell was equal to the temperature of the aluminum block, the inlet 

transport tubes were placed in grooves inside the aluminum block. The temperature of the 

block was controlled with a decade resistance box. This assembly constituted the core of the 

calorimeter. 

The calorimeter core was suspended from the cover of a cylindrical stainless steel 

container that was referred to as the inner jacket. The inner jacket was housed in a second 

cylindrical stainless steel container that was referred to as the outer jacket. The outer jacket 

was housed in a third cylindrical stainless steel container that was referred to as the vacuum 
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Figure 2.5.1 Schematic diagram of the calorimeter. 1, platinum-iridium tube; 2, RTD; 3, 
nichrome coaxial heater; 4, rectangular aluminum block; 5, small aluminum 
block (preheater); 6, inner jacket; 7, inner jacket cover; 8, outer jacket; 9, 
outer jacket cover; 10, vacuum jacket; 11 , vacuum jacket cover; 12, four tube 
counter-current heat exchanger; 13, positioning pin; 14, support rod; 15, two 
tube counter-current heat exchanger; 16, check valve; 17, HPLC pump; 18, 
pre-pressurizing pump; 19, injection loop; 20, back-pressure regulator; 21, 
pressure gauge; 22, 0 -ring. 
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jacket. The temperature of the inner and outer jackets were each controlled with a decade 

resistance box. A vacuum of approximately 7 Pa was maintained within the vacuum jacket. 

A four-stage preheating system was used to maintain the temperature of the core of 

the calorimeter. Exterior to the vacuum jacket, the inlet and outlet transport tubes for the 

working cell came together to form a counter-current heat exchanger. A similar configuration 

existed for the reference cell. This pair of counter-current heat exchangers constituted the 

first stage of the preheating system. Between the vacuum jacket and the irmer jacket, all four 

transport tubes came together to form a 60 em counter-current heat exchanger. These tubes 

were silver soldered together and were wrapped with a nichrome coaxial heater. The heater 

was controlled by a regulator using a thermocouple with its reference end placed in the upper 

part of the aluminum block. This constituted the second stage of the preheating system. Two 

circular grooves were machined into the cover of the irmer jacket. The third stage of the 

preheating system was created when each inlet tube was placed into a circular groove. A 

regulator, using a thermocouple with its reference end placed in the upper part of the 

aluminum block, was used to control the temperature of the cover of the inner jacket. 

Between the cover of the irmer jacket and the aluminum block, the inlet tubes passed through 

a small aluminum block that served as the final stage of the preheating system. A regulator, 

using a thermocouple with its reference end placed in the upper part of the aluminum block, 

was used to control the temperature of the small aluminum block. 

An HPLC pump (SpectraSERIES Pl 00) delivered water to the system at a constant 
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volumetric flow rate (2.20 mL·min-1
). The reference and working cells are connected in series 

to compensate for fluctuations in the flow rate. A portion of this delay line was thermostated 

at 298.15 K (Bromma 7600 Precision Thermostat thermostatic bath and proportional 

controller). As can be seen in Figure 2.5.1 the water from the pump passes through the 

reference cell before reaching the two-position six-port valve. This valve was used to direct 

the flow of water either directly into the working cell or into a thermostated injection loop 

to force the sample solution into the working cell. The sample solution was loaded into the 

injection loop using a filling syringe and was pre-pressurized to the system pressure using 

a high pressure pump. The pressure of the flow system was maintained by a back-pressure 

regulator. The system pressure was measured using a Heise CM-63931 pressure gauge. 

2.5.2 Methods. 

The four RTDs that were attached to the reference and working cells formed the arms 

of a Wheatstone bridge with a Wagner earth. The output signal from the Wheatstone bridge 

was amplified by a lock-in amplifier (Stanford research, SR51 0). The nichrome coaxial 

heater that surrounded the reference cell heated the water by approximately 2 K as it passed 

through the reference cell. The nichrome coaxial heater that surrounded the working cell 

heated the fluid of interest by approximately 2 K as it passed through the working cell. When 

the fluid passing through the working cell was water, the power supplied to the nichrome 

coaxial heater that surrounded the working cell was recorded as the water baseline. When the 
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fluid passing through the working cell was the sample solution, the power supplied to the 

nichrome coaxial heater that surrounded the working cell was readjusted so that the bridge 

balance remained unchanged. The readjusted power was recorded as the sample plateau. This 

technique allowed the temperature rise in the working cell to remain constant (within 0.2 

mK) as the identity of the fluid flowing through the cell changed. The amount of power 

dissipated across the nichrome coaxial heater in the working cell was calculated from the 

voltage across the heater and the voltage across a standard resistor that was in series with the 

heater. This allowed the power to be determined with a precision better than 20 1-l W. 

The absolute calibration of White and Wood (1982) was used to calibrate the 

calorimeter at each temperature and pressure. The absolute calibration is discussed in Section 

1.5.2. 

2.6 Specific Heat Capacity Measurements at Room Temperature. 

The specific heat capacity measurements made at 298.10 K and 0.1 MPa were 

obtained using a Picker flow microcalorimeter equipped with platinum cells. The design of 

the microcalorimeter and the principles of its operation are given by Picker et al. (1971 ), 

Desnoyer et al. (1976), Smith-Magowan and Wood (1981), and White and Wood (1982). A 

Sodev circulating bath was used to maintain the temperature of the microcalorimeter to 

within ± 0. 01 K. The temperature of the calorimeter was measured by an Omega 441 07 

thermistor that had been calibrated with a Hewlett-Packard 2804A quartz-crystal 
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thermometer traceable to NIST standards. Aqueous NaCl and water were used to calibrate 

the microcalorimeter using the literature values of Archer (1992) and Hill (1990), 

respectively. 

2.7 Spectroscopic Measurements at High Temperatures and Pressures. 

2.7.1 Apparatus. 

Spectroscopic measurements were made at high temperatures and pressures using a 

Varian Cary 50 spectrophotometer ( 190- 1100 nm) and a high pressure and temperature flow 

system. The design and construction of the spectroscopic flow system were carried out by 

Trevani et al. (in prep.) and is similar in concept to that developed by Chlistunoff et al. 

(1999). The spectroscopic flow system is shown schematically in Figure 2.7.1 and discussed 

briefly below. 

The cylindrical flow cell (35 mm outside diameter, 40 mm long) was fabricated from 

titanium. A cylindrical channel was machined along the principal axis of the titanium 

cylinder as illustrated in Figure 2.7.2. The central portion of this channel acted as the sample 

compartment in the flow cell. A sapphire window (10 mm diameter, 5 mm thick, Crystal 

Systems) was placed at each end of the sample compartment (producing an 18 mm optical 

path length). A Teflon washer (9 mm outside diameter, 5 mm inside diameter) was placed 

on each side of each window to provide a seal between the sapphire windows and the 

titanium flow cell. The Teflon washers also cushioned the sapphire windows during thermal 
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Figure 2. 7.1 Schematic diagram of the spectroscopic flow system. 1, water reservoir; 2, 
Gilson 305 HPLC piston pump; 3, Gilson 805 manometric module; 4, 
injection loop; 5, preheater; 6, Chromega-Alomega thermocouple; 7, 
brass/aluminum housing; 8, ceramic insulation; 9, cartridge heater; 10, 
sapphire window; 11, titanium flow cell; 12, bolt; 13, sampling loop; 14, 
nitrogen cylinder; 15, reservoir for solution eftluent; 16, back pressure 
regulator; 17, stainless steel reservoir. 
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Figure 2. 7.2 Schematic diagram of the spectroscopic flow cell. A, cylindrical titanium 
flow cell; B, sapphire window; C, Teflon washer; D, titanium disc; E, 
sample solution outlet; F, sample solution inlet; G, Chromega-Alomega 
thermocouple; H, sample compartment. 
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expansion of the flow cell. Each sapphire window was secured in place by a titanium disc 

(28 mm outside diameter, 5 mm inside diameter, 4 mm thick) that was bolted to the end of 

the cylindrical flow cell. As shown in Figure 2.7.2 the sample solution entered and exited the 

flow cell through 1 I 1t titanium tubing. 

The flow cell was mounted in a two-piece brass oven (total dimensions of the brass 

oven: 104 mm length, 63 mm height, 40 mm width). Two Cromalux CIR-20203 cartridge 

heaters (120 V, 200 W) were placed in holes machined into the brass oven. A coil oftitanium 

tubing C/16" outside diameter) was wound around a groove machined into the brass oven. 

This coil of tubing served as the pre heater for the flow cell. The brass oven was surrounded 

by a ceramic insulation (Rescor 31 0-COTRONICS). The entire insulated cell/oven system 

was mounted in a small box constructed ofbrass and aluminum. This housing was cooled 

by internal water circulation. The temperature of the flow cell was controlled(± 1 K) by an 

Omega CN76000 temperature controller and was measured by a Chromega-Alomega 

thermocouple located in the body of the flow cell. The temperature of the housing remained 

near room temperature and was monitored by a Chromega-Alomega thermocouple located 

in the body of the housing. The entire flow cell assembly was placed in the sample 

compartment of a Varian 50 spectrophotometer. Cary Win UV Scan Application software 

was used to record the absorption spectra 

A Gilson 305 HPLC piston pump delivered water to the system at a constant 

volumetric flow rate (0.3000 mL·s·1
). A two-position six-port valve was used to direct the 
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flow of water either directly into the flow cell, to act as a reference fluid or into a 18 cm3 

injection loop to force the sample solution into the flow cell. The injection loop was 

constructed from 3.2 mm o.d. PEEK tubing (Upchurch Scientific). The sample solution was 

loaded into the injection loop using a filling syringe and was pre-pressurized to the system 

pressure. The pressure of the flow system was maintained by a nitrogen filled cylinder and 

a back-pressure regulator (Tescom model 26-1700). The system pressure was measured by 

a Gilson 805 manometric module. A two-position six-port valve was used to direct the flow 

of the solution effluent either directly into the stainless steel reservoir or into the reservoir 

through a san1pling loop. The sampling loop was constructed from 3.2 mm o.d. PEEK tubing 

(Upchurch Scientific). 

2. 7.2 Methods. 

The value of K 1 and K2 for a-alanine were estimated using methods described in 

Section 4.5.2. As illustrated in Figures 2.7.3 and 2.7.4 the estimated values ofpK1 and pK2 

begin to lie within the indicator range of acridine and P-naphthoic acid, respectively, as the 

temperature approaches the critical temperature of water. 

At each temperature and pressure the spectroscopic measurements were made 

relative to a water baseline. To obtain the effective molal extinction coefficients, eAcH +(A.), 

eAc(A.), eNapH(A.), and eNap-(A.), the UV-visible absorption spectrum was measured for solutions 

containing acridine (m = 3.49·10-5 mol·kg-1
) and triflic acid (m = 0.0203 mol·kg-1

), acridine 
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(m = 3.63·10·5 mol·kg·1) and sodium hydroxide (m = 0.0981 mol·kg-1) , P-naphthoic acid (m 

= 1.45·10·4 mol·kg-1
) and triflic acid (m = 0.100 mol·kg-1), P-naphthoic acid (m = 1.43·10·4 

mol·kg-1
) and sodium hydroxide (m = 0.0123 mol·kg-1

), respectively. 

In aqueous solution an amino acid can exist in either the zwitterionic form HA±, the 

neutral form HA o, the deprotonated form A-, or the protonated form H2A +. The equilibria 

between the zwitterionic and ionic forms of an amino acid can be summarized as: 

H2A+ Kl HA±+H+ 
""' 

(2.7.2.1) 

HA± K2 A- +H+ (2.7.2.2) 
~ 

where K1 and K2 are the molar equilibrium constants. From equations (2. 7 .2.1) and (2. 7 .2.2) 

the following expressions are obtained for K1 and K2: 

K = [HA ±)[H +] = mHA*[H ~ ] 

I [H2A +] 
(2.7.2.3) 

K = [A -][H +] 
2 

[HA ±] 
(2.7.2.4) 

mHA " 

The concentration of a solute can be converted from molarity to molality by dividing the 

molarity of the solute by the density of the solution. Combining equations (1.5.3.2) and 

(2.7.2.3) gives an expression for K1: 

K = Klndicator [HA ±] [HX] = Klndicator mHA = mHX 

I [H2A ' ][Xl 
(2.7.2.5) 
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Similarly, combining equations (1.5.3.2) and (2.7.2.4) gives an expression for K2: 

(2.7.2.6) 

Solid acridine was added to the a-alanine buffer solution (H2A+ I HA±) until the molality of 

the acridine was approximately 3.7·10·5 mol·kg-1• Solid f3-naphthoic acid was added to the 

a-alanine buffer solution (A- I HA±) until the molality of the f3-naphthoic acid was 

approximately 1.4·1 o-4 mol· kg-1• UV-visible absorption spectra were obtained for each buffer 

solution in the presence and absence of the appropriate colorimetric indicator. 

To test the accuracy ofthe measured acid/base dissociation constants obtained using 

UV-visible spectroscopy and colorimetric indicators, the first acid dissociation constant of 

phosphoric acid and the acid dissociation constant of acetic acid were measured. The first 

acid dissociation of phosphoric acid is expressed as: 

(2.7.2.7) 

where K a1 is the first acid dissociation constant for phosphoric acid. As illustrated in Figure 

2.7.3 the values ofpKa1 obtained by Mesmer and Baes (1974) lie within the indicator range 

of acridine at temperatures above 425 K. The acid dissociation of acetic acid is expressed as: 

(2.7.2.8) 

where Ka is the acid dissociation constant for acetic acid. As illustrated in Figure 2.7.4 the 
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values of pKa obtained by Mesmer et a!. (1989) lie within the indicator range of P-naphthoic 

acid over the entire temperature range under consideration. From equations (2. 7 .2. 7) and 

(2.7.2.8) the following expressions are obtained for Ka1 and Ka: 

[H
2
P0

4
-] [H +] mH PO- [H +] 

K = 2 4 = aJ 
[H3PO 4 ] m H3P04 

(2.7.2.9) 

[CH
3
COO-] [H +] mCH coo - [H +] 

K 3 = = a [CH
3
COOH] mCH

3
COOH 

(2.7.2.10) 

Substitution of equation (1.5.3.2) into equations (2.7.2.9) and (2.7.2.10) gives: 

K = Klndicator(H2P04- ][HX] = KlndicatormH2PO:;mHX 

a! (2.7.2.11) 
[H

3
PO 

4
] [X - ] 

K 
" 

(2.7.2.12) 

Solid acridine was added to the H2PO~ I H3P04 buffer solution until the molality of the 

acridine was approximately 3.7·10-5 mol·kg-1• Solid P-naphthoic acid was added to the 

CH3COO- I CH3COOH buffer solution until the molality of the P-naphthoic acid was 

approximately 1.4·1 o-4 mol·kg-1. UV -visible absorption spectra were obtained for each buffer 

solution in the presence and absence of the appropriate colorimetric indicator. 
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Figure 2. 7.3 Comparison of the indicator range of acridine with the predicted values 
of pK1 for ex-alanine and the values of pKa1 for phosphoric acid as a 
function of temperature. Lines represent the following:--, pKAcridtne ± 1 
(indicator range); ---, pK1 as estimated in Section 4.5.2; ·····, pKa1 

obtained from Mesmer and Baes (1974) 
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Figure 2.7.4 Comparison of the indicator range of ~-naphthoic acid with the 
predicted values ofpK2 for a-alanine and the values ofpK

0 
for acetic 

acid as a function of temperature. Lines represent the following: 
- , pKp.11aphthoic ± 1 (indicator range); -- -, pK2 as estimated in 
Section 4.5 .2; ·····, pKa obtained from Mesmer et al. (1989). 
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2.8 Analytical Methods. 

A Beckman 121MB Amino Acid Analyser was used to measure approximate amino 

acid concentrations in the batch experiments and to analyse for hydrothermal products in the 

effluent from the densitometer. The amino acid analyser detects ninhydrin-active species 

over a wide range of concentrations, with the optimal concentration being 3 mmol·kg-1
• 

Separation is achieved by ion chromatography ofthe R3C(NH3t species in a dilute solution 

of acid containing trace amounts of ninhydrin which acts as a colorimetric indicator. The 

separated ninhydrin-active species are detected by a UV -visible detector and recorded as an 

ion chromatograph (absorbance versus retention time). The amino acid analyser was 

calibrated with a set of standard solutions, each containing a single ninhydrin-active species 

at a known concentration. The set of standard solutions for each sample solution must 

include a standard for each ninhydrin-active species that is possibly present. Comparison of 

the peak locations in the sample chromatograph to those in the standard chromatograph 

indicates the identity of the species in the sample solution. For a given class of compounds, 

the peak location depends primarily on the molar mass of the species and thus two different 

species with the same molar mass may have overlapping peaks. This property can be 

exploited if a particular ninhydrin-active species cannot be obtained for use in a standard 

solution. The concentration of each species was determined by comparing the area under the 

peak in the sample chromatograph to the area under the peak in the corresponding standard 

chromatograph. 
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For a--alanine, P-alanine, glycine, and proline the primary thermal reactions are amino 

acid condensation (Flegmann and Tattersall, 1979; Fox and Dose, 1977; Wilson and Cannan, 

1937) and decarboxylation (Vallentyne, 1964). Equations (2.8.1) and (2.8.2) represent amino 

acid condensation and decarboxylation, respectively. 

H 
I 

R-C-C00-

1 
NH+ 

3 

+ 

H 
I 

H H 
I I 

R-C=C-N-C-R.' 
-----7 I I 

NH+ coo-
3 

H 
I 

R- c - coo- -----7 
I 

R-C-H 

I 
NH+ 

3 NH2 

+ Hp 

(2.8.1) 

(2.8.2) 

With respect to amino acid condensation, the primary product involving a-alanine would be 

a-alanyl-a-alanine, the primary product involving P-alanine would be P-alanyl-P-alanine, 

the primary product involving glycine would be glycyl-glycine, and the primary product 

involving proline would be prolyl-proline. With respect to decarboxylation, a-alanine and 

P-alanine would yield ethylamine, glycine would yield methylamine, and proline would yield 

butylamine. These thermal products are all ninhydrin-active and can be detected by the 

amino acid analyser. The set of standard solutions used to calibrate the amino acid analyser 

consisted of a 3 mmol·kg·1 solution for each of the following: L-prolyl-hydroxy-L-proline, 

L-prolyl-glycine (these two compounds have molar masses just above and below the molar 

mass of prolyl-proline, and therefore should indicate the approximate position of a prolyl-
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proline peak), butylamine, proline, a-alanyl-a-alanine (which has the same molar mass as 

P-alanyl-P-alanine and should indicate the approximate position of the P-alanyl-P-alanine 

peak), ethylamine, a-alanine and P-alanine. To test the detection limit of the Beckman 

121MB Amino Acid Analyser, two 3 mmol·kg·' solutions of each amino acid (a-alanine, P­

alanine and proline) were prepared. In the first set of solutions the impurities were added 

until their concentrations were approximately 10% of the amino acid concentration (L-prolyl­

hydroxy-L-proline, L-prolyl-glycine, and butylamine to the proline solution; a-alanyl-a­

alanine and ethylamine to both the a-alanine solution and the P-alanine solution). In the 

second set of solutions the impurities were added until their concentrations were 

approximately 1% of the amino acid concentration. All impurities were detected except the 

1% ethylamine in the a-alanine solution. Therefore, the detection limit for all of the 

impurities, with the exception of the 1% ethylamine in the a-alanine solution, was less than 

0.03 mmol·kg-1• The detection limit for the 1% ethylamine in the a-alanine solution was less 

than 0.3 mmol·kg·'. 
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CHAPTER 3.0 RESULTS 

3.1 Amino Acid Thermal Decomposition. 

The results of the batch thermal decomposition experiments described in Section 2.2 

are summarized in Table 3.1.1. It was found that 51% of the a-alanine and 18% of the 

proline had undergone thermal reaction in the first 1.5 hours of heating at 523 K. At the end 

of 1.5 hours of heating neither amino acid solution contained any precipitate. After 72.0 

hours of heating both amino acids had undergone complete thermal reaction and a precipitate 

was found in both solutions. These results confirmed that a-alanine and proline are suitable 

for study at the temperatures, pressures, molalities, and times used in this work (::;; 10 minutes 

in the hot zone ofthe densitometer, calorimeter, or spectroscopic flow cell). After 1.5 hours 

of heating at 523 K, a precipitate was observed in the glycine solution, suggesting that the 

glycine is considerably less stable than the other two candidate amino acids. 

No decomposition products were detected in the a-alanine or proline effluent that 

had passed through the densitometer at any of the temperatures or pressures of this study. At 

523 K, both the a -alanine and proline effluents were clear and colorless while under a 

nitrogen atmosphere. However, upon exposure to the laboratory atmosphere both of these 

effluents developed a yellow coloration over a period of 30 minutes. The concentrations of 

the colored impurities were below the detection limit of the amino acid analyser. At 

temperatures below 423 K no decomposition products were detected in the P-alanine 
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Table 3.1.1 Thermal decomposition results for ex-alanine, proline, and glycine solutions after 0, 1.5, and 72.0 hat 523 K. 

Appearance t=Oh t = 1.5 h t = 72.0 h 

ex-Alanine 

hot clear, colorless clear, colorless clear, slight yellow coloration 

cold clear, colorless clear, very slight yellow coloration colorless liquid, white precipitate 

51 % thermally reacted t 1 00 % thermally reacted t 

Proline 

hot clear, colorless clear, slight yellow coloration yellow liquid, white precipitate 

cold clear, colorless clear, slight yellow coloration yellow liquid, white and yellow precipitate 

18% thermally reacted t 100 % thermally reacted t 

Glycine 

hot clear, colorless clear, yellow-brown coloration yellow-brown liquid, white precipitate 

cold clear, colorless yellow-brown liquid, white precipitate yellow liquid, white precipitate 

t The Beckman 121 MB Amino Acid Analyser was used to determine the percent of amino acid which had undergone 

thermal reaction during the batch experiments. 
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effluent. Ammonia was detected in the P-alanine effluent obtained at 473 K. The amino acid 

analysis indieated that at this temperature approximately 26 % of the P-alanine had been 

converted to ammonia. At 473 K, the P-alanine experiments produced effluent that remained 

clear and colorless upon exposure to the laboratory atmosphere. 

An attempt to measure the densities of a-alanine solutions at 573 K yielded erratic 

results for Vcp that deviated to high positive values at low molalities (this type of behaviour 

for both Vcp and Cp. <!J was used as an indicator of thermal decomposition). Analysis of the 

effluent solutions from the densitometer at 20 MPa and 10 MPa revealed that there had been 

decomposition to ammonia (10.9 and 13.4 mol percent, respectively), ethylamine (23 .3 and 

32.0 mol percent, respectively) and trace amounts of a-alanyl-a-alanine. These results 

suggest that the rate of thermal decomposition decreases with increasing pressure. 

3.2 Appareltlt Molar Volumes. 

The experimentally determined relative densities (p - Pw) are listed in Tables 3 .2.1, 

3.2.2, 3.2.3, and 3.2.4 for aqueous a-alanine, P-alanine, glycine, and proline, respectively. 

Apparent molar volumes Vcp were calculated from the densities according to the definition: 

V =( lOOO(pw -p)l +( M2l 
4> (mpp ) p 

w 

(1.5.1 .2) 

where p and Pw are the densities of the amino acid solution and water, respectively, m is the 

molality, and M2 is the molar mass of the solute (89.093 g·mol-1 for a-alanine and P-alanine, 
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75.067 g·moJ.-1 for glycine, 115.131 g·mo]·I for proline). The experimental apparent molar 

volumes are listed in Tables 3.2.1, 3.2.2, 3.2.3, and 3.2.4 for aqueous a -alanine, P-alanine, 

glycine, and proline, respectively. The values of the average temperature and pressure were 

calculated from the experimental values measured for a given set of amino acid solutions, 

as listed in Tables 3.2.1 to 3.2.4, and the associated calibration experiments. 

Simple polynomial expressions were used to fit the molality dependence of the 

apparent molar volume data for each amino acid studied at each temperature and pressure. 

The polynomial function chosen for a-alanine and P-alanine was: 

V =V 0 +bm +em 2 

<I> 
(3.2.1) 

where v o is the standard partial molar volume, b and c are temperature and/or pressure 

dependent adjustable parameters. The polynomial function chosen for glycine and proline 

was: 

v - v 0 +bm <1> - (3.2.2) 

Xiao and Tremaine (1996) observed that the uncertainty associated with experimentally 

determined apparent molar volumes increases as the molality of the sample solutions 

decreases. Therefore, the apparent molar volumes measured in this work were given a weight 

equal to the molality of the solution in the least squares fits. The values of va, b, and c 

obtained by fitting equation (3.2.1) to each set of isothermal volumetric data for a-alanine 

and p-alanine are summarized in Table 3.2.5. The values of vo and b obtained by fitting 

equation (3 .2.2) to each set of isothermal volumetric data for glycine and proline are also 
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summarized in Table 3.2.5. The fitted isotherms for a-alanine are plotted in Figures 3.2.1, 

3.2.2, and 3.2.3; the fitted isotherms for ~-alanine are plotted in Figures 3.2.4, 3.2.5, and 

3.2.6; the fitted isotherms for glycine are plotted in Figure 3.2.7; and the fitted isotherms for 

proline are plotted in Figures 3.2.8, 3.2.9, and 3.2.10. 

As illustrated in Figures 3.2.1 to 3.2.10, the simple polynomial expressions (linear 

or quadratic) accurately reproduce the apparent molar volumes obtained at each temperature 

and pressure. It is also observed that there is very little scatter in the experimental results. 

The standard partial molar volumes listed in Table 3.2.5 increase with temperature until T 

"' 423 K and then deviate toward negative values. 
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Table 3.2.1 Densities relative to water (p- Pw) and apparent molar volumes V<l> for 
aqueous solutions of a-alanine as a function of molality m. 

T p Pw m 102·(p- Pw) v<~> 
K MPa g·cm·3 mol·kg·1 g·cm·3 cm3·mol·1 

T average = 298.10 K;paverage = 0.100 MPa 

298.10 0.100 0.997055 0.95258 2.529 61.10 
298.10 0.100 0.997055 0.83574 2.237 61.05 
298.10 0.100 0.997055 0.63154 1.717 60.94 
298.10 0.100 0.997055 0.52269 1.433 60.89 
298.10 0.100 0.997055 0.40562 1.122 60.83 
298.10 0.100 0.997055 0.31134 0.8677 60.76 
298.10 0.100 0.997055 0.16204 0.4572 60.62 
298.10 0.100 0.997055 0.10203 0.2889 60.58 

Taverage = 298.137 K; P average = 0.100 MPa 

298.137 0.100 0.997045 1.21451 3.165 61.20 
298.137 0.100 0.997045 0.59160 1.623 60.77 
298.137 0.100 0.997045 0.28780 0.8061 60.69 
298.136 0.100 0.997045 0.14896 0.4242 60.46 
298.139 0.100 0.997044 0.080101 0.2278 60.61 
298.134 0.100 0.997046 0.080101 0.2280 60.58 

T average = 333.21 K;paverage = 10.047 MPa 

333.20 10.033 0.987465 1.00958 2.555 62.64 
333.19 10.041 0.987471 0.80030 2.059 62.54 
333.20 10.041 0.987470 0.63154 1.648 62.42 
333.20 10.045 0.987469 0.52269 1.378 62.31 
333.21 10.045 0.987465 0.40562 1.082 62.17 
333.21 10.051 0.987468 0.31134 0.8384 62.08 
333.22 10.055 0.987464 0.16204 0.4431 61.90 
333.22 10.055 0.987462 0.10203 0.2809 61.81 
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T p Pw m 102·(p- pw) v<l> 
K MPa g·cm-3 mol·kg-1 g·cm-3 cm3·mol-1 

Taverage = 381.70 K;paverage = 10.057 MPa 

381.69 10.060 0.956791 1.00958 2.596 63.31 
381.70 10.062 0.956783 0.80030 2.106 62.98 
381.70 10.058 0.956776 0.63154 1.684 62.88 
381.71 10.059 0.956773 0.52269 1.410 62.73 
381.71 10.062 0.956777 0.40562 1.108 62.57 
381.70 10.060 0.956784 0.31134 0.8592 62.41 
381.70 10.054 0.956780 0.16204 0.4553 62.13 
381.70 10.052 0.956774 0.10203 0.2892 61.96 

Taverage = 422.42 K; Paverage = 10.036 MPa 

422.15 10.064 0.923300 1.00958 2.749 62.69 
422.19 10.013 0.923254 0.80030 2.224 62.39 
422.28 10.079 0.923197 0.80030 2.225 62.39 
422.59 10.007 0.922868 0.63154 1.782 62.21 
422.27 10.016 0.923151 0.52269 1.490 62.07 
422.27 10.018 0.923161 0.40562 1.170 61.87 
422.28 10.014 0.623151 0.31134 0.9081 61.68 
422.27 10.093 0.923227 0.16204 0.4814 61.33 
422.27 10.097 0.923233 0.10203 0.3054 61.18 

T average = 477.24 K;paverage = 10.058 MPa 

477.15 10.045 0.866437 1.00958 3.078 60.08 
477.10 10.045 0.866482 0.80030 2.479 59.85 
477.16 10.053 0.866348 0.63154 1.982 59.65 
477.28 10.064 0.866288 0.52269 1.658 59.43 
477.30 10.061 0.866249 0.40562 1.303 59.15 
477.36 10.068 0.866188 0.31134 1.009 58.96 
477.36 10.070 0.866242 0.16204 0.5358 58.42 
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T p Pw m 102·(p- Pw) vet> 
K MPa g·cm·3 mol·kg-1 g·cm·3 cm3·mol·1 

Taverage = 523.36 K;paverage = 10.063 MPa 

523.33 10.071 0.805661 1.00958 3.469 55.26 
523.39 10.075 0.805566 0.80030 2.800 54.79 
523.40 10.073 0.805556 0.63154 2.248 54.23 
523.38 10.072 0.805574 0.52269 1.882 53.86 
523.39 10.060 0.805552 0.40562 1.479 53.43 
523.36 10.054 0.805598 0.31134 1.147 53.08 
523.33 10.049 0.805636 0.10203 0.3849 52.21 

Taverage = 334.65 K; Paverage = 19.977 MPa 

334.61 19.976 0.990941 1.00958 2.519 62.90 
334.60 19.977 0.990952 0.80030 2.033 62.75 
334.61 19.979 0.990944 0.63154 1.628 62.62 
334.65 19.976 0.990922 0.52269 1.362 62.51 
334.71 19.978 0.990894 0.40562 1.069 62.39 
334.67 19.979 0.990924 0.31134 0.8322 62.17 
333.65 19.977 0.990923 0.16204 0.4380 62.11 

Taverage = 383.20 K;paverage = 19.939 MPa 

383.23 19.940 0.960211 1.00958 2.612 63.01 
383.23 19.942 0.960219 0.80030 2.103 62.91 
383.21 19.944 0.960230 0.63154 1.678 62.86 
383.21 19.944 0.960238 0.52269 1.405 62.71 
383.20 19.944 0.960240 0.40562 1.103 62.58 
383.19 19.941 0.960247 0.31134 0.8553 62.43 
383.15 19.927 0.960262 0.10203 0.2873 62.06 

Taverage = 423.47 K;paverage = 19.976 MPa 

423.45 19.973 0.927458 1.00958 2.739 62.67 
423.45 19.973 0.927450 0.80030 2.202 62.59 
423.41 19.977 0.927471 0.63154 1.763 62.42 
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T p Pw m 102·{p- Pw) v<ll 
K MPa g·cm·3 mol·kg·1 g·cm·3 cm3·mol·1 

423.45 19.981 0.927444 0.52269 1.475 62.27 
423.50 19.980 0.927404 0.40562 1.159 62.08 
423.49 19.979 0.927399 0.31134 0.8990 61.89 
423.50 19.977 0.927382 0.10203 0.3024 61.40 

Taverage = 478.67 K; Paverage = 19.967 MPa 

478.68 19.958 0.871814 1.00958 3.037 60.51 
478.68 19.962 0.871824 0.80030 2.441 60.36 
478.67 19.969 0.871859 0.63154 1.956 60.10 
478.71 19.966 0.871806 0.52269 1.636 59.89 
478.71 19.968 0.871819 0.40562 1.288 59.54 
478.69 19.967 0.871823 0.31134 0.9974 59.36 
478.64 19.974 0.871887 0.16204 0.5284 58.93 
478.63 19.971 0.871899 0.10203 0.3355 58.70 

T average = 523.39 K;paverage = 19.934 MPa 

523.43 19.933 0.815751 1.00958 3.349 57.02 
523.42 19.934 0.815764 0.80030 2.713 56.39 
523.41 19.932 0.815789 0.63154 2.178 55.89 
523.40 19.935 0.815814 0.52269 1.827 55.46 
523.39 19.936 0.815812 0.40562 1.436 55.06 
523.38 19.936 0.815844 0.31134 1.119 54.46 
523.36 19.936 0.815874 0.16204 0.5939 53.75 
523.36 19.935 0.815856 0.10203 0.3778 53.32 

Tavemge = 298.131 K; P average = 30.769 MPa 

298.138 30.795 1.010457 1.21451 3.013 62.03 
298.137 30.789 1.010455 0.59160 1.550 61.57 
298.135 30.780 1.010452 0.28780 0.7769 61.26 
298.131 30.769 1.010449 0.14896 0.4055 61.27 
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Table 3.2.2 Densities relative to water (p - Pw) and apparent molar volumes V<l> for 
aqueous solutions of P-alanine as a function of molality m. 

T p Pw m 102·(p- Pw) v<~> 
K MPa g·cm-3 mol·kg-1 g·cm-3 cm3·mol-1 

Taverage= 298.141 K;paverage = 0.100 MPa 

298.141 0.100 0.997044 1.33911 3.650 59.75 
298.141 0.100 0.997044 0.64444 1.873 59.01 
298.141 0.100 0.997044 0.30578 0.9170 58.65 
298.141 0.100 0.997044 0.081648 0.2505 58.35 

Taverage = 334.59 K; Paverage = 10.314 MPa 

334.64 10.318 0.986850 0.099806 0.2935 59.91 
334.62 10.318 0.986847 0.20334 0.5842 60.42 
334.60 10.320 0.986873 0.30406 0.8726 60.28 
334.63 10.318 0.986849 0.40204 1.132 60.66 
334.59 10.320 0.986866 0.49491 1.387 60.64 
334.57 10.315 0.986879 0.59810 1.658 60.79 
334.57 10.308 0.986878 0.79238 2.158 60.98 
334.58 10.309 0.986869 0.92083 2.475 61.14 
334.56 10.304 0.986879 1.1858 3.114 61.38 

Taverage = 383.34 K; P average = 10.355 MPa 

383.41 10.343 0.955644 0.099806 0.3040 59.69 
383.40 10.350 0.955638 0.20334 0.6123 59.87 
383.36 10.354 0.955667 0.30406 0.9053 60.06 
383.30 10.351 0.955714 0.40204 1.177 60.43 
383.28 10.354 0.955742 0.49491 1.446 60.33 
383.30 10.355 0.955731 0.59810 1.728 60.49 
383.31 10.362 0.955723 0.79238 2.246 60.77 
383.32 10.367 0.955717 0.92083 2.580 60.90 
383.32 10.365 0.955708 1.1858 3.247 61.17 
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T p Pw m 102·{p- Pw) v<~> 
K MPa g·cm·3 mol·kg·' g·cm·3 cm3·moi·' 

Taverage = 423.60 K;paverage = 10.290 MPa 

423.57 10.289 0.922157 . 0.20334 0.6446 58.92 
423.57 10.292 0.922114 0.30406 0.9547 59.08 
423.57 10.290 0.922126 0.40204 1.250 59.26 
423.58 10.290 0.922132 0.49491 1.524 59.43 
423.58 10.291 0.922108 0.59810 1.824 59.57 
423.58 10.292 0.922135 0.79238 2.379 59.77 
423.60 10.293 0.922117 0.92083 2.728 60.01 
423.59 10.292 0.922101 1.1858 3.434 60.32 

Taverage = 478.78 K;paverage = 10.326 MPa 

478.76 10.318 0.864732 0.099806 0.3461 56.43 
478.78 10.323 0.864720 0.30406 1.035 56.85 
478.77 10.316 0.864709 0.40204 1.356 57.02 
478.77 10.324 0.864721 0.49491 1.656 57.20 
478.78 10.323 0.864719 0.59810 1.974 57.57 
478.78 10.331 0.864723 0.79238 2.574 57.86 
478.80 10.341 0.864715 0.92083 2.969 57.92 
478.81 10.343 0.864694 1.1858 3.739 58.34 

T average = 423.63 K; P average = 20.533 MPa 

423 .56 20.515 0.927617 0.099806 0.3134 59.36 
423.58 20.523 0.927628 0.20334 0.6311 59.57 
423.58 20.530 0.927599 0.30406 0.9339 59.75 
423.64 20.537 0.927539 0.40204 1.223 59.91 
423.64 20.540 0.927584 0.49491 1.492 60.05 
423.64 20.540 0.927566 0.59810 1.784 60.21 
423.65 20.542 0.927567 0.79238 2.321 60.49 
423.65 20.549 0.927545 0.92083 2.675 60.54 
423.67 20.551 0.927566 1.1858 3.355 60.96 

103 



T p Pw m 102·(p- Pw) vc~> 
K MPa g·cm·3 mo1·kg·' g·cm·3 cm3·mol·1 

T average = 478.61 K;paverage = 20.577 MPa 

478.54 20.538 0.872398 0.099806 0.3362 57.64 
478.61 20.551 0.872329 0.20334 0.6783 57.85 
478.59 20.577 0.872365 0.30406 1.005 58.05 
478.60 20.579 0.872361 0.40204 1.315 58.27 
478.60 20.594 0.872368 0.49491 1.606 58.42 
478.60 20.591 0.872364 0.59810 1.923 58.59 
478.62 20.590 0.872355 0.79238 2.503 58.92 
478.62 20.594 0.872356 0.92083 2.877 59.13 
478.63 20.598 0.872345 1.1858 3.623 59.51 

T average = 298.140 K; Paverage = 30.898 MPa 

298.146 30.925 1.010509 1.33911 3.503 60.46 
298.142 30.904 1.010500 0.64444 1.797 59.80 
298.139 30.887 1.010494 0.30578 0.8827 59.38 
298.137 30.863 1.010483 0.15021 0.4396 59.25 
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Table 3.2.3 Densities relative to water (p- Pw) and apparent molar volumes V$ for 
aqueous solutions of glycine as a function of molality m. 

T p Pw m 102·(p- Pw) v$ 
K MPa g·cm·3 mol·kg·• g·cm·3 cm3·mol·1 

Taverage = 298.152 K; Paverage = 0.100 MPa 

298.150 0.100 0.997041 2.26777 6.222 44.87 
298.154 0.100 0.997039 1.07932 3.194 44.09 
298.152 0.100 0.997040 0.51944 1.593 43.73 
298.148 0.100 0.997042 0.25386 0.7957 43.39 
298.152 0.100 0.997041 0.096647 0.3048 43.41 

Taverage= 298.149 K;paverage = 30.828 MPa 

298.147 30.811 1.010460 2.26777 6.070 45.33 
298.148 30.821 1.010464 1.07932 3.127 44.51 
298.150 30.836 1.010471 0.51944 1.567 44.04 
298.150 30.836 1.010471 0.25386 0.7775 43.94 
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Table 3.2.4 Densities relative to water (p - Pw) and apparent molar volumes V<P for 
aqueous solutions of proline as a function of molality m. 

T p Pw m 102·(p- Pw) v<P 
K MPa g·cm·3 mol·kg-1 g·cm·3 cm3·mol·1 

T average = 298.147 K;paverage = 0.100 MPa 

298.151 0.100 0.997039 1.78958 4.980 83.32 
298.151 0.100 0.997039 1.19889 3.508 83.11 
298.140 0.100 0.997044 0.52161 1.624 82.80 
298.146 0.100 0.997043 0.25336 0.8128 82.53 
298.147 0.100 0.997042 0.097388 0.3150 82.68 

Taverage = 334.56 K; Paverage = 10.157 MPa 

334.58 10.142 0.986798 0.14512 0.4435 84.91 
334.61 10.160 0.986796 0.20055 0.6099 84.92 
334.60 10.164 0.986800 0.24921 0.7543 84.94 
334.59 10.163 0.986807 0.29640 0.8931 84.96 
334.59 10.078 0.986770 0.30165 0.9086 84.96 
334.53 10.165 0.986831 0.34868 1.045 84.99 
334.51 10.166 0.986849 0.39582 1.182 85.00 
334.51 10.167 0.986847 0.44101 1.311 85.02 
334.53 10.165 0.986840 0.49425 1.462 85.03 
334.55 10.164 0.986825 0.59753 1.751 85.08 
334.60 10.098 0.986773 0.71024 2.058 85.13 
334.57 10.160 0.986815 0.78254 2.254 85.15 
334.60 10.108 0.986770 0.79617 , 2.290 85.16 

Taverage = 383.39 K;paverage = 10.168 MPa 

383.36 10.125 0.955576 0.20055 0.6093 86.66 
383.39 10.148 0.955564 0.24921 0.7536 86.69 
383.14 10.108 0.955736 0.30165 0.9076 86.70 
383.41 10.185 0.955562 0.39582 1.180 86.78 
383.42 10.187 0.955556 0.44101 1.309 86.79 
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T p Pw m 102·(p- Pw) v~ 
K MPa g·cm·3 mol·kg·1 g·cm·3 cm3·mol·1 

383.16 10.101 0.955714 0.71024 2.054 86.94 
383.36 10.197 0955608 0.78254 2.246 87.00 
383.12 10.095 0.955730 0.79617 2.283 86.99 

Taverage =423.71 K;paverage = 10.173 MPa 

423.68 10.168 0.928291 0.20055 0.6331 87.14 
423.70 10.169 0.931214 0.29640 0.9270 87.21 
423.56 10.130 0.931475 0.30165 0.9426 87.22 
423.72 10.174 0.932776 0.34868 1.085 87.25 
423.73 10.179 0.934184 0.39582 1.226 87.28 
423.73 10.182 0.938827 0.44101 1.360 87.31 
423.55 10.142 0.943402 0.71024 2.134 87.49 
423.56 10.140 0.945751 0.79617 2.371 87.58 

Taverage = 479.04 K;Paverage = 10.115 MPa 

479.01 10.134 0.864309 0.20055 0.6878 86.60 
479.03 10.126 0.864262 0.24921 0.8499 86.70 
479.03 10.118 0.864274 0.34868 1.177 86.82 
479.05 10.110 0.864240 0.39582 1.331 86.87 
479.06 10.098 0.864224 0.44101 1.476 86.93 
479.07 10.088 0.864199 0.49425 1.645 87.00 
479.05 10.094 0.864226 0.59753 1.966 87.18 
479.06 10.092 0.864210 0.78254 2.533 87.33 

Taverage = 524.07 K;paverage = 10.094 MPa 

524.05 10.056 0.804564 0.14512 0.5565 83.28 
524.06 10.059 0.804558 0.20055 0.7659 83.31 
524.06 10.070 0.804563 0.24921 0.9476 83.38 
524.08 10.085 0.804547 0.29640 1.123 83.40 
524.05 10.103 0.804618 0.34868 1.315 83.46 
523.98 10.118 0.804738 0.39582 1.487 83.50 
524.06 10.1 23 0.804683 0.44101 1.651 83.55 
524.16 10.122 0.804477 0.49425 1.842 83.62 
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T p Pw m 102•(p- Pw) vet> 
K MPa g-cm·3 mol·kg-1 g·cm·3 cm3·mol·1 

524.08 10.116 0.804589 0.59753 2.208 83.71 
524.09 10.112 0.804565 0.78254 2.848 83.90 

Taverage = 334.93 K; Paverage = 20.199 MPa 

334.92 20.200 0.990873 0.20055 0.6041 85.00 
334.89 20.202 0.990893 0.29640 0.8845 85.04 
334.97 20.192 0.990855 0.44101 1.298 85.10 
335.00 20.188 0.990833 0.49425 1.448 85.11 
334.97 20.195 0.990851 0.59753 1.734 85.15 
334.90 20.221 0.991058 0.71024 2.038 85.20 
334.92 20.199 0.990878 0.78254 2.231 85.23 

Taverage = 383.66 K;paverage = 20.157 MPa 

383.67 20.184 0.959997 0.14512 0.4400 86.63 
383.63 20.163 0.960018 0.24921 0.7485 86.66 
383.64 20.153 0.960012 0.29640 0.8860 86.69 
383.68 20.141 0.959986 0.34868 1.037 86.71 
383.71 20.135 0.959949 0.39582 1.173 86.71 
383.63 20.159 0.960018 0.44101 1.302 86.73 
383.65 20.165 0.960007 0.49425 1.451 86.76 
383.63 20.152 0.960010 0.59753 1.739 86.79 
383.21 20.212 0.960351 0.71024 2.044 86.84 
383.68 20.144 0.959990 0.78254 2.239 86.86 
383.22 20.207 0.960342 0.79617 2.274 86.86 

T average = 423.90 K;paverage = 20.205 MPa 

424.00 20.197 0.927062 0.14512 0.4570 87.12 
423.89 20.194 0.927167 0.24921 0.7768 87.18 
423.86 20.200 0.927199 0.29640 0.9196 87.22 
423.82 20.204 0.927503 0.30165 0.9350 87.22 
423.90 20.207 0.927140 0.39582 1.217 87.27 
423.80 20.209 0.927279 0.59753 1.801 87.41 
423.53 20.204 0.927487 0.71024 2.117 87.48 
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T p Pw m 102·(p- Pw) Vq, 
K MPa g·cm·3 mol·kg·1 g·cm·3 cm3·moi·1 

423.94 20.215 0.927136 0.78254 2.318 87.53 
423.40 20.207 0.927623 0.79617 2.354 87.54 

Taverage = 4 79.15 K; P average = 20.194 MPa 

479.15 20.195 0.871466 0.14512 0.4939 86.80 
479.18 20.200 0.871475 0.20055 0.6793 86.83 
479.12 20.200 0.871520 0.24921 0.8397 86.91 
479.13 20.190 0.871494 0.29640 0.9938 86.97 
478.59 20.136 0.872067 0.30165 1.010 86.99 
479.15 20.179 0.871460 0.34868 1.163 87.02 
479.14 20.184 0.871477 0.39582 1.314 87.08 
479.14 20.190 0.871469 0.44101 1.458 87.13 
479.15 20.195 0.871469 0.49425 1.625 87.19 
479.19 20.197 0.871456 0.59753 1.945 87.30 
478.60 20.136 0.872051 0.71024 2.285 87.44 
479.13 20.198 0.871488 0.78254 2.501 87.52 
478.61 20.135 0.872D39 0.79617 2.539 87.53 

Taverage = 523.98 K;paverage = 20.240 MPa 

523.96 20.223 0.815290 0.14512 0.5422 84.44 
523.94 20.239 0.815333 0.20055 0.7457 84.50 
523.98 20.248 0.815325 0.24921 0.9222 84.58 
523.90 20.250 0.815443 0.29640 1.092 84.64 
523.37 20.177 0.816092 0.30165 1.110 84.66 
523.94 20.248 0.815314 0.34868 1.279 84.69 
523.93 20.247 0.815372 0.39582 1.445 84.79 
523.99 20.249 0.815289 0.44101 1.603 84.85 
524.02 20.245 0.815249 0.49425 1.788 84.93 
524.02 20.235 0.815228 0.59753 2.141 85.07 
523.41 20.183 0.816026 0.71024 2.518 85.22 
524.06 20.245 0.815194 0.78254 2.757 85.32 
523.41 20.184 0.816030 0.79617 2.799 85.36 
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T p Pw m 102·(p- pw) v<~> 
K MPa g·cm·3 mol·kg-1 g·cm·3 cm3·mot·1 

Taverage = 298.142 K;paverage = 30.798 MPa 

298.143 30.803 1.010456 1.78958 4.760 83.94 
298.141 30.795 1.010453 1.19889 3.364 83.67 
298.142 30.795 1.010454 0.52161 1.561 83.34 
298.142 30.798 1.010457 0.25336 0.7816 83.08 
298.143 30.797 1.010457 0.097388 0.3023 83.29 
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Table 3.2.5 Values of V', b, and c obtained by fitting either equation (3.2.1) or equation 
(3.2.2) to each set of isothermal volumetric data for each amino acid. 

Tl (K) p I (MPa) vo I (cm3·moi-') b I (cm3·kg·mol-2) c I (cm3·kg2·mol-3) 

a-Alanine 

298.131 30.769 61.11 ± 0.05 0.75 ± 0.07 

334.65 19.977 61.89 ± 0.02 1.41 ± 0.06 -0.41 ± 0.04 

383.20 19.939 61.86 ± 0.07 2.18 ± 0.23 -1.03 ± 0.18 
423.47 19.976 61.11±0.01 2.95 ± 0.02 -1.39 ± 0.01 

478.67 19.967 58.30 ± 0.06 3.89 ± 0.22 -1.68 ± 0.17 

523.39 19.934 52.81 ± 0.11 6.05 ± 0.39 -1.88 ± 0.30 

333.21 10.047 61.65 ± 0.01 1.55 ± 0.05 -0.56 ± 0.04 

381.70 10.057 61.72 ± 0.03 2.65 ± 0.12 -1.32 ± 0.12 

422.42 10.036 60.89 ± 0.01 2.95 ± 0.01 -1.35 ± 0.01 

477.24 10.058 57.91 ± 0.07 3.72 ± 0.25 -1 .57 ± 0.18 

523.36 10.063 51.68 ± 0.07 4.89 ± 0.22 -1.31 ± 0.17 

298.10 0.100 60.50 ± 0.02 0.90 ± 0.07 -0.28 ± 0.06 

298.137 0.100 60.49 ± 0.05 0.56 ± 0.08 

P-Alanine 

298.140 30.898 59.09 ± 0.03 1.03 ± 0.04 

423.63 20.533 59.26 ± 0.09 1.68 ± 0.28 -0.22 ± 0.19 

334.59 10.315 59.72 ± 0.06 2.09 ± 0.1 7 -0.59 ± 0.11 

383.34 10.355 59.57 ± 0.12 1.86 ± 0.37 -0.43 ± 0.25 

423.60 10.290 58.60 ± 0.07 1.72 ± 0.21 -0.23 ± 0.14 

298.141 0.100 58.29 ± 0.02 1.10 ± 0.03 

Glycine 

298.149 30.828 43 .68 ± 0.08 0.73 ± 0.04 

298.152 0.100 43.31 ± 0.05 0.69± 0.04 

Proline 

298.142 30.798 83.20 ± 0.05 0.40 ± 0.05 

334.93 20.199 84.92 ± 0.01 0.39 ± 0.01 

383.66 20.1 57 86.58 ± 0.01 0.36 ± 0.01 
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Tl (K) pI (MPa) vo I (cm3·mol-1) b I (cm3·kg·mol-2
) c I ( cm3·kg2·mol-3) 

423.90 20.205 87.02 ± 0.01 0.65 ± 0.01 
479.15 20.194 86.63 ± 0.01 1.14 ± 0.01 
523.98 20.240 84.22 ± 0.01 1.42 ± 0.01 
334.56 10.157 84.84 ± 0.01 0.40 ± 0.01 
383.39 10.168 86.54 ± 0.01 0.57 ± 0.02 
423.71 10.173 87.00 ± 0.01 0.72 ± 0.02 
479.04 10.115 86.40 ± 0.03 1.22 ± 0.07 
524.07 10.094 83.12 ± 0.01 1.00 ± 0.01 

298.147 0.100 82.63 ± 0.02 0.39 ± 0.02 
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Figure 3.2.1 The apparent molar volumes V.p of a-alanine from 333.2 K to 523.4 K 
at 10.05 MPa plotted against molality. Symbols are experimental 
results: 0, 381.7 K; 0, 333.2 K; ~' 422.4 K; \1, 477.2 K; <>, 523.4 K. 
Lines are the isothermal fits to the experimental data. 
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Figure 3.2.2 The apparent molar volumes Vlfl of a-alanine from 334.6 K to 523.4 K 
at 19.96 MPa plotted against molality. Symbols are experimental 
results: 0 , 383.2 K; 0, 334.6 K; !1, 423.5 K; \7, 478.7 K; <> , 523.4 K. 
Lines are the isothermal fits to the experimental data. 
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Figure 3.2.3 The apparent molar volumes Vq, of a-alanine from 0.10 MPa to 30.77 MPa 
at 298.1 K plotted against molality. Symbols are experimental results: 
!l, 0.10 MPa; 0, 0.10 MPa; D, 30.77 MPa. Lines are the isothermal fits to 
the experimental data. 
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Figure 3.2.4 The apparent molar volumes V<l>of P-alanine from 334.6 K to 423.6 K 
at 10.32 MPa plotted against molality. Symbols are experimental 
results: 0, 334.6 K; D, 383.3 K; 6., 423.6 K. Lines are the isothermal fits 
to the experimental data. 
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Figure 3.2.5 The apparent molar volumes V.p ofP-alanine at 423.6 K and 20.53 MPa 
plotted against molality. Symbols are experimental results : !1, 423.6 K. 
The line is the isotherrna}.fit to the experimental data. 
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Figure 3.2.6 The apparent molar volumes Vq, of P-alanine from 0.1 0 MPa to 30.90 MPa 
at 298.1 K plotted against molality. Symbols are experimental results: 
0, 0. 10 MPa; 0 , 30.90 MPa. Lines are the isothermal fits to the 
experimental data. 
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Figure 3.2.7 The apparent molar volumes V.p of glycine from 0.10 MPa to 30.83 MPa 
at 298.1 K plotted against molality. Symbols are experimental results: 
0, 0.10 MPa; 0 , 30.83 MPa. Lines are the isothermal fits to the 
experimental data .. 
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Figure 3.2.8 The apparent molar volumes V<l> of proline from 334.6 K to 524.1 Kat 
10.14 MPa plotted against molality. Symbols are experimental results: 
tl , 423.7 K; \!, 479.0 K; 0, 383.4 K; 0, 334.6 K; <>, 524.1 K. Lines are 
the isothermal fits to the experimental data. 
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Figure 3.2.9 The apparent Molar Volumes V<t> of proline from 334.9 K to 524.0 Kat 
20.20 MPa plotted against molality. Symbols are experimental results: 
!l, 423.9 K; \1,479.1 K; 0, 383.7 K; 0, 334.9 K; 0 , 524.0 K. Lines are 
the isothermal fits to the experimental data. 
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Figure 3.2.10 The apparent molar volumes Vet> of proline from 0.10 MPa to 30.80 MPa 
at 298.1 K plotted against molality. Symbols are experimental results: 
0, 0.10 MPa; D, 30.80 MPa. Lines are the isothermal fits to the 
experimental data. 
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3.3 Apparent Molar Heat Capacities. 

The experimentally determined values of(f ·~WI W) are listed in Tables 3.3.1, 3.3.2, 

3.3.3, and 3.3.4 for aqueous a-alanine, P-alanine, glycine, and proline, respectively. Specific 

heat capacities cP calculated from the values of(f ·~WI W) according to equation (1.5.2.6). 

[ ~Wl ( Pw,r•) c =c t+j- --
P p , w W p 

1 r .. 
(1.5.2.6) 

were used to calculate apparent molar heat capacities Cp, "': 

( 
lOOO(c -c )) 

C =M C + p p,w 
p, q, 2 P m 

(1.5.2.7) 

Here cp, w is the specific heat capacity of the reference fluid; Pw, Td and Prd are the densities of 

the reference fluid and sample solution at the temperature of the delay line; M 2 is the molar 

mass of the solute and m is the molality of the sample solution. The experimental apparent 

molar heat capacities are listed in Tables 3.3.1, 3.3.2, 3.3.3, and 3.3.4. 

Simple polynomial expressions were used to fit the molality dependence of the 

apparent molar heat capacity data for each amino acid studied at each temperature and 

pressure. The polynomial function chosen for glycine and proline was: 

C = C o + bm +em 2 
p , <j> p 

(3.3.1) 

where C ; is the standard partial molar heat capacity, band care temperature and/or pressure 

dependent adjustable parameters. The polynomial function chosen for a-alanine and P-

alanine was: 
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C "'=C 0 +bm 
P, 'l' p (3.3.2) 

The apparent molar heat capacities measured in this work were given a weight equal to the 

molality of the solution in the least squares fit. The values of C;, b, and c obtained by fitting 

equation (3.3.1) to each set of isothermal calorimetric data for glycine and proline are 

summarized in Table 3.3.5. The values of C; and b obtained by fitting equation (3.3.2) to 

each set of isothermal calorimetric data for a.-alanine and ~-alanine are also summarized in 

Table 3.3.5. The fitted isotherms for a.-alanine are plotted in Figures 3.3.1, 3.3.2, and 3.3.3; 

the fitted isotherms for ~-alanine are plotted in Figures 3.3.4 and 3.3.5; the fitted isotherms 

for glycine are plotted in Figures 3.3.6 and 3.3.7; and the fitted isotherms for proline are 

plotted in Figures 3.3.8 and 3.3.9. 

As illustrated in Figures 3.3.1 to 3.2.9, the simple polynomial expressions (linear or 

quadratic) accurately reproduce the apparent molar heat capacities obtained at each 

temperature and pressure. The scatter observed in the experimental results is relatively small 

and tends to decrease with increasing molality. The standard partial molar heat capacities 

listed in Table 3.3.5 increase with temperature until T:::: 373 K to 423 K and then deviate 

toward negative values. 
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Table 3.3.1 Apparent molar heat capacities Cp, q, of aqueous a-alanine as a function of 
molality m. 

T 
K 

p 
MPa 

m 
mol·kg·1 

(f'/:1W/ W)·103 

1~verage = 298.10 K;paverage = 0.10 MPa; Cp, w average = 4.1814 J·g·1·K"1 

298.10 0.10 0.10203 -2.75 142.38 
298.10 0.10 0.31134 -8.08 142.63 
298.10 0.10 0.40562 -10.37 144.28 
298.10 0.10 0.52269 -13.11 146.31 
298.10 0.10 0.63154 -15.68 146.43 
298.10 0.10 0.83574 -20.28 148.01 
298.10 0.10 0.95258 -22.87 148.48 

Taverage = 323.173 K; Paverage = 0.10 MPa; cp, w average = 4.1814 J·g·1·K1 

323.173 0.10 0.080118 -1.58 169.06 (3 .60) 

323.173 0.10 0.080118 -1.60 168.41 (3 .67) 

323.173 0.10 0.14899 -2.97 168.22 (1.93) 

323.173 0.10 0.14899 -2.96 168.52 (2.33) 
323.173 0.10 0.28786 -5.59 169.97 (0.95) 
323.173 0.10 0.28786 -5.64 169.14 (1.09) 
323.173 0.10 0.59173 -11.34 170.29 (0.57) 
323.173 0.10 0.59173 -11.35 170.24 (0.58) 
323.173 0.10 1.21477 -22.02 173.79 (0.41) 
323.173 0.10 1.21477 -22.05 173.67 (0.42) 

]~vemge = 373.563 K; Paverage = 2.08 MPa; Cp, w average = 4.2116 J·g·1·K·1 

373.562 2.05 0.080118 -1.32 184.34 (7.36) 
373.562 2.05 0.080118 -1.41 179.70 (6.30) 
373.562 2.09 0.14899 -2.60 180.24 (3.71) 

373.562 2.09 0.14899 -2.53 182.43 (3.31) 
373.563 2.09 0.28786 -4.82 183.03 (2.20) 
373.563 2 .09 0.28786 -4.71 184.70 (2.65) 
373.563 2.10 0.59173 -9.66 184.39 (1.11) 
373.563 2.10 0.59173 -9.73 183.83 (0.92) 
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T p m (fi:::.W/ W)·103 
cp. ct> 

K MPa mol·kg-1 J·moi-1·K1 

373.564 2.10 0.59173 -9.61 184.72 (1.18) 
373.564 2.07 1.21477 -18.69 187.86 (0.52) 
373.564 2.07 1.21477 -18.97 186.80 (0.47) 

T average = 423.772 K;paverage = 2.01 MPa; Cp, w average = 4.3038 J-g-1·K-I 

423.769 2.00 0.080118 -1.46 181.06 (6.79) 
423.769 2.00 0.080118 -1.47 180.69 (6.39) 
423.776 2.00 0.14899 -2.75 180.00 (3.35) 
423.769 2.00 0.14899 -2.67 182.36 ( 4. 72) 
423.770 2.01 0.28786 -5.09 182.97 (2.47) 
423.770 2.01 0.28786 -5.18 181.54 (2.00) 
423.773 2.01 0.59173 -10.23 184.08 (0.76) 
423.773 2.01 0.59173 -10.19 184.39 (0.93) 
423.775 2.03 1.21477 -19.51 188.84 (0.61) 
423.775 2.03 1.21477 -19.39 189.27 (0.59) 

T average = 447.746 K ; p average = 10.30 MPa; Cp, w average = 4.3465 J·g-1·K1 

447.742 10.29 0.080118 -1.58 178.15 (17.50) 
447.742 10.29 0.080118 -1.60 177.14 (9.33) 
447.744 10.26 0.14899 -3.00 176.08 (6.75) 
447.744 10.26 0.14899 -2.97 176.94 (6.98) 
447.745 10.31 0.28786 -5.69 177.34 (3.64) 
447.748 10.32 0.28786 -5.72 176.89 (2.79) 
447.748 10.31 0.59173 -11.36 179.18 (1.90) 
447.748 10.31 0.59173 -11.29 179.70 (1.89) 
447.749 10.33 1.21477 -21.76 183.98 (0.78) 
447.749 10.33 1.21477 -21.81 183.78 (0.84) 

Taverage = 473 .799 K ; P average = 5.62 MPa; Cp, w average = 4.4760 J·g-1·K1 

473.801 5.62 0.080118 -1.74 173.18 (12.56) 
473.801 5.62 0.080118 -1.78 171.19 (11.58) 
473.800 5.60 0.14899 -3.24 173.15 (7.26) 
473.800 5.60 0.14899 -3.26 172.52 (5.83) 
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T p m (['fl.W/ W)·103 
cp. cJ> 

K MPa mol·kg-1 J-mol-'·K-1 

473.800 5.60 0.28786 -6.17 174.06 (4.53) 
473.800 5.60 0.28786 -6.17 174.03 (3.44) 
473.797 5.61 0.59173 -12.33 175.81 (2.16) 
473.797 5.61 0.59173 -12.36 175.63 (1.91) 
473.796 5.67 1.21477 -23.29 182.28 (1.13) 
473 .794 5.67 1.21477 -23.30 182.26 (1.01) 

Tavemge = 323.168 K; Paverage = 29.77 MPa; Cp, w average= 4.1186 J·g- '·K-1 

323.168 29.70 0.080118 -1.55 174.62 (4.17) 
323.167 29.71 0.14899 -2.83 175.86 (1.98) 
323.167 29.71 0.14899 -2.85 175.08 (2.38) 
323.168 29.90 0.28786 -5.41 176.21 (1.42) 
323.168 29.90 0.28786 -5.51 174.77 (0.98) 
323.168 29.59 0.59173 -10.91 177.12 (0.58) 
323.168 29.59 0.59173 -10.87 177.40 (0. 78) 
323.168 29.91 1.21477 -21.29 180.26 (0.48) 
323.168 29.91 1.21477 -21.16 180.72 (0.44) 

T average = 373.543 K; Paverage = 30.03 MPa; Cp, w average= 4.1527 J·g-1·K-I 

373.541 29.89 0.080118 -1.33 187.22 (5.93) 
373.541 29.89 0.080118 -1.27 190.76 (5.09) 
373.542 29.98 0.14899 -2.44 188.24 (2.62) 

373.542 29.98 0.14899 -2.39 189.61 (2.99) 

373.543 30.08 0.28786 -4.61 189.47 (1.66) 
373.543 30.08 0.28786 -4.62 189.37 (1.46) 
373.543 30.11 0.59173 -9.12 191.72 (0.94) 

373.543 30.11 0.59173 -9.27 190.66 (0.74) 
373.544 30.11 1.21477 -17.86 194.42 (0.61) 
373.544 30.11 1.21477 -17.77 194.76 (0.48) 

Taverage = 423.769 K; Paverage = 30.56 MPa; Cp, w average = 4.2217 J·g-1·K-l 

423.770 30.50 0.080118 -1 .42 185.97 (4.97) 
423.770 30.50 0.080118 -1.39 187.26 (6.10) 
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T p m (filWI W)-103 
cp. <P 

K MPa mol·kg-1 J·mol·1·K1 

423 .770 30.60 0.14899 -2.51 189.47 (3.58) 
423.769 30.58 0.28786 -4.80 189.99 (1.65) 
423.769 30.58 0.28786 -4.85 189.27 (1.97) 
423.768 30.51 0.59173 -9.45 192.54 (0.92) 
423.768 30.51 0.59173 -9.36 193.21 (1.08) 
423.769 30.61 1.21477 -17.62 198.66 (0.62) 
423.769 30.61 1.21477 -17.61 198.69 (0.49) 

Taverage = 447.857 K; Paverage = 30.22 MPa; Cp, w average= 4.2777 J-g·1·K1 

447.860 30.30 0.080118 -1.46 186.13 (5.40) 
447.860 30.30 0.080118 -1.46 185.86 (9.21) 
447.858 30.21 0.14899 -2.70 186.43 (3.05) 
447.858 30.21 0.14899 -2.70 186.42 (3.56) 
447.857 30.19 0.28786 -5 .15 187.07 (1.94) 
447.857 30.19 0.28786 -5.13 187.48 (1.76) 
447.856 30.21 0.59173 -10.12 190.00 (0.86) 
447.856 30.21 0.59173 -10.16 189.71 (0.90) 
447.856 30.20 1.21477 -19.10 195.61 (0.60) 
447.856 30.20 1.21477 -19.08 195.66 (0.95) 

Taverage = 473.818 K;Paverage = 30.19 MPa; Cp, w average= 4.3584 J·g· 1·K1 

473.817 30.04 0.080118 -1.52 186.08 (7.01) 
473.817 30.04 0.080118 -1.49 188.19 (9.85) 
473.817 30.19 0.080118 -1.48 188.42 (7.47) 
473.817 30.19 0.080118 -1.46 189.35 (7.01) 
473.820 30.29 0.14899 -2.91 183.81 (7.16) 
473.820 30.29 0.14899 -2.87 184.91 (9.34) 
473.817 30.20 0.28786 -5.50 185.30 (2.57) 
473.81 7 30.20 0.28786 -5.49 185.45 (2.15) 
473.818 30.20 0.59173 -10.81 188.31 (0.77) 
473.818 30.20 0.59173 -10.84 188.09 (1.07) 
473.819 30.22 1.21477 -20.36 194.42 (0.57) 
473.819 30.22 1.21477 -20.23 194.91 (0.64) 
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Table 3.3.2 Apparent molar heat capacities Cp, ell of aqueous P-alanine as a function of 
molality m. 

T p m (fAWIW)·l03 
cp. c!l 

K MPa mol·kg·' J·moi·'·K·' 

Taverage = 323.172 K;paverage = 0.10 MPa; cp, w average = 4.1814 J-g·'·K·' 

323.170 0.10 0.081666 -2.56 112.19 (3.15) 
323.170 0.10 0.081666 -2.58 111.00(3.10) 
323.171 0.10 0.15025 -4.73 111.27 (1.92) 
323.173 0.10 0.15025 -4.72 111.62 (1.94) 
323.173 0.10 0.30585 -9.46 113.07 (0.99) 
323.173 0.10 0.30585 -9.45 113.08 (1.03) 
323.173 0.10 0.64458 -19.19 116.80 (0.63) 
323.173 0.10 0.64458 -19.22 116.56 (0.62) 
323.173 0.10 1.33941 -37.38 123.12 (0.46) 
323.173 0.10 1.33941 -37.37 123.16 (0.46) 

T average = 373.554 K;Paverage = 2.02 MPa; cp. w average = 4.2117 J·g·'·K·' 

373.556 2.07 0.081666 -2.00 142.28 (7.62) 
373.556 2.07 0.081666 -2.11 136.62 (8.30) 
373.554 1.99 0.15025 -3 .66 142.87 (4.05) 
373.553 1.99 0.30585 -7.54 141.07 (1.83) 
373.553 1.99 0.30585 -7.54 141.05 (1.88) 
373.553 2.00 0.64458 -14.79 147.88 (1.15) 
373.553 2.00 0.64458 -14.94 146.87 (0.86) 
373.554 2.02 1.33941 -29.09 152.52 (0.51) 
373.554 2.02 1.33941 -29.43 151.39 (0.45) 

T average = 423.778 K; Paverage = 2.02 MPa; Cp, w average= 4.3037 J·g·'·K·l 

423.777 2.01 0.081666 -1.80 156.22 (7.64) 
423.777 2.01 0.081666 -1.77 157.67 (6.63) 
423.777 2.01 0.15025 -3.31 156.01 (4.54) 
423.777 2.01 0.15025 -3.29 156.65 (3.72) 
423.778 2.01 0.30585 -6.66 156.75 (1.70) 
423.778 2.01 0.30585 -6.70 156.30 (2.00) 
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T p m (fll.W/ W)·103 
cp. 4> 

K MPa mol·kg-1 J·mol-1·K1 

423.779 2.02 0.64458 -13.79 157.99 (1.07) 
423.779 2.02 0.64458 -13.30 161.40 (0.85) 
423.779 2.03 1.33941 -25.30 169.03 (0.77) 
423 .779 2.03 1.33941 -25.24 169.24 (0.60) 

T average = 323.169 K;paverage = 29.77 MPa; Cp, w average = 4.1186J-g·1·K1 

323.167 29.80 0.081666 -2.48 120.82 (3.27) 
323.167 29.80 0.081666 -2.48 120.64 (3.38) 

323.170 29.79 0.15025 -4.49 122.27 (1.96) 

323.170 29.79 0.15025 -4.55 120.68 (1.87) 

323.170 29.72 0.30585 -9.04 123.12 (0.97) 
323.170 29.72 0.30585 -9.19 120.98 (0.96) 

323.170 29.73 0.64458 -18.46 125.82 (0.65) 

323.170 29.73 0.64458 -18.46 125.81 (0.61) 

323.170 29.80 1.33941 -36.06 131.46 (0.46) 

323.170 29.80 1.33941 -36.01 131.62 (0.46) 

T average = 373.557 K; Paverage = 30.23 MPa; cp, w average = 4.1524 J-g·1·K'1 

373.562 30.25 0.081666 -1.95 148.64 (4.65) 

373.562 30.25 0.081666 -1.95 148.78 (4.36) 

373.557 30.29 0.15025 -3.53 150.32 (2.80) 

373.557 30.29 0.15025 -3.55 149.71 (2.61) 

373.556 30.37 0.30585 -7.15 150.37 (1.32) 

373.556 30.37 0.30585 -7.19 149.78 (1.41) 

373.556 30.28 0.64458 -14.70 152.14 (0.85) 

373.556 30.28 0 .64458 -14.56 153.08 (0.72) 

373.556 29.97 1.33941 -28.28 158.70 (0.49) 

373.556 29.97 1.33941 -28.28 158.67 (0.48) 

T average = 423.765 K; P average = 30.34 MPa; Cp, w average = 4.2222 J·g·1·K-1 

423.763 30.39 0.081666 -1.71 164.00 (6.88) 

423.763 30.39 0.081666 -1.72 163.18 (11.02) 

423.764 30.30 0.15025 -3.20 161.99 (6.67) 
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T p m (j-ll.W/ W)·103 cp. 4> 

K MPa mo1·kg-1 J-mol-'·K-' 

423.764 30.30 0.15025 -3.15 163.63 (5.58) 
423.765 30.41 0.30585 -6.22 165.92 (2.74) 
423.765 30.41 0.30585 -6.30 164.85 (2.81) 
423.766 30.31 0.64458 -12.54 169.42 (1.37) 
423.766 30.31 0.64458 -12.50 169.68 (1.43) 
423.767 30.30 1.33941 -23.77 176.79 (0.94) 
423.767 30.30 1.33941 -23.74 176.88 (0.54) 
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Table 3.3.3 Apparent molar heat capacities Cp. 4> of aqueous glycine as a function of 
molality m. 

T p m (fllWI W)· 103 
cp. <t> 

K MPa mol·kg·1 J·mol·1·K-1 

Taverage = 323.170 K;paverage = 0.10 MPa; Cp,w average = 4.1814 J-g·1·K-I 

323.173 0.10 0.096677 -2.58 69.59 (4.26) 
323.173 0.10 0.096677 -2.55 70.82 (2.52) 
323.173 0.10 0.25394 -6.56 72.66 (1.08) 
323.173 0.10 0.25394 -6.55 72.78 (1.06) 
323.173 0.10 0.51960 -13.06 74.93 (0.69) 
323.167 0.10 0.51960 -13.08 74.72 (0.70) 
323.167 0.10 1.07965 -25.56 80.04 (0.49) 
323.167 0.10 1.07965 -25.56 80.01 (0.51) 
323.169 0.10 2.26847 -47.73 90.19 (0.38) 
323.169 0.10 2.26847 -47.73 90.17 (0.38) 

Taverage = 373.560 K; Paverage = 2.09 MPa; Cp, w average = 4.2116 J-g·1·K·1 

373.560 2.10 0.096677 -2.24 84.87 (6.22) 
373.560 2.10 0.096677 -1.97 96.89 (3.23) 
373.560 2.10 0.25394 -5.49 91.23 (2.14) 
373.560 2.10 0.25394 -5.34 93.77 (2.29) 
373.561 2.07 0.51960 -10.90 93 .63 (1.16) 
373.561 2 .07 0.51960 -10.67 95.48 (0.96) 
373.560 2.07 1.07965 -21.17 98.79 (0.65) 
373.560 2.07 1.07965 -20.86 100.06 (0.63) 
373.561 2.11 2.26847 -39.65 107.63 (0.40) 
373.561 2.11 2.26847 -39.91 107.09 (0.42) 

1~verage = 423.780 K; P average = 2.03 MPa; Cp, w average = 4.3037 J-g·1·K1 

423.781 2.04 0.096677 -2.18 89.64 (4.94) 
423.772 1.98 0.096677 -2.23 87.47 (6.30) 
423.771 2.02 0.25394 -5.65 90.63 (2.31) 
423.784 2.05 0.25394 -5.84 87.25 (2.17) 
423.786 2.01 0.51960 -11 .65 89.31 (1.16) 
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T p m (f·I:!.W/ W)·l03 
cp. <t> 

K MPa mol·kg-1 }moi-1·K1 

423.786 2.01 0.51960 -11.44 91.08 (1.19) 
423 .787 2.09 1.07965 -21.22 100.74 (0.69) 
423.787 2.09 1.07965 -21.59 99.18 (0.73) 
423.773 2.01 2.26847 -39.86 109.53 (0.44) 
423.773 2.01 2.26847 -39.63 110.02 (0.44) 

T average = 473.810 K; Paverage = 5.56 MPa; Cp. w average = 4.4763 J·g-1·K1 

473.810 5.51 0.096677 -2.65 71.92 (7.19) 
473.810 5.51 0.096677 -2.65 72.02 (5.77) 
473.810 5.59 0.25394 -6.73 75.46 (2.62) 
473.810 5.59 0.25394 -6.72 75.57 (2.48) 
473.810 5.51 0.51960 -13.14 80.20 (2.35) 
473.810 5.51 0.51960 -13.14 80.26 (1.46) 
473.810 5.61 1.07965 -24.89 89.35 (0.72) 
473.810 5.61 1.07965 -24.85 89.54 (0.91) 
473.810 5.59 2.26847 -44.64 104.07 (0.53) 
473.810 5.59 2.26847 -44.68 104.00 (0.57) 

Taverage = 499.099 K; Paverage = 5.55 MPa; cp, IV average = 4.6315 J·g-1·K1 

499.100 5.60 0.096677 -2.84 65.01 (6.27) 
499.100 5.60 0.096677 -2.88 63.09 (9.48) 
499.100 5.59 0.096677 -2.90 62.19 (8.54) 
499.101 5.59 0.25394 -7.33 67.03 (3.13) 
499.101 5.59 0.25394 -7.35 66.65 (2.74) 
499.100 5.59 0.51960 -14.42 71.37 (1.32) 
499.100 5.59 0.51960 -14.40 71.50 (1.39) 
499.096 5.47 1.07965 -26.89 83 .48 (1.07) 
499.096 5.47 1.07965 -26.90 83.45 (0.80) 
499.095 5.47 2.26847 -46.55 103.38 (0.54) 
499.095 5.47 2.26847 -46.53 103.43 (0.53) 

T average = 323.166 K; Paverage = 30.12 MPa; cp. w average= 4.1179 J·g-1·K-1 

323.165 30.22 0.096677 -2.37 81.12 (3.35) 
323.165 30.22 0.096677 -2.36 81.65 (2.91) 
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T p m (ftJ.W/ W)·l03 
cp. <~> 

K MPa mol·kg-1 J·moi-1·K1 

323.166 30.15 0.25394 -6.15 82.07 (1.1 0) 
323.166 30.15 0.25394 -6.10 82.95 (1.39) 
323.167 30.12 0.51960 -12.20 84.59 (0.94) 
323.167 30.12 0.51960 -12.24 84.25 (0.88) 
323.167 30.19 1.07965 -24.07 88.72 (0.58) 
323.167 30.19 1.07965 -24.07 88.73 (0.59) 
323.167 29.90 2.26847 -45.15 98.06 (0.38) 
323.167 29.90 2.26847 -45.19 97.99 (0.39) 

Taverage = 373.540 K;paverage = 30.11 MPa; Cp, w average = 4.1526 J-g-1·K-1 

373.540 30.11 0.096677 -2.03 96.33 (4.21) 
373.540 30.11 0.096677 -2.01 97.60 (4.08) 
373.539 30.08 0.25394 -5.16 99.17 (1.49) 
373.539 30.08 0.25394 -5.18 98.82 (1.50) 
373.540 30.09 0.51960 -10.41 99.92 (0.88) 
373.540 30.09 0.51960 -10.64 98.04 (1.01) 
373.540 30.02 1.07965 -20.10 105.44 (0.57) 
373.540 30.02 1.07965 -20.53 103.73 (0.53) 
373.540 30.23 2.26847 -38.57 112.21 (0.44) 
373.540 30.23 2.26847 -38.66 112.03 (0.38) 

Taverage = 423.761 K; Paverage = 30.34 MPa; cp. w average= 4.2222 J·g-1·K-1 

423.762 30.39 0.096677 -2.25 88.32 (4.79) 
423 .762 30.39 0.096677 -2.32 85.39 (4.36) 
423.755 30.40 0.096677 -2.16 92.53 (8.60) 
423.755 30.40 0.096677 -2.28 87. 27 (12.88) 
423.762 30.23 0.25394 -5.39 96.99 (3.31) 
423.762 30.23 0.25394 -5.44 96.13 (1.61) 
423.762 30.39 0.51960 -10.47 101.13 (1.03) 
423.762 30.39 0.51960 -10.36 102.12 (1.02) 
423.762 30.21 1.07965 -19.99 107.69 (0.61) 
423.762 30.21 1.07965 -19.87 108.19 (0.59) 
423.761 30.39 2.26847 -36.88 117.60 (0.49) 
423.761 30.39 2.26847 -36.77 117.83 (0.44) 
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T p m (fll.W/ W)·103 
cp. <l> 

K MPa mol·kg-1 J·mol-1·K1 

Taverage = 447.842 K;paverage = 30.09 MPa; Cp, w average= 4.2781 J-g·1·K1 

447.840 29.99 0.096677 -2.21 91.52 (6.08) 
447.840 29.99 0.096677 -2.22 91.07 (4.82) 
447.842 30.03 0.25394 -5.49 96.54 (2.00) 
447.842 30.03 0.25394 -5.49 96.46 (2.20) 
447.841 30.12 0.51960 -10.86 99.18 (1.19) 
447.841 30.12 0.51960 -10.79 99.77 (1.17) 
447.843 30.11 1.07965 -20.58 106.67 (0.58) 
447.843 30.11 1.07965 -20.60 106.56 (0.58) 
447.845 30.19 2.26847 -36.30 120.32 (0.39) 
447.845 30.19 2.26847 -36.64 119.62 (0.43) 

Taverage = 473.438 K; P average = 30.20 MPa; Cp, w average = 4.3570 J·g·1·K1 

473.814 30.02 0.096677 -2.22 92.72 (6.88) 
473.814 30.02 0.096677 -2.18 94.72 (5.80) 
473.815 30.03 0.25394 -5.72 94.37 (2.82) 
473.815 30.03 0.25394 -5.72 94.33 (2.54) 
472.493 30.60 0.25394 -5.77 93.35 (2.49) 
472.493 30.60 0.25394 -5.77 93.43 (1.76) 

473.816 30.07 0.51960 -11.20 98.16 (1.29) 
473.816 30.07 0.51960 -11.24 97.79 (1.24) 
473.817 30.09 1.07965 -21.48 104.84 (0.69) 
473.817 30.09 1.07965 -21.42 105.11 (1.09) 
473.816 30.06 2.26847 -38.74 117.41 (0.43) 
473.816 30.06 2.26847 -38.74 117.42 (0.42) 
472.495 30.53 2.26847 -38.91 116.93 (0.39) 
472.495 30.53 2.26847 -38.93 116.89 (0.42) 

T average = 499.096 K; Paverage = 30.58 MPa; cp. w average = 4.4620 J·g-
1·K1 

499.096 30.51 0.096677 -2.23 94.73 (5.86) 
499.096 30.51 0.096677 -2.17 97.47 (3.28) 
499.096 30.58 0.096677 -2.19 96.33 (4.04) 
499.096 30.58 0.25394 -5.99 91.85 (1.92) 
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T p m (f~WI W)·103 cp. <P 

K MPa mol·kg·1 J·mol·1·K1 

499.097 30.60 0.25394 -5.98 91.98 (1.94) 
499.096 30.59 0.51960 -11.70 96.16 (0.79) 
499.096 30.59 0.51960 -11.64 96.66 (0. 77) 
499.096 30.59 1.07965 -22.00 105.15 (0.51) 
499.096 30.59 1.07965 -21.98 105.24 (0.52) 
499.096 30.60 2.26847 -38.26 121.31 (0.47) 
499.096 30.60 2.26847 -38.28 121.27 (0.48) 
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Table 3.3.4 Apparent molar heat capacities Cp. q, of aqueous proline as a function of 
molality m. 

T p m (f'llWI W)·103 
cp. "' 

K MPa mol·kg-1 J-mol·l,K"l 

Taverage = 323.173 K;Paverage = 0.10 MPa; cp. w average = 4.1814 J-g·1·K-1 

323.173 0.10 0.097407 -3.07 212.68 (3.17) 
323.173 0.10 0.097407 -3.06 213.41 (2.82) 
323.173 0.10 0.25341 -7.93 212.15 (1.07) 
323.173 0.10 0.25341 -7.92 212.27 (1.11) 
323.173 0.10 0.52171 -15.93 212.55 (0.70) 
323.173 0.10 0.52171 -15.92 212.60 (0.73) 
323.173 0.10 1.19912 -34.59 213.68 (0.50) 
323.173 0.10 1.19912 -34.60 213.64 (0.47) 
323.174 0.10 1.78992 -49.28 215.17 (0.45) 
323.174 0.10 1.78992 -49.27 215.22 (0.54) 

Taverage = 373.567 K; Paverage = 2.10 MPa; Cp, w average = 4.2116 J·g·'·K"1 

373.566 2.01 0.097407 -2.67 232.09 (6.42) 

373.565 2.06 0.097407 -2.58 236.24 (6.19) 

373.567 2.11 0.25341 -6.33 241.18 (2.47) 

373.567 2.11 0.25341 -6.61 236.44 (1.74) 

373.567 2.11 0.52171 -13.16 237.81 (1.03) 

373.567 2.11 0.52171 -13.06 238.64 (1.08) 

373.568 2.11 1.19912 -28.59 238.87 (0.63) 

373.568 2.11 1.19912 -28.60 238.83 (0.62) 

373.568 2 .12 1.78992 -39.32 244.10 (0.55) 

373.568 2.12 1.78992 -39.96 242.37 (0.51) 

T average = 423.765 K;Paverage = 2.00 MPa; cp. w average = 4.3038 J·g·'·K-' 

423.767 2.02 0.097407 -2.46 246.78 (6.76) 

423.767 2.02 0.097407 -2.43 248.22 (5 .65) 
423.767 1.98 0.25341 -6.26 247.67 (2.17) 

423.767 1.98 0.25341 -6.27 247.42 (2.12) 

423.765 2.01 0.52171 -12.60 247.79 (1.16) 
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T p m (f6.WIW)·103 
cp. lj) 

K MPa mol·kg·' J·mol·'·K' 

423.765 2.01 0.52171 -12.50 248.67 (1.19) 
423.763 2.02 1.19912 -26.90 250.72 (0.69) 
423.763 2.02 1.19912 -26.93 250.60 (0.64) 
423.765 1.99 1.78992 -37.87 253.43 (0.55) 
423.765 1.99 1.78992 -37.94 253.23 (0.52) 

Taverage = 473.795 K; Paverage = 5.60 MPa; cp. w average = 4.4760 J·g·'·K·' 

473.793 5.59 0.097407 -2.85 239.23 (9.71) 
473.793 5.59 0.097407 -2.88 237.90 (10.27) 
473 .794 5.59 0.097407 -2.83 240.17 (7.15) 
473.794 5.59 0.097407 -2.85 239.47 (5.87) 
473.794 5.59 0.25341 -7.37 238.39 ( 4.35) 
473.794 5.59 0.25341 -7.47 236.68 (4.25) 
473.795 5.53 0.52171 -14.94 237.64 (2.00) 
473.795 5.53 0.52171 -14.91 237.94 (2.26) 
473 .796 5.59 1.19912 -31.35 233.36 (0.92) 
473.796 5.59 1.19912 -31.35 233.38 (0.95) 
473.797 5.68 1.78992 -43.45 238.42 (0.63) 
473.797 5.68 1.78992 -43.43 238.50 (0.73) 

T average = 499.101 K; Paverage = 5.57 MPa; cp. w average = 4.6314 J·g·'·K·' 

499.101 5.53 0.097407 -3.27 227.47 (8.57) 
499.100 5.58 0.097407 -3.24 229.17 (6.83) 
499.101 5.54 0.25341 -8.44 226.79 (2.76) 
499.101 5.54 0.25341 -8.47 226.08 (2.97) 
499.101 5.57 0.52171 -17.30 224.03 (1.52) 
499.101 5.57 0.52171 -17.23 224.72 (1.59) 
499.100 5.59 1.19912 -36.03 231.94 (0.75) 
499.100 5.59 1.19912 -36.03 231.92 (0.86) 
499.100 5.58 1.78992 -49.41 239.33 (0.68) 
499.100 5.58 1.78992 -49.37 239.45 (0.68) 
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T p m (f~WI W)'103 
cp. cj) 

K MPa mol·kg-1 J·mol-1·K1 

Taverage = 323.166 K; Paverage = 29.83 MPa; cp. w average = 4.1184 J·g-1·K-1 

323.166 30.11 0.097407 -3.02 218.36 (3.23) 
323.166 30.11 0.097407 -2.99 219.57 (4.18) 
323.165 29.68 0.25341 -7.79 217.57 (1.27) 
323.165 29.68 0.25341 -7.80 217.33 (1.46) 
323.166 29.78 0.52171 -15.64 218.12 (0.76) 
323.166 29.78 0.52171 -15.70 217.65 (0.71) 
323.166 29.78 1.19912 -34.03 219.10 (0.49) 
323.166 29.78 1.19912 -33.98 219.26 (0.47) 
323.167 29.82 1.78992 -48.31 221.11 (0.50) 
323.167 29.82 1.78992 -48.31 221.11(0.45) 

Taverage = 373.559 K;paverage = 30.35 MPa; Cp,w average= 4.1521 J-g·1·K-1 

373.558 30.29 0.097407 -2.45 244.50 ( 4.26) 
373.558 30.29 0.097407 -2.52 241.73 (4.81) 
373.558 30.23 0.25341 -6.59 239.49 (1.90) 
373.558 30.23 0.25341 -6.19 246.29 (1.43) 
373.558 30.37 0.52171 -12.94 242.48 (0.83) 

373.558 30.37 0.52171 -12.93 242.56 (0.76) 

373.559 30.35 1.19912 -27.85 244.56 (0.57) 

373.559 30.35 1.19912 -27.90 244.37 (0.61) 
373.560 30.53 1.78992 -39.87 245.61 (0.49) 
373.560 30.53 1.78992 -39.90 245.52 (0.56) 

Taverage = 423.768 K;paverage = 30.48 MPa; cp. w average = 4.2219 J-g·1·K1 

423.768 30.40 0.097407 -2.40 251.02 (6.08) 

423.768 30.40 0.097407 -2.40 251.06 ( 4.66) 
423.767 30.52 0.25341 -6.10 251.87 (1.95) 
423.767 30.52 0.25341 -6.08 252.33 (2.11) 
423.766 30.57 0.52171 -12.20 252.83 (1.37) 
423.766 30.57 0.52171 -12.13 253.40 (1.21) 
423.768 30.53 1.19912 -26.06 255.64 (0.75) 
423.768 30.53 1.19912 -26.09 255.52 (0.91) 
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T p m ([-!1W/ W)·103 
cp.<jl 

K MPa mol·kg·1 J-mol·1·K1 

423.769 30.40 1.78992 -36.64 258.50 (0.59) 
423.769 30.40 1.78992 -36.59 258.64 (0.49) 

T a,•erage = 447.846 K; Paverage = 30.18 MPa; cp. w tiVerage = 4.2778 J·g·1·K·1 

447.846 30.08 0.097407 -2.49 250.22 (5.86) 
447.846 30.08 0.097407 -2.45 252.04 ( 4.99) 
447.845 30.11 0.25341 -6.23 252.91 (2.06) 
447.845 30.11 0.25341 -6.31 251.60 (1.94) 
447.845 30.19 0.52171 -12.56 253.00 (1.10) 
447.846 30.29 0.52171 -12.65 252.19 (1.17) 
447.847 30.23 1.19912 -26.90 255.67 (0.69) 
447.847 30.23 1.19912 -26.66 256.63 (0.99) 
447.846 30.22 1.78992 -37.63 259.14 (0.51) 
447.846 30.22 1.78992 -37.67 259.03 (0.60) 

T average = 473.438 K; Paverage = 30.39 MPa; cp. w average= 4.3562 J-g·1·K·1 

473.818 30.50 0.097407 -2.57 251.22 (4.91) 
473.818 30.50 0.097407 -2.58 250.65 (4.21) 
473.818 30.49 0.25341 -6.67 250.05 (1.63) 
473.818 30.49 0.25341 -6.62 250.82 (1.84) 
472.481 30.21 0.25341 -6.76 248.19 (1.58) 
472 .481 30.21 0.25341 -6.71 249.12 (1.81) 
473.818 30.51 0.52171 -13.42 250.23 (1.36) 
473.818 30.51 0.52171 -13.45 249.98 (0.92) 
473.818 30.20 1.19912 -28.34 254.74 (0.63) 
473 .818 30.20 1.19912 -28.23 255.18 (0.58) 
473.817 30.23 1.78992 -39.36 259.18 (0.50) 
473.817 30.23 1.78992 -39.45 258.93 (0.49) 
472.495 30.57 1.78992 -39.86 257.49 (0.57) 
472.495 30.57 1.78992 -39.83 257.56 (0.50) 
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T 
K 

p 
MPa 

m 
mol·kg-1 

Taverage = 499.098 K; Paverage = 30.61 MPa; Cp, w average = 4.4619 J·g-1·K1 

499.100 30.59 0.25341 -7.10 248.41 (1.62) 
499.098 30.59 0.25341 -7.12 247.97 (1.56) 
499.098 30.61 0.52171 -14.54 246.32 (0.76) 
499.098 30.61 0.52171 -14.56 246.13 (0.86) 
499.098 30.63 1.19912 -30.88 250.45 (0.63) 
499.098 30.63 1.19912 -30.89 250.42 (0.52) 
499.098 30.59 1.78992 -42.95 255.12 (0.45) 
499.098 30.59 1.78992 -43.25 254.27 (0.46) 
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Table 3.3.5 Values of C;, b, and c obtained by fitting either equation (3.3.1) or equation 
(3.3.2) to each set of isothermal calorimetric data for each amino acid. 

Tl (K) p I (MPa) C/ I (J·mol·1·K1) b I (J·kg·mol·2·K1) c I (J·kg2·mot-3·K1) 

a-Alanine 

298.10 0.10 140.52 ± 0.49 9.01 ± 0.93 
323.173 0.10 167.76 ± 0.25 4.86 ± 0.26 
373.563 2.08 181.67 ± 0.59 4.65 ± 0.66 
423.772 2.01 180.01 ± 0.35 7.42 ± 0.37 
447.746 10.30 175.50 ± 0.31 6.86 ± 0.33 
473.799 5.62 170.94 ± 0.37 9.22 ± 0.39 
323.168 29.77 174.25 ± 0.31 5.13 ± 0.33 
373.543 30.03 188.04 ± 0.38 5.38 ± 0.41 
423.769 30.56 187.00 ± 0.35 9.64 ± 0.36 
447.857 30.22 184.79 ± 0.15 8.89 ± 0.16 
473.818 30.19 182.47 ± 0.27 10.00 ± 0.28 

P-Alanine 

323.172 0.10 110.34 ± 0.16 9.58 ± 0.16 

373.554 2.02 140.20± 1.12 8.95 ± 1.07 
423.778 2.02 153.16 ± 0.95 11.76 ± 0.92 
323.169 29.77 119.94 ± 0.38 8.69 ± 0.37 
373.557 30.23 147.76 ± 0.34 8.10 ± 0.32 

423.765 30.34 162.11 ± 0.33 11.04 ± 0.32 

Glycine 

323.17 0.10 69.88 ± 0.27 9.81 ±0.49 -0.38 ± 0.17 
373.56 2.09 89.89 ± 1.74 9.77 ± 3.17 -0.91 ± 1.11 
423.78 2.03 83.93 ± 1.80 17.03 ± 3.27 -2.48 ± 1.15 
473.81 5.56 70.35 ± 0.14 20.27 ± 0.25 -2.39 ± 0.09 
499.10 5.55 60.74 ± 0.51 22.77 ± 0.94 -1.74 ± 0.35 

323.17 30.12 80.61 ± 0.21 7.35 ± 0.39 0.15 ± 0.14 
373.54 30.11 95.75 ± 1.18 8.60 ± 2.16 -0.61 ± 0.76 
423.76 30.34 92.75 ± 0.79 17.18 ± 1.42 -2.72 ± 0.49 
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Tl (K) pI (MPa) C/ I (J·mol" 1·K1
) b I (J·kg·mol-2·K1) c I (J·kg2·mol"3·K1

) 

447.84 30.09 91.92 ± 0.76 14.90 ± 1.38 -1.12±0.49 
473.44 30.20 90.68 ± 0.50 14.59 ± 0.97 -1.29 ± 0.35 
499.10 30.58 87.52 ± 0.21 17.73 ± 0.37 -1.25±0.13 

Proline 

323.17 0.10 212.44 ± 0.22 -0.14 ± 0.46 0.94 ± 0.20 
373.57 2.10 238.37 ± 1.90 -3.36 ± 4.00 3.37 ± 1.79 

423.77 2.00 247.05 ± 0.35 1.92 ± 0.75 0.89 ± 0.33 
473.80 5.60 237.35 ± 0.82 1.48 ± 1.80 2.67 ± 0.83 

499.10 5.57 225.54 ± 1.53 -1.25 ± 3.21 5.07 ± 1.44 

323.17 29.83 217.95 ± 0.40 -0.64 ± 0.84 1.35 ± 0.38 

373.56 30.35 242.25 ± 1.50 1.38±3.15 0.28 ± 1.41 

423.77 30.48 251.30 ± 0.28 2.76 ± 0.59 0.72 ± 0.26 

447.85 30.18 250.80 ± 0.67 3.87± 1.41 0.43 ± 0.63 
473.82 30.39 248.37 ± 1.05 4.61 ± 2.34 0.53 ± 1.06 

499.10 30.61 246.87 ± 1.41 -0.65 ± 2.83 2.82 ± 1.23 
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Figure 3.3.1 The apparent molar heat capacities Cp,4J of a-alanine at 298.10 K and 
0.10 MPa plotted against molality. Symbols are experimental results: 
0 , 298.10 K. The line is the isothermal fit to the experimental data. 
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Figure 3.3.2 The apparent molar heat capacities Cp.«<> of a-alanine from 323.2 to 473.8 K 
at steam saturation plotted against molality. Symbols are experimental 
results: 0, 323.17 K, 0.10 MPa; D, 373.56 K, 2.08 MPa; ~' 423.77 K, 
2.01 MPa; 'V, 447.75 K, 10.30 MPa; <>, 473.80 K, 5.62 MPa. Lines are 
the isothermal fits to the experimental data. 
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Figure 3.3.3 The apparent molar heat capacities Cp,cp of a-alanine from 323.2 to 473.8 K 
at 30.15 MPa plotted against molality. Symbols are experimental results: 
0, 323.19 K; 0, 373.54 K; !J., 423.77 K; \1,447.86 K; <>, 473 .82 K. Lines 
are the isothermal fits to the experimental data. 
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Figure 3.3.4 The apparent molar heat capacities cp,.p of P-alanine from 323.2 to 423.8 K 
at steam saturation plotted against molality. Symbols are experimental 
results: 0, 323.1 7 K, 0.10 MPa; D, 373.55 K, 2.02 MPa K; 1:1, 423.78 K, 
2.02 MPa. Lines are the isothermal fits to the experimental data. 
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Figure 3.3.5 The apparent molar heat capacities Cp,4J ofp-alanine from 323.2 to 423.8 K 
at 30.11 MPa plotted against molality. Symbols are experimental results: 
0 , 323.17 K; 0 , 373.56 K; !J., 423.77 K. Lines are the isothermal fits to 
the experimental data. 
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Figure 3.3.6 The apparent molar heat capacities Cp,q, of glycine from 323.2 to 499.1 K 
at steam saturation plotted against molality. Symbols are experimental 
results: 0, 323.17 K, 0.10 MPa; 0, 373.56 K, 2.09 MPa; /1, 423.78 K, 
2.03 MPa; \/, 473.81 K, 5.56 MPa; ¢ , 499.10 K, 5.55 MPa. Lines are the 
isothermal fits to the experimental data. 
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Figure 3.3.7 The apparent molar heat capacities Cp,Q! of glycine from 323.2 to 499.1 K 
at 30.24 MPa plotted against molality. Symbols are experimental results: 
0, 323.17 K; 0 , 373.54 K; 1:1, 423.76 K; 0, 447.84 K; V, 473.44 K; 
<>, 499.10 K. Lines are the isothermal fits to the experimental data. 
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Figure 3.3.8 The apparent molar heat capacities Cp,q, of proline from 323.2 to 499.1 Kat 
steam saturation plotted against molality. Symbols are experimental 
results: 0, 323.17 K, 0.10 MPa; D, 373.57 K, 2.10 MPa; 6., 423.77 K, 
2.00 MPa; V', 473.80 K, 5.60 MPa; 0 , 499.10 K, 5.57 MPa. Lines are the 
isothermal fits to the experimental data. 
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Figure 3.3.9 The apparent molar heat capacities Cp,cf> of proline from 323.2 to 499.1 Kat 
30.24 MPa plotted against molality. Symbols are experimental results: 
0, 323.17 K; 0, 373.56 K; A, 423.77 K; D, 447.85 K; \1,473.44 K; 
0 , 499.10 K. Lines are the isothermal fits to the experimental data. 
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3.4 Equations of State for vo and C;. 

3.4.1 Background and Strategy. 

An equation of state is the most convenient method of representing the temperature, 

pressure, and molality dependence of the experimentally determined apparent molar volumes 

V<t> and heat capacities Cp, <t>· In our initial attempt to model the experimentally determined 

data both the density model and the revised HKF model were used as fitting functions. Since 

the apparent molar volumes were measured first, the data set was limited to the V<l>(m, T, p) 

results and selected values of KT
0 found in the literature. Section 3.4.2 describes the 

representation of V<l> (m, T, p) by both the revised HKF and density models. 

Although, the density model reproduced the V<l> data better than the revised HKF 

model, the density model could not simultaneously represent V<l>(m, T, p) and CP. <t>(m, T, p) 

with sufficient accuracy. In its final form the density model was extended to include a 

number of additional temperature and/or pressure dependent terms. As well, the data set was 

restricted to the values of V0 (T, p) and c;cr, p) determined in Sections 3.2 and 3.3. Section 

3 .4.3 describes the representation of vo ( T, p) and C; ( T, p) by the extended density model. 

3.4.2 Representation of V<t>(m, T, p) by Both the Revised HKF and Density Models. 

The revised Helgeson Kirkham Flowers (HK.F) model and the density model have 

both been used to fit the thermodynamic properties of aqueous species as a function of 

temperature and pressure. 
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The revised Helgeson Kirkham Flowers model, as adapted to organic species by 

Shock and Helgeson (1990), yields the following expressions for v o and Kr o: 

(3.4.2.1) 

(3.4.2.2) 

The molality dependence of Vq, was described by the expressions: 

V<l> =V 0 +bm +em 2 (3.4.2.3) 

(3.4.2.4) 

(3.4.2.5) 

Here '¥ is a solvent parameter equal to 260.0 MPa, 8 is a solvent parameter equal to 228 K, 

and Q = (lle})(oe)op)r is a Born function where e, is the dielectric constant ofwater. a 1, 

a3, a4, b1, b2, b3, c1, and c2 are fitting parameters. It was necessary to use the effective Born 

coefficient <.a->e as a fitting parameter although Shock and Helgeson (1990) gave an expression 

for its estimation. An expression for Kr o was included in this model to ensure a good fit to 

the small pressure dependence observed in the measured apparent molar volumes. The 

statistical standard deviation associated with equations (3.4.2.1), (3.4.2.2), (3.4.2.3), 

(3.4.2.4), and (3.4.2.5) can be estimated from equations (3.4.2.1a), (3.4.2.2a), (3.4.2.3a), 
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(3.4.2.4a), and (3.4.2.5a), respectively. 

(3.4.2.la) 

(3.4.2.2a) 

(3.4.2.3a) 

(3.4.2.4a) 

(3.4.2.5a) 

The density model discussed in Section 1.2.4 is an alternative to the revised HKF 

model for describing the dependence of Vq, on T and p. The model was developed by Mesmer 

et al. (1988) to describe the temperature and pressure dependence of log K under 

hydrothermal conditions and yields the following expressions for VO and Kr o: 

(3.4.2.6) 

(3.4.2.7) 

The molality dependence of Vq, was described by the expressions: 
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V~ =V 
0

+bm +em 2 (3.4.2.8) 

(3.4.2.9) 

(3.4.2.10) 

c1, and c2 are fitting parameters. The addition of the term d0, absent in the original model, 

increases the flexibility of the functions thereby improving their ability to reproduce the 

temperature <md pressure dependence of the experimental data at temperatures below 373 K. 

An expression for K r
0 was included in this model to ensure a good fit to the small pressure 

dependence observed in the measured apparent molar volumes. The statistical standard 

deviation associated with equations (3.4.2.6), (3.4.2.7), (3.4.2.8), (3.4.2.9), and (3.4.2.10) can 

be estimated from equations (3.4.2.6a), (3.4.2.7a), (3.4.2.8a), (3.4.2.9a), and (3.4.2.10a), 

respectively: 

(3.4.2.6a) 

(3.4.2.7a) 

(3.4.2.8a) 

(3.4.2.9a) 
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(3.4.2.1 Oa) 

To increase the temperature range and accuracy of the fitting parameters obtained 

from each model, a number of complementary data sets were included, along with the values 

of V<l> measured in this work. The literature sources used for complementary data are listed 

in Table 3.4.2.1. The diversity ofthis data requires that each data point be assigned a weight. 

As discussed in Section 3.2, the uncertainty associated with experimental apparent molar 

volumes increases as the molality of the sample solution decreases. Therefore, the apparent 

molar volumes measured in this work and those measured by Hakin eta/. (1997) were given 

a weight equal to the molality of the solution. At each temperature and pressure the 

combined weight of the a.-alanine solutions was approximately equal to 3.0. Therefore, the 

standard partial molar volume obtained by Hakin eta/. (1994) at 298.15 K and the standard 

partial molar isothermal compressibilities obtained by Chalikian et al. (1994) were assigned 

a weight of3.0. Weights were assigned to the other standard partial molar volumes obtained 

by Hakin eta/. (1994) using the following expression: 

( ]

2 
a • 

v19& 
weight=3.0 --

av" 
T 

(3.4.2.11) 

where a • is the uncertainty associated with v o at 298.15 K and a • is the uncertainty 
~R ~ 

associated with v o at temperatures other than 298.15 K. For each temperature and pressure 

the combined weight of the proline solutions was approximately equal to 5.5. Therefore the 

standard partial molar isothermal compressibilities obtained by Kharakoz (1991) were 
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assigned a weight of 5.5. 

The fitting parameters obtained using the revised HKF model and the density model 

are tabulated in Tables 3.4.2.2 and 3.4.2.3, respectively, along with their standard deviations. 

The fitted apparent molar volumes V.p for a-alanine are plotted in Figures 3.4.2.1 and 3.4.2.2, 

while those for proline are plotted in Figures 3.4.2.3 and 3.4.2.4. Figures 3.4.2.5 and 3.4.2.6 

compare the standard partial molar volumes vo obtained using equation (3.4.2.1) from the 

revised HKF model and equation (3.4.2.6) from the density model with the fitted isotherms 

obtained for a-alanine and proline in Section 3.2. Figures 3.4.2.7 and 3.4.2.8 compare the 

molality fit coefficients obtained using equations (3.4.2.4) and (3.4.2.5) from the revised 

HKF model and equations (3.4.2.9) and (3.4.2.10) from the density model with the 

isothermal molality fit coefficients obtained for a-alanine and proline in Section 3.2. Figures 

3.4.2.9 and 3.4.2.10 compare the fitted values ofKr0 with those measured by Chalikian et al. 

(1994) for a -alanine and Kharakoz (1991) for proline. 
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Table 3.4.2.1 Literature data sources used in fitting parameters for both the revised HKF 
and density models. 

Data a-alanine proline 

V <I> Hakin et al. ( 1997) 

vo Hakin et al. ( 1994) t 

K o 
T Chalikian et al. ( 1994 )+ Kharakoz (1991)l 

tvalues are listed in Table 1.6.3.1. +Values are listed in Table 1.6.3.2. 

Table 3.4.2.2 Fitting parameters obtained by fitting the revised HKF model to 
V<l>(m, T,p).+ 

a1 I ( cm3·mol-1
) 

a3 ·10-2 I (K·cm3·moi-1
) 

a4 ·lo-s I (MPa·K-cm3·mol-1) 

we ·10-4 I (MPa·cm3·mol-1
) 

h1 I (cm3·kg·mol-2) 

h2 ·l0-1 I (K·cm3·kg·moF) 

b3 ·10-3 I (kg·mol-1
) 

c1 I (cm3·kg2·mol-3) 

Cz ·1 o-2 I (K-cm3·kg2·mol-3) 

0 

a.-Alanine 

65.483 (0.179) 

1.91 (1.39) 

-1.224 (0.350) 

17.388 (0.246) 

3.082 (0.500) 

-18.83 (6.20) 

-46.06 (3.49) 

-2.514 (0.451) 

1.987 (0.631) 

0.08 

Proline 

91.213 (0.258) 

-10.21 (1.67) 

1.164 (0.415) 

7.506 (0.387) 

1.296 (0.432) 

-9.72 (3.74) 

-7.22 (6.88) 

0.18 

t The standard deviation for each parameter is given in parentheses; o is the overall 
weighted standard deviation. 

159 



Table 3.4.2.3 Fitting parameters obtained by fitting the density model to Vq,(m, T,p).t 

d0 I (cm3·mol-1) 

ds 

d6 ·10-3 I (K) 

d7·10-6 I (K2
) 

b1 ·1 02 I ( cm3·kg·moi-2
) 

b2 ·1 0 I (kg·mol-1
) 

c1 ·10 I (cm3·kg2·moP) 

c2 ·1 0 I (kg2·mol-2
) 

a 

a-Alanine 

68.419 (0.342) 

6.163 (0.562) 

-4.327 (0.423) 

1.3735 (0.0571) 

59.0 (29.3) 

9.49 (1.16) 

-5.15 (2.47) 

-2.666 (0.909) 

0.07 

Proline 

88.146 (0.449) 

18.112 (0.093) 

-15 .886 (0.708) 

3.5752 (0.0965) 

-5.2 (13.7) 

3.164 (0.509) 

0.13 

t The standard deviation for each parameter is given in parentheses; a is the overall 
weighted standard deviation. 

160 



62 

60 

-~ ' 
0 58 
E 

C') 

E 
(.) 
"'-" - 56 
";:..-<13. 

54 

52 

50 ~------~----~~----~------~------~------~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

m I (mol kg-1) 

Figure 3.4.2.1 The apparent molar volumes Vq, of ex-alanine from 333.2 K to 523.4 K 
at 10.05 MPa plotted against molality. Symbols are experimental 
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Figure 3.4.2.2 The apparent molar volumes Vtl> of a-alanine from 334.6 K to 523.4 K 
at 19.96 MPa plotted against molality. Symbols are experimental 
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Lines are fitted values: -----, revised HKF model; - - , density 
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at 10.14 MPa plotted against molality. Symbols are experimental 
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at 10.14 MPa plotted against molality. Symbols are experimental 
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Figure 3.4.2.5 The standard partial molar volumes V0 of ex-alanine from 0.1 MPa to 
19.96 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.2: 0 , 19.96 MPa; D, 10.05 MPa; 
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obtained by Hakin eta!. (1994). Lines are fitted values: -----,revised 
HKF model; --, density model. 
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Figure 3.4.2.6 The standard partial molar volumes V 0 of proline from 0.1 MPa to 
20.20 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.2: 0, 20.20 MPa; 0, 10.14 MPa; 
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3.4.3 Representation of V0 (T, p) and c Po (T, p) by the Extended Density Model. 

As seen in Section 3.4.2, the density model reproduced the thermodynamic properties 

( V<l>, v o, Kr 
0

) of aqueous a-alanine and proline better than the revised HKF model. However, 

neither model was able to fit the entire set of experimental data for V<l>(m, T,p) and Cp. q,(m, 

T, p) in a self consistent manner. Therefore, we chose to use an extended version of the 

density model to represent the temperature and pressure dependencies of the standard partial 

molar volumes reported in Section 3.2 and the standard partial molar heat capacities reported 

in Section 3.3. This model takes the form: 

llG o =p(A +A T ) +2.303R[[ A2 + A 3 
+A +A T +A T 2]logp l 

0 I R T2 T 4 5 R 6 R 0 

R R 

(3.4.3.1) 

(3.4.3.2) 

(3.4.3.3) 

171 



( 

20A 12A 6A 2A l 
-2.303R --7 

+--
8 

+ -
9 

+--
10 

+2A T +6A TR
2 

5 4 3 2 13 R 14 
TR TR TR TR 

+R(A2 +A +AT +A TR2 +A T3] [ aawl r 3 4 R s 6 R ar 
R p 

(3.4.3.4) 

where Pw and aw are the compressibility and the expansitivity coefficient of water, 

respectively, and TR =(T/373.15 K). Twas replaced with TR in equations (3.4.3.1), (3.4.3.2), 

(3.4.3.3), and (3.4.3.4) to increase the accuracy ofthe fitting parameters obtained. The terms 

A0 to A 14 are fitting parameters. Not all fitting parameters were used for a given amino acid. 

The additional terms, absent in the original model, increase the flexibility of the fitting 

functions thereby improving their ability to reproduce the temperature and pressure 

dependence of the experimental data. An expression for the standard partial molar 

compressibility was included in this model to ensure a good fit to the small pressure 

dependence observed in the standard partial molar volumes reported in Section 3.2. The 

statistical standard deviation associated with equations (3.4.3.2), (3 .4.3.3), and (3.4.3.4) can 

be estimated from equations (3.4.3.2a), (3.4.3.3a), and (3.4.3.4a), respectively: 

(o )2 (o )2 
2 2 A A 2 2 2 24 

+ R Aw - -
2 

- + --3 
- + (a ) + ( o ) T + (a ) T 

1-' 4 2 A4 As R A6 R 
TR TR 

(3.4.3.2a) 
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(3.4.3.3a) 

(3.4.3.4a) 

To increase the temperature range and accuracy of the fitting parameters obtained 

using the extended density model, a number of complementary data sets were included, along 

with the values of vo and C; measured in this work. The literature sources used for 

complementary data are listed in Table 3.4.3.1. The fitting parameters obtained using the 

extended density model are tabulated in Table 3.4.3.2, along with their standard deviations. 

The standard partial molar volumes vo obtained using the extended density model are plotted 

in Figures 3.4.3.1, 3.4.3.4, 3.4.3.7, and 3.4.3.10 for a-alanine, ~-alanine, glycine, and proline, 

respectively. The standard partial molar heat capacities C; obtained using the extended 
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density model are plotted in Figures 3.4.3.2, 3.4.3.5, 3.4.3.8, and 3.4.3.11 for a-alanine, ~­

alanine, glycine, and proline, respectively. The standard partial molar isothermal 

compressibilities Kr o obtained using the extended density model are plotted in Figures 

3.4.3.3, 3.4.3.6, 3.4.3.9, and 3.4.3.12 for a-alanine, ~-alanine, glycine, and proline, 

respectively. 
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Table 3.4.3.1 Literature data sources used in fitting parameters for the extended density 
model. 

Data 

a-alanine Hakin eta!. (1994) t Hakin eta!. (1994) t Kikuchi et a!. (1995) ~ 
Kharakoz (1991) ~ 

P-alanine Chalikian eta!. (1993) t Gucker and Allen (1942) t Chalikian eta!. (1993) ~ 

glycine Hakin et a/. ( 1994) t Hakin et al. ( 1994) t 

proline Hakin et al. (1997) t Hakin et al. (1997) t 

Kikuchi eta!. (1995) i 
Kharakoz ( 1991) t 

Kikuchi et al. (1995) + 
Kharakoz ( 1991) t 

tvalues are listed in Table 1.6.3.1. +values are listed in Table 1.6.3.2. 
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Table 3.4.3.2 Fitting parameters obtained by fitting the extended density model to 
V0 (T, p) and C Po (T, p).t 

a-Alanine P-Alanine Glycine Proline 

A0 I (cm3·mol-1) 61.89 (1.98) 56.216 (0.913) 30.77 (1.94) 71 .98 (2.96) 

A1 I (cm3-rhoi-1
) 6.97 (3.12) 14.25 (1.20) 21.92 (2.89) 18.48 ( 4.4 7) 

A2 I (K) -117.1 (39.7) 

A3 I (K) -42.34 (3.70) -33.486 (0.826) -27.37 (3.26) 467 (152) 

A4 I (K) -1763 (293) -1652 (337) 1904 (612) -1376 (407) 

A5 I (K) -18.8 (12.8) -990 (187) -4034 (287) 

A6 I (K) -118.9 (27.8) 

A? -1.959 (0.783) 

As 8.49 (3.04) 

A9 2.0820 (0.0937) 1.2190 (0.0540) 5.322 (0.230) 

AlO -8.691 (0.439) -3.828 (0.253) -24.03 (1.18) -58.9 (18.3) 

Al3 -2.987 (0.203) -4.398 (0.140) 15.17 (1.22) 57.2 (18.0) 

A14 -3.737 (0.259) -1 2.08 (3.36) 

0 1.28 0.18 0.94 1.77 

tThe standard deviation for each parameter is given in parentheses; a is the overall weighted 
standard deviation. 
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Figure 3.4.3.1 The standard partial molar volumes V0 of a.-alanine from 0.1 MPa to 
30.77 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.2: fl., 30.77 MPa; 0, 19.96 MPa; 
D, 10.05 MPa; <>, 0.1 MPa. 'V, 0.1 MPa represents the standard partial 
molar volumes obtained by Hakin eta/. (1994). Lines are fitted values 
obtained using the extended density model. 
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Figure 3.4.3.2 The standard partial molar heat capacities C~ of a.-alanine from 0.1 MPa 
to 30.15 MPa plotted against temperature. Symbols are the fitted 
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Figure 3.4.3.3 The standard partial molar isothermal compressibilities Kr0 of a -alanine 
at 0.1 MPa plotted against temperature. Symbols are the experimental 
values of: 0 , Kikuchi eta/. (1995); D, Kharakoz (1991). The line 
represents the fitted values obtained using the extended density model. 
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Figure 3.4.3.4 The standard partial molar volumes vo of~-alanine from 0.1 MPa to 
30.90 MPa plotted against temperature. Symbols are the fitted 
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Figure 3.4.3.5 The standard partial molar heat capacities c~ of P-alanine from 0.1 MPa 
to 30.11 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.3: 11, 30.11 MPa; D, steam saturation 
pressure. \1, 0.1 MPa represents the standard partial molar volumes 
obtained by Gucker and Allen (1942). Lines are fitted values obtained 
using the extended density model. 
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Figure 3.4.3.6 The standard partial molar isothermal compressibilities K/ of P-alanine 
at 0.1 MPa plotted against temperature. Symbols are the experimental 
values of: 0, Chalikian et a!. ( 1993 ). The line represents the fitted 
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Figure 3.4.3.7 The standard partial molar volumes vo of glycine from 0.1 MPa to 
30.83 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.2: (), 30.83 MPa; <>, 0.1 MPa. 
11, 30.21 MPa; 0 , 20.00 MPa; 0 , 10.00 MPa represent the standard 
partial molar volumes obtained by Hakin et al. (1998). '\!, 0.1 MPa 
represents the standard partial molar volumes obtained by Hakin et al. 
(1994). Lines are fitted values obtained using the extended density model. 
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Figure 3.4.3.8 The standard partial molar heat capacities C~ of glycine from 0.1 MPa 
to 30.24 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.3: D., 30.24 MPa; 0, steam saturation 
pressure. \1, 0.1 MPa represents the standard partial molar volumes 
obtained by Hakin et al. (1994). Lines are fitted values obtained using 
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Figure 3.4.3.9 The standard partial molar isothermal compressibilities K r 0 of glycine at 
0.1 MPa plotted against temperature. Symbols are the experimental 
values of: 0, Kikuchi et al. (1995); 0, Kharakoz (1991). The line 
represents the fitted values obtained using the extended density model. 
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Figure 3 .4.3 .1 0 The standard partial molar volumes vo of proline from 0.1 MPa to 
30.80 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.2: fl., 30.80 MPa; 0 , 20.20 MPa; 
r:l, 10.14 MPa; <>, 0.1 MPa. V, 0.1 MPa represents the standard partial 
molar volumes obtained by Hakin et al. (1997). Lines are fitted values 
obtained using the extended density model. 
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Figure 3.4.3 .1 1 The standard partial molar heat capacities C~ of proline from 0.1 MPa 
to 30.31 MPa plotted against temperature. Symbols are the fitted 
isotherms obtained in Section 3.3: /1, 30.31 MPa; 0, steam saturation 
pressure. 'V, 0.1 MPa represents the standard partial molar volumes 
obtained by Hakin eta!. (1997). Lines are fitted values obtained using 
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3.5 Equilibrium Constants from UV-Visible Spectroscopy. 

Figures 3.5.1 to 3.5.8 illustrate the temperature-dependent UV-visible absorption 

spectra obtained for acridine and P-naphthoic acid in the triflic acid solution, the sodium 

hydroxide solution, the a-alanine buffer solution, and the phosphoric acid or acetic acid 

buffer solution, respectively. The UV -visible absorption spectrum for each solution is the 

average of five spectra taken over a period of about 15 minutes. At each temperature a UV­

visible absorption spectrum was obtained for each solution in the absence of colorimetric 

indicators. The absorbance due to these blank solutions remained small throughout the range 

of wavelengths under consideration and was subtracted from the absorbance measured for 

the solutions containing the colorimetric indicators. 

Figures 3.5.1, 3.5.2, 3.5.5, and 3.5.6 show the spectra of acridine and P-naphthoic 

acid in triflic acid and in sodium hydroxide. Triflate is a non-oxidizing anion that is stable 

at elevated temperatures (Fabes and Swaddle, 1975). The relative concentrations of AcH+ I 

Ac and NapH I Nap were obtained by fitting linear combinations of the "pure" spectra to the 

spectra of the buffer solutions over the wavelength range 310- 450 nm (1 nm intervals) for 

the acridine solutions and 270 - 400 nm (1 nm intervals) for the P-naphthoic acid solutions. 

Because they contained different concentrations of indicator, the UV-visible absorption 

spectra of the buffer solutions in Figures 3.5.3, 3.5.4, 3.5.7, and 3.5.8 were normalised to 

either an acridine molality of 3.49·1 o-5 mol·kg-1 or a P-naphthoic acid molality of 1.43·1 o-4 

mol·kg-1
• Equation (1.5.3.5) was fitted to the UV-visible absorption spectra measured for 
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acridine in the phosphoric acid buffer solution and in the a-alanine buffer solution (HA± I 

H2A+) to obtain the molality ofprotonated AcH 1 and deprotonated acridine Ac in each buffer 

solution. The molal ratio of AcH+ to Ac at each temperature and pressure is given in Table 

3.5.1. Equation (1.5.3 .5) was also fitted to the spectra measured for P-naphthoic acid in the 

acetic acid buffer solution and in the a-alanine buffer solution (HA ± I A} to obtain the 

molality of protonated NapH and deprotonated P-naphthoic acid Nap- in each buffer 

solution. Table 3.5.llists the molal ratio ofNapH to Nap- at each temperature and pressure. 

The values of K 1ndzcator for acridine and P-naphthoic acid were calculated using 

equations (1.5.3.6) and (1.5.3.7), respectively. At each temperature and pressure the value 

of K 1 for ex-alanine was determined from equation (2. 7 .2.5) and the known molalities of 

H2A+, HA±, AcH+, and Ac. The value of Ka1 for phosphoric acid was determined from 

equation (2.7.2.11) and the known molalities ofH2PO~, H3P04, AcH+, and Ac. The value of 

K2 for ex-alanine was determined from equation (2.7.2.6) and the known molalities of A-, 

HA±, NapH, and Nap-. The value of Ka for acetic acid was determined from equation 

(2.7.2.12) and the known molalities ofCH3COO-, CH3COOH, NapH, and Nap-. The values 

of pK1, pKa1, pK2, and pKa obtained at each temperature and pressure are given in Table 

3.5.1. Error limits were taken to be one standard deviation of the least squares fit of equation 

(1.5.3.5) to the spectroscopic data. Figure 3.5.9 compares the experimentally determined 

values ofpKa1 to those obtained from Mesmer and Baes (1974). Figure 3.5.10 compares the 

experimentally determined values ofpKa to those obtained by Mesmer et al. (1989). 
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As illustrated in Figure 3.5.9 the experimentally determined values of pKa1 for 

phosphoric acid are 0.7 to 0.4 units lower than those determined by Mesmer and Baes (1974) 

which contain uncertainties of no more than ± 0.04 units. The accuracy of our values 

increases with increasing temperature since the values ofpKa1 from Mesmer and Baes (1974) 

move into the indicator range of acridine at temperatures above 425 K (Figure 2.7.3). As 

illustrated in Figure 3.5.10 the experimental values ofpKa for acetic acid are 0.3 to 0.9 units 

higher than those determined by Mesmer et al. (1989) which contain uncertainties of no 

more than± 0.04 units. The accuracy of the experimental values decreases with increasing 

temperature. This is unexpected since the values ofpKa as obtained by Mesmer et al. (1989) 

lie within the indicator range of P-naphthoic acid over the entire temperature range under 

consideration, as shown in Figure 2.7.4. 

Johnston and Chlistunoff (1998) used acridine to determine pH in a titration of 

hydrochloric acid with aqueous sodium chloride (653 K, 34 MPa). The experimentally 

determined values of pH were found to be within 0.4 units of the predicted values. Similarly, 

P-naphthoic acid was used to determine pH in a titration of ammonia with acetic acid ( 623K, 

34 MPa). The experimental values of pH were found to be within 0.5 units of the predicted 

values. Johnston and Chlistunoff (1998) consider the uncertainty in the colorimetric 

technique to be in the range± 0.3 - 0.5 log units. Therefore, the differences between the 

experimentally determined values and the literature values of pKa1 for phosphoric acid and 

pKa for acetic acid are only slightly higher than those expected from this technique. 
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Figure 3.5.1 Absorbance as a function ofwavelength for acridine in a 0.0203 mol·kg·' 
solution oftriflic acid. 
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Figure 3.5.2 Absorbance as a function ofwavelength for acridine in a 0.0981 mol·kg-1 

solution of sodium hydroxide. 
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Figure 3.5.5 Absorbance as a function of wavelength for P-naphthoic acid in a 
0.100 mol·kg·1 solution oftriflic acid. 
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Figure 3.5.6 Absorbance as a function of wavelength for P-naphthoic acid in a 
0.0123 mol·kg-1 solution of sodium hydroxide. 
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Figure 3.5.7 Absorbance as a function of wavelength for P-naphthoic acid in a 
buffer solution of a-alanine m(A- ) = 0.049658 mol· kg·' and 
m(HA±) = 0.049680 mol·kg-1• 
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Figure 3.5.8 Absorbance as a function of wavelength for (3-naphthoic acid in a 
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Table 3.5.1 Experimentally detennined values ofpKt> pK2, pK01 , and pKa as a function 
of temperature. 

Indicator: Acridine 

ex-Alanine (HA± I H2A+) H3P04 1 H2PO~ 
Buffer Solution Buffer Solution 

T I (K) pI (MPa) [AcH+] I [Ac] pKI [AcH+] I [ Ac] pKal 

423.2 5.4 56.6 2.23 ± 0.97 - -

448.2 5.5 24.7 2.41 ± 0.41 23.3 2.44 ± 0.49 

473.2 5.5 12.6 2.56 ± 0.21 10.3 2.64 ± 0.23 

498.1 5.5 6.80 2.70 ± 0.09 3.15 3.03 ± 0.05 

523.1 5.4 1.88 3.15 ± 0.03 1.09 3.38 ± 0.03 

Indicator: P-naphthoic acid 

ex-Alanine (HA± I A-) CH3COOH I CH3COO-
Buffer Solution Buffer Solution 

T I (K) pI (MPa) [N apH] I [Nap-] pKz [N a pH] I [Nap-] pKa 

423.0 5.3 0.00336 7.19±0.21 0.263 5.29 ± 0.01 

448.1 5.4 - - 0.232 5.67 ± 0.01 

473.2 5.4 - - 0.245 5.99 ± 0.01 

498.5 5.6 0.0297 7.27 ± 0.06 0.263 6.32 ± 0.01 

523.3 5.6 0.0474 7.45 ± 0.07 0.288 6.66 ± 0.01 
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phosphoric acid with those determined from the work ofMesmer 
and Baes (1974) at I = 0.05 mol·kg-1• The solid line represents the work 
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CHAPTER 4.0 DISCUSSION 

4.1 Comparison of Experimental Results with Literature Data. 

4.1.1 Apparent Molar Volumes. 

Except for the measurements made by Hakin et al. (1998) on glycine, there are no 

experimental values of V<l> for aqueous amino acids above 348 Kin the literature with which 

to compare the results obtained in this work. However, our results are completely consistent 

with the literature reports of measurements made at lower temperatures. The literature data 

at 0.1 MPa follow the trend in pressure dependence established by the isothermally 

determined standard partial molar volumes vo for a-alanine, P-alanine, glycine, and proline 

obtained in Section 3.2 and shown in Figures 3.4.3.1 , 3.4.3.4, 3.4.3.7, and 3.4.3.10, 

respectively. Considering the pressure difference between the literature data and the 

experimentally determined data, the values of vo appear to have a relatively smooth 

temperature dependence over a temperature range that includes both literature and 

experimental conditions. 

Table 4.1.1.1 compares the experimentally determined values of vo obtained for a­

alanine, P-alanine, glycine, and proline at 298.15 K and 0.1 MPa with those obtained from 

literature. The values of vo obtained in this work agree with the literature values within the 

combined experimental uncertainties. 
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Table 4.1.1.1 Comparison of the experimentally determined values of vo obtained at 
298.15 K and 0.1 MPa with those obtained from literature. 

Amino vo (this work) vo (literature) 
Acid cm3·mol·1 cm3·mo]·1 

ex-Alanine 60.50 ± 0.02 60.52 ± 0.01 Kikuchi et al. (1995) 
60.49 ± 0.05 60.5 ± 0.1 Chalikian et al. (1994) 

60.47 ± 0.03 Hakin eta/. (1994) 
60.4 ± 0.1 Kharakoz (1989) 
60.50 ± 0.02 Ogawa et al. (1984) 
60.54 ± 0.09 Cabani et al. ( 1981) 
60.50 ± 0.07 Millero et al. (1978) 
60.47 ± 0.1 Ahluwalia et al. (1977) 
60.3 ± 0.2 Shahidi and Farell (1978) 

P-Alanine 58.29 ± 0.02 58.3 ± 0.2 Chalikian et al. (1993) 
58.25 ± 0.02 Ogawa eta!. (1984) 
58.63 ± 0.48 Cabani et al. (1981) 
58.28 ± 0.1 Ahluwalia et al. (1977) 
58.5 ± 0.3 Shahidi and Farell (1978) 

Glycine 43.31 ± 0.05 43.4±0.1 Chalikian et al. (1994) 
43.3 ± 0.1 Kharakoz (1989) 
43.33 ± 0.12 Cabani et al. (1981) 
43.25 ± 0.01 Jolicoeur and Boileau (1978) 
43.5 ± 0.2 Shahidi and Farell (1978) 
43.3 Kirclmerova eta/. (1976) 

Proline 82.63 ± 0.02 82.61 ± 0.02 Hakin et a!. ( 1997) 
82.5 ± 0.2 Kharakoz ( 1989) 
82.65 ± 0.03 Jolicoeur et al. (1986) 
82.63 ± 0.05 Mishra and Ahluwalia (1984) 
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4.1.2 Apparent Molar Heat Capacities. 

There are no experimental values of CP. cP for any aqueous amino acid above 328 K 

in the literature with which to compare the results obtained in this work. However, our 

results are again completely consistent with the literature reports of measurements made at 

lower temperatures. The literature data at 0.1 MPa follow the trend in pressure dependence 

established by the isothermally determined standard partial molar heat capacities C ; obtained 

in Section 3.3 and shown in Figures 3.4.3.2, 3.4.3.5, 3.4.3.8, and 3.4.3 .11 for a-alanine, P­

alanine, glycine, and proline, respectively. The literature data at 0.1 MPa also follow the 

trend in temperature dependence established by the experimental data at steam saturation 

pressure. 

Table 4.1.2.1 compares the experimentally determined value of C; obtained for a­

alanine at 298.15 K and 0.1 MPa with those obtained from literature. The value of C; 

obtained in this work agrees with the literature values within the combined experimental 

uncertainties. 
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Table 4.1.2.1 Comparison ofthe experimentally determined value of C; obtained for 
a-alanine at 298.15 K and 0.1 MPa with those obtained from literature. 

Cp0 (this work) 
J·K' ·mol· ' 

140.52 ± 0.49 141 .2 
141.4 ± 0.2 
141 ± 4 
140.96 
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C; (literature) 
J·K1·mol·1 

Hakin et al. ( 1994) 
Jolicoeur and Boileau (1978) 
Spink and Wadso (1975) 
Gucker and Allen ( 1942) 



4.2 Relative Success of the Revised HKF Model Versus the Density Model. 

In Section 3.4.2 the revised HKF model and the density model were fitted to the 

apparent molar volumes measured in this work. The overall weighted standard deviation a 

for each model is included in Tables 3.4.2.2 and 3.4.2.3. For aqueous a-alanine, the revised 

HKF model gave a weighted standard deviation of 0.08 which is only slightly higher than 

the value of 0.07 obtained using the density model. For aqueous proline, the revised HKF 

model gave a weighted standard deviation of 0.18, significantly higher than the value of 0.13 

obtained using the density model. From these results it is clear that the density model 

performs better than the revised HKF model as a fitting function. 

Figures 3.4.2.1, 3.4.2.2, 3.4.2.5, and 3.4.2.7 illustrate the near equality of the fits 

obtained for a-alanine using both the revised HKF model and the density model. The fitting 

functions obtained using both models agree relatively well with the isothermal values. The 

advantage in using the density model as compared to the revised HKF model is illustrated 

in Figure 3.4.2.9. Both models produce fitting functions for K/ that are very similar in 

shape. However, the function obtained using the revised HKF model lies well below the data 

ofChalikian et al. (1994). The function obtained using the density model lies nearer to the 

centre of the set of compressibility data points. 

In Figures 3.4.2.3 and 3.4.2.4 it is evident that neither model fits the experimental V41 

data for proline as well as they do for a-alanine. The fitted function for Vq, obtained using the 

density model represents the experimental data better than that obtained from the revised 
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HKF model. Figure 3 .4.2.6 illustrates the lack of agreement between the fit obtained using 

the revised HKF model and the isothermal values of vo reported in Section 3.2 throughout 

the temperature range under consideration. The revised HKF model produced a fitted 

function for vo with an inverted pressure dependence at low temperatures. The correct 

pressure dependence is given only at temperatures above 425 K. The fitted function obtained 

for vo using the density model closely followed the isothermal values of vo and it gives the 

correct pressure dependence throughout the temperature range under consideration. Figure 

3.4.2.1 0 exemplifies the worst failure of the revised HKF model. The fitted function obtained 

for Kr
0 using the revised HKF model completely failed to reproduce the isothermal values. 

This function also had a temperature dependence opposite to that exhibited by the Kr o values 

ofKharakoz (1991). The fitted function obtained for Kr
0 using the density model agreed with 

the isothermal values relatively well over most of the temperature range. Figure 3.4.2.8 

illustrates the excessive deviation of the fit obtained forb using the revised HKF model from 

the isothermal values of b at both the low and midrange temperatures in this figure. The 

fitted function obtained for b using the density model agrees with the isothermal values over 

most of the temperature range. 

It is apparent from the preceding discussion that the density model performs better 

as a fitting function for the thermodynamic properties ( Vq,, vo, Kr 0 ) of aqueous amino acids 

than does the HKF model. However, to fit the standard partial molar heat capacities in 

addition to the standard partial molar volumes, the density model must be modified to 
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include several additional terms. These additional terms, absent in the original model, 

increase the flexibility of the functions thereby improving their ability to reproduce the 

temperature and pressure dependence of the diverse experimental data. Therefore, an 

extended version of the density model was used in Section 3.4.3 to represent the temperature 

and pressure dependencies of the standard partial molar volumes reported in Section 3.2 and 

the standard partial molar heat capacities reported in Section 3.3. 

4.3 Comparison of the Standard Partial Molar Properties Predicted by the Revised 
HKF Model with the Experimental Results. 

Amend and Helgeson (1997) have used the revised HKF model, with the correlations 

derived for neutral organic species, to predict the standard partial molar volumes vo and 

standard partial molar heat capacities C; of aqueous a-alanine, glycine, and proline as a 

function of temperature. The predicted values of vo for aqueous a-alanine at 19.96 MPa, 

aqueous glycine at 20.00 MPa, and aqueous proline at 20.20 MPa are compared to the 

experimental values of vo in Figures 4.3.1, 4.3.2, and 4.3.3, respectively. The predicted 

values of c; for aqueous a-alanine at 30.15 MPa, aqueous glycine at 30.24 MPa, and 

aqueous proline at 30.31 MPa are compared to the experimental values of C Po in Figures 

4.3.4, 4.3.5, and 4.3.6, respectively. These figures illustrate the gross error in the prediction 

made by Amend and Helgeson (1997) for aqueous a -amino acids. The temperature 

dependence of the experimental values of vo and C; for aqueous a-alanine, glycine, and 

proline suggests that both approach negative infinity as the temperature approaches the 
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critical temperature of water. However, the predicted values of vo and C; approach positive 

infinity. Criss and Wood (1996) and Shvedov and Tremaine (1997) have also found 

quantitative errors arising from the very limited high temperature database upon which the 

extension of the revised HKF model to organic species was based. However, it appears that 

the discrepancy between the predicted and experimental behaviour of vo and C; in Figures 

4.3.1 to 4.3.6 also reflects the neglect of the zwitterionic nature of the aqueous amino acids. 
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Figure 4.3.1 The predicted and experimental standard partial molar volumes V 0 of 
ex-alanine at 19.96 MPa. 
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212 



80 

70 
Fit to Experimental Data Using 

Extended Density Model. 
60 '----'-----·-j_·-- ··· ---- j_ ··-·--··-·-1- _____ 1...___ 

300 360 420 480 540 

T I (K) 

600 
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4.4 The Yezdimer-Sedlbauer-Wood Functional Group Additivity Model 

4.4.1 Predicted Behaviour of the Standard Partial Molar Properties. 

Y ezdimer et al. (2000) have used the equations-of-state developed by Sedlbauer et 

al. (2000) to develop a functional group additivity model for aqueous organic species that 

is capable of predicting the standard partial molar properties of aqueous a-alanine and 

glycine as a function of temperature. The predicted values of vo for aqueous a-alanine and 

glycine are compared to the experimentally determined values of vo in Figures 4.4.1.1 and 

4.4.1.2, respectively. The predicted values of C; for aqueous a-alanine and glycine are 

compared to the experimentally determined values of C; in Figures 4.4.1.3 and 4.4.1.4, 

respectively. 

As the temperature approaches the critical temperature of water, the predicted values 

of vo and C ; for aqueous a-alanine and glycine deviate toward negative values in a manner 

similar to the experimental values of vo and C ; . However, as can be seen in Figures 4.4.1.1 

to 4.4.1.4, the agreement is not quantitative. The discrepancy between the predicted and 

experimental behaviour of vo and C; undoubtedly arises as a result of the limited data set 

used to detem1ine the parameters for the amino acid functional group. The only experimental 

data for aqueous amino acids to be included in the Yezdimer-Sedlbauer-Wood functional 

group additivity model were limited to temperatures below 328 K. Therefore, it is not 

unexpected that the greatest deviation of the predicted values from the experimental results 

occurs at the highest temperatures at which measurements were made. 
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0, 19.96 MPa; D, 10.05 MPa; <>, 0.1 MPa. Y', 0.1 MParepresents the 
standard partial molar volumes obtained by Hakin et al. (1994). Lines are 
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D, steam saturation pressure; <>, 0.1 MPa. \1, 0.1 MPa represents the 
standard partial molar volumes obtained by Hakin et al. (1994). Lines 
are values obtained using the functional group additivity model of 
Y ezdimer et al. (2000). 
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Figure 4.4.1.4 The predicted and experimental standard partial molar heat capacities 
C~ of glycine from 0.1 MPa to 30.24 MPa plotted against temperature. 
Symbols are the fitted isotherms obtained in Section 3.3: /1, 30.24 MPa; 
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standard partial molar volumes obtained by Hakin et al. (1994). Lines 
are values obtained using the functional group additivity model of 
Y ezdimer et al. (2000). 
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4.4.2 Revision of the Amino Acid Functional Group Parameters Used in the 
Y ezdimer-Sedlbauer-Wood Functional Group Additivity Model. 

The experimentally determined standard partial molar volumes vo and standard 

partial molar heat capacities C; have been combined with the existing literature data for 

aqueous glycine and a-alanine in an attempt to improve the parameters for the amino acid 

functional group used in the Yezdimer-Sedlbauer-Wood functional group additivity model. 

The standard-state term and the contributions due to the other functional groups present in 

the amino acid were subtracted from the experimental values of vo and C; to determine the 

contribution to the standard partial molar volume and heat capacity from the amino acid 

functional group, v~miiiO and c~. Amino, respectively. The values of v~mino and c~. Amino are 

illustrated in Figures 4.4.2.1 and 4.4.2.2. The parameters for the amino acid functional group 

Were Obtained by simultaneOUSly fitting equationS (1.4.4) and (1.4.9) tO the ~mino and c ;Amino 

data, respectively. These parameters are tabulated in Table 4.4.2.1 along with their standard 

deviations. The fitted values of ~mino and c~. Amino are plotted in Figures 4.4.2.1 and 4.4.2.2. 

For comparative purposes, the values of v~mino and c;, Amino obtained by Yezdimer et al. 

(2000) arc also included in Figures 4.4.2.1 and 4.4.2.2. 

It is evident from Figure 4.4.2.2 that the representation of the experimental values of 

C~.Amino is greatly improved by the revision Of the parameterS for the amino acid functional 

group. However, as can be seen in Figure 4.4.2.1 this improvement is partially offset by a 

deterioration in the representation of the experimental values of V~m•no · The values of V~mtno 

obtained by Yezdimer et al. (2000) represent the temperature dependence of the experimental 
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results better than the fitted values of V~mino· The fitted values of V~mino exhibit an inversion 

in pressure dependence at T =365 K. The correct pressure dependence is given only at T::::: 

360 K. The values of ~mino obtained by Yezdimer et al. give the correct pressure dependence 

throughout the temperature range under consideration. As can be seen in Figure 4.4.2.2 the 

fitted values of C~ . Amino represent the temperature dependence of the experimental results 

significantly better than the values of c~. Amino obtained by Yezdimer et al. (2000). The fitted 

values of C~.Amino slowly decline in the range 423 K ::::: T::::: 523 Kin a manner similar to the 

experimental results. The values of c;, Amino obtained by Y ezdimer et al. deviate strongly 

toward negative values in the same temperature range. 

Although the parameters for the amino acid functional group were redetermined using 

the experimental values of vo and c; obtained in this work and the values of vo obtained 

by Hakin et al. (1998), there was little improvement in the ability of the Y ezdimer­

Sedlbauer-Wood functional group additivity model to predict the thermodynamic properties 

of aqueous amino acids at high temperatures and pressures. This suggests that there is 

insufficient flexibility in the equations-of-state developed by Sedlbauer et al. (2000) upon 

which Y ezdimer et al. (2000) have developed their model. Figures 4.4.2.1 and 4.4.2.2 

illustrate the difference in temperature dependence exhibited by v~mino and c;, Amino• The 

values of ~minu increase slowly until they reach their maximum value at T = 398 K and then 

deviate toward negative values at T ::::: 398 K. The values of c ;,Amino increase sharply until 

they reach their maximum value and then slowly decline in the range 423 - 523 K. 
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Table 4.4.2.1 Revised amino acid functional group parameters for use in the 
Yezdimer-Sedlbauer-Wood functional group additivity modet.t 

a1 • 1 o-t I (m3·kg ·1·moi-1) 

b1 ·104 I (m3·kg ·1·mol-1) 

c1 • 105 I (m3·kg ·1·mol-1) 

e1 • 1 o-2 I (J·K2·moi-1
) 

J: I (J-K2·moi·1
) 

0 

Amino Group 

-6.4716 (0.0065) 

-1.842 (0.419) 

3.025 (0.556) 

3.256 (0.385) 

-2.624 (0.509) 

1.003 (0.164) 

6.76 

t The standard deviation for each parameter is given in parentheses; o is 
the overall standard deviation. 
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4.5 Aqueous Amino Acid Speciation as a Function of Temperature. 

4.5.1 Speciation Equilibria. 

In aqueous solution an amino acid can exist in either the zwitterionic form HA±, the 

neutral form HA0
, the deprotonated form A-, or the protonated form H2A+. The equilibria 

between the zwitterionic, neutral, and ionic forms of an amino acid can be summarized as 

follows: 

H2A+ K, HA±+H+ 
"""' 

(4.5.1.1) 

HA± Kz A- + H+ (4.5.1.2) 
~ 

HA0 KJ HA± (4.5.1.3) 
~ 

where K 1, K 2, and K 3 are equilibrium constants. K3 was assumed to be approximately equal 

to (K1 I K 2) . A better estimate of the high temperature values for K2 can often be obtained 

from the corresponding isocoulombic reaction: 

HA± + OH - K 4 A- + H
2
0 (4.5 .1.4) 

~ 

where K4 = (K2 I Kw) and Kw is the dissociation constant of water. Once K 4 is obtained at the 

temperature and pressure of interest, K2 can be calculated from it using the appropriate value 

Values of K1, K2, and K3 can be used to determine the speciation of the aqueous 
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amino acids. From equations (4.5.1.1), (4.5.1.2), and (4.5.1.3) the following expressions are 

obtained for the molality ofH2A ', A-, and HA0
: 

[H2A +] = ( [HA ±] [H+] ) I K 1 

[A-] = ( [HA ±] K2) I [H+] 

[HA0
) = [HA±] I K3 

(4.5.1.5) 

(4.5.1.6) 

(4.5.1.7) 

Combining the charge balance equation, [H+] + [H2A+]- [A-]- [ OH-] = 0, with equations 

(4.5.1.5) and (4.5.1.6) yields the following expression for [H+]: 

(4.5.1.8) 

Combining the mass balance equation, [HA±] + [H2AI-] +[A-] + [HA0
] = m, with equations 

(4.5.1.5), (4.5.1.6), and (4.5.1.7) yields the following expression for [HA±]: 

[HA''] = (K1 K 3 [H+] m) I (K1 [H+] + K1 K3 [H+] +K1 K2 K3 + K3 [H+] 2) (4.5.1.9) 

To obtain the equilibrium values for [HA±], [H2A+], [A-], and [HA0
] an iterative process was 

employed. The first step assumed that [HAL] was to equal m. In the second step equation 

(4.5.1.8) was used to calculate [H+]. Equations (4.5.1.5), (4.5.1.6), and (4.5.1.7) were used 

in the third step to calculate [H2A+], [A-], and [HA0
], respectively. In the fourth step equation 

(4.5.1.9) was used to calculate [HA±). At this point the process returned to the second step 

where a new value of [H+] was calculated. This process was repeated until the values of 

[HA±], [H2A+]. [A-], and [HA0
] remained constant. 

Two independent methods were used to estimate the values of K 1, K2, and K3 at 
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elevated temperatures and pressures. These methods are described in Sections 4.5.2 and 

4.5.3. The speciation of the aqueous amino acids has been determined under our 

experimental conditions using each of the two methods. To confirm the accuracy of these 

calculations, the speciation of a-alanine was also determined as a function of temperature 

using the experimental equilibrium constants determined in Section 3.5. These calculations 

are described in Section 4.5.5. 

4.5.2 Isocoulombic Extrapolation of Room Temperature Data. 

For a constant pressure p the temperature dependent equilibrium constant K 7; p for a 

reaction can be determined from the expression: 

(4.5.2.1) 

where R is the universal gas constant. The following expression can be used to determine the 

standard partial molar enthalpy of reaction D..,Ho T. p: 

( 
aD. no l r T, p =D. C o 

ar r p 
p 

(4.5.2.2) 

where D..,.C; is the standard partial molar heat capacity of the reaction at T and p. If D..,.C; is 

assumed to be temperature independent, then integration of equation ( 4.5 .2.2) gives: 

D._ H ro p o= D._ H Tor pr + (D._ C o )( T - T ) 
r, r, rp r 

(4.5.2.3) 

where D..,H0 Tr. pr is the standard partial molar enthalpy of reaction at a reference temperature 
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T,. and a reference pressure Pr Therefore, integration of equation ( 4.5 .2.1) gives: 

lnK = lnK . + [ il,H ;, prJ ( -1 - _!_l T,p Jr,pr R T T 
r 

(4.5.2.4) 

where K Fr, pr is the equilibrium constant for the reaction at Tr and Pr· The effect of pressure 

is given by the expression: 

( 8lnKT,p l = -( ~1 
Bp T RT 

(4.5.2.5) 

where t:.rvo is the standard partial molar volume of the reaction at T and p. 

Table 4.5.2.1lists the values ofKrr.pn t:.,Jr Tr,pr• and !1rc;required to calculate K1 and 

K4 using equation (4.5.2.4). The values of K 1, K 2, and K3 are plotted as a function of 

temperature in Figures 4.5.2.1, 4.5.2.2, 4.5.2.3, and 4.5.2.4 for a-alanine, P-alanine, glycine, 

and proline, respectively, ignoring the much smaller effect of pressure. The temperature 

dependent values of K~> K2, and K3 were used to determine the temperature dependent 

speciation of the aqueous amino acids according to the method described in Section 4.5.1. 

The distribution of species as a function of temperature is plotted in Figures 4.5.2.5 to 

4.5.2.8. 
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Table 4.5.2.1 Values of Krr.pn A,H0 
Tr, pn and A,.C Po for use in equation (4.5.2.4). 

Thermodynamic Parameter 

lnK1 

lnK2 1(10) 

lnK4 
A,.1 H

0 I (J·moi-1·103
) 

Ar2 H0 I (J·moi-1·104
) 

A,.4 H 0 I (J·moi-1·104
) 

A,.1 c;1 (J·K1·mol-1·102
) 

A,.2 C Po I (J·K1·moi-1·10) 

A,.4 C; I (J·K1·moi- 1·102
) 

lnK1 

lnK2 I (1 0) 

lnK4 
A,.1 y o I (J·mol-1·103 ) 

Ar2 H0 I (J·mol-1·104
) 

A,.4 H 0 I (J·mol- 1·104
) 

A,.1 c; I (J·K1·moi-1·102) 

A,.2 c; I (J·K1·mol·1·10) 

A,.4 C; I (J-K'·moi-1·1 02
) 

Value of Parameter 

Water 

3.2228 

-5.584 

2.238 

a.-Alanine 

-5.3944 

-2.2720 

9.508 

3.2532 

4.52 

-1 .06 

-1.2767 

7.23t 

2.961 

P-Alanine 

-8.1578 

-2.3705 

8.520 

4.3861 

4.73 

-0.85 

-1.3672 

7.23t 

2.961 

231 

Source 

Lide (1991) 

Atkins (1990) 

Atkins (1990) 

Wang et at. ( 1996) 

Martell and Smith (1974) 

(lnK2 + lnKw) 

Wang et al. ( 1996) 

Martell and Smith (1974) 

(A,.2Ho + Arw H 0
) 

Wang et al. ( 1996) 

Balakrishnan (1988) 

(A,.2 c ; + A,wc ; ) 

Wang et al. (1996) 

Martell and Smith (1974) 

(lnK2 + lnK,v) 

Wang et al. (1996) 

Martell and Smith (1974) 

(A,.2H0 + Arw H 0
) 

Wang et al. ( 1996) 

Balakrishnan (1988) 

( A,.2 C; + Arw C ; ) 



Thermodynamic Parameter 

InK, 

lnK2 I (10) 

lnK4 
!1,1H 0 I (J·mo1·'·103) 

11,2 Ho I (J-rnoi·'·104
) 

!1,4 H 0 I (lmo]·1·104) 

11, , C; I (J·K1·moi-1·102
) 

11,2 c; I (J·K1·mol·1·10) 

/1,4 C; I (J·K1·mol-1·102
) 

InK, 

lnK2 I (10) 

lnK4 
11,1 HoI (J·moi-1·103) 

11,2 H 0 I (J·moi-1·104
) 

!1,4 H 0 I (J·mol-1·104
) 

11,, C; I (J·K1·moi-1·1 02
) 

11r2 C; I (J-K'·moi-1·1 0) 

/1,4 C; I (J·K 1·mol·1·102
) 

Value of Parameter 

Glycine 

-5.4003 

-2.2515 

9.713 

3.9213 

4.44 

-1.15 

-1.1784 

7.23t 

2.961 

Proline 

-4.495 

-2.4500 

7.725 

1.3 

4.330 

-1.250 

-1.1670t 

6.18H 

2.856 

Source 

Wang et a/. ( 1996) 

Martell and Smith (1974) 

(InKz + lnKw) 
Wang et al. (1996) 

Martell and Smith (1974) 

(/1,2H0 + f1nvH 0
) 

Wang et a!. ( 1996) 

Balakrishnan (1988) 

(/1,2 C: + f1nv C : ) 

Smith and Martell (1982) 

Smith and Martell (1982) 

(lnK2 + lnKw) 

Smith and Martell ( 1982) 

Smith and Martell (1982) 

(f1,zH 0 + f1nvH 0
) 

Wang et al. (1996) 

Balakrishnan (1988) 

(/1,2 C: + f1nv C : ) 

t Determined by averaging the /1,.C/ values for the deprotonation of the NH3 + group in 3-
methoxypropylarnine and 2-amino-2-methyl-1-propanol reported by Balakrishnan (1988). 
tnetermined by averaging the 11,C/ values for the protonation of the coo- group in alanine, 
glycine, and 2-aminobutyric acid reported by Wang eta/. (1996). n Assumed equal to the 
value of /1,C/ for the deprotonation of the NH3 + group in pyrrolidine reported by 
Balakrishnan ( 1988). 
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4.5.3 Estimates of Speciation from the Yezdimer-Sedlbauer-Wood Functional 
Group Additivity Model. 

The Yezdimer-Sedlbauer-Wood functional group additivity model was used to 

predict the standard partial molar Gibbs free energy of formation 8.1 Go as a function of 

temperature and pressure for the zwitterionic and ionic forms of aqueous a-alanine and 

glycine. The values of 8.1Ho and 8.1So at 298.15 K and 0.1 MPa for a.-alanine and glycine 

required to calculate 8.1Go were taken from the compilation of Amend and Helgeson (1997). 

The standard partial molar Gibbs free energy of reaction f:,.rG o was determined from 

the usual expression: 

8.G o= L t:,.co- L t:,.co 
r f f 

products reactants 
(4.5.3.1) 

The following expression was used to calculate the equilibrium constant for the reaction as 

a function of temperature and pressure: 

( 
f:,. G 

0

] 

InK= - ~T (4.5.3.2) 

K3 was assumed to be approximately equal to (K1 I K2). 

The values of K 1, K2, and K3 for ct-alanine and glycine are plotted as a function of 

temperature in Figures 4.5.3.1 and 4.5.3.2, respectively. These temperature dependent values 

of K 1, K2, and K3 were used to determine the speciation of the aqueous amino acids according 

to the method described in Section 4.5.1 . The distribution of species is plotted as a function 

of temperature in Figure 4 .5.3.3 and 4.5.3.4 for ct-alanine and glycine, respectively. 
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Figure 4.5.3.1 The values of K~> K2, and K3 for a-alanine as a function of temperature. 
The lines represent· - - - K ·104 · ... ....... K ·107• -- K ·10·6 

• ' I ' ' 2 ' ' 3 • 
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Figure 4.5.3.2 The values of K 1, K2, and K3 for glycine as a function of temperature. 
The lines represent· - - - K ·104 · .. . ... .... K ·107 · -- K · 10-6 
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Figure 4.5.3.3 The values of [H2A+), [A-) , and [HA0
] for a-alanine as a function 

ofternperature, where the sum of[HA±], [H2A+], [A-], and [HA0
] is 

1 rnol·kg-1• Lines represent the following:-, [H2A+] +[A-]+ [HA0
]; 

-- -, [H2A+] =[A-];·····, [HA0
]. 
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Figure 4.5.3.4 The values of [H2A+], [A-], and [HA0
] for glycine as a function 

oftemperature, where the sum of[HA±], [H2A~], [A-], and [HA0
] is 

1 mol·kg·l. Lines represent the following:-, [H2A+] +[A-] + [HA0
]; 

-- -, [H2A+] =[A-];·····, [HA0
]. 
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4.5.4 Estimation of the Zwitterionic Contribution to the Experimentally Determined 
Values of vo and c; for Aqueous a-Alanine and Glycine. 

As illustrated in Sections 4.5.2 and 4.5.3 the zwitterionic form of the aqueous amino 

acids is the predominant species at all temperature at which measurements were made. 

Although the percentage of aqueous amino acid in the neutral form is negligible at all 

temperatures, the percentage in the cationic and anionic forms is significant at the higher 

temperatures as shown in Figures 4.5.3.3 and 4.5.3.4. An estimate of the zwitterionic 

contribution to the experimentally determined values of vo and c; is required before 

solvation effects can be discussed in Sections 4.6 and 4.7. 

In Section 4.5.3 the Yezdimer-Sedlbauer-Wood functional group additivity model 

was used to estimate the speciation of aqueous a-alanine and glycine. The standard partial 

molar volumes and standard partial molar heat capacities of the ionic and neutral forms of 

a-alanine and glycine were estimated using the Yezdimer-Sedlbauer-Wood functional group 

additivity model. Table 4.5.4.1 lists the estimated values of V~nionic (standard partial molar 

volume of A-), VOCationic (standard partial molar volume ofH2A+ ), and ~eutral (standard partial 

molar volume ofHA0
) at the temperatures and pressures corresponding to the experimentally 

determined values of vo. The uncertainties were assigned using the error estimates given by 

Y ezdimer et a!. (2000). The following expression was used to calculate the values of 

V~wiuerionic (standard partial molar volume ofHA±) listed in Table 4.5.4.1: 

o - o [ A +] o [ A o] o 
o V -[A ] VAnionic - H2 VCationic- H VNeutral 

V Zwitterionic = ± 
[HA ] 

(4.5.4.1) 

246 



The uncertainty associated with equation (4.5.4.1) was estimated with the expression: 

[HA ±]2(av" )2 =(av .)z +[A - ]2(av" )2 
ZwiUu lonlc AniotJic 

+[H2A +]2(av" )2 +[HA o f(av " )2 
Cattontc Neurra l 

(4.5.4.2) 

The uncertainties associated with [H2A+], [A-], and [HA0
] were estimated from the 

uncertainties inK and M-Ia (Amend and Helgeson, 1997) and ~C~ (Y ezdimer et al., 2000). 

The effect of these is small relative to the uncertainty associated with V~nionic• V~ationic• and 

V~eutrat· Figures 4.5.4.1 and 4.5.4.2 illustrate the difference between the experimentally 

determined values of vo and the estimated values of V~witterionic for aqueous a-alanine and 

glycine, respectively. When the uncertainty associated with the values of ( vo- V~wiuerionic) is 

considered, it is clear that only those values obtained for aqueous a-alanine at 423 K and 478 

K are significantly different from zero. None of the values of ( vo- V~witterioniJ obtained for 

aqueous glycine are significantly different from zero. 

The values of c ; , Anionic (standard partial molar heat capacity of A-), c~.Cationic (standard 

partial molar heat capacity ofH2A+), and C~. Neutral (standard partial molar heat capacity of 

HA 0 ) at the temperatures and pressures corresponding to the experimentally determined 

values of C~ are listed in Table 4.5.4.2. The following expression was used to calculate the 

values of C~.zwwerionic (standard partial molar heat capacity ofHA±) listed in Table 4.5.4.2: 
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C o - [A - ] C o - [H A + ] C o - [HA o ] C o 
C o = p p, Anionic 2 p, Cationic p, Neutral 

p, Zwitrerionic [HA ±] (4.5.4.3) 

+[H2A +]2(ac. )2 +[HA o]2(ac. )2 
p, Catlonic p, N~utral 

(4.5.4.4) 

The uncertainties associated with [H2A+], [A-], and [HA0
] were again neglected since they 

are small relative to the uncertainty associated with c~, Anionic> c~, Cationic• and c~, Neutral· Figures 

4.5.4.3 and 4.5.4.4 illustrate the difference between the experimentally determined values 

Of C~ and the estimated Values Of C~,Zwitterionic for aqueOUS a-alanine and glycine, respectively. 

Considering the uncertainty associated with the estimated values of ( c~ -c~,ZwitterioniJ, it is 

clear that only those values obtained for aqueous a-alanine at T ~ 424 K and those values 

obtained for aqueous glycine at T ~ 474 K are significantly different from zero. 

In all cases where the values of (Vo - V~witterionic) and (C~ - C~.Zwiuerionic) were 

significantly different from zero, the differences remained small when compared with the 

values of vo and C~, respectively. The error introduced by ignoring the speciation of the 

aqueous amino acids at the temperatures corresponding to the experimental results is less 
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Table 4.5 .4.1 Values of V'i:ationic> VAnionic> V'lteutral> and T1witterionic for aqueous o:-alanine and glycine at the temperatures and 
pressures corresponding to the experimentally determined values of VO. 

T p V'i:ationic VAn ionic V'ftelltral Fzwitterionic VO- Fzwitterionic 

(K) (MPa) (cm3·mol-1) (cm3·moi-1) ( cm3·mol-1) (cm3·mol-1) (cm3·mol-1) 

o:-Alanine 

288.15 0.10 67.59 ± 1.50 59.52 ± 1.31 70.86 ± 0.85 59.74 ± 0.06 0.01 ± 0.09 

298.10 0.10 68.15 ± 1.50 60.38 ± 1.33 72.01 ± 0.86 60.48 ± 0.01 0.01 ± 0.02 

298.14 0.10 68.15 ± 1.50 60.38 ± 1.33 72.02 ± 0.86 60.49 ± 0.05 0.01 ± 0.07 

298.15 0 .10 68.15 ± 1.50 60.38 ± 1.33 72.02 ± 0.86 60.46 ± 0.02 0.01 ± 0.03 

313.15 0.10 69.01 ± 1.52 61.07 ± 1.34 73.48 ± 0.88 61.09 ± 0.03 0.01 ± 0.04 

328.15 0.10 69.91 ± 1.54 61.26 ± 1.35 74.78 ± 0.90 61.52 ± 0.06 0.02 ± 0.09 

333.21 10.047 70.25 ± 1.55 61.25 ± 1.35 75.03 ± 0.90 61.63 ± 0.01 0.02 ± 0.01 

381.70 10.057 73.25 ± 1.61 59.64 ± 1.31 78.90 ± 0.95 61.67 ± 0.03 0.05 ± 0.04 

422.42 10.036 75.72 ± 1.67 56.12 ± 1.23 82.41 ± 0.99 60.79 ± 0.02 0.10 ± 0.02 

477.24 10.058 78.27 ± 1.72 45.77 ± 1.01 87.81 ± 1.05 57.76 ± 0.08 0.15 ± 0. 10 

523.36 10.063 77.91 ± 1.71 24.22 ± 0.70 92.96 ± 1.12 51.69 ± 0.08 -0.01 ± 0.11 

334.65 19.977 70.38 ± 1.55 61.25 ± 1.35 74.97 ± 0.90 61.87 ± 0.02 0.02 ± 0.03 

383.20 19.939 73.26 ± 1.61 59.79 ± 1.32 78.76 ± 0.95 61.81 ± 0.07 0.05 ± 0. 10 

423.47 19.976 75.60 ± 1.66 56.62 ± 1.25 82.1 2 ± 0.99 61.01 ± 0.02 0.10 ± 0.03 

478.67 19.967 78.02 ± 1.72 47.45 ± 1.04 87.33 ± 1.05 58.14 ± 0.07 0.16 ± 0.09 

523.39 19.934 77.88 ± 1.71 30.41 ± 0.70 92.05 ± 1.10 52.72 ± 0.12 0.09 ± 0. 16 

298.13 30.769 68.59 ± 1.51 60.15 ± 1.32 71.71 ± 0.86 61.10 ± 0.05 0.01 ± 0.07 



T p VCationic J!Anionic V'teurral ~witterionic VO-~ witterionic 

(K) (MPa) (cm3·moJ· 1) (cm3·mol·1) (cm3·mol·1) (cm3·mol-1) (cm3·mo1"1
) 

Glycine 

288.15 0.10 51.64 ± 1.13 43.57 ± 0.96 54.92 ± 0.66 42.40 ± 0.01 0.01 ± 0.01 

298.15 0.10 52.07 ± 1.15 44.30 ± 0.97 55 .93 ± 0.67 43 .21 ± 0.11 0.01 ± 0.16 

298.15 0.10 52.07 ± 1.15 44.29 ± 0.97 55.93 ± 0.67 43 .30 ± 0.05 0.01 ± 0.06 

313.15 0.10 52.66 ± 1.16 44.72 ± 0.98 57.13 ± 0.69 43.74 ± 0.06 0.02 ± 0.09 

328.15 0.10 53.24 ± 1.17 44.59 ± 0.98 58.11 ± 0.70 44.37 ± 0.06 0.02 ± 0.09 

397.75 10.002 55.67 ± 1.22 39.95 ± 0.88 61.67 ± 0.74 43.13 ± 0.36 0.06 ± 0.51 

423.02 10.006 56.30 ± 1.24 36.59 ± 0.80 63 .01 ± 0.76 42.04 ± 0.24 0.08 ± 0.33 

472.93 10.005 56.51 ± 1.24 25.33 ± 0.70 65.72 ± 0.79 35.85 ± 0.52 0.15 ± 0.73 

397.00 20.001 55.64 ± 1.22 40.48 ± 0.89 61.43 ± 0.74 43.92 ± 0.16 0.06 ± 0.23 

423.47 20.007 56.29 ± 1.24 37.31 ± 0.82 62.80 ± 0.75 42.12 ± 0.30 0.09 ± 0.43 

472.85 19.996 56.57 ± 1.24 27.55 ± 0.70 65.48 ± 0.79 37.69 ± 0.58 0.13 ± 0.82 

298.15 30.828 52.42 ± 1.15 43.97 ± 0.97 55.54 ± 0.67 43.67 ± 0.08 0.01 ± 0 .11 

398.00 30.009 55.67 ± 1.22 40.76 ± 0.90 61.27 ± 0.74 44.43 ± 0.25 0.05 ± 0.35 

422.94 29.999 56.26 ± 1.24 38.06 ± 0.84 62.55 ± 0.75 43.56 ± 0.27 0.06 ± 0.38 

472.03 29.989 56.59 ± 1.25 29.50 ± 0.70 65.22 ± 0.78 39.72 ± 0.32 0.09 ± 0.45 



Table 4.5.4.2 ValUeS Of C~. Cationic' C~. Anionic' C~. Neutral> and C~.Zwitterionic for aqueOUS a-alanine and glycine at the temperatures 
and pressures corresponding to the experimentally determined values of C~. 

T p C~. Cationic C~. Anionic C~. Neutral ~.Zwiflerionic ~ - C~,Zwitterionic 
(K) (MPa) (J-mol·1·K1) (J·mol-1-K-1) (J·moi-1-K-1) (J·mol·1·K-1) (J·mol·1·K1) 

a-Alanine 

288.15 0.10 184.80 ± 9.00 10.82 ± 9.00 173.34 ± 6.93 125.71 ± 0.74 -0.03 ± 1.04 
298.10 0.10 182.60 ± 9.00 32.52 ± 9.00 181.14 ± 7.25 141.26 ± 0.57 -0.06 ± 0.80 
298.15 0.10 182.58 ± 9.00 32.60 ± 9.00 181.16±7.25 141.78 ± 0.44 -0.06 ± 0.63 
313.15 0.10 177.63 ± 9.00 48.33 ± 9.00 183.95 ± 7.36 153.35 ± 1.16 -0. 11 ± 1.64 
328.15 0.10 177.78 ± 9.00 58.18 ± 9.00 190.63 ± 7.63 163.85 ± 2.26 -0.18 ± 3.20 

323.173 0.10 1 77.1 7 ± 9. 00 55.15 ± 9.00 187.76 ± 7.51 167.94 ± 0.25 -0.18 ± 0.35 
373.563 2.08 194.00 ± 9.00 84.08 ± 9.00 235.33 ± 9.41 182.10 ± 0.59 -0.43 ± 0.84 
423.772 2.01 202.16 ± 9.00 94.77 ± 9.00 287.55 ± 11.50 180.64 ± 0.36 -0.63 ± 0.51 
447.746 10.30 197.81 ± 9.00 95.07 ± 9.00 305.30 ± 12.21 176.25 ± 0.34 -0.75 ± 0.46 
473.799 5.62 180.42 ± 9.00 58.22 ± 9.00 320.72 ± 12.83 172.64 ± 0.40 -1.70 ± 0.55 
323.168 29.77 175.07 ± 9.00 70.85 ± 9.00 191.32 ± 7.65 174.42 ± 0.31 -0.17 ± 0.44 
373.543 30.03 194.00 ± 9.00 94.94 ± 9.00 234.06 ± 9.36 188.47 ± 0.38 -0.43 ± 0.54 
423.769 30.56 205.07 ± 9.00 115.51 ± 9.00 284.61 ± 11.38 187.53 ± 0.36 -0.53 ± 0.51 
447.857 30.22 201 .57 ± 9.00 115.90 ± 9.00 303.07 ± 12.12 185.45 ± 0.20 -0.66 ± 0.25 
473.818 30.19 189.86 ± 9.00 105.01 ± 9.00 317.59 ± 12.70 183.61 ± 0.31 -1.14 ±0.4 1 



T p co 
p, Cationic (~.Anionic C~. Neutral ~,Zwiuerionic C~ - C~,Zwitterionic 

(K) (MPa) (J-rnol·1·K1) (J·mo1"1·K1
) (J-mol·1·K1) (J·mol-1·K1) (J-mol-1·K1) 

Glycine 

288.15 0.10 91.35 ± 9.00 -82.63 ± 9.00 79.89 ± 3.20 14.69 ± 0.75 -0.01 ± 1.06 
298.15 0.10 95.47 ± 9.00 -54.51 ± 9.00 94.05 ± 3.76 37.38 ± 0.72 -0.03 ± 1.02 
313.15 0.10 97.54 ± 9.00 -31.76 ± 9.00 103.86 ± 4.15 58.38 ± 1.63 -0.07 ± 2.31 
328.15 0.10 101.24 ± 9.00 -18.36 ± 9.00 114.09 ± 4.56 76.38 ± 0.97 -0.14 ± 1.37 

323.170 0.10 99.77 ± 9.00 -22.25 ± 9.00 110.36 ± 4.41 70.00 ± 0.27 -0.12 ± 0.38 
373.560 2.09 118.10 ± 9.00 8.19 ± 9.00 159.43 ± 6.38 90.15 ± 1.74 -0.26 ± 2.46 
423.780 2.03 124.10 ± 9.00 16.73 ± 9.00 209.49 ± 8.38 84.17 ± 1.80 -0.24 ± 2.55 
473.810 5.56 102.25 ± 9.00 -20.11 ± 9.00 242.59 ± 9.70 71.17 ± 0.23 -0.82 ± 0.27 
499.099 5.55 70.49 ± 9.00 -87.48 ± 9.00 249.71 ± 9.99 63.14 ± 0.55 -2.40 ± 0.75 
323.166 30.12 99.72 ± 9.00 -4.32 ± 9.00 116.03 ± 4.64 80.73 ± 0.21 -0.12 ± 0.30 
373.540 30.11 119.59 ± 9.00 20.57 ± 9.00 159.65 ± 6.39 95.99 ± 1.18 -0.24 ± 1.67 
423.761 30.34 129.16 ± 9.04 39.52 ± 9.00 208.74 ± 8.35 92.89 ± 0.80 -0.15 ± 1.12 
447.842 30.09 125.97 ± 9.00 40.21 ± 9.00 227.50 ± 9.10 92.11 ± 0.77 -0.19 ± 1.08 
473.438 30.20 115.70 ± 9.00 30.87 ± 9.00 243.01 ± 9.72 91.16 ± 0.53 -0.47 ± 0.73 
499.096 30.58 96.20 ± 9.00 5.74 ± 9.00 253.46± 10.14 88.75 ± 0.30 -1.24 ± 0.37 
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4.5.5 Calculation of Speciation from the Equilibrium Constants Determined for 
Aqueous a-Alanine by UV-Visible Spectroscopy. 

In order to confirm the speciation calculations from Sections 4.5 .2 and 4.5.3, 

temperature dependent values of K 1 and K2 were determined for aqueous a-alanine by UV-

visible spectroscopy as described in Section3.5. K3 was assumed to be approximately equal 

to (K1 I K 2). The equilibrium constants are plotted as a function of temperature in Figure 

4.5.5.1. The speciation of aqueous a-alanine was calculated from these experimental values 

at 423.1 K and 5.4 MPa; 498.3 K and 5.6 MPa; 523.2 K and 5.5 MPa using the numerical 

method described in Section 4.5.1. The distribution of species for a-alanine is plotted as a 

function of temperature in Figure 4.5.5.2. 
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4.5.6 Comparison of the Estimated Values of K1, K2, and [H2A+] +[A-]+ [HA0] with 
those Measured by UV-Visible Spectroscopy. 

The temperature dependent values of K~> K2, and [H2A+] +[A-]+ [HA0
] estimated for 

a-alanine in Sections 4.5 .2 and 4.5.3 are compared with those obtained by UV-visible 

spectroscopy in Figures 4.5.6.1, 4.5.6.2, and 4.5.6.3. The temperature dependent values of 

K 1, K2, and [H2A+] + [A-] + [HA0
] estimated for glycine in Sections 4.5.2 and 4.5.3 are 

compared in Figures 4.5.6.4, 4.5.6.5, and 4.5.6.6. Included in Figures 4.5.6.1 and 4.5.6.4 are 

the values of K1 obtained from Wang et al. (1996). Wang et al. developed an equation to 

calculate K1 as a function of temperature (298 K 5: T 5: 398 K) by combining their 

experimental results (323 K 5: T 5: 398 K) with existing literature values. The values of K1 

obtained by Wang et al. are the only experimental data under hydrothermal conditions with 

which to compare our experimental results. 

The values of K1 obtained for aqueous a-alanine and glycine by Wang et al. (1996) 

agree with the values estimated in both Sections 4.5.2 and 4.5.3 at T :::; 350 K. Above 350 K 

the values ofK1 estimated with the Yezdimer-Sedlbauer-Wood functional group additivity 

model for aqueous a -alanine and glycine diverge from the values of K 1 obtained from the 

isocoulombic extrapolation of room temperature data. Only the values of K1 obtained from 

the isocoulombic extrapolation of room temperature data reproduce the values determined 

by Wang et al. (1996) over the entire temperature range of their measurements. As the 

temperature increases from 425 to 525 K there is an increase in the agreement between the 

experimentally determined values of K1 obtained for aqueous a-alanine by UV -visible 
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spectroscopy and those values obtained from the isocoulombic extrapolation of room 

temperature data. 

The values of K2 estimated for aqueous a-alanine and glycine in Section 4.5.2 agree 

with those estimated in Section 4.5.3 at T s; 350 K. Above 350 K the values of K2 estimated 

with the Y ezdimer-Sedlbauer-Wood functional group additivity model for aqueous a-alanine 

and glycine diverge from the values of K2 obtained from the isocoulombic extrapolation of 

room temperature data. There is agreement between the values of K2 obtained for a-alanine 

by UV -visible spectroscopy and the values obtained from the isocoulombic extrapolation of 

room temperature data only at 423.0 K and 5.3 MPa. At temperatures above 425 K the 

estimated values of K2 act as an upper limit for the experimentally determined values of K2 

obtained for a-alanine. 

As expected from the comparison ofthe estimated values of K1 and K2, there is good 

agreement between the values of[H2A+] +[A-] + [HA0
] estimated in Sections 4.5.2 and 4.5.3 

for both aqueous a-alanine and glycine. Above 350 K the values of[H2A+] +[A-]+ [HA0
] 

estimated for aqueous a-alanine and glycine with the Yezdimer-Sedlbauer-Wood functional 

group additivity model diverge from the values obtained from the isocoulombic extrapolation 

of room temperature data. There is agreement between the values of [H2A+] + [A-] + [HA0
] 

obtained for a-alanine by UV-visible spectroscopy and the values obtained from the 

isocoulombic extrapolation of room temperature data only at 423.0 K and 5.3 MPa. At 

temperatures above 425 K the estimated values of [H2A+] + [A-]+ [HA0
] act as an upper 
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limit for the experimentally determined values obtained for a-alanine. 

As illustrated in Figures 4.5.6.3 and 4.5.6.6 the zwitterion is the predominant form 

of the amino acids in aqueous solution. Therefore, the assumption that the non-zwitterionic 

forms of the aqueous amino acids can be neglected in the volumetric and calorimetric 

measurements was a reasonable one. 
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4.6 Contribution of Solvation Effects to vo. 

4.6.1 Definition of Solvation Effects. 

The standard partial molar volume vo of an aqueous species is expressed as: 

vo = vo +~ v o +~ vo +~ v o 
intr soiv ss solv poi soiv hydr (1.3.1. 7) 

Here V1~1,. is the intrinsic gas phase standard partial molar volume of the species (0.10 MPa, 

ideal gas), !::.sotv Vs~ is the change in the standard partial molar volume arising from the 

difference in standard states between the gas phase (0.1 0 MPa, ideal gas) and solution 

(hypothetical 1 molal solution), ~.otY ~ is the standard partial molar volume due to the long-

range polarization of water caused by the localized charge distribution within the solute, and 

~.wtYh';tr is the standard partial molar volume due to the short-range hydration effects arising 

from the hydrogen-bonded "structure" of water in the immediate vicinity of the solute. For 

a neutral aqueous species with a significant dipole moment ~sotvVp~t is approximately equal 

to ~sotvVd~pole and equation (1.3.1.7) becomes: 

v 0 = v o + ~ v 0 + ~ v 0 + ~ v 0 
mtr soiv ss soiv dipole soiv hydr 

(4.6.1.1) 

proline in Sections 4.6.2, 4.6.3, and 4.6.4. 

4.6.2 Intrinsic and Standard State Contributions. 

The intrinsic gas phase standard partial molar volume of each amino acid V 1~11, was 

calculated using the expression for the volume of a hard sphere: 
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v o =( i) N 1tr 
3 

g 3 A 
(4.6.2.1) 

r is the radius of the gaseous species. Crystallographic studies were used to estimate the gas 

phase radii. The values of rand V ~ntr determined for a-alanine, P-alanine, and proline are 

summarized in Table 4.6.2.1. 

The change in the standard partial molar volume of a dissolved neutral dipolar species 

arising from the difference in standard states between the gas phase (0.1 0 MPa, ideal gas) 

and solution (hypothetical 1 molal solution) was evaluated using the following expression: 

(4.6.2.2) 

where Pw = - (1 I Vw) (aVw I ap)r is the compressibility of water. Equation (4.6.2.2) was 

obtained from equation (1.3.1.2) through the following relationship: 

( 
all G 

0

] tl V o = solv ss 
solv ss a 

'P T 

(4.6.2.3) 

Table 4.6.2.2 summarizes the values of tlsolvVs~ calculated for aqueous a-alanine, P-alanine, 

and proline at the temperatures and pressures associated with the experimentally determined 

values of vo. 
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Table 4.6.2.1 Gas phase radii r and intrinsic standard partial molar volumes V ;0n1r of 
a-alanine, P-alanine, and proline. 

Amino Acid vo I (cm3·mot-1) 1 ntr r I (A) Crystallographic Source 

a-Alanine 33.5 2.37 Wyckoff (1966) 

P-Alanine 59.8 2.87 Averbuch-Pouchot et al. (1988) 

Proline 78.2 3.14 Padmanabhan eta!. (1995) 

Glycine 2.65 Bowen (1958) 
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Table 4.6.2.2 Change in the standard partial molar volumes arising from the difference in 
standard states between the gas phase and solution. 

T p llsolvVs~ T p llsotv Vs~ 
K MPa cm3·mol·1 K MPa cm3·mol·' 

ex-Alanine 

334.65 19.977 1.18 422.42 10.036 2.07 
383.20 19.939 1.51 477.24 10.058 3.40 
423.47 19.976 2.00 523.36 10.063 5.90 
478.67 19.967 3.22 288.15 0.10 1.12 
523.39 19.934 5.27 298.15 0.10 1.12 
333.21 10.047 1.20 313.15 0.10 1.15 
381.70 10.057 1.55 328.15 0.10 1.21 

P-Alanine 

423.63 20.533 2.00 291.15 0.10 1.12 
334.59 10.315 1.21 298.15 0.10 1.12 
383.34 10.355 1.57 313.15 0.10 1.15 
423.60 10.290 2.09 328.15 0.10 1.21 

Proline 

334.93 20.199 1.18 423.71 10.173 2.09 
383.66 20.157 1.52 479.04 10.115 3.46 
423.90 20.205 2.01 524.07 10.094 5.96 
479.15 20.194 3.23 288.15 0.10 1.12 
523.98 20.240 5.30 298.15 0.10 1.12 
334.56 10.157 1.21 313.15 0.10 1.15 
383.39 10.168 1.57 328.15 0.10 1.21 
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4.6.3 Standard Partial Molar Volume of Polarization of a Dissolved Neutral Dipolar 
Species. 

The standard partial molar volume of polarization of a dissolved neutral dipolar 

species llsotvVd~pole was evaluated using equation (1.3.2.21). 

o Jl.
2

NA ( -3 l ( aerl ll v = -
so/v d ipole 3 2 a 

47te r (2e +1) 'P r 
0 e r 

(1.3.2.21) 

The "effective" radius re of each dissolved amino acid was set to the value of r listed in Table 

4.6.2.1 for that aqueous amino acid. 

A review ofthe relevant literature revealed a number of temperature dependent values 

of the molar dielectric increment o and the dipole moment 11 for a-alanine, P-alanine, and 

proline. These values are summarized in Table 1.6.3.3. For the purpose of these calculations, 

the values of 11 obtained for a-alanine by Aaron and Grant (1967), P-alanine by Aaron and 

Grant (1967), and proline by Shepherd and Grant (1968) were extrapolated to elevated 

temperatures by fitting each set of temperature dependent data to the following empirical 

expressiOn: 

(4.6.3.1) 

where llo is the gas phase dipole moment and Tc = 647.14 K is the critical temperature of 

water. The terms A and} are fitting parameters. Equation (4.6.3.1) is similar in form to an 

expression used by Fernandez et al. (1997) to fit dielectric constant data for liquid water at 

steam saturation. 

The gas phase dipole moments for a-alanine, P-alanine, and proline were estimated 
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from the following expression: 

!l
0 

=qd (4.6.3.2) 

where q is the magnitude of the separated charges and dis the distance between the charges. 

The X-ray crystallographic data contained in the compilation ofBowen eta/. (1958) were 

used to calculated for a-alanine and proline. The X-ray crysta11ographic data obtained by 

Averbuch-Pouchot eta!. (1988) were used to calculated for P-alanine. The positive charge 

was assumed to reside on the nitrogen atom. A realistic view of the amino acids would have 

the negative charge shared by both oxygen atoms. However, the calculation of d is greatly 

simplified by assuming that the negative charge can be assigned to a single oxygen atom. 

Since the shorter oxygen-carbon bond is likely to have more double bond character, the 

negative charge was assumed to reside on the oxygen atom with the longer carbon-oxygen 

bond. It was assumed that a-alanine and P-alanine adopt a rotational conformation with the 

closest possible approach between the ammonium and carboxylate groups. The charge 

separation in proline is fixed by its ring structure. 

The values of d, llo• A, and} determined for a-alanine, P-alanine, and proline are 

summarized in Table 4.6.3.1. The variation of 11 with temperature is illustrated in Figures 

4.6.3.1 , 4.6.3.2, and 4.6.3.3 for a-alanine, P-alanine, and proline, respectively. Table 4.6.3.2 

tabulates the values of !:::.solvVd~pole for a-alanine, P-alanine, and proline calculated using 

equation ( 1. 3. 2.21) at the temperatures and pressures associated with the experimental values 

of V0
• 
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Table 4.6.3 .1 Values of d, )..1.0 , A, and} for a-alanine, P-alanine, and proline. 

Amino Acid d !lo A j 
m Debye 

a-Alanine 2.67x10-10 12.87 4.153x1o-2 3.475 

P-Alanine 1.98x10-10 9.50 1.884 0.6194 

Proline 3.26xiQ-10 15.68 3.106xiQ-5 12.52 

Glycine 2.65xiQ-10 12.79 
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Table 4.6.3.2 Standard partial molar volumes of polarization for aqueous solutions of 
a-alanine, P-alanine, and proline at selected temperatures and pressures. 

T p w1029 tlso/v vd~pole T p !l" 1029 l:lsolv vd~pole 
K MPa C·m cm3·moi·1 K MPa C·m cm3·mol·1 

a-Alanine 

334.65 19.977 5.10 -5.89 422.42 10.036 4.67 -12.28 
383.20 19.939 4.81 -8.21 477.24 10.058 4.54 -22.94 
423.47 19.976 4.67 -11 .74 523.36 10.063 4.48 -45.36 
478.67 19.967 4.54 -21.45 288.15 0.10 5.58 -5.25 
523.39 19.934 4.48 -39.62 298.15 0.10 5.45 -5.33 
333.21 10.047 5.11 -6.01 313.15 0.10 5.29 -5.60 
381.70 10.057 4.82 -8.46 328.15 0.10 5.15 -6.39 

P-Alanine 

423.63 20.533 5.88 -10.43 291.15 0.10 6.41 -3.94 
334.59 10.315 6.20 -5.02 298.15 0.10 6.37 -4.07 
383.34 10.355 6.02 -7.49 313.15 0.10 6.30 -4.45 
423 .60 10.290 5.88 -11.05 328.15 0.10 6.23 -4.94 

Proline 

334.93 20.199 5.53 -2.97 423.71 10.173 5.25 -6.73 
383.66 20.157 5.29 -4.26 479.04 10.115 5.23 -13.36 
423.90 20.205 5.25 -6.38 524.07 10.094 5.23 -26.85 
479.15 20.194 5.23 -12.25 288.15 0.10 6.97 -3.51 
523.98 20.240 5.23 -23.31 298.15 0.10 6.42 -3.17 
334.56 10.157 5.53 -3 .06 313 .15 0.10 5.90 -2.99 
383.39 10.168 5.29 -4.43 328.15 0.10 5.62 -3.07 
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Figure 4.6.3.1 The aqueous dipole moment 1.1. of a-alanine plotted against temperature. 
Symbols are the experimental values of: 0, Wyman and McMeekin 
(1933); 0, Aaron and Grant (1967); /l, Devoto (1930); V, Hederstrand 
(1928); 0 , Osborn (1945). The solid line represents the least squares fit 
obtained using equation (4.6.3.1) and the data of Aaron and Grant (1967). 
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Figure 4.6.3 .2 The aqueous dipole moment 1..1. of P-alanine plotted against temperature. 
Symbols are the experimental values of: D, Hederstrand (1928); 0, Aaron 
and Grant (1967); \1, Wyman and McMeekin (1933); 0, Devoto (1933); 
t:., Edward et al. (1974). The solid line represents the least squares fit 
obtained using equation (4.6.3 .1) and the Data of Aaron and Grant (1967). 
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Figure 4.6.3.3 The aqueous dipole moment 1.1 of proline plotted against temperature. 
Symbols are the experimental values of: 0, Devoto (1931); 0 , Shepherd 
and Grant (1968). The solid line represents the least squares fit obtained 
using equation (4.3.3.1) and the data of Shepherd and Grant (1968). 
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4.6.4 Hydration Effects. 

The magnitude of the molar volume of hydration ilsotv Vh~dr was estimated from 

equation ( 4.6.1.1) using the values of V ;~1r, ilsotvVs~' and ilsotYd~pote obtained in Sections 4.6.2 

and 4.6.3. Table 4.6.4.1 summarizes the values of ilsotvVh~dr calculated for a-alanine, P­

alanine, and proline at the temperatures and pressures associated with the experimental 

values of vo. 

Figures 4.6.4.1 , 4.6.4.2, and 4.6.4.3 illustrate the relative contributions of V t ntr> 

ilsotvVs~' ilsolvVd~pole• and ilsotvV11';J, as a function of temperature for a-alanine at 19.96 MPa, P­

alanine at 10.30 MPa, and proline at 20.20 MPa, respectively. 
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Table 4.6.4.1 Standard partial molar volumes of hydration for aqueous solutions of 
a-alanine, P-alanine, and proline at s~lected temperatures and pressures. 

T p llso/v vh~dr T p ll.w lv vh~dr 
K MPa cm3·moi·1 K MPa cm3·moi·1 

a-Alanine 

334.65 19.977 33.13 422.42 10.036 37.63 
383.20 19.939 35.08 477.24 10.058 43.98 
423.47 19.976 37.38 523.36 10.063 57.66 
478.67 19.967 43.05 288.15 0.10 30.33 
523.39 19.934 53.68 298.15 0.10 31 .20 
333.21 10.047 32.99 313.15 0.10 32.12 
381.70 10.057 35.15 328.15 0.10 33.24 

P-Alanine 

423.63 20.533 7.88 291.15 0.10 0.60 
334.59 10.315 3.72 298.15 0.10 1.43 
383.34 10.355 5.68 313.15 0.10 2.58 
423.60 10.290 7.74 328.15 0.10 3.11 

Proline 

334.93 20.199 8.55 423.71 10.173 13.47 
383.66 20.157 11.15 479.04 10.115 18.12 
423.90 20.205 13.22 524.07 10.094 25.84 
479.15 20.194 17.48 288.15 0.10 5.93 
523.98 20.240 24.06 298.15 0.10 6.48 
334.56 10.157 8.52 313.15 0.10 7.31 
383.39 10.168 11.24 328.15 0.10 8.12 
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4.6.5 Comparison of the Contribution due to 6.sotv Vd~pote with those due to 6.sotv Vh~dr· 

As illustrated in Figures 4.6.4.1, 4.6.4.2, and 4.6.4.3 that the values of 6.solvVd~pole 

deviate toward negative values at T ~ 398 K. As the temperature increases, the dipole 

polarization term over-predicts the observed decrease in the experimentally determined 

values of v o. As a result, the residual term 6.solvvh;dr displays an increasingly large positive 

deviation that cancels some ofthe contribution from the dipole polarization term. Although 

this behaviour of b..solvvh;dr is consistent with the behaviour of 6.solvvh; dr for many non­

electrolytes, its magnitude is larger than that for other molecules of similar size; Shock and 

Helgeson (1990), Criss and Wood (1996), Shvedov and Tremaine (1997). 

It is well known that the use of crystallographic radii in the Born equation over­

predicts the contribution of electrostriction to the partial molar volumes of aqueous ions. 

This over-prediction is due to severely restricted dipolar-reorientation of the water molecules 

in the primary solvation sphere. Helgeson and Kirkham (1976) noted that an effective Born 

cavity radius re = r + 0.94Z yields approximate agreement with the behaviour of C; and v o 

for cations of the type Mz+ at elevated temperatures and pressures. Although it is generally 

assumed that the magnitude of 6.solvVd~pole is small relative to 6.solvVB~rn• a comparison of 

equations (1.3.2.10) and (1.3.2.21) indicates that this is not the case when the charge 

separation in the zwitterion is of similar magnitude to the cavity radius. Therefore, it is likely 

that the dipolar water in the primary solvation sphere of the zwitterion are immobilized and 

the use of an effective cavity radius re > r is appropriate. The use of re = r + 0.94A in 
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equation (1.3.2.21) yielded values of !l.sotvVdfpote for aqueous a-alanine and ~-alanine that are 

in good agreement with the high temperature values of vo . The resulting values of !l.sotvVh~dr 

were relatively independent of temperature over the entire temperature range of the 

experimental data. Figures 4.6.5.1 and 4.6.5.2 illustrate the relative contributions of V 1°n1,., 

!l.sotv V'.r~, !l.solvVdfpote• and !l.sotvVh~r as a function of temperature for a-alanine at 19.96 MPa and 

~-alanine at 10.30 MPa when re = r + 0.94A. The use of re = r + 0.94A yielded values of 

!l.sotv Vh~dr for aqueous proline that retained a significant temperature dependence. This is 

likely due to the dipole being off-centre in the proline solvation cavity. Figure 4.6.5.3 

illustrates the relative contributions of V ;,.,r, AsotvVs~• AsotvVd~pote• and A.sotvVh~dr as a function 

of temperature for aqueous proline at 20.20 MPa when re = r + 0.94A. 
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4.7 Contribution of Solvation Effects to CPo' 

The standard partial molar heat capacity C; of an aqueous species is expressed as: 

co=co +A c o +A co +A co 
p p , intr solv p, ss so/v p , pol so/v p, hydr (1.3.1.9) 

terms for vo described in Section 4.6.1. Again using the assumption that A solvC/pol is 

approximately equal to AsolvC/dipote and equation (1.3 .1.9) becomes: 

C
0

=Co +A C 0 +A C 0 +A C 0 

p p, intr solv p, ss solv p , dipole so/v p, hydr (4.7.1) 

An expression for A sotvC/ss was obtained from equation (1.3.1.2): 

o ( aa l A C = - R + 2R T a + R T 2 __ w 
.wlv p, .rs w ar (4.7.2) 

p 

As illustrated in Figures 4.6.3.1, 4.6.3.2, and 4.6.3.3 there are a limited number of 

experimentally determined values of ).l for aqueous amino acids in the literature. Since the 

temperature dependance ofthemean dipole moment of the amino acids is not well known, 

we have chosen to use a simpler calculation in which the dipole moment ).l was taken to be 

independent of temperature and equal to the gas phase value )!0 , as listed in Table 4.6.3 .1. 

Therefore equation (1.3 .2.19) becomes: 

N 
A c 0 = A 

solv p , dipole 3 4m: r o e 

(4.7.3) 

The effective radius re was taken to be equal to the crystallographic radius as listed in Table 

4.6.2.1. The intrinsic and hydration contributions to solvation were represented by an 
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chosen for each amino acid such that the calculated value of C/ fitted the experimental value 

at 373 K and the highest pressure studied. Therefore, the standard partial molar heat capacity 

of the solute was expressed as: 

Co =/:1 C 0 +1:1 C 0 +1:1 C 0 

p solv p,non -dipole solv p ,dipole solv p,ss (4.7.4) 

The standard partial molar heat capacities obtained for aqueous glycine and a-alanine using 

re = r in equation (4.7.4) are illustrated in Figures 4.7.1 and 4.7.2. The behaviour ofC/ at 

elevated temperatures is consistent with the effects of dipole polarization. However, the 

agreement with the experimental results is only qualitative. Glycine is the simplest amino 

acid, with the most centrosymmetric dipole. Yet, the values for !:1sotvC/dipote show a much 

stronger temperature dependence and a slightly stronger pressure dependence than the 

experimental results. Comparison of Figures 4.7.1 and 4.7.2 reveals that the error in the 

predicted temperature dependence is much greater for a-alanine than it is for glycine. This 

is likely due to the presence of a hydrophobic methyl group and an off-entered dipole in a-

alanine. While the dipole contribution is larger than the hydration- and standard-state terms, 

these terms are not negligible. The hydration term becomes larger for larger molecules 

necessitating a more realistic modelling approach in which the presence of hydrophobic 

groups and the location of the dipole are specifically considered. 

In their treatments of aqueous ions, Helgeson and Kirkham (1976) have successfully 

approximated the primary-sphere hydration effects for Mz+ cations by using an effective 
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radius, re "' r + (0.9 · Z) A, in the Born equation. Our attempts to develop a similar treatment 

for C/ and vo for these dipolar zwitterions, based on equation (4.7.3) with a self-consistent 

formula for estimating the effective radius, have not been successful. Clearly a more detailed 

and rigorous treatment is needed. 
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CHAPTER 5.0 CONCLUSIONS 

In this work the first experimentally determined apparent molar volumes V<l> for 

aqueous ex-alanine, P-alanine, and proline were obtained between the temperatures of 343 K 

and 523 K and at pressures in excess of steam saturation. The first experimentally determined 

apparent molar heat capacities Cp, 4> for aqueous a-alanine, P-alanine, glycine, and proline 

were also obtained between the temperatures of 328 K and 498 K and at pressures in excess 

of steam saturation. These are the first experimental values of Cp, 4> for aqueous amino acids 

above 328 K. The measurements made at the lowest temperatures compare extremely well 

with the available literature. The standard partial molar volumes vo and the standard partial 

molar heat capacities C ; were calculated from the isothermal experimental values of V<l> and 

Cp, <!>• respectively. The values of vo increase slowly with temperature until they reach their 

maximum value at T = 398 K and then deviate toward negative values at T ~ 398 K. The 

values of C ; increase sharply until they reach their maximum value and then slowly decline 

in the range 423 - 523 K. 

Two models were used to fit the molality, temperature, and pressure dependencies 

of the V<l> data for each of the aqueous amino acids. The revised HKF model uses both a non­

solvation term and a modified Born function to represent the temperature and pressure 

dependence of the thermodynamic properties of aqueous species. The density model uses the 

compressibility of water to represent the thermodynamic properties of aqueous species as a 
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function of temperature and pressure. A comparison of the overall weighted standard 

deviations and the behaviour of systematic errors for the fit of each model, indicated that the 

density model reproduces the experimental results better than the revised HKF model for all 

of the aqueous amino acids studied. To fit the temperature and pressure dependencies ofboth 

the vo and C; data, the density model was extended by including a number of additional 

temperature·· and/or pressure-dependent terms. 

Amend and Helgeson (1997) have used the revised HKF model as applied to organic 

species to predict the standard partial molar volumes vo and standard partial molar heat 

capacities C; of aqueous a-alanine, glycine, and proline as a function of temperature. Unlike 

the experimental values of vo which deviate toward negative values at temperatures above 

423 K and the experimental values of C; which deviate toward negative values at 

temperatures above 3 73 K to 423 K, the predicted values of both vo and C; continue to 

become more positive as the critical temperature ofwater is approached. This reflects the 

neglect of the zwitterionic nature of the aqueous amino acids by Amend and Helgeson 

(1997). Our work has shown that the effect of solvent polarization can not be ignored and 

is in fact strong enough to reverse the direction of the temperature and pressure dependencies 

of vo and cp~ 

The very recent functional-group additivity model ofYezdimer eta!. (2000) was used 

to predict vo and C; for aqueous a -alanine and glycine. Although the predicted values do 

deviate toward negative values as the critical temperature of water is approached in a manner 
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similar to the experimental results, the agreement is not quantitative. An attempt to 

recalculate the parameters for the amino acid functional group using the vo and C; data 

obtained in this work and the vo data obtained by Hakin eta!. (1998) did not significantly 

improve the accuracy of the model. This behaviour suggests that there is insufficient 

flexibility in the equations of state developed by Sedlbauer et a!. (2000) upon which 

Y ezdimer eta!. (2000) have developed their model. 

The hydrothermal colorimetric pH indicators identified by Ryan et a!. (1997) and 

Xiang and Johnston (1997) were successfully used to obtain the first experimentally 

determined acid/base dissociation constants for aqueous a-alanine between the temperatures 

of 423 K and 523 K and between the pressures of 5.3 MPa and 5.6 MPa. These showed that 

the dissociation constants that were estimated with the functional-group additivity model of 

Y ezdimer et al. (2000) and those obtained from the isocoulombic extrapolation of room 

temperature data are an upper limit. The colorimetric method is a convenient method of 

measuring solution pH under hydrothermal conditions. The colorimetric indicators are stable 

in aqueous solution up to and above the critical temperature of water. Since both forms of 

the colorimetric indicators are colored, the absorbance spectrum measured for a solution is 

the linear combination of the absorbance spectra due to the protonated and deprotonated 

forms ofthe indicator. Thus providing a relatively simple means of measuring the molality 

ofH+ in solution. The flow cell described in this work minimizes the amount of time that a 

sample solution remains at the temperature of interest. This allows measurements to be made 
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at temperatures at which the solute has limited hydrothermal stability. 

Using the values of vo, C ;, Kl> K 2, and K3 predicted by the functional-group 

additivity model ofYezdimer et al. (2000) it was found that the contribution of the ionic and 

neutral forms of the aqueous amino acids to the experimental values of vo and C; were 

negligible at all but the highest temperatures. Even when significantly different from zero 

these contributions remained small (less than± 0.15 cm3·mol-1 and± 2.4 J·K1·mol-1). 

The contributions to the V o values for each of the aqueous amino acids can be 

identified as an intrinsic molar gas phase volume, a partial molar volume of polarization, a 

molar volume due to standard state correction, and a molar volume of hydration. The partial 

molar volume of polarization considers the electrostatic interaction between the dipole 

associated with the zwitterionic aqueous amino acid and the bulk solvent. While there is 

qualitative agreement between the partial molar volume of polarization and the vo values, 

the partial molar volume of polarization becomes negative faster than the vo values as the 

critical temperature of water is approached. Therefore a molar volume of hydration is 

obtained which is of similar magnitude to the partial molar volume of polarization but tends 

toward positive values as the critical temperature of water is approached. By increasing the 

effective radius used in the estimation of the partial molar volume of polarization the 

temperature dependence of the molar volume of hydration can be virtually removed in the 

case of a-alanine and P-alanine. 

There are a number of projects that naturally extend the work described in this thesis. 
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The batch experiments were only used to confirm that a-alanine and proline were stable on 

the time scale required for our measurements at the temperatures, pressures, and molalities 

required for this work. The identities of the major thermal products were predicted from 

literature reports to be amino acid condensation and decarboxylation. Our amino acid 

analysis indicated that these were indeed the primary routes for amino acid loss. However, 

there are a number of minor products that are either produced directly from the amino acids 

or from other thermal products. A complete study of the thermal reactions involving the 

aqueous amino acids would involve identifying all species in solution after heating and 

determining the kinetics of their production. The kinetics of the thermal reactions producing 

colored products could easily be studied using the UV -visible spectrophotometer and high 

temperature flow cell. By stopping the flow when the amino acid solution is in the flow cell, 

the change in the concentration of a colored product can be monitored by measuring the 

change in absorbance as a function of time. The kinetics of thermal reactions involving the 

loss or production of protons could be studied using UV -visible spectroscopy and the 

hydrothermally stable colorimetric indicators. 

The standard partial molar volumes vo and heat capacities C ; were determined for 

aqueous a-alanine, P-alanine, glycine, and proline as a function of temperature and pressure. 

The experimental results were found to be equal to the zwitterionic contribution within ± 

0.15 cm3·moJ-l and ± 2.4 J·Kt·mol·t. A more complete study would involve measuring the 

apparent molar volumes Vq, and heat capaGities Cp. q, of the protonated and deprotonated 
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forms ofthe aqueous amino acids as a function of temperature. The experimental values of 

vo and C; for the three significant forms of aqueous amino acids would provide a solid 

experimental foundation for the development of a model capable of predicting the 

thermodynamic properties of amino acids as a function of temperature, pressure, and pH. 

The measurement of high temperature acid/base dissociation constants for a-alanine 

using UV -visible spectroscopy with hydrothermally stable colorimetric indicators was 

sufficient to prove that speciation effects could be safely ignored when interpreting the vo 

and C ;results. I believe that this area of my work offers great potential for further study. The 

a-alanine buffer solutions were prepared such that the buffer ratio was 1 : 1. By varying the 

buffer ratio, the pH of the buffer solutions could be adjusted to lie within the indicator range 

of the appropriate colorimetric indicator over a larger range of temperatures. The high 

temperature acid/base dissociation constants for glycine and proline could also be measured 

using UV-visible spectroscopy with hydrothermally stable colorimetric indicators. 

Aqueous amino acids are known to form complexes with a wide variety of metal ions 

(Martell and Smith, 1974). For those complexes that are colored, the formation constants can 

be measured as a function of temperature using UV-visible spectroscopy. It is also suspected 

that aqueous amino acids form complexes with nitrate and other anions (Pradhan et al., 1997; 

Pradhan and Vera, 1997). The structure and stability of these amino acid complexes could 

be investigated using raman spectroscopy. 
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APPENDIX ANCILLARY CALCULATIONS 

7.1 Calculation of Standard Partial Molar Isothermal Compressibilities Kr o from 
Standard Partial Molar Adiabatic Compressibilities Ks o. 

The standard partial molar isothermal compressibility Kr o is related to the standard 

partial molar adiabatic compressibility Ks o through the following expression: 

(7.1.1) 

where Tis the temperature, p 1 is the density of the solvent, cp. 1 is the specific heat capacity 

of the solvent, C; is the standard partial molar heat capacity of the solution, ct1 is the 

expansitivity coefficient of the solvent, and E is the standard partial molar expansibility of 

The expansitivity coefficient of water ctw can be expressed in terms of the molar 

volume of water Vw or the density ofwater Pw· 

a = _1 ( avwJ = -=-!._( apwl 
w v ar p ar 

w p w p 

(7.1.2) 

E is defined in terms of the standard partial molar volume of the solute V0
• 

E =( a;T' l 
p 

(7.1.3) 

The values ofKs o listed in Table 1.6.3.2 have been measured at temperatures ranging 
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from 278.15 K to 328.15 K. The values of vo obtained by Hakin et al. (1994) for a-alanine, 

Chalikian et al. (1993) for P-alanine, Hakin et al. (1994) for glycine, and Hakin et at. (1997) 

for proline have a sufficiently wide temperature range to allow for the calculation of E at 

each temperature of interest. For each aqueous amino acid the values of vo were fitted to the 

following expression: 

Vo =a+ 2 +aRT [ a l 1 (T-228K) 5 Pw 
(7.1.4) 

The terms a 1, a 2, and as are temperature and pressure independent constants, R is the 

universal gas constant, and Pw is the compressibility coefficient of water as obtained from 

the equations of state reported by Hill (1990). The values of a 1, a 2, and a s obtained for each 

ofthe aqueous amino acids are summarized in Table 7.1.1. By substituting equation (7.1.4) 

into equation (7 .1.3) the following expression forE was obtained: 

E = [---a_2 __ ] +a R [p + r( _ap_w l] 
(T- 228K)2 s w ar p 

(7.1.5) 

The values of C Po obtained by Hakin et al. (1994) for a-alanine, Gucker and Allen 

(1942) for P·-alanine, Hakin et al. (1994) for glycine, and Hakin et al. (1997) for proline were 

fitted to the following expression: 

(7.1.6) 
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The terms c1, c2, and c3 are temperature and pressure independent constants, R is the universal 

gas constant, and aw is the expansitivity coefficient of water as obtained from the equations 

of state reported by Hill (1990). The values of c1, c2, and c3 obtained for each of the aqueous 

amino acids are summarized in Table 7.1.2. Table 1.6.3.2 summarizes the values ofKr0 that 

were calculated from the values ofKs o found in Table 1.6.3.2. 

315 



Table 7.1.1 Fitting parameters for equation (7.1.4). 

a 1 I (cm3·mol-1) a2 I (K·cm3·mol-1
) as 

a-Alanine 69.31 ± 1.29 -328.21 ± 14.06 -3.73 ± 0.98 

P-Alanine 79.32 ± 0.14 -471.48 ± 1.63 -12.74 ± 0.10 

Glycine 49.50 ± 0.63 -324.19 ± 6.90 -1.45 ± 0.50 

Proline 84.91 ± 0.01 -377.15 ± 0.12 2.74 ± 0.01 

Table 7.1.2 Fitting parameters for equation (7.1.6). 

c 1 I (J·K1·moi-1
) c 2·10-4 I (J·K-moi-1) c3 

ex-Alanine 188.56 ± 2.47 -24.02 ± 1.57 7.58 ± 4.09 

P-Alanine 144.25 ± 6.30 -33.79 ± 3.59 3.95 ± 4.60 

Glycine 110.37 ± 2.51 -36.63 ± 1.60 10.82 ± 4.17 

Proline 262.54 ± 4.46 -43.49 ± 2.83 33.12 ± 7.40 
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7.2 Calculation of Dipole Moments ,_. from Molar Dielectric Increments o. 

The molar dielectric increment o is defined as: 

& =( :~ l (7.2.1) 

e is the dielectric constant associated with the dissolved species and Cis the concentration 

ofthe dissolved species in mol·L-1
• 

In the Kirkwood theory of dielectrics, described by Edsall and Wymann (1958), Ilk 

is defmed as the permanent dipole moment of molecule kin solution. Since molecule k has 

a dipole moment, it may interact with its nearest neighbours through electrostatic repulsion 

or attraction. It may also interfere with their rotation by steric hindrance. Therefore, at any 

given instant, the orientation of the nearest neighbours of molecule k will not be random with 

respect to the orientation of molecule k. The vector sum of the moment of molecule k and the 

moments due to all of the neighbouring molecules is denoted as flk· In general Jlk is different 

in magnitude and direction from Ilk· Molecules that are farther than two or three molecular 

diameters away from molecule k do not contribute to Ilk since they are too far from molecule 

k to interact with it. Therefore, these molecules have essentially random orientations with 

respect to molecule k. 

Now consider the equation that arises from the Kirkwood theory of dielectrics as 

applied to systems with several components: 
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(2e+t)(e-l) =-1-L 4nnk (ex. + llk'iikl 
9E 47tE k 3 Ok 3kT 

0 

(7.2.2) 

where E0 is the permittivity of free space, nk is the number of molecules of species k per unit 

volume, and CX.ok is a constant that depends only on k. In the case of highly polar systems, 

equation (7.2.2) takes on its limiting form as expressed as. 

2e =-1- L 41tnk (ex + P.k'iikl 
9 41te k 3 Ok 3 kT 

0 

(7.2.3) 

In the Kirkwood theory the molar polarizability P is defined as: 

P--- ex+ -_ 41tNA ( p.'iJ. ) 
3 ° 3kT 

(7.2.4) 

where NA is Avogadro's number. Substitution of equation (7 .2.4) into equation (7.2.3) gives: 

2e =-1- I,:c P 
9 4m: k k 

0 k 

(7.2.5) 

The term Ck = (nk I NA) is the concentration of species kin mol·mL-1
• If a two component 

solution is considered, then equation (7.2.5) becomes: 

2e 

9 

Similarly, for a one component system: 
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2er = C 1P 1 

9 4ne 
(7.2.7) 

0 

Here er is the dielectric constant of the solvent. In a two component solution C1 and C2 are 

related through their respective standard partial molar volumes V~ and V~ as follows: 

(7.2.8) 

Combination of equation (7.2.6) and equation (7.2.8) gives: 

(7.2.9) 

Substitution of equation (7 .2. 7) into equation (7 .2.9) yields: 

(7.2.10) 

If the subscript 2 is allowed to represent the solute while the subscript 1 represents the 

solvent, then the derivative of equation (7.2.10) with respect to C2 is equal to the molar 

dielectric increment. A minor correction factor is required to account for differences in units. 

(7.2.11) 

Only highly polar substances are being considered for which 1 OOOo is much greater than Er ~ 

and for which a02 can be neglected. Therefore, equation (7 .2.11) can be rearranged to give 
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an expression for P2: 

soooone 
p = 0 

2 
9 

(7.2.12) 

Comparison of equations (7 .2.4) and (7 .2.12) yield an expression for J.12Jl2• Substitution of 

values for the constants in the expression yields: 

(7.2.13) 

where (J.t2Jiz)0.s is expressed in Debye and o is expressed in m3·mol-1
• The dipole moment~ 

is defined as (J.t2Jl2)
0

·
5 and therefore: 

ll =0.1910JT'6 (7.2.14) 

The standard deviation associated with the dipole moment a" can be calculated from the 

standard deviation associated with the molar dielectric increment o6 as follows: 

0.09551 a6 T 0·5 

00.5 
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