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ABSTRACT 

The r.1odal characteristics of structures are normally established experimentally 

through the use of accelerometers and force transducers to measure the frequency 

response under different excitation frequencies. Variations in the modal frequencies and 

the mode shapes can be determined for different structural modifications. Modal 

properties can also be determined through measurement of the acoustical properties of 

the stn1cturc, particularly in the quantity and direction of acoustic energy flow. Such 

measurements, because they are non-contacting, offer the advantage of eliminating 

modification of the modal response due to the mass of the accelerometers as well as ease 

of use where accelerometer attachment is difficult, for example, on fibre composite 

structures. Experiments were designed to investigate the ease and accuracy of such 

acoustic measurements by comparing results from the acoustic energy flow methods with 

more classical vibrational techniques. 

The structure was then modified through the introduction of a machined notch and 

the acoustic modal properties measured again for comparison. 

A method is presented for the use of acoustic energy flow mapping in the 

detection of stmctural defects which result in the modification of the modal frequencies 

and amplitudes. 
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PREFACE 

It should be noted that the practical research presented in this thesis was 

completed at the beginning of 1990 and was specifically based on the use of a digital 

filtering, pressure-pressure transducer technique. There are several other techniques 

suitable for measuring intensity and since this work, research has moved on in some of 

the directions suggested by it. Guigne et al 1992 investigated the use of an FFT analyzer 

to obtain more detailed information regarding modal parameters, including intensity 

mapping. Klein ct al (1994) look at the changes in modal parameters arising from 

fatigue cracking in cantilever beams. However, the work presented in this thesis 

provides an important underpinning of the subsequent research and is considered to stand 

as an original piece of research. 
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1.0 INTRODUCTION 

It has long been recognised that the acoustic radiation properties of a structure arc 

tied to its mechanical properties - for example, the Mcrsennc L'lws relate the natural 

frequency of a plucked string to its tension and linear density (Stephens and Bate. 1966). 

The use of a simple acoustic measuring device which detects the variations in pressure 

allows measurement of this acoustic radiation. A single microphone can only be used to 

measure scalar quantities - the frequency ancl power of an acoustic transmission. 

Associated with an acoustic transmission, there may be energy propagation, rcprcscntccl 

by the acoustic intensity v~tor. Measurement of the acoustic intensity vector enables the 

energy flow in an acoustic field to o~ mapped and allows the identification of energy 

sources and sinks. 

The hypothesis presented at the start of this thesis is that any mechanical changes 

which occur in a structure, for example, fatigue cracking, will lead to a change in the 

vibration modes and hence also to the radiated acoustic energy. Any technique that is 

developed in air can be transferred to an underwater environment with facility due to the 

fact that acoustic propertie~ can be measured as easily in water as in air through the usc 

of hydrophones. 
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1.1 STATEMENT OF OBJECTIVES 

The measurement of acoustic energy and surface energy in order to map energy 

flow patterns in and around structures is well established (Pavic, 1976, Rasmussen at al 

1983 and Hashimoto and Tagawa, 1987). The aim of this research was to investigate the 

applicability of these measurements to the detennination of the underlying structural 

vibration. Following that, the ability to detect variations in the structural vibrations 

arising from structural changes was investigated. The vibrational characteristics of simple 

structures (cantilever beams) were theoretically determined using vibration theory 

(Stephens and Bate, 1966) as well as by finite element techniques (Bathe and Wilson, 

1976). The experimental vibration characteristics were then measured and compared with 

the energy flow measurements. Band-saw cuts were introduced to modify the structure 

and the resultant changes to the energy flow measured. The changes to the energy flow 

were analyzed to determine the correlation with the actual structural modifications. 

The evaluation of acoustic intensity scanning data is often complicated by the 

determination of significant frequency bands (Guign~ et al 1988) and new measurement 

techniques were required to be developed. In order for the acoustic scanning technique 

to be applied underwater, the transducer set-up for such measurements had to be 

developed. The transducers were evaluated for intensity scanning by carrying out 

measurements on a vibrating beam in an underwater environment. 



1.2 ORGANIZATION OF THESIS 

This thesis is divided into six chapters. Chapters one and two introduce the 

research and place it in the context of current knowledge. 

Chapter three introduces the concept of acoustic intensity and then presents the 

theoretical equations which describe this property. From the theoretical equations arc 

developed approximations relating acoustic intensity to simple measurements of pressure. 

These approximations show how practical measurement of acoustic intensity is possible 

using a variety of microphone arrays. Surface intensity is then introduced and it is shown 

that measurement methods, analogous to that used for acoustic intensity, can be used 

through the substitution of accelerometers for microphones. 

In order to expand the applicability of the method, a hydrophone array which 

allows the acoustic intensity to be measured underwater is described. 

The practical methods used in the research are described in detail in Chapter rour 

and the results obtained from the experimental procedures are then presented and 

discussed in Chapter Five. 

These results are summarised in Chapter Six, which also outlines proposals for 

further investigation in this field. 
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2.0 STATE-OF-THE-ART IN RELATING ACOUSTICAL 

INTENSITY MAPPING TO VIBRATIONAL RESPONSE 

Vibration and acoustics are two closely related subjects which have given ri~~ to 

a large volume of research into the measurement and control of both. The topic can be 

broken down as a function of frequency. At lower frequencies the concern is with the 

vibration of structures which can give rise to mechanical damage. Examples of these 

might be an offshore platform of a welded tubular construction where the wave loading 

induced vibration could k~d to fatigue (Whittome & Dodds, 1983), or the infamous 

Tacoma narrows bridge where a wind loading induced resonance lead to its collapse 

(Stephens and Bate, 1966). In the audible range of the frequency spectrum the problem 

concentrates on the effect of sound levels on the environment because of the concerns of 

health and safety, and this has led on, for example, to the development of acoustic baffles 

to reduce radiated noise levels (Tinti, 1992). Additionally, investigations into the sources 

of noise can then be linked to methods of reducing the levels of radiated acoustic energy 

at the source, or can lead to identification of a mechanical problem giving rise to the 

unwanted noise. 

There has been a long tradition of using the acoustic response of a structure to 

determine its vibration characteristics as they relate to its mechanical properties. Since 

the advent of the railway, iron and steel carriage wheels, have been regularly tapped and 

the note produced analyzed by the experienced engineer to determine whether the wheel 
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was cracked or otherwise damaged. Similarly, the existence of wear or misal ignment 

problems in rotating machinery could be detected by an experienced operator from the 

sound of the equipment. The introduction of transducers such as accelerometers and 

microphones and their associated amplification and recording equipment has led to the 

development of more rigorous procedures for the measurement of vibration and noise. 

Coupled with microprocessor based analyzers and computers for post-processing the 

analysis of such data can reveal extensive information for the structural engineer. 

Additionally, predictive models have become more powerful and accurate through the usc 

of computers to perform numerical integrations (Fillipa, 1983) or finite element analysis 

(Cragg, 1972, Petyt, 1983). 

2.1 LITERATURE REVIEW 

2.1.1 Vibration and Acoustic Transmission 

The most important source of radiated noise is the vibration of elastic .surfaces. 

This vibration can arise from either mechanical excitation or from external acoustic 

excitation. An additional problem in predicting noise levels arises when the area of 

acoustic interest formed an enclosed space. Again taking a musical analogy, notes on 

a pipe organ are the result of a resonance of an air column (Sen, 1990). Similarly, any 

enclosed air space will have acoustic resonances (Petyt, 1983). Particular problems can 

arise if the structural resonances are close to an acoustic resonance. 
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The levels of noise radiating from a vibrating structure are related by the 

Helmholtz equation (Filippa, 1983) which can be solved by various methods. One of 

these is numerical integration (Fyfe and Ismail, 1987, Seebert and Khurana, 1988) and 

this approach is called the boundary element method (BEM) (Wendland, 1983). The 

BEM is based on an assumption that the source is radiating into free space but Fyfe et 

al (1989) have used it, along with curve fitting modal identification techniques to analyze 

closed regions. They compared this method with the finite element method and showed 

that the two methods were in close agreement, with some reductions in modelling times 

being possible in the boundary element method. Brughmans et al (1992) also made use 

of the BEM to analyze closed volumes and concluded from their results that high 

pressure levels were caused by structural resonances while acoustic resonances led to 

peaks in the structure acceleration levels. 

Grosveld ct al (1988) used finite element techniques to solve the Helmholtz 

equations as a method for predicting structural-acoustic interactions, where noise levels 

in an enclosed space were of interest. In this case, the structure and acoustic models 

were coupled by a finite element solution to the structure-fluid interaction. Both external 

acoustic sources and direct mechanical excitations were modelled. They concluded that 

the acoustic response dominated the structural contribution. 

Rather than solve the structural-acoustical coupling, Sung et al (1991) determined 

the acoustical modes for a vehicle interior using finite element analysis. The structural 
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modes for the vehicle body were det.!rmined experimentally using modal testing. The 

coupling coefficients between the two are then calculated from the solution to the wave 

equation and the appropriate elastic or rigid boundary conditions. Since these 

coefficients are a measure of the similarity between mode shapes and frequencies, they 

can be used to identify the structural component contributing the most to the noise levels. 

Structural modification to reduce noise levels can then be carried out. 

A different approach to predicting structure born noise was given by Okubo ct al 

(1988). This is based on the point source model in which each point in a structure is 

assumed to be an independent noise source. The acoustic intensity radiated by discrete 

areas of the structure can be estimated and the noise at any point ncar the structure can 

then be calculated by integrating the independent noise source intensity vectors. 

The relationship between structural vibration and the resulting acoustic radiation 

was developed by Leuridan et al (1989). They used a model based on the rncchano­

acoustical impedances between structural response and sound pressure measurements. 

They used transfer functions and coherence analysis principles and found good agreement 

with experimental results. 

When a structure is irr:mersed in a fluid, effects such as reverse fluid loading 

become important. Park and l.R..e (1990) carried out an analytical investigation into these 

effects using Timoshenko-Mindlin plate theory to construct the equations for circular 
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plate vibration and solve the Helmholtz equation for this particular case. A reduction in 

natural frequencies arising from the fluid loading was shown and the effect of viscoelastic 

coatings on radiated power was examined. 

For the case of external acoustic excitation the noise transmission properties of 

a structure are of interest, in particular with reference to noise control. Desai and Koval 

(1988) showed that the Rayleigh-Ritz method worked well at predicting transmission 

losses through plates at frequencies away from the lower plate resonance frequencies. 

2. 1.2 Prediction and Measurement of Structural Vibration and Acoustic Radiation 

The motion of a vibrating structure can either be determined experimentally or 

predicted by using methods such as finite element analysis. Begg et al (1976) and Kenley 

and Dodds ( 1980) used accelerometers to determine the modal frequencies of a welded 

tubular off-shore structure with the intention of identifying structural change from a shift 

in modal frequency. Vibration monitoring of rotating machinery using accelerometers 

and a constant percentage bandwidth analyzer (Angelo, 1987) has proven extremely 

effective in the early detection of machinery faults. 

The acoustic radiation n·sulting from structural vibration can also be determined 

by experimental and analytical methods. 

As described in the previous section, the Boundary Element method can be used 
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in an analysis package to predict acoustic radiation levels. Fyfc and Ismai I ( 1987) used 

the BEM to analyze noise radiating from vibrating cylinders. They used cxpcrimcnlal 

data as the input surface vibration data and validated their prrdictions by using far lidd 

pressure measurements. Seybert and Khurana (1988) introduced a computer code called 

BEMAP and then went on to describe its application in predicting the radiating 

characteristics of a prototype engine using modal analysis to generate the surface 

vibration of the structure. Such a package can work equally well with both modal 

vibration data and experimentally measured response data. 

Bissinger and Chowdhury (1992) compared the usc of accclcromctcrs and 

microphones in modal measurements. They made the important point that a microphone 

will give a better ranking of the effectiveness of vibrational modes as acoustic radiators. 

Although they concluded that an accelerometer makes a preferable transducer to mC!tsurc 

the surface motion, they do show that modal shapes can be identified using a single 

microphone in both the near and far field. 

With regard to the use of intensity measurements to investigate the vibrational 

response of simple stn1ctures, much work has been done to look at the energy llow both 

in and close to panels excited using loudspeakers and with a variety of damping locations 

(Rasmussen et al, 1988). This work reveals information about the location of sources 

and sinks in the structure and has been extended, for example, to the measurement of 

sound intensity maps over a van engine cover. As an example of how the acoustic 
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intensity could replace accelerometer based measurements, Rasmussen ( 1983) 

dcmonstrate.d an application in engine testing whereby the analysis of the variation in 

radiated o.:oustic intensity through one rotation cycle allowed identification of faulty 

cngmes. 

Of particular interest in the work done by Tichy and Mann (1985) is the measured 

radiation from a plate vibrating at its modal frequency, where a second mode was close 

in frequency and also excited. They made use of the active and reactive intensity 

measurements in order to differentiate the two mode shapes. 

Okubo and Tajima (1988) used the point source rut")del to predict the acoustic 

intensity pattern over different structures. At the first two modal frequencies they found 

excellent correlation both with the mode shapes and with the measured acoustic intensity 

patterns. 

Hashimoto and Tagawa (1987) also showed the correspondence between vibration 

modes and radiation noise distributions on a printer assembly. They were able to identify 

the structural components that gave rise to excessive noise and these were then modified 

to obtain the required reduction in acoustic radiation. Of interest is their use of acoustic 

intensity as a specific tool to measure the radiated noise. They obtain clear 

correspondence between vibration modes and acoustic intensity distribution. 
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2.1.3 Noise Control 

The correlation !Jetween structural vibration and radiated noise provides a basis 

for noise control of structures. Moore and Reif (1987) carried out an investigation on 

a milling cutter by carrying out both modal analysis ancl radiated noise measurements. 

On a complex structure, this allows the area generating the most noise to be identified 

from local mode shapes and modal frequencies. From this, localized damping ran he 

used effectively. 

In many applications, the amount of damping that can be applied is limited, 

ei~her by space or weight. The eff~t of localised damping on mode shapes and mode 

frequencies is investigated in order to assess optimisation of acoustic damping. In their 

approach Garibaldi et al (1990) used loss factor calculations in an analytical modal 

analysis. 

The investigation carried out on plates (Lamancusa and Koopmann, 1991) led to 

possible noise control methods which avoided the use of added damping materials. Using 

finite element analysis and a discretized form of the Rayleigh integral they identified a 

mode shape which acted as a "weak radiator" of sound. Rather than usc damping 

material to reduce radiated sound, they varied the thickness of the plate in order to force 

the plate into the "weak radiator" mode. 

The problem associated with quantifying acceptable noise levels was detailed by 
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Castagna (1992). He also described a limitation that can arise in using modal analysis 

to identify structural noise sources. He found that the normal modes did not relate to the 

observed noise problem and identified the source as a complex mode, which he defines 

as 'a mode of vibration ... when all of the response locations are displayed without phase 

restrictions'. 

Acoustic measurements are usually associated with noise levels that fall in the 

frequency band of the human ear response. These measurements related to sound 

monitoring and control are generally carried out using microphones to record sound 

pressure levels. Analyses have traditionally been based on one-third octave or other 

fractional octave measurements because of the nature of human hearing, (Bruel & Kjaer, 

1987). 

There are problems associated with using pressure to measuring sound levels, 

particularly in relation to identifying sound sources when there is a high level of 

background noise, and it has long been realised that the measurement of acoustic 

intensity, which is a vector parameter, has a number of advantages of the use of the 

scalar pressure (Pascal and Lu, 1985). Schultz (1975) discussed the failure of effective 

practical measuring equipment but with the overcoming of these obstacles a number of 

applications were developed. Tichy ru1d Mann (1985) developed theoretical expressions 

for acoustic near fields of radiators and standing waves and then measured the intensity 

vortex for two cases. Rasmussen (1984, 1985) and Kelly (1988) have both detailed the 



13 

principle advantages of acoustic intensity ever pressure as being the ability to measure 

a vector quantity and the improvement in the signal-to-noise ratio that could be achieved. 

In particular, by integrating the measured intensity over a surface containing a sound 

source, the sound power for that source can be detennined irrespective of the background 

noise. 

The principal area of application of acoustic intensity has been in transportation 

systems where it is important that the vibrational response of the various vehicle 

components are such that they fall outside those areas where the ear is most sensitive. 

The use of acoustic intensity measurements in such applications is well established 

because of the improvement in the noise to signal ratio and the directionality of the 

measured signal. For example, Rasmussen (1988) made use of acoustic intensity, sound 

pressure level and accelerometer measurements in order to identify the source of noise 

arising from a rail vehicle and then linked the source to an engineering problem of excess 

wheel/rail wear. Bennett (1987) used an acoustic intensity technique to identify sound 

sources on an articulated loading shovel and a rotary pump which were generating 

excessive noise emissions; Atarashi (1988) made use of intensity measurements to 

investigate turbo machinery. 

An extensive analysis of engine noise using acoustic intensity (Tinti, 1992) 

allowed determination of sound power levels as well as of noise source ranking while the 

engine is in a test frame in a semi-reverberant room. The ranking of sound sources also 
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allowed acoustical shield locations to be selected, as well as a subsequent measurement 

of the efficiency of each shield. 

2.1.4 Other Applications of Acoustic Monitoring 

There are a number of other areas where acoustic methods are being used to 

investigate vibration for engineering reasons other than the control of noise levels. Nilles 

and Dauby (1976) described an application of sound intensity in the monitoring and 

control of the reduction process in the steel making process whereby the sound intensity 

is used to control the volume of oxygen used in the blow. The problem of bubble 

cavitation on a marine propeller has been investigated using a hydrophone pair for 

measurement of acoustic intensity (fechnisch Physiche Dienst, 1983). In both of these 

applications, the particular merit of the intensity measurement technique arises from the 

problems arising from high signal-to-noise ratios. 

2.3 SUMMARY 

The papers reviewed above clearly outline the relationship between radiated 

acoustic noise and the underlying structural vibrations. A number of theoretical and 

analytical relationships are introduced and then developed or verified through various 

practical measurements. Although there are a number of different approaches, they all 

generally adhere to the following steps: 
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a) Source characterization, i.e. , underlying structural vibrations. 

b) Coupling parameters between structural and acoustic effects. 

c) Determination of sound field. 

The principle aim of most structural-acoustic vibration problems is noise control. 

Again a few important guidelines emerge from the reviewed research: 

a) Identification of the intended final noise requirements - for example, it will not 

be practical to reduce noise levels for a diesel engine to those of an electric 

motor. 

b) Noise control can be effected by modification of the underlying stnJctural 

rr.sponse to alter mode shapes or shift modal frequencies. 

c) Noise control can also be achieved through the use of acoustic shields which 

attenuate noise form particular sources. 

A number of significant points relating to the practical measurements of acoustic 

radiation and structural vibration can be summarised from the reviewed authors: 

a) The conclusion of Bissinger and Chowdhury (1992) that acoustic methods can be 

effective in experimental modal analysis. They use pressure measurements to 
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determine mode shapes. 

b) Seybert and Kurana (1988) recognize the benefits of using acoustic intensity in 

the analysis of structural-acoustic interactions but do not carry out any practical 

measurements. 

c) The findings of Tichy and Mann (1985), Hashimoto and Tagawa (1987), and 

Okubo et al (1988) all of whom obtain correlations between practical intensity 

measurements and mode shapes. 

Given the possibilities of acoustic intensity as described by those authors who 

have used it, it is surprising that more researchers do not make use of it as a tool. A 

number of authors make use of pressure measurements but describe the problem 

associated with background noise. This problem can be avoided by· the use of anechoic 

and reverberation chambers but these are not always easily accessible. 

This research sets out to explore in depth the capabilities of acoustic intensity as 

a tool for modal analysis and to define some appropriate practical measurement 

procedures as well as determine the limitations of the method. The advantages 

mentioned by Bissinger and Chowdhury (1992) of using a non-contacting transducer are 

investigated further, in particu1ar with respect to applications in underwater 

environments. 
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3.0 PHYSICS OF ACOUSTICS 

In physical terms, acoustics is concerned with the propagation of energy from a 

source through an elastic medium by the progression of a mechanical vibration. In air, 

pressure variations caused by a moving surface such as a fan blade are propagated away 

from the source. These can be detected by a thin diaphragm such as the human car or 

a microphone which converts the air pressure variation back into a mechanical vibration 

and then converts the mechanical vibration into an electrical impuls~. However, the 

measurement of pressure yields a scalar value and hence no information regarding the 

direction of energy flow or the source of the energy can be obtained from such 

measurements. In order to obtain this information, we need to be able to measure 

Acoustic Intensity which is a vector quantity giving ~. measure of the power transmitted 

through a medium. The first requirement is, therefore, a reliable intensity measuring 

device. The following presentation of the physics and measurement of intensity was based 

on Fahy (1989) and various publications by Bruel and Kjaer (1986, 1987, 1988) who arc 

acknowledged as one of the leaders in acoustic instrumentation. 

3.1 DEFINITION OF INTENSITY 

The instantaneous acoustic power density it (W/m2
) is defined from Figure 3.1 

as the energy transported in a specified direction per unit surface and unit time (Rossi, 

1988). An equation for this value is derived as follows. 
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Figure 3.1 Definition of Sound Power and Acoustic Intensity 
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For an area element dS with unit normal n, the force exerted on this element by a 

pressure p is given by 

dF = p x dS x n N (3.1) 

Assuming longitudinal waves, the particle velocity v is 

v = v x n m/s (3.2) 

The work done by dF gives the energy transferred through dS during time dt, and 

this is given from 

dW = (p dS n . v n) x dt 

= p X V X dS X dt J (3.3) 

From the definition of the instantaneous acoustic power density, it can be seen 

that '1' is given by the product of the particle vf.locity and the instantaneous pressure. 

'lr = p v (3.4) 

The acoustic intensity I f'N/m2) is defmed as the mean value of the instantaneous 
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acoustic power density. The acoustic intensity is a vector given by the time averaged 

product of the instantaneous pressure, p(t) and the particle velocity, v(t), in the equation 

I = p(t) . v(t) (3.5) 

where the bar denotes a time averaging. Dimensionally we can see that this is correct: 

Power Energy 
Intensity 

Area Area x Time 

Force x Distance 

Area x Time 

Pressure x \felocity (3.6) 

For a free field in which the sound wave arrives only from the direction of the 

source (spherical wave), the intensity is derived as follows (Fahy, 1989). For a. plane 

harmonic wave the pressure and the particle velocity are related by: 

v = p /{pc) Pa (3.7) 

and substituting Eqn. (3. 7) into Eqn. (3.5) we get 



~1 

2 
P mu 

I= (~.8) 
pc 

where pc is the characteristic impedance of the material, p is the density and c the speed 

of sound in the material. 

3.2 DECffiEL SCALES 

Most acoustic properties are represented using a logarithmic quantity because they 

are measurable over a number of orders of magnitudes (Sen 1989). The logarithmic 

quantity corresponds to the base 10 logarithm of the ratios of two measurements of the 

same property. The logarithmic ratio of two values is presented in the dimensionless 

quantity called the bel, or, more usually, in decibels (dB) where I dB is one-tenth of a 

Bel. For certain properties the logarithmic quantity, or level, is given as the logarithmic 

• 
ratio of the measured value to a standard reference value. The sound pressure level and 

intensity levels, in decibels are given by: 

dB (3.9) 

dB {3.10) 
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where Po equals 20 JLPa. This value is chosen because it corresponds approximately to 

the thresh:>ld of hearing. The reference value 10 for intensity measurement is 1 pW/m2, 

and this is chosen so that under free field conditions the pressure levels and intensity 

levels are nearly equal. In fact, under free field conditions we can substitute for I in Eqn. 

(3.10) using Eqn. (3.8) 

= LP - 10 log10 (p . c/400) (3. 11) 

and under standard conditions, pc = 415 and the correction factor represented by the 

second term in Eqn. (3.11) is 0.16 dB. 

When a directional characteristic is represented using a decibel scale, the usual 

notation is, for example, 65 dB(-) where the sign indicates the direction of flow relative 

to the mC<'"\surement point. Standard notation takes positive as flow away from the 

surface or stmcture being investigated. Confusion should be avoided with -65 dB which 

represents a very small value. 



3.3 SOUND FIELDS 

Acoustic propagation involves energy flow but there can still be a time-variant 

pressure field in which the net intensity is zero. From the definition of intensity as the 

time averaged product of the particle velocity and the pressure we can see from Figure 

3.2 that when the velocity and pressure are in phase, then the instantaneous acoustic 

power density variations are also in phase, and the acoustic intensity will be non-zero. 

If there is a phase shift of 90° then there will still be a variation in the instantaneous 

acoustic power density, but the time averaged acoustic intensity will be zero (Figure 3.3). 

An active field is one in which there is energy flow; a reactive field is one in which there 

is no net energy flow. An example of a purely reactive field is a stanlling wave in a pipe. 

Sound fields are also described as Free field or Diffused field. In a free field there arc 

no reflections (e.g. an anechoic chamber) and the sound field is active. In a diffused field 

the sound is reflected from all surfaces so that it travels in all directions with equal 

magnitude and probability (e.g. a reverberation chamber). The net intensity is zero a11d 

we have a reactive sound field. 

In the near field of a source (defined as less than 1/4 of a wavelength from the 

surface) the air acts as a mass-spring system storing energy and hence the sound field is 

reactive. By measuring intensity in the near field, this reactive component is ignored and 

only the active component is measured. Because the measurements can be made close to 

the source, the signal-to-noise ratio of the measurement is improved. 
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Figure 3.2 Instantaneous Acoustic Power Density for Particle Velocity and Pressure 
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Instantaneous Acoustic Power Density for Particle Velocity and Pressure 
90° Out of Phase. 
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3.4 l\fEASUREMENT OF ACOUSTIC INTENSITY 

Acoustic intensity can be measured (Fahy, 1989) in either the time domain 

through the use of digital filters or the frequency domain using an FFI' analyzer. Time 

domain measurements were made throughout this research and this is the method which 

is discussed in detail here. 

3.4.1 Finite Difference Approximation 

From Euler's equation we know that, for a sound field propagating in a tluid, the 

particle acceleration, a, is given by the ratio of the pressure gradient to the tluid density 

p: 

dv 1 dp 
a =- = (3.12) 

dt p dr 

The particle velocity can thus be obtained by integrating the particle acceleration 

as follows 

1 
v= 

p 
r 

dp 
-dt 

J dr 
(3.13) 

The pressure gradient is a continuous function which, for two closely spaced 

microphones, can be approximated using a finite difference method (Forssen & Crocker 

1983, Rasmussen 1985): 
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dp Pb- p. 
- (3.14) 

dr Ar 

where Pb and p. are the pressures measured at the two microphones separated by .Ar 

(Figure 3.4). This gives an approximation for the pressure gradient at the centre of 

microphone pair; the pressure at this point is derived from the average pressure measured 

at the two microphones: 

p --- (3.15) 
2 

Substituting Eqns. (3.13), (3.14) and {3.15) into Eqn. (3.5) we see that in practice 

intensity can be computed from: 

Pa + Pt, 
I = 

2p6r 
f <Pt, - p.) dt 
J 

where the bar denotes time averaging. 

(3.16) 

There are inherent limitations in the measurement of intensity using two closely 

spaced microphones and the finite difference approximation for the derivation of the 

particle velocity (Watkinson 1984). The USI~ of this technique in measuring sound 

intensity introduces a number of errors which limit the useful frequency range of the 



dp P., - Pa '!.7 ---dr 

p. 

Ar 

dp 1\- p. 
~--

dr Ar 

p. 

Figure 3.4 Finite Difference Approximation for pressure GradiC'nt Measurement 
Using Two Transducers 
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system. These errors have been well studied (Thompson and Tree 1981, Gade 1985, 

Rasmussen 1984) and can be grouped into the following categories: 

a) Finite difference approximation errors at high frequencies 

b) Errors arising from phase mismatch when the phase difference between 

the two element positions is small 

c) Random Errors 

3.4.2 Finite Difference Approximation Errors 

When the wavelength of the pressure variation is small compared to the effective 

microphone spacing, the finite difference approximation becomes inaccurate. This 3ives 

rise to an upper frequency limit to the accurate measurement of intensity. In order to 

measure intensity accurately the wavelength measured must be greater than six times the 

spacer distance. At 10kHz, and using the value of 343 m/s for the speed of sound, the 

wavelength is 34.3 mm and we can see that we require a space 5. 7 mm or smaller. 

Increasing the spacing reduces the upper frequency limit; reducing the spacing increases 

the upper frequency limit. 

3.4.3 Phase Errors 

The phase difference ¢between the pressure measured at two points, Pa and Pt, 

separated by a distance £\r can be calculated as 

(3.17) 



where A is the wavelength. In order for the calculations in Eqn. (3.16) to be correct, the 

phase cJ> must be detected with a much smaller error, ¢err. 

Rearranging Eqn. (3.8) in terms of c, and substituting into Eqn. (3.17) for the 

wavelength A (=c/f), we get (Rasmussen, 1984): 

Ar. f. p • I 
= . 360° (3.18) 

2 P nns 

Using Pnns = 0.36 pa, 

I - 104 W/m2 

Ar - 12 mm 

p - 1.21 kg/m3 

f = l kHz 

the phase calculated from E<tn. (3.18) is 4°. In order to measure the correct intensity, 

the phase mismatch between p. and Pt, must be of the order of 0.4 o. If this phase 

mismatch is not achieved then the spacing Ar must be increased with reference to the 

finite difference approximation errors described in the previous section. Additionally, as 

the frequency of measurement gets lower, the microphone spacing Ar must be increased 

in order to maintain the same phase difference and hence minimise the phase errors. 

From Eqn. (3. 18), we can see that the phase difference between the signals is 
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dependent on the frequency being measured and on the spacing of the microphones, as 

well as on the ratio between the measured intensity levels and the measured pressure 

levels. In summary, phase errors can be reduced by correct choice of microphone 

spacings. 

3.4.4 Random Errors 

When measuring sound intensity the random errors in the measured values are a 

function of the BT -product, where B is the bandwidth of the filter and T is the averaging 

time, and also on the ratio of the sound intensity to sound pressure in the sound field. 

In a reactive field this ratio increases and so the BT-product must increase in order to 

maintain the same random error limits as in an active sound field (see Figure 3.5). 

3.4.5 Directionality and Reactivity 

A two microphone probe will measure the component of the intensity vector in 

the line of the two transducers. If the vector lies along the line of the probe, then the 

phase change can be calculated from the frequency and the probe spacing using Eqn. 

(3. 17). When the intensity vector lies off the measurement axis, the phase change is 

reduced by a factor cos () (Figure 3.6): 

cos 0 x Ar x 360° 
4>= (3.19) 
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As the intensity vector approaches a 90° angle of incidence to the probe, the phase tends 

to zero and the intensity component will also tend to zero. The measurement will 

therefore be much more sensitive to phase errors, and the error in the measurement will 

be high. 

Althoug:1 the intensity component along a two microphone probe will vary with 

the angle of incidence, the pressure, being a scalar value, will remain constant. The 

actual phase change across the spacer can be related to the difference between the 

pressure and intensity levels. From Eqn. (3.18) we get: 

I 1' 
- (3.20) 

Multiplying by p2 jlo [ = {pc).400/(pc)] yields 

I 

2 P rms 

p.c 

400 

t/>.c 

.1r • 360° . f 

In terms of decibel levels, we can write this as 

L,- f;, + 10 Logto ( a& l = 10 log1o ( th . c 
l 400 J l .1r • 360° .f 

l 
J 

(3.21) 

(3.22) 



33 

where 10 Log10(pc/400) is a correction term arising from the choice of reference levels. 

The term L1 - L., is called the reactivity index Lx. The relationship between L.:. ur and 

f is shown by the nomogram in Figure 3.7. 

In practical terms, measurement of the reactivity index L.: allows the phase 

change across the microphone pair to be calculated. This value can then be related to any 

system errors to determine the validity of a measured intensity level i.e., if the phase 

change across the probe is I o at 1 kHz and the sensitivity of the system is only 0.5 o then 

there will be a large error in the measured intensity level. Measurement system phase 

errors and measurement errors are discussed in Section 4.1.2. 

3.5 PROBE CONFIGURATION FOR ACOUSTIC INTENSI'I'V 

'MEASUREMENTS 

3.5.1 One-Dimensional Intensity Probe 

An intensity probe for measurement using two pressure transducers has, as a first 

requirement, to be made up of two omnidirectional microphones. In order to measure 

intensity the two transducers (microphones) must be mounted with a fixed spacing. A 

number of different configurations are possible; the ideal configuration is lo suspend the 

two microphones in space so that there are no reflection or interference effects from any 

supporting brackets. As this is not possible, the support brackets used must be designed 

to minimize any errors due to ret1ections. The microphones used in this research arc 
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Relationship Between phase, Frequency and Reactivity Index for Different 
Microphone Configurations (Bruel and Kjaer 1988) 
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designed to be used with preamplifier units which are then used as part of the support 

frame. Two configurations are possible; face-to-face and side-by-side. 

In the side-by-side configuration, the probes are supported and separated by a 

bracket mounted between the preamplifier bodies (Figure 3.8). For the face-to-face 

configuration a bracket and an angle piece are used to hold the microphones so that the 

diaphragms are facing each other (Figure 3.9). It can be seen from Figure 3. 10 that 

while the nominal spacing for both configurations is 12 mm, the actual separation of the 

acoustical centres is frequency dependent and that above 1 kHz the face to face 

configuration gives a much smaller error. 

3.5 .2 Three-Dimensional Intensity Probe 

Using the one-dimensional intensity probe described in Section 3.5.1 it is only 

possible to measure the component of the intensity vector along the line of the probe. In 

order to characterize the vector completely, the three orthogonal components must be 

measured. This is done by extending the face-to-face bracket to support three microphone 

pairs in a face-to-face configuration about a common acoustical centre as shown in Figure 

3 .11. This set up introduces two sources of error arising from the geometry of the probe 

and from phase errors. 

Probe geometry effects are due to reflection and diffraction, and these 
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Figure 3.10 Nominal Spacing Variation as a Function of Frequency for Different 
Microphone Configurations (Bruel and Kjaer 3360 Manual) 
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Figure 3.11 Three-Dimensional Intensity Probe Configuration (Bruel and Kjaer 1988) 
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phenomena become more apparent at higher frequencies. By reducing the number of 

reflecting surfaces to a minimum, the effect of the probe geometry can be reduced. 

If the intensity vector lies along or close to the direction of one of the probes, 

then the phase change across the microphones in the other two directions will be very 

small. This increases measurement errors arising from any phase errors in the system. 

3.6 SURFACE INTENSITY 

Acoustic measurements are usually associated with energy propagation in air or 

in fluid media, arising from the mechanical vibrations of some source. The simplest case 

is the spherical wave generated by a single point source. A non-point source can be 

approximated to a point source at a sufficiently large distance, but close to a structure 

the acoustic intensity will depend on the local vibration. Depending on the coupling 

between the structure and the surrounding medium, the structural vibrations can be 

csti mated close to the surface using an acoustic probe. Alternatively, they can be 

measured directly through the measurement of the surface intensity vector using an 

accelerometer array on the structure. 

When a stmcture vibrates there is an energy flow through it, the magnitude and 

direction of which can be characterized by the structure born wave intensity W. In order 

to measure the intensity flow in a plate, Pavic (1976) derived an expression for the 
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surface intensity of a two-dimensional wave and then showed how a tinitc difference 

approximation using eight accelerometers can be used experimentally. Noiseux (1970) 

proposed a simplified approach to measuring surface intensity in a plate. He assumed I hat 

the waves are locally one-dimensional in the far field. 

For the special case of a one-dimensional sinusoidal wave travelling in a plate the 

-
time averaged structure born intensity W has been derived (Pavic, 1976) as 

_ a.2 a11 a3,., 

W=- (3.23) 
c/ at axar 

where Cr is the flexural phase velocity, TJ is the normal displacement at the point or 

interest and m is the mass per unit area. B is the flexural stiffness of the plate, given by 

B= (3.24) 
12 (1-1'~ 

where E is Young's modulus, h is the plate thickness, and Jl. is Poisson's ratio. 

Two transducers placed symmetrically about the point of mcasurcmcnl and 

separated by a distance ~r (Figure 3.12) can be used to measure a,.,! at and rP11/oxot using 

a finite difference approximation. 
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caYJtat) --- = (3.25) 
ax 2 ll.r 

On expansion, Eqn. 3.25 can be reduced since the time averaged products (a,tat), 

(3.26) 
ax ll.r 

and substituting Eqn. 3.26 into Eqn. 3.23 we obtain 

B.2 -W= (3.27) 

Substituting Cr = 2?rf/k where k is the wavenumber and k = (m/B)114(2·7rf)112 we get 

-
W= (3.28) 

ll.r 

The x and y components c,f the surface intensity can therefore be measured using 

a four accelerometer array with a pair of transducers along each of the x and y 
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axes. Material, frequency and boundary conditions all affect the accuracy of these 

measurements but Rasmussen (1986) states that 'practical measurements, however, 

indicate that it is reasonably accurate in many practical situations'. 

3. 7 INTENSITY MAPPING 

The measurement of intensity in the very near field of a surface shows great 

promise as a new tool for investigating the reactive modal behaviour of surfaces 

(Rasmussen, 1988). 

By measuring the near field acoustic intensity over a structure we can determine 

the direction and magnitude of acoustic energy flow from the surface. If the energy flow 

in one direction only is measured then the data can be presented in the form of contour 

plots by drawing lines connecting points of equal acoustic intensity. These contour plots 

can also be presented as three-dimensional surface plots, which are particularly revealing 

if the measured component is normal to the measurement surface. 

If two components of the intensity vector are measured then the energy flow in 

the measurement plane can be represented vectorially. Measurement of all three 

components allow for the determination of energy flow towards sinks and radiating from 

sources, and this can be represented by either combined vector and contour plots, or 

vectorially through an interactive computer graphics display. 
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In order to determine error levels and data significance, two measurements are 

made. The first is the reactivity index (see Section 3.4.5) to determine the phase change 

across the microphone pair and hence the phase errors in the measurement. In a general 

sound field, there will be a spatial variation in the phase change and so the rc~lc:tivity 

index should be measured at each scanning point, although a space averaged value is 

often sufficient (Bruel & Kjaer, 1986). The second measurement is the temporal variation 

in the intensity level to determine the stationarity of the energy flow in any one frequency 

band (Guigne et al, 1989). 

3.7.1 Periodic Sound Fields 

In many instances where the acoustic energy is to be measured, the source will 

be periodic in nature - for example, the sound field in the vicinity of an internal 

combustion engine will vary with the progression through the combustion cycle. By using 

sufficiently long averaging times, the overall sound field could be characterized over the 

surface of interest. However, if an energy source is to be tied to a particular event in the 

cycle then we must synchronize the intensity measurements with the source. By using this 

synchronization, the cycle can be divided into as many segments as required. In order 

to improve the statistical significance of any reading, each measurement is carried out 

by averaging data over the same window for a number of cycles. An intensity map can 

be generated for each segment of the cycle and the variation in the energy now through 

the cycle is revealed by examining the changes in these maps through the cycle. Again, 

the sequence can be animated on a computer. 
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3. 7. 2 Stationarity Determination 

For non-periodic sound fields we must determine whether the acoustic energy 

now is constant over the period of the scanning. In general, it is found that only certain 

frequency bands contain stationary energy flow. The most sensitive and practical method 

for the evaluation of these frequency bands is deemed to be the statistical analysis of 

intensity versus time data colle.cted over a time period (Guigne et al, 1990). In this 

technique, the microphone probe is held at one location over the surface of interest and 

the intensity spectrum measured and stored every second for 30 seconds, for example. 

The mean and standard deviation in the intensity level is then calculated for each 

frequency band and a standard deviation greater than one is used to indicate that the 

energy in that frequency band is fluctuating randomly and cannot be used to give a 

meaningful pattern. 

3.8 SUMMARY 

To summarize, the physics of acoustic measurements is detailed with particular 

reference to acoustic intenl'ity. The relationship between acoustic intensity, particle 

velocity and pressure in a sound field is derived (Eqn. 3.4). From these relationships, 

di ffcrent aspects of the energy flow in a sound field are analyzed and reactive and active 

intensity defined. A relationship between pressure and velocity using a finite difference 

approximation applied to Eulers equation (Eqns. 3.13 and 3.14) provides a practical 

method for measuring acoustic intensity. This method is developed along with an 
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analysis of error. Sources of error, methods of measuring error and ways of minimizing 

errors are all dealt with. Calibration and reference values arc touched on briclly along 

with a description of decibel scales. Transducer types for measuring di tTcrcnt 

components of an acoustic field are looked at with reference to the error mc<1surcmcnts 

and other practical measurement aspects. 

Because we are interested specifically in looking at the relationship hctwccn 

structural vibration and acoustic radiation, a direct method of measuring surface 

vibrations using accelerometers is described. Using a finite difference approximation an 

equation for surface intensity is derived, based on the relationship between two 

accelerometer measurements, which is analogous to that derived for acoustic intensity 

using microphones. This allows surface and acoustic intensity to be measured using the 

same measurement device. 

The application of intensity measurements to modal behaviour is developed 

practically through the use of Intensity Mapping and a number of data presentation and 

measurement procedures are outlined. In order to minimize error measurements a 

number of steps must be followed which can be summarised as follows: 

a) Determine the frequency range over the area to be investigated . 

b) Measure the reactivity index over the area of interest. 
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c) The microphone size and spacing should then be optimised in order to minimise 

the finite difference approximation errors and the phase errors based on the 

frequency range of interest and the reactivity indices. 

The temporal variation of the sound field should be analyzed and methods of 

dealing with periodic and non-periodic sound fields are looked at. 
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4.0 EXPERIMENTAL PROCEDURFS 

The investigations into the application of acoustic intensity mapping were carried 

out using a proprietary intensity analyzing system. Measurements were carried out in air 

to investigate the acoustic energy flow over the surface of a simple cantilever beam. The 

modal parameters of the beam were investigated separately. A notch was introduced into 

the beam using a band-saw and the acoustic energy flow was measured again. The two 

sets of acoustic measurements were then analyzed to identify the variations in the energy 

flow and relate them to the vibrational frequency and amplitude variation. 

In order to investigate the extension of the technique into an underwater 

environment, an underwater intensity probe was calibrated and teste<!. 

4.1 INTENSITY .MAPPING 

4.1.1 Acoustic Intensity Analyzer 

The acoustic intensity measurements were made using the Brliel & Kjicr (13 & K) 

Sound Intensity Analyzing System Type 3360, shown in Figure 4.1. This uses a 

two microphone measurement system to measure acoustic intensity using Eqn. (3.16) in 

B & K Section 3.4.1. The B & K 3360 system consists of 42 digital filters having 
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Figure 4.1 B & K Type 3360 Sound Intensity Analyzer 
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a bandwidth of one-third octave and centre frequencies from 1.6 to 20000 Hz. The: input 

data is digitized and filtered, and then the manipulation to calculate intensity is 

performed. The output is a real time one-third octave intensity spectrum of the intensity 

vector component along the \ine of the probes. Because of digitizing constraints, the 

maximum upper frequency for intensity measurement is limited to 10 KHz. The actual 

frequency limits are set by the selection of measurement probe and spacing used for any 

particular measurement. 

The centre frequencies for a true one-third octave spectrum arc given by 

f - f 21/3 
n+l - n • (4.1) 

Since 2113 
:::: 101110

, the relationship 

f = f IQIIIO 
n+l n • (4.2) 

is used for the centre frequencies of the 3360 Analyzer. In fact, the values used arc the 

preferred centre frequencies calculated using Eqn. (4.2) (Kinsler et al. 1982). The centre 

frequencies calculated using Eqn. (4.2) as well as the actual centre frequencies obtained 

from Eqn 4. 1 are given in Table 4.1 up to 4000 Hz, along with the bandwidth for each 

frequency slot. 
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TABLE 4.1 1/3 OCTAVE FILTER CENTRE FREQUENCIES 

------------------------------------------------------------------------- ·----------------·---
Exact 1/3 Octave 3360 Bandwidth Frequency 
Value Approximation Value Slot 
f -f 2113 
n+l- n • f =f 101110 

n+l n• (Hz) (Hz) 
(Hz) (Hz) 

----------------------------------------------------------------------------------------------
1.55 1.59 1.60 0.4 2 
1.95 1.99 2.00 0.5 3 
2.46 2.51 2.50 0.6 4 
3.10 3.16 3.15 0.7 5 
3.91 3.98 4.00 1.0 6 
4.92 5.01 5.00 1.2 7 
6.20 6.31 6.30 1.4 8 
7.81 7.94 8.00 1.8 9 
9.84 10.00 10.00 2.3 lO 

12.40 12.59 12.50 2.9 11 
15.63 15.85 16.00 3.7 12 
19.69 19.95 20.00 4.6 13 
24.80 :-:5.12 25.00 5.8 14 
31 .25 J 1.1)2 31.50 7.2 15 
39.37 3Y.81 40.00 9.2 16 
49.61 50.11 50.00 11.5 17 
62.50 63.10 63.00 14.5 18 
78.75 79.43 80.00 18.4 19 
99.21 100.00 100.00 23.1 20 

125.00 125.~9 125.00 28.9 21 
157.49 158.49 160.00 37.1 22 
198.52 199.53 200.00 46.3 23 
250.00 251.19 250.00 57.9 24 
314.98 316.23 315.00 72.9 25 
396.85 398.11 400.00 92.6 26 
500.00 501.19 500.00 115.8 27 
629.96 630.96 630.00 145.9 28 
793.70 794.33 800.00 185.3 29 

1000.00 1000.00 1000.00 231.6 30 
1259.92 1258.93 1250.00 289.5 31 
1587.40 1584.89 1600.00 370.5 32 
2000.00 1995.26 2000.00 463. 1 33 
2519.84 2511.89 2500.00 578.9 34 
3174.80 3162.28 3150.00 729.4 35 
4000.00 3981.07 4000.00 926.3 36 
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The bandwidth is given by fu - f, where fu is the upper frequency and f1 is the 

lower frequency of the filter. For a 113-octave filter, fu = 2113f1 and the centre frequency 

fn = (fu . fJ 112
• We can see then that the bandwidth is given by 

w = fu-r. 

= r. (2113-1) 

fn = (fu . f,) 112 

= 2116 • f, 

W = fn(21/3_1)/21/6 

= fn X 0.232 

(4.3) 

The filtering is carried out by three 2-pole filter units in series with cocflicients 

that give a 6-pole Chebyshev filter of 1/3-octave bandwidth. Because the filters of the 

3360 are digital, the filter coefficients can be changed to give different filter 

characteristics. A second set of filter coefficients arc available to perform a 1/12-octavc 

analysis. In order to give the same frequency range, the full 1112-octavc analysis is 

performed in four passes and the data is then interleaved. Because the J/12-octavc 

analysis is not done in real time, either the input signal must be stationary or exactly the 

same data must be recirculated four times (Randa11, 1977). 
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For a 1112~octave analysis, the bandwidth is again t~-f1 where fu = 21112
• f1• The 

centre frequency is given by fn = (fu . fJ 1n and the bandwidth is therefore given by 0.058 

X fn• 

Two intensity probes are available, each consisting of a pair of calibrated and 

phase matched microphones. The Type 4181 set of two 112 inch microphones is provided 

with 12 and 50 mm spacers for a face-to-face probe configuration. Figure 4.2 shows the 

Type 4181 112" microphones with a 12 mm spacer. The centre of the spacer is 50 mm 

from the surface of the structure. The Type 4178 set has two 1/4 inch microphones and 

is provided with 12 and 6 mm spacers for a face-to-face ccnfiguration, and a 12 mm 

spacer for the side-by-side configuration. Figure 4.3 shows the 1/4" microphone pair in 

the face-to-face configuration as part of the three-dimensional intensity probe. The centre 

of the spacer is 25 mm from the surface of the structure. 

4.1.2 Calibration Procedures 

The intensity analyzer is calibrated for intensity measurement using a known 

sound source. This is provided by a B & K Type 3541 Sound Intensity ~alibrator which 

provides a sound pressure level of 117.9 dB at 250 Hz. The pressure inputs of the two 

microphones are calibrated to these levels, and the sensitivity of the intensity level 

mc~surcd . 
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Figure 4.2 (fop) Type 4181 112" Microphones in Face-to-Face Configuration 

Figure 4.3 (Bottom) Type 4178 1/4" Microphones in Face-to-Face Configuration 



54 

The residual intensity index 4o is a measure of the phase errors in the system and 

is important for determining the errors in subsequent intensity measurements (see Section 

3.4.3). The residual intensity index of the measurement system using the 112 inch 

microphone pair can be determined as follows. The two microphones are placed into a 

chamber where they are subjected to a plane progressive wave with a pink noise 

spectrum and having 0° incidence on the probe. The actual intensity is zero, and any 

measured intensity, L1R, is due to system error. The pressure levels are given by LpR and 

the difference between these two levels is called the residual intensity index ~0 ( = L 1R-

Lr0· From Eqn. (3.22) we can see that the system error can be quantified as a phase 

error for each frequency. 

rPcrr = 360° . .6.r . f/c . If/Jt<o + 0·16)/lO (4.4) 

Three intensity analyzers were used during the experiments and the calibration, 

sensitivity levels and residual intensity in terms of phase error with respect to frequency 

are given in Appendix A. It can be seen that the measured phase errors are generally 

within the expected value of 0.3 o except for unit two where they are higher than this 

value for both the 12 mm and 50 mm nominal spacings. These errors are discussed 

further in relation to the measured reactivity of the actual sound field where the 

difference can be related to an actual measurement error (Rasmussen, 1986). 
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4. 1.3 Surface Intensity Array 

The surface intensity in the vibrating plate is monitored by using a pair of 

accelerometers. In order to utilize the B & K 3360 analyzer, the following computation 

is required to convert the measured value into a surface intensity measurement. A tinitc 

difference approximation (Rasmussen, 1985) for the product (a271/ih2) 1(a,7/&t)2 in Eqn. 

(3.28) can be derived as 

ca2
11/at2

) 1 +(a2
17tat2

)2 

c a211l atl)l ( a111 ath = -----------------------
2 

and substituting Eqn. (4.5) into Eqn. (3.28) gives 

-
W= 

(B.m)"2 f 
-- (iP11/at2)1 +(o27]/ot2h (o211tat1)1-((J1111aeh dt 
2~f~r J 

(4.5) 

(4.6) 

It can be seen from comparison between Eqns. 4.6 and 3.16 that if two 

accelerometer inputs are fed into the Type 3360 Analyzer, then the output can be 

converted to surface intensity using the following factor 

-
W= Po Ar I (4.7) 

where p" is the density of air, Ar is the nominal microphone spacing set on the unit, and 
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I is the intensity measured by the unit. .ar1 is the accelerometer separation. 

A surface intensity probe was fabricated from four B & K Type 4375 

Accelerometers and four B & K Type 2635 Charge Amplifiers (Figure 4.4). The 

accelerometers used consist of three piezoelectric elements and three masses arranged in 

a triangular configuration around a triangular post and held in place by a high tensile 

clamping ring. This design gives a high sensitivity-to-mass ratio with a relatively high 

resonant frequency. The charge output per unit acceleration is given by calibration sheets 

for each unit. The measurement of acceleration levels using the Type 3360 analyzer 

required that the system be calibrated. This was done using a reference vibration source 

which provided a 10 m/s2 acceleration at a frequency of 80 Hz. When representing 

acceleration levels on a decibel scale, the reference level used is 10 ~ m/s2 (ISO 1683). 

4.1.4 Intensity Data Collection and Analysis 

Data collection from the intensity analyzers was carried out using a Hewlett­

Packard (HP) 310 microcomputer running HP BASIC, with a 40 MByte hard disc drive 

for data storage (Figure 4.5). Communication and data transfer from the B & K Type 

3360 Intensity Analyzer was carried out over an IEEE-488 parallel interface. Data 

collection and manipulation was carried out using programmes written by the author 

which also incorporated into it data manipulation routines provided by Briiel & Kjrer. 



57 

Figure 4.4 Surface Intensity Probe 
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Figure 4.5 HP310 Microcomputer Data Collection and Analysis System. 
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Before the Intensity mapping is carried out the acoustic lield must be 

characterised. A collection grid is marked over the surface of the specimen or delineated 

in space using a light-weight grid fabricated from fine brass wire (Fig. 4.6). 

In order to characterize the acoustic field the following readings must be made: 

a) Intensity and pressure spectra at different points and at different frequency 

resolutions. 

b) Reactivity index of the sound field. 

c) Stationarity of the sound field. 

The first measurements made are of the intensity and pressure spectra at di rrercnt 

points over the surface. These are carried out using different microphone sizes and 

spacings in order to determine the frequency content of the acoustic field . Once the 

frequency range of interest is determined the appropriate microphone size and spacing 

can be selected. Spectra at different frequency resolutions are also made as these give an 

indication of the nodes and antinodes in the frequency spectrum. One-twelfth octave 

spectra give the highest resolution and by comparing one-twelfth and one third octave 

spectra it can be determined which bandwidth is necessary such that spectral nodes can 

be distinguished. 

The determination of the Reactivity Index ~ of the sound field (Section 3.4.5) 

allows the phase change across the microphone pair to be determined as a function of 



Figure 4.6 
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Intensity Mapping Measurements made in a Plane Normal to the Surface 
of the Specimer.. 
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frequency and these can then be related back to the phase measurement errors of the 

system. The reactivity index was measured separately at all of the grid locations as Wc!ll 

as being measured as a space averaged value by sweeping the probe over the area of the 

grid whilst taking a time average measurement. Two parameters are required to be 

measured; the pressure spectrum and the intensity spectrum. The reactivity index is then 

determined from these two spectra and the phase difference calculated for each 

frequency. 

The stationarity of the acoustic field must be determined as discussed in Section 

3. 7 .2. This is done by measuring the acoustic intensity spectrum at a single point over 

a period of time. A number of spectra are collected using a short averaging time and as 

short a delay as possible between measurements. The variation in the intensity level in 

a single frequency band is reduced to the mean and standard deviation of the intensity 

level (in dB). In this investigation, stationarity measurements were made at all of the grid 

locations used for the intensity mapping. This was carried out in order to determine 

whether a single stationarity reading was a sufficiently valid criterion for the selection 

of significant frequency bands. 

In order to carry out the intensity mapping, the selected probe configuration is 

held at each grid point and the intensity spectrum measured and stored in the computer. 

Once the grid has been mapped, the data is stored and then manipulated to produce three­

dimensional surface maps, contour maps, vector maps and combined vector-contour maps 
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to describe the flow of acoustic energy. Figure 4. 7 shows the results of an intensity 

mapping made using a single (unidirectional) probe to measure the normal intensity 

component over a plate. A contour plot is illustrated. Appendix B gives details on the 

presentation and information contained in the contour and vector plots. 

The flow diagram in Figure 4.8 shows the different steps of data collection and 

the analysis made on each set of data. 

For measurement of two or more components of the sound field it is possible to 

multiplex each measurement probe into a single Intensity Analyzer. The computer uses 

a digital signal to control the switches in the multiplexer unit. Each microphone pair is 

connected in turn to the intensity analyzer where the spectrum is recorded and then 

transferred as a digital signal back to the computer. 

However, a more accurate measure of the instantaneous intensity vector is 

achieved through the use of a dedicated analyzer on each channel as shown in Figure 4. 9. 

This innovative technique was developed during this research programme. The computer 

initiates each intensity analyzer to carry out spectrum measurements over the same 

averaging period and same attenuation level. The measurements are then triggered 

simultaneously and once the selected averaging time has elapsed, each analyzer will 

freeze the spectrum data which can then be transferred sequentially to the computer. 



Figure 4.7 
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Intensity Mapping System Displaying Measurements of Intensity normal 
to the surface of the Specimen. 
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Figure 4.8 Flow Diagram of Data Collection and Analysis 
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Figure 4.9 Simultaneous Measurement of probe Signals for Measurement of Lwo or 
more Components of a Sound Field 
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4.2 UNDERWATER INTENSITY PROBE 

In order to evaluate acoustic intensity scanning in an underwater environment, an 

underwater intensity probe was required to be calibrated and tested. 

4.2.1 Phase Matching of Hydrophones 

As described in Section 3.4.3, the accurate measurement of intensity is dependant 

on the phase errors in the measurement system. In order to minimise these, the 

transducers used in the intensity probe must be matched as closely in phase as possible. 

Because the phase errors in the transducer cannot be adjusted, pairs of transducers must 

be tested in order to select those with the lowest phase errors. 

Six hydrophones were tested for phase matching, and three pairs were selected 

from the results following the method described here. 

The unit designed for the phase matching of the hydrophones consists of a brass 

pressure unit divided into two chambers. These are separated by a diaphragm which is 

connected to an electromagnetic shaker unit contained in the upper chamber. The lower 

chamber is filled with water and the two hydrophones to be matched are introduced into 

it. The upper chamber is then pressurised to 10 atmospheres and the diaphragm vibrated 

using a noise source. The response of the two hydrophones is measured using a Bruel 

& Kjacr 2032 Dual Channel Signal Analyzer. 
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Figure 4.10 shows the equipment set-up. The resultant sound field is compktcly 

reactive, and so the sound intensity is zero in all dir~tions . The phase di !Terence 

between the two hydrophone positions will be zero and any residual intensity measured 

is therefore due to the phase mismatch between the hydrophones. This phase difference 

is calculated by downloading the spectral measurements to a Hewlett Packard computer, 

which also controls all of the measurements. The output is a plot of phase difference as 

a function of frequency. 

4.2.2 Directionality Calibration of an Underwater Intensity Probe 

The hydrophone pairs were checked to see how closely they conformed to the 

ideal cosine bell directionality pattern. This was done at the Marine ln:.titutc acoustic tank 

in St. John's. A fixed location source was used and the hydrophone intensity array 

suspended in the tank from a turntab1e. The acoustic intensity was mc.1sured nt one 

degree intervals throughout a complete revolution and the directionality displayed on a 

stereogram (See Figure 4.11). Figure 4. 12 shows the directionality of the intensity 

displayed using a linear, rather than Decibel scale, and shows for comparison the ideal 

cosine-directionality curve. 



68 

0: 
0 liJ (/) w (/) 

I.IJ I.IJ 
g 
0: 
Q.. 
..J 
~ z 
C) 

(/) 

..J 
;3 
a 

a:: 0:: 

"' ~ u.. 
:J ~ Q.. 
~ ~ <t 
0:: ~ w 0::: 

~ ct 
J: 
u 
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Figure 4.12 Hydrophone Directionality at 4 kHz (Linear Scale), also showing Ideal 
Cosine Directionality Curve 
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4.3 BEAM SPECIMENS AND VIBRATION SOURCE 

Two different beams are used in the experimentation. Beam type I was fabricated 

from 6 mm thick by 75 mm wide steel strip stock and had a length of 600 mm. A hole 

was drilled on the centre-line, 35 mm in from one end, to provide an attachment for the 

excitation source (Figure 4.13). A grid for the data collection was marked onto the 

specimen with its origin 7.5 mm in from the edge of the plate and 10 mm from the 

clamp. The grid cell used had a width of 20 mm and a length of 50 mm (Figure 4. 13). 

Beam type II was cut from 19 mm thick steel plate stock to a width of 100 mm 

and a length of 600 mm. Two holes with diameters 28 mm were machined on the centre­

line with centres 38 from the end (Figure 4.14). Two beams of identical dimensions and 

cut from the same stock were used during the measurements. The data collection grid 

was marked onto the specimen with its origin 12.5 mm in from the edge of the plate and 

10 mm from the clamp. The grid cell had a width of 25 mm and a length of 50 mrn 

(Figure 4.14). 

The beams were clamped at one end on a short pedestal attached to a steel frame 

table. A small electromagnetic shaker, also attached to the table, was used to excite the 

beam a distance of 435 mm from the clamp (Figure 4.15). 
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Figure 4.15 Cantilever Beam Set-up for Forced Vibration 
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The electromagnetic shaker is a B & K Type 4809 driven by a B & K Type 2706 Power 

Amplifier. Two different function generators are used to provide the excitation signal . 

A Wavetck Model 132 VCG/Noise Generator is used to provide a white noise excitation 

of variable bandwidth. An HP 3314 Digital Function Generator is used to provide single 

frequency excitation. 

4.4 THEORETICAL AND EXPERJJ\1ENTAL VffiRATION ANALYSES 

In order ro provide a reference for the Acoustic Intensity Measurements, a 

number of 'classical' vibration analyses are carried out. 

The simplest of these is the theoretical equation for the natural frequencies of a 

beam, given in Table 5.1. 

A finite element analysis is also carried out using the computer programme 

SAP86 with plate elements to allow for the identification of the torsional as well as 

bending modes. 

The simplest experimental technique used to identify mode shapes is the use of 

tine sand on the surface of thl! specimen. The frequency of excitation is then manual ly 

swept and when the beam is excited at one of its modal frequencies the sand particles 

migrate to the nodes and antinodes, revealing the modal shapes explicitly as in Figure 
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4.16. 

A more detailed experimental analysis was carried out by mounting a force 

transducer between the shaker and the beam and measuring the cross-spectrum bct\wcn 

the force transducer and an accelerometer placed at different grid locations over the 

beam. The spectral measurements were carried out using a Bruel a:-~d Kjacr Dual Channel 

Frequency Analyzer controlled from an HP310 computer running a state-of-the-art modal 

analysis software package. 
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Figure 4.16 Modal Shape Revealed using Sand Patterns. 
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5.0 RESULTS 

5.1 THEORETICAL FREQUENCY ANALYSIS 

5 .1 .1 Beam Theory 

Using the equation for the natural frequencies of vibration of a beam and thL' 

dimensions of the two plates given in Figures 4.13 and 4. 14, the natural hl'nding 

frequencies of the beams were calculated and are given in Table 5. I. 

5.1.2 Finite Element Analysis 

The two beam structures investigated were analyzed using the linite element 

analysis package SAP86. A grid of 20 by 3 plate elements was used to model the beam; 

this allowed the torsional modes to be identified in addition to the bending modc!i. The 

natural frequencies identified along with the mode type (torsional or bending) arc shown 

in Tables 5.2 and 5.3 for Beam types I and II, respectively. Figure 5.1 shows the lirst 

two bending modes for Beam I and Figure 5.2 shows the first torsional mode for Beam 

I. Similar mode shapes were also obtained for Beam II. 

The frequencies obtained from beam theory show slightly higher values than the 

results obtained from the finite element analysis package. This results from the discrete 

nature of the analysis, the element sizes selected and the inherent nature of finite clement 

results which always tend to give larger values than the actual ones. 
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Table 5.1 NATURAL BENDING FREQUENCIES OF BEAMS 

Material Parameters: 

p = 7.7 x 103 Kg.m·3 

p = p w h where l> is the mass density of the beam 

w is the width of the beam 

h is the thickness of the beam 

Structural Dimensions: 

Beam I Beam II 

I = 0.435 m I = 0.435 m 

w = 0.075 m w = 0.100 m 

h = 0.006 m h = 0.0190 m 

r :..~ 11/2 

l p l'' J 

Beam I Beam ll 
f3nl Wn fo Wn fn 

(rad/S) (Hz) (rad/S) (Hz) 

3.52 167.1 26.6 529.0 84.2 

22 .0 1044. 1 166.2 3306.3 526.2 

61.7 2928.2 466.0 9272.8 1475.8 



Table 5.2 

Mode 
Number 

1 
2 
3 
4 
5 
6 
7 
8 

Table 5.3 

Mode 
Number 

1 
2 
3 
4 
5 
6 

BEAM I NATURAL FREQUENCIES 
DETERMINED USING SAP86 

Frequency 
(Hz) 

27.5 
171.4 
283.0 
479.6 
864.2 
940.2 
1489.0 
1555.0 

Mode 
Type 

Bending 
Bending 
Torsional 
Bending 
Torsional 
Bending 
Torsional 
Bending 

BEAM ll NATURAL FREQUENCiES 
DETERMINED USING SAP86 

Frequency 
(Hz) 

83.8 
522.2 
663.9 

1460.0 
2048.0 
2861.0 

Mode 
Type 

Bending 
Bending 
Torsional 
Bending 
Torsional 
Bending 
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Also it is noted from Tables 5.2 and 5.3 that the ratio of the natural frequencies 

of the two beams is close to the ratio of the thicknesses of the beams; this is to h~ 

expected from beam theory. 

An important thing to note is that the natural frequencies arc closely spaced. Thl' 

frequency separation of the 5th and 6th modes and also of the 7th and 8th modes arc less 

than the bandwidth of the l/3-octave filters at these frequencies (sec Table 4. \ ). This 

immediately suggests that there may be difficulties in identifying the mode related 

patterns for higher frequencies from 1/3-octave acoustic spcctmm. 

5.2 l\IODALTESTING USING AN FFr ANALYZER 

Beam II was analyzed using a modal analysi3 software package produced hy Brucl 

& Kjaer to perform detailed vibrational analysis using the B & K 2032 Dual Channel 

Frequency Analyzer controlled from an HP310 computer. 

A force transducer was mounted between the shaker and the beam end, and an 

accelerometer placed at different grid points over the surface of the beam. At each grid 

location the cross spectrum between the accelerometer and the force transdm:cr was 

measured. The modal frequencies were identified from the cross spectrum and the mode 

shapes were determined. The modal frequencies and associated mode shapes arc listed 

in Table 5.4. Comparing these values with those given in Table 5.3 it is 
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Table 5.4 BEAM II NATURAL FREQUENCIES MEASURED 
EXPERIMENTALLY USING A MODAL ANALYSIS PACKAGE 

Mode 
Number 

1 
2 
3 
4 
5 

Frequency 
(Hz) 

28.6 
379.5 
504.6 

1023.4 
1461.0 

Bending 
Type 

Not Determined 
Bending 
Torsional 

Bending 
Torsional 

Table 5.5 NATURAL FREQUENCIES MEASURED EXPERIMENTALLY 

Mode 
Number 

I 
2 
3 
4 
5 

Mode 
Number 

") ... 
3 
4 
5 

BEAM I 

Frequency 
(Hz) 

30 
150 
310 
395 
600 

BEAM II 

Frequency 
(Hz) 

30 
385 
500 

1020 
1460 

Bending 
Type 

Bending 
Bending 
Torsional 
Bending 
Torsional 

Bending 
Type 

Not Determined 
Bending 
Torsional 
Bending 
Torsional 
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observed that the frequencies of the finite element analysis and the B & K experimental 

analysis package differ considerably. More will be said on these differences later in 

Section 5.3. The identified second, third, fourth and fifth mode shapes arc displayed in 

Figures 5.3 (a) and (b). The first mode shape was not identified by this procedure: 

instead a spurious first frequency was identified, probably due to the combined motion 

of the clamping support and the plate. 

5.3 EXPERIMENTAL MODE SHAPE DETERMINATION 

The mode shapes were determined experimentaJiy using the technique descrihcd 

in Section 4.4. The modal frequencies were found by adjusting the excitation frc<JUCncy 

manually until a distinct pattern emerged in the sand. The modal frequencies arc listed 

in Table 5.5. The patterns obtained for Beam I are shown in Figure 5.4 (a) as a bending 

mode and Figure 5.4 (b) as the first torsional mode. 

Comparing Tables 5.2, 5.3 and 5,5, it is observed that the analytical frequencies 

are much higher than those obtained from the experimental analysis, indicating that the 

support conditions were not rigid as assumed in the theoretical analysis hut rather 

flexible. This assumption is strengthened by the fact that in Table 5.5, the firsL identified 

modal frequency is almost the same for both of the beams indicating the combined modal 

frequency of the support and the beam. Consequently no proper comparisons could he 

made between the theoretical and experimental results. Hence no other theoretical 
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(a) Second Bending MOde 

Figure 5.3 (b) First Torsional MOde 

Experimental Analysis for Beam I 
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Figure 5. 4 Mode shapes revealed by sand patterns. 
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analysis would be compared with that of the experimental. Hereafter the interpretations 

of the modal behaviour from the acoustical field measurements will be made only from 

the experimental results. 

5.4 ACOUSTIC MEASUREMENTS FOR BEAM I 

5 .4.1 Stationarity Measurements 

Stationarity measurements were made at each grid location using two 1/4" 

microphones in the side-by-side configuration to measure the component of the intensity 

vector normal to the surface of the plate. The beam was excited using 1 kHz bandwidth 

random noise. The data from each grid location (identified using the notation given in 

Figure 4.13) were analyzed to give the standard deviation (in decibels) of the measured 

intensity levels and these data are given in Table 5.6. It is observed that a maximum 

standard deviation of 4.40 dB was obtained at point {6,3) at a frequency of 500Hz where 

a large acoustic intensity was observed from experimental measurements. Excepting this 

point, the standard deviation at most of the other points were low and this was deemed 

to be acceptable. 

5.4.2 Reactivity Measurements 

Reactivity measurements were made at a number of grid locations using two 1/411 

microphones in the side-by-side configuration to m~ .. sure the component of the intensity 

vector normal to the surface of the plate (LJ and the corresponding pressure 
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Table 5.6 STATIONARITY RESULTS FOR BEAM I USING 1/~11 

.1\UCROPHONE PAIR 

------------------------------------~------------------------------------------~-------------------
Freq. Standard Deviation (dB) at different grid locations 
(Hz} 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 

---------------------------------------------------------------------------------------------------
100 a a a ab ab b ab ab 
125 b b b b 3.02 1.62 ab b 
160 2.93 1.71 b 1.65 3.31 1.75 1.34 2.9J 
200 ab 2.49 1.60 1.01 0.95 1.28 0.84 ab 
250 b 1.19 ab 1.74 b 1.10 0.78 b 
315 ab 1.37 1.69 1.74 1.70 a 2.25 ab 
400 0.93 1.07 1.92 1.37 0.97 2.60 0.96 0.93 
500 b ab 0.72 0.76 2.59 2.48 b b 
630 b b b 2.15 1.15 0.98 0.99 b 
800 0.51 0.62 0.60 1.32 b 0.99 0.65 0.51 
1000 0.76 0.58 ab b 0.69 0.50 1.20 0.76 
1250 0.33 0.97 0.52 0.36 b 0.35 0.24 0.33 
1600 0.81 0.64 a ab 0.83 0.31 0.22 0.81 
2000 0.78 0.44 0.53 0.94 1.11 0.58 0 20 0.78 

---------------------------------------------------------------------------------------------------
Freq. Standard Deviation (dB) at different grid locations 
(Hz) 0,1 2, l 4,1 6,1 8, l 10,1 12,1 14,1 

----------------------------------------~----------------------------------------------------~-----
100 ab ab ab b b ab ab b 
125 b 5.23 3.19 1.68 1.29 2.10 1.00 b 
160 2.93 1.22 1.74 1.84 1.19 1.29 1.42 b 
200 ab 4.63 1.34 1.45 1.05 1.08 1.35 2.14 
250 b 2.42 3.45 2.70 b 1.05 0.94 1.71 
315 ab 1.19 1.30 1.69 3.55 1.22 3.61 2.33 
400 0.93 1.21 1.06 1.12 1.05 1.76 b 2.16 
500 b ab 1.05 0.81 1.47 1.13 b b 
630 b b 0.78 1.39 0.78 0.83 2.47 1.58 
800 0.51 0.50 0.81 0.89 b 0.64 0.81 b 

1000 0.76 0.29 0.71 1.39 0.47 0.70 1.59 0.49 
1250 0.33 a 0.45 0.89 1.60 0.41 0.84 0.22 
1600 0.81 0.36 a 1.76 0.58 0.18 0.14 0.39 
2000 0.78 0.46 0.81 0.46 0.59 0.53 0.54 0.39 

------~--------------------------------------------------------------------------------------------
a = one or more values below 40 dB. 
b = direction of acoustic energy changes during measurement. 



89 

Table 5.6 continued STATIONARITY RESULTS FOR BEAM I USING 1/411 

MICROPHONE PAIR 

---------·-----------------------------------------------------------------------------------------
Freq. Standard Deviation (dB) at different grid locations 
(Hz) 0,2 2,2 4,2 6,2 8,2 10,2 12,2 14,2 

------------------------------------------------------------------------------------------------~--
100 a a ab 1.87 3.38 b b b 
125 1.07 b b 1.60 1.35 1.27 1.14 ab 
160 1.43 3.42 b 1.45 1.21 1.20 1.98 2.20 
200 2.05 ab ab b b ab 1.58 0.85 
250 2.35 b ab b ab 1.60 0.88 0.97 
315 1.68 ab 2.01 1.16 1.81 b 0.98 1.02 
400 1.36 2.21 3.42 b 0.63 7..67 ab b 
500 2.08 1.13 1.17 b 1.42 1.57 b 3.46 
630 0.50 0.58 1.20 0.76 0.96 1.42 0.80 1.01 
800 0.74 0.47 3.43 0.70 b 0.58 0.73 1.92 
1000 1.38 0.67 0.77 2.14 0.56 0.87 0.71 0.57 
1250 0.40 ab 1.71 1.12 0.93 1.23 b 0.43 
1600 0.29 0.48 a 1.10 a 0.61 0.44 0.36 
2000 0.60 0.81 1.29 0.86 0.91 0.79 0.34 0.47 

---------------------------------------------------------------------------------------------------
Freq. Standard Deviation (dB) at different grid locations 
(Hz) 0,3 2,3 4,3 6,3 8,3 10,3 12,3 14,3 
---------------------------------------------------------------------------------------------------
100 a ab ab 4.02 b ab b b 
125 1.02 ab 1.17 1.36 0.91 1.40 1.79 ab 
160 0.91 3.25 1.15 1.12 1.16 1.38 2.49 b 
200 3.30 ab b ab ab a 1.62 2.41 
250 2.81 b ab b ab 1.52 0.85 b 
315 2.53 4.65 1.58 1.85 1.70 ab 1.80 2.78 
400 1.34 b b 2.08 1.47 a ab 2.21 
500 1.40 1.10 0.69 4.40 1.78 1.72 b 3.93 
630 1.19 0.70 1.21 1.06 1.11 1.41 0.81 1.14 
800 a 0.65 1.61 0.76 b 0.63 0.60 0.84 
1000 1.20 1.08 3.08 1.09 0.36 0.79 1.57 b 
1250 0.27 a 0.72 1.22 1.06 1.65 ab b 
1600 0.36 1.07 0.66 0.88 1.28 0.57 0.57 b 
2000 0.60 0.97 a 0.62 a a 0.86 b 

-----------------*---------------------------------------------------------------------------------
a = one or more values below 40 dB. 
b = direction of acoustic energy changes during measurement. 
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(Lp). The beam was excited using 1 kHz bandwidth random noise. The reactivity of the 

sound field (L0 was determined and the phase change across the microphone spacers was 

calculated from this (Table 5. 7). It is observed that the phase differences were quite high 

at the clamp locations and at the excitation points, near the ends of the plates. At J 15 

Hz, measurements at positions (x, 1) and (x,2) are close to the node. There is therefore 

little energy flow in the z-direction and the phase is small. For the remaining frequencies 

between 160 Hz and 2000 Hz, the pha!:e differences were considered acceptable when 

compared with the system phase errors. It should be noted that phase change data gives 

a measure of the reactivity only in 'lhe direction of the probe axis. 

In addition to the single point reactivity measurements, the swept reactivity was 

measured. This was done by using a sufficiently long averaging time and sweeping the 

probe across the surface of the specimen during the data acquisition. Two passes wen.! 

made, one each for intensity and pressure, and the phase change across the microphone 

spacer was calculated from the reactivity index (Table 5.8). 

5.4.3 Spectrum Measurements 

Spectrum measurements were made at location 4,1 (see Figure 4.13). The beam 

was excited using 1 kHz bandwidth random noise and the pressure and intensity were 

measured using two 1/4" microphones in the side-by-side configuration with a spacing 

of 12 mm. An attenuation of 40 dB was set on the analyzer, and 4 second linear 

averaging was used. Four spectra were collected. In all of the figures showing 
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SINGLE POINT REACTIVITY ~) MEASURE1\1ENTS (PHASE 
DIFFERENCE ONLY) USING 114" :MICROPHONE PAIR ON 
BEAM I 

------------------------------------------------------------------------------------------~--------
Freq Phase Difference (Deg.) at each Grid Location 

------·----------------------·----------------------~---------------------------------------
(Hz) 0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 

----------------------------------------------------------------------------··---------------~------
100 3.22 0.77 17.27 1.50 3.00 3.22 2.08 4.05 
125 2.60 0.18 W.33 0.73 0.48 0.04 0.24 5.06 
160 3.48 2.96 9.36 1.66 2.10 1.00 3.10 5.64 
200 0.05 0.50 6.58 0.22 0.76 2.50 0.13 0.95 
250 3.20 0.53 5.19 1.01 1.97 0.34 2.37 2.21 
315 2.12 0.41 2.66 0.80 2.37 2.79 1.50 1.61 
400 1.05 0.47 1.07 0.05 7.07 1.20 0.68 0.68 
500 0.18 0.24 2.73 1.72 1.68 2.32 2.79 0.82 
630 0.03 0.17 5.01 2.40 2.35 5.01 2.29 2.46 
800 1.32 3.09 2.82 1.38 0.76 3.31 2.69 1.91 
1000 1.54 4.87 0.20 1.34 1.89 1.57 0.52 0.77 
1250 7.48 2.66 1.39 3.84 1.21 1.80 0.40 2.48 
1600 2.58 2.83 1.45 0.85 4.18 2.30 3.10 7.44 
2000 7.91 2.87 2.81 2.81 3.01 3.62 6.14 5.35 

--------------------------··-------------------------------------------------------------------------
Freq Phase Difference (Deg.) at each Grid Location 

---------------------------------------------------------------------------------------------
(Hz) 0,1 2,1 4,1 6,1 8,1 10,1 12,1 14,1 

---------~------------------------------------------------------------------------------------------
100 3.87 0.87 0.31 0.18 0.97 0.09 0.00 0.46 
125 1.46 1.39 0.90 0.40 0.44 0.51 0.68 1.03 
160 0.45 2.05 0.98 0.83 0.74 1.35 2.89 0.62 
200 0.20 0.55 0.39 2.13 4.35 11.44 5.73 3.62 
250 0.17 0.68 1.37 3.35 4.22 4.03 5.43 7.16 
315 0.43 0.07 0.29 1.61 5.57 1.89 1.04 2.27 
400 0.45 0.40 0.62 1.15 30.85 2.57 0.62 1.86 
500 0.22 0.12 0.84 2.32 3.77 3.68 0.34 0.39 
630 0.26 0.10 0.74 5.76 5.25 8.51 1.23 5.01 
800 2.40 3.02 4.79 3.89 2.46 10.97 6.77 0.48 
1000 0.59 5.34 2.55 6.13 5.59 4.44 3.45 2.55 
1250 6.83 0.57 1.03 12.14 5.06 2.16 0.55 6.23 
1600 4.80 2.14 1.55 1.48 7.61 7.27 8.94 18.68 
2000 5.35 2.33 1.85 6.43 8.48 6.43 14.73 14.73 

--~-------~"---------------------------------------------------------------------------------~-----
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Table 5.7 Cont'd. SINGLE POINT REACTIVITY <"Lt) 1\'IEASUREMENTS 
(PHASE DIFFERENCE ONLY) USING 1/4" 
MICROPHONE PAIR ON BEAM I 

-----------------------------------------------------------------------------~---------------------
Freq Phase Difference (Deg.) at each Grid Location 

-------------------------------------------------------------------·------------------------
(Hz) 0,2 2,2 4,2 6,2 8,2 10,2 12,2 14,2 

---------------------------------------------------------------------------------------------------
100 2.12 0.67 1.54 0.85 :.>. 61 0.29 0.29 0.12 
125 2.48 0.90 1.03 0.67 0.55 1.21 L71 1.01 
160 2.89 1.21 1.38 1.07 1.70 2.25 2.H9 3.10 
200 0.89 1.28 0.87 1.54 3.15 1.14 5.23 3.70 
250 0.77 1.22 1.33 1.97 0.35 6.39 5.07 5.43 
315 1.14 0.04 0.47 1.93 3.35 0.01 2.73 1.76 
400 2.45 1.41 1.12 0.54 17.75 1.86 0.2 0.39 
500 0.03 1.14 1.85 0.70 2.55 2.99 0.11 0.36 
630 0.76 2.14 1.86 4.27 4.57 5.13 2.35 4.47 
800 5.63 7 .25 1.26 3.63 1.15 12.89 7.59 2.35 
1000 3.37 9.05 3.45 2.80 9.71 5.10 3.37 2.93 
1250 14.59 1.60 5.42 8.40 5.81 4.31 0.07 5. 18 
1600 15.54 6.63 4.18 1.74 1.32 7.79 9.80 15.9r 
2000 15.43 9.08 9.30 7.73 7.56 7.91 11.70 12.54 

---------~-----------------------------------------------------------------------------------------
Fr~ Phase Difference (Deg.) at each Grid Location ___________________________________________________________________ , ________________________ 

(Hz) 0,3 2,3 4,3 6,3 8,3 10,3 l2,3 14,3 

------------------------------------------------------------------------------------------·--------
100 1.57 0.07 0.64 0.08 0.20 0.56 0.56 1.37 
125 1.46 0.41 0.92 0.90 1.21 1.56 2.01 3.12 
160 1.42 1.18 1.38 2.41 1.66 3.1J 4.38 6.19 
200 2.68 0.48 0.89 2.81 2.68 0.51 5.73 3.53 
250 1.97 1.01 0.44 0.52 3.51 6.39 5.69 5.43 
315 1.30 1.28 2.49 4.52 5.44 0.54 4.96 7.01 
400 1.95 0.26 1.38 0.05 13.78 1.44 1.05 3.88 
500 3.36 1.65 3.68 0.33 4.85 3.21 1.85 2.38 
630 4.37 3.02 3.72 5.63 7.77 5.63 6.03 7.08 
800 7.77 7.25 8.13 5.25 0.81 13.50 7.95 7.25 
1000 5.72 5.99 2.61 3.69 12.51 7.71 3.78 3.87 
1250 12.42 4.02 5.81 5.30 5.68 4.31 0.40 6.52 
1600 17.84 7.44 10.27 2.25 1.67 9.58 12.06 15.54 
2000 17.31 9.96 10.43 9.96 10.67 11.44 11.44 11.70 

----------------------------~-------------------------------------------------·----------·---------
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SWEPT REACTIVITY :MEASUREMENTS FOR BEAM I 

USING 114" MICROPHONE PAIR 

-------------------------------------------------------------------------------
Freq Lp Lt Lx Phase Diff. 4> 

(Hz) (dB) (dB) (dB) 

-----------------------------------------------··-------------------------------
100 60.8 40.0(+) -20.8 0.01° 

125 68.6 64.6(+) -4.0 0.65° 

160 72.1 69.9(+) -2.2 1.26° 

200 61 J) 52.0(-) -9.0 0.33° 

250 60.7 56.8(+) -3.9 1.33° 

315 63.6 55.2(-) -8.4 0.60° 

400 71.5 61.4(-) -10.1 0.51° 

500 61.3 53.3(+) -8.0 1.040 

630 67.9 59.7(+) -8.2 1.29° 

800 59.7 64.7(+) -5.0 3.31° 

1000 59.9 55.6(+) -4.3 4.87° 

1250 58.7 55.2(+) -3.5 7.31° 

1600 55.4 54.2(+) -1.2 15.90° 

2000 50.9 48.3(+) -2.6 14.40° 

---------------------------------------------------------------------------·---
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spectral measurements, the frequency for each frequency slot is given in Table 4. 1. The 

numbers at the spectral peaks refer to the Mode Numbers given in Table 5.9. Figures 

5.5 and 5.6 show the 1112-octave pressure and intensity spectra over the frequency range 

1 to 1600Hz Figures 5.7 and 5.8 show the 1/3-octave pressure and intensity spectra in 

the same frequency range 100 to 1600Hz. 

The 1/12-octave pressure and intensity s~tra were also measured at location 8,2 

and are displayed in Figures 5. 9 and 5.10 respectively. 

Inspection of the 1/3- and 1/12-octave pressure and intensity spectra of Figures 

5.5 to 5.10 reveal some of the actual modal frequencies; these values are listed in Table 

5.9 for comparison. Note that the mode shapes are not determined from the spectra and 

these have been identified from the subsequent intensity mapping. The difference between 

the modal frequencies detennined from the theoretical analyses and the measured spectra 

increases with frequency and the variation is interpreted as being due to the non-ideal 

boundary conditions (flexibility of support) imposed by the actual test set-up as well as 

the finite element idealization. 

It is also interesting to note that the amplitudes of acoustic pressure and intensity 

of the second and fourth frequencies are much higher than the other frequencies in all 

of the spectra. 
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Table 5.9 COMPARISON OF THEORETICALLY AND EXPERil\ffiNTALLY 
DETERMJNED MODAL FREQUENCIES FOR BEAM I 

Mode Mode 
Number Shape 

Frequency (Hz) for different techniques 
1 2 3 4 

Bending 26.6 27.5 

2 Bending 166.2 171.4 

3 Torsional N/ A 283.0 

4 Bending 466.0 479.6 

5 Torsional N/ ."'\ 864.2 

6 Bending N/A 940.2 

7 Torsional N/ A 1489.0 

8 Bending N/A 1550.0 

1 = Beam Theory Analysis 

2 = Finite Element Analysis (SAP86) 

3 = Experimental Values 

4 = 1/3 Octave Intensity Spectrum 

5 = 1/12 Octave Intensity Spectrum 

30.0 N/A 

150.0 160.0 

310.0 

395.0 400.0 

600.0 

800.0 

5 

27.5 

145.0 

302.4 

389.6 

582.3 

823.4 

1155.0 
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It can be seen that both the pressure and the intensity spectra must be looked at in 

order to determine the modal frequencies, and this is because the sound licld in the 

direction chosen may be reactive. From Table 5.8 we can see that at 630 Hz the phase 

difference is 0. 74 o at location 4,1 and 4.57° when measured at location 8,2. The 1/3-

octave spectra, while still revealing the modal frequencies, do so with a much lower 

frequency resolution, and with much less clarity. It is also .:.pparent that the frequency 

resolution of the system is important. Hence it is seen that a better identification or moda\ 

frequencies could be obtained if a filter much higher than l/12th octave is used in hoth 

pressure and intensity measurements. 

5.4.4 Pressure Mapping 

An 8 column by 4 row rectangular grid with cell length 50 mm and width 20 nun 

was used to map the variation in the pressure over the surface of the beam. A one-third 

octave spectrum with linear averaging over a period of 1 second was measured at each 

grid location while the beam was excited using 1 kHz bandwidth white noise. The one­

third octave frequency band maps are shown in Figures 5. 11 (a} to 5. 11 (I} for the 

frequencies 100 to 1250Hz. Refer to Appendix B for an explanation of the contour map. 

The 1/3-octave pressure variation given in these do not reveal any clear information 

regarding modal behaviour. It could be surmised from these figures that there arc modal 

frequencies around 160 Hz, 400 Hz and 800 Hz but the mode shapes are nor revealed 

with any clarity. 
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5.4.5 Intensity Mapping 

The grid desciibed in Figure 4.13 was used for the following measurements of thc 

intensity variation over the plate. The intensity component normal to the platc was 

measured using two 1/4" microphones in the side-by-side configuration with a 12 111111 

spacing. The probe was held manually so that the acoustic centre was 12 mm from the 

surface of the beam. The spectra were measured with a 40 dB attenuation setting and I 

second linear averaging. Refer to Appendix B for an explanation of the contour map. 

TR·e first scan was performed with the beam excited by I kHz bandwidth white 

noise, and the intensity contour maps for the 1/3-octave bands from 100 to J 150 Hz arc 

shown in Figure 5.12. 

The next scan was done with the beam excited by 10 kHz bandwidth white noise 

and the intensity contour maps for the 1/3-octave bands from tOO to 3150 Hz are shown 

in Figure 5.13. 

A number of comparisons between the Figures 5.12 and 5.13 for the same centre 

frequency are in order and, where relevant, comments on the relevant pressure maps or 

Figure 5 .ll are also made. 

100 Hz. This is not a modal frequency and the energy flow is therefore expected to he 

random and non-stationary. Although the pressure map is reasonably uniform, the 
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intensity maps are incoherent. When an unknown structure is being analyzed, this 

incoherence may conversely be used to indicate that the particular frequency is not a 

modal frequency. 

125 Hz and 160Hz. These two frequency bands lie either side of the modal frequency 

at 145.0 Hz and the patterns in both the pressure maps and the 1 kHz bandwidth-excited 

intensity maps show coherent patterns. However, only the intensity map identifies the 

node location near the end of the beam. It is not immediately apparent as to why the 

intensity pattern measured under 10 kHz bandwidth excitation appears incoherent but 

inspection of the data show that at a number of the measurement locations, the intensity 

levels were below the cut-offlevels set on the analyzer. This suggests that under 10kHz 

bandwidth excitation the energy input at this frequency was lower than under 1 kHz 

bandwidth excitation. This may arise because of the power and frequency response of the 

shaker and amplifier system. 

200Hz and 250Hz. Although these frequencies do not appear to be modal frequencies, 

both pressure and intensity maps show coherent patterns in both frequency bands under 

l kHz B. W. excitation. The patterns for intensity measurements under 10 kHz B. W. 

~xcitation again show confused patterns and this is understood to be due to similar factors 

as described previously. 

315 Hz. This is a particularly interesting frequency to examine as the data reveal a 
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number of significant points. The intensity map for this frequency shows the 11rst 

torsional vibration mode of the beam with the node running along the length of the 

structure. While the corresponding pressure map does show a coherent pattern, no 

information regarding the mode shape is given. The pattern determined during excitation 

under 10kHz B.W. excitation is still indistinct but can be seen to contain some of the 

information revealed under 1 kHz bandwidth loading. 

A significant feature of this frequency band is that none of the measured intensity 

spectra (Figures 5.6, 5.8 and 5.10) give a clear indication that this is a modal frequency. 

Examining the probe locations during the spectral measurements does give us some 

insight into this as it shows that it was close to a (torsional mode) nodal location where 

there was very little energy flow normal to the plate. In fact, because the 1/12 octave 

pressure spectrum ignores the directionality it gives a clearer indication of the modal 

frequency and in particular, Figure 5.6 has quite an apparent peak at 3l5 Hz. Because 

of the lower energy flow in the torsional mode compared to the bending modes, in the 

113-octave pressure spectrum the torsional mode in the 315 Hz frequency slot is 

overshadowed by the stronger energy output by the bending mode in the 400 Hz 

frequency slot. 

The conclusion to be drawn from this is that in many cases, performing a swept 

measurement to give an averaged spectrum over the structure may be necessary in order 

to get a good indication of the modal frequencies. In addition, both intensity and pressure 
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spectra need to be analyzed to identify the modes. 

Ana1ysis of the intensity maps made up to this point reveal that there is a bending 

mode in the frequency band defined by the 160Hz centre frequency. In order to more 

fully investigate this mode shape, the beam was excited with 1 kHz white noise and a 

mapping done using the 1112-octave bandwidt'l. The intensity contour maps for the four 

frequencies 145, 155, 165 and 175Hz are shown in Figure 5.14. 

In order to compare the intensity map data obtained using a 1112-octave bandwidth 

on a beam excited by random n01se, with that obtained from a 113-octave intensity map 

of a beam excited at a single frequency, the following measurements were made. The 

beam was excited at 145, 155, 170 and 175Hz and a mapping done using the 1/3-octave 

bandwidth. The intensity contour maps for the 160Hz centre band are plotted in Figure 

5.15. 

Both the 1/12 octave band and 1/3 octave band results of Figures 5.14 and 5.15 

show that the natural frequency is around 145 Hz since the acoustic intensity levels are 

very high at this frequency and the acoustic map indicates the modal pattern. 

Analysis of the 1/3 octave intensity maps for 1 kHz white noise excitation and 

excitation at the centre frequency of each band reveal some interesting features. For 

example, the energy flow pattern in the 160 Hz frequency band remains the same 
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under white noise excitation and both the 145 Hz and 155 Hz (single frequency) 

excitations (Figures 5.12 (c) and 5.15 (a) and (b)). However, if the beam is excited at 

170 Hz and at 175 Hz, then the two energy flow patterns show a reversal in energy 11ow 

(Figures 5.15 (c) and (d)). Under white noise excitation the 145 Hz modal frequency, 

and hence the energy flow at this frequency, dominates. If the excitation frequency is 

changed to 175 Hz then a different energy flow pattern is revealed. The usc of the 1112-

octave filters to perform the analysis shows that these two energy now patterns can be 

discriminated (Figure 5.14) under white noise excitation using a narrower bandwidth 

filter. 

A torsional mode is also revealed by the one-third octave intensity maps. Further 

investigation revealed this to be at the frequency of 302 Hz. A one-third octave intensity 

map was plotted out with the beam excited at this frequency as shown in f'igurc 5. 16. 

In addition, four scans were carried out over a grid normal to the plane of the spcci men. 

The intensity vector component normal to the specimen was still measured. Tile four 

grids were selected so that they cut across a node; these measurements were intended to 

give a measure of the distance from the specimen at which the mode shape information 

becomes indistinct. (See figures 5.16 (b)- (d)). It is observed that beyond a distance of 

100 mm the modal information becomes less clear. Hence the microphone pair must be 

kept within 50-100 mm of the surface in order for the correct modal information to ht! 

obtained. 
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5.4.6 Full Vector Acoustic Intensity Scanning 

In order to determine whether there are any advantages in measuring all three 

components of the acoustic intensity simultaneously, the six microphone array described 

in Section 3.5.2 was used to carry out some measurements on Beam I. 

The stationarity and reactivity for each microphone pair were determined at grid 

location 4,2 and the results are given in Tables 5.10. and 5.11 respectively. Table 5.10 

shows that the phase changes in the vertical direction are largest indicating that this is 

the principal direction of energy flow. At 315Hz the phase changes of between 0.82° 

and 1.09° for the three components show that the energy flow is roughly at an equal 

angle to all three axes. The reactivity in the x-direction at 800 Hz appears to be an 

anomalous value. From Eqn. 3.17, we can calculate the maximum phase difference for 

a given microphone spacing and signal frequency; at 800 Hz and with a 12 mm spacing 

the maximum phase difference should be 10°. It is unclear why we should get such an 

anomaly since the stationarity measurements at 800 Hz in the x-axis reveal that the 

intensity level does not vary with time, as would be expected for a modal frequency. 

The anomaly therefore highlights the problem of not being able to determine reactivity 

through a single measurement. The requirement to take separate pressure and intensity 

measurements leads to a possible source of error in the reactivity measurements. 

It can be seen from the design of the six element array that the acoustic centre 
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Table 5.10 ACOUSTIC INTENSITY REACTIVITY MEASUREMENTS FOR 6-
ELEMENT PROBE OVER BEAM I AT GRID LOCATION 4,2 

-------4·------------------------·-----~-------------------------------------------------
Freq. 
(Hz.) 

100 
125 
160 
200 
250 
315 
400 
500 
630 
800 

1000 
1250 

Phase Change 
(x-axis) 

0.97 
0.20 
0.12 
0.01 
0.97 
1.09 
0.76 
0.03 
3.80 

67.66 
3.29 
2.06 

Phase Change 
(y-axis) 

0.02 
0.04 
0.43 
0.02 
0.13 
1.46 
0.56 
0.31 
0.59 
2.89 
1.73 
0.71 

Phase Change 
(z-axis) 

2.44 
0.78 
0.55 
4.25 
0.43 
0.82 
1.09 
1.19 
2.00 
8.13 
0.97 
6.37 

Table 5.11 ACOUSTIC INTENSITY STATIONARITY MEASUREMENTS FOR 
6-ELEMENT PROBE OVER BEAM I AT GRID WCATION 4,2 

----------------------------~---------------------------------------------------
Freq. Standard Standard Standard 
(Hz.) Deviation Deviation Deviation 

(x-axis) (y-axis) (z-axis) 
--------------------------------------------------------------------------------
100 ab ab b 
125 ab ab ab 
160 b 1.56 4.82 
200 ab ab 1.55 
250 2.05 a 2.49 
315 1.35 1.32 2.10 
400 1.23 1.24 1.51 
500 ab ab 0.70 
630 0 .38 4.11 0.75 
800 0.63 0.74 0.84 
1000 0.36 1.43 ab 
1250 0.58 a 0.47 

a = one or more values below 40 dB. 
b = direction of acoustic energy changes during measurement. 
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of the probe cannot be held as close to the surface as is done for the two element side-

by-side configuration. In order to measure the effect of this, two intensity scans were 

carried out. In the first, the face-to-face microphone pair was removed to allow the 

measurement of the x- and y-components of the intensity vector with the acoustic centre 

at the same height above the surface as the side-by-side configuration. These x- and y­

components of the intensity vector are represented in Figure 5.17 by vectors fvr the four 

modal frequencies 160 Hz, 315 Hz, 400 Hz and 800 Hz. See Appendix B for an 

explanation of the vector maps. 

When all three microphone p:ti.rs were used, this moved the acoustic centre of the 

probe to 35 mm above the surface of the beam. These intensity scans are shown in 

Figure 5.18. The x- andy-components of the intensity vector are represented by vectors 

whilst the normal (z-) component is shown by a contour map. Only the four modal 

frequencies (160Hz, 315 Hz, 400Hz and 800Hz) are shown. It can be seen that the 

increased height reduced the clarity of both the vector and contour maps, with the 315 

Hz modal pattern becoming much more difficult to interpret. 

It was concluded that while the vector maps themselves offered interesting 

information regarding the in-plane energy flow - for example, the anti-clockwise energy 

circulation at 315 Hz, the information does not facilitate the recognition of modal shapes 

in this particular structure. In fact, the increased height above the surface reduces the 

clarity of the contour maps and these are the patterns which provide the clearest 
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correlation with the modal shapes. It should be noted, however, from the in-plane energy 

flow measured at the torsional mode that this infonnation may of use in more complex 

s.truc~tes. 

5.4.7 Measurements made on Beam I after Notching 

In order to investigate the change in the modal behaviour of Beam I, a notch was 

cut into it using a band-saw. The following measurements were then made with the beam 

excited by 1 kHz bandwidth random noise (all measurements were made with the 1/4" 

microphone pair in side-by-side configuration for intensity unless otherwise stated): 

a) Single point reactivity at two grid points (4, 1 and 12, 1) as well as swept 

reactivity. These data are given in Table 5.12. As stated earlier, the phase 

changes across the microphone pair indicate that the principal energy flow is in 

the direction measured and that the values are sufficient to minimize any phase 

error. 

b) Stationarity measurements at grid points 4,1 and 12, 1. These data are listed in 

Table 5.13. The measurements indicate that the readings in most frequency 

bands are stationary and that valid intensity scans can be matle on the notched 

beam. 
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Table 5.12 SINGLE POINT AND SWEPI' REACTIVITY MEASURErdENTS 
FOR BEAM I AFfER NOTCHING 

----------------------------------------------------------------------------------------
Freq. 
(Hz.) 

100 
125 
160 
200 
250 
315 
400 
500 
630 
800 
1000 
1250 

Phase Change 
(4, 1) 

0.79 
0.73 
0.76 
'l.81 
1.76 
1.61 
2.57 
2.99 
9.12 

12.31 
7.37 
9.64 

Phase Change 
(12, 1) 

0.03 
0.32 
0.62 
3.70 
6.24 
1.61 
1.78 
0.29 
0.34 
8.92 
3.29 
3.34 

Phase Change 
(Swept) 

0.01 
1.03 
1.23 
1.12 
1.88 
0.12 
0.62 
1.37 
2.57 
4.08 
4.34 
8.59 

Table 5.13 STATIONARITY MEASUREl\fENTS FOR BEAM I AITER 
NOTCHING 

Frequency 
(Hz.) 

100 
125 
160 
200 
250 
315 
400 
500 
630 
800 

1000 
1250 

Standard 
Deviation 
4,1 

ab 
2.18 
0.93 
1.60 
1.77 
1.16 
1.40 
0.41 
0.57 
0.93 
2.00 
0.77 

a = one or more values below 40 dB. 

Standard 
Deviation 
12,1 

b 
1.84 
3.82 
0.75 
1.09 
1.90 
b 

ab 
b 

0.77 
1.08 
0.53 

b = direction of acoustic energy changes during measurement. 



130 

c) l/12-octave accelerometer spectra at grid point 4, 1. The spectrum is displayed in 

Figure 5.19. Comparison with Figure 5.6 (Intensity spectrum at the same 

location on the un-notched specimen) reveals that notching has caused a clear 

downward shift in modal frequency from 307 Hz to 290 Hz for the first torsional 

mode and from 387Hz to 365Hz for the third bending mode. 

d) Intensity maps of the intensity vector component normal to the surface of the 

beam. These data are given as contour maps in Figure 5.20 for the frequency 

range 100Hz to 1250Hz. Comparing these maps with Figure 5.12 it is observed 

that the contour maps of all of the frequency values below 800Hz are modified 

following notching. Looking at each resonant frequency, we find that inte11sity 

levels have increased in the frequencies below resonance while above the resonant 

frequency the intensity values have decreased. 

5.5 ACOUSTIC AND ACCELEROMETER 

MEASUREMENTS FOR BEAM II 

5.5.1 Single Component Acoustic Intensity Scans 

With the beam excited using 1 kHz bandwidth random noise, the following 

acoustic measurements were made using a 1/4" microphone pair in the side by side 

configuration in order to measure pressure or the component of the acoustic intensity 

vector normal to the beam. 



t:s:l 

co 
N 

+ 

. 
CS) 
N 
._, 

+ 
._, 

+ -+ 

(S) 

l.O 
r:n 
+ 

.... 
0 
..J 
U1 

>­u z 
L&J 
:J 
0 w 
a: u. 

131 

Figure 5.19 1/12 Octave Accelerometer Spectrum at Position 4,1 on Beam I after 
Notching 
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a) The experimentally identified modal frequencies using modal testing and the 1/12-

octave intensity spectrum are compared with theoretically computed values in 

Table 5.14 

b) Reactivity at the grid location 4,1 as well as the reactivity from sweeping the 

microphone over the surface (Table 5 .15). Except at 630 Hz the swept and single 

point reactivities agree well. 

c) Stationarity measurements at grid location 4,1 (Table 5.15). The values indicate 

that there is little variation in the sound field over time. 

d) Acoustic Intensity scans over the frequency range 100 to 1600Hz (Figure 5.21). 

The modal behaviour is exhibited most clearly at 500 Hz where the first torsional 

mode can be seen. This clarity probably arises from the narrow resonant 

response that can be seen in the accelerometer spectra shown in section 5.5.2. 

The intensity scans at the other frequencies do not show clear modal 

characteristics. However, when examined following identification of the modal 

frequencies, it is possible to recognize some of the modal pattern elements in the 

second bending mode at 400 Hz and in the second torsional mode at 1600 Hz. 
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Table 5.14 COMPARISON OF THEORETICALLY AND EXPERIMENTALLY 
DETF...RMlNED MODAL FREQUENCIES FOR BEAM II 

Mode 
Number 

Mode 
Shape 

Frequency (Hz) for different techniques 
1 2 3 4 

------------------------------------------------------------------------------------------------
1 Bending 84.2 
2 Bending 526.2 
3 Torsional N/A 
4 Bending 1475.8 
5 Torsional N/A 
6 Bending N/A 

1 = Beam Theory Analysis 
2 = Finite Element Analysis (SAP86) 
3 = Experimental Modal Analysis 
4 = 1/12 Octave Intensity Spectrum 

83.8 28.6 N/A 
522.2 379.5 367 
663.9 504.6 550 
1460.0 1023.4 917 
2048.0 1461.0 1634 
2861.0 N/A N/A 

Table 5.15 ACOUSTIC INTENSITY REACTIVITY AND STATIONARITY 
MEASUREMENTS FOR BEAM II 

Freq. 
(Hz.) 

100 
125 
160 
200 
250 
315 
400 
500 
630 
800 

1000 
1250 

Reactivity 

Phase Change 
(Swept) 

0.79 
1.30 
0.09 
2.50 
1.01 
0.73 
0.14 
1.31 
1.82 
4.57 
5.85 
7.66 

Phase Change 
(4, 1) 

0.11 
1.16 
1.23 
3.45 
1.88 
0.62 
0.08 
3.52 
0.87 
2.04 
3.45 
6.37 

a = one or more values below 40 dB. 

Stationarity 

Standard Deviation 
(4, I) 

ab 
ab 
ab 
2.15 
ab 
1.09 
1.62 
1.99 
1.73 
0.81 
0.75 
0.56 

b = direction of acoustic energy changes during measurement. 
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5. 5. 2 Accelerometer Measurements and Surface Intensity Scans 

The accelerometer array was placed at grid location 3.5,0.5 and the acceleration, 

x-intensity and y-intensity spectra all measured using the 1/12-octave bandwidth. These 

spectra are shown in Figures 5.22 to 5.24. It is seen from all three of these figures that 

the four modal frequencies numbered 2 to 5 (see in Table 5.14 for frequencies) are 

clearly identified. The source of the two spurious peaks at 196 Hz and 250 Hz was 

considered to be unidentifiable. The surface intensity was then scanned, measuring the 

l/3 octave bandwidth spectra. These data are given as vector maps over the frequency 

range 100 to 1600Hz in Figure 5.25. As discussed with reference to Figure 5.21, modal 

behaviour is only clearly identified in the 500Hz frequency band which encompasses the 

first torsional mode. In fact, it can be seen that the energy flow patterns for this mode 

affect the adjacent frequencies significantly, masking out any evidence of the bending 

mode in the 400 Hz band. The lack of clarity for the second torsional mode may arise 

from the fact that resolution of the measurement grid is insufficient to clearly define the 

energy flow. 

5.5.3 Full Vector Acoustic Intensity Scanning 

The six microphone array described in Section 3.5.2 was used to carry out some 

measurements on Beam II. As shown earlier, stationarity and reactivity measurements 

for each microphone pair were determined at grid location 4,2 and the results were found 

to be acceptable over the range of the frequency scans. 
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Figure 5.23 1/12 Octave Surface Intensity Spectrum (x-component) at Position 3.5,0.5 
on Beam n 
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Two intensity scans were carried out. In the first, the face-to-face microphone 

pair was removed to allow the measurement of the x- and y-components of the intensity 

vector with the acoustic centre at the same height above the surface as the side-by-side 

configuration. These intensity scans are shown as vector maps in Figure 5.26 for the four 

frequency bands encompassing the 380 Hz, 405 Hz, 1023 Hz and 1461 Hz modal 

frequencies. In the second intensity mapping, all three microphone pairs were used. This 

moves the acoustic centre of the probe to 35 mm above the surface of the beam. These 

intensity scans are shown in Figure 5.27, again only for the four frequency bands 

encompassing the modal frequencies. The x- and y-components of the intensity vector are 

represented by vectors whilst the normal (z-) component is shown by a contour map. It 

is observed from Figures 5.26 and 5.27 that better modal information is obtained when 

the normal intensity component is included in the mapping. From Figure 5. 27 the 

torsional behaviour at 500 Hz can be clearly identified and the modal response at 400 Hz 

is more clearly visualized. 

5.5.4 Measurements on Beam II following Notching 

Beam II was cut using a band-saw to give a 5 mm wide, 5 mm deep notch across 

the width of the beam on one face. Following confirmation of the reactivity and 

st<ltionarity measurements, the following data were collected, using the 114" microphone 

pair in the side· by-side configuration for all acoustic measurements. The beam was 

excited using 1 kHz bandwidth random ndse. 
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a) 1112 octave accelerometer spectra at grid location 3.5,0.5, Figure 5.~8. 

Comparison with Figure 5.22 shows that the four modal peaks can still bc 

identified, but that the frequencies have shifted lower: Mode 2 has shifted from 

365Hz to 322Hz; Mode 3 from 547Hz to 488Hz; Mode 4 from 921 Hz to 869 

Hz; Mode 5 from 1640 to 1548 Hz. This would be expected as the stiffness of 

the beam has been reduced by the introduction of the notch. 

b) Acoustic Intensity scans of the component of the intensity vector normal to the 

surface of the beam. These data are shown as contour maps in Figure 5.29 for 

the frequency bands 400 Hz, 500 Hz, 1000Hz and 1600Hz. The bending modes 

in the 400 and 1000 Hz maps and the torsional modes in the 500 and 1600 Hz 

maps could be visualized clearly. Comparison with Figures 5.21 and 5.27 

showed that there were very clear differences in the maps for the two bending 

modes. In particular, looking at Figures 5.27 (a) ami 5. 29 {a) we can sec a 

reversal in the direction of energy flow and this is directly comparable with the 

effect seen in beam I in Figures 5.15 (c) and (d). The two torsional mode 

patterns appear to remain unchanged following notching. A few variations 

between Figures 5. 21 and 5. 29 are noted, in particular the reduction in the 

intensity levels at 500 Hz following notching while the 1600 Hz band shows no 

change in intensity levels following notching. 
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Figure 5.28 1112 Octave Accelerometer Spectrum at Position 3.5,0.5 on Beam II after 
Notching. 
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5. 7 UNDERWATER ACOUSTIC PROBE MEASUREMENTS 

Experiments were carried out in order to evaluate the acoustic scanning technique 

in an underwater environment. Beam II was suspended from a servo-hydraulic actuator 

so that it hung freely in a large cylindrical water tank having a depth of 1.0 m and a 

radius of 0.5 m. The specimen was vibrated using a pseudo-random excitation with a 

bandwidth of 10 kHz. Although the displacement of the specimen was negligible, 

significant acoustical energy was produced. The transducers used in the measurements 

were a pair of omni-directional hydrophones. Phase matching of the hydrophone pair 

had been carried out as described in Section 4.2. 

The transducers mounted side-by-side in a bracket which was then suspended 

from a bench support system which allowed accurate and repeatable positioning of the 

array. The system configuration is shown in Figure 5.30. The acoustic centre of the 

hydrophone array was kept at 100 mm from the specimen surface and two intensity scans 

were carried out. The first measured the intensity component normal to the plate (z­

component) and the second scan measured the intensity component across the plate (y­

component). The acoustic energy flow for these two components in the 800 Hz frequency 

band are shown in Figures 5.31 and 5.32 in the form of contour maps and three­

dimensional surface maps. The two scans were repeated in order to obtain visual 

confirmation of the repeatability of the measurements. It was clear that modal 

information could be obtained even when the beam was submerged in water. 
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5.31 800Hz. 1/3 Octave Contour and Surface Maps of Normal Intensity Components 
over Beam II. Contour Lines at 5 dB Intervals; Excitation : 1 kHz White Noise. 
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5.32 800 Hz. 1/3 Octave Contour and Surface Maps of Across-Plate Intensity 
Component over Beam II. Contour Lines at 5 dB Intervals; Excitation : 1 kHz 
White Noise. 
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5.9 SUMMARY 

The use of a constant percentage bandwidth analyzer for determining acoustic 

intensity flow and relating it to modal deformation and changes in the modal frequencies 

due to structural change has been investigated. It has been shown that acoustic techniques 

can be used to identify mode shapes and modal frequencies, with a number of limitations. 

It has been demonstrated that the readings are stationary and that the technique adopted 

gives reasonably good results for both amplitude and phase. The modal frequency shift 

due to notching could be observed from the frequency spectra when taken at the 1/12-

0ctave bandwidth, but not with the 1/3-0ctave spectra. Variations in the intensity 

patterns were noted using only the 1/3-0ctave spectra. Although these were slight they 

did show that the analysis of the intensity maps was more sensitive than simple analysis 

of the 1/3-0ctave spectra. It was possible to provide conclusive evidence of a shift in the 

modal frequency through a combined interpretation of the 1/12-0ctavc spectrum data and 

the 1/3-0ctave intensity maps. 
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6.0 F1JRTHER DISCUSSION AND CONCLUSIONS 

6.1 FURTHER DISCUSSIONS 

The acoustic intensity scanning technique has been shown to be able to identify 

the modal information of a structure. The change of the energy flow with increasing 

distance from the surface has been determined in air and this variation showed that in 

order to successfully measure the modal deformation of a structure the measurements 

must be made in the near-field of the structure. The residual intensity index measurement 

as a method for determining data reliability have been evaluated and a new measurement, 

the stationarity of the measured intensity, has been developed. The stationarity 

measurements have been shown to improve the data analysis by identifying frequency 

bands in which variations in the energy flow occur over the measurement period and 

hence made these data unreliable. 

Surface energy flow was also measured and shown to correlate well with both the 

acoustic energy flow and with the modal deformation of the structure. 

In order for acoustic scanning to become widely applicable as a non-destructive 

testing technique it must be possible to transfer it to underwater applications. Because the 

acoustic theory is the same in both water and in air, the measurement techniques can be 

used in both media. The measurement transducers must be modified, and this was 
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accomplished with well established underwater technology. Hydrophones were evaluated 

for use as intensity probes and were shown to have phase matching and directional 

properties of the necessary sensitivity. Underwater intensity mapping was successfully 

carried out as a final test of the hydrophone intensity probe. 

Since this work was carried out, research has moved on in some of the directions 

suggested by this work. Guigne et a1 1992 investigated the use of an FFT analyser to 

obtain more detailed information regarding modal parameters, including intensity 

mapping. Klein et al (1994) look at the changes in modal parameters arising from 

fatigue cracking in cantilever beams. However, the work presented in this thesis is still 

considered to provide an important underpinning of the subsequent research. 

6.2 CONCLUSIONS 

The following can be stated as the more specific findings of this thesis 

investigation: 

a) While the experimental natural frequencies of the thin plate correlated well with 

the analytically computed values, those of the thicker one are observed to be only 

70-75% of the analytically computed values. 

b) It is possible to correlate the natural frequencies of the vibrating plate with the 
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acoustic pressure and intensity spectra obtained from the microphone pair through 

the B & K 3360 intensity analyzer. 

c) Since the spectral bands are rather wide, it is possible only to identify the natural 

frequencies within the bandwidth of the particular filter; hence the spectra 

generated by the intensity analyzer cannot be used as an exact tool to identify 

natural frequencies. 

d) Mode shapes could be suitably identified by the 1/3 octave intensity contour maps 

carried out as specific frequency scans. 

c) The in-plane acoustic intensity information obtained, while not being immediately 

applicable in this study, indicated that it could provide useful information in 

investigating torsional modes in more complex structures. 

f) Surface measurements using accelerometers produced 1/3- and 11 12-octave 

intensity spectra from which the natural frequencies could be identified. 

Additionally, the surface intensity flow correlated well with the in-plane acoustic 

intensity. 

g) Acoustic intensity spectral measurements made on notched beams indicate the 

shift in the natural frequencies (through the change in the spectral amplitudes) but 
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these shifts are not sufficiently precise to indicate the actual change in notch 

depth. 

h) Acoustic intensity contour maps on notched beams did show variations in the 

energy flow patterns that could be attributed to the notching. 

i) Studies similar to the above could be carried out in an underwater cnvironrncnl. 

As a result of the above studies, the following recommendations arc made for 

future studies in this area: 

a) More studies need to be done to examine whether intensity scans and the intensity 

contour maps could be used more effectively to identify the mode shapes in 

structures. The use of narrower band measurements may clarify the intensity 

maps sufficiently to assist in mode shape identification. In addition the effects or 

spatial resolution need to be investigated at a higher frequencies where nodes arc 

closer together. 

b) Since one of the strengths lies in its non-contacting element, the technique would 

be ideally suited to glass and carbon fibre composite structures where 

accelerometers are more difficult to use. Such an investigation would he 

extremely informative. 
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All caJibrations were carried out using the B & K Type 3541 Sound Intensity 

Calibrator. However, the Pistonphone sound source used with the system was not the 

original supplied with the system, and the calibration values for Intensity and Particle 

Velocity levels measured are slightly different from the values given for the ca1ibration 

system. 

Calibration Values for Sound Intensity Calibrator Type 3541, Serial Number 

1449489. 

Sound Pressure Level 

117.9 dB re 20 pPa ± 0.2 dB 

Partic1e Velocity Level 

117.6 dB re 50 nm/s ± 0.3 dB (nominal microphone spacing 50 mm) 

130.0 dB re 50 nm/s ± 0.3 dB (nominal microphone spacing 12 mm) 

136.0 dB re 50 nmls + 0.3 dB (nominal microphone spacing 6 mm) 

Sound Intensity Level 

I 17.7 dB re 1 pW/m2 + 0.25 dB (nominal microphone spacing 50 mm) 

123.9 dB re 1 pW/m2 + 0.25 dB (nominal microphone spacing 12 mm) 

126.9 dB re 1 pW/m2 + 0.25 dB (nominal microphone spacing 6 mm) 

The calibration and instrument error measurements were carried out using the 

software routine 'INTENS_CAL'. 
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Unit 1. Serial Number 1336918. 

Calibrations using 1i2" microphone pair Type 4181 serial number 1335832. 

Nominal spacinc of 12 mm: 

Pressure Calibration, Channel A : 117.9 dB 

Pressure Calibration, Channel B : 117.9 dB 

Intensity Calibration : 124.4 dB 

Residual Intensity Index and Phase Error Measurements 

Freg. (Hz.) LJ,R_(@} 1m.1QID ko..!QIU Phase Error 

100 67.6 59.1(+) -8.5 0. 19° 
125 71.7 65.9( +) -5.8 0.43° 
160 71.2 60.3(-) -10.9 0.17° 
200 71.5 58.6( +) -12.9 0.13° 
250 71.4 55.5(+) -15.9 0.08° 
315 71.2 56.0(+) -15.2 0.12° 
400 69.9 40.0(+) -29.9 0.01° 
500 67.5 53.9(+) -13.6 0.29° 
630 65.3 51.0(+) -14.3 0.32° 
800 63.8 50.4(+) -13.4 0.48° 
1000 64.1 46.0(+) -18.1 0.20° 
1250 65.6 49.0(+) -16.6 0.36° 
1600 67.4 50.5(+) -16.9 0.43° 
2000 62.7 46.5(+) -16.2 0.64° 
2500 61.9 45.3(+) -16.6 0.7ZO 
3150 55.6 40.0(+) -15.6 1.14° 
4000 62.9 44.9( +} -18.0 0.83° 
5000 62.4 43.6(+} -18.8 0.86° 
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Nominal spacing of 50 mm 

Pressure Calibration, Channel A : 117.9 dB 

Pressure Calibration, Channel B : 117.9 dB 

Intensity Calibration : 118.4 dB 

Residual Intensity Index and Phase Error Measurements 

Fr~, (.fu} l,q.R_{QID krR_(QID ko..tillll ~ ErrQr ~err 
31.5 66.0 52.5(+) -13.5 0.08° 
40 60.2 49.0(+) -11.2 0.17° 
50 60.5 40.0(+) -20.5 0.02° 
63 63.9 52.9(-) -11.0 0.28° 
80 64.5 54.3(-) -10.2 0.42° 

100 68.2 40.0(+) -28.8 0.01° 
125 72.4 50.6(+) -21.8 0.05° 
160 72.6 52.7(+) -19.9 0.09° 
200 72.0 51.8(-) -20.2 0.10° 
250 71.6 52.3(+) -19.3 0.16° 
315 70.9 48.7(+) -22 . .o~ . 0.10° 
400 70.3 46.6(+) .. zJ.7 0.09° 
500 67.9 48.9(+) -19.0 0.34° 
630 65.8 45.6(+) -20.2 0.34° 
800 64.5 40.0(+) -24.5 0.15° 
1000 64.6 43.0(+) -21.6 0.38° 
1250 65.9 43.9(+) -22.0 0.43° 
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Unit 2. Serial Number 1336920. 

Calibrations using 1/2" microphone pair Type 4181 serial number 1335821. 

Nominal Spacine 12 mm 

Pressure Calibration, Channel A : 117.9 dB 

Pressure Calibration, Channel B : 117.9 dB 

Intensity Calibration : 124.6 dB 

Particle Velocity Calibration : 131.2 dB 

Residual Intensity Index and Phase Error Measurements 

Fr~. (Hz) kRiillll Lm...@ll ko..UIID .Pha~~ ErrQr d!.w 
100 69.4 65.5(+) -3.9 0.53° 
125 69.4 66.7(+) -2.7 0.88° 
160 70.4 66.4(+) -4.0 0.83° 
200 70.9 65.9(+) -5.0 0.83° 
250 71.1 62.3(+) -8.8 0.43° 
315 71.1 56.5(+) -14.6 0.14° 
400 69.4 48.8(+) -20.6 0.05° 
500 67.5 48.9(-) -18.6 0.09° 
630 66.0 51.3(-) -14.7 0.29° 
800 64.3 50.3(-) -14.0 0.42° 
1000 63.7 51.4(-) -12.3 0.77° 
1250 66.0 52.1 (-) -13.9 0.67° 
1600 67.3 53.7(-) -13.6 0.91° 
2000 62.7 48.5(-) -14.2 1.00° 
2500 62.5 48.7(-) -13.8 1.37° 
3150 57.4 44.4(-) -13.0 2.07° 
4000 57.5 43.4(-) -14.1 2.04° 
5000 59.0 44.1(-) -14.9 2.12° 
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Nominal spacing of 50 mm;_ 

Pressure Calibration, Channel A : 117.9 dB 

Pressure Calibration, Channel B: 117.9 dB 

Intensity Calibration : 118.5 dB 

Particle Velocity Calibration : 118.5 dB 

Residual Intensity Index and Phase Error Measurements 

Freg. (Hz) kR...@ll 1m.1diD. ko (dB) Pha§~ Error ~err 
31.5 61.9 66.7(+) 4.8 5.19° 
40 57.3 61.0(+) 3.7 5.12° 
50 57.7 60.1(+) 2.4 4.74° 
63 59.2 57.9(+) -1.3 2.63° 
80 61.7 40.0(+) -21.7 0.03° 
100 63.7 59.0(+) -4.7 1.85° 
125 68.2 58.1(+) -10.1 0.67° 
160 68.1 60.7(+) -7.4 1.59° 
200 68.0 57.9(+) -10.1 1.07° 
250 67.7 55.5(+) -12.2 0.82° 
315 67.3 54.0(+) -13.3 0.80° 
400 66.0 47.0(-) -19.0 0.27° 
500 63.9 45.6(+) -18.3 0.40° 
630 61.6 40.0(+) -21.6 0.25° 
800 60.5 41.4(-) -19.1 0.54° 
1000 60.6 42.9(-) -17."/ 0.93° 
1250 61.9 44.6(-) -17.3 1.27° 
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Unit 3. Serial Number 1375391. 

Calibrations using 1/2" microphone pair Type 4181 serial number 1425303 

Nominal Spacing 12 mm 

Pressure Calibration, Channel A : 117.9 dB 

Pressure Calibration, Channel B : 117.9 dB 

Intensity Calibration : 124.3 dB 

Residual Intensity Index and Phase Error Measurements 

Fr~. (Hz) ktt-Uilll LmJ.diD. ko..MID Pbas~ ErrQr cb.., 
100 68.9 60.9(-) -8.0 0.21° 
125 70.6 62.8(+) -7.8 0.27° 
160 71.9 58.1(-) -13.8 0.09° 
200 71.0 57.7(+) -l3.::t 0.12° 
250 72.1 57.9(+) -14.2 0.12° 
315 71.7 55.6(+) -16.1 0.10° 
400 69.7 55.5(+) -14.2 0.20° 
500 67.7 53.0(+) -14.7 0.22° 
630 65.8 51.3(+) -14.5 0.30° 
800 64.1 48.2(+) -15.9 0.27° 
1000 64.4 46.0(+) -18.4 0.19° 
1250 66.0 46.4(+) -19.6 0.18° 
1600 67.4 49.2(+) -18.2 0.32° 
2000 62.6 42.1(+) -20.5 0.23° 
2500 61.9 40.0(+) -21.9 0.21° 
3150 56.1 40.0(+) -16.1 1.01° 
4000 61.6 40.3(+) -21.3 0.39° 
5000 61.4 40.0(+) -21.4 0.47° 
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Nominal spacin~ of 50 mm: 

Pressure Calibration, Channel A : 117.9 dB 

Pressure Calibration, Channel B : 117.9 dB 

Intensity Calibration : 118.3 dB 

Residual Intensity Index and Phase Error Measurements 

Fr~, (Hz.} kRiillll Lm...UliD ko..ll!ID Pha~~ Error ~err 
31.5 65.2 61.6(-) -3.6 0.75° 
40 61.6 51.5(+) -10.1 0.21° 
50 62.4 48.0(+) ~14.4 0.10° 
63 64.1 59.0(+) -5.1 1.10° 
80 66.3 53.3(+) -13.0 0.22° 

100 67.4 54.0(-) -13.4 0.25° 
125 71.9 50.1(-) -21.8 0.05° 
160 71.2 54.7(+) -16.5 0.20° 
200 71.7 52.0(-) -19.7 0.12° 
250 71.9 46.7(+) -25.2 0.04° 
315 71.4 49.4(+) -22.0 0.11° 
400 70.1 42.4(+) -27.7 0.04° 
500 67.5 44.7(-) -22.8 0.14° 
630 65.7 44.8(-) -20.9 0.29° 
800 64.4 40.7(-) -23.7 0.19° 
1000 64.1 41.3(-) -22.8 0.29° 
1250 65.8 40.0(-) -25.8 0.18° 
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i) Except where noted, the contour map is always used to show energy flowing in 

the Z-direction i.e normal to the plate. Positive intensity is taken as being away 

from the plate; negative intensity is towards the plate. 

ii) The lower left hand corner, numbered 1, is the start point for the measurement 

grid. This is at the pont 0,0 (see Figures 4.13 and 4.14). 

iii) The grid cell width is 50 mm; the grid cell height is 20 mm (Beam I) or 25 mm 

(Beam m. 

iv) The numerical values around the grid give the intensity level in dB measured at 

the edge grid locations. 

v) The contour lines are interpolated mathematically from the intensity levels at each 

grid point. Solid lines are positive intensity i.e. radiating away from the plate; 

negative intensity (toward the plate) is shown by dashed lines. 
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i) The vector map is used to show energy flowing in the X-Y plane of the plate. 

ii) The lower left hand corner, numbered 1, is the start point for the measurement 

grid. This is at the pont 0,0 (see Figures 4.13 and 4.14). 

iii) The grid cell width is 50 mm; the grid cell height is 20 mm (Beam I) or 25 mm 

(Beam ll). 










