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Abstract

In the first part of this thesis, we study the relationships between three algebra
structures: Cayley-Dickson algebras, RA loops and alternative loop algebras.

Let R be a commutative associative ring with 1 and let A be an R-algebra with
unity of characteristic different from 2. For any a, § and v € A, let A{a,3,7) be
the Cayley-Dickson algebra. We construct an RA loop L from each Cayley-Dickson
algebra A(a,(,7), called the induced RA loop. We show that any RA loop is a
homomorphic image of some induced RA loop. After introducing the category of
Cayley-Dickson algebras and the category of RA loops, we show that the two cate-
gories are equivalent.

Using the induced RA loops, we show that any Cayley-Dickson algebra is a homo-
morphic image of an alternative loop algebra. Thus we give a new way of representing
a Cayley-Dickson algebra. Furthermore, the homomorphism commutes with the norm
and trace operations of the alternative loop algebra and the Cayley-Dickson algebra.
The kernel of this homomorphism is completely determined. The prime radical and
Jacobson radical of some Cayley-Dickson algebras are determined. A result of de
Barros is generalized. The more general form of the homomorphism is studied.

Necessary and sufficient conditions for an RA loop to be the Moufang circle loop
of a quasiregular alternative algebra are given. The algebra structure of a finite
alternative nilpotent ring with the Moufang circle loop being an RA loop is completely
determined.

In the second part of this thesis, the alternative rings of order p* and p® are
completely determined, where p is a prime. This generalizes a result of A. T. Gainov.
The two smallest alternative rings have order 2*. For each prime number, there
are fifteen alternative rings of order p®, n < 5. The relationships between these

iii
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fifteen rings are described. From these alternative algebras, a class of group-graded
alternative algebras is derived.
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Introduction

Let R be a commutative associative ring with unity. An R-algebra is an R-module
with a multiplication satisfying the right and left distributive laws. An alternative
R-algebra is an R-algebra A satisfying the following right and left alternative laws:

(yz)z =y and z(zy) = 22y,

for all z,y € A. For general alternative algebra theory, we refer the reader to [Sché6,
ZSSS82]. Any associative algebra is alternative. In addition to this, there are three
well-known classes of alternative rings which are not associative, the Cayley-Dickson
algebras, Zorn’s vector matrix algebra and alternative loop algebras.

The first example of an alternative ring which is not associative is the Cayley
numbers [Cay45]. In [Dic19], Dickson gave a construction of the Cayley numbers
in a way analogous to the construction of the complex numbers from the reals. A.
A. Albert [Alb42] called these Cayley-Dickson algebras. The construction of Cayley-
Dickson algebras and the definition of Zorn’s vector matrix algebras are described in
[GIMI6], a book which is primarily devoted to the algebra structure of loop algebras,
our third class of alternative algebras.

A loop is a pair (L,o) where L is a nonempty set and (a,b) — a o b is a closed
binary operation on L with the properties that the equation a o b = ¢ determines a
unique element b € L for given a,c € L and a unique element a € L for given b,c € L
and the binary operation has a two-sided identity element. A Moufang loop is a loop
which satisfies one of the following equivalent identities:

((zy)z)z = z(y(z2)), ((zy)2)y = z(y(zy))-



2 INTRODUCTION

From the definition, we see that a group is a Moufang loop. But in this thesis, a
Moufang loop is a loop which is not associative. For the theory of loops, we recom-
mend [Bru58, P90, CPe90], and for the theory and structure of Moufang loops,
[Che74, Che78, GKM].

For a loop L, one can define the loop algebra RL in exactly the way that the group
algebra is defined: addition component-wise and multiplication the extension of mul-
tiplication in L via the distributive laws. Alternative loop algebras in characteristic
different from two were discovered in the 1980s by Goodaire [Goo83]. Since then,
this research area has grown rapidly and many research papers have been published
[CG85, CG86, GP86, GP87, CG88, CG90, LM93, GR95, GIM96, GM96].
The most important reference is the comprehensive book by Goodaire, Jespers and
Milies [GIJM96), which is the main reference for the present thesis. For the theory
of group algebras, we refer the reader to [Pas77, Seh78, Seh93, Kar83| and the
nice paper [Con63].

In the theory of alternative loop algebras, the RA loop plays an important role
and it is one of the main topics of this thesis. So we recall the definition here. Let G
be any group which is an extension of its center Z by Cy x Cs. It is easy to see that
the commutator subgroup G’ of such a group is cyclic of order 2; write G’ = {1, s}.

For g € G, define
. g ifgeZ
g =

sg otherwise

Let v be an indeterminate, go an element of Z and L = GUGu. Define multiplication
in L by

g(hu) = (hg)u

(gu)h = (gh™)u

(gu)(hu) = goh'g

where g,h € G. Then L is a Moufang loop and, over any ring R of characteristic
different from 2, the loop algebra RL is alternative, but not associative. We call this
loop L an RA loop, meaning ring alternative loop. For convenience, we call the group
G an RA group due to its role in constructing the RA loop. E. G. Goodaire [Go0o83,
Theorem 4} showed if L is a loop, and the loop algebra RL is an alternative but not
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associative algebra, then the loop L is an RA loop. So it is of the above form, denoted
by M(G, *, 90). By [Goo83, Theorem 4|, we can rewrite the RA loop L = M(G, *, go)
in the form

L = (Z(a)(b))(u),
where a, b and u are three elements of L which do not associate. This form will be
used in this thesis.

The smallest RA loops are of order 16 and there are two such loops. One of them
is the Cayley loop M(Qs, —1, —1) defined by the basis elements {+1, +i, &j, +i7,
+k, +ik, £jk, £ij - k} of the Cayley numbers whose products are specified in the
following table:

1 i j ij E | ik | Gk |ij-k
1 1 i j 7 k| ik | jk |ij-k
i i | -1 | 4 - | ik | -k |—ij-k| jk
j i | =i | -1 i ik |ij-k| -k | —ik
ig || if | —i -1 |ij-k|—-jk| ik | —k
k k | —ik | —jk |—ij-k| -1 | i j k
ik | ik | & | —ij-k]| gk | —i | -1 | —ij |
ik || jk |ij-k| &k ik | —j | i | -1 | —i
ijok|ij-k| —jk | ik k| —if | —j i -1

For more information about the structure and properties of the RA loops, see [GIM96].

The present thesis consists of two parts. The first part is composed of chapters I,
IT, III and IV, the second part chapters V and VI.

In the first part of the thesis we study the relationships between any two of
the systems: Cayley-Dickson algebras, RA loops and alternative loop algebras. As
mentioned above, a loop algebra of characteristic different from 2 is alternative if and
only if the loop is an RA loop. So the relationships between Cayley-Dickson algebras
and RA loops and alternative loop algebras become very interesting topics, which are
the main concern of the first part of this thesis.

In chapter I, we study the relationships between Cayley-Dickson algebras and
RA loops. First we generalize the notion of Cayley-Dickson algebras over a field
to algebras over a commutative ring of characteristic different from 2. Then we



4 INTRODUCTION

construct some RA loops from Cayley-Dickson algebras using the circle operation on
the algebras,

This class of RA loops induced by the Cayley-Dickson algebras is very special,
because we can show that RA loops are their homomorphic images. From this point
of view, we can think that they cover all the RA loops.

To deeply investigate the relationships between RA loops and Cayley-Dickson
algebras, particularly, the relationships between the loop homomorphisms and the
Cayley-Dickson algebra homomorphisms, we study the category of Cayley-Dickson
algebras and the category of RA loops, and show that the two categories are equiva-
lent.

In chapter II, we study the relationships between Cayley-Dickson algebras and
alternative loop algebras. From chapter I, we know that every Cayley-Dickson al-
gebra induces some RA loop. By using this induced RA loop, we can construct an
alternative loop algebra over the base algebra of the given Cayley-Dickson algebra.
Then we get an interesting result: any Cayley-Dickson algebra is a quotient algebra
of a loop algebra, by constructing a surjective map f from the loop algebra to the
Cayley-Dickson algebra. Moreover, we show that this map sends the norm and the
trace of the elements in the alternative loop algebra to those of the Cayley-Dickson
algebra. From this point of view, alternative loop algebra theory is the representation
theory of the Cayley-Dickson algebras, as well as the representation theory of RA
loops.

To investigate Cayley-Dickson algebras from the well-developed alternative loop
algebra theory, the structure of ker(f) is an important issue for us to study. In section
2 of the chapter, we give a description of the structure of the kernel. Then we study
the structure of some Cayley-Dickson algebras and generalize a result of Luiz G. X.
de Barros [dB93b]. In section 4, we state the corresponding results for quaternion
algebras, without giving proofs.

We will see that the circle operation on the algebra plays an important role for
us to bridge the three different algebra structures. Recall the definition of the circle

operation on an algebra A:

zoy=zy+z+y,
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for any two elements z and y in A. The most famous example of using the circle
operation is the proof of the equivalence of the Boolean algebras (lattices} and Boolean
rings (rings in which every element is an idempotent} [Jac74, Theorem 8.7]. The circle
operation is also used in many papers, such as [San74], from which we borrow some
ideas in constructing the map f used in chapter II.

In view of the interesting properties of the circle operation, it is worth investigating
it in a more general way. This is the main topic of our next chapter, chapter III

In 1987, E. G. Goodaire [Goo87] showed that the set of all quasi-regular elements
of an alternative algebra A is a Moufang loop under the circle operation and called
this loop the Moufarg circle loop of A. From chapter I, we know that an RA loop can
be the Moufang circle loop of an alternative algebra and the Moufang circle loop of
any Cayley-Dickson algebra contains an RA subloop. So it is interesting to investigate
the relationships between the alternative algebra, its Moufang circle loop and the loop
algebra of the circle loop. Note that, generally speaking, this loop algebra is no longer
alternative. This idea is also a generalization of R. Sandling’s idea in [San74)], which
dealt with the circle group and its integral group ring. Then we apply the general
result to alternative algebras whose Moufang circle loop contains an RA subloop.
Note that Cayley-Dickson algebras are algebras of this type.

In chapter IV, we investigate a special Moufang circle loop and its alternative
algebra: the alternative algebra is quasiregular and its Moufang circle loop is exactly
an RA loop. This problem is triggered by the following observation.

From the structure theorem of RA loops [GIM96, Theorem IV.3.1] we know that
an RA loop is a kind of loop extension of an RA group, which is a kind of nilpotent
group of class 2. There is a nice result that all nilpotent groups of class 2 are circle
groups of some nilpotent rings of nilpotent index 3 [AW73, Kum94]. Groups which
are circle groups of some nilpotent rings have some nice properties and have been
much investigated, for example, see [TH83, Roh82, Roh90, Bov96|.

Since all our RA loops are nilpotent loops of class 2, it is natural to ask whether
these RA loops are the Moufang circle loops of nilpotent (or quasi-regular) alternative
rings. Note that all nilpotent rings of nilpotency index 3 are associative rings, so
the old way of constructing a nilpotent ring from a nilpotent group used in [AW73,
Kum94] does not apply to the RA loop case. Making the problem more complicated,
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a result of E. G. Goodaire [Goo] shows that there are no nilpotent alternative rings
of order less than or equal to 64 that have circle RA loops as their Moufang circle
loops and the proof heavily depends on the order. Therefore, to determine whether
there is an RA circle loop or not appears to be quite difficult and this question is still
open.

In chapter IV, we study the problem by investigating the conditions for an RA
loop to be a Moufang circle loop of an alternative Jacobson radical algebra. We find
necessary and sufficient conditions for an RA loop to be an RA circle loop. Finally
we describe the structure that finite RA circle loops and their nilpotent alternative
algebras must have. We still hope that an RA loop with some large order will turn
out to be an RA circle loop.

The second part of this thesis is composed of chapter V and chapter VI. The
main topic of this part is to find all alternative algebras of small order which are
not associative. This problem is triggered by the problem of finding an RA circle
loop, which is the main topic of chapter IV. To do this, we find that we must know
some examples of alternative rings of small order. For other algebra systems, such as
groups [TW80], Moufang loops [CP71, Che74, Che78, GKM], commutative Mou-
fang loops [KP81], RA loops [JLM95, GIM96], Bol loops [GM], associative rings
(KP69, McD74] and Lie algebras [Mor58], the results are well known. For alterna-
tive rings, there are few general results. M. I. Badalov [Bad84] described all nilpotent
alternative algebras of dimension 6 over a field and showed that all the nilpotent al-
ternative algebras of dimension < 5 are associative. E. G. Goodaire[Goo87, GZa]
showed that all the alternative nilpotent rings of orders p* and p® are associative. In
this work, we find all alternative rings of order p", n < 5, and all alternative algebras
of dimension at most 5 over a field. This generalizes the work of A. T. Gainov[Gai63].

In chapter V, we do some preparation for the next chapter, but this is also interest-
ing for its own sake. In the first section of this chapter, we give a matrix representation
of the finite alternative algebras. In this way, we can easily check whether a ring is
alternative or not. Then we recall the Peirce decomposition of an alternative ring
and develop an interesting lemma which is used widely in the next chapter to remove
cases that yield only associative algebras. In the last section, we show that the Peirce
decomposition can induce some group-graded algebras which are alternative, but the
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interesting thing is that the base algebras are associative. Many of the alternative
algebras we find in the next chapter have this property. Note that lots of research has
been done on group-graded and semigroup-graded algebras after the two fundamental
papers [Dad80} and [CM84], but rarely has something been done about alternative
algebras which are graded by a group.

In chapter VI, we use the results of chapter V to determine alternative algebras
of small order. None of the alternative algebras we found belongs to the known
classes of alternative algebras: alternative loop algebras and Cayley-Dickson algebras.
Combining with M. I. Badalov and E. G. Goodaire’s results we determine all the finite
alternative algebras of order p* and p°. Moreover, from the multiplication tables of
these alternative algebras, we can construct all the alternative algebras of dimensions
4 and 5 over any field. Furthermore, the relationships between all these algebras
are described. An interesting observation about these relationships is that, for each
prime p, all the alternative algebras of order p* and p® are derived from one smallest
alternative algebra of order p*, either by anti-isomorphism, adding a unity, or some

other kind of algebra extension.
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CHAPTER I

Cayley-Dickson algebras and RA loops

1. Introduction

In the first section of this chapter, we generalize the notion of the Cayley-Dickson
algebra from an algebra over a field to an algebra over a commutative ring. After
constructing RA loops from Cayley-Dickson algebras by using the circle operation,
we prove that #A loops are homomorphic images of some induced RA loops. Then,
examples of a Cayley-Dickson algebra whose Moufang circle loop is an KA loop are
given. In the last section, we introduce two concepts: the category of Cayley-Dickson
algebras and the category of RA loops by using the induced RA loops, and show that
the two categories are equivalent{GZb].

2. Generalized Cayley-Dickson algebras

The term “generalized Cayley-Dickson algebra” has been used by many authors,
but with two different meanings. One is to follow the Cayley-Dickson process to
generate some alternative algebras by choosing different @, 8 and v [GIJM96]. The
other is to follow the Cayley-Dickson process’s three steps to go further to get some
general algebras which are not alternative [Bro67]. For more information about
Cayley numbers and Cayley-Dickson algebras, we refer the reader to [Cur63, Kle63].

The following theorem describes a general version of the standard Cayley-Dickson
process [Sch66][GJM96, Proposition 3.1].

THEOREM I.1. Let A be a ring with 1 and with an involution a — @, for any
a € A, such that a + @ € Z(A), the center of A, and a@ = @a € Z(A) for all
a € A. For any o € Z(A), we can define a new ring B = A(a) by defining addition

component-wise and multiplication
(a + b€)(c + db) = (ac + adb) + (da + be)L.

9
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Here ¢ is an indeterminate. Then B is an alternative ring if and only if A is asso-
ciative. ‘
If A is associative, then B has an involution defined by

a+bl=a- bl
Foranyz € B, z+Z € Z(A) and 5T =Tz € Z(A).
ProOF. This can be checked in the standard way. We give a brief proof here for
the sake of completeness.

It is easy to see that B is a ring. For any two elements z = a + ¢ and y = ¢+ d¥,
we have

2y =a%c+abb-c+ ad - ba + ad - b@ + (da® + ad - bb + ba - T + b@ - ©)4,
and
z(zy) =a-ac+aa-db+coad-b+ach-b+ (da-a+bc-a+b-ca+ ab-bd)l.

Then

[z,2,4] = z°y—z(zy)
= (a’c—a-ac) + (abb-c— ach-b) + (ad - ba + ad - b@ — cca - db — a@d - b)
+ (da’®—da-a)l+ (ad-bb—ab-bd)l+ (ba-E+b@-T—bE-a—b-Ta)l
= ([a,a,d + afc,b,b] — afa, d, b]) + ([d, a,a] + [b,c,a] — «[b, b, d])¢.

To obtain this, we use repeatedly that a + @ € Z(A) and ed@ = aa € Z(A), so that,

for example

d-ba+d-ba—a-db—ad-b = d-bla+@) —a-db—ad-b
= (a+a)-db—a-db—ad-b
= a-db-a-db+a-db—ad-b
= -[a,d,b]
= —[(@a+@) —a,(d+d) —d,b
= —[-a,—d,b
= -—[a,d,b].
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Now suppose that B is an alternative ring. Then so is A and
0=[z,z,y] = —cfa,d,b] + [b,c,a}l

forall a, b, ¢, d € A . It follows that B is associative. On the other hand, associativity
of A clearly implies that {z,z,y] =0.

So B is left alternative if and only if A is associative. Similarly, B is right alter-
native if and only if A is associative. The statements hold. As for the involution, it
is not hard to check. O

THEOREM 1.2. (The Generalized Cayley-Dickson Algebra) Let A be a commuta-
tive assoctative ring with 1 and 2 # 0 in A. Let «, B and v be in U(A), the unit
group A. Then the free A-module with basis 1, <, j, i3, k, 17, ik, jk, ij-k is a
Cayley-Dickson algebra A(a, 8,v) with multiplication defined by

1 % j ij k ik ik 7k
1 1 i j J k ik Jjk ij-k
3 z « 5] aj ik ak | —ij-k| —ajk
i | 7 |- B | - |k |ii-k]| Bk | Bik
i ij | —aj Bi —af |ij-k| ajk | —0Gik | —afk
k k —tk | —jk | —tj-k| ¥ —yi —vj | —vk
ik tk | —ak|—ij-k| —ajk | vi | —ay vij oyj
Jk || Jk |-k} =Bk | Bk | vj | —vij | =By | —Bri
ij-ki{ij-k| ajk | —Pik | ofk | yij | —ayj!| B afy

Thus A(a, 8,7) is an alternative ring which is not associative.

PROOF. The map a — a, @ € A is certainly an involution on A. Apply The-
orem I.1 to get ring A(a). This is a commutative associative ring. Then we can
construct A(a, ), which is a non-commutative algebra. We can verify that A(q, §)
is associative, too. By Theorem L.1, algebra A(e, 83, v) is an alternative algebra. Note
that (¢5)k # i(jk) because i(jk) = —(ij)k and 2 # 0 in A. So this algebra is not
associative. O
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REMARK [.3. From the proof of the above theorem, we know that 2 # 0 is the
necessary and sufficient condition for the Cayley-Dickson algebra to be an alternative
algebra which is not associative.

3. Cayley-Dickson algebras and their induced RA loops

In this section, we use the circle operation to construct RA loops from Cayley-
Dickson algebras introduced in the previous section. The following identity, which is
not hard to check, will be used widely in this thesis. For any z and y in an algebra
A with unity 1,

(z—1o(y—-1)=zy—1.

In particular, (—2)o(y —1)=(-1—-1)o(y—1)=—y—1.

Recall that an element z € A is quasi-regular if there exists an element y in A
such that zoy =yoz = 0. Let Quasi(A) be the set of all quasi-regular elements of
the algebra A. If A is an associative algebra with 1, then (Quasi(A),o) = (U(A),"),
the unit group of A. If A is alternative, then (Quasi(A4),0) is a Moufang loop by
[Goo87, Theorem 1], called the Moufang circle loop of A.

We know that the unity of the circle loop is the Q of the algebra. In this thesis,
to avoid confusion, we use & instead of 0 when we refer to the unity of the circle loop
of an algebra.

Note that if A has 1, then —2 is always in Quasi(A) with —20 —2 = 0, of order 2.
We have seen that 2 # 0 is important for us to construct the Cayley-Dickson algebra,
see Remark 1.3, and we will see that this —2 is important for the RA loops induced
from Cayley-Dickson algebras.

THEOREM 1.4. Let A be a commutative assoctative ring with unity 1 and 2 # 0.
Leta—1, B —1 and v — 1 be elements in Quasi(A). Let

Alo, B,7) = A+ Ai + Aj + Aij + Ak + Aik + Ajk + Aij - k

be the Cayley-Dickson algebra in which i° = o, j*> = 8 and k? = 7.

1. Let Quasi(A(a, B,7)) be the Moufang circle loop of A(e, B, 7). Leta =1 —1,
b=j3—-1andu=%k~1. Then a, b, u € Quasi(4A(a,B,7)). Let Ly be the
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subgroup of Quasi(A) generated by {6, -2, a~1,8—-1,4y—1}. Then
G = Lg o {a) o (b)
is an RA group, Lo = Z(G) and
L=GUGou
is an RA loop, in which ~2 is the unique nonzero commutator-associator.

2. In L, I* =1, for any | € L, where | = I* is the involution of the RA loop and
[ — 1 is the involution of the Cayley-Dickson algebra.

H = Quasi(A) o (a) o (b)
is an RA group, and
P=HUHou

is an RA loop in which —2 is the unique nonzero commutator-associator.
4. The RA loop P contains L, and L is the smallest RA subloop that contains the
elements a, b and u. The loop L is completely determined by o, B8 and .

PROOF. Note that a, 8, ¥y € U(A). By Theorem 1.2, A(c, 3,7) is a generalized

Cayley-Dickson algebra and
Ala,B,v) = A+ Ai + Aj + Aij + Ak + Aik + Ajk + Aij - k.
Because aoa = (i — 1) o (i — 1) = i® — 1 = a — 1, which is in Quasi(A), there exists
(e —1)"! € Quasi(A) C Quasi(A(a, B,7)), such that
(i—-1o(i—1)o(x~1)"1)=09.
So a is a quasi-regular element with a™ = (7 — 1) o (@~ 1)"! € G. So is b by the
same argument. Note that aoca=a ~1€ Lg, bob=F~1 € Ly, and
boa=ji—-l=—ij—1=(-1-1)o(i—-1)o(j—-1)=(-2)oaocb,

and -2 € Ly, aob# boa, so G/Lg = Cy x Cy. Note that G is an RA group if and
only if G/Z(G) = C; x C; by [GIM96, Proposition 3.6). Therefore, to show that G
is an RA group, it remains only to show that Z(G) = L.

For any z = lpoaP o b7 € Z(G), where p, ¢ = 0, 1 and Iy € Ly, we show that
p=¢q=0 Infact,ifp=1 20b=0boz implieslyoaoblob=bolgoaocd? =
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(—2)olpoacbobd?, and then —2 = 0, a contradiction. Hence p = 0. Similarly, ¢q
must be 0. So z € Lg. Since Ly C A, whose elements commute with any elements of
Ala, B,7), Lo € 2(G). Thus Z(G) = Ly.

Note that —2 is the unique commutator-associator, so the involution of the RA
group G is

. )9 if g € Z(G)
(=2)og otherwise

for any g € G. To show that L = GU G ou is an RA loop, we will use its definition.
Note that for any g = lpoaob € G, where lg € Lo, gou = ((lp +1) ~ 1) o ((z —
o{(j—1)o(k—1) = (lp +1)ij -k~ 1. Since —1 is quasi-regular if and only if
1 + (—1) = 0 is a unit of the algebra, which is not true, —1 ¢ L. Therefore, for any
lo € Lo, lp+17#0. Thus gou = (lg+ 1)ij - £ —1 ¢ G because each element in G is
of the form
lpoa™ o™ = (g + 1)i™mj™2 — 1,

where mj,ma = 0,1. Therefore, G N Gou = 0.

Now we claim that for any g, h € G, the three identities

go(hou)=(hog)ou,
(gou)oh =(goh’)ou,
(gou)o(hou)=goohog
hold, where go = v — 1. By using the multiplication table of the Cayley-Dickson
algebra and the formula (z — 1) o (y — 1) = zy — 1, we can check these identities for
any g, h € G. This is a long process and we just check two cases here.
Suppose that g = lgoa, h =l oaob, where [y, [; € Lg. Let us check that
go(hou)=(hog)ou. Note that
go(houw) = lpoao((lyocaob)ou)
= (lpoly)o{ac((aob)ou))
= (lpol)o(ao (ij-k—1)
= (lpoly)o(i(ij-k) — 1)
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= (lpol})o(—ajk —1)

and
(hog)ou = ((licaob)o(lgoa))ou
= (l1olg)o(((eob)oa)ou)
= (liol)o (((57-4)k—1))
= (lyolp)o(—~ajk —1).

So go(hou) = (hog)ou. Also, ifg = lpoband h =[;0a0b, (gou)o(hou) = ggoh*og.
Note that g* = —20g if g ¢ Z(G), so
(gou)o(hou) = (lpobou)o(lio(achd)ou)
= (lpoli)o((bou)o((aobh)ou))
= (lool) o ((7K)((z)k) — 1)
= (lool)o(=pri-1)

and, since h* = —2 0 h,
gooh*og = (y—1)o((fioaobo(-2)) o (lgobd))
= (y—1)olio(=2)olgo((i7)i —1)
= (—7—1)olloloo(ﬂi—-1)
= (lpoli)o (=Byi—-1),

so the identity holds.
Next let us show that for any { in L, {* = [. This follows since

(=2)o(i-1)=(E-1)"=a"

!
—
I
|
o,
|
—
I

a=1
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and Iy = lp = I3 for any l; € Ly = Z(G).
Finally, since L is a subloop of P, only the centers are different, it is easy to check
that P is an RA loop. Note that any RA subloop of P which contains a, b and u

must contain Lo because
acea=a—-1,bob=fF—-1,anduocu=vy-1

and —2 = aoboa~lob"!. Therefore, L is the smallest RA subloop of P which

contains a, b and u. a

quaternion algebra

]

FIGURE I.1. Circle operation connects Cayley-Dickson algebras and
RA loops
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We give the following definition:

DerFINITION 1.5. The RA loop L in the above theorem is called the RA loop in-
duced by the Cayley-Dickson algebra A(o,3,7). The RA loop P is called the major
RA loop induced by A(e, 5,7).

REMARK 1.6. The Cayley-Dickson process can be recursively used n times to get
the so called generalized Cayley-Dickson algebras which are not alternative if n > 3,
as shown in [Bro67] [ES90]. As in [dBJ96, Section 3], we can define generalized RA
loops. Constructing RA loops as in Theorem I.4, we can get generalized RA loops
from generalized Cayley-Dickson algebras.

4. Induced RA loops and other RA loops

The following lemma will be needed in Theorem I.8 and in Section 6.

LEMMA 1.7. Let P = (Z(P){a)(b)){u) and L = (Z(L){c){d)){v} be two RA loops.
Let f be a group homomorphism from Z(P) to Z(L) such that
f@®) =¢, f(¥’) =d* f(u?) =% f((a,b)) = (c,d),
where (a,b) and (c,d) ere the unique nonidentity commutators of the loops P and L,
respectively. Then f can be eztended to a loop homomorphism from P to L by setting
flza™o™2 . 4™) = f(z)c™d™ ™2,
for any z € Z(P). Moreover, if f: Z(P) ~» Z(L) is an isomorphism, so is its

extension.

PRrROOF. Because any element ir P can be uniquely expressed in the form

za™p"? ™

for some z € Z(P), and the same property holds for L, map f is well-defined. Note
that for any elements z = z;a™'6™? and y = z9a™' b™?, where m;, n; =0, l,i=1, 2,
we have

Ty = z122(a, b) MMM T PN
Thus

flzy) = f(z1)f(22)(c,d)m2mcmimgmatne
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= fE)emd™ . f(m)d
= fl=)f(v)-
Therefore f is a group homomorphism from the RA group Z(P)(a)(b) to the RA group
Z(L)(c)(d). Suppose g € Z(P)a) (). If g € Z(P), then f(g") = f(g) = f(g)" since
f(g) is in the center of L; if g ¢ Z(P), then f(g") = f((a, b)g) = (¢, d)f(9) = f(9)"
since f(g) is not in the center of L. Therefore f(g*) = f(g)* for any g € Z(P)(a)(b}).
We extend the map f to a map from P to L in the following way. For any gu € P,
let f(gu) = f(g)v, where g € Z(P){a}(b). Then it is true that f is a map from P to
L because

P = Z(P){a)}(b) U Z(P)(a)(b}u, and Z(P)(a)(b) N Z(P)(a)(b)u = 0.
For any g, i in the RA group of P we have

flg(hu)) = f((hg)u) = f(hg)f(u) = (f(R)f(9))f(v)
= (f(h)f(g))v = f(g)(f(R)v) = f(g) f(hu),
fl(qulh) = flgh™)u = (f(9)f(A"))f(u) = (f(g)f(R)")v
= (f(@v)f(h) = flgu)f(h),
fllgu(hu)) = f(u®h7g) = f(u*)f(R")f(g) = v*f(h)"f(9)
= (f(g)v)(f(h)v) = flgu)f(hu).
Thus f is a loop homomorphism from P to L. Note that if f is an isomorphism from

Z(P) to Z(L) then so is the extension. O

THEOREM 1.8. Any RA loop is a homomorphic image of the major RA loop P
induced by some Cayley-Dickson algebra A(a,8,7).

PRrROOF. Let W be any given RA loop. By the structure theorem of RA loops, we
can assume that W = (Z(W)(a)(b))(u). Since Z(W) is an abelian group, we can find
a ring V such that the multiplication is trivial and (V, +) = (Z(W), -). Then the
circle group (Quasi(V), o) of V, which is identical to (V', +), is isomorphic to Z(W).
Assume that under this isomorphism fo, fo(a) = a2, fo(8) = ¥, and fo(y) = u?,
where «, 3 and v € V. We can make these assumptions because a?, 4% and u? are in
Z(W).
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Let A =Z &V, where Z is the integer ring. Define addition and multiplication
on A by
(m,v) + (my,v1) = (M +my,v + 1)

(m,v)(my,v1) = (mmy,mv, + m).
Note that A is an associative commutative ring with 1. We claim that
(Quasi(A),o) = {(t,v) |t € {0,—2},v € V = Quasi(V)}.

For any (m, v) € Quasi(A), there is a (my, vy) such that (m, v) o (my, v1) = (0, 0).
Hence

(mmy +m +my,mv +mu, +v +v;) = (0,0).
This implies that m =m; =0 or m = m; = —2. Therefore,
(m,v) € {(t,v) | t € {0,—2},v € V = Quasi(V)}.

On the other hand, for any v € V, (0,v) o (0, ~v) = (0,0) and (—2,v) o (=2, -v) =
(4—2-2,-2v +2v +v —v) = (0,0), so the two sets are equal.
Note that (-2, v) = (-2, 0)o (0, —v), and (—2,0) is of order 2 in the group. Thus
(Quasi(A),0) = {(0,0),(-2,0)} x (0, Quasi(V)),

is the direct product of two subgroups. Note that (1,a)(1, —a) = (1,0), the identity
of 4, so (1,a) € U(A). Similarly, (1,8) and (1,7) are in U(A) and 2 # 0. Thus
(1,e) — (1,0), (1,8) — (1,0) and (1,v) — (1,0) are in Quasi(A), and the conditions of
Theorem 1.4 are satisfied. By Theorem 1.4,

P = (Quasi(4)o(i—1)o{(j—1))o(k-1)
= ({(0,0),(~2,0)} x (0,Quasi(V)) o (i —1)o(j —1)) o(k —1)

isan RA loop with (i—~1)o(i-1) = (0,a), (j—1)eo(j—1) = (0,8) and (k—1)o(k—1) =

(0,7).
Define f; from Quasi(4) to Z(W) by

f]_(O,’U) = fO(v)7 fl((_2s 0)) =8,

where s is the unique nonidentity commutator-associator of W. Thus

f1((=2,0)™ 0 (0,v)) = s™ fo(v),
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where m = 0, 1. For any elements (—2,0)™ o (0,v), (~2,0)" o (0,w) € Quasi(A),
where m, n =0, 1, we have
f1((=2,00™ 0 (0,v) 0 (=2,0)" 2 (0,w)) = fi((=2,0)™*" o (0,v0w))

= s™" fo(vow)

= 5™ fo(v) fo(w)

= 5™ fo(v)s" fo(w)

= fl((—'zy O)m o (07 v))fl((_zi O)n o (01 w))‘
Therefore, f, is a group homomorphism, with f((—2,0)) = s, and

A((=1)e(i~1)) = f1((0,a)) = fola) =a?, A((i~1)e(i-1)) = £((0,8)) = fo(B) = ¥,

fillk=1) o (k- 1)) = f1((0,7)) = >

By Lemma 1.7, f; can be extended to a loop homomorphism f from P to W. Because
the map f; is surjective, it is easy to see that the map f is also surjective. So W is a

homomorphic image of P. a

Luiz G. X. de Barros {dB93a] classified RA loops into two types: type I and II.
Let us recall the definition (GJM96, Definition 2.1]. An RA loop L is of type I if
the unique non-identity commutator-associator s of L is a square in Z(L); that is, if
there exists t € Z(L) such that ¢* = s. If there is no such element, the loop is said to
be of type II.

In the above theorem, the nonidentity commutator-associator of the RA loop P is
(—2,0), and the center of the loop P is (Quasi(A4),°) = (0, Quasi(V))U(—2, Quasi(V)).
So it is easy to see that P is of type II. From the above theorem, we have the following

COROLLARY 1.9. Any RA loop is the homomorphic image of an RA loop of type
II.

5. Moufang circle loops and RA loops

From [Go087, Theorem 1], we know that the set of all quasi-regular elements of
an alternative ring forms a Moufang loop under the circle operation called a Moufang
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circle loop. In section 3 we have shown that the Moufang circle loop of a Cayley-
Dickson algebra always contains an RA circle loop as a subloop. It is natural to ask
when an RA loop happens to be the Moufang circle loop of an alternative ring.

The smallest RA loops are of order 16, the Cayley loop M6(@s) and M(Qs, 2),
or M(Qs, *,t1) and M(Dy,*,1) [GIM9I6, Table 4, p.145]. In this section, we show
that these two loops are Moufang circle loops of alternative algebras.

PROPOSITION [.10. Let Z be the integers. Let o« = 1, 8 = +1, ¥ = +1 and
let A be the Cayley-Dickson algebra Z(«, B, ). Then the major RA loops, which
are two RA loops of order 16, induced from the these Cayley-Dickson algebras, are
Moufang circle loops. In particuler, the major loop induced by Z(—1,—1,—1) is the
Cayley loop My6(Qs) and the major loop induced by Z(1,1,1) is M(Qs, 2).

PROOF. Let z be an invertible element of the Cayley-Dickson algebra Z(a, 3, 7).
Then there exists y € Z(a, B, 7) such that zy = 1. Let n be the norm on Z(e, 8, 7).
Since 1 = n(zy) = n(z)n(y), n(z) = £1. Since z is of the form

T =30+ 11 + 297 + T38] + T4k + T5tk + 65K + 2715 - K,

T==+1, +i, +£j, +ij, +k, +ik, +jk xij-k.

Since z is invertible if and only if £ — 1 is quasi-regular, the circle Moufang loop of
Z(a, B, v) is

{0, =2, £i-1, £j-1, xij—1, £k-1, £ik-1, £5k-1, £ij-k—1,},
which is the major RA loop
P={0, —2}o((i—1)o(j~1))o(k—1)

induced from the Cayley-Dickson algebra Z(e, 3, 7).
Lleta=-1,8=-landy=-1. Then (i —1)o(i—-1) =i -1l=a—-1=-2
and (j—1)o(j —1)=32—1=pF—1=—2. Similarly, (k—1)o(k—1) = k> -1 = -2.
In this case P is the Cayley loop M15(Qs) by [GIJM96, table 4, p.145] because —2 is
the commutator-associator.
Leta=1A=1andy=1 Then (i~1)o(i~1)=i2—-1=a—1 =86,
(J—1)o(j—1)=06and (k—1)o(k—1) = 6. In this case P is M(Dy,*,1) by
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(GIM96, Table 4, p.145] because 8 is the unity of the circle loop P. Note that
M(Dy, *,1) is M(Qs, 2).

Since there are only two nonisomorphic RA loops of order 16 [JLM95] [GIJM96,
Table 4, p.145], the other RA loops are isomorphic to one of the above two loops. O

6. The categories of RA loops and Cayley-Dickson algebras

In this section, we define the categories of RA loops and Cayley-Dickson algebras
and show that they are equivalent. For basic concepts of category theory, we refer
the reader to [Jac80).

First we define some notation. In this section, we always assume that R is a fixed
commutative associative ring with 1, R-algebras have unitiesand 2 # 0. For a given
Cayley-Dickson algebra A(a,8,7), we let T4(q,5,4) be the submonoid generated by
{¢,7,k} in the multiplication monoid of this Cayley-Dickson algebra. Let Alg4(a g,y
denote the R-subalgebra of A(e, 83,7) generated by {i, 7, k}.

Now we define the category of Cayley-Dickson algebras I The objects in I are
all the Cayley-Dickson algebras A(a,3,7), where A is a commutative associative R-
algebra.

For any two objects A(a, 8,7) and A (a1, 51,m) in I’ we define

hOﬂ’L[‘(A(a, ﬂ: 7)1 Al (ah ﬂlv'Yl))

to be the set of all R-algebra homomorphisms f from the R-subalgebra Alg 4, 5,+) tO
the R-subalgebra Algy(q, g,,y) With ¢, 7, and & € (f(T4(a,5,4)), —1); the submonoid

of (A1(e1,B1,71),-) generated by f(Ta(as.y)) 20d —1.
For each ordered triple of objects (41 (a1, B1,71), A2(0a, B, 12), Az(as, £3,73)), a
map from

homr(Ai (a1, B1,m), Az2(az2, B2, 12)) X homp(Aa(az, B2, 1), As(as, £3,73))

to homr((A1(a1,B1,m), Az(as, B3,73)) can be defined to be the composition of the
morphisms. In faCt! let f € homF(Al (aliﬁli 'Yl)i A2 (a'Zy :BZ: 72)) and

g € hom(Az(a2,52,72), As(a3, B3,73))- Since s, 7, and k €(f(Ta(a,8,m)s —1), the
submonoid generated by ¢, 7, and k is in (f(T4(a,g,7))s —1), ie.,

<TA2(02,52.72)' —1) g f((TAl(al,ﬂl,’Y],)’ —1)).
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Therefore,
9T az(a2,8:12) —1)) € (9f Th(a ) —1)-

But 4, j, and k € 9(Tu,(ag,82,12)) 50 %, 7, and & € f({Tu(a,8,y)> —1))- Therefore, the
composition of the morphisms satisfies the restriction and

gf € homr‘((Al (017.61771)7 A3(a3a .63’ 73))'

Naturally, the morphisms are disjoint for different pairs of objects. Since all the
morphisms in hom are R-algebra homomorphisms, the associative law holds for the
composition of the morphisms. For each object A(e,S,7), the identity map is the
unity of hom(A(e, 8,7),A(e, B8,7)). By definition, I' is a category.

Now we define the category of RA loops ©. The objects in © are all RA loops
L induced by a Cayley-Dickson algebra, as described in Theorem [.4. So any object
in © can be expressed as L = (Z(L){ar){br)){ur) with s = ~2, and a = ¢ — 1,
b=j—1and u =k -1, where Z(L) is the center of the loop and s is the unique
commutator-associator. We will use this expression to refer to this object.

For each pair of objects in ©, L and P, we define homg(L, P) to be the set of all
loop homomorphisms f from L onto P such that (f(a), f(b), f(u)) #0.

Now we show that under this definition, © is a category. For each ordered triple
of objects (L, P, Q), a map from

hom(L, P) x hom(P, Q) to hom(L,Q)

can be defined to be the composition of the morphisms. In fact, let f € homn(ZL, P)
and g € hom(P,Q), then gf is an onto map from L to @ since f and g are onto maps.
By deﬁnition: (f(aL)r f(bL)r f(uL)) #0€P,so (f(aL)7 f(bL)a f(uL)) = (aP,bP,‘UP)
because the associator is unique in the RA loop P. Since (g(ap), g(br),g(up)) #0 €

@

(9f(ar),9f(bL),9f(uL)) = g((f(ar), f(bL), f(ur))) = g((ep,bp,up)) # 0.

Thus gf € hom(L,Q). Naturally, the morphisms are disjoint for different pair of
objects. Since all the morphisms in hom are loop homomorphisms, the associative
law holds for the composition of the maps. For each object L, the identity map is the
unity of the hom(L, L). By definition, © is a category.

To show that the two categories are equivalent, we need the following lemmas.
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LEMMA L.11. For each object A(a,3,7) in I, let F(A(a, B,v)) be the RA loop
induced by A(c, 8,7). For any pair of objects A, B,7) and Ai(ay,B:,71) and any
homomorphism f € hom(A(a, B,7), A1(e1, B1,7)), define F(f) to be the loop homo-
morphism induced by f. Then F is a functor from T to O.

Proor. For each object A(c, 8,7) in T, following Theorem 1.4,
L=(Loo(i—1)o(j—1))o{u—-1)
is an RA loop with
Ly=(s==2,(i-1)o(i-1)=a-1,(j—1)o(j-1) =B-1,(k—1)o(k—1) =y-1).
By definition, L = F(A(a, B,7)) € ©.

For any pair of objects A(c,3,v) and A;(on, 51,71), let the corresponding RA
loops be L and L;. For any f € hom(A(«,B,7), A1 (a1, 81,71)), by definition, f is
an R-algebra homomorphism from the R-subalgebra Algs(, g to the R-subalgebra
Algai(ar,81m)- And 4, 7, k € f(Ta(e,,))- We want to show that F(f) € hom(L, L,).

Since f is an algebra homomorphism, it induces a loop homomorphism from L to
L,. This map is F'(f).

Since ¢, j and & are in (f(ZTy(a,8,7)): —1), we can assume that

i=(=1)"(f@)™ fG)™) - fF(R)™.
Following the formula zy — 1 = (z — 1) o (y — 1), we have
i—1=(=2)0o(f() =)™ o (f(4) — 1)) o (f(k) =)™

=(=2)" o (fli-1)" o f(j ~1)")o f(k~1)".

Thus i —1isin F(f)(L). So are —1 and k—1 by the same argument. Therefore,
F(f) is an onto map. Let € be the unity of the loop. If the loop associator of f(i — 1),
f(j —1) and f(k — 1) were 8, by [GIM96, Theorem 5.4], the three elements would
generate a group. So the associator of i—1, j—1 and k—1 would be 8, a contradiction.
Thus F(f) is in hom(L, L;).

For 14(a,8,y), We know F(l 4 8,)) = L. Let f € hom(A(w, 8,7), A1(a1, B1,7))
and let g € hom(A1(a1, B, M), A2(a2, B2, 7). Then F(gf) = F(g)F(f) because
F(f) and F(g) are the restrictions of f and g on the loops. Thus F is a functor from
Cayley-Dickson algebra category I to the loop category ©.
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LEMMA 1.12. The functor F' defined above from T' to © is faithful.

PROOF. Recall that a functor from I' to © is faithful if for any pair of objects
A(a,B,7) and Ay (a1, B1,11) inT the map f — F(f) of hom(A(e, 8,7), A1 (a1, b1, 11))
to hom(F(A(, B,7)), F(A1(a1,61,7))) is injective.

Since F(f) is defined by the restriction of f on the induced loop L, which is
generated by {i — 1, j — 1, k — 1}, we can show that the map is injective. In fact,
if g € hom(A(e, 8,7), 4i1(a1,51,m)) and F(g) = F(f), then g(z) = F(g)(z) =
F(f)(z) = f(z), forany z =i —1, j— 1, k— 1. Since f and g are R-algebra
homomorphisms, f(z) = g(¢), f(j) = g(j) and f(k) = g(k) and the two morphisms
are identical.

|

LEMMA 1.13. The functor defined above from I’ to © is full.

PROOF. Recall that a functor is full from I' to © if for any pair of objects A(a, 3, 7)
and Ai(a1,B1,m) in T the map f — F(f) of hom(A(e,B,7), A1(a1, B1.m)) to
hom(F(A(a, 8,7)), F(Ai(aL, B1,71))) is surjective.

Suppose that F(A(a,B,7)) = L and F(Ai(a1,51,m)) = L. For any g €
hom(L, L,), by definition, the associator (g(z — 1), g(7 — 1), g(k —~ 1)) # 6. Assume
that

gli—=1) = (=2)™ o (i —1)™ o (j —1)™)) o (k—1)™
gG -1 =(=2)"o(-1)"o(j ~1)™)) o (k—1)™
gk —1) = (=2)" o ((k —1)"* o (j — 1)"*)) o (k — 1)P=.
We want to define a map from Algy(, g,,), the R-subalgebra of A(q,S,7) generated
by {%,7,k} to Alga,(a,8,m) the R-subalgebra of A;(ei,f1,71) generated by {3, 7,
k} such that 7, j, k € (f(Taga,8,1) —1)
Define
f@) = (1) @™ k™S
fG) = (=1)"(F™ "2 )k™
F(k) = (=1)Po (4P jP2)kP3,
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Then f can be extended to an R-algebra homomorphism from the R-subalgebra
Alg A(a3,y) to the R-subalgebra Alg 4, (q,,8,,v)- Now we show that ¢, 5, k¥ € (f(Ta(a,87)):
—-1).

Since g is an onto map, i —1, j — 1 and k£ — 1 are in the image of g. Furthermore,
i — 1 can be expressed as some circle multiplication of -2, g(i — 1), g{§ — 1) and
g(k — 1). Suppose that

i1 = (2% (gi— 1) og(j — 1) 0 glk — 1)
= (2)T o [(M ™ — 1T o (@K™ — 1) o (57K — 1)
= (2P o [((f©) ~ 1" o () ~ V] o ((F() = D
G EOLHOVIGEESE

Thus i € (f(Ta(ap,y), —1)- So are j and k by the same argument. Therefore,

f € hOTTL(A(C.\!, ﬂ) 7)1 Al (ali ﬁla 'Yl))'
The last step of this proof is to show that F(f) = g. This is not hard because the

definition of f tells us that
fE=1)= (=2 o ((E-1)™ o (j —1)™)}o (k- 1)™ = g(i — 1),

fG=1D=(=2"o((i-1)" o =1)")) o (k-1)™ =g(7 - 1),
flk=1)=(=2)%o((i —1)P* o (§ —1)*)) o (k - 1}P* = g(k — 1).

Since F(f) is defined by the restriction of the algebra homomorphism, F(f) = g.
d

THEOREM [.14. T’ end © are eguivelent categories.

PRrROOF. By the above lemmas, we have shown that the functor F' is faithful and
full. By the definition of ©, for every object P in ©, there is an object A{¢, 3,7) in
I such that F(A(e, B,7)) is equal to P. By [Jac80, Proposition 1.3], I' and © are

equivalent categories.
a

We have seen that an RA loop is a homomorphic image of a loop induced by a
Cayley-Dickson algebra. Now we show that certain RA loops contains subloops which
are RA loops induced by Cayley-Dickson algebras.
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PROPOSITION 1.15. For any RA loop P = (Z(P){a){b)){u) with s ¢ (a2, b?,
u2), there is an object A(e, B,7) in T such that the induced RA loop of A(e, B,7) is
isomorphic to the subloop of P generated by a, b and wu.

PROOF. Assume that P = (Z(P)(a)(b))(u) is an RA loop with s ¢ (a?,b?,u?),
where Z(P) is the center of P. We know that a?, b, u? are in Z(P). Set

PO = {113} X (a21b21u2)

in P. Since s is of order 2 and it is not in the subgroup (a2, b2, u2) by assumption, Py
is the direct product of {1, s} and (a2, b?,u?).

Consider the Cayley-Dickson algebra RZ(P)(a?, b?,u?), where RZ(P) is the com-
mutative group algebra of Z(P) over R. By Theorem 1.4, the induced RA loop L
has the properties that ({ — 1) o (i —1) = a2 ~1, (j —1)o(j —1) = 4 -1 and
(k—=1)o(k—1) =u2—1. Set

Lo = {8,-2} x (a® = 1, — 1,u® — 1)

Since —2 is of order 2 and it is not in (Z(P) —1,0), Ly is a direct product of the two
subgroups.

Note that the subgroup of Z(P) generated by {a?, b2, u?} is isomorphic through
map fy to the circle subgroup of L generated by {a? — 1, b2 — 1, w2 — 1}, where
fo(z) = £ =1, for any z = a?, 4%, u? and their products. Extend this map fp to a
map f from the subloop of P generated by a, b and u to L by setting f(s) = —2.
Then it is a group isomorphism.

Note that under this isomorphism, f(s) = =2, f(a?) = (i — 1) o (¢ — 1), f(b?) =
(j—1)o(j—1), and f(u?) = (k—1) o (k —1). Thus this map induces a loop
homomorphism from the subloop of P generated by a, b and u to L by Lemma 1.7,
sending s, a, b, v, %, b?and v? to —2,i—1,j -1, k—1,a2 -1, — 1 and v? — 1,

respectively. It is easy to see that this f is a loop isomorphism. 0O
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CHAPTER II

Cayley-Dickson algebras and alternative loop algebras

In the previous chapter, we have shown that any Cayley-Dickson algebra can induce
an RA loop. Certainly, this induced RA loop must be tightly related to this Cayley-
Dickson algebra. In this chapter we will show an interesting relationship between
them: any Cayley-Dickson algebra is a quotient algebra. of the alternative loop algebra
of the induced RA loop. Then we determine the kernel of the map and the properties
preserved. After this a known result is generalized [Zho)].

1. Induced alternative loop algebras

LEMMA I1.1. Every element in the Cayley-Dickson algebra A(a, B,7) can be uniquely
ezpressed in the form

ro +ria+reb+riaob+rau+rsaou+rgbou+rr(ach)ou,
wherea=1—1,b=j~1l,u=k—-landr;€Ad, i=0,1,...,7.
ProoOF. We show uniqueness first. Assume that
ro+ria+rb+riaob+ryutrsaou+rgbou+rr{ach)ou=0.
Then
ro+r(i—1)+rm(F—-1)+ri—1)o(G—1)+ryk—1)+r5(i—1)o(k—-1)

+rs(j —1)o(k—1)+r7((i —1)o(j—1)) e (k—1) =0.
Recall the formula (z —1)o (y — 1) = zy — 1. Thus

7
ro — 3 i +r1i+ o) + 7345 + rak + 151k +rejk +rrij -k =0.
=1
Therefore, r; =0,: =1, 2,..., 7, and then rg = 0.
29
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Sincei=a+1,j=b+1, k=u+1l,ij=acb+1l,tk=aou+1l,jk=bou+l,
ij -k =(aob)ou+1, any element

fo + 11t + taJ + t3i] + tak + t5ik + teJk + t72] - K
in A(a, 8,7) can be expressed in the form
rot+ria+reb+ryaob+ryut+rsacu+rgbou+ry(acb)ou.
This completes the proof. a

Let us recall the definitions of the involution of an alternative loop algebra and
its norm and trace. Let AL be the loop algebra of RA loop L over algebra A. Let
[ = [* be the involution of the RA loop L. Then the involution on L extends linearly
to an algebra involution of the loop algebra AL which we also denote x:

O omly =) .
leL leL
The norm n(z) and trace t(z) of £ € AL are defined by n(z) = zz* and ¢(z) = z+z*,
respectively. For more information, we refer the reader to the book by Goodaire,
Jespers and Polcino Milies [GIJM96, pp. 100-105).

THEOREM I1.2. Suppose A is ¢ commutative associative ring with unity 1 and
2#0. Leta—1,8—1 and v—1 be elements in Quasi(4). Let AL be the alternative
loop algebra of the RA loop L over A, where L is either the RA loop or the major
RA loop induced by the Cayley-Dickson algebra A(e, B, 7).

1. AL = A0®w(AL), direct sum as A-modules, where w(AL) is the augmentation

tdeal of AL and 6 is the unity of the loop L. Let f be the map from AL to
Ala, B,7) defined as follows. For any z =10+, il € AL, wherer € A
and Yo il € w(AL),
f(TG-I-zT'[l) =r+Zr1 -1
lel leL

The operator “” in the expression Zte L 71 denotes multiplication in the alge-
bra A(a, B,7). Then f is an A-algebra homomorphism from AL onto A(a, 8,7),
and

AL/ ker(f) = A(a, B,7)
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as A-algebras. Thus every generalized Cayley-Dickson algebra is a quotient
algebra of an RA loop algebra.
2. The kernel of f is

{Zrll | Z Tiow - i = — Z Tlow:

el leLg leLg
Vriew € A, V! € Lg,Vw = 6,a,b,a0 b,u,a0u,bou,(aob)outl,

where Lg is the center of the loop L.
3. The map f commutes with the involutions of the alternative loop algebra and
Cayley-Dickson algebra. That is, for any ¢ € AL,

f(=z%) = f(=).
4. For the norm n and trace tr of the alternative loop algebra AL and the Cayley-
Dickson algebra A(a, 8,7), we have fn =nf and ftr = trf, that is, for any
z € AL,

fn(z)) = n(f(2)),
fltr(z)) = tr(f ().

PrROOF. We first show that f is an A-algebra homomorphism from the loop alge-
bra AL to the Cayley-Dickson algebra A(c, 3,7%).

For any element z =19+ 3 ,.; 7l € AL, wherer € A and )"\, il € w(AL), we
have

f@)=r+3 -l Ale,f7)
leL
because

Ale,B,7v) =A+ Ao+ Ab+ Aaob+ Au+ Aaou+ Abou+ A(aob)ou

contains the loop L, which is constructed from A(c, 3,). Since AL is the direct sum
of A and w(AL), the map f is well defined.

For any two elements z = rf + 3, mil, y = "0+ 3, il € AL, it is easy to
check that

f+y)=r+r+> (m+r)-1=f(z)+ fy)
teL

and f(tz) =tf(z) for any t € A. Thus f is an A-module homomorphism.
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Let v € A(«, 3,7). By Lemma IL.1, we can write
v=ry+ra+reb+rzaob+ryu+rsaou+rgboutrr(acd)ou.

Let
7
z=(rg —Zri)ﬂ+r1a+rzb+r3a.ob+r4u+r5aou+rebou-!-r7(a0b)ou.
i=1
Then z can be written as
z = rof+{ri(a—-0)+r2(b—0)+r3(acb—0)+ry(u—6)+rs(aou—6)

+rg{bou —0) +r7((aob)ou—0)} € A0 + w(AL).
Thus
flzy=ro+ra+reb+rzaob+ryu+rsaouv+rgbou+rr(aobd)ou =,

since @ is 0 in the algebra. Therefore, f is onto.

The interesting part of the proof is to show that f is a ring homomorphism. For
any two elements z and y in AL, let 2 =718+, c, 7l and y =0+ 3, trh, where
Yer il and 30, thh are in w(AL). Then

Ty =rtf + {thl+thhh + Z ritpl o h},
leL hel leLhel

and the second part in the expression of zy is in w(AL). So

flzy) = rt+{tY) m-l+r) _th-h+ Y ritn-loh}

leL heLl teL.hel
= rt+ty r-l+ry ta-h+ Y rmtg-(Ih+l+h)
lel hel leL,hel
= rt+tZr¢-l+thh-h+ Z ritp-l-h
leL helL leL.hel
+ Z Titp - L+ Z Tty - h
leLhel leLhelL
= rt+ty ml+rY th-h+ > rmtn-l-h
leL hel leL ,hel

+(Zrl-l)Zth+(Z'r¢) . Eth-h

leL hel leL hel
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= rt+ty - l+rY thoh+ Y rita-l-h

el hel leL.hel
= (r+ Y m-DE+ D th-h)
leL hel
= f(z)f(y)-

Therefore, f is an A-algebra homomorphism from the loop algebra onto the Cayley-
Dickson algebra. Now we investigate the kermel. Since L is an RA loop, by the
structure theorem of RA loops [GJM96, Theorem 3.1, p.123 |, L can be expressed
as

L = LoULgoaULgobUlLgoaobULyou
(I1.1) ULgjocaouULyobouULgo(aob)ou,

which is a pairwise disjoint union. Therefore, for any z =3, nl € AL,

2=y n)b+ r(l-0),

lel lel
we have
z o= O )+ -6+ realloa—8)+ > rep(lob—6)
leL leLy lely leLly
+ Z Tlo(aob)(l ° (a o b) - 0) + Z "'lau(l ou — 9)
leLlo leLg
+ Z Tlo(aou) (l © (a Q u) - 0) + Z Tlo(bou) (l ° (b o 'u) - 0)
leLo leLo
+ Z Tlo({aob)ou) (l ° (a ° b) ° u) - 6)

leLo

By definition,

f@) = D m+ Y mel+ Y reacloa+ Y rmioplob

leL leLo leLo leLly
+zrla(aob) lo{acb) + zrlou lou
lelg l€Lo

+ Z Tlo(aou) ° lo{aou)+ Z Tlo(bowu) * lo(bou)
leLlg l€Lo
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+ Z Tio({acb)ox) * lo ((1 o b) o u)

leLg
= ZT‘[-{- Z‘r‘[-l-i- an-(l-a+l+a)+ Z‘r‘[ob-(l-b-i-l-i-b)
{eL leLg {€Lg leLg
+Zr;°(a°b) v(l-(aOb)+l+(a0b))+Zr;ou'(l-u+l+u)
l€Lg leLy
+Z Tto(aou) " ([ - (@ou) +l+aou)+ Zm(bw) +(l-(bou) +1l+bou)
{elg leLg
+ Z Tlo((acb)ou) * (l ' (a ° b) ° 'LL) +1+ (a'o b) ° ’U.))
l€Lg
= Z T+ Z (Tt + Tioa + Ttob + Tloach) + Tlou + Tio(aou) + Tlo(bou) + Tto((acb)ou)) *
leL leLg
+ D real+a+ Y riep(l + 1)b
leLg leLg
+ 3 ooy +1) - (@0b) + Y rou(l +1)u
leLy leLg
+ D Tyl + 1) - (@ow) + Y Tiogpowy i +1) - (bow)
leLo leLo
+ Z Tlo((ach)ou) (l + 1) ‘ (G. ° b) o u.
leLg

Suppose f(z) = 0. By Lemma IIL1, the coefficients of 1, a, b, a0 b, u, a ocu, bou and

(a o b) o u are zero. So,

Z T+ Z (r1 + Tioa + Tlob + Tio(aob) +

lel l€Lg
(112) +Tlou + Tlo(aou) + Tlo(bou) + rlo((a.ob)o-u.)) -1=0
(113) z Tlca d=- Z Tioa
{€Lg [€Lg
(IL.4) > rebrl==_ i
leLq {€Lg
(II.5) Z Tlo(acb)-t = — Z Tlo(aob)
lelg leLyg

(I1.6) Z Tloy -l = — Z Tlow

{ELg teLg
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(IL.7) Z Tlo{aou) l=- Z Tlo(aou)

leLy leLo

(HS) Z Tlo(bou) * =~ Z Tlo(bou)
leLo lelo

(IL.9) D Tlo(laction) "L == Tis((act)ou)
leLy leLlo

in A. Since

Z = Z (r1 + Tioa + Tiab + Tlo(aob) T Tlou + Tio(aou) t Tio(bou) + rlo((aob)ou))7

leL l€Lg
by substituting the equations I1.3 to I1.9 into equation II.2, we get
(I1.10) doml==>"n.

lely lely

Thus z € ker(f) if and only if the coefficients of z satisfy equations II.3 to II.10. For
any x =3 ., mil € AL,

z = O r)f+Y ni-9

leL leL
= O_me+d nl-0)+ > ni-o).
leL lelo leL\Ly
Therefore,
=0+ DY nl-6)+ > n(-2)o(—8).
leL leLo €L\ Lo
Now
f($)=ZT1+ZTl'l+ Z T,
leL leLqy leL\Lo
f(=*) =Z7'l+ Zrz-l+ E ri-(—2)ol,
tel leLo leL\Lo
and
f(z)=zrl+zrt'l+ Z - 1.
leL leLo leL\Lo

Since [ =1* = —20!,forl € L\ Ly,

f(z*) = ().
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For any z € AL, tr(z) = z + z* and n(z) = zz*. So
f(tr(z)) = fz + z%) = f(=) + f(") = f) + f(z) = tr(f(2)),

f(n(z)) = f(zz®) = f(2)f(z7) = f(z)[f(z) =n(f(z))-

Every RAloopisa
homomorphic ima

A loop dlgebra of characteristic
different from 2 is alternative

if and oyly if the loop if an

RA loop-

Cayley-Dickson
algebras

ayley-Dickson algebra is

a homomorphismage of an
alternative loop algeb

Alternative loop

algebras

FIGurE II.1. Cayley-Dickson algebras, RA loops and alternative loop algebras

2. A further description of ker(f)

Since every Cayley-Dickson algebra is a homomorphic image of an alternative loop
algebra by Theorem II.2, the kernel of the map f is very important for connecting
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the loop algebra to the Cayley-Dickson algebra. In this section we give a description
of the elements in ker(f) in more detail.

THEOREM I1.3. Suppose A is a commulative associative ring with unity 1 and
2#0. Let a, § and v be elements in U(A). Let AL be the alternative loop algebra
of the induced RA loop L. Let Lq be the center of L. Let I be the group generated by
-1, a, § and v in A. Then

1. The map h: Lg— I defined by
h(z) =z + 1 for any = € Lo,

s a group isomorphism.

ker(f) ={ z ri'low € AL | for anyw € T, Zr}”-h(!) =01 A}
weT lELy l€Lo

where T = {6, a, b, aob, u, aou, bou, (aob)ou}.

3. Let
QALy) = {> rle ALy | Y ri-h(l) =0 in A}.
leLo lely

Then Q(ALg) is an ideal of ALg.
4. ker(f) = ALQ(ALg) = Q(ALg)AL.
5. If Lo = {8, —2} and —2 € U(4), then

ALQ(ALg) = AlLe,
where e = (1/2)(8 + (-2)).

PROOF. Since L is the induced RA loop, Lg is the circle group generated by {6,
~2,a—1,f—1,v—1} by Theorem 1.4. By the formula (z—1)o(y—1) =zy—1, we
know that each element in Ly is of the form 8, —2, a™ ™1 4"2 — 1, for some integers
n; €2Z,1=0, 1, 2. 1t is easy to check that the map from Lg to I defined by

hizy=z +1, forz € Ly
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is a group isomorphism from the circle group (Lg,c) to the group (I ,-). Because of
equation IL.1, each z =}, ; rl can be expressed as

:z:=zz'r}"lo'w.

weT {eLg
By Theorem II.2, we know that
T € ker(f) 4:»21'}” =—Zr}",foreachwET,
lelp leLo
= > rf-(@+1)=)_ 1 h{l)=0,for cachweT.
leLg leLly

So statement 2 is true. Now we show that (ALo) is an ideal of ALg. Let >, ., il €
Q(ALg). Then } ;c; mi-h(l) = 0in A. We just need to show that AQ(ALg) C Q(ALo)
and LoQ(ALg) C Q(AL).

For any = € A, xZIeLo rl = EleLo zrl in ALg, so

Y (@r)-hl) =z m-h{)=0

leLo leLy

in A, and so “’EteLo ril € Q(ALg). For any = € Lg,

s nl= 3 nlzol)

leLq leLg

and

d_rhzol) = - (h(z) - k(1) = h()(D_ - h(1)) =0,
lelg leLg lelo
so we have Lo(2(ALg)) C Q(ALg). Thus Q(ALg) is an ideal of ALg.

Since AL = 3 r ALyw and ALqw = wALy, for any w € T, the above descrip-
tion of ker(f) gives us that ker(f) = ALQ(ALg) = QUALg)AL. If Ly = {6, — 2},
then for any 746 + r_2(—2) € Q(ALg), rgh(8) +r—2h(—2) =79 +r_2(—1) = 0 implies
that g = r_2, so Q(ALg) = A(@ + (—2)) = Ae, where e = (1/2)(€ + (~2)).

a
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3. Cayley-Dickson algebras, loop algebras and their radicals

In this section, we investigate properties of Cayley-Dickson algebras over group
algebras by using the description of ker(f) in the previous section, and generalize
some known results. As for the radicals of associative rings and alternative rings, we
refer the reader to [Div65, Sza81, ZSSS82], for the radicals of group algebras and
loop algebras, [Kar87, JKW85, GIM96, Zho95].

LEMMA 11.4. Let D be a commutative associative ring with 2 € U(D), the unit
group of D. Then
DLCZ X e XCZ) gp@...@pj
n factors 2" times

where Cy is the group of two elements.

PROOF. Let e = {1/2)(1 + c), where 1 # c € Cy. Then €? = e € DC>, and
DCy=DedD(l—e)=DeaD.

Since D(Cy % --- X Cy) = (D(Csy X +-+- x U3)}Cs, and D(C3 % --- X C3) is a commu-

n factors n—1 factors n—1 factors

tative ring R with 2 € U(R), the statement holds by induction on n. a
LEMMA I1.5. Let L be the RA loop induced by a Cayley-Dickson algebra A(a, 8, ~v)
and AL be the induced loop algebra with —2 € U(A). Then

1. e= (6 + s)/2 is a central element of the loop algebra AL.
2. (AL)e=A®---dA.
e e’

8 times

3.
(AL)e C ker(f) and f(AL(6 —e)) = Ala, B, 7),
where f is the map from AL to A(a, B,7) defined in Theorem IL.2.
4. If ker(f) = (AL)e and L is a 2-loop, then the prime radical P(A(a,3,7)) of
the Cayley-Dickson algebra is
P(A)+ P(A)i+ P(A)j + P(A)ij + P(A)k + P(A)ik + P(A)jk + P(A)ij - k,
and the Jacobson radical J(A(a, 8,7)) of the Cayley-Dickson algebre A(a, 8, 7)

15

J(A)+ J(A)i+ J(A)j + J(A)ij + J(A)k + J(A)ik + J(A)jk + J(A)ij - k.
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PROOF. Since s = -2 € Ly, e = (6 +5)/2 is a central element in the loop algebra
AL so

AL = (AL)e® AL(0 — e).
Recall that L' = {6, s}, the commutator subloop of the loop L with

L/L' = Cy x Cy x Cs.
Then we have
(ALYe = A(L/L') = A(C2 x C; x Cp) 84
by Lemma II.4. Furthermore,
f(AL) = f(ALe) @ f(AL(6 — e)) = A(a, 8,7)f(e) ® A(e, B,7) F(8 — e).
Since
fle) =(1/2)f(6 + ) = (1/2)f(20 + (s — ) = (1/2)(2 + 5) = (1/2)(2 - 2) =0,
we have f(§ — e) = 1. Therefore
(AL)e C ker(f) and f(AL(6 —e)) = A(a.5,7).

As for the radicals, by [GIM96, Theorem 3.4, p.161], we know that if L is a

torsion loop, then

J(AL) = J(A)L + ) _ J(A)pw(L, Ly),
PEP
where P is the set of prime numbers.
Recall that for any ideal I of an algebra A and a positive integer n, I, is the set
of all elements r € R with nr € I (GIM96, p.157] and

J(A)p = {r € J(4) | pr € J(A)}.
Since L is a 2-loop, L, = @ if p # 2. But 2 € U(A4), so J(A4)2 = J(A). Therefore,
J(AL) = J(A)L.
Let B = AL(6 —e). Then

AL = (AL)e ® AL(6 — e) = ker(f) ® B,



3. CAYLEY-DICKSON ALGEBRAS, LOOP ALGEBRAS AND THEIR RADICALS 41

by the assumption that ker(f) = (AL)e. Because the Jacobson radical is hereditary
(255582,

J(B)=J(AL)N B = (J(A)L)N B.
Because ker(f) N B =0, f is an isomorphism from B to A(e, 8,7). Thus
J(A(a, 8,7)) = F((J(A)L) N B) = f((J(A)L) N AL(0 — e)).
Note that
J(A)L = (J(A)L)e ® (J(A)L)(6 —e),

so J(A)LNAL(6 —e) = J(A)L(@ — e). In fact, it is easy to see the right hand side is
contained in the left hand side. For any z € J(A)LNAL(f —e), z = z1e + z2(0 —€),
where z;, 3 € J(A)L. Since z € AL(8 —¢), 1 =0, so ¢ € J(A)L(8 —e). Therefore,

J(A(a, B,7))

f((J(A)L) n B)

= f(J(A)L(0 —e))

= fIJ(A)L@ - 5)/2)

= f(J(A)L) (since f((6 —5)/2)=1))

= fJ(A(L -¢+9))

= fJ(AL -8) + J(A4))

= f(J(ANL —8)) + J(A) (by the definition of f)

= J(A)+J(Aa+ J(A)b+ J(A)aob+ J(A)u
+J(A)aocu+ J(A)bou+ J(A)(aob)ou

= J(A) + J(A) + J(A)] + J(A)ij + J(A)k + J(A)ik

+J(A)jk + J(A)ij - k, (by Lemma IL1).

In the same way, we can obtain the analogous property of the prime radical of the
Cayley-Dickson algebra. a

REMARK II1.6. In the above lemma, we see that AL(6 — e) C w(AL), so the
part of the Cayley-Dickson algebra which is not associative is in the image of the
augmentation ideal of the loop algebra AL.
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The following is a generalization of [dB93b, Proposition 3.9] (see also [GIM96,
p. 186]).

THEOREM II.7. Suppose A is a commutative associative ring with unity 1 and
2 € U(A), the unit group of A. Let @ = £1, B = +£1 and v = %1. Let L be the RA
loop induced by the Cayley-Dickson algebra A(e,,7). Then

1. L is an RA loop of order 16 and
AL =ker(f)® B,

where ker(f) = 84, B = A(a, 8,7), and f is the map defined in Theorem II.2.
2. The Jacobson radical of the Cayley-Dickson algebra A(a, B,7) is

J(A) + J(A)i + J(A)] + J(A)ij + J(A)k + J(A)ik + J(A)jk + J(A)ij - k.
3. The prime radical of the Cayley-Dickson algebra A(w,B,7) is
P(A) + P(A)i + P(A)7 + P(A)ij + P(A)k + P(A)ik + P(A)jk + P{A)ij - k.

PRrOOF. Since a = 1, 8 = £1, v = %1, and Ly is generated by 8, =2, a — 1,
B —1and v -1, we have Ly = {#, —2}. Thus L has 16 elements and it is a 2-loop.
Let e = (8 + (-2))/2. By Theorem II.3 (3), (4) and (5), (AL)e = ker(f). Since
AL = (AL)e ® (AL)(@ — e), the remaining statements follow from Lemma IL.5. O

4. Quaternion algebras and RA groups

If we remove & and u in the results of the previous chapter and this chapter,
we have corresponding results about quaternion algebras and RA groups, which is a

generalization of the quaternion group. We just mention the results here.

THEOREM I1.8. (Generalized Quaternion Algebras ) Let R be a commutative as-
sociative ring with unity 1 and 2 # 0 in R. Let A be a commutative associative

R-algebra. Let o and [ be in A. Then we have a generalized quaternion algebra
B=A+Ai+ Aj + Aij

where 12 = a, j2 = B8 and the multiplication table of the i, § is the same as the old one.
The associative algebra B is called the generalized quaternion algebra and denoted by

Ao, B).
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Some ring properties of generalized quaternion rings were investigated by A. A.
Tuganbaev in [Tug92, Tug93].

THEOREM I1.9. Let A be a commutative associative R-algebra with unily 1 and
2#0. Let «—1 and 8 — 1 be elements in Quasi(A). Let

Afla,B) = A+ Ai + Aj + Aij
be the quaternion algebra in which i? = a and 3% = 8.
1. Let Quasi(A(a, 3)) be the circle group of A(e, B). Leta =i—1 andb=j—1.

Then a, b € Quasi(A(a,B)). Let Gy be the subgroup of Quasi(A) which is
generated by {0,—2,a — 1,8 — 1}. Then

G = Goo(a) o (b)

is an RA group.

2. H = Quasi(A) o (a) o (b) is an RA group, in which —2 is the unique nonzero
commutator-associator.

3. The RA group H contains G and G is the smallest RA subgroup of H that

contains the elements a and b.

THEOREM I1.10. Let AG be the group algebra of G over A, where G is the circle
RA group induced by the quaternion algebra A(a,8). Then AG = A ® w(AG), the
direct sum of A-modules, where w(AG) is the augmentation ideal of AG and 8 is the
unity of the group G. Let f the map from AG to A(e,B) defined by

fro+> r)y=r+> -,
leG I€G
where r € A and ) ol € W(AG). Then f is an A-algebra homomorphism from
AG onto A(a,B,7), and
AG/ker(f) = A(e, B)
as A-algebras. Thus, every generalized quaternion algebra is a quotient algebra of an
RA group algebra. The kernel of f is

{Z il | Z Tlow * 1 = — Z Tlow: VTiow € A,V € G, Vw =8, a,b,a0 b}
leG leGg leGo
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CHAPTER III

Moufang circle loops and loop algebras

From [Go087] Theorem 1 we know that the set of all the quasi-regular elements of
an alternative algebra A is a Moufang loop under the circle operation. We call it
the Moufang circle loop Quasi(4) of the alternative algebra A. From the previous
chapters we know that an RA loop can be the Moufang circle loop of an alternative
algebra and the Moufang circle loop of any Cayley-Dickson algebra contains an RA
subloop. In this chapter, we investigate the relationships between the alternative
algebra, its Moufang circle loop and the loop algebra of the circle loop.

1. Moufang circle loops and loop algebras

Let L be the circle loop of an alternative R-algebra A, where R is a commutative
associative ring with unity. Recall that the circle operation on A is defined by

aob=ab+a+b,

where a, b € A. The 0 of the algebra A is the identity element of the circle loop
Quasi(A). We use 0 instead of 0 to denote the identity of Quasi(A). In this section
we investigate the relationship between the algebras and their circle loops.

THEOREM III.1. Let L = Quasi(A) be the Moufang circle loop of an alterna-
tive R-algebra A and let RL be the loop algebra of the loop L over the commutative
assoctative ring R. We define a map p from RL to A by

p: Zr;l — Erl -1
leL leL
whereTi € R, and l € L. Then
1. p is an R-module homomorphism from RL to A.
2. P luwry, is an R-algebra homomorphism from the algebra w(RL) to the algebra
A.
45
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3. Let K = w(RL) N ker(p). Then K is an ideal of the loop algebra RL, and
w(RL)/K is isomorphic to a subalgebra of A. If A is a Jacobson radical algebra,
that is, every element of A is quasiregular, then

w(RL)/K=A
as R-algebras.

ProOOF. By the definition of the loop algebra and the definition of p, the first
statement is not hard to check.
For the second statement, we should be careful. The augmentation ideal w(RL)
is a free R-module with basis
{l-8|leL}

where 6 is the identity element of the loop L. For any a = ), i(l — 8) € w(RL),
B =3 hcrtnh(h —0) € w(RL), we have
af = (O _rl—8)-O_ta(h~9)

lel hel

= Z rith(l — 8) - (h—8)
leL,h€L

= Z rith(loh —lof —hof +808)
(eL,hel

= Y ntaloh—I—h+0).
leLhel

Therefore

p(ap)

I

> (ritn)-(loh—1—h+0)
leLhelL

= Y (rta)-(h+i+h—1—h)
leL.hel

= D (rita)- (k)

teLheL

= O_n(Q_ tah)

lel heL

= Qo rt =) talh ~6)))

leL hel
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Therefore, the map p is an R-algebra homomorphism from w(RL) to A. Next we
show that K is an ideal of the loop algebra RL.

It is easy to verify that the augmentation ideal w(RL) is an ideal of the loop
algebra RL. To show that K is an ideal we just show that the product of any element
from the loop algebra and an element in K is in the kernel of the map p. Assume that

Y nil € K = w(RL) N ker(p).
el

Then for any A in L, we have

Oomh = > mloh

leL leL
= > ni(h—6)+> riob
lel el
= Zr[l(h —0) + Zrzl
leL el

Because p is an R-algebra homomorphism from w(RL) to A, we have

p(Qorh) = p(Drl(h=6)) +p(d_ i)

leL lel leL
= p(>_ml)p(h—6) +0
el
= 0-p((h-6)+90
= 0.

Therefore, (3o, mil)h € K. So, for any Y, thh € RL, we have that

Qo) th) = D mtaloh=> (> tarl)he K.

teL heL leLhel heL leL

So K is a right ideal of RL. In the same way, we can obtain that K is a left ideal.
For the case when A is a Jacobson radical algebra, we must show that p is sur-
jective from w(RL) to A for then the map p induces an isomorphism from w(RL)/K
to A. In fact, p is surjective because for any a € A we have a — # € w(RL) and
pla-8)=a—-0=a.
a
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2. The augmentation ideal of the loop algebra of an RA loop

In this section we will investigate the augmentation ideals of the loop algebra of
an RA loop and an RA circle loop. For the definition and properties of the RA loop,
cf [GIM96]. Here we just recall that the unique commutator-associator s defines an
anti-automorphism on the loop L and can be extended to an anti-automorphism of

the loop ring RL denoted by *.

PROPOSITION III.2. Let R be a commutative associative ring with unity and let
L be an RA loop and assume that

L=M(G,*,4g0) = GUGu.

Then the loop ring
RL = RG + RGu

is a direct sum of RG-modules. For any ideal Iof the group algebra RG,
(I+Iu)isanideal of RL+=I*"CI < I'"=1.

PROOF. The claim that RL = RG + RGu is a direct sum of RG-modules follows
from the structure of the RA loop. We just show the second claim. Assume that [ is
an ideal of the group algebra RG such that I* = I. It is easy to check that (I +Ju, +)
is an abelian group. For any z + yu € RL, where z and y are two elements in the
group algebra RG, and for any a,b € I, we have

(a +bu)(z + yu) = (az + goy’b) + (ya + bz Ju.
Since ¢ and b are in I, an ideal of RG, then az, goy*b, ya and bz* are in I. Hence
(e +bu)(z+yu)e I+ Iu.
For right multiplication, we have
(z +yu)(a +bu) = (za + goby) + (bz + ya*)u.

Since I* = I, b* € I and a* € I. Thus za, gob'y, bz and ya* are all in I. So
(z +yu)(a + bu) € I + Iu. Thus I + Iu is an ideal of the loop algebra RL.
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Now assume that I is an ideal of the group algebra RG, and I+ Iu is an ideal of the
loop algebra RL. We show that I is fixed under the map . For any a = EgEG reg € I,
ua is in the ideal I + Ju. While ua = }° o Toug = (3" ,c 99" )2, SO

(wa)u = (3 reg)wu= (D rog"u® = (3 _reg")g0 € I.

geG geG g9€eG
Therefore
O regM)g0gt =D reg" = (D _reg)* € L
geG geG 9€G

Thus I* € I. Since the map * is an involution of the loop algebra, we have
I= (It)- _C_ I‘,
thus I = I*, and I is fixed under the map =. ]

COROLLARY II1.3. Let L be an RA loop with L = M(G,*,g0) and let R be a

commutative associative ring with 1. Then
w(RG) + w(RG)u is an ideal of RL and w(RG) + w(RG)u C w(RL).
PRroOOF. Since (w(RG))* = w(RG), the result follows. a

An interesting result about the augmentation ideal of the loop algebra of an RA
loop is the following, which describes the augmentation ideal of the loop algebra by
its group algebra.

ProprosITION 11I1.4. ([GIM96] Lemma 1.1, p.150) Let L be an RA loop with
L = M(G,*,g90) and let R be a commutative associative ring with unity. Then

w(RL) = w(RG) + RG(1 - v).

PROOF. It is obvious that w(RG) + RG(1 — u) C w(RL). On the other hand,
if 3 e il € w(RL), then ) ., 71 = 0 by the definition of the augmentation ideal.

Since
RL = RG + RGu,

we can assume that

znl = Z Teg + Z thhu,

tel geG heG
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where 37 5799, > heg thh € RG. Since 3. 1 = 0, we have

Then

Zrd =

lel

Zr9+zth=0'

geG heG

Z Teg + Z thhu

geG heG

Sorgg+ > thh+ Y tshu— Y thh

9€G heG heG heG
(STrgg+ > thh) + > tah(u—1)
9€G heG hEG

w(RG) + RG(u —1)
w(RG) + RG(1 —u)
a

Since RG = R + w(RG), RG(1 - u) = R(1 —u) + w(RG)(u — 1). Then we have
another version of the proposition:

w(RL)

w(RG)+ RG(1 —u)
w(RG) + R(1 — u) + w(RG)(1 — u)
w(RG) + w(RG)u+ R(1 —u).

Therefore, we have the following:

COROLLARY III.5. Let L be an RA loop with L = M(G,*,g0). Let R be a com-

mutative ring with unity. Then

w(RG) + w(RG)u = w(RG) + w(RG)(1 — u)

w(RL) = w(RG) + RG(1 — u) = w(RG) + w(RG)u + R(1 — u).

3. Moufang circle loops and RA circle loops

In this section we investigate some basic properties of the Moufang circle loop

and then investigate some basic properties of RA loops by using the results of the

previous sections.
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PROPOSITION II1.6. Let L be a Moufang loop and let w(RL) be the augmentation
ideal of the loop algebra RL, where R is a commutative ring with 1. Then L is a

subloop of the circle loop of the algebra w(RL).
PROOF. Define the map f: L — w(RL) by

fW=1-1,

for any [ € L. Then this is an injective map from L to (w(RL), o). a

PRrOPOSITION IIL.7. All finite RA 2-loops are subloops of the Moufang circle loops
of nilpotent alternative rings of characteristic 2.

PROOF. By [G0095], for the finite RA 2-loops L, the augmentation ideal of the
loop algebra F3L is nilpotent, where Fs is a field of characteristic 2. Since F5L is an
alternative algebra, [Goo87] Theorem 1 tells us that (w(F2L),0) is a Moufang loop.
Then the result follows the Proposition III.6. O

Now we discuss alternative algebras with an RA loop as a subloop of its Moufang
circle loop. From the first chapter we know that all Cayley-Dickson algebras are of
this sort.

Let A be an alternative R-algebra with Quasi(A) having an RA subloop L. Then
the loop ring RL is an R-algebra and it is an alternative algebra because L is an RA
loop. Recall the definition of p (cf Theorem III.1) from RL to A:

pQ -0 =) rd,
leL tel
for any 3 ., -l € RL.

Since L is an RA loop, we can assume L = M(G, *, go) by the structure theorem
of RA loops. In determining if an RA loop is the circle loop of a Jacobson radical
algebra, the RA group G plays an important role since L is a kind of extension of the
group G.

From section 1 we know that the properties of the augmentation ideal w(RL) and
the map p are essential for the loop to be a circle loop, while from section 2 we know
that

w(RL) = w(RG) + w(RG)u+ R(1 — u).
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Thus we should investigate the relationships between the two augmentation ideals
and the map p, and its restrictions on some subrings. We need the following lemma:

LemMma IIL.8. 1. (w(RG)u) Nker(p) = (w(RG) N ker(p))u;
2. If £ + yu € ker(p), where z,y € w(RG), then

z € ker(p) <> y € ker(p);
z* € ker(p) <= y* € ker(p).

PROOF. Let us show the first statement. To prove that the right hand side is
included in the left hand side, first note that

(W(RG) N ker(p))u € w(RG)u,

and second, for any z € w(RG)Nker(p), because p is an algebra homomorphism from
w(RL) to A by Theorem IIL.1,

p(zu) = p(z(u — 1) + z) = p(z)p(u — 1) + p(z} = 0 since p(z) =0,
therefore p(zu) = 0, and
(w(RG) Nker(p))u C ker(p).

Now let us show that the left hand side is in the right hand side. If z € w(RG), and
zu € ker(p), then zu = z{u — 1) + = and then
0 = p(zu) = p(z)p(u — 1) + p(z) = p(z)u + p(z).
Therefore,
pz)u+p(z) +u=1u
so that
p(z)ou = u.

Since p(z) and u are in the alternative algebra A diassociativity of the algebra implies
the two elements generate an associative algebra. Since u € Quasi(A), p(z) cu=1u
implies that p(z) = 0 in the ring. Then z € ker(p). Thus

zu € (w(RG) Nker(p))u.
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For the second statement, we just check it by the definition of the map p. For any
elements ¢ and y in w(RG) with z + yu € ker(p), since z + yu = ¢ + y + y(u — 1),
and p is an algebra homomorphism from w(RL) to A, we have:

0=p(z +yu) =plz +y +yu—1)) =p(z) + p(y) + p(y)u.

Therefore,
p(y)u+p(z) +p(y) +u=1u
and
p(y) ou + p(z) = u.
Thus

z € ker(p) & p(z) =0 & p(y) ou = u <= p(y) =0 <= y € ker(p).

Now we show z* € ker(p) <= y* € ker(p). By Theorem III.1, ker(p) N w(RL) is an
ideal of the loop ring RL. If z + yu € ker(p), where z,y € w(RG), then z + yu €
ker(p) Nw(RL), and so

(z + yu)u € ker(p) Nw(RL) C ker(p).

Thus (z + yu)u = y*go + 3°u € ker(p). Note that z*, y* € w(RG). So by the above
argument, we know that

z* € ker(p) <= y*go € ker(p).
Since y*go = y"(90 — 1) +y*, then
y"go Eker(p) < p(y*)plgo— 1) +p(y*) =0
< p(y")g0 +p(¥") +90 = g0
<= p(y)ogu=g0
<« p(y°)=0.

Therefore
z* € ker(p) <= " € ker(p).

Now we can show our main result:
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THEOREM II1.9. Let R be a commutative associative ring with 1. Let A be an
alternative R-algebra with Quasi(A) having an RA subloop L. Let G be an RA group
of L with L=GUG owu. Let RL be the loop ring of L over R. Define

p: RL — (A,+,")

by

ET;[ — ET[ 'l,

leL leL
for any element y_, ., ril in the loop algebra RL. Then

1. ker(p) Nw(RG) + (ker(p) N w(RG))u is an ideal of the loop algebra RL.
2. (ker(p) Nw(RG))* = ker(p) Nw(RG).

ProoF. By Theorem IIL.1, the restriction of p to the subring w(RL) is an algebra
homomorphism from w(RL) to A. Now consider the restriction of p to w(RG). It is an
algebra homomorphism from w(RG) to A and the kernel is ker(p) Nw(RG). Therefore
ker(p) Nw(RG) is an ideal of w(RG). Since RG = w(RG) + R, ker(p) Nw(RG) is an
ideal of RG.

Next we show that

ker(p) Nw(RG) + (ker(p) Nw(RG))u
is an ideal of the loop ring RL. Again, since RL = w(RL) + R, it is sufficient to show
that ker(p) Nw(RG) + (ker(p) Nw(RG))u is an ideal of w(RL). Working in the subring
w(RL) we can take advantage of the fact that p is an algebra homomorphism instead
of a module homomorphism.
For any zg € ker(p) N w(RG) and for any z + yu € w(RL), we have
p(zo(z + yu)) = p(zo)p(z +yu) = 0.

So
zoz + (yzo)u € ker(p).

Also p(zoz) = 0 because oz is in the ideal ker(p) Nw(RG). So
p(yzo) =0
by Lemma III.8. Thus,
zo(z + yu) = zoT + (yzo)u € ker(p) Nw(RG) + (ker(p) Nw(RG))u.



3. MOUFANG CIRCLE LOOPS AND RA CIRCLE LOOPS 55

Now
(z + yu)zo = TTp + YyzQU.
Since p(zzg) =0, p(yzj) = 0 by Lemma IIL.8. Therefore,
(z +yu)zy € ker(p) Nw(RG) + (ker(p) N w(RG))u.
As for (z + yu)zou , we have
(z + yu)zou = (zoz)u + T3y go-
Again, by Lemma III.8, zoz € ker(p) implies that zjygo € ker(p). Hence
(z + yu)zou € ker(p) Nw(RG) + (ker(p) Nw(RG))u.
Similarly, we have
zou(z + yu) = roz"u + y 2 go-
Therefore
zou(z + yu) € ker(p) Nw(RG) + (ker(p) Nw(RG))u.
Thus
ker(p) Nw(RG) + (ker(p) Nw(RG))u
is an ideal of RL. Since it is an ideal of the loop ring RL and ker(p) N w(RG) is an

ideal of RG, Proposition III.2 tells us that the ideal ker(p) Nw(RG) is fixed under the
map *. So the second statement is true. a

COROLLARY II1.10. Suppose that z+yu € ker(p), where z and y € w(RG). Then
z € ker(p) <= y € ker(p) <= z* € ker(p) <= y* € ker(p).

For any 3" cqTe9 € RG,

ngg=04=> ngg" =0.

9€G g€G

where the multiplication is in the ring A.
PROOF. It follows from Lemma III.8 and Theorem III.9 because
z € ker(p) <= z" € ker(p).

The second statement of the corollary follows. O
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CHAPTER IV

RA circle loops

1. Introduction and some definitions

As mentioned in the introduction of this thesis, we will investigate the necessary
and sufficient conditions for an RA loop to be a Moufang circle loop of an alternative
quasiregular algebra, i.e., an alternative Jacobson radical ring. Furthermore, we give
the algebraic structure of finite nilpotent alternative algebras whose Moufang circle
loops are RA loops. In this chapter, an RA circle loop means the Moufang circle
loop, which is an RA loop, of a quasiregular alternative algebra.

Since Artin’s Theorem will be used later in this thesis, we record it here [Sché6,
Theorem 3.1]:

THEOREM IV.1. (Artin) The subalgebra generated by any two elements of an

alternative algebra is associative.

We cite some nice results about nilpotent groups here. As for the group and
nilpotent group theory, we refer the reader to [Hal59, Rob82, Rot95, Khu93].

PROPOSITION IV.2. [AW73, Kum94]| Let G be a finite nilpotent group of class
2. Then G is the circle group of a nilpotent ring of nilpotency index 3.

Recall that if G is a group with G/Z(G) = C; x Cy, G is called an RA group,
where Z(G) is the center of group G and C; is the cyclic group of order 2. Since an
RA group is a nilpotent group of class 2, from the above result we have:

COROLLARY IV.3. A finite RA group is the circle group of an associative nilpo-

tent ring of indezx 3.

PROOF. This proof is a modification of that given in [Kum94]. By the definition
G/2(G) = Cq x Cy, we can assume that

G = Z(G) U Z(G)a U Z(G)bU Z(G)ab
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with a®> € Z(G) and % € Z(G). Therefore, for any g € G, g € Z(G)a'b!, where
i,7 =0,1.
Now for any g,h € G, we can define the following binary relation m on G by
m(g, h) = (a,b)"s 7
and
g +h = hgm(g,h)
g x h =m(g,h)
where (g, b) is the group commutator of the two elements g and b in the group G.

Then it is not very hard to check that (G, +, x) is an associative ring with nilpotency
index 3, and most importantly, (G, o) = (G, -). a

2. Necessary conditions for an RA loop to be a circle loop

In this section, the basic algebraic properties of RA circle loops are studied. The
main results are Theorem IV.6 and Theorem IV.8. To prove these we need some

lemmas.

LEMMA IV.4. Let (L,0) be the Moufang circle loop of an alternative quasi-regular
ring (A, +,-). Note that as sets, L = A. Let S be a subset of L and K be a subring of
(A, +,-) with the properties that

(K,K,S) = (S,K,K) = (K=S7K) =1
in the loop (L,0). Then the set
Ck(S)={k€K|kos=so0k,Vse S} ={k€ K| ks=sk,Vs€S}
is a subring of (A, +,-).

PROOF. Since K is a subring of (4,+,-), 0 = 8 € K, the unity of the loop (L, o).
This also implies that Cg(S) % 0. For any two elements k) and k2 € Ck(S), we show
that (1) k1 £ ko € Ck(S) and (2) k; - k2 € Ck(S), so that Ck(S) is a subring of A.
We have k) + k2 and kj - k2 in K because K is a subring. In what follows, we use
extensively the identity:

Toy—yor=zy—yz

for any z, y € A.



2. NECESSARY CONDITIONS FOR AN RA LOOP TO BE A CIRCLE LOOP

(1). For any s € S, we have
(k1 £k2)os—so (ki tks) = (k1tke) s—s- (k1% ko)
= (ky-s—s-k))x(ka-s5—5-ko)
= (kos—sok)) £t (kpos—sokn)
= 0

The last step follows from the definition of Cg(S).

(2). By the assumption of the lemma, we have
(krokg)os = kyo(kyos)(since (K,K,S)=1)
= kjo(soks)( since ko € Cx(S))
= (k1 o08)oks(since (K,S,K)=1)
= (soky)oky(since k; € Ck(S))
= so{kyoky)(since (5,K,K)=1)
Thus (k; o k2) o s = s o (k) o k3). Because

Toy=Yyozx ¢+ Iy =Yz,

then

(kyokz)-s=35-(kLoks) <= (k1 oks) os=s0(k10ks)
We have

(kyoko) s = (kiko + k1 + ko) -3 =k1ko- s+ kis + kas,
and

8- (kioks) =s- (kika + ki + k2) = s k1ko + sk + ska.
By comparing the above two equalities using the fact that
kis = sk;, 1=0, 1,
for any s € S, we have
kiko-8=s5s"kiks.
Hence k ks € Cg(S).
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LEMMA IV.5. Let G be an RA group with G = Z(G) o {(a) o (b). Then
Cgla) = Z(G) e (a), and Cg(b) = Z(G) o (b).
PRrROOF. By the definition of Cg(e), we have that
Cc(a) 2 Z(G) o (a).
Because a and b do not commute in the group,
G D Cgla).
Therefore, [G : Cg(a)] > 1. On the other hand, for the subgroup Z(G) o {a), G has
two cosets, Z(G) o {a) and Z(G) o {a) o b since & € Z(G). Hence
2= [G: Z(G) o (a)] =[G : Ca(a)][Caa): Z(C) o (a)]-
We must have
[Ca(a): 2(G)o(a)] =1.
Then the result follows. Following the same argument, Cg(b) = Z(G) o (b). d
THEOREM IV.6. Let (L,0) be an RA circle loop of an alternative quasi-regular

ring (A,+,-). Let a, b and u be any three elements in the loop (L,-) which do not

associate. Then

1. (Z(L),+,-) is an associative commutative quasi-reqular subring of the ring
(A, +,) with circle subgroup (Z(L),0).

2. (Z(L)o{a),+,) , (Z(L) o (b),+,-) and (Z(L) o (u),+,-) are associative com-
mutative quasi-regular subrings of (4, +,-) with circle subgroups (Z(L)o(a), o),
(Z(L) o {b),0) and (Z(L) ¢ {u), o), respectively.

3. Let G be the RA group Z(L) o (a) o (b). Then (G,+,-) is an associative quast-
regular subring of (A, +, ) with circle subgroup (G, o).

4. We have the following subring chains

(Z(L)a'{") C (Z(L) o (a)v'h ') - (Ga +v ) C (Aa =+, )
(Z(L)1+a ') c (Z(L) a (b)7 +, ) c (G, +, ) c (A, +, ')

and subloop chains

(Z(L),0) C (Z(L)o(a),o) C (G,0) = Z(G)o(a)o(b) C (L,0) = (Z(G)o(a)o(b))o(u).
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(Z(L),0) C (Z(L)o(b),0) C (G,0) = Z(G)o(a)o(b) C (L,0) = (Z(G)o(a)o(b))o(u).
with the relations
a’+2 +g, =0
b2 +264g, =0
u?+2u+g3=0

where g1, g2 and g3 are three elements in Z(L).

PRrOOF. By properties of RA loops, G = Z(G) o (a) o (b) is an RA group and
Z(L) = Z(G). Next we show that (G, +,-) is a subring of the ring A. Let H be the
subring of A generated by Z(G), a and b. Since

and because of Theorem IV.1, i.e., Artin’s theorem, H is an associative subring of A.
Therefore H is a proper subring of A because A is not associative. Moreover,

H2G
by the definition of G. Since L is an RA loop, by the properties of the loop, we have
L=GUGou=ADHDG.

If G = H, we are done. Now assume H O G and H # G. Then there exists an
element z € H C L,z ¢ G. Thus z € G o u. This implies that there is an element
g € G C H such that z = gowu. So

1

glo(gou) = gh+goutgT-(gou)

_1.

= gl+z+g7l 2

is in subring H because g~!,g and z are in H. On the other hand, in the loop L,
g}, g and u associate,

g lo(gou)= (g toglou=00u=u;

thus u € H. Therefore,
gou=g-u+g+u€H

for any g € G. Hence H = A, a contradiction. Therefore, H = ¢, and G is a subring
of A. Since G is a group, for any element g € G, there exists an element h € G such
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that g o h = O; that is, g- h + g + h = 0. Therefore ring (G, +, -) is a quasi-regular
subring of A. Now we can use our Lemma IV.4 to show the result. Let G be the K
and let G be the S in Lemma IV.4. The conditions in the lemma are satisfied because
G is a subring and
(G,G,G)=1.
By Lemma IV .4, we get that
Ck(S) = Cc(G) = 2(G) = Z(L)

is a subring of the ring A. Since (Z(G),0) is a subgroup of the loop L, the quasi-
inverses of the elements in the subring (Z(G),+,-) are contained in the subring.
Therefore, (Z(G), +,-) is a quasi-regular ring with circle subgroup (Z(L}, o).

Let G be the K and let {a} be the S in Lemma IV.4. The conditions of the lemma

are satisfied because
(G,G,a) =(G,a,G) =(G,a,a) =1
and then
Ck(S) = Cg(a) = 2(G) o (a)
is a subring of A by Lemma IV.5. Therefore, Z(G) o {a) is a quasi-regular subring
with circle subgroup (Z(L) o (a), o).

By the same argument, we know that G o (b) is a quasi-regular subring with circle
subgroup (Z(L) o (b),0). Since the three elements a, b and u do not associate in
the loop L, by the properties of the RA loop and the above argument, we know
that Z(G) o (u) is a quasi-regular subring with circle subgroup (Z(L) o (u},e). The
remaining results in the theorem follow the above argument. O

Next, we will discuss a structure theorem of finite RA circle loops. We need some
lemmas for our main result.

LEMMA IV.7. Let L be a finite RA circle loop of a finite quasi-regular alternative
ring (A, +,'). Then for any a ¢ Z(L),

2a, a® € Z(L),
a-2Z(L), Z(L)-a C Z(L).
Moreover, Z2(L)oa = Z(L) +a and Z(L) o (a) = Z(L)U (Z(L) + a).
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ProOOF. Consider the subgroup Z(L) o (a). Since a ¢ Z(L) and L is an RA loop,
there exist two elements b and u in L, such that @, b and « do not associate. By
Theorem IV.8, Z(L) and Z(L) o (a) are quasi-regular subrings of the ring A. By the
properties of finite RA loops,

1Z(L) o {a)| =2|Z2(L)|.

Since Z(L) and Z(L) + a are two disjoint subsets of the subring Z(L) o (a) and each
with order |Z(L)|,we get

Z(L) o (a) = Z(L)U(Z(L) +a),

and Z(L) oca = Z(L) + a. In the subring (Z(L) o (a),+,-), 2a = a + ¢ is in Z(L) or
Z(L) + a. If it were in Z(L) + a, then a € Z(L), a contradiction. So 2a € Z(L).
Since a o @ = 2a + a?, then a? € Z(L).

Now let us show that a - Z(L) € Z(L). Forany g € Z(L), a-g € Z(L) o {a} =
Z(L)U(Z(L) +a). Ifa-g € Z(L), we are done. Now suppose that ag € Z(L) + a,
then there exists an element 2 € Z(L), such that ag = z + a. Then

aog = a-g+a+g
= z+at+a+g
= (z+g)+2a € Z(L) since Z(L) is a subring

a contradiction. Therefore a- Z(L) € Z(L). Since the center of the loop is the same
as the center of the ring, we have Z(L) - a C Z(L). O

THEOREM IV .8. ( The structure of finite RA circle loops)
Let (L,o) be a finite RA circle loop of an alternative quasi-reqular ring (A, +,-).
Then

1. Z(L) and Z(L) o (a} and Z(L) o (a) o {b} are ideals of the ring (A, +, '), where
a and b are any two non-commutating elements in the ring(loop). Moreover,
a-b,2a,a®€ Z(L).

2. we have the following normal eztensions:

(a) Loop extension:

{1} C(2(L),e) C (Z(L) e (a},) C (Z(L) o (a) o (b),0) C (L,0).
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Every term in the chain is a normal subloop of L.

(b) Ring extension:
{0} C (2(L),+,-) C (Z(L) o (a),+,-) C(Z(L) o (a) o (b), +,") C (4, +,").

Every term in the chain is an ideal of the ring A.
(c) The two extensions have the following properties:

(' (( )/(3(L),+, ')’o) = (L,O)/(Z(L),O) = (o X C2 X C2~

(i) (L, +,-)/(Z(L) e (a), +,), 0} = (L,0)/(Z(L) o (a},0) = C2 x Ca.
(iit) ((Ly+,-)/(Z(L)e{a)o(b), +,-),0) = (L,0)/(Z(L)e(a)o(b),0) = Ca.
(iv) ((Z(L) o {a) o {bB),+,-)/(Z(L),+,"),0) = ((Z(L)  {a),o)/(Z(L) °

(a),0) = Cy
3. For any three elements a, b and u which do not associate in the loop (L,0), we

have
Z(L) o {a) = Z(L) U(Z(L) +a)
Z(L) o (a) o (b) = Z(L) o (a) U (Z(L) o (a) + b)
= Z(L)U (Z(L) + a) U (Z(L) +b) U (Z(L) + a + b).
The loop L is a pairwise disjoint union of the subsets:

L = GUGou
= Z(L)o(a)o (b)) U (Z(L) o (a)o(b) +u)
= Z(LYU(Z(L)+a)U(Z(L)+bU(Z(L) +u)
U(Z(L) +a+b)U(Z(L) +a+u)U(Z(L) + b+ u)
U(Z(L) +a+ b+ u).
4. For any three elements a, b and u which do not essociate, we have the following
identities of ring subsets and loop subsets :
Z(L)oca=Z2(L)+a
(Z(L) +a)ob=Z(L)+a+b
(Z(L)+a+b)ou=Z(L)+a+b+u
(L,0) =GUGou=GU(G+u).



2. NECESSARY CONDITIONS FOR AN RA LOOP TO BE A CIRCLE LOOP

Z(Lyra+b+u

aa, ab, 2a,2b
bb, ub, uu, 2u

FIGURE IV.1. The structure of finite RA circle loops
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ProOOF. By Theorem IV.6 and Lemma IV.7, Z(L) is an ideal of the ring A. We
will show that Z(L) o (a) is an ideal, too. Note that Theorem IV.6 has told us that
it is a subring of the ring A.

Let u be an element in loop L such that a, b and u do not associate in L. Because
L is an RA loop we can find this element u in loop L. Then it follows that

L = (Z(L} = (a) @ (b)) o {u).

Therefore, every element y in L that is not in Z(L) o (a) is of the form z o b,z o u or

z o (bou) for some z € Z(L) o (a). We are going to show that
Z(L)o(a)-y < Z(L)o(a).
Because aoy # yoa,
(Z2(L) o (a} o (y),°)

is an RA group by the properties of the RA loop. Then (Z(L) o {a) o (y),+,-) is a
subring of the ring A with order 4|Z(L)| = 2|Z(L) o (a)| because

Z(L) o {a)o (y)/2(L) = C2 x C.
Since

[(Z(L) e (a)) U ((Z(L) e (a)) +y)I
is of order 2|Z(L)o(a)| and the two subsets are disjoint subsets in the subring (Z(L)o
(a) ° (y)1 +, ')3 we have

(Z2(L) o {a} o (y},+,-} = 2(L} o (a) U (Z(L) o (a) + ¥).
Then ya € Z(L) o{a) or Z(L) o (a) +y. If the latter case occurs, ya = g + y for some
g € Z(L) o {a), and so
yoa=yat+yt+ae=g+y+y+a=g+a+2y€ Z(L)o(a)

because 2y € Z(L) o (a) by Lemma IV.7, a contradiction.

Therefore y - a € Z(L) o (a). Similarly, a-y € Z(L) o {a). Thus (Z(L) o {(a),+,")
is an ideal of ring A.

Next we show that G = (Z(L) o (a) o (b), +,-) is an ideal of (L, +,-}. We already
know that it is a subring by Theorem IV.6. As before, we assume that element u is in
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L such that a, b and u do not associate. Then it follows that L = G U G o u. Suppose
z € G, thenzou ¢ G. We will show that

(zou)-GCG, G-(zou) CG.

For any g € G, consider the element g-(zou). Following the same argument as above,
we know that

L=GU(G+zou).

Therefore, g- (zou) € Gorg:-(zou) EG+zou. Ifg.(zou) €G, we are done.
Now assume that g- (z ou) € G + = o u. Then there exists an element A in G such
that g - (zou) = h + (z ou). Then
go(zou) =g+zou+g-zou

=g+zout+h+zou

=g+h+2(zou)
is in G because 2(z o u) is in Z(G) C G by Lemma IV.7, a contradiction. Therefore
g-(zou) €G. Following the same argument, we can show that (zou) g € G. Thus
G is an ideal. It is not hard to show the chains of loop extensions and ring extensions.
By Lemma IV.7, Z(L)o{a) = Z(L)U(Z(L) +a) and Z(L)oa = Z(L) + a. From the
above argument it follows that

Z(L) o (a) o (b) = Z(L) o (a) U(Z(L) o (a) +b),
and
Z(L)o(a)ob= Z(L)o(a)+b=(Z(L)U(Z(L)+a))+b = (Z(L)+b)U(Z(L)+a+b).
On the other hand,
Z(L)o(a)ob=(Z(L) U(Z(L) +a)) ob=(Z(L) 0 b) U((Z(L) + a) o b).

So
(Z(L)+b6)U(Z(L)+a+b) =(Z(L)ob)U ((Z(L) + a) o b).

Because Z(L)ob = Z(L)+b, and the above unions are disjoint, we have (Z(L)+a)ob =
Z(L)+a+b.
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Taking 0 € Z(L), we get (0 +a)ob=aob=a-b+a+be Z(L)+a+b. This
implies that a - b € Z(L). Therefore,

L =GU(Gou)
=GU (G +u)
= Z(L) o (a) o (b) U(Z(L) o (a) o {8) + )
=Z(L)o(a)U(Z(L)oa+blU(Z(L)o(a) +u) U((Z(L)o {(a) +b) +u)
=Z(L)o{(a) U(Z(L)oa+b)U(Z(L)o{a) +u)U(Z(L)o{(a) + b+ u)
= Z(L)U(Z(L)+a)U(Z(L)+b)U(Z2(L) +a+ b U(Z(L) +u)
UW(Z(L)+a+u)U(Z(L)+b+u)U(Z(L)+a+b+u).

Certainly, the subsets here are pairwise disjoint. By the same argument, we can get
the other identities of sets. [

COROLLARY IV.9. If a finite nilpotent alternative ring (A, +,-) has an RA circle
loop (A,0), then every subring containing the center Z(A) is an ideal of the ring.

PROOF. Assume that S is a subring which contains the center Z(A). For any
z €S, ifz € Z(A), then Az C Z(A) C S and zA C Z(A) C S because Z(4) is an
ideal; if ¢ Z(A), then Z(A) o (z) is an ideal. So 24 C Z(A4) o (z) C S. Therefore,
S is an ideal. O

THEOREM IV.10. (Necessary and sufficient conditions for a finite nilpotent al-
ternative ring to have an RA cirele loop)

Let (A,+,-) be an alternative finite nilpotent ring. Then (A,0) is an RA loop if
and only if

1. there ezists an ideal (G,+,:) of A such that (A, +,) is generated by G and
another element u in A,
2. (G,0) is an RA group with a unique group commutator s.
3. for any g, h € G the following identities are satisfied by the elements in the
ring A:
(a) g-hu+gh =hg-u+ hg,
(b) gu-h+gh+uh+h=gh* -u+h*u+gh* +h*
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(c) gu-hu+gu-h+gu-u+g-hu+gu+gh+u-hu+uh+hu =gh*g+
gog +h*g +goh™ + h™ —gh — g —h —go — (u? + 2u);

(d A=GUGou and GNGou = {, where gg is a fized element in the
center Z(A), and g* =g ifg€ Z(A), g =gs+g+s if g & Z(A). If the
conditions are satisfied, then the ring and the group have the following
properties:

(i) gu+g+ué¢gq,
() if z € A and = ¢ G, then there ezists g € G and u € A, such that
zT=gu+g+u;

PROOF. We prove the sufficiency first. Since (A4, +,:) is a nil alternative ring,
then (A4, o) is a Moufang loop by [Goo87]. To show that (A,o) is an RA loop, we
just need to check that (A, o) = M (G, *, go)- Since (G,0) is an RA group by (2), we
have

(A,0) =GU(Gou),GN(Gou)=10

by the structure theorem of RA loops. Now we can check the three identities. For
any g, h in G,

e go(hou)—(hog)ou=g-hou+hou+g—(hg+h+glu—hg—h—-g-u
=g-hu+gh+gut+hu+h+ut+g—-—hg-v—hu—gu—hg—h-g—u
=g-hu+gh —hg-u— hg =0 by (3).

o (gou)oh—(goh*)ou=(gu+g+uv)h+gu+g+u+h—gh*-u—gu—h*u—
gh*—g—h*—u=gu-h+gh+uh+h—gh* -u—h*u—gh* —h* =0 by (3).

e (gou)o(hou)—gooh*og = (gu+g+u)o(huth+u)—(gh"+g0+h")og
= gu-hu+gu-h+gu-u+g-hu+gh+gu+u hu+uh+u?+gutg+u+huth+u
—goh*g — gog — h*g — goh™ — go — h* — ¢ = 0 by the assumption.

Therefore, A=GUGou and GNGou =§, and for any two elements g and h € G,
we have

go(hou)=(hog)ou
(gowoh=(goh")ou
(gou)o(hou)=gyohtog.

By the structure theorem, (A, o) is an RA loop.
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For the necessary part, note that if the circle loop of the ring A is an RA loop,
then it must satisfy the above conditions. So the above equations hold. O

3. A restriction on the RA circle loop

In this section we give another condition that an R A circle loop must satisfy. The
result follows from the definition of RA loop and the definition of the circle loop.

THEOREM IV.11. If RA loop (L,0) is the circle loop of a nil alternative ring A,
then the abelian subgroup of A which is generated by the ring commutators of the ring
A, denoted by ([A, A],+) , is an abelian 2-group.

COROLLARY IV.12. The circle loop of any 2-torsion free nil alternative ring is
not an RA loop.

PROOF. For any element [ € L, [ ol is in the center of the loop by the properties
of the RA loop. Since an RA loop is a Moufang loop, the loop is left alternative, and
then we have the following:

(zoz)oy=yo(zoz) =zo(xoy).
Let us calculate the three expressions according to the circle operation. First
(toxz)oy = (z?+2z)oy =2’y +2zy + 22 + 2z + y;
yo(zoz)=yo(z? +2z) =yz® + 2yz + 2% + 2z + y;
zo(zoy)=zo(ry+z+y) =z -2y+12° +2zy + 2z +y.
From the first and the second ones, we have that:
22y + 2zy = yz’® + yz.
Then z%y — yz? = 2(yz — zy), and
2%, 4] = 2[y, z].
Then [y, 2] = 2[z, y]. Therefore, for any z and y, we have
[«%,4] = 2[y, z].

This implies that
2%, 4] = 2ly, 2% = 2%z, 4],
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and
[, 4] = 2y, 2] = 22[z%,y] = 2°[y, ).
In general we have the following formula:
2y = 2"[z,y] ifniseven
2"y,z] ifnisodd

Since (A, +,') is a nil ring, for any z € A, there exist an n such that 22" = 0. Then

for any y € A4,
0=[c*,y] = 2"[z,y]
or
0 = 2"[y, z)-
In either case, we always have
2"[z,y] =0

since [z,y] = —[y,z]. Therefore the subgroup generated by the subset [A4, 4] is a

2-group. Since the loop L is not commutative, the ring A is not commutative. Thus

[4, A] # 0. So the subgroup is a nonzero 2-group.

O
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CHAPTER V

Alternative rings and Peirce decomposition

In the last two chapters of this thesis we will study alternative rings of small order.
In this chapter, we first recall some basic techniques to construct alterrnative rings
on an abelian group, then give a lemma which will be used extensively in the next
chapter, and finally, introduce a class of alternative group graded rings.

1. Alternative rings and their matrix representations

To check whether a given ring is alternative or not, using the matrix representation
is more efficient than directly using its elements. For more information, we refer the
reader to [KP69, Chapter II} and [Tos63].

Let A, be a finite abelian group which is a direct sum of finite cyclic groups and
let ug, uy, ..., un be the generators of these cyclic subgroups with orders ¢g, ti, 9,
..., ta, respectively; that is

A, =Zug @ Zu, @ - - © Zu,,

where u; = 1+ (t;) € Z/(t:), 1 =0, ..., n. If we use the following Cayley table to
define the multiplication of the generators of the abelian group A,

% ” Up Uy ot Uy s Un

vo || 2k Tooiue 2k Tojueies -+ e Tojeiue -+ 22k Tiojim)ie]ue

v || e Ty e Tiypumgee - e Timiue - 2k Tiuym)ie)ue

Ui || T Towes e Tamwus - ZeTaumwee - 2k Thlmeiue

Un || 2k Timpoiiee ok Ty -+ 2k Tmliiitentee ~ -+ 220k Tinlim (ke

where T is a three dimensional array of size (n +1) x (n+ 1) x (n+ 1), by [Bead48],
the multiplication is well defined by using the table and distributive laws if and only
73
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ti(z Thy)wyue) =t (Z Ths1kue) = 0,
k k

where 7, j, Kk =0, 1, ..., n. That is, the additive order of the product of any two
elements in the basis is a divisor of the orders of the two elements.

Let X = Xojuo + X[1ju1 + - - - + X[njun be an element of the algebra. If we define
the left transformation L(X) of X on the algebra A by

L(X)(Y) = XY,

for any Y = Y{pjuo + ¥jju1 + - -+ + Y[pjun € A, then L(X) is a linear transformation.
So, L(X) is fully determined by L(X)(uo), L(X)(u1), ..., L(X)(uy,). If we define a
matrix M;(X) = [ai;] by the following:

L(X) (uo) X'uo app 4apyr ‘' QOn Ug
LX)(w)| |Xuw| few eu - 6| |u
_L (X) (un)_ _Xun_ _anO Qny - ann_ _un_.

where a;; are elements in Z;; and

L(X) () = Xui = Y aqpuy,
k

fori=0,1, ..., n, we have that
XY =L(X)Y)= Ytg]Xuo + Y[1]Xu1 +ooet Y Xun
Ug
ux
= [Y[m Yo o--- Y[n]] M(X)
Un

Now let us find out the relationship between the a;js and the parameters in the
Cayley table. Note that

Xui = (EX[J']'U.J')U;'
J
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= 2 Xii(uyw)
J
= D XG> Thjperee
j k
= > Xy Ty -
EJ
Therefore,
ak = D Xy Tipel
i
We know that A is associative if and only if (XY)Z = X(Y 2), for any X,Y and
Z € A. Expressed in another way, A is associative if and only if
L(XY)(Z) = (L(X)L(Y))(2),

for any X,Y and Z € A.
Assume Z = Zgug + Zjyju1 + - - - + Zjpjun. Then

Up
(XY)Z=L(XY)(2) = [2g Zy - Zm) Mi(XY) |
Un
On the other hand, o
X(Y2)= (L(X)L(Y))(2) = L(X)(L(Y)(2)
uo
=20 Zwy - 2] Ma)Mx) |
Un

Therefore, the algebra A is associative if and only if for any two elements X and Y
in A,

M(XY) = M(Y) M(X).
In particular, an algebra A is left alternative if and only if M;(XX) = M;(X)M;(X)
for any X € A.
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Since we can easily determine the matrix from the algebra A, checking the equa-
tions of matrices is more efficient than checking the elements from A.

As for the right alternative law, we can develop the matrix equation as above,
and then check the right alternative law. We just record the results here.

Let X = X[gup + Xjyju1 + -+ + X[pjua be an element of the algebra. Then we
can define a matrix M, (X) = [b;;] by the following form:

upX boo bor ‘- bon| |uo
u X _ bio b1 -+ bl |w
_unX | _bnO bpr - bnn_ _'U-n_

where b;; are elements in Z;; and
uw X = Z bk,
k

fori=0,1, ..., n.
As for the relationship between the b;;js and the parameters in the Cayley table,
we have

u; X

‘u.-,;(z X[J-]u]')
j
= > Xij(uiug)
J
= 2 X Tapwue)
j k
= O Xy Tapsire)us-
k J
Therefore, b;r = Zj X1 Thk» & =0, 1, ..., n. Then A is a right alternative ring
if and only if Mr(XX) = M.(X)M.(X), for any X € A.

From the above discussion, we get the following algorithm to construct an alter-
native ring which is not associative:

1. define a Cayley table by fixing the three dimensional array T’
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2. write a subroutine to take an X € A as input and output the matrices M;(X)
and M.(X);

3. compute the product of any two elements in the algebra A by using the matrix
M(X);

4. check the left and right alternative laws by using the matrices M;(X) and
M, (X);

5. use matrix multiplication to check whether or not the ring is associative;

6. output the table T' if the table T' determines an alternative ring which is not
associative.

2. More about Peirce decomposition

By [Sch66, Proposition III 3.3], if a finite alternative ring R, or a finite dimen-
sional algebra R over a field, is not nilpotent, then it has a nonzero idempotent, e.

For any z € R, we can write

z = exe + (ex — exe) + (ze — exe) + (z — ex — ze + eze);
thus, as an additive group,
(V.1) R = R11 ® R0 ® Ro1 ® Roo

where R;; = {z € R | ex = iz,ze = jz}, i, j = 0, 1. The decomposition in (V.1)
is called the Peirce decomposition of R and the additive subgroups R;; the Peirce
components of R. It is easy to check that a:?j = 0 for z;; € R;; and 7 # j and
also to verify other multiplicative properties of the components which are recorded in
the table below. (See [Sch66, III.2] for details.) For instance, the table shows that
Rg1Ri19 € Rgo and that R;; and Ryg are subrings of R.

I Ry Ry Roa Rgo
Ryn||Rui RBo 0 O
Ryp| 0 Ro Ru Ripo
Ror | Rot Reo R O
Ry|| 0 0 Rg Rgo
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If A, B and C are subsets of a ring, we denote by [A, B, C] the set of all associators
of the form [a,b,c], a € A, b € B, ¢ € C, and write [4, B,C] = 0 if all associators
of the form [a, b, c] are 0. In the next chapter, we will frequently be concerned with
the possible associativity of an alternative ring with idempotent. Since the associator
is linear in each argument, such a ring will be associative provided (4,B,C] = 0
for each choice of 4, B,C € {R11, R1o, Ro1, Roo}. Moreover, since the associator is
an alternating function of its arguments, whenever (A, B,C] = 0, each of the six
associators obtained by permuting A, B and C is also 0.

We list below the 20 possible associators of Peirce components (ignoring order
of arguments), noting those associators which are always zero just by virtue of the
way Peirce components multiply. First, we list the four associators involving three
identical components, then the four involving distinct components, and finally the
4 x 3 = 12 involving precisely two identical components.

(R11, R11, Rui] [R10, Ri0, Rio] {Ra1, Ro1, Rot1] [Roo, Roo, Roo]
[Ri1, Rig, Ro1] =0  [Ri1,Ri0,Ro0) =0  [Ri1,Ro1,Roo] =0 (R0, Ro1, Roo] =0

[Ri1, R11,R10] =0 [Ri1, R11, Ro1] =0 [R11,R11,Roo] =0
[R10, R0, R11] [R10, R10, Ro1] [R10, R0, Roo]
[Ro1, Ro1, Rui] {Ro1, Ro1, Rio) [Ro1, Ro1, Roo}

[Roo, Roo, R11] =0 [Roo, Roo, Rio] =0 [Roo, Roo, Ro1] = 0.

Note that it is sometimes necessary to rearrange the order of the arguments
to see why some of the above associators are zero. For instance, [Ri;, Rig, Ro1] =
—[R11, Ro1, R10] € —0 - Rip + Ri1 - Rop = 0.

The following lemma will be used extensively in the next chapter.

LEMMA V.1. Let R be an alternative ring with a nonzero idempotent e and let
R = R;; & R10® Rg1 @ Ryg be the corresponding Peirce decomposition. If any of the
following conditions is satisfied, then R is associative.

(a) Ry, and Ryo are associative and one of Ryg, Ro1 is zero.
(b) Ri1 and Ry are associative and both Rig and Ry are cyclic groups.
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PROOF. As the remarks preceding the lemma indicate, it is sufficient to show that
any associator of one of the following ten types is zero.

[R11, Ru1, Rui [R10, R10, R10} (Ro1, Ro1, Ro1] (Roo, Roo, Roo]

[R10, R0, R11] [R10, R10, Roi] [R10, R10, Roo]
[Ro1, Rot1, Rui] [Ro1, Ro1, R1o] [Ro1, Rot, Roo}

In case (a) with Rjg = 0, associativity follows from the following observations.

e [Ri1, Ri1, R11] = [Roo, Roo, Roo} = 0 since R;; and Ry are associative;

e [Ro1, Ro1, Ro1] = 0 because Rj; € Rjo = 0;

e [Ro1, Ro1, R11] €0 Ry — Ro1 - Ro1 € Rio =0;

e [Ro1, Ro1, Roo] S0 - Rgg — Ro1 -0 =0.

We know that any ring (R, +, -) is anti-isomorphic to its opposite ring (R°P, +, +),
where (R°P,+) = (R,+) and a+ b = ba. If R has an idempotent, then this element
is also idempotent in R°P, R;; and Ry are the same in R and in R°P, and R;p and
Ry, are interchanged. It follows that any ring with the structure of the second part
of case (a)—Rp; = 0—is anti-isomorphic to a ring with the structure of the first
part—R;¢ = 0. Thus such a ring is associative too.

To establish associativity of the rings described by case (b), we note that

[Ry1, Ry1, Ry1] = [Roo, Rog, Roo] =0

because R;; and Ry are associative and all other required associators are 0 because
of Artin’s Theorem and the fact that each of the additive groups Rig and Ry is
generated by a single element. a

3. Peirce decomposition and group graded rings

Before starting an investigation of alternative rings, we exhibit a class of alterna-
tive group graded rings derived from the Peirce decomposition. Later on we can see
that most of the alternative rings we find in the following chapter are group graded
rings, with the base rings associative, but the group graded rings are alternative but
not associative.

For the associative group-graded ring theory, we refer the reader to three basic
papers [Dad80, CR83, CM84).
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DEFINITION V.2. Let R be ¢ ring (not necessarily associative nor with unity) and
let G be a group. We say that the ring R is group graded by a group G if R is @ direct

sum of Z-modules Ry, i.e,

R =@®gechy
such that
for any g, h € G. Moreover, if we have

Ry-Rp = Rgn

for any g,h € G, then we call ring R strongly group graded.
Now we have the following result.

PROPOSITION V.3. Let R be an alternative ring with an idempotent # 0, 1. If
the Peirce decomposition of R for this idempotent is

R=R; ®Rio® Ry @ Ry

and Rgg = {0}, then R is a non-trivial group graded ring. The group is a cyclic group
of order 3:
R=R| & Rg @ Rgz

and the Z—modules are
Ry = Ry1, Ry = Ry, -Rg2 = Rqy,

or
Ry =Ry, Ry = Ry, Ry = Ro.

Moreover, this group graded ring is not strongly group graded.

PRrOOF. Following the Peirce decomposition of the ring and the assumption, we

have
R =Ry @ Rig @ Ryy.
Now set
Ry = Ry, Ry = Ry, Ry2 = Ror
We have

R=R1@RQ®R92.
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Now let us check the definition of the group graded ring by using the properties
of the Peirce decomposition.

e BRi-Ri=Ry-RuCRnu=R

® R1-Ry=Ry1-Rio CRig=Ryg=Riyq

® Ry -Rpa=Ry1-Royy S Ryo={0} CRy.p2

® Rg- Ry =Ryq-R11 C R ={0} CRy

o Ry- Ry = Ryo- Rio C Ry =Rgz = Rg.4

® Ry Ry =Ryg- Roy C Ry = Ry = Ry g

® Ry2-Rg=Rq1- Ryg CRoo={0} C R, =Ry,

® R - Ry = Ro1 - Ro1 S Rio =Ry = Rg2.42
Therefore the ring is a group graded ring , and it is nontrivial because the idempotent
is nontrivial.

Since

R - Rgz C Ry = {0} C Rl.gz
and
Ry-Ri=Ry-Ri1 CRo={0} CR,y

and either R)g or Rg; or both are nonzero, the ring is not a strongly group graded
ring. a
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CHAPTER VI

Alternative rings of small order

1. Introduction

In this chapter we determine all the alternative rings having order p*, n < 5, and
alternative algebras that have dimension n over a field with n < 5, cf [GZa]. None
of these rings is a Cayley-Dickson algebra or alternative loop algebra.

It is well known that the smallest Moufang loop which is not associative has order
12 [CPT71], and the smallest RA loop has order 16 [CG86). In this chapter we show
that the smallest alternative rings which are not associative have order 16.

The Wedderburn principal theorem will be used in this chapter and we cite it here

THEOREM VI.1. [Sch66, Theorem 3.18] Let A be a finite-dimensional alternative
algebra over field F with radical Rad(A). If A/Rad(A) is separable, then

A = B + Rad(A)

as direct sum of vector spaces over F, where B is an algebra isomorphic to A/Rad(A).

2. Alternative rings of order p", n < 4

For a given ring R we let R, denote the abelian group (R, +). The following
lemma. tells us that only rings of prime power order need to be investigated.

LEMMA VI.2. Let R be a finite ring. Then there is o ring decomposition
R=R, ®R,,®---® R,

where

Ry, = {r € R | 3n, such that p}r = 0}.

Let us cite a result of [GZa], which will be used later.
83
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PROPOSITION VI1.3. Letp be a prime. Any alternative nil ring of order p™, n < 5,

is associative.

Throughout this section, p denotes a prime. Consideration of additive structure
and Artin’s Theorem imply that the only alternative rings of order p or p? are as-
sociative. If an alternative ring has order p® and it is nil, then it is associative by
Proposition VI.3; otherwise, it has a nonzero idempotent and at least one nonzero
Peirce component. Using Lemma V.1, it is easy to see that such a ring must also
be associative unless Ry = Z, ® Zp ® Zp in which case R has 1 and Artin’s theorem
implies the associativity of the ring.

Let R be an alternative ring of order p* which is not nil. By [Sch66, Proposition
ITI 3.3], we may assume that R has a nonzero idempotent, e. In view of Artin’s
Theorem, if R is not associative, then it must have additive structure Z,2 & Z, ® Z,,
or £, &2, ®Zp © Zp.

Suppose Ry =2 Z,: @ Z, ® Z,. If R has a unity, then this element generates that
component of Ry which is isomorphic to Z,: and associativity easily follows from
Artin's Theorem. If R does not have a unity, then e # 1, so Ry; is the direct sum of
at most two cyclic groups; hence R;; is associative. Similarly, Rqq is associative, so
R is associative by Lemma V.1.

It remains only to consider the case

R=R;1®R;90ORn®R0w=2,8Z,8Z,87Z,

which we handle according to the four possibilities for Ry;; namely, Ry = Z,® Z, ©

Case 1. f Ry1 £ Z,®Z,®Z,®Zp, then R = Ry, is an algebra with unity over the
field F, of p elements. Any semisimple finite dimensional alternative algebra which
is not associative contains a Cayley-Dickson algebra which is 8-dimensional over its
center [Sch66, Theorems 3.12 and 3.17]. Clearly in our case then, the nil radical,
Rad(R), of R is not 0; neither is it R. Thus dimRad(R) is 1, 2 or 3. Also, since we
are working over finite and hence perfect fields, the Wedderburn Principal Theorem
tells us that R = S + Rad(R).
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Suppose dimRad(R) = 1. Let Rad(R) = (c) and let a,b € R. Since Rad(R) is
an ideal of R, we have ca = ac and bc = fBc for some o, € F,. Then [b,c,a] =
(be)a — b(ca) = Bea — b(ac) = Bac — afc = 0. It follows that R is associative.

If dimRad(R) = 2, then R is the vector space direct sum of a two-dimensional
semisimple algebra S and a nilpotent ring of order p?. The latter either has trivial
multiplication or it is generated by a single element [KP 69, Theorem 2.3.3]. Selecting
a basis for R of the form {1,s,a,b}, s € S, a,b € Rad(R), and remembering Artin’s
theorem, it follows immediately that the associator of any three of these basis elements
is 0, so R is associative.

If dimRad(R) = 3, then R is associative because it is generated by 1 and an

associative ring.

Case 2. If R)) = 2, ® Z, ® Z, then both R); and Rgo = 0 are associative and
at least one of Rjg or Ry; is 0, so R is associative by Lemma V.1.

Case 3. If R, = Z, © Z,, then again both Ry, and Ry are associative. Also
R0 ® Ry, is the direct sum of at most two cyclic groups. Again Lemma V.1 assures

us of associativity.

Case 4. We treat the case Ry; = Z, by considering the various possibilities for
Roo. f Reo = Z,0Z, @ Zp or Z,® Z,, or Zp, then Ry is associative, Rip @ Ry is the
direct sum of at most two copies of Z, and Lemma V.1 tells us that R is associative.

Suppose Ry = 0. If either Rjg or Ry is 0, then R is associative by Lemma V.1.
Thus there are just two situations which require further study:

Case 4a: Ry1 = Z,, Ryo =0, Rio =Zp, Ryy =72, 8 Zp and

Case 4b: Ry 2 Z,, Ryo =0, R = Z,®Z,, Rpy = Z,.

In case 4a, let Ry; = (e), Rig = (a) and Rg; = (b} & (c). The possible products
amongst the elements e, a, b, ¢ are shown below,

0O o8 o
o oo o
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where i, 7, k,m are integers. Since e, a,b] = [e,a,¢] = [a,b,c] = 0, in order to avoid
associativity, we must have [e,b,c] = —ka # 0. Therefore k¥ # 0. Since —ma =
[e,c,b] = —[e, b, c], m = —k and since (ab)a = a(ba) and (ac)a = a(ca), necessarily 7 =
j = 0. It is now straightforward to check that these conditions define an alternative
ring which is not associative. Replacing b by k=6, we may assume k = 1.

Case 4b leads to rings anti-isomorphic to those of Case 4a since under the opposite
operation, Hg; and Rjq are interchanged while R;; and Ryg are unchanged.

THEOREM VI1.4. For any prime p, there are precisely two alternative mings of
order p* which are not associative. They are anti-isamorphic. Neither has a unity,
but both have a nonzero idempotent e. Each ring is a four-dimensional vector space
over Fp with nil radical of dimension 3. With respect to a basis {e,a,b,c}, their

multiplication tables are defined as follows:

4/1: e a b ¢ 4/2: e a b ¢
elle a 0 O elfle 0 b ¢
all0 O 0 O alla 0O 0 O
bffjob 0 0 a 610 0 0 a
cile 0 —a O c||0 0 —a O

Moreover, the two rings are group-graded rings. For 4/1,

where Ry = Ry = Zpe, Ry = Ryp = Zpa and Ry = Ry = Zpb® Zyc, and #=1 A
simtlar result holds for 4/2. '

REMARK VI.5. The above is a generalization of A. T. Gainov[Gai63] in which
a more complicated way was used to obtain the result under the condition p # 2 and

p#3.

PROOF. First we show the tables determine two nonassociative alternative rings
and then show that they are not isomorphic.

We use the matrix representation to show that the ring 4/1 satisfies the left and
right alternative laws.

For the left alternative law, let

X =z9e + z1a + 20 + z3C
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be an arbitrary element in the ring. From the table we have
X% = a:ge + zgz1a + Tpz2b + zoz3C.

Then the left matrix can be determined by the left transformation:

Xe o 0 19 23 e
Xa _ 0 zo 0 O a
X6l |0 —z3 0 O} |b
Xe 0 zo 0 O ¢
Therefore
o 0 o I3
0 0
Mmx)=|_ 0
0 —ZX3 0 0
0 =z 0 O
Similarly, for the element X2, we have
X2 .'z:% 0 ToTp ZToI3 e
X%| |0 z} 0 0 a
X 2b 0 —ZIoZT3 0 0 b
X2 0 z9z2 0 0 c
Therefore
a:g 0 Z0T2 :z:oza_
2
-ToT3 0 0
0 ZoZT2 0 0 J

It is easy to check that

1} Zoz3 — T3T9 TpTz ZoT3
2
0 x5 0 0
-—ZoT3 0 0
0 ToZI2 0 0

M(X)M(X) =
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which is M;(X?). Thus M(X)M;(X) = M;(X?), and the ring is left alternative. To
check it is a right alternative ring, we have

eX g z1 0 O E
aX| |0 0 0 O a
bX 0 s xzg O b
cX 0 -z 0 zg c
Therefore
A ) 0 0 l
o O
M. (X)= 0 0
z3 Io 0
0 —z2 0 =z
Similarly, for the element X2, we have
eX? I-zg zoz1; 0 O e
aX? _ |0 0 0 0 a
bX2| |0 zozz zZ 0| |b
cX 2 0 —ZoI2 0 z% _c

and

3 zoz1 O 0]
0 0 0 0

My (X) = 0 zgzz z3 O
0 —zoz2 0 23
It is easy to check that
2 zozy 0 O
momx)=|2 2 00

zoz3 3z O
0 —-zpz2 O :17(2)

Therefore, M.(X)M,(X) = M,(X?) and the ring is right alternative. From the
construction of the ring, we know it is not associative. In fact, we have e(bc) # (eb)c.

So this ring is an alternative ring which is not associative.
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Since 4/2 is anti-isomorphic to 4/1, the second ring is a nonassociative alternative
ring. It remains only to remark that the two rings identified here are not isomorphic
because a is a (nonzero) left annihilator in 4/1 while 4/2 has no such element. In
fact, in the second ring, assuming X = zge + z1a + T2b + z3c is a left annihilator,

then for any Y = yoe + y1a + y20 + y3¢,
XY = zoyee + (T1y0 + T3y2 — T2ya)a + Zoy2b + Teyzc = 0.

Taking yo = 0,92 = 0 and y3 = 1, we have XY = zgc — z2a = 0, so zo = 0 and
zo = 0. If we let y9p = 0,32 = 1, then z3 = 0. We can get z; = 0 by taking yo = 1.
Thus X = (. Therefore, there is no nonzero left annihilator in the second ring.

The claim about the group-graded rings follows from Proposition V.3. O

REMARK VI1.6. The tables given in this theorem (and elsewhere in this chapter)
define alternative rings of many different orders and dimensions. The above tables, for
instance, define alternative algebras of dimension four over any field (finite or infinite).
They also define alternative rings with additive structure Z,n @ Zom @ Zpr @ Zps
provided, for each z,y € {e, qa,b,c}, the additive order of zy divides the additive
orders of z and y. More generally, we have

COROLLARY V1.7. Let R be a ring with
Ry =Z,,e®Zn,a ® Zn,b® Zp,e,
where ng, n1,na, n3 are any integers with the property that
n1|no, nne, ni|n3, n2lne, nalne

then the following Cayley table gives us a nonassociative glternative ring:

efle 0 b ¢
alfla 0 0 O
bi0 0 0 -~a
cll0 0 a O

Since the first example of an alternative ring is the Cayley numbers which is an
algebra of dimension 8 the following corollary is interesting.
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COROLLARY V1.8. The smallest alternative algebras over the field of real numbers
are the two algebras with the above Cayley tables 4/1 end 4/2.

PROOF. Because there are no nilpotent alternative algebras of dimension 4 [Bad84,
Corollary 1], the alternative algebras have non-zero idempotents. Therefore the above
algebras are of the smallest dimension. O

3. Alternative rings of order p°

Throughout this section, p denotes a prime and R is an alternative ring of order
p° which is not associative. Since there are no nil rings of this order which are not
associative by Proposition V1.3, we also assume that R has a nonzero idempotent.

Again we denote the additive group of R by R,.. By Artin’s Theorem, there are
four possibilities for the structure of R, .

R, =22,87,07Z,®Z, dZy;
R 22007, @y Zy;

R+ = sz @Z.szBZ,,;

Ry =730, ®Zp,

Suppose Ry 2 7@ Zp e ®Zpor Ry 27,87, @ Zp.

If R has a unity, we may assume this is the generator of a cyclic component of
highest order. Associativity then follows immediately from Artin’s Theorem. If R
has an idempotent e which is not a unity, then R;; # 0 and so at least one of Ry,
R0, Ro1 must be 0 since there are only three summands in the decomposition of R,
but four components in the Peirce decomposition.

If Rog =0, then R = Ry; ® R10 © Ho1. By the uniqueness of the decomposition of
a finite abelian group, each Peirce component of R is the sum of one or more of the
three cyclic subgroups in the decomposition of R,. Now R;; is the sum of at most
two of these subgroups since e is the unity of R;; and R has no unity. Therefore, R;;
is always associative. If R;; is the sum of two cyclic subgroups, then one of Rg, Ry
is 0 and R is an associative ring by part (a) of Lemma V.1. If R;; is cyclic and one
of Rjg, Ro1 is the sum of two cyclic subgroups, then the other must be 0 and again
R is associative. There remains the case in which each Peirce component is a cyclic
group, but now part (b) of Lemma V.1 shows that R is associative.
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If Rgg # 0, one of Ryp, Ry must be 0 and Ry is associative because it is the
direct sum of at most two cyclic groups. By Lemma V.1, R is associative.

It remains to consider the possibilities that Ry = Z, @ Z, @ Z, ® £, & Z;, or
R, 27,807,887, ®Z, and we do so according as R has a unity or an idempotent

eF 1.
4. Alternative rings of order p° with unity

Suppose Ry = Z,: ©Z, ® Z, @ Z,. Without loss of generality Zpz is generated
by 1. Assume the generators of the other cyclic components are a, b, ¢ respectively.
The set Ry = {z € R | pz = 0} is a subring of R containing pl, a, b and ¢, so it has
order at least p* and hence exactly p* since R # Ry. Noting that pl is a two-sided
annihilator for Ry and that neither of the two alternative rings of order p* described
in Theorem V1.4 has such an element, Ry must be associative. Since every z € R can
be written in the form z = ol + zg, zo € Ry, it follows readily that R is associative
too.

In the remaining case, Ry = Z,8Z,0Z,8Z,®Z, is an algebra of dimension § over
F,, the field of p elements. Because every finite semisimple alternative ring which is
not associative must contain an 8-dimensional Cayley-Dickson algebra, R must have
a nonzero nil radical Rad(R), of dimension at most four. Thus the semisimple ring
R/ Rad(R) also has dimension at most four; in particular, it is associative. Again the
Wedderburn Principal Theorem tells us that R = § + Rad(R) with S = R/ Rad(R)
and hence semisimple associative.

Suppose first that S is a field. In this situation, we employ an argument of E. G.
Goodaire. If S = F,, R = Rad(R) + S must be associative since R is generated by
1 and the associative algebra Rad(R). If S = F(t) is 4-dimensional, then Rad(R) is
1-dimensional and R is associative by Artin’s Theorem since it is generated by two
elements and 1. If S = Fp(¢t) is 3-dimensional, then Rad(R) is a nilpotent associative
ring of order p®. Any such ring either has trivial multiplication or it is generated by
one element [KP69, 3.3.1), so again R is associative. If § = F}(t) is 2-dimensional,
then Rad(R) is nilpotent, associative of order p3. Such rings have also been classified
by Kruse and Price [KP69, 3.3.2]. As before, if Rad(R) has trivial multiplication
or is generated by one element, then R is associative. This leaves three possibilities
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for Rad(R) which require further investigation. In each case, we assume Rad(R) has
basis {a, b,c} with ¢ a two-sided annihilator; products not specified are 0.

Case 1: a® =? =0, ab= —ba = c;

Case 2: ¢’ =c¢, b* =yc,ab=ba =0, ¥ € Fp;

Case 3: a2 =ab=c, ba =0, b2 = pc, p € F,.

In case 1, we use the fact that (bt)a+ (ba)t = b(ta) + b(at) which is a consequence
of b{t + a)? = [b(t + a)](t + a)]. Remembering too that Rad(R) is an ideal, we have

(bt)a + (ba)t = (ara + ab + a3zcla — ct = —agc —ct
whereas
b(ta) + b(at) = b(Bra + Bab + Bac) + b(Baa + Bsb + Bsc) = —Pic — Pac
(all i, B; € Fp) and conclude that ¢t = 7¢ for some 7 € F,. Thus
(ct)t = Tct = r2¢ while ct? = c(ko + k1t) = cko + k17e

(i, ki € Fp) and hence 7 is a root of the polynomial z2 — k1z — kg, contradicting its
irreducibility: recall that £2 = kg + k1t and £ ¢ F.
In case 2, we have

a’t =ct = aqa + azb + asc
whereas
a(at) = a(Bra + B2b + B3c) = Pic

so ] = ap = 0; that is ¢t = agc. Then (ct)t = a3c while ct? = c(ko + ki1t) =
koc + k1azc so o3 is a root of £2 — kT — ko, a contradiction as before.
Case 3 is virtually identical to case 2. Since

a’t = ct = ana + asb + a3c
whereas
a(at) = a(Bra + Pab + Bac) = fic+ fac

we again have ) = ag = 0; that is ¢t = azc. Then (ct)t = a?c and ct? = c(kg +k1t) =
koc + kraac so ag is a root of z2 — ki — kg, a contradiction.
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If S is not a field, then it contains an idempotent e which is neither 0 nor 1.
We use this idempotent to analyze the structure of K. Thus we have the Peirce
decomposition Ry = Ry @ R & R10 ® Roo-

Sincee#1,1—e€ Roo #0. f Ryo = Z,®Zp, Roo =L, D Z, ®Z,, or Ryg =47,
then Rip & Rp is the direct sum of at most two copies of Zp, so Lemma V.1 tells us
that R is associative.

Suppose Hyo = Zp. If either Rjg or Rg; is 0, Lemma V.1 says R is associative. If
Rig = (a) = Z, and Ry1 = (b) @ (c) = Z, @ Zp, the products of pairs of 1,¢,a,b,c are
as recorded below

1 ea b c
11 e a b c
elle e a 0 0
ella 0 0 zgl+z16 wol +y1e
bllb b 0 0 ka
cifec ¢ 0 ja 0

where z;, yi, j, k € Fp. Since R is not associative, at least one of the associators [e, a, b,
[e,a, ], [e,b,c] and [a,b, c] must be nonzero. Since [e,b,a] = 0, so also 0 = [e,a,b] =
ab—e(zgl+z1e) = Tgl+z1e—zpe—z1e = 9l —zge; thus g = 0. Similarly, [e, ¢,a] =0,
so0 =[e,a,c] =ac~e(yol +y1e) = ypl +yie—yoe—y1e = yol —yoe and yg = 0. It is
easy to check that [a,b,c] =0, so [e,b,¢] = —ka # 0. Since —ja = e, ¢, b] = —[e, b, ],
j = —k. Finally, z1e = (ab)a = a(ba) = 0 and 0 = (ca)c = c(ac) = y;c implies
21 = y; = 0 and the multiplication table for a basis of R becomes

l e a b c
11 e a b c
efle e a 0 0
eaja 0 0 O 0
bld 6 0 0 ka
clle ¢ 0 —ka O
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where 0 # k € F,,. It is straightforward to verify that such a ring is indeed alternative
(and not associative). Replacing b by k~'b, we may assume k = 1. This gives the

following table.

l ea b c
1§41 e a b c
effe e a 0 0
ajla 0 0 0 O
bjjb b 0 0 a
clffec ¢ 0 —a O

If Ryjg = Z,®Z, and Ry = Z,, the rings we obtain are anti-isomorphic to the
rings just investigated. Thus we obtain one alternative (not associative) ring, with

multiplication table

JLI e a b ¢
11 e a b c
elfe e 0 b ¢
alla 0 0 0 O
bbb 00 0 a
cjiec 0 0 —a O

Changing to the basis {1,1 — e, a, b,c}, it is clear that this ring is identical to the
previous.

THEOREM VI.9. Up to isomorphism, there is just one alternative ring of order
p® which has a unity and is not associative. This is an algebra of dimension 5 over
F, with basis {1,e, a, b, c}, nil radical of dimension 3 and multiplication defined by the
following table.
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5/0: l ea b ¢
1|1 e a b ¢
elle e a 0 0
affea 0 0 0 O
blijb b 0 0 a
clflc ¢ 0 —a O

This ring contains both 4/1 and {/2 as anti-isomorphic ideals, with bases {e,a,b,c}
and {1 —e,a,b,c} respectively, and is the standard ring extension of 4/1 or 4/2 to a
ring with a unity. Moreover, this ring is a group-graded ring as shown in Proposition
V.3.

PROOF. It remains only to show that the ring is the standard extension of 4/1.

Let us recall the standard way to adjoin 1 to a ring that does not have 1 [Sché6,
pll].

Let R be an alternative algebra over a field . A new ring on the set F' x R is
defined by addition and multiplication as follows:

(m,r) + (n,8) = (m +n,r+3s);
(m,r)(n,s) = (mn,ms + nr +rs),

wherer,s€ R, m,n€ F.

Then the ring F x R is alternative with unity (1,0) in which R is an ideal.

We have shown that there are two alternative rings of order 16 and none has a
unity.

Now we follow the above process on the ring 4/1 to get the new alternative ring
Z, x4/1.

It is easy to check that the following identity map of the basis elements implies
the isomorphism of the two rings:

l=le—~ega—=ab—=bc—ec
Since 4/1 is a group-graded ring, using that grading by adding 1 to Ry, it is easy

to check this grading results in the group-graded ring 5/0.
d
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5. Alternative rings of order p® possessing an idempotent e # 1

Let us consider alternative rings of order p® possessing an idempotent e which is
not a unity.

In this section, we will establish 12 tables. Any such table defines an alternative,
but not associative ring. We leave the proof to Section 6.

Recall that there are two cases to consider—R, =7, 07,867, ® Z, ® Z, and
R, 2Z7,0Z,8Z,®Zy. Let e # 0,1 be an idempotent and R = Ry} § R10® Ro1 ® Roo
the corresponding Peirce decomposition of R.

Case 1: Ry =2 Z, 02, D Z, D Z, D Zy. We analyze this case in terms of the
possibilities for R;;, which is the direct sum of at most four copies of Z, since e # 1.
Since e is a unity for R;; and alternative rings with unity and order at most p* are
associative, we know that R;; is associative.

If Ry, is the direct sum of four copies of Zp, then Rgg is 0 or Zy; in either case
R is associative by Lemma V.1. If Ry, is the direct sum of three copies of Z,, then
Ry is associative and Rgp is 0, Zp or Z, @ Z,. If Rgg =0, then Rio @ Ro1 = Z, © Z,,
so one of Ry;, Rjp is 0 or both are cyclic groups. In either case, R is associative by
Lemma V.1. If Ry is isomorphic to Z, or Z, @ Z,, similar arguments again imply
associativity. The complicated cases are those where R;; is the direct sum of one or
two copies of Z,.

Case la: R;; = (e) @ (a) = Zp, @ Z; is the direct sum of two copies of
Z,. Here, Rgp will be the direct sum of at most three copies of Z,. If Rog is not 0,
Lemma V.1 readily gives that R is an associative ring. The remaining case requires

more thought.

Suppose Rgg = 0. Then Ryg ® Ro1 = Z, ® Z, & Zp and, by Lemma V.1, we may
assume that neither Ry nor Ry, is 0.

I Ry=(c)®(d) =Z,®Z, and Ro; = (b} = Z,, the products amongst e, a,b,¢,d
are as shown in Table 1 with i, j, k and all z;,y;, z;, 7, s; in Fp,.

Since [e,c,d] = cd — e(jb) = jb — 0 = jb and [e,c,d] = —[e,d,c] = —dc + e(kb) =
—kb, we must have k£ = —j. Since the only associators amongst {e, a,b,c,d} which
are not automatically 0 are [e,c,d] = jb and [a,c,d] = —[d,c,a] = (dc)e — d(ca) =
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TABLE 1.

" e a b c d
elle a 0 c d
alla zge+zi0 0 yoc+y1d sgc+ sid
b b ib 0 0 0
el 0 0 Zoe + z1a 0 jb
df 0 0 roe + ria kb 0

kba — 0 = kib = —jib, we must have ;7 # 0. Replacing ¢ by j~ !¢, we may assume

j=1(and & = -1).
If i # 0, we can replace b by i7'b and assume i = 1. With respect to the basis
{e,a — e,b,c,d}, the multiplication table takes the form shown below for suitable

ro o
Iisyiizzlarusi'

J -3 a—e

b
e e a—e 0 c d
0 yoc +yid she+s4d

c d

a—ella—e zhe+zi(a—e)

b b 0 0 0 0
c 0 0 zpe + zja 0 b
d 0 0 roe +ri(a —e) -b 0

It follows that we may assume ¢ = 0 in Table 1. In this case, all parameters except
z; are fixed as the following calculations show.

o ba? = (ba)a =0 == b(zpe + z1a) = £gb = 0, so zg = 0;

e 0=c2d=c(cd) =cb=2zpe + z16a = 25 =2z, =0.

o 0 =d?c =d(dc) = —db= —(rpe +11a) => T =71, =0

o d(a +¢)? = d(a® + ac + ca + ¢?) = d(zpe + T1a) + d(yoc + y1d) = —yob and
(dla+c))a+c)=-bla+c) =0 = yo=0;

o c(a + ¢c)? = c(a® + ac + ca + ¢?) = c(zoe + z1a) + c(yoc + y1d) = y1b and
(cla+c))a+c)=0 = y; =0
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e d(a + d)?2 = d(a? + ad + da + d?) = d(zpe + 71a) + d(sgc + 51d) = —spb and
(dla+d))(a+d)=0 = s50=0;

e c(a + d)? = c(a® + ad + da + d?) = c(zee + T1a) + c(soc + s1d) = s1b and
(cla+d)){a+d)=bla+d)=0 = 5, =0.

At this point, our table is

e a b c d
elle a 0 ¢ d
alla z;a 0 0 O
bfe 0 0 0 O
cll0 0 0 0 &
dj¢ 0 0 -5 O

Any such table defines an alternative ring. In any ring with z; # 0, we may assume
z; = 1 by replacing a by :z:l_la. Then, with respect to the basis {e — a,a,b,c,d}, we
get the table

e—a a b ¢ d
e—alle—a 0 0 ¢ d
a 0 a0 0 O
b b 00 0 O
c 0 00 0 b
d 0 00 -6 0

in which e — a and e are orthogonal idempotents. Not possessing orthogonal idempo-

tents, the ring with z; = 0 is not isomorphic to the ring with z; = 1.

We have obtained two new rings which are alternative but not associative (cf
Section 6) , defined by the following tables.
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5/1: e a b ¢ d 5/2: e a b ¢ d
effe a 0 ¢ d ete 00 ¢ d
affea 00 0 O a0 a 0O 0 O
bifdb 0 0 0 O blb 00 0 O
cff0O 0O 0O 0 b c|[0O OO 0 b
a0 0 0 =b O dffo0 00 —b 0

If Roy 2 Z,®Z, and Ryp = Z,, the rings obtained are anti-isomorphic to the ones
just described because under the opposite operation, Ry and Rjg are interchanged.

Thus we get two more rings.

5/3: e a b c d 5/4: e ab ¢ d
elle a b 0 O elle 06 0 O
ala 00 0 O a0 a 0O 0 O
bffo 0 0 0 O blo 0 0 0 O
cllec 00 0 b cljec 00 0 b
dijd 00 -6 O dild 00 -5 O

Note that 5/2 (respectively 5/4) is the ring direct sum of 4/2 (respectively 4/1)
and the one-dimensional algebra over F, with basis a and a? = a.

Case 1b: R;; = (e) = Z,. Here Ry is the direct sum of at most four copies of
Zy.

If Roop = O, then Ry @ Ryo = Z, © Z, ® Z, ® Z,. Moreover, we may assume
Ro1 # 0 and Rjg # 0 by Lemma V.1.

If Roy = (a) = Z, and Ryg = (b)@{c)®(d) = Z,0Z,8Z,, we have a mulitiplication
table of the form

e a b c d
elle 0 b ¢ d
agfla yob+yic+yad 0 O 0
b|l 0 Tpe 0 2za za
c|lO0 z1€ za 0 2za
dijo Toe ze zsa O



100 VI. ALTERNATIVE RINGS OF SMALL ORDER

where the z;, y; and z; are elements of F,. The following arguments fix some of the

parameters:

e (ba)b = (z¢e)b = zob and b(ab) =0 = 5 =0;

e (ca)c = (z1€)c =z c and ¢(ac) =0 = 7, =0;

o (da)d = (z2e)d = z2d and d(ad) =0 = z2 =0;

e ea? = e(yob+yic+y2d) = yob+yi1c+yad and (ea)ea =0 = y =y = ys = 0;
e [e,b,¢] = bc—e(z0a) = bc = 200 and [e, b, ¢] = —[e, ¢, b] = —cb+e(z2a) = —cb=

—2pa = 29 = —2y;

e [e,b,d] = bd—e(bd) = bd—e(z,a) = z1a and [e, b,d] = —[e, d, b] = —db+e(z40a) =

—240 —» 24 = —23;
e [e,c,d] = cd—e(z3a) = z3a and [e,c,d] = ~[e,d, ] = —dc+e(z5a) = —z5a =
25 = ~z3.

The table is now

" e a b ¢
elle O b c d
afla 0 0 0 0
b0 O 0 Zga z1a
c||0 0 —zpa 0 z3a
di|j0 0 —za —zza 0

and, since [e, a,b] = [e,q,c] = [e,a,d] = [a,b,c] = [a,b,d] = [b,¢,d] = [a,¢,d] =0, to
avoid associativity, one of zg, 2, z3 must be nonzero. Since {b,¢c,d} is a basis for R,

there is no loss of generality in assuming zp # 0. Replacing b by 2;'b, we may assume
that bc = a and ¢b = —a. Finally, replacing {b,¢,d} by {b + z1¢,¢,d + z3b — 21¢} as

basis for Rjq, we obtain

a
b+ z¢
(&
d+ z3b — z1¢

O O O A O

le o

a b+zic ¢ d+z3b—2z¢c

b+z1c ¢ d+ z3b— z¢

0

o O R O

0
0
0
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which can be checked as follows:

Since ea = 0,eb = b, ec = ¢ and ed = d, we have the first row. The second row
follows from the fact that a is a left annihilator. For the third row, we have:

e (b+z1c)e=0;(b+ z1c)a = 0; (b + z1¢)% = b2 + z1(bc + cb) + (z1¢)® = 0;

e (b+zic)e=a;(b+ z1c)(d + z3b — 21¢) = z1a — z1a + z1 236 + 2123(—a) = 0. The

fourth row is obvious. For the fifth row, we have

o (d+23b— z1¢)e = (d + 230 — z16)a =0

o (d+z3b— z1¢)(b + z1¢) = —z1a + z1(—2z3a) + 23210 — z1(—a) =0,

o (d+ z3b— z1c)c = ~2z3a + z3a =0,

e (d+z3b — 21¢)% = d? + z123(bc + cb) + z3(bd + db) — z1(dc + cd) + 22c° =0.

After the obvious change of basis, it defines a new ring which is alternative, but
not associative (cf Section 6).

5/5: e a b c d
elle 0 b ¢ d
affe 0 0 0 O
b0 0 0 a O
¢cll0 0 —a 0 O
difo 0 0 0 0

Ry =(a)® (b)) =Z,®Z, and Ryp = (c) & (d) = Z, ® Zp, we have the table

e a b c d
elle 0 0 c d
alla 0 ToC + T1d 0 0
bl b zoc+ z3d 0 0 0
c] O T4€ Ise 0 yoa + N b
dio zge zve zga + b 0

with all z;,y;,2; in F,. Observe
e (ca)c = r4ec = z4c and c(ac) =0 = 14 =0;
¢ (cb)e =zsec = zsc and ¢(bc) =0 = z5 =0;
e (da)d = z6ed = z¢d and d(ad) =0 = 5 =0;
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e (db)d = z7ed = z7d and d(bd) =0 = z7=0;
e [e,a,b] = —e(ab) = —e(zgc + z1d) = —zoc — z1d and [e,a,b] = —[e,b,a] =

e(ba) = e(z2c + z3d) = T9c + 3d = T2 = —zg and z3 = —z;
* [e,c,d] = cd — e(yoa + y1b) = cd = ypa + y1b and [e,c,d] = —[e,d,c] = —de+
e(zoa + z1b) = —dc = —zpa — z1b = yg = —2zp and y; = —2z1.

This gives the table

e a b ¢ d
elle 0 0 c d
alla 0 Toc + T1d 0 0
b|b —zpgc—z1d 0 0 0
c|l0 0 0 0 Yoa + > b
dfl 0 0 0 —lo — ylb 0
Since
o {e,a,b] = —zgc — z,d;

(
¢ [e,c,d] = yoa + y1b;
o [e,a,cl =[e,a,d] =[e,b,c] = [e,b,d] =0;
o [a,b,c] = (zoc + z1d)c = —z1(yoa + y1d);
¢ [a,b,d] = (zoc + z1d)d = zo(voa + 1b);
o [b,c,d] = —b(yoa + y1b) = yo(zoc + z1d);
e [a,c,d] = —a(yoa +y1b) = —y1(zoc + z1d);

in order to avoid associativity, either zoc + z1d or yoa + y1b must be nonzero.

Suppose zoc+z1d # 0. Since (a+b+c)2d = (@2 + b2 + 2 +ab+ba+ac+ca+be+
cb)d = 0 while (a + b+ c)[(a +b+c)d] = (a + b+c)(yoa +y1b) = (y1 — yo) (zoc + z1d)
we must have yg = 3,. On the other hand, since (@ +d)%c =0 and (a + d)[(a + d)c] =
(@ + d)(—yoa — 11b) = —y1(zoc + z1d) we know that y; = 0. Now, replacing {c,d} by
{zgc+z1d, d} as basis for Rjg, we obtain the multiplication table for a new alternative
ring which is not associative (cf Section 6).
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5/6: e ¢ b c d
el e 0 ¢ d
aia c 00
blib ~c 0 0 0
cfl0 0 00 O
ajo 0 000

Similarly, if yoa + y1b # 0, we obtain the ring defined by the following table.

5/7: e a b ¢ d
ele 00 ¢ d
afle 00 0 0
blldb 00 0 O
cl|l0 00 0 a
di0 00 -a 0

If Rpn =2 7, ® 2, ® Z, and Ry = Zp, the rings are anti-isomorphic to those
considered previously. We find one new ring (anti-isomorphic to 5/5).

5/8: " e a b ¢ d
elle ¢ 0 0 Q0
allO 0 0 0OQ
bjjdb 0 0 a O
clflc 0 —a 0 O
diild 0 0 0O

If Rop = Zp, then Ryo ® Roy = Z, ® Zp, ® Z,. Any alternative ring with Rg; =0
and Ryg = Z, ®Z, ® Z, or with Ro1 = Z,® Z, ® Z, and Ryp = 0 is associative by
part (a) of Lemma V.1. This leaves two cases.

If Rop = (b) = Z, and Ryo = (c) ® (d) = Z, & Z,, we have a multiplication table
of the following sort
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e a b c d
el e 0 0 c d
al0 oG z:6 0O 0
bib 0 0 z0a z30
c||0 z4c+z5d zTHe O 1b
di0 zrc+zgd zge gb 0

where 7, j and all z; are in Fj,.
Of the ten possible associators of basis elements (order irrelevant), the only ones
which are not automatically zero are [e,c,d] = cd — e(tb) = cd = 1b and {a,c,d] =

0 — a(ib) = —iz1b. In order to avoid associativity, we must have ¢ # 0. Moreover,
since b = (e, ¢,d) = —[e, d, c] = —~de + e(jb) = —jb, we have also j = —i. Replacing c
by i~lc, we may assume i =1, j = —1.

Observe

e (dc)d = (jb)d = —z3a and d(ed) = d(ib) = zge => T3 =z9 = 0;

)

e (ed)c = (ib)c = zqa and c(de) = ¢c(jb) = —zge == To =126 =0

e (ca)c = (z4¢c + z5d)c = z5(jb) = —zsb and c(ac) =0 = z5 =0;

e (da)d = (x7¢ + T8d)d = z7(ib) = z7b and d(ad) =0 = z7 =0;

¢ (a+c)%d = (zoa+z4c+z5d)d = z4(ib) = 746 and (a+c)[(a+c)d] = (a+c)(@b) =
T1b+ e = 10 = T = 24;.

o (a + d)%c = (zpa + z7¢c + zsd)c = z5(jb) = —zsb and (a + d)[(a + d)c] =
(2 +d)(jb) = ~(21b + zge) = —z1b = z; = z3.

Set z; =14 =13 = k. Then
(a + ¢)%a = (zoa + z4c + z5d)e = (zoa + kc)a = zia + k¢
and
(@ +c)((e + c)a) = (a +c)(zoa + ke) = za + To(z4c + 25d) = T3a + zoke

implies k%2 = zok. If k = zg = 0, we obtain
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5/9: e a b ¢ d
elle 00 ¢ d
aff0 00O 0 O
b)lb 0 0 0 O
clf0 00 0 &
d{jo0 0 0 =b O

which is the ring direct sum of 4/2 and the one-dimensional trivial algebra with basis
a. If £ = 0 and =g # 0 (without loss of generality, zg = 1), the ring is the direct sum
of 4/2 and the one-dimensional algebra over Fj, with basis @ and a? = g. This is the
ring 5/2 already determined. If & # 0, then & = zy and we get the following table:

e a b ¢ d
effe 0 0 ¢ d
a0 ka kb 0 O
blffd6 0 0 0 O
cl{0 ke 0 0 b
d||0 kd 0 —-b 0

For any element Y in this ring, it is easy to check that (ke + a)Y = kY and
Y (ke + a) = kY, thus the element (1/k)(ke + a) is a unity and our ring is the unique
ring identified in Theorem VI.9.

If Ryy = Zp, ® Zp and Ryo = Z,, the rings obtained are anti-isomorphic to those
just considered. We find one new alternative ring,

5/10: eab c d
efle 0 6 0 O
aff0 0 0 0 O
bjo 0 0 0 O
cfle 00 0 b
difd 0 0 =5 0
which is the ring direct sum of 4/1 and the one-dimensional algebra over F, with

basis a and trivial multiplication.



106 VI. ALTERNATIVE RINGS OF SMALL ORDER

If Rog = Z, @ Z,,, then Ry ® Ro1 = Z, @ Zp and there are no alternative rings
which are not associative, by Lemma V.1.

If Roo =2 Z, @ Z, @ Zp, then Ryp and Ro; are either 0 or cyclic groups, so the
ring is associative by Lemma V.1.

If Rog S Zp B Zp, B Z;, B Zp, then the ring R = Rog @ Ry is a direct sum of a
ring of order p and another of order p*, and these cases have already been included

In our enumeration.

Examining all the rings determined in this section to this point, we see that they
all contain one of the rings 4/1 or 4/2. In fact, assuming that the basis elements of
4/1 or 4/2 are e,a,b,c with multiplication tables as defined in Theorem VI.4, they
are all extensions of one of these rings by a one-dimensional ideal generated over Fp
by d. Specifically, they have the following structure (& here indicating ring direct
sum).

5/1: 4/2+Z,d, d* =0,ed=de=d,ad =da =bd =db=cd =dc =0;

5/2: 4/2 ® Zpd, d% = d;

5/3: 4/1+Zpd, > =0,ed =de =d,ad =da =bd =db=cd =dc =0;

5/4: 4/1 @ Zpd, d% = d;

5/5: 4/2 +Zpd, 2 =0, ed =d, de =0 = ad = da = bd = db = cd = dc = 0;

5/6: 4/1 +Z,d, d* =0, ed = d, de = 0 = ad = da = bd = db = cd = dc = 0;

5/7: 4/2 +Zpd, i =0, de = d, ed = ad = da = bd = db = cd = dc = 0;

5/8: 4/1+7,d, > =0,de =d, ed = ¢d = da = bd = db = cd = dc = 0;

5/9: 4/2@® Zpd, d® =0

5/10: 4/1 ©Z,d, d* = 0.

Case 2: Ry 2 Z20Z, ®Z, B Zy. Since R has no unity, R;; # R. If
Ry = 2, @ Z, ® Z,, then Ry is an alternative ring of order p* which is not an
algebra over Fp, so it is associative by Theorem VI4. If R, = Z, & Z, & Zp, or
Rn=2Z,:@®Z,0r By 27,87, it is also associative. In each of these cases, Ry is
associative too and, if neither R;g nor Ry, is zero, they are both cyclic groups. By
Lemma V.1, R is associative. There remain the cases R;; =7, and R;; = Z,.

Case 2a: Rj1 = (e) & Zpa. If Ryo & Zp @ Zp or £, @ Zp ® Zp, then R
is associative by Lemma V.1. If Rog & Zp, then Ry @ Ro1 & Z, ® Z, and again
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Lemma V.1 says that R is associative. If Ryg = 0, then Ry @® Ro1 = Z, @ Zp, ® Zy,
and, using Lemma V.1, there are just two situations in which there could exist a ring
which is not associative.

If Ryp = (@) = Zy, Ryg = (b) @ (c) = Z, ® Z, the multiplication table for the basis
of R looks like

|e s

b ¢
elle b ¢
ella 0 0 O
b0 2¢ 0 ja
c||0 ke ma O

where 4, j, k and m are elements of Fy,. Since [e,q,b] = [e,a,c] = [a,b,c] = 0 while
[e,b,e] = ja, to avoid associativity, we must have j # 0. Since ma = [c,b,e] =
~[e, b, c], we have m = —j. Since (a + b)2a = (a® + ab + ba + b%)b = (ie)b = ib and
(a+b)[(a + b)b] = 0, we have i = 0. Since kc = (a + c)%c = (a +c)[(a + c)c] = 0, also
k = 0. We now have the table

IE

a b ¢
elle 0 b c
elfla 0O 0O O
b0 0 0 ja
c||0 0 —ja O

and, without loss of generality, we may assume j = 1. We obtain another alternative
ring which is not associative, with the following multiplication table for a basis.

5/11: e a b ¢
ele 0 b ¢
afla 0 0 O
b0 0 0 a
c{{0 0 —a O

I Ry = Z,dZ, and Ryg = Zp, the rings determined are anti-isomorphic to those
Jjust discussed. We obtain one more ring, with multiplication specified as shown.
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5/12: e a b ¢
effe a 0 0
alf0 0 0 O
bbb 0 0 a
cfle 0 -a 0

Case 2b: R;; = {e) & Z,,. In this case, if £ € Ry, then pz = p(ez) = (pe)z =
0; similarly, px = 0 for any z € Rg;. Thus Ry contains a subgroup isomorphic to Zp2.
If Roo & Z,2®©7Z, or Ryg = Z,.©Z,BZp, then the ring is associative by Lemma V.1. If
Rgo = Z,2, then Ryj0® Ry = Z,©Zp and, by Lemma V.1, any such ring is associative.

THEOREM VI1.10. Let p be a prime. There are twelve alternative rings of order
p® which are not associative and do not have a unity. Of these, ten are 5-dimensional
algebras over F, with 4-dimensional nil radicals and two have additive structure Z,: &
Z,® L, ® Z, with nil radicals which are 3-dimensional algebras over F,. Moreover all

the rings are group-graded rings with the grading as in Proposition V.3.
PROOF. By the arguments above and the proofs in Section 6 and Section 7. O

Bearing in mind that any finite ring is the direct product of ideals each of which
has prime power order, Theorems VI.10 and VI.4 make clear that we have found in
this chapter all alternative rings of order less than 64.

COROLLARY VI.11. There are fifteen alternative rings of order less than 64 which
are not associative. Two have order 16; thirteen have order 32. None is nilpotent.

Only one, of order 32, has a unity.

COROLLARY VI1.12. None of the alternative rings of order p™, n < 5, is a Cayley-
Dickson algebra or an alternative loop algebra.

PROOF. Note that both kinds of alternative rings mentioned have unities. From
Theorem VI.4 and Theorem VL9, only one ring of order p® has a unity. By Theo-
rem V1.9, this ring is a Z, algebra, so it is not a Cayley-Dickson algebra because a
finite Cayley-Dickson algebra over Z, has order p® and it is not a loop algebra since
the smallest RA loop has order 16 and then the loop algebra has order at least 2}¢. O
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5/8

3/6

e,ab,cd

e.ab.c.d

dd=

dd=0

e,ab,cd

519

eab,cd

Pa=po=rf e.abecd

5

sn

Ficurg VI.1. The fifteen alternative rings of order p", n < 5.
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5/8

5110

e,ab.ecd

dd=U

dd=0

eabed

51

pe=0 eab,cd
5/1

FIGURE VI.2. The anti-isomorphism structure of the fifteen alterna-

tive rings of order p", 7 < 5.
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6. The 12 rings of order p°

Now let us check that the above 12 rings are really alternative rings, and moreover,
they are not isomorphic to each other.

Since 5/11 and 5/12 have the same tables as those of 4/2 and 4/1, respectively,
and p?a = p?b = p2c = 0, these rings are alternative.

Let us show that the remaining ten rings are alternative. From the figure, we just
need to check 5/1, 5/2, 5/5, 5/7 and 5/9. Since 5/2 and 5/9 are ring direct sums
of 4/2 and an associative ring, it remains only to show that 5/1, 5/5 and 5/7 are
alternative rings.

6.1. 5/1 is an alternative ring: Let
X = roe + 10 + Tob + T3¢ + T4d

be an arbitrary element in the ring. We check the left alternative law first.
From the table we have

X? = zle + 2zp710 + ToT2b + ToT3C + TTad.

Then the left matrix can be determined by the left transformation:

-X e- l-:co z; zo 0 0 | —e-
Xa 0 z¢ O 0 0 a
Xbl=[(0 0 0O 0 0 b
Xc 0 0 —-z4 zZ¢ O c

_X dq 0 0 =zj 0 o | _d—

Therefore

g 1 2 0 O
0 zg O 0 o
M(X)=10 0 0 0 O
0 0 —Z4 TP 0
0 0 =z3 0 =g
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Similarly, for the element X2, we have

- =

X2e -:Bg 2z0z1 Zozz 0 O e
X% 0 =z 0 0 0 a
X%l =10 0 0 0 0 b
X2 0 0 —zozq4 z5 O c
X 2d_ 0 0 zpzz O :L'%_ d
Therefore

-3:8 2z0r1 Toz2 O 0-

0 z3 0 0 0

M(X%) =10 0 0 00

0 0 —Z0T4 :z:g 0

0 0 zoz3 z§ 0

It is easy to check that

M(X)M(X) = Mi(X?).

Thus the ring is left alternative. To check it is a right alternative ring, we have

-eX ] .3:0 1 0 =z3 :cﬂ -ew
aX 0 z O 0 O a
bX| =10 0 =z 0 0}-1b
cX 0 0 z 0 O c

.dX ] i 0 0 —z3 0 O | L.dd

Therefore

o 1 0 13 T4

0 zo 0 O
0 —-z3 0 O

0
M(X)=|0 0 z 0 0
0
0
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Similarly, for the element X2, we have

-eX 2] -:1:3 2101, 0 ToT3 :z:o:z4- Fe-
aX? 0 3 0 0 0 a
bX2| =10 0 z3 0 0 b
cX 2 0 0 ToT4 0 0 c
dx?| [0 0 -m=z 0 0 | |4
and
F:c% 2z0x1 0 ToT3 3:0:1:4—
0 T2 0 0 0
M (X>=1o0 0 3 0 0
0 0 ToZTy 0 0
i 0 0 —zoz3 O 0 |

It is easy to check that M (X)M,(X) = M.(X?) and then, the ring is right
alternative. From the construction of the ring, we know it is not associative. So this

ring is an alternative ring which is not associative.

6.2. 5/5 is an alternative ring: Let
X =zge + 7108 + 720 + T3¢ + 24d

be an arbitrary element in the ring. We check the left alternative law first.
From the table we have

X% = zge + TaZ1@ + ToTab + TeTac + ToTad.

Then the left matrix can be determined by the left transformation:

'X e- .2?0 zz 0 0 0 ] -e- -e-
Xa 0 0 0 0 0 a a
Xb| =10 —I3 Iy 0 0 bt = M (X ) b
Xc 0 zz 0 z¢ O c c

_X dJ i 0 0 0 O o | _dJ _d_
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Similarly, for the element X2, we have

It is easy to check that

B 2e- _zg gzy 0 0 O -e- B
X2a 0 0 0 0 O a a
X%|=|0 —zozz z2 0 O}-|b| =M(X? |b
X% 0 z¢zo 0 3 O c c

x4 |0 o o 0 g |d d|

VI. ALTERNATIVE RINGS OF SMALL ORDER

M(X)Mi(X) = My(X?).

Thus the ring is left alternative. To check it is a right alternative ring, we have

=

eX zg 0 o z3 Z4 e €
aX 0 zo 0 0 O a a
bX|{ =10 =z3 0 0 O b| = M.(X) |b]| .
cX 0 —zo 0 0 O c c
_dX ] I 0O o 0 0 O ] _d_ _dd
Similarly, for the element X2, we have

-CX 2] 'z% ] TgZ2 T3 Zol‘4- -e- —e-
aX? 0 3 0 0 0 a a
bX?| =0 =zozz O 0 0 bl = M.(X?) |b
ceX? 0 —zoz2 O 0 0 c c
_dX 2_ 0 0 0 0 0 | _dJ _d_

- =

It is easy to check that M,(X)M;(X) = M;(X?) and then, the ring is right
alternative. From the construction of the ring, we know it is not associative. So this

ring is an alternative ring which is not associative.

6.3. 5/7 is an alternative ring: Let
X =z0e+ z10 + T2b + T3¢ + T4d

be an arbitrary element in the ring. We check the left alternative law first.
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X% = xge + zgT1a + ToT2b + ToT3C + TozT4d.

Then the left matrix can be determined by the left transformation:

z2 0 O |
0 0 O
0 0 O
0 zo O
0 O g |

Similarly, for the element X?, we have

X2
X2

X3¢
X3d

X2\ =

z5
0
0
0

0

It is easy to check that

ZoT1
0
0
—IoZy4

ZoZ3

TgZ2
0

0
0
0

R0 [ ~ S

]
=
>
N
o oD o

&

e e
Q a
bl = MI(X?) |b].
(4 C
d d

My(X)M(X) = My(X?).

Thus the ring is left alternative.

To check it is a right alternative ring, we have

eX ]
aX
bX
cX

dx

Zo

0

=10

0
0

0
Zo
0
T4

0 I3 .'1:4-
0 0 O
o 0 O
0 0 O
0 0 O .

e

a
= M;(X) |b| .

C

d

115
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Similarly, for the element X2, we have

Bd —:z:% 0 0 zoz3 :L'[]:L‘4- B —e-
aX? 0 =z 0 O 0 a a
bX2[=10 o0 =z O 0 b| = M. (X?) |b
cX? 0 zpzg O 0 0 c c
_d.X 2_ 0 -—zgz3 O 0 0 ] _d_ _d_

It is easy to check that M,(X)M,(X) = M,(X?) and then, the ring is right
alternative. From the construction of the ring, we know it is not associative. So this

ring is an alternative ring which is not associative.

7. The 12 rings of order 32 are distinct alternative rings

For p = 2, we use machine computation to get the number of elements of square ¢,
the number of idempotents, the number of left unities, the number of left annihilators,
the number of right unities, the number of right annihilators, and the number of
elements that commute with all elements in the ring. From 5/1 to 5/10 the vectors
of the above special elements are:

(9,9,0,1,0,2,2]
[18,18,0,1,0,2,2]
(9,9,0,2,0,1,2]
(8,13,0,2,0,1,2]
(17,17,0,2,0,2,1]
(17,17,0,4,0,1,1]
[17,17,0,1,0,4,1]
[17,17,0,2,0,2,1]
[9,9,0,2,0,4,2]

. [9,9,0,4,0,2,2)].
Note that only 5/5 and 5/8 have the same vectors so we have only to show that

e
.

© P NSk N

P—
o

these two rings are not isomorphic. From 5/5 and the vector we know that the ring has
only one nonzero left annihilator d, and Zad is an ideal of the ring with quotient ring
4/2. While from 5/8 and the vector we know that the only nonzero left annihilator
is a and Zja is an ideal of the ring. But the quotient ring is
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e b c d
elle 0 00
biyb 0 0 O
clfje 0 00
dild 0 0 0

which is an associative ring. So 5/5 and 5/8 are not isomorphic.
Therefore the ten rings are not isomorphic. Because 5/11 and 5/12 are not Z,
aigebras, and the two are distinct, the 12 rings are not isomorphic to each other.

8. Right alternative rings which are not left alternative

In this section, we exhibit a class of right alternative rings which are not left
alternative. These rings have order p* or are of dimension 4 over a field.

THEOREM VI1.13. The following table gives us a right alternative but not left
alternative algebra over any field (note that the table differs from 4/1 only in that

ea =a):

|

[

o o Do

6 o O 0

O O © ofle

O O OoOf o

O KR O Oilo

PROOF. Since (e + ¢)?b = —a and (e + c)((e + c)b) = 0, the algebra is not a
left alternative algebra. We use the matrix representation to show that it is right

alternative.

For any element X = zge + z1a + z2b + z3c in the ring, we have

eX g
aX|

bX| |0
cX 0

0 0 e
0 o a
zo 0| |b
O!Eo C
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Therefore
g 0 0 0
0 0 0 0

M.(X) =
r(X) 0 zz3 =z O

0 —zo 0 =z

Similarly, for element X2 = z2e + zoz2b + zozT3c, we have

—

eX? 2 0 0 0 e
ax?| o 0 0 of |a
bX2| |0 mozs 2 0| b
cX? 0 -—zoz2 0 z? c

and

2 0 0 0]
0 0 0 0
0 zoz3 zz O

0 -—zozg 0 z3

It is easy to check that M, (X)M,(X) = M,.(X?). So the ring is right alternative. [J

M. (X% =

REMARK VI1.14. The opposite rings of rings in the above theorem are left alter-

native but not right alternative.
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