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Abstract 

In the first part of this thesis, we study the relationships between three algebra 

structures: Cayley-Dickson algebras, RA loops and alternative loop algebras. 

Let R be a commutative associative ring with 1 and let A be an R-algebra with 

unity of characteristic different from 2. For any a, /3 and 1 E A, let A( a, /3, 1) be 

the Cayley-Dickson algebra. We construct an RA loop L from each Cayley-Dickson 

algebra A( a, /3, 1), called the induced RA loop. We show that any RA loop is a 

homomorphic image of some induced RA loop. After introducing the category of 

Cayley-Dickson algebras and the category of RA loops, we show that the two cate­

gories are equivalent. 

Using the induced RA loops, we show that any Cayley-Dickson algebra is a homo­

morphic image of an alternative loop algebra. Thus we give a new way of representing 

a Cayley-Dickson algebra. Furthermore, the homomorphism commutes with the norm 

and trace operations of the alternative loop algebra and the Cayley-Dickson algebra. 

The kernel of this homomorphism is completely determined. The prime radical and 

Jacobson radical of some Cayley-Dickson algebras are determined. A result of de 

Barros is generalized. The more general form of the homomorphism is studied. 

Necessary and sufficient conditions for an RA loop to be the Moufang circle loop 

of a quasiregular alternative algebra are given. The algebra structure of a finite 

alternative nilpotent ring with the Moufang circle loop being an RA loop is completely 

determined. 

In the second part of this thesis, the alternative rings of order p4 and p5 are 

completely determined, where pis a prime. This generalizes a result of A. T. Gainov. 

The two smallest alternative rings have order 24 . For each prime number, there 

are fifteen alternative rings of order pn, n ~ 5. The relationships between these 

iii 
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fifteen rings are described. From these alternative algebras, a class of group-graded 

alternative algebras is derived. 
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Introduction 

Let R be a commutative associative ring with unity. An R-algebra is an R-module 

with a multiplication satisfying the right and left distributive laws. An alternative 

R-algebra is an R-algebra A satisfying the following right and left alternative laws: 

(yx)x = yx2 and x(xy) = x2y, 

for all x, y E A. For general alternative algebra theory, we refer the reader to (Sch66, 

ZSSS82]. Any associative algebra is alternative. In addition to this, there are three 

well-known classes of alternative rings which are not associative, the Cayley-Dickson 

algebras, Zorn's vector matrix algebra and alternative loop algebras. 

The first example of an alternative ring which is not associative is the Cayley 

numbers [Cay45]. In (Dic19], Dickson gave a construction of the Cayley numbers 

in a way analogous to the construction of the complex numbers from the reals. A. 

A. Albert [Alb42] called these Cayley-Dickson algebras. The construction of Cayley­

Dickson algebras and the definition of Zorn's vector matrix algebras are described in 

[GJM96], a book which is primarily devoted to the algebra structure of loop algebras, 

our third class of alternative algebras. 

A loop is a pair (L, o) where L is a nonempty set and (a, b) .....r a o b is a closed 

binary operation on L with the properties that the equation a o b = c determines a 

unique element b E L for given a, c E L and a unique element a E L for given b, c E L 

and the binary operation has a two-sided identity element. A Moufang loop is a loop 

which satisfies one of the following equivalent identities: 

((xy)x)z = x(y(xz)), ((xy)z)y = x(y(zy)) . 

1 



2 INTRODUCTION 

From the definition, we see that a group is a Moufang loop. But in this thesis, a 

Moufang loop is a loop which is not associative. For the theory of loops, we recom­

mend [BruSS, Pfl90, CPe90], and for the theory and structure of Moufang loops, 

[Che74, Che78, GKM]. 

For a loop L, one can define the loop algebra RL in exactly the way that the group 

algebra is defined: addition component-wise and multiplication the extension of mul­

tiplication in L via the distributive laws. Alternative loop algebras in characteristic 

different from two were discovered in the 1980s by Goodaire [Goo83]. Since then, 

this research area has grown rapidly and many research papers have been published 

(CG85, CG86, GP86, GP87, CG88, CG90, LM93, GR95, GJM96, GM96]. 

The most important reference is the comprehensive book by Goodaire, Jespers and 

Milies [GJM96], which is the main reference for the present thesis. For the theory 

of group algebras, we refer the reader to [Pas77, Seh78, Seh93, Kar83} and the 

nice paper [Con63]. 

In the theory of alternative loop algebras, the RA loop plays an important role 

and it is one of the main topics of this thesis. So we recall the definition here. Let G 

be any group which is an extension of its center Z by C2 x C2. It is easy to see that 

the commutator subgroup G' of such a group is cyclic of order 2; write G' = {1, s }. 

For 9 E G, define 

.. {9 9 = 
S9 

if9 E Z 

otherwise 

Let u be an indeterminate, 9o an element of Z and L = G U Gu. Define multiplication 

in L by 

g(hu) = (h9)u 

(9u)h = (9h"')u 

(9u)(hu) = goh• g 

where g, h E G. Then L is a Moufang loop and, over any ring R of characteristic 

different from 2, the loop algebra RL is alternative, but not associative. We call this 

loop L an RA loop, meaning ring alternative loop. For convenience, we call the group 

G an RA group due to its role in constructing the RA loop. E. G. Goodaire [Goo83, 

Theorem 4] showed if L is a loop, and the loop algebra RL is an alternative but not 
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associative algebra, then the loop L is an RA loop. So it is of the above form, denoted 

by M(G, *,go). By [Goo83, Theorem 4), we can rewrite the RA loop L = M(G, *, g0 ) 

in the form 

L = (Z(a}(b)){u), 

where a, b and u are three elements of L which do not associate. This form will be 

used in this thesis. 

The smallest RA loops are of order 16 and there are two such loops. One of them 

is the Cayley loop M(Q8 , -1, -1) defined by the basis elements {±1, ±i, ±j, ±ij, 

±k, ±ik, ±jk, ±ij · k} of the Cayley numbers whose products are specified in the 

following table: 

II 1 j ij k ik 

1 1 2 J j k ik jk ij. k 

2 i -1 ij -J ik -k -ij. k jk 

j j -ij -1 'Z jk ij. k -k -ik 

'ZJ ZJ J -z -1 ij. k -jk ik -k 

k k -ik -jk -ij . k -1 z j k 

ik ik k -ij. k jk -z -1 -ij J 

jk jk ij. k k -ik -J ij -1 -z 

ij. k ij. k -jk ik k -ij -J i -1 

For more information about the structure and properties of the RA loops, see [GJM96]. 

The present thesis consists of two parts. The first part is composed of chapters I, 

II, III and IV, the second part chapters V and VI. 

In the first part of the thesis we study the relationships between any two of 

the systems: Cayley-Dickson algebras, RA. loops and alternative loop algebras. As 

mentioned above, a loop algebra of characteristic different from 2 is alternative if and 

only if the loop is an RA loop. So the relationships between Cayley-Dickson algebras 

and RA loops and alternative loop algebras become very interesting topics, which are 

the main concern of the first part of this thesis. 

In chapter I, we study the relationships between Cayley-Dickson algebras and 

RA loops. First we generalize the notion of Cayley-Dickson algebras over a field 

to algebras over a commutative ring of characteristic different from 2. Then we 



4 INTRODUCTION 

construct some RA loops from Cayley-Dickson algebras using the circle operation on 

the algebras. 

This class of RA loops induced by the Cayley-Dickson algebras is very special, 

because we can show that RA loops are their homomorphic images. From this point 

of view, we can think that they cover all the RA loops. 

To deeply investigate the relationships between RA loops and Cayley-Dickson 

algebras, particularly, the relationships between the loop homomorphisms and the 

Cayley-Dickson algebra homomorphisms, we study the category of Cayley-Dickson 

algebras and the category of RA loops, and show that the two categories are equiva­

lent. 

In chapter II, we study the relationships between Cayley-Dickson algebras and 

alternative loop algebras. From chapter I, we know that every Cayley-Dickson al­

gebra induces some RA loop. By using this induced RA loop, we can construct an 

alternative loop algebra over the base algebra of the given Cayley-Dickson algebra. 

Then we get an interesting result: any Cayley-Dickson algebra is a quotient algebra 

of a loop algebra, by constructing a surjective map f from the loop algebra to the 

Cayley-Dickson algebra. Moreover, we show that this map sends the norm and the 

trace of the elements in the alternative loop algebra to those of the Cayley-Dickson 

algebra. From this point of view, alternative loop algebra theory is the representation 

theory of the Cayley-Dickson algebras, as well as the representation theory of RA 

loops. 

To investigate Cayley-Dickson algebras from the well-developed alternative loop 

algebra theory, the structure of ker(f) is an important issue for us to study. In section 

2 of the chapter, we give a description of the structure of the kernel. Then we study 

the structure of some Cayley-Dickson algebras and generalize a result of Luiz G. X. 

de Barros [dB93b] . In section 4, we state the corresponding results for quaternion 

algebras, without giving proofs. 

We will see that the circle operation on the algebra plays an important role for 

us to bridge the three different algebra structures. Recall the definition of the circle 

operation on an algebra A: 

X o y = Xy + X + y, 
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for any two elements x and y in A. The most famous example of using the circle 

operation is the proof of the equivalence of the Boolean algebras (lattices) and Boolean 

rings (rings in which every element is an idempotent) [Jac74, Theorem 8.7]. The circle 

operation is also used in many papers, such as [San74], from which we borrow some 

ideas in constructing the map f used in chapter II. 

In view of the interesting properties of the circle operation, it is worth investigating 

it in a more general way. This is the main topic of our next chapter, chapter III. 

In 1987, E. G. Goodaire [Goo87) showed that the set of all quasi-regular elements 

of an alternative algebra A is a Moufang loop under the circle operation and called 

this loop the Moufang circle loop of A. From chapter I, we know that an RA loop can 

be the Moufang circle loop of an alternative algebra and the Moufang circle loop of 

any Cayley-Dickson algebra contains an RA subloop. So it is interesting to investigate 

the relationships between the alternative algebra, its Moufang circle loop and the loop 

algebra of the circle loop. Note that, generally speaking, this loop algebra is no longer 

alternative. This idea is also a generalization of R. Sandling's idea in [San74], which 

dealt with the circle group and its integral group ring. Then we apply the general 

result to alternative algebras whose Moufang circle loop contains an RA subloop. 

Note that Cayley-Dickson algebras are algebras of this type. 

In chapter IV, we investigate a special Moufang circle loop and its alternative 

algebra: the alternative algebra is quasiregular and its Moufang circle loop is exactly 

an RA. loop. This problem is triggered by the following observation. 

From the structure theorem of RA loops [GJM96, Theorem IV.3.1] we know that 

an RA loop is a kind of loop extension of an RA group, which is a kind of nilpotent 

group of class 2. There is a nice result that all nilpotent groups of class 2 are circle 

groups of some nilpotent rings of nilpotent index 3 [AW73, Kum94]. Groups which 

are circle groups of some nilpotent rings have some nice properties and have been 

much investigated, for example, see [TH83, Roh82, Roh90, Bov96]. 

Since all our RA loops are nilpotent loops of class 2, it is natural to ask whether 

these RA loops are the Moufang circle loops of nilpotent (or quasi-regular) alternative 

rings. Note that all nilpotent rings of nilpotency index 3 are associative rings, so 

the old way of constructing a nilpotent ring from a nilpotent group used in [AW73, 

Kum94] does not apply to the RA loop case. Making the problem more complicated, 
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a result of E. G. Goodaire [Goo] shows that there are no nilpotent alternative rings 

of order less than or equal to 64 that have circle RA loops as their Moufang circle 

loops and the proof heavily depends on the order. Therefore, to determine whether 

there is an RA circle loop or not appears to be quite difficult and this question is still 

open. 

In chapter IV, we study the problem by investigating the conditions for an RA 

loop to be a Moufang circle loop of an alternative Jacobson radical algebra. We find 

necessary and sufficient conditions for an RA loop to be an RA circle loop. Finally 

we describe the structure that finite RA circle loops and their nilpotent alternative 

algebras must have. We still hope that an RA loop with some large order will turn 

out to be an RA circle loop. 

The second part of this thesis is composed of chapter V and chapter VI. The 

main topic of this part is to find all alternative algebras of small order which are 

not associative. This problem is triggered by the problem of finding an RA circle 

loop, which is the main topic of chapter IV. To do this, we find that we must know 

some examples of alternative rings of small order. For other algebra systems, such as 

groups [TW80], Moufang loops [CP71, Che74, Che78, GKM], commutative Mou­

fang loops [KP81], RA loops [JLM95, GJM96], Bolloops [GM], associative rings 

[KP69, McD74] and Lie algebras [Mor58], the results are well known. For alterna­

tive rings, there are few general results. M. I. Badalov (Bad84] described all nilpotent 

alternative algebras of dimension 6 over a field and showed that all the nilpotent al­

ternative algebras of dimension~ 5 are associative. E . G. Goodaire(Goo87, GZa] 

showed that all the alternative nilpotent rings of orders p4 and p5 are associative. In 

this work, we find all alternative rings of order pn, n ~ 5, and all alternative algebras 

of dimension at most 5 over a field. This generalizes the work of A. T. Gainov[Gai63]. 

In chapter V, we do some preparation for the next chapter, but this is also interest­

ing for its own sake. In the first section of this chapter, we give a matrix representation 

of the finite alternative algebras. In this way, we can easily check whether a ring is 

alternative or not. Then we recall the Peirce decomposition of an alternative ring 

and develop an interesting lemma which is used widely in the next chapter to remove 

cases that yield only associative algebras. In the last section, we show that the Peirce 

decomposition can induce some group-graded algebras which are alternative, but the 
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interesting thing is that the base algebras are associative. Many of the alternative 

algebras we find in the next chapter have this property. Note that lots of research has 

been done on group-graded and sem.igroup-graded algebras after the two fundamental 

papers [Dad80J and [CM84J, but rarely has something been done about alternative 

algebras which are graded by a group. 

In chapter VI, we use the results of chapter V to determine alternative algebras 

of small order. None of the alternative algebras we found belongs to the known 

classes of alternative algebras: alternative loop algebras and Cayley-Dickson algebras. 

Combining with M. I. Badalov and E. G. Goodaire's results we determine all the finite 

alternative algebras of order p4 and p5• Moreover, from the multiplication tables of 

these alternative algebras, we can construct all the alternative algebras of dimensions 

4 and 5 over any field. Furthermore, the relationships between all these algebras 

are described. An interesting observation about these relationships is that, for each 

prime p, all the alternative algebras of order p4 and p5 are derived from one smallest 

alternative algebra of order p4 , either by anti-isomorphism, adding a unity, or some 

other kind of algebra extension. 
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CHAPTER I 

Cayley-Dickson algebras and RA loops 

1. Introduction 

In the first section of this chapter, we generalize the notion of the Cayley-Dickson 

algebra from an algebra over a field to an algebra over a commutative ring. After 

constructing RA loops from Cayley-Dickson algebras by using the circle operation, 

we prove that RA loops are homomorphic images of some induced RA loops. Then, 

examples of a Cayley-Dickson algebra whose Moufang circle loop is an RA loop are 

given. In the last section, we introduce two concepts: the category of Cayley-Dickson 

algebras and the category of RA loops by using the induced RA loops, and show that 

the two categories are equivalent[GZb]. 

2. Generalized Cayley-Dickson algebras 

The term "generalized Cayley-Dickson algebra" has been used by many authors, 

but with two different meanings. One is to follow the Cayley-Dickson process to 

generate some alternative algebras by choosing different a, {3 and 'Y (GJM96). The 

other is to follow the Cayley-Dickson process's three steps to go further to get some 

general algebras which are not alternative [Bro67). For more information about 

Cayley numbers and Cayley-Dickson algebras, we refer the reader to [Cur63, Kle63) . 

The following theorem describes a general version of the standard Cayley-Dickson 

process [Sch66)[GJM96, Proposition 3.1]. 

THEOREM Ll. Let A be a ring with 1 and with an involution a t-7 a, for any 

a E A, such that a+ a E Z(A}, the center of A, and aa = aa E Z(A) for all 

a EA. For any a E Z(A), we can define a new ring B = A(a) by defining addition 

component-wise and multiplication 

(a+ bf)(c + df.) = (ac + adb) + (da +be)£. 

9 



10 I. CAYLEY-DICKSON ALGEBRAS AND lU LOOPS 

Here f is an indeterminate. Then B is an alternative ring if and only if A is asso­

ciative. 

If A is associative, then B has an involution defined by 

a+ bf =a- bi. 

For any x E B, x +xE Z(A) and xx = xx E Z(A). 

PROOF. This can be checked in the standard way. We give a brief proof here for 

the sake of completeness. 

It is easy to see that B is a ring. For any two elements x = a + bi and y = c + df., 

we have 

and 

x(xy) =a· ac + aa ·db+ aad · b + acb · b + (da ·a+ be· a+ b · ca + ab · bd)i. 

Then 

[x, x, y] - x 2y- x(xy) 
2 - - - - - -- (a c- a · ac) + (abb · c - acb · b)+ (ad· ba +ad· ba- aa ·db - aad ·b) 

+ (da2 - da · a)f +(ad· bb- ab · bd}f + (ba · e + ba · e- be· a- b · e a)£ 

- ([a, a, c] + a[c, b, b] -a[ a, d, b]) + ([d, a, a] + [b, c, a] - a[b, b, d])f. 

To obtain this, we use repeatedly that a+ a E Z(A) and aa = aa E Z(A) , so that, 

for example 

d · ba + d · ba - a · db - ad · b - d · b( a + a) - a · db - ad · b 

- (a + a) · db - a · db - ad · b 

- a · db - a · db +a· db - ad · b 

- - [a,d, b] 

- - [(a +a) -a, (d +d) - d, b] 

- -[-a, -d,b] 

- -[a,d,bJ. 
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Now suppose that B is an alternative ring. Then so is A and 

0 = [x, x, y] = -a[ a, d, b] + [b, c, a]l 

for all a, b, c, d E A . It follows that B is associative. On the other hand, associativity 

of A clearly implies that [x, x, y] = 0. 

So B is left alternative if and only if A is associative. Similarly, B is right alter­

native if and only if A is associative. The statements hold. As for the involution, it 

is not hard to check. 0 

THEOREM I.2. {The Generalized Cayley-Dickson Algebra) Let A be a commuta­

tive associative ring with 1 and 2 f= 0 in A. Let a, {3 and 1 be in U(A), the unit 

group A. Then the free A-module with basis 1, i, j, ij, k , ij, ik, jk, ij · k is a 

Cayley-Dickson algebra A( a, {3, -y) with multiplication defined by 

II 1 i J ij k ik jk ij. k 

1 1 z j j k ik jk ij. k 

z i a ij aj ik ak -ij. k -ajk 

j J -ij {3 -{3i jk ij. k {3k {3ik 

ij 
. . 

-aj {3i -a{3 ij. k ajk -{3ik -a{3k ZJ 

k k -ik -jk -ij . k 'Y -~i -'Yi -~k 

ik ik -ak -ij. k -ajk ri -ar 1ii arj 

jk jk ij. k -{3k {3ik ri -/ZJ - f3r -f3ri 

ij . k ij . k ajk -{3ik a{3k rii - ali f3ri a{3-y 

Thus A( a, {3, /) is an alternative ring which is not associative. 

PROOF. The map a ~ a, a E A is certainly an involution on A. Apply The­

orem I.1 to get ring A(a). This is a commutative associative ring. Then we can 

construct A( a, {3), which is a non-commutative algebra. We can verify that A( a , {3) 

is associative, too. By Theorem L1, algebra A( a, {3, 'Y) is an alternative algebra. Note 

that (ij)k f= i(jk) because i(jk) = -(ij)k and 2 f= 0 in A. So this algebra is not 

associative. 0 
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REMARK I.3. From the proof of the above theorem, we know that 2 =/: 0 is the 

necessary and sufficient condition for the Cayley-Dickson algebra to be an alternative 

algebra which is not associative. 

3. Cayley-Dickson algebras and their induced RA loops 

In this section, we use the circle operation to construct RA loops from Cayley­

Dickson algebras introduced in the previous section. The following identity, which is 

not hard to check, will be used widely in this thesis. For any x andy in an algebra 

A with unity 1, 

(x - 1) o (y - 1) = xy- 1. 

In particular, (-2) o (y -1) = (-1-1) o (y -1) = -y -1. 

Recall that an element x E A is quasi-regular if there exists an element y in A 

such that x o y =yo x = 0. Let Quasi(A) be the set of all quasi-regular elements of 

the algebra A. If A is an associative algebra with 1, then (Quasi(A),o) ""(U(A),·), 

the unit group of A. If A is alternative, then (Quasi(A), o) is a Moufang loop by 

(Goo87, Theorem 1], called the Moufa.ng circle loop of A. 

We know that the unity of the circle loop is the 0 of the algebra. In this thesis, 

to avoid confusion, we use() instead of 0 when we refer to the unity of the circle loop 

of an algebra. 

Note that if A has 1, then -2 is always in Quasi(A) with -2 o -2 = 8, of order 2. 

We have seen that 2 ¥: 0 is important for us to construct the Cayley-Dickson algebra, 

see Remark 1.3, and we will see that this -2 is important for the RA loops induced 

from Cayley-Dickson algebras. 

THEOREM I.4. Let A be a commutative associative ring with unity 1 and 2 # 0. 

Let a- 1, {3- 1 and-y- 1 be elements in Quasi(A). Let 

A( a, {3, -y) =A+ Ai + Aj + Aij + Ak + Aik + Ajk + Aij · k 

be the Cayley-Dickson algebra in which i 2 = o, j 2 = {3 and k2 = 1· 

1. Let Quasi(A(o,{3,-y)) be the Moufang circle loop of A(o, {3, -y) . Let a= i -1, 

b = j- 1 and u = k -1. Then a, b, u E Quasi(A(o,{3,-y)) . Let L0 be the 
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subgroup of Quasi(A) generated by {0, -2, a- 1, (3- 1, 'Y- 1 }. Then 

G = L0 o (a) o (b) 

is an RA group, Lo = Z(G) and 

L=GUGou 

is an RA loop, in which -2 is the unique nonzero commutator-associator. 

13 

2. In L, l* = I, for any l E L, where l 1-t l* is the involution of the RA loop and 

l~-t l is the involution of the Cayley-Dickson algebra. 

3. 
H = Quasi(A) a (a) o (b) 

is an RA group, and 

P=HUHou 

is an RA loop in which -2 is the unique nonzero commutator-associator. 

4. TheRA loop P contains L, and L is the smallest RA subloop that contains the 

elements a, b and u. The loop L is completely determined by a, (3 and 'Y. 

PROOF. Note that a, (3, 'Y E U(A). By Theorem 1.2, A( a, (3, -y) is a generalized 

Cayley-Dickson algebra and 

A(a,(3,-y) =A+ Ai + Aj + Aij + Ak + Aik + Ajk + Aij · k. 

Because a o a= (i- 1) o (i- 1) = i 2 -1 =a- l, which is in Quasi(A), there exists 

(a -1)-1 E Quasi(A) ~ Quasi(A(a,(3,-y)), such that 

(i- 1) 0 ((i - 1) 0 (~- 1)-1) = 0. 

So a is a quasi-regular element with a-1 = (i- 1) o (a- 1)-1 E G. So is b by the 

same argument. Note that a o a= a - 1 E L 0 , bob = (3 -1 E L 0 , and 

boa = ji- 1 = - ij -1 = {-1 -1) o {i -1) o (j- 1) = ( -2) o a o b, 

and -2 E Lo, a o b #boa, so GfLo ~ C2 x 02. Note that G is an RA group if and 

only if G I z (G) "' c2 X c2 by [ GJM96, Proposition 3.6]. Therefore, to show that G 

is an RA group, it remains only to show that Z(G) = Lo. 
For any z = 10 o aP o bq E Z(G), where p, q = 0, 1 and lo E L0 , we show that 

p = q = 0. In fact, if p = 1, z o b = b o z implies lo o a o bq o b = b o lo o a o bq = 
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(-2) o lo o a o b o bq, and then -2 = 0, a contradiction. Hence p = 0. Similarly, q 

must be 0. So z E Lo. Since L0 £;; A, whose elements commute with any elements of 

A(a,,B,-y), Lo £;; Z(G) . Thus Z(G) = L 0 • 

Note that -2 is the unique commutator-associator, so the involution of the RA 

group G is 

* {g g -
( -2) o g otherwise 

ifgEZ(G) 

for any g E G. To show that L = G U Go u is an RA loop, we will use its definition. 

Note that for any g = lo o a o b E G, where lo E £ 0 , go u = ((l0 + 1) - 1) o ((i-

1) o (j- 1)) o (k- 1) = (lo + 1)ij · k- 1. Since -1 is quasi-regular if and only if 

1 + ( -1) = 0 is a unit of the algebra, which is not true, - 1 rf. Lo. Therefore, for any 

lo E Lo, lo + 1 # 0. Thus go u = (l0 + 1)ij · k -1 rf. G because each element in G is 

of the form 

lo o ami o bm2 = (lo + 1)z1nt jm2 - 1, 

where m1, m2 = 0, 1. Therefore, G n Go u = 0. 
Now we claim that for any g, hE G, the three identities 

go (h o u) = (hog) o u, 

(go u) o h = (go h*) o u, 

(g o u) o ( h o u) = g0 o h * o g 

hold, where go = 'Y - 1. By using the multiplication table of the Cayley-Dickson 

algebra and the formula (x- 1) o (y- 1) = xy- 1, we can check these identities for 

any g, hE G. This is a long process and we just check two cases here. 

Suppose that g = l0 o a, h = l1 o a o b, where 10 , lt E Lo. Let us check that 

go(hou) = (hog) ou. Note that 

go (h o u) - lo o a o ((11 o a o b) o u) 

- Uo o l t) o (a o ( (a o b) o u)) 

- (too h) o (a o (ij · k - 1) 

- (lo o ZI) o (i(ij · k)- 1) 
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(lo o li) o ( -a:jk- 1) 

(hog)ou - (([roaob)o(looa))ou 

- (holo)o(((aob)oa)ou) 

- (l1 o lo) o (((ij · i)k- 1)) 

(l1 o 10 ) o ( -ajk- 1). 

So go(hou) = (hog)ou. Also, ifg = loob and h = l1oaob, (gou)o(hou) = g0 oh*og. 

Note that g* = -2 o g if g ~ Z(G), so 

(go u) o (h o u) - (l0 o b o u) o (11 o (a o b) o u) 

- (lo o lr) o ((b o u) o ((a o b) o u)) 

- {l0 o lt) o ((jk)((ij)k) - 1) 

- (l0 o lt) o ( -{3-yi- 1) 

and, since h* = -2 o h, 

g0 o h* o g - ('Y -1) o ((l1 o a o b o ( -2)) o {l0 o b)) 

- ('Y- 1) o l 1 o ( -2) o lo o ((ij)j - 1) 

= ( --y - 1) o lt o lo o ({3i - 1) 

- (l0 o lr) o ( -/3-yi- 1), 

so the identity holds. 

Next let us show that for any l in L, l* = I. This follows since 

a= i- 1 = -i -1 = ( -2) o (i - 1) = (i- 1)* =a* 

b = j - 1 = -j - 1 = ( -2) 0 (j - 1) = (j - 1)* = b" 

u = k -1 = - k -1 = ( -2) o (k- 1) = (k - 1)* = u* 
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and lo = lo = l0 for any l0 E Lo = Z(G). 

Finally, since Lis a subloop of P, only the centers are different, it is easy to check 

that P is an RA loop. Note that any RA subloop of P which contains a , b and u 

must contain Lo because 

a o a =a - 1, bob= {3 - 1, and u o u = 'Y - 1 

and -2 = a o b o a-1 o b-1. Therefore, L is the smallest RA subloop of P which 

contains a, band u. 0 

Gu 

RA 

G H 

FIGURE I.l. Circle operation connects Cayley-Dickson algebras and 

RA loops 
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We give the following definition: 

DEFINITION I.5. The RA loop L in the above theorem is called the R A loop in­

duced by the Cayley-Dickson algebra A( a, ,8, 1) . The RA loop P is called the major 

RA loop induced by A(a,,B,/) . 

REMARK 1.6. The Cayley-Dickson process can be recursively used n times to get 

the so called generalized Cayley-Dickson algebras which are not alternative if n > 3, 

as shown in [Bro67] (ES90]. As in [dBJ96, Section 3], we can define generalized RA 

loops. Constructing RA loops as in Theorem !.4, we can get generalized RA loops 

from generalized Cayley-Dickson algebras. 

4. Induced RA loops and other RA loops 

The following lemma will be needed in Theorem !.8 and in Section 6. 

LEMMA !.7. Let P = {Z(P)(a}(b})(u} and L = (Z(L)(c)(d))(v) be two RA loops. 

Let f be a group homomorphism from Z(P) to Z(L) such that 

f(a2) = c2 , f(b2) = d2
, f(u2

) = v2
, f((a, b)) = (c, d), 

where (a, b) and ( c, d) are the unique nonidentity commutators of the loops P and L , 

respectively. Then f can be extended to a loop homomorphism from P to L by setting 

f( zamtbm2. um3) = f(z)cm t~2 . vm3
1 

for any z E Z(P). Moreover, iff: Z(P) M Z(L) is an isomorphism, so is its 

extension. 

PROOF. Because any element in P can be uniquely expressed in the form 

for some z E Z(P) , and the same property holds for L , map f is well-defined. Note 

that for any elements x = z1am1 bm2 andy = z2an1 bn2 , where mi, n i = 0, 1, i = 1, 2, 

we have 

Thus 
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- f(x)f(y) . 

Therefore f is a group homomorphism from the RA group Z(P){a}{b) to the RA group 

Z(L)(c}{d). Suppose 9 E Z(P){a)(b}. If 9 E Z(P), then f(g*) = f(g) = f(g)* since 

f(g) is in the center of L; if g rf. Z(P), then f(g*) = f((a, b)g) = (c, d)f(g) = f(g)* 

since f(g) is not in the center of L. Therefore j(9*} = f(g)* for any g E Z(P)(a){b). 

We extend the map f to a map from P to L in the following way. For any 9u E P , 

let !(9v.) = f(g)v, where 9 E Z(P)(a) (b). Then it is true that f is a map from P to 

L because 

P = Z(P)(a){b} U Z(P)(a}(b)v., and Z(P)(a}(b} n Z(P)(a)(b}u = 0. 

For any 9, h in the RA group of P we have 

f(g(hv.)) - f((hg)u) = f(h9)f(u) = (f(h)f(9))f(u) 

- (f(h)f(g))v = f(g)(f(h)v) = !(9)/(hu), 

!((9u)h) = f(gh*)v. = (f(g)f(h*))f(u) = (f(g)f(h)*)v 

- (f(g)v)f(h) = f(gu)f(h), 

f( (gu)(hu)) - f(u2h*g) = f(u2)f(h*)j(g) = v2 f(h)* f(g) 

= (f(g)v)(f(h)v) = f(gu)f(hu). 

Thus f is a loop homomorphism from P to L. Note that iff is an isomorphism from 

Z(P) to Z(L) then so is the extension. 0 

THEOREM I.8. Any RA loop is a homomorphic image of the major RA loop P 

induced by some Cayley-Dickson algebra A( a, ,8, !) -

PROOF. Let W be any given RA loop. By the structure theorem of RA loops, we 

can a.ssume that W = (Z(W)(a){b})(u). Since Z(W) is an abelian group, we can find 

a ring V such that the multiplication is trivial and (V, +) ::::: (Z(W), ·). Then the 

circle group (Quasi(V), o) of V, which is identical to (V, +),is isomorphic to Z(W). 

Assume that under this isomorphism fo, fo(a) = a2 , fo(f3) = b2 , and fo(r) = u2 , 

where a, {3 and 1 E V. We can make these assumptions because a2 , b2 and u2 are in 

Z(W). 



4. lNDUCED RA LOOPS AND OTHER RA LOOPS 19 

Let A = Z EB V, where Z is the integer ring. Define addition and multiplication 

on A by 

{m, v) + {mt, vi) = (m + m1, v + vr) 

(m, v)(m1, vr) = (mm1, mv1 + mrv). 

Note that A is an associative commutative ring with 1. We claim that 

(Quasi(A),o) = {(t,v) It E {0, -2},v E V = Quasi(V)}. 

For any (m, v) E Quasi(A), there is a (mt, vi) such that (m, v) o (mt, Vt) = (0, 0). 

Hence 

(mm1 +m+mt,mtV +mv1 +v +vi)= (0,0). 

This implies that m = m1 = 0 or m = m1 = -2. Therefore, 

(m,v) E {(t,v) It E {0, -2},v E V = Quasi(V)}. 

On the other hand, for any v E V, (0, v) o (0, -v) = (0, 0) and ( -2, v) o ( -2, -v) = 

(4- 2-2, -2v + 2v + v- v) = (0, 0), so the two sets are equal. 

Note that ( -2, v) = ( -2, 0) o (0, -v), and ( -2, 0) is of order 2 in the group. Thus 

(Quasi( A), o) = {(0, 0), ( -2, 0)} x (0, Quasi(V) ), 

is the direct product of two subgroups. Note that (1, a)(1, -a) = (1, 0), the identity 

of A, so (1, a) E U(A). Similarly, (1, {3) and {1, -y) are in U(A) and 2 -# 0. Thus 

(1, a) - {1, 0), {1, {3) - {1, 0) and {1, -y)- (1, 0) are in Quasi( A), and the conditions of 

Theorem 1.4 are satisfied. By Theorem 1.4, 

P- (Quasi(A)o(i-1)o(j-1))o(k-1) 

- ({(0,0), (-2,0)} x (O,Quasi(V)) o (i -1) o (j -1)) o (k -1) 

is an RA loop with (i-1}o(i - 1) = {0, a), (j -1)o(j -1) = (0, {3) and (k-l)o(k-1) = 

(0,-y). 

Define ft from Quasi(A) to Z(W) by 

ft(O, v) = fo(v), ft (( -2, 0)) = s, 

where sis the unique nonidentity commutator-associator of W. Thus 

!I(( -2, o)m 0 {0, v)) = sm fo(v), 
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where m = 0, 1. For any elements ( -2, O)m o (0, v), ( -2, O)n o (0, w) E Quasi( A), 

where m, n = 0, 1, we have 

ft((-2,0)mo(O,v)o(-2,0)na(O,w)) - it((-2,0)m+no(O,vow)) 

- sm+n fo(v ow) 

- sm+n fo(v)fo(w) 

- smfo(v)sn fo(w) 

- it((-2,0)m a (O,v))it((-2,0)n o (O,w)). 

Therefore, it is a group homomorphism, with fl((-2,0)) = s, and 

it((i-1)o(i-1)) = it((O,a)) = fo(a) = a 2, ft((j-1)o(j-1)) = ft((0,{3)) = fo(f3) = b2
, 

it((k -1) o (k -1)) = it((O,'Y)) = u 2
. 

By Lemma 1.7, it can be extended to a loop homomorphism f from P toW. Because 

the map ft is surjective, it is easy to see that the map f is also surjective. So W is a 

homomorphic image of P. 0 

Luiz G. X. de Barros [dB93a] classified RA loops into two types: type I and II. 

Let us recall the definition [GJM96, Definition 2.1]. An RA loop L is of type I if 

the unique non-identity commutator-associator s of L is a square in Z(L); that is, if 

there exists t E Z(L) such that t 2 = s. If there is no such element, the loop is said to 

be of type II. 

In the above theorem, the nonidentity comm.utator-associator of the RA loop P is 

( - 2, 0), and the center of the loop Pis (Quasi(A), o) = (0, Quasi(V))U( - 2, Quasi(V)) . 

So it is easy to see that P is of type I I. From the above theorem, we have the following 

COROLLARY 1.9. Any RA loop is the homomorphic image of an RA loop of type 

II. 

5. Moufang circle loops and RA loops 

From [Goo87, Theorem 1], we know that the set of all quasi-regular elements of 

an alternative ring forms a Moufang loop under the circle operation called a Moufang 
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circle loop. In section 3 we have shown that the Moufang circle loop of a Cayley­

Dickson algebra always contains an RA circle loop as a subloop. It is natural to ask 

when an RA loop happens to be the Moufang circle loop of an alternative ring. 

The smallest RA loops are of order 16, the Cayley loop .M"16(Qs) and M(Q8 , 2}, 

or M(Qs, *• tt) and M(D4, *• 1) [GJM96, Table 4, p.145]. In this section, we show 

that these two loops are Moufang circle loops of alternative algebras. 

PROPOSITION I.lO. Let l be the integers. Let a = ±1, {3 = ±1, 1 = ±1 and 

let A be the Cayley-Dickson algebra Z(a, {3, 1). Then the major RA loops, which 

are two RA loops of order 16, induced from the these Cayley-Dickson algebras, are 

Moufang circle loops. In particular, the major loop induced by Z{-1, -1, -1} is the 

Cayley loop Ml6(Qs) and the major loop induced by Z(1, 1, 1) is M(Qs, 2). 

PROOF. Let x be an invertible element of the Cayley-Dickson algebra Z(a, {3, 1). 

Then there exists y E Z(a, {3, 1) such that xy = 1. Let n be the norm on Z(a, {3, 1). 

Since 1 = n(xy) = n(x)n(y), n(x) = ±1. Since xis of the form 

X= ±1, ± i, ± j, ± ij, ± k, ± ik, ± jk, ± ij · k. 

Since x is invertible if and only if x- 1 is quasi-regular, the circle Moufang loop of 

Z(a, {3, 1) is 

{8, -2, ± i- 1, ± j- 1, ± ij- 1, ± k- 1, ± ik -1, ± jk- 1, ± ij. k- 1, }, 

which is the major RA loop 

P={8, -2}o((i-1)o(j-1))o(k - 1) 

induced from the Cayley-Dickson algebra Z(a, {3, 'Y)· 

Let a = -1, {3 = -1 and 1 = - 1. Then ( i - 1) o ( i - 1) = i 2 - 1 = a - 1 = -2 

and (j -1} o (j -1} = j 2 -1 = {3 -1 = - 2. Similarly, (k -1) o (k -1) = k2 -1 = -2. 

In this case Pis the Cayley loop MIG(Qs) by [GJM96, table 4, p.145] because -2 is 

the commutator-associator. 

Let a = 1, {3 = 1 and 1 = 1. Then ( i - 1) o ( i - 1) = i 2 - 1 = a - 1 = 8, 

(j- 1) o (j- 1) = 8 and (k- 1) o (k- 1) = e. In this case P is M(D4 , *• 1) by 
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[GJM96, Table 4, p.145] because (} is the unity of the circle loop P . Note that 

M(D4, *• 1) is M(Qs , 2). 

Since there are only two nonisomorphic RA loops of order 16 [JLM95] [GJM96, 

Table 4, p.l45], the other RA loops are isomorphic to one of the above two loops. 0 

6. The categories of RA loops and Cayley-Dickson algebras 

In this section, we define the categories of RA loops and Cayley-Dickson algebras 

and show that they are equivalent. For basic concepts of category theory, we refer 

the reader to [Jac80]. 

First we define some notation. In this section, we always assume that R is a fixed 

commutative associative ring with 1, R-algebras have unities and 2 f= 0. For a given 

Cayley-Dickson algebra A( a, ,8, -y), we let TA(o,.B;r) be the submonoid generated by 

{i,j,k} in the multiplication monoid of this Cayley-Dickson algebra. Let AlgA(o,{j,...,) 

denote the R-subalgebra of A(a,,B,-y) generated by {i, j, k}. 

Now we define the category of Cayley-Dickson algebras f. The objects in r are 

all the Cayley-Dickson algebras A( a, ,8, 'Y), where A is a commutative associative R­

algebra. 

For any two objects A(a,,B,-y) and A 1(at,.Bt,'Yd in r we define 

to be the set of all R-algebra homomorphisms f from the R-subalgebra AlgA(a,{j,...,) to 

the R-subalgebra AlgA1( 01 ,p1,.n) with i, j, and k E (f(T.4(o.,J3,-,)), -1} , the submonoid 

of (At{al,.Bt,'Yd, ·)generated by f(TA(o ,,B,...,)) and -1. 

For each ordered triple of objects (A1 (a1, .81, -yr), A2 (a2 , /32, 'Y2), A3 (a3, ,83, 'Y3)), a 

map from 

to homr((AI(ai,.8I,'Yd,A3{a3,,83,-y3)) can be defined to be the composition of the 

morphisms. In fact, let f E homr(AI(al,,BI,'YI),A2(a2,/h,-y2)) and 

g E hom(A2(a2,/h'Y2),A3{a3,,83,'Y3)). Sincei, j, and k E(J(TA(o,,B,...,)), -1}, the 

submonoid generated by i, j, and k is in (f(TA(o,{3,...,)), -1), i.e., 

(TA2(o2,.82,'"f2)• -1} ~ f((TAL(ctL,f3l.'"fl)• -1)). 
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Therefore, 

g((TA2(a2,/h-r2)' -1)) ~ (gf(TA(r::,{J,-y)), -1). 

But i, j, and k E g(TA2 (ct2 ,,B2 ,-y2 )), so i, j, and k E gf((TA(ct,{J,-y), -1)). Therefore~ the 

composition of the morphisms satisfies the restriction and 

Naturally, the morphisms are disjoint for different pairs of objects. Since all the 

morphisms in hom are R-algebra homomorphisms, the associative law holds for the 

composition of the morphisms. For each object A(a,/1,1), the identity map is the 

unity of hom( A( a, ,B, 1),A(a, ,B, 1)). By definition, r is a category. 

Now we define the category of RA loops 8. The objects in 8 are all RA loops 

L induced by a Cayley-Dickson algebra, as described in Theorem L4. So any object 

in 8 can be expressed as L = (Z(L)(aL)(bL})(uL) with s = -2, and a = i- 1, 

b = j- 1 and u = k- 1, where Z(L) is the center of the loop and s is the unique 

com.mutator-associator. We will use this expression to refer to this object. 

For each pair of objects in e, Land P, we define home(L, P) to be the set of all 

loop homomorphisms f from L onto P such that (f(a), f(b), f(u)) # 0. 

Now we show that under this definition, 8 is a category. For each ordered triple 

of objects (L, P, Q), a map from 

hom(L, P) x hom(P, Q) to ham(L, Q) 

can be defined to be the composition of the morphisms. In fact, let f E hom(L, P) 

and g E hom(P, Q), then gf is an onto map from L to Q since f and g are onto maps. 

By definition, (f(aL), f(bL),J(uL)) :f: 0 E P, so (J(aL),J(bL), f(uL)) = (ap, bp, up) 

because the associator is unique in the RA loop P. Since (g(ap),g(bp),g(up)) # 0 E 

Q, 

(gf(aL), gf(bL),gf(uL)) = g((f(aL), f(bL), f(uL))) = g((ap, bp, up)) ::/= 0. 

Thus gf E hom(L, Q). Naturally, the morphisms are disjoint for different pair of 

objects. Since all the morphisms in hom are loop homomorphisms, the associative 

law holds for the composition of the maps. For each object L, the identity map is the 

unity of the hom(L, L). By definition, 8 is a category. 

To show that the two categories are equivalent, we need the following lemmas. 
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LEMMA L11. For each object A(a,,B,-y) in r, let F(A(a,,B,"Y)) betheRA loop 

induced by A(a,.B,"Y)· For any pair of objects A(a,,B,-y) and AI(al,,BI,"Yd and any 

homomorphism f E hom(A(a,.B,"Y),AI(al,,Bl,"Yd), define F(f) to be the loop homo­

morphism induced by f. Then F is a functor from r to e. 

PROOF. For each object A( a, ,8, -y) in r, following Theorem !.4, 

L = (Lo o (i- 1) o (j - 1)) o (u - 1) 

is an RA loop with 

Lo = (s = -2,(i-1)o(i-1) =a-1,{j-1)o{j-1) =,8-1,{k-1)o(k-1) =-y-1). 

By definition, L = F(A( a, ,B, "Y)) E e. 
For any pair of objects A(a,,B,-y) and A1(a1,,81,-yt), let the corresponding RA 

loops beL and L1. For any f E hom(A(a,,B,-y),Adai,/h,-yt)), by definition, f is 

an R-algebra homomorphism from the R-subalgebra AlgA(o.,,6,-y) to the R-subalgebra 

AlgA1 (o.1 ,p1 ,-yl)· And i, j, k E f(TA(o.,/3,-y)). We want to show that F(f) E hom(L, LI). 

Since f is an algebra homomorphism, it induces a loop homomorphism from L to 

L1. This map is F(f). 

Since i, j and k are in (!(TA(o.,,6 ,-r)), -1), we can assume that 

i = ( -1)no (/{i)n1 J(j)n2) . J(k)n3. 

Following the formula xy -1 = (x- 1) o (y- 1), we have 

i- 1 = ( -2)no o (/(i) - 1)n1 o (/{j)- 1)n2 ) o (f(k)- 1)n3 

= ( -2)no o (f(i- 1)nl o J(j -l)n2) o f(k- l)n3. 

Thus i -1 is in F(f)(L). So are j -1 and k-1 by the same argument. Therefore, 

F(f) is an onto map. Let(} be the unity of the loop. If the loop associator of f(i -1), 

f(j- 1) and f(k- 1) were 0, by [GJM96, Theorem 5.4], the three elements would 

generate a group. So the associator of i -1, j -1 and k -1 would be 0, a contradiction. 

Thus F(f) is in hom(L, LI) . 

For 1A(o.,,6,-r)• we know F(1A(o.,/3,-y)) = 1. Let f E hom(A{a,,B,-y),Al(al,.Bl,'YI)) 

and let g E hom(Al(al,.BI,"Yd,A2(a2,.82,-y2)). Then F(gf) = F(g)F(f) because 

F(f) and F(g) are the restrictions off and g on the loops. Thus F is a functor from 

Cayley-Dickson algebra category r to the loop category e. 
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D 

LEMMA !.12. The functor F defined above from r to 6 is faithful. 

PROOF. Recall that a functor from r to 6 is faithful if for any pair of objects 

A( a, ,8,1) and At(a~, .B111d in r the map f ---+ F(J) of ham(A(a,,B, 1), Ad at, .Bt, 1d) 

to hom(F(A(a, ,8, 1)), F(At(a1, /h,{t))) is injective. 

Since F(J) is defined by the restriction of f on the induced loop £ , which is 

generated by {i- 1, j- 1, k- 1}, we can show that the map is injective. In fact , 

if 9 E hom(A(a,,8,{),At(a1,,8t,/d) and F(9) = F(J) , then 9(x) = F(9)(x) = 

F(J)(x) = f(x), for any x = i - 1, j - 1, k - 1. Since f and 9 are R-algebra 

homomorphisms, f(i) = 9(i), f(j) = g(j) and f(k) = g(k) and the two morphisms 

are identical. 

D 

LEMMA 1.13. The junctor defined above from r to 6 is full. 

PROOF. Recall that a functor is full from r to 6 iffor any pair of objects A( a , ,8, 1) 

and Al(at,.Bt,ld in r the map J ---+ F(J) of hom(A(a, ,B,,),At(ar,,Bt./d) to 

hom(F(A(a, ,8, 1)), F(At (at, .Bt,/d)) is surjective. 

Suppose that F(A(a,,8,1)) = L and F(A1 (a1 , ,8t,ld) = Lt. For any g E 

hom(L, Lt), by definition, the associator (9(i- 1), 9(j- 1), 9(k - 1)) =f; 8. Assume 

that 

g(i -1) = (-2)mo o ((i -l)m1 o (j - l}m2 )) o (k- l)m3 

9(j -1) = (-2)no o ((i -l)n1 o (j - l)n2 )) o (k -l)na 

9(k -1) = (-2)P0 o ((k -l)P1 o (j -l)P2 )) o (k -l)P3. 

We want to define a map from Al9A(a,p,..,.)• the R-subalgebra of A(a,,8,1) generated 

by {i,j,k} to AlgA1 (a1 ,p1m)• the R-subalgebra of At(at,.BI , /d generated by {i, j, 

k} such that i, j, k E (J(TA(a,p,7 )), - 1). 

Define 

J(i) = (- l)mo(im1jm2)km3 

J(j) = (-Ito (inl jn2)kn3 

f(k) = ( -l)PO (iPl jP2)kP3. 
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Then I can be extended to an R-algebra homomorphism from the R-subalgebra 

AlgA(o,,B;y) to the R-subalgebra AlgA1(o1 ,p1 ,-yl)· Now we show that i, j, k E (f(TA(et,.B,-r)), 

-1). 

Since g is an onto map, i -1, j -1 and k -1 are in the image of g. Furthermore, 

i - 1 can be expressed as some circle multiplication of -2, g( i - 1), g(j - 1) and 

g(k- 1). Suppose that 

i- 1 - ( -2)q0 o (g(i- 1)q1 o g(j- 1)q2 ) o g(k- 1)q3 

_ (-2)qo 0 [((im1jm2)km3 -1)q1 0 ((intr2)kn3 -1)Q2] 0 ((iPljP2)kPJ -1)q3 

- ( -2)P o (((/(i) -1)q1 o ((/(j)- 1)q2 J o ((/(k)- 1)q3 

- ( -1)P((/(i))Ql f(j)Q2)f(k)q3- 1. 

Thus i E (f(TA(et,.B,-r)), -1). So are j and k by the same argument. Therefore, 

IE hom( A( a, /3, -y), A1 (a1, fJ1, -yt)). 

The last step of this proof is to show that F(f) =g. This is not hard because the 

definition of I tells us that 

J(i -1) = (-2)mo o ((i -1)m1 o (j -1)m2)) o (k -1)m3 = g(i -1), 

l(j- 1) = ( -2t0 o ((i- 1)n1 o (j- l)n2 )) o (k- l)n3 = g(j - 1) , 

l(k -1) = (-2)q0 o ((i -1)P1 o (j -1)P2)) o (k -1)P3 = g(k -1). 

Since F(f) is defined by the restriction of the algebra homomorphism, F{f) =g. 

THEOREM I.14. r and 9 are equivalent categories. 

0 

PROOF. By the above lemmas, we have shown that the functor F is faithful and 

full. By the definition of 8, for every object P in e, there is an object A( a, /3, -y) in 

f :such that F(A(a,/3,-y)) is equal toP. By [Jac80, Proposition 1.3], rand e are 

equivalent categories. 

0 

We have seen that an RA loop is a homomorphic image of a loop induced by a 

Cayley-Dickson algebra. Now we show that certain RA loops contains subloops which 

are RA loops induced by Cayley-Dickson algebras. 
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PROPOSITION I.15 . For any RA loop P = (Z(P)(a}(b})(u) with s r/. (a2 , b2 , 

u 2), there is an object A(a,,B,/) in r such that the induced RA loop of A(a,.B,!) is 

isomorphic to the subloop of P generated by a, b and u . 

PROOF. Assume that P = (Z(P)(a)(b))(u) is an RA loop with s ~ (a2 , b2, u 2), 

where Z(P) is the center of P. We know that a 2, b2 , u 2 are in Z(P). Set 

Po = {1, s} x (a2 , b2 , u2) 

in P. Since s is of order 2 and it is not in the subgroup (a2 , b2 , u2 } by assumption, Po 

is the direct product of {1, s} and (a2 ,b2 ,u2 ) . 

Consider the Cayley-Dickson algebra RZ(P)(a2, b2, u2 ), where RZ(P) is the com­

mutative group algebra of Z(P) over R. By Theorem !.4, the induced RA loop L 

has the properties that (i - 1) o (i - 1) = a2 - 1, (j - 1) o (j - 1) = b2 - 1 and 

(k- 1) o (k- 1) = u2 - 1. Set 

Lo = {B, -2} x (a2 - 1, b2 - 1, u2 - 1) 

Since -2 is of order 2 and it is not in (Z(P) -1, o ), Lo is a direct product of the two 

subgroups. 

Note that the subgroup of Z(P) generated by {a2 , b2 , u 2 } is isomorphic through 

map fo to the circle subgroup of L generated by {a2 - 1, b2 - 1, u2 - 1}, where 

fo(x) = x- 1, for any x = a2 , b2, u2 and their products. Extend this map fo to a 

map f from the subloop of P generated by a, b and u to L by setting f(s) = -2. 

Then it is a group isomorphism. 

Note that under this isomorphism, f(s) = -2, f(a2 ) = (i- 1) o (i - 1), f(b2 ) = 

(j - 1) o (j - 1), and f(u2 ) = (k - 1) o (k - 1). Thus this map induces a loop 

homomorphism from the subloop of P generated by a, band u to L by Lemma !.7, 

sending s, a, b, u, a 2 , b2 and u2 to -2, i - 1, j - 1, k- 1, a 2 - 1, b2 - 1 and u2 - 1, 

respectively. It is easy to see that this f is a loop isomorphism. 0 
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CHAPTER II 

Cayley-Dickson algebras and alternative loop algebras 

In the previous chapter, we have shown that any Cayley-Dickson algebra can induce 

an RA loop. Certainly, this induced RA loop must be tightly related to this Cayley­

Dickson algebra. In this chapter we will show an interesting relationship between 

them: any Cayley-Dickson algebra is a quotient algebra of the alternative loop algebra 

of the induced RA loop. Then we determine the kernel of the map and the properties 

preserved. After this a known result is generalized [Zbo ]. 

1. Induced alternative loop algebras 

LEMMA ILL Every element in the Cayley-Dickson algebra A( a, /3, -y) can be uniquely 

expressed in the form 

where a= i- 1, b = j- 1, v. = k- 1 and ri E A, i = 0, 1, . .. , 7. 

PROOF. We show uniqueness first . Assume that 

Then 

ro + r1 ( i - 1) + r2 (j - 1) + r3 ( i - 1) o (j - 1) + r 4 ( k - 1) + rs ( i - 1) o ( k - 1) 

+r6(j- l) o (k -1) + r7((i - 1) o (j- l)) o (k- 1) = 0. 

Recall the formula ( x - l) o (y - 1) = xy - l. Thus 

7 

ro - L ri + r1i + r2j + r3ij + r4k + rsik + r5jk + r7ij · k = 0. 
i=l 

Therefore, ri = 0, i = 1, 2, . . . , 7, and then ro = 0. 

29 
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Since i =a+ 1, j = b + 1, k = u + 1, ij =a o b + 1, ik =a o u + 1, jk = b au+ 1, 

ij · k =(a o b) o u + 1, any element 

in A(a,,B,-y) can be expressed in the form 

This completes the proof. 0 

Let us recall the definitions of the involution of an alternative loop algebra and 

its norm and trace. Let AL be the loop algebra of RA loop L over algebra A. Let 

l .....; l* be the involution of the RA loop L. Then the involution on L extends linearly 

to an algebra involution of the loop algebra AL which we also denote *= 

(L rtl)* = L rzl*. 
lEL lEL 

The norm n(x) and trace t(x) of x E AL are defined by n(x) = xx* and t(x) = x+x"', 

respectively. For more information, we refer the reader to the book by Goodaire, 

Jespers and Polcino Milies [GJM96, pp. 100-105]. 

THEOREM II.2. Suppose A is a commutative associative ring with unity 1 and 

2 =I= 0. Let a -1, /3- 1 and 'Y- 1 be elements in Quasi(A). Let AL be the alternative 

loop algebra of the RA loop L over A, where L is either the RA loop or the major 

RA loop induced by the Cayley-Dickson algebra A( a, /3, "f). 

1. AL = ABEBw(AL), direct sum as A-modules, where w(AL) is the augmentation 

ideal of AL and 8 is the unity of the loop L. Let f be the map from AL to 

A( a, ,8, 'Y) defined as follows. For any x = r(} + l:teL rtl E AL, where r E A 

and I':teL rzl E w(AL), 

f(rB+ l:rtl) =r+ l:rt·l. 
lEL teL 

The operator "· " in the expression LteL rt · l denotes multiplication in the alge­

bra A( a, /3, 'Y). Then f is an A-algebra homomorphism from AL onto A( a, /3, 'Y), 

and 

AL/ ker(J) ~A( a, ,8, "Y) 
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as A-algebras. Thus every generalized Cayley-Dickson algebra is a quotient 

algebra of an RA loop algebra. 

2. The kernel off is 

L rcow ·l =- L T[ow, 
lELo lELo 

Vrcow E A, Vl E Lo, Vw =(),a, b, a o b, u, a o u, b o u, (a o b) o u}, 

where Lo is the center of the loop L. 

3. The map f commutes with the involutions of the alternative loop algebra and 

Cayley-Dickson algebra. That is, for any x E AL, 

f(x*) = f(x). 

4. For the norm n and trace tr of the alternative loop algebra AL and the Cayley­

Dickson algebra A(a,.B,1), we have fn = nf and ftr = trf, that is, for any 

X E AL, 

f(n(x)) = n(f(x)), 

f(tr(x)) = tr(f(x) ). 

PROOF. We first show that f is an A-algebra homomorphism from the loop alge­

bra ALto the Cayley-Dickson algebra A(a,.B,1). 

For any element x = r8 + LLEL rcl E AL, where rEA and LteL rtl E w(AL) , we 

have 

because 

f(x) = r+ Lrl·l E A(a,.B,'Y) 
lEL 

A(a,.B,1) =A+ Aa + Ab + Aa o b +Au +Aa ou+ Abo u + A(a ob) o u 

contains the loop L, which is constructed from A( a, .B, -y). Since AL is the direct sum 

of A and w(AL), the map f is well defined. 

For any two elements x = r8 + LleL rtl, y = r'O + LceL r{l E AL, it is easy to 

check that 

f(x +y) = r +r' + L(rl +rl) ·l = f(x) + f(y) 
lEL 

and f(tx) = tf(x) for any tEA. Thus f is an A-module homomorphism. 
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Let v E A(a,,B,")'). By Lemma II.l, we can write 

Let 
7 

x =(To- L Ti)O + T1a + T2b + T3a o b + T4U + Tsa o u + r6b o u + r7(a o b) o u. 
i=l 

Then x can be written as 

x = To8+{rl(a-8)+r2(b-O)+TJ(aob-8)+T4(u-8)+Ts(aou-8) 

+r6(b o u- 8) + r7((a o b) o u- 0)} E A.O + w(AL). 

Thus 

since 8 is 0 in the algebra. Therefore, f is onto. 

The interesting part of the proof is to show that f is a ring homomorphism. For 

any two elements x and y in AL, let x = rO + L:leL Ttl and y = tB + LheL thh, where 

LteL Ttl and L:heL thh are in w(AL). Then 

xy = rtO + { t L r1l + T L thh + L rzthl o h }, 
lEL hEL lEL,hEL 

and the second part in the expression of xy is in w(AL). So 

f(xy) = rt+{tLrl·l+r:l::::th·h+ L nth·loh} 
lEL hEL lEL,hEL 

- Tt+tLrl·l+rLth·h + L rlth·(l·h+l+h) 
lEL hEL lEL,hEL 

rt + t L r1 · l + r L th · h + L rlth · l · h 
lEL hEL lEL,hEL 

+ L rlth · l + L r1th · h 
lEL,hEL lEL,hEL 

Tt + t L T[ · l + r L th · h + L rlth · l · h 
lEL hEL lEL,hEL 

+(2: TL ·l) L th + (L rt) · L th · h 
lEL hEL lEL hEL 
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- rt + t L T£ • l + r L th · h + L rlth · l • h 
lEL hEL lEL,hEL 

- ( r + L rl · l)( t + I>h · h) 
lEL hEL 

- f(x)f(y) . 

Therefore, f is an A-algebra homomorphism from the loop algebra onto the Cayley­

Dickson algebra. Now we investigate the kernel. Since L is an RA loop, by the 

structure theorem of RA loops [GJM96, Theorem 3.1, p.123 ], L can be expressed 

as 

(ILl) 

L - Lo U Lo o a u Lo o b U Lo o a o b U Lo o u 

u£0 o a o u U £ 0 o b o u U £ 0 o (a o b) o ·u, 

which is a pairwise disjoint union. Therefore, for any x = LlEL rll E AL, 

x = (L rz)O + L rl(l - 0), 
lEL lEL 

we have 

x - (L rz)O + L rz(l- 0) + ,L Tzca(l o a- 0) + L rtob(l o b- 0) 

By definition, 

IEL lELa lELa lELa 

+ L rlo(aob)(l 0 (a 0 b) - 0) + L rlou(l 0 u- 0) 
lELa lELa 

+ L rlo(aou) (l 0 (a 0 u) -B)+ L Tto(bou) (l 0 (b 0 u) -B) 
lELa lELo 

+ 2: rlo((aob)ou)cz o ca o b) o u) - o). 
lELa 

f( x ) = L rz + L rl ·l + L Tloa ·loa + L rlob · lob 
IEL lELa lELa lELo 

+ L Tlo(aob) ·l o (a o b) + L Tlou · lou 

lELa lELa 

+ L Tlo(aou) · l o (a o u) + L rlo(bou) · l o (b o u) 
lELa lELa 
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+ L rlo((aob)ou) ·l o (a o b) o u) 
lELa 

- L r1 + L r1 · L + L Ttoa · ( l · a + l + a) + L T£ob • ( l · b + l + b) 
IEL lELa lELa lELa 

+ L rlo(aob) • (l· (a o b)+ l +(a o b))+ L T'[ou • (l · u + l + u) 
lELa lELa 

+ L rlo(aou) · (l · (a o u) + l +a o u) + L rto(bou) · (l · (b o u) + l + b o u) 

lELa lELa 

+I: rlo((aob)ou) • (t. ca o b) o u) + t + ca o b) o u)) 
lELa 

- L T'[ + L (rl + T'[oa + T'lob + T[o(aob) + T'(ou + rco(aou} + rlo(bou) + T'lo((aob)ou}) . l 
lEL lELa 

+ L T'Loa(l + 1)a + L T'lob(l + 1)b 
lELa lELa 

+ L rlo(aob){l + 1) ·(a o b)+ L T'louU + 1)u 
lELa lELa 

+ L T'[o(aou)U + 1) . (a 0 u) + L T'[o(bou)(l + 1). (b 0 u) 
lELa lELa 

+ L rlo((aob)ou)(l + 1) ·(a o b) o u. 
lELo 

Suppose f(x) = 0. By Lemma ILl, the coefficients of 1, a: b, a o b, u, a o u , b o u and 

(a o b) o u are zero. So, 

(II.2) 

(II.3) 

(II.4) 

(II.S) 

(II.6) 

L 1'[ + L (rl + T'[oa + T'(ob + rlo(aob) + 
IEL lELa 

+T'Lou + T'[o(aou) + T'[o(bou) + T'[o((aob)ou)) • [ = Q 

L T'Loa · l = - L T'[oa 

lELa lELa 

L T'[ob • l = - L T'lob 

lELa lELa 

L rlo(aob) ·l = - L T'[o(aob) 

lELa lELa 

L T'lou · l = - L T'lou 

IELo lELo 
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(IL7) L T[o(aou) • l = - L Tlo(aou) 

lELa lELa 

(II.8) L T[o(bou) · l = - L T[o(bou) 

lELa lELa 

(II.9) L T[o((aob)ou) • l = - L Tto((aob)ou) 

lELa lELa 

in A. Since 

L T[ = L Crt+ T[oa + T[ob + T[o(aob) + T[ou + T[o(aou) + T[o(bou) + Tto((aob)ou)), 

lEL lELa 

by substituting the equations II.3 to II.9 into equation II.2, we get 

(II.lO) L T[ • l = - L T[. 

lELa lELo 

Thus x E ker(J) if and only if the coefficients of x satisfy equations II.3 to II.lO. For 

any x = L:teL rtl E AL, 

x = (L rt)O + L rl(l- fJ) 
lEL lEL 

- (L rl)fJ + L rt(l- 8) + L rl(l- 0). 
lEL lELa lEL\La 

Therefore, 

x* = (L rt)O + L rt(l- 0) + L n( -2) o (l- 8). 
lEL lELa lEL\La 

Now 

f(x) = L rt + L rl ·l + L rl ·l, 
IE£ lELa lEL\La 

f(x*) = L Tl + L rt ·l + L rt · ( -2) o l, 
lEL lELo lEL\La 

and 

f(x) = L Tt + L T[ ·l + L rl ·L. 
IEL lELa lEL\Lo 

Since l = l* = -2 o l, for l E L\Lo, 

f(x*) = f(x) . 
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For any x E AL, tr(x) = x + x• and n(x) = xx•. So 

f(tr(x)) = f(x + x*) = f(x) + f(x'") = f(x} + f(x) = tr(f(x}), 

f(n(x)) = f(xx'") = f(x)f(x'"} = f(x)f(x) = n(f(x)). 

algebras 

Every RA loop is a 

homomorphic ima 

induced RA p. The two 

a homomorp ·mage of an 

alternative loop alg a. 

RA loops 

A loop gebra of characteristic 
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if and o ly if the loop if an 
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FIGURE ILL Cayley-Dickson algebras, RA loops and alternative loop algebras 

2. A further description of ker(/) 

D 

Since every Cayley-Dickson algebra is a homomorphic image of an alternative loop 

algebra by Theorem II.2, the kernel of the map f is very important for connecting 
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the loop algebra to the Cayley-Dickson algebra. In this section we give a description 

of the elements in ker(f) in more detail. 

THEOREM II.3. Suppose A is a commutative associative ring with unity 1 and 

2 =1- 0. Let a, {3 and 'Y be elements in U(A). Let AL be the alternative loop algebra 

of the induced RA loop L. Let La be the center of L. Let I be the group generated by 

-1, a, {3 and 'Y in A. Then 

1. The map h : La t-+ I defined by 

h(x) = x + 1 for any x E La, 

is a group isomorphism. 

2. 

ker(f) = { L r:Ul owE AL I for any wET, L r:U · h(l) = 0 in A} 
wET,lELo lELo 

whereT={O, a, b, aob, u, aou, bou, (aob)ou}. 

3. Let 

n(ALa) = {L T[l E ALa I L T[ • h(l) = 0 in A}. 
lELo lELo 

Then !1(ALa) is an ideal of ALo. 

4. ker(J) = AL!1(ALa) = !1(ALa)AL. 

5. If La = {0, - 2} and -2 E U(A.), then 

AL!1(ALa) = ALe, 

where e = (1/2)(0 + ( -2)). 

PROOF. Since L is the induced RA loop, La is the circle group generated by { (}, 

-2, a -1, {3 - 1, 'Y - 1} by Theorem I.4. By the formula (x -1) o (y -1) = xy -1, we 

know that each element in La is of the form 0, -2, an°/J"'1"fn2 - 1, for some integers 

ni E Z, i = 0, 1, 2. It is easy to check that the map from La to I defined by 

h(x) = x + 1, for x E La 
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is a group isomorphism from the circle group (£0, o) to the group (I,·). Because of 

equation ILl, each x = LteL rtl can be expressed as 

x= L Lrl'low. 
wETlELo 

By Theorem 11.2, we know that 

x E ker(J) <==::? L rl' · l = - L rl', for each w E T, 
lELo lELo 

<==::? L rl' · (l + 1) = L rl'· h(l) = 0, for each wET. 
lELo lELo 

So statement 2 is true. Now we show that Q(ALo) is an ideal of ALo. Let l:teLo rzl E 

Q(ALo). Then LteLo rt·h(l) = 0 in A. We just need to show that AO(ALo) ~ D(ALo) 

and Lof2(ALo) ~ O(ALo). 

For any x E A , x LteLo rtl = LteLo xrtl in ALo, so 

L (xrt) · h{l) = x L r1 · h(l) = 0 
IELo IELo 

in A, and sox LteLo rtl E O(ALo) . For any x E Lo , 

x L rtl = L n(x o l), 
lELo lELo 

and 

L r1 · h(x o l) = L rt · (h(x) · h(l)) = h(x)(L r1 · h(l)) = 0, 
lELo lELa lELa 

so we have Lo(Q(ALo)) ~ Q(ALo). Thus Q(ALo) is an ideal of ALo. 

Since AL = LwerALow and ALow = wALo, for any wET, the above descrip­

tion of ker(f) gives us that ker(J) = ALQ(ALo) = Q(ALo)AL. If Lo = {0, - 2}, 

then for any roO+ r -2( -2) E Q(ALo), roh(O) + r -2h( -2) = ro + r -2( -1) = 0 implies 

that r6 = r - 2, so Q(ALo) = A(O + ( - 2)) = Ae, where e = (1/2)(8 + ( - 2)) . 

0 
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3. Cayley-Dickson algebras, loop algebras and their radicals 

In this section, we investigate properties of Cayley-Dickson algebras over group 

algebras by using the description of ker(f) in the previous section, and generalize 

some known results. As for the radicals of associative rings and alternative rings, we 

refer the reader to [Div65, Sza81, ZSSS82), for the radicals of group algebras and 

loop algebras, [Kar87, JKW85, GJM96, Zho95] . 

LEMMA II.4. Let D be a commutative associative ring with 2 E U(D) , the unit 

group of D. Then 

D(C2 X-~· X C2) ~PrJ:J · : · rJ:JD, 
n factors 2n times 

where c2 is the group of two elements. 

PROOF. Let e = (1/2)(1 +c), where 1 =/; c E C2. Then e2 = e E DC2, and 

DC2 ~De EEl D(1 - e)~ D r£J D. 

Since D(C2 x · · · x C2) = (D(C2 x · · · x C2))C2, and D(p2 x · · · x C2) is a commu-
• ¥ "" 

n factors n-1 factors n-1 factors 
tative ring R with 2 E U(R), the statement holds by induction on n. 0 

LEMMA II.5. Let L betheRA loop induced by a Cayley-Dickson algebra A( a, {3, 1) 

and AL be the induced loop algebra with -2 E U(A). Then 

1. e = (0 + s)/2 is a central element of the loop algebra AL. 

2. (AL)e ~A EB ···EEl A. ------8 times 
3. 

(AL)e ~ ker(/) and f(AL(O- e))= A(a, /3, ')'), 

where f is the map from AL to A( a, {3, !') defined in Theorem ll.2. 

4. If ker(/) = (AL)e and L is a 2-loop, then the prime radical P(A(a, /3 ,')')) of 

the Cayley-Dickson algebra is 

P(A) + P(A)i + P(A)j + P(A)ij + P(A)k + P(A)ik + P(A)jk + P(A)ij · k , 

and the Jacobson radical J(A(a, {3, /)) of the Cayley-Dickson algebra A ( a , (3 , 1) 

is 

J(A) + J(A)i + J(A)j + J(A)ij + J(A)k + J(A)ik + J(A)jk + J(A)ij · k. 
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PROOF. Since s = -2 E £ 0 , e = ( 8 + s) /2 is a central element in the loop algebra 

ALso 

AL = (AL)e EEl AL(B- e) . 

Recall that L' = {8, s}, the commutator subloop of the loop L with 

Then we have 

by Lemma II.4. Furthermore, 

j(AL) =!(ALe) EEl f(AL(B- e)) =A( a, ,8, l')f(e) EEl A( a, .8, l')f(B- e). 

Since 

f(e) = (1/2)/(B + s) = (1/2)/(20 + (s- 9)) = (1/2)(2 + s) = (1/2)(2- 2) = 0, 

we have f(9- e) = 1. Therefore 

(AL)e ~ ker(f) and j(AL(B- e))= A(a,.B, /'). 

As for the radicals, by (GJM96, Theorem 3.4 ~ p.l61] , we know that if L is a 

torsion loop, then 

J(AL) = J(A)L + L J(A)pw(L, Lp), 
pEP 

where P is the set of prime numbers. 

Recall that for any ideal I of an algebra A and a positive integer n, In is the set 

of all elements r E R with nr E I (GJM96, p.157] and 

J(A)p = {r E J(A) I pr E J(A) }. 

Since L is a 2-loop, Lp = 9 if p ¥ 2. But 2 E U(A), so J(Ah = J(A). Therefore, 

J(AL) = J(A)L. 

Let B = AL(()- e). Then 

AL = (AL)e EEl AL(B- e) = ker(f) EEl B, 
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by the assumption that ker(f} = (AL}e. Because the Jacobson radical is hereditary 

[ZSSS82], 

J(B) = J(AL) n B = (J(A)L) n B. 

Because ker(f} n B = 0, J is an isomorphism from B to A( a, ,8, 'Y)· Thus 

J(A(a, /3,-y)) = J((J(A)L) n B)= f((J(A)L) n AL(O- e)). 

Note that 

J(A)L = (J(A)L}e EB (J(A)L)(O- e) , 

so J(A}L n AL(O- e) = J(A)L(O- e). In fact, it is easy to see the right hand side is 

contained in the left hand side. For any x E J(A)L n AL(O- e), x = x 1e + x2(8- e), 

where x1, x2 E J(A)L. Since x E AL(O- e), x1 = 0, sox E J(A)L(O- e). Therefore, 

J(A(a, ,8, -y)) = f((J(A)L} n B) 

= f(J(A)L(O- e)) 

= f(J(A)L(O- s)/2} 

= f(J(A)L) (since f((O- s)/2) = 1}) 

= f(J(A)(L- 8 + 0)) 

= f(J(A)(L- 8) + J(A)) 

= f(J(A)(L- 8)) + J(A) (by the definition of f) 

= J(A) + J(A)a + J(A)b + J(A)a o b + J(A)u 

+J(A)a o u + J(A)b o u + J(A)(a o b) o u 

= J(A) + J(A)i + J(A)j + J(A)ij + J(A)k + J(A)ik 

+J(A)jk + J(A) i j · k, (by Lemma ILl) . 

In the same way, we can obtain the analogous property of the prime radical of the 

Cayley-Dickson algebra. 0 

REMARK II.6. In the above lemma, we see that AL(O- e) c w(AL}, so the 

part of the Cayley-Dickson algebra which is not associative is in the image of the 

augmentation ideal of the loop algebra AL. 
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The following is a generalization of (dB93b, Proposition 3.9] (see also (GJM96, 

p. 186]). 

THEOREM II. 7. Suppose A is a commutative associative ring with unity 1 and 

2 E U(A), the unit group of A. Let a= ±1, J3 = ±1 and 1 = ±l. Let L be the RA 

loop induced by the Cayley-Dickson algebra A(a, ,B, 1). Then 

1. L is an RA loop of order 16 and 

AL = ker(f) EB B, 

where ker(f) ~ 8A, B:::: A(a, /3,1), and f is the map defined in Theorem I/.2. 

2. The Jacobson radical of the Cayley-Dickson algebra A( a, {3, 'Y) is 

J(A) + J(A}i + J(A)j + J(A)i j + J(A)k + J(A)ik + J(A)jk + J(A)ij · k. 

3. The prime radical of the Cayley-Dickson algebra A( a, /3, 'Y) is 

P(A) + P(A)i + P(A)j + P(A)ij + P(A)k + P(A)ik + P(A)jk + P(A)ij · k . 

PROOF. Since a = ±1, J3 = ±1, 1 = ±1, and £0 is generated by 0, -2, a- 1, 

f3 - 1 and 'Y - 1, we have Lo = {0, - 2}. Thus L has 16 elements and it is a 2-loop. 

Let e = ((} + ( -2))/2. By Theorem II.3 (3), (4) and (5), (AL)e = ker(f) . Since 

AL = (AL)e EEl (AL)((}- e), the remaining statements follow from Lemma II.5. 0 

4. Quaternion algebras and RA groups 

If we remove k and u. in the results of the previous chapter and this chapter, 

we have corresponding results about quaternion algebras and RA groups, which is a 

generalization of the quaternion group. We just mention the results here. 

THEOREM II.8 . (Generalized Quaternion Algebras) Let R be a commutative as­

sociative ring with unity 1 and 2 =1: 0 in R. Let A be a commutative associative 

R-algebra. Let a and J3 be in A. Then we have a generalized qu.aternion algebra 

B = A + Ai + Aj + Aij 

where i 2 = a, P = J3 and the multiplication table of the i, j is the same as the old one. 

The associative algebra B is called the generalized quaternion algebra and denoted by 

A(a, ,B). 
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Some ring properties of generalized quaternion rings were investigated by A. A. 

Tuganbaev in (Tug92, Tug93]. 

THEOREM II.9. Let A be a commutative associative R-algebra with unity 1 and 

2 =F 0. Let a -1 and {3- 1 be elements in Quasi(A) . Let 

A(a,{3) =A+ Ai + Aj + Aij 

be the quaternion algebra in which i 2 = a and j 2 = {3. 

1. Let Quasi(A(a,/3)) be the circle group of A(a, {3). Let a= i -1 and b = j- L 

Then a, bE Quasi(A(a,.B)). Let Go be the subgroup of Quasi(A) which is 

generated by {8, -2, a- 1, {3- 1}. Then 

G = Go o (a) o {b) 

is an RA group. 

2. H = Quasi(A) o (a} o (b} is an RA group, in which -2 is the unique nonzero 

commutator-associator. 

3. The RA group H contains G and G is the smallest RA subgroup of H that 

contains the elements a and b. 

THEOREM II.lO. Let AG be the group algebra of G over A, where G is the circle 

RA group induced by the quaternion algebra A(a,{3) . Then AG = AO e w(AG) , the 

direct sum of A-modules, where w(AG) is the augmentation ideal of AG and f) is the 

unity of the group G . Let f the map from AG to A(a,.B) defined by 

f(rfJ+ I:nl) =r+ 'Lrt·l, 
lEG lEG 

where r E A and 'EtEG rtl E w(AG). Then f is an A-algebra homomorphism from 

AG onto A(a,,B,-y), and 

AG / ker(/) ~ A( a, {3) 

as A-algebras. Thus, every generalized quaternion algebra is a quotient algebra of an 

RA group algebra. The kernel of f is 

(L:: rtll L Ttow ·l =- L Ttow, 'Vrtow E A, 'Vl EGo, 'Vw = e, a, b, a 0 b}. 
lEG lEGo lEGo 
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CHAPTER III 

Moufang circle loops and loop algebras 

From (Goo87] Theorem 1 we know that the set of all the quasi-regular elements of 

an alternative algebra A is a Moufang loop under the circle operation. We call it 

the Moufang circle loop Quasi(A.) of the alternative algebra A. From the previous 

chapters we know that an RA loop can be the Moufang circle loop of an alternative 

algebra and the Moufang circle loop of any Cayley-Dickson algebra contains an RA 

subloop. In this chapter, we investigate the relationships between the alternative 

algebra, its Moufang circle loop and the loop algebra of the circle loop. 

1. Moufang circle loops and loop algebras 

Let L be the circle loop of an alternative R-algebra A, where R is a commutative 

associative ring with unity. Recall that the circle operation on A is defined by 

a o b = ab + a + b, 

where a, b E A. The 0 of the algebra A is the identity element of the circle loop 

Quasi(A). We usee instead of 0 to denote the identity of Quasi(A). In this section 

we investigate the relationship between the algebras and their circle loops. 

THEOREM III.l. Let L = Quasi(A) be the Moufang circle loop of an alterna­

tive R-algebra A and let RL be the loop algebra of the loop L over the commutative 

associative ring R. We define a map p from RL to A by 

p: Lrll t--t Lr1·l 
lEL lEL 

where rz E R, and l E L. Then 

1. p is an R -module homomorphism from RL to A. 

2. p lwcRL> is an R -algebra homomorphism from the algebra w(RL) to the algebra 

A. 

45 
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3. Let K = w(RL) n ker(p). Then K is an ideal of the loop algebra RL, and 

w(RL)/ K is isomorphic to a subalgebra of A. If A is a Jacobson radical algebra, 

that is, every element of A is quasiregular, then 

w(RL)/K~A 

as R-algebras. 

PROOF. By the definition of the loop algebra and the definition of p, the first 

statement is not hard to check. 

For the second statement, we should be careful. The augmentation ideal w(RL) 

is a free R-module with basis 

{l-8ilEL}, 

where 6 is the identity element of the loop L. For any a= LleL rt(l- 8) E w(RL), 

f3 = LheL thh(h- 8) E w(RL), we have 

Therefore 

a{3 = (L rz(l- 8)) · <I>h(h- 8)) 

p(a{3) 

lEL hEL 

L rlth(l- 6) · (h- 6) 
lEL,hEL 

L rzth(loh-lo8-ho8+8o6) 
lEL,hEL 

L rlth(loh - l - h+O). 
IEL,hEL 

- 2: (rtth) · (l o h -l- h + 0) 
lEL,hEL 

- 2: (rzth) · (lh + l + h -l- h) 
lEL,hEL 

- I: (rzth) · (lh) 
lEL,hEL 

- (L rzl)(L thh) 
lEL hEL 

- p((L r1(l- O))(L th(h- 8))) 
lEL hEL 
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Therefore, the map p is an R-algebra homomorphism from w(RL) to A. Next we 

show that K is an ideal of the loop algebra RL. 

It is easy to verify that the augmentation ideal w(RL) is an ideal of the loop 

algebra RL. To show that K is an ideal we just show that the product of any element 

from the loop algebra and an element in K is in the kernel of the map p. Assume that 

L rtl E K = w(RL) n ker(p). 
IEL 

Then for any h in L, we have 

- LTtloh 
lEL 

- Lrtl(h-9)+Lrtlo0 
IEL lEL 

- Lrtl(h-9)+Lrtl 
IEL lEL 

Because pis an R-algebra homomorphism from w(RL) to A, we have 

:Oc(L:: rtl)h) - p(L rtl(h- 0)) + p(L rcl) 
IEL IEL IEL 

- P(L Ttl)p(h - 0) + 0 
IEL 

- 0. p((h- 0) + 0 

- 0. 

Therefore, Cl:teL rtl)h E K. So, for any l:heL thh E RL, we have that 

(L rtlHl:>hh) = L rtthl o h = L(Lthrtl)h E K . 
IEL hEL lEL,hEL hEL lEL 

So K is a right ideal of RL. In the same way, we can obtain that K is a left ideal. 

For the case when A is a Jacobson radical algebra, we must show that p is sur­

jective from w(RL) to A for then the map p induces an isomorphism from w(RL)/ K 

to A. In fact, p is surjective because for any a E A we have a- 0 E w(RL) and 

p( a - 0) = a - 0 = a. 
0 
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2. The augmentation ideal of the loop algebra of an RA loop 

In this section we will investigate the augmentation ideals of the loop algebra of 

an RA Loop and an RA circle loop. For the definition and properties of the RA Loop, 

cf [GJM96]. Here we just recall that the unique commutator-associator s defines an 

anti-automorphism on the loop L and can be extended to an anti-automorphism of 

the loop ring RL denoted by *· 

PROPOSITION III.2. Let R be a commutative associative ring with unity and let 

L be an RA loop and assume that 

L = M(G, *,go)= G u Gu. 

Then the loop ring 

RL=RG+RGu 

is a direct sum of RG-modules. For any ideal I of the group algebra RG, 

(I+ Iu) is an ideal of RL {:::::::?I* ~I{=::::} I* =I. 

PROOF. The claim that RL = RG + RGu is a direct sum of RG-modules follows 

from the structure of the RA loop. We just show the second claim. Assume that I is 

an ideal of the group algebra RG such that I*= I. It is easy to check that (I + Iu, + ) 

is an abelian group. For any x + yu E RL, where x and y are two elements in the 

group algebra RG, and for any a, bE I, we have 

(a+ bu)(x + yu) =(ax+ goy* b) + (ya + bx*)u. 

Since a and bare in I, an ideal of RG, then ax, g0 y*b, ya and bx* are in I. Hence 

(a+ bu)(x + yu) E I+ Iu. 

For right multiplication, we have 

(x + yu)(a + bu) = (xa + gob*y) + (bx + ya*)u. 

Since I* = I, b* E I and a* E I . Thus xa, g0b*y, bx and ya* are all in I. So 

(x + yu)(a + bu) E I+ Iu. Thus I+ Iu is an ideal of the loop algebra RL. 
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Now assume that I is an ideal of the group algebra RG, and I+ I u is an ideal of the 

loop algebra RL. We show that I is fixed under the map*· For any a= LgeG r9 g E I , 

ua is in the ideal I+ I u. While ua = LgeG r 9ug = (LgeG r 9g* )u, so 

(ua)u = ((L r9g*)u)u = (L r9g*)u2 = (L r9 g*)go E I. 
gEG gEG gEG 

Therefore 

cL: rgg*)gog(J1 = L rgg* = cL:rgg)* E I. 
gEG gEG gEG 

Thus I* ~ I. Since the map * is an involution of the loop algebra, we have 

thus I = I*, and I is fixed under the map *· 0 

COROLLARY III.3. Let L be an RA loop with L = M(G, *• go) and let R be a 

commutative associative ring with 1. Then 

w(RG) + w(RG)u is an ideal of RL and w(RG) + w(RG)u ~ w(RL). 

PROOF. Since (w(RG))* = w(RG) , the result follows. 0 

An interesting result about the augmentation ideal of the loop algebra of an RA 

loop is the following, which describes the augmentation ideal of the loop algebra by 

its group algebra. 

PROPOSITION !II.4. ({GJM96J Lemma 1.1, p.150) Let L be an RA loop with 

L = M(G, *,go) and let R be a commutative associative ring with unity. Then 

w(RL) = w(RG) + RG(l- u). 

PROOF. It is obvious that w(RG) + RG(l - u) ~ w(RL) . On the other hand, 

if LteL rtl E w(RL), then LteL rt = 0 by the definition of the augmentation ideal. 

Since 

RL=RG+RGu, 

we can assume that 

Lrtl = 2:r9 g+ Lthhu, 
lEL gEG hEG 
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where LgeG r9g, LheG thh ERG. Since LteL rt = 0, we have 

l:r9 + 2.'.~>h = 0. 
gEG hEG 

Then 

- L:r9g+ Lthhu 
gEG hEG 

- :Lr9g+ :Lthh+ Lthhu- I:thh 
gEG hEG hEG hEG 

- (L r9g + L thh) + L thh(u- 1) 
gEG hEG hEG 

c w(RG) + RG(u -1) 

- w(RG) + RG(1 - u) 

D 

Since RG = R + w(RG), RG(1- u) = R(1- u) + w(RG)(u- 1). Then we have 

another version of the proposition: 

w(RL) - w(RG) + RG(1-u) 

- w(RG) + R(1- u) +w(RG)(!- u) 

- w(RG) + w(RG)u + R(1- u). 

Therefore, we have the following: 

CoROLLARY III.5. Let L be an RA loop with L = M(G, *,go). Let R be a com­

mutative ring with unity. Then 

w(RG) + w(RG)u = w(RG) + w(RG)(1- u) 

w(RL) = w(RG) + RG(l - u) = w(RG) + w(RG)u + R(1- u). 

3. Moufang circle loops and RA circle loops 

In this section we investigate some basic properties of the Moufang circle loop 

and then investigate some basic properties of RA loops by using the results of the 

previous sections. 



3. MOUFANG CIRCLE LOOPS AND RA CIRCLE LOOPS Sl 

PROPOSITION III.6. Let L be a Moufang loop and let w(RL) be the augmentation 

ideal of the loop algebra RL, where R is a commutative ring with L Then L is a 

subloop of the circle loop of the algebra w(RL) . 

PROOF. Define the map f: L-+ w(RL) by 

J(L) = l-1, 

for any l E L. Then this is an injective map from L to (w(RL),o). 0 

PROPOSITION III. 7. All finite RA 2-loops are subloops of the Moufang circle loops 

of nilpotent alternative rings of characteristic 2. 

PROOF. By [Goo95], for the finite RA 2-loops L, the augmentation ideal of the 

loop algebra F2L is nilpotent, where F2 is a field of characteristic 2. Since F2L is an 

alternative algebra, [Goo87] Theorem 1 tells us that (w(F2L), o) is a Moufang loop. 

Then the result follows the Proposition IIL6. 0 

Now we discuss alternative algebras with an RA loop as a subloop of its Moufang 

circle loop. From the first chapter we know that all Cayley-Dickson algebras are of 

this sort. 

Let A be an alternative R-algebra with Quasi(A) having an RA subloop L. Then 

the loop ring RL is an R-algebra and it is an alternative algebra because L is an RA 

loop. Recall the definition of p (cf Theorem III.1) from RL to A: 

P(L rt · l) = L rtl, 
lEL lEL 

for any :Lee£ r1 • l E RL. 

Since Lis an RA loop, we can assume L = M(G,*,go) by the structure theorem 

of RA loops. In determining if an RA loop is the circle loop of a Jacobson radical 

algebra, the RA group G plays an important role since L is a kind of extension of the 

group G. 

From section 1 we know that the properties of the augmentation ideal w(RL) and 

the map pare essential for the loop to be a circle loop, while from section 2 we know 

that 

w(RL) = w(RG) + w(RG)u + R(l- u). 
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Thus we should investigate the relationships between the two augmentation ideals 

and the map p, and its restrictions on some subrings. We need the following lemma: 

LEMMA III.8. 1. (w(RG)u) n ker(p) = (w(RG) n ker(p))u; 

2. If x + yu E ker(p), where x, y E w(RG), then 

x E ker(p) <==:::> y E ker(p); 

x* E ker(p) <===> y• E ker(p). 

PROOF. Let us show the first statement. To prove that the right hand side is 

included in the left hand side, first note that 

(w(RG) n ker(p))u ~ w(RG)u, 

and second, for any x E w(RG) n ker(p), because p is an algebra homomorphism from 

w(RL) to A by Theorem 1!!.1, 

p(xu) == p(x(u- 1) + x) == p(x)p(u- 1) + p(x) = 0 since p(x) == 0, 

therefore p(xu) = 0, and 

(w(RG) n ker(p))u ~ ker(p). 

Now let us show that the left hand side is in the right hand side. If x E w(RG), and 

xu E ker(p), then xu= x(u- 1) + x and then 

0 = p(xu) = p(x)p(u- 1) + p(x) = p(x)u + p(x). 

Therefore, 

p(x)u+p(x)+u=u 

so that 

p(x) ou = u. 

Since p(x) and u are in the alternative algebra A diassociativity of the algebra implies 

the two elements generate an associative algebra. Since u E Quasi(A), p(x) o u = u 

implies that p(x) = 0 in the ring. Then x E ker(p) . Thus 

xu E (w(RG) n ker(p) )u. 
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For the second statement, we just check it by the definition of the map p. For any 

elements x andy in w(RG) with x + yu E ker{p), since x + yu = x + y + y(u- 1), 

and pis an algebra homomorphism from w(RL) to A, we have: 

0 = p(x + yu) = p(x + y + y(u- 1)) = p(x) + p(y) + p(y)u. 

Therefore, 

p(y)u + p(x) + p(y) + u = u 

and 

p(y) o u + p(x) = u. 

Thus 

x E ker(p) ¢=> p(x) = 0 <==> p(y) o u = u <=> p(y) = 0 <=> y E ker(p). 

Now we show x* E ker(p) <=> y" E ker(p). By Theorem III.1, ker(p) n w(RL) is an 

ideal of the loop ring RL. If x + yu E ker(p), where x, y E w(RG), then x + yu E 

ker(p) n w(RL), and so 

(x + yu)u E ker(p) n w(RL) ~ ker(p). 

Thus (x + yu)u = y*g0 + x*u E ker(p). Note that x*, y* E w(RG). So by the above 

argument, we know that 

Since y*go = y*(go- 1) + y*, then 

Therefore 

y*go E ker(p) <==? p(y*)p(go- 1) + p(y*) = 0 

{::=> p(y*)go + p(y*) +go = 9o 

{::=> p(y*) o go =go 

{::=> p(y*) = o. 

x* E ker(p) <=> y* E ker(p). 

Now we can show our main result: 

0 
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THEOREM III.9. Let R be a commutative associative ring with 1. Let A be an 

alternative R-algebra with Quasi(A) having an RA subloop L. Let G be an RA group 

of L with L = G U G o u. Let RL be the loop ring of L over R. Define 

p: RL-+ (A,+,·) 

by 

'2: r,l -+ L n · l, 
lEL lEL 

for any element EteL rtl in the loop algebra RL. Then 

1. ker(p) n w(RG) + (ker(p) n w(RG))u is an ideal of the loop algebra RL. 

2. (ker{p) n w(RG))* = ker(p) n w(RG) . 

PROOF. By Theorem III.l, the restriction of p to the subring w(RL) is an algebra 

homomorphism from w(RL) to A. Now consider the restriction of p to w(RG). It is an 

algebra homomorphism from w(RG) to A and the kernel is ker(p)nw(RG). Therefore 

ker(p) n w(RG) is an ideal of w(RG). Since RG = w(RG) + R, ker(p) n w(RG} is an 

ideal of RG. 

Next we show that 

ker(p) n w(RG) + (ker(p) n w(RG))u 

is an ideal of the loop ring RL. Again, since RL = w(RL) + R, it is sufficient to show 

that ker(p)nw(RG) + (ker(p) nw(RG))u is an ideal of w(RL) . Working in the subring 

w(RL) we can take advantage of the fact that pis an algebra homomorphism instead 

of a module homomorphism. 

For any xo E ker(p) n w(RG) and for any x + yu E w(RL), we have 

p(xo(x + yu)) = p(xo)p(x + yu) = 0. 

So 

xox + (yxo )u E ker(p). 

Also p(xox) = 0 because XoX is in the ideal ker(p) nw(RG). So 

p(yxo) = 0 

by Lemma III.8. Thus, 

x 0 (x + yu) = xox + (yx0 )u E ker(p) n w(RG) + (ker(p) n w(RG))u. 
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Now 

(x + yu)xo = xxo + yx0u. 

Since p(xxo) = 0, p(yx0) = 0 by Lemma III.8. Therefore, 

(x + yu)x0 E ker(p) n w(RG) + (ker(p) n w(RG))u. 

As for (x + yu)xou , we have 

(x + yu)xou = (xox)u +x0ygo. 

Again, by Lemma ITI.8, xox E ker(p) implies that x0ygo E ker(p) . Hence 

(x + yu)xou E ker(p) n w(RG) + (ker(p) n w(RG))u. 

Similarly, we have 

xou(x + yu) = xox*u + y*xogo. 

Therefore 

x0u(x + yu) E ker(p) n w(RG) + (ker(p) n w(RG))u. 

Thus 

ker(p) nw(RG) + (ker(p) nw(RG))u 
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is an ideal of RL. Since it is an ideal of the loop ring RL and ker(p) n w(RG) is an 

ideal of RG, Proposition III.2 tells us that the ideal ker(p) nw(RG) is fixed under the 

map *· So the second statement is true. 0 

COROLLARY III.lO . Suppose that x+yu E ker(p) , where x andy E w(RG). Then 

x E ker(p) -¢=:::::> y E ker(p) <==> x" E ker(p) <==> y" E ker(p) . 

For any "L,
9
ear9g ERG, 

2:r9 g=0<==> ,Lr9g* =0. 
gEG gEG 

where the multiplication is in the ring A . 

PROOF. It follows from Lemma III.8 and Theorem III.9 because 

x E ker(p) -¢=:::::> x* E ker(p). 

The second statement of the corollary follows. 0 
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CHAPTER IV 

RA circle loops 

1. Introduction and some definitions 

As mentioned in the introduction of this thesis, we will investigate the necessary 

and sufficient conditions for an RA loop to be a Moufang circle loop of an alternative 

quasiregular algebra, i.e., an alternative Jacobson radical ring. Furthermore, we give 

the algebraic structure of finite nilpotent alternative algebras whose Moufang circle 

loops are RA loops. In this chapter, an RA circle loop means the Moufang circle 

loop, which is an RA loop, of a quasiregular alternative algebra. 

Since Artin's Theorem will be used later in this thesis, we record it here [Sch66, 

Theorem 3.1]: 

THEOREM IV .1. ( Artin) The subalgebra generated by any two elements of an 

alternative algebra is associative. 

We cite some nice results about nilpotent groups here. As for the group and 

nilpotent group theory, we refer the reader to [Hal59, Rob82, Rot95, Khu93]. 

PROPOSITION IV.2 . [AW73, Kum94) Let G be a finite nilpotent group of class 

2. Then G is the circle group of a nilpotent ring of nilpotency index 3. 

Recall that if G is a group with G/Z(G) ~ c2 X c2, G is called an RA group, 

where Z( G) is the center of group G and C2 is the cyclic group of order 2. Since an 

RA group is a nilpotent group of class 2, from the above result we have: 

COROLLARY IV .3. A finite RA group is the circle group of an associative nilpo­

tent ring of index 3. 

PROOF. This proof is a modification of that given in (Kum94]. By the definition 

G I Z( G) :::: c2 X c2, we can assume that 

G = Z(G) u Z(G)a U Z(G)b U Z(G)ab 
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with a2 E Z(G) and b2 E Z(G). Therefore, for any g E G, g E Z(G)aibi, where 

i,j=O,l. 

Now for any g, hE G, we can define the following binary relation m on G by 

m(g, h) =(a, b)idh 

and 

g + h = hgm(g,h) 

g x h = m(g,h) 

where {a, b) is the group commutator of the two elements a and b in the group G. 

Then it is not very hard to check that ( G, +, x) is an associative ring with nil potency 

index 3, and most importantly, (G, o) = (G, ·). 0 

2. Necessary conditions for an RA loop to be a circle loop 

In this section, the basic algebraic properties of RA circle loops are studied. The 

main results are Theorem IV.6 and Theorem IV.S. To prove these we need some 

lemmas. 

LEMMA IV .4. Let (L, o) be the Moufang circle loop of an alternative quasi-regular 

ring (A,+,·). Note that as sets, L =A. LetS be a subset of L and K be a subring of 

{A, +, ·) with the properties that 

(K,K,S) = (S,K,K) = (K,S,K) = 1 

in the loop ( L, o). Then the set 

CK(S) = {k E K I k o s =so k, Vs E S} = {k E K I ks = sk, Vs E S} 

is a subring of(A,+,·). 

PROOF. Since K is a subring of (A,+,·), 0 = (} E K, the unity of the loop (L, o) . 

This also implies that CK(S) ¥-0. For any two elements kt and k2 E CK(S), we show 

that (1) k1 ± k2 E CK(S) and (2) k1 · k2 E CK(S), so that CK(S) is a subring of A. 

We have k1 ± k2 and k1 · k2 inK because K is a subring. In what follows, we use 

extensively the identity: 

x o y - y o x = xy - yx 

for any x, y E A. 
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(1). For any s E S, we have 

(kt ± k2) 0 s- s 0 (kl ± k2) - (kt ± k2) . s - s . (kl ± k2) 

- (kt . s- s. kt) ± (k2 . s - s . k2) 

- (kl 0 s- s 0 kr) ± (k2 0 s - s 0 k2) 

- 0 

The last step follows from the definition of CK(S). 

(2). By the assumption of the lemma, we have 

(kt o k2) o s - k1 o {k2 o s)( since (K, K, S) = 1) 

= k1 o (so k2)( since k2 E CK(S)) 

- (k1 o s) o k2 ( since (K, S, K) = 1) 

- (so kr) o k2 ( since k1 E CK(S)) 

= so (k1 o k2)( since (S, K, K) = 1) 

Thus (k1 o k2) o s = so (k1 o k2). Because 

x o y = yo x ~ xy = yx, 

then 

We have 

and 

s · (k1 o k2) = s · (k1k2 + k1 + k2) = s · k1k2 + sk1 + sk2. 

By comparing the above two equalities using the fact that 

k·s = st.. i=O 1 1 "'11 l I 

for any s E S, we have 

Hence k1k2 E CK(S). 0 
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LEMMA IV.5. Let G be an RA group with G = Z(G) o (a) o (b). Then 

Ca(a) = Z(G) o {a), and Ca(b) = Z(G) o {b) . 

PROOF. By the definition of Ca(a), we have that 

Ca(a) 2 Z(G) o {a}. 

Because a and b do not commute in the group, 

G :::> Ca(a) . 

Therefore, [G: Ca(a)] > 1. On the other hand, for the subgroup Z(G) o (a} , G has 

two cosets, Z(G) o (a} and Z(G) o (a) o b since b2 E Z(G) . Hence 

2 = [G: Z(G) o (a)] = [G: Ca(a)][Ca(a) : Z(G) o (a)]. 

We must have 

[Ca(a): Z(G) o (a)] = 1. 

Then the result follows. Following the same argument, Ca(b) = Z(G) o (b). 0 

THEOREM IV.6. Let (L , o) be an RA circle loop of an alternative quasi-regular 

ring (A,+,·). Let a, b and u be any three elements in the loop (L , -) which do not 

associate. Then 

1. (Z(L), +, ·) is an associative commutative quasi-regular subring of the ring 

(A,+,·) with circle subgroup (Z(L) , o). 

2. (Z(L) o (a),+,·) , (Z(L) o (b),+,·) and (Z(L) o {u} , +, ·) are associative com­

mutative quasi-regular subrings of (A,+,-) with circle subgroups (Z(L) o (a}, o ), 

(Z(L) o (b),o) and (Z(L) o (u),o), respectively. 

3. Let G be the RA group Z(L) o {a) o (b}. Then (G, +, ·) is an associative quasi­

regular subring of (A,+,·) with circle subgroup (G, o) . 

4. We have the following subring chains 

(Z(L), +, ·) c (Z(L) o (a),+,-) c (G, + , ·) c (A, + ,·) 

(Z(L), +, ·) c (Z(L) o (b),+,-) c (G, + , ·) c (A,+ , ·) 

and subloop chains 

(Z(L),o) C (Z(L)o(a),o) C (G,o) = Z(G)o(a)o(b} C (L,o) = (Z(G)o(a}o(b))o(u). 
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(Z(L),o) C (Z(L)o(b),o) C (G,o) = Z(G)o(a)o(b) C (L,o) = (Z(G)o(a)o(b))o(u). 

with the relations 

a2 + 2a + 91 = 0 

b2 + 2b + 92 = 0 

u2 + 2u + 93 = 0 

where 911 92 and 93 are three elements in Z(L). 

PROOF. By properties of RA loops, G = Z(G) o (a) o (b) is an RA group and 

Z(L) = Z(G). Next we show that (G, +, ·) is a subring of the ring A. Let H be the 

subring of A generated by Z(G), a and b. Since 

Z(G) = N(L) = N(A, +, ·), 

and because of Theorem IV.l, i.e. , Artin's theorem, H is an associative subring of A. 

Therefore H is a proper sub ring of A because A is not associative. Moreover, 

by the definition of G. Since L is an RA loop, by the properties of the loop, we have 

L = G U Go u =A:.:> H 2 G. 

If G = H, we are done. Now assume H :::> G and H =f G. Then there exists an 

element x E H C L, x rt G. Thus x E G o u. This implies that there is an element 

g E G C H such that x = g o u. So 

g - 1 0 (g 0 u) - g - 1 + g 0 u + g -l . (9 0 u) 

- g-1 +X+ 9-1 . X 

is in subring H because 9-1,g and x are in H. On the other hand, in the loop L , 

g -l, g and u associate, 

g- 1 o (go u) = (g-1 o g) o u = 0 o u = u; 

thus u E H. Therefore, 

9ou = g·u+g+uEH 

for any g E G. Hence H = A, a contradiction. Therefore, H = G, and G is a sub ring 

of A. Since G is a group, for any element 9 E G, there exists an element hE G such 
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that go h = 0; that is, g · h + g + h = 0. Therefore ring {G, +, ·) is a quasi-regular 

subring of A. Now we can use our Lemma IV.4 to show the result. Let G be the K 

and let G be the S in Lemma IV.4. The conditions in the lemma are satisfied because 

G is a subring and 

(G,G,G) = 1. 

By Lemma IV.4, we get that 

CK(S) = Ca(G) = Z(G) = Z(L) 

is a subring of the ring A. Since (Z(G), o) is a subgroup of the loop L, the quasi­

inverses of the elements in the subring (Z{G), +, ·) are contained in the subring. 

Therefore, (Z(G), +, ·) is a quasi-regular ring with circle subgroup (Z(L), o). 

Let G be the K and let {a} be the Sin Lemma IV.4. The conditions of the lemma 

are satisfied because 

(G,G,a) = (G,a,G) = (G,a,a) = 1 

and then 

CK(S) = Ca(a) = Z(G) o (a) 

is a subring of A by Lemma IV.5. Therefore, Z(G) o (a) is a quasi-regular subring 

with circle subgroup (Z(L) o (a), o) . 

By the same argument, we know that Go (b) is a quasi-regular subring with circle 

subgroup (Z(L) o (b), o). Since the three elements a, b and u do not associate in 

the loop L, by the properties of the RA loop and the above argument, we know 

that Z(G) o {u) is a quasi-regular subring with circle subgroup (Z(L) o {u), o). The 

remaining results in the theorem follow the above argument. 0 

Next, we will discuss a structure theorem of finite RA circle loops. We need some 

lemmas for our main result . 

LEMMA IV. 7. Let L be a finite RA circle loop of a finite quasi-regular alternative 

ring (A,+,·) . Then for any a tf. Z(L) , 

2a, a2 E Z(L), 

a· Z(L), Z(L) ·a~ Z(L). 

Moreover, Z(L) o a = Z(L) +a and Z(L) o (a)= Z(L) U (Z(L) +a) . 
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PROOF. Consider the subgroup Z(L) o (a). Since art Z(L) and Lis an RA loop, 

there exist two elements b and u in £, such that a, b and u do not associate. By 

Theorem IV.8, Z(L) and Z(L) o (a} are quasi-regular subrings of the ring A . By the 

properties of finite RA loops, 

IZ(L) o (a}l = 2IZ(L)!. 

Since Z(L) and Z(L) +a are two disjoint subsets of the subring Z(L) o (a) and each 

with order IZ(L)I,we get 

Z(L) o (a) = Z(L) u (Z(L) +a), 

and Z(L) o a= Z(L) +a. In the subring (Z(L) o (a),+,·), 2a =a+ a is in Z(L) or 

Z(L) +a. If it were in Z(L) +a, then a E Z(L), a contradiction. So 2a E Z(L). 

Since a o a= 2a + a2 , then a2 E Z(L). 

Now let us show that a· Z(L) ~ Z(L). For any g E Z(L), a· g E Z(L) o (a} = 

Z(L) U (Z(L) +a). If a· g E Z(LL we are done. Now suppose that ag E Z(L) +a, 

then there exists an element z E Z(L), such that ag = z +a. Then 

aog - a·g+a+g 

- z+a+a+g 

- (z +g)+ 2a E Z(L) since Z(L) is a subring 

a contradiction. Therefore a · Z(L) ~ Z(L). Since the center of the loop is the same 

as the center of the ring, we have Z(L) ·a~ Z(L). 0 

THEOREM IV .8. { The structure of finite RA circle loops) 

Let (L, o) be a finite RA circle loop of an alternative quasi-regular ring (A,+,·). 

Then 

1. Z(L) and Z(L) o (a) and Z(L) o (a) o (b} are ideals of the ring (A,+,·), where 

a and b are any two non-commutating elements in the ring(loop). Moreover, 

a· b, 2a, a 2 E Z(L). 

2. we have the following normal extensions: 

(a) Loop extension: 

{1} c (Z(L),o) c (Z(L) o (a),o) c (Z(L) o (a) o (b),o) c (L,o). 
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Every term in the chain is a normal subloop of L. 

(b) Ring extension: 

{0} c (Z(L), +, ·) c (Z(L) o (a),+,·) c (Z(L) o (a) o (b),+, ·) c (A,+, ·). 

Every term in the chain is an ideal of the ring A. 

(c) The two extensions have the following properties: 

(i) ((L,+, ·)/(Z(L),+,·),o) "'(L,o)f(Z(L),o)::::: c2 X c2 X c2. 
(ii) ((L, +,. )/(Z(L) 0 (a),+,·), 0) ~ (L, 0 )/(Z(L) 0 (a), 0) ~ c2 X c2. 

(iii) ((L, +, ·)/(Z{L)o(a)o(b), +, ·),o) ~ (L, o)f(Z(L)o(a)o(b} , o) ~ C2. 

(iv) ((Z(L) o (a) o (b),+, ·)/(Z(L), +, ·),o) ~ ((Z(L) o (a), o)f(Z(L) o 

(a), o)::::: c2. 
3. For any three elements a, b and u which do not associate in the loop (L, o ), we 

have 

Z(L) o (a) = Z(L) U (Z(L) +a) 

Z(L) o (a) o (b) = Z(L) o (a) U (Z(L) o (a)+ b) 

= Z(L) u (Z(L) +a) u (Z(L) +b) U (Z(L) +a+ b). 

The loop L is a pairwise disjoint union of the subsets: 

L = GUGou 

= Z(L) o (a) o {b) u (Z(L) o (a) o (b)+ u) 

= Z(L) U (Z(L) +a) U (Z(L) +b) u (Z(L) + u) 

U(Z(L) +a+ b) U (Z(L) +a+ u) U (Z(L) + b + u) 

U(Z(L) +a+b+u). 

4. For any three elements a, b and u which do not associate, we have the following 

identities of ring subsets and loop subsets : 

Z(L) o a = Z(L) +a 

(Z(L) +a) o b = Z(L) +a +b 

(Z(L) +a+ b) o u = Z(L) +a+ b + u 

(L, o) = G u Go u. = G u (G + u) . 
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Z(L}+a 

aa. ab, 2a, 2b 
bb, ub. uu, 2u 

Z(L}+b+u 

Z(L}+a+b+u 

FIGURE IV.l. The structure of finite RA circle loops 
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PROOF. By Theorem IV.6 and Lemma I'V.7, Z(L) is an ideal of the ring A. We 

will show that Z(L) o (a) is an ideal, too. Note that Theorem IV.6 has told us that 

it is a subring of the ring A. 

Let u be an element in loop L such that a, band u do not associate in L. Because 

L is an RA loop we can find this element u in loop L . Then it follows that 

L = (Z(L} o (a) o (b)) o (u). 

Therefore, every element yin L that is not in Z(L} o (a) is of the form x o b, x o u or 

x o (b o u) for some x E Z(L) o (a). We are going to show that 

Z(L) o (a) · y ~ Z(L) o (a). 

Because a o y =/: y o a, 

(Z(L) o (a) o (y), o) 

is an RA group by the properties of the RA loop. Then (Z(L) o (a) o (y), + , ·) is a 

subring of the ring A with order 4IZ(L)I = 2IZ(L) o (a)l because 

Z(L) o (a) o (y)/ Z(L) ~ C2 x C2. 

Since 

j(Z(L} o (a)) u ((Z(L) o (a)) +y) l 

is of order 2jZ(L) o (a) I and the two subsets are disjoint subsets in the subring (Z(L) o 

(a) o (y), +, ·), we have 

(Z(L) o (a) o (y), +, ·) = Z(L) o (a} U (Z(L) o (a}+ y). 

Then ya E Z(L) o (a) or Z(L) o (a) + y. If the latter case occurs, ya = g + y for some 

g E Z(L) o {a), and so 

yo a= ya + y +a= g + y + y +a= g +a+ 2y E Z(L) o (a) 

because 2y E Z(L) o (a) by Lemma I'V.7, a contradiction. 

Therefore y ·a E Z(L) o (a). Similarly, a · y E Z(L) o (a). Thus (Z(L) o (a),+, ·) 

is an ideal of ring A. 

Next we show that G = (Z(L) o {a) o (b),+,·) is an ideal of (L, +, ·). We already 

know that it is a subring by Theorem IV.6. As before, we assume that element u is in 
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L such that a1 b and u do not associate. Then it follows that L = G U Go u. Suppose 

x E G1 then x o u rt G. We will show that 

(xou) · G ~ G 1 G · (xou) ~G. 

For any g E G, consider the element g · ( x o u). Following the same argument as above, 

we know that 

L = Gu (G +xou). 

Therefore, g · (x o u) E G or g · (x o u) E G + x o u. If g · (x o u) E G, we are done. 

Now assume that g · (x o u) E G + x o u . Then there exists an element h in G such 

that g · (x o u) = h + (x o u). Then 

go (x o u) = g + x o u + g · x o u 

=g+xou+h+xou 

= g + h + 2(x o u) 

is in G because 2(x o u) is in Z(G) C G by Lemma IV.7, a contradiction. Therefore 

g · (x o u) E G. Following the same argument, we can show that (x o u) · g E G. Thus 

G is an ideal. It is not hard to show the chains of loop extensions and ring extensions. 

By Lemma IV.7, Z(L) o (a) = Z(L) U (Z(L) +a) and Z(L) o a= Z(L) +a. From the 

above argument it follows that 

Z(L) o (a) o (b) = Z(L) o (a) u (Z(L) o (a)+ b), 

and 

Z(L)o(a)ob = Z(L)o(a)+b = (Z(L)U(Z(L)+a))+b = (Z(L)+b)U(Z(L)+a+b). 

On the other hand, 

Z(L) o (a) o b = (Z(L) U (Z(L) +a)) o b = (Z(L) o b) U ((Z(L) +a) o b). 

So 

(Z(L) + b) u (Z(L) + a+ b) = (Z(L) o b) U ((Z(L) +a) o b). 

Because Z(L)ob = Z(L)+b, and the above unions are disjoint, we have (Z(L)+a)ob = 

Z(L) +a+b. 
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Taking 0 E Z(L), we get (0 +a) o b =a o b =a· b +a+ bE Z(L) +a+ b. This 

implies that a· bE Z(L). Therefore, 

L =GU(Gou) 

= GU {G +u) 

= Z(L) o (a) o (b) U (Z(L) o (a) o (b)+ u) 

= Z(L) o (a) U (Z(L) o a+ b) U (Z(L) o (a)+ u) U ((Z(L) o (a) +b)+ u) 

= Z(L) o {a) U (Z(L) o a+ b) U (Z(L) o {a)+ u) U (Z(L) o (a)+ b + u) 

= Z(L) U (Z(L) +a) U (Z(L) +b) U (Z(L) +a+ b) U (Z(L) + u) 

U(Z(L) +a+ u) U (Z(L) + b + u) U (Z(L) +a+ b + u). 

Certainly, the subsets here are pairwise disjoint. By the same argument, we can get 

the other identities of sets. 0 

COROLLARY IV.9. If a finite nilpotent alternative ring (A,+,·) has an RA circle 

loop (A, o), then every subring containing the center Z(A) is an ideal of the ring. 

PROOF. Assume that S is a subring which contains the center Z(A). For any 

x E S, if x E Z(A), then Ax~ Z(A) ~ Sand xA ~ Z(A) ~ S because Z(A) is an 

ideal; if x ft Z(A), then Z(A) o (x) is an ideal. So xA ~ Z(A) o (x) ~ S. Therefore, 

S is an ideal. 0 

THEOREM IV.lO. (Necessary and sufficient conditions for a finite nilpotent al­

ternative ring to have an RA circle loop) 

Let (A,+,·) be an alternative finite nilpotent ring. Then (A, o) is an RA loop if 

and only if 

1. there exists an ideal ( G, +, ·) of A such that (A, +, ·) is generated by G and 

another element u in A, 

2. ( G, o) is an RA group with a unique group commutator s. 

3. for any g, h E G the following identities are satisfied by the elements in the 

ring A: 

(a) g · hu + gh = hg · u + hg, 

(b) gu · h + gh + uh + h = gh* · u + h*u + gh* + h* 
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(c) gu · hu + gu · h + gu · u + g · hu + gu + gh + u · hu + uh + hu = goh*g + 
gog+ h*g + goh* + h*- gh- g- h- go- (u2 + 2u); 

(d) A = G U G o u and G n G o u = 0, where go is a fixed element in the 

center Z(A), and g* = g if g E Z(A), g* = gs + g + s if g ~ Z(A). If the 

conditions are satisfied, then the ring and the group have the following 

properties: 

(i) gu + g + u ~ G, 

(ii) if x E A and x ~ G, then there exists g E G and u E A, such that 

x = gu + g+u; 

PROOF. We prove the sufficiency first. Since (A,+,·) is a nil alternative ring, 

then (A, o) is a Moufang loop by (Goo87]. To show that (A, o) is an RA loop, we 

just need to check that (A,o) = M(G,* , go). Since (G,o) is an RA group by (2) , we 

have 

(A,o) =GU(Gou),Gn(Gou) =0 

by the structure theorem of RA loops. Now we can check the three identities. For 

any g, h in G, 

• go (h o u)- (hog) o u = g · h o u + h o u + g- (hg + h + g)u- hg- h- g- u 

= g · hu + gh + gu + hu + h + u + g - hg · u - hu - gu - hg - h - g - u 

= g · hu + gh - hg · u - hg = 0 by (3). 

• (g a u) o h - (g o h *) o u = (gu + g + u )h + gu + g + u + h - gh* · u - gu - h *u -

gh" - g - h* - u = gu · h + gh + uh + h - gh" · u - h*u- gh"- h" = 0 by (3) . 

• (g o u) o ( h o u) - g0 o h * o g = (gu + 9 + u) o ( hu + h + u) - (go h * + go + h *) o 9 

= gu· hu+gu· h + gu · u+ g · hu + gh + gu+u · hu+uh +u2 + gu +g + u+hu+ h+u 

-goh"g - gog- h*g- goh* - go- h*- g = 0 by the assumption. 

Therefore, A= G U Go u and G n Go u = 0, and for any two elements g and hE G, 

we have 

go (h o u) = (hog) o u 

(g 0 u) 0 h = (g 0 h .. ) 0 u 

(g 0 u) 0 ( h 0 u) = 90 0 h * 0 g. 

By the structure theorem, (A, o) is an RA loop. 
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For the necessary part, note that if the circle loop of the ring A is an RA loop, 

then it must satisfy the above conditions. So the above equations hold. 0 

3. A restriction on the RA circle loop 

In this section we give another condition that an RA circle loop must satisfy. The 

result follows from the definition of RA loop and the definition of the circle loop. 

THEOREM IV.U. If RA loop (L, o) is the circle loop of a nil alternative ring A, 

then the abelian subgroup of A which is generated by the ring commutators of the ring 

A, denoted by ([A, A],+) , is an abelian 2-group. 

COROLLARY IV.12. The circle loop of any 2-torsion free nil alternative ring is 

not an RA loop. 

PROOF. For any element l E L, l o l is in the center of the loop by the properties 

of the RA loop. Since an RA loop is a Moufang loop, the loop is left alternative, and 

then we have the following: 

(x ox) o y =yo (x ox) = x o (x o y). 

Let us calculate the three expressions according to the circle operation. First 

( x o x) o y = ( x 2 + 2x) o y = x 2y + 2xy + x 2 + 2x + y; 

yo (x ox)= yo (x2 + 2x) = yx2 + 2yx + x2 + 2x + y; 

x o ( x o y) = x o ( xy + x + y) = x · xy + x2 + 2xy + 2x + y. 

From the first and the second ones, we have that: 

x 2 y + 2xy = yx2 + 2yx. 

Then x 2y- yx2 = 2(yx- xy), and 

[x2, y] = 2[y, x]. 

Then [y, x2] = 2[x, y]. Therefore, for any x andy, we have 

[x2 ,y] = 2[y,x]. 

This implies that 
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and 

[ 23 ] [ 22] 2 [ 2 ] 3 [ ] x ,y = 2 y,x = 2 x ,y = 2 y,x . 

In general we have the following formula: 

2n {2n(x, y] if n is even 
[x ,y] = 

2n[y, x] if n is odd 

Since (A,+,·) is a nil ring, for any x E A, there exist ann such that x2
n = 0. Then 

for any yEA, 

or 

In either case, we always have 

2n(x, y] = 0 

since [x, y] = -[y, x]. Therefore the subgroup generated by the subset [A, A] is a 

2-group. Since the loop L is not commutative, the ring A is not commutative. Thus 

[A, A] =f 0. So the subgroup is a nonzero 2-group. 0 
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CHAPTER V 

Alternative rings and Peirce decomposition 

In the last two chapters of this thesis we will study alternative rings of small order. 

In this chapter, we first recall some basic techniques to construct alternative rings 

on an abelian group, then give a lemma which will be used extensively in the next 

chapter: and finally, introduce a class of alternative group graded rings. 

1. Alternative rings and their matrix representations 

To check whether a given ring is alternative or not, using the matrix representation 

is more efficient than directly using its elements. For more information, we refer the 

reader to [KP69, Chapter II] and [Tos63]. 

Let A+ be a finite abelian group which is a direct sum of finite cyclic groups and 

let uo, u1, ... , Un be the generators of these cyclic subgroups with orders to, t 1, t2, 

... , tn, respectively; that is 

where Ui = 1 + (ti) E Z/(ti), i = 0, ... , n. If we use the following Cayley table to 

define the multiplication of the generators of the abelian group A+ 

* II uo U1 Uj Un 

uo Lk T[o][o][k]Uk Lk T[O][l][k]Uk Lk T[o](j][k]Uk Lk T[o][n][k]Uk 

Ul 2:k T[l](O](k]Uk Lk T[l](l][k]Uk Ek T[l](j](k]Uk Ek T[l][n][k]Uk 

Ui Ek 1[i][OJ[k]Uk Lk T[i][l][k]Uk 2:k T[i)(j](k]Uk Lk T[i][n][k]Uk 

Un 2:k T[n][OJ[k]Uk 2:k 7[o](l](k]Uk 2:k T [n}(j][k]Uk Lk T[n][n}[k]Uk 

where Tis a three dimensional array of size (n + 1) x (n + 1) x (n + 1), by [Bea48], 

the multiplication is well defined by using the table and distributive laws if and only 

73 
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if 

ti(LT[iJ[:;J[kJuk) = ti(LT[iJ[i](kJuk) = o, 
k k 

where i, j, k = 0, 1, ... , n . That is, the additive order of the product of any two 

elements in the basis is a divisor of the orders of the two elements. 

Let X = X[o]UO + x[I]Ul + .. . + X[n]Un be an element of the algebra. If we define 

the left transformation L(X) of X on the algebra A by 

L(X)(Y) = XY, 

for any Y = Y[o]Uo + Y[qu1 + · · · + Y[n]Un E A, then L(X) is a linear transformation. 

So, L(X) is fully determined by L(X)(uo) , L(X)(ur), . . . , L(X)(un)· If we define a 

matrix Mt (X) = [ aij) by the following: 

L(X)(uo) Xuo aoo ao1 

L(X)(ur) Xu1 alO an 
- -

L(X)(un) Xun a no anl 

where aii are elements in Zti and 

L(X)(ui) = Xui = L aikUk! 
k 

for i = 0, 1, ... , n, we have that 

uo 

a on uo 

a1n Ut 

ann Un 

Now let us find out the relationship between the aijS and the parameters in the 

Cayley table. Note that 

X Ui - c:L X[i]Uj )ui 
j 
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Therefore, 

j 

- L X[j] LT[i][i][k]Uk 
j k 

- 2)2:: X[j)T[j][i][kj)uk. 
k j 

j 

We know that A is associative if and only if (XY)Z = X(YZ), for any X, Y and 

Z E A. Expressed in another way, A is associative if and only if 

L(XY)(Z) = (L(X)L(Y))(Z), 

for any X, Y and Z E A. 

Assume Z = Z[o]uo + Z[t]Ut + · · · + Z[n]Un. Then 

uo 

(XY)Z = L(XY)(Z) = [ Z[o] Z[t] · · · Z[nJ] Mt(XY) Ut 

On the other hand, 

X(YZ) = (L(X)L(Y))(Z) = L(X)(L(Y)(Z)) 

uo 

Therefore, the algebra A is associative if and only if for any two elements X andY 

in A, 

Mt(XY) = Mt(Y)Mt(X). 

In particular, an algebra A is left alternative if and only if Mt(XX) = M 1(X)M1(X ) 

for any X EA. 
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Since we can easily determine the matrix from the algebra A, checking the equa­

tions of matrices is more efficient than checking the elements from A. 

As for the right alternative law, we can develop the matrix equation as above, 

and then check the right alternative law. We just record the results here. 

Let X= X[o]UQ + x(l]Ul + ... + X[nJUn be an element of the algebra. Then we 

can define a matrix Mr(X) = [bij} by the following form: 

= 

bon 

bln 

where bij are elements in Zti and 

for i = 0, 1, . .. , n. 

As for the relationship between the bijS and the parameters in the Cayley table, 

we have 

UiX = Ui(L X[jJUj) 
j 

= L xu1(uiuj) 
j 

= I: xliJ(L 1[iJfJHkJuk) 
j k 

= L(L X[j]T[i][jJ[kJ)Uk· 
k j 

Therefore, bik = L:i X[j]T(i][j)[k]• i, k = 0, 1, . .. , n. Then A is a right alternative ring 

if and only if Mr(XX) = Mr(X)Mr(X), for any X EA. 

From the above discussion, we get the following algorithm to construct an alter­

native ring which is not associative: 

1. define a Cayley table by fixing the three dimensional array T; 
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2. write a subroutine to take an X E A as input and output the matrices Mt(X) 

and Mr(X); 

3. compute the product of any two elements in the algebra A by using the matrix 

Mt(X); 

4. check the left and right alternative laws by using the matrices Mt(X) and 

Mr(X); 

5. use matrix multiplication to check whether or not the ring is associative; 

6. output the table 'I' if the table T determines an alternative ring which is not 

associative. 

2. More about Peirce decomposition 

By [Sch66, Proposition III 3.3], if a finite alternative ring R, or a finite dimen­

sional algebra R over a field, is not nilpotent, then it has a nonzero idempotent, e. 

For any x E R, we can write 

x = exe +(ex - exe) + (xe- exe) + (x- ex- xe + exe); 

thus, as an additive group, 

(V.l) R = Ru 9 Rto 9 Rot 9 Roo 

where ~i = {x E R I ex= ix,xe = jx} , i, j = 0, 1. The decomposition in (V.l) 

is called the Peirce decomposition of R and the additive subgroups R;_i the Peirce 

components of R. It is easy to check that x~i = 0 for Xij E R;_j and i # j and 

also to verify other multiplicative properties of the components which are recorded in 

the table below. (See [Sch66, III.2] for details.) For instance, the table shows that 

Ro1R10 ~ Roo and that R 11 and Roo are subrings of R. 

II Ru R10 Rol Roo 
Ru Ru Rto 0 0 

R10 0 .Rol Ru R10 
Rol Rol Roo R10 0 

Roo 0 0 Rol Roo 
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If A, B and Care subsets of a ring, we denote by [A, B, C] the set of all associators 

of the form [a, b, c], a E A, b E B, c E C, and write (A, B, C] = 0 if all associators 

of the form (a, b, c] are 0. In the next chapter, we will frequently be concerned with 

the possible associativity of an alternative ring with idempotent. Since the associator 

is linear in each argument, such a ring will be associative provided (A, B, C] = 0 

for each choice of A, B, C E {Rn: Rto , .Ro1, Roo}. Moreover, since the associator is 

an alternating function of its arguments, whenever (A: B, C] = 0, each of the six 

associators obtained by permuting A, B and C is also 0. 

\Ve list below the 20 possible associators of Peirce components (ignoring order 

of arguments), noting those associators which are always zero just by virtue of the 

way Peirce components multiply. First, we list the four associators involving three 

identical components, then the four involving distinct components, and finally the 

4 x 3 = 12 involving precisely two identical components. 

(Ru, Ru, Ru] 

[Ru, Rw, Rod= 0 

[R1o, Rw, RIO] 

[Ru, R10, Roo] = 0 

(Rol. Rot. Rod 
[Ru,Roi,Roo] = 0 

[Roo, Roo, Roo] 
[R10 , Ro1, Roo] = 0 

[Ru,Ru,Rto] = 0 

[R10, R10, Ru] 

[Roll Ra1. Ru] 
[Roo, Roo, Ru] = 0 

(Ru, Ru, Rod= 0 

[Rw, Rw, Rod 
[Ro1, Rob Rw] 

[Roo, Roo, Rw] = 0 

[Ru, Ru, Roo] = 0 
[Rw, RIO, Roo] 
[Ro1, R01 , Roo] 

[Roo, Roo, Rod = 0. 

Note that it is sometimes necessary to rearrange the order of the arguments 

to see why some of the above associators are zero. For instance, [R11 , Rw, Rod = 

-[Ru, R01, Rw] ~ -0 · Rw + Ru ·Roo = 0. 

The following lemma will be used extensively in the next chapter. 

LEMMA V .1. Let R be an alternative ring with a nonzero idempotent e and let 

R = Ru e R1o e Ro1 EB Roo be the corresponding Peirce decomposition. If any of the 

following conditions is satisfied, then R is associative. 

(a) Rn and Roo are associative and one of Rw, Ro1 is zero. 

(b) Ru and Roo are associative and both R10 and Ro1 are cyclic groups. 
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PROOF. As the remarks preceding the lemma indicate, it is sufficient to show that 

any associator of one of the following ten types is zero. 

[Ru, Rn, Ru} [R10, R10, Rw] 

(R1o, R10, Ru] 

[Ro1, Rot, Ru] 

(R10, Rw, Rot] 

(Rot, Rob R10] 

[Roo, Roo, Roo] 

(R10, R10, Roo] 

[Rot, Rot, Roo] 

In case (a) with R10 = 0, associativity follows from the following observations. 

• (Ru,Rn,Ru] =[Roo, Roo, Roo]= 0 since Ru and Roo axe associative; 

• [Rot, Rot, Rot} = 0 because Rij1 ~ R10 = 0; 

• [Ro1, Ro1, Rn] ~ 0 · Rn- Ro1 ·Rot ~ R10 = 0; 

• [Roi, Ro1, Roo]~ 0 ·Roo- Ro1 · 0 = 0. 

We know that any ring (R, +, ·) is anti-isomorphic to its opposite ring (R0 P, +, *), 

where (R0 P, +) = (R, +) and a* b = ba. If R has an idempotent, then this element 

is also idempotent in R0 P, R 11 and Roo axe the same in R and in R 0 P, and R 10 and 

Rot are interchanged. It follows that any ring with the structure of the second part 

of case (a)-Rol = G-is anti-isomorphic to a ring with the structure of the first 

part-R10 = 0. Thus such a ring is associative too. 

To establish associativity of the rings described by case (b), we note that 

(Ru, Ru, Ru] =(Roo, Roo, Roo]= 0 

because Ru and Roo axe associative and all other required associators are 0 because 

of Artin's Theorem and the fact that each of the additive groups R 10 and Ro1 is 

generated by a single element. 0 

3. Peirce decomposition and group graded rings 

Before starting an investigation of alternative rings, we exhibit a class of alterna­

tive group graded rings derived from the Peirce decomposition. Later on we can see 

that most of the alternative rings we find in the following chapter axe group graded 

rings, with the base rings associative, but the group graded rings are alternative but 

not associative. 

For the associative group-graded ring theory, we refer the reader to three basic 

papers [Dad80, CR83, CM84]. 
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DEFINITION V.2. Let R be a ring (not necessarily associative nor with unity) and 

let G be a group. We say that the ring R is group graded by a group G if R is a direct 

sum of Z-modules R 9 , i.e, 

such that 

R9 · Rh ~ Rgh 

for any g, hE G. Moreover, if we have 

R9 · Rh = R9h 

for any g, hE G, then we call ring R strongly group graded. 

Now we have the following result. 

PROPOSITION V .3. Let R be an alternative ring with an idempotent =f:. 0, 1. If 

the Peirce decomposition of R for this idempotent is 

R = Ra $ RIO $ Ro1 EB Roo 

and Roo = {0}, then R is a non-trivial group graded ring. The group is a cyclic group 

of order 3: 

and the Z-modules are 

or 

R1 = R11 , R9 = Ro1, R92 =RIO· 

Moreover, this group graded ring is not strongly group graded. 

PROOF. Following the Peirce decomposition of the ring and the assumption, we 

have 

Now set 

We have 

R = R1 EB R9 EB R9 2 . 
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Now let us check the definition of the group graded ring by using the properties 

of the Peirce decomposition. 

• R1 · Rt = Ru · Ru ~ Ru = Rt 

• Rt · R9 = Rn · R10 ~ R1o = R9 = Rt.9 

• Rt · R9 z = Ru · Rot ~ Roo = {0} ~ R1.9 2 

• R9 • Rt = R10 · Ru ~ Roo = {0} ~ R 9 

• R9 • R9 = Rw · Rw ~ Ro1 = R92 = R 9.9 

• R9 • R9 2 = R10 · Rot ~ Ru = Rt = R 9.92 

• R9 z · R9 =Rot· R10 ~Roo= {0} ~ Rt = R92.9 

• R92 • R92 = Rot · Rot ~ Rto = R9 = R92.92 

Therefore the ring is a group graded ring , and it is nontrivial because the idempotent 

is nontrivial. 

Since 

R1 · R92 ~Roo = {0} c Rt.9 2 

and 

R9 • R1 = Rto · Ru ~ Roo = {0} C R9 

and either Rto or Rot or both are nonzero, the ring is not a strongly group graded 

~ 0 
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CHAPTER VI 

Alternative rings of small order 

1. Introduction 

In this chapter we determine all the alternative rings having order pn, n ::; 5) and 

alternative algebras that have dimension n over a field with n ::; 5, cf [GZa]. None 

of these rings is a Cayley-Dickson algebra or alternative loop algebra. 

It is well known that the smallest Moufang loop which is not associative has order 

12 [CP71], and the smallest RA loop has order 16 (CG86]. In this chapter we show 

that the smallest alternative rings which are not associative have order 16. 

The Wedderburn principal theorem will be used in this chapter and we cite it here 

THEOREM VI.l. [Sch66, Theorem 3.18] Let A be a finite-dimensional alternative 

algebra over field F with radical Rad(A). If A/ Rad(A) is separable, then 

A = B +Rad(A) 

as direct sum of vector spaces over F, where B is an algebra isomorphic to A/ Rad(A) . 

2. Alternative rings of order pn, n ::; 4 

For a given ring R we let R+ denote the abelian group (R, + ). The following 

lemma tells us that only rings of prime power order need to be investigated. 

LEMMA VI.2. Let R be a finite ring. Then there is a ring decomposition 

where 

Rp; = {r E R I 3n, such that p~r = 0}. 

Let us cite a result of [GZa], which will be used later. 
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PROPOSITION VI.3. Let p be a prime. Any alternative nil ring of order pn, n $ 5, 

is associative. 

Throughout this section, p denotes a prime. Consideration of additive structure 

and Artin's Theorem imply that the only alternative rings of order p or p2 are as­

sociative. If an alternative ring has order p3 and it is nil, then it is associative by 

Proposition VL3; otherwise, it has a nonzero idempotent and at least one nonzero 

Peirce component. Using Lemma V.l, it is easy to see that such a ring must also 

be associative unless Ru = Zp $ Zp E9 Zp in which case R has 1 and Artin's theorem 

implies the associativity of the ring. 

Let R be an alternative ring of order p4 which is not nil. By [Sch66, Proposition 

III 3.3], we may assume that R has a nonzero idempotent, e. In view of Artin's 

Theorem, if R is not associative, then it must have additive structure ZP2 $ Zp $ Zp 

or Zp $ Zp E9 Zp $ Zp. 

Suppose R.r ~ Zp2 E9 Zp $ ZP' If R has a unity, then this element generates that 

component of R.r which is isomorphic to ZP2 and associativity easily follows from 

Artin's Theorem. If R does not have a unity, then e ¥= 1, so R11 is the direct sum of 

at most two cyclic groups; hence Ru is associative. Similarly, Roo is associative, so 

R is associative by Lemma V.l. 

It remains only to consider the case 

which we handle according to the four possibilities for Ru; namely, Ru ~ Zp $ Zp E9 

Zp E9 Zp, Zp E9 Zp EB Zp, Zp e Zp or Zp. 

Case 1. If R 11 ~ ZpEBZpE9Zp$Zp, then R = R11 is an algebra with unity over the 

field Fp of p elements. Any semisimple finite dimensional alternative algebra which 

is not associative contains a Cayley-Dickson algebra which is 8-dimensional over its 

center [Sch66, Theorems 3.12 and 3.17]. Clearly in our case then, the nil radical, 

Rad(R), of R is not 0; neither is it R. Thus dimRad(R) is 1, 2 or 3. Also, since we 

are working over finite and hence perfect fields, the Wedderburn Principal Theorem 

tells us that R = S + Rad(R). 



2. ALTERNATIVE RINGS OF ORDER pn, n :54 85 

Suppose dimR.ad(R) = 1. Let Rad(R) =(c) and let a,b E R. Since Rad(R) is 

an ideal of R, we have ca = ac and be = j3c for some a, j3 E Fp. Then [b, c, a] = 
(bc)a- b(ca) = j3ca- b(ac) = j3ac- aj3c = 0. It follows that R is associative. 

If dimR.ad(R) = 2, then R is the vector space direct sum of a two-dimensional 

semisimple algebra S and a nilpotent ring of order p2• The latter either has trivial 

multiplication or it is generated by a single element [KP69, Theorem 2.3.3]. Selecting 

a basis for R of the form {1, s, a, b}, s E S, a, bE Rad(R), and remembering Artin's 

theorem, it follows immediately that the associator of any three of these basis elements 

is 0, so R is associative. 

If dimR.ad(R) = 3, then R is associative because it is generated by 1 and an 

associative ring. 

Case 2. If Ru ~ Zp EB Zp EB Zp, then both R11 and Roo = 0 are associative and 

at least one of R10 or Rot is 0, so R is associative by Lemma V.l. 

Case 3. If Ru ~ Zp EB Zp, then again both R 11 and Roo are associative. Also 

R1o EB Ro1 is the direct sum of at most two cyclic groups. Again Lemma V.l assures 

us of associativity. 

Case 4. We treat the case R11 ~ Zp by considering the various possibilities for 

Roo- If Roo ~ Zp EB Zp EB Zp or Zp EB Zp or Zp, then Roo is associative, R10 EB Rot is the 

direct sum of at most two copies of Zp and Lemma V.l tells us that R is associative. 

Suppose Roo= 0. If either R10 or Rot is 0, then R is associative by Lemma V.l. 

Thus there are just two situations which require further study: 

Case 4a: Ru ~ Zp, Roo = 0, R10 ~ Zp, Rot ~ Zp EB Zp and 

Case 4b: Ru ~ Zp, Roo = 0, R10 ~ Zp EB Zp, Rot ~ Zp. 

In case 4a, let Ru = (e), R10 = (a) and Ro1 = (b) EB (c). The possible products 

amongst the elements e, a, b, care shown below, 

II e a b c 

e e a 0 0 

a 0 0 ie je 

b b 0 0 ka 

c c 0 ma 0 
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where i, j, k, m are integers. Since [e, a, bJ = [e, a, cJ = [a, b, c] = 0, in order to avoid 

associativity, we must have [e, b, c] = -ka i= 0. Therefore k i= 0. Since -ma = 
[e, c, b] = -[e, b, c], m = -k and since (ab)a = a(ba) and (ac)a = a(ca) , necessarily i = 
j = 0. It is now straightforward to check that these conditions define an alternative 

ring which is not associative. Replacing b by k- 1b, we may assume k = 1. 

Case 4b leads to rings anti-isomorphic to those of Case 4a since under the opposite 

operation, Ro1 and Rw are interchanged while Ru and Roo are unchanged. 

THEOREM VI.4. For any prime p, there are precisely two alternative nngs of 

order p4 which are not associative. They are anti-isomorphic. Neither has a unity, 

but both have a nonzero idempotent e. Each ring is a four-dimensional vector space 

over Fp with nil radical of dimension 3. With respect to a basis { e, a, b, c}, their 

multiplication tables are defined as follows: 

4/1: II e a b c 4/2: II e a b c 

e e a 0 0 e e 0 b c 

a 0 0 0 0 a a 0 0 0 

b b 0 0 a b 0 0 0 a 

c c 0 -a 0 c 0 0 -a 0 

Moreover, the two rings are group-graded rings. For 4/1, 

R = R1 ED R9 ED R9z, 

where R1 = Rn = Zpe, R 9 = R10 = Zpa and R9 z = Ro1 = Zpb ED Zpc, and g3 = 1. A 

similar result holds for 4/2. 

REMARK VI.5 . The above is a generalization of A. T. Gainov(Gai63] in which 

a more complicated way was used to obtain the result under the condition p :f: 2 and 

pi= 3. 

PROOF. First we show the tables determine two nonassociative alternative rings 

and then show that they are not isomorphic. 

We use the matrix representation to show that the ring 4/1 satisfies the left and 

right alternative laws. 

For the left alternative law, let 
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be an arbitrary element in the ring. From the table we have 

Then the left matrix can be determined by the left transformation: 

Xe1 
xo 0 X2 XJ e 

X a 0 xo 0 0 a 

Xb 0 -X3 0 0 b 

Xc.J 0 X2 0 0 c 

Therefore 

xo 0 X2 XJ 

Mz(X) = 0 xo 0 0 

0 -X3 0 0 

0 X2 0 0 

Similarly, for the element X 2 , we have 

X2e x2 
0 0 XOX2 XoX3 e 

X 2a 0 x5 0 0 a 
-

X 2b 0 -XoX3 0 0 b 

X 2c 0 XOX2 0 0 c 

Therefore 

x2 
0 0 XOX2 XOX3 

M1(X2 ) = 0 xa 0 0 

0 -XoXJ 0 0 

0 XoX2 0 0 

It is easy to check that 

x6 X2X3- X3X2 XOX2 XOX3 

0 x2 0 0 
M1(X)Mj(X) = 0 

0 -XoXJ 0 0 

0 XOX2 0 0 
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which is M 1(X2 ). Thus M 1(X)M1(X) = Mt(X2 ), and the ring is left alternative. To 

check it is a right alternative ring, we have 

eX xo XI 0 0 e 
a.}( 0 0 0 0 a 

-
bX 0 X3 xo 0 b 

eX 0 -X2 0 xo c 

Therefore 

xo Xt 0 0 

Mr(X) = 0 0 0 0 

0 X3 xo 0 

0 -X2 0 xo 

Similarly, for the element X2 , we have 

eX2 rx5 XoXt 0 0 e 

aX2 

l~ 
0 0 0 

= 
bX2 XQX3 x2 0 0 

cX2 -xox2 0 x2 
0 

a 

b 

c 

and 

x5 XoXt 0 0 

Mr(X2
) = 0 0 0 0 

0 x2 0 XQX3 0 

0 -XoX2 0 x6 

It is easy to check that 

x5 XoX1 0 0 

Mr(X)Mr(X) = 
0 0 0 0 

0 x2 0 XQX3 0 

0 -XoX2 0 x5 

Therefore, Mr(X)Mr(X) = Mr(X2) and the ring is right alternative. From the 

construction of the ring, we know it is not associative. In fact, we have e(bc) # (eb)c. 

So this ring is an alternative ring which is not associative. 
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Since 4/2 is anti-isomorphic to 4/1, the second ring is a nonassociative alternative 

ring. It remains only to remark that the two rings identified here are not isomorphic 

because a is a (nonzero) left annihilator in 4/l while 4/2 has no such element. In 

fact, in the second ring, assuming X = x0e + x1a + x2b + x3c is a left annihilator, 

then for any Y = yoe + Y1a + Y2b + y3c, 

XY = XQYoe + (XtYo + XJY2- x2y3)a + xoy2b + xoy3c = 0. 

Taking Yo = 0, Y2 = 0 and Y3 = l, we have XY = xoc - x2a = 0, so xo = 0 and 

x2 = 0. If we let Yo = 0, Y2 = 1, then x3 = 0. We can get x1 = 0 by taking Yo = 1. 

Thus X= 0. Therefore, there is no nonzero left annihilator in the second ring. 

The claim about the group-graded rings follows from Proposition V.3. 0 

REMARK VI.6. The tables given in this theorem (and elsewhere in this chapter) 

define alternative rings of many different orders and dimensions. The above tables, for 

instance, define alternative algebras of dimension four over any field (finite or infinite). 

They also define alternative rings with additive structure Zpn EB Zpm EB Zpr EB Zp3 

provided, for each x, y E { e, a, b, c}, the additive order of xy divides the additive 

orders of x andy. More generally, we have 

COROLLARY VI. 7. Let R be a ring with 

where n 0 , n 1, n 2 , n 3 are any integers with the property that 

then the following Cayley table gives us a nonassociative alternative ring: 

*lie a b c 
e e 0 b c 

a a 0 0 0 

b 0 0 0 -a 

c 0 0 a 0 

Since the first example of an alternative ring is the Cayley numbers which is an 

algebra of dimension 8 the following corollary is interesting. 
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COROLLARY VI.8. The smallest alternative algebras over the field of real numbers 

are the two algebras with the above Cayley tables 4/1 and 4/2. 

PROOF. Because there are no nilpotent alternative algebras of dimension 4 [Bad84, 

Corollary 1], the alternative algebras have non-zero idempotents. Therefore the above 

algebras are of the smallest dimension. 0 

3. Alternative rings of order p5 

Throughout this section, p denotes a prime and R is an alternative ring of order 

p5 which is not associative. Since there are no nil rings of this order which are not 

associative by Proposition VI.3, we also assume that R has a nonzero idempotent. 

Again we denote the additive group of R by R+· By Artin's Theorem, there are 

four possibilities for the structure of ~. 
R+ ::: Zp EB Zp E9 Zp E9 Zp E9 Zp; 

R+ ::: Zp2 EB Zp E9 Zp $ Zp; 

~ "'Zp2 EB ~2 E9 Zp; 

~ ::: Zp3 EB Zp ffi Zp. 

Suppose R+ 3:; ~2 $ ZP2 E9 Zp or R+ ::: ~3 E6 Zp EB Zp. 

If R has a unity, we may assume this is the generator of a cyclic component of 

highest order. Associativity then follows immediately from Artin's Theorem. If R 

has an idempotent e which is not a unity, then Rn :f: 0 and so at least one of Roo, 
R 10 , Rm must be 0 since there are only three summands in the decomposition of~ 

but four components in the Peirce decomposition. 

If Roo = 0, then R = R 11 E9 RIO E9 R01. By the uniqueness of the decomposition of 

a finite abelian group, each Peirce component of~ is the sum of one or more of the 

three cyclic subgroups in the decomposition of R+· Now R11 is the sum of at most 

two of these subgroups since e is the unity of R11 and R has no unity. Therefore, R11 

is always associative. If R11 is the sum of two cyclic subgroups, then one of R 10 , Ro1 

is 0 and R is an associative ring by part (a) of Lemma V.l. If R 11 is cyclic and one 

of RIO, Ro1 is the sum of two cyclic subgroups, then the other must be 0 and again 

R is associative. There remains the case in which each Peirce component is a cyclic 

group, but now part (b) of Lemma V.l shows that R is associative. 
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If Roo =I= 0, one of R1o, Rot must be 0 and Roo is associative because it is the 

direct sum of at most two cyclic groups. By Lemma V.l, R is associative. 

It remains to consider the possibilities that ~ ~ Zp EB Zp $ Zp $ Zp $ Zp or 

~ ~ Zp2 E9 Zp $ Zp $ Zp and we do so according as R has a unity or an idempotent 

e =I= 1. 

4. Alternative rings of order p5 with unity 

Suppose R+ ::! Zp2 EB Zp EB Zp EB Zp. Without loss of generality "42 is generated 

by 1. Assume the generators of the other cyclic components are a, b, c respectively. 

The set Ro = {x E R I px = 0} is a subring of R containing pl, a, band c, so it has 

order at least p4 and hence exactly p4 since R =f:. Ro. Noting that pl is a two-sided 

annihilator for Ro and that neither of the two alternative rings of order p4 described 

in Theorem VI.4 has such an element, Ro must be associative. Since every x E R can 

be written in the form x = al + xo, xo E Ro, it follows readily that R is associative 

too. 

In the remaining case,~ ~ ZpEBZp$ZpEBZpE9Zp is an algebra of dimension 5 over 

Fp, the field of p elements. Because every finite semisimple alternative ring which is 

not associative must contain an 8-dimensional Cayley-Dickson algebra, R must have 

a nonzero nil radical Rad(R), of dimension at most four. Thus the semisimple ring 

R/ Rad(R) also has dimension at most four; in particular, it is associative. Again the 

Wedderburn Principal Theorem tells us that R = S + Rad(R) with S =:= R/ Rad(R) 

and hence semisimple associative. 

Suppose first that S is a field. In this situation, we employ an argument of E. G. 

Goodaire. If S = Fp, R = Rad(R) + S must be associative since R is generated by 

1 and the associative algebra Rad(R). If S = Fp(t) is 4-dimensional, then Rad(R) is 

!-dimensional and R is associative by Artin's Theorem since it is generated by two 

elements and 1. If S = Fp(t) is 3-dimensional, then Rad(R) is a nilpotent associative 

ring of order p2• Any such ring either has trivial multiplication or it is generated by 

one element [KP69, 3.3.1], so again R is associative. If S = Fp(t) is 2-dimensional, 

then Rad(R) is nilpotent, associative of order p3 . Such rings have also been classified 

by Kruse and Price (KP69, 3.3.2]. As before, if Rad(R) has trivial multiplication 

or is generated by one element, then R is associative. This leaves three possibilities 
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for Rad(R) which require further investigation. In each case, we assume Rad(R) has 

basis {a, b, c} with c a two-sided annihilator; products not specified are 0. 

Case 1: a 2 = b2 = 0, ab = -ba = c; 

Case 2: a 2 = c, b2 = -yc, ab = ba = 0, r E Fp; 

Case 3: a 2 = ab = c, ba = 0, b2 = r.pc, cp E Fp. 

In case 1, we use the fact that (bt)a+ (ba.)t = b(ta) +b(at) which is a consequence 

of b(t + a)2 = [b(t + a}J(t +a)]. Remembering too that Rad(R) is an ideal, we have 

(bt)a + (ba)t =(ala+ a2b + a3c)a- ct = -a2c- ct 

whereas 

b(ta) + b(at) = b({31a + f32b + f33c) + b(f34a + f3sb + f35c) = -{31c- f34c 

(all ai, f3i E Fp) and conclude that ct = rc for some T E Fp. Thus 

(ct)t =ret= r 2c while ct2 = c(ko + k1t) = cko + k1rc 

('Yi, ki E Fp) and hence Tis a root of the polynomial x2 - k1x- ko, contradicting its 

irreducibility: recall that t2 = ko + k1t and t fl. Fp. 

In case 2, we have 

whereas 

a( at) = a(f31a + fhb + f33c) = f3Ic 

so a 1 = a2 = 0; that is ct = a3c. Then (ct)t = a~c while ct2 = c(ko + ktt) -

k0 c + k1a 3c so a3 is a root of x 2 - k1x- ko, a contradiction as before. 

Case 3 is virtually identical to case 2. Since 

whereas 

we again have a 1 = a 2 = 0; that is ct = a3c. Then (ct)t = a~c and ct2 = c(ko +ktt) = 
k0c + k1a 3c so a 3 is a root of x 2 - k 1x- ko , a contradiction. 
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If S is not a field, then it contains an idempotent e which is neither 0 nor 1. 

We use this idempotent to analyze the structure of R. Thus we have the Peirce 

decomposition R.r =Rue Rot E9 Rto EB Roo. 

Since e # 1, 1 - e E Roo # 0. If Roo ~ Zp e Zp, Roo ~ Zp EB Zp EB z,, or Roo ~ 4Zp, 
then R 10 EB Rot is the direct sum of at most two copies of Zp, so Lemma V.1 tells us 

that R is associative. 

Suppose Roo = Zp. If either R10 or Rot is 0, Lemma V.l says R is associative. If 

R 10 = (a) :::: Zp and Ro1 = (b) E9 (c) :::: Zp E9 Zp, the products of pairs of 1, e, a, b, c are 

as recorded below 

11
1 e a b c 

1 1 e a b c 

e e e a 0 0 

a a 0 0 xol + Xte Yol + Yte 

b b b 0 0 ka 

c c c 0 Ja 0 

where Xi, Yi, j, k E Fp . Since R is not associative, at least one of the associators [e, a, b] , 
[e, a, c], [e , b, c] and [a, b, c] must be nonzero. Since [e, b, a] = 0, so also 0 = [e, a, b] = 
ab-e(x0 1+x1e) = xol+xte-xoe-x1e = xol-xoe; thus xa = 0. Similarly, [e, c, a] = 0, 

so 0 = [e, a, c] = ac-e(yol +yte) = Yol +yte -yoe -y1e = yo1-yoe and Yo = 0. It is 

easy to check that (a, b, c] = 0, so [e, b, c] = - ka # 0. Since -ja = [e, c, b) = - [e, b, c], 

j = - k. Finally, x 1a = (ab)a = a(ba) = 0 and 0 = {ca}c = c(ac} = y1c implies 

x 1 = y1 = 0 and the multiplication table for a basis of R becomes 

11
1 e a b c 

1 1 e a b c 

e e e a 0 0 

a a 0 0 0 0 

b b b 0 0 ka 

c c c 0 -ka 0 
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where 0 # k E Fp. It is straightforward to verify that such a ring is indeed alternative 

{and not associative). Replacing b by k- 1b, we may assume k = 1. This gives the 

following table. 

II 1 e a b c 

1 1 e a b c 

e e e a 0 0 

a a 0 0 0 0 

b b b 0 0 a 

c c c 0 -a 0 

If Rw :::: Zp e Zp and Rot ~ Zp, the rings we obtain are anti-isomorphic to the 

rings just investigated. Thus we obtain one alternative (not associative) ring, with 

multiplication table 

II 1 e a b c 

1 1 e a b c 

e e e 0 b c 

a a 0 0 0 0 

b b 0 0 0 a 

c c 0 0 -a 0 

Changing to the basis {1, 1- e, a, b, c}, it is clear that this ring is identical to the 

previous. 

THEOREM VI.9. Up to isomorphism, there is just one alternative ring of order 

p5 which has a unity and is not associative. This is an algebra of dimension 5 over 

Fp with basis {1, e, a, b, c}, nil radical of dimension 3 and multiplication defined by the 

following table. 
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5/0: II 1 e a b c 

1 1 e a b c 

e e e a 0 0 

a a 0 0 0 0 

b b b 0 0 a 

c c c 0 -a 0 

This ring contains both 4/1 and 4/2 as anti-isomorphic ideals, with bases { e, a, b, c} 

and {1- e, a, b, c} respectively, and is the standard ring extension of 4/1 or 4/2 to a 

ring with a unity. Moreover, this ring is a group-graded ring as shown in Proposition 

V.3. 

PROOF. It remains only to show that the ring is the standard extension of 4/l. 

Let us recall the standard way to adjoin 1 to a ring that does not have 1 [Sch66, 

pll]. 

Let R be an alternative algebra over a field F. A new ring on the set F x R is 

defined by addition and multiplication as follows: 

(m,r) +(n,s) = (m + n,r+s); 

(m, r)(n, s) = (mn, ms + nr + rs), 

where r, s E R, m, n E F. 

Then the ring F x R is alternative with unity (1, 0) in which R is an ideal. 

We have shown that there are two alternative rings of order 16 and none has a 

unity. 

Now we follow the above process on the ring 4/1 to get the new alternative ring 

Zp X 4/1. 

It is easy to check that the following identity map of the basis elements implies 

the isomorphism of the two rings: 

1 t-+ 1, e t-+ e, a t-+ a! b t-+ b, c t-+ c. 

Since 4/1 is a group-graded ring, using that grading by adding 1 to R1 , it is easy 

to check this grading results in the group-graded ring 5/0. 

0 
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5. Alternative rings of order p5 possessing an idempotent e ::p 1 

Let us consider alternative rings of order p5 possessing an idempotent e which is 

not a unity. 

In this section, we will establish 12 tables. Any such table defines an alternative, 

but not associative ring. We leave the proof to Section 6. 

Recall that there are two cases to consider-Rt. ::::::: Zp EB Zp 9 Zp 9 Zp 9 Zp and 

~ ~ Zp29Zp$Zp9Zp. Let e ::P 0,1 be an idempotent and R = Ru EBR10EBRoiEBRoo 
the corresponding Peirce decomposition of R. 

Case 1: R-r ~ Zp ffi Zp EB Zp EB Zp EB Zp. We analyze this case in terms of the 

possibilities for Ru, which is the direct sum of at most four copies of Zp since e ::P 1. 

Since e is a unity for R 11 and alternative rings with unity and order at most p4 are 

associative, we know that R 11 is associative. 

If Ru is the direct sum of four copies of Zp, then Roo is 0 or Zp; in either case 

R is associative by Lemma V.l. If R11 is the direct sum of three copies of Zp, then 

Rn is associative and Roo is 0, Zp or Zp EB Zp. If Roo = 0, then R1o 9 Ro1 ""' Zp 9 Zp, 

so one of Rot, RIO is 0 or both are cyclic groups. In either case, R is associative by 

Lemma V.l. If Roo is isomorphic to Zp or Zp $ Zp, similar arguments again imply 

associativity. The complicated cases are those where R 11 is the direct sum of one or 

two copies of Zp. 

Case la: Ru = (e) EB (a) ~ Zp EB Zp is the direct sum of two copies of 

Zp· Here, Roo will be the direct sum of at most three copies of Zp. If Roo is not 0, 

Lemma V.l readily gives that R is an associative ring. The remaining case requires 

more thought. 

Suppose Roo = 0. Then RIO $ Ro1 ~ Zp $ Zp 9 Zp and, by Lemma V.1, we may 

assume that neither RIO nor Ro1 is 0. 

If R1o = (c) EB (d) ~ Zp $ Zp and Rot = (b) ~ Zp, the products amongst e, a, b, c, d 

are as shown in Table 1 with i, j , k and all Xi , Yi, Zi, ri, si in Fp. 

Since [e, c, d] = cd- e(jb) = jb- 0 = jb and [e, c, d] = -[e, d, c] = -de+ e(kb) = 
-kb, we must have k = - j. Since the only associators amongst {e, a, b, c, d} which 

are not automatically 0 are [e, c, d] = jb and (a, c, d] = -[d, c, a] = (dc)a - d(ca) = 
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TABLE 1. 

II e a b c d 

e e a 0 c d 

a a xoe + x1a 0 Yoc+ Y1d soc+ s1d 

b b ib 0 0 0 

c 0 0 zoe+ z1a 0 jb 

d 0 0 roe+ r1a kb 0 

kba - 0 = kib = -jib, we must have j -:rf 0. Replacing c by j-1c, we may assume 

j = 1 (and k = -1). 

Hi :f; 0, we can replace b by i-1b and assume i = 1. With respect to the basis 

{ e, a - e, b, c, d}, the multiplication table takes the form shown below for suitable 
f f f I I xi, Yi, zi, rz, 8 i· 

II e a-e b c d 

e e a-e 0 c d 

a - e a-e Xoe +X~ (a- e) 0 YoC + y~d SoC+ S~d 
b b 0 0 0 0 

c 0 0 z 1 e+z1 a 0 1 0 b 

d 0 0 r~ e + r~ (a - e) -b 0 

It follows that we may assume i = 0 in Table 1. In this case, all parameters except 

x 1 are fixed as the following calculations show. 

• ba2 = (ba)a = 0 => b(xoe + x1a) = xob = 0, so xo = 0; 

• 0 = c2d = c(cd) = cb =zoe+ z1a => zo = z1 = 0. 

• 0 = cflc = d(dc) = -db = -(roe+ r1a) => ro = r1 = 0; 

• d(a + c)2 = d(a2 + ac + ca + c2) = d(xoe + x1a) + d(yoc + Y1d) = -yob and 

(d(a + c))(a +c)= - b(a +c) = 0 ==> Yo= 0; 

• c(a + c)2 = c(a2 + ac + ca + c2) = c(xoe + x1a) + c(yoc + Ytd) = y1b and 

(c(a + c))(a +c)= 0 => Yl = 0; 
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• d(a + d)2 = d(a2 +ad+ da + ~) = d(xoe + Xta) + d(soc + Std) = -sob and 

(d(a + d))(a +d) = 0 ==> so = 0; 

• c(a + d)2 = c(a2 +ad+ da + ~) = c(xoe + Xta) + c(soc + s1d) = Stb and 

(c(a + d})(a +d) = b(a +d) = 0 ==> St = 0. 

At this point, our table is 

II e a b c d 

e e a 0 c d 

a a x 1a 0 0 0 

b b 0 0 0 0 

c 0 0 0 0 b 

d 0 0 0 -b 0 

Any such table defines an alternative ring. In any ring with x 1 # 0, we may assume 

x 1 = 1 by replacing a by x11a. Then, with respect to the basis {e - a,a, b, c, d} , we 

get the table 

II e - a a b c d 

e-a e-a 0 0 c d 

a 0 a 0 0 0 

b b 0 0 0 0 

c 0 0 0 0 b 

d 0 0 0 - b 0 

in which e - a and a are orthogonal idempotents. Not possessing orthogonal idempo­

tents, the ring with x 1 = 0 is not isomorphic to the ring with x 1 = 1. 

We have obtained two new rings which are alternative but not associative ( cf 

Section 6) , defined by the following tables. 
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5/1: II e a b c d 5/2: II e a b c d 

e e a 0 c d e e 0 0 c d 

a a 0 0 0 0 a 0 a 0 0 0 

b b 0 0 0 0 b b 0 0 0 0 

c 0 0 0 0 b c 0 0 0 0 b 

d 0 0 0 -b 0 d 0 0 0 -b 0 

If Rot "' Zp EB Zp and R10 "' Zp, the rings obtained are anti-isomorphic to the ones 

just described because under the opposite operation, Rot and R 10 are interchanged. 

Thus we get two more rings. 

5/3: II e a b c d 5/4: II e a b c d 

e e a b 0 0 e e 0 b 0 0 

a a 0 0 0 0 a 0 a 0 0 0 

b 0 0 0 0 0 b 0 0 0 0 0 

c c 0 0 0 b c c 0 0 0 b 

d d 0 0 -b 0 d d 0 0 -b 0 

Note that 5/2 (respectively 5/4) is the ring direct sum of 4/2 (respectively 4/1) 

and the one-dimensional algebra over Fp with basis a and a2 = a. 

Case lb: Rn = (e) 001! Zp. Here Roo is the direct sum of at most four copies of 

Zp . 

If Roo = 0, then Rot$ Rw ~ Zp $ Zp ffi Zp $ Zp· Moreover, we may assume 

Rot =F 0 and R10 =F 0 by Lemma V.I. 

If Rot= {a)£:: Zp and Rto = {b)9(c)${d} ~ ZpEBZpffiZp, we have a multiplication 

table of the form 

II e a b c d 

e e 0 b c d 

a a yob + YtC + Y2d 0 0 0 

b 0 xoe 0 zoa z1a 

c 0 Xt e z2a 0 z3a 

d 0 x2e z4a z5a 0 
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where the Xi, Yi and Zi are elements of Fp- The following arguments fix some of the 

parameters: 

• (ba}b = (xoe)b = xob and b(ab) = 0 ==> xo = 0; 

• {ca)c = {xte)c = x1e and e(ae) = 0 ==> x1 = 0; 

• (da)d = (x2e)d = x2d and d(ad) = 0 ==> x2 = 0; 

• ea2 = e(yob+y1e+y2d) = Yob+y1e+y2d and (ea)a = 0 ==> Yo = Yt = Y2 = 0; 

• [e, b, c] =be- e(zoa} =be= zoa and [e, b, c] = -[e, e, b] = -cb+e(z2a) = -cb = 
- z2a ==> z2 = -zo; 

• [e, b, d] = bd-e(bd) = bd-e(zta) = z1a and [e, b, d] = -[e, d, b] = -db+e(z4a) = 
-z4a ==> Z4 = -Zlj 

• (e,c,d] = cd - e(z3a) = z3a and [e,c,d] = - (e,d,c] = -dc+ e(zsa) = -zsa ==> 
Z5 = -z3. 

The table is now 

II e a b c d 

e e 0 b c d 

a a 0 0 0 0 

b 0 0 0 z0 a z1a 

c 0 0 -zoa 0 z3a 

d 0 0 - z1a -z3a 0 

and, since [e, a, b] = [e, a, c} = [e, a, d] = [a, b, c} = [a, b, d] = [b, c, d] = (a, c, d] = 0, to 

avoid associativity, one of z0 , z 1,z3 must be nonzero. Since {b,c,d} is a basis for R 1o, 

there is no loss of generality in assuming z0 =I= 0. Replacing b by z01b, we may assume 

that be = a and cb = - a. Finally, replacing { b, c, d} by { b + z1 e, c, d + Z3 b - z1 c} as 

basis for R10, we obtain 

II e a b + z1c c d + Z3b- Zt C 

e e 0 b+ z1c c d + Z3b- ZtC 

a a 0 0 0 0 

b + z1c 0 0 0 a 0 

c 0 0 - a 0 0 

d + Z3b - ZtC 0 0 0 0 0 
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which can be checked as follows: 

Since ea = 0, eb = b, ec = c and ed = d, we have the first row. The second row 

follows from the fact that a is a left annihilator. For the third row, we have: 

e (b + ZtC)e = 0; (b + Z1c)a = 0; (b + Ztc)2 = b2 + Zt(bc + cb) + (ztc)2 = 0; 

e (b + ZtC)C =a; (b + Ztc)(d + Z3b- ZtC) = Zta- Zta + ZtZ3a + ZtZ3( -a) = 0. The 

fourth row is obvious. For the fifth row, we have 

• (d + Z3b- z1c)e = (d + Z3b- ZtC)a = 0; 

• (d + Z3b- ZtC){b + ZtC) = -z1a + Z1 ( -z3a) + Z3Z1a- Zl (- a) = 0, 

• (d + zab - Ztc)c = -z3a + z3a = 0, 

e (d + Z3b- z1c)2 = ~ + Ztza(bc + cb} + Z3(bd +db) - Zt (de+ cd) + ZfCc = 0. 

After the obvious change of basis, it defines a new ring which is alternative, but 

not associative (cf Section 6). 

5/5: II e a b c d 

e e 0 b c d 

a a 0 0 0 0 

b 0 0 0 a 0 

c 0 0 -a 0 0 

d 0 0 0 0 0 

If Rm = (a) EB (b) ~ Zp E9 Zp and R10 = (c) EB (d) ::: Zp E9 Zp, we have the table 

II e a b c d 

e e 0 0 c d 

a a 0 xoc+ Xtd 0 0 

b b x2c+ xad 0 0 0 

c 0 x4e xse 0 yoa + Ytb 

d 0 X6e X7e zoa + z1b 0 

with all Xi , Yi, Zi in Fp. Observe 

• (ca)c = x4ec = X4C and c(ac) = 0 ===? x4 = 0; 

• (cb)c = xsec = xsc and c(bc) = 0 ===? x5 = 0; 

• (da)d = x sed = x sd and d(ad) = 0 => x6 = 0; 
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• (db)d = xred = xrd and d(bd) = 0 ==> xr = 0; 

• [e,a,b] = -e(ab) = -e(xoe+xtd) = -xoe-xtd and [e,a,b] = -[e,b,a] = 
e(ba} = e(x2e + x3d} = x2e + x3d ==> x2 = -xo and x3 = -x1; 

• [e, e, d) = cd- e(yoa + Y1b} = cd = yoa + Ytb and [e, c, d) = -[e, d, e] = -de+ 

e(zoa + ztb) =-de= -zoa- ztb =:> Yo= -zo and Yt = -z1. 

This gives the table 

II e a b e d 

e e 0 0 e d 

a a 0 Xoe + Xtd 0 0 

b b -xoc- x1d 0 0 0 

e 0 0 0 0 yoa + Ytb 

d 0 0 0 -yoa- Ytb 0 

Since 

• [e, a, b] = -xoc- x1d; 

• [e, e, d) = yoa + Ytb; 

• [e,a,c] = [e,a,d] = [e,b,e] = [e,b,d) = 0; 

• [a, b, c] = (xoe + Xtd)e = -x1 (yoa + Ytb}; 

• [a,b,d) = (xoc+xtd}d =xo(yoa+ytb); 

• [b, c, d) = -b(yoa + Ytb) = Yo(xoc + xtd); 

• [a, c, d) = -a(yoa + Ytb} = -yt(xoc + Xtd); 

in order to avoid associativity, either xoc + x1d or yoa + y1b must be nonzero. 

Suppose xoc+xtd # 0. Since (a+b+c) 2d = (a2 +b2 +2 +ab+ba + ac+ca +be+ 

eb)d = 0 while (a+ b + c)[(a + b + c)d] = (a+ b + c)(yoa + Ytb) = (Yl - yo)(xoc + Xtd) 

we must have Yo = Yt· On the other hand, since (a+ d)2c = 0 and (a+ d)[(a + d}c] = 
(a+ d)( -yoa- Ylb) = -yt(xoc + x1d) we know that Yl = 0. Now, replacing { c, d} by 

{xoc+xtd, d} as basis for R10 , we obtain the multiplication table for a new alternative 

ring which is not associative (cf Section 6). 
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5/6: II e a b c d 

e e 0 0 c d 

a a 0 c 0 0 

b b -c 0 0 0 

c 0 0 0 0 0 

d 0 0 0 0 0 

Similarly, if yo a + Yl b # 0, we obtain the ring defined by the following table. 

5/7: II e a b c d 

e e 0 0 c d 

a a 0 0 0 0 

b b 0 0 0 0 

c 0 0 0 0 a 

d 0 0 0 -a 0 

If Rot ~ Zp EB Zp E9 Zp and R10 ~ Zp, the rings are anti-isomorphic to those 

considered previously. We find one new ring (anti-isomorphic to 5/5). 

5/8: II e a b c d 

e e a 0 0 0 

a 0 0 0 0 0 

b b 0 0 a 0 

c c 0 -a 0 0 

d d 0 0 0 0 

If Roo ~ Zp, then R10 EB Rot ~ Zp EB Zp EB Zp· Any alternative ring with Rot = 0 

and Rw ~ Zp $ Zp EB Zp or with Rot ~ Zp 9 Zp EB Zp and R 10 = 0 is associative by 

part (a) of Lemma V.l. This leaves two cases. 

If Rot = (b) ~ Zp and Rto = (c) 9 (d) ~ Zp EEl Zp, we have a multiplication table 

of the following sort 
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II e a b c d 

e e 0 0 c d 

a 0 xoa X1b 0 0 

b b 0 0 x2a x3a 

c 0 x4c + xsd xse 0 ib 

d 0 X7C+ Xgd x 9e jb 0 

where i, j and all Xi are in Fp-

Of the ten possible associators of basis elements (order irrelevant), the only ones 

which are not automatically zero are [e, c, d] = cd- e(ib) = cd = ib and [a, c, d] = 

0- a(ib) = -ix1b. In order to avoid associativity, we must have i -1: 0. Moreover, 

since ib = [e, c, d] = -[e, d, c] =-de+ e(jb) = -jb, we have also j = -i. Replacing c 

by i-1c, we may assume i = 1, j = -1. 

Observe 

• (dc)d = (jb)d = -x3a and d(cd) = d(ib) = xge => x3 = xg = 0; 

• (cd)c = (ib)c = x2a and c(dc) = c(jb) = -x6e => x2 = xs = 0; 

• (ca)c = (x4c + xsd)c = xs(jb) = -xsb and c(ac) = 0 => xs = 0; 

• (da)d = (x7c + xsd)d = x7(ib) = x1b and d(ad) = 0 => X7 = 0; 

• (a+c) 2 d = (xoa+x4c+xsd)d = x4(ib) = x4b and (a+c)[(a+c)d] = (a+c)(ib) = 
x1b + xse = x1b ==> x1 = x4;. 

• (a+ d)2c = (xoa + X7C + xad)c = xs(jb) = -xab and (a+ d)[(a + d)c] -

(a+ d)(jb) = -(x1b + xge) = -x1b => x1 = xs. 

Set x1 = X4 = xs = k. Then 

and 

(a+ c)((a + c)a) = (a+ c)(xoa + kc) = x5a + xo(x4c + xsd) = x5a + xokc 

implies k 2 = xok. If k = xo = 0, we obtain 
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5/9: II e a b c d 

e e 0 0 c d 

a 0 0 0 0 0 

b b 0 0 0 0 

c 0 0 0 0 b 

d 0 0 0 -b 0 

which is the ring direct sum of 4/2 and the one-dimensional trivial algebra with basis 

a. If k = 0 and xo -=1 0 (without loss of generality, xo = 1), the ring is the direct sum 

of 4/2 and the one-dimensional algebra over Fp with basis a and a2 =a. This is the 

ring 5/2 already determined. If k -=1 0, then k = xo and we get the following table: 

II e a b c d 

e e 0 0 c d 

a 0 ka kb 0 0 

b b 0 0 0 0 

c 0 kc 0 0 b 

d 0 kd 0 -b 0 

For any element Y in this ring, it is easy to check that (ke + a)Y = kY and 

Y(ke+a) = kY, thus the element (1/k)(ke +a) is a unity and our ring is the unique 

ring identified in Theorem VI.9. 

If Ro1 ~ Zp E9 Zp and R10 ~ Zp, the rings obtained are anti-isomorphic to those 

just considered. We find one new alternative ring, 

5/10: II e a b c d 

e e 0 b 0 0 

a 0 0 0 0 0 

b 0 0 0 0 0 

c c 0 0 0 b 

d d 0 0 -b 0 

which is the ring direct sum of 4/1 and the one-dimensional algebra over Fp with 

basis a and trivial multiplication. 
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If Roo ~ Zp ffi Zp, then R1o e Ro1 ~ Zp e Zp and there are no alternative rings 

which are not associative, by Lemma V.l. 

If Roo ~ Zp ffi Zp EB Zp, then R10 and Rcn are either 0 or cyclic groups, so the 

ring is associative by Lemma V.l. 

If Roo ~ Zp ffi Zp EB Zp EB Zp, then the ring R =Roo eRn is a direct sum of a 

ring of order p and another of order p4 , and these cases have already been included 

in our enumeration. 

Examining all the rings determined in this section to this point, we see that they 

all contain one of the rings 4/1 or 4/2. In fact, assuming that the basis elements of 

4/1 or 4/2 are e, a, b, c with multiplication tables as defined in Theorem VIA, they 

are all extensions of one of these rings by a one-dimensional ideal generated over Fp 

by d. Specifically, they have the following structure ( e here indicating ring direct 

sum). 

5/1: 4/2 + Zpd, d?- = 0, ed = de = d, ad = da = bd = db = cd = de = 0; 

5/2: 4/2 E9 Zpd, Jl = d; 

5/3: 4/1 + Zpd, d?- = 0, ed =de= d, ad= da = bd =db= ed =de= 0; 

5/4: 4/1 e Zpd, Jl = d; 

5/5: 4/2 + Zpd, d?- = 0, ed = d, de= 0 =ad= da = bd =db= cd =de= 0; 

5/6: 4/1 + Zpd, d?- = 0, ed = d, de = 0 = ad = da = bd = db = ed = de = 0; 

5/7: 4/2 + Zpd, d?- = 0, de= d, ed =ad= da = bd =db= cd =de= 0; 

5/8: 4/1 + Zpd, d?- = 0, de= d, ed =ad= da = bd =db= cd =de= 0; 

5/9: 4/2 e Zpd, Jl = o; 
5/10: 4/1 EBZpd, ,P. = 0. 

Case 2: ~ ~ ZP2 EB Zp EB Zp EB Zp. Since R has no unity, R11 :f; R. If 

R 11 ~ Zp2 E9 Zp e Zp, then R 11 is an alternative ring of order p4 which is not an 

algebra over Fp, so it is associative by Theorem VIA. If R11 = Zp El1 Zp ffi Zp or 

Rn = Zp2 e Zp or R 11 = Zp E!1 Zp, it is also associative. In each of these cases, Roo is 

associative too and, if neither R10 nor Ro1 is zero, they are both cyclic groups. By 

Lemma V.1, R is associative. There remain the cases Ru ~ ~2 and R 11 ~ Zp· 

Case 2a: Ru = (e) ~ Zp2· If Roo ~ Zp e Zp or Zp e Zp E!1 Zp, then R 
is associative by Lemma V.l. If Roo ~ Zp, then R1o e Ro1 ~ Zp ED Zp and again 
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Lemma V.l says that R is associative. If Roo = 0, then R10 $ Ro1 ""Zp Ee Zp $ Zp, 

and, using Lemma V.l, there are just two situations in which there could exist a ring 

which is not associative. 

If Ro1 = (a} ~ Zp, R 10 = (b} EB (c} ~ Zp $ Zp the multiplication table for the basis 

of R looks like 

II e a b c 

e e 0 b c 

a a 0 0 0 

b 0 le 0 ja 

c 0 ke rna 0 

where i, j, k and rn are elements of Fp. Since [e, a, b] = [e, a, c] = [a, b, c] = 0 while 

[e, b, c] = ja, to avoid associativity, we must have j =F 0. Since rna = [c, b, e] = 
-[e, b, c], we have rn = -j. Since (a+ b)2a = (a2 + ab + ba + b2 )b = (ie)b = ib and 

(a+ b)[(a + b)b] = 0, we have i = 0. Since kc =(a+ c)2c =(a+ c)[(a + c)c] = 0, also 

k = 0. We now have the table 

II e a b c 

e e 0 b c 

a a 0 0 0 

b 0 0 0 Ja 

c 0 0 -ja 0 

and, without loss of generality, we may assume j = 1. We obtain another alternative 

ring which is not associative, with the following multiplication table for a basis. 

5/11: II e a b c 

e e 0 b c 

a a 0 0 0 

b 0 0 0 a 

c 0 0 - a 0 

If Rot ~ Zp $ Zp and R 10 ~ Zp, the rings determined are anti-isomorphic to those 

just discussed. We obtain one more ring, with multiplication specified as shown. 
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5/12: II e a b c 

e e a 0 0 

a 0 0 0 0 

b b 0 0 a 

c c 0 -a 0 

Case 2b: R 11 = {e) ~ Zp. In this case, if x E R 10 , then px = p(ex) = (pe)x = 
0; similarly, px = 0 for any x E Ro1. Thus Roo contains a subgroup isomorphic to ZP2. 

If Roo ~ Zp2 E9Z11 or Roo~ "42 E9ZpE9Z11, then the ring is associative by Lemma V.l. If 

Roo~ Zp2, then R10EBRo1 ~ Z11 E9Zp and, by Lemma V.l, any such ring is associative. 

THEOREM VI.lO. Let p be a prime. There are twelve alternative rings of order 

p5 which are not associative and do not have a unity. Of these, ten are 5-dimensional 

algebras over Fp with 4-dimensional nil radicals and two have additive structure Zp2 Ef) 

Zp E9 Zp Ef) Z11 with nil radicals which are 3-dimensional algebras over Fp. Moreover all 

the rings are group-graded rings with the grading as in Proposition V.3. 

PROOF. By the arguments above and the proofs in Section 6 and Section 7. 0 

Bearing in mind that any finite ring is the direct product of ideals each of which 

has prime power order, Theorems VI.lO and VI.4 make clear that we have found in 

this chapter all alternative rings of order less than 64. 

COROLLARY VI.ll. There are fifteen alternative rings of order less than 64 which 

are not associative. Two have order 16; thirteen have order 32. None is nilpotent. 

Only one, of order 32, has a unity. 

COROLLARY VI.12. None of the alternative rings of order pn, n :$ 5, is a Cayley­

Dickson algebra or an alternative loop algebra. 

PROOF. Note that both kinds of alternative rings mentioned have unities. From 

Theorem VI.4 and Theorem VI.9, only one ring of order p5 has a unity. By Theo­

rem VI.9, this ring is a Zp algebra, so it is not a Cayley-Dickson algebra because a 

finite Cayley-Dickson algebra over Zp has order p8 and it is not a loop algebra since 

the smallest RA loop has order 16 and then the loop algebra has order at least 216• 0 
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FIGURE VI.l. The fifteen alternative rings of order pn, n ~ 5. 
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FIGURE VI.2. The anti-isomorphism structure of the fifteen alterna­

tive rings of order pn, n $ 5. 
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6. The 12 rings of order p5 

Now let us check that the above 12 rings are really alternative rings, and moreover, 

they are not isomorphic to each other. 

Since 5/11 and 5/12 have the same tables as those of 4/2 and 4/1, respectively, 

and p2a = p2b = p2c = 0, these rings are alternative. 

Let us show that the remaining ten rings are alternative. From the figure, we just 

need to check 5/1, 5/2, 5/5, 5/7 and 5/9. Since 5/2 and 5/9 are ring direct sums 

of 4/2 and an associative ring, it remains only to show that 5/1, 5/5 and 5/7 are 

alternative rings. 

6.1. 5/1 is an alternative ring: Let 

be an arbitrary element in the ring. We check the left alternative law first. 

From the table we have 

Then the left matrix can be determined by the left transformation: 

Xe xo Xt X2 0 0 e 

X a 0 xo 0 0 0 a 

Xb 0 0 0 0 0 b 

Xc 0 0 - X4 xo 0 c 

Xd 0 0 X3 0 xo d 

Therefore 

xo Xt X2 0 0 

0 xo 0 0 0 

lvft(X) = 0 0 0 0 0 

0 0 - X4 xo 0 

0 0 X3 0 xo 
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Similarly, for the element X 2 , we have 

X 2e xij 2xoXI XQX2 0 0 e 

X 2a 0 xij 0 0 0 a 

X 2b - 0 0 0 0 0 b 

X 2c 0 0 -XoX4 xij 0 c 

X 2d 0 0 XoX3 0 x2 
0 d 

Therefore 

xij 2xoxi XOX2 0 0 

0 2 xo 0 0 0 

Ml(X2) = 0 0 0 0 0 

0 0 -xox4 x2 
0 0 

0 0 XOX3 x2 
0 0 

It is easy to check that 

ML(X)ML(X) = Ml(X2
) . 

Thus the ring is left alternative. To check it is a right alternative ring, we have 

eX xo XI 0 X3 X4 e 

aX 0 xo 0 0 0 a 

bX - 0 0 xo 0 0 b 

eX 0 0 X4 0 0 c 

dX 0 0 -X3 0 0 d 

Therefore 

xo X1 0 XJ X4 

0 xo 0 0 0 

Mr(X) = 0 0 xo 0 0 

0 0 X4 0 0 

0 0 - X3 0 0 
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Similarly, for the element X 2 , we have 

eX2 x5 2xoxt 0 XQX3 X~X41 e 

aX2 0 x5 0 0 a 

bX2 - 0 0 x2 0 

~ J 

b 0 

cX2 0 0 XOX4 0 c 

dX2 0 0 -XoX3 0 d 

and 

rx' 
2x0x 1 0 XOX3 XOX4 

M,(X2 ) = ~
0 

x2 0 0 0 0 

0 x2 0 0 0 

l~ 
0 XOX4 0 0 

0 -XoX3 0 0 

It is easy to check that Mr(X)Mr (X) = Mr(X2 ) and then, the ring is right 

alternative. From the construction of the ring, we know it is not associative. So this 

ring is an alternative ring which is not associative. 

6.2. 5/5 is an alternative ring: Let 

be an arbitrary element in the ring. We check the left alternative law first. 

From the table we have 

Then the left matrix can be determined by the left transformation: 

Xe xo X1 0 0 0 e e 

X a 0 0 0 0 0 a a 

Xb - 0 -X3 xo 0 0 b = Ml(X) b 

Xc 0 X2 0 xo 0 c c 

Xd 0 0 0 0 xo d d 
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Similarly, for the element X 2 , we have 

X 2e x2 
0 XQXl 0 0 0 e e 

X2a 0 0 0 0 0 a a 

X 2b - 0 -XoX3 x2 
0 0 0 b = M1(X2

) b 

X 2c 0 XQX2 0 x2 
0 0 c c 

X 2d 0 0 0 0 x6 d d 

It is easy to check that 

M1(X)Ml(X) = M1(X2
). 

Thus the ring is left alternative. To check it is a right alternative ring, we have 

eX 

aX 

bX - 0 

eX 0 

dX 0 

0 

0 

0 

Similarly, for the element X 2 , we have 

aX2 0 

bX2 - 0 

cX2 0 

dX2 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

e e 

a a 

b = Mr(X) b 

c c 

d d 

e e 

a a 

c c 

d d 

It is easy to check that 1\.fr(X)Mr(X) - Mr(X2 ) and then, the ring is right 

alternative. From the construction of the ring, we know it is not associative. So this 

ring is an alternative ring which is not associative. 

6.3. 5/7 is an alternative ring: Let 

be an arbitrary element in the ring. We check the left alternative law first. 
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From the table we have 

Then the left matrix can be determined by the left transformation: 

Xe xo XI X2 0 0 e e 

X a 0 0 0 0 0 a a 

Xb - 0 0 0 0 0 b = Mt(X) b 

Xc 0 -X4 0 xo 0 c c 

Xd 0 XJ 0 0 xo d d 

Similarly, for the element X 2, we have 

X 2e x2 
0 XQXI XQX2 0 0 e e 

X 2a 0 0 0 0 0 a a 

X 2b - 0 0 0 0 0 b = Mt(X2
) b 

X 2c 0 -XOX4 0 x5 0 c c 

X 2d 0 XQX3 0 0 x5 d d 

It is easy to check that 

Mt(X)Mt(X) = Mt(X2
). 

Thus the ring is left alternative. 

To check it is a right alternative ring, we have 

eX xo 0 0 X3 X4 e e 

aX 0 xo 0 0 0 a a 

bX - 0 0 xo 0 0 b = Mr(X) b 

eX 0 X4 0 0 0 c c 

dX 0 -X3 0 0 0 d d 
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Similarly, for the element X 2 , we have 

xa 
0 

0 

0 

0 

0 

xij 
0 

0 

xij 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

e 
a 

c 

d 

e 

a 

c 

d 

It is easy to check that Mr(X)Mr(X) = Mr(X2 ) and then, the ring is right 

alternative. From the construction of the ring, we know it is not associative. So this 

ring is an alternative ring which is not associative. 

7. The 12 rings of order 32 are distinct alternative rings 

For p = 2, we use machine computation to get the number of elements of square 0, 

the number of idempotents, the number of left unities, the number of left annihilators, 

the number of right unities, the number of right annihilators, and the number of 

elements that commute with all elements in the ring. From 5/1 to 5/10 the vectors 

of the above special elements are: 

1. [9, 9, 0, 1, 0, 2, 2] 

2. [18, 18, 0, 1, 0, 2, 2] 

3. [9, 9, 0, 2, 0, 1, 2] 

4. [8, 18, 0, 2, 0, 1, 2] 

5. [17,17,0,2,0,2,1] 

6. [17,17,0,4,0,1,1] 

7. [17, 17, 0, 1, 0, 4, 1] 

8. [17, 17, 0, 2,0, 2, 1] 

9. [9, 9, 0, 2, 0, 4, 2] 

10. [9, 9, 0, 4, 0, 2, 2]. 

Note that only 5/5 and 5/8 have the same vectors so we have only to show that 

these two rings are not isomorphic. From 5/5 and the vector we know that the ring has 

only one nonzero left annihilator d, and Z2d is an ideal of the ring with quotient ring 

4/2. While from 5/8 and the vector we know that the only nonzero left annihilator 

is a and Z2a is an ideal of the ring. But the quotient ring is 
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II e b c d 

e e 0 0 0 

b b 0 0 0 

c c 0 0 0 

d d 0 0 0 

which is an associative ring. So 5/5 and 5/8 are not isomorphic. 

Therefore the ten rings are not isomorphic. Because 5/11 and 5/12 are not Z2 

algebras, and the two are distinct, the 12 rings are not isomorphic to each other. 

8. Right alternative rings which are not left alternative 

In this section, we exhibit a class of right alternative rings which are not left 

alternative. These rings have order p4 or are of dimension 4 over a field. 

THEOREM VI.l3. The following table gives us a right alternative but not left 

alternative algebra over any field (note that the table differs from 4/1 only in that 

ea =a): 

II e a b c 

e e 0 0 0 

a 0 0 0 0 

b b 0 0 a 

c c 0 -a 0 

PROOF. Since (e + c)2b = -a and (e + c)((e + c)b) = 0, the algebra is not a 

left alternative algebra. We use the matrix representation to show that it is right 

alternative. 

For any element X = xoe + x1 a + x2b + x3c in the ring, we have 

eX xo 0 0 0 e 

aX 0 0 0 0 a 
-

bX 0 X3 xo 0 b 

eX 0 -X2 0 xo c 
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Therefore 

xo 0 0 0 

Mr(X) = 0 0 0 0 

0 X3 xo 0 

0 -X2 0 xo 

Similarly, for element X 2 = xije + XQX2b + XQXJC, we have 

eX2 x2 
0 0 0 0 e 

aX2 0 0 0 0 a 
-

bX2 0 XQX3 2 xa 0 b 

cX2 0 -XoX2 0 xij c 

and 

xij 0 0 0 

Mr(X2) = 
0 0 0 0 

0 x2 0 XQX3 0 

0 - XaX2 0 xij 

It is easy to check that Mr(X)Mr(X) = Mr(X2). So the ring is right alternative. 0 

REMARK VI.l4. The opposite rings of rings in the above theorem are left alter­

native but not right alternative. 
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