
CENTRE FOR NEWFOUNDLAND STUDIES 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author's Pem1ission) 





r 
I 
I 



AN INNOVATIVE METHOD FOR IMPROVEMENT OF 

ROBOTIC SIMULATION CYCLE TIME ACCURACY 

by 

© Nenad Apostolovic, B.A.Sc. 

A thesis submitted to the 

School of Graduate Studies 

In partial fulfillment of the 

Requirements for the degree of 

Master of Engineering 

Faculty of Engineering and Applied Science 
Memorial University of Newfoundland 

January 2003 

St. John ' s, Newfoundland, Canada 



1+1 National Library 
of Canada 

Bibliotheque nationale 
du Canada 

Acquisitions and 
Bibliographic Services 

Acquisisitons et 
services bibliographiques 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

The author has granted a non­
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this dissertation. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
dissertation. 

Canada 

Your file Votre reference 
ISBN: 0-612-89686-2 
Our file Notre reference 
ISBN: 0-612-89686-2 

L'auteur a accorde une licence non 
exclusive permettant a Ia 
Bibliotheque nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
Ia forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique. 

L'auteur conserve Ia propriete du 
droit d'auteur qui protege cette these. 
Ni Ia these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou aturement reproduits sans son 
autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ont ete enleves de ce manuscrit. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Robotic simulations can be classified into two groups - ones provided by the 

robot manufacturers and the "generic" ones provided by the simulation software 

companies. Both types have advantages and disadvantages with respect to cost, accuracy, 

functionality and integration with other virtual manufacturing tools. 

Improvement of motion accuracy is one area of significant development of 

"generic" robotic simulations. Upon completion of the RRS I ("Realistic Robotic 

Simulation") project, it finally became possible to use original motion and kinematics 

algorithms, which minimized differences between the simulated motion and real motion. 

However, RRS I Specification has several serious drawbacks. Not many robot 

manufacturers provide modules, functionality is limited and the price is high. 

Presented material proposes a new method for improvement of simulation motion 

time accuracy. The method is based on the assumption about the existence of factors , 

whose influence on motion time of the real robot can be identified and incorporated 

through correction factors into the simulation motion model. 
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Chapter 1 

Introduction 

1.1. Simulation 

The complexity of many present-day systems, such as transportation systems, 

manufacturing systems, military systems is so high that successful design and 

implementation would be impossible without a tool such as simulation. Used in all stages 

of product/system development, simulation provides invaluable answers to many critical 

questions about the system. 

A key benefit of using simulation is that a model of the real system, rather than 

the system itself is tested. In other words, a system can be designed and tested before it is 

built. The benefit of this approach is that the simulated system can be built "right the first 

time" with minimum (if any) problems. 

At the same time, using the model of a system rather than the system itself 

represents the main weakness of simulation. For example, data used for building a model 

may be invalid, results of the analysis might be hard to understand or a proposed solution 

might not be the right one [ 1]. 

Yet, with the advantages and disadvantages mentioned, simulation has proven to 

be a valuable tool for design, analysis and control of complex present-day systems. 
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1.2. Robotic Simulation 

The basic purpose of a robotic simulation is to provide a simulation of the actions 

performed by one or more robots and their interaction with other equipment in the work 

cell. Robotic simulation is one of the fundamental components of "virtual 

manufacturing", which itself represents a foundation for a new approach in the process of 

product design and manufacturing- concurrent engineering. 

Typical applications of a robotic simulation include [2]: 

1) Presentation purposes - a model of a work cell can be easily created for the 

purposes of concept verification and concept or marketing presentation, 

2) Engineering purposes - design and verification of a work cell layout, verification 

of kinematic reach, path verification, singularity check, collision detection, 

3) Offline programming purposes - involves the creation of a robot program using 

robotic simulation, verification of a created program, and its subsequent export 

into a proper format accepted by the targeted robot controller, 

4) Process analysis and ergonomics analysis - includes throughput analysis using 

discrete-event simulation resulting in estimate of work cell capacity and cycle 

time. 

Robotic simulation, just like any other simulation, uses a model of a system for testing 

possible scenarios rather than the system itself. Regardless of whether the analysis is 

performed on models of existing or non-existing systems, savings in time and material 

achieved by using simulation are significant (more details provided in Chapter 2). 
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1.3. Realism of Robot Simulation 

The fundamental problems associated with simulation that were mentioned in 

section 1.1 can also be applied to robotic simulation. The following set of errors has been 

identified as important with respect to robotic simulation ([3, 4, 5, 6]): 

1) Geometric errors - this type of error is based on the differences between an ideal 

CAD model and the real world model, 

2) Dynamic errors - represent differences in motion behavior between the simulated 

and the real robot. Errors are a result of forces and torques not taken into account, 

which can significantly influence motion, 

3) Thermal errors - thermal expansion due to factors such as friction in joints or 

temperature of environment. Typically, this type of error is not taken into account, 

4) System errors- such as gear backlash and poorly tuned servos, 

5) Motion behavior errors - occur due to the difference between the original robot 

controller motion algorithms and algorithms provided by the robotic simulation 

companies. This type of error results in incorrect cycle times and differences 

between the simulated and the real-world trajectory shapes. 

Geometric errors, as well as system errors can be minimized relatively easy 

through the process of robot calibration. On the other hand, dynamic errors are very hard 

to detect. Although compensation of these errors is possible, establishment of a correct 

model is difficult and computationally expensive [ 4]. 
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1.4. Motion Accuracy 

Robotic simulations can be classified into two groups - "generic" robot 

simulations and robot simulations provided by the robot manufacturers. Both types of 

robotic simulations have their advantages and disadvantages. The simulations provided 

by the robot manufacturer have a high level of motion accuracy, because the simulation 

contains the same motion and path planning algorithms as the real robot. The key 

disadvantage is that typically there is no support for robots from other manufactures, as 

well as poor integration with other simulation tools. 

On the other hand, generic robotic simulators typically contain libraries of robots 

from different manufacturers [7]; however the same motion and kinematics algorithms 

are applied to every robot regardless of the robot manufacturer [8]. In other words, a 

simulated work cell and a real-world work cell could show quite different behaviors with 

respect to cycle times and actual motion trajectories [ 4]. 

One possible solution to the problem is to develop a simulation motion model that 

is based on dynamics. However, the problems associated with the dynamics-based motion 

model are numerous. A dynamics model is typically of high complexity, computationally 

expensive and requires that a range of new parameters to be known prior to the 

computation [9, I 0]. 

Another solution to the problem is to use the original controller software in the 

simulation systems; however it was not always possible to do so [9, 11], since the 

controller related information was kept confidential by robot manufacturers. 
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1.4.1. RRS Specification 

In order to solve the problem of motion accuracy, a consortium of companies from 

the automotive industry, simulation industry, and industrial robot manufacturers was 

created in 1991 [ 6, 8]. The purpose of this consortium was to find an optimum solution 

for the problem described in section 1.4. The solution was found in the mid 1990s in the 

form of the RRS I Specification (RRS stands for "realistic robot simulation"). The RRS I 

specification defines a standard interface so that "the original software for motion 

interpolation and transformation of real controllers could be integrated in simulation 

systems in a standardized manner" [ 6]. In other words, an interface provides 

communication (figure 1.1.) between the simulation software and a module ("RCS 

module" - RCS stands for "realistic controller simulation"), which contains original 

motion and kinematics algorithms [9]. 
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Figure 1.1 RRS Architecture 
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The RRS I Specification proved to be a success in several ways: 

1) Targeted accuracy of cycle times was within± 3% of actual cycle time, however, 

in some cases the achieved accuracy was within ± 1% [ l 0], 

2) Targeted positioning accuracy was 0.00 l radians. Implemented RCS modules 

achieved accuracy of0.00005 radians [10], 

3) It became possible to have two or more robots of different manufacturers in a 

generic robot simulation, and to be sure that motion and kinematics algorithms 

were accurate. 

The RRS I specification has limitations, such as no support for signaling, robot 

applications, interrupt handling, and motion coordination [8]. With these limitations in 

mind the consortium is currently working on a new specification. The purpose of the new 

specification (RRS II) is to overcome these limitations. RRS II introduces a new approach 

to the robotic simulation - robotic simulation consists of two separate entities, i.e. a 

simulator and a new type of RCS module. The purpose of a simulator is to provide a user 

interface and a graphical representation of the simulated work cell, while the RCS module 

represents the actual engine of the simulation. New RCS modules contain not only 

kinematics and motion algorithms, but they also contain input/output handling 

procedures, file system handling, interrupts, and motion synchronization [I I]. In other 

words, the new RCS modules represent virtual robot controllers [12]. 
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1.5. Contributions of the Thesis 

Although the RRS I Specification proved to be a success, there are some serious 

drawbacks: 

1) Although the RRS I Specification defines an interface that has 57 functions, 

several important issues mentioned in section 1.4 yet remain to be addressed 

by the new RRS II specification, 

2) In order to conduct a more accurate simulation, the user needs to purchase an 

RCS module from the robot manufacturer, which can be a costly investment, 

3) Not many robot manufacturers provide RCS modules, 

4) RCS modules typically do not provide full functionality defined by the RRS I 

Specification. 

Basically, only customers who really have a need for accurate simulation are the 

ones who will purchase the RCS module. A typical example is the automotive industry. 

Alternatively, for a small sized company that utilizes one or two robots, a highly accurate 

cycle time is of not primary concern. Yet, it is important to know approximately how 

much time certain operations might take. 



8 

The method presented in this thesis proposes a new approach to improve the cycle 

time accuracy of a robotic simulation without using the RCS modules and without using 

the dynamics motion model. This approach is based on the facts that: 

1) Usage of motion and kinematics algorithms provided by the genenc robotic 

simulation companies will rarely result in either an accurate estimate of simulation 

cycle time or in an accurate shape of a trajectory [9], 

2) The original motion algorithms and kinematics algorithms will remam 

confidential, 

3) Dynamics-based motion models are highly complex, computationally expensive, 

and still do not guarantee accurate simulation motion time. 

A valid hypothesis that can be made about the motion time of the real robot is that 

there exists a set of factors that influence the motion time. Each of these factors affects 

the cycle time to a certain extent. The basic goal of this research is to verify the 

hypothesis about the existence of the influential factors and subsequently, to determine 

the level of their influence. If the hypothesis proves to be correct, then the next goal 

would be to find a way to integrate these influences into the existing simulation motion 

model so that simulation motion time accuracy is improved. 
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1.6. Thesis Summary 

Chapter 2 provides an overview of simulation, as well as robotic simulation in 

particular. The overview includes a description of the role that robotic simulation has in 

the process of product design, types of robotic simulation and the benefits of using 

robotic simulation. Target areas of application such as marketing, engineering, offline 

programming, and process analysis are explained. 

Chapter 3 provides a detailed description of the robotic simulation structure. 

Modules described include: CAD module, CAD data translators, built-in libraries for 

robots and supporting equipment, motion trajectory generator, kinematics module, and 

offline programming module. 

Chapter 4 contains detailed mathematical descriptions of two analytical simulation 

motion models, one based on constant acceleration and the other one based on linear 

acceleration. For each stage/sub-stage of motion, a set of equations is derived for 

parameters such as travel time and travel distance. 

Chapter 5 contains a description of the testing procedure for the two parameters 

that were tested, as well as the experimental results. 

Chapter 6 includes conclusion and suggestions for future work. 
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Chapter 2 

Robotic Simulation 

2.1. Simulation 

A simulation can be defined as "the imitation of the operation of a real-world 

process or system over time" [1], or as "the imitative representation of one system or 

process by means of functioning of another" [ 13]. It provides answers related to the 

performance of the existing system, evaluation of alternative solutions, and the quality of 

the design solution for a system that is to be built [ 1]. 

A typical simulation study is a process with several stages [I] : 

1) Problem formulation - a clear understanding of the problem must exist, 

2) Setting of objectives and overall project plan through an official proposal - the 

proposal has to define the objectives clearly, as well as stages of investigation and 

personnel that will be involved, 

3) Model conceptualization - mathematical and logical representation of a real-world 

system, 

4) Data collection - acquisition of real-world system data, 

5) Model translation - creation of a computer model of a real-world system, 

6) Verification - performance verification of the computer model, 
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7) Validation- validation of the model's accurate representation of a real-world system, 

8) Experiment design -a decision on the number and duration of trial runs, 

9) Production run and analysis 

1 0) More runs - optional and based on the results from stage 9. 

11) Documentation and reporting 

12) Implementation - clients are introduced to the results of the simulation 

It is apparent that that the most important aspect of any simulation study is the 

modeling of the real-world system, and this represents one of the greatest benefits of 

using a simulation. The model, rather than the real-world system itself, is used to prove 

the concept, to test new ideas and new features and to compare alternative solutions [14]. 

Finally, testing of a model saves both money and time. This is especially true in case of 

large and complex systems. 

A simulation can be used both before and after the real-world system is built, 

however its application is most effective during the product's design stage. In the case of 

manufacturing, the use of simulation has become an integral part of concurrent 

engineering. Concurrent engineering represents a relatively new approach [ 15] in the 

product development. Unlike the traditional product development that is a sequential 

process with mutually isolated sequences, concurrent engineering is a parallel process, i.e. 

the product development activities are happening at the same time at several different 

levels, such as design, manufacturing, process analysis, etc. This "parallelism" provides 

early detection of problems associated to different aspects of the product, and in turn 
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provides a significant reduction of costs that would appear if the problems were detected 

at a later stage (figure 2.1.). 

Cost 

Time 

Figure 2.1 Cost-time Problem Detection Curve [ 15] 

Additional benefits of using a simulation include faster time to market and no delays 

while waiting for the problems to be fixed because the potential problems are identified 

and resolved before the prototype is built [ 16]. 

The most important role in the process of product development belongs to the 

three-dimensional CAD solid model [ 15]. Not only does it serve as a communication tool 

between the members of the product development team, it is also used as an input for 

different simulation tools. Since the product development teams typically consist of 

engineers with different backgrounds [17], the tools they use for analysis are also 

different. While design engineers use finite element analysis to simulate mechanical 



13 

processes inside the part to determine stresses and strains, industrial engmeers use 

material flow or process simulations to conduct the throughput analysis in order to 

determine the capacity of a cell, its utilization, etc. Similarly, quality engineers would use 

specialized simulation to verify and optimize inspection programs for CMMs and NC 

machine tools [18]. 

Simulation is also used after the deployment of a product or a system, as a tool for: 

Personnel training - in a situation where the real work is done in a dangerous 

environment, or when the actual facilities to be operated by the employees are too 

complex or too expensive to be reproduced. There is no production downtime and no 

costs associated with material used during the training [ 14, 19]. 

Maintenance and support - simulation is used as an analysis tool to track down the 

possible bugs that might appear within the system. The bugs are typically reported by 

the customers and it is up to the system integrators to reproduce the state of the 

system that caused the bugs, and then to prevent its reappearance [ 14]. 
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2.2. Development of Robotic Simulation 

The development of robotic simulation began m mid 1980s when the first 

industrial robotic simulation provided by McAuto, a division of McDonell Douglas 

appeared on the market [20]. Deneb Robotics, Tecnomatix, and Silma Inc. followed with 

their robot simulations. Robotic simulations at the time provided only basic functionality, 

since they were based on CAD systems that used wire-frame and surface representation 

of objects in space. This limited functionality resulted in the limited role that robotic 

simulation had - it was used as verification tool rather than a process design tool [21 ]. 

Figure 2.2 Robot Servicing a Work-piece - Surface Representation [22] 
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With the ever-increasing power of computers, the functionality of both CAD 

systems and robotic simulations also improved over time. Basic functionality that 

included verification of a robot's kinematic reach and work cell layout was expanded 

over time to incorporate collision detection, cycle time analysis, offline programming, 

and calibration [20]. 

Introduction of a solid model representation in CAD systems provided further 

development of robotic simulation. More complex tasks such as path planning, improved 

collision detection, and grasp planning are some of the features that are presently 

considered to be standard (7] . The realism of robotic simulations with respect to the 

applications utilized has also improved. Figure 2.3 shows two robots painting the body of 

a car. Different thicknesses of deposited paint are represented with different colors. 

Figure 2.4 shows two robots performing welding. 
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Figure 2.3 Car Body Painting Line [23] 
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Figure 2.4 Arc Welding Application [23] 



18 

Robotic simulation is in a continuous process of development. Several trends can 

be noticed today. On the system level, the trend is integration of a robotic simulation into 

larger systems [18, 21, 23, 24]. Figure 2.5 provides the structure of a virtual 

manufacturing tool offered by Tecnomatix. In other words, robotic simulation today is 

considered as one of the many tools used in the process of product development. 

Electronic Bills 
of Process (eBOPs} 

. ~- -~ ............. 

/ 
/ 

Detailed Line. Sta1ion & 
Task Design 

Line Balandng 

___ ...... , .. _ 

Figure 2.5 Integration of "Virtual Manufacturing" Tools [ 18] 

The two largest manufacturers of robotic simulation, Delmia and Tecnomatix are 

currently introducing a whole range of new products, which include tools for process 

planning, Internet-based exchange of manufacturing information between plants and 

suppliers, quality inspection and tolerance management, analysis of ergonomics issues, 

and analysis of machining issues [18, 23]. The goal behind this integration is to firmly 

establish "virtual manufacturing" as a key link between product design and actual 
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production (figure 2.6). The reason behind this integration has already been mentioned -

concurrent engineering. Both the design of a product and the design of the manufacturing 

process occur simultaneously, thus cutting the costs of production, improving the quality 

of the product, and getting the product to market faster [25). 

Product 
design 

Production 
engineering 

Industrial process 

Production 

Figure 2.6 Virtual Manufacturing as a Key Link [25] 

On the application level one of the major trends emerging is an improvement in 

robotic simulation accuracy. Details are provided in section 1.4.1 . 
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2.2.1. Benefits of Using Robotic Simulation 

The most important benefit of using a robotic simulation is the same benefit that 

applies to simulation in general - it is the model, a virtual model of a real-world system 

that is simulated, tested and modified rather than the real-world system itself. In case of a 

robotic simulation it means that issues related to work cell design, selection of robots and 

associated parameters are resolved before the actual physical model is built. The final 

result is that the real-system is built "right the first time". 

Robot simulation can be used in one of the following contexts [2]: 

As a conceptual design and presentation tool, 

As an engineering analysis tool, 

As an offline programming tool, or 

As a process and ergonomics analysis tool. 

The benefits of using a robotic simulation will be grouped and presented accordingly. 

2.2.1.1. Robotic Simulation as a Conceptual Design and Presentation Tool 

Robot simulation can be used as a tool that provides very effective visual 

presentations of concepts to customers, other engineers, or to management. A user can 

either create a new cell using the basic CAD functionality provided by the robot 

simulation, or simply import a work cell from a file created in an external CAD package 

[2] . 
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Furthermore, robot simulations provide libraries of robots and supporting standard 

equipment [9], thus the initial design can be completed in a matter of days [ 14]. 

Another powerful feature of present-day robot simulations is the capability of 

saving the simulated actions occurring inside the cell to an animated media file [ 18, 23, 

26,27]. 

2.2.1.2. Robotic Simulation as Engineering Design Tool 

Once the customers or the management accepts the presented concept, further 

development takes place. Typical activities for this stage involve detailed design of the 

work cell [2, 26]. Detailed design of the work cell includes the proper selection of one or 

more robots with respect to the task to be performed, overall dimensions of the work cell, 

kinematic reach of the robot, and maximum payload. Robotic simulation software 

typically provides libraries of robots, tools and other standard supporting equipment from 

different manufacturers, which significantly accelerates the design process. Design of 

tools and fixtures, selection of material handling systems, such as conveyors and AGV s is 

also a part of this stage. 

The next stage includes creation of collision-free paths. The paths can be created 

either manually or automatically, by using a built-in utility for automatic path generation. 

Once the path is defined, cycle time analysis takes place. Cycle time can be broken down 

into the motion of the robot, motion and actions performed by other equipment in the cell, 

and the time spent waiting for a certain signal to change its value. When it comes to 

motion of the robot, typical parameters that can be set include speeds and accelerations 
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both for joint and linear/circular motion (figure 2. 7). The time that a robot spends waiting 

after it gets into a target point as well as the corresponding tool and input/output actions 

can be specified. 

GP Properties- GP0002 
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·- Joint Speed: j--·-.. --j 
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C'"'~';peed: J40000 

eleration: .r-:14-:-00~.00~-----·· 

-----------
Orientation 

[ ~. -.--------· 
1

- Rest Parameter 
Rest Time: jr-0-.00------

Prev .. I Next I ~ Cancel Help 

Figure 2.7 Kinematics Properties Form [28] 

Benefits of using simulation as an engineering tool are numerous, especially in the 

case of complex products and systems [29]. Evaluation of design alternatives is 

performed in the virtual environment, which means: 

Problems are identified and resolved prior to the actual production, 

Overall cost reduction, 

Shorter time to market, 

Uniform quality of products. 
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Examples: 

l) Nissan produces four types of vehicles on one production line in one of its plants in 

Japan (25]. The production facility was designed and verified offline by using 

ROBCAD (Tecnomatix). The same robot simulation is used for offline programming 

purposes - more than 1200 programs were created for the 117 robots employed. 

Furthermore, overall design time including time for design verification was reduced 

from five to only three months. 

2) British Rover used ROBCAD in the design of its vehicle Rover 75 [30]. More than 

750 modifications of the original model were made based on the offline verification. 

Potential savings in using simulation and getting the design "right first time" were 

estimated to approximately half a million pounds just for the bumper tooling alone. 

3) Boeing used the robot simulation provided by Deneb Robotics (now Delmia, a part of 

Dassault Systemes) to verify structural design and assembly of the X-32 joint strike 

fighter (29]. It was all a part of a competition for a $750 billion dollar contract for the 

U.S. Department of Defense. Production costs were reduced by approximately 33%. 
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2.2.1.3. Robotic Simulation as an Offline Programming Tool 

A robot performs tasks through a programmed sequence of motions or actions 

[31 ], which are stored in the memory of robot controller. Programming of robots can be 

done either online of offline. Online programming is typically done by a programmer, 

who uses a teach pendant to move the robot to different locations inside the robot's 

attainable workspace. A teach pendant is a hand-held device that is connected directly to 

the robot's controller and enables the programmer to create, modify or delete programs 

[31]. 

One of the major advantages of online programming is that it does not require a 

lot of skill [31 ]. A major drawback to online programming is that it must be done on site. 

In addition, online programming is typically a time intensive task and production must be 

halted during the programming time. According to the report [34], for a facility that has 

seven lines with 36 painting robots, overall downtime for online programming was 

estimated to over one year. Costs also included paint used in programming, as well as the 

vehicle prototypes. The conclusion is that online programming is effective only when the 

task is not too complex [3] . 

Offline programming is a method of creating robot programs without using a real 

robot [3]. Typically, offline programming is a three-step process that includes the 

building of a CAD model of the work cell, calibration, and program development [2]. 
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A CAD model of the work cell can be created either in a robot simulation 

package, or in some other CAD software package and later imported into the robot 

simulation [2]. This CAD model is used both for simulation and offline programming 

[26]. 

Calibration is a required step in offline programming [2], since the CAD model 

exists in a virtual environment where all dimensions are ideal. In the real world, accuracy 

associated problems can influence offline programming to the point where modification 

of offline created programs on the shop floor is inevitable [9]. Typical problems 

associated with accuracy include different lengths of robot links, incorrect placement of 

the robot and other equipment in the cell, environment temperature, and payload [2]. The 

purpose of calibration is to identify the influences mentioned and to incorporate them into 

the mathematical model of the simulated robot, thus preventing modification of the 

program on the shop floor [2, 26]. 

Offline programming is relatively easy, and it can be done either manually or 

automatically - using the advanced features of a robotic simulation. Benefits are 

numerous. Probably the most important benefit is a significant reduction in production 

downtime, in some cases up to 90%. In additional there is a reduction in the time 

required for the creation of a robot program [32]. 
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Additional benefits include: 

Correct tool orientation that depends on the type of application, yet assigned 

automatically by the simulation software [26), 

Automatic creation ofteach points both on simple and complex parts [26], 

Offline verification of created programs - in case something unpredictable 

happens, such as collision, or change of robot configuration, it is happening in 

the virtual world, therefore there is no real damage done. Correction of a 

program can be done relatively quickly [26], 

Usage of one system for many robots [3], i.e. the same offline programming tool 

can output the same program into several different robot languages, 

Improved safety of a robot programmer who is not exposed to a harmful 

environment [3, 26). 

Once the offline created programs are verified, they are transferred to the robot 

controller for the test run. 
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2.2.1.4. Robotic Simulation as Process and Ergonomics Analysis Tool 

Robotic simulation integrated with the discrete event simulation can also be used 

for evaluation of the work cell performance [2, 26]. Typical analysis involves: 

Justification of the number of robots in the work cell, 

Recognition of the potential production bottlenecks, 

Estimate of the cycle time - best and worst scenarios. 

Several software packages meant for workplace ergonomics analysis can be found 

on the market. Based on the existing CAD model of a manufacturing cell, or an assembly 

line, for example, the following analysis can be conducted [2, 16, 33, 34]: 

Estimate of a percentage of the general population that will work comfortably 

can be determined, 

Evaluation of the safety hazards, 

Evaluation of worker's lifting capacity and resulting strains, 

Potential reach to certain places inside the machine, 

Evaluation of the time designated for an operation. 
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2.3. Chapter Summary 

This chapter provided a brief description of development of a robotic simulation, the role 

a robotic simulation plays in the process of product development and the benefits of using 

a robotic simulation. Four main application areas of robotic simulation were described -

presentation and marketing, engineering design and analysis, process analysis and offline 

programming. 

The next chapter will provide more insight into robotic simulation through description of 

its functional structure. 
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Chapter 3 

Robotic Simulation - Functional Structure 

3.1. Introduction 

Robotic simulation represents a complex and large software product. The structure 

of a robotic simulation is not clearly defined by a standard. Robot simulation companies 

themselves define the type and function of modules. Common features of a few robot 

simulations can be identified and organized into modules [7]: 

CAD solid modeler, 

Built-ir:t libraries of commercially available robots, 

Data translators, 

Kinematics module, 

Motion trajectory generator, 

Offline programming module(s), 

Calibration module, 

Open development interface. 
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3.2. CAD Solid Modeler 

Every robot simulation typically provides a CAD solid modeler that has a limited 

functionality. The basic idea is to use a CAD package such as AutoCAD, Pro/Engineer, 

CA TIA, or I-DEAS to design a work cell. Once created, a work cell is typically saved in a 

file, which is then uploaded into the robotic simulation. CAD solid modelers provide the 

following functionality [35]: 

Visual presentation of the work cell layout, which typically includes a robot or 

robots, machines, conveyors, fixtures, tables and jigs, 

Enables the user to create, modify or delete the model of the work cell, 

Enables the user to expand the existing libraries of robots and equipment, which 

accelerates subsequent cell designs, 

Visual representation of the motion that takes place in the cell, 

Represents input for automatic generation of a robot path. 

3.3. Built-in Libraries 

Although the user can create a robot and later save it in a file for future use, robot 

simulation companies and robot manufacturing companies typically provide robot model 

information in the form of CAD files [7]. This approach provides shorter work cell 

development time, since the user can access the robot model data using CAD libraries 

provided by the robot simulation company. Users can also download the robot CAD 

model from the robot manufacturer's website, and insert it directly into the robot 
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simulation, without any modifications. The direct result is a significant decrease in work 

cell development time. 

The same applies to the tools, fixtures, jigs, and all the other equipment typically 

used in a robotic work cell. Furthermore, the user can create models of custom designed 

or custom made equipment, save it and re-use it when the need arises. 

3.4. CAD Data Translators 

The CAD model of a work cell does not necessarily have to be created using the 

CAD capabilities of the robotic simulation software. It can also be created by some other 

CAD software package and imported into the robot simulation. The process of CAD 

model importing can create numerous problems [36, 37, 38]. The key reason lies in the 

different file formats in which a CAD model can be saved and in errors that occur during 

the conversion process of one file format into another. 

The CAD file format can be either a proprietary one or a neutral one such as IGES 

or STEP. The conversion is performed by the translators that transfer a CAD file from 

one file format to another. A conversion can be [38]: 

1) Direct conversion of one proprietary file format into another. The main problem is 

that both file formats have to be known, and that can represent a serious problem 

since proprietary formats are kept confidential (38]. A conversion back into the 

original proprietary file format can occur, thus creating the need for another 

translator. 
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2) Indirect conversion - a neutral file format is used as an intermediate step in the 

conversion process. The problem with this approach is that conversion errors can 

happen both during the conversion from the original proprietary file format into a 

neutral file format, and from neutral file format into the targeted proprietary file 

format. 

3) Spatial Corporation and Unigraphics Solutions Ltd. have undertaken a different 

approach to the problem. The two companies developed their own CAD modeling 

systems (ACIS and Parasolid), which are built-in in numerous applications (38]. 

One CAD modeling system implies one file format, which means that no file 

format conversion is necessary. Furthermore, one ACIS based file can be opened 

and used by any other ACIS based application without any problems [38]. 

Robotic simulation has to be able to import the CAD model in different file 

formats, as well as to save the CAD model to different file formats. In other words, robot 

simulation software has to be able to "import" and "export" a CAD model into different 

file formats. For this particular purpose, specialized CAD translators have to be provided. 

The CAD model translation process is not always successful. Errors occur because 

of different mathematical representations of 3D objects (36], thus corrective interventions 

are necessary. For example, Workspace 5 robotic simulation, can import files both in 

IGES and SAT formats. It can also perform corrections, such as "healing" of IGES files. 

Healing is "the process of improving the accuracy of solid models so they can be used 



33 

more effectively ... " [37]. Healing is a multi-step process, which includes clean up of a 

translated model, geometry simplification, stitching, etc. 
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Figure 3.1 IGES Import Options (28] 
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3.5. Kinematics Module 

An industrial robot is typically a serial link manipulator that has several joints, 

each of which can be either rotational or prismatic. By varying the types of joints 

different robot configurations can be built. Some of them are presented on the pictures 

below. The purpose of the kinematics module is to provide direct and inverse kinematics 

solutions for a range of different configurations of the robots shown on figure 3 .2, figure 

3.3 and figure 3.4. 

Figure 3.2 SCARA Robot Configuration [28] 
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Figure 3.3 PUMA Robot Configuration [28] 

Figure 3.4 Gantry Robot Configuration [28] 
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Direct kinematics is typically based on the Denavit-Hartenberg convention, which 

represents a set of rules for establishing a geometric description of a serial link 

manipulator (39, 40, 41]. A set of transformation matrices IS combined into one 

transformation matrix that represents the position and orientation transformation of the 

last link in the chain relative to the first link. 

T ref = ArefAI A2 An-I 
n I 2 3 • •• n (3 .1) 

Inverse kinematics represents a method of calculating the values of joint angles or 

distances based on the current Cartesian position and orientation of the last link. Finding 

solutions of the inverse kinematics problem is more complex than finding solutions for 

direct kinematics. Common methods for solving the inverse kinematics problem include 

algebraic method, geometric method and numerical methods. 

The algebraic method uses equation 3.1 as a start point for inverse kinematics 

calculation. Derivation ultimately produces a system of twelve equations, out of which 

only six are independent, which means that there might be one solution, multiple 

solutions or no solutions at all [39]. For a manipulator that has six degrees of freedom, the 

number of multiple solutions can be up to 16 [40] . Ambiguity of solutions is avoided by 

using configuration strings [ 40]. 

Numerical methods can be applied to any kinematic structure. The problem 

though is that not all solutions can be computed [ 40]. 
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3.6. Motion Trajectory Generator 

A robot performs tasks by moving between programmed teach points. Motion 

control of the robot is based on the difference between the actual and the desired position. 

The larger the difference the larger the current sent to the servo-drives is. However, the 

current has to be limited in order to keep the servo-drives functional. The solution is to 

use large number of intermediate positions or interpolated points as an approximation of a 

continuous trajectory. 

The points are typically supplied by the motion trajectory generator [ 4] or by a 

trajectory planner [ 41]. By feeding the servo-drives one interpolated point at a time, 

control over accelerations and velocities reached during motion between two points can 

be established. 

Generally, robot motion is categorized in two major groups [ 41]: 

Joint based motion - teach points are typically defined in joint coordinates, and 

motion control is based on the difference between the joint angles/distances of start 

and end point. Joint-based motion, compared to the path-based motion is less 

computationally demanding [ 40], trajectory planning is simpler and can be done in 

almost real time [ 41 ]. Problems associated with joint-based motion are that the path is 

of an irregular shape and locations of manipulator links during motion are unknown, 

which represents a major disadvantage when it comes to obstacle avoidance [ 41]. 

Path-based motion - teach points are expressed in Cartesian coordinates and the shape 

of the path is known. The path is typically a straight line or a circular arc, and the 
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TCP of the robot follows the path while moving from the start point to the end point. 

Path-based motion is computationally more expensive due to the fact that the location 

of the tool center point of the robot is expressed in Cartesian coordinates. In order to 

move the robot from the start point to the end point a conversion of the location 

expressed in Cartesian coordinates into joint coordinates is necessary. 

Another important note about robot motion is that all the axes start and stop at the 

same time, no matter if the motion type is joint-based or path-based. 

In the case of joint-based motion, motion trajectory is based on the difference in 

joint values between the actual and the desired position [ 4, 41]. Depending on the type of 

velocity profile (constant or linear acceleration), travel time for each joint is calculated. 

The reference travel time is equivalent to the time taken for the joint that takes the longest 

time to complete its motion. Travel times of all other joints are set to be equal to the 

reference travel time. Then, joint velocities and accelerations (in case of linear 

acceleration) are scaled so that all joints begin and complete motion at the same time. 

In the case of path-based motion, the motion trajectory generator supplies servo­

drives with a number of intermediate points that approximate the straight-line path or a 

circular-arc path. Although it has been established that the locations of interpolation 

points are based on the linear velocity, acceleration, and the type of the velocity profile, 

the exact method of generation of interpolation points has been kept confidential by the 

robot manufacturer companies [11]. In other words, only assumptions can be made how a 

particular robot controller generates interpolation points. Every interpolation point that 
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makes the path is expressed in Cartesian coordinates and an inverse kinematics 

calculation is required in order for joint angles/distances to be found, thus making path­

based motion computationally more intense than the joint based motion [ 4). 

3. 7. Offline Programming 

There are two methods to program an industrial robot- on-line programming and 

off-line programming. On-line programming is typically done through a hand-held device 

called a teach pendant, which is directly connected to the controller of the robot. A teach 

pendant enables a robot programmer to move the manipulator either in Cartesian or joint 

space, to memorize locations, define tool actions in those points, etc [3]. Online 

programming has an advantage in situations that involve simple tasks or in situations 

where the parts have a simple geometry. Disadvantages are numerous and include halted 

production so that robots can be programmed, long programming time, and scrap material 

generated during programming [3]. 

Offline programming represents an alternative to on-line robot programming. It 

enables the user to create robot programs without using a real robot. It is especially useful 

when task complexity is high, as well as when long production downtimes are not 

allowed, or when programming is to be done in a harmful environment [3] . 

The creation of robot paths is based on the geometric information of the part 

which action is to be performed upon [26). A path can be created manually by selecting 

vertices or edges of the object and setting the values of relevant parameters such as joint 
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or linear velocity and acceleration, orientation speed and acceleration, wait time, and tool 

actions [26]. This type of programming is used for the creation of simple programs, which 

are typically represented as a sequential list of teach-points that the robot's TCP will 

acquire during motion [28]. 

Alternatively, a path can be created on a selected edge or surface automatically by 

internal algorithms. This automatic path generation uses internal analytical models of the 

process developed through experiments [7] . For every robotic application, such as spot 

welding, arc welding, or painting, an analytical model is developed [5] based on the 

parameters that are important for the process. Assignment of teach-point properties is also 

performed automatically. 

Complex robot tasks require complex program logic, such as condition handlers, 

variables, subroutines, and interrupts [42]. This essentially means that a sequential list of 

teach-points does not satisfy the requirements of complex tasks. For this purpose robotic 

simulations typically provide a development environment as well as the simulation 

language, which contains a set of commands that provide access to the API of the 

simulation software. Workspace 5, for example uses Visual Basic for Applications as the 

development environment and custom developed Visual Basic commands to access the 

simulation API. Figure 3.5 shows some of the routines and data that can be accessed from 

within the Workspace 5 development environment. 
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'-'~ DetachObjectFromTooiEnd 
,,,.~ DrawTooiCone 
.,.,~ DrawTooiCylinder 
;;.~ DrawTooiSpark 
.. ,-,~ GetEndFrame 
.,,~ GetTooiFrame 
ll£1 Name 
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-'~ SetEndFrame 
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Figure 3.5 Robot Related Functions Available to the User in the VBA Environment [28] 

Both simple and complex robot programs, once verified in the simulation can be 

converted into the native robot language format. In the case of a simple program 

represented by the sequential list of teach-points, conversion is quite straightforward. 

Parameters associated with each teach-point are read, formatted according to the syntax 

of the selected output language and then written into a file. Minor adjustments may be 

required, yet overall programming time is shorter than in case of online programming [ 10, 

42]. 
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Another important aspect of offline programmmg IS the verification and 

modification of existing programs [26, 42]. For that purpose a set of translators or 

postprocessors [ 42] has to be developed for the robot languages supported by the robot 

simulation software. The purpose of the translators is to convert the program from the 

original robot language format into the simulation language format and back. 

3.8. Calibration 

The purpose of calibration is to eliminate the differences between the real world 

and the virtual CAD world in which all dimensions are ideal [7]. Calibration is of vital 

importance for the process of offline programming. It improves the accuracy of the robot 

and prevents its collision with other equipment in the work cell. 

There are a few different types of calibration that have to be performed in order to 

have an accurate simulation of the work cell operation - calibration of the robot, 

calibration of auxiliary axes, jigs, and parts. Calibration of the robot itself can be either 

static or dynamic. Static calibration includes identification of static characteristics such as 

link lengths, joint-axis orientation, gear backlash, and coupling factors [ 43]. Dynamic 

calibration includes identification of dynamic parameters, such as forces and friction [ 43]. 

Static calibration can be done in one or two ways [ 43]: 

By selecting a "statistically large number of locations evenly distributed" in joint 

space, 

By optimizing the number of locations based on the parameters to be identified. 
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The result of the process of static calibration is identification of the robot's 

"signature" [7], which represents a set of parameters such as joint axis geometries, joint 

angle offsets and actuator/link compliances [ 43]. These parameters are incorporated into 

the kinematics model of the robot [7], thus improving the accuracy of the robot to 

approximately I mm or less [7]. 

3.9. Open Development Interface 

Robot simulation typically provides an open development interface, so that more 

advanced users can access geometric and kinematics information, as well as develop their 

own tools for various kinds of analysis [7]. Workspace 5 [28] provides Visual Basic for 

Applications (VBA) as an open development environment, which offers almost unlimited 

computer programming functionality. In addition to VBA, the user also has access to the 

Workspace component object model. Access to the component object model enables the 

user to retrieve information relevant to the motion of a robot and its actions. The software 

also provides functionality for the interfacing of custom developed dynamic link libraries 

(DLLs), whose basic purpose is to provide forward and inverse kinematics solutions for 

robots with complex structures [28]. 
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3.10. Chapter Summary 

This chapter provided more insight into robotic simulation through description of its 

functional structure. Each element of the structure has been explained with its advantages 

and disadvantages. 

The next chapter will focus more on motion planning strategies. Two simple motion 

models will be presented as well as a method of motion tracking. 



45 

Chapter 4 

Velocity Profiles and Their Impact on Cycle Times 

4. 1. Introduction 

The purpose of this chapter is to provide an insight into the motion strategy of a 

robot simulation. Equations are derived for two typical acceleration profiles - constant 

and linear. Each of the acceleration profiles, including the corresponding velocity profiles 

are analyzed in detail by each stage of motion. 

4. 2. Constant Acceleration/Deceleration Motion 

The basic assumption is that both the acceleration and deceleration rates are 

constant. Figure 4.1 provides two different velocity profiles based on the assumption that 

acceleration is constant. 
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a a 

v v 

(a) (b) 

Figure 4.1 Velocity Profile for Constant Acceleration 

Clearly, three stages of motion can be differentiated: 

Acceleration motion: a= a accel ,max ' 

Constant velocity motion: a = 0 , 

Deceleration motion: a = a decel,max . 
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4.2.1. Stage 1 -Acceleration Motion 

The basic assumptions related to this stage are: 

a = aaccel,max' 

The distance between the start point and end point is large enough so that the 

maximum velocity can be reached, 

Derivation of velocity and trajectory equations is based on the assumption about the 

acceleration: 

a = al = aaccel,max 

dv 
a 1 = - => dv = a 1 • dt (> 0) 

dt 

v l 

Jdv = Ja 1 • dt 
vo to 

(4.1) 

Boundary conditions are: to = 0 and v0 > 0. 

After the boundary conditions are applied to the equation 4.1, the velocity during the 

stage 1 can be found as: 

(4.2) 
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In order to find the distance that the TCP travels during time t, further integration of 

equation 4.2 is required: 

s I 

Jds = J(v0 +a, ·t)·dt 
so fo 

t2 !2 
s - s = v (t - t ) + a (- - _Q_) 0 0 0 I 2 2 

Boundary conditions: so = 0, to = 0, and vo > 0 

(4.3) 

After the boundary conditions are integrated into the equation 4.3, the travel distance can 

be found as: 

1 ' s=v ·t+ - a ·r 0 2 I (4.4) 

Since the assumption is that there is enough time for TCP to accelerate to Vmax, equations 

4.2 and 4.4 can be written as: 

V max - Vo t, = __;,;,;;;~__:_ 
a, 

(4.5) 

(4.6) 
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Equation 4.5 can be integrated into the equation 4.6, by replacing parameter t 1, and that 

will define the travel distance during the acceleration stage: 

(4.7) 

4.2.2. Stage 2 - Constant Velocity Motion 

This stage of motion directly depends on the distance between the start point and end 

point. There are two possibilities: 

I) The distance between the start point and end point is not large enough, thus the 

maximum velocity cannot be reached. Corresponding acceleration and velocity 

profiles are given on figure 4.2(b). 

2) Distance between the start and end point is large enough so that there is enough 

time to accelerate to Vmax· Corresponding acceleration and velocity profiles are 

given on the figure 4.l(a). 

Equations required to define the time and distance traveled during the stage 2 cannot be 

calculated until the equivalent equations for stage 3 are not established. 
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4.2.3. Stage 3 - Deceleration Motion 

During this stage, velocity linearly decreases to zero while the TCP is moving towards the 

target point. There are two basic assumptions about this stage of the motion: 

Acceleration is constant and has a negative sign, 

The robot stops in the target point, i.e. velocity is equal to zero in the target point. 

dv 
a=--= a dt decel,max 

dv 
a=--= adecelmax ~ dv = -a3 ·dt 

dt ' 

v 1 

Jdv =- Ja 3 · dt 
v l t l 

(4.8) 

Boundary conditions are t2=0, v2=vmax and v3 = 0. 

After the boundary conditions are applied to equation 4.8, the velocity during stage 3 can 

be found as: 

v = v max - a 3 • t . (4.9) 

In order to find the travel distance during the deceleration stage, further integration of 

equation 4.9 is required: 

v = ds = v max - a 3 . t ~ ds = ( v max - a 3 . t) . dt , 
dt 
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s t 

Jds = J(vmax - a3 • t)dt, 

(4 .10) 

Boundary conditions are s2 = 0, t2 = 0. 

After the boundary conditions are integrated into the equation 4 .1 0, the travel distance 

during stage 3 can be found as : 

1 2 
S=V t - -a · t max 2 3 (4.11) 

Since the assumption is that motion will stop at the target point, equations 4.9 and 4.11 

can be written as: 

(4.12) 

(4.13) 

Equation 4.12 can be integrated into the equation 4.13, by replacing the time parameter, 

and that will define the travel distance during the deceleration stage: 

1 v~ax =--- (4.14) 
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4.2.4. Stage 2 (Revisited) 

As it has already been mentioned, existence of this stage depends on several parameters, 

such as: 

Distance between the start point and target point, 

Velocity/acceleration parameters. 

It is quite simple to find relevant parameters for this stage. If the distance traveled during 

the acceleration and the deceleration stage is shorter than the overall distance between the 

start point and the target points, then the maximum velocity can be achieved. Distance 

between the start point and end point can easily be found as: 

L = xr arget - xstan + Y carget - Y stan + z targer - z stan 

Using equations 4.7, 4.14 and 4.15: 

1 ( 2 2 ) 1 v!., L 
- V max - Vo + S 2 + - -- = ' 
2a1 2 a 3 

Travel time during stage 2 can be found as: 

s2 
t 2 = --

v max 

where v2 represents the maximum velocity. 

( 4.15) 

(4.16) 

(4.17) 
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If the overall travel distance required for full acceleration and deceleration stage is 

longer than the distance between the start point and target point, it means the following: 

Maximum velocity cannot be achieved, 

Adjustments of the acceleration and deceleration distances have to be performed, 

Velocity profile is triangular (figure 4.1 (b)) 

Using equations 4.7, 4.14 and 4.15: 

( 4 .18) 

The velocity that can be achieved during the motion is: 

2 2 · L ·a, · a3 + v~ · a3 v = _ _ ___:__..::_......::._____:;_ (4.19) 
a1 +a3 

By replacing Vmax with v in equations 4.7 and 4.14, distances traveled during acceleration 

and deceleration stages can be found. 
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4.2.5. Constant Acceleration Based Motion - Summary 

Table 4.1 Constant acceleration motion- summary 

Velocity Profile 
Stage Parameters Trapezoidal Triangular 

Time t - Vmax - Vo 
1-

al 

Acceleration Velocity V max = V 0 + a I • t I 

Acceleration at 

Distance l ( 2 2) Sl =- Vmax -Vo 
2a1 

Time 
SJ 

t2 =---
V max 

Constant Velocity V max Not applicable 
Velocity Acceleration 0 

Distance s =L--•-(v2 -v2) _ _!_ v!.x 
2 2 max 0 

2 al aJ 

Time t - vmax 
3 -

aJ 

Deceleration 
Velocity 0 
Deceleration a3 

2 
Distance V max sJ =--

2a 3 
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4.3. Linear Acceleration/Deceleration Motion 

The basic assumption of this velocity profile is that both acceleration and 

deceleration change linearly. The resulting velocity profile has smooth transitions 

between the different stages of motion, which in tum provides a more realistic 

representation of motion and less structural vibration of the robot due to a sudden change 

in acceleration/deceleration. 

A key difference between the constant acceleration profile and the one with linear 

acceleration is in the way acceleration changes with time. As a result, two types of errors 

occur - motion time error and trajectory accuracy error. Since the constant acceleration 

velocity profile reaches maximum velocity faster than the velocity profile with linear 

acceleration, it means that the target location will be reached faster with the constant 

acceleration profile. 

Similarly, for a given amount of time the constant acceleration profile means 

longer distance traveled than in case of the linear acceleration profile. Yet, it is not known 

which of the two velocity profiles resembles the motion time and trajectory accuracy 

closer to the ones of the real robot. One more time, it is the confidentiality of the motion 

planning and kinematics algorithms that represents a main obstacle in modeling of the 

velocity profile and leaves one only with the assumptions about the velocity profile used 

on the real robot. 
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The number of motion stages for this case is seven (see figure 4.2), while the 

number of possible acceleration/deceleration cases exceeds the number of cases for 

constant acceleration/deceleration. Each case will be described in detail here together 

with the supporting equations. 

Figure 4.2 provides the most general case of the linear-acceleration motion 

between two points, with clearly defined acceleration stage, constant velocity stage and 

deceleration stage. The goal is the same - find the distances required by the default case, 

find the sum of all the distances, compare it to the real distance between the start point 

and end point, and then see which particular sub-case will be used for further calculations. 

a 

v 

Figure 4.2 Velocity Profile for Linear Acceleration 
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4.3.1. Stage 1 -Acceleration Stage 

Figure 4.3 represents the most general case of the acceleration stage. It is based on the 

assumption that the distance between the start point and target point is large enough to 

provide acceleration to amax, and to Vmax· The acceleration stage can be further broken 

down into three sub-stages: 

Sub-stage 1 - linear increase of acceleration to amax, 

Sub-stage 2 - constant acceleration amax, 

Sub-stage 3 - linear decrease of acceleration to a=O. 

a 

t 

v 

t 

I - Linear increase of acceleration 

2 - Constant acceleration 

3 - Linear decrease of 

acceleration 

Figure 4.3 Acceleration Stage - General Case 
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4.3.1.1. Sub-Stage 1- Linear Increase of Acceleration 

Derivation begins with the following equation, which represents the formal description of 

the assumption that the rate of change of acceleration is positive and constant: 

da 
-=k, >0 
dt 

where k1 represents the rate of change and is a known value. 

Derivation continues with the integration of the following equation: 

a t 

Jda = k, Jdt 

Boundary conditions: a0=0, to=O, 

(4.20) 

(4.21) 

(4.22) 

Equation 4.22 represents acceleration at any given point of time during the sub-stage I . 

Acceleration time, i.e. the duration of sub-stage 1 can be found as: 



In order to find the distance traveled during the sub-stage I, the derivation has to 

continue: 

a= k 1 ·t 

dv = k 1 • t·dt 

v t 

fdv=k 1 • Jt·dt 
vo to 

Boundary conditions: va=O, ta=O 

t2 
v=k ·-

1 2 

The velocity reached at the end of sub-stage I can be found as: 

By replacing t1 with equation 4.23, velocity v1 can be found as: 

1 

1 a~nax v =-·--' 
I 2 k 

I 

Distance traveled during sub-stage l will be found as: 
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(4.23) 

( 4.24) 

(4.25) 

(4.26) 



ds e e 
- = k 1 - => ds=k 1- dt 
dt 2 2 

s-s =k - (~- t~J 
0 I 6 6 

Boundary conditions: so=O, to=O 

Distance traveled during sub-stage 1 can be found as: 

t3 
s =k ._1_ 

I I 
6 

By replacing t1 with equation 4.23, travel distance s1 can be found as: 

1 a~nax s =-·--
1 6 k2 

I 

4.3.1.2. Sub-Stage 2- Constant Acceleration amax 

60 

(4.27) 

(4.28) 

(4.29) 

Derivation begins with the assumption that acceleration is constant and equal to a111ax· 

a = a max = con st. (4.30) 

dv 
- = a max => dv = a max ·dt 
dt 
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Boundary conditions: vo=v1, t0=0, 

( 4.31) 

The velocity reached at the end of stage 2 can be found as: 

(4.32) 

By replacing v 1 with equation 4.26, velocity at the end of sub-stage 2 can be found as: 

The distance traveled during sub-stage 2 can be found through further derivation: 

ds 
- =VI+ amaxt 
dt 

t2 t2 
s-s = v ·(t-t )+a · (- -_g_) 0 I 0 max 2 2 

Boundary conditions: so=O, to=O. 

The distance traveled during sub-stage 2, will be: 

(4.33) 

(4.34) 
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(4.35) 

4.3.1.3. Sub-Stage 3- Linear Decrease of Acceleration 

Derivation begins with the assumption that decrease of acceleration is linear and constant: 

da 
-=-k2 <0 
dt 

where k2 represents the rate of change and is a known value. 

da = -k 2 ·dt 

(4.36) 

(4.37) 
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Boundary conditions: ao=amax, to=O, 

(4.38) 

Equation 4.38 represents the value of acceleration at any given point of time during the 

sub-stage 3. The duration of sub-stage 3 can be found as: 

(4.39) 

In order to find the distance traveled during the sub-stage 3, derivation has to continue: 

dv 
-=amax - k2t 
dt 

V I 

Jdv = JCamax - k2 t) · dt 

v - v = a (t - t ) - k · - - _Q_ • (e t
2 J 

0 max 0 2 2 2 

Boundary conditions: vo=v2, to=O 

Velocity reached at the end of sub-stage 3 is Vmax: 

t2 
v -v +a · t -k . _l_ max - 2 max 3 2 2 

(4.40) 

(4.41) 
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By replacing t3 with equation 4.39, velocity v2 can be found as: 

1 a;nax 
V =V --·--

2 max 2 k 
2 

(4.42) 

Distance traveled during sub-stage 3 will be found as: 

e ds t 2 

V = v 2 + a,nax · t- k2 ·-~- = V2 +a · t- k2 ·-2 ~ mu 2 

t2 
ds = (v +a · t- k · -) · dt 2 max 2 

2 

s t t 2 

Jds = J<v +a · t - k · -) · dt 2 max 2 
2 

So l o 

e t ~ t 3 t ~ 
s-s =v ·(t-t )+a ·(--- ) - k ·(- --) 0 2 0 max 

2 2 
2 

6 6 

Boundary conditions: so=O, to=O 

(4.43) 

Distance traveled during sub-stage 3 can be found as: 

(4.44) 

By replacing t3 with equation 4.39, and v2 with equation 4.42 the travel distance S3 can be 

found as: 

3 v 2 • a max a max 
s3 = +--, . 

k2 3k ; 
(4.45) 
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4.3.1.4. Sub-Stage 2- Revisited 

Now, when the velocity at the end of the sub-stage 2 is known from equation 4.42, sub-

stage 2 can be revisited in order to find its travel time and distance. Using equations 4 .26, 

4.33 and 4.42, time t2 can be found as: 

vmax amax (l 1) t2 =----- -+- . 
amax 2 kl k2 

( 4.46) 

By replacing t2 in equation 4.35 with equation 4.46 and using equation 4.26, the distance 

traveled during sub-stage 2 can be found: 

4.3.1.5. Stage 1 -Summary 

Relevant parameters for sub-stage 1: 

Motion time: t = amax 
I k ' 

I 

? 

V l . h d 1 a~ax eoc1tyreac e : v =- ·- -
1 2 k 

I 

1 a 3 

Distance traveled: s =-· ~ 
I 6 k2 

I 

(4.47) 
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Relevant parameters for sub-stage 2: 

Motion time: 

Velocity reached: 1 a~nax 
V 2 = V max -- '-- ' 

2 k2 

? v-
Distance traveled: s2 = max 

2. a max 
vmax ·amax 1 a~tax ( 1 1 J a~,.x ( 1 1 J2 

-==--=::.:... ---- --+- +-- - +-
2k2 4 k , k , k 2 8 k, k2 

Relevant parameters for sub-stage 3: 

Motion time: 

Velocity reached: 

t = amax 
3 k ' 

2 

V max' 

3 v ·a amax Distance traveled: s
3 

= max max ---
k2 6k; . 

4.3.2. Stage 2 - Constant Velocity Stage 

During stage 2, the value of acceleration is equal to zero. Consequently, the value 

of velocity remains constant- Vmax · Motion time is calculated as: 

s 
t 

_ _ 2_ 
2 - ( 4.48) 

vmax 

However, neither the travel distance s2 nor the motion time t2 can be calculated at this 

point in time. First, parameters of the deceleration stage have to be calculated, and then 

stage 2 will be revisited. 
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4.3.3. Stage 3 - Deceleration Stage 

Relevant parameters of the deceleration stage can be calculated in a similar 

manner to that which was used for the parameters of the acceleration stage. Furthermore, 

an assumption can be made that the deceleration profile is symmetrical to the acceleration 

profile, i.e. travel times, velocities, and travel distances are exactly the same: 

sl = s7 

s2 = s6 

s3 = s5 

4.3.4. Stage 4 - Finalized Calculations 

(4.49) 

Three basic cases can be derived with respect to the distance between the start 

point and end point. In the first case, the distance between the start point and end point is 

large enough to provide both acceleration and velocity to reach their maximum values. In 

the second case, the distance is not large enough, and further analysis is required. 
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4.3.4.1. Case 1 

Velocity profile and the corresponding travel distances are given on the figure 4.4. 

a 

t 

v 

Ymax 

Figure 4.4 Linear Acceleration - Case 1 

The distance between the start point and the end point can be found easily as: 

L= 
2 

xt arg et - x .V/£11'1 + Y target - Y sturt + z/arg ct - z,·tart (4.50) 

Travel distance during which the velocity has value of Vmax can be found as: 

(4.51) 
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Travel time of sub-stage 4: 

(4.52) 

4.3.4.2. Case 2 

In this case, the distance between the start point and end point is large enough to 

reach the maximum value of acceleration - Gmax. however, it is not large enough to allow 

the velocity to reach its maximum value - Vmax· The velocity profile and the 

corresponding travel distances are given on figure 4.5 . 

a 

v 

Ymove < Ymax -+------+------

Figure 4.5 Linear Acceleration - Case 2 
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There are six distinct sub-stages that can be discerned. Again, assuming that the 

acceleration and velocity curves are symmetrical, analysis can be simplified significantly. 

The goal is to determine travel distance s2, as well as the maximum velocity reached 

during motion. 

Sub-stage 1 is defined by equations 4.23, 4.26, and 4.29. Sub-stage 2 is defined by 

equations 4.33 and 4.35, while sub-stage 3 is defined by equations 4.39, 4.40, and 4.44. 

The only difference is in the boundary condition for the sub-stage 3, during which the 

velocity reached is less than V111ax· 

The velocity at the end of the sub-stage 3 will be: 

a2 
V =V +·~ 

3 2 2k 
2 

(4.53) 

Travel distance during the sub-stage 3 can be found as: 

(4.54) 

Using equation 4.47, travel distance s2 can be found as: 

(4.55) 

By replacing travel distances with corresponding expressions, equation 4.55 changes into: 

--t + - - +-- ·t + --+ + - - = -a max 2 ( a ~ax a ~ax J ( a ~ax a ~,.x a ~ax J L 
2 2k , k2 6k~ 2k,k2 3k; 2 

(4.56) 

The quadratic equation has two solutions: 
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where: 

Two conditions have to be satisfied so that the solutions are real: 

- Correct all the time, since acceleration is a positive value, 

- In order to avoid complex solutions. 

After replacing Ct, C2 and C3 with the corresponding equations, condition 2 can be 

written as: 

4 1 1 
a max (---2 + --2 ) - a max L > 0 . 

12kl 3k2 
(4.57) 

Further derivation transforms equation 4.57 into: 

3 4k2- k2 
amax I 2 0 

L 12k2k2 > . 
I 2 

Since amax > 0, as well as k~ and k;, only the numerator has to be larger than zero. The 

numerator can be represented as a product of two elements: 

(4.58) 

This equation will be satisfied if: 

(4.59) 

Graphical presentation of the solution is given on figure 4.6. 
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~ - Solution area 

Figure 4.6 Condition 2 - Graphical Representation of the Solution 

4.3.4.3. Case 3 

The third general case of possible velocity profiles happens when neither 

maximum acceleration nor maximum velocity is reached. The corresponding velocity 

profile is given on figure 4.7. 
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a 

y 

Ymove :::> Ymax 

Figure 4. 7 Linear Acceleration - Case 3 

Four sub-stages can be noticed on the graph- s1, s2, s3 and s4• Assuming that the velocity 

profile is symmetric, i.e. that s1=s4 and s2=s3, significant simplification can be made. The 

motion equations for sub-stage I are: 

Travel time: 

a 2 
Maximum velocity: v1 = -

2kl 

Travel distance: 

(4.60) 

(4.61) 

(4.62) 
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At the end of sub-stage 2, the velocity reached is v. By using equations 4.39, 4.42 and 

4.59, equations for sub-stage 2 can be found as: 

Travel time: (4.63) 

Maximum velocity: (4.64) 

Travel distance: (4.65) 

The maximum acceleration reached during the motion can be found as: 

( 4.66) 

Another set of conditions that parameters k1 and k2 have to satisfy can be derived using 

equation 4.66, i.e. the denominator has to be larger than zero: 

(4.67) 

The condition set in equation 4.67 is satisfied if: 

(4.68) 
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Figure 4.8 provides a graphical representation of the equation 4.68 solution: 

~ - Solution area 

Figure 4.8 Linear Acceleration - Case 3 

4.3.4.4. Special Cases 

There are two special cases with respect to the velocity and acceleration reached during 

the motion: 

1) Acceleration reaches its maxtmum value. Velocity also reaches its maximum 

value, however deceleration follows immediately. Unknowns in this particular 

case are related to sub-stage 2 and sub-stage 4, during which acceleration has a 

constant value (figure 4.9). 

2) Acceleration reaches its maximum value and immediately starts decreasing (figure 

4.1 0.) Calculations in this particular case are straightforward. 
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Figure 4.9 Linear Acceleration- Special Case 1 
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Ymove< Ymax 

Figure 4.10 Linear Acceleration- Special Case 2 

4.3.4.5. Finalized Rules for Parameters k1 and k2 

By combining the conditions that parameters k1 and k2 have to satisfy, a set of 

solutions can be found. The conditions are: 

1 . k 1 > 0 and k 2 > 0 

2. ((2k 1 - k 2 )>0A(2k 1 +k 2 )> 0)v((2k 1 - k 2 )<0A(2k 1 + k 2 )< 0) 

3. ((2k 1 +k 2 )>0A(k1 +k 2 )>0)v((2k 1 +k 2 ) <0 A(k 1 +k 2 )<0) 
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All three conditions will be satisfied if the values of parameters k1 and k2 are within the 

range: 

k, > O;k 2 > 0; 

1 
k, > - k2 

2 

Graphical representation of the solution is given on the figure 4.11 . 

~ - Solution area 

Figure 4.11 Parameters k1 and k2- Solution Range 
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4.4. Motion Tracking 

There are two motion models provided in the thesis - one based on the assumption 

that acceleration is constant and the other one based on the assumption that acceleration 

changes linearly during motion. The model used for testing is the one based on the 

assumption that acceleration remains constant during motion - either equal to amax or to 

zero, depending on the motion stage (acceleration, deceleration or constant velocity 

motion). 

Table 4.1 in section 4.2.5 gives equations that define all the parameters relevant 

for the constant acceleration motion model. Motion tracking can be done by monitoring 

the value of one of the parameters of the motion model: 

Elapsed time, 

Distance from the current TCP position to the target point, 

Distance traveled from the start teach-point to the target teach-point. 

The process of robot motion tracking can be described as a series of steps: 

Step 1: Initial state- robot is in the start teach-point and motion velocity is zero, 

Step 2: Calculation of parameters for motion stages - based on the distance 

between the start teach-point and the target teach-point, and motion parameters 

associated with the target teach-point. Parameters of each motion stage can be 

calculated by using equations given in table 4.1. 
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Step 3: Tracking of the robot's motion during the acceleration stage - by 

comparing the value of the elapsed time with the corresponding value calculated 

in step 2, or by calculating the distance between the current position/orientation of 

the robot's TCP, it can be concluded whether the robot is in the acceleration stage 

or in the stage that follows the acceleration stage (constant velocity stage or 

deceleration stage). The general form of the tracking equations are: 

o Motion velocity: v; = v; + a; ~t , where i represents a coordinate (X, Y, Z, 

A, B or C) or a joint value, 

o Travel distance: q; = q ; + V;~t +_!_a; (~t) 2 , where qi represents a 
2 

generalized coordinate. 

Step 4: Tracking of the robot's motion during the constant velocity stage, when 

this stage exists: 

0 Motion velocity: V; = vmax, where i represents a coordinate (X, Y, Z, A, 8 , 

or C) or a joint value 

o Travel distance: q; = v; ~t 

Step 5: Tracking of the robot's motion during the deceleration stage: 

o Motion velocity: V; = V; - a;~t, where i represents a coordinate (X, Y, Z, 

A, B or C) or a joint, 
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o Travel distance: qi = qi + vi~t- _!_(~t) 2 , where qi represents a generalized 
2 

coordinate (X, Y, Z, A, B or C) or a joint angle/distance. 

Once the target teach-point is reached, a set of parameters associated with motion to the 

new target teach-point is calculated, and the motion process is repeated. 

4.5. Chapter Summary 

This chapter provided a formal description of two basic motion models - one based on 

constant acceleration, the other one based on linear acceleration. Each model was 

determined fully with respect to the key motion parameters - acceleration, velocity, time 

and travel distance. 

The next chapter will provide a detailed description of the motion planning problem, 

which results in an inaccurate estimate of motion time. Test procedure and the 

corresponding assumptions will also be provided in the next chapter. 



Chapter 5 

Innovative Method for Improvement of 

Simulation Motion Time Accuracy 

5.1. Description of the Problem 
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The simple motion models used in the simulation are presented in chapter 4. The 

models were derived under the assumption that acceleration is either constant or changes 

linearly. Corresponding velocity profiles are given on figures 5.1 and 5.2. 

v 

t 

Figure 5.1 Velocity Profile for Constant Acceleration 
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v 

t 

Figure 5.2 Velocity Profile for Linear Acceleration 

The key problem with both models is that a number of important parameters such 

as mass, friction, forces and torques are not taken into consideration. Essentially, this 

means that both the motion time and the velocity profile will be the same, regardless of 

the mass of the manipulated object or the applied torques (figure 5.3). Consequently, the 

simulation positioning accuracy and the simulation motion time accuracy will be different 

from the corresponding parameters of the real robot. 

v 

Vmax 

Speed decrease caused by torque 
limit 

Velocity profile 
(simulation) 

······ .. / 
...... 

..... 

Velocity profile 
....... (real world) 

Figure 5.3 Velocity Profiles - Simulation vs. Real-World 
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5.2. Methods for Improvement of Simulation Motion Accuracy 

Improvement of the positioning accuracy and the simulation time accuracy can be 

achieved in one of the two following ways: 

By integrating the original motion algorithms and kinematics algorithms through 

an RCS module into the simulation, which is the RRS Specification approach. 

However, not all the robot manufacturers provide RCS modules, the RCS module 

approach can be costly and the functionality implemented in an RCS module can 

be quite limited, 

By using a dynamics motion model instead of a simple kinematics motion model 

presented in chapter 4. The discussion of the dynamics motion model follows. 

5.2.1. Dynamics Motion Model 

Usage of dynamics equations introduces a range of new problems. The general 

dynamics equation of motion is: 

where: 

M(q) 

h(q,q) 

V(q) 

q(q) 

q 

torque matrix, 

inertia matrix, 

-r = M(q)q + h(q,q) + Vq + g(q), 

vector representing centrifugal and Coriolis forces, 

joint friction matrix, 

gravity load vector, 

generalized coordinate. 

(5.1) 
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The complexity of the dynamics motion model is very high regardless of the method used 

for its derivation. 

y 

X 

z 

Figure 5.4 A Simple Two-link Planar Manipulator 

For example, Lagrange dynamics equations for a two- link robot shown on figure 5.4 are: 

Joint 1 torque: 

Joint 2 torque: 

Equations become significantly more complex for six-link robots. 



86 

There are a few important aspects of the dynamics motion model that should be 

mentioned: 

The number of operations that need to be performed is very large. Using the 

Lagrange method, 66271 multiplications and 51548 additions need to be 

computed so that the torque matrix for a six-link robot can be found. The Newton­

Euler method requires 852 multiplications and 738 additions. The Reibert-Horn 

method requires 468 multiplications and 264 additions [45, 46]. 

Even with the significantly reduced number of operations to be performed, 

another important problem remains unsolved - the frequency of performing the 

calculations. Calculations have to be performed for every single interpolation 

point, which makes the model computationally expensive [4]. The problem IS 

compounded if there are two or more robots used in the simulation. 

The values of the parameters included in the dynamics motion model must be 

known in order to be used in the simulation. The task of identifying parameters 

such as inertia and friction that are used to create the corresponding matrices 

represents a challenge, since parameters such as friction are coupled with other 

dynamic parameters [9]. Furthermore, separate modeling and measurement of the 

dynamics parameters is needed, which makes identification even more difficult 

and time consuming [9] . 
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Real robots carry various tools and cables required for performing the task that 

they are programmed for. Welding cables and painting cables can be quite heavy, 

thus they influence the dynamics motion model, too. So, in order to have the 

dynamic motion model accurately represent the real robot, the influence of cables 

and tools also has to be incorporated. 

Ultimately, even if the dynamics equations accurately described motion of the real robot, 

the simulation motion time would not be the same as the motion time of the real robot 

because of the internal robot controller algorithms, which are confidential. 

5.3. The Description of the Proposed Method 

The method proposed in this thesis can be classified as an inverse calibration 

method. Inverse calibration requires neither the identification of the form of the error, nor 

the source of the error, but a way to compensate the errors. Although more measurements 

are required, a better match to the real system may be achieved [ 46]. 

Various parameters, both known and unknown can influence motion of a real 

robot. A goal of the method proposed is not to identify them all but to express their 

influence through a limited set, whose influence can be determined with a relative ease. 

Influence of each parameter, i.e. an error generated by the influence of each parameter 
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will be compensated through inclusion of a corresponding correction factor in one of two 

motion models presented in Chapter 4. 

Approximation of the real robot's motion model IS based on the following 

parameters: 

• Incline angle- motion of robot's TCP in vertical plane, 

• Bearing- motion of robot's TCP in horizontal plane, 

• Radial distance of the start point from the coordinated system located into the base of 

the robot, 

• Tool orientation. 

• Mass of the manipulated object, 

• Configuration of the robot, 
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Selection of the influential parameters is based on the simple kinematics motion 

model parameters presented in chapter 4. Although the key parameters of the two motion 

models presented are travel distance, velocities and accelerations, both models recognize 

that position data and orientation data of teach-points as well as the motion direction are 

known. The influence of inertia caused by the robot's own mass and the mass of the tool 

or the object is also incorporated through parameters such as the mass of the tool or of the 

object, distance of the start teach-point away from the base of the robot, and the 

configuration of the robot. 

Another way to justify the selection of the influential parameters is based on the 

fact that a robot performs tasks by moving a tool or an object through a set of teach-points 

that make a trajectory. Thus, radial distance and tool orientation define the influence of 

the location of a teach point, while the incline angle and bearing define the influence that 

motion direction has on motion time. Configuration of the robot defines the influence of 

the robot structure, while the mass defines influence of the manipulated object/tool on 

motion time. 

The influence of each parameter can be established by performing simple motion 

tests with a real robot. Based on the results of the tests, functional relationships between 

the motion time of the real robot and the listed influential parameters can be established. 

Those functional relationships serve as a basis for determining the values of correction 

parameters, which will compensate the error values and provide a more accurate 

simulation motion time (figure 5.5). 



v 
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Corrected analytical 
model 

Original analytical model 
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Real motion time 

Figure 5.5 Simulation Velocity Profiles- Original vs. Corrected 
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A valid question can be raised about the identification of parameters other than 

those that have been previously mentioned, which could influence motion of the real 

robot and their subsequent incorporation in the motion model of the robotic simulation. 

As mentioned earlier, identification of the influence of some parameters is not easy. 

However, the method presented in this thesis incorporates both the known parameters, 

whose influence can be identified easily and the "hidden" parameters, which are difficult 

to be identified and integrates their influence through a set of parameters listed in the 

section 5.3. This approach represents one ofthe highlights of the proposed method. 
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Other benefits of the method proposed in the thesis are: 

There is no need to build highly complex motion models. Influence of the 

parameters such as cables, tools, motion algorithms and kinematics algorithms is 

compensated through usage of the correction factors, 

The correction factor database is established by the simulation user and is based 

on the results of the experiments. It is up to the user to decide how fine the 

approximation will be, 

Once the correction factor database is established, it can be used for a certain 

period of time until the need for its revision arises. 

Computation-wise, the correction factor method ts supreme compared to the 

method of dynamic equations. The values of the correction factors associated to 

each teach-point of the trajectory are typically retrieved from the database prior to 

the actual simulation of motion. The constant acceleration motion model used in 

the simulation is computationally inexpensive and tracking of robot motion 

requires only the comparison of the elapsed time to the time needed for a 

particular motion stage (e.g. acceleration or deceleration). 
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5.4. Test Assumptions 

The experiment was conducted under the following set of assumptions: 

1) During the test, the robot remained in its "natural" configuration. This 

configuration is similar to the one that the robot shown on figure 5.6 has. The goal 

of this assumption is to eliminate variability resulting from the nature of a robot as 

a serial link manipulator which allows for a teach point to be reached in several 

different configurations. 

Figure 5.6 "Natural" Robot Configuration [28] 
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2) Mass of the tool attached to the flange is constant - although the mass of the tool 

and/or the object carried in the gripper represents an influential parameter, it is 

kept constant during the testing. 

3) Teach points used for testing are far enough from each other to allow the robot to 

reach maximum linear velocity. 

4) Teach points are located directly in front of the robot. The assumption is that most 

of the tasks are performed in this part of robot's envelope. 

5) Orientation of the tool is kept constant during the test. 

6) Motion type used during the test is linear. 

5.5. The Test 

For research purposes of this thesis, the influence of only two out of the six 

parameters listed in section 5.3 were tested - bearing and incline angle. These two 

parameters can be understood as the "basic" parameters, because the influence of every 

other assumed influential parameter is tested and identified based on the known influence 

of bearing and incline angle. 

Two experiments were performed. In the first experiment, the motion direction of 

the robot's TCP was kept horizontal, i.e. motion was performed in a horizontal plane that 

was a fixed distance away from the base frame of the robot (figure 5.7). The key idea 

behind this test was to establish the influence of bearing on motion time of the real robot. 
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Figure 5.7 Test Description - Motion in Horizontal Plane 
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In the second experiment, motion direction was kept vertical, i.e. motion of the 

robot's TCP was performed in a vertical plane (figure 5.8). Similar to the horizontal plane 

motion test, it is the influence of the incline angle whose influence on motion time of the 

real robot was established. 
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Figure 5.8 Test Description- Motion in Vertical Plane 
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The model of the robot used for testing was a MOTOMAN UP20 [47] with an 

XRC controller [ 48]. Both the manipulator and the controller were never used in service 

before, which means a reduction of the potential errors caused by the electro-mechanical 

systems. Another important fact is that the teach-pendant used with the XRC controller 

has the functionality of displaying the actual motion time of the robot, which made the 

measurements accurate. Furthermore, the repeated tests for the same trajectory resulted in 

the same motion time. Other relevant test data include: 

Linear velocity: 300mm/s (used both on the real robot and in the simulation), 

Simulation acceleration: 400mm/s2 



• 
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5.5.1. Bearing- Approach Motion 

The purpose of the approach motion test was to establish the values of the motion 

times between the teach-points while the TCP was moving linearly towards the base of 

the robot (figure 5.9). All teach-points used in the test belong to the same horizontal 

plane, which can be seen on figure 5.10 and figure 5 .11. Coordinates of the start teach­

points are given in tables A.1 and A.2, while the corresponding motion times are given in 

tables A.9, A.10, A.11 and A.12. 

Figure 5.9 Approach Motion Test- Isometric View 
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Figure 5.10 Approach Motion Test- Top View 

Figure 5.11 Approach Motion Test- Side View 
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Figure 5.12 Bearing Angle for Approach Motion 

Values ofthe bearing angle (figure 5.12) were calculated by using the following formula: 

Bearing = atn TP roP , 
(

y -Y ) 
X rp - X roP 

(5.2) 

where X TP, Y TP represent the position of a target teach-point TPi relative to the base frame 

of the robot, and X TOP, Y TOP represent the position of a start teach-point. 
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5.5.2. Bearing - Depart Motion 

The depart motion test was performed using a similar approach to that of the 

approach motion test. Figures 5.13, 5.14 and 5.15 provide the visual presentation of the 

performed test while figure 5.16 provides a definition of the bearing angle for depart 

motion. Coordinates of the teach-points can be found in tables A.3 and A.4 in the 

appendix, while the motion times of the real robot and of the simulation, and the 

corresponding error values can be found in tables A.l3 , A.l4 and A.l5. 

Figure 5.13 Depart Motion Test- Isometric View 
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Figure 5.14 Depart Motion Test- Top View 

Figure 5.15 Depart Motion Test- Side View 
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Figure 5.16 Bearing Angle for Depart Motion 

The value of the bearing angle can be calculated by using the equation 5.2. 
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5.5.3. Incline Angle- Downward Motion 

The downward motion test consists of sets of motion between the start teach­

points and target teach-points, all belonging to the same vertical plane (figure 5.17). The 

top view and the side view are given on figure 5.18 and on figure 5.19. Coordinates of 

the start teach-points and of the target teach-points are given in the table A.5 and A.6. 

Motion times of the real robot, of the simulation, and the corresponding error values are 

given in tables A.16 and A.17. 

Figure 5.17 Downward Motion Test- Isometric View 
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Figure 5.18 Downward Motion Test- Top View 

Figure 5.19 Downward Motion Test- Side View 
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Figure 5.20 Incline Angle for Downward Motion 

Figure 5.20 provides information about the sign of the incline angle for downward 

motion. The value of the incline angle can be found in the same way that the bearing 

angle value was found. 
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5.6. Chapter Summary 

This chapter provided a formal description of the problem of inaccurate motion time 

estimate. Causes of the incorrect estimate were provided and a method for improvement 

of motion time accuracy was suggested. A detailed description of the testing procedure 

was given, too. 

The next chapter will provide analysis of the results followed by the integration of 

correction factors into a motion model described in Chapter 4. Finally, a conclusion and 

suggestions for future work will be given. 
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Chapter 6 

Analysis, Conclusion and Future Work 

6.1. Analysis 

Three tests were performed with a real robot - approach motion test, depart 

motion test and the downward motion test. For each of the motion tests, several bearing 

angle and incline angle values were tested and the corresponding motion times were 

recorded and analyzed. The results of the analysis revealed that the simulation motion 

time was longer than the motion time of the real robot in all the tests performed. The 

influence of the parameters listed in the section 5.3 was determined. Furthermore, the 

tests revealed the existence of unknown factors whose influence on the motion time of the 

real robot is significant. 

6.1.1. Horizontal Motion Plane- Approach Motion 

Four approach motion tests were performed during the experiment and the 

corresponding motion times were recorded. Based on the results of the experiment, the 

plots representing motion time curves of the real robot for different start teach-points 

(tables A.7, A.8, A.8, and A.lO) were created. A minor difference among the motion time 

curves can be noticed. Considering that no parameter other than the distance of the start 
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teach-point from the base of the robot changed, the assumption made about the distance 

as an influential parameter can be considered as correct. 
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Figure 6.1 Motion Time Curves of the Real Robot 

6.1.1.1. Start Teach-point "TOP _LEFT" 

Figure 6.2 represents plots of motion time of the real robot and of the motion time 

produced by the simulation for start teach-point "TOP_ LEFT". Both the plot on figure 6.2 

and on figure 6.3 reveal that for the values of the bearing angle between 0 and 50 degrees 
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the difference between the motion time of the real robot and the simulation motion time 

decreases as the bearing increases, and that the decrease of the error suggests a linear 

trend. 
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Figure 6.2 Motion Time Curves of the Start Teach-point "TOP _LEFT" 
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Figure 6.3 Error Plot for Start Teach-point "TOP_ LEFT" 
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6.1.1.2. Start Teach-point "TOP _1" 

Motion time plots given on figure 6.4 reveal a trend similar to the one given on 

figure 6.2. The error trend given on figure 6.5 reveals that with the increase of the 

bearing, the difference between the simulation motion time and the motion time of the 

real robot decreases almost linearly. Small bearing angle values, both positive and 

negative also mean short travel distances. By following that logic, a conclusion can be 

made that the error values should reach a minimum at a bearing angle value of zero 

degrees, which is not the case. The plot given on figure 6.5 shows an almost linear 

increase of error values for the range of bearing values between -30 degrees and 0 

degrees. One possible reason for such behavior could be that there are factors other than 

the ones listed in the section 5.3 that influence motion of the real robot. 

5. 00 r ............................................................................................................ ____ , .............................................................................................. - ......................................................................................................................................................... , 

4.50 -

- 4 .00 . 
(,1 

~ 3.50 

s 3.00 

!== 2.50 -

~ 2.00 -
.: 
~ 1.50 

1.00 

0.50 

• . -· .. 
• • --·- • • .- • • • • • • 

• • 
• • • • • • • • • • • • • • • • 

• Robot 

• Simulation 
~-------.,------.-----....-----------...................... ______ _ 0.00 

-30.00 -20.00 - 10.00 0.00 10.00 20.00 30.00 40.00 

Bearing [deg) 

Figure 6.4 Motion Time Curves of the Start Teach-point "TOP _ I" 
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Figure 6.5 Error Plot for Start Teach-point "TOP _ I" 

6.1.1.3. Start Teach-points "TOP _2" and "TOP _3" 

Motion that originates in teach-points "TOP _2" and "TOP _3" will be combined 

into one, since both teach-points are of an equal distance from the base of the robot. 

According to one of the original assumptions of the proposed method, error plots should 

be similar with respect to the trend and error values if the teach-points are an equal 

distance from the base frame of the robot. Based on the plots presented on figure 6.6 and 

on the figure 6. 7 it can be concluded that the assumption made is valid for teach-points 

"TOP 2" and "TOP 3". - -
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6.1.2. Horizontal Motion Plane- Depart Motion 

The plots given on figure 6.8 reveal that there is only a minor difference among 

the motion time curves. Considering that no other parameters changed except the distance 

of a start teach-point from the base of the robot, the assumption that distance is a factor 

that causes differences among the motion time values can be considered as valid for the 

teach-points tested. 
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Figure 6.8 Motion Time Curves for Depart Motion. 
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Motion time curves are compared to the simulation motion time curve separately, because 

the distances of the teach-points "TOP_ LEFT", "TOP _I" and "TOP_ 2" from the base 

frame of the robot are different. 
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6.1.2.1. Start Teach-point "TOP _LEFT" 

The motion time curve of the real robot and the simulation are given on figure 6.9, 

while the error plot is given on figure 6.1 0. Clearly, the error value decreases as the value 

of the bearing angle increases both in the positive direction and in the negative direction. 

Large bearing angle values also mean longer travel distances. Considering that the largest 

error values were recorded neither for the shortest nor for the longest travel distances, but 

for the bearing angle values between -15 degrees and -20 degrees a conclusion can be 

made that there are factors other than the ones listed in section 5.3 that are influencing 

motion of the real robot. 
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6.1.2.2. Start Teach-point "TOP _1" 

Motion time curves of the real robot and of the simulation are given on figure 

6.11, while the error plot is given on figure 6.12. Similarly to the case described in section 

6.1.2.1, it can be assumed that the hidden factors caused the error values to reach a 

maximum for the bearing angle values of approximately -20 degrees. 
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6.1.2.3. Start Teach-point "TOP _2" 

Motion time curves of the real robot and of the simulation are given on figure 

6.13, while the error plot is given on figure 6.14. The error plot strongly suggests a linear 

decrease of error values for bearing values that range from + 10 degrees to +40 degrees. 

Since large bearing values mean longer travel distances, one possible conclusion could be 

that the simulation motion model approximates motion of the real robot better for larger 

travel distances. However, the error value for bearing angles between -30 degrees and 0 

degrees is almost constant, which suggests that the travel distance has little or no 

influence on error values. Similarly to the previous two cases described in sections 6.1.2.1 

and 6.1.2.2, it can be assumed that there are other, unknown factors that are influencing 

motion of the real robot. 
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6.1.3. Vertical Motion Plane- Downward Motion 

Motion time curves for two different start teach-points "TOP LEFT" and 

"TOP_2" are given on figure 6.15. Motion time curves reveal a slight difference in shape 

and trend, which can be explained by the fact that the teach-points have different 

distances from the base frame of the robot. 
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Figure 6.15 Motion Time Curves for Downward Motion 
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6.1.3.1 Start Teach-Point "TOP LEFT" 

Motion curve for teach-point "TOP_ LEFT" presented on figure 6.16 shows the 

shortest motion time for the incline angle values of approximately 15 degrees. Since the 

small incline angle value also means a short travel distance, it could be expected that the 

shortest travel time would take place when the incline angle value equals zero degrees. 

The motion time curve for "TOP _LEFT" teach-point suggests that there are other, 

unknown factors that are influencing the motion of the real robot. 
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6.1.3.2. Start Teach-Point "TOP 2" 

Motion time curves of the simulation and of the real robot are given on figure 

6.18, while the error plot is given on figure 6.19. The error values decrease with a 

decrease in the incline angle value, which suggests a better approximation of the real 

robot's motion at higher negative values of the incline angle. However, the error plot also 

shows that for the range of incline angle values between 0 degrees and 20 degrees the 

error trend remains the same, which is opposite from what was expected. On the other 

hand, there is no information about the error values for incline angle values of l 0 degrees 

and more, which means that the trend could change its direction like in case of the error 

plot given on figure 6.12 and figure 6.17. 
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Figure 6.18 Motion Time Curve for Start Teach-point "TOP_ 2" 
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6.2. Correction Factors 

Motion plots presented in section 6.1 reveal a difference between the simulation 

motion model and the motion model of the real robot. In the case of an ideal robotic 

simulation that difference would not exist. However, no method including the RRS I 

Specification and the dynamics based motion model presented in previous chapters is able 

to provide simulation motion times that are identical to the motion time of the real robot. 

The method proposed in the thesis assumes that through the integration of the 

correction factors into the simulation motion model it becomes possible to achieve 

simulation motion times identical to the motion times of the real robot for incline angle 

values or bearing values tested. There is one correction factor per influential parameter. In 

this particular case only two correction factors will be analyzed - one for the bearing and 

the other one for the incline angle. 

A correction factor can be integrated into the simulation motion model through 

one of the parameters that define motion models described in chapter 4: 

1) Distance between the start point and the target point, 

2) Maximum velocity that is to be reached during motion between the two points, 

3) Acceleration/deceleration 

A change of distance is unacceptable, because it results in an incorrect trajectory. 

A change of velocity is also unacceptable, because maximum velocity is the key 

parameter for actions such as welding or painting. The only parameter that can be 

changed is acceleration. Although important in the overall motion calculation process, the 
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acceleration value is not a key parameter in most of the processes performed by the robot. 

Therefore, acceleration is a parameter that is going to be used for modification of the 

simulation motion models. 

Derivation of correction factors is based on the assumption that after the 

correction, simulation motion time will become equal to the motion time of the real robot. 

Adjusted acceleration of the simulation motion model that results in the motion time 

equal to the average experimental motion time of the real robot can be found as: 

where: 

T [s] 

Vmax [mm/s] 

L [mm] 

a adjusted = T . _ L' 
vmax 

2 
vmax 

motion time (experiment), 

maximum velocity (simulation), 

distance between the start teach-point and end teach-point. 

(6.1) 

The value of the adjusted acceleration can be either larger or smaller than the 

nominal value of acceleration. Consequently, the maximum velocity of linear motion in a 

simulation will be reached either faster or slower than it would be reached in the case of 

nominal acceleration (figure 6.20). 
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6.2.1. Correction Factor for Horizontal Motion 

The correction factor value for a horizontal motion plane can be found as a ratio: 

C - a adjusted 
H-

a no min al 
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(6.2) 

For example, when motion originates from the point TOP_ LEFT (coordinates given in 

the table A.l) and when bearing angle value is zero degrees, the value of acceleration that 

a simulation motion model must have in order to achieve the same motion time as the real 

robot is calculated using equation 6.1 and is 592.11 mm/s2
. The correction factor in this 

case is calculated as: 

C H = a adjusted = 592.11 = 1.48 
ano minal 400.0 

Similarly, the correction factor value can be calculated for any combination of the bearing 

angle value and the distance of a teach-point from the base of the robot. Based on the 

results given in table A.16 and A.17, plots given on figures 6.21 and 6.22 were created. 

Both the figure 6.21 and the figure 6.22 show that the correction factor curves for 

different teach-points do differ. That outcome was expected considering that the factors 

associated with the teach-points, such as the distance from the base of the robot are 

different. In the case of teach-points TOP_ 2 and TOP _3, which are equally distant from 

the base of the robot, the correction factor curves show a similarity of values and trends, 

which was expected. 



... 
0 -~ co: 
l:i. 
c 
.5! -~ ~ ... ... 
0 u 

.9 ... 
01 

""' c 
.~ 
ti ... .. .. 
C> 
u 

2.00 

1.80 

1.60 

1.40 

1.20 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 
-60.00 

2.50 

2.00 

1.50 

1.00 

0.50 

I Approach Motion 
• 

• • ...................... . -- . . ... .. ' . .. . .. . .. 
• • • rt• ••• ••••• ·• .. ••• 

• ••• 

+ TOP_ LEFT 

• TOP 2/TOP 3 - -
• TOP I 

127 

-40.00 -20.00 0.00 20.00 40.00 60.00 

Bearing [deg) 

Figure 6.21 Correction Factor Curves for Approach Motion 

Depart Motion ... •' . • • • 
·r· .. . . . . . . . •• •• • ••••• .. . ~ .... ,•• .... . : . . ... 

•••• • • • • 

+ TOP LEFT 

• TOP 2 

0.00 ~--------+---------~--------~--------------------
• TOP_ ! 

-60.00 -40.00 -20.00 0.00 

Bearing ldeg] 

20.00 40.00 

Figure 6.22 Correction Factor Curves for Depart Motion 

60.00 



128 

Values of the correction factor for bearing angle values other than the ones given in the 

table 6.5 can be found by using the law of proportion: 

c (a) = c + a - a lower ( c c ) 
H H,alow~r H,a upp.:r - H,aluwc:r ' 

a upper - a lower 

(6.3) 

where: 

correction factor value for bearing a , 

lower limit of the bearing range to which a belongs, 

upper limit of the bearing range to which a belongs, 

c 
V,alow..:r 

correction factor value for the bearing a lower, 

c 
H ,<X uppcr 

correction factor value for the bearing a upper • 

For example, for approach motion that originates from "TOP _LEFT" teach-point having 

the value of bearing angle of 7 degrees, the corresponding value of the correction factor 

CH will be: 

7-4.47 
CH =1.44+ (1.39 - 1.44)=1.411 

8.88-4.47 
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6.2.2. Correction Factor for Vertical Motion 

The correction factor for vertical motion can be found in exactly the same manner 

that the correction factor for horizontal motion was found - as a ratio of adjusted and 

nominal value of acceleration. 

where: 

c - a adjusted 
v-

a no minal 

(6.4) 

aadjusted - acceleration value that results in the simulation motion time equal to the motion 

time of the real robot, 

anominal - nominal value of acceleration used in the simulation motion model. Typically, 

anominal is a value set by the user. 

Using equation 6.1, the correction factor values Cv can found for motion in the vertical 

plane. Correction factor values are presented in the table A.18, while the corresponding 

graph is presented on figure 6.23. 



Figure 6.23 Correction Factor Curves for Downward Motion 

Correction factor curves differ in shape and value, which is expected since the influential 

factors associated to the two teach-points tested are different. 
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6.3. Conclusion 

Based on the results of the experiment motion time curves of the real robot and of 

the simulation were created. Simulation motion time curves and the corresponding motion 

time curves of the real robot show similarities in trend, which means that the simulation 

motion model does resemble the motion model of the real robot. Motion time curves also 

show that the bearing and the incline angle do influence motion time of the real robot. 

The error plots revealed that the error values in some cases reached 15%, which means 

that approximation of the real robot's motion model is not close enough and that the level 

of influence that bearing and the incline angle have on real robot's motion time is 

significant. 

Furthermore, all of the motion time plots show that besides the influential 

parameters tested in the experiment, there is a set of unknown parameters significantly 

influencing the motion of the real robot. Identification of the hidden parameters 

themselves is of no importance for the method proposed in the thesis. It is their influence 

that is important and that can be identified through the parameters such as bearing and 

incline angle, whose influence can be established easily. 

Integration of the influence of both known and unknown parameters is done 

through a set of correction factors. The values of the correction factors presented earlier 

in this chapter range between I and 2. In other words, the value of acceleration used in 

the simulation sometimes needs to be almost twice as large as the nominal value set by 

the user. The increased value of acceleration results in shorter amount of time spent 
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moving between the teach-points, which means a shorter overall travel time. All motion 

time plots presented show that the simulation motion time is longer than the motion time 

of the real robot, thus by increasing the value of acceleration used in the simulation the 

overall simulation motion time becomes shorter. Furthermore, the simulation motion time 

between the two teach-points would be shortened to the exact motion time of the real 

robot, thus making the simulation motion time accurate. 

Values of the correction factors can be established by using the error plots similar 

to the ones presented earlier in this chapter. Once integrated into the simulation motion 

model, the correction factors should make the motion time curves of the real robot and of 

the simulation overlap. Although the approximation is better if the number of teach-points 

tested is larger, testing does not have to include teach points throughout the whole work 

envelope of the robot. Instead, the tests can be made only in the part of the robot's 

envelope in which the task will be performed. 

Another important aspect of the proposed method is the introduction of robot 

dynamics in the calculation process through the correction factors. Correction factors are 

robot-specific parameters. Their values depend not only on the factors already mentioned, 

but also on the factors that have not been mentioned - such as the mechanical structure of 

a robot, tool geometry, friction and torque characteristics of servo-drives. Through 

correction factors the influence of those "hidden" parameters or hard to identify 

parameters are incorporated into the existing, simple kinematics model, thus bringing 

more realism into the simulated motion time. 
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6.4 Future Work 

Future work has two basic goals with respect to the time frame: an immediate goal 

and a long-term goal. The immediate goal includes verification of the results presented in 

this thesis, while the long-term goal includes expansion of correction formula on other 

influential parameters. 

6.4.1. Immediate Goal 

The immediate goal includes verification of the proposed method on an inclined 

plane, i.e. on a plane that would include both vertical and horizontal motion. Derivation 

of the integration formula follows. 

Integration of acceleration correction factors is based on the two parameters - the 

direction of motion and the value of linear acceleration. Direction of linear motion can be 

found by using start and end point coordinates: 

y 
A 

B 

X 0 

Figure 6.13 Motion Direction Derivation Using Basic Vector Calculus 
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Vector calculations are given by the following equations: 

- - - - -
AB = 0 B - 0 A = (X B - X A ) i + ( y B - y A ) j + ( z B - z A ) k (6.5) 

Angles that vector AB makes with the reference coordinate axes can be found as: 

(6.6) 

(6.7) 

(6.8) 

A vector of linear acceleration is directed along the vector AB, and it too can be 

decomposed into three components ax, ay and az using angles calculated in equations 6.6, 

6.7 and 6.8: 

(6.9) 

(6.10) 

( 6.11) 

(6.12) 

Acceleration value in the horizontal plane can be found as: 

(6.13) 

Acceleration value in the vertical plane can be found as: 

(6.14) 
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Now, when acceleration values of both horizontal and vertical plane motion are known, 

the correction calculation can take place. The result of the correction is the following set 

of equations: 

(6.15) 

Similarly: 

(6.16) 

Corrected acceleration values have to be integrated back into the analytical model. In 

order to do so, equation 6.9 needs to be written in a different format: 

(6.17) 

The equation can be derived further: 

By replacing a H and a v with equations 6.15 and 6.16, a corrected overall linear 

acceleration value can be found as : 

2 c2 2 cc2 cz 1) 2 c2 2 a corr = H a x + H + V - • a y + V a z (6.18) 

Once the corrected value of linear acceleration a corr is known, it can be used for 

calculations that are described in the chapter 4. 
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6.4.2. Long-Term Goals 

There are three goals of future work that require a significant amount of time, thus can 

be considered as long-term goals: 

1) The experiments described in this chapter determined the influence that motion 

direction has on motion time of the real robot. Parameters such as the mass of the 

tool or manipulated object, configuration of the robot, type of motion 

interpolation, as well as the radial distance of both the vertical and horizontal 

plane were kept constant during the experiment. Future work should be focused 

on identification of influence the mentioned parameters have on motion time. 

2) Functional dependency of the corrected acceleration value should be expressed in 

a simpler manner than what is described in equation 6.18. Ideally, Clcorr could be 

expressed in the following format: 

(6.19) 

Where: 

a - nominal acceleration, 

Cv - correction factor for vertical motion plane 

CH - correction factor for horizontal motion plane 

Cm -correction factor for mass compensation, 

Cn - n-th influential factor 
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3) Ultimately, if further tests confirm the results of the test made for the research 

purposes of this thesis, a standard method similar to the process of static robot 

calibration could be developed. The result of the method's application would be 

the "signature" of the tested robot model. The "signature" would represent nothing 

but the description of the functional relationship between the correction 

parameters and motion time. A functional relationship could be provided either by 

the robot manufacturers or established by the users themselves through a set of 

simple standardized tests like the ones described in this chapter. Once known, a 

"signature" would be imported into the simulation system and applied to the 

underlying motion model of the simulation. 
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Appendix A- Experimental Results 

A.l. Teach-points Coordinates 

A.l.l. Approach Motion 

Table A.l Coordinates of the start teach-points for approach motion 

Teach-point X y z A B c 
[mm] [mm] [mm] [de2] [degl [deg] 

TOP LEFT 1350 700 100 180 -90 0 
TOP 1 1350 420 100 180 -90 0 
TOP 2 1350 140 100 180 -90 0 
TOP 3 1350 -140 100 180 -90 0 
TOP 4 1350 -420 100 180 -90 0 

TOP RIGHT 1350 -700 100 180 -90 0 

Table A.2 Coordinates of the target teach-points for approach motion 

Teach-point X y z A B c 
[mm] [mm] [mm] [deg) [de2] [deg] 

BOTTOM LEFT 710 700 100 180 -90 0 
TP1 710 650 100 180 -90 0 
TP2 710 600 100 180 -90 0 
TP3 710 550 100 180 -90 0 
TP4 710 500 100 180 -90 0 
TP5 710 450 100 180 -90 0 
TP6 710 400 100 180 -90 0 
TP7 710 350 100 180 -90 0 
TP8 710 300 100 180 -90 0 
TP9 710 250 100 180 -90 0 

TPlO 710 200 100 180 -90 0 
TP11 710 150 100 180 -90 0 
TP12 710 100 100 180 -90 0 
TP13 710 50 100 180 -90 0 
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Table A.2 Coordinates of the target teach-points (continued) 

Teach-point 
X y z A 8 c 

[mm] [mm] [mm] [deg] [deg] (deg] 
TP14 710 0 100 180 -90 0 
TP15 710 -50 100 180 -90 0 
TP16 710 -100 100 180 -90 0 
TP17 710 -150 100 180 -90 0 
TP18 710 -200 100 180 -90 0 
TP19 710 -250 100 180 -90 0 
TP20 710 -300 100 180 -90 0 
TP21 710 -350 100 180 -90 0 
TP22 710 -400 100 180 -90 0 
TP23 710 -450 100 180 -90 0 
TP24 710 -500 100 180 -90 0 
TP25 710 -550 100 180 -90 0 
TP26 710 -600 100 180 -90 0 
TP27 710 -650 100 180 -90 0 

BOTTOM RIGHT 710 -700 100 180 -90 0 

A.1.2. Depart Motion 

Table A.3 Coordinates of the start teach-points for depart motion 

Teach-point 
X y z A 8 c 

[mm] [mm] [mm] [deg] [deg] (deg] 
TOP LEFT 710 700 100 180 -90 0 

TOP 1 710 420 100 180 -90 0 
TOP 2 710 140 100 180 -90 0 
TOP 3 710 -140 100 180 -90 0 
TOP 4 710 -420 100 180 -90 0 

TOP RIGHT 710 -700 100 180 -90 0 
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Table A.4 Coordinates of the target teach-points for depart motion 

Teach-point 
X y z A B c 

[mm] [mm] [mm] [de2] [de2] [de2] 
BOTTOM LEFT 1350 700 100 180 -90 0 

TP1 1350 650 100 180 -90 0 
TP2 1350 600 100 180 -90 0 
TP3 1350 550 100 180 -90 0 
TP4 1350 500 100 180 -90 0 
TP5 1350 450 100 180 -90 0 
TP6 1350 400 100 180 -90 0 
TP7 1350 350 100 180 -90 0 
TP8 1350 300 100 180 -90 0 
TP9 1350 250 100 180 -90 0 

TP10 1350 200 100 180 -90 0 
TP11 1350 150 100 180 -90 0 
TP12 1350 100 100 180 -90 0 
TP13 1350 50 100 180 -90 0 
TP14 1350 0 100 180 -90 0 
TP15 1350 -50 100 180 -90 0 
TP16 1350 -100 100 180 -90 0 
TP17 1350 -150 100 180 -90 0 
TP18 1350 -200 100 180 -90 0 
TP19 1350 -250 100 180 -90 0 
TP20 1350 -300 100 180 -90 0 
TP21 1350 -350 100 180 -90 0 
TP22 1350 -400 100 180 -90 0 
TP23 1350 -450 100 180 -90 0 
TP24 1350 -500 100 180 -90 0 
TP25 1350 -550 100 180 -90 0 
TP26 1350 -600 100 180 -90 0 
TP27 1350 -650 100 180 -90 0 

BOTTOM RIGHT 1350 -700 100 180 -90 0 
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A.1.3. Downward Motion 

Table A.S Coordinates of the start teach-points for downward motion 

Teach-point 
X y z A 8 c 

[mm] [mm] [mm] [deg] [deg] [deg) 

TOP LEFT 1350 700 740 180 -90 0 
TOP 1 1350 420 740 180 -90 0 
TOP 2 1350 140 740 180 -90 0 
TOP 3 1350 -140 740 180 -90 0 
TOP 4 1350 -420 740 180 -90 0 

TOP RIGHT 1350 -700 740 180 -90 0 

Table A.6 Coordinates of the target teach-points for downward motion 

Teach-point 
X y z A 8 c 

[mm] [mm] [mm] [dee] rdee] rdeg) 
BOTTOM LEFT 1350 700 100 180 -90 0 

TP1 1350 650 100 180 -90 0 
TP2 1350 600 100 180 -90 0 
TP3 1350 550 100 180 -90 0 
TP4 1350 500 100 180 -90 0 
TP5 1350 450 100 180 -90 0 
TP6 1350 400 100 180 -90 0 
TP7 1350 350 100 180 -90 0 
TP8 1350 300 100 180 -90 0 
TP9 1350 250 100 180 -90 0 

TP10 1350 200 100 180 -90 0 
TP11 1350 150 100 180 -90 0 
TP12 1350 100 100 180 -90 0 
TP13 1350 50 100 180 -90 0 
TP14 1350 0 100 180 -90 0 
TP15 1350 -50 100 180 -90 0 
TP16 1350 -100 100 180 -90 0 
TP17 1350 -150 100 180 -90 0 
TP18 1350 -200 100 180 -90 0 
TPI9 1350 -250 100 180 -90 0 
TP20 1350 -300 100 180 -90 0 
TP21 1350 -350 100 180 -90 0 
TP22 1350 -400 100 180 -90 0 
TP23 1350 -450 100 180 -90 0 
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Table A.6 Coordinates of the target teach-points (continued) 

Teach-point 
X y z A B c 

[mm] [mm] [mm] [deg] [deg] [deg] 
TP24 1350 -500 100 180 -90 0 
TP25 1350 -550 100 180 -90 0 
TP26 1350 -600 100 180 -90 0 
TP27 1350 -650 100 180 -90 0 

BOTTOM RIGHT 1350 -700 100 180 -90 0 

A.2. Motion Times 

A.2.1. Approach Motion 

Table A.7 Approach motion times- start teach-point "TOP _LEFT" 

Target 
Travel 

Bearing 
Motion time 

Error 
Distance Robot Simulation 

Teach-point 
[mm] [deg] [sec] [sec] (sec] (%] 

BOTTOM LEFT 640 0.00 2.64 2.90 -0.26 -9.8 
TPl 641.95 4.47 2.66 2.90 -0.24 -9.0 
TP2 647.76 8.88 2.7 2.92 -0.22 -8.1 
TP3 657.34 13.19 2.77 2.96 -0.19 -6.9 
TP4 670.52 17.35 2.83 3.00 -0.17 -6.0 
TP5 687.09 21.34 2.91 3.06 -0.15 -5.2 
TP6 706.82 25.11 2.99 3.12 -0.13 -4.3 
TP7 729.45 28.67 3.08 3.20 -0.12 -3.9 
TP8 754.71 32.01 3.18 3.28 -0.10 -3.1 
TP9 782.36 35.11 3.28 3.37 -0.09 -2.7 

TP10 812.15 38.00 3.39 3.47 -0.08 -2.4 
TP11 843.86 40.67 3.57 3.58 -0.01 -0.3 
TP12 877.26 43.15 3.73 3.70 0.03 0.8 
TP13 912.19 45.44 3.86 3.81 0.05 1.3 
TP14 948.47 47.56 3.98 3.93 0.05 1.3 
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Table A.8 Approach motion times - start teach-point "TOP _1 " 

Travel 
Bearing 

Motion time 
Error Target Distance Robot Simulation 

Teach-point 
[mm] [de21 [sec] [sec] [sec] [%] 

BOTTOM LEFT 698.57 -23.63 2.73 3.09 -0.36 -13.2 
TP1 680.07 -19.77 2.70 3.03 -0.32 -12.0 
TP2 664.83 -15.71 2.68 2.98 -0.3 -11.2 
TP3 653.06 - 11.48 2.66 2.94 -0.28 -10.5 
TP4 644.98 -7.1 3 2.64 2.91 -0.27 -10.2 
TP5 640.70 -2.68 2.65 2.90 -0.25 -9.4 
TP6 640.31 1.79 2.66 2.90 -0.24 -9.0 
TP7 643.81 6.24 2.69 2.91 -0.22 -8.2 
TP8 651.15 10.62 2.73 2.94 -0.21 -7.7 
TP9 662.19 14.88 2.78 2.97 -0.19 -6.8 

TP10 676.75 18.97 2.85 3.02 -0.1 7 -6.0 
TP11 694.62 22.87 2.91 3.08 -0.17 -5.8 
TP12 715.54 26.57 2.98 3.15 -0.17 -5 .7 
TP13 739.25 30.03 3.065 3.24 -0.1 7 -5.7 
TP14 765.50 33.27 3.15 3.32 -0.1 7 -5.4 
TP15 794.04 36.29 3.24 3.41 -0.17 -5.2 
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Table A.9 Approach motion times - start teach-point "TOP_ 2" 

Travel Bearing Motion time 
Error Target Distance Angle Robot Simulation 

Teach-point 
[mm) [de~!] [sec) [sec) [sec) [%) 

BOTTOM LEFT 850.41 -41.19 3.35 3.60 -0.25 -7.5 
TP1 818.35 -38.55 3.23 3.49 -0.26 -8.0 
TP2 788.16 -35.71 3.13 3.39 -0.26 -8.3 
TP3 760.07 -32.64 3.03 3.30 -0.27 -8.9 
TP4 734.30 -29.36 2.95 3.21 -0.26 -8.8 
TP5 711.13 -25.84 2.87 3.14 -0.27 -9.4 
TP6 690.80 -22.11 2.81 3.07 -0.26 -9.3 
TP7 673.57 -18.17 2.76 3.01 -0.25 -9.1 
TP8 659.70 -14.04 2.72 2.96 -0.24 -8.8 
TP9 649.38 -9.75 2.71 2.93 -0.22 -8.1 
TP10 642.81 -5.36 2.70 2.91 -0.21 -7.8 
TP11 640.08 -0.90 2.69 2.90 -0.21 -7.8 
TP12 641.25 3.58 2.72 2.91 -0.20 -7.2 
TP13 646.30 8.00 2.74 2.92 -0.18 -6.6 
TP14 655.13 12.34 2.78 2.95 -0.17 -6.1 

Table A.lO Approach motion times- start teach-point "TOP _3" 

Travel Bearing Motion time 
Error Target Distance Angle Robot Simulation 

Teach-point 
[mm] [deg] [sec) [sec] [sec] [%) 

BOTTOM LEFT 1056.03 -52.70 4.09 4.29 -0.20 -4.9 
TP1 1016.71 -50.99 3.94 4.15 -0.21 -5.3 
TP2 978.37 -49.14 3.81 4.03 -0.22 -5.8 
TP3 941.12 -47.15 3.66 3.90 -0.24 -6.6 
TP4 905.10 -45.00 3.53 3.78 -0.25 -7.1 
TP5 870.46 -42.67 3.41 3.67 -0.26 -7.6 
TP6 837.38 -40.16 3.30 3.56 -0.26 -7.9 
TP7 806.04 -37.44 3.19 3.45 -0.26 -8.2 
TP8 776.66 -34.51 3.08 3.35 -0.27 -8.8 
TP9 749.47 -31.36 2.99 3.26 -0.27 -9.0 

TP10 724.71 -27.98 2.91 3.18 -0.27 -9.3 
TP11 702.64 -24.38 2.84 3.11 -0.27 -9.5 
TP12 683.52 -20.56 2.78 3.04 -0.26 -9.4 
TP13 667.61 -16.53 2.74 2.99 -0.25 -9.1 
TP14 655.13 -12.34 2.72 2.95 -0.23 -8.5 
TP15 646.30 -8.00 2.70 2.92 -0.22 -8.1 
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A.2.2. Depart Motion 

Table A.ll Depart motion times - start teach-point "TOP_ LEFT" 

Target 
Travel Bearing Motion time 

Error 
Distance Angle Robot Simulation 

Teach-point 
[mml [de2] [sec] [sec] [sec] [%) 

BOTTOM LEFT 640.00 0.00 2.57 2.90 -0.33 -12.8 
TPl 641.95 -4.47 2.54 2.90 -0.36 -14.2 
TP2 647.77 -8.88 2.55 2.92 -0.37 -14.5 
TP3 657.34 -13.19 2.57 2.96 -0.39 -15 .2 
TP4 670.52 -17.35 2.60 3.00 -0.40 -15.4 
TP5 687.10 -21.34 2.66 3.06 -0.40 -15 .0 
TP6 706.82 -25.11 2.72 3.12 -0.40 -14.7 
TP7 729.45 -28.67 2.80 3.20 -0.40 -14.3 
TP8 754.72 -32.01 2.89 3.28 -0.39 -13.5 
TP9 782.37 -35 .11 2.99 3.37 -0.38 -1 2.7 

TPlO 812.16 -38.00 3.10 3.47 -0.37 -11.9 
TP11 843.86 -40.67 3.21 3.58 -0.37 -11.5 
TP12 877.27 -43.15 3.34 3.69 -0.35 -10.5 
TP13 912.20 -45.44 3.47 3.81 -0.34 -9.8 
TP14 948.47 -47.56 3.60 3.93 -0.33 -9.2 
TP15 985.95 -49.52 3.74 4.05 -0.31 -8.3 
TP16 1024.50 -51 .34 3.88 4.18 -0.30 -7.7 
TP17 1064.00 -53.02 4.03 4.31 -0.28 -6.9 

Table A.12 Depart motion times- start teach-point "TOP 1" 

Target 
Travel Incline Motion time 

Error 
Distance Angle Robot Simulation 

Teach-point 
[mm] [de2] [sec] [sec] [sec] [%) 

BOTTOM LEFT 698.57 23.63 2.86 3.09 -0.23 -8.0 
TP1 680.07 19.77 2.78 3.03 -0.25 -9.0 
TP2 664.83 15.71 2.71 2.98 -0.27 -10.0 
TP3 653.07 11.48 2.65 2.94 -0.29 -1 0.9 
TP4 644.98 7.13 2.61 2.91 -0.30 -11.5 
TP5 640.70 2.68 2.59 2.90 -0.31 -12.0 
TP6 640.31 -1.79 2.57 2.90 -0.33 -12.8 
TP7 643.82 -6.24 2.57 2.91 -0.34 -13.2 
TP8 651.15 -10.62 2.60 2.94 -0.34 -13. 1 
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Table A.12 Depart motion times- start teach-point "TOP _I" (continued) 

Travel Incline Motion time 
Error Target Distance Angle Robot Simulation 

Teach-point 
[mm] [deg] [sec] [sec] [sec) [%) 

TP9 662.19 -14.88 2.62 2.97 -0.35 -13.4 
TP10 676.76 -18.97 2.66 3.02 -0.36 -13.5 
TP11 694.62 -22.87 2.72 3.08 -0.36 -13.2 
TP12 715.54 -26.57 2.78 3.15 -0.37 -13 .3 
TP13 739.26 -30.03 2.87 3.23 -0.37 -12.7 
TP14 765.51 -33.27 2.95 3.32 -0.37 -12.5 
TP15 794.04 -36.29 3.05 3.41 -0.36 -11.8 
TP16 824.62 -39.09 3.16 3.51 -0.35 -11.1 
TP17 857.03 -41.69 3.28 3.62 -0.34 -10.4 

Table A.l3 Depart motion times - start teach-point "TOP_ 2" 

Target 
Travel Incline Motion time 

Error 
Distance Angle Robot Simulation 

Teach-point 
[mm] [deg] [sec] [sec] [sec] [%] 

BOTTOM LEFT 850.41 41.19 3.44 3.60 -0.16 -4.7 
TP1 818.35 38.55 3.31 3.49 -0.18 -5.4 
TP2 788.16 35.71 3.19 3.39 -0.20 -6.3 
TP3 760.07 32.64 3.08 3.30 -0.22 -7.1 
TP4 734.30 29.36 2.98 3.21 -0.23 -7.7 
TP5 711.13 25.84 2.89 3.14 -0.25 -8.7 
TP6 690.80 22.11 2.80 3.07 -0.27 -9.6 
TP7 673.57 18.17 2.73 3.01 -0.28 -10.3 
TP8 659.70 14.04 2.67 2.96 -0.29 -10.9 
TP9 649.38 9.75 2.63 2.93 -0.30 -11.4 

TP10 642.81 5.36 2.63 2.91 -0.28 -10.6 
TP11 640.08 0.90 2.59 2.90 -0.31 -12.0 
TP12 641.25 -3.58 2.61 2.90 -0.29 -11.1 
TP13 646.30 -8.00 2.63 2.92 -0.29 -11.0 
TP14 655.13 -12.34 2.65 2.95 -0.30 -11 .3 
TP15 667.61 -16.53 2.69 2.99 -0.30 -11.2 
TP16 683.52 -20.56 2.73 3.04 -0.31 -11.4 
TP17 702.64 -24.38 2.80 3.11 -0.31 -11.1 
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A.2.3. Downward Motion 

Table A.l4 Downward motion times- start teach-point "TOP _LEFT" 

Travel Incline Motion time 
Error Target Distance Angle Robot Simulation 

Teach-point 
[mm] [deg] [sec] [sec] [sec] (%] 

BOTTOM LEFT 640.00 0.00 2.64 2.86 -0.22 -8.33 
TPI 641.95 4.47 2.60 2.87 -0.27 -10.38 
TP2 647.77 8.88 2.57 2.89 -0.32 -12.45 
TP3 657.34 13.19 2.56 2.92 -0.36 -14.06 
TP4 670.52 17.35 2.60 2.97 -0.37 -14.23 
TP5 687.10 21.34 2.65 3.02 -0.37 -13.96 
TP6 706.82 25.11 2.72 3.09 -0.37 -13.60 
TP7 729.45 28.67 2.80 3.17 -0.37 -13.21 
TP8 754.72 32.01 2.89 3.25 -0.36 -12.46 
TP9 782.37 35.11 3.01 3.35 -0.34 -11.30 

TP10 812.16 38.00 3.15 3.45 -0.30 -9.52 
TP11 843.86 40.67 3.28 3.55 -0.27 -8.23 
TP12 877.27 43.15 3.38 3.66 -0.28 -8.28 
TP13 912.20 45.44 3.52 3.78 -0.27 -7.54 
TP14 948.47 47.56 3.65 3.90 -0.25 -6.85 

Table A.lS Downward motion times -start teach-point "TOP_ 2" 

Travel Incline Motion time 
Error Target Distance Angle Robot Simulation 

Teach-point 
[mm] [deg] [sec] [sec] [sec] (%] 

BOTTOM LEFT 850.41 -41.19 3.45 3.60 -0.15 -4.35 
TPl 818.35 -38.55 3.28 3.47 -0.19 -5.79 
TP2 788.16 -35.71 3.16 3.37 -0.21 -6.65 
TP3 760.07 -32.64 3.05 3.27 -0.22 -7.21 
TP4 734.30 -29.36 2.97 3.18 -0.22 -7.25 
TP5 711.13 -25.84 2.88 3.11 -0.23 -7.99 
TP6 690.80 -22.11 2.79 3.04 -0.25 -8.96 
TP7 673.57 -18.17 2.73 2.98 -0.25 -9.16 
TP8 659.70 -14.04 2.69 2.93 -0.24 -8.92 
TP9 649.38 -9.75 2.65 2.90 -0.25 -9.43 

TPIO 642.81 -5.36 2.62 2.87 -0.25 -9.54 
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Table A.lS Motion Times- Start Teach-point "TOP _2" (continued) 

Target 
Travel Incline Motion time 

Error Distance Angle Robot Simulation 
Teach-point 

[mm) [deg) [sec) [sec) [sec) [%1 
TP11 640.08 -0.90 2.62 2.87 -0.25 -9.54 
TP12 641.25 3.58 2.61 2.87 -0.26 -9.96 
TP13 646.30 8.00 2.61 2.89 -0.28 -10.73 
TP14 655 .13 12.34 2.62 2.92 -0.30 -11.45 

A.3. Correction Factors 

A.3.1. Horizontal Motion Plane 

Table A.16 Correction factor values CH for approach motion 

"TOP LEFT" "TOP 1" "TOP 2" "TOP 3" 
Bearing 

CH 
Bearing 

CH 
Bearing 

CH 
Bearing 

CH [deg] [deg) [deg] [deg] 

0.00 1.48 -23.63 1.87 -41.19 1.46 -52.70 1.32 
4.47 1.44 -19.77 1.71 -38.55 1.49 -50.99 1.36 
8.88 1.39 -15.71 1.62 -35.71 1.49 -49.14 1.37 
13.19 1.30 -11.48 1.55 -32.64 1.51 -47. 15 1.43 
17.35 1.26 -7.13 1.53 -29.36 1.49 -45.00 1.46 
21.34 1.21 -2.68 1.46 -25.84 1.50 -42.67 1.48 
25.11 1.18 1.79 1.43 -22.11 1.48 -40.16 1.47 
28.67 1.16 6.24 1.38 -18.17 1.46 -37.44 1.49 
32.01 1.13 10.62 1.34 -14.04 1.44 -34.51 1.53 
35.11 1.12 14.88 1.31 -9.75 1.38 -31.36 1.53 
38.00 1.10 18.97 1.26 -5.36 1.35 -27.98 1.52 
40.67 0.99 22.87 1.26 -0.90 1.35 -24.38 1.51 
43.15 0.93 26.57 1.26 3.58 1.30 -20.56 1.50 
45.44 0.92 30.03 1.25 8.00 1.28 -16.53 1.46 
47.56 0.92 33.27 1.25 12.34 1.26 -1 2.34 1.40 

36.29 1.26 -8.00 1.37 
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