
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Pem1ission)

r
I
I

AN INNOVATIVE METHOD FOR IMPROVEMENT OF

ROBOTIC SIMULATION CYCLE TIME ACCURACY

by

© Nenad Apostolovic, B.A.Sc.

A thesis submitted to the

School of Graduate Studies

In partial fulfillment of the

Requirements for the degree of

Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

January 2003

St. John ' s, Newfoundland, Canada

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Canada

Your file Votre reference
ISBN: 0-612-89686-2
Our file Notre reference
ISBN: 0-612-89686-2

L'auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve Ia propriete du
droit d'auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

Robotic simulations can be classified into two groups - ones provided by the

robot manufacturers and the "generic" ones provided by the simulation software

companies. Both types have advantages and disadvantages with respect to cost, accuracy,

functionality and integration with other virtual manufacturing tools.

Improvement of motion accuracy is one area of significant development of

"generic" robotic simulations. Upon completion of the RRS I ("Realistic Robotic

Simulation") project, it finally became possible to use original motion and kinematics

algorithms, which minimized differences between the simulated motion and real motion.

However, RRS I Specification has several serious drawbacks. Not many robot

manufacturers provide modules, functionality is limited and the price is high.

Presented material proposes a new method for improvement of simulation motion

time accuracy. The method is based on the assumption about the existence of factors ,

whose influence on motion time of the real robot can be identified and incorporated

through correction factors into the simulation motion model.

ll

Acknowledgments

First of all, I want to thank to my supervisors Dr. Ray Gosine and Prof. Andy

Fisher for guidance and encouragement during my studies. A special thank you to Prof.

Andy Fisher and Dr. Mahmoud Haddara, Associated Dean of Graduate Studies of

Engineering for approving internship with Flow Software Technologies.

I would like to thank Mr. David Fortin, the manager of Flow Software

Technologies, for providing me both with the opportunity to enter the challenging area of

industrial robotic simulation and for helping me with the resources needed for the

research. A thank you as well to my team leader, Mr. Aleksandar Boskovic for many

hours of discussion about robotic simulation and for being a role model for my academic

and professional development. Many thanks to Jonathan Heron for all the help provided

when it was necessary. Many thanks to all other employees of Flow Software

Technologies and CIS Robotics, who influenced my work on the project. The quality of

my work will be my gratitude.

lll

Table of Contents

Abstract. n

Acknowledgements. 111

Table of Contents....... 1v

List of Tables.. x

List of Figures........ XI

Chapter 1 Introduction

1.1 . Simulation

1.2. Robotic Simulation....... 2

1.3. Realism ofRobotic Simulation................... 3

1.4. Motion Accuracy............ 4

1.4.1. RRS Specification............ 5

1.5. Contribution of the Thesis................. 7

1.6. Thesis Summary...................... 9

Chapter 2 Robot Simulation. I 0

2.1. Simulation. 10

2.2. Development of Robotic Simulation....................... 14

2.2.1. Benefits of Using Robotic Simulation............... 20

2.2.1.1. Robotic Simulation as a Conceptual Design

and Presentation Tool................... 20

IV

2.2.1.2. Robotic Simulation as Engineering Design

Tool................. 21

2.2.1.3. Robotic Simulation as Offline Programming

Tool................. 24

2.2.1.4. Robotic Simulation as Process and Ergonomics

Analysis Tool

2.3. Chapter Summary

Chapter 3 Robotic Simulation- Functional Structure

3 .1. Introduction

3.2. CAD Solid Modeler

3.3. Built-in Libraries

3.4. CAD Data Translators

3.5. Kinematics Module

3.6. Motion Trajectory Generator.

3. 7. Offline Programming

3.8. Calibration

3.9. Open Development Interface

3.10. Chapter Summary

27

28

29

29

30

30

31

34

37

39

42

43

44

Chapter 4 Velocity Profiles and Their Impact on Cycle Times.............. 45

4.1 . Introduction.. 45

4.2. Constant Acceleration/Deceleration Motion. 45

4.2.1. Stage 1 - Acceleration Motion.............................. .. 47

v

4.2.2. Stage 2- Constant Velocity Motion. 49

4.2.3. Stage 3- Deceleration Motion.. 50

4.2.4. Stage 2 (Revisited). 52

4.2.5 . Constant Acceleration Motion- Summary. 54

4.3. Linear Acceleration/Deceleration Motion. 55

4.3.1. Stage l - Acceleration Stage..... 57

4.3.1.1 . Sub-stage 1 -Linear Increase of Acceleration... 58

4.3 .1.2. Sub-stage 2 -Constant Acceleration amax. 60

4.3 .1.3 . Sub-stage 3 - Linear Decrease of Deceleration. 62

4.3.1.4. Sub-stage 2- Revisited.. 65

4.3.1.5. Stage 1- Summary.. 65

4.3.2. Stage 2 - Constant Velocity Stage.... 66

4.3.3. Stage 3 - Deceleration Stage.... 67

4.3.4. Stage 4- Finalized Calculations. 67

4.3.4.1 . Case 1. 68

4.3.4.2. Case 2... 69

4.3.4.3. Case 3..... 72

4.3.4.4. Special Cases.. 75

4.3.4.5. Finalized Rules for Parameters k1 and k2...... .. . 77

4.4. Motion Tracking... 79

4.4. Chapter Summary...... 81

VI

Chapter 5 Innovative Method for Improvement of Simulation Cycle Time

Accuracy. 82

5 .I. Description of the Problem.............. 82

5.2. Method for Improvement of Simulation Motion Accuracy.. 84

5.2.1. Dynamics Motion Model.............. 84

5.3 . The Description of the Proposed Method.................. 87

5.4. Test Assumptions. 92

5.5. The Test.......... 93

5.5.1. Bearing - Approach Motion...... 97

5.5.2. Bearing- Depart Motion... 100

5.5 .3. Incline Angle- Downward Motion.. 103

5.6. Chapter Summary................ 106

Chapter 6 Analysis, Conclusion and Future Work........................ 107

6.1.Analysis. 107

6.1 .1. Horizontal Motion Plane - Approach Motion. 107

6.1.1.1. Start Teach-point "TOP_ LEFT".... 108

6.1.1.2. Start Teach-point "TOP _ 1 ". 110

6.1.1.3. Start Teach-points "TOP _2" and "TOP _3"...... 111

6.1.2. Horizontal Motion Plane - Depart Motion Plane... 113

6.1.2.1. Start Teach-point "TOP_ LEFT".. 114

6.1.2.2. Start Teach-point "TOP _1 ". 115

6.1.2.3. Start Teach-point "TOP _2"..... 117

Vll

6.1.3. Vertical Motion Plane- Downward Motion.... 119

6.1.3 .1. Start Teach-point "TOP_ LEFT". 120

6.1.3.2. StartTeach-point"TOP_2"...... 121

6.2. Correction Factors. 123

6.2.1. Correction Factor for Horizontal Motion.......... 126

6.2.2. Correction Factor for Vertical Motion..... 129

6.3. Conclusion........ 131

6.4. Future Work... 133

6.4.1. Immediate Goal.... 133

6.4.2. Long Term Goals........................ 136

References.. 138

Appendix A Experimental Results......... A I

A.1. Teach-points Coordinates....... A 1

A.l.l. Approach Motion............. Al

A.l.2. Depart Motion......... A2

A.l.3. Downward Motion.... A4

A.2. Motion Times.... A5

A.2.l. Approach Motion................ A5

A.2.2. Depart Motion... A8

A.2.3. Downward Motion............ AlO

A.3. Correction Factors.......... All

A.3.1. Horizontal Motion Plane...................... A 11

Vlll

A.3.2. Vertical Motion Plane...................... Al2

IX

List of Tables

Table 4.1 Constant acceleration motion- summary . 54

Table A. I Coordinates of the start teach-points for approach motion. A I

Table A.2 Coordinates of the target teach-points for approach motion.. A l

Table A.3 Coordinates of the start teach-points for depart motion... A2

Table A.4 Coordinates of the target teach-points for depart motion. A3

Table A.5 Coordinates of the start teach-points for downward motion.. A4

Table A.6 Coordinates of the target teach-points for downward motion.. A4

Table A. 7 Approach motion times - start teach-point "TOP_ LEFT"... AS

Table A.8 Approach motion times- start teach-point "TOP_!"............ A6

Table A.9 Approach motion times- start teach-point "TOP_ 2"....... A 7

Table A.l 0 Approach motion times - start teach-point "TOP_ 3"............ A 7

Table A. II Depart motion times - start teach-point "TOP_ LEFT". A8

Table A.l2 Depart motion times - start teach-point "TOP _ 1 "............. A8

Table A.l3 Depart motion times - start teach-point "TOP_ 2" A9

Table A.l4 Downward motion times - start teach-point "TOP_ LEFT". A l 0

Table A.15 Downward motion times - start teach-point "TOP_ 2". A I 0

Table A. l6 Correction factor values CH for approach motion A 11 .

Table A.l7 Correction factor values CH for depart motion A 12

Table A.l8 Correction factor values Cv for downward motion A 13

X

List of Figures

1.1. RRS Architecture. 5

2.1. Cost-time problem detection curve.. 12

2.2. Robot servicing a work-piece- surface representation........... 14

2.3. Car body painting line. 16

2.4. Arc welding application. 17

2.5. Integration of"virtual manufacturing" tools... 18

2.6. Virtual manufacturing as a key link. 19

2.7. Kinematics properties form 22

3.1. IGES import options. 33

3.2. SCARA robot configuration.. 34

3.3. PUMA robot configuration.. 35

3.4. Gantry robot configuration.. 35

3.5. Robot related functions available to the user in the VBA environment. 41

4.1. Velocity profile for constant acceleration....... 46

4.2. Velocity profile for linear acceleration................... 56

4.3. Acceleration stage - general case............ 57

4.4. Linear acceleration- case I... 68

4.5. Linear acceleration - case 2...................... 69

XI

4.6. Condition 2- graphical representation of the solution.... 72

4.7. Linear acceleration- case 3..... 73

4.8. Linear acceleration - case 3 graphical representation of the solution . .. 75

4.9. Linear acceleration- special case I. 76

4.1 0. Linear acceleration- special case 2. 77

4.11. Parameters k1 and k2 - solution range 78

5.1. Velocity Profile for Constant Acceleration.. 82

5.2. Velocity Profile for Linear Acceleration. 83

5.3. Velocity profiles- Simulation vs. Real-World... 83

5.4. A Simple Two-link Planar Manipulator.. 85

5.5. Simulation Velocity Profiles- Original vs. Corrected.......... 90

5.6. "Natural" Robot Configuration....................................... 92

5.7. Test Description- Motion in Horizontal Plane. 94

5.8. Test Description - Motion in Vertical Plane....... 95

5.9. Approach Motion Test - Isometric View......................... 97

5.10. Approach Motion Test - Top View............. 98

5.11. Approach Motion Test- Side View.... 98

5.12. Bearing Angle for Approach Motion............ 99

5.13. Depart Motion Test - Isometric View............................. 100

5.14. DepartMotionTest - TopView 101

5.15. Depart Motion Test- Side View................................ 101

XII

5.16. Bearing Angle for Depart Motion.......... 102

5.17. Downward Motion Test- Isometric View.... 103

5.18. Downward Motion Test- Top View.. 104

5.19. Downward Motion Test- Side View.... 104

5.20. Incline Angle for Downward Motion... 105

6.1. Motion Time Curves of the Real Robot... 108

6.2. Motion Time Curves of the Start Teach-point "TOP _LEFT"... 109

6.3. Error Plot for Start Teach-point "TOP_ LEFT". 109

6.4. Motion Time Curves of the Start Teach-point "TOP _1 ". 110

6.5. Error Plot for Start Teach-point "TOP _ I"... I l l

6.6. Motion Time Curves for Start Teach-point "TOP _2" and "TOP _3".. .. 112

6.7. Error Plot for Start Teach-points "TOP _2" and "TOP _3" 112

6.8. Motion Time Curves for Depart Motion.... 113

6.9. Motion Time Curve for Start Teach-point "TOP _LEFT". 114

6.10. Error Plot for Start Teach-point "TOP _LEFT". 115

6.11. Motion Time Curve for Start Teach-point "TOP _I " 116

6.12. Error Plot for Start Teach-point "TOP _ I". 116

6.13. Motion Time Curve for Start Teach-point "TOP _2". 117

6.14. Error Plot for Start Teach-point "TOP_ 2". 118

6.15. Motion Time Curves for Downward Motion 119

6.16. Motion Time Curves for Start Teach-point "TOP LEFT". 120

Xlll

6.17. Error Plot for Start Teach-point "TOP_ LEFT".... 121

6.18. Motion Time Curve for Start Teach-point "TOP_ 2" 122

6.19. Error Plot for Start Teach-point "TOP_ 2"....... 122

6.20. Constant Acceleration Models- Nominal Model and Corrected

Model

6.21. Correction Factor Curves for Approach Motion

6.22. Correction Factor Curves for Depart Motion

6.23. Correction Factor Curves for Downward Motion

6.24. Motion Direction Derivation Using Basic Vector Calculus

XIV

125

127

127

130

133

Chapter 1

Introduction

1.1. Simulation

The complexity of many present-day systems, such as transportation systems,

manufacturing systems, military systems is so high that successful design and

implementation would be impossible without a tool such as simulation. Used in all stages

of product/system development, simulation provides invaluable answers to many critical

questions about the system.

A key benefit of using simulation is that a model of the real system, rather than

the system itself is tested. In other words, a system can be designed and tested before it is

built. The benefit of this approach is that the simulated system can be built "right the first

time" with minimum (if any) problems.

At the same time, using the model of a system rather than the system itself

represents the main weakness of simulation. For example, data used for building a model

may be invalid, results of the analysis might be hard to understand or a proposed solution

might not be the right one [1].

Yet, with the advantages and disadvantages mentioned, simulation has proven to

be a valuable tool for design, analysis and control of complex present-day systems.

2

1.2. Robotic Simulation

The basic purpose of a robotic simulation is to provide a simulation of the actions

performed by one or more robots and their interaction with other equipment in the work

cell. Robotic simulation is one of the fundamental components of "virtual

manufacturing", which itself represents a foundation for a new approach in the process of

product design and manufacturing- concurrent engineering.

Typical applications of a robotic simulation include [2]:

1) Presentation purposes - a model of a work cell can be easily created for the

purposes of concept verification and concept or marketing presentation,

2) Engineering purposes - design and verification of a work cell layout, verification

of kinematic reach, path verification, singularity check, collision detection,

3) Offline programming purposes - involves the creation of a robot program using

robotic simulation, verification of a created program, and its subsequent export

into a proper format accepted by the targeted robot controller,

4) Process analysis and ergonomics analysis - includes throughput analysis using

discrete-event simulation resulting in estimate of work cell capacity and cycle

time.

Robotic simulation, just like any other simulation, uses a model of a system for testing

possible scenarios rather than the system itself. Regardless of whether the analysis is

performed on models of existing or non-existing systems, savings in time and material

achieved by using simulation are significant (more details provided in Chapter 2).

3

1.3. Realism of Robot Simulation

The fundamental problems associated with simulation that were mentioned in

section 1.1 can also be applied to robotic simulation. The following set of errors has been

identified as important with respect to robotic simulation ([3, 4, 5, 6]):

1) Geometric errors - this type of error is based on the differences between an ideal

CAD model and the real world model,

2) Dynamic errors - represent differences in motion behavior between the simulated

and the real robot. Errors are a result of forces and torques not taken into account,

which can significantly influence motion,

3) Thermal errors - thermal expansion due to factors such as friction in joints or

temperature of environment. Typically, this type of error is not taken into account,

4) System errors- such as gear backlash and poorly tuned servos,

5) Motion behavior errors - occur due to the difference between the original robot

controller motion algorithms and algorithms provided by the robotic simulation

companies. This type of error results in incorrect cycle times and differences

between the simulated and the real-world trajectory shapes.

Geometric errors, as well as system errors can be minimized relatively easy

through the process of robot calibration. On the other hand, dynamic errors are very hard

to detect. Although compensation of these errors is possible, establishment of a correct

model is difficult and computationally expensive [4].

4

1.4. Motion Accuracy

Robotic simulations can be classified into two groups - "generic" robot

simulations and robot simulations provided by the robot manufacturers. Both types of

robotic simulations have their advantages and disadvantages. The simulations provided

by the robot manufacturer have a high level of motion accuracy, because the simulation

contains the same motion and path planning algorithms as the real robot. The key

disadvantage is that typically there is no support for robots from other manufactures, as

well as poor integration with other simulation tools.

On the other hand, generic robotic simulators typically contain libraries of robots

from different manufacturers [7]; however the same motion and kinematics algorithms

are applied to every robot regardless of the robot manufacturer [8]. In other words, a

simulated work cell and a real-world work cell could show quite different behaviors with

respect to cycle times and actual motion trajectories [4].

One possible solution to the problem is to develop a simulation motion model that

is based on dynamics. However, the problems associated with the dynamics-based motion

model are numerous. A dynamics model is typically of high complexity, computationally

expensive and requires that a range of new parameters to be known prior to the

computation [9, I 0].

Another solution to the problem is to use the original controller software in the

simulation systems; however it was not always possible to do so [9, 11], since the

controller related information was kept confidential by robot manufacturers.

5

1.4.1. RRS Specification

In order to solve the problem of motion accuracy, a consortium of companies from

the automotive industry, simulation industry, and industrial robot manufacturers was

created in 1991 [6, 8]. The purpose of this consortium was to find an optimum solution

for the problem described in section 1.4. The solution was found in the mid 1990s in the

form of the RRS I Specification (RRS stands for "realistic robot simulation"). The RRS I

specification defines a standard interface so that "the original software for motion

interpolation and transformation of real controllers could be integrated in simulation

systems in a standardized manner" [6]. In other words, an interface provides

communication (figure 1.1.) between the simulation software and a module ("RCS

module" - RCS stands for "realistic controller simulation"), which contains original

motion and kinematics algorithms [9].

...

<I)
u
~ ..

Robotic ...
Simulation B

.5
[/)

~

..

..

..

..

RRS
Interface

RRS
Interface

RRS
Interface

RCS Module
Robot manufacturer I

RCS Module
Robot manufacturer 2

RCS Module
Robot manufacturer n

Figure 1.1 RRS Architecture

6

The RRS I Specification proved to be a success in several ways:

1) Targeted accuracy of cycle times was within± 3% of actual cycle time, however,

in some cases the achieved accuracy was within ± 1% [l 0],

2) Targeted positioning accuracy was 0.00 l radians. Implemented RCS modules

achieved accuracy of0.00005 radians [10],

3) It became possible to have two or more robots of different manufacturers in a

generic robot simulation, and to be sure that motion and kinematics algorithms

were accurate.

The RRS I specification has limitations, such as no support for signaling, robot

applications, interrupt handling, and motion coordination [8]. With these limitations in

mind the consortium is currently working on a new specification. The purpose of the new

specification (RRS II) is to overcome these limitations. RRS II introduces a new approach

to the robotic simulation - robotic simulation consists of two separate entities, i.e. a

simulator and a new type of RCS module. The purpose of a simulator is to provide a user

interface and a graphical representation of the simulated work cell, while the RCS module

represents the actual engine of the simulation. New RCS modules contain not only

kinematics and motion algorithms, but they also contain input/output handling

procedures, file system handling, interrupts, and motion synchronization [I I]. In other

words, the new RCS modules represent virtual robot controllers [12].

7

1.5. Contributions of the Thesis

Although the RRS I Specification proved to be a success, there are some serious

drawbacks:

1) Although the RRS I Specification defines an interface that has 57 functions,

several important issues mentioned in section 1.4 yet remain to be addressed

by the new RRS II specification,

2) In order to conduct a more accurate simulation, the user needs to purchase an

RCS module from the robot manufacturer, which can be a costly investment,

3) Not many robot manufacturers provide RCS modules,

4) RCS modules typically do not provide full functionality defined by the RRS I

Specification.

Basically, only customers who really have a need for accurate simulation are the

ones who will purchase the RCS module. A typical example is the automotive industry.

Alternatively, for a small sized company that utilizes one or two robots, a highly accurate

cycle time is of not primary concern. Yet, it is important to know approximately how

much time certain operations might take.

8

The method presented in this thesis proposes a new approach to improve the cycle

time accuracy of a robotic simulation without using the RCS modules and without using

the dynamics motion model. This approach is based on the facts that:

1) Usage of motion and kinematics algorithms provided by the genenc robotic

simulation companies will rarely result in either an accurate estimate of simulation

cycle time or in an accurate shape of a trajectory [9],

2) The original motion algorithms and kinematics algorithms will remam

confidential,

3) Dynamics-based motion models are highly complex, computationally expensive,

and still do not guarantee accurate simulation motion time.

A valid hypothesis that can be made about the motion time of the real robot is that

there exists a set of factors that influence the motion time. Each of these factors affects

the cycle time to a certain extent. The basic goal of this research is to verify the

hypothesis about the existence of the influential factors and subsequently, to determine

the level of their influence. If the hypothesis proves to be correct, then the next goal

would be to find a way to integrate these influences into the existing simulation motion

model so that simulation motion time accuracy is improved.

9

1.6. Thesis Summary

Chapter 2 provides an overview of simulation, as well as robotic simulation in

particular. The overview includes a description of the role that robotic simulation has in

the process of product design, types of robotic simulation and the benefits of using

robotic simulation. Target areas of application such as marketing, engineering, offline

programming, and process analysis are explained.

Chapter 3 provides a detailed description of the robotic simulation structure.

Modules described include: CAD module, CAD data translators, built-in libraries for

robots and supporting equipment, motion trajectory generator, kinematics module, and

offline programming module.

Chapter 4 contains detailed mathematical descriptions of two analytical simulation

motion models, one based on constant acceleration and the other one based on linear

acceleration. For each stage/sub-stage of motion, a set of equations is derived for

parameters such as travel time and travel distance.

Chapter 5 contains a description of the testing procedure for the two parameters

that were tested, as well as the experimental results.

Chapter 6 includes conclusion and suggestions for future work.

10

Chapter 2

Robotic Simulation

2.1. Simulation

A simulation can be defined as "the imitation of the operation of a real-world

process or system over time" [1], or as "the imitative representation of one system or

process by means of functioning of another" [13]. It provides answers related to the

performance of the existing system, evaluation of alternative solutions, and the quality of

the design solution for a system that is to be built [1].

A typical simulation study is a process with several stages [I] :

1) Problem formulation - a clear understanding of the problem must exist,

2) Setting of objectives and overall project plan through an official proposal - the

proposal has to define the objectives clearly, as well as stages of investigation and

personnel that will be involved,

3) Model conceptualization - mathematical and logical representation of a real-world

system,

4) Data collection - acquisition of real-world system data,

5) Model translation - creation of a computer model of a real-world system,

6) Verification - performance verification of the computer model,

11

7) Validation- validation of the model's accurate representation of a real-world system,

8) Experiment design -a decision on the number and duration of trial runs,

9) Production run and analysis

1 0) More runs - optional and based on the results from stage 9.

11) Documentation and reporting

12) Implementation - clients are introduced to the results of the simulation

It is apparent that that the most important aspect of any simulation study is the

modeling of the real-world system, and this represents one of the greatest benefits of

using a simulation. The model, rather than the real-world system itself, is used to prove

the concept, to test new ideas and new features and to compare alternative solutions [14].

Finally, testing of a model saves both money and time. This is especially true in case of

large and complex systems.

A simulation can be used both before and after the real-world system is built,

however its application is most effective during the product's design stage. In the case of

manufacturing, the use of simulation has become an integral part of concurrent

engineering. Concurrent engineering represents a relatively new approach [15] in the

product development. Unlike the traditional product development that is a sequential

process with mutually isolated sequences, concurrent engineering is a parallel process, i.e.

the product development activities are happening at the same time at several different

levels, such as design, manufacturing, process analysis, etc. This "parallelism" provides

early detection of problems associated to different aspects of the product, and in turn

12

provides a significant reduction of costs that would appear if the problems were detected

at a later stage (figure 2.1.).

Cost

Time

Figure 2.1 Cost-time Problem Detection Curve [15]

Additional benefits of using a simulation include faster time to market and no delays

while waiting for the problems to be fixed because the potential problems are identified

and resolved before the prototype is built [16].

The most important role in the process of product development belongs to the

three-dimensional CAD solid model [15]. Not only does it serve as a communication tool

between the members of the product development team, it is also used as an input for

different simulation tools. Since the product development teams typically consist of

engineers with different backgrounds [17], the tools they use for analysis are also

different. While design engineers use finite element analysis to simulate mechanical

13

processes inside the part to determine stresses and strains, industrial engmeers use

material flow or process simulations to conduct the throughput analysis in order to

determine the capacity of a cell, its utilization, etc. Similarly, quality engineers would use

specialized simulation to verify and optimize inspection programs for CMMs and NC

machine tools [18].

Simulation is also used after the deployment of a product or a system, as a tool for:

Personnel training - in a situation where the real work is done in a dangerous

environment, or when the actual facilities to be operated by the employees are too

complex or too expensive to be reproduced. There is no production downtime and no

costs associated with material used during the training [14, 19].

Maintenance and support - simulation is used as an analysis tool to track down the

possible bugs that might appear within the system. The bugs are typically reported by

the customers and it is up to the system integrators to reproduce the state of the

system that caused the bugs, and then to prevent its reappearance [14].

14

2.2. Development of Robotic Simulation

The development of robotic simulation began m mid 1980s when the first

industrial robotic simulation provided by McAuto, a division of McDonell Douglas

appeared on the market [20]. Deneb Robotics, Tecnomatix, and Silma Inc. followed with

their robot simulations. Robotic simulations at the time provided only basic functionality,

since they were based on CAD systems that used wire-frame and surface representation

of objects in space. This limited functionality resulted in the limited role that robotic

simulation had - it was used as verification tool rather than a process design tool [21].

Figure 2.2 Robot Servicing a Work-piece - Surface Representation [22]

15

With the ever-increasing power of computers, the functionality of both CAD

systems and robotic simulations also improved over time. Basic functionality that

included verification of a robot's kinematic reach and work cell layout was expanded

over time to incorporate collision detection, cycle time analysis, offline programming,

and calibration [20].

Introduction of a solid model representation in CAD systems provided further

development of robotic simulation. More complex tasks such as path planning, improved

collision detection, and grasp planning are some of the features that are presently

considered to be standard (7] . The realism of robotic simulations with respect to the

applications utilized has also improved. Figure 2.3 shows two robots painting the body of

a car. Different thicknesses of deposited paint are represented with different colors.

Figure 2.4 shows two robots performing welding.

16

Figure 2.3 Car Body Painting Line [23]

17

Figure 2.4 Arc Welding Application [23]

18

Robotic simulation is in a continuous process of development. Several trends can

be noticed today. On the system level, the trend is integration of a robotic simulation into

larger systems [18, 21, 23, 24]. Figure 2.5 provides the structure of a virtual

manufacturing tool offered by Tecnomatix. In other words, robotic simulation today is

considered as one of the many tools used in the process of product development.

Electronic Bills
of Process (eBOPs}

. ~- -~

/
/

Detailed Line. Sta1ion &
Task Design

Line Balandng

___ , .. _

Figure 2.5 Integration of "Virtual Manufacturing" Tools [18]

The two largest manufacturers of robotic simulation, Delmia and Tecnomatix are

currently introducing a whole range of new products, which include tools for process

planning, Internet-based exchange of manufacturing information between plants and

suppliers, quality inspection and tolerance management, analysis of ergonomics issues,

and analysis of machining issues [18, 23]. The goal behind this integration is to firmly

establish "virtual manufacturing" as a key link between product design and actual

19

production (figure 2.6). The reason behind this integration has already been mentioned -

concurrent engineering. Both the design of a product and the design of the manufacturing

process occur simultaneously, thus cutting the costs of production, improving the quality

of the product, and getting the product to market faster [25).

Product
design

Production
engineering

Industrial process

Production

Figure 2.6 Virtual Manufacturing as a Key Link [25]

On the application level one of the major trends emerging is an improvement in

robotic simulation accuracy. Details are provided in section 1.4.1 .

20

2.2.1. Benefits of Using Robotic Simulation

The most important benefit of using a robotic simulation is the same benefit that

applies to simulation in general - it is the model, a virtual model of a real-world system

that is simulated, tested and modified rather than the real-world system itself. In case of a

robotic simulation it means that issues related to work cell design, selection of robots and

associated parameters are resolved before the actual physical model is built. The final

result is that the real-system is built "right the first time".

Robot simulation can be used in one of the following contexts [2]:

As a conceptual design and presentation tool,

As an engineering analysis tool,

As an offline programming tool, or

As a process and ergonomics analysis tool.

The benefits of using a robotic simulation will be grouped and presented accordingly.

2.2.1.1. Robotic Simulation as a Conceptual Design and Presentation Tool

Robot simulation can be used as a tool that provides very effective visual

presentations of concepts to customers, other engineers, or to management. A user can

either create a new cell using the basic CAD functionality provided by the robot

simulation, or simply import a work cell from a file created in an external CAD package

[2] .

21

Furthermore, robot simulations provide libraries of robots and supporting standard

equipment [9], thus the initial design can be completed in a matter of days [14].

Another powerful feature of present-day robot simulations is the capability of

saving the simulated actions occurring inside the cell to an animated media file [18, 23,

26,27].

2.2.1.2. Robotic Simulation as Engineering Design Tool

Once the customers or the management accepts the presented concept, further

development takes place. Typical activities for this stage involve detailed design of the

work cell [2, 26]. Detailed design of the work cell includes the proper selection of one or

more robots with respect to the task to be performed, overall dimensions of the work cell,

kinematic reach of the robot, and maximum payload. Robotic simulation software

typically provides libraries of robots, tools and other standard supporting equipment from

different manufacturers, which significantly accelerates the design process. Design of

tools and fixtures, selection of material handling systems, such as conveyors and AGV s is

also a part of this stage.

The next stage includes creation of collision-free paths. The paths can be created

either manually or automatically, by using a built-in utility for automatic path generation.

Once the path is defined, cycle time analysis takes place. Cycle time can be broken down

into the motion of the robot, motion and actions performed by other equipment in the cell,

and the time spent waiting for a certain signal to change its value. When it comes to

motion of the robot, typical parameters that can be set include speeds and accelerations

22

both for joint and linear/circular motion (figure 2. 7). The time that a robot spends waiting

after it gets into a target point as well as the corresponding tool and input/output actions

can be specified.

GP Properties- GP0002

General) Position Motion J Actions J Relative to Self)

·- Joint Speed: j--·-.. --j
Acceleration: j1 00.00

C'"'~';peed: J40000

eleration: .r-:14-:-00~.00~-----··

Orientation

[~. -.--------·
1

- Rest Parameter
Rest Time: jr-0-.00------

Prev .. I Next I ~ Cancel Help

Figure 2.7 Kinematics Properties Form [28]

Benefits of using simulation as an engineering tool are numerous, especially in the

case of complex products and systems [29]. Evaluation of design alternatives is

performed in the virtual environment, which means:

Problems are identified and resolved prior to the actual production,

Overall cost reduction,

Shorter time to market,

Uniform quality of products.

23

Examples:

l) Nissan produces four types of vehicles on one production line in one of its plants in

Japan (25]. The production facility was designed and verified offline by using

ROBCAD (Tecnomatix). The same robot simulation is used for offline programming

purposes - more than 1200 programs were created for the 117 robots employed.

Furthermore, overall design time including time for design verification was reduced

from five to only three months.

2) British Rover used ROBCAD in the design of its vehicle Rover 75 [30]. More than

750 modifications of the original model were made based on the offline verification.

Potential savings in using simulation and getting the design "right first time" were

estimated to approximately half a million pounds just for the bumper tooling alone.

3) Boeing used the robot simulation provided by Deneb Robotics (now Delmia, a part of

Dassault Systemes) to verify structural design and assembly of the X-32 joint strike

fighter (29]. It was all a part of a competition for a $750 billion dollar contract for the

U.S. Department of Defense. Production costs were reduced by approximately 33%.

24

2.2.1.3. Robotic Simulation as an Offline Programming Tool

A robot performs tasks through a programmed sequence of motions or actions

[31], which are stored in the memory of robot controller. Programming of robots can be

done either online of offline. Online programming is typically done by a programmer,

who uses a teach pendant to move the robot to different locations inside the robot's

attainable workspace. A teach pendant is a hand-held device that is connected directly to

the robot's controller and enables the programmer to create, modify or delete programs

[31].

One of the major advantages of online programming is that it does not require a

lot of skill [31]. A major drawback to online programming is that it must be done on site.

In addition, online programming is typically a time intensive task and production must be

halted during the programming time. According to the report [34], for a facility that has

seven lines with 36 painting robots, overall downtime for online programming was

estimated to over one year. Costs also included paint used in programming, as well as the

vehicle prototypes. The conclusion is that online programming is effective only when the

task is not too complex [3] .

Offline programming is a method of creating robot programs without using a real

robot [3]. Typically, offline programming is a three-step process that includes the

building of a CAD model of the work cell, calibration, and program development [2].

25

A CAD model of the work cell can be created either in a robot simulation

package, or in some other CAD software package and later imported into the robot

simulation [2]. This CAD model is used both for simulation and offline programming

[26].

Calibration is a required step in offline programming [2], since the CAD model

exists in a virtual environment where all dimensions are ideal. In the real world, accuracy

associated problems can influence offline programming to the point where modification

of offline created programs on the shop floor is inevitable [9]. Typical problems

associated with accuracy include different lengths of robot links, incorrect placement of

the robot and other equipment in the cell, environment temperature, and payload [2]. The

purpose of calibration is to identify the influences mentioned and to incorporate them into

the mathematical model of the simulated robot, thus preventing modification of the

program on the shop floor [2, 26].

Offline programming is relatively easy, and it can be done either manually or

automatically - using the advanced features of a robotic simulation. Benefits are

numerous. Probably the most important benefit is a significant reduction in production

downtime, in some cases up to 90%. In additional there is a reduction in the time

required for the creation of a robot program [32].

26

Additional benefits include:

Correct tool orientation that depends on the type of application, yet assigned

automatically by the simulation software [26),

Automatic creation ofteach points both on simple and complex parts [26],

Offline verification of created programs - in case something unpredictable

happens, such as collision, or change of robot configuration, it is happening in

the virtual world, therefore there is no real damage done. Correction of a

program can be done relatively quickly [26],

Usage of one system for many robots [3], i.e. the same offline programming tool

can output the same program into several different robot languages,

Improved safety of a robot programmer who is not exposed to a harmful

environment [3, 26).

Once the offline created programs are verified, they are transferred to the robot

controller for the test run.

27

2.2.1.4. Robotic Simulation as Process and Ergonomics Analysis Tool

Robotic simulation integrated with the discrete event simulation can also be used

for evaluation of the work cell performance [2, 26]. Typical analysis involves:

Justification of the number of robots in the work cell,

Recognition of the potential production bottlenecks,

Estimate of the cycle time - best and worst scenarios.

Several software packages meant for workplace ergonomics analysis can be found

on the market. Based on the existing CAD model of a manufacturing cell, or an assembly

line, for example, the following analysis can be conducted [2, 16, 33, 34]:

Estimate of a percentage of the general population that will work comfortably

can be determined,

Evaluation of the safety hazards,

Evaluation of worker's lifting capacity and resulting strains,

Potential reach to certain places inside the machine,

Evaluation of the time designated for an operation.

28

2.3. Chapter Summary

This chapter provided a brief description of development of a robotic simulation, the role

a robotic simulation plays in the process of product development and the benefits of using

a robotic simulation. Four main application areas of robotic simulation were described -

presentation and marketing, engineering design and analysis, process analysis and offline

programming.

The next chapter will provide more insight into robotic simulation through description of

its functional structure.

29

Chapter 3

Robotic Simulation - Functional Structure

3.1. Introduction

Robotic simulation represents a complex and large software product. The structure

of a robotic simulation is not clearly defined by a standard. Robot simulation companies

themselves define the type and function of modules. Common features of a few robot

simulations can be identified and organized into modules [7]:

CAD solid modeler,

Built-ir:t libraries of commercially available robots,

Data translators,

Kinematics module,

Motion trajectory generator,

Offline programming module(s),

Calibration module,

Open development interface.

30

3.2. CAD Solid Modeler

Every robot simulation typically provides a CAD solid modeler that has a limited

functionality. The basic idea is to use a CAD package such as AutoCAD, Pro/Engineer,

CA TIA, or I-DEAS to design a work cell. Once created, a work cell is typically saved in a

file, which is then uploaded into the robotic simulation. CAD solid modelers provide the

following functionality [35]:

Visual presentation of the work cell layout, which typically includes a robot or

robots, machines, conveyors, fixtures, tables and jigs,

Enables the user to create, modify or delete the model of the work cell,

Enables the user to expand the existing libraries of robots and equipment, which

accelerates subsequent cell designs,

Visual representation of the motion that takes place in the cell,

Represents input for automatic generation of a robot path.

3.3. Built-in Libraries

Although the user can create a robot and later save it in a file for future use, robot

simulation companies and robot manufacturing companies typically provide robot model

information in the form of CAD files [7]. This approach provides shorter work cell

development time, since the user can access the robot model data using CAD libraries

provided by the robot simulation company. Users can also download the robot CAD

model from the robot manufacturer's website, and insert it directly into the robot

31

simulation, without any modifications. The direct result is a significant decrease in work

cell development time.

The same applies to the tools, fixtures, jigs, and all the other equipment typically

used in a robotic work cell. Furthermore, the user can create models of custom designed

or custom made equipment, save it and re-use it when the need arises.

3.4. CAD Data Translators

The CAD model of a work cell does not necessarily have to be created using the

CAD capabilities of the robotic simulation software. It can also be created by some other

CAD software package and imported into the robot simulation. The process of CAD

model importing can create numerous problems [36, 37, 38]. The key reason lies in the

different file formats in which a CAD model can be saved and in errors that occur during

the conversion process of one file format into another.

The CAD file format can be either a proprietary one or a neutral one such as IGES

or STEP. The conversion is performed by the translators that transfer a CAD file from

one file format to another. A conversion can be [38]:

1) Direct conversion of one proprietary file format into another. The main problem is

that both file formats have to be known, and that can represent a serious problem

since proprietary formats are kept confidential (38]. A conversion back into the

original proprietary file format can occur, thus creating the need for another

translator.

32

2) Indirect conversion - a neutral file format is used as an intermediate step in the

conversion process. The problem with this approach is that conversion errors can

happen both during the conversion from the original proprietary file format into a

neutral file format, and from neutral file format into the targeted proprietary file

format.

3) Spatial Corporation and Unigraphics Solutions Ltd. have undertaken a different

approach to the problem. The two companies developed their own CAD modeling

systems (ACIS and Parasolid), which are built-in in numerous applications (38].

One CAD modeling system implies one file format, which means that no file

format conversion is necessary. Furthermore, one ACIS based file can be opened

and used by any other ACIS based application without any problems [38].

Robotic simulation has to be able to import the CAD model in different file

formats, as well as to save the CAD model to different file formats. In other words, robot

simulation software has to be able to "import" and "export" a CAD model into different

file formats. For this particular purpose, specialized CAD translators have to be provided.

The CAD model translation process is not always successful. Errors occur because

of different mathematical representations of 3D objects (36], thus corrective interventions

are necessary. For example, Workspace 5 robotic simulation, can import files both in

IGES and SAT formats. It can also perform corrections, such as "healing" of IGES files.

Healing is "the process of improving the accuracy of solid models so they can be used

33

more effectively ... " [37]. Healing is a multi-step process, which includes clean up of a

translated model, geometry simplification, stitching, etc.

Options EJ

View Options I Grid Settings IGES Options I
Read filters ---------,!, HreaiP~f"'m hea~ 'J ,: ... Flavour --·---··--·-·-··-
~ f~~~i.j).£~ ... v. .. ~

;~-----;;;:....._----'

W Free curves l .- Trimming curve pref. ~ · r AutoCAD

W Free untrimmed surfaces

W Free trimmed surfaces

P' Solids (MSBO)

I r. As per IGES file I r Pro Engineer

; r 20 curves only ! r. AU other systems

r 3D curves only I ~-----....J
Advanced

W Convert copious data to single curve

P Convert from ~s speciied in IGES f~e

~ Solid Export

i r. As solids

r As surfaces

Headerlrlor~on-----------------------,

Author Sending system

Org¥li$ation Receiving system

OK Cancel Help

Figure 3.1 IGES Import Options (28]

34

3.5. Kinematics Module

An industrial robot is typically a serial link manipulator that has several joints,

each of which can be either rotational or prismatic. By varying the types of joints

different robot configurations can be built. Some of them are presented on the pictures

below. The purpose of the kinematics module is to provide direct and inverse kinematics

solutions for a range of different configurations of the robots shown on figure 3 .2, figure

3.3 and figure 3.4.

Figure 3.2 SCARA Robot Configuration [28]

35

Figure 3.3 PUMA Robot Configuration [28]

Figure 3.4 Gantry Robot Configuration [28]

36

Direct kinematics is typically based on the Denavit-Hartenberg convention, which

represents a set of rules for establishing a geometric description of a serial link

manipulator (39, 40, 41]. A set of transformation matrices IS combined into one

transformation matrix that represents the position and orientation transformation of the

last link in the chain relative to the first link.

T ref = ArefAI A2 An-I
n I 2 3 • •• n (3 .1)

Inverse kinematics represents a method of calculating the values of joint angles or

distances based on the current Cartesian position and orientation of the last link. Finding

solutions of the inverse kinematics problem is more complex than finding solutions for

direct kinematics. Common methods for solving the inverse kinematics problem include

algebraic method, geometric method and numerical methods.

The algebraic method uses equation 3.1 as a start point for inverse kinematics

calculation. Derivation ultimately produces a system of twelve equations, out of which

only six are independent, which means that there might be one solution, multiple

solutions or no solutions at all [39]. For a manipulator that has six degrees of freedom, the

number of multiple solutions can be up to 16 [40] . Ambiguity of solutions is avoided by

using configuration strings [40].

Numerical methods can be applied to any kinematic structure. The problem

though is that not all solutions can be computed [40].

37

3.6. Motion Trajectory Generator

A robot performs tasks by moving between programmed teach points. Motion

control of the robot is based on the difference between the actual and the desired position.

The larger the difference the larger the current sent to the servo-drives is. However, the

current has to be limited in order to keep the servo-drives functional. The solution is to

use large number of intermediate positions or interpolated points as an approximation of a

continuous trajectory.

The points are typically supplied by the motion trajectory generator [4] or by a

trajectory planner [41]. By feeding the servo-drives one interpolated point at a time,

control over accelerations and velocities reached during motion between two points can

be established.

Generally, robot motion is categorized in two major groups [41]:

Joint based motion - teach points are typically defined in joint coordinates, and

motion control is based on the difference between the joint angles/distances of start

and end point. Joint-based motion, compared to the path-based motion is less

computationally demanding [40], trajectory planning is simpler and can be done in

almost real time [41]. Problems associated with joint-based motion are that the path is

of an irregular shape and locations of manipulator links during motion are unknown,

which represents a major disadvantage when it comes to obstacle avoidance [41].

Path-based motion - teach points are expressed in Cartesian coordinates and the shape

of the path is known. The path is typically a straight line or a circular arc, and the

38

TCP of the robot follows the path while moving from the start point to the end point.

Path-based motion is computationally more expensive due to the fact that the location

of the tool center point of the robot is expressed in Cartesian coordinates. In order to

move the robot from the start point to the end point a conversion of the location

expressed in Cartesian coordinates into joint coordinates is necessary.

Another important note about robot motion is that all the axes start and stop at the

same time, no matter if the motion type is joint-based or path-based.

In the case of joint-based motion, motion trajectory is based on the difference in

joint values between the actual and the desired position [4, 41]. Depending on the type of

velocity profile (constant or linear acceleration), travel time for each joint is calculated.

The reference travel time is equivalent to the time taken for the joint that takes the longest

time to complete its motion. Travel times of all other joints are set to be equal to the

reference travel time. Then, joint velocities and accelerations (in case of linear

acceleration) are scaled so that all joints begin and complete motion at the same time.

In the case of path-based motion, the motion trajectory generator supplies servo­

drives with a number of intermediate points that approximate the straight-line path or a

circular-arc path. Although it has been established that the locations of interpolation

points are based on the linear velocity, acceleration, and the type of the velocity profile,

the exact method of generation of interpolation points has been kept confidential by the

robot manufacturer companies [11]. In other words, only assumptions can be made how a

particular robot controller generates interpolation points. Every interpolation point that

39

makes the path is expressed in Cartesian coordinates and an inverse kinematics

calculation is required in order for joint angles/distances to be found, thus making path­

based motion computationally more intense than the joint based motion [4).

3. 7. Offline Programming

There are two methods to program an industrial robot- on-line programming and

off-line programming. On-line programming is typically done through a hand-held device

called a teach pendant, which is directly connected to the controller of the robot. A teach

pendant enables a robot programmer to move the manipulator either in Cartesian or joint

space, to memorize locations, define tool actions in those points, etc [3]. Online

programming has an advantage in situations that involve simple tasks or in situations

where the parts have a simple geometry. Disadvantages are numerous and include halted

production so that robots can be programmed, long programming time, and scrap material

generated during programming [3].

Offline programming represents an alternative to on-line robot programming. It

enables the user to create robot programs without using a real robot. It is especially useful

when task complexity is high, as well as when long production downtimes are not

allowed, or when programming is to be done in a harmful environment [3] .

The creation of robot paths is based on the geometric information of the part

which action is to be performed upon [26). A path can be created manually by selecting

vertices or edges of the object and setting the values of relevant parameters such as joint

40

or linear velocity and acceleration, orientation speed and acceleration, wait time, and tool

actions [26]. This type of programming is used for the creation of simple programs, which

are typically represented as a sequential list of teach-points that the robot's TCP will

acquire during motion [28].

Alternatively, a path can be created on a selected edge or surface automatically by

internal algorithms. This automatic path generation uses internal analytical models of the

process developed through experiments [7] . For every robotic application, such as spot

welding, arc welding, or painting, an analytical model is developed [5] based on the

parameters that are important for the process. Assignment of teach-point properties is also

performed automatically.

Complex robot tasks require complex program logic, such as condition handlers,

variables, subroutines, and interrupts [42]. This essentially means that a sequential list of

teach-points does not satisfy the requirements of complex tasks. For this purpose robotic

simulations typically provide a development environment as well as the simulation

language, which contains a set of commands that provide access to the API of the

simulation software. Workspace 5, for example uses Visual Basic for Applications as the

development environment and custom developed Visual Basic commands to access the

simulation API. Figure 3.5 shows some of the routines and data that can be accessed from

within the Workspace 5 development environment.

isual Basic - FANUC_ARCMATE_1201L - [Object B10wscr)

.;.,;,..., ____ ,, _____________ _____ .. __________ , ______________ _
Members of 'Robot'

RoiJOI

.. ,,~ AttachObjectToTooiEnd
r1il AxisPos
ll£1 Controller
'~~Delay

'-'~ DetachObjectFromTooiEnd
,,,.~ DrawTooiCone
.,.,~ DrawTooiCylinder
;;.~ DrawTooiSpark
.. ,-,~ GetEndFrame
.,,~ GetTooiFrame
ll£1 Name
J!fl NumAuxAxes
J!fl Nu.mMain.A.xes
_,,.~ OtrsetEndFrame
r1il RRS
-'~ SetEndFrame
~ SimulatePath
C" TooiName
,;~ UpdateJoints

41

Figure 3.5 Robot Related Functions Available to the User in the VBA Environment [28]

Both simple and complex robot programs, once verified in the simulation can be

converted into the native robot language format. In the case of a simple program

represented by the sequential list of teach-points, conversion is quite straightforward.

Parameters associated with each teach-point are read, formatted according to the syntax

of the selected output language and then written into a file. Minor adjustments may be

required, yet overall programming time is shorter than in case of online programming [10,

42].

42

Another important aspect of offline programmmg IS the verification and

modification of existing programs [26, 42]. For that purpose a set of translators or

postprocessors [42] has to be developed for the robot languages supported by the robot

simulation software. The purpose of the translators is to convert the program from the

original robot language format into the simulation language format and back.

3.8. Calibration

The purpose of calibration is to eliminate the differences between the real world

and the virtual CAD world in which all dimensions are ideal [7]. Calibration is of vital

importance for the process of offline programming. It improves the accuracy of the robot

and prevents its collision with other equipment in the work cell.

There are a few different types of calibration that have to be performed in order to

have an accurate simulation of the work cell operation - calibration of the robot,

calibration of auxiliary axes, jigs, and parts. Calibration of the robot itself can be either

static or dynamic. Static calibration includes identification of static characteristics such as

link lengths, joint-axis orientation, gear backlash, and coupling factors [43]. Dynamic

calibration includes identification of dynamic parameters, such as forces and friction [43].

Static calibration can be done in one or two ways [43]:

By selecting a "statistically large number of locations evenly distributed" in joint

space,

By optimizing the number of locations based on the parameters to be identified.

43

The result of the process of static calibration is identification of the robot's

"signature" [7], which represents a set of parameters such as joint axis geometries, joint

angle offsets and actuator/link compliances [43]. These parameters are incorporated into

the kinematics model of the robot [7], thus improving the accuracy of the robot to

approximately I mm or less [7].

3.9. Open Development Interface

Robot simulation typically provides an open development interface, so that more

advanced users can access geometric and kinematics information, as well as develop their

own tools for various kinds of analysis [7]. Workspace 5 [28] provides Visual Basic for

Applications (VBA) as an open development environment, which offers almost unlimited

computer programming functionality. In addition to VBA, the user also has access to the

Workspace component object model. Access to the component object model enables the

user to retrieve information relevant to the motion of a robot and its actions. The software

also provides functionality for the interfacing of custom developed dynamic link libraries

(DLLs), whose basic purpose is to provide forward and inverse kinematics solutions for

robots with complex structures [28].

44

3.10. Chapter Summary

This chapter provided more insight into robotic simulation through description of its

functional structure. Each element of the structure has been explained with its advantages

and disadvantages.

The next chapter will focus more on motion planning strategies. Two simple motion

models will be presented as well as a method of motion tracking.

45

Chapter 4

Velocity Profiles and Their Impact on Cycle Times

4. 1. Introduction

The purpose of this chapter is to provide an insight into the motion strategy of a

robot simulation. Equations are derived for two typical acceleration profiles - constant

and linear. Each of the acceleration profiles, including the corresponding velocity profiles

are analyzed in detail by each stage of motion.

4. 2. Constant Acceleration/Deceleration Motion

The basic assumption is that both the acceleration and deceleration rates are

constant. Figure 4.1 provides two different velocity profiles based on the assumption that

acceleration is constant.

46

a a

v v

(a) (b)

Figure 4.1 Velocity Profile for Constant Acceleration

Clearly, three stages of motion can be differentiated:

Acceleration motion: a= a accel ,max '

Constant velocity motion: a = 0 ,

Deceleration motion: a = a decel,max .

47

4.2.1. Stage 1 -Acceleration Motion

The basic assumptions related to this stage are:

a = aaccel,max'

The distance between the start point and end point is large enough so that the

maximum velocity can be reached,

Derivation of velocity and trajectory equations is based on the assumption about the

acceleration:

a = al = aaccel,max

dv
a 1 = - => dv = a 1 • dt (> 0)

dt

v l

Jdv = Ja 1 • dt
vo to

(4.1)

Boundary conditions are: to = 0 and v0 > 0.

After the boundary conditions are applied to the equation 4.1, the velocity during the

stage 1 can be found as:

(4.2)

48

In order to find the distance that the TCP travels during time t, further integration of

equation 4.2 is required:

s I

Jds = J(v0 +a, ·t)·dt
so fo

t2 !2
s - s = v (t - t) + a (- - _Q_) 0 0 0 I 2 2

Boundary conditions: so = 0, to = 0, and vo > 0

(4.3)

After the boundary conditions are integrated into the equation 4.3, the travel distance can

be found as:

1 ' s=v ·t+ - a ·r 0 2 I (4.4)

Since the assumption is that there is enough time for TCP to accelerate to Vmax, equations

4.2 and 4.4 can be written as:

V max - Vo t, = __;,;,;;;~__:_
a,

(4.5)

(4.6)

49

Equation 4.5 can be integrated into the equation 4.6, by replacing parameter t 1, and that

will define the travel distance during the acceleration stage:

(4.7)

4.2.2. Stage 2 - Constant Velocity Motion

This stage of motion directly depends on the distance between the start point and end

point. There are two possibilities:

I) The distance between the start point and end point is not large enough, thus the

maximum velocity cannot be reached. Corresponding acceleration and velocity

profiles are given on figure 4.2(b).

2) Distance between the start and end point is large enough so that there is enough

time to accelerate to Vmax· Corresponding acceleration and velocity profiles are

given on the figure 4.l(a).

Equations required to define the time and distance traveled during the stage 2 cannot be

calculated until the equivalent equations for stage 3 are not established.

50

4.2.3. Stage 3 - Deceleration Motion

During this stage, velocity linearly decreases to zero while the TCP is moving towards the

target point. There are two basic assumptions about this stage of the motion:

Acceleration is constant and has a negative sign,

The robot stops in the target point, i.e. velocity is equal to zero in the target point.

dv
a=--= a dt decel,max

dv
a=--= adecelmax ~ dv = -a3 ·dt

dt '

v 1

Jdv =- Ja 3 · dt
v l t l

(4.8)

Boundary conditions are t2=0, v2=vmax and v3 = 0.

After the boundary conditions are applied to equation 4.8, the velocity during stage 3 can

be found as:

v = v max - a 3 • t . (4.9)

In order to find the travel distance during the deceleration stage, further integration of

equation 4.9 is required:

v = ds = v max - a 3 . t ~ ds = (v max - a 3 . t) . dt ,
dt

51

s t

Jds = J(vmax - a3 • t)dt,

(4 .10)

Boundary conditions are s2 = 0, t2 = 0.

After the boundary conditions are integrated into the equation 4 .1 0, the travel distance

during stage 3 can be found as :

1 2
S=V t - -a · t max 2 3 (4.11)

Since the assumption is that motion will stop at the target point, equations 4.9 and 4.11

can be written as:

(4.12)

(4.13)

Equation 4.12 can be integrated into the equation 4.13, by replacing the time parameter,

and that will define the travel distance during the deceleration stage:

1 v~ax =--- (4.14)

52

4.2.4. Stage 2 (Revisited)

As it has already been mentioned, existence of this stage depends on several parameters,

such as:

Distance between the start point and target point,

Velocity/acceleration parameters.

It is quite simple to find relevant parameters for this stage. If the distance traveled during

the acceleration and the deceleration stage is shorter than the overall distance between the

start point and the target points, then the maximum velocity can be achieved. Distance

between the start point and end point can easily be found as:

L = xr arget - xstan + Y carget - Y stan + z targer - z stan

Using equations 4.7, 4.14 and 4.15:

1 (2 2) 1 v!., L
- V max - Vo + S 2 + - -- = '
2a1 2 a 3

Travel time during stage 2 can be found as:

s2
t 2 = --

v max

where v2 represents the maximum velocity.

(4.15)

(4.16)

(4.17)

53

If the overall travel distance required for full acceleration and deceleration stage is

longer than the distance between the start point and target point, it means the following:

Maximum velocity cannot be achieved,

Adjustments of the acceleration and deceleration distances have to be performed,

Velocity profile is triangular (figure 4.1 (b))

Using equations 4.7, 4.14 and 4.15:

(4 .18)

The velocity that can be achieved during the motion is:

2 2 · L ·a, · a3 + v~ · a3 v = _ _ ___:__..::_......::._____:;_ (4.19)
a1 +a3

By replacing Vmax with v in equations 4.7 and 4.14, distances traveled during acceleration

and deceleration stages can be found.

54

4.2.5. Constant Acceleration Based Motion - Summary

Table 4.1 Constant acceleration motion- summary

Velocity Profile
Stage Parameters Trapezoidal Triangular

Time t - Vmax - Vo
1-

al

Acceleration Velocity V max = V 0 + a I • t I

Acceleration at

Distance l (2 2) Sl =- Vmax -Vo
2a1

Time
SJ

t2 =---
V max

Constant Velocity V max Not applicable
Velocity Acceleration 0

Distance s =L--•-(v2 -v2) _ _!_ v!.x
2 2 max 0

2 al aJ

Time t - vmax
3 -

aJ

Deceleration
Velocity 0
Deceleration a3

2
Distance V max sJ =--

2a 3

55

4.3. Linear Acceleration/Deceleration Motion

The basic assumption of this velocity profile is that both acceleration and

deceleration change linearly. The resulting velocity profile has smooth transitions

between the different stages of motion, which in tum provides a more realistic

representation of motion and less structural vibration of the robot due to a sudden change

in acceleration/deceleration.

A key difference between the constant acceleration profile and the one with linear

acceleration is in the way acceleration changes with time. As a result, two types of errors

occur - motion time error and trajectory accuracy error. Since the constant acceleration

velocity profile reaches maximum velocity faster than the velocity profile with linear

acceleration, it means that the target location will be reached faster with the constant

acceleration profile.

Similarly, for a given amount of time the constant acceleration profile means

longer distance traveled than in case of the linear acceleration profile. Yet, it is not known

which of the two velocity profiles resembles the motion time and trajectory accuracy

closer to the ones of the real robot. One more time, it is the confidentiality of the motion

planning and kinematics algorithms that represents a main obstacle in modeling of the

velocity profile and leaves one only with the assumptions about the velocity profile used

on the real robot.

56

The number of motion stages for this case is seven (see figure 4.2), while the

number of possible acceleration/deceleration cases exceeds the number of cases for

constant acceleration/deceleration. Each case will be described in detail here together

with the supporting equations.

Figure 4.2 provides the most general case of the linear-acceleration motion

between two points, with clearly defined acceleration stage, constant velocity stage and

deceleration stage. The goal is the same - find the distances required by the default case,

find the sum of all the distances, compare it to the real distance between the start point

and end point, and then see which particular sub-case will be used for further calculations.

a

v

Figure 4.2 Velocity Profile for Linear Acceleration

57

4.3.1. Stage 1 -Acceleration Stage

Figure 4.3 represents the most general case of the acceleration stage. It is based on the

assumption that the distance between the start point and target point is large enough to

provide acceleration to amax, and to Vmax· The acceleration stage can be further broken

down into three sub-stages:

Sub-stage 1 - linear increase of acceleration to amax,

Sub-stage 2 - constant acceleration amax,

Sub-stage 3 - linear decrease of acceleration to a=O.

a

t

v

t

I - Linear increase of acceleration

2 - Constant acceleration

3 - Linear decrease of

acceleration

Figure 4.3 Acceleration Stage - General Case

58

4.3.1.1. Sub-Stage 1- Linear Increase of Acceleration

Derivation begins with the following equation, which represents the formal description of

the assumption that the rate of change of acceleration is positive and constant:

da
-=k, >0
dt

where k1 represents the rate of change and is a known value.

Derivation continues with the integration of the following equation:

a t

Jda = k, Jdt

Boundary conditions: a0=0, to=O,

(4.20)

(4.21)

(4.22)

Equation 4.22 represents acceleration at any given point of time during the sub-stage I .

Acceleration time, i.e. the duration of sub-stage 1 can be found as:

In order to find the distance traveled during the sub-stage I, the derivation has to

continue:

a= k 1 ·t

dv = k 1 • t·dt

v t

fdv=k 1 • Jt·dt
vo to

Boundary conditions: va=O, ta=O

t2
v=k ·-

1 2

The velocity reached at the end of sub-stage I can be found as:

By replacing t1 with equation 4.23, velocity v1 can be found as:

1

1 a~nax v =-·--'
I 2 k

I

Distance traveled during sub-stage l will be found as:

59

(4.23)

(4.24)

(4.25)

(4.26)

ds e e
- = k 1 - => ds=k 1- dt
dt 2 2

s-s =k - (~- t~J
0 I 6 6

Boundary conditions: so=O, to=O

Distance traveled during sub-stage 1 can be found as:

t3
s =k ._1_

I I
6

By replacing t1 with equation 4.23, travel distance s1 can be found as:

1 a~nax s =-·--
1 6 k2

I

4.3.1.2. Sub-Stage 2- Constant Acceleration amax

60

(4.27)

(4.28)

(4.29)

Derivation begins with the assumption that acceleration is constant and equal to a111ax·

a = a max = con st. (4.30)

dv
- = a max => dv = a max ·dt
dt

61

Boundary conditions: vo=v1, t0=0,

(4.31)

The velocity reached at the end of stage 2 can be found as:

(4.32)

By replacing v 1 with equation 4.26, velocity at the end of sub-stage 2 can be found as:

The distance traveled during sub-stage 2 can be found through further derivation:

ds
- =VI+ amaxt
dt

t2 t2
s-s = v ·(t-t)+a · (- -_g_) 0 I 0 max 2 2

Boundary conditions: so=O, to=O.

The distance traveled during sub-stage 2, will be:

(4.33)

(4.34)

62

(4.35)

4.3.1.3. Sub-Stage 3- Linear Decrease of Acceleration

Derivation begins with the assumption that decrease of acceleration is linear and constant:

da
-=-k2 <0
dt

where k2 represents the rate of change and is a known value.

da = -k 2 ·dt

(4.36)

(4.37)

63

Boundary conditions: ao=amax, to=O,

(4.38)

Equation 4.38 represents the value of acceleration at any given point of time during the

sub-stage 3. The duration of sub-stage 3 can be found as:

(4.39)

In order to find the distance traveled during the sub-stage 3, derivation has to continue:

dv
-=amax - k2t
dt

V I

Jdv = JCamax - k2 t) · dt

v - v = a (t - t) - k · - - _Q_ • (e t
2 J

0 max 0 2 2 2

Boundary conditions: vo=v2, to=O

Velocity reached at the end of sub-stage 3 is Vmax:

t2
v -v +a · t -k . _l_ max - 2 max 3 2 2

(4.40)

(4.41)

64

By replacing t3 with equation 4.39, velocity v2 can be found as:

1 a;nax
V =V --·--

2 max 2 k
2

(4.42)

Distance traveled during sub-stage 3 will be found as:

e ds t 2

V = v 2 + a,nax · t- k2 ·-~- = V2 +a · t- k2 ·-2 ~ mu 2

t2
ds = (v +a · t- k · -) · dt 2 max 2

2

s t t 2

Jds = J<v +a · t - k · -) · dt 2 max 2
2

So l o

e t ~ t 3 t ~
s-s =v ·(t-t)+a ·(---) - k ·(- --) 0 2 0 max

2 2
2

6 6

Boundary conditions: so=O, to=O

(4.43)

Distance traveled during sub-stage 3 can be found as:

(4.44)

By replacing t3 with equation 4.39, and v2 with equation 4.42 the travel distance S3 can be

found as:

3 v 2 • a max a max
s3 = +--, .

k2 3k ;
(4.45)

65

4.3.1.4. Sub-Stage 2- Revisited

Now, when the velocity at the end of the sub-stage 2 is known from equation 4.42, sub-

stage 2 can be revisited in order to find its travel time and distance. Using equations 4 .26,

4.33 and 4.42, time t2 can be found as:

vmax amax (l 1) t2 =----- -+- .
amax 2 kl k2

(4.46)

By replacing t2 in equation 4.35 with equation 4.46 and using equation 4.26, the distance

traveled during sub-stage 2 can be found:

4.3.1.5. Stage 1 -Summary

Relevant parameters for sub-stage 1:

Motion time: t = amax
I k '

I

?

V l . h d 1 a~ax eoc1tyreac e : v =- ·- -
1 2 k

I

1 a 3

Distance traveled: s =-· ~
I 6 k2

I

(4.47)

66

Relevant parameters for sub-stage 2:

Motion time:

Velocity reached: 1 a~nax
V 2 = V max -- '-- '

2 k2

? v-
Distance traveled: s2 = max

2. a max
vmax ·amax 1 a~tax (1 1 J a~,.x (1 1 J2

-==--=::.:... ---- --+- +-- - +-
2k2 4 k , k , k 2 8 k, k2

Relevant parameters for sub-stage 3:

Motion time:

Velocity reached:

t = amax
3 k '

2

V max'

3 v ·a amax Distance traveled: s
3

= max max ---
k2 6k; .

4.3.2. Stage 2 - Constant Velocity Stage

During stage 2, the value of acceleration is equal to zero. Consequently, the value

of velocity remains constant- Vmax · Motion time is calculated as:

s
t

_ _ 2_
2 - (4.48)

vmax

However, neither the travel distance s2 nor the motion time t2 can be calculated at this

point in time. First, parameters of the deceleration stage have to be calculated, and then

stage 2 will be revisited.

67

4.3.3. Stage 3 - Deceleration Stage

Relevant parameters of the deceleration stage can be calculated in a similar

manner to that which was used for the parameters of the acceleration stage. Furthermore,

an assumption can be made that the deceleration profile is symmetrical to the acceleration

profile, i.e. travel times, velocities, and travel distances are exactly the same:

sl = s7

s2 = s6

s3 = s5

4.3.4. Stage 4 - Finalized Calculations

(4.49)

Three basic cases can be derived with respect to the distance between the start

point and end point. In the first case, the distance between the start point and end point is

large enough to provide both acceleration and velocity to reach their maximum values. In

the second case, the distance is not large enough, and further analysis is required.

68

4.3.4.1. Case 1

Velocity profile and the corresponding travel distances are given on the figure 4.4.

a

t

v

Ymax

Figure 4.4 Linear Acceleration - Case 1

The distance between the start point and the end point can be found easily as:

L=
2

xt arg et - x .V/£11'1 + Y target - Y sturt + z/arg ct - z,·tart (4.50)

Travel distance during which the velocity has value of Vmax can be found as:

(4.51)

69

Travel time of sub-stage 4:

(4.52)

4.3.4.2. Case 2

In this case, the distance between the start point and end point is large enough to

reach the maximum value of acceleration - Gmax. however, it is not large enough to allow

the velocity to reach its maximum value - Vmax· The velocity profile and the

corresponding travel distances are given on figure 4.5 .

a

v

Ymove < Ymax -+------+------

Figure 4.5 Linear Acceleration - Case 2

70

There are six distinct sub-stages that can be discerned. Again, assuming that the

acceleration and velocity curves are symmetrical, analysis can be simplified significantly.

The goal is to determine travel distance s2, as well as the maximum velocity reached

during motion.

Sub-stage 1 is defined by equations 4.23, 4.26, and 4.29. Sub-stage 2 is defined by

equations 4.33 and 4.35, while sub-stage 3 is defined by equations 4.39, 4.40, and 4.44.

The only difference is in the boundary condition for the sub-stage 3, during which the

velocity reached is less than V111ax·

The velocity at the end of the sub-stage 3 will be:

a2
V =V +·~

3 2 2k
2

(4.53)

Travel distance during the sub-stage 3 can be found as:

(4.54)

Using equation 4.47, travel distance s2 can be found as:

(4.55)

By replacing travel distances with corresponding expressions, equation 4.55 changes into:

--t + - - +-- ·t + --+ + - - = -a max 2 (a ~ax a ~ax J (a ~ax a ~,.x a ~ax J L
2 2k , k2 6k~ 2k,k2 3k; 2

(4.56)

The quadratic equation has two solutions:

71

where:

Two conditions have to be satisfied so that the solutions are real:

- Correct all the time, since acceleration is a positive value,

- In order to avoid complex solutions.

After replacing Ct, C2 and C3 with the corresponding equations, condition 2 can be

written as:

4 1 1
a max (---2 + --2) - a max L > 0 .

12kl 3k2
(4.57)

Further derivation transforms equation 4.57 into:

3 4k2- k2
amax I 2 0

L 12k2k2 > .
I 2

Since amax > 0, as well as k~ and k;, only the numerator has to be larger than zero. The

numerator can be represented as a product of two elements:

(4.58)

This equation will be satisfied if:

(4.59)

Graphical presentation of the solution is given on figure 4.6.

72

~ - Solution area

Figure 4.6 Condition 2 - Graphical Representation of the Solution

4.3.4.3. Case 3

The third general case of possible velocity profiles happens when neither

maximum acceleration nor maximum velocity is reached. The corresponding velocity

profile is given on figure 4.7.

73

a

y

Ymove :::> Ymax

Figure 4. 7 Linear Acceleration - Case 3

Four sub-stages can be noticed on the graph- s1, s2, s3 and s4• Assuming that the velocity

profile is symmetric, i.e. that s1=s4 and s2=s3, significant simplification can be made. The

motion equations for sub-stage I are:

Travel time:

a 2
Maximum velocity: v1 = -

2kl

Travel distance:

(4.60)

(4.61)

(4.62)

74

At the end of sub-stage 2, the velocity reached is v. By using equations 4.39, 4.42 and

4.59, equations for sub-stage 2 can be found as:

Travel time: (4.63)

Maximum velocity: (4.64)

Travel distance: (4.65)

The maximum acceleration reached during the motion can be found as:

(4.66)

Another set of conditions that parameters k1 and k2 have to satisfy can be derived using

equation 4.66, i.e. the denominator has to be larger than zero:

(4.67)

The condition set in equation 4.67 is satisfied if:

(4.68)

75

Figure 4.8 provides a graphical representation of the equation 4.68 solution:

~ - Solution area

Figure 4.8 Linear Acceleration - Case 3

4.3.4.4. Special Cases

There are two special cases with respect to the velocity and acceleration reached during

the motion:

1) Acceleration reaches its maxtmum value. Velocity also reaches its maximum

value, however deceleration follows immediately. Unknowns in this particular

case are related to sub-stage 2 and sub-stage 4, during which acceleration has a

constant value (figure 4.9).

2) Acceleration reaches its maximum value and immediately starts decreasing (figure

4.1 0.) Calculations in this particular case are straightforward.

76

a

v

Vmax

Figure 4.9 Linear Acceleration- Special Case 1

77

a

v

Ymove< Ymax

Figure 4.10 Linear Acceleration- Special Case 2

4.3.4.5. Finalized Rules for Parameters k1 and k2

By combining the conditions that parameters k1 and k2 have to satisfy, a set of

solutions can be found. The conditions are:

1 . k 1 > 0 and k 2 > 0

2. ((2k 1 - k 2)>0A(2k 1 +k 2)> 0)v((2k 1 - k 2)<0A(2k 1 + k 2)< 0)

3. ((2k 1 +k 2)>0A(k1 +k 2)>0)v((2k 1 +k 2) <0 A(k 1 +k 2)<0)

78

All three conditions will be satisfied if the values of parameters k1 and k2 are within the

range:

k, > O;k 2 > 0;

1
k, > - k2

2

Graphical representation of the solution is given on the figure 4.11 .

~ - Solution area

Figure 4.11 Parameters k1 and k2- Solution Range

79

4.4. Motion Tracking

There are two motion models provided in the thesis - one based on the assumption

that acceleration is constant and the other one based on the assumption that acceleration

changes linearly during motion. The model used for testing is the one based on the

assumption that acceleration remains constant during motion - either equal to amax or to

zero, depending on the motion stage (acceleration, deceleration or constant velocity

motion).

Table 4.1 in section 4.2.5 gives equations that define all the parameters relevant

for the constant acceleration motion model. Motion tracking can be done by monitoring

the value of one of the parameters of the motion model:

Elapsed time,

Distance from the current TCP position to the target point,

Distance traveled from the start teach-point to the target teach-point.

The process of robot motion tracking can be described as a series of steps:

Step 1: Initial state- robot is in the start teach-point and motion velocity is zero,

Step 2: Calculation of parameters for motion stages - based on the distance

between the start teach-point and the target teach-point, and motion parameters

associated with the target teach-point. Parameters of each motion stage can be

calculated by using equations given in table 4.1.

80

Step 3: Tracking of the robot's motion during the acceleration stage - by

comparing the value of the elapsed time with the corresponding value calculated

in step 2, or by calculating the distance between the current position/orientation of

the robot's TCP, it can be concluded whether the robot is in the acceleration stage

or in the stage that follows the acceleration stage (constant velocity stage or

deceleration stage). The general form of the tracking equations are:

o Motion velocity: v; = v; + a; ~t , where i represents a coordinate (X, Y, Z,

A, B or C) or a joint value,

o Travel distance: q; = q ; + V;~t +_!_a; (~t) 2 , where qi represents a
2

generalized coordinate.

Step 4: Tracking of the robot's motion during the constant velocity stage, when

this stage exists:

0 Motion velocity: V; = vmax, where i represents a coordinate (X, Y, Z, A, 8 ,

or C) or a joint value

o Travel distance: q; = v; ~t

Step 5: Tracking of the robot's motion during the deceleration stage:

o Motion velocity: V; = V; - a;~t, where i represents a coordinate (X, Y, Z,

A, B or C) or a joint,

81

o Travel distance: qi = qi + vi~t- _!_(~t) 2 , where qi represents a generalized
2

coordinate (X, Y, Z, A, B or C) or a joint angle/distance.

Once the target teach-point is reached, a set of parameters associated with motion to the

new target teach-point is calculated, and the motion process is repeated.

4.5. Chapter Summary

This chapter provided a formal description of two basic motion models - one based on

constant acceleration, the other one based on linear acceleration. Each model was

determined fully with respect to the key motion parameters - acceleration, velocity, time

and travel distance.

The next chapter will provide a detailed description of the motion planning problem,

which results in an inaccurate estimate of motion time. Test procedure and the

corresponding assumptions will also be provided in the next chapter.

Chapter 5

Innovative Method for Improvement of

Simulation Motion Time Accuracy

5.1. Description of the Problem

82

The simple motion models used in the simulation are presented in chapter 4. The

models were derived under the assumption that acceleration is either constant or changes

linearly. Corresponding velocity profiles are given on figures 5.1 and 5.2.

v

t

Figure 5.1 Velocity Profile for Constant Acceleration

83

v

t

Figure 5.2 Velocity Profile for Linear Acceleration

The key problem with both models is that a number of important parameters such

as mass, friction, forces and torques are not taken into consideration. Essentially, this

means that both the motion time and the velocity profile will be the same, regardless of

the mass of the manipulated object or the applied torques (figure 5.3). Consequently, the

simulation positioning accuracy and the simulation motion time accuracy will be different

from the corresponding parameters of the real robot.

v

Vmax

Speed decrease caused by torque
limit

Velocity profile
(simulation)

······ .. /
......

.....

Velocity profile
....... (real world)

Figure 5.3 Velocity Profiles - Simulation vs. Real-World

84

5.2. Methods for Improvement of Simulation Motion Accuracy

Improvement of the positioning accuracy and the simulation time accuracy can be

achieved in one of the two following ways:

By integrating the original motion algorithms and kinematics algorithms through

an RCS module into the simulation, which is the RRS Specification approach.

However, not all the robot manufacturers provide RCS modules, the RCS module

approach can be costly and the functionality implemented in an RCS module can

be quite limited,

By using a dynamics motion model instead of a simple kinematics motion model

presented in chapter 4. The discussion of the dynamics motion model follows.

5.2.1. Dynamics Motion Model

Usage of dynamics equations introduces a range of new problems. The general

dynamics equation of motion is:

where:

M(q)

h(q,q)

V(q)

q(q)

q

torque matrix,

inertia matrix,

-r = M(q)q + h(q,q) + Vq + g(q),

vector representing centrifugal and Coriolis forces,

joint friction matrix,

gravity load vector,

generalized coordinate.

(5.1)

85

The complexity of the dynamics motion model is very high regardless of the method used

for its derivation.

y

X

z

Figure 5.4 A Simple Two-link Planar Manipulator

For example, Lagrange dynamics equations for a two- link robot shown on figure 5.4 are:

Joint 1 torque:

Joint 2 torque:

Equations become significantly more complex for six-link robots.

86

There are a few important aspects of the dynamics motion model that should be

mentioned:

The number of operations that need to be performed is very large. Using the

Lagrange method, 66271 multiplications and 51548 additions need to be

computed so that the torque matrix for a six-link robot can be found. The Newton­

Euler method requires 852 multiplications and 738 additions. The Reibert-Horn

method requires 468 multiplications and 264 additions [45, 46].

Even with the significantly reduced number of operations to be performed,

another important problem remains unsolved - the frequency of performing the

calculations. Calculations have to be performed for every single interpolation

point, which makes the model computationally expensive [4]. The problem IS

compounded if there are two or more robots used in the simulation.

The values of the parameters included in the dynamics motion model must be

known in order to be used in the simulation. The task of identifying parameters

such as inertia and friction that are used to create the corresponding matrices

represents a challenge, since parameters such as friction are coupled with other

dynamic parameters [9]. Furthermore, separate modeling and measurement of the

dynamics parameters is needed, which makes identification even more difficult

and time consuming [9] .

87

Real robots carry various tools and cables required for performing the task that

they are programmed for. Welding cables and painting cables can be quite heavy,

thus they influence the dynamics motion model, too. So, in order to have the

dynamic motion model accurately represent the real robot, the influence of cables

and tools also has to be incorporated.

Ultimately, even if the dynamics equations accurately described motion of the real robot,

the simulation motion time would not be the same as the motion time of the real robot

because of the internal robot controller algorithms, which are confidential.

5.3. The Description of the Proposed Method

The method proposed in this thesis can be classified as an inverse calibration

method. Inverse calibration requires neither the identification of the form of the error, nor

the source of the error, but a way to compensate the errors. Although more measurements

are required, a better match to the real system may be achieved [46].

Various parameters, both known and unknown can influence motion of a real

robot. A goal of the method proposed is not to identify them all but to express their

influence through a limited set, whose influence can be determined with a relative ease.

Influence of each parameter, i.e. an error generated by the influence of each parameter

88

will be compensated through inclusion of a corresponding correction factor in one of two

motion models presented in Chapter 4.

Approximation of the real robot's motion model IS based on the following

parameters:

• Incline angle- motion of robot's TCP in vertical plane,

• Bearing- motion of robot's TCP in horizontal plane,

• Radial distance of the start point from the coordinated system located into the base of

the robot,

• Tool orientation.

• Mass of the manipulated object,

• Configuration of the robot,

89

Selection of the influential parameters is based on the simple kinematics motion

model parameters presented in chapter 4. Although the key parameters of the two motion

models presented are travel distance, velocities and accelerations, both models recognize

that position data and orientation data of teach-points as well as the motion direction are

known. The influence of inertia caused by the robot's own mass and the mass of the tool

or the object is also incorporated through parameters such as the mass of the tool or of the

object, distance of the start teach-point away from the base of the robot, and the

configuration of the robot.

Another way to justify the selection of the influential parameters is based on the

fact that a robot performs tasks by moving a tool or an object through a set of teach-points

that make a trajectory. Thus, radial distance and tool orientation define the influence of

the location of a teach point, while the incline angle and bearing define the influence that

motion direction has on motion time. Configuration of the robot defines the influence of

the robot structure, while the mass defines influence of the manipulated object/tool on

motion time.

The influence of each parameter can be established by performing simple motion

tests with a real robot. Based on the results of the tests, functional relationships between

the motion time of the real robot and the listed influential parameters can be established.

Those functional relationships serve as a basis for determining the values of correction

parameters, which will compensate the error values and provide a more accurate

simulation motion time (figure 5.5).

v

.. .. l ·

Corrected analytical
model

Original analytical model

t

Real motion time

Figure 5.5 Simulation Velocity Profiles- Original vs. Corrected

90

A valid question can be raised about the identification of parameters other than

those that have been previously mentioned, which could influence motion of the real

robot and their subsequent incorporation in the motion model of the robotic simulation.

As mentioned earlier, identification of the influence of some parameters is not easy.

However, the method presented in this thesis incorporates both the known parameters,

whose influence can be identified easily and the "hidden" parameters, which are difficult

to be identified and integrates their influence through a set of parameters listed in the

section 5.3. This approach represents one ofthe highlights of the proposed method.

91

Other benefits of the method proposed in the thesis are:

There is no need to build highly complex motion models. Influence of the

parameters such as cables, tools, motion algorithms and kinematics algorithms is

compensated through usage of the correction factors,

The correction factor database is established by the simulation user and is based

on the results of the experiments. It is up to the user to decide how fine the

approximation will be,

Once the correction factor database is established, it can be used for a certain

period of time until the need for its revision arises.

Computation-wise, the correction factor method ts supreme compared to the

method of dynamic equations. The values of the correction factors associated to

each teach-point of the trajectory are typically retrieved from the database prior to

the actual simulation of motion. The constant acceleration motion model used in

the simulation is computationally inexpensive and tracking of robot motion

requires only the comparison of the elapsed time to the time needed for a

particular motion stage (e.g. acceleration or deceleration).

92

5.4. Test Assumptions

The experiment was conducted under the following set of assumptions:

1) During the test, the robot remained in its "natural" configuration. This

configuration is similar to the one that the robot shown on figure 5.6 has. The goal

of this assumption is to eliminate variability resulting from the nature of a robot as

a serial link manipulator which allows for a teach point to be reached in several

different configurations.

Figure 5.6 "Natural" Robot Configuration [28]

93

2) Mass of the tool attached to the flange is constant - although the mass of the tool

and/or the object carried in the gripper represents an influential parameter, it is

kept constant during the testing.

3) Teach points used for testing are far enough from each other to allow the robot to

reach maximum linear velocity.

4) Teach points are located directly in front of the robot. The assumption is that most

of the tasks are performed in this part of robot's envelope.

5) Orientation of the tool is kept constant during the test.

6) Motion type used during the test is linear.

5.5. The Test

For research purposes of this thesis, the influence of only two out of the six

parameters listed in section 5.3 were tested - bearing and incline angle. These two

parameters can be understood as the "basic" parameters, because the influence of every

other assumed influential parameter is tested and identified based on the known influence

of bearing and incline angle.

Two experiments were performed. In the first experiment, the motion direction of

the robot's TCP was kept horizontal, i.e. motion was performed in a horizontal plane that

was a fixed distance away from the base frame of the robot (figure 5.7). The key idea

behind this test was to establish the influence of bearing on motion time of the real robot.

TP8

z
y

Robot base frame

TPl

TP3

TP5

Radial distance of the horizontal plane from
the base coordinate system

Figure 5.7 Test Description - Motion in Horizontal Plane

94

95

In the second experiment, motion direction was kept vertical, i.e. motion of the

robot's TCP was performed in a vertical plane (figure 5.8). Similar to the horizontal plane

motion test, it is the influence of the incline angle whose influence on motion time of the

real robot was established.

TPI

TP2

TP3

TP4

TP5

z

Robot base frame

.... ··
.. ··

.. ······
.. ··

.. ··'

... ·····

.. ··········

\

... ··

.. ···
.. ··

... ··· .. ··

.. ·· ... ··

TP6

TP7

TP8

TP9

TPIO

....... Radial distance of the vertical plane from the
base coordinate system

Figure 5.8 Test Description- Motion in Vertical Plane

96

The model of the robot used for testing was a MOTOMAN UP20 [47] with an

XRC controller [48]. Both the manipulator and the controller were never used in service

before, which means a reduction of the potential errors caused by the electro-mechanical

systems. Another important fact is that the teach-pendant used with the XRC controller

has the functionality of displaying the actual motion time of the robot, which made the

measurements accurate. Furthermore, the repeated tests for the same trajectory resulted in

the same motion time. Other relevant test data include:

Linear velocity: 300mm/s (used both on the real robot and in the simulation),

Simulation acceleration: 400mm/s2

•

97

5.5.1. Bearing- Approach Motion

The purpose of the approach motion test was to establish the values of the motion

times between the teach-points while the TCP was moving linearly towards the base of

the robot (figure 5.9). All teach-points used in the test belong to the same horizontal

plane, which can be seen on figure 5.10 and figure 5 .11. Coordinates of the start teach­

points are given in tables A.1 and A.2, while the corresponding motion times are given in

tables A.9, A.10, A.11 and A.12.

Figure 5.9 Approach Motion Test- Isometric View

98

Figure 5.10 Approach Motion Test- Top View

Figure 5.11 Approach Motion Test- Side View

99

Figure 5.12 Bearing Angle for Approach Motion

Values ofthe bearing angle (figure 5.12) were calculated by using the following formula:

Bearing = atn TP roP ,
(

y -Y)
X rp - X roP

(5.2)

where X TP, Y TP represent the position of a target teach-point TPi relative to the base frame

of the robot, and X TOP, Y TOP represent the position of a start teach-point.

100

5.5.2. Bearing - Depart Motion

The depart motion test was performed using a similar approach to that of the

approach motion test. Figures 5.13, 5.14 and 5.15 provide the visual presentation of the

performed test while figure 5.16 provides a definition of the bearing angle for depart

motion. Coordinates of the teach-points can be found in tables A.3 and A.4 in the

appendix, while the motion times of the real robot and of the simulation, and the

corresponding error values can be found in tables A.l3 , A.l4 and A.l5.

Figure 5.13 Depart Motion Test- Isometric View

101

Figure 5.14 Depart Motion Test- Top View

Figure 5.15 Depart Motion Test- Side View

102

Figure 5.16 Bearing Angle for Depart Motion

The value of the bearing angle can be calculated by using the equation 5.2.

103

5.5.3. Incline Angle- Downward Motion

The downward motion test consists of sets of motion between the start teach­

points and target teach-points, all belonging to the same vertical plane (figure 5.17). The

top view and the side view are given on figure 5.18 and on figure 5.19. Coordinates of

the start teach-points and of the target teach-points are given in the table A.5 and A.6.

Motion times of the real robot, of the simulation, and the corresponding error values are

given in tables A.16 and A.17.

Figure 5.17 Downward Motion Test- Isometric View

104

Figure 5.18 Downward Motion Test- Top View

Figure 5.19 Downward Motion Test- Side View

105

Figure 5.20 Incline Angle for Downward Motion

Figure 5.20 provides information about the sign of the incline angle for downward

motion. The value of the incline angle can be found in the same way that the bearing

angle value was found.

106

5.6. Chapter Summary

This chapter provided a formal description of the problem of inaccurate motion time

estimate. Causes of the incorrect estimate were provided and a method for improvement

of motion time accuracy was suggested. A detailed description of the testing procedure

was given, too.

The next chapter will provide analysis of the results followed by the integration of

correction factors into a motion model described in Chapter 4. Finally, a conclusion and

suggestions for future work will be given.

107

Chapter 6

Analysis, Conclusion and Future Work

6.1. Analysis

Three tests were performed with a real robot - approach motion test, depart

motion test and the downward motion test. For each of the motion tests, several bearing

angle and incline angle values were tested and the corresponding motion times were

recorded and analyzed. The results of the analysis revealed that the simulation motion

time was longer than the motion time of the real robot in all the tests performed. The

influence of the parameters listed in the section 5.3 was determined. Furthermore, the

tests revealed the existence of unknown factors whose influence on the motion time of the

real robot is significant.

6.1.1. Horizontal Motion Plane- Approach Motion

Four approach motion tests were performed during the experiment and the

corresponding motion times were recorded. Based on the results of the experiment, the

plots representing motion time curves of the real robot for different start teach-points

(tables A.7, A.8, A.8, and A.lO) were created. A minor difference among the motion time

curves can be noticed. Considering that no parameter other than the distance of the start

108

teach-point from the base of the robot changed, the assumption made about the distance

as an influential parameter can be considered as correct.

4.50 --------

•
4.00

3.50

3.00

2.50 .

•
•
•
--'

Motion Time Comparisons

<>

<>

<>

<> TOP LEFT

, • TOP I
I

i ..a. TOP_2

2.00 -t-----........,..------,-----r--------,------ • TOP _3

-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 i

Bearing [deg)

Figure 6.1 Motion Time Curves of the Real Robot

6.1.1.1. Start Teach-point "TOP _LEFT"

Figure 6.2 represents plots of motion time of the real robot and of the motion time

produced by the simulation for start teach-point "TOP_ LEFT". Both the plot on figure 6.2

and on figure 6.3 reveal that for the values of the bearing angle between 0 and 50 degrees

109

the difference between the motion time of the real robot and the simulation motion time

decreases as the bearing increases, and that the decrease of the error suggests a linear

trend.

(,1
~

~
~ e
~
= 0
~
0

~

;;!!.
~
~

=
~
a..
0
a..
a..

f.ol

5.00

4.50

4.00

3.50

3.00 -

2.50

2.00 .

1.50 -

1.00

0.50

0.00 .

0.00

•
•

5.00

•
•

10.00

• •
• • • • • •

• •
• • •

•

: • Robot
1

• Simulation

15 .00 20.00 25.00 30.00 35 .00 40.00 45 .00 50.00'

Bearing (deg]

Figure 6.2 Motion Time Curves of the Start Teach-point "TOP _LEFT"

2.0%

• • • 0.0% •
-2.0% • • • -4.0% • • • -6.0% • • -8.0% --- -·-• -10.0%

- 12.0%

-14.0% -

- 16.0%

-18.0%

5o.ooi 0 .00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45 .00

Bearing [deg]

Figure 6.3 Error Plot for Start Teach-point "TOP_ LEFT"

110

6.1.1.2. Start Teach-point "TOP _1"

Motion time plots given on figure 6.4 reveal a trend similar to the one given on

figure 6.2. The error trend given on figure 6.5 reveals that with the increase of the

bearing, the difference between the simulation motion time and the motion time of the

real robot decreases almost linearly. Small bearing angle values, both positive and

negative also mean short travel distances. By following that logic, a conclusion can be

made that the error values should reach a minimum at a bearing angle value of zero

degrees, which is not the case. The plot given on figure 6.5 shows an almost linear

increase of error values for the range of bearing values between -30 degrees and 0

degrees. One possible reason for such behavior could be that there are factors other than

the ones listed in the section 5.3 that influence motion of the real robot.

5. 00 r .. ____ , .. - ... ,

4.50 -

- 4 .00 .
(,1

~ 3.50

s 3.00

!== 2.50 -

~ 2.00 -
.:
~ 1.50

1.00

0.50

• . -· ..
• • --·- • • .- • • • • • •

• •
• • • • • • • • • • • • • • • •

• Robot

• Simulation
~-------.,------.-----....-----------...................... ______ _ 0.00

-30.00 -20.00 - 10.00 0.00 10.00 20.00 30.00 40.00

Bearing [deg)

Figure 6.4 Motion Time Curves of the Start Teach-point "TOP _ I"

Ill

0.0%

-2 .0%

-4.0%
~
" -6.0% • • ••••
Cll

= -8 .0%
~
;;..

-10.0%
""' 0

""' -12 .0%
""'

• • •
• •

• • •
•

~ • -14.0%

-16 .0%

-18 .0%

-30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00

Bearing [deg)

Figure 6.5 Error Plot for Start Teach-point "TOP _ I"

6.1.1.3. Start Teach-points "TOP _2" and "TOP _3"

Motion that originates in teach-points "TOP _2" and "TOP _3" will be combined

into one, since both teach-points are of an equal distance from the base of the robot.

According to one of the original assumptions of the proposed method, error plots should

be similar with respect to the trend and error values if the teach-points are an equal

distance from the base frame of the robot. Based on the plots presented on figure 6.6 and

on the figure 6. 7 it can be concluded that the assumption made is valid for teach-points

"TOP 2" and "TOP 3". - -

(,J
~

~
~ e
!=
c
0 ·.c
0
:;

~
!....
~ ..:

i t'l
;;;...
1-
0
1-
1-
~

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

(l (l (l (l (l

•• •• • (l

•
(l

•
(l

•

112

100
+ TOP _2 (Robot)

• TOP _3 (Robot)
0.50

ll Simu1at ion
0.00

-60.00 -50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00

Bearing (dcg)

Figure 6.6 Motion Time Curves for Start Teach-point "TOP _2" and "TOP _3"

0.0%

-2 .0%

-4.0%

-6.0%

-8.0%

-10 .0% .

- 12.0% -

-14.0%

- 16.0%

•• •-• •
•••••••••••••

• • •

+ TOP 2

• TOP _3
- 18.0% 1--------,r--------~-----------~--------------------------·-·-----·

-60.00 -50.00 -40.00 -30.00 -20 .00 -10.00 0.00 10.00

Bearing [dcg)

Figure 6.7 Error Plot for Start Teach-points "TOP _2" and "TOP _3"

20.00 !

20.00

113

6.1.2. Horizontal Motion Plane- Depart Motion

The plots given on figure 6.8 reveal that there is only a minor difference among

the motion time curves. Considering that no other parameters changed except the distance

of a start teach-point from the base of the robot, the assumption that distance is a factor

that causes differences among the motion time values can be considered as valid for the

teach-points tested.

4.5 ---------------·-·--·-------·-·--·······--···········-···---... ·················••······•··········

4 0

0

2.5

2

-60.00

o ·

0

0

-40.00 -20.00 0.00

Bearing [deg)

20.00

Figure 6.8 Motion Time Curves for Depart Motion.

oTOP_LEFT

• TOP I

• TOP_2

40.00 60.00

Motion time curves are compared to the simulation motion time curve separately, because

the distances of the teach-points "TOP_ LEFT", "TOP _I" and "TOP_ 2" from the base

frame of the robot are different.

114

6.1.2.1. Start Teach-point "TOP _LEFT"

The motion time curve of the real robot and the simulation are given on figure 6.9,

while the error plot is given on figure 6.1 0. Clearly, the error value decreases as the value

of the bearing angle increases both in the positive direction and in the negative direction.

Large bearing angle values also mean longer travel distances. Considering that the largest

error values were recorded neither for the shortest nor for the longest travel distances, but

for the bearing angle values between -15 degrees and -20 degrees a conclusion can be

made that there are factors other than the ones listed in section 5.3 that are influencing

motion of the real robot.

5.00

4.50 .

4 .00

<:i
~ 3.50
II.>

8 3.00
E=
g 2.50

'l::
~ 2.00

1.50

1.00

0 .50

• • -· •••
• •
• •

• •
• •

•
•

. +Robot

0.00

-60.00

I• Simulation
~--------~------~--------~--------------------~

-50.00 -40.00 -30.00

Bearing [degJ

-20.00 - 10.00

Figure 6.9 Motion Time Curve for Start Teach-point "TOP _LEFT"

0.00

115

0.0%

-2.0%

-4.0%

~ -6.0% .. • ~
-8.0% =

I C'l ;;.
1- -10 0%
0
1-

• • • • •
1-
~ -12 0% • • •

-14.0%

-16.0%

• • • • • •
• •

-18.0%

-60 .00 -50.00 -40.00 -30.00 -20.00 -I 0.00 0.00 .

Bearing [deg)

Figure 6.10 Error Plot for Start Teach-point "TOP _LEFT"

6.1.2.2. Start Teach-point "TOP _1"

Motion time curves of the real robot and of the simulation are given on figure

6.11, while the error plot is given on figure 6.12. Similarly to the case described in section

6.1.2.1, it can be assumed that the hidden factors caused the error values to reach a

maximum for the bearing angle values of approximately -20 degrees.

5.00 r---·------·-·-·-----------·------------·--·---··-···-···--···-·

4.50

4.00

u 3.50
Ill
Ill

...... 3.00
Ill

~ 2.50
c

.S! 2.00
~
% 1.50

1.00

• • • • • • • • •••• •
•

•
•

•
•

•
•

•
•

•
•

•
•

• •
• •

• •
• •

• •

• Robot
0

·
50

: • SilllJiation I
0.00 1-----------------------------··~····~-----~---··-·~-········

116

-50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00

0.0%

-2.0%

-4.0%

t:. -6.0%
~ = -8.0%

~
I. - 10.0%
0
I.

~ -12.0%

- 14.0%

-16.0%

Bearing [deg]

Figure 6.11 Motion Time Curve for Start Teach-point "TOP _ 1"

• • • • • • • •• • • • •••• • • •

-18.0% ·1------.-------~-----------------_J

-50.00 -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00

Bearing (deg)

Figure 6.12 Error Plot for Start Teach-point "TOP _ 1"

117

6.1.2.3. Start Teach-point "TOP _2"

Motion time curves of the real robot and of the simulation are given on figure

6.13, while the error plot is given on figure 6.14. The error plot strongly suggests a linear

decrease of error values for bearing values that range from + 10 degrees to +40 degrees.

Since large bearing values mean longer travel distances, one possible conclusion could be

that the simulation motion model approximates motion of the real robot better for larger

travel distances. However, the error value for bearing angles between -30 degrees and 0

degrees is almost constant, which suggests that the travel distance has little or no

influence on error values. Similarly to the previous two cases described in sections 6.1.2.1

and 6.1.2.2, it can be assumed that there are other, unknown factors that are influencing

motion of the real robot.

5.00 ,...----------------

4.50 .

4.00

v 3.50
5:
..... 3.00
~

~ 2.50
c
.2 2.00

; ~

:E 1.50

1.00

0.50

.
• • •

• • •
• • •

•
•
•

• •
• • •
• •

•
•

• • •••• • • ••• •••

• Robot

• Sirrulation
0.00 '-----------........,----...,.-----------~---····-·-·---·--

-30.00 -20.00 -10.00 0.00 10.00

Bearing [deg]

20.00 30.00 40.00 50.00

Figure 6.13 Motion Time Curve for Start Teach-point "TOP_ 2"

0.0%

-2.0%

-4.0%

;? -6.0°/o
0
~ -8.0%

~ .. -10.0%
2
.l:i -12.0%

-14.0%

-16.0%

-18.0%
-30.00

118

-----··-------------------------·---·---·--·····-······-.

• • • • • • • • • • • • • • • • • •

-20.00 -10.000 .00 10.00 20.00 30.00 40.00 50.00

Bearing [deg]

Figure 6.14 Error Plot for Start Teach-point "TOP _2"

119

6.1.3. Vertical Motion Plane- Downward Motion

Motion time curves for two different start teach-points "TOP LEFT" and

"TOP_2" are given on figure 6.15. Motion time curves reveal a slight difference in shape

and trend, which can be explained by the fact that the teach-points have different

distances from the base frame of the robot.

5.00 .. ,

4.50

<.1 .! 4.00
Cll e

f=
c
0 ·.:
0

~

3.50 • • •
3.00 . .. ••

• • • • • 2.50

•
-~~-.·· •

••
•• •

• •

+TOP LEFT

• TOP_2
1----------~-----------··-·········-······-·--···--···-··-······· 2.00

-60.00 -40.00 -20.00 0.00 20.00 40.00 60 .00

Incline Angle [deg)

Figure 6.15 Motion Time Curves for Downward Motion

120

6.1.3.1 Start Teach-Point "TOP LEFT"

Motion curve for teach-point "TOP_ LEFT" presented on figure 6.16 shows the

shortest motion time for the incline angle values of approximately 15 degrees. Since the

small incline angle value also means a short travel distance, it could be expected that the

shortest travel time would take place when the incline angle value equals zero degrees.

The motion time curve for "TOP _LEFT" teach-point suggests that there are other,

unknown factors that are influencing the motion of the real robot.

5.00

4.50

4.00 • • tJ
3.50 • • • • ~ • ~ • • • • • • ~ 3.00 • • • • • • • E • • • • E- 2.50 •• . - . -· •

c
0 2.00
~
0

1.50 ~
1.00

+Robot
0.50

• Simulation
0.00

0.00 5.00 10.00 15 .00 20.00 25.00 30.00 35.00 40.00 45 .00 50.00

Bearing [dcg)

Figure 6.16 Motion Time Curve for Start Teach-point "TOP_ LEFT"

121

0.00%

-2.00%

-4.00%

~ 0 -6.00%
<li

..: -8.00%
= > -I 0.00% 1-
0
1-

-12.00% 1-
~

-14.00%

• • • • • • • • •
• • • • •

- 16.00%

-18.00%

0.00 5.00 10.00 15.00 20.00 25 .00 30.00 35.00 40 .00 45.00 50.00

Bearing (deg]

Figure 6.17 Error Plot for Start Teach-point "TOP _LEFT"

6.1.3.2. Start Teach-Point "TOP 2"

Motion time curves of the simulation and of the real robot are given on figure

6.18, while the error plot is given on figure 6.19. The error values decrease with a

decrease in the incline angle value, which suggests a better approximation of the real

robot's motion at higher negative values of the incline angle. However, the error plot also

shows that for the range of incline angle values between 0 degrees and 20 degrees the

error trend remains the same, which is opposite from what was expected. On the other

hand, there is no information about the error values for incline angle values of l 0 degrees

and more, which means that the trend could change its direction like in case of the error

plot given on figure 6.12 and figure 6.17.

....
Q,)

~
Q,)

e
!=
c
0

::::
0
~

~ 0

Q,)

=
~ ...
0

j;,.:l

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

-50.00

• ••• • • • •

-40.00

• •

-30.00

• • • • • •

-20.00

• • • •

-10.00

Bearing [deg)

• • • •

0.00

• •
• •

•
•

+Robot

122

• Simulation

10.00 20.00

Figure 6.18 Motion Time Curve for Start Teach-point "TOP_ 2"

0.00%

-2.00%

-400% •
-6.00% • • • • -8 .00% •

-1 0.00%
• • • • • • • •

- 12.00% •
- 14.00%

-16.00%

-18 .00%

-50.00 -40.00 -30.00 -20.00 - 10.00 0.00 10.00 20.00

Bearing [deg)

Figure 6.19 Error Plot for Start Teach-point "TOP _2"

123

6.2. Correction Factors

Motion plots presented in section 6.1 reveal a difference between the simulation

motion model and the motion model of the real robot. In the case of an ideal robotic

simulation that difference would not exist. However, no method including the RRS I

Specification and the dynamics based motion model presented in previous chapters is able

to provide simulation motion times that are identical to the motion time of the real robot.

The method proposed in the thesis assumes that through the integration of the

correction factors into the simulation motion model it becomes possible to achieve

simulation motion times identical to the motion times of the real robot for incline angle

values or bearing values tested. There is one correction factor per influential parameter. In

this particular case only two correction factors will be analyzed - one for the bearing and

the other one for the incline angle.

A correction factor can be integrated into the simulation motion model through

one of the parameters that define motion models described in chapter 4:

1) Distance between the start point and the target point,

2) Maximum velocity that is to be reached during motion between the two points,

3) Acceleration/deceleration

A change of distance is unacceptable, because it results in an incorrect trajectory.

A change of velocity is also unacceptable, because maximum velocity is the key

parameter for actions such as welding or painting. The only parameter that can be

changed is acceleration. Although important in the overall motion calculation process, the

124

acceleration value is not a key parameter in most of the processes performed by the robot.

Therefore, acceleration is a parameter that is going to be used for modification of the

simulation motion models.

Derivation of correction factors is based on the assumption that after the

correction, simulation motion time will become equal to the motion time of the real robot.

Adjusted acceleration of the simulation motion model that results in the motion time

equal to the average experimental motion time of the real robot can be found as:

where:

T [s]

Vmax [mm/s]

L [mm]

a adjusted = T . _ L'
vmax

2
vmax

motion time (experiment),

maximum velocity (simulation),

distance between the start teach-point and end teach-point.

(6.1)

The value of the adjusted acceleration can be either larger or smaller than the

nominal value of acceleration. Consequently, the maximum velocity of linear motion in a

simulation will be reached either faster or slower than it would be reached in the case of

nominal acceleration (figure 6.20).

a

v

-- --- --,

Corrected model

Nominal model

Corrected model
, , , ,

a

t

Nominal model

t

v

Corrected model

, , Nominal model

Corrected model

I
I

I
I

Nominal model

t

Figure 6.20 Constant Acceleration Models- Nominal model and Corrected model

125

6.2.1. Correction Factor for Horizontal Motion

The correction factor value for a horizontal motion plane can be found as a ratio:

C - a adjusted
H-

a no min al

126

(6.2)

For example, when motion originates from the point TOP_ LEFT (coordinates given in

the table A.l) and when bearing angle value is zero degrees, the value of acceleration that

a simulation motion model must have in order to achieve the same motion time as the real

robot is calculated using equation 6.1 and is 592.11 mm/s2
. The correction factor in this

case is calculated as:

C H = a adjusted = 592.11 = 1.48
ano minal 400.0

Similarly, the correction factor value can be calculated for any combination of the bearing

angle value and the distance of a teach-point from the base of the robot. Based on the

results given in table A.16 and A.17, plots given on figures 6.21 and 6.22 were created.

Both the figure 6.21 and the figure 6.22 show that the correction factor curves for

different teach-points do differ. That outcome was expected considering that the factors

associated with the teach-points, such as the distance from the base of the robot are

different. In the case of teach-points TOP_ 2 and TOP _3, which are equally distant from

the base of the robot, the correction factor curves show a similarity of values and trends,

which was expected.

...
0 -~ co:
l:i.
c
.5! -~ ~
0 u

.9 ...
01

""' c
.~
ti
C>
u

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00
-60.00

2.50

2.00

1.50

1.00

0.50

I Approach Motion
•

• • -- '
• • • rt• ••• ••••• ·• .. •••

• •••

+ TOP_ LEFT

• TOP 2/TOP 3 - -
• TOP I

127

-40.00 -20.00 0.00 20.00 40.00 60.00

Bearing [deg)

Figure 6.21 Correction Factor Curves for Approach Motion

Depart Motion ... •' . • • •
·r· •• •• • ••••• .. . ~ ,•• :

•••• • • • •

+ TOP LEFT

• TOP 2

0.00 ~--------+---------~--------~--------------------
• TOP_ !

-60.00 -40.00 -20.00 0.00

Bearing ldeg]

20.00 40.00

Figure 6.22 Correction Factor Curves for Depart Motion

60.00

128

Values of the correction factor for bearing angle values other than the ones given in the

table 6.5 can be found by using the law of proportion:

c (a) = c + a - a lower (c c)
H H,alow~r H,a upp.:r - H,aluwc:r '

a upper - a lower

(6.3)

where:

correction factor value for bearing a ,

lower limit of the bearing range to which a belongs,

upper limit of the bearing range to which a belongs,

c
V,alow..:r

correction factor value for the bearing a lower,

c
H ,<X uppcr

correction factor value for the bearing a upper •

For example, for approach motion that originates from "TOP _LEFT" teach-point having

the value of bearing angle of 7 degrees, the corresponding value of the correction factor

CH will be:

7-4.47
CH =1.44+ (1.39 - 1.44)=1.411

8.88-4.47

129

6.2.2. Correction Factor for Vertical Motion

The correction factor for vertical motion can be found in exactly the same manner

that the correction factor for horizontal motion was found - as a ratio of adjusted and

nominal value of acceleration.

where:

c - a adjusted
v-

a no minal

(6.4)

aadjusted - acceleration value that results in the simulation motion time equal to the motion

time of the real robot,

anominal - nominal value of acceleration used in the simulation motion model. Typically,

anominal is a value set by the user.

Using equation 6.1, the correction factor values Cv can found for motion in the vertical

plane. Correction factor values are presented in the table A.18, while the corresponding

graph is presented on figure 6.23.

Figure 6.23 Correction Factor Curves for Downward Motion

Correction factor curves differ in shape and value, which is expected since the influential

factors associated to the two teach-points tested are different.

131

6.3. Conclusion

Based on the results of the experiment motion time curves of the real robot and of

the simulation were created. Simulation motion time curves and the corresponding motion

time curves of the real robot show similarities in trend, which means that the simulation

motion model does resemble the motion model of the real robot. Motion time curves also

show that the bearing and the incline angle do influence motion time of the real robot.

The error plots revealed that the error values in some cases reached 15%, which means

that approximation of the real robot's motion model is not close enough and that the level

of influence that bearing and the incline angle have on real robot's motion time is

significant.

Furthermore, all of the motion time plots show that besides the influential

parameters tested in the experiment, there is a set of unknown parameters significantly

influencing the motion of the real robot. Identification of the hidden parameters

themselves is of no importance for the method proposed in the thesis. It is their influence

that is important and that can be identified through the parameters such as bearing and

incline angle, whose influence can be established easily.

Integration of the influence of both known and unknown parameters is done

through a set of correction factors. The values of the correction factors presented earlier

in this chapter range between I and 2. In other words, the value of acceleration used in

the simulation sometimes needs to be almost twice as large as the nominal value set by

the user. The increased value of acceleration results in shorter amount of time spent

132

moving between the teach-points, which means a shorter overall travel time. All motion

time plots presented show that the simulation motion time is longer than the motion time

of the real robot, thus by increasing the value of acceleration used in the simulation the

overall simulation motion time becomes shorter. Furthermore, the simulation motion time

between the two teach-points would be shortened to the exact motion time of the real

robot, thus making the simulation motion time accurate.

Values of the correction factors can be established by using the error plots similar

to the ones presented earlier in this chapter. Once integrated into the simulation motion

model, the correction factors should make the motion time curves of the real robot and of

the simulation overlap. Although the approximation is better if the number of teach-points

tested is larger, testing does not have to include teach points throughout the whole work

envelope of the robot. Instead, the tests can be made only in the part of the robot's

envelope in which the task will be performed.

Another important aspect of the proposed method is the introduction of robot

dynamics in the calculation process through the correction factors. Correction factors are

robot-specific parameters. Their values depend not only on the factors already mentioned,

but also on the factors that have not been mentioned - such as the mechanical structure of

a robot, tool geometry, friction and torque characteristics of servo-drives. Through

correction factors the influence of those "hidden" parameters or hard to identify

parameters are incorporated into the existing, simple kinematics model, thus bringing

more realism into the simulated motion time.

133

6.4 Future Work

Future work has two basic goals with respect to the time frame: an immediate goal

and a long-term goal. The immediate goal includes verification of the results presented in

this thesis, while the long-term goal includes expansion of correction formula on other

influential parameters.

6.4.1. Immediate Goal

The immediate goal includes verification of the proposed method on an inclined

plane, i.e. on a plane that would include both vertical and horizontal motion. Derivation

of the integration formula follows.

Integration of acceleration correction factors is based on the two parameters - the

direction of motion and the value of linear acceleration. Direction of linear motion can be

found by using start and end point coordinates:

y
A

B

X 0

Figure 6.13 Motion Direction Derivation Using Basic Vector Calculus

134

Vector calculations are given by the following equations:

- - - - -
AB = 0 B - 0 A = (X B - X A) i + (y B - y A) j + (z B - z A) k (6.5)

Angles that vector AB makes with the reference coordinate axes can be found as:

(6.6)

(6.7)

(6.8)

A vector of linear acceleration is directed along the vector AB, and it too can be

decomposed into three components ax, ay and az using angles calculated in equations 6.6,

6.7 and 6.8:

(6.9)

(6.10)

(6.11)

(6.12)

Acceleration value in the horizontal plane can be found as:

(6.13)

Acceleration value in the vertical plane can be found as:

(6.14)

135

Now, when acceleration values of both horizontal and vertical plane motion are known,

the correction calculation can take place. The result of the correction is the following set

of equations:

(6.15)

Similarly:

(6.16)

Corrected acceleration values have to be integrated back into the analytical model. In

order to do so, equation 6.9 needs to be written in a different format:

(6.17)

The equation can be derived further:

By replacing a H and a v with equations 6.15 and 6.16, a corrected overall linear

acceleration value can be found as :

2 c2 2 cc2 cz 1) 2 c2 2 a corr = H a x + H + V - • a y + V a z (6.18)

Once the corrected value of linear acceleration a corr is known, it can be used for

calculations that are described in the chapter 4.

136

6.4.2. Long-Term Goals

There are three goals of future work that require a significant amount of time, thus can

be considered as long-term goals:

1) The experiments described in this chapter determined the influence that motion

direction has on motion time of the real robot. Parameters such as the mass of the

tool or manipulated object, configuration of the robot, type of motion

interpolation, as well as the radial distance of both the vertical and horizontal

plane were kept constant during the experiment. Future work should be focused

on identification of influence the mentioned parameters have on motion time.

2) Functional dependency of the corrected acceleration value should be expressed in

a simpler manner than what is described in equation 6.18. Ideally, Clcorr could be

expressed in the following format:

(6.19)

Where:

a - nominal acceleration,

Cv - correction factor for vertical motion plane

CH - correction factor for horizontal motion plane

Cm -correction factor for mass compensation,

Cn - n-th influential factor

137

3) Ultimately, if further tests confirm the results of the test made for the research

purposes of this thesis, a standard method similar to the process of static robot

calibration could be developed. The result of the method's application would be

the "signature" of the tested robot model. The "signature" would represent nothing

but the description of the functional relationship between the correction

parameters and motion time. A functional relationship could be provided either by

the robot manufacturers or established by the users themselves through a set of

simple standardized tests like the ones described in this chapter. Once known, a

"signature" would be imported into the simulation system and applied to the

underlying motion model of the simulation.

138

References

[1] Jerry Banks. "Principles of Simulation". In Jerry Banks (Ed.) Handbook o(

Simulation, John Willey & Sons, Inc. 1998.

[2] Onur Ulgen, Ali Gunal. "Simulation in the Automobile Industry". In Jerry Banks

(Ed.) Handbook o(Simulation, John Wiley & Sons, Inc. 1998.

[3] Y. F. Yong, M. C. Bonney. "Off-line Programming". In Shimon Y. Nof (Ed.)

Handbook o(lndustrial Robotics. Second Edition , John Wiley & Sons, Inc. 1999.

[4] Bryan Greenway. "Robot Accuracy". Industrial Robot: An International Journal,

Vol. 27, Number 4, pp. 257-265, 2000.

[5] John Owens. "Robot Simulation- Seeing the Whole Picture". Industrial Robot, Vol.

18, No.4. pp. 10-12, I991.

[6] R. Bernhardt, G. Schreck, C. Willnow. "Realistic Robot Simulation". Computing

and Control Engineering Journal, pp. 174-176, August 1995.

[7] Jacob Rabinovitz. "CAD and Graphic Simulators/Emulators of Robotic Systems".

In Shimon Y. Nof (Ed.) Handbook o(Industrial Robotics. Second Edition, John

Wiley & Sons, Inc. 1999.

(8] RRS Interface Specification, Version 1.3, September 23, 1997.

(9] Jack Hollingum. "Simulation, Calibration and Offline Programming". Industrial

Robot, Volume 21 , Number 5, pp. 20-21, 1994.

139

[l 0] Rolf Bernhardt. "Approaches for Commissioning Time Reduction". Industrial

Robot, Volume 24, Number 1, pp.62-71, 1997.

[11] RRS II - Reference Group Meeting Notes, June 13, 2000, IPK Berlin

[12] Presented Slides- RRS II Reference Group Meeting at IPK Fraunhofer, Berlin, June

13, 2000.

[13] Merriam-Webster Dictionary. Homepage. 17 July 2001. <http://www.m-w.com>

[14] Russel Stringham. "Simulation Tools Ease and Speed Assembly Cell

Development". Assembly Automation, Volume 19, Number 2, pp.l21-125, 1999.

[15] David Bradley. "Concurrent Engineering for Bespoke Products". Assembly

Automation, Volume 15, Number 1, pp.35-37, 1995.

[16] Brian Rooks. "A Shorter Product Development Time with Digital Mock-Up".

Assembly Automation, Volume 18, Number 1, pp. 34-38, 1998.

[17] Paul G. Ranky. "Concurrent Engineering and Enterprise Modeling". Assembly

Automation, Volume 14, Number 3, pp.14-21 , 1994.

[18] Tecnomatix Corporation. Homepage. 17 July 2001. <http://www.tecnomatix.com>

[19] Gunter Wittenberg."Training with Virtual Reality". Assembly Automation, Volume

15, Number 3, pp. 12-14, 1995.

[20] John Craig. "Past, Present and Future". Robotics World, pp. 40-41.

November/December 1999.

[21] Brian Rooks. "Tecnomatix Weaves its e-Manufacturing Web". Assembly

Automation, Volume 20, Number 3, pp.213- 216, 2000.

140

[22] Gutter Wittenberg. "Development in Offline Programming: An Overview".

Industrial Robot, Volume 22, Number 3, pp. 21-23, 1995.

[23] De1mia Corporation. Homepage. 17 July 2001. <http://www.delmia.com>

[24] Anna Kochan. "Introducing Coherence in Virtual Manufacturing". Automotive

Manufacturing Solutions, Volume I, Number 1, pp. 70-73, 2000.

[25] Gilad Lederer. "Making Virtual Manufacturing a Reality". Industrial Robot,

Volume 22, Number 4, pp. I6-17, 1995

[26] Paul Abbott, John Owens. "Simulation and Offline Programming m the Real

World". Robotics World, pp. 40-43, Fall 1998.

[27] Flow Software Technologies. Homepage. 17 July 200 I.

<http://www. workspace5 .com>

[28] Workspace (Version 5.01 for Windows) [Computer software], 2001

[29] Austin Weber. "Virtual Tools Optimize Assembly". Assembly, pp.44-52, April

2000.

[30] Anna Kochan. "Rover's E-Process Assembles Cars in Virtual World". Assembly

Automation, Volume 19, Number 2, 1999, pp.118-I20.

[31] Michael P. Deisenroth, Krishna K. Krishnan. "On-line Programming". In Shimon

Y. Nof (Ed.) Handbook o(Industrial Robotics, Second Edition, John Wiley & Sons,

Inc. 1999.

[32] Brian W. Rooks. "Off-line Programming: A Success for Automotive Industry".

Industrial Robot, Volume 24, Number 1, pp.30-34, 1997.

141

[33] Anna Kochan. "Land Rover Uses Jack and ROBCAD to Perfect Production

Processes". Assembly Automation, Volume 18, Number 2, pp.129-131, 1998.

[34] Narinder Nayar. "Workspace Ergonomics and Simulation". Assembly Automation,

Volume 16, Number 1, pp.25-28, 1996.

[35] S. Zeghloul, B. Blanchard, M. Ayrault. "SMAR: A Robot Modeling and Simulation

System". Robotica, Volume 15, pp.63-73, 1997.

[36] "ACIS Interoperability Components". Home page. Spatial Corporation. 11 Jul. 2001

<http :I /www. spatial.corn/products/lnterop/ A CIS_ interop. htm>

[37] "ACIS Healing". Home page. Spatial Corporation. 11 Jul. 2001

<http :I /www. spatial.corn/products/Interop/healing.htm>

(38] "Data Exchange White Paper". Home page. Theorem Solutions Ltd. 11 Jul. 2001

<http :I /www. theorem.co. uk/ docs/whitep. htm>

[39] Andrew A. Goldenberg, Mohammad, R. Emami. "Kinematics and Dynamics of

Robot Manipulators". In Shimon Y. Nof (Ed.). Handbook o[Industrial Robotics.

Second Edition, John Wiley & Sons, Inc. 1999.

[40] L. Sciavicco, B. Siciliano. Modeling and Control o[Robot Manipulators, The Me

Graw Hill Companies, Inc, 1996.

[41] K. S. Fu, C. S. Lee, R. Gonzales. Robotics: Control, Sensing. Vision & Intelligence,

McGraw-Hill Ryerson, 1987.

[42] John Owens. "Task planning in Robot Simulation". Industrial Robot, Volume 23,

Number 5, pp. 21-24, 1996.

[43] R. Bernhardt, S.L. Albright. Robot Calibration, Chapman & Hall, 1993.

142

[44] Tsuneo Yoshikawa. Foundation of Robotics - Analysis and Control. MIT Press,

1990.

[45] Brady M, Hollerbach J, Johnson T, Lozano-Perez T, Mason M. Robot Motion:

Planning and Control, MIT Press, 1982.

[46] Everett J. L. "Research Topics in Robot Calibration", In R Bernhardt (Ed.) Robot

Calibration, Chapman & Hall, 1993.

[47] "Motoman UP20". Home page. Motoman Corporation. 10 January. 2003

<http://www.motoman.com/robots/models/up20.htm>

[48] "Motoman Controllers". Home page. Motoman Corporation. 10 January. 2003

<http://www.motoman.com/controller/controllers.htrn>

A1

Appendix A- Experimental Results

A.l. Teach-points Coordinates

A.l.l. Approach Motion

Table A.l Coordinates of the start teach-points for approach motion

Teach-point X y z A B c
[mm] [mm] [mm] [de2] [degl [deg]

TOP LEFT 1350 700 100 180 -90 0
TOP 1 1350 420 100 180 -90 0
TOP 2 1350 140 100 180 -90 0
TOP 3 1350 -140 100 180 -90 0
TOP 4 1350 -420 100 180 -90 0

TOP RIGHT 1350 -700 100 180 -90 0

Table A.2 Coordinates of the target teach-points for approach motion

Teach-point X y z A B c
[mm] [mm] [mm] [deg) [de2] [deg]

BOTTOM LEFT 710 700 100 180 -90 0
TP1 710 650 100 180 -90 0
TP2 710 600 100 180 -90 0
TP3 710 550 100 180 -90 0
TP4 710 500 100 180 -90 0
TP5 710 450 100 180 -90 0
TP6 710 400 100 180 -90 0
TP7 710 350 100 180 -90 0
TP8 710 300 100 180 -90 0
TP9 710 250 100 180 -90 0

TPlO 710 200 100 180 -90 0
TP11 710 150 100 180 -90 0
TP12 710 100 100 180 -90 0
TP13 710 50 100 180 -90 0

A2

Table A.2 Coordinates of the target teach-points (continued)

Teach-point
X y z A 8 c

[mm] [mm] [mm] [deg] [deg] (deg]
TP14 710 0 100 180 -90 0
TP15 710 -50 100 180 -90 0
TP16 710 -100 100 180 -90 0
TP17 710 -150 100 180 -90 0
TP18 710 -200 100 180 -90 0
TP19 710 -250 100 180 -90 0
TP20 710 -300 100 180 -90 0
TP21 710 -350 100 180 -90 0
TP22 710 -400 100 180 -90 0
TP23 710 -450 100 180 -90 0
TP24 710 -500 100 180 -90 0
TP25 710 -550 100 180 -90 0
TP26 710 -600 100 180 -90 0
TP27 710 -650 100 180 -90 0

BOTTOM RIGHT 710 -700 100 180 -90 0

A.1.2. Depart Motion

Table A.3 Coordinates of the start teach-points for depart motion

Teach-point
X y z A 8 c

[mm] [mm] [mm] [deg] [deg] (deg]
TOP LEFT 710 700 100 180 -90 0

TOP 1 710 420 100 180 -90 0
TOP 2 710 140 100 180 -90 0
TOP 3 710 -140 100 180 -90 0
TOP 4 710 -420 100 180 -90 0

TOP RIGHT 710 -700 100 180 -90 0

A3

Table A.4 Coordinates of the target teach-points for depart motion

Teach-point
X y z A B c

[mm] [mm] [mm] [de2] [de2] [de2]
BOTTOM LEFT 1350 700 100 180 -90 0

TP1 1350 650 100 180 -90 0
TP2 1350 600 100 180 -90 0
TP3 1350 550 100 180 -90 0
TP4 1350 500 100 180 -90 0
TP5 1350 450 100 180 -90 0
TP6 1350 400 100 180 -90 0
TP7 1350 350 100 180 -90 0
TP8 1350 300 100 180 -90 0
TP9 1350 250 100 180 -90 0

TP10 1350 200 100 180 -90 0
TP11 1350 150 100 180 -90 0
TP12 1350 100 100 180 -90 0
TP13 1350 50 100 180 -90 0
TP14 1350 0 100 180 -90 0
TP15 1350 -50 100 180 -90 0
TP16 1350 -100 100 180 -90 0
TP17 1350 -150 100 180 -90 0
TP18 1350 -200 100 180 -90 0
TP19 1350 -250 100 180 -90 0
TP20 1350 -300 100 180 -90 0
TP21 1350 -350 100 180 -90 0
TP22 1350 -400 100 180 -90 0
TP23 1350 -450 100 180 -90 0
TP24 1350 -500 100 180 -90 0
TP25 1350 -550 100 180 -90 0
TP26 1350 -600 100 180 -90 0
TP27 1350 -650 100 180 -90 0

BOTTOM RIGHT 1350 -700 100 180 -90 0

A4

A.1.3. Downward Motion

Table A.S Coordinates of the start teach-points for downward motion

Teach-point
X y z A 8 c

[mm] [mm] [mm] [deg] [deg] [deg)

TOP LEFT 1350 700 740 180 -90 0
TOP 1 1350 420 740 180 -90 0
TOP 2 1350 140 740 180 -90 0
TOP 3 1350 -140 740 180 -90 0
TOP 4 1350 -420 740 180 -90 0

TOP RIGHT 1350 -700 740 180 -90 0

Table A.6 Coordinates of the target teach-points for downward motion

Teach-point
X y z A 8 c

[mm] [mm] [mm] [dee] rdee] rdeg)
BOTTOM LEFT 1350 700 100 180 -90 0

TP1 1350 650 100 180 -90 0
TP2 1350 600 100 180 -90 0
TP3 1350 550 100 180 -90 0
TP4 1350 500 100 180 -90 0
TP5 1350 450 100 180 -90 0
TP6 1350 400 100 180 -90 0
TP7 1350 350 100 180 -90 0
TP8 1350 300 100 180 -90 0
TP9 1350 250 100 180 -90 0

TP10 1350 200 100 180 -90 0
TP11 1350 150 100 180 -90 0
TP12 1350 100 100 180 -90 0
TP13 1350 50 100 180 -90 0
TP14 1350 0 100 180 -90 0
TP15 1350 -50 100 180 -90 0
TP16 1350 -100 100 180 -90 0
TP17 1350 -150 100 180 -90 0
TP18 1350 -200 100 180 -90 0
TPI9 1350 -250 100 180 -90 0
TP20 1350 -300 100 180 -90 0
TP21 1350 -350 100 180 -90 0
TP22 1350 -400 100 180 -90 0
TP23 1350 -450 100 180 -90 0

AS

Table A.6 Coordinates of the target teach-points (continued)

Teach-point
X y z A B c

[mm] [mm] [mm] [deg] [deg] [deg]
TP24 1350 -500 100 180 -90 0
TP25 1350 -550 100 180 -90 0
TP26 1350 -600 100 180 -90 0
TP27 1350 -650 100 180 -90 0

BOTTOM RIGHT 1350 -700 100 180 -90 0

A.2. Motion Times

A.2.1. Approach Motion

Table A.7 Approach motion times- start teach-point "TOP _LEFT"

Target
Travel

Bearing
Motion time

Error
Distance Robot Simulation

Teach-point
[mm] [deg] [sec] [sec] (sec] (%]

BOTTOM LEFT 640 0.00 2.64 2.90 -0.26 -9.8
TPl 641.95 4.47 2.66 2.90 -0.24 -9.0
TP2 647.76 8.88 2.7 2.92 -0.22 -8.1
TP3 657.34 13.19 2.77 2.96 -0.19 -6.9
TP4 670.52 17.35 2.83 3.00 -0.17 -6.0
TP5 687.09 21.34 2.91 3.06 -0.15 -5.2
TP6 706.82 25.11 2.99 3.12 -0.13 -4.3
TP7 729.45 28.67 3.08 3.20 -0.12 -3.9
TP8 754.71 32.01 3.18 3.28 -0.10 -3.1
TP9 782.36 35.11 3.28 3.37 -0.09 -2.7

TP10 812.15 38.00 3.39 3.47 -0.08 -2.4
TP11 843.86 40.67 3.57 3.58 -0.01 -0.3
TP12 877.26 43.15 3.73 3.70 0.03 0.8
TP13 912.19 45.44 3.86 3.81 0.05 1.3
TP14 948.47 47.56 3.98 3.93 0.05 1.3

A6

Table A.8 Approach motion times - start teach-point "TOP _1 "

Travel
Bearing

Motion time
Error Target Distance Robot Simulation

Teach-point
[mm] [de21 [sec] [sec] [sec] [%]

BOTTOM LEFT 698.57 -23.63 2.73 3.09 -0.36 -13.2
TP1 680.07 -19.77 2.70 3.03 -0.32 -12.0
TP2 664.83 -15.71 2.68 2.98 -0.3 -11.2
TP3 653.06 - 11.48 2.66 2.94 -0.28 -10.5
TP4 644.98 -7.1 3 2.64 2.91 -0.27 -10.2
TP5 640.70 -2.68 2.65 2.90 -0.25 -9.4
TP6 640.31 1.79 2.66 2.90 -0.24 -9.0
TP7 643.81 6.24 2.69 2.91 -0.22 -8.2
TP8 651.15 10.62 2.73 2.94 -0.21 -7.7
TP9 662.19 14.88 2.78 2.97 -0.19 -6.8

TP10 676.75 18.97 2.85 3.02 -0.1 7 -6.0
TP11 694.62 22.87 2.91 3.08 -0.17 -5.8
TP12 715.54 26.57 2.98 3.15 -0.17 -5 .7
TP13 739.25 30.03 3.065 3.24 -0.1 7 -5.7
TP14 765.50 33.27 3.15 3.32 -0.1 7 -5.4
TP15 794.04 36.29 3.24 3.41 -0.17 -5.2

A7

Table A.9 Approach motion times - start teach-point "TOP_ 2"

Travel Bearing Motion time
Error Target Distance Angle Robot Simulation

Teach-point
[mm) [de~!] [sec) [sec) [sec) [%)

BOTTOM LEFT 850.41 -41.19 3.35 3.60 -0.25 -7.5
TP1 818.35 -38.55 3.23 3.49 -0.26 -8.0
TP2 788.16 -35.71 3.13 3.39 -0.26 -8.3
TP3 760.07 -32.64 3.03 3.30 -0.27 -8.9
TP4 734.30 -29.36 2.95 3.21 -0.26 -8.8
TP5 711.13 -25.84 2.87 3.14 -0.27 -9.4
TP6 690.80 -22.11 2.81 3.07 -0.26 -9.3
TP7 673.57 -18.17 2.76 3.01 -0.25 -9.1
TP8 659.70 -14.04 2.72 2.96 -0.24 -8.8
TP9 649.38 -9.75 2.71 2.93 -0.22 -8.1
TP10 642.81 -5.36 2.70 2.91 -0.21 -7.8
TP11 640.08 -0.90 2.69 2.90 -0.21 -7.8
TP12 641.25 3.58 2.72 2.91 -0.20 -7.2
TP13 646.30 8.00 2.74 2.92 -0.18 -6.6
TP14 655.13 12.34 2.78 2.95 -0.17 -6.1

Table A.lO Approach motion times- start teach-point "TOP _3"

Travel Bearing Motion time
Error Target Distance Angle Robot Simulation

Teach-point
[mm] [deg] [sec) [sec] [sec] [%)

BOTTOM LEFT 1056.03 -52.70 4.09 4.29 -0.20 -4.9
TP1 1016.71 -50.99 3.94 4.15 -0.21 -5.3
TP2 978.37 -49.14 3.81 4.03 -0.22 -5.8
TP3 941.12 -47.15 3.66 3.90 -0.24 -6.6
TP4 905.10 -45.00 3.53 3.78 -0.25 -7.1
TP5 870.46 -42.67 3.41 3.67 -0.26 -7.6
TP6 837.38 -40.16 3.30 3.56 -0.26 -7.9
TP7 806.04 -37.44 3.19 3.45 -0.26 -8.2
TP8 776.66 -34.51 3.08 3.35 -0.27 -8.8
TP9 749.47 -31.36 2.99 3.26 -0.27 -9.0

TP10 724.71 -27.98 2.91 3.18 -0.27 -9.3
TP11 702.64 -24.38 2.84 3.11 -0.27 -9.5
TP12 683.52 -20.56 2.78 3.04 -0.26 -9.4
TP13 667.61 -16.53 2.74 2.99 -0.25 -9.1
TP14 655.13 -12.34 2.72 2.95 -0.23 -8.5
TP15 646.30 -8.00 2.70 2.92 -0.22 -8.1

A8

A.2.2. Depart Motion

Table A.ll Depart motion times - start teach-point "TOP_ LEFT"

Target
Travel Bearing Motion time

Error
Distance Angle Robot Simulation

Teach-point
[mml [de2] [sec] [sec] [sec] [%)

BOTTOM LEFT 640.00 0.00 2.57 2.90 -0.33 -12.8
TPl 641.95 -4.47 2.54 2.90 -0.36 -14.2
TP2 647.77 -8.88 2.55 2.92 -0.37 -14.5
TP3 657.34 -13.19 2.57 2.96 -0.39 -15 .2
TP4 670.52 -17.35 2.60 3.00 -0.40 -15.4
TP5 687.10 -21.34 2.66 3.06 -0.40 -15 .0
TP6 706.82 -25.11 2.72 3.12 -0.40 -14.7
TP7 729.45 -28.67 2.80 3.20 -0.40 -14.3
TP8 754.72 -32.01 2.89 3.28 -0.39 -13.5
TP9 782.37 -35 .11 2.99 3.37 -0.38 -1 2.7

TPlO 812.16 -38.00 3.10 3.47 -0.37 -11.9
TP11 843.86 -40.67 3.21 3.58 -0.37 -11.5
TP12 877.27 -43.15 3.34 3.69 -0.35 -10.5
TP13 912.20 -45.44 3.47 3.81 -0.34 -9.8
TP14 948.47 -47.56 3.60 3.93 -0.33 -9.2
TP15 985.95 -49.52 3.74 4.05 -0.31 -8.3
TP16 1024.50 -51 .34 3.88 4.18 -0.30 -7.7
TP17 1064.00 -53.02 4.03 4.31 -0.28 -6.9

Table A.12 Depart motion times- start teach-point "TOP 1"

Target
Travel Incline Motion time

Error
Distance Angle Robot Simulation

Teach-point
[mm] [de2] [sec] [sec] [sec] [%)

BOTTOM LEFT 698.57 23.63 2.86 3.09 -0.23 -8.0
TP1 680.07 19.77 2.78 3.03 -0.25 -9.0
TP2 664.83 15.71 2.71 2.98 -0.27 -10.0
TP3 653.07 11.48 2.65 2.94 -0.29 -1 0.9
TP4 644.98 7.13 2.61 2.91 -0.30 -11.5
TP5 640.70 2.68 2.59 2.90 -0.31 -12.0
TP6 640.31 -1.79 2.57 2.90 -0.33 -12.8
TP7 643.82 -6.24 2.57 2.91 -0.34 -13.2
TP8 651.15 -10.62 2.60 2.94 -0.34 -13. 1

A9

Table A.12 Depart motion times- start teach-point "TOP _I" (continued)

Travel Incline Motion time
Error Target Distance Angle Robot Simulation

Teach-point
[mm] [deg] [sec] [sec] [sec) [%)

TP9 662.19 -14.88 2.62 2.97 -0.35 -13.4
TP10 676.76 -18.97 2.66 3.02 -0.36 -13.5
TP11 694.62 -22.87 2.72 3.08 -0.36 -13.2
TP12 715.54 -26.57 2.78 3.15 -0.37 -13 .3
TP13 739.26 -30.03 2.87 3.23 -0.37 -12.7
TP14 765.51 -33.27 2.95 3.32 -0.37 -12.5
TP15 794.04 -36.29 3.05 3.41 -0.36 -11.8
TP16 824.62 -39.09 3.16 3.51 -0.35 -11.1
TP17 857.03 -41.69 3.28 3.62 -0.34 -10.4

Table A.l3 Depart motion times - start teach-point "TOP_ 2"

Target
Travel Incline Motion time

Error
Distance Angle Robot Simulation

Teach-point
[mm] [deg] [sec] [sec] [sec] [%]

BOTTOM LEFT 850.41 41.19 3.44 3.60 -0.16 -4.7
TP1 818.35 38.55 3.31 3.49 -0.18 -5.4
TP2 788.16 35.71 3.19 3.39 -0.20 -6.3
TP3 760.07 32.64 3.08 3.30 -0.22 -7.1
TP4 734.30 29.36 2.98 3.21 -0.23 -7.7
TP5 711.13 25.84 2.89 3.14 -0.25 -8.7
TP6 690.80 22.11 2.80 3.07 -0.27 -9.6
TP7 673.57 18.17 2.73 3.01 -0.28 -10.3
TP8 659.70 14.04 2.67 2.96 -0.29 -10.9
TP9 649.38 9.75 2.63 2.93 -0.30 -11.4

TP10 642.81 5.36 2.63 2.91 -0.28 -10.6
TP11 640.08 0.90 2.59 2.90 -0.31 -12.0
TP12 641.25 -3.58 2.61 2.90 -0.29 -11.1
TP13 646.30 -8.00 2.63 2.92 -0.29 -11.0
TP14 655.13 -12.34 2.65 2.95 -0.30 -11 .3
TP15 667.61 -16.53 2.69 2.99 -0.30 -11.2
TP16 683.52 -20.56 2.73 3.04 -0.31 -11.4
TP17 702.64 -24.38 2.80 3.11 -0.31 -11.1

AIO

A.2.3. Downward Motion

Table A.l4 Downward motion times- start teach-point "TOP _LEFT"

Travel Incline Motion time
Error Target Distance Angle Robot Simulation

Teach-point
[mm] [deg] [sec] [sec] [sec] (%]

BOTTOM LEFT 640.00 0.00 2.64 2.86 -0.22 -8.33
TPI 641.95 4.47 2.60 2.87 -0.27 -10.38
TP2 647.77 8.88 2.57 2.89 -0.32 -12.45
TP3 657.34 13.19 2.56 2.92 -0.36 -14.06
TP4 670.52 17.35 2.60 2.97 -0.37 -14.23
TP5 687.10 21.34 2.65 3.02 -0.37 -13.96
TP6 706.82 25.11 2.72 3.09 -0.37 -13.60
TP7 729.45 28.67 2.80 3.17 -0.37 -13.21
TP8 754.72 32.01 2.89 3.25 -0.36 -12.46
TP9 782.37 35.11 3.01 3.35 -0.34 -11.30

TP10 812.16 38.00 3.15 3.45 -0.30 -9.52
TP11 843.86 40.67 3.28 3.55 -0.27 -8.23
TP12 877.27 43.15 3.38 3.66 -0.28 -8.28
TP13 912.20 45.44 3.52 3.78 -0.27 -7.54
TP14 948.47 47.56 3.65 3.90 -0.25 -6.85

Table A.lS Downward motion times -start teach-point "TOP_ 2"

Travel Incline Motion time
Error Target Distance Angle Robot Simulation

Teach-point
[mm] [deg] [sec] [sec] [sec] (%]

BOTTOM LEFT 850.41 -41.19 3.45 3.60 -0.15 -4.35
TPl 818.35 -38.55 3.28 3.47 -0.19 -5.79
TP2 788.16 -35.71 3.16 3.37 -0.21 -6.65
TP3 760.07 -32.64 3.05 3.27 -0.22 -7.21
TP4 734.30 -29.36 2.97 3.18 -0.22 -7.25
TP5 711.13 -25.84 2.88 3.11 -0.23 -7.99
TP6 690.80 -22.11 2.79 3.04 -0.25 -8.96
TP7 673.57 -18.17 2.73 2.98 -0.25 -9.16
TP8 659.70 -14.04 2.69 2.93 -0.24 -8.92
TP9 649.38 -9.75 2.65 2.90 -0.25 -9.43

TPIO 642.81 -5.36 2.62 2.87 -0.25 -9.54

A 11

Table A.lS Motion Times- Start Teach-point "TOP _2" (continued)

Target
Travel Incline Motion time

Error Distance Angle Robot Simulation
Teach-point

[mm) [deg) [sec) [sec) [sec) [%1
TP11 640.08 -0.90 2.62 2.87 -0.25 -9.54
TP12 641.25 3.58 2.61 2.87 -0.26 -9.96
TP13 646.30 8.00 2.61 2.89 -0.28 -10.73
TP14 655 .13 12.34 2.62 2.92 -0.30 -11.45

A.3. Correction Factors

A.3.1. Horizontal Motion Plane

Table A.16 Correction factor values CH for approach motion

"TOP LEFT" "TOP 1" "TOP 2" "TOP 3"
Bearing

CH
Bearing

CH
Bearing

CH
Bearing

CH [deg] [deg) [deg] [deg]

0.00 1.48 -23.63 1.87 -41.19 1.46 -52.70 1.32
4.47 1.44 -19.77 1.71 -38.55 1.49 -50.99 1.36
8.88 1.39 -15.71 1.62 -35.71 1.49 -49.14 1.37
13.19 1.30 -11.48 1.55 -32.64 1.51 -47. 15 1.43
17.35 1.26 -7.13 1.53 -29.36 1.49 -45.00 1.46
21.34 1.21 -2.68 1.46 -25.84 1.50 -42.67 1.48
25.11 1.18 1.79 1.43 -22.11 1.48 -40.16 1.47
28.67 1.16 6.24 1.38 -18.17 1.46 -37.44 1.49
32.01 1.13 10.62 1.34 -14.04 1.44 -34.51 1.53
35.11 1.12 14.88 1.31 -9.75 1.38 -31.36 1.53
38.00 1.10 18.97 1.26 -5.36 1.35 -27.98 1.52
40.67 0.99 22.87 1.26 -0.90 1.35 -24.38 1.51
43.15 0.93 26.57 1.26 3.58 1.30 -20.56 1.50
45.44 0.92 30.03 1.25 8.00 1.28 -16.53 1.46
47.56 0.92 33.27 1.25 12.34 1.26 -1 2.34 1.40

36.29 1.26 -8.00 1.37

r
I
I

