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Abstract 

Multivariate correlated failure time data can be classified into two different groups: 

structural failure time data and longitudinal failure time data. As compared to the 

analysis of the structural failure time data, the analysis of longitudinal failure time 

data has however proven to be difficult, perhaps because of the difficulty in the mod­

eling the true longitudinal correlation structures. In the present thesis, following 

certain longitudinal correlation models, recently developed for discrete data, we de­

velop three longitudinal correlation models for exponential failure times to deal with 

such multivariate longitudinal data. Under these three models, we construct the co­

variance structures of the martingales of the failure times for both uncensored and 

censored cases, and use them to develop a generalized estimating equation approach 

to estimate the parameters of main interest, namely, the hazard ratio parameters. 

The efficiency loss due to misspecification of the correlation structure is studied for 

both uncensored and censored cases. As the proposed generalized estimating equa­

tion approach use either the underlying true correlation structure for both uncensored 

and censored cases or a suitable robust correlation structure for the uncensored case, 

the methodology yields consistent as well as efficient estimators for the hazard ratio 

parameters. We apply the methodology to a numerical example. 

11 



Acknowledgements 

[ am grateful to my supervisors Drs. G. Sneddon and B.C. Sutradhar for their 

encouragement, continuous guidance and helpful assistance in completing this thesis. 

It was indeed a great previlige to work on this important problem in the area of 

longitudinal data analysis, which was suggested by Professor Sutradhar. 

I sincerely acknowledge the financial support provided by the School of Gradu­

ate Studies and Department of Mathematics and Statistics in the form of Graduate 

Fellowships and Teaching Assistantships. Further I wish to thank Dr. Herb Gaskill, 

Department Head, for providing me a friendly atmosphere and the necessary facilities 

to complete the program. 

I also thank Dr. Roman Viveros-Aguilera of McMaster University and Dr. Alwell 

Oyet of Memorial University of Newfoundland for taking the time to serve as exam­

iners of this thesis. Their constructive comments and suggesstions served to improve 

the quality of the Thesis. 

I am also grateful to my wife, my parents, brother and sister for their eternal love, 

emotional support and encouragement during this program. 

It is my great pleasure to thank my friends and well-wishers who directly or 

indirectly encouraged and helped me in the M.Sc. program and contributed to this 

dissertation. 

llJ 



Contents 

Abstract 

Acknowledgements 

List of Tables 

1 Introduction 

1.1 Motivation for Multivariate Failure Time Data Analysis . 

1.2 Objective of the Thesis . . . . . . . . . . . . . . . . . . . 

2 Background of Clustered Models for Failure Time Data 

2.1 Structural Models for Failure Time Data .. 

2.2 Longitudinal Models for Failure Time Data 

3 Survival Functions for Exponential AR(1), MA(l) and Exchangeable 

11 

... 
Ill 

viii 

1 

1 

3 

5 

6 

10 

Processes 12 

3.1 Survival Function for Exponential AR(l) Failure Time Data 13 

3.1.1 Exponential AR(1) Process . . ....... 13 

3.1.2 Marginal Bivariate Distribution . . .. ... 13 

3.1.3 Computation of Bivariate Survival Function 14 

3.2 Survival Function for Exponential MA{l) Failure Time Data 16 

3.2.1 Exponential MA( 1) Process .. 16 

3.2.2 Marginal Bivariate Distribution 17 

IV 



3.2.3 Computation of Bivariate Survival Function . . . . . . . . . . 17 

3.3 Survival Function for Exponential Equi-Correlation Failure Time Data 20 

3.3.1 Exponential Equi-correlation (EEQ) Process . . . . . . . . . . 20 

3.3.2 Moment Generating Function and Correlation for EEQ Process 21 

3.3.3 Computation of Bivariate Survival Function . . . . . . . . . . 22 

4 Regression Model for Longitudinal Uncensored Failure Time Data 27 

4.1 Martingale Correlation Structure for Exponential Uncensored Failure 

Times 

4.1.1 

4.1.2 

Martingale Correlations Under Exponential AR( 1) Process 

Martingale Correlations Under Exponential MA( 1) Process 

4.1.3 Martingale Correlations Under Exponential Equi-correlation Pro-

cess .................... . . 

28 

28 

30 

32 

4.2 Estimating Equations for Hazard Ratio Parameters 35 

4.2.1 Estimation of Martingales Covariance Matrix 37 

4.3 Efficiency Comparison Under Correlation Structure Misspecification 

Through A Simulation Study . . . . . . . . . . . . . . . . . . . . . . 39 

4.3.1 Simulation Design and Generation of the Exponential Failure 

time Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

4.3.2 Empirical Efficiency Comparison Due to Misspecification of Cor-

relation Structure . . . . . . . . . . . . . . . . . . . . . . . . 41 

5 Regression Model for Longitudinal Censored Failure Time Data 44 

5.1 Martingale Correlation Structure for Exponential Censored Failure Time 

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

5.1.1 Martingale Correlation Under Censored Exponential AR(l) Pro-

cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

5.1.2 Martingale Correlation Under Censored Exponential MAl Pro-

cess 50 

v 



5.1.3 Martingale Correlation Under Censored Exponential Equi-correlation 

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

5.2 Estimating Equations for Hazard Ratio Parameters Under Censored 

Case 60 

5.2.1 Estimation of Martingales Covariance Matrix for Censored Case 61 

5.3 Efficiency Comparison for Censored Data Under Correlation Structure 

Misspecification 

Through a Simulation Study 62 

5.3.1 Simulation Design and Generation of Exponential Failure and 

Censored Time Data . . . . . . . . . . . . . . . . . . . . . . . 62 

5.3.2 Empirical Efficiency Comparison due to Misspecification of Cor-

relation Structure . . . . . . . . 

5.4 An lllustration: Kidney Infection Data 

64 

65 

5.4.1 Hazard Ratio Parameter Estimation Based on Uncensored Data 67 

5.4.2 Hazard Ratio Parameter Estimation Based on Complete (Un-

censored and Censored) Data 67 

6 Concluding Remarks 69 

6.1 General Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

6.2 Robust Correlation Structure Based Regression Estimation for Uncen-

sored Failure Time Data . . . . . . . . . . . . . . . . . . . . . . . . . 70 

6.3 Efficiency Aspects for Uncensored Data Based on Robust Correlation 

Structure ........... 71 

6.4 Proposal for Further Research 72 

A Tables for Uncensored Case 73 

B Tables for Censored Case 78 

c Kidney Infection Data 80 

VI 



D Tables Under Robust Structure for Uncensored Case 

Bibliography 

Vll 

82 

87 



List of Tables 

A.l Summary of estimates for uncensored case with K = 100, true /31 = 
{32 = 1 for true EAR(1) process, under design D1 • p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. 73 

A.2 Summary of estimates for uncensored case with K = 100, true /31 = 

/32 = 1 for true EAR(l) process, under design D2 • p= Correlation 

Parameter, MSE =Mean Square Error, R.E. = Relative Efficiency. 74 

A.3 Summary of estimates for uncensored case with K = 100, true /31 = 
{32 = 1 for true EEQ process, under design D1• p= Correlation Param-

eter, MSE = Mean Square Error, R.E. = Relative Efficiency. . . . . . 75 

A.4 Summary of estimates for uncensored case with K = 100, true /31 = 

/32 = 1 for true EEQ process, under design D2 • p= Correlation Param-

eter, MSE =Mean Square Error, R.E. = Relative Efficiency. . . . . . 76 

A.5 Summary of estimates for uncensored case with K = 100, true /3 1 = 

{32 = 1 for true EMA( 1) process, under design D1 • p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. 76 

A.6 Summary of estimates for uncensored case with K = 100, true {31 = 

{32 = 1 for true EMA( 1) process, under design D2 • p= Correlation 

Parameter, MSE =Mean Square Error, R.E. = Relative Efficiency. . . 77 

B.l Summary of estimates for censored case with K = 100, true /31 -

{32 = 1 for true EAR(l) process with 10% censorship. p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. 78 

Vlll 



8.2 Summary of estimates for censored case with K = 100, true (31 = 
(32 = l for true EAR( I) process with 20% censorship. p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. 79 

C.l Recurrence times of infections in 38 kidney patients. . . . . . . . . . 81 

0.1 Summary of estimates for uncensored case with K = 100, true (31 = 
(32 = 1 for true EAR(l) process, under design D1• p= Correlation 

Parameter, MSE = Mean Square Error, R.E. =Relative Efficiency. . 82 

0.2 Summary of estimates for uncensored case with K = 100, true (31 = 

{32 = 1 for true EAR(1) process, under design D2 • p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. . 83 

0.3 Summary of estimates for uncensored case with K = 100, true {31 = 

{32 = 1 for true EEQ process, under design D1• p= Correlation Param-

eter, MSE = Mean Square Error, R.E. = Relative Efficiency. . . . . . 84 

0.4 Summary of estimates for uncensored case with K = 100, true {31 = 

{32 = 1 for true EEQ process, under design D2 • p= Correlation Param-

eter, MSE = Mean Square Error, R.E. = Relative Efficiency. . . . . . 85 

0 .5 Summary of estimates for uncensored case with K = 100, true {31 = 
.82 = 1 for true EMA( 1) process, under design D1 • p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. . 85 

0.6 Summary of estimates for uncensored case with K = 100, true (31 = 

{32 = 1 for true EMA(l) process, under design D2 • p= Correlation 

Parameter, MSE = Mean Square Error, R.E. = Relative Efficiency. . 86 

IX 



Chapter 1 

Introduction 

1.1 Motivation for Multivariate Failure Time Data 

Analysis 

The regression models for univariate failure time data have been extensively studied 

in the literature. For example, we refer to Kalbfleisch and Prentice (1980), Lawless 

(1982), Cox and Oakes (1984) and the references therein. The univariate regression 

failure time problems mostly arise in medical and engineering studies. For example, 

Kardaun (1983) (see also Klein and Moeschberger, 1997) reports data on 90 males 

diagnosed with cancer of the larynx during the period 1970-1978 at a Dutch hospital. 

Times recorded are intervals (in years) between first treatment and either death or 

the end of the study (January 1, 1983). Also recorded are the patient's age at the 

time of diagnosis, the year of diagnosis (from 1970-1978) and the stage of the patient's 

cancer where stage of the disease was defined based on certain characteristics, namely, 

the primary tumor, nodal involvement and distant metastasis by the American Joint 

Committee for Cancer Staging (1972). Here the failure time of the individual male 

is the univariate response, and age and the cancer stage of the individual patient are 

the covariates. If any patient is not dead by the end of the study or somehow missing 

from the study without death then that patient has considered as censored. In the 

1 
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above example, it is of interest to find the regression effect of age and stage of cancer 

on the failure times of the patients. 

There are however many situations in practice where the failure time data are 

collected from a large number of groups or clusters of size more than one. For example, 

in connection with the above larynx cancer study, the failure responses along with 

the corresponding covariates could be collected from 90 groups of siblings (related 

to the individual male) instead of 90 individual males. For analyzing this type of 

data, one has to take the correlation of the responses of the siblings of the group into 

account as the failure times arise from the related members of the same group. The 

analysis of such multi-dimensional failure time data is referred to as the structural or 

familial failure time data analysis. Over the last two decades, there has been a good 

number of initiatives to analyze such structural failure time data. For example, we 

refer to Clayton and Cuzick (1985), Prentice and Cai (1992), Cai and Prentice (1995), 

Prentice and Zhao {1991), Prentice and Hsu {1997), Cai, Wei and Wilcox {2000). The 

main thrust of these studies is to obtain consistent estimators for the regression effects 

after taking the correlation among the failure times into account. A limited number 

of studies, such as Cai and Prentice (1995) also studied the efficiency aspects of the 

regression estimators for independent versus certain dependent structures. 

Similar to but different than the structural set up, it may also be the case that 

failure time data are collected repeatedly for a number of periods from each of a large 

number of individuals. For example, in Byar's ( 1980) bladder cancer study 86 pa­

tients had superficial bladder tumors when they entered the trial. These tumors were 

removed and patients were randomly assigned to one of three treatments. If tumors 

reoccured then the patient was supposed to visit the clinic. Thus, the patients were 

followed for a repeated number of times and their failure times and covariate infor­

mation were repeatedly recorded. Here it is reasonable to assume that these repeated 

failure times are correlated as they arise from the same individual. To analyze this 

type of multivariate longitudinal or repeated failure time data one should however 

take the longitudinal correlations among the repeated failure times into account and 
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compute the regression effects on the repeated failure times. Note that as opposed to 

the structural failure time data analysis the analysis of such longitudinal failure time 

data is not adequately addressed in the literature, although a limited number of at­

tempts have been made towards such analysis. For example we refer to Wei, Lin and 

Weissfeld (1989) and Gao and Lin (1994). These authors have however used certain 

types of structural correlation to model the repeated data and examined the effects 

of correlations on the regression estimation. This naturally raises concerns to inves­

tigate the longitudinal correlation effects on the regression estimation by modeling 

the repeated data through suitable longitudinal correlations rather than structural 

correlations. 

For the reasons discussed above, in this thesis, our motivation is to model the 

longitudinal correlation for repeated failure times using some flexible exponential 

models, which we believe will be the first attempt of this kind toward analyzing such 

regression data. We do this in the spirit of Liang and Zeger (1986), Sutradhar and 

Das (1999) and Jowaheer and Sutradhar (2001). Further, longitudinal correlations 

computed from the repeated failure time data will be utilized to obtain consistent as 

well as efficient estimates of the regression effects. 

1.2 Objective of the Thesis 

As the longitudinal failure time data (as opposed to the structural failure time data) 

are not analyzed adequately in the literature, in this thesis we model the longitudinal 

correlation for repeated failure times and find the consistent as well as efficient esti­

mates of regression effects using this specific correlation structure. The specific plan 

of the thesis is as follows. 

In Chapter 2, we provide some background for clustered models for failure times 

and review some methods used to analyze such correlated failure time data under the 

structural and longitudinal situations. 
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Chapter 3 concentrates on the derivation of the form of the bivariate survival func­

tion for certain general correlation structures, such as exponential AR( 1), exponential 

MA( 1) and exponential equi-correlation processes. 

In Chapter 4 we will use the survival functions derived in Chapter 3, as well 

as some results of Cai and Prentice (1995), to derive the correlation matrix of the 

martingales for each of our exponential processes. This will be done for uncensored 

data. We will also present simulation results to compare the efficiencies of the hazard 

ratio parameter estimators under misspecification of the correlation structure. It will 

be shown that the efficiency loss can be quite dramatic if the incorrect correlation 

structure is used. Chapter 5 will extend the results of Chapter 4 to the case of 

censored data. Chapter 5 will also include an analysis of a data set consisting of the 

times of infection from the time of insertion of the catheter for 38 kidney patients 

using portable dialysis equipment. 

We will give some conclusions in Chapter 6, including some results on using a 

robust correlation structure with longitudinal failure times, as well as areas of further 

research. 



Chapter 2 

Background of Clustered Models 

for Failure Time Data 

Clustered failure times data arise in many situations, for example, in epidemiological 

cohort studies in which the ages of disease occurrence are recorded among members of 

a sample of families; in animal experiments where treatments are applied to samples 

of littermates; in clinical trials in which individual study subjects are followed for the 

occurance of repeated events. 

Consider K independent failure time response vectors TI =(Tk.,Tk2 , •• • ,Tkn) for 

k = 1, 2, ... , K. For example Tkl, Tk2 , .• • , Tkn may denote n disease occurance times 

for siblings in the kth family of a cohort study. In this problem, it will be of interest 

to find the effect of associated covariates on these failure times of the members of 

the families. To be specific, in a medical study involving heart diseases, the length 

of survival times after the first heart attack among the n siblings of the kth family 

form a multivariate life distribution. As the siblings of a family share a common 

family effect, it is reasonable to assume that the failure times of these siblings will 

be correlated. This type of correlation among the members of the families or cluster 

is referred to as structural correlation. Here it is of interest to find the effects of the 

treatments along with other covariates by taking these correlations into account. 

As mentioned earlier, as opposed to the structural or familial correlation set up, 

5 
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there are situations where Tk1, Tk2, • •• , Tkn may denote the n repeated failure times 

for the kth patient in a clinical trial. Here the correlations among the repeated fail­

ure times are referred to as the longitudinal correlations. Note that while it may be 

sensible to think that the structural correlations may be caused by a certain common 

random effect shared by family members, it is however quite appropriate to assume 

that longitudinal correlations are usually observation driven, when observations are 

taken repeatedly from the same individual. In this problem, it wiU be of interest 

to find the effect of associated covariates on these repeated failure times of K in­

dividuals. An interesting example can be found in a bladder cancer study (Byar, 

l980), which was conducted by the Veterans Administration Cooperative Urological 

Research Group. In this study all the patients had superficial bladder tumors when 

they entered the trial. These tumors were removed and patients were randomly as­

signed to one of three treatments. If the treatment was found to cease its actions, i.e. 

if tumors reoccured, the patient was supposed to visit the clinic. Here it is reasonable 

to assume that these repeated failure times are correlated. This type of correlation 

is referred to as longitudinal correlation. 

Because of their importance in practice, structural and longitudinal failure time 

data, similar to the data discussed above, were analyzed by many authors over the last 

two decades. More specifically, many of these studies are found to deal with structural 

failure time data, while a limited number of studies concentrated on longitudinal 

failure time data analysis. We now describe some of the past research on structural 

and longitudinal failure time data analyses and their limitations in the following 

subsections. 

2.1 Structural Models for Failure Time Data 

Recall that TI = (Tk 1, Tk2 , ••• , Tkn) for k = l, 2, ... , K are K independent failure 

time response vectors. Suppose that these n failure times are recorded for the n 

individuals of a cluster or family which are likely to be correlated. In general it is 
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however very difficult to write a joint hazard function or joint probability density 

function for these n correlated failure times. As far as the marginal hazard function 

of a failure time is concerned, a marginal hazard function of the form (Cox 1972) 

(2.1) 

is widely used to model the failure time responses. In (2.1) Yki(.) is an at risk in­

dicator process for the ith member of the kth response vector. Therefore if Cki is 

the corresponding censoring time of the failure time Tki and Xki=min(TA:i,Cki), then 

Yki = l(Xki ~ t), where/(.) is an indicator function. We assume ...\Oi(.) is the unspec­

ified baseline hazard function pertaining to the ith member of each response vector. 

Further zri(.) = (Zkit(.), zki2(.), ... , zkip(.)) is a 1 X p covariate vector corresponding 

to the ith member of the kth family, with failure times Tki• where these covariate 

vectors Zki(.) may or may not be time dependent. In (2.1) ~T =({31 ,{32 , ... ,/3p) is a haz­

ard ratio, or relative risk parameter which is also referred to as the regression effects. 

Here our interest is to find the effects of the covariates {3 by taking the correlations 

of the failure times into account, as Tkt, 7'rc2, ... , Tkn arise from the individuals of the 

same family. 

In a bivariate set up Clayton and Cuzick {1985) have considered a marginal hazard 

model similar to (2.1) and modelled the correlations ofthe failure times by introducing 

a bivariate survival function for any two failure time responses. More specifically, they 

considered the bivariate survival function of two failure times T1 and T2 as 

(2.2) 

where -y is the dependence parameter. This model gives independence between T1 

and T2 when -y = 0 and maximal dependence as -y ~ oo. Note that the bivariate 

survival function in (2.2) yields the exponential marginal survival function which can 

be related to the marginal hazard function (2.1 ). Based on (2.1) and (2.2) these 

authors have exploited a maximum likelihood approach for joint estimation of {3 and 
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Prentice and Cai ( 1992) have considered a similar bivariate correlation model to 

(2.2) and estimated the required survival function nonparametrically through the 

estimation of a covariance function of bivariate martingales. Here the martingale for 

the ith member of the kth family is defined as 

(2.3) 

where N~ci(t) = l(Xki < t, d = 1), with A= l(T~ci=Xki) and !(.)denotes an indicator 

function. Note that the covariance function computed in Prentice and Cai ( 1992) is 

quite general which can be used to find the correlations for the martingales under the 

bivariate survival function F(t 17 t2 ) considered by Clayton and Cuzick (1985) as well 

as under other possible bivariate survival functions. 

Cai and Prentice (1995) proposed a weighted partial likelihood estimating equa­

tion for estimating the marginal hazard ratio parameter {3 in (2.1) after taking the 

structural correlation of the failure times into account. More specifically , instead of 

using the unweighted estimating equation 

K ['::110 L la Zf{u)Uk(du) = 0 
k=l 0 

(2.4) 

they incorporated the correlation matrix of the martingales and constructed the 

weighted estimating equation given by 

(2.5) 

for the estimation of {3. In (2.4) and (2.5) 

with 

where 
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Further in (2.5) the weight matrix is 

W~c(f3, u) = (Wkij(.B, u)); i,j = 1,2, ...... n 

where wkij(,B,u) is the (i,j)thelement oftheinverseofthecorrelation matrix between 

the martingales, i.e. 

where Mk(X~c) = [M.kl(X~ct), Mk2(Xk2), ... , M~cn(Xkn)]. Note that the efficient es­

timation of {3 in Cai and Prentice (1995) requires the consistent estimation of the 

correlation parameters, say 1, involved in W~c(f3, u). It is however not clear from Cai 

and Prentice (1995) how this 1 parameter can be consistently estimated, although 

there is an indication for using an alternative nonparametric approach to estimate 

the Wk({j,u) matrix in general. 

Following Prentice and Zhao (1991), recently Prentice and Hsu (1997) utilized a 

joint estimating equation approach for simultaneous estimation of {3 and 1, where 1 

is the dependence parameter. More specifically, for the failure time response vectors 

these equations have the form: 

K K 

E or. v;.1(Tk -~&k) = 0, E nr2vk21
(Sk- D'k) = 0, (2.6) 

k:::;;l k=l 

where for k = 1, 2, ... , K, Tk = (T~c1 Tk2····Tkn~tf is the nk dimensional response 

vector having mean vector l'k = l'~c(/3), and covariance vector 

In (2.6) Sk = (skl.,sk 12, ..•.. ,skn;,n,f, with Skii = (T~ci - JJki)(Tki-JJki), is an empirical 

covariance vector, D~ct = 8~tkf8{3T, Dk2 = 8tTk/8-rT, while vkl and vk2 are possibly 

working versions of the covariance matrices Tk and s~c. 

Cai, Wei and Wilcox (2000) used generalized estimating equations techniques to 

modify the Cox partial likelihood score function for the analysis of data which consist 

of a large number of independent small groups of correlated failure time observations. 
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They modeled each individual failure time with subject and duster-specific time­

dependent covariates using linear transformation models but no specific parametric 

correlation structure was imposed on the observations. To be specific, their regression 

approach accommodates the correlations nonparametrically which appears to be a 

similar idea as indicated by Cai and Prentice {1995) . Nothing is however known 

about the efficiency loss of such semiparametric or nonparametric estimation which 

may be caused by high correlation in the data. 

2.2 Longitudinal Models for Failure Time Data 

As opposed to the structural models for failure time data, the correlation among the 

failure times may arise because of the repetition of the failure times of an individual. 

These failure times constitute a cluster, which is different than a cluster of responses 

of a group of members recorded at a time. The analysis of such longitudinal fail­

ure time data, however, is not adequately addressed in the literature. Wei, Lin and 

Weissfeld(1989) made an interesting attempt to analyze continuous multivariate fail­

ure time data of longitudinal nature but they used an independent working correlation 

assumption and constructed marginal models in fitting such failure time data. The 

covariance matrix of the marginal approach based regression estimator was estimated 

consistently (see A.2, p.l072, Wei, Lin and Weissfeld, 1989) by using a proper sample 

covariance structure for the actual but unknown covariance structure involved in the 

expression of the covariance of the regression estimator. However note that these 

marginal approach based estimates of the regression covariates may not be efficient. 

Gao and Lin {1994) studied a similar regression model as in Wei et al. {1989) by 

using marginal approach but unlike Wei et al. {1989) they considered discrete type 

or grouped failure time responses. 

Since the seminal work of Liang and Zeger {1986), the marginal approach for 

multivariate data has gained considerable popularity in the literature. But Crowder 

{1995) and Sutradhar and Das (1999) suggested this marginal approach based on a 
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so called worlcing correlation structure may encounter difficulties, mainly in the sense 

of efficiencies. As there do not appear detail works available so far in estimation the 

regression effects on the longitudinal correlated failure times, in this thesis we will 

make an attempt to model longitudinal correlation for repeated failure times and this 

structure will be utilized to obtain consistent as well as efficient regression effects 

estimators under the multivariate failure time set up. 



Chapter 3 

Survival Functioits for Exponential 

AR(l), MA(l) and Exchangeable 

Processes 

As explained in Chapter 2, in analyzing a regression model for failure times, Cai and 

Prentice (1995) introduced a weighted estimating equation approach, where weights 

were constructed for the martingales of failure times in a structural set up. We recall 

the estimating equation (2.5) from Chapter 2 in this regard. Note however that in Cai 

and Prentice's ( 1995) approach one assumes the same dependency parameter for any 

two failure time variables under the multivariate set up. As for the repeated failure 

time data, there is no reason to assume that correlations can be constant among 

all time variables. One is therefore required to model the longitudinal correlation 

with special care such that the usual behavior of Gaussian types of auto-correlation 

are reflected in the present exponential set up. The purpose of this chapter is to 

discuss such correlation structures for positive exponential failure times and develop 

the survival functions under such correlation structures of exponential variables. Note 

that the survival functions developed in this chapter will be exploited in Chapter 4 

to construct the correlation structures for the martingales for the uncensored failure 

times. Similar computation will be done in Chapter 5 for the censored case. Further 

12 
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note that the exponential AR( 1 ), MA(l) and exchangeable( equi-correlation) processes 

to be discussed in this chapter are well studied by several authors in connection with 

binary and Poisson longitudinal variables. For example, we refer to the recent study 

of Jowaheer and Sutradhar (2001) for correlated count data analysis and the PhD 

thesis of Jowaheer (200 l) for detailed analysis of multivariate longitudinal count data. 

3.1 Survival Function for Exponential AR(l) Fail­

ure Time Data 

3.1.1 Exponential AR(l) Process 

Following Jowaheer and Sutradhar (2001), we recall from Gaver and Lewis (1980) that 

the first order autoregressive model for exponential failure times T1, ..• , T;, .. . , Tn can 

be written as 

pT;-1 + /;c:; (3.1) 

where 

/i = { 0 with probability p 

1 with probability 1 - p 

with p as the probability parameter (0 ::; p < 1) , and Ei is an i.i.d. sequence of 

exponential random variables with parameter A. Note that the AR(1) process is 

based on an initial identity T0 =c:0 • We will refer to (3.1) as an exponential AR( 1) 

(EAR( l)) model. 

3.1.2 Marginal Bivariate Distribution 

To find the correlations among n repeated failure times, it is sufficient to consider 

a general bivariate density for any of the two failure times. For the EAR(1) model 

(3.1) the bivariate density function of Ti+i and Ti has the form (Gaver and Lewis, 
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1980 and Sim, 1990) given by 

Marginally, 1i+i and 1i follow exponential(,\) distributions and a(x) is the discrete 

Dirac delta function, i.e. a(x) is the distribution with atom of probability 1 at X= 0. 

From Gaver and Lewis (1980) we know that 

3.1.3 Computation of Bivariate Survival Function 

Lemma 3.1: Let 

be the bivariate survival function of Tt and T2 • For the exponential AR(l) model 

(3.1), this survival function is given by 

for u2 ::; PUt 

for u2 >put 

Proof: We know from (3.1) that Tt and T2 must satisfy the relationship T2 ~ pT1• 

However u2 (a realized value of the r.v. T2 ) can be either u2 > pit or u 2 ::; pt1• 

Therefore the bivariate survival function of T1 and T2 may be computed as follows: 

The lower limit of the integration with respect to T2 should be the maximum of u2 

and pt t. i.e. max( u2 , ptt). It then follows that 

{'XJ roo /T
1

,T
2
(tl , t2)dt2dt1 

lu, lmax(u'l ,Pt l ) 

- roo l(tt)dtt (say) . 
lu1 

(3.3) 
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Note that there are two cases to consider to evaluate the integral /(t1 ) in (3.3). For 

the case when u2 >pt., l(tt) is computed as 

f(tt) - ro /T1,T2 (tb t2)dt2 Ju2 
{oo [Ape-.\t•8(t2- ptl) + ,\2(1- p)e-..\tte-.\(t2-ptt)] dt2 

lu2 

_ ,\( 1 _ p )e-.\(1-p)tt e-.\u-z, 

whereas for the case u2 ~ pt1, one needs to compute the integral /(td as 

f(tt) {
00 

fTt,T-z(tb t2)dt2 
lPtl 

- roo Ape-.\tl8(t2- ptt)dt2 + r)(J ,\2{1- p)e-.\t•e-.\(t2-Ptddt2 
~tt ~tl 

_ Ae-.\t1, 

which yield 

/(tt) == 2 1 
{ 

,\( 1 - p)e-.\t1 e.\pt1 e-.\u2 for u > pt 

Ae-.\t1 for Uz ~ pt1. 

Next by using the above formula for /( t1) we evaluate the remaining integral in 

(3.3) over u 1 as follows. For the case when u2 > pu1 the integral in (3.3) is evaluated 

as 

Fr
1
,T

2
(uh u2) - {u2

/P ..\{1- p)e-.\t1e.\pt1e- .\u2 dt1 + J.u2
/P Ae-.\t1dt 1 lul u1 

-.\u2 -.\(1-p)ut e e , 

whereas for the case u2 ~ pu1 we evaluate the integral in (3.3) as 

It then follows that the bivariate survival function of T1 and T2 has the form given by 

(3.4) 
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This completes the proof. 0 

Note that for any two general elements of the vector of survival times Tk,k = 
1, 2, ... , K, the bivariate survival function of Tkl and Tk2 can be written following 

(3.4) as 

for uk2 $ PUkt 

for uk2 > pukl 
(3.5) 

Further note that the bivariate survival function {3.5) will be used in Chapter 4 

and Chapter 5 to compute the correlation of the martingales of the failure times for 

uncensored and censored cases respectively, for the purpose of constructing estimating 

equations for the desired regression effects. 

3.2 Survival Function for Exponential MA(l) Fail­

ure Time Data 

3.2.1 Exponential MA(l) Process 

In this section our main objective is to define the exponential MA( 1) process of order 

1 (EMA{l)) for failure times and to find the bivariate survival function for this MA(1) 

process. Although there are different ways to define an MA( 1) process for exponential 

random variables, we follow Lawrance and Lewis (1977) to model EMA(1), as their 

approach is quite complementary to the exponential AR{1) approach of Gaver and 

Lewis (1980). 

To be specific, following Lawrance and Lewis {1977), an EMA{l) is a stationary 

sequence of random variables T,, given as 

T.·- • 
{ 

pc· 

' - pci + ci+l 

with probability p 

with probability 1 - p 
(3.6) 

with p as the probability parameter (0 $ p $ 1) and ci are i.i.d. exponential with 

parameter A, for i = 0, ±1, ±2, .... 
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3.2.2 Marginal Bivariate Distribution 

Following Lawrance and Lewis ( 1977) one may write the joint probability density 

function of Ti and Ti+l for all possible values of i. For convenience, we write the joint 

probability density function of T1 and T2 as 

!T
1
,T

2
(tt,tz) = k 1(p)(>..fp)e->.ttfp>..e->.t2 

+kz(p)(>..f p)2e->.(ptl-t2)/P2 e-.\t•fP (for ptl > t2) 

+k3(p)>..2e->.t1e->.(t.-ptJ) (for pt1 < tz), (3.7) 

h k() __i!_k() .ill.::el. dk() ~ w ere 1 p = t-p+p•, 2 p = l-P+P• an 3 p = l-P+P• . 

It is also shown by the same authors that the correlation between T1 and T2 is 

given by 

Note that as in EAR( 1) case, the above density (3. 7) will be exploited to derive the 

bivariate survival function under the EMA(l) process. 

3.2.3 Computation of Bivariate Survival Function 

Lemma 3.2: Recall that FT1 ,T2 (u., u2 ) denotes the bivariate survival function of T1 

and T2 in general. For the exponential MA( 1) model (3.6), this bivariate survival 

function has the form given by 

where k 1 (p) and k2(p) are defined in Section 3.2.2. 

Proof: By using (3.7), the bivariate survival function of T1 and T2, FT1 ,T2 (u 11 u2), 

under the EMA( 1) model can be computed as 
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1CXl 1oo [ kt (p )(-X/ p )e-.\tt/P ,\e-.\t:~ 
Ul U2 

+k2(p)(,\f p)2e-.\(ptt-t:~)/P2 e-.\t2/P l(ptt > t2) 

+k3 (p).\2e-.\tte-.\(t2-ptt) l(pt 1 < t2)] dt2dt1 

- /1 + /2 + /3, (say) (3.8) 

where/(.) is an indicator function. 

Now, the integral / 1 in (3.8) can be evaluated as 

/1 - k 1(p)1
00

1
00

(-X/p)e-.\ttfp_xe-.\ 12 dt2dt 1 
"l "2 

- kt(p)e-.\utfpe-h2. 

ln (3.8) the integral /2 can be evaluated as 

/2 - k2(p)1oo1oo(,\fp)2e-.\t2/Pe-.\(ptt-t:~)/P2f(pt1 > t2)dt2dt1 
Ut U2 

- k2(p) 1~(.\fp)e-.\tt/P [1:
11

(-X/p)e-.\((p-l}/p2 )t:~dt2] l(pt1 > t2)dt1 

- k2(P)_L_11oo ((.>.jp)e-.\tt/Pe-.\((p-l)/P2)u:~- (>.fp)e-.\tt] l(pt, > t2)dtt 
p- U! 

k2(p)-p- rXJ [e-.\((p-t)fp2)u:~(,\fp)e-.\tt/P- (.\fp)e-.\tt] dtt 
p- 1 lmax(ut,u2/P) 

_ k
2
(p)-p- [e-.\((p-l)/p2 )u2e-(.\/p)max(ut,u:~/P) _ ~e-.\max(ut,u:~/P)l 

p-1 p 

For evaluating /2 in (3.8) we need to consider two different cases: (a) put > u2 and 

(b) put :::; u 2 • For case (a) when pu1 > u2 , one obtains 

/2 = k2(P)_P_ (e-.\((p-t)/P2)u:~e-(.\fp)ut - P-le-.\ut]' 
p-1 

whereas for case (b) pu 1 :::; u2 , we have 

/
2 

_ k
2
(p)-p- [e-.\u2/P _ p-1e-.\u2/P] 

p-1 
- k2(p)e-.\u:~/P, 

yielding / 2 in (3.8) as 

/2 = { k2(P);::. (e-.\((p-t)/P2)u:~e-(.\/p)ut- p-le-.Aut] 

k2(p)e-.\u:~/P 

for put > u2 

for put ~ u2. 



19 

Now 13 in (3.8) can be evaluated as 

For evaluating [3 we again need to consider two different cases: (a) put > u2 and (b) 

put :::; u2 as in the computation of 12 • For case (a) when put > u2, one computes 

[3 - k3(p)1oo1oo ).2e-.\tleJ,.ptte->.t2dt2dtt 
U! ptl 

- kJ(P )>.e ->.u,' 

whereas for case (b) put :::; u2 , one obtains 

kJ(P) 1u2/ P 1oo >.e->.(t-P)h >.e->.t2dt2dt t 
U! U2 

+kJ(P) roo f';,o ..\e->.(t-p)tt >.e-J,.t2dt2dtt 
lu"l/P }Pit 

- k3(p) [ ru2/P >.e->.(t-p)tte->.u2dtt + roo ..\e->.t•dtt] 
lu, Ju2/P 

_ k3 (p) [~-~u; (e->.(t-p)ut _ e->.(t-p)u2/P)] 

k3(p) (e-J,.u2e->.(t-p)u1 _ pe->.u2/PJ 
(1- p) 

yielding 13 in (3.8) as 

for put > u2 

for pu1 :::; u2 

By combining the values of It, 12 and [3 we may obtain the bivariate survival 

function under two different cases : (a) put > u2 and (b) put :::::; u2 for (3.8) which 

has the form 
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This completes the proof. 0 

Note that for any two general elements of the vector of survival times Tk, k = 

1, 2, ... , K, the bivariate survival function of Tk1 and Tk2 can be written following 

(3.9) as 

kt(p)e-Aulci/Pe-:AU/c2 + k2;P)e-:A(l-p)Uicle-AU/c2 

(for pukl ~ uk2) 
kt(p)e-htl/Pe-:Au~~:2 _ kt(p)e-:Auu/Pe-:A((l-p)fp2 )u~c2 + e-:Au11:1 

(for puk1 > Uk2)· 
(3.10) 

Further note that this bivariate survival function in (3.10) will be used in Chapter 4 

and Chapter 5 to compute the correlation of the martingales of the failure times for 

uncensored and censored cases respectively, for the EMA( 1) process. 

3.3 Survival Function for Exponential Equi-Correlation 

Failure Time Data 

3.3.1 Exponential Equi-correlation (EEQ) Process 

In the exponential equi-correlation(EEQ) structure, our goal is to construct a process 

such that corr(1i,Ti):::;: c fori::/:- j (i,j = 1,2, .. . ,n), where Ti and Ti are failure 

times. We can construct this stationary sequence of random variables as follows: 

Ti= { 
pT0 with probability p 

pT0 + cj with probability 1 - p 

with p as the probability parameter (0 ~ p :::; 1), for i = 1, 2, ... and ci are i.i.d. 

exponential with parameter A. For convenience one can write the above relationship 

as 

(3.11) 



where 

{ 
0 w.p. p 

lj = 
1 w.p. 1- p 

we assume T0 =eo, where eo again is exponential with parameter A. 

21 

Note that unlike the EAR(1) and EMA(1) processes, the expression for the corre­

lation between any two exponential equi-correlation variables is not available in the 

literature. We may however compute this correlation easily by using the moment 

generating function which is discussed in the next subsection. 

3.3.2 Moment Generating Function and Correlation for EEQ 

Process 

Fori= 1, 2, .. . , n the moment generating function of Ti can be written as 

~r.(s) - E(e-sT;) 

- ET; E I;( e -$T, I li) 

- Er; [EI;(e-spTo-sl,~; lld] 

- Er, [pe-spTo + ( 1 _ p )e-"PTo-s~;] 

p A +(1-p)[E(e-spTo)E(e-"~')] - A +ps 
pA A A 

- A + ps + ( 1 
- P) A + ps A + s 

A 
- A+s 

By using the relationship between Ti and To for all i, we write 

E(Ti1i+i) = p2 E(p2T~) + p(l- p)E(p2T~ + pToei+i) 

+p(l- p)E(p2T~ + pT0 ei) + E(p2T~ + pToei+i + pToei + ejei+i) 
2p4 4p3(1- p) 2p2(1- p) 2p(l - p)2 
A2 + A2 + A2 + A2 

2p2(1 - p )2 (1 - p)2 
+ A2 + A2 
p2 + 1 

A2 ' 
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yielding the covariance between 1i and Ti+i as 

because E(Ti) = 1/>.. and var(Ii) = 1/>..2 • Thus, the correlation between Ti and Ti+i 

is given by 

Recall that although the correlation function for the EAR{1) process appears to 

be same as for the Gaussian AR( 1) process, the correlation functions however are 

different for the MA{ 1) and equi-correlation cases under the exponential and Gaussian 

models. 

3.3.3 Computation of Bivariate Survival Function 

Lemma 3.3: For the EEQ model in (3.11 ), the bivariate survival function FT1 ,T2 ( Ut, u2) 

has the form given by, 

F (u u ) = (1- P)
2 

e-..\(ut+u:r)- P
2 

e-..\max(Ut ,u:z)e-..\((l-p)/p)min(ur,u2) 
Tr.T2 1, 2 1 _ 2p 1 _ 2p 

Proof: In this case the joint survival function of T1 and T2 is 

FT1 ,T2 (ul!u2) = P(Tt 2:: u17 T2 2:: u2) 

- P(pTa + ltct 2:: u17pTa + /2c2 2:: u2) 

= P[pTa 2:: Ut, pTo 2:: u2, /1 = /2 = 0] 

+P[pTa 2:: Ut, pTa+ c2 2:: u2, /1 = 0,/2 = 1] 

+P[pTa + c1 2:: u11 pTa 2:: u2, It = 1,/2 = 0] 

+P[pTa + c1 2:: u11 pTa+ c2 2:: u2, It = 1, /2 = l] 

= p2 P[pTa 2:: max( u~, u2)] + p(1 - p )P(pTa 2:: u11 E2 2:: u2 - pTa] 

+p(1- p)P[pTa 2:: u2, Et 2:: Ut -pTa] 

+(1 - p)2 P[c1 2:: u 1 - pTa, c2 2:: u2- pTa] 

(3.12) 
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In (3.12) / 1 can be computed as 

11 p2 P[pTo ~ max( u1, u2)] 

- p2P[To ~ max(uhu2)/p] 

p2 roo >.e-.>.to dto 
lmax(u1,u2)/ p 

_ p2e-.>.max(u1,u2)/p 

Therefore 11 has the form 

In (3.12) for computing /2 we require to consider two cases: (a) u l $ u2 and (b) 

Ut > u2. For case (a) when Ut :::; u2, we compute 12 as 

/2 - p(l- p)P[pTo ~ ull e2 ~ u2- pto] 

p(l- p)P[pTo ~ ut]P[c:2 ~ u2- pto] 

- p(l- p)P[T0 > Ut/p)P[c:2 ~ max(u2- pto,O)J 

- p(l- p) rXJ ).e-.>.todto roo >.e-.>.c2de2 
lui/P Jmax(u2-pto,O) 

_ p(l- p) ru
2
/P >.e-.>.to [e-.>.(u2 -Pto) l(u2 > pto) + l(u2 $ pto)] dto 

lui/P 

- p(l - p)e-,\u2 A1u
2
fp e-.>.(1-p)todto + p(l - p)A roo Ae->.t0 dio 

UJ/P lu2/P 
_ pe-.>."'2e-.>.((1-p)fp)u• -le-.>.u2/P, 

where as for the case u 1 > u2 we compute /2 as 

l2 - p(l- p)P[pTo > u.,c:2 ~ u2- pto] 

- p(l- p)P[To ~ utfp)P[c2 ~ max(u2- pto,O)J 

- p(l- p)P[To ~ utfp]P[c:2 ~ 0] 

- p(l- p)P[To ~ utfp] 

p(l - p) 1
00 

>.e-.>.10 dto 
U!/P 

_ p(l _ p)e- .>.u1/P, 
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which yield / 2 in the form 

Similarly, following /2 and by interchanging u1 by u2 and vice versa, we can write 

/3 in (3.12) as 

Next /4 in (3.12) can be computed as 

/4 - (1 - p)2 P[c:t ;?: Ut - pTo, c2 ~ u2 - pToJ 

for u1 :5 u2 

for u1 > u2 • 

- (1 - p)2 koo P[pTo == u)P[ct ;?: Ut - pTo, C:2 ;?: u2- pTo I pTo = u]du 

- (1- p)2 koo P [To= ufp] P[c:1 ~ Ut- u,c:2 ~ u2- u]du 

(1- p)2 koo Afpe->.ufp [e->.(u,-u)/(ut > u) + l(u1 :5 u)] 

x [e->.(u2-u)/(u2 > u) + /(u2 :5 u)] du 

rmin(u,,u2) 
- (1- p)2 Jo (A/p)e->.ufpe->.(u,-u)e->.(u2-u)du 

1
max(ull"2) 

+(1 _ p)2 (A/p)e->.u.fpe->.(max(u,,u2)-u)du 
min(u1,u2) 

+(1- p)2 roo (>..fp)e->.ufpdu 
lmax(u1,u2) 

rmin(u,,u2) 
(1- p)2 lo e->.(u,+u2>(>../p)e-.x<<t-2p)/p)udu 

l
max( u,,u2) 

+(1- p)2 e->.(max(u,,u2)(>../p)e->.((l-p)/p)udu 
min(u1,u2) 

+(1 - p)2 roo (>..fp)e-)..ujpdu 
lmax(u,,u2) 

_ (1- p)2 e->.(u,+u2l [l _ e->.((t-2p)fp)min(u,,u2)] 
1-2p 

+ (1- P)
2 

e->.max(ul,U2) [e-A((l-p)fp)min(ul ,u2) _ e-A((l-p)/p)max(ul,U2)] 
1-p 

+(1 _ p)2e-Amax(u1,u2)/P 



_ (1- P)
2 e-.\(ut+u~) _ (1- P)

2 e-,\(ut+u~)e-A((I-2p)/p)min(ut,U2) 
1- 2p 1- 2p 

+(1 _ p)2e-.\max(ut,u2)/p + (1 _ p)e-.\max(ut,u2)e-.\((l-p)/p)min(ut,u~) 

-(1 _ p)e-.\max(ut,u~)e-.).((1-p)/p) mu:(ut,u2) 

To be specific, for case u 1 $ u2 , / 4 has the form 

(1- P)
2 

e-.\(u1+u2) _ (1- p)
2 e-.\(ut+u~)e-.\({1-2p)/p)ut + (1 _ p?e-.\u2/P 

l- 2p l- 2p 

+(1 _ p)e-.\u2e-.\((l-p)jp)ut _ (1 _ p)e-.\"2e-.\((t-p)/p)u21 

whereas for case (b) u 1 > u2 , / 4 has the form given by 

(1- P)
2 e-.\(ut+u~) _ (1- p)

2 
e-.\(ut+u2)e-.\((1-2p)fp)u2 + (1 _ p)2e-.\ut/P 

1- 2p 1- 2p 

+(1 _ p)e--'ute-.\((1-p)fp)u2 _ (1- p)e-.\"'e-.\((1-p)/p)ut 

Consequently, for u 1 $ u2 the survival function can be written as 

FT,,T2 (u~, u2) - P(T1 2: u1, T2 ?:: u2) 

_ p2e-.\u2/P + pe-A"2e-.\((l-p)fp)ut _ p2e-.\u2/P + p( 1 _ p )e-.\u2/P 

+ (1- P)
2 

e-.\(u,+u2)- (1- P)
2 

e-.\(u,+u2)e-.\((l-2p)fp)u, 

l- 2p 1- 2p 

+(1 _ p?e-,\u2/P + (1 _ p)e-.\u2e-.\((l-p)jp)u1 

-(1 _ p)e-.\u2e-.\((1-p)jp)u2 

_ e-.\u2/P [P2 + p _ 2p2 + (1 _ p)2 _ (1 _ p)] + (1- P)
2 
e-,\(u 1+u2 ) 

1- 2p 

_ (1- P)
2 

e-.\u2e-.\ut((1-p)/P) + (1 _ p)e-.\u2e-.\((1-p)jp)ut 

1- 2p 
+pe-.\u2 e -.\((1-p)/ p)ut 

_ (1- P)
2 

e-.\(u1+u2) _ P
2 

e--'"2e-.\((1-p)/p)ut 

1- 2p 1- 2p 

Similarly, for u1 > u2 the survival function has the form 

FTt.T2 (Ut, u2) - P(T1 ?:: u1, T2 ?:: u2) 

_ ( 1 - p )2 e-.\(ut +u2) _ P
2 

e-.\u1 e-.\((1-p)fp)u2 

1- 2p 1- 2p 

25 
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By considering the above two cases, the survival function may be computed as 

or in a more compact form the function is given by: 

for u1 :5 u2 

for Ut > u2 

F (u u ) = (1- P)
2 
e-.\(ut+U2)- P

2 
e-.\max(ul,U2)e-.\((l-p)fp)min(ul,U2) (3.13) 

T1 ,T2 11 2 1 _ 2p 1 _ 2p · 

This completes the proof. 0 

Note that for any two elements of the vector of survival times Tk, k = 1, 2, ... , K, 

the bivariate survival function of Tkl and T~c2 can be written following (3.13) as 

(1- P)
2 e-.\(u~cl+u~c2l 

l-2p 
2 

p e-.\max(Uict,Uk2 >e-..\({1-p)/ p) min(ukl •Uk2) 

1- 2p 
(3.14) 

The survival functions described in Sections 3.1, 3.2 and 3.3 will be used in Chap­

ters 4 and 5 to compute the correlations between the martingales of the failure times 

for uncensored and censored cases respectively, for the purpose of evaluating the 

estimating equations for the regression effects. 



Chapter 4 

Regression Model for Longitudinal 

Uncensored Failure Time Data 

As discussed in Chapter 2, in analyzing regression models for failure times, Cai and 

Prentice (1995) introduced a weighted estimating equation approach, where the re­

quired weights were constructed from the correlations of the martingales for the bi­

variate failure times in a structural set up. In Chapter 3, we introduced longitudinal 

models for exponential failure times and derived the survival functions under such 

longitudinal models. To be specific, similar to the well known Gaussian set-up, we 

have discussed three widely used, namely, AR(l), MA(l) and equi-correlation models. 

As mentioned earlier, we use these survival functions in this chapter for calculating 

the correlations between the martingales for the failure times. Then these martingale 

correlations are used in constructing the estimating equations for regression effects 

under appropriate longitudinal models. 

27 
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4.1 Martingale Correlation Structure for Exponen­

tial Uncensored Failure Times 

Uncensored failure times generally arise if we have information on failure times for 

every individual. For the uncensored case the martingales Mki(Xki) defined in (2.3) 

for (i = 1,2, ... , n) reduce to 

( 4.1) 

where Aki(Tki) = f~ Aki(s )ds, with the variance of martingale as unity, i.e. var( Mki(Xki)) 

= 1 (Cai and Prentice,1995, p. 157-8). In the following subsections we will derive the 

correlation structures for the martingales in ( 4.1) where Xki = Tki (for the uncensored 

cases), following the exponential AR(1), MA(1) and equi-correlation models. 

4.1.1 Martingale Correlations Under Exponential AR(l) Pro-

cess 

Theorem 4.1: Let xkil (i -1, ... In) satisfy the EAR(1) model (3.1). In the absence 

of censorship, the martingales Mki(Xki) (i = 1,2, ... ,n) defined in (4.1) have the 

pairwise correlation given by 

which is interestingly the same as the correlation between Tki and Tk(i+ib the original 

exponential variables. 

Proof: From {3.5) of Chapter 3 we can write the bivariate survival function of 

T1c1 and Tk2 as 

for uk2 :S PUkt 

for uk2 > PUkt 
(4.2) 

Since var(Mki(Xki)) = 1 fori= 1, 2, .. . , n by exploiting the survival function (4.2) , 

the correlation between the first and second martingales (martingales separated by 1 



time lag) can be computed as 

corr(MH(Xkd, M~c2(X~c2)) - cov(Mkt(X~cd, Mk2(X~c2)) 

- cov(A~ct(T~c.), A~c2(Tk2)) 

fooo fooo ..\ 2 Fr,,.r,2 ( Uftt, Uk2 )du~c2duk1 - 1 

- fooo fopu,, ). 2 e->.u~r;, du~c2dukl 

+ roo roo ).2e->.uk2e->.(l-p)u,.,duk2dukl- 1 
Jo Jpu,. 1 

- fooo p..\2ukle->.u,,dukl 

+ fooo ..\e->.(1-p}u,, e->.pulcl dukl - l 

- p+1-1 

- p, 

which is same as the correlation between Tkl and T~c2 • 
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To find the lag 2 correlation between martingales we note that the bivariate sur­

vival function of T~c 1 and T~c3 , for example, can be written as 

for UftJ :5 p2u~c 1 

for UftJ > p2ukl· 
(4.3) 

It then follows that the correlation between the martingales of Tkl and T~c3 , by ex­

ploiting the survival function ( 4.3), can be computed as 

corr(M~ct(X~ct), M~cJ(X~cJ)) - cov(Akl(T~ct), A~cJ(T~cJ)) 

- fooo fooo ..\ 2 Fr,,.T,3 ( Ufth U~cJ)du~cJdu~cl - 1 

- fooo [fop'u,., ..\2e->.u"'duk3 

= p2, 

+ roo ..\ 2 e->.u"3 e-J..(l-p2 )uudu~c3] dukl - l 
}p2ukl 

which is same as the correlation between Tkl and T~c3 • 
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By similar argument as in (4.2) and (4.3), the bivariate survival function of Tkl 

and Tk(i+l) can he written as 

for UJc(i+l) ~ piu1c1 

for UJc(i+l) > piu1c1 

which yields the correlation between the martingales MH(XH) and Mlc(i+l)(Xk(i+l)) 

as 

fooo fooo ,.\ 2 Fr,. 1 ,T,.< 1+
1

J ( Ukl! Uk(l+i))dulc(l+i)dukl 

-1 

p', (4.4) 

which is the correlation between the martingales of Tki and Tk(i+i) as well as the 

correlation between the failure times Tki and Tlc(i+i)· 0 

Note that it now follows from Theorem 4.1 that under the EAR(1) process, the 

variance-covariance matrix V, say, of the martingales M~ci(X~ci), i = 1,2, ... ,n can 

be written as 
1 p p2 pn-l 

p 1 p pn-2 

V= p2 p 1 pn-3 (4.5) 

pn-l pn-2 pn-3 1 

which is naturally the correlation matrix of the martingales for the uncensored case. 

4.1.2 Martingale Correlations Under Exponential MA( 1) Pro-

cess 

Theorem 4.2: Under the EMA(l) process, in the absence of censorship, the mar­

tingales M~ci(X~ci) defined in (4.1) for (i = 1,2, ... ,n) have the pairwise correlation 

given by 
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and 

which is interestingly the same as the correlation between Tki and Tk(i+ib the original 

exponential failure times. 

Proof: The derivation of the martingale correlations under the EMA(1) process 

is quite similar to that of the EAR( 1) process, discussed in the previous section. The 

difference lies only in the form of the survival functions. We now use the appro­

priate survival function (3.10) for the EMA{1) process and compute the martingale 

correlation as 

where 

corr(M~ct(Xkl), M~c2(X~c2)) - cov{Akl{Tkl), A~c2(T~c2)) 

- fooo fooo A2 FT~c 1 ,T~c2 (ukl 1 Uk2)du~c2duk1 -1 

- fooo l(u~ct)dukl- 1, (4.6) 

l(u~ct) - fooo A2Fru ,T,2 (uk.,uk2)duk2 

[PUkl [PUkl 
lo kt(p)A2e->.uu/Pe->.u~<2 duk2 + lo A2e->.uuduk2 

[P"kl I ( ) 2) _ lo _A2k
1
(p)e->.""' Pe->.( 1-p /P u1c2 

+ roo _A2kt(p)e->.uklfPe->.u~c2duk2 
lpukl 

+ r)O _A2k2(p) e->.(l-p)u~cte->.u~c2dulc2 , 
lpukl P 

with k1 (p) and k2(p) as given in Section 3.2.2. The above integration is straightfor-

ward, which after some algebra, yields 

Ap2 A{l p + p2 ) 
[( ) \2 ->.u1c1 + e->.u1c1/ P + - e->.u1c1 

Ukt = "' pu~cte -1-- 1 -p -p 

Now by using the value of /(u~c.) in (4.6) we evaluate the correlation between two 

martingales as 

corr(M.kl(Xkl), M~c2(X~c2)) - fooo I( u1c1)dukl - 1 
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Next for all lags more than l, we note from Lawrance and Lewis (1977) that 

corr(Ti, Ti+2) = 0, for all i = 1, 2, 3, . ... So it is easy to show that 

and 

for i = 1, 2, 3, .... This completes the proof. D 

Note that it now follows from Theorem 4.2 that under the EMA( 1) process, the 

variance-covariance matrix V, say, of the martingales Mki(Xki), for i = 1, 2, ... , n 

can be written as 

l p(l -p) 0 0 

p(1- p) l p(l- p) 0 

V= 0 p(l- p) 1 0 (4.7) 

0 0 0 l 

which is naturally the correlation matrix of the martingales for the uncensored case. 

4.1.3 Martingale Correlations Under Exponential Equi-correlation 

Process 

Theorem 4.3: For uncensored failure times under the EEQ process, the martingales 
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M~ci(X~ci) defined in (4.1) fori= 1,2, ... ,n have the pairwise correlation given by 

which is interestingly the same as the correlation between T1ci and Tki (i =/; j ; i,j = 

1, 2, ... , n), the original failure times. 

Proof: The calculation of this correlation between the martingles of the failure 

times under the EEQ process are similar to the calculation under the EAR(1} and 

EMA(1) processes, except that the survival functions are different under different 

processes. To derive the correlation between the martingales M~ci(X~ci) and 1\fki(X~cj), 

for convenience, we compute the correlation between the first and second martingales 

(martingales with lag 1) for the EEQ process by using the bivariate survival function 

(3.14) as 

corr(M~cl(XIcl), M~c2(X~c2)) - cov(M~cl(XH), M~c2(X~c2)) 

- cou(Au(TH), A~c2(T1c2)) 

- -1 + 100 

Loo ..\2FTt1 .Tt2 (Ukh Uk2)duk2du1c1 

= -1 + roo roo ..\2 [(1- p)2 e-.A(uA:l+"A:2) 

lo lo 1 - 2p 

- P
2 

e-,\max(UA:j,UA:2)e-.A{(l-p)/p)min(uA:!oUA:2)] du du 
1 - 2p k2 lcl 

-1 + (1-p)2 
1- 2p 

- ro {00 
..\2 P

2 
(e- .Amax(uki·"A:2) 

lo fo 1-2p 
X e-.A((l-p)/ P) min(uu,ut2) J du~c2dukl 

(1- p)2 p2 roo 
- -1 + 1 _ 2p - 1 _ 2p Jo l(ukl)du~c11 (4.8) 

where in ( 4.8) 

/(ukl) _ 100 
..\2e-..\max(ut1,ut2 )e-.A((l-p)/P)min(utt•"A:2)duk

2 

- f""t .A2e-..\""te-.A((l-p)/p)uudu/c2 + 1oo .A2e-..\""2e-.A((l-P)/p)u"tdu/c2 

lo "A:t 
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Therefore using the value of !( uk.) in ( 4.8) we get 

Similarly, it is easy to show that the correlation between Mkl(Xkl) and Mk3 (Xk3 ) is 

Also, in general, for any i # j; i,j = L, 2, ... , n we can write the correlation between 

Mki(Xki) and Mki(Xki) as 

This completes the proof. 0 

Note that it now follows from Theorem 4.3 that under the EEQ process, the 

variance-covariance matrix V, say, of the martingales Mki(Xki), i = 1, 2, ... , n can 

be written as 
1 p2 p2 p2 

p2 1 p2 p2 

V= p2 p2 1 p2 ( 4.9) 

p2 p2 p2 1 

which is naturally the correlation matrix of the martingales for the uncensored case. 
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Further, note that the martingale correlation structures (4.5), (4.7) and (4.9) 

respectively, for the EAR(1), EMA(l) and EEQ processes will be utilized in the next 

section to construct the estimating equations to obtain efficient as well as consistent 

regression estimates. To be specific, this will be done following Cai and Prentice 

(1995) by using the inverse of the martingale covariance matrix as the weight matrix 

in the estimating equation. 

4.2 Estimating Equations for Hazard Ratio Pa­

rameters 

Recall from Section 2.1 that Aki(t) is the instantaneous rate of failure at timet of the 

kth member at occasion i, which has the form 

( 4.10) 

In (4.10) l'ki(t) = l(Tki 2: t) is an at risk indicator process for the kth member at 

occasion i, Zft(.) = (Zki1(.),Zki2(.), . • • , Zkip(.)) is a 1 x p covariate vector for the kth 

member at occasion i with failure times Tki, -\Oi(.) is the unspecified baseline hazard 

function and {JT =(/31,/32 ,. •• ,{3p) is a hazard ratio vector, or relative risk parameter 

which is also referred to as the regression effects. 

Now to motivate the estimating equation for {J, we write the partial likelihood 

function (Cox and Oakes, 1984) under the independence assumption for the repeated 

failure times, as 

which yields the estimating equation for estimating {j after some algebraic manipu­

lation (Fleming and Harrington, 1991, p .26) as 

( 4.11) 
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where uki(t) = Mki(t) = 1 - Aki(t). In matrix notation the above independent 

estimating equation for f3 may be expressed as 

(4.12) 

where 

Zf(u) = (Zkt(u), ... , Z~m(u)) and Uf(u) = (Ukl(u), ... , Ukn(u)). 

Next, to accommodate the longitudinal correlation of the failure times of the 

kth individual, following Cai and Prentice (1995) we propose to use the generalized 

estimating equation 
K 

1
oo 

L Zf(u)Wk(f3, u)Uk(du) = 0 
k=l 0 

(4.13) 

instead of (4.12), to estimate f3 under our longitudinal set-up. Note that in (4.13), 

W k(/3, u) is the inverse of the longitudinal covariance matrix of the martingales under 

the appropriate exponential AR(1), MA(1) or equi-correlation process. Further note 

that, as compared to Wk(/3, u) in (4.13), Wk(/3, u) in Cai and Prentice (1995, eq. 3) 

is the inverse of the correlation matrix of martingales under a structural set-up. 

Let ~T be the estimate of f3 when the true covariance structure is used in {4.13) 

to estimate {3. This estimate may be obtained by solving the estimating equation 

(4.13) by using the well-known Gauss-Newton iteration procedure 

[ a J-l 
!Jr(t + 1) = !Jr(t) + a,ag(f3) (t) (g(f3)1(t) ( 4.14) 

where g(/3) = Ef=t /0
00 Zf(u)Wk(/3, u)Uk(du) = 0 and [ let) denotes that the ex­

pression within the square brackets is evaluated at Pr{t), the values of ~T at the 

tth iteration. For the purpose of numerical computation the iterative equation (4.14) 

may further be expressed as (Cai and Prentice, 1995) 

(4.15) 
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where Aw,kj is given by 

( 4.16) 

and Gkj(~) can be written as 

( 4.17) 

where 

K 

s~d)(~, t) - K-1 L ykj(t)Zkj(t)dexp{Zfj(t),B} (d = 0, 1), 
k=1 

K 

s)dl({J, t) - K- 1 L ykj(t)Zkj(t)wkij(~, t){Zfj(t)}d-2exp{Zfj(t)~} (d = 2, 3) 
k=1 

and 

K 

Sj4l(~,t) = K- 1 Lyki(t)Zk;(t){8wkii(~,t)f8,8T}exp{Zfi(t)~} 
k=1 

4.2.1 Estimation of Martingales Covariance Matrix 

Note that the weight matrix Wk(~, u) in (4.13) or (4.15) is the inverse ofthe V matrix, 

V is the covariance matrix of the martingales for longitudinal failure times. As the 

elements of V are functions of the dependence (or probability) parameter p, we need to 

estimate this parameter in order to solve the estimating equation {4.13). Further note 
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that the covariance matrix V was constructed under the condition that the failure 

times Tki have stationary exponential distributions with mean 1/).. and variance l/ A2 • 

In practice, however, one would expect that T~ci has mean 1/ )..ki and variance 1/ ..\~i, 

i.e. the mean and variance may be functions of the covariates at occasion i for the kth 

individual. These failure time variables with such non i.i.d. exponential distributions 

may be related to a set of stationary variables T;i as T;i = T~ciAkd A, where T;i may 

be considered as the exponential failure times of Chapter 3 with E(T;i) = 1/ A and 

var(T;J = 1 fA 2 • This stationary variables T;i was based on the assumption that the 

parameters involved (/3) is Known. This transformation remains valid approximately 

even if {3 is replaced by its consistent estimator. As the correlation between two non 

i.i.d. exponential variables Tki and Tki is given by 

cov(T~ci, Tki) 
[var(T~ci)var(Tki )]1/2 
E[{T~ci- 1/ A~ci}{T~ci- 1/ )..ki }] 

1/(A~ciAki) 

and using the relationship T;i = Tki)..kd A, this correlation reduces to 

where P~-il is the lag I i- j I correlation between T;i and T;1. 

Note that for the EAR(l) process 

for the EMA(l) process 

• - fi-jj 
P[i-if - P , 

Pii-if = { p
0

(1 - p) for j = i + 1 
otherwise 

and similarly for the EEQ process 

• 2 
Pli-il = P · 

( 4.18) 

Further note that this p parameter which defines all lag correlations can be 

estimated by using the estimate of Pi under the EAR(l) and EMA(l) processes. 
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To be specific, under the EAR( 1) process p = Pi and under the EMA( 1) process 

p( 1 - p) = Pi· To estimate p under the EEQ process one needs to compute all lag 

correlation estimates such that 

A2 (n- 1)p1 + (n- 2)p2 + · .. + Pn-1 
p = n(n- 1)/2 

Now in general, Pi (l =I i- j I) can be estimated by using method of moments as 

"'K "'~-l [(T~c,-E(T~c,))(T~cc.+ll-E(T~cc.+tl))] jK( -l) A. L...k:1 L...t=1 [tnir(T~c,)var(Tk(o+IJ)Jlll n 

P1 = [ - - ] "'K "'~- (T~c,-E(T~c:))(T~c,-E(T~c,)) jK n 
L...k=1 L...t-1 var(T~c,) 

(4.19) 

4.3 Efficiency Comparison Under Correlation Struc­

ture Misspecification Through A Simulation 

Study 

The hazard ratio estimate obtained from ( 4.13) is consistent and efficient, provided 

the underlying correlation structure for the exponential failure times such as EAR( 1 ), 

EMA( 1) or EEQ is known. To be specific, if it is known that the failure times 

Tkl, ... ,Tki,···,Tkn follow the EAR(1) process (3.1) and we compute the Wk({l,u) 

matrix based on this underlying EAR(1) process as in Theorem 4.1, then the {l 

estimate using ( 4.13) is consistent and efficient. Note however that in practice the 

underlying correlation process may not be known. The purpose of this section is to 

examine the loss of efficiencies in {j estimation if one uses a "working" correlation 

structure different than the true longitudinal correlation structure in the estimating 

equation for fl. We do this through a simulation study. 

4.3.1 Simulation Design and Generation of the Exponential 

Failure time Data 

For our simulation study we consider K = 100 individuals each with n = 4 repeated 

failure times. We also consider a two dimensional (p = 2) covariate vector Zki = 
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( zkil' zki2 )T at occasion i for each of the K individuals. To be specific, we choose 

2-dimensional covariates under two different designs, say D1 and D2 • Under D1, we 

consider both Zkit and Zki2 as binary with 50-50 probabilities. Under D2 we consider 

Zkit as binary with 50-50 probability but Zki2 is chosen as from a Poisson distribution 

with mean 0.5. 

Generation Under EAR( 1) Process 

To generate Tki for a fixed k and all i = 1, ... , 4 we first generate initial values T;0 

and Cki from a standard exponential distribution with mean 1 and variance 1. Using 

Tko and cki and following (3.1) of Chapter 3 we generate T;i for i = 1, ... , 4 for a 

given value of the dependence parameter p. We do this for various choices of the 

dependence parameter (p=O.lO, 0.25, 0.49, 0.64 and 0.81). Since in our regression set 

up, the exponential variable Tki depends on the covariates, we now generate Tki with 

mean 1/ >..ki and variance 1/ ..\~i' where >..ki is a function of covariates given by 

( 4.20) 

by using the transformation Tki = T;J >..ki· This we do for all k = 1, 2, ... , 100. 

Generation Under EMA(l) Process 

To generate Tki under EMA( 1) process we first generate cJci for a fixed k and all 

i = 1, ... , 5 from a standard exponential distribution with mean 1 and variance 1. 

Note that unlike the EAR(1) case, the generation of Tki depends only on Cki· Next 

for a given value of the dependence parameter p we generate r;i for i = 1, . .. '4 

following (3.6) of Chapter 3. Although 0 < p < 1, for the EMA(1) process we 

choose p=O.IO, 0.25 and 0.49 only. This is because the lag l correlation , p(1 - p), 

is maximized when p = 0.50. To clarify this point further, if p = 0.70, for example, 

the lag 1 correlation will be p(l - p) = 0.21. Now by using the transformation 

Tki = T;J..\ki, where >..ki is defined as in (4.20), we get Tki with mean 1/>..ki and 

variance 1/ A~i for the EMA(l) process. We again do this fork= 1, 2, ... , 100. 
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Generation Under EEQ Process 

Similarly, to generate T1ci for the EEQ process we first generate initial values T;0 and 

C/ci (i = 1, ... , 4) for a fixed value of k from a standard exponential distribution. For 

fixed dependence parameter p we generate T;i for i = 1, ... , 4 following (3.11) of 

Chapter 3. Then for generating the values of Tki we simply use the transformation 

T1ci = T;J>..ki as it was done for EAR(!) and EMA(l) process, where ..\1ci is defined as 

in ( 4.20) and we repeat this generation for k = l, 2, ... , 100. 

4.3.2 Empirical Efficiency Comparison Due to Misspeciftca­

tion of Correlation Structure 

We now use the exponential responses (discussed in the previous section) generated 

under a given correlation structure and compute the estimate of {j by using this known 

correlation structure in the estimating equation for {j in (4.13). As this estimate is 

computed using the true known correlation structure, we refer this as the true {j 

estimate which was denoted by Pr in Section 4.2. We compute such {j estimates 

for 2000 simulations and obtain the average and calculate the mean square error 

(MSE). This MSE is referred to as M S E(True). Next we generate the exponential 

data following a given correlation structure but use a different "working" correlation 

structure in ( 4.13) to obtain an estimate of {j. This estimate is called the "working" {j 

estimate, which we denote for convenience by PwiT· After computing this estimate for 

2000 simulations we calculate the mean and MSE using this "working" structure. This 

MSE under "working" structure is referred to as MSE(Working). To be specific, 

suppose that we generate the failure times from EAR(!) process. Now if we use the 

EAR(l) correlation structure for estimating {j by using ( 4.13) and calculate mean 

and MSE, then this MSE is referred to as MSE(True). However if we generate 

failure times from an EAR(l) process but we use an incorrect correlation structure, 

such as EMA(l), EEQ or Independence(ID) to find fj, its mean and MSE, we refer 

to this MSE as MSE(Working). It then follows that one may compute the relative 
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efficiency as 
A MSE(Working) 

R.E.(f3WIT) = MSE(True) x 100, ( 4.21) 

where R.E .(/1TIT) is 100 as PTIT is nothing but Pr· Note that by using ( 4.21) we 

calculate the percentage loss of efficiencies due to misspecification of the correlation 

structure and we report these results in the tables of Appendix A. 

Table A.l contains results when our Tk values are generated from an EAR(1) 

process, for various choices of p under design D1• From Table A.1 we can see that 

our estimates are unbiased, whether we use the correct correlation structure (EAR{1) 

in this case) or an incorrect correlation structure such as EMA{1), EEQ or lndepen­

dence(ID ). We can see that we are losing a lot of efficiency if we do not use the true 

correlation structure, especially for correlation larger than 0.25. One very important 

point is the poor performance of the working independence structure when the cor­

relation is high. This suggests we could have problems if we incorrectly assume that 

our failure times are independent. Note that we do not have results for the working 

EMA(1) structure for p > 0.25 because the maximum correlation from the EMA(1) 

model is 0.25. We know that under an EAR(1) process, pis the lag 1 correlation and 

if we generate failure times under an EAR(1) process with p = 0.49: our lag 1 cor­

relation will be the estimate of p which cannot be the lag 1 correlation for EMA( 1), 

because under p = 0.49 the estimate of p will be greater than 0.25. Table A.2 is 

similar to Table A.1, except Zki are generated under design D2• From Table A.2 we 

can see that the estimates are unbiased and the efficiency losses are very similar to 

those in Table A.l. 

Tables A.3 and A.4 contain results when our Tk values are generated using an 

EEQ process, for various choices of p under the design D 1 and D2 respectively. Like 

Tables A.1 and A.2, we can conclude from A.3 and A.4 that the estimates of {31 and {32 

are unbiased, whether we use the correct correlation structure or an incorrect working 

structure. Note that the estimates under a working independent structure are quite 

inefficient when the correlation is high. Although any working correlation except the 

true structure do poorly, the independent working approach does the worst. We do 
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see that using a working EAR(l) structure does reasonably well when the correlation 

is high. As discussed before we cannot use the working EMA( 1) structure if the 

correlation exceeds 0.25. So under the EEQ model we can consider our dependence 

parameter up to 0.5. 

Tables A.5 and A.6 contain results when the Tk values are generated under an 

EMA(1) process, with p = 0.10, 0.25 and 0.49 under design D1 and D2 respectively. 

As mentioned previously, we cannot consider lag 1 correlation p( 1 - p) > 0.25 for the 

EMA(l) process. We see in Tables A.5 and A.6 that we have unbiased estimates and 

efficiency losses are small using the incorrect working correlation structures. 

From the above discussion of simulation studies we can conclude that we get 

unbiased estimates of the regression parameter {3 no matter whether we are using the 

true or incorrect correlation structure. For small correlation (p ~ 0.25) there is not 

a large efficiency gain in using the true correlation structure in the estimation of /3. 
But if we have high correlation (p > 0.25) then we should use the true correlation 

structure for estimating /3, otherwise we lose a lot of efficiency. Note that one will lose 

efficiency to a greater extent if the working correlation structure is used in estimating 

/3, the independent working approach being the worst. 



Chapter 5 

Regression Model for Longitudinal 

Censored Failure Time Data 

In Chapter 4, it was shown how to solve the estimating equation (4.13) for the hazard 

ratio parameters when longitudinal failure times were not subject to any censorship. 

However, in practice there are situations where repeated failure times can be cen­

sored. An interesting example can be found in Wei, Lin and Weissfeld {1989) (see 

also Makuch and Parks, 1988). From their study, in a randomized clinical trial to 

evaluate the effectiveness of the drug rivavirin, patients with acquired immune de­

ficiency syndrome (AIDS) were randomly assigned to one of three groups: placebo, 

low-dose rivavirin and high-dose rivavirin. One of the main interests of the study was 

to investigate the antiretroviral capability of rivavirin over time. Blood samples for 

each patient were collected at weeks 4, 8 and 12. For each serum sample, measure­

ments of p24 antigen levels, which are important markers of HIV-1 infection, were 

repeatedly taken for a period of four weeks. Therefore, potentially each patient in 

the study should have three such event times. Some observations were missing, how­

ever, because patients did not make the scheduled visits or because serum specimens 

were inadequate for laboratory analysis. In addition, censored observations occurred 

when the culture required a longer period of time to register as virus positive than 

was achievable in the laboratory, or when the serum sample was contaminated before 

44 
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positivity was detected. The accommodation of such censorship information and the 

construction of estimating equations for longitudinal failure time data appears to be 

a challenging task, which we address in this chapter. 

5.1 Martingale Correlation Structure for Exponen­

tial Censored Failure Time Data 

As in the previous chapter, let Tki denote the failure time, where k = 1, 2, .. . , K 

and i = 1, 2, ... , n . We define C1ci as the corresponding censoring time for Tki 

and X~ci = min(T~ci,C~ci). So X~ci = T~ci if the failure time of the kth individual 

is uncensored at occasion i and xlci = cki if the failure time of kth individual is 

censored at occasion i. For the censored case the martingales M~ci(X~cd defined in 

(2.3) reduce to 

{ 
1 - A~ci(ni) if xki = T~ci 

M~ci(X~ci) = 
-A~ci(C~ci) if X~ci = C~ci 

(5.1) 

According to the discussion of the previous chapter we need to calculate the variances 

and covariances between the martingales (5.1) of the failure times and our weight 

matrix will be the inverse of the variance-covariance matrix as discussed earlier. From 

Cai and Prentice (1995, p. 158), we write the variance of M~ci(X~cd as 

and the covariance between M~ci(X~ci) and M~cj(X~cj) as 

Cov[M~ci(X~ci),M~cj(X~cj)J = F~c(c~ci,ckiiP) + foc~ci >..F~c(u~ci,ckiiP)du~ci 

+ foc"1 >..F~c(Cki,Ukj;p)dukj 
{c"'1CI<J 2 + lo 

0 
>.. F~c(uki, uk; ; p)dukidu~ci - 1 

- /1 + [2 + [3 + [4- 1 (5.2) 

We will now discuss evaluating 11 through 14 in (5.2) for each of the three models 

EAR(l), EMA(l) and EEQ. 
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5.1.1 Martingale Correlation Under Censored Exponential 

AR( 1) Process 

Theorem 5.1: In the presence of censorship the martingales M~ci(X~ci) defined in 

(5.1) have the pairwise covariance given by 

Cov [M (X ) 111 (X )] _ ,J _ ,je-..Xmin(c,.,,c"(•+J)fpJ) 
ki lei ' t'l/c(i+j) /c(i+j) fl fl 

for i, j = 1, 2, ... , n. 

Proof: From (3.5) (Chapter 3) we get the bivariate survival function of T~c 1 and 

T1c2 as 

{ 

e-~u"1 for u1c2 ~ pukt 
Fr~c,,Tk2(Ukt, U1c2) = ,.x ..X(t ) 

e- u,.2 e- -p uu for U/c2 > PUicl 
(5.3) 

We will use the bivariate survival function in (5.3) for evaluating the integrals It, /2, / 3 

and /4 in (5.2), which will give us the covariance of martingales of the failure times, 

i.e. Cov [M~ct(X~c.), M~c2(X~c2 )]. For evaluating these integrals we get two different 

cases: (a) c1c2 > pc1ct and (b)c1c2 ~ pckl· 

Under case (a) when c~c2 > pq1 we can evaluate It as 

and we can calculate /2 as 

/ 2 - /oc~c, >.F~c( u1ct, c~c2 ; p )du~c 1 
- Lc~ct >.e-..Xc~c2e-..X(t-p)u,.,du~ct 

e-..Xcu e-..Xc~c2e-..X{l-p)ctl 

- ---------
l-p 1-p 

Similarly, / 3 can be evaluated as 

/3 - foc"2 

>.F~c( Clct, U1c2; P )d1J.1c2 

1PC1tt 1Cit2 - >.e- ..Xc"'duk2 + >.e-..X(t-p)c,.te-h~<2du/c2 
0 pcu 

- >.pclct e-..Xc~r:t + e-..Xc~ct - e-..Xc"2 e-..X(t-p)c~~:t' 



and again /4 can be evaluated as 

r"~ r"'2 2 /4 - Jo Jo ~ F~c(ukl,uk2;p)du~c2du~c1 

- rlrl [PU1rl ~2e->.ulclJUJc2dUk1 + rlrl rlc2 ~2e->.ulr2e-,\(t-p)u~otJUJc2dUkt 
Jo Jo Jo lpuu 

- lot:"t ~2PUk1dukl + lac"t ~e->.(1-p)u~ct (e->.pu"' - e->.c~c2] dukl 

- -p~Ckle->.t:lcl + p- pe->.t:lrt + 1 - e->.c~rt +foe"' ~e-.\(1-p)ulcl e->.c~c2Juk1 

e->.t:lc2 e->.c"2e-.\(l-p)clcl 
- -p~ckl e->.e,, + P- pe->.c"' + 1 - e->.c,., - --- + -------

1-p 1-p 
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Therefore, by combining / 1, / 2 , / 3 and /4 in (5.2) under case (a) when ck2 > pckh we 

get the covariance between M~c1 (Xkl) and Mk2{X~c2 ) as 

e->.c,.2 e-,\c"2e-.\(l-p)clcl 
e->.c,.2 e->.(1-p)cu + --- - -------

1-p 1-p 
+~PCkt e->.c~r1 + e->.c~ct _ e->.c1c2 e->.(l-p)c~c 1 

e->.clr2 
-p~clcl e->.e,., + P - pe->.c,, + l - e->.c~ct - --

1-p 
e->.c,.2 e->.(1-p)clrl 

+ -1 
1-p 

_ P _ pe->.c1ct . (5.4) 

Under case (b) c~c2 ~ pckl we can evaluate / 1 as 

and we can evaluate /2 as 

/2 = foc"
1 

~Fk( Ukh Ck2; p )dukl 

Similarly, we can calculate /3 as 

r~ r~ >. 
/3 Jo ~F~c(ckh U1c2; p)duk2 = lo ~e- c~c1 duk2 

- ~Ck2e->.c,u. 
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Now 14 can be evaluated as 

r"~ r"2 14 - lo lo >. 2 F~c( Ufct, u1c2; p )du~c2du~c 1 

- focu l(ukl)dukl (say). 

For evaluating the integrall(u~cl) we will again get two different cases: (i) pukl > c~c2 
and (ii) pukl < c~c2 • Under (i) pu~c1 > c~c21 l(u~ct) is evaluated as 

I( u~cl) - focu A2 F~c( Ufcl! Ufc2; P )duk2 

= foc"2 >.2e-..\u~cl duk2 

- >.2ck2e-..\u~cl I 

then 14 can be denoted as 14(i) under case ( i) pu~c1 > q 2 and calculated as 

r"~ 
lo I( u~ct)du~c1 

foc"
2 

>. 2 F~c( Ufcl 1 Ufc2; P )duk2 

- rukl >.2e-..\uklduk2 + r"2 >.2e-..\u"2e-..\(l-p)uklduk2 

lo lpukl 
- PUktA2e-..\ukl + >.e-..\u~ol - >.e-..\(1-p)ukl e-ACt2 
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Therefore, /4 is the sum of / 4(i) and /4(ii) and can be evaluated as 

Similarly, under case (b) ck2 ::; pck11 after combining / 11 / 2, /3 and /4 in ( 5.2) we can 

calculate Cov [Mk1 (XA:I), Mk2(XA:2)] as 

e--"c~c2 e--"c~cd p 
e-Aclcl + -- _ + e-Ac1c2/P 

1-p 1-p 
-e--"c~ct + Aq

2
e-..\c1ct + P _ pe-..\c~ctfP + 1 _ e-..\c~c2/P 

e-..\c1c2 e--"c~c2/ p 

---+ - Ack2e-..\c~c 1 - 1 
1-p 1-p 

_ p _ pe-..\c1<2/P 

From (5.4) and (5.5) we can express Cov[Mk1(Xk1), Mk2(Xk2)] as 

which can be written in a more compact form 

if PCkl ::; Ck2 

if ck2 > pckl, 

which is the martingale covariance at lag 1 for the censored case. 

(5.5) 

(5.6) 

To find the lag 2 correlation between the martingales of the failure times n 1 

and Tk3 we can write the bivariate survival function from ( 4.3) of Chapter 4 in the 

following form 

for UkJ ::; p2
ukl 

for UkJ > p2
uk1 , 

and after doing some algebra it is easy to write Cov [Mkl(XH), Mk3(Xk3 )] as 

which is the martingale covariance at lag 2 for the censored case. 

(5.7) 

(5.8) 
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By a similar argument from (5.6) and (5.8) we can write the martingale covariance 

between Xkl and X~c(i+l) of lag j is 

This completes the proof. 0 

Note that the martingale covariance in the censored case is quite different than 

in the uncensored case. Specifically, these covariances are no longer the same as the 

covariances for the original failure time variables. Recall that Cki is the corresponding 

censoring time for the correlated failure time Tki· If we consider Cki ~ oo (so Tki is 

uncensored) then 

which is the covariance of martingales for the uncensored case as discussed in Chapter 

4. 

5.1.2 Martingale Correlation Under Censored Exponential 

MAl Process 

Theorem 5.2: Under an EMA(l) process, in the presence of censorship the martin­

gales M~c,(X~ci) defined in (5.1) have the pairwise covariance given by 

Cov [Mki(Xki), Mk(i+l)(Xk(i+l))] = p(l- p) + p2e-)..c,.;fp - pe-)..min(c.~,;.,c.~,;(i+llfp) 

X [t _ p + pe- ,\ck,/Pe;min(c.~,;;,c"!•+I)IP)] 

and 

for i,j = 1,2, ... ,n. 

Proof: The derivation of the correlation of the martingales for the censored case 

for EMA(l) is quite similar to EAR(l). The only difference is in the form of the 
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survival function. To prove this theorem we are considering the failure times Tk 1 and 

Tk2 for convenience. From (3.10) we get the bivariate survival function for Tk1 and 

Tk2 as 

kt (p )e->.u,,/ Pe->.ulcl + k2(p )/ pe->.(1-p)ukl e->.ulc2 

for puk1 :$ uk2 

k
1
(p) [e->.u~c~/Pe->.u"2 _ e->.ukl/Pe->.((p-1)/P2 )u~c2 ) + e->.u,, 

for pukl > uk2 
(5.10) 

where k1(p) = 1_p:P2 and k2(p) = :i~::,~. As in the previous section, we use (5.2) to 

find the covariance between Mk1(Xu) and Mk2(Xk2) and we get two different cases: 

(a) pc1c1 $ ck2 and (b) pckt > ck2· 

Under case (a) pck1 :$ Ck2 , we can evaluate / 1 as 

- Fk ( Ck(' Ck2; p) 

P
2 e->.c~c~/Pe->.c~cl + 1- p e->.(l-p)ckle->.ck2 

1-p+~ 1-p+~ 

and we can calculate / 2 as 

foe"' AFk( Ukt, Ck2; P )dukl 

- r"' A [ p2 e->.u~ct!Pe->.clc2 + 1- p e->.(1-p)u,,e->.clc:ll dukl 
lo 1- p + p2 1- p + p2 

p3e->.c1c2 p3e->.c1c2e->.cklfP e->.ck2 e->.cr.:le->.(1-p)ckl 
~----------+--------

1 - p + p2 1 - p + p2 1 - p + p2 

Similarly, /3 can be evaluated as 



1 p +p2 
+ - -..\cu 
-~--'--e ' 

1-p 

and we can evaluate /4 as 

(1 _ p)e-..\(l-p)ckte-..\c•2 

1- p + p2 
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/ 4 - focu foct2 

A2 F~c(ukl, UJc2iP)duk2dUJct 

- foc" 1 

l(u~c.)du~c 17 (say). ( 5.11) 

For evaluating /4 in ( 5.11) we can calculate /( u~cd as 
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p2).e->.u~cdP ).(1 _ p + p2)e-J.u,.1 
~-------+~--~--~~---

1-p 1-p 

By using the value of l(ukt) in (5.11) we can evaluate /4 as 

Then after substituting It, /2 , / 3 and /4 in (5.2) and simplifying the expression 

we find for pck1 ~ ck2, the expression Cov [Mk1(Xkl), M"k2(Xk2)] is 

1 + 2 3 = P + - P P + _P _ _ 1 _ pe-J.c1c1 + p2e-J.c~r.t!P 
1-p 1-p 

- p(1- p)- pe->.c,.1 + p2e->.c,.tfp. (5.12) 

Under case (b) pck1 > ck2 we can evaluate I 1 as 

I 1 - Fk(ckl,ck2iP) 
2 2 

P e->.c,.dpe->.clt:2 + e->.c,.t _ P e->.q,tfpe->.((p-1)/P2)ck2 

1 - p + p2 1 - p + p2 ' 

we can evaluate /2 as 
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p2e->.c,.1/ p 

-
1- p + p2 

p4e->.c,.l/ Pe->.((p-1)/ p 2 )u•2 

+ (p -1)(1-p+p2 ) , 

(5.13) 

P3..\ + e->.c~cdPe->.((p-1)/P2 )uk2. 
1- p + p2 

Therefore, substituting the value of /(u~c2 ) in (5.13) we get / 4 as 
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p5 e->.c1<1/ Pe-..\((p-1)fp2)cl<2 

(p-1)(1-p+p2) 

Therefore, using (5.2) after extensive simplification, we get the covariance of the 

martingales of the failure times i.e. Cov [M.k1(Xk1 ), M.k2(Xk2)J for pcu > ck2 as 

Cov [Mu(Xkt), Mk2 (Xk2 )] = p(l- p) + p2e-..\c~c•IP _ pe-..\c~c2IP 

X [ 1 - P + pe->.c,.•fpe..\c,.2/P2] 

By using (5.12) and (5.14) we can write Cov [Mk1(Xkr), Afk2(Xk2)] as 

Cov [Mkl(Xkt), Mk2(Xk2)] 

(5.14) 

{ 

p{1 - p)- pe-..\c,.. + p2e->.c~cdP 
- p(! _ p) + p2e-..\c~c!/P _ pe->.c1c2/P [1 _ p + pe-..\c~ci/Pe..\ck2/P2 ] 

if pck1 ::=; ck2 

if PCk1 > Ck2 

= p(1 _ p) + p2e-..\c~r1/P _ pe->.min(c~c 1 ,c,.2/P) 

X [ 1 _ p + pe-..\c,.I/Pe~min(c~cl•c"2/P)] (5.15) 

Next, for all lags more than 1, we note from Lawrence and Lewis (1977) that 

corr(1i, Ti+2 ) = 0, for all i = 1, 2, 3, .... So it is easy to show that 

for i = 1, 2, 3, . . .. This completes the proof. 0 

Like the EAR( 1) model for the censored case, this covariance expression between 

the martingales of the failure times for lag 1 under an EMA( 1) process for censored 

case is quite different than that for the uncensored case. Recall that Cki are the 

corresponding censoring times for the correlated failure times Tki· If we consider 

Cki---+- oo (all Tki observations are uncensored) then 

which is the covariance of the martingales of the failure times for the uncensored case. 
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5.1.3 Martingale Correlation Under Censored Exponential 

Equi-correlation Process 

Theorem 5.3: Under censorship for the EEQ process the martingales M~ci(X~ci) 

defined in (5.1) have the pairwise covariance given by 

C [M (X ) M (X )] = p2 _ p2e-Amin(c~c,,c~c;)/P ov lei lei ' ki lcj 

Fori f; j; i,j = 1, 2, ... , n. 

Proof: The calculation of this correlation between the martingales of the failure 

times under an EEQ process for the censored case is similar to the calculation under 

EAR(1) and EMA(1) processes discussed in the previous two sections. To derive 

the covariance between the martingales M~ci(X~ci) and M~ci(X~cj), we compute the 

correlation between the first and second martingales (martingales with lag 1) for 

convenience. Recall from (3.14) that we can write the survival function as 

{ 

(l-p)2 e-.\(u~ct+u~o:2)- Le-hlt2e-A((l-p)/p)u~ct if Uict < Uk2 
C" ( ) - l-2p l-2p -
CTitl•Tit2 u/cl,ulc2 - f{-n\2 ( 2 (( )/ ~e-A Ultt +u~o:2 ) _ _ P_e-AU1t1 e-A 1-p p)u11:2 if U > U 

l-2p l-2p k1 lc2 

(5.16) 

For solving (5.2), we use the survival function (5.16) and get two different cases: (a) 

c1c1 > Ck2 and (b) Cict :5 Clc2 

Under case (a) ckl > c1c2 then for evaluating (5.2) we get 11 as 

It - F~c(clcl,ck2;p) 

_ (1- P)
2 e-.\(c~o 1 +c,2 ) _ P

2 e-AC~<te-.\((t-p)/p)c,,:z 
1- 2p 1- 2p , 

we can evaluate £2 as 
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(1- p)2 e-..\c~2 - (1- p)2 e-..\c~2e-..\c~l - P3 e-..\c~2 
1- 2p 1- 2p (1- 2p)(1- p) 

3 2 + p e-,\c~2e-..\((1-p)fp)c~2 _ p e-..\c~2/P 
( 1 - 2p )( 1 - p) 1 - 2p 

2 + p e-,\c~l e-..\((1-p)/ p)c~2. 
1-2p 

Similarly, [3 can be evaluated as 

[ 3 - 1c1c2 

).Fk( Ck1, Uk2; p )duk2 

- rlc2 >.(1- p)2 e-,\ckle-..\ulc2duk2- r~2 >.p2 e-..\cue-..\((1-p)fp)u~c2duk2 
lo 1 - 2p lo 1 - 2p 

(1 - P)
2 e-..\c~c 1 _ (1- P)2 e-..\c~~e-Ac~c2 _ P

3 e-..\c~c1 
1 - 2p 1 - 2p ( 1 - 2p )( 1 - p) 

3 + p e-..\Cfcl f-..\{(1-p)fp)clc2 

(1- 2p){1 - p) , 

and finally /4 can be calculated as 

[ 4 foclcl foctc
2 

).
2Fk(Ukt,Uk2;p)duk2dUk1 

- foctct l(uu)duu (say). (5.17) 

To evaluate l(ukt) in (5.17) we again get two different cases: (i) Ukt $ ck2 and (ii) 

Uk1 > Ck2· Under case (i) Ukt $ Ck2 we calculate l(ukl) as 

and under case (ii) ukl > ck2 we can calculate /( ukt) as 
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1c112 ..\2(1 _ p)2 lac"2 ..\2p2 - e-)u'"le->.uuduk2- e->.u,.le-..\((t-p)/p)uA:2duk2 
0 1- 2p 0 1- 2p 

= ..\(1- p)2 e-..\u,., - ..\(1- p)2 e->-u~~:te->.c~~;2- ..\p3 e->.u,.I 
1 - 2p 1 - 2p ( 1 - 2p) ( 1 - p) 

..\p3 + f-AUA:I e-J.((t-p)/p)c,.2 
(1- 2p)(1 - p) 

Therefore from (5.18) we can evaluate /4 as 

/4 - focu /( Ukt)dukl 

- riel /(ukl) [f(Ukt $ Ck2)] dukl + lckl f(ukl) [f(Ukt > Ck2)] dUkt lo c,.2 

- lit+ //2 (say). {5.18) 

In {5.18) we can calculate lit as 

lit - foc .. 2 

l(ukl)[l(ukt::; ck2)]dukt 

..:...(1_-~p):....2 - (1- p)2 e-..\cu - (1- p)2 e->.c~~;2 + (1- p)2 e-..\c~~;2e->.q2 
1 - 2p 1 - 2p 1 - 2p 1 - 2p 

3 3 4 
P + P e-,\c,.2 + P 

(1- 2p)(1- p) (1 - 2p)(1- p) (1- 2p){1 - p) 
4 3 3 3 

p e-..\c1<2/P _ p + p e-..\c1<2/P + p e-,\c,.2 
( 1 - 2p )( 1 - p) 1 - 2p 1 - 2p ( 1 - 2p )( 1 - p) 

3 
P - ..\cu/P 

(1 - 2p){1 - p) e ' 

and //2 can be calculated as 

//2 = Jc .. 1 

l(ukt) [I(ukt > Ck2)]dukt 
Ci<2 

{1-p)2 ->.c~~:2 (1-p)2 -..\cu (1-p)2 ->.c"2e-..\c,.2 
- e - e - e 

1 - 2p 1 - 2p 1 - 2p 

+ {1- p)2 e-..\cl<2e-J.c~el - p3 e-ACA:2 + p3 e-J.cu 
1 - 2p ( 1 - 2p )( 1 - p) ( 1 - 2p )( 1 - p) 

3 3 + P e->.c,.2/P _ P e-..\c~~;1 e-..\((t-p)p)q2. 
{1- 2p){1- p) (1- 2p)(l- p) 

By using the values of lit and //2 in {5.18) we can evaluate /4 as 

/4 = (1-p)2- (1-p)2 e-..\cll2- p3 + p4 
1-2p 1-2p {1-2p){l-p) (1-2p)(1-p) 
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Therefore, substituting / 1, / 2 , / 3 and /4 into (5.2), it can eventually be shown that if 

cu > ck2 then 

By similar arguments as shown above, we can evaluate (5.2) for the case (ii) 

ckl ::; ck2 as, 

Therefore, we can write Cov [1Wkl (Xkt), Mk2(Xk2)] in a more compact form: 

(5.19) 

Under an EEQ model we know that the covariance is the same for all lags. So, from 

(5.19) we can write Cov [Mki(Xki), Mkj(Xki)J as 

(5.20) 

fori -=/=j;i,j = 1,2, ... ,n. This completes the proof. 0 

Like the EAR(l) and EMA(l) processes under censorship, this covariance ex­

pression between the martingales of the failure times under the EEQ process under 

censorship is quite different than that for the uncensored case. Recall that Cki and 

Cki are the corresponding censoring times for the correlated failure times Tki and Tki· 

If we consider Cki, Cki ---+ oo then 

which is the covariance of the martingales of the failure times for the uncensored case 

under an EEQ process. 
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Note that the martingale covariances expressions (5.9), (5.15) and (5.20) respec­

tively, for the EAR(1), EMA(1) and EEQ processes will be utilized in the next section 

to construct the estimating equations to obtain consistent and efficient estimates of 

the regression parameter P for the censored case. Specifically, this will be done follow­

ing Cai and Prentice (1995) by using the inverse of the martingale covariance matrix 

as the weight of the estimating equation. 

5.2 Estimating Equations for Hazard Ratio Pa­

rameters Under Censored Case 

In Section 4.2 of Chapter 4 we discussed the estimating equations for the hazard ratio 

parameters in the uncensored case. We now wish to extend these equations so that 

they can be used in the case of censored observations. 

First the partial likelihood function of Section 4.2 will become: 

(5.21) 

where Xki = min(Tki, Cki) and 6ki is an indicator function/(.) which means 6ki = 1 

if Xki = Tki and ~ki = 0 if Xki = Cki· As explained in Section 4.2 of Chapter 4, this 

partial likelihood function (5.21) eventually leads us to the generalized estimating 

equations 
K 100 L zr(u)Wk(,B,u)Uk(du) = 0. 

k=l 0 
(5.22) 

However, we now have uki(t) = Mki(t), where Mk;(t) is defined in (5.1) and Wk(.B, u) 

is the inverse of the longitudinal covariance matrix of the martingales under the appro­

priate exponential AR( 1), MA( 1) or equi-correlation process discussed in Theorems 

5.1, 5.2 and 5.3. 

For solving the estimating equation (5.22), we use the same Gauss-Newton iter­

ation procedure (4.15) discussed in Section 4.2 of Chapter 4. As in the uncensored 

case, let ~T be the estimate of ,8 when the true covariance structure is used in (5.22) 
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to estimate~- To be specific, we use the Gauss-Newton iteration procedure (4.15), 

but we replace Aw,ki in ( 4.15) with Aki Aw,ki, where Aki is defined previously in this 

section. Also we modify Aw,ki in (4.16) by replacing Tki and Tmi with Xki and Xmi 

and Gw,ki(~) is calculated following Cai and Prentice (1995, p. 156). 

5.2.1 Estimation of Martingales Covariance Matrix for Cen­

sored Case 

Note that the weight matrix W k(~, u) in (5.22) is the inverse of the covariance matrix 

for the censored case which has been discussed in Theorems 5.1, 5.2 and 5.3. As the 

elements of the covariance matrix are functions of the dependence parameter p, we 

need to estimate this parameter in order to construct the weight matrix as well as to 

solve the estimating equation (5.22). We already discussed in Section 4.2.1 how we 

can generate failure times Tki with mean 1/ Aki and variance 1/ A~;· Similarly, we can 

also generate censoring times Cki with mean 1/ Aki and variance 1/ At, where Xki = 
min(Tk;, Ck;). As discussed in Section 4.2.1, by using the relationship Xi; = XkiAk;j A, 

this correlation reduces to 

corr(Xk;, Xki) = corr(X;;, X;i) = Pii-il' 

where P~-il is the lag I i- j I correlation between Xi; and xkj· 

(5.23) 

Note that the parameter p which is involved in all lag covariance expressions in 

Theorems 5.1, 5.2 and 5.3 can be estimated by using the estimate of Pi under the 

EAR(1) and EMA(1) processes. To estimate p under the EEQ process one requires 

to compute all lag correlation estimates such that 

A2 (n- 1)pt + (n - 2)p2 +. ·. + Pn-1 
p = n(n- l)/2 · 

We simply use the expression for p1 in (4.19), but we replace Tki by Xki to account 

for the censoring. 

After getting the estimates of p, we need to substitute the values of p in the 

covariance expressions in Theorems 5.1, 5.2 and 5.3 to calculate the covariance be­

tween the martingales of the failure times for the censored cases under the EAR( 1), 
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EMA(1) and EEQ processes respectively, to solve the estimating equation (5.22) and 

to estimate the regression parameter {3 consistently and efficiently. 

5.3 Efficiency Comparison for Censored Data Un­

der Correlation Structure Misspecification 

Through a Simulation Study 

As discussed in Chapter 4 the hazard ratio estimate {3 in the censored case from (5.22) 

will be consistent and efficient if the underlying correlation structure for the failure 

times is known. Specifically, if it is known that the failure times Tk1, ••• , Tki, ... , T,m 

with censoring times C"1 , ••• , C"i' ... ,Ckn follow the EAR(l) process (3.1) of Chapter 

3 and we compute the Wfc(/3, u) matrix based on this underlying EAR(1) process as 

in Theorem 5.1, then the estimate of {3 solving (5.22) will be consistent and efficient. 

Note that in practice the underlying correlation structure is generally not known. In 

this section our purpose is to examine the loss of efficiencies if one uses a working cor­

relation structure different than the true correlation structure in (5.22) for estimating 

{3. We do this examination here through a simulation study under the presence of 

censored observations. 

5.3.1 Simulation Design and Generation of Exponential Fail­

ure and Censored Time Data 

As in Chapter 4, for our simulation study we consider K = 100 individuals each 

with n = 4 repeated failure and censoring times. We also consider a two dimensional 

(p = 2) covariate vector Zki = ( Zkit, Zki2f at occasion i for each of the K individuals. 

For choosing 2-dirnensional covariates we use the design matrix D1 of Chapter 4. 

The censoring times are generated by using the covariates for different censoring 

probabilities. To be specific, we consider censoring probabilities P = 0.10 and P = 
0.20, where censoring probability P = 0.10 means that there is a 10% chance that an 
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observation will be censored in the generated failure times. 

Generation of Failure and Censoring Times Under EAR{l) Process 

To generate the failure times T1ci values for an EAR( 1) process, we follow the same 

procedure discussed in Section 4.3 of Chapter 4. For generating censoring times for a 

fixed k and all i = 1, ... , 4 under censoring probability P = 0.10 we generate initial 

values Cico and e1ci from an exponential distribution with rate 1/9. Then using Cz0 

and e1ci and following (3.1), replacing Tki by C~c1 , we generate censoring times Cici for 

various choices of the dependence parameter. Then making the same transformation 

for the failure times, (C~ci = CicJ>..~c1 , where >..~c, is defined in (4.20)) we can generate 

our censoring times Clci· We do this for all k = 1, 2, ... , 100. It can be easily shown 

that 

p [J]k . > C~c ·] = _!_ 
I I 101 

which means that there is a 10% chance of finding a censored observation. For 20% 

censorship, i.e. P = 0.20, we follow the same procedure, except the initial values Cic0 

and e~ci, where these initial values Cico and e1ci should follow an exponential distribution 

with rate 1/4. 

Generation of Failure and Censoring Times Under EMA{l) Process 

To generate the failure times Tki under an EMA( 1) process, we follow the same 

procedure discussed in Section 4.3. Note that unlike the EAR(1) case, the generation 

of C1ci depends only on C/ci· As in the EAR(1) model, we generate the e1ci values 

from an exponential distribution with rates 1/9 and 1/4 to obtain P = 0.10 and 

P = 0.20 respectively. Then we generate censoring times Cici for various choices 

of the dependence parameter using (3.6) with T~c, replaced by c;, and do the same 

transformation as in the EAR(1) case to obtain the censoring times C1ci· 
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Generation of Failure and Censoring Times Under EEQ Process 

Similarly, to generate Tki from the EEQ process we follow the same procedure dis­

cussed in Section 4.3. Then for generating censoring times, we first generate initial 

values CZ0 and cki from exponential distributions with rate 1/9 and 1/4 to obtain 

P = 0.10 and P = 0.20 respectively. Following (3.11) of Chapter 3 and replacing Tlci 

by c;i and using CZo and Cki, we generate czi for various choices of the dependence 

parameter. Then using same transformation as in the EAR(1) and EMA(1) cases we 

obtain the censoring times cki· 

5.3.2 Empirical Efficiency Comparison due to Misspecifica­

tion of Correlation Structure 

We now use the exponential failure and censoring times generated under a given 

correlation structure and compute the estimate of ~ by using this known correlation 

structure in the estimating equation for ~ in (5.22) . This estimate is computed 

using the true known correlation structure and denoted by fjT in Section 5.2. As in 

Chapter 4, we compute such~ estimates for 2000 simulations and calculate the mean 

and MSE and refer to this MSE to as M S E(True). Next we generate the exponential 

data following a given correlation structure but using a different "working" correlation 

structure in (5.22) to obtain an estimate of /3. This estimate is called the "working" 

/3 estimate, which we denote by fjWIT· After computing this estimate over 2000 

simulations we calculate the mean and MSE using this "working" structure and refer 

to this MSE as M S E(Working). As in Chapter 4, one may calculate the relative 

efficiency using ( 4.21). The results of this simulation study are given in the tables of 

Appendix B only for true EAR(1) process. 

Table B.l contains results when our failure times were generated following an 

EAR(1) process under 10% censorship for various choices of p under design matrix 

D1• From Table B.1 we can see that our estimates of /3 are biased, whether we 

use the correct or incorrect correlation structures. The amount of bias is decreasing 
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if the correlation increases. We can see that we are losing a lot of efficiency if we 

do not use the true correlation structure, especially for correlation larger than 0.25. 

The efficiency loss is higher for 10% censorship than that for uncensorship. One 

very important point is the poor performance of the working independence structure 

when the correlation is high. As in the uncensored case, this suggests we could have 

problems if we incorrectly assume that our failure times are independent. We do not 

have results for the working EMA(l) structure for p > 0.25 for the reasons given 

in Chapter 4. Similarly, Table 8.2 contains results when the failure times follow 

an exponential distribution under 20% censorship. The estimates of {j are biased 

and similar with Table B.l for any working correlation and efficiency loss is high if 

we do not use the true correlation structure, especially for correlation larger than 

0.25. The percentage of efficiency loss is higher for 20% censorship than that for 10% 

censorship as well as for uncensorship. For the working EMA(l) process, we have 

some convergence problems which require further study. 

From the above discussion we can conclude that we get biased estimates of the 

regression parameter {3 no matter whether we are using the true or incorrect work­

ing correlation structure for both 10% and 20% censorship. For small correlation 

(p ~ 0.25), the efficiency gain is not large for using true correlation structure in 

the estimation of {3. But if we have high correlation (p > 0.25) then we should use 

the true correlation structure for estimating {3, otherwise we loss a lot of efficiency. 

Note that the percentage efficiency loss is higher for 20% censorship than that for 

10% censorship as well as for uncensorship. This implies that the higher the rate of 

censorship, the more important it is to specify the appropriate correlation structure. 

5.4 An Illustration: Kidney Infection Data 

So far we have discussed the modeling of failure times and estimation procedures of 

the hazard ratio parameters for longitudinal correlated failure times after taking the 

longitudinal correlations into account for uncensored and censored cases respectively. 
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To be specific, the estimation for the uncensored case was discussed in details in 

Chapter 4 and the censored case was dealt in this chapter through Sections 5.1-5.3. 

In this section, we will illustrate the methodology developed for both uncensored and 

censored failure time data through a numerical example. These data were reported by 

McGilchrist and Aisbett (1991) and then studied by Aslanidou, Dey and Sinha (1998). 

The data are given in Table C.1, which consist of the times of infection from the time 

of insertion of the catheter for 38 kidney patients using portable dialysis equipment. 

The first column shows the patient number. For each patient the second column 

contains the time to the first and second infection respectively. The third column 

contains sex, which is the only covariate in this data set, which was coded 1 for male 

and 2 for female. Note that McGilchrist and Aisbett (1991) originally dealt with 

two other covariates, the age and disease types of patients, but these covariates were 

found to be insignificant as indicated by Aslanidou et al. (1998). This motivated us 

to analyze the kidney infection data with only one covariate. The last column shows 

the binary variables representing the censoring indicators for the first and second 

infection respectively. In this column occurrence of infection is indicated by 1 and 

right censoring by 0. Further note that the kidney infection data considered here are 

longitudinal by nature as the infections were reported at two consecutive occasions. 

It is therefore clear that the two recurrence times of kidney infection for any patient 

are longitudinally correlated and it is important to take this correlation into account 

to obtain the hazard ratio parameter estimate. This correlation issue was however 

not addressed in the above mentioned paper for the estimation of the regression 

parameter. As it is likely that the correlation among recurrence times will decay as 

the lag between the recurrence times increases, we assume an EAR(1) longitudinal 

correlation structure for the repeated kidney infection and use this assumption for 

the estimation of the hazard ratio parameter. We do this in the following subsections 

for both uncensored and censored cases. 
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5.4.1 Hazard Ratio Parameter Estimation Based on Uncen­

sored Data 

For analyzing the uncensored data set we removed all censored observations from 

the data set. We have only 23 patients for whom both failure times are available. 

As discussed earlier we use the EAR(!) "working" correlation structure (4.5) for 

the uncensored case to estimate the regression effects of the covariate sex. We use 

the estimating equation (4.13) and solve that estimating equation by using Gauss­

Newton iteration procedure (4.15). We start with an initial value of f3 = 0.0, and 

estimate the dependence parameter p and hazard ratio parameter {3. After 18 it­

erations the Newton-Raphson method converged and we obtained the estimate of 

the dependence parameter p = 0.4356. Our estimate of f3 is ~ = -2.9814 with 

standard error 0.0653, computed by the square root of A~1 ({3)Ew(f3)A;;; 1 (f3) with 
A K A A K A AT 

Aw(f3) = K-l LA:=l Lj=l Aw,kj and Ew(/3) = Lk=l Lf::t Lj=l Gw.ki(f3)Gw,kj(/3), where 

Aw,kj(/3) and Gw,kj(/3) are in ( 4.16) and ( 4.17) respectively. The negative effect of this 

covariate is indicating that the infection rate for female patients is lower as compared 

to the infection rate for male patients. Although we considered the true longitudi­

nal correlation structure is EAR(1), for repeated failure times, any other correlation 

structure such as EMA(l) or EEQ will give the same results as there are only two 

recurrence times. 

5.4.2 Hazard Ratio Parameter Estimation Based on Com­

plete (Uncensored and Censored) Data 

For the censoring case, we consider the whole data set of 38 patients and true cor­

relation structure as EAR(1) for analyzing the data. We use the EAR{1) "working" 

correlation structure (5.9) for solving the estimating equation (5.22) and use the 

Gauss-Newton iteration procedure to estimate the hazard ratio parameter {3 . From 

the EAR( I) correlation structure (5.9) we see that the martingale correlation structure 

is a function of the dependence parameter p and the censoring times. For uncensored 
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observations we consider the censoring times as infinity. For the complete data we 

use the correlation estimate p = 0.4356 from the uncensored case under the assump­

tion that the correlation parameter p is the same for both uncensored and censored 

data. Then p was used in (5.9) to compute the covariance of two martingales for each 

of the 38 patients and use the estimating equation (5.22) to find the hazard ratio 

parameter. Our process has converged after 10 iterations and we get the estimate 

of f3 as P = -1.8613 with standard error 0.0197, computed by the square root of 

A;:1({3)Ew(f3)A;;; 1({3), where Aw(f3) and Gw(f3) are calculated following Cai and Pren­

tice (1995, p. 156). Like the uncensored case, the covariate sex has a significant effect 

as the standard error of sex is very small. The negative effect of sex is indicating that 

the infection rate for female patients is lower as compared to the infection rate for 

male patients. Note that P = -1.8613 is similar to the result found by McGilchrist 

and Aisbett (1991), but our estimate has a much smaller standard error. 



Chapter 6 

Concluding Remarks 

6.1 General Remarks 

Longitudinal correlated failure times data analysis is an important problem in prac­

tice. The statistical inference under such models, however, was not adequately ad­

dressed in the literature, perhaps because of the difficulty in modeling longitudinal 

correlation structure for repeated failure times. As mentioned earlier, some authors 

such as Wei, Lin and Weissfeld (1989) and Gao and Lin {1994) discussed the regres­

sion estimation problem under this longitudinal setup, but they have used structural 

correlations rather than longitudinal correlations in modeling the correlations for the 

repeated failure times. In Chapters 3, 4 and 5 we have shown how to model the cor­

relations for particular types of longitudinal data. These include exponential AR( 1 ), 

MA(l) and equi-correlation structures. The proposed correlation structures were then 

used to compute estimating equations for the hazard ratio or regression parameters. 

Thus if the longitudinal correlation structures are known, then by following the results 

of Chapter 4 and 5 one may obtain efficient estimators for the regression parameters. 

Note that for the cases when it is not possible to specify the correlation structure, 

it is difficult to construct a robust correlation structure for the estimating equations 

to model the censored data. As it is clear from Chapter 4 that for the uncensored 

data the correlation between any two martingales of the failure times is the same as 

69 
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the correlation between the corresponding original failure times, one may therefore 

attempt to use a robust correlation structure to model the unknown longitudinal true 

correlation structure and use it for estimation of regression effects. This we show in 

brief in Section 6.2. 

6.2 Robust Correlation Structure Based Regres­

sion Estimation for Uncensored Failure Time 

Data 

As indicated above, in the uncensored case the correlation between the martingales of 

the failure times is nothing but the correlation of the failure times. Consequently one 

may follow Sutradhar and Das (1999) and write a robust autocorrelation structure 

for the martingales of the failure times under the uncensored case as 

1 Pi P2 P~-1 

Pi 1 Pi P~-2 
V= P2 Pi P:-3 (6.1) 

P~-t P~-2 P:-3 1 

where corr(Mki(Tki), Mk(i+l)(Tk(i+l))) =Pi· We can estimate Pi by rj , where rj can 

be expressed as 
K n-l 

ri = L L TkiTk(i+l)/ K(n- L) 
k=l i=l 

for l = 1, 2, . .. , ( n - 1) and Tki is 

tki = Tki - E(Tki) . 
var(Tki) 

This correlation structure V in (6.1) can be used in the estimating equation (4.13) of 

Chapter 4 to estimate the regression effects. 
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6.3 Efficiency Aspects for Uncensored Data Based 

on Robust Correlation Structure 

Here we conduct a simulation study under the "working" robust correlation structure 

to estimate the hazard ratio parameter by using estimating equation ( 4.13) of Chapter 

4. For this simulation study we generate correlated failure times as in Section 4.3 

of Chapter 4 using the two design matrices D1 and D2 • We then compute fJ using 

the robust correlation structure (6.1). We refer to this as the robust fJ estimate and 

denote it for convenience by /J R· We compute these f3 estimates for 2000 simulations, 

and obtain the average and the mean square error (MSE). This MSE is referred to as 

the MSE(Rolmst). It then follows that one may compute the relative efficiency as 

A MSE(Rolmst) 
R.E.(f3RIT) = MSE(True) x 100, (6.2) 

where R.E.(PTIT) is 100 as PTIT is nothing but fir. From (6.2) we can calculate the 

loss of efficiencies for using the robust correlation structure. We report these results 

in the tables of Appendix D. 

Tables D.l and 0.2 contain the results of generated correlated failure times under 

the EAR(1) process and estimates using the true correlation structure and "working" 

robust structure (6.1) for designs D1 and D2 respectively. From these two tables 

we can conclude that if we generate data from an EAR(1) process and by using the 

"working" robust structure the loss of efficiencies is quite small. Tables 0 .3 and 0.4 

contain similar results under the designs D1 and D2 respectively when we generate 

failure times under the EEQ process. Under design matrix D1 we get 94% efficiency 

for using the "working" robust correlation structure and for design matrix D2 we get 

90% efficiency for using the "working" robust correlation structure. Although for a 

true EEQ process the efficiency loss is 10%, it is still better than the other "working" 

correlation structure such as EAR(1), EMA(l) and independence. Tables 0.5 and 0.6 

contain similar results under the designs D1 and D2 respectively when we generate 

failure times under an EMA(l) process. At that time we get 100% efficiencies for 



72 

using the "working" robust correlation structure (6.1). All throughout IMSL based 

Fortran 90 was used as software to carry out the simulation as well as data analysis. 

From the above discussion we see that the efficiency loss is not great for using the 

"working" robust correlation structure (6.1) as compared to other "working" corre­

lation structures discussed in Chapter 4, regardless of the true correlation structure. 

Therefore, this method seems to have a strong potential to give consistent and effi­

cient estimates when analyzing a real data set where the true correlation structure is 

not known for the uncensored case. 

6.4 Proposal for Further Research 

From Chapter 5, as the martingale correlations of the failure times are not the same as 

the correlations between the original failure times, it appears difficult to write a robust 

correlation structure for the censored data. This issue requires further investigation 

for the construction of a possible robust correlation structure, which is beyond the 

scope of this thesis. Moreover, if multivariate structural data are repeatedly collected 

over a period of time, this will require us to combine the structural and longitudinal 

correlations to estimate the regression parameters. This appears to be a challenging 

work which is also beyond the scope of this thesis. 



Appendix A 

Tables for Uncensored Case 

Working Correlation Structure 
EAR(1) ID EEQ EMA(1) 

p Statistic .BriT( I) .BrtT(2) .Bw!T(I) .Bw1T(2) .BwlT(I) .BwiT(2) .8WIT(l) ,8WIT(2) 

Mean 1.0064 0.9970 1.0071 0.9970 1.0065 0.9970 1.0062 0.9969 
0.10 MSE 0.0068 0.0062 0.0069 0.0062 0.0068 0.0063 0.0068 0.0062 

R.E. wo.oo 100.00 99.000 100.00 100.00 98.000 100.00 100.00 
Mean 1.0011 1.0003 1.0031 0.9997 1.0014 0.9998 1.0007 0.9998 

0.25 MSE 0.0064 0.0057 0.0068 0.0061 0.0066 0.0059 0.0064 0.0058 
R.E. 100.00 100.00 94.000 93.000 97.000 97.000 100.00 98.000 
Mean 0.9996 1.0052 1.0020 1.0047 1.0011 1.0047 

0.49 MSE 0.0050 0.0052 0.0070 0.0071 0.0056 0.0057 
R.E. 100.00 100.00 71.000 73.000 89.000 91.000 

Mean 1.0014 1.0048 1.0027 1.0062 1.0024 1.0049 
0.64 MSE 0.0044 0.0040 0.0076 0.0068 0.0051 0.0046 

R.E. 100.00 100.00 58.000 59.000 86.000 87.000 
Mean 1.0056 1.0072 1.0080 1.0083 1.0058 1.0076 

0.81 MSE 0.0038 0.0032 0.0091 0.0079 0.0044 0.0038 
R.E. 100.00 100.00 42.000 41.000 86.000 84.000 

Table A.1: Summary of estimates for uncensored case with K = 100, true ,81 = ,82 = 1 
for true EAR(l) process, under design D 1• p= Correlation Parameter, MSE = Mean 
Square Error, R.E. == Relative Efficiency. 
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Working Correlation Structure 
EAR(1) ID EEQ EMA(1) 

p Statistic .8TLT_11) .8TlT_12j .BwiT(l) .Bwl'f(2) .BwlT(ll .BwlT(2) .Bw!TitJ .8WJT(2) 
Mean 1.0109 0.9897 1.0118 0.9903 1.0105 0.9901 1.0105 0.9893 

0.10 MSE 0.0062 0.0035 0.0062 0.0035 0.0062 0.0035 0.0063 0.0035 
R.E. 100.00 100.00 100.00 100.00 100.00 100.00 98.000 100.00 
Mean 1.0056 0.9919 1.0082 0.9925 1.0054 0.9920 1.0043 0.9908 

0.25 MSE 0.0058 0.0028 0.0061 0.0031 0.0061 0.0030 0.0064 0.0029 
R.E. 100.00 100.00 95.000 90.000 95.000 93.000 91.000 97.000 
Mean 1.0043 0.9951 1.0079 0.9964 1.0050 0.9954 

0.49 MSE 0.0051 0.0024 0.0070 0.0036 0.0055 0.0026 
R.E. 100.00 100.00 73.000 67.000 93.000 92.000 

Mean 1.0065 0.9954 1.0090 0.9974 1.0066 0.9959 
0.64 MSE 0.0048 0.0020 0.0078 0.0036 0.0052 0.0022 

R.E. 100.00 100.00 62.000 56.000 92.000 91.000 
Mean 1.0113 0.9949 1.0158 0.9963 1.0104 0.9956 

0.81 MSE 0.0044 0.0015 0.0101 0.0042 0.0052 0.0017 
R.E. 100.00 100.00 44.000 36.000 85.000 88.000 

Table A.2: Summary of estimates for uncensored case with K = 100, true /31 = /32 = 1 
for true EAR(1) process, under design D2 • p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EAR(1) ID EEQ EMA(1) 

p Statistic .BwiT(l) .8WIT(2) .BwiT(l_l_ .8WIT(2) /3TjT{l) .8TIT(2) .8W[T_(_I_l .8WJT(2) 

Mean 0.9996 1.0030 1.0003 1.0037 1.0000 1.0032 0.9994 1.0029 
0.10 MSE 0.0060 0.0063 0.0060 0.0062 0.0060 0.0062 0.0060 0.0063 

R.E. 100.00 98.000 100.00 100.00 100.00 100.00 100.00 98.000 
Mean 1.0016 1.0018 1.0021 1.0030 1.0017 1.0022 1.0016 1.0017 

0.25 MSE 0.0064 0.0063 0.0063 0.0062 0.0063 0.0062 0.0064 0.0064 
R.E. 98.000 98.000 100.00 100.00 100.00 100.00 98.000 97.000 
Mean 0.9998 1.0012 1.0013 1.0028 1.0005 1.0012 1.0014 1.0022 

0.49 MSE 0.0058 0.0065 0.0063 0.0068 0.0056 0.0062 0.0060 0.0065 
R.E. 96.000 95.000 89.000 91.000 100.00 100.00 93.000 95.000 

Mean 0.9992 1.0002 1.0015 1.0022 1.0005 1.0003 
0.64 MSE 0.0058 0.0058 0.0069 0.0071 0.0054 0.0056 

R.E. 93.000 96.000 78.000 79.000 100.00 100.00 
Mean 0.9989 1.0005 1.0016 1.0022 1.0002 1.0003 

0.81 MSE 0.0049 0.0045 0.0073 0.0073 0.0042 0.0041 
R.E. 85.000 91.000 58.000 56.000 100.00 100.00 

Table A.3: Summary of estimates for uncensored case with K = 100, true {3 1 = ,82 = 1 
for true EEQ process, under design D1• p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EAR(1) lD EEQ EMA(1) 

p Statistic .Bw!T(t) .Bw!T(2) .BwlT(t} .BwlT(2) f'TIT(l) .8TIT(2) .Bw!T(t) .Bw!T(2) 
Mean 1.0053 0.9930 1.0067 0.9941 1.0054 0.9935 0.9994 1.0029 

0.10 MSE 0.0054 0.0034 0.0054 0.0034 0.0054 0.0034 0.0054 0.0035 
R.E. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.000 
Mean 1.0068 0.9934 1.0079 0.9946 1.0066 0.9939 1.0007 0.9937 

0.25 MSE 0.0056 0.0034 0.0056 0.0034 0.0056 0.0034 0.0056 0.0034 
R.E. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
Mean 1.0046 0.9935 1.0069 0.9953 1.0050 0.9940 1.0064 0.9948 

0.49 MSE 0.0054 0.0033 0.0059 0.0036 0.0052 0.0031 0.0055 0.0033 
R.E. 96.000 94.000 88.000 86.000 100.00 100.00 95.000 94.000 
Mean 1.0041 0.9924 1.0069 0.9947 1.0045 0.9925 

0.64 MSE 0.0057 0.0028 0.0070 0.0037 0.0053 0.0026 
R.E. 93.000 93.000 76.000 70.000 100.00 100.00 

Mean 0.9989 1.0005 1.0067 0.9956 1.0035 0.9936 
0.81 MSE 0.0050 0.0023 0.0079 0.0040 0.0044 0.0019 

R.E. 88.000 83.000 55.000 47.000 100.00 100.00 

Table A.4: Summary of estimates for uncensored case with K = 100, true .81 = .82 = 1 
for true EEQ process, under design D2 • p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 

Working Correlation Structure 
EAR(l) ID EEQ EMA(l) 

p Statistic .Bwm•l .BwlT(2) .BwiT(l) .Bw!T(2) f'WJT(l} .Bw!T(2) f'TIT(l) f'TlT(2l 
Mean 0.9998 1.0028 1.0007 1.0036 1.0003 1.0030 0.9995 1.0027 

0.10 MSE 0.0060 0.0062 0.0060 0.0062 0.0061 0.0062 0.0060 0.0062 
R.E. 100.00 100.00 100.00 100.00 98.000 100.00 100.00 100.00 
Mean 1.0026 1.0012 1.0030 1.0024 1.0027 1.0018 1.0023 1.0011 

0.25 MSE 0.0063 0.0058 0.0064 0.0060 0.0064 0.0060 0.0063 0.0058 
R.E. 100.00 100.00 98.000 96.000 98.000 96.000 100.00 100.00 

Mean 1.0057 0.9996 1.0048 0.9998 1.0054 0.9998 1.0057 0.9994 
0.49 MSE 0.0059 0.0058 0.0063 0.0063 0.0062 0.0062 0.0059 0.0058 

R.E. 100.00 100.00 94.000 92.000 95.000 94.000 100.00 100.00 

Table A.5: Summary of estimates for uncensored case with K = 100, true .81 = .82 = 1 
for true EMA(1) process, under design D1• p= Correlation ·Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EAR(1) ID EEQ EMA(1) 

p Statistic .Bw!Tl!) .BwlTl2l_ .BwiT(t) .Bw!T(2) .BwiT(tJ .Bw1T(2) .8TIT(1) .8TIT(2) 

Mean 1.0056 0.9929 1.0071 0.9939 1.0058 0.9933 1.0050 0.9926 
0.10 MSE 0.0054 0.0033 0.0054 0.0033 0.0055 0.0033 0.0054 0.0033 

R.E. 100.00 100.00 100.00 100.00 98.000 100.00 100.00 100.00 
Mean 1.0077 0.9931 1.0088 0.9941 1.0075 0.9934 1.0069 0.9928 

0.25 MSE 0.0056 0.0033 0.0056 0.0033 0.0058 0.0033 0.0056 0.0033 
R.E. 100.00 100.00 100.00 100.00 97.000 100.00 100.00 100.00 
Mean 1.0088 0.9936 1.0081 0.9941 1.0082 0.9936 1.0088 0.9937 

0.49 MSE 0.0051 0.0031 0.0055 0.0034 0.0054 0.0032 0.0051 0.0031 
R.E. 100.00 100.00 93.000 91.000 94.000 97.000 100.00 100.00 

Table A.6: Summary of estimates for uncensored case with K = 100, true ,81 = /32 = l 
for true EMA(1) process, under design D2• p= Correlation Parameter, MSE =Mean 
Square Error, R.E. = Relative Efficiency. 



Appendix B 

Tables for Censored Case 

Working Correlation Structure 
EAR(l) ID EEQ EMA(1) 

p Statistic fiTlT(l) PTIT(2) fiwfT(l) PwfT(2) fiwJTJ.U .8wJ1'_(2) PwtT(Il fiWIT(2) 
Mean 0.6479 0.6493 0.6255 0.6175 0.6939 0.7087 -

0.10 MSE 0.2530 0.2570 0.2613 0.2785 0.2500 0.2550 -
R.E. 100.00 100.00 97.000 93.000 100.00 100.00 -
Mean 0.7073 0.7075 0.6200 0.6175 0.7203 0.7378 -

0.25 MSE 0.1881 0.1844 0.2450 0.2546 0.2060 0.1939 -
R.E. 100.00 100.00 77.000 73.000 91.000 95.000 -

Mean 0.7901 0.7075 0.6200 0.6029 0.7202 0.7378 
0.49 MSE 0.0846 0.0817 0.2618 0.2546 0.2060 0.1939 

R.E. 100.00 100.00 33.000 30.000 60.000 61.000 
Mean 0.8751 0.8849 0.5941 0.5871 0.8343 0.8406 

0.64 MSE 0.0343 0.0313 0.2581 0.2655 0.0900 0.0833 
R.E. 100.00 100.00 14.000 12.000 38.000 38.000 
Mean 0.9823 0.9853 0.5995 0.5795 0.9342 0.9478 

0.81 MSE 0.0132 0.0099 0.2532 0.2751 0.0453 0.0386 
R.E. 100.00 100.00 6.0000 4.0000 30.000 26.000 

Table 8.1: Summary of estimates for censored case with K = 100, true {31 = .82 = 1 
for true EAR(1) process with 10% censorship. p= Correlation Parameter, MSE = 
Mean Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EAR(1) 10 EEQ EMA(l) 

p Statistic ,BTIT(l) .8TIT(2) .BwiT(l) .BwrTC2l .Bwmll .8WIT(2) .Bwmll .BwrTC2l 
Mean 0.7434 0.7479 0.6894 0.6789 0.7928 0.7955 -

0.10 MSE 0.1483 0.1548 0.1922 0.1977 0.1480 0.1540 -
R.E. 100.00 100.00 78.000 78.000 100.00 100.00 -

Mean 0.7948 0.8041 0.6936 0.6849 0.8203 0.8310 -
0.25 MSE 0.1033 0.1010 0.1860 0.2015 0.1514 0.1447 -

R.E. 100.00 100.00 56.000 50.000 68.000 70.000 -
Mean 0.8676 0.8756 0.6822 0.6676 0.8353 0.8542 

0.49 MSE 0.0460 0.0467 0.1953 0.2053 0.0862 0.0774 
R.E. 100.00 100.00 24.000 23.000 53.000 60.000 
Mean 0.9282 0.9359 0.6774 0.6664 0.8941 0.9050 

0.64 MSE 0.0156 0.0155 0.1914 0.2041 0.0603 0.0571 
R.E. 100.00 100.00 8.0000 8.0000 26.000 27.000 
Mean 1.0060 1.0076 0.6725 0.6595 0.9685 0.9813 

0.81 MSE 0.0067 0.0072 0.1855 0.1962 0.0342 0.0358 
R.E. 100.00 100.00 3.0000 3.0000 20.000 20.000 

Table 8.2: Summary of estimates for censored case with K = 100, true ,81 = ,82 = 1 
for true EAR(1) process with 20% censorship. p= Correlation Parameter, MSE = 
Mean Square Error, R.E. = Relative Efficiency. 
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Appendix C 

Kidney Infection Data 
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Patient Recurrence Sex Event 
number times types 
1 8, 16 1 1' 1 
2 33, 13 2 1, 0 
3 22, 28 1 1, 1 
4 447,318 2 1, 1 
5 30, 12 1 l, 1 
6 24,245 2 l, 1 
7 7,9 1 1, 1 
8 511, 30 2 1' 1 
9 53,196 2 l, 1 
10 15,154 l 1, 1 
11 7,333 2 1, 1 
12 141, 8 2 1, 0 
13 96, 38 2 1' 1 
14 149, 70 2 0,0 
15 536, 25 2 1, 0 
16 17, 4 1 1, 0 
17 185,117 2 1' 1 
18 292,114 2 1, 1 
19 22,159 2 0,0 
20 15,108 2 1, 0 
21 152,562 1 1, 1 
22 402, 24 2 1, 0 
23 13, 66 2 1, 1 
24 39, 46 1 1, 0 
25 12, 40 1 1' 1 
26 113,201 2 0, 1 
27 132,156 2 1' 1 
28 34, 30 2 1, 1 
29 2, 25 1 1' 1 
30 130, 26 2 1' 1 
31 27, 58 2 1' 1 
32 5, 43 2 0, 1 
33 152, 30 2 1' 1 
34 190, 5 2 1, 0 
35 119, 8 2 1, 1 
36 54, 16 2 0,0 
37 6, 78 2 0, 1 
38 63, 8 1 1, 0 

Table C.1: Recurrence times of infections in 38 kidney patients. 



Appendix D 

Tables Under Robust Structure for 

Uncensored Case 

Working Correlation Structure 
EAR(1) Robust 

p Statistic .8TIT(l) .8TIT(2) .8RIT(l) .8RIT(2) 

Mean 1.0064 0.9970 1.0052 0.9959 
0.10 MSE 0.0068 0.0062 0.0068 0.0063 

R.E. 100.00 100.00 100.00 98.000 
Mean 1.0011 1.0003 0.9994 0.9990 

0.25 MSE 0.0064 0.0057 0.006.5 0.0058 
R.E. 100.00 100.00 98.000 98.000 

Mean 0.9996 1.0052 0.9984 1.0033 
0.49 MSE 0.0050 0.0052 0.0051 0.0053 

R.E. 100.00 100.00 98.000 98.000 
Mean 1.0014 1.0048 0.9998 1.0030 

0.64 MSE 0.0044 0.0040 0.0045 0.0040 
R.E. 100.00 100.00 98.000 100.00 

Mean 1.0056 1.0072 1.0035 1.0051 
0.81 MSE 0.0038 0.0032 0.0039 0.0032 

R.E. 100.00 100.00 97.000 100.00 

Table 0.1: Summary of estimates for uncensored case with K = 100, true f3t = (32 = 1 
for true EAR(1) process, under design D1• p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EAR(1) Robust 

p Statistic .8TiT(I) ,8TlT_(_2) .8RIT(l) .8RITL2l_ 

Mean 1.0109 0.9897 1.0097 0.9880 
0.10 MSE 0.0062 0.0035 0.0066 0.0037 

R.E. 100.00 100.00 94.000 95.000 
Mean 1.0056 0.9919 0.9994 0.9990 

0.25 MSE 0.0058 0.0028 0.0062 0.0030 
R.E. 100.00 100.00 94.000 94.000 
Mean 1.0043 0.9951 0.9984 1.0033 

0.49 MSE 0.0051 0.0024 0.0054 0.0025 
R.E. 100.00 100.00 95.000 96.000 
Mean 1.0065 0.9954 0.9998 1.0030 

0.64 MSE 0.0048 0.0020 0.0048 0.0020 
R.E. 100.00 100.00 100.00 100.00 
Mean 1.0113 0.9949 1.0035 1.0051 

0.81 MSE 0.0044 0.0015 0.0044 0.0015 
R.E. 100.00 100.00 100.00 100.00 

Table 0.2: Summary of estimates for uncensored case with K = 100, true {31 = /32 = 1 
for true EAR(!) process, under design D2 • p= Correlation Parameter, MSE =Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EEQ Robust 

p Statistic .8TIT(l) .8TIT(2) .8RIT(l) .8RIT(2) 

Mean 1.0000 1.0032 0.9988 1.0019 
0.10 MSE 0.0060 0.0062 0.0061 0.0063 

R.E. 100.00 100.00 98.000 98.000 
Mean 1.0017 1.0022 0.9994 0.9990 

0.25 MSE 0.0063 0.0062 0.0065 0.0064 
R.E. 100.00 100.00 97.000 97.000 
Mean 1.0005 1.0012 0.9987 0.9995 

0.49 MSE 0.0056 0.0062 0.0058 0.0064 
R.E. 100.00 100.00 97.000 97.000 

Mean 1.0005 1.0003 0.9990 0.9974 
0.64 MSE 0.0054 0.0056 0.0056 0.0057 

R.E. 100.00 100.00 97.000 98.000 
Mean 1.0002 1.0003 0.9988 0.9980 

0.81 MSE 0.0042 0.0041 0.0045 0.0043 
R.E. 100.00 100.00 94.000 94.000 

Table 0 .3: Summary of estimates for uncensored case with K = 100, true {31 = ,82 = 1 
for true EEQ process, under design D1• p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EEQ Robust 

p Statistic .8TJT(l) .8TlT_(2) .8RIT_(1J .8RIT(2) 
Mean 1.0054 0.9935 1.0045 0.9906 

0.10 MSE 0.0054 0.0034 0.0058 0.0036 
R.E. 100.00 100.00 95.000 95.000 
Mean 1.0066 0.9939 1.0056 0.9913 

0.25 MSE 0.0056 0.0034 0.0060 0.0036 
R.E. 100.00 100.00 94.000 95.000 
Mean 1.0050 0.9940 1.0041 0.9912 

0.49 MSE 0.0052 0.0031 0.0056 0.0034 
R.E. 100.00 100.00 93.000 91.000 
Mean 1.0045 0.9925 0.9990 0.9974 

0.64 MSE 0.0053 0.0026 0.0057 0.0028 
R.E. 100.00 100.00 93.000 93.000 
Mean 1.0035 0.9936 1.0037 0.9909 

0.81 MSE 0.0044 0.0019 0.0048 0.0022 
R.E. 100.00 100.00 91.000 87.000 

Table 0.4: Summary of estimates for uncensored case with K = 100, true ,81 = /32 = 1 
for true EEQ process, under design D2 • p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 

Working Correlation Structure 
EMA(1) Robust 

p Statistic .8TIT(1) .8TIT(2) .8RIT(l) f3RIT(2) 

Mean 0.9995 1.0027 0.9990 1.0016 
0.10 MSE 0.0060 0.0062 0.0061 0.0062 

R.E. 100.00 100.00 98.000 100.00 
Mean 1.0023 1.0011 1.0019 1.0000 

0.25 MSE 0.0063 0.0058 0.0064 0.0060 
R.E. 100.00 100.00 98.000 97.000 
Mean 1.0057 0.9994 1.0059 0.9993 

0.49 MSE 0.0059 0.0058 0.0059 0.0058 
R.E. 100.00 100.00 100.00 100.00 

Table 0.5: Summary of estimates for uncensored case with K = 100, true ,81 = /32 = 1 
for true EMA(1) process, under design D 1• p= Correlation Parameter, MSE =Mean 
Square Error, R.E. = Relative Efficiency. 
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Working Correlation Structure 
EMA(l) Robust 

p Statistic .8TJTW .8TIT_l2) f3RIT(l) f3RIT(2) 

Mean 1.0050 0.9926 1.0048 0.9905 
0.10 MSE 0.0054 0.0033 0.0057 0.0034 

R.E. 100.00 100.00 95.000 97.000 
Mean 1.006Q 0.9928 1.0068 0.9911 

0.25 MSE 0.0056 0.0033 0.0059 0.0034 
R.E. 100.00 100.00 95.000 97.000 
Mean 1.0088 0.9937 1.0089 0.9934 

0.49 MSE 0.0051 0.0031 0.0052 0.0031 
R.E. 100.00 100.00 98.000 100.00 

Table 0.6: Summary of estimates for uncensored case with K = 100, true ,81 = /32 = 1 
for true EMA(1) process, under design D2 • p= Correlation Parameter, MSE = Mean 
Square Error, R.E. = Relative Efficiency. 
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