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ABSTRACT 

The lingonberry or partridgeberry, Vaccinium vitis-idaea L. var. minus Lodd, is a 

low-growing ericaceous shrub, which produces edible berries that ripen in Newfoundland 

in mid-September. Grapholita libertina Heinrich, the lingonberry fruitworm, is a 

tortricid moth whose larvae feed within the lingonberry fruit. 

The objectives of this study were to identify sex attractants for G. libertina and to 

evaluate its use in monitoring and controlling populations in wild Newfoundland 

lingonberry fields. A synthetic sex attractant was developed from among chemicals 

attractive to other Grapholita species and tested in 1997 to monitor G. libertina 

populations. Identification of this attractant led to a series of questions. Could this 

attractant prove useful in estimating future larval infestations? What would be the most 

effective delivery system for this attractant? Could field trapping accurately predict 

flight? How similar is the synthetic male attractant to the naturally occurring female 

produced pheromone? 

Field trials were conducted with the sex attractant in 1998, 1999 and 2000 to 

correlate the adult trapping rate with the subsequent densities of larvae and damaged 

berries to examine the effects of berry distribution and heterogenous vegetation coverage 

in the wild. Trials in 1999 were conducted to determine the most effective trap design for 

monitoring G. libertina. The efficacy of mass trapping using sex attractants of G. 

libertina was tested in 2000 as a potential control measure. In addition, information on 



population trends and phenology of G. libertina were examined through recording of the 

flight season, degree day accumulations and population size. Field-collected G. libertina 

were reared in order to identify the naturally occurring female sex pheromone. Solid 

phase microextraction was used to collect insect effluvia and gas chromatography-mass 

spectrometry attempted to identify pheromone components and relative amounts in the 

pheromone blend. 

The results ofthis study indicated that a blend of: 85% E-8-dodecen-1-ol acetate, 

10% Z-8-dodecen-1-ol acetate, and 5% Z-8-dodecen-1-ol was a suitable synthetic sex 

attractant for male G. libertina. The adult capture rate in Pherocon 1 C® wing traps was 

correlated with subsequent larval and damaged berry density in wild fields. Berry 

densities were important in determining the distributions of larvae and damaged berries 

when berry levels were low (1999), perhaps indicating that a limited or patchy host berry 

distribution affected female oviposition. Heterogenous vegetation present at study sites 

showed no significant effects. 

The Pherocon lC® wing trap was the most effective for use with the 85:10:5 

blend. Mass trapping indicated a possible disruption of mate location by G. libertina, 

however no significant decrease in larval populations was noted. As a result of trapping, 

it was established that the adult male flight season extends over 6 weeks from late June to 

early August. The number of degree days above base 5° C required for 10% emergence 

was recorded as 270±20.5 by rearing, and 334±8.1 by field trapping. Identification ofthe 

female sex pheromone by gas chromatography- mass spectroscopy was not successful. 
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1.0 INTRODUCTION 

1.1 Insecticides 

Insect control has been an important issue for humanity throughout history. While 

the class Insecta and their arthropod kin represent an essential (and large) part of the 

earth's ecosystems, many species are defined as pests. Flint and van den Bosch (1982) 

described pests as "organisms which compete with people for food, fiber and shelter; 

transmit pathogens; feed on people; or otherwise threaten human health, comfort, or 

welfare". Coinciding with humanity's disdain for such pests has been the need to control, 

eradicate and exterminate harmful species. 

The twentieth century has been dominated by the advent of synthetic (organic) 

insecticides. Synthetic chemicals belonging to the organochlorines (e.g. DDT, toxaphene, 

endrin, aldrin, dieldrin) and organophosphates (e.g. parathion, diazinon, malathion) were 

first found to be insecticidal during World War II (WWII)(Mellanby, 1970). The 

infamous DDT (dichloro-diphenyl-trichloro-ethane) became very widely used during 

WWII to control the lice vectors of typhus, trench and relapsing fever, and malarial 

mosquitoes in southern Europe and Africa (Mellanby, 1970). DDT was heralded as a 

"wonder chemical" with a significant broad spectrum range, low acute mammalian 

toxicity compared with other synthetic pesticides, and persistent activity in the 

environment (Edwards, 1993). Following the war, DDT was used on a large scale in the 

forestry, medical and agricultural industries to control pests worldwide. 

It soon became evident that the extensive use of DDT and other insecticides was 

1 



accompanied by serious health and environmental problems (Hall, 1995). Control of 

pests was becoming more difficult due to the development of insecticide resistance in 

pests, for example by 1948 the common housefly was resistant to DDT throughout the 

United States. In addition, the destruction of predatory and parasitic arthropods which 

had served as natural controls prior to broad spectrum pesticide application in turn 

released other innocuous insects previously controlled naturally (Perkins, 1982). 

Organochlorines such as DDT were found to persist in the envirorunent and also 

in the tissues of living organisms. In the case ofDDT, this resulted in biomagnification 

through the food chain. Originally applied at acceptably safe levels to crops and pests, it 

reached dangerous levels in top level carnivores such as raptorial birds and humans 

(Edwards, 1993). Other synthetic chemicals, such as the organophosphorous compounds, 

which were originally derived from nerve gas, may be highly toxic to vertebrates and 

caused problems when contaminated seed, food or insects are eaten (Carson, 1962; 

Edwards, 1993). 

The envirorunental consequences of large-scale pesticide application were 

massive fish kills in contaminated waterways, destruction of delicate wildlife and 

ecosystems, and risks to human health (Edwards, 1993). Pesticides such as DDT and 

other organochlorines were found to have high chronic toxicity and contaminated areas 

and organisms far beyond the scope of their application, passing into human food and 

milk (Pimentel et al., 1993a). 

While the use of organochlorines has been significantly reduced in the first world, 

1600 pesticides are available worldwide, with 2.5 - 4.4 million tons (or 21 billion dollars 
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worth) used annually, with nearly 30% being insecticides (Matthews, 1992). Pimentel et 

al. (1993b) have estimated that worldwide, 850,000 to 1.5 million people are poisoned 

from pesticides annually, resulting in 3,000 to 20,000 deaths each year, largely due to 

accidental exposure and poisoning. In the United States, despite a tenfold increase in 

insecticide use, crop losses due to insects grew from 7% to 13% between 1945 and 1989 

(Pimentel et al., 1993a). It should be noted that these increases were partially due to 

evolved insecticide resistance by pests, and also due to changes in cropping practices 

(reduced crop rotation, large monocultures, reduced genetic diversity in seed) (Pimentel 

et al., 1993a; Flint & van den Bosch, 1982). Awareness of the hazards of synthetic 

insecticide use has resulted in a demand for alternatives to and ways of reducing pesticide 

use, both publicly (through greater awareness), and in industry (through stricter 

regulation) (Carson, 1962; Sachs, 1993). 

Alternatives to insecticides have largely been generated through a better 

understanding of pest biology. Biological control tactics use natural enemies (microbial 

pathogens, predatory and parasitic insects, and vertebrate predators) to control pest 

species through the importation of exotic enemies versus imported pests, or by 

conservation of enemies already present (Ehler, 1998). A pest species may also be used 

to disseminate its own doom, through sterile insect release programs directed specifically 

at pest eradication. GMO's, or genetically modified organisms may be used in pest 

management either through producing pest-resistant plants, superior biological control 

insects and pathogens or by acting directly on a pest species. Alternatives include the use 

of naturally produced chemicals to regulate and control insect populations. These may be 
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insecticidal in nature, such as botanical pesticides, or have an effect on the insect's 

growth and behaviour, such as semiochemicals (insect pheromones, repellents, insect 

growth regulators). 

1.2 Semiochemical diversity 

Alternatives to insecticides include the use of semiochemicals. Semiochemicals 

are chemicals that mediate interactions between organisms: those which act on different 

species are allelochemicals, those used for intraspecific communication are pheromones 

(Law & Regnier, 1971; Nordlund et al. , 1981). Some semiochemicals, such as defensive 

secretions by plants, act as repellents, antifeedants or insect growth regulators to pest 

insects, and others, such as insect sex pheromones, may function as attractants. The 

various effects of semiochemicals on insects make them useful in pest management for 

monitoring insects by trapping, or as area-wide control measures via spray formulations. 

1.2.1 Allelochemicals 

Allelochemicals, chemicals which mediate interspecific communication, are 

divided into four groups: allomones, which benefit the producer and deter the receiver; 

kairomones, which are detrimental to the producer and of benefit to the receiver; 

synomones, which benefit both (e.g. floral scents and pollinators); and apneumones, 

chemicals produced by non-living things (e.g. carrion) (Howse, 1998a). Allomones 

and kairomones are the most important for insect-plant interactions. Allornones are 

generally defensive substances which have toxic or antifeedant properties, whereas 
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kairomones are attractants and phagostimulants (Jutsum & Gordon, 1989). Some 

semiochemicals may be both allomonal and kairomonal in action, for example 

cruciferous plants produce isothiocyanate, which is toxic to most herbivorous pests, but is 

highly attractive to specialized pests such as the cabbage root maggot, Delia radicum L. 

(Diptera: Anthomyiidae), and the cabbage butterfly, Pieris rapae L. (Lepidoptera: 

Pieridae) (Metcalf & Metcalf, 1992). Hypericin, found in St. John's wort Hypericum 

perforatum L., is a pigment which induces photosensitivity when the plant is consumed, 

and is normally a general insect antifeedant. However, hypericin is phagostimulatory to 

Chrysolina hyperici Forster (Coleoptera: Chrysomelidae) beetles and in this case is a 

kairomone (Metcalf & Metcalf, 1992). Further, C. hyperici sequesters the hypericin into 

the cuticle, where it acts as an antifeedant to predators. 

Allelochemicals have great potential for use in pest management, with strategies 

based primarily on their ability to attract or repel pest species. Azadirachtin, produced by 

the Neem tree, Azadirachta indica L., may act as an antifeedant as it has been shown that 

extracts artificially applied to a plant's surface act systemically to prevent insect feeding 

(Warner et al. , 1997). Other strategies use the attractive odour of hosts to trap and kill 

insects, for example the tsetse fly Glossina pallidipes Austen (Diptera: Glossinidae ), can 

be attracted to and killed in insecticidal cloth target traps baited with host-produced 

phenolic compounds (Jones, 1998). 

Allelochemicals are naturally occurring products, typically having low toxicity 

(Howse, 1998a; Jutsum & Gordon, 1989). Those which are toxic, such as antifeedants, 

are targeted at pest species feeding directly on the host plants, and have little direct effect 
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on non-target organisms (Warner et al., 1997). The number of insect species affected by 

allelochemicals is variable, and dependant on both the host's (plant or animal) natural 

resistance and a pest species' ability to overpower it. 

1.2.2 Pheromones 

The first use of the term "pheromone" (Greek: phereum, to carry; horman, to 

excite) was by Karlson and Luscher (1959) who defmed them as ' substances which are 

secreted to the outside by an individual and received by a second individual of the same 

species in which they release a specific reaction, for example a definite behavior or 

developmental process' (Hall, 1998). 

The existence of insect pheromones was known long before their first description 

or identification. In 1609, Charles Butler described attraction and mass stinging by bees 

drawn to a substance found in a single bee sting (Nordlund et al., 1981 ). Research has 

since shown that alarm pheromones, which attract and recruit other members of the same 

species to attack, are ubiquitous in the social Hymenoptera (Howse, 1998a). 

Fabre (1879) provided the first scientifically documented evidence of pheromone 

communication in insects by recording the number of marked male emperor moths 

Saturnia pavonia L. (Lepidoptera: Saturniidae) attracted to a single caged female several 

kilometres away. Pheromones have now been isolated from over 477 species of 

Lepidoptera alone, with field attraction demonstrated in 1151 additional species (Hall, 

1998; Am, 1999). 

Production and function of pheromones is variable throughout the class Insecta. 
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The honey bee, Apis mellifera L. (Hymenoptera: Apidae), has a complex system of 

pheromone communication with at least ten different glands which produce pheromones 

for attraction, identification, alarm and territorial cues (Howse, 1998a). Further, queen 

honey bees dictate growth and behaviour of workers and drones within the hive through 

queen pheromone (Winston & Slessor, 1992). 

Within the Coleoptera, research has focused on economically important cryptic 

species, such as the Scarabaeidae, whose larvae damage vegetation from beneath the soil, 

or the Scolytidae, which excavate galleries under the bark of host trees. Scolytid beetles 

use pheromones in conjunction with defensive allomones, such as myrcene or terpenes, to 

aggregate on stressed host plants (Byers, 1989). These aggregations serve in colonization 

of host trees and in courtship between the sexes. 

"The most widespread and widely documented types of pheromones are those 

which are used to increase the probability of successful mating, sex pheromones" (Jutsum 

and Gordon, 1989). Butenandt eta!. (1959) were the first to isolate an insect sex 

pheromone, bombykol, from the silkworm moth, Bombyx mori L. (Lepidoptera: 

Bombycidae). Sex pheromones are usually, but not exclusively, aerosol chemicals 

released by females which induce flight and mate-location and/or mating behavior in the 

male (Stoffolano & Romoser, 1994). 

In a generalized sex pheromone communication system, a virgin female will 

produce a volatile pheromone from glands located on her abdominal tip. The pheromone 

is carried by diffusion and air currents from the emitting female. A male insect of the 

same species will perceive the pheromone with specialized antenna! receptors, and begin 
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windward anemotactic flight. In many species, this involves upwind locomotion using a 

series of counter-turns which allow the male to maintain a heading in the direction of the 

female. This system allows the female to attract males from long distances with minimal 

energetic investment (Howse, 1998a). 

The previously described system may be applied to many insect species, however 

several specialized mating strategies have evolved. As mentioned, Ips De Geer and 

Dendroctonus Erichson spp. (Coleoptera: Scolytidae) use aggregation pheromones, rather 

than individual female-male attractants to attract members of both sexes (Byers, 1989). 

In some insect species, males have been shown to produce pheromones through 

abdominal hairpencil glands, which are arrestant and aphrodisiac pheromones to make the 

female more receptive to copulation. Hairpencilling compounds in Grapholita molesta 

Busck (Lepidoptera: Tortricidae) have been identified, acting both to attract females and 

repel other males in close proximity (Nishida et al., 1985). In the saltmarsh caterpillar, 

Estigmene acrea (Lepidoptera: Arctiidae) Drury, males emit aggregation pheromones, 

producing leks, and cumulatively attract large numbers of females (Willis & Birch, 1982). 

Receptive structures may also vary. Langley et al. (1987) demonstrated that in Glossina 

morsitans Westwood (Diptera: Glossinidae) pheromone-receptive sensillae are located on 

the tibia and tarsus, rather than antennal segments. 

1.2.3 Pheromone identification 

Elucidation of the chemical structure ofbombykol took over twenty years, and 

required the processing of several million silkworm moths (Butenandt et al., 1959; Hall, 

8 



1998). Early procedures for pheromone identification involved bioassays of insect 

behavior based on exposure to extracts. This was followed by separation and functional 

group determination by paper chromatography, infra-red and ultra-violet spectroscopy, 

and derivatization, and followed by repeated bioassay of separated components (Hall, 

1998). In recent years, pheromone research has benefitted from technological advances in 

chromatography, spectroscopy and collection techniques. 

The development of gas chromatography (GC) has provided a sensitive means for 

separation of volatile compounds on a stationary absorbent. The gas chromatogram may 

be coupled with either an electroantennogram to simultaneously measure depolarization 

across antennae and GC recordings, or a mass spectrometer which provides masses and 

intensities of target molecules from the GC (Howse, 1998b). 

Pheromone collection has improved through the use of brief gland washing, which 

reduces contamination of extracts used in chromatographic separation (Howse, 1998b ). 

Solid absorbents, such as activated charcoal or Porapak Q®, filter insect-produced 

volatiles from aerated chambers for analysis (Hall, 1998). More recently, the advent of 

solid phase rnicroextraction (SPME), in which analytes are absorbed directly on to a solid 

absorbent and injected into a gas chromatogram, has been used in pheromone analysis 

(Frerot et al., 1997). This reduces contamination from solvents and allows for collection 

of pheromones in headspace (vapor surrounding sample) non-destructively, so insects 

may be bioassayed more than once. 

Laboratory identification and bioassay are important for insect pheromone 

development, however, evaluation of pheromone blends through field trials is also 
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important in order to determine the efficacy of pheromones as management tools. 

Knowledge of appropriate trap design, trap placement and pheromone concentration must 

be tested for each species, along with the effects of field tested pheromones on non-target 

species. Further, the ability of pheromone trapping to accurately predict pest emergence 

and levels in monitoring programs, or reduce pest infestation in lure and kill or mating 

disruption, should also be evaluated before incorporation into a management strategy. 

The identification of the chemical structure of an insect pheromone can be a 

difficult task (George, 1965). However, identification of pheromone analogues 

(chemicals which elicit a similar behavioral response to that of pheromone) may produce 

suitable sex attractants for monitoring insects, with much less cost and effort (Ando et al., 

1977). Within certain subfamilies of the Lepidoptera many species use similar attractant 

structures (Roelofs & Comeau, 1970). Mozfuaitus et al. (1998) used field screening of 

C12 and C14 alcohols and acetates in Delta© traps to isolate male sex attractants for 17 

species of moths from the families Gracillariidae, Tortricidae, Yponomeutidae, 

Oecophoridae, Pyralidae and Gelechiidae. Therefore, screening of prospective 

compounds based on similarity among taxa is a potential method for rapid identification 

of field attractants. 

1.2.4 Pheromones in pest management 

Insect pheromones, especially sex pheromones, have been used widely for pest 

management. Booth ( 198 8) recorded 250 pheromone products in use to control 4 3 6 pest 

species in the United States. In 1998, the pheromones, primarily sex pheromones (97% ), 
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were applied worldwide over 1.3 million hectares of crops and forest, targeting primarily 

lepidopterous (95%) insects (Shami, 1998). Pheromones are currently used in pest 

management for population monitoring, mass trapping and attracticide control, and 

mating disruption (Jones, 1998). The benefits of pheromone products are that they are 

moderately species-specific, non-toxic and rapidly biodegradable (Jutsum & Gordon, 

1989). 

Pheromone trapping is a key element in eradication programs, both to monitor 

population size during pest suppression, and to monitor for pest reinvasions following 

eradication (Myers et al., 1998). In the case of the Mediterranean fruit fly, Ceratitis 

capitata Weidemann (Diptera: Tephritidae), countries must maintain ' fly-free zones', a 

requirement for export to the United States, in which attractant traps are used to verify 

pest absence (Jones, 1998). The most extensive pheromone monitoring network is 

maintained by the U.S. Department of Agriculture (USDA) to identify areas infested by 

the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae) (Leonhardt et al., 

1993). Through the use of 'thresholds' (predetermined pest population levels which 

warrant control measures in agricultural systems) growers can use capture rate in 

pheromone traps to determine the need for insecticidal application and to permit precise 

timing of control measures, thus preventing unnecessary insecticide application when 

populations are low (Pitcairn et al. , 1992; Pruess, 1983 ). This maximizes the effect of 

pesticide application by targeting vulnerable (those most susceptible to insecticides) life 

stages (such as neonate larvae) and may reduce the total number of applications required. 

Pheromones and other attractants may be incorporated directly into a control 
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strategy by combining a pheromone lure with either an insect trap or other agent to 

remove insects from the population (Trimble & Hagley, 1988). Other lure and kill 

strategies attract insects to insecticide-treated areas, sterilants or electric grids. These 

strategies eliminate problems encountered by trap saturation (decreased trapping ability 

due to congestion of traps with dead insects). In the case of the oriental fruit fly, Dacus 

dorsalis Hendel (Diptera: Tephritidae ), the use of attracticide-baited traps led to its 

eradication from the Okinawa Islands in 1982 (Koyoma et al., 1984). 

More recently, insect pheromones have been investigated as a control measure 

through mating disruption. Many groups of insects (especially the Lepidoptera) rely 

primarily on olfactory stimuli to locate a mate, typically by males locating 'calling' 

(pheromone-emitting) females (Mayer & McLaughlin, 1991). Mating disruption relies on 

upsetting communication between male and female insects by saturating an area with the 

appropriate pheromone (Baker, 1985). This prevents mate location by: a) saturating the 

male insect's antenna! receptors, resulting in confusion or habituation to the signal; or b) 

masking scent trails, the 'pheromone plume' produced by the calling females which 

stimulate males to engage in upwind flight to the female (Campion et al. , 1989). One of 

the most successful mating disruption programs was undertaken in Australia for the 

oriental fruit moth, Grapholita molest a, an important pest of fruit crops. In 1984, 

commercial use of oriental fruit moth mating disruption pheromone was initiated in an 

attempt to replace the heavily organophosphate-insecticide dominated control program 

(Jones, 1998). After one year, the mating disruption system gave equivalent control to 

the insecticides, with a one third reduction in cost. 
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1.3 Lingonberries 

The lingonberry or partridgeberry (Figure 1.1), Vaccinium vitis-idaea L. var. 

minus Lodd (Ericaceae) is a low-growing, evergreen shrub, which produces edible berries 

that ripen in mid-September. It occurs in Newfoundland and Labrador on rocky and dry 

peaty soils, wet heaths, barrens and coastal headlands (Ryan, 1978). 

The lingonberry has long been an important wild berry, traditionally used by 

boreal native people and Europeans as a food source and medicinal agent (Johnson et al., 

1995). Historically, its berries were the third most important fruit in the boreal forest, 

exceeded only by blueberries Vaccinium angustifolium Aiton, and cloudberries Rubus 

chamaemorus L. 

1.3.1 Commercial potential of the lingonberry 

Lingonberries are currently commercially harvested from the wild and are 

economically important in Newfoundland (Morris et al., 1988). Berries are popular 

locally for use in jams, jellies and wine making, and there is a good export market of 

berries to Scandinavia. From 1987 to 1997, the wild lingonberry harvest has averaged at 

308,000 lbs/year with a market value of $269,000/year (Anon., 1997). In 1994, domestic 

berry crops in Scandinavia failed due to frost damage, and export prices for lingonberries 

increased dramatically to $1.16/lb from $0.64/lb in 1993 (P. Hendrickson, p.c., 2001 ). 

Since that time, imports of wild berries such as lingonberries have taken over the 

domestic share of the market in Finland (Kangas, 1999). 

The lingonberry holds great potential, not only as a food crop, but also in the 
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Figure 1.1: Lingonberries, Vaccinium vitis-idaea L. var. minus Lodd. 
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nutraceutical industry. The fruits have high levels offlavonoids, which are 

phytochemicals important in human health (Hertog et al., 1995; Knekt et al., 1996). In a 

study by Hakkinen et al. (1999), levels of the f1avonol quercetin were shown to be very 

high in lingonberries (146 mg/kg, fresh weight), second only to bog whortleberry, 

Vaccinium uliginosum L., out of 25 species of edible berries tested. These flavonoids 

have antioxidant and anti carcinogenic properties, decreasing the risk of heart disease, 

lung cancer and stroke (Hertog et al. , 1995; Keli et al., 1996). 

Increasing industrial utilization ofthe lingonberry, in the form of food harvest, 

wines, juices and nutraceuticals will produce increased market demand and a need for 

more berries harvested from the wild. The potential market and value of wild and 

cultivated berries in Newfoundland may increase with new lingonberry products, such as 

nutraceutical tablets. The Newfoundland Department of Forest Resources and Agrifoods, 

and Agriculture and Agri-Food Canada have been evaluating a number of domesticated 

European varieties since 1991, for potential development of aU-Pick market. These 

varieties, differing from the local wild minus variety, offer several benefits, including 

higher growth habit which results in larger plants, an increased area for greater berry yield 

and easier harvesting (Penney et al., 1996). Further, many European varieties bloom 

twice annually, permitting two harvests per season. 

1.4 The lingonberry fruitworm 

The first record of insects and disease on wild Newfoundland lingonberries was in 

1914. Torrey (1914) describes a club-shoot disease or witch's broom, which may be 
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caused by a number of plant-pathogenic viruses, mycoplasmas or fungi, and a high 

prevalence of an unidentified leaf spot disease. Two insect pests were also recorded, a 

"flower worm" which attacked the bud and ate the pistil and stamens, and a "fruit worm" 

which devoured the pulp of several berries within a cluster. Although incidences of all 

these pests were generally low, Torrey (1914) stated "plants near the lighthouse at 

Western Bay Head are so infested (with fruit worm) as not to be worth picking. There is 

no profitable means of combating these insects upon plants in a wild state". Though the 

"fruitworm" in Torrey's study remains unidentified, it was quite likely Grapholita 

libertina Heinr. (Lepidoptera: Tortricidae), the primary pest of wild Newfoundland 

lingonberries. Grapholita libertina, the lingonberry fruitworm, is a tortricid moth whose 

larvae feed within the lingonberry fruit (Morris et al., 1988) (Figure 1.2). It has been 

reported in Canada from Newfoundland, Nova Scotia and British Columbia (Morris et 

al. , 1988). In the United States, it has been recorded from California, New Jersey and 

Maine (J.A. Powell, p.c., 2000; J. Brown, p.c., 2000). Therefore, it is potentially 

distributed at points between these records and throughout the range of it's host plant. 

The life history of G . libertina has been described by Morris et al. (1988). Adults emerge 

in June, July and occasionally August and lay eggs on developing berries from July to 

August. Larvae hatch and bore into the developing berries, where they feed for about 

four weeks. During this time, larvae move and feed within clusters (corms) of berries, 

each damaging up to ten fruit. After reaching maturity, larvae exit berries and overwinter 

in the prepupal stage in a hibernaculum in debris on the ground (Morris et al. , 1988). 

Research on this pest has been limited, as it has not been recorded in European 
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• 

Figure 1.2: Grapholita libertina Top: Adult moth, scale: lcm = 1.18 mm. Bottom: Late 
instar larva, showing damage and frass within lingonberry fruit, scale: lcm = 0.85 mm. 
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lingonberry production areas, and there are few areas in North America in which 

lingonberries are commercially harvested. Further, previous research has shown that G. 

libertina is difficult to rear, making laboratory analyses a challenge (P. L. Dixon, p.c., 

1996). 

Morris et al. (1988) reported infestations as high as 276 larvae per kilogram of 

unripe berries in a survey of sites in eastern Newfoundland. The presence of larvae is a 

significant concern whether for domestic or export markets. Current control of pest 

infestation is through delay.ofthe wild harvest until late September, after larvae have 

exited the fruit. Since this pest causes not only a decrease in berry quantity, but a 

diminished quality of product and an obvious export concern, it is important to develop a 

means of monitoring and controlling pest populations, particularly if commercial 

cultivation of a marketable product is to be achieved. 

1.4.1 Taxonomy of the lingonberry fruitworm 

Grapholita libertina belongs to the family Tortricidae, subfamily Olethreutinae, 

tribe Eucosmini, subtribe Grapholitina (Heinrich, 1926). The family Tortricidae contains 

many pest species of economic importance. Within the genus Grapholita, many species 

are important pests on fruit crops, e.g. the lesser appleworm, Grapholita prunivora Walsh 

(Lepidoptera: Tortricidae), is a pest of apple, cherry and plum throughout North America 

(Mantey et al. , 2000). Grapholita molesta, the oriental fruit moth, a primary pest of stone 

fruit in North America, required three to four insecticide applications per season, prior to 

development of mating disruption techniques (Jones, 1998). 
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1.4.2 Pheromone structure and attractants of the genus Graplwlita 

Insect pheromones are organic compounds, which may be of low or high volatility 

(based on function). Pheromone structure is similar within groups, with closely related 

taxa having more structural similarity than distantly related taxa. Cross attraction may 

occur between closely related species, although allopatric populations of the same species 

may exhibit differences in pheromone blend ratios and attraction (Lewis & Cane, 1990; 

Gemeno et al., 2000). Tephritid flies use host plant odors or their derivatives in mate 

attraction (Corneilius et al., 1999; Shelley, 2000). Lepidopteran pheromones are typically 

derived from fatty acids, and are usually 10-18 carbon aliphatic chains, which vary by 

species in their double bonds and terminal or internal functional groups such as alcohols, 

aldehydes, esters or ketones (Hall, 1998; Jurenka & Roelofs, 1993). 

The only published study of G. libertina (Morris et al., 1988) was restricted to 

pest biology and distribution, and did not include any information on pheromones. Other 

species of Grapholita, however, have been extensively studied. Sex pheromones of G. 

prunivora and G. molesta have been isolated, and as many as 15 other species in this 

genus have shown attraction to certain compounds (Am et al. , 1992). Most of these 

compounds and pheromone components are unsaturated 12-carbon chain alcohols with or 

without an acetate. The similarity in the structure of these attractant compounds within 

the genus suggests that G. libertina may have an attractant of similar composition. 
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1.5. Objectives of study 

The objectives of this study were to identify sex attractants for G. libertina from 

among chemicals attractive to other Grapholita species, and evaluate their uses in 

monitoring and controlling moth populations. The initial question was to determine 

which Grapholita spp. attractants were most attractive to G. libertina, according to the 

high degree of similarity in attractant compound structure in the genus. Identification of 

an effective sex attractant for this species then gave rise to a series of other questions. 

How similar is the synthetic attractant to the naturally occurring female sex pheromone? 

Could this attractant prove useful both in estimating larval infestations, and in direct 

population control? What would be the most effective delivery system for this attractant? 

Could field trapping using this attractant accurately predict adult flight? 

The rate of male moth trap capture at various sites was tested as a means of 

estimating larval populations, and berry damage within the same year. The efficacy of 

attractants within various trap types was tested by trap design trials, and the potential of 

mass trapping using high density pheromone lures as a control measure evaluated. Trap 

capture and rearing data were used to predict adult flight periods by degree-day 

accumulations. In addition, information on population trends and life history of G. 

libertina was obtained through records of the flight season and population size. Attempts 

were also made to isolate the female-produced sex pheromone. 

This research will help to produce a monitoring tool for use in commercial or wild 

settings, and explore the potential uses of sex attractants in controlling G. libertina with 

minimal pesticide application. 
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2.0 MATERIALS AND METHODS 

2.1 Study sites: 

Attractant trapping was carried out in five wild lingonberry fields in eastern 

Newfoundland (Figure 2.1, Table 2.1) during 1996-2000. All sites were headlands, 

adjacent to the ocean, and well exposed to coastal weather conditions. The area is within 

the Boreal Shield ecozone and the Maritime Barrens ecoregion (Ecological Stratification 

Working Group, 1995), which is characterized by cool, foggy summers and short 

moderate winters, with a mean annual temperature of 5 .5°C. Vegetation of study sites 

was heathland dominated by low growing shrubs, moss and lichens, specifically a mixture 

of Empetrum and Kalmia heaths, with a carpet of low growing vegetation (Empetrum 

nigrum L., Vaccinium vitis-idaea, Potentilla tridentata Aiton, and Cladina lichens), 

punctuated by thickets of Kalmia angustifolium L., V angustifolium and Ledum 

groenlandicum Oeder in more sheltered areas (Meades, 1983) (Figure 2.2). 

Details of study sites including location, duration and types of sampling are given 

in Table 2.1. 
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Figure 2.1: Map of eastern Newfoundland indicating sites for G. libertina trapping and 
weather stations used during 1996 to 2000. 1 em = 25 km. 
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Table 2.1: Study sites used for trapping Grapholita libertina with sex attractants from 1996 to 2000. *Attractant identification, 
larval correlation, trap design trials and mass trapping are discussed in sections 2.2, 2.3, 2.5 and 2.6, respectively. 

Sites Relative location Position Elevation Time period *Types of sampling 
(above sea level) sampled 

Little Catalina 2 km west of Little 48°34' N, lOOm 1996:June 24-Aug 19 Blend identification 
(L) Catalina 53°02'W 1997:June 30-Aug 25 Blend identification 

1998:June 25-July 29 Larval correlation 
1999:June 22-July 26 Larval correlation, Trap design trials 
2000:June 22-July 31 Larval correlation, Mass trapping 

Pouch Cove Meetinghouse Rd., 1 47°46' N, 300m 1996:June 24-Aug 12 Blend identification 
(P) km west from Pouch 52°47' w 1998:June 25-July 29 Larval correlation 

Cove 1999 :June 17 -July 20 Larval correlation, Trap design trials 
2000:June 25-July 31 Larval correlation, Mass trapping 

Freshwater 4 km north of 47°45'N, 300m 1996:June 24-Aug 19 Blend identification 

(F) Carbonear 53°14' w 1998:June 25-July 29 Larval correlation 
1999:June 18-July 20 Larval correlation, Trap design trials 
2000:June 25-Aug 3 Larval correlation, Mass trapping 

Bryant's Cove 4 km east of Harbour 47°41' N, 300m 1997:June 30-Aug 18 Blend identification 

(B) Grace 53°11' w 1998:June 25-July 29 Larval correlation 
1999:June 18-July 20 Larval correlation, Trap design trials 
2000:June 25-Aug 3 Larval correlation, Mass trapping 

Chance Cove On the Trans-Canada 47°38' N, 300m 1997:June 30-Aug 18 Blend identification 

(C) Highway at the Chance 54°50' w 
Cove exit 
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Figure 2.2: Photograph of typical study site - Pouch Cove, NF. 
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2.2 Attractant identification: 

2.2.1 Chemicals tested: 

Compounds tested for attraction of G. libertina males to synthetic lures were 

selected based on their attractiveness to males of other Grapholita species (Table 2.2). 

Five compounds, which constitute the major attractant compounds of Grapholita listed in 

Table 2.2, were selected for study in 1996 (superscripts 1-4 correspond with compounds 

in Table 2.2): EE-8,10-dodecadien-1-ol acetate (E,E8,10-12:0Ac)\ E-7-dodecen-1-ol 

acetate (E7-12:0AcY, Z-8-dodecen-1-ol acetate (Z8-12:0Ac)3
, E-8-dodecen-1-ol acetate 

(E8-12:0Ac)\ and Z-8-dodecen-1-ol (Z8-12:0H)5
• Acetone was used as a solvent for all 

compounds and acetone blanks (i.e. no attractive compound added) were used as controls. 

Lures were made by RPC Laboratories, Fredericton, NB, Canada, by pipetting 1 ml of 

attractant solutions at various concentrations onto rubber septum dispensers (Figure 2.3), 

which degraded and released attractant compounds at a constant rate. 

In 1996, each of the five compounds was tested at four different concentrations: 

0.01 mg, 0.1 mg, lmg, and I 0 mg (Table 2.3). However, septa which were to contain the 

E-7 -dodecen-1 -ol acetate were fabricated incorrectly, and their exact composition was 

unknown. The E7 -12:0Ac catch was low, and the resulting data from these traps were not 

considered in this study. 

During the 1997 season, blends of the three most attractive compounds, and the 

top three compounds themselves, from the 1996 season were field tested. Blend ratios 

were selected based on typical ratios of other lepidopteran and tortricid pests (Mayer & 

McLaughlin,l991). Blends were tested in ratios of 85:10:5, 90:7:3, and 94:4:2 
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Table 2.2: Compounds shown to be sex attractants of Grapholita spp. (Arn, l999). 

Grapholita species: 

G. caerulana (Walsingham) 

G. compositella (Fabricus) 

G. conversana (Walsingham) 

G. endrosias (Meyrick) 

G. funebrana (Treitschke) 

G. gemmiferana (Treitschke) 

G. inopinata (Heinrich) 

G. janthinana (Duponchel) 

G. lobarzewskii (Ragonot) 

G. lunatana (Walsingbam) 

G. molesta (Busck) 

G. packardii (Zeller) 

G. prunivora (Walsh) 

G. succedana (Denis and Schiffermtiller) 

G. tenebrosana (Duponchel) 

Attractant compounds: source (Arn, 1999) 

EE-8, 1 0-dodecadien-1 -ol acetate1 

EE-8, 1 0-dodecadien-1-ol acetate1 

EE-8, 1 0-dodecadien-1-ol acetate 1 

E-7 -dodecen- 1-ol acetate2 

Z-8-dodecen-1-ol acetate3
, 

E-8-dodecen-1-ol acetate\ 
Z-8-dodecen- l-ol5 

EE-8, 10-dodecadien-1-ol acetate1 

Z-8-dodecen-1 -ol acetate3 

Z-8-dodecen-1-ol acetate3
, 

E-8-dodecen-1-ol acetate4 

Z-8-dodecen-1-ol acetate', 
E-8-dodecen-1-ol acetate4 

EE-8, 1 0-dodecadien-1-o l acetate 1 

Z-8-dodecen-1-ol acetate3
, 

E-8-dodecen-1-ol acetate\ 
Z-8-dodecen-1-oP 

E-8-dodecen-1-ol acetate4 

Z-8-dodecen-1-ol acetate3 

Z-8-dodecen-1-ol acetate3
, 

E-8-dodecen- l -ol acetate4 

Z-8-dodecen-1-ol acetate3
, 

E-8-dodecen-1-ol acetate4 
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Figure 2.3: Schematic diagram of a Pherocon® 1 C wing trap showing rubber septum. 
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Table 2.3: Compounds and concentrations tested for attraction to G. libertina during the 
1996 and 1997 field trials. 

Year Compound tested 

1 996 E-8-dodecen-1-ol acetate (E8-12 :OAc 

Z-8-dodecen-1-ol acetate (Z8-12:0Ac) 

Z-8-dodecen-I -ol (Z8-1 2:0H) 

E,E-8, 1 0-dodecen-1-ol acetate (E,E8, 1 0-12 :OAc) 

E-7-dodecen-1 -ol acetate (E7-12:0Ac) 

1997 E-8-dodecen-1-ol acetate (E8-12:0Ac) 

Z-8-dodecen-1-o1 acetate (Z8-12:0Ac) 

Z-8-dodecen-1-ol (Z8-12 :OH) 

85:10:5 blend 
(85 E8-12:0Ac: 10 Z8-12:0Ac: 5 Z8-12:0H) 

90:7:3 blend 
(90 E8-12:0Ac: 7 Z8-12:0Ac: 3 Z8-12:0H) 

94:4:2 blend 
(94 E8-12:0Ac: 4 Z8-12:0Ac: 2 Z8-12:0H) 
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Concentration (mg/ ml of acetone) 

0.01 0.1 10 

0.01 0.1 10 

0.01 0.1 10 

0.01 0.1 10 

0.01 0.1 10 

1 

1 
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(E-8-dodecen-1-ol acetate: Z-8-dodecen-1 -ol acetate: Z-8-dodecen-1-ol), all at a 

concentration of 1 mg/ml (Table 2.3). 

2.2.2 Trapping design: 

At all sites in 1996 and 1997, Pherocon® 1C wing traps (Figures 2.3, 2.4) were 

used. The Pherocon® 1 C consisted of a cardboard bottom covered inside with adhesive, 

and a cardboard cover placed above the bottom tray such that there is a 2 em gap around 

the perimeter to pennit entry of moths. Each trap was baited with a single rubber septum, 

centrally positioned and held in place with an insect pin. Rubber septa were not replaced 

during the field season unless they were lost or damaged. Traps were suspended by wire 

from wooden stakes at 5 to 10 em above ground (Figure 2.4). At all study sites, traps 

baited with different lures were set up in a randomized grid (Figure 2.5), within which 

traps were spaced at least 20 metres from each other. 

In 1996, each ofthe five compounds was present in six traps at each site. Of these 

six traps, three were at a concentration of 1 0 mg, whereas the other three contained a lure 

at 0.01 mg, 0.1 mg or 1 mg concentrations (Table 2.3). Two traps baited with acetone 

blanks, which acted as controls, were also present at each site. This resulted in 32 traps at 

each site. 

In 1997, traps were again set up in a randomized grid. Traps were baited with the 

three most attractive compounds from 1996 (E8-12:0Ac, Z8-12:0Ac, and Z8-12:0H), 

the three types ofblended lures (85:10:5, 90:7:3 and 94:4:2) and acetone blanks, all at a 

concentration of 1mg/ml. Each test lure and acetone control was replicated three times at 
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Figure 2.4: Pherocon® lC wing trap mounted on a wooden stake at Pouch Cove, NF. 
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Figure 2.5: Example of a randomized trap grid used in 1996 at Little Catalina. Letters 
refer to compounds and numbers to concentration. 
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each site, for a total of 21 traps at each site, testing pure compounds, blends and controls. 

2.2.3 Sampling regime: 

Traps were checked twice weekly. At each check, the number of G. libertina in 

each trap was recorded, and traps were advanced by one position through the grid to 

minimize any position or edge effects. When a trap catch exceeded 50 moths, or when 

the sticky surface of the trap was congested with debris, the trap bottom was changed to 

provide a clean surface. All G. libertina moths captured were counted, and a total of 1 00 

insects were selected at random from traps to determine the sex of trapped moths. 

In 1996, trapping began on 24 June and continued until the end of the flight 

season, 12 August in Pouch Cove and 19 August in both Freshwater and Little Catalina. 

Trapping in 1997 began on 30 June and continued until18 August in Bryant's Cove and 

Chance Cove, and 25 August in Little Catalina. 

2.2.4 Data analysis: 

The basic data unit was the mean daily trap catch per compound. In 1996, the 

daily trap catch of the three replicates of the 1 Omg concentrations were averaged for 

comparison with other concentrations. Due to the high number of zero values obtained, 

all catches were transformed by square-root transformation ( .J0.5+ X ), before being 

subjected to an analysis of variance (Sokal & Rohlf, 1995). Effects of attractant 

compound, concentration and site during the 1996 season were analyzed by Three Way 

ANOV A. Fisher's Least Significant Difference (LSD) (Sokal & Rohlf, 1995) was then 
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used to locate groups of variables which were found to have significant differences 

(p<0.05). Data from the 1997 season, having one less variable, concentration, were 

evaluated by Two-Way ANOVA and means were compared using Fisher's LSD (Sokal & 

Rohlf, 1995). SPSS® (Morgan et al. , 2001) was used for all ANOV A calculations. 

Graphs were produced using Sigmaplot®(Kuo & Fox, 1992). 

2.3 Larval correlation: 

During the 1998, 1999 and 2000 field seasons, the number of adult moths trapped 

using the previously identified attractant was correlated with fruit damage and larval 

density in the field. 

2.3.1 Trapping design and sampling regime: 

At each of four sites (Little Catalina, Pouch Cove, Bryant's Cove, and 

Freshwater), a 2 x 4 grid of traps was set up, including blank traps (Figure 2.6). 

Pherocon® 1 C wing traps were separated by 20 metres, and suspended by wire from 

wooden stakes 5 to 1 0 em above ground. Each trap in the grid was baited with a rubber 

septum lure of the 85:10:5 blend (the most attractive blend from 1997) at a concentration 

of 1 mg/ml of solvent, along with two control traps baited with acetone blanks. 

Traps at each site were checked and bottoms changed weekly during the six week 

period of adult flight. Traps were not circulated through the grid. During 1998, trapping 

took place from 25 June to 29 July in Freshwater, Bryant's Cove and Pouch Cove and 

from 26 June to 30 July in Little Catalina. During 1999, trapping took place from 17 
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Figure 2.6 Trapping grid used for 1998, 1999 and 2000 field trials. Each plot (shown 
numerically,l-6) was divided into four equal subplots (shown alphabetically, A-D). 
Traps were located at the centre of each larger plot (i.e. the intersection of the dashed 
lines). Each subplot was 10 metres x 10 metres, and total plot size was 80 x 40 metres. 
Two control traps were also at each site (7-8). 
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June to 20 July in Pouch Cove, 18 June to 21 July in Freshwater and Bryant's Cove, and 

22 June to 26 July in Little Catalina. During 2000, trapping was from 25 June to 31 July 

in Pouch Cove, 25 June to 3 August in Freshwater and Bryant's Cove, and 22 June to 31 

July in Little Catalina. 

2.3.2 Berry and larval collection (Quadrat sampling): 

Collections of berries and larvae were made at each site. Dates of berry sampling 

at each site during each year are listed in Table 2.4. Samples of berries were taken 

randomly within the 20m square surrounding each trap within the grid. This was 

accomplished by dividing the area surrounding each trap into four 10 m x 10 m quadrats 

(Figure 2.6). Within each quadrat, 2 samples were taken by throwing a 1 m2 square 

(Figure 2. 7) and collecting all fruit within that square. This resulted in eight 1 m2 

samples per trap and 64 1 m2 samples per site (including blank traps). 

Berries collected were individually examined for larvae and larval damage (frass, 

burrowing, bore holes) (Figure 1.2). Total numbers oflarvae and damaged berries (bore 

holes, frass present) were recorded per quadrat and per trap. 

2.3.3 Vegetation analysis: 

Percent cover of all vegetation within each quadrat (including lingonberry plants) 

was recorded to determine whether landscape or vegetation might significantly affect 

adult trapping or presence of larvae. This included estimates of plant, lichen and bare 

ground coverage per plot. All plants were identified to species. 
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Table 2.4: Berry collection dates during larval correlation study at four sites, 1998 to 
2000. 

Year Site Collection date 

1998 Pouch Cove August20 
Bryant' s Cove August 22 

Freshwater August23 
Little Catalina August 26 

1999 Pouch Cove August 17 
Bryant's Cove August 18 

Freshwater August 26 
Little Catalina August 23 

2000 Pouch Cove August 16 
Bryant's Cove August 17 

Freshwater August 23 
Little Catalina August 30 
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Figure 2.7: Sampling grid for lingonberries (1 metre square). 
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2.3.4 Data analysis: 

Data were subjected to logarithmic transformation to resolve any positive 

correlations between means and the variance (Sokal & Rohlf, 1995). Total munbers of 

larvae/trap and total numbers of damaged berries/trap (within four quadrats surrounding 

each trap) were recorded and regressed against the adult capture rate/trap in the same 

year. Larval counts in 1998 and 1999 were also regressed against subsequent adult counts 

in 1999 and 2000, respectively. 

Percent cover for vegetation within each quadrat was averaged for each site and 

principal component analysis was conducted to determine any relationships between 

heterogenous vegetation and insect densities at each site. Principal component analysis 

was restricted to species which were present in at least 50% of all plots. Eigenvector 

scores for the first three principal components were used to determine major factors 

(vegetation types) which contributed to variance along each axis. The number of adults, 

larvae, and damaged berries in each plot for all study sites (six plots at each of four sites) 

were graphed as bubble plots (Sigmaplof0 , Kuo & Fox, 1992) along the first two 

principal component axes. Any significant relationship between insect populations and 

habitat (or vegetation type) were evident by the position of large bubbles along each axis. 

Dominant vegetation at all sites, primarily Vaccinium angustifolium, V vitis

idaea, and lichen species were run as covariates with adult and berry densities in a 

generalized multi way analysis of variance (MANOV A) (Sokal & Rohlf, 1995). Larvae 

and damage were selected as response variables with site and year as explanatory 

variables. Vaccinium angust(folium and lichen species were found to be not significant in 

38 



relation to larval and damage densities (p=0.05). Therefore, in subsequent analysis V 

angustifolium and lichen were removed. Regressions, principal component analyses and 

MANOVAs were conducted using SPSS 9.0® (Morgan eta!., 2001) and graphed with 

Sigmaplot® (Kuo & Fox, 1992). 

2.4 Sexing of trapped moths: 

Specimens trapped during the 1996, 1997, and 1998 field trials were examined in 

order to determine their sex, and thus the nature of attraction (aggregation or sexual 

attraction). One hundred specimens were extracted from traps collected each year by 

soaking with ethyl acetate. Abdominal tips were cleared with 10% potassium hydroxide 

and examined to determine the sex of the specimens. 

2.5 Trap design trials: 

During the 1999 season, five trap types were tested for their relative ability to 

capture G. libertina using the 85:10:5 lure at a 1 mg concentration. 

2.5.1 Trap types: 

Five common trap designs were selected. Four impaction (sticky) traps were 

used, namely: Pherocon® 1 C Wing trap (Trece, Salinas, California), Wing trap II® 

(Pherotech, British Columbia), Delta® trap (Scentry, Buckeye, Arizona), and the 

Diamond® trap (Pherotech, British Columbia). A single example of a non-saturating, or 

high capacity trap was also tested, the Unitrap® (Pherotech, British Columbia). 
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The sticky traps all had a sticky surface on which insects are trapped, and become 

saturated once this surface is full . The non-saturating trap captured insects within an 

enclosed bucket, killing them with a Vapona® insecticidal strip (18.6% dichlorvos, 

Zoecon Industries Ltd., ON, Canada). The characteristics of each trap are shown in 

Figure 2.8 and listed in Table 2.5. 

2.5.2 Trapping design: 

At each of the four sites (Little Catalina, Pouch Cove, Bryant's Cove and 

Freshwater), a randomized grid of 15 traps was used (Figure 2.9). Traps were spaced 20 

m apart within the grid and each suspended 5-l 0 em above ground from a wooden stake. 

Each trap type was replicated three times at each site- two with 85:10:5 lures at a 

concentration of 1mg/ml, the other a control trap baited with an acetone blank. Traps 

were checked and advanced by one position within the grid weekly. 

On the perimeter of each grid, a series of 10 Pherocon® 1 C wing traps were placed 

( 40 m from one another and at least 20 m from traps in grid). All were baited with the 

85:10:5 lure, and placed as guard traps in an effort to reduce edge effects in the trapping 

data. Guard traps were checked weekly but not circulated. Bottoms of guards were 

changed if traps were saturated. 
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Figure 2.8: Trap designs tested with the 85:10:5 lure during the 1999 field season. Four 
impaction-style (sticky traps):A-Pherocon® 1C wing trap, B-Diamond® trap, C-Delta® 
trap and D-Wing Trap IfiD (bottom, right); and one non-saturating trap: E-Unitrap®. 
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Table 2.5: Characteristics of various trap designs tested using the 85:10:5 lure for G. 
libertina *Bulk is typically more than 50 traps (Prices quoted in 1997 Canadian dollars). 

Trap Characters 

Trap Design Trapping 
Cost per 

Material Shape trap (Cdn) 
Surface Area 

(Bulk)* 

Pherocon® lC White, waterproof Wing-style 637 cm2 on $3.89 
Wing Trap cellulose inner lower 

(cardboard). surface. 

Wing Trap IJ® White, waterproof Wing-style 342 cm2 on $4.00 
cellulose removable 

(cardboard). lower surface 
inserts. 

Delta® Trap White, corrugated Triangular 288 cm2 on $2.98 
plastic. removable 

lower surface 
inserts 

Diamond® White, waterproof Diamond 527 cm2 on top $2.20 
Trap cellulose and bottom 

(cardboard). inner surfaces. 

Unitrap® Green, heavyweight Bucket, with 2827 cm3 $ I 0-12 
plastic (reuseable ). a funnel and (Volume) in a 

cover on top. high capacity 
bucket. 
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2.5.3 Data analysis: 

Mean number of adults captured per trap per season was recorded for each trap 

type at each site. Data were subjected to square-root transformation ( .J0.5+ X ), and 

the effects of trap type and site were analyzed using a two way ANOV A. 

SPSS® was used for all ANOV A calculations, Sigmaplot® for graphs (Morgan et 

a!., 2001; Kuo & Fox, 1992). Fisher's LSD (Sokal & Rohlf, 1995) was then used to 

locate differences in the means (p<0.05). 

2.6 Mass trapping trial: 

Trials were conducted during the 2000 field season to evaluate mass trapping as a 

potential control tactic for G. libertina. By using a high density of traps with high 

concentration lures to trap adult males, it was hoped that subsequent larval infestations 

would be reduced. 

2.6.1 Trapping design and sampling regime: 

During the 2000 field season, Pherocon® 1 C wing traps were placed in a 2 x 4 grid 

at Pouch Cove, Freshwater, Bryant's Cove and Little Catalina, in a similar configuration 

as in larval conelation studies (see 2.3). Six test traps baited with the 85:10:5 blend at a 

1mg/ml concentration and two controls with acetone blanks were used in each plot, 

positioned parallel to and separated from the larval correlation grids by at least 40 metres 
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to reduce any interactions between traps in each plot. Each 2 x 4 trapping grid in the 

mass trapping trial was surrounded by a 3 x 5 grid of Pherocon® 1 C wing traps, which 

were baited with a high-dose lure of the 85:10:5 blend (lOmg/ml, Figure 2.10). Traps at 

each site were checked and bottoms changed weekly during the six week period of adult 

flight, at the same time as correlation grids. Traps were not circulated through the grid. 

Trapping was from 25 June to 31 July in Pouch Cove, 25 June to 3 August in Freshwater 

and Bryant's Cove, and 22 June to 31 July in Little Catalina. 

2.6.2 Larval sampling and vegetation analysis: 

Berry samples were collected and vegetation recorded at Pouch Cove on 16 

August, Freshwater on 23 August, Bryant's Cove on 17 August, and Little Catalina on 30 

August. Samples of berries were taken randomly and vegetation recorded within the 20 

m square surrounding each trap within the grid, as in the larval correlation grids (2.3 .2, 

2.3.3). Berries were again analyzed for presence oflarvae and damage. 

2.6.3 Data analysis: 

Data were subjected to logarithmic transformation to stabilize variance (Sokal & 

Rohlf, 1995). Total numbers of larvae/trap and numbers of damaged beiTies/trap (within 

four quadrats surrounding each trap) were recorded and regressed against the adult 

capture rate/trap in the same year. Percent vegetation cover within each quadrat was 

averaged for each site and principal component analysis was used to determine the 
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Figure 2.1 0: Mass trapping grid used in lingonberry sites during the 2000 field season. 
Numbers 1-6 indicate traps baited with 85:10:5 lure at a 1 mg/ml concentration (as in 
section 3.2), 7 and 8 were blank traps, M's indicate 'mass traps' baited with 85:10:5 lure 
at a concentration of 1 0 mg/ml. 
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abundance of adults, larvae, and damaged berries in each plot, relative to significantly 

correlated vegetation (as in section 2.3). MANOVA was conducted using vegetation 

types as covariates, site and year as explanatory parameters and lingonberry data as 

response variables to identify any relationships between vegetation types, the distribution 

of ling on berry plants or total berries at each site, and densities of lingonberry fruitworm 

adults, larvae and damaged berries. Mass trapping grids were analyzed independently by 

MANOVA with lingonberry coverage, and adult and berry density as covariates and 

larval and damaged berry densities as response variables. 

To determine significant relationships between variables, mass trapping grids 

were compared with normal correlation grids through Three Way ANOVA using site, 

lingonberry variables (adult, larval and damaged berry densities) and grid type (standard

as in correlation grids, versus mass trapping - surrounded with traps baited with high 

density lures) to determine any significant differences in adult trapping, larval infestation 

or berry damage between plots. Means were then compared using Fisher's Least 

Significant Difference (LSD) (Sokal & Rohlf, 1995). Regressions, ANOV As and 

principal component analyses were conducted with SPSS 9.0®, and graphing with 

Sigmaplot® (Morgan et al., 2001; Kuo & Fox, 1992). 

2. 7 Rearing and chemical analysis: 

2.7.1 Rearing: 

Rearing of G. libertina was attempted in order to obtain samples for laboratory 
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identification of pheromones. Also noted were records of emergence and degree-day 

calculations for post-diapause adult emergence. All rearing chambers were maintained on 

a 14:10 (L:D) photoperiod, and were located at the Atlantic Cool Climate Crop Research 

Centre, of Agriculture and Agri-Food Canada at St. John' s, NF, Canada. Substrates, 

sources, numbers of larvae, and dates associated with rearing are shown in Table 2.6. 

Detailed descriptions of rearing procedures are in appendix A. 

Parasitoids which emerged from overwintering G. libertina were sent to the 

Eastern Cereal and Oilseed Research Centre (ECORC), of Agriculture and Agri-Food 

Canada, ON, Canada, for identification. Voucher specimens of G. libertina were 

deposited in the Canadian National Collection at ECORC. 

2.7.2 Chemical analysis: 

Female moths from the 2000-2001 rearing study (section 2.7.1) were used in 

chemical analysis to isolate the naturally produced female sex pheromone. Newly 

emerged females were collected from rearing chambers (tupperware containers) each day, 

and kept isolated in petri dishes at 8-1 ooc until analysis 2 to 6 days later. All samples 

were analyzed using a Hewlett-Packard 5890 Series II (Hewlett-Packard®, Palo Alto, CA) 

gas chromatogram (GC) with a 30 m DB-5 (Durabond®) column, linked to a Hewlett

Packard® 5971 series mass selective detector with electron impact ionization and electron 

multiplier detection. Synthetic standards of known male G. libertina attractants (Z-8-

dodecen-1-ol, Z-8-dodecen-1 -ol acetate and E-8-dodecen-1-ol acetate) 
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Table 2.6: Sources and numbers oflarvae, types of rearing containers, substrates tested and dates associated with each year of 
rearing study, 1995 to 2001 (No rearing occurred during 1996 to 1998). 

Year Source 
Number of Rearing 

Volwne Substrate 
Date placed at Date removed to 

Larvae container 3.5°C 25°C 

1995 -1996 Various locations Unknown Bin 10L Berries 

1998-1999 Little Catalina, 
16 March put into 

Pouch Cove, Plastic pill 
Freshwater, 

86 
bottle 

100 ml Vennkulite October 20 l2°C, then 1 May 

Bryant's Cove 
into 20°C 

1999-2000 Little Catalina, 
Clear plastic 

Pouch Cove, Vermiculite, with 
Freshwater, 

504 margarine 500 ml 
5-l 0 betries 

October 14 MayS 

Bryant's Cove 
container 

2000-2001 Little Catalina 97 Tupperware® 4.2 L Sand November21 March 23 

Pouch Cove 138 Tupperware® 4.2L Sand+ leaf litter November21 March 30 

Bryant's Cove 92 Tupperware® 4.2 L Sand+paper towel November21 Apri14 

105 Tupperware® 4.2 L 
Sand+paper 

November 21 April18 
towel+leaf litter 

Freshwater 
270 Tupperware® 4.2 L 

Sand+paper 
November21 April 14 

towel+leaf litter 
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were tested to obtain retention times for comparison with test extracts from females. 

Pheromone samples were obtained through collection ofheadspace volatiles, direct 

collection from emitting females, vial washing and excised ovipositor washing. Details of 

collection methods are described in appendix B. 

2.8 Seasonal history: 

Trap capture data from each year of study were recorded for each site, and used to 

determine the flight season of G. libertina and the effects of weather on trap captures. 

2.8.1 Weather data collection: 

Weather variables during the 1996-2000 field seasons were collected in order to 

calculate degree-day predictions and determine any effects of weather conditions on adult 

tnipping. Weather data were obtained from Environment Canada climate stations within 

25 kilometres of each study site (Figure 2.1). Details of each climate station are shown in 

Table 2.7. Maximum, minimum and mean daily air temperature (°C), total daily 

precipitation (mm) and wind speed (kph - only for St. John's Airport weather station) 

were collected to determine if temperature, precipitation or wind speed affected trapping 

rate. 

2.8.2 Data analysis: 

Temperature was measured every minute, and averaged daily. Rainfall amounts 
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Table 2.7: Environment Canada weather stations used in weather data collection, showing position, relative position to study 
site and equipment used in collection at each site. 

Weather Latitude and 
Elevation 

Distances from Temperature Precipitation Windspeed 
Station Longitude study sites readings* readings readings 

48° 40' 22 km from Little 
Yellow Springs Modified Fischer and 

Bona vista 
53° 07' 

26m 
Catalina 

International Model Porter potentiometric None 
44212 thermistor rain gauge 

2 km from 
Meteorological Service 

47° 46' Freshwater, Clear Spirit Celsius 
Victoria 

53° 13' 
43 m 

15 km from thermometer 
of Canada Type B None 

Bryant's Cove 
plastic rain gauge 

Long 47° 37' 25 km from Clear Spirit Celsius 
Meteorological Service 

141m of Canada Type B None 
Harbour 52° 45' Chance Cove thermometer 

plastic rain gauge 

Campbell-Stokes 
Modified Fischer and Meteorological 

St. John' s 47° 25' 
8m 

20km from Marklii C recorder, with 
Porter potentiometric Service of Canada 

Airpmt 53° 49' Pouch Cove unspecified temperature 
rain gauge U2A speed detector 

sensor 

* All temperature sensors were housed within Type B Stevenson screens. 
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were summed as a daily total. Wind speed data from St. John' s Airport were obtained in 

an hourly format, which was converted to an average daily wind speed. To test the effects 

of each weather variable on adult catch, daily weather values were averaged during the 

period prior to and between trap sampling. Weather variables were collected during the 

entire trapping periods by automated weather stations. During 1996 and 1997, trap 

sampling was biweekly, therefore weather data were averaged for 3-4 days up to and 

including the sample date (and record of adult catch). During 1998-2000, trap sampling 

was weekly, therefore weather variables were averaged during the week prior to trap 

examination. Average weekly/biweekly weather was tested for a relationship with 

numbers of adults per trap/night by Pearson correlations (Sokal & Rohlf, 1995). 

Degree- day accumulations for 10% and 50% capture at each site and during each 

year were calculated using Arnold's Formula [mean daily temperature- base temperature] 

(Arnold, 1960). Since the base developmental temperature for G. libertina is not known, a 

base of five degrees Celsius was used, as recommended by Pruess (1983), and a variable 

readily available from Environment Canada weather summaries. The relationship between 

the dates of first emergence/capture of G. libertina, and the calculated degree days was 

examined to determine any consistent pattern between years and sites. Degree day 

accumulations determined by field trapping for each site and year were compared to 

emergence data from mass rearing in 2000 by Three Way ANOVA, and means compared 

by Fisher' s Least Significant Difference (LSD)(Sokal & Rohlf, 1995). 
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3.0 RESULTS 

3.1 Evaluation of Grapholita species attractants: 

3.1.1 1996 Field trials: 

The E8-12:0Ac attracted the most moths (p<0.05, Table 3.1), followed by 

Z8-12:0Ac, Z8-12:0H and the E,E8,10-12:0Ac Numbers were not significantly 

different from each other but were significantly greater compared to the controls. 

There were significant differences in moth catches (Table 3.1) between 

sites. Total trap captures were greater in Little Catalina than in Pouch Cove or 

Freshwater. However, within each site the ranking of compounds was similar 

(except the Z8-12:0Ac catch in Freshwater was relatively lower than was found 

at the other sites (Table 3.2)). Since compound rankings based on moth catches 

were similar at each site, the intersite variation was dismissed. 

The effects of different concentrations of the compounds were not 

significant (Tables 3.1 & 3.3). However, catch rates were generally greater at the 

1 mg and 10 mg concentrations, with the exception of0.1 mg in the E8-12:0Ac 

(Figure 3.1 ). There was no significant interaction between treatment, 

concentration, or site. 
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Table 3.1 : Mean (standard enor) of daily catches per trap x 1 03 of G.libertina moths by 4 different compounds at 4 
concentrations (standardized by subtraction of the mean daily blank catch), in each of 3 trapping areas from 24 June to 
19 August, 1996. Total trap-nights per compound was 52 to 59. Note that lOmg lures are replicated 3 time in each 
grid. 

Site (Mean # ofMoths(SEM)} 

Compound Concentration Pouch Cove Freshwater Little Catalina All Sites 

EE-8, 1 0-dodecadien-1-ol lOmg* 3 (1.1) 4(1.4) 42 (7.6) 17 (3. 1) 
acetate lmg l (1.4) 2 (1.4) 108 (19.0) 39 (10. 1) 
(E,E8, 1 0-12:0Ac) 

0.1mg 6 (4.4) 7 ( 4.5) 29 (9.3) 14(4.1) 

0.01mg 9 (4.0) 0 (0) 30 (7.1) 12 (3 .3) 

Z-8-dodecen-1-oJ acetate lOmg* 22 (5.6) 12 (2.5) 212(37.0) 85 (15.0) 
(Z8-12:0Ac) lmg 22 (9.2) 1 (1.1) 205 (119.0) 79 (43.2) 

O.lmg 14 (8.8) 10 (3 .9) 67 (45.1) 3 1 ( 16.2) 

0.01mg 9 (4.0) 21 (1 1.0) 79 (28.4) 37 (11.0) 

E-8-dodecen-1-ol acetate 10mg* 24 (8.8) 21(6.1) 305 (63.1) 119 (24.1) 
(E8-12:0Ac) lmg 26 (11.0) 3 (1.6) 216 (74.0) 93 (29.3) 

0.1mg 46 (16.0) 4(3.4) 295 (139.6) 153 (55.6) 

0.01mg 1 (1.4) 2 (2.2) 143 (51.1) 51 (20.2) 

Z-8-dodecen-1-ol lOmg* 7 (2.1) 4 (2.0) 125 (22.0) 47 (8.9) 
(Z8-12:0H 1mg 1 (1.4) 4 (2.5) 179(44.2) 65 (19.1) 

0.1mg 1 (1.4) 6 (3.3) 34 (10.9) 15 (4.7) 

0.01mg 13 (6.2) 1 (1.1) 57(12.1) 24 (5.7) 

Total Catch 239 203 3228 3770 
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Table 3.2: Ranking of 3 different attractant compounds by mean daily catches of 
G. libertina, at 1mg/ml, from 24 June to 19 August, 1996 and from 30 June to 25 
August, 1997, at 5 different trapping sites. Rank values followed by different 
letters were significantly different (p< 0.05) from other compounds at the same 
site and year (Fisher's LSD). 

Year Site Compounds tested 

E-8-A Z-8-A Z-8-ol Control 

1996 Little Catalina (L) p 2ab 3b 4c 

Pouch Cove (P) p 2a 3b 4c 

Freshwater (F) la 3b 2c 4d 

Total p 2ab 3b 4c 

1997 Little Catalina (L) 2a lb 3a 4c 

Chance Cove (C) 2a lb 3c 4d 

Bryant's Cove (B) 2a lb 3c 4d 

Total 2a lb 3c 4d 
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Table 3.3: Standardized total catches of G. libertina moths by 4 different 
compounds, at 4 different concentrations, (3 traps per site/standardized by 
subtraction of2 blank trap captures) from 24 June to 19 August, 1996, at 3 
different study sites. Catches at 1 Omg concentration were the mean of 3 traps. 

Site 

Total catches 

Compound Concentration 
Pouch 

Freshwater 
Little per Compound 

Cove Catalina & 
Concentration 

10mg 1.3 2.2 26.7 30.2 
EE-8,10-

dodecadien-1-ol 
acetate 

lmg 0.0 0.5 85.0 85.5 

O.lmg 3.0 4.5 13.0 20.5 

(E,E8,10-12:0Ac) 0.01mg 5.0 0 14.0 19.0 

Total 9.3 7.2 138.7 155.2 

10mg 14.7 9.8 188.3 212.8 
Z-8-dodecen-l-ol 

acetate 1mg 16.0 0.0 174.0 190.0 

O.lmg 9.0 7.5 48.0 64.5 

(Z8-1 2 :OAc) 0.01mg 5.0 17.5 59.0 82.5 

Total 44.7 34.8 469.3 548.8 

10mg 16.3 18.5 271.3 306.1 
E-8-dodecen-l-ol 

acetate 1mg 17.0 22.5 184.0 223 .5 

O.lmg 31.0 2.5 347.0 380.5 

(E8-12:0Ac) 0.01mg 0.0 0.5 117.0 117.5 

Total 64.3 44.0 919.3 1027.6 

lOmg 4.0 2.2 105.7 111.9 

Z-8-dodecen-1-ol 1mg 0.0 2 .5 151.0 153.5 

O.lmg 0.0 3.5 18.0 21.5 

(Z8-12:0H) 0.01mg 8.0 0.0 39.0 47.0 

Total 12.0 8.2 313.7 333.9 

Site Totals 130.3 94.2 1841.0 2065.5 
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Figure 3.1: Total catches (not standardized by controls) of G. libertina in traps 
baited with four different compounds, at four different concentrations, from 24 
July -19 August, 1996. 

57 



3.1.2 1997 Field trials: 

There were significant differences in moth catches between sites (Table 

3.2, Table 3.4), and some treatment-site interactions. Total trap captures were 

lower at Bryant's Cove than in Little Catalina or Chance Cove. The ranking of 

compounds was similar at all sites with the exception of the 90:7:3 blend in 

Bryant's Cove and the 94:4:2 at Chance Cove, which ranked higher than the 

85:10:5, but were not significantly different (p>0.05) from the other sites. Inter

site variation was therefore dismissed. 

Within the unblended compounds, the Z8-12:0Ac was the most attractive 

(p<0.05, Tables 3.4 & 3.5). The E8-12:0Ac was more attractive than the Z8-

12:0H, which was not significantly different from the control traps (Figure 3.2). 

The 85:10:5 was the most attractive ofthe blended compounds, being 

significantly different from the control, Z8-12:0H and E8-12:0Ac lures (Figure 

3.2). It was followed in attractiveness by the Z8-12:0Ac, 90:7:3 and 94:4:2 

blends. All three blends and the Z8-12:0Ac captured significantly (p<0.05) more 

than the control and Z8-12:0H lures. The Z8-12:0H, 90:07:03 and 94:04:02 were 

not significantly different from the E8-12:0Ac. The blends were not significantly 

different from one another, or the Z8-12:0Ac, which was slightly more attractive 

than the 90:7:3 and 94:4:2 blends. 

3 .1.3 1996-1997 comparison: 

Trap captures by each compound varied between years (Table 3.5). E8-

12:0Ac caught relatively more moths than the Z8-12:0Ac in 1996, although this 
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Table 3.4: Mean adult catch per trap per night x 103 and relative rank of G. 
libertina by 6 attractant compounds and blends (lmg/ml) and control traps, from 
30 June to 25 August 1997, at 3 different study sites. 

Site 

Lures Bryant's Cove Little Catalina Chance Cove 

Mean Rank Mean Rank Mean Rank 
(SEM) (SEM) (SEM) 

85: I 0:5 350 (75) 2 820 (230) I 330 (77) 3 

90:7:3 440 (120) 1 630 (140) 2 290 (39) 4 

94:4:2 200 (43) 4 530 (190) 3 420 (90) 2 

E8-12:0Ac 54 (36) 5 230 (27) 5 220 (60) 5 

Z8-12:0Ac 340 (110) 3 360 (21) 4 720 (99) 1 

Z8-12:0H 7 (7) 7 140 (26) 6 67 (49) 6 

Control 34 (14) 6 60 (16) 7 54 (25l 7 
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Table 3.5: Mean (SEM) daily catches of G. libertina moths per trap x 103 by 3 
different unblended compounds (lmg/ml), from 24 June tol9 August, 1996 and 
from 3 0 June to 25 August, 1997, at 5 different study sites. Values for 
compounds which are followed by different letters were significantly different 
(p<0.05) from other compounds at the same site and year (Fisher' s LSD). 

Com2ounds 
Year Site E8-12:0Ac Z8-12:0Ac Z8-12:0H 

1996 Little Catalina (L) 220 (74.oy 210 (12o.oyb 179 (44.0)b 

Pouch Cove (P) 26 (11.0Y 24 (9.2Y 1 (1.4)b 

Freshwater (F) 30 (17.oy 1 (1.1)b 4 (2.5t 

Total (All sites) 93 (29.oy 79 (43.oyb 65 (19)b 

1997 Little Catalina (L) 11 (2.9? 19 (5.6)b 7 (2.2Y 

Chance Cove (C) 15 (4.oy 45 (16)b 4 (2.8t 

Bryant's Cove (B) 3 (1.4Y 22 (8.5)b o (0.3Y 

Total (All sites2 10(1.7t 28(6.12b 4(1.2t 
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was not significant, while the Z8-12:0Ac caught relatively more moths than the 

E-8-A in 1997. Z8-12:0H caught fewer moths than the Z8-12:0H or E8-12:0Ac 

in both years. Total trap catches for all compounds tested declined by more than 

90% in 1997. No significant position effects were observed during the 1996 or 

1997 flight seasons. 

3.2 Correlation of larvae and damage density with adult trap capture: 

3.2.1 1998 Field trials: 

Total and mean numbers of berries, damaged berries, larvae and adults per 

site during each year are shown in Tables 3.6 and 3.7, respectively. Total adults 

captured ranged from 46 in Pouch Cove to 386 in Freshwater (Table 3.6). Berry 

densities were highest at Pouch Cove, which was followed by Little Catalina, 

Freshwater and Bryant's Cove, respectively. Damage and larval population 

densities were greatest at Freshwater, followed by Little Catalina, Bryant's Cove 

and Pouch Cove. 

MANOV A of lingonberry variables showed a significant relationship 

between adult trap capture and both numbers oflarvae and damage (Table 3.8). 

Linear regression analysis indicated significant positive correlations between 

larval populations, damaged berries and adult capture for each trapping area 

(Table 3.9). Larval populations correlated with damage (R2 = 0.66, Figure 3.3), 

and adult trap rate correlated with larval populations (R2 = 0.35, Figure 3.4) and 

damage density (R2 = 0.56, Figure 3.5). No significant relationship was found 

between berry density and adult, larval or damage densities. 
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Table 3.6: Total numbers of berries, damaged berries and larvae collected from 48 
1m2 quadrats at each site, and adults trapped, 1998 to 2000. Total number of 
Phanerotoma spp. parasitoids collected from pooled collections. 

Total_2er site/year 

Site Variable 1998 1999 2000 

Pouch Cove Berries 9337 1347 2399 

Damaged berries 70 167 278 

Larvae 9 109 107 

Adults trapped 46 106 14 

Freshwater Berries 7616 1157 7723 

Damaged berries 186 288 663 

Larvae 38 130 128 

Adults trapped 386 220 3 

Bryant's Cove Berries 5873 751 8694 

Damaged berries 97 154 400 

Larvae 14 83 92 

Adults trapped 191 122 

Little Catalina Berries 8778 2285 4910 

Damaged berries 116 264 141 

Larvae 25 182 39 

Adults trapped 273 200 5 

All Sites 
Phanerotoma spp 

10 24 5 
(Wesmaell. 
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Table 3.7: Mean number of adults captured per trap during the 1998 (25 June to 
29 July) 1999 (18 June to 26 July) and 2000 (June 22 to Aug 3) G. libertina flight 
seasons, and mean munber of berries, damaged berries and larvae per trap (eight 
1 m2 quadrats corresponding to each trap) in attractant trapping grids at four wild 
lingonberry fields. 

Year (Mean/Trap (SEM)) N=6 

Site Variable 1998 1999 2000 

Pouch Cove Ben·ies 1556 (255.0) 224 (88.8) 281 (87.3) 

Damaged Berries 12 (2.3) 28 (10.5) 40 (12.2) 

Larvae 2 (0.6) 18(6.7) 17 (5.1) 

Adults 8 (2.2) 20 (2.6) 2 (0.4) 

Freshwater Berries 1269 (238.2) 193 (104.1) 936 (299.3) 

Damaged Berries 31 (1.9) 48 (19.9) 82 (25.1) 

Larvae 6 (1 .0) 22 (8.7) 15 (3.5) 

Adults 64 (9.9) 38 ( 4.3) 0.5 (0.3) 

Bryant's Cove Berries 979 (140.9) 125 (59.1) 1127 (174.7) 

Damaged Berries 169 (2.0) 26 (14.2) 55 (12.4) 

Larvae 2 (0.4) 14 (8.4) 13 (3.3) 

Adults 32 (11 .0) 20 (9.4) 0.2 (0.16) 

Little Catalina Berries 1463 (I 64. 7) 381 (71.1) 1109 (469.3) 

Damaged Berries 19 (1.8) 44 (5.0) 37 (15.8) 

Larvae 4 (0.9) 30.3 (3.9) 9 (4.1) 

Adults 46 ~6.8) 33.3 (10.9~ 1 (0.6) 
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Table 3.8: Multi-way analysis of variance results with percent coverage of 
lingonberry foliage, berry density and adult capture as covariates, year as an 
explanatory variable and larvae and damage as response variables. Asterisks 
represent significant correlations, p < 0.05. 

Year Covariate/Factor Response variable F p 

1998 Lingonberry Larvae 0.69 0.42 
foliage 

Damage 0.39 0.54 

Berry density Larvae 0.10 0.75 

Damage 0.18 0.67 

Adults Larvae 10.9 0.00* 

Damage 13.3 0.00* 

1999 Lingonberry Larvae 0.29 0.59 
foliage 

Damage 0.01 0.92 

Berry density Larvae 24.44 0.00* 

Damage 16.68 0.00* 

Adults Larvae 2.51 0.12 

Damage 0.96 0.34 

2000 Lingonberry Larvae 9.85 0.00* 
foliage 

Damage 71.93 0.00* 

Berry density Larvae 27.04 0.00* 

Damage 21.23 0.00* 

Adults Larvae 17.58 0.00* 

Damage 25.75 0.00* 

2000 Mass Lingonberry Larvae 135.68 0.00* 
Trapping foliage 

Damage 30.58 0.00* Grids 

Berry density Larvae 0.10 0.75 

Damage 0.12 0.73 

Adults Larvae 41.83 0.00* 

Damage 15.68 0.00* 
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Table 3.9: R2 values for regressions based on total adult capture, lru·val 
population, damaged berries and berries, during the 1998, 1999 and 2000 field 
seasons. All variables were log-transformed prior to analysis. Asterisks represent 
significant con-elations, p < 0.05. 

Year 
1998 

1999 

2000 

2000 Mass trapping grids 

1998-1999 

1999-2000 

Regression 

Berries vs. larvae 
Berries vs. damaged berries 

· Berries vs. adults 
Larvae vs. damaged bemes 

Adults vs. larvae 
Adults vs. Damaged berries 

Bemes vs. larvae 
Berries vs. damaged benies 

Berries vs. adults 
Lar\rae vs. damaged benies 

Adults vs. larvae 
Adults vs. damaged berries 

Berries vs. larvae 
Berries vs. damaged berries 

Berries vs. adults 
Larvae vs. damaged berries 

Adults vs. larvae 
Adults vs. damaged berries 

Berries vs. larvae 
Berries vs. damaged berries 

Bemes vs. adults 
Larvae vs. damaged bemes 

Adults vs. larvae 
Adults vs. damaged berries 

1998 Larvae vs. 1999 adults 

1999 Larvae vs. 2000 adults 
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R2 value 

0.00 
0.01 
0.03 
0.66* 
0.35* 
0.56* 

0.90* 
0.85* 
0.01 
0.89* 
0.00 
0 .00 

0.33* 
0.56* 
0.13 
0.89* 
0.36* 
0.22 

0.75* 
0.89* 
0.02 
0.89* 
0.03 
0.01 

0.020 

0.038 
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Figure 3.3: Regression oflarvae vs. damaged berries within 6 plots at each of 4 
sites during the 1998 field season. Data log transformed (Log (X+O.S)). 
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Figure 3.4: Regression of adults vs. larvae within 6 plots at each of 4 sites during 
the 1998 field season. Data have been log transfmmed (Log (X+O.S)). 
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Figure 3.5: Regression of adults vs damaged berries within 6 plots at each of 4 
sites during the 1998 field season. Data have been log transformed (Log 
(X+0.5)). 
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3.2.2 1999 Field trials: 

The total number of adults trapped per site during the 1999 field season 

ranged from 106 in Pouch Cove to 220 in Freshwater (Table 3.6). Mean berry, 

larval and damaged berry density are shown in Table 3.7. Berry densities were 

highest at Little Catalina, followed by Pouch Cove, Freshwater and Bryant's 

Cove. Larval populations and damaged berry density were highest in Freshwater 

and Little Catalina, followed by Pouch Cove and Bryant's Cove (Table 3.7). 

MANOVA analysis in 1999 showed no relationship between the adult 

capture rate and either larval, damage, or berry densities (p<0.05). A significant 

positive relationship was found between larval populations and damaged berries, 

with an R 2 of0.89 (Table 3.9, Figure 3.6). Berry density was also significantly 

correlated with both larval populations and berry damage, with R2 values of0.90 

and 0.85, respectively (Table 3.9, Figures 3.7 and 3.8). 

3.2.3 2000 Field trials: 

Total number of adults trapped per site during the 2000 field season 

ranged from 1 in Bryant's Cove to 14 in Pouch Cove (Table 3.6). Mean berry, 

larval and damaged berry density are shown in Table 3.7. Berry densities were 

highest in Bryant's Cove, followed by Little Catalina, Freshwater and Pouch 

Cove. Larval populations were greatest at Pouch Cove, followed by Freshwater, 

Bryant' s Cove and Little Catalina. 

MANOVA in 2000 indicated significant relationships between adults, 

berries and lingonberry coverage as explanatory variables with larvae and damage 
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Figure 3.6: Regression oflarvae vs. damaged berries within 6 plots at each of 4 
sites during the 1999 field season. Data have been log transformed (Log 
(X+0.5)). 
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Figure 3.8: Regression of total berries vs. damaged berries within 6 plots at each 
of 4 sites during the 1999 field season. Data have been log transformed (Log 
(X+0.5)). 
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as response variables (p < 0.05, Table 3.8). Since adult densities were low, plots 

from which no adults were captured were not included in regression analysis for 

2000. Linear regression showed significant positive con-elations between larval 

populations and damaged berry densities and between adult and larval 

populations. Larval populations con-elated with damage (R2 = 0.89, Figure 3.9), 

and adult trap rate con-elated with larval populations (R2 = 0.36, Figure 3.1 0). 

Beny densities correlated with larvae and berry damage (R2 = 0.33, Figures 3.11 

and R2 = 0.56 respectively, Figure 3.12). Correlation was not significant between 

adults and damage or berry densities ( R2 = 0.22 and 0.13, respectively (p<0.05)). 

3.2.4 Comparison between years: 

Total benies, percent larval infestation and damaged berries were 

significantly different between years, whereas differences between sites were not 

(p<0.05). Larvae and damaged berry densities were not significantly different 

between control and pheromone-trapped quadrats in any year. A significantly 

lower berry density was evident at all sites in 1999 compared with 1998 and 

2000, whereas percent larval infestation and berry damage were significantly 

higher (Figures 3.13, 3.14, 3.15). Total adult capture at each site was less in 2000 

(1 in Bryant's Cove to 14 in Pouch Cove) compared to 1999 (1 06 in Pouch Cove 

to 220 in Freshwater) or 1998 (46 in Pouch Cove to 386 in Freshwater). Site 

rankings based on adult capture rates were variable between years. Rankings of 

berry densities, larval counts and damaged ben·ies at each site also differed 

between the 1998, 1999 and 2000 field seasons (Table 3. 7). Linear regression 
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Figure 3.9: Regression of larvae vs. damaged berries within 6 plots at each of 4 
sites during the 2000 field season. Data have been log transformed (Log 
(X+0.5)). 
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Figure 3.10: Regression of adults vs. larvae within 6 plots at each of 4 sites 
during the 2000 field season. Data have been log transformed (Log (X +0.5)). 
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analysis also indicated that there were differences in the relationships between 

variables in each year, for example larval and berry damage counts were 

positively correlated with the adult capture rate in 1998, but were correlated with 

berry density in 1999 (Table 3.9). 

Regression of larval counts in 1998 and 1999 with subsequent adult 

counts in 1999 and 2000 respectively indicated no significant relationship 

between larval populations and adult population size in following years (Table 

3 .9). Ratios of damage : larvae and adults : larvae were variable between sites 

and years (Table 3.1 0). Adult : larvae ratios in 2000 were very high in 

Freshwater and Bryant's Cove, and may be attributed to low adult trapping. 

Reported Phanerotoma spp. parasitism decreased from 11.6% in 1998 to 1.5% in 

2000. 

All of the one hundred (total over all years) randomly selected G. libertina 

moths from the traps in 1996, 1997 and 1998 were found to be males, by genitalia 

examination (Figure 3 .16) and comparison with dissected genitalia of reared 

females (Figure 3.17). 

3.3 Vegetation analysis: 

A complete listing of plant species, densities and ranges at each site during each 

year is listed in appendix C. Results of principal component analysis of 

vegetation types from 1998-2000 are summarized in Table 3.11 and Figure 3.18. 
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Table 3.10: Damage: larvae and larvae: adult ratios based on 1998, 1999 and 
2000 trap catch at each site. 

Site 

Damage : larvae Pouch Cove 
Freshwater 
Bryant's Cove 
Little Catalina 

Larvae : adults Pouch Cove 
Freshwater 
Bryant's Cove 
Little Catalina 

Percent 
Phanerotoma spp. Overall 

parasitism 
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1998 

7.8 
5.0 
6.9 
4.6 

0.2 
0.1 
0.1 
0.1 

11.6% 

Year 

1999 

1.5 
2.2 
1.9 
1.5 

1.0 
0.6 
1.9 
0.9 

4.8% 

2000 

2.6 
5.2 
4.3 
3.6 

7.6 
42.7 
92.0 
7.8 

1.5% 



• 

Figure 3.16: Light micrograph of male G. libertina genitalia, following extraction 
from pheromone traps with ethyl acetate, clearing with potassium hydroxide and 
mounting in Rubin's medium. Scale: 1 em= 0.1 mm. 
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• 

Figure 3.17: Light micrograph of female G. libertina genitalia, dissected from 
reared insects, cleared with potassium hydroxide and mounted in Rubin • s 
medium. Scale: 1 em = 0.1 mm. 
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Table 3.11: Principal component analysis of vegetation coverage data for four 
study sites in Little Catalina, Pouch Cove, Bryant's Cove iilld Freshwater, NF., 
during the 1998, 1999 and 2000 field seasons. For principal component 3, only 
those seecies which were most eositive or nes:ative on are shown. 

Principal 
Eigenvector 

Percent 
Component Vegetation Minimum Maximum variance 

Axis 
scores 

explained 

Vaccinium vitis-idaea 0 85 0.866 

Vaccinium angustifolium 0 90 0.769 

Juniperus communis 0 80 0.727 

Sphagnum spp. 0 80 0.597 

Potentilla tridentata 0 50 0.542 

1 Maianthemum 0 40 0.521 30% 

canadensis 

Cornus canadensis 0 40 0.299 

lichen spp. 0 90 0.225 

Kalmia angustifolium 0 80 0.173 

Empetrum nigrum 0 90 0.155 

lichen spp. 0 90 0.728 

Kalmia angustifolium 0 80 0.650 

Empetrum nigrum 0 90 0.623 

Cornus canadensis 0 40 0.337 

Potentilla tridentata 0 50 0.292 

2 Vaccinium vitis-idaea 0 85 0.156 22% 

Vaccinium angustifolium 0 90 0.004 

Sphagnum spp. 0 80 -0.609 

Juniperus communis 0 80 -0.470 

Maianthemum 0 40 -0.174 
canadensis 

Cornus canadensis 0 40 0.486 

3 
Maianthemum 0 40 -0.635 14% 

canadensis 

lichen spp. 0 90 -0.558 
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plotted on a larger scale than A. 
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Vegetation with high and low eigenvector scores for each principal component 

were assumed to contribute the most variability along each axis. Principal 

components 1, 2 and 3 explained 30%, 22% and 14% ofthe variance, 

respectively. Principal component 1 was represented by high positive scores for 

Vaccinium vitis-idaea (lingonberry), Vaccinium angustifolium, Juniperus 

communis, Sphagnum spp. and Potentilla tridentata. Vegetation on principal 

component 1 had no negative values, indicating positive autocorrelation between 

all vegetation types on this axis. Principal component 2 maintained negative 

scores for Sphagnum spp., Juniperus communis and Maianthemum canadensis, 

and high positive scores for Kalmia angustifolium, Lichen spp. and Empetrum 

nigrum. Principal component 3 had Cornus canadensis at the negative end, and 

Maianthemum canadensis and Lichen spp. at the positive end of the axis. 

Figure 3.18 shows a number of trends evident from the vegetation data. 

Plots from various sites were closely associated along each principal component . 

Along principal component 2, the Little Catalina plots fell into the positive 

region, whereas Freshwater plots clustered at the negative end. Pouch Cove and 

Bryant's Cove clustered in the middle region of principal component 2. Site 

differences were not negative on principal component 1. Fisher' s LSD 

comparisons of sites along each axis showed significant differences between 

Freshwater and Little Catalina along principal component 1, and between all sites 

except Pouch Cove and Bryant's Cove on principal component 2 (Table 3.12). 

Differences between plots on principal component 1 were based on differences 

between years (Figure 3 .18). In 1999, 2000 and 2000B, plots clustered in the 
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Table 3.12: Least significant difference comparisons between sites on axes 1 and 
2 of a principal component analysis of vegetation types at four study sites, Little 
Catalina, Pouch Cove, Bryant's Cove and Freshwater, during 1998-2000 field 
seasons. (2000B denotes mass trapping grid, variables followed by different 
letters were significantly different at p<0.05). 

Axis Site Mean 
Standard 

Difference 
Deviation 

Principal Pouch Cove -9.48 x 10·3 0.811 A, B 
Component 1 

Freshwater 0.4 1.253 B 

Little Catalina -0.37 0.826 A 

Bryant's Cove 5.82 X 10·3 0.946 A, B 

Principal Pouch Cove -8.47 X 10·3 0.272 A 
Component 2 

Freshwater -0.98 0.489 B 

Little Catalina 1.08 1.114 c 

Bryant's Cove -3.35 X 10"3 0.589 A 
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slightly negative region of principal component 1. Plots in 1998 were more 

variable on principal components 1 and 2, being in the more positive region of 

principal component 1 and variable across principal component 2. Fisher's LSD 

comparisons indicated that plots in 1998 were significantly different from those in 

1999, 2000 and 2000B (which showed no differences between them) (Table 

3.13 ). Mean coefficients of variation for each year also indicated more variability 

was present in 1998 samples (R=81% in 1998 versus R=96% in 1999 and R=97% 

in 2000). 

Principal component 1 varied between 1998 data and other years, and 

variation within the 1998 data itself (relative to 1999 and 2000 data). Principal 

component analysis was therefore conducted again, without the 1998 data, to 

remove autocorrelation in the vegetation data, and variation due to the 1998 data 

(as evident on principal component 1, Figure 3 .18). 

Results of principal component analysis without 1998 vegetation data are 

shown in Tables 3.14 and 3.15. Principal components 1, 2 and 3 explained 30%, 

20% and 11% of the variance, respectively. Principal component 1 was 

represented by negative scores for lichen spp., Kalmia angustifolium, Empetrum 

nigrum, Comus canadensis and Potentilla tridentata, and positive scores for 

Sphagnum spp., Vaccinium vitis-idaea, Juniperus communis, Vaccinium 

angustifolium and Maianthemum canadensis. Principal component 2 had 

negative scores for Potentilla tridentata, Empetrum nigrum, Sphagnum spp., 

Juniperus communis, Kalmia angust~folium and Vaccinium vitis-idaea, and 

positive scores for Comus canadensis, Maianthemum canadensis, Vaccinium 

angustifolium, and lichen spp. Table 3.15 describes vegetation abtmdance at 
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Table 3.13: Least significant difference (LSD) comparisons between years on 
axes 1 and 2 of a principal component analysis of vegetation types at 4 study 
sites, Little Catalina, Pouch Cove, Bryant's Cove and Freshwater, during 1998-
2000 field seasons. (2000B denotes mass trapping grid, variables followed by 
different letters were significantly different at p<0.05). 

Axis 

Principal 
Component 1 

Principal 
Component2 

Year 

1998 

1999 

2000 

2000B 

1998 

1999 

2000 

2000B 

Mean 

1.6 

-0.56 

-0.54 

-0.48 

0.52 

-0.22 

-0.1 3 

-0.16 
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Standard 
Deviation 

0.675 

0.189 

0.244 

0.276 

1.69 

0.497 

0.545 

0.595 

Difference 

A 

B 

B 

B 

A 

B 

B 

B 



Table 3.14: Principal component analysis of vegetation coverage data for four 
study sites in Little Catalina, Pouch Cove, Bryant's Cove and Freshwater, NF., 
during the 1999 and 2000 field seasons. For principal component 3, only those 
species which were most positive or negative on are shown. 

Principal 
Eigenvector 

Percent 
component Vegetation Minimum Maximum vanance 

axis 
scores 

explained 

Sphagnum spp. 0 80 0.747 

Vaccinium vitis-idaea 0 85 0.637 

Juniperus communis 0 80 0.603 

Vaccinium angustifolium 0 90 0.572 

Maianthemum 0 40 0.277 

1 canadensis 30% 

lichen spp. 0 90 -0.859 

Kalmia angustifolium 0 80 -0.473 

Empetrum nigrum 0 90 -0.448 

Cornus canadensis 0 20 -0.215 

Potentilla tridentata 0 30 -0.214 

Cornus canadensis 0 20 0.759 

Maianthemum 0 40 0.593 
canadensis 

Vaccinium angustifolium 0 90 0.542 

lichen spp. 0 90 0.208 

2 Potentilla tridentata 0 30 -0.532 20% 

Empetrum nigrum 0 90 -0.457 

Sphagnum spp. 0 80 -0.376 

Juniperus communis 0 80 -0.338 

Kalmia angustifolium 0 80 -0.135 

Vaccinium vitis-idaea 0 85 -0.0047 

Kalmia angustifolium 0 80 0.691 
3 11% 

Empetrum nigrum 0 90 -0.614 
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Table 3.15 : Descriptive comparison ofthe principal component analysis of vegetation coverage data for four study sites 
in Little Catalina, Pouch Cove, Bryant's Cove and Freshwater, NF., during the 1999 and 2000 field seasons. 

Relative Position 
on each axis 

Site I II Principal Component I Principal Component II 

Low relative abundances of Sphagnum Low relative abundances of Cornus canadensis, 
spp., Vaccinium vitis-idaea, Juniperus Maianthemum canadensis, Vaccinium 

Little communis, and Vaccinium angustifolium. angustifolium. 

Catalina 
Negative Negative 

High relative abundances of lichen spp., High relative abundances of Potenti/la 
Kalmia angustifolium, and Empetrum tridentata, Empetrum nigrum, Sphagnum spp., 
nigrum. and Juniperus communis .. 

Low relative abundances of Potentilla tridentata, 
Empetrum nigrum, Sphagnum spp., and 

No evidence for strong correlation with Juniperus communis .. 
Pouch Cove Neutral Positive vegetation abundance relative to other 

sites. High relative abundances ofCornus canadensis, 
A1aianthemum canadensis, Vaccinium 
angustifolium. 

Bryant's 
No evidence for strong correlation with No evidence for strong correlation with 

Neutral Neutral vegetation abundance relative to other vegetation abundance relative to other sites. 
Cove 

sites. 

Low relative abundances oflichen spp., Low relative abundances of Comus canadensis, 
Kalmia angustifolium, and Empetrum Maianthemum canadensis, Vaccinium 
nigrum. angustifolium 

Freshwater Positive Negative 
High relative abundances of Sphagnum High relative abundances of Potentilla 
spp., Vaccinium vitis-idaea, Juniperus tridentata, Empetrum nigrum, Sphagnum spp., 
communis, and Vaccinium angustifolium. and Juniperus communis. 
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each site, based on plot positions along principal components one and two. 

Clustering of plots within each site, during each year is shown on Figure 3.19. 

Pairwise comparisons (Fisher's LSD) indicated that Little Catalina scores were 

significantly lower and Freshwater was significantly higher than other sites on 

principal component 1 (Table 3.16). All sites were significantly different on 

principal component 2 except Freshwater and Little Catalina, which were not 

different from one another. 

By overlaying data on the insect's density and damage, few trends were 

noticed between the plots. Variation was evident between adult, larval and 

damage densities at plots within each site. Figure 3.20 shows that adult density 

was variable between all plots in 1999, but was lower in 2000 and C 2000. Larval 

and damaged berry densities in 1999 and 2000 were variable (Figures 3.21 and 

3.22), but showed no trend along either axis. Berry density differences were not 

apparent between sites, but densities were lower in 1999 relative to 2000 (as in 

section 3.2) (Figure 3.23). As previously discussed, Freshwater and Little 

Catalina maintained higher adult, larval and damage densities than the other sites 

(see section 3.2). 

Multi-way analysis of variance using vegetation coverage and berry 

density as covariates, and sites and years as explanatory variables found that both 

lingonberry coverage (Vaccinium vitis-idaea) (F=6.7, p<0.05), and berry densities 

(F=l 0.4, p<0.05) were significantly related to larval density, and that berry 
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densities (F= ll4.8, p<O.OS) were related to damage (Table 3. 17). No other 
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Figure 3.19: Scatterplot of plots within trapping grids at four study sites in: A-
1999, B-2000 and C-2000 (mass trapping grids), along axes 1 and 2 of a principal 
component analysis ofvegetation using data from 1999-2000. 

Table 3.16: Least significant difference comparisons between sites on axes 1 and 
2 of a principal component analysis ofvegetation types at four study sites, Little 
Catalina, Pouch Cove, Bryant's Cove and Freshwater, during 1999-2000 field 
seasons. (2000B denotes mass trapping grid, variables followed by different 
letters were significantly different at p<0.05). 

96 



Axis Site Mean 
Standard 

Difference 
Deviation 

Principal Pouch Cove 1.60 X 10-3 0.449 A 
Component 1 

Freshwater 1.18 0.477 B 

Little Catalina -1.32 0.454 c 
Bryant's Cove 0.14 0.436 A 

Principal Pouch Cove 1.46 0.53 A 
Component2 

Freshwater -0.74 0.413 B 

Little Catalina -0.54 0.48 B 

Bryant's Cove -0.17 0.553 c 
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1999, B-2000 and C-2000 (mass trapping grids), along axes 1 and 2 of a principal 
component analysis of vegetation using data from 1999-2000. 
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component analysis of vegetation using data from 1999-2000. 
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Figure 3.23: Bubbleplot of berry densities (total berries collected/quadrat/season) 
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principal component analysis ofvegetation using data from 1999-2000. 
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Table 3.17: Multiway analysis of variance with vegetation and berry densities as 
covariates, site and year as factors, and larval and damaged berry densities as 
dependant variables. Significant relationships (p<0.05) are indicated by asterisks. 

Variable Dependant F p 

Berry density Larvae 10.4 0.00* 

Damage 114.8 0.00* 

Vaccinium vitis-idaea Larvae 6.7 0.01 * 

Damage 2.1 0.16 

Vaccinium angustifolium Larvae 3.6 0.06 

Damage 2.8 0.1 

Juniperus communis Larvae 0.5 0.5 

Damage 0.3 0.6 

lichen spp. Larvae 0.2 0.67 

Damage 0.1 0.75 

Potentilla tridentata Larvae 0.6 0.44 

Damage 1.3 0.25 

Empetrum nigrum Larvae 0.4 0.51 

Damage 0.2 0.68 

Maianthemum canadensis Larvae 0 0.87 

Dama e 1 0.33 

Sphagnum spp. Larvae 3 0.09 

Damage 0.32 

Kalmia angustifolium Larvae 1.5 0.23 

Damaae 0.9 0.36 

Cornus canadensis Larvae 0.5 0.47 

Damaae 1.5 0.23 

Year Larvae 3.1 0.05* 

Damage 2.6 0.08 

Site Larvae 0 .6 0.62 

Damage 2.4 0.07 

Y ear*S ite interaction Larvae 2.5 0.04* 

Damage 3.5 0.00* 
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between year and site was also noted for both larvae (F=2.5, p<0.05) and damage 

(F=3.5, p<0.05). 

3.4 Trap design trials: 

The Pherocon® 1 C traps captured significantly more moths (p<0.05) than 

any other trap types (Table 3.18, Figure 3.24). The Diamond® trap was ranked 

second, followed by the Wing Trap® II and Delta® traps (Table 3.19). The 

Diamond® and Wing Trap® II were not significantly different from each other, 

and the Wing Trap® II and Delta® traps were not different from one another 

(p>0.05) (Figure 3.24). The Unitrap® captured significantly fewer moths 

(p<0.05) than all other trap types, except the Delta® trap. All trap types, except 

the Unitrap® captured significantly more moths than the control traps. 

Standardizing of overall mean catch by trap surface area ranked wing traps first, 

followed by Diamond and Delta traps. Some variation (p<0.05) was noted in the 

ranking oftraps between sites (Table 3.19). 

3.5 Mass trapping trials 

During mass trapping trials in 2000, total adult capture per trap ranged 

from 2 in Little Catalina to 5 in Pouch Cove (Table 3.20). In addition, data on 

total and mean berries, damaged berries and larvae per 1 m2 quadrat were also 

collected in mass trapping grids and standard correlation grids (Table 3.20). In 

mass trapping grids berry densities were greatest at Bryant's Cove, followed by 
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Table 3.18: Mean (SEM) number of moths captured per trap per season for five 
trap designs baited with 85:10:5 lure at four wild lingonberry fields in 1999. 

Trap Design (Mean(SEM)) 

Site Pherocon® 1 C Diamond® Wing II® Delta® trap Unitrap® 
Wing trap trap trap 

Pouch Cove 4 (3 .0) 3 (0.5) 8 (6.5) 1 (0.5) 1 (0.0) 

Bryant's 32 (2.5) 19 (6.0) 3 ( 1.0) 6 (0.5) 2 (0.0) 
Cove 

Freshwater 56 (11.5) 25 (10.0) 33 (1.0) 17 (8.0) 2 (1.0) 

Little 30 (7.0) 19 (10.0) 14 (2.5) 8 (5.5) 3 (2.5) 
Catalina 

Overall Mean 
30 (7.4) 16 (4.0) 14 (4.5) 8(2.9) 2 (0.6) 

[Mean ) 
Surface xi 00 4.7 3 4.1 2.7 N/A 
Area 
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Figure 3.24: Mean trap catch of G. libertina for five trap designs baited with 
85:10:5 lure at four sites in 1999 (All sites combined, means represented by the 
same letter did not differ (p<0.05) by Fisher's LSD). 
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Table 3.19: Ranking of five trap designs according to mean trap catch at each of 
four sites. 1 =most G. libertina captured, 5 =least G. libertina captured. 

Trap Design 

Site Pherocon Diamond Wing II Delta trap Unitrap 
IC Wing trap trap 

tra 

Pouch Cove 2 3 1 5 4 

Bryant's Cove 1 2 4 3 5 

Freshwater 1 3 2 4 5 

Little Catalina 1 2 3 4 5 

Overall 1 2 3 4 5 

106 



Table 3.20: Total and mean berries, damaged berries, larvae and adults per site 
and per square metre in 2000 in standard and mass trapping grids. Berries, larvae 
and berry damage recorded from 48 1 m2 quadrats at each site. 

Standard grid Mass trarming grid 

Site Variable Total per Mean/trap Total per Mean/trap 
site (SEM) site (SEM) 

Pouch Berries 2399 281 (87.3) 1623 122 (59.6) 
Cove 

Damaged 278 40 (12.2) 142 18 (8.0) 
berries 

Larvae 107 17(5.1) 31 4 (1.4) 

Adults trapped 14 2 (0.4) 5 1 (0.3) 

Freshwater Berries 7723 936 (299.3) 6102 761 (72.3) 

Damaged 663 82 (25.1) 620 78 (8.0) 
berries 

Larvae 128 15 (3.5) 142 19 (3.2) 

Adults trapped 
,., 
.) 0.5 (0.3) 4 0.5 (0.34) 

Bryant's Berries 8694 1127 (174.7) 7823 990 (241.8) 
Cove 

Damaged 400 55 (12.4) 481 60 (20.3) 
berries 

Larvae 92 13 (3 .3) 105 13 (3.7) 

Adults trapped 0.2 (0.1 6) 4 0.5 (0.34) 

Little Berries 4910 1109 (469.3) 4875 516 (62.7) 
Catalina 

Damaged 141 37 (15.8) 178 23 (5.2) 
berries 

Larvae 39 9 (4.1) 58 6.8 (1.4) 

Adults tra~~ed 5 1 (0.6~ 2 0.2 ~0 .2~ 
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Freshwater, Little Catalina·and Pouch Cove, respectively. Damage and larval 

population densities were greatest at Freshwater, followed by Bryant's Cove, 

Little Catalina and Pouch Cove. In the standard trapping grids, Freshwater had 

the highest larval densities, followed by Pouch Cove, Bryant's Cove and Little 

Catalina. Damaged berry densities in standard grids were greatest in Freshwater, 

followed by Bryant's Cove, Pouch Cove and Little Catalina. 

Vegetation analysis in mass trapping grids via Principal Component 

Analysis was discussed in section 3.4. A generalized MANOVA with sites as 

explanatory factors indicated no significant relationship between dominant 

vegetation (V angustifolium, V vitis-idaea and lichen spp.) and larval or damaged 

berry densities in mass trapping grids. When mass trap data were analysed 

independent of dominant vegetation by Multi-way ANOV A, a significant 

relationship was found between berry density and lingonberry coverage with 

larval and damage densities (Table 3.8). Adults were not significantly related to 

numbers oflarvae or damage within the mass trapping grids (p<0.05). Three 

Way ANOVA indicated that mean numbers of berries, damaged berries, adults 

and larvae were similar between standard and mass trapping grids at each site (p < 

0.05). Differences between sites were significant, however there was no 

significant interaction between sites, trapping grids or lingonberry variables, 

indicating relatively similar numbers ofberries, damage, adults and larvae 

between grids at the same site (p < 0.05). 
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3.6 Rearing and chemical analysis: 

3.6.1 Rearing: 

Rearing of larvae from 1996 to 2000 was unsuccessful. No surviving 

adults were obtained from the 1995-1996 trial. Only one adult moth, and ten 

Phanerotoma spp. (Hymenoptera: Braconidae) parasitoids emerged from rearing 

during 1998-1999. Rearing during 1999-2000 produced four adult G. libertina, 

and 13 Phanerotoma spp. Inspection of containers from 1999-2000 revealed that 

few larvae had pupated, and some corpses were infected with an unidentified 

fungus (unknown if infection was pre- or post-mortem). 

In 2000-2001, survivorship ranged from 5.1% in the Pouch Cove 

container to 17.1% in Bryant's Cove 2 (Table 3.21). Highest survivorship was in 

containers which had large amounts of paper towelling (Bryant's Cove and 

Freshwater). Parasitism by Phanerotoma spp., as determined by emerged 

parasitoids, ranged from 1.1% in Bryant's Cove 1 to 15.2% in Bryant's Cove 2. 

The rate of parasitism determined by emerged adult Phanerotoma spp. was higher 

than that determined by pupal collections (1.4%) during fall 2000 (Table 3 .6). 

Parasitism was also noted by two (same species) unidentified chalcid wasps. 

Total survivorship across all rearing containers was 9.5%, with 5.3% 

mortality being attributed to emerged parasitoids, and 85.2% mortality to 

unknown causes. Emergence of mass reared moths showed a 1 male: 1.9 female 

sex ratio (Table 25). Fecundity was determined by ovarian egg count and was 61 

± 9.1 eggs/female (N= 10) in 3-5 day old virgins. 
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Table 3.21 : Survivorship, parasitism (by Phanerotoma spp.) and mortality of reared G. libertina during 2000-200 1. 

Rearing 
Survivors 

d': '? Total 
% Survival Mortality Chamber Sex ratio at stmt 

% 
% Loss 

Males Females Total 
% % % 

Parasites 
Parasitism 

(excluding 
Total Males Females (by 

emergence) 
parasitism) 

Freshwater 13 17 30 0.76 270 11.0 % 43 % 57% 11 4.1 % 84.9% 

Bryant's 4 5 0.25 92 5.4 % 20% 80% 1.1 % 93.3% 
Cove 1 

Bryant's 3 16 19 0.16 105 17.1 % 16% 84% 16 15.2% 67.7% 
Cove2 

Little 3 3 6 97 6.2 % 50% 50% 2 2.1 % 91.7% 
Catalina 

Pouch Cove 3 4 7 0.75 138 5.1 % 43% 57% 7 5.1 % 89.8 % 

Total 23 44 67 0.52 702 9.5 % 34% 66% 37 5.3 % 85.2 % 
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3.6.2 Chemical analysis: 

Calling behaviour of female moths was observed from 8 pm until 10 pm 

during 2 separate days when behavioural observations were made. Analysis of 

female G. libertina effluvia and pheromone gland extracts did not reveal any 

evidence of a compound resembling suspected pheromone components when 

compared with retention times for standards of synthetic pheromone (Figure 

3.25). No other detectable peaks were found which could be related to any other 

potentially attractive compounds. 

3. 7 Seasonal history, degree day accumulations and weather analysis: 

3. 7.1 Seasonal history: 

The 1996 flight season of G. libertina at all sites began on 2 July and 

continued until 5 August for Pouch Cove and Freshwater, and 19 August in Little 

Catalina (Figure 3.26-A). The population peaked in mid-July, best shown in 

Little Catalina, and declined afterwards. 

The 1997 flight season began 4 July and ended by 18 August at Bryant' s 

Cove and Chance Cove, but persisted until 25 August in Little Catalina (Figure 

3.26-B). Bryant's Cove catch numbers peaked on 11 July at a lower density 

relative to the other sites, and declined thereafter. Little Catalina peaked in mid

July, but dropped sharply along with trap captures at the other two sites on 18 

July. Both Little Catalina and Chance Cove trap capture recovered and peaked 

again in the last week of July. 

Dming 1998, adults were recorded from 24 June to 14 July at Freshwater 
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Figure 3.25: Gas chromatograph showing peaks for retention time of a 85:10:5 
blend ofE-8-dodecen-1 -ol acetate, Z-8-dodecen-1-ol acetate and Z-8-dodecen-1-
ol, using a HP 5890 Series II gas chromatograph, with a 30 metre DB-5 
(Dmabond) column. Z-8-dodecen-1-ol peaked at 9.40 minute retention time, Z-8-
dodecen-1-ol acetate and E-8-doecen-1-ol co-eluted at 11.72 retention time. 
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Figure 3.26: Mean catch per trap/night of G. libertina at various sites during: A-
1996, B-1997, C-1998, 1999-D, 2000-E. 
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Little Catalina (Figure 3.26-C). Numbers trapped peaked in early to mid July and 

declined rapidly afterwards. 

During the 1999 season, adults were recorded from 2 July to 21 July at 

Little Catalina, and from 1 July to 20 July at Freshwater, Bryant's Cove, and 

Pouch Cove (Figure 3.26-D). As in 1998, numbers captured peaked in early to 

mid July, and declined afterwards. 

During the 2000 season numbers again peaked in mid-July, and adults 

were recorded from 1 July to 26 July at Little Catalina, Pouch Cove and Bryant's 

Cove, and from1 0 July to 17 July at Freshwater (Figure 3.26-E). 

Peak trapping in 1996 and 1998 reached 6 moths per trap/night in July, 

while 2000 trap catches were low relative to other years. 

3.8.2 Degree day accumulations: 

Degree days accumulated for 1 0% G. libertina capture ranged from a 

low of 31 0±22.2 in Little Catalina, to 354±26.3 in Bryant's Cove. Across all sites 

10% of captures occurred at 334±8.1 degree days, and 75% at 467±12.7 degree 

days (Table 3.22). 

Three-way ANOVA comparing sites/bins, percent emergence and type 

(field trapped or laboratory reared) found significant differences within sites/bins 

(F=4.9, p<0.05), percent emergence (F=8.4, p<0.05) and field vs. laboratory 

rearing (F=31.3, p<0.05)(Table 3.23). A significant interaction was also noted 

between Type (emergence indicated by either reared larvae or trapped adults) and 

Site (F=5.7, p<0.05). A significant difference in emergence in the field was 
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Table 3.22: Mean (SEM) degree-day calculations for 10%, 25%, 50% and 75% 
capture in the field across all study sites for each year from 1996-2000. * 2000B 
denotes mass trapping grids. 

Year (Mean (±SEM)) 

Percent 
1996 1997 1998 1999 2000 2000B* Overall Mean 

Emergence 

10% 
253.3 310.0 310.0 362.8 354.5 339.8 

321 .7 (16.3) 
(8.8) (40.0) (23.3) (6.1) (29.6) (12.2) 

25% 300.7 357.5 334.3 382.5 422.8 377 
362.5 (17.2) 

(7.9) (47.5) (19.4) (5.2) (35.4) (14.8) 

50% 
358.7 412.5 362.5 415.0 465.0 447.5 

410.2 (173.7) 
(10.7) (62.5) (20.7) (10.2) (32.5) (23.3) 

75% 
444.0 465.0 388.2 463.5 501.3 493 .8 

459.3 (16.6) (14.2) (45.0) (15.4) (16.0) (28.3) (22.2) 
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Table 3.23: Comparison of mean (SEM) degree-day accumulations between 
laboratory reared and field-trapped G. libertina for 10%, 25%, 50% and 75% 
emergence of population. *Number of field trapped moths are cumulative means 
across all years, number of laboratory reared moths are cumulative counts. 

~ Site Percent Emergence 

10% #Moths* 50% #Moths 

Field Freshwater 325 (20.3) 0.4 (0.13) 393 (13.6) 2.7 (0.70) 
trapped 

Bryant's Cove 354 (26.3) 0.3 (0.02) 428 (27.9) 1.8 (0.21) 

Pouch Cove 311 (23.3) 0.6 (0.19) 412 (42.3) 1.3 (0.43) 

Chance Cove 350 (0.0) 0.4 (0.00) 475 (0.0) 5.8 (0.00) 

Little Catalina 310 (22.2) 1.4 (0.70) 404 (17.6) 8.2 (2.40) 

All sites(Mean) 334 (8.1) 0.6 (0.35) 422 (14.3) 3.5 (0.91) 

Laboratory Freshwater 136 (4.6) 5 208 (39.2) 11 
reared 

Bryant's Cove 1 356 (4.0) 2 364 (8.0) 4 

Bryant's Cove 2 196 (4.0) 2 248 (16.7) 10 

Little Catalina 352 (9.2) 388 (7.7) 5 

Pouch Cove 308 (12.0) 344 (10.3) 4 

All sites(Mean) 270 (20.5) 2 310 (16.8) 6 

Laboratory Males 262 (44.9) 2 291 (38.3) 12 
(All sites 

Females 278 (46.0) 4 323 (31.8) 18 combined) 

Phanerotoma 278 (43 .7) 4 310 (41.0) 10 
spp. 
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found only between Freshwater and Chance Cove trap data, with capture at 50% 

degree day accumulations. Ten percent of laboratory reared G. libertina from 

Freshwater and Bryant's Cove '2' (Table 3.23) emerged at lower degree day 

accumulations (136 and 196, respectively) than field records for those sites. 

Laboratory reared and field trapped insects from Bryant's Cove '1', Little Catalina 

and Pouch Cove were similar in degree day requirements for 10% emergence. 

The period of emergence in all mass reared containers, based on degree-day 

accumulations, was much shorter than in the field. The 25%, 50% and 75% 

emergence levels were reached rapidly at all sites (Table 3.21). 

Laboratory-reared males generally emerged earlier than females, however 

this was not significant (F=0.05, p=0.98). Cumulative degree-days for parasitoid 

emergence were not significantly different from male or female moth 

emergence (p>0.05). 

3.8.3 Weather factors: 

Figures 3.27 and 3.28 show mean daily maximum, minimum, and mean 

temperatures and average total daily precipitation during adult flight seasons at 

each site and during each year. Mean maximum daily temperature in 1997 and 

1999 was significantly lower than in 1996 (Figure 3 .27). Mean daily 

temperatures in 1997 were also significantly lower than in 1996. Freshwater had 

significantly higher mean maximum daily temperatures than Little Catalina and 

Chance Cove sites, while Little Catalina had lower precipitation than Freshwater 

or Pouch Cove sites (Figure 3.28). Pearson correlations of weather factors 
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Figure 3.27: Weather variables recorded during adult flight seasons, 1996-2000, 
across all study sites: A-Mean maximum daily temperature, B-Mean minimum 
daily temperature, C-Mean daily temperature, and D-Daily total precipitation. 
(Means represented by the same letter did not differ (p<0.05) by Fisher' s LSD). 
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Figure 3.28: Weather variables recorded during adult flight seasons, 
corresponding to each study site, across all years (1996-2000): A-Mean maximum 
daily temperature, B-Mean minimum daily temperature, C-Mean daily 
temperature, and D-Daily total precipitation. Sites: P = Pouch Cove, F = 
Freshwater, B =Bryant' s Cove, L =Little Catalina, C =Chance Cove. (Means 
represented by the same letter did not differ (p<0.05) by Fisher's LSD). 
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(maximum, minimum, mean temperature, total daily precipitation and wind 

speed) did not show any significant relationship to adult trapping (Table 3.24). 

Figure 3.29 shows mean minimum daily temperatures during June 1999, 

at each weather station. Temperatures between June 5-10 decreased to, or below 

0°C. This corresponded to mid-bloom (approximately 50% of plants had 

bloomed) for lingonberry plants at the study sites during 1999 (personal 

observation). 
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Table 3.24: Correlations between mean weekly weather and daily adult trap catch for all localities pooled, during 1996-
2000. *Windspeed data were only available for Pouch Cove. 

Pearson Con·elation with adults 12er tra12/night 
Overall (All sites) 

Variable 
(Daily readings 

Pouch Bryant's Little Chance Overall Standard averaged Cove 
Freshwater 

Cove Catalina Cove (All sites) 
(p<0.05) Mean 

deviation 
biweekly or 

weekly) 

Maximum daily -0.05 -0.126 -0.174 0.018 -0.124 -0.041 0.605 19.9 3.32 

temperature (C0
) 

Minimum daily -0.104 -0.032 0.019 0.009 0.033 -0.056 0.477 10.9 2.8 

temperature (C0
) 

Mean daily -0.08 -0.118 -0.137 0.014 -0.06 -0.037 0.639 15.5 2.75 

temperature (C0
) 

Total daily 0.025 0.041 0.061 0.085 0.045 -0.025 0.775 3.2 4.82 

precipitation 
(mm) 

Average daily -0.2 -0.2 0 .256 20 5.98 

windspeed (kph)* 

Adults per 1.15 

trap/night 
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Figure 3.29: Mean daily minimum temperatures during June 1999 at three 
weather stations: St. John's Airport, Victoria and Bonavista. 
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4.0 DISCUSSION 

The study of target insects in the laboratory and field, the effects of weather and 

landscape, distribution and condition of hosts, along with refinement of chemical blends 

and investigation of trapping efficacy, are all required for the development of a precise 

predictive trapping model, and may take many years to produce. Such studies must 

address variation associated with both population dynamics (population estimation) and 

behavioural research (pheromone trapping). 

4.1 Field evaluation of attractant compounds: 

Closely related insect taxa often share similarity in pheromone structure, and this 

is particularly notable in the Lepidoptera (Ando et al., 1977). Within the genus 

Grapholita, it has been shown that attractants for different species may vary by a single 

carbon, or by cis-trans (E/Z) isomerism (Mayer & McLaughlin, 1991; Arn et a!., 1992, 

Arn, 1999). This similarity in structure has provided a basis for inquiry into the structure 

of the female-produced Grapholita libertina sex pheromone. 

The differences in attractiveness of compounds between years (E8-12:0Ac in 

1996, Z8-12:0Acin 1997), cannot be readily explained. Similar effects have been shown 

in the spruce seed moth, Cydia strobilella L. (Lepidoptera: Tortricidae), in which the 

pheromone blends most attractive to moths differed from year to year (Grant et al. , 1989). 

It is possible that by using the 1mg/ml concentration for the lures in the 1997 season, 

moth attraction to the Z8-12:0Ac was enhanced, while the performance ofthe other 
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compounds was diminished. In G. molesta, it has been found that abnormally high 

concentrations of pheromone (1 mg and higher) decrease the efficiency of trapping due to 

moths terminating their upwind flight prior to reaching the source (Baker et al., 1981 ). In 

other words, unusually high concentrations make the insect behave as though it is closer 

to the source than it actually is, inhibiting upwind flight behavior. This may explain the 

decreased efficiency of the E8-12:0Ac, particularly if the optimal concentration was 

closer to 0.1 mg than 1 mg. Z8-12:0Ac was as attractive as the E8-12:0Ac at 1 mg/ml in 

1996, but not significantly more attractive than the E8-12:0Ac as found in 1997. 

Assuming decreased attractiveness, due to concentration, fails to explain the low catch 

rate ofZ8-12:0H in 1997, since 1 mg/ml was the most attractive concentration in 1996. 

The total trap catches for all compounds diminished in 1997, possibly indicating a 

population decline, or climatic variation affecting catch rates. In Little Catalina it was 

possible that trapping in 1996 caused a reduction in the population, but this was unlikely 

as the study site was surrounded by large lingonberry-rich barrens from which G. 

libertina could re-invade. Variability in abundance noted between sites may also be due 

to differences in the abundance of lingonberries. Lingonberries were more abundant at 

Little Catalina than at the other sites and should have been able to support a larger 

population of G. libertina. 

Concentration is important for attraction. Attraction to a pheromone source is 

dictated by a lower concentration below which there is no activation of flight, and by an 

upper concentration, above which insects will become disoriented (Roelofs, 1978; Baker 

et al. , 1981 ). Compound concentration was expected to have an important effect on the 
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trap catches, but there were no significant differences in catch rates between various 

concentrations. 

Many studies have shown that a dosage-dependant relationship exists between 

concentrations of attractant substances and their trapping ability. Turgeon and McNeil 

(1983) found trapping of male Pseudaletia unipuncta Haworth (Lepidoptera: Noctuidae) 

increased with a corresponding increase in concentrations of Z-11-hexadecenyl acetate, 

up to a maximum of lmg/ml (lures at a 3 mg/ml concentration were less attractive than 1 

mg/ml). Polavarapu and Seabrook (1992) showed a dosage-dependant relationship 

between attractant concentration and trap capture in Croesia curvulana L. (Lepidoptera: 

Tortricidae). In male G. molesta, Roelofs and Carde (1974) showed that synthetic 

pheromone blends were less attractive at concentrations of 200 ug/ml and greater. 

Stockel and Sureau (1980) found a logarithmic relationship between trapped males of the 

angoumis grain moth, Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae), and 

pheromone concentration. However, differences in attraction were minimal between 0.1 

and 10 mg/ml concentrations and there was no inhibition in trapping at high dosages, due 

to a theorized increase in the drawing range which may have attracted males fi·om 

adjacent fields. The lack of a dosage-dependant relationship in G. libertina may have 

been due to an insufficient range (or replication) of concentrations tested. Also, 

population levels may have been too low at some sites (such as Pouch Cove or 

Freshwater in I 996) to indicate concentration effects. 

All three blends tested in 1997 were attractive to G. libertina. Differences 

between the attractiveness of the blends were not significant, and attractiveness was 
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slightly variable bet\veen sites. 

In the genus Grapholita, naturally occurring sex pheromones appear to be blends 

of acetates and alcohols (Am, 1999). Therefore, high trap captures were expected for all 

blends tested, relative to single compounds. The 85 % E-8-dodecen-1-ol acetate: 10 % Z-

8-dodecen-1-ol acetate: 5% Z-8-dodecen-1-ol blend ranked the highest among the blends, 

and was selected as an appropriate synthetic attractant for G. libertina based on the first 

two field seasons. The lack of significant differences between the blends suggests that 

the ideal ratio may not be 85:10:5. 

Many closely related insect species are believed to have evolved reproductive 

isolation through distinct differences in pheromone blend production by females, and a 

corresponding difference in attraction by males. Lofestedt et al. (1990) showed that 

cross-attraction was prevented in closely related Yponomeuta moths through specialized 

male antennal sensillae which perceive similar blends and cause repulsion. 

Several authors have shown, however, that cross-attraction occurs between 

related species and between allopatrically distinct populations, which produce different 

pheromone blends from one another (Lewis & Cane, 1990; Moziiraitus et al., 1998; 

Gemeno et el. , 2000). Gronning et al. (2000) have shown that 'generic' sex attractant 

blends, containing pheromone elements of four species within a pest complex, may be 

used as mating disruptants for leafroller pests on apple. Gemeno et al. (2000) found that 

females of allopatric Nearctic and Palearctic black cutworm, Agrotis ipsilon Hufnagel 

(Lepidoptera: Noctuidae), produced distinct pheromone blends, however males showed 

no behavioural differentiation between local or isolated populations. Lewis and Cane 
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(1990) stated that the degree of cross-attraction found in Ips beetles was consistent with 

phylogenetic relatedness. Therefore, males of G. libertina may have been responsive to a 

range of blend ratios, resembling that which was produced by females of local 

populations. 

The high capture rate of the Z-8-A relative to the blends in 1997 suggests that it 

may be more appropriately listed as a major component in a synthetic attractant for G. 

libertina. As well, adult capture in 1997 increased as the proportion ofE-8-A decreased, 

and that of Z-8-A increased in the lures tested. The natural pheromone is possibly an 

attractant similar to the G. molesta pheromone I attractant, which is an optimized blend of 

74% Z8-12:0Ac, 4% E8-12:0Ac, and22% Z8-12:0H (Am et al. , 1992). 

The specific composition of the G. fiber tina sex pheromone is unknown, and 

further refinement and ratio testing might produce a more efficacious synthetic attractant. 

It should be noted that further refinements of these blends were to be carried out by gas 

chromatography-mass spectroscopy bioassay, however, rearing in 1995-1997 was 

unsuccessful, preventing such analyses. 

For the purposes of this study, however, the 85:10:5 blend proved to be an 

effective field attractant, capturing 23 7 G. libertina and 25% of the total catch in 1997. It 

was the most attractive of the top four lures, making it the best choice of the synthetic 

lures tested. 

All dissected moths from the 1996-1998 seasons were male, verifying that the 

85:10:5 blend is clearly a male sex attractant for G. libertina, and does not demonstrate 

female or bisexual attraction (aggregation) when used in the field . This is important, as it 
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showed that the 85: 10:5 blend indicated only male populations. In addition, knowing that 

the 85 :10:5 blend was a male sex attractant may provide clues to composition of the 

naturally occurring female sex pheromone of G. libertina. 

4.2 Correlation of larval and damage densities with adult trapping rate: 

The general predictive value of pheromone trapping has been proven many times, 

however the ability to calibrate trap counts to specifically estimate later stages in an 

insect's life history can be difficult (Hall, 1998). Adult capture rates in pheromone traps 

provide useful information on relative population levels between different areas and 

years. For precise estimates of larval infestation, or the expected crop damage in a year, 

correlations must be made to calibrate adult trapping rate with larval and damage levels. 

4.2.1 Correlation of larval and damaged berry densities: 

There was a good correlation between numbers of larvae and numbers of 

damaged berries in all years. This result was expected as larvae were found within the 

infested berries. In addition, an individual larva appeared to feed within a single cluster 

(corm), rather than migrating between clusters of berries. For this reason, levels of 

damage may have been dictated by plant phenology and numbers of fruit at each site. 

Latheef et al. (1991 ), stated that variation in crop phenology due to variable planting 

dates and cultivars contributes to variation in larval correlations. Fruit set (and 

subsequent corm size) was variable between sites and three to eight fruit were set per 

corm (Ryan, 1978; personal observation). It may be the case, therefore, that damage 
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levels by larvae may have been determined by the number of berries in a corm, and larvae 

feeding within a single cluster during development (no migration between clusters). 

Damage dictated by corm size was supported by the damage : larvae ratios which ranged 

between 1.5-7.8. This agrees with Willson and Trammel (1975) who found that the 

abundance of three different tortricid species was related to the foliar density (and ratio of 

insects to fruit) in apple orchards. Assuming the degree of larval damage is limited by 

corm size, this may explain the decrease in damage : larvae ratios at each site in 1999. 

Other factors due to variable vegetation (plant architecture, kairomonal cues) which may 

have affected adult oviposition activity, and directly influenced larval distributions are 

discussed in the following section. 

4.2.2 Correlation of larval density with adult male trap capture: 

In 1998 and 2000, the mean adult capture/trap correlated well with larval and 

damaged betTy density within grids at each site. Adult capture by attractant traps was not 

a good predictor of larval infestation or damage in 1999. The lack of correlation between 

larval populations and adult capture rate in 1999 may have been due to a number of 

factors. 

Indirect weather effects: 

Weather may directly or indirectly have an influence on insect activity and 

distribution. A hard frost from June 8-10, 1999, caused tremendous bloom loss, and 

resulted in a much lower berry set in 1999. Since G. libertina rely on fruit for oviposition 
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and development, this loss of berries created a much more patchy environment within 

already heterogenous sites. Sweeney et al. (1990) showed that correlations between 

adults and larvae of Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae) are 

dependant on host plant density. 

The total number oflarvae at each site increased between 1998 and 1999, and 

remained relatively constant between 1999 and 2000, but the percent infestation was 

largely affected by berry abundance. This was noted in Pouch Cove in 2000, where larval 

and damage levels remained high with a low berry abundance. Percent larval infestation 

and damage at other sites (Little Catalina, Bryant's Cove and Freshwater) decreased from 

1999 to 2000 for although berry abundance increased, relatively constant numbers of 

larvae occurred in each site each year. 

Availability of suitable oviposition sites (lingonberries ), will affect the 

distribution of subsequent larvae. It is possible that smaller and more separated host 

(berry) distributions during 1999 affected female ovipositional behaviour, such as 

attraction to distinct host patches or using alternative hosts, like low sweet blueberry (V. 

angustifolium). The occurrence of higher percent larval infestation and damaged berries 

in 1999 demonstrated that larval concentrations were much higher than the sampled 

berries from 1998, perhaps indicating selection for specific host patches due to food 

resources being reduced relative to ovipositing moth populations. Whereas random 

sampling was expected to eliminate any such bias, intrasite variability in the number of 

larvae was notably higher in 1999, than 1998, as noted by the standard error for mean 

larvae sampled. This may be an indication of microhabitat differences in frost 
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susceptibility by berries, however, since the standard errors of berry counts were 

relatively low in 1999, it is likely that berry loss was moderately uniform within sites. 

Vegetation analysis/Foliar effects: 

Adult-larval correlation studies often are conducted in agricultural settings, with 

homogeneous host plant distributions (Latheef et al., 1993). Availability of host plants, 

and kairomonal (repellent or attractant) properties of other plant species and alternative 

host plants may inf1uence insect behaviour and distribution in the field (Metcalf & 

Metcalf, 1992). 

Differences in vegetation composition between years were expected to be 

minimal, as the vegetation types sampled were largely perennial shrubs. However, sites 

in 1998 clustered separately from other years on the positive end of principal component 

one. The discrepancy between 1998 and other years may have been due to the sampling 

technique (random grid tossing) being insufficient to accurately show vegetation 

presence, and a greater sample size might have been required. An increased consistency 

(more experience sampling) in estimating vegetation coverage in 1999 and 2000 may 

have also contributed to variability from 1998 and other years. This is further evidenced 

by plots being significantly more variable in 1998 with a coefficient of variation of 81 % 

compared with 96% and 97% for 1999 and 2000, respectively. 

Removal of 1998 data resulted in a similar clustering pattern for sites between 

1999, 2000 and 2000 mass trapping grids, which showed that each site had distinct 

vegetation types and densities. Adult, larval, damaged berry and berry densities were all 
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variable between sites and years, but no trends were noted in the principal component 

analysis of vegetation composition. 

Since values for infestation (adults, larvae, damage) were somewhat uniform 

within sites along principal component two, little can be said about the influence of 

specific vegetation types on the insect's distribution within plots at each site. Any 

differences in infestation may have been therefore be due to variable insect population 

levels between sites, rather than variable population levels between plots (and variable 

vegetation compositions) within sites. 

MANOV A analysis indicated no relationship between vegetation and the 

distribution of larvae or damaged berries. Infestation was dependant on lingonberry plant 

and berry density, and was influenced by both site and year of study. Vaccinium 

angustifolium, an rare alternative host for G. libertina, may have had an effect on larvae 

(F=3.6, p=0.06) and damage (F=2.8, p=O.l 0), however it was not significant at p<0.05. 

With few lingonberry fruit present in 1999, ovipositing females may have selected V 

angustifolium fruit for oviposition. Vaccinium angustifolium fruit were abundant in plots 

during all years (personal observation), and experienced less berry loss due to frost in 

1999. It is not clear if V angustifolium had a direct effect on adult distributions (and 

subsequent distributions of larvae and damaged berries), or if this was a coincidental 

effect based on lingonberry distributions. No V angustifolium fruit were sampled, and 

infestation levels of this alternative host in plots were unknown. However, this is an 

uncommon host for G. libertina, and infestations were expected to be minimal (Churchill, 

pers. com., 2001). The position oflarval and damaged berry densities in principal 
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component analysis of vegetation did not support a trend based on V. angustifolium. 

Kairomonal host plant cues may also affect adult insect distribution. Darnell et al. 

(2000) suggested that the semiochemical cues produced by pollinating early or late com 

attracted adult Diabrotica virgifera LeConte virgifora, affecting insect distributions 

within fields. Insects such as Mamestra brassicae L. (Lepidoptera: Noctuidae) use host 

plant kairomones to orient, being most attracted to damaged plants (Rojas, 1999). 

Volatiles in com which attract D. virgifera virgifera have also been shown to repel 

western com rootworm, D. barberi Smith and Lawrence (Coleoptera: 

Chrysomelidae)(Hammack et al., 1999). The heterogenous vegetation present in this 

study may have therefore acted as potential attractants or repellants which would have 

influenced G. libertina adult distribution. Although generalized odors would unlikely 

affect pheromone perception in males (pheromone perception is narrowly tuned), 

alternative host plant (i.e. V angustifolium) odors may have affected female ovipositional 

behaviour. Complex neural coding of food resource olfactory stimuli has been found in 

some insects, such as honey bees and cockroaches, however, assuming that G. libertina is 

a specialist herbivore, female receptors will likely be specialized to perceive host plant 

(Vaccinium) odors as oviposition sites, minimizing "noise" from coincident vegetation 

(Lemon & Getz, 1999). 

Other studies have shown that the density of foliage affects adult distributions, 

oviposition activity and larval phenology (Carteret al. , 1992; Willson & Trammel, 1975; 

Summy et al., 1986). As mentioned, Sweeney et al. (1990) found that correlations 

between trapped adults and larval counts of the western spruce budwonn, Choristoneura 
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occidentalis, were not significant unless standardized by basal area or foliar biomass 

sampled per hectare, therefore producing problems in estimation of C. occidental is due to 

variation between stands. Rowe and Potter (2000) showed that shading reduced 

infestation of rose plants, Rosafloribunda, by Japanese beetles, Popilliajaponica 

Newman (Coleoptera: Scarabaeidae), and suggested that shaded plants were less apparent 

to or accessible by beetles. Foliar density has also been studied relative to parasitoid and 

predator populations. Plant architectural characteristics of coleus, Solenostemon 

scutellarioides L. Codd. (height, leaf number, leaf surface area and branch number) have 

all been negatively correlated with attack rate by Leptomastix dactylopii Howard 

(Hymenoptera: Encyrtidae), a parasitoid of the citrus mealybug, Planococcus citri Risso 

(Homoptera: Pseudococcidae)(Cloyd & Sadof, 2000). In the seed bug, Leptoglossus 

occidentalis Heidemann (Hemiptera: Coreidae ), light reflectance of preferred cones of 

Douglas fir, Pseudotsuga menziesii (Mirb.) Franco, was a selective character in locating 

hosts, with preferred clones reflecting more light, at broader wavelengths (Blatt & 

Borden, 1999). 

Host plant phenology is also important in determining insect distributions in 

agricultural systems. Densities of adult western com rootworm, Diabrotica virgifera 

virgifera (Coleoptera: Chrysomelidae), were suppressed in late-planted com, Zea mays 

L., relative to adjacent early planted com (Darnell eta/., 2000). Willson and Trammel 

(1975), however, found in a study of 3 orchard-inhabiting tortricids, that there was a 

positive relationship between foliar density and pheromone trap catch. Therefore, foliar 

densities and heterogenous plant distributions may affect adult insect distributions, and 
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subsequent larval infestation. 

Direct weather effects: 

Weather conditions between sites and years may have also acted directly on insect 

activity. Variable weather conditions may reduce moth activity by both limiting mating 

and trap capture in males, and flight (reducing mating, ovipostion) in females. 

Weather variables were significantly different between sites and years. Pearson 

correlations (Sokal & Rohlf, 1995) between weather variables and adult trap capture 

showed no relationship. Insects require a minimal temperature to engage in flight, while 

higher wind speed can limit pheromone trap capture by preventing upwind flight 

(especially if the insects are not strong fliers) , and by rapidly dissipating attractant plumes 

necessary for trap location (Howse, 1998a). The release of pheromone from lures and its 

revaporation from foliage will also be dependant on temperature (Isaacs eta/. , 1999). 

Variability between sites may have been due to factors such as precipitation or light 

cycles, which may have influenced emergence and activity, which in tum, influenced 

trapping patterns (Schouest & Miller, 1994). Increased wind speeds and rainfall directly 

affect insect flight, decreasing their ability to reach attractant sources (Sappington & 

Spurgeon, 2000). 

Precipitation, temperature and wind variables are all factors which affect insect 

activity and pheromone trapping. In the case ofthe spruce budworm, Choristoneura 

fumiferana Clemens (Lepidoptera: Tortricidae), male capture in pheromone traps was 

positively correlated with temperature (up to 25°C) and negatively correlated with 
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humidity (Sanders, 1981 ). Schoest and Miller (1994) demonstrated that rainfall, 

temperatures below 20°C and wind speeds of 2.5 m/s or greater all suppressed male pink 

bollworm, Peclinophora gossypiella Saunders (Lepidoptera: Gelechiidae), capture in 

pheromone traps. Pitcairn eta!. ( 1990) showed that pheromone trap capture of male 

Cydia pomonella L. (Lepidoptera: Tortricidae) was dependent on a minimum l2°C air 

temperature, and low wind speed, vapour pressure and rainfall. Rainfall may act to limit 

insect activity, however flights of some species, such as Leucania commoides Guenee 

(Lepidoptera: Noctuidae ), were activated following heavy rainfall (Ayre eta!., 1983). 

Baker et al. (1980) stated that maximum daily temperature must exceed l5°C for G. 

molesta flight to occur. The specific weather conditions required for G. libertina flight 

are not known, however temperatures during scotophase at each site likely remained 

below l5°C at all study sites (personal observation). 

Discrete changes and daily weather events were lost in this study due to weather 

variables being averaged during the term between trap counts. More frequent sampling to 

prevent averaging over time and weather conditions would have reduced this effect. 

Much of the variance between sites may be attributed to the weather data not 

precisely describing the conditions to which the pupae and adults were exposed. Air 

temperature is not always a good predictor of the soil temperature, where the prepupae 

overwinter (Elliott et al., 1990; Gupta et al., 1984). As well, the distance from the 

weather stations, and microclimatic differences within the rolling landscape of the study 

sites would have reduced the ability of a weather station to predict individual site 

conditions. Unfortunately, since study sites were wild areas, weather stations were not 
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able to be placed on site due to the risk of vandalism. 

Predation/parasitism: 

Larval populations relative to adult capture rates were much lower in 1998 and 

1999 than in 2000. Larval mortality may have occurred, affecting any relationship 

between the number of trapped adults and later larval counts. The rates of predation and 

predators present which might prey upon eggs and early instar larvae are unknown. One 

hymenopteran, Phanerotoma spp. Wesmael (Hymenoptera: Braconidae ), is a known 

larval parasitoid of G. libertina (Morris et al., 1988). Ten parasitoid pupae were found 

during larval collections in 1998, 24 in 1999 and 5 in 2000. The direct effects ofthis 

parasitoid on larval counts were minimal since they killed the host larvae inside the 

berries. Thus, the dead larvae and parasitoid puparium were intact for larval counts, and 

counted as larvae. In 2000, however, it was found that parasitism determined by number 

of emerging parasitoids was three times higher than that detected by larval collection in 

the fall. Many parasitoids were not detected when larvae were extracted from berries and 

were found later emerging from larvae selected for laboratory rearing, thus direct counts 

of individual Phanerotoma may be higher than those recorded from larval collections. 

This indicated that many parasitized larvae may have not have been detected by 

emergence counts in 1998 and 1999, and that parasitism may have been much higher than 

reported during those years. 

Phanerotoma spp. parasitoids present a potential method of augmentative 

biological control, through their rearing and release. Whereas this method could facilitate 
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a chemical-free method of population control of G. fiber tina, and avoid the risks 

associated with importation of biological control agents, it should be noted that 

Phanerotoma spp. will not reduce berry damage within a single year. Since berry damage 

will not be prevented within a single year, control with Phanerotoma spp. may not be 

desirable from a commercial perspective. This species could be useful, however, to 

reduce large populations over several years, and conservation should be considered if 

chemical control measures are used on G. libertina. 

Female competition: 

Female G. libertina densities in the field may also directly affect the male trapping 

rate. While trap counts increased with population levels, a critical level may be reached 

at which calling females strongly competed with attractant traps, as found in studies of 

the codling moth, C. pomonella (Howell, 1974; Reidl et al., 1976). Witz et al. (1992), 

have shown that efficiency of pheromone traps for male Heliothis virescens Fabricius 

(Lepidoptera: Noctuidae) decreased with increasing female moth densities. If such 

competition (between females and traps attracting males) occurred in G. libertina, it 

would have suppressed a linear increase in trap capture which would be expected to 

correspond with an increase in larval population density in the same year. 

Drawing range: 

Shepherd et al. (1985) have shown that dispersal, flight ability and drawing range 

for traps caused variability in pheromone trap capture of male Douglas-fir tussock moth, 
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Orgyia pseudotsugata McDunnough (Lepidoptera: Lymantriidae). Variability in drawing 

range was also discussed by Stockel and Sureau (1980), wherein distant populations of S. 

cerealella may have influenced captures in traps with high concentration lures and an 

increased drawing range. In such cases, the area of larval sampling may have been 

unrelated to male trap counts, if mating or oviposition occurred at a long distance from 

the trap. Walker and Welter (1999) found, however, that a reduction oflure dosage from 

1 mg ranging to 0.001 mg in A. citrana did not improve correlations between larval 

densities and male moth counts in apple orchards, and suggested a limited change in the 

drawing range due to changes in lure dosage. While the dispersal ability of G. libertina 

was not known, good correlations between trapped adults and larval populations collected 

within blocks in 1998 appeared to support a relationship. 

4.3 Trap design trials: 

The Pherocon® IC wing trap captured significantly more moths than the other 

traps (p<0.05). The Unitrap® design trapped few G. libertina relative to the other trap 

types. Non saturating traps provide benefits over sticky traps in terms of higher capture 

capacities (and thus less servicing), better specimen condition, and recycling ability 

(Knodel & Agnello, 1990; Sanders, 1986a). Sanders (1986b), however, has shown that in 

the case of the spruce budworm, C. furniferana, half of the moths entering non-saturating 

funnel traps escaped, and that the presence of insecticides acted as repellents to moths. 

Sticky traps do not require insecticides, and therefore do not have the repellent qualities 

which might reduce the potential number of insects trapped. 
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Differences in the trapping ability of the sticky traps may have been due to several 

factors. Brown (1984) showed that in trapping trials with the apple budmoth, Platynota 

idaeusalis Walker (Lepidoptera: Tortricidae), trap saturation with dead moths was 

directly related to sticky surface area. Consequently, trap efficiency at different moth 

densities may have been significantly affected by capture surface area. The accumulation 

of dead insects not only causes trap saturation by reduction of sticky surface area, it may 

also act as a semiochemical repellent to incoming target pests (Sanders, 1986b ). Sanders 

( 1986a, l986b) has suggested that male moths may produce alarm pheromones which 

repel other males, however no evidence has been provided to support this. In this study, 

the overall ranking ofthe sticky traps based on their trapping efficiency of G. libertina 

followed a scale of increasing surface area. Data also suggested that the wing-style traps 

were slightly more attractive once standardized by surface area. 

Trapping efficiency is also affected by the pheromone plume. Trap design and 

interaction with variable wind conditions at each site will have significantly influenced 

the shape and dispersal distance of pheromone plumes in the field. Whereas no records 

were made of plume shape or dispersal effects on G. libertina, Lewis and Macaulay 

(1976) found that trap design significantly affect plume structure and subsequent catch of 

Cydia nigricana Steph. (Lepidoptera: Tortricidae) male moths. Other factors such as trap 

age, lure concentration, intertrap distance and trap height have also been shown to 

significantly affect efficiency of different trap designs (Housewart et al., 1981 ). 

However, all of these factors were constant across the trap designs tested, so their effects 

should have been minimal. Since traps were randomized through the grid, and 
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surrounded by guard traps, any position or edge effects should have been negligible. 

4.4 Mass trapping: 

Comparisons between standard (control) and mass trapping grids indicated no 

significant differences between mean numbers of adults, larvae or damage at each site 

(p<0.05). In 2000, adult moths may have been too few to be accurately detected. 

Mass trapping is an effective means of controlling many pest populations. 

Faccioli et al. (1993) suggested that a trap density often traps per hectare was sufficient 

to control Cossus cossus L. (Lepidoptera: Cossidae) in European orchards. Trimble and 

Hagley (1988) also found that mass trapping of male Phyllonorycter blancardella 

F abricus (Lepidoptera: Gracillariidae) could reduce infestations by as much as 50% in 

selected cases. In the current study, adult trap rate was not correlated with larval densities 

in mass trapping grids. Since there were low adult captures in peripheral mass traps, and 

no reduction in larval infestation, the disruption of adult-larval coiTelations did not appear 

to be due to increased trapping effort. Total beiTy densities between standard and mass 

trapping grids were similar, removing any effect that reduced host beiTy densities might 

have had on adult-larval coiTelations in mass trapping grids. 

Attractant release by high density lures in mass trapping grids may have caused 

saturation of the immediate aerial environment of the trapping grid with attractant, 

resulting in disruption of trapping by monitoring traps in the grid. In their study on P. 

blancardella, Trimble and Hagley (1988) suggested "pre-adult leafminer densities were 

lower in trapped plots because of mating disruption due to male confusion, and not 
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because males were trapped before they could mate". High attractant concentrations have 

been shown to disrupt location of source by G. molest a (Baker et al., 1981 ), and the 

reduced trapping ability of G. libertina attractants at 1 and 1 0 mg/ml concentrations 

which occurred in 1996 may support a premise of decreased trapping at higher 

concentrations (due to disruption or confusion of male moths). Therefore, the high 

density of lures in this study may have disrupted the location of monitoring traps by male 

moths. 

Studies by Vickers and Rothschild (1985) in Australia validated mating disruption 

as an effective alternative for G. molesta control at a district level. Pree eta!. (1994) also 

found mating disruption of G. molesta provided commercially acceptable control when 

pest populations were relatively low. A low moth capture by mass traps within grids, and 

failure to reduce larval infestations does not support mass trapping or mating disruption 

as control techniques for G. libertina at the population levels observed in 2000. 

Saturation ofthe environment with attractant from high dose lures would theoretically 

have prevented males from reaching attractant sources (in monitoring traps or virgin 

females), however, populations of adult male moths were not sufficient in 2000 to prove 

this occurred. 

4.5 Seasonal history, Degree-days and Rearing: 

The seasonal occuiTence of adult male G. libertina ranged from late June to early 

or mid August, peaking in mid-July. This agrees with the flight history described by 

MoiTis et al. (1988). 
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Male G. libertina showed slight protandry (earlier emergence) than females, but 

this was not significant (p<0.05). Emergence of Phanerotoma spp. adults corresponded 

with G. libertina adult emergence (p<0.05). Since differences in emergence indicated by 

trapping and rearing were not due to differences in emergence between males and 

females, there may have been a delay between insect emergence and the onset of male 

receptiveness to pheromone (and attraction to pheromone traps). In the Caribbean fruit 

fl.y, Anastrepha suspensa Loew (Diptera: Tephritidae), there may be as much as a ten day 

delay before sexual activity is initiated (Nation, 1990). In G. libertina, it was possible 

that such a delay would be due to delayed sexual maturity, or possibly a necessity to feed 

before mating and oviposition. 

The synchrony observed between male and female emergence times is important, 

as it allows for timing of control measures to target both sexes of adult, and any neonate 

larvae at the same time (neonate larvae are expected to be most susceptible to contact by 

insecticidal sprays, before they have entered fruit). As females and males emerged at 

similar times, female emergence can be predicted accurately by male pheromone 

trapping. This synchrony was also consistent with work by Baker et al. ( 1980) on G. 

molesta, in which male pheromone trap capture was highly correlated with female 

emergence. 

Elevation and exposure of each site to wind and sunlight may have caused 

variation in heat sums and insect activity at each site. Variable plant composition such as 

canopy height, thickness and shading may have therefore created unpredictable 

microclimates in small areas. Increased shading could have caused cooler conditions, and 
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subsequent delays in emergence. Study sites were barren areas, with low growing 

vegetation, however vegetation analysis indicated significant differences in vegetation 

composition between sites. 

Degree day accumulations at selected weather stations enabled prediction of G. 

libertina's flight period with some variability between years and sites. Variation may 

have been due to climatic differences between sites and years, along with exposure and 

microhabitat conditions within plots at each site. In the endangered Californian butterfly, 

Euphydras editha qui no Beber (Lepidoptera: Nymphalidae ), overstory and shading of 

wild shrubs have been shown to produce microhabitat cooling which delays diapause 

break in larvae, affecting size and survivorship (Osbourne & Redak, 2000). 

Differences were noted in total degree-day accumulations between laboratory

reared and field collected G. libertina, however the relative rates of accumulation were 

consistent between both. The laboratory study should be more accurate than the field 

data due to more controlled conditions during rearing (and removal of the effects of 

microhabitat, weather station distance, weather factors). 

Many insects have a discrete developmental threshold temperature used as a base 

for degree-day calculations (Reidl et al. , 1976). Rice et al. (1984) used degree-day 

accumulations for G. molesta to optimize timing of insecticide applications. In Cydia 

pomonella, a combination of pheromone trapping, as a reference point, and subsequent 

degree-day calculations, has been developed to determine egg hatch and insecticide spray 

timing (Pitcairn et al. , 1992; Reidl et al., 1976). Whereas soc was selected as the base 

temperature for degree day calculations, this may not have been accurate. Production of a 
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precise developmental threshold typically involves large amounts of rearing (coinciding 

with degree-day calculations), which were not possible with G. libertina. However, 

knowing the approximate degree- day accumulations for G. libertina emergence in 

eastern Newfoundland will permit a more accurate means for timing both trap placement 

prior to adult flight, and the application of control measures in a commercial setting. 

Rearing of G. libertina showed low survivorship during all years. In 2000, 

percent survival was as low as 5.4%. The prepupae may have been vulnerable to 

dessication and humidity changes, making rearing difficult. Pupal survivorship was 

higher in Freshwater and Bryant's Cove 2 containers, both of which had large amounts of 

paper towelling. This may have maintained humidity at a more constant level than did 

other rearing media (sand or vermiculite). It was also noticed that larvae tended to form 

prepupae in debris such as Cladina lichens, which provided a concave surface and 

possibly maintained consistent moisture levels. 

A 1 male : 1.9 female sex ratio resulted from the rearing in 2000-2001. This 

differs from Powell (1964), who stated that in most Tortricidae, there is generally a one

to-one male-female sex ratio. Survivorship was very low, and the sex ratio shown by 

rearing may have been indicative of differential survival (i.e. females may be more 

tolerant to rearing conditions than males), rather than a naturally occurring sex ratio. 

Fecundity of reared females was 61±9.0 (N=lO). It should be noted, however, that 

rearing conditions may affect fecundity. For example, Milonas and Savopoulou-Soultani 

(2000) determined that temperature during larval rearing would affect fecundity of 

Adoxophyes orana Fischer von Roslerstamrn (Lepidoptera: Tortricidae) females, with a 
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significant decrease in egg production at a temperature of 14°C or lower. Naturally 

occurring egg counts might have deviated in G. libertina (61±9.0) as well, depending on 

temperatures during female development. Both sex ratio and fecundity may produce 

deviations in female numbers and egg production relative to male populations determined 

by pheromone trapping, particularly if one male inseminates many females. Polygamy is 

variable in the Tortricidae, with males of some species, such as Argyrotaenia citrana 

Fernald (Lepidoptera: Tortricidae) typically inseminating multiple females, while 

Choristoneurafumiferana rarely mates more than once (Powell, 1964; Stehr, 1954). As 

well, if fecundity was variable between years, tlns might affect larval infestations 

independently from male capture rates. 

4.6 Chemical Analysis 

Chemical analyses of insect pheromone glands and effluvia by gas chromatogram

mass spectroscopy (GCMS) were not successful. Problems may have occurred in either 

sample collection, contamination by solvents, or insufficient amounts of material to be 

detected by the GCMS. Borg-Karlson and Mozuraitis (1996) found solid phase micro 

extraction (SPME) to be effective for pheromone collection in the tentiform Ieafminer, 

Phyllonorycter sylvella Haworth (Lepidoptera: Gracillariidae), wherein the amount of 

volatiles collected from a single calling female were as much as those collected from the 

excised glands of twenty females. Since this method required few specimens, and is non

destructive, it was thought to be ideal for pheromone collection in G. libertina (due to 

previous rearing problems). 
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Pheromone collection in this study was conducted through analysis of gland 

extracts, and collection by SPME, being a combination of a standard method (gland 

analysis), and a relatively new, non-destructive technique (SPME). Because gland 

extraction may produce contamination and dilution of samples by solvents, other authors 

have explored techniques to improve pheromone collection. Morgan (1990) suggested 

whole sample injection into a gas chromatogram (GC), by sealing a specimen (tissue or 

gland) into a capillary tube which is crushed within the GC. While this technique avoids 

dilution and contamination by solvents, it requires a solid sampler (Keele injector) for 

crushing samples. The SPME method of sampling was used for G. libertina to eliminate 

solvent dilution and contamination. 

Solid phase micro extraction does have limitations, due to differential adsorption 

of test materials on the sampling fibres (Anon, 1998). Testing and selection of the 100 

urn polydimethylsiloxane (PDMS) fibre (Supelco®) through sampling of diluted 

pheromone standards, however, was expected to optimize extraction. Maille et al. (1998) 

have shown that heating of samples during headspace extraction of fatty acids shows 

better extraction than those sampled at room temperature. This method was not used for 

G. libertina, as it was believed heating would potentially injure specimens or alter insect 

behaviour (pheromone emission). 

Minimum detection levels of Z-8-dodecen-1-ol acetate, E-8-dodecen-1-ol acetate 

and Z-8-dodecen-1-ol by the gas chromatogram was 10 nanograms. Carde (2001 , pers. 

com., unpublished) recently reported that female G. molesta produced 0.7 nanograms of 

pheromone/female/hour. If G. libertina female pheromone production was as low, 

146 



detection by the GCMS used in this study would have been unlikely, as pheromone 

compounds would be obscured by background peaks. In addition, since rearing produced 

few moths for chemical analysis, concentrating a large number of insects for effluvia 

collection, or extracting a large number of pheromone glands was not possible. 
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5.0 CONCLUSIONS 

This study provides information on the attractant trapping, population dynamics 

and natural occmTence of G. libertina in eastern Newfoundland. 

The results of this study have shown that a monitoring system and predictive 

model can be produced through a quick method of isolating a semiochemical sex 

attractant with relatively little laboratory investigation or chemical analysis. E-8-

dodecen-1 -ol acetate, Z-8-dodecen-1-ol acetate and Z-8-dodecen-1-ol acetate are all 

attractive to adult male G. libertina, both as single compounds or blends. A ratio of 85% 

E-8-dodecen-1-ol acetate, 1 0% Z-8-dodecen-1-ol acetate and 5% Z-8-dodecen-1-ol is, of 

the blends tested, the most attractive synthetic blend for G. libertina. While this blend 

may not represent the naturally occurring sex pheromone, it is effective for use in 

monitoring populations of G. libertina in the field. 

The adult trapping rate with the 85% E-8-dodecen-1-ol acetate: 10% Z-8-dodecen-

1-ol acetate: 5% Z-8-dodecen-1-ol blend, when used in Pherocon® 1 C wing traps, 

appeared to be correlated with larval and damage densities in the area surrounding the 

trap. This relationship, however, was subject to a number of variables, which may affect 

adult moth behaviour. While the coverage and type of vegetation in the plots had little 

effect on adult or larval distribution, host berry distribution appeared important, 

particularly when betTY levels were reduced. When the density of host berries in the field 

was reduced, they became strongly related to larval density, regardless of adult 

populations . This, combined with the fact that the quantity and distribution of host 
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berries in wild fields was not uniform, produced significant variability in the predictive 

model for G. libertina. Detection of adult moths by pheromone trapping was limited 

when populations were low, however, and damage to berries occurred at virtually 

undetectable levels of the male populations. 

Trap trials validated that the Pherocon 1 C® style trap was the most suitable for 

monitoring G. libertina at low population levels. The Diamond®, Wing Trap® II and 

Delta® traps were also effective but captured significantly fewer moths. The non

saturating Unitrap® was not effective. 

Mass trapping, using a high density of Pherocon 1 C® traps with high 

concentration attractants was not effective for management of G. libertina at the 

population levels tested in 2000. Use of high density traps and lures disrupted adult

larval correlations observed by pheromone monitoring traps. 

Rearing of G. libertina was unsuccessful. However, survivorship improved during 

2000-2001, with rearing media containing paper towelling. Parasitism by Phanerotoma 

spp. was as high as 15%. Parasitism by an tmidentified chalcid wasp was also noted. 

Adult flight of G. libertina began in late June to early July, and continued until 

late July to early August. This agrees with a previous study by Morris et al. (1988). 

Mean degree days above base 5° C for 10% emergence was recorded as 270±20.5 by 

mass rearing, and 334±8.1 by field trapping. Weather factors did not show a significant 

influence on insect trapping. 

The naturally occurring sex pheromone of G. libertina still remains a mystery. 
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5.1 FUTURE DIRECTIONS 

The current 85:10:5 field attractant will be useful for population monitoring of G. 

libertina in wild lingonberry fields of Newfoundland. Further research on the naturally 

occurring female sex pheromone through mass rearing and chemical analyses would 

permit further enhancement of this blend by identifying any minor components which 

might act synergistically, increasing attraction. Mantey et al. (2000) have produced an 

effective method for rearing the lesser appleworm, G. prunivora. Mass rearing using 

appropriate rearing media might permit establishment of a laboratory colony, and larger 

numbers of insects for chemical analysis. In addition, more sensitive techniques for 

detecting pheromones at low levels (which were not currently available), such as 

electroantennography or gas chromatography-flame ionization detection would lower 

detection thresholds for pheromone components. 

Studies of G. libertina at high population levels or in other areas would validate 

the predictive value of adult-larval correlations. Sampling of other Vaccinium species to 

determine the degree of alternative host use would also be valuable in future correlation 

studies. 

Mass rearing would also permit investigation of degree-day accumulations and 

identification of a base developmental temperature. 

Two species of parasitoids were identified from reared G. libertina. 

Augmentation of naturally occurring Phanerotoma spp. populations by rearing of 

parasitoids could be implemented as a control tactic for G. libertina. This would provide 

150 



pesticide-free biological control of G. libertina populations, and minimize the risks 

involved with importation of exotic natural enemies to control pest species. 

Future studies on weather factors applied to G. libertina trapping should 

investigate trapping during a short time span, with readings of trap capture either daily or 

hourly to prevent averaging of weather data. Such a study would require the availability 

of a large number of adult moths, to detect changes during a short period of time. As 

well, weather readings would be improved by using weather stations placed on study 

sites. 
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Appendix A: Rearing procedures during each year of study: 

1) 1995-1996: 
In September 1995, bins of lingonberries were collected from random sites across 
Newfoundland, and placed in an outdoor insectary from October 1995 - May 
1996. Bins were moved into a 20°C rearing chamber (80% humidity) in May. 
Bins were misted and checked daily from May - August for any emerging insects. 

2) 1996-1998: 
No rearing took place during 1996-1997 or 1997-1998. 

3) 1998-1999: 
In September 1998, larvae collected from correlation studies (Section 3.2) in 
Pouch Cove, Little Catalina, Freshwater and Bryant's Cove were used in rearing. 
A total of 86 larvae were individually placed in pill bottles with a vermiculite 
substrate (to help maintain humidity), which were covered with a fine mesh. 
Bottles were moved to rearing chambers (3.5°C, 80% humidity) on 20 October 
1998. Bottles were periodically misted to maintain humidity. On 16 March 
bottles were moved into a l2°C, 80% humidity rearing chamber. On 1 May, 
bottles were again moved to a 20°C chamber. Bottles were checked every second 
day for emerging insects. 

4) 1999-2000: 
Larvae ( 504) collected in 1999 (correlation studies) were individually placed in 
plastic containers, containing vermiculite (N=350) or sand (N=154) as a substrate. 
A few berries (5-10) were added to each container to permit any further feeding 
required by late instar larva. Containers were moved to a 3.5°C rearing chamber 
on 14 October. Humidity was maintained by misting. Containers were moved to 
a 20°C, 85% humidity chamber on 5 May. 

5) 2000-2001: 
Larvae collected from individual sites were placed together in Tupperware® 
containers. Holes were cut in covers, and replaced with fine mesh. Berries were 
suspended inside on a wire frame and within each container, and various 
substrates were used (Table 6). Containers were placed in a 3.5°C rearing 
chamber on November 21 and removed to warmer chambers at variable times. 
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Appendix B: Methods used to collect pheromone components from female G. libertina 
(N refers to the number of trials attempted: 

1) Headspace analysis (N=10): (Jones & Oldham, 1999) Samples of 10-20 calling 
virgin females were placed in a 2 ml glass vial, sealed with a teflon septum. A 
100 urn polydimethylsiloxane (PDMS) fibre (Supelco®) was lowered into the 
center of the vial, and volatiles were collected for one hour. The fibre was then 
injected directly into the GC for analysis. Other fibres (7 urn PDMS and 85 urn 
ployacrylate) were also tested for their ability to extract test standards ofE-8-A, Z-
8-A and Z-8-ol. The 100 urn PDMS had the best extraction of test standards, 
showing higher and more distinct peaks at low concentrations, than the other 
fibres. Where possible, used virgin females were 'recycled' and used in 
subsequent headspace analyses. 

2) Direct collection (N=5): This technique is described in Frerot et al. (1997). A 
single calling female was placed in a 2 ml glass vial, and a 100 urn PDMS fibre 
was placed on the extruded pheromone glands, to obtain a direct sample of 
volatiles being released. The fibre was then injected directly into the GC. 

3) Vial washing (N=5): Vials which had contained calling females were rinsed with 
2 20 ul washes of hexane, to extract any volatiles adhered to the glass vial. A 2 ul 
sample of this extract was then injected for analysis. 

4) Ovipositor washing (N=3): Extruded ovipositors were excised from samples of 8-
10 females and extracted for 5 minutes in 20 ul ofhexane. A 2 ul sample of this 
extract was then injected for analysis. 
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Appendix C 1: Mean and range of percent coverage for vegetation recorded during the 1998, 
1999 and 2000 field seasons at the Pouch Cove site. 2000A denotes a normallatval correlation 
grid, 2000B denotes a mass trapping grid. 

Mean% coverage(+/- SEM) 
(Range) Minimum-Maximum 

Plant Species 1998 1999 2000A 2000B 

Vaccinium vitis-idaea 
28.5 2.77 21.1 2.03 18 2.15 24.3 2.7 

0 60 0 50 0 60 0 70 

Vaccinium angustifolium 
31.1 2.9 35.5 2.72 39.2 2 .89 36.9 1.86 

0 85 0 90 10 80 15 80 

5.3 1.98 1.8 0.64 1.4 0.59 2.9 0.84 
Juniperus communis 

0 50 0 20 0 20 0 20 

0 0 2.3 1.05 0 .2 0.15 0.1 0.1 
Juniperus horizontalis 

0 0 0 35 0 5 0 5 

10.3 1.65 42.6 3.07 31.6 2.51 29.2 1.95 
Lichen spp. 

0 50 5 90 5 75 5 60 

Potentilla tridentata 
0 0 0.3 0.31 0.6 0.32 0 0 

0 0 0 15 0 10 0 0 

0 0 0.5 0.43 1.4 0.8 0.6 0.35 
Empetrum nigrum 

0 0 0 20 0 30 0 10 

Maianthemum canadensis 
0.1 0.1 2.1 0.42 1.9 0.39 1.9 0.35 

0 5 0 10 0 10 0 5 

3.6 1.21 2.9 0.65 4 .5 1.27 1.6 0.54 
Festuca ovina 

0 40 0 15 0 40 0 20 

Sphagnum spp. 
4.6 1.52 1.7 0.69 2.6 1.02 3.1 1.17 

0 50 0 20 0 35 0 40 

Kalmia angustifolium 
2.7 1.85 2.9 1.13 4.3 1.8 3.9 1.25 

0 80 0 30 0 60 0 35 

Ledum groenlandicum 
0.2 0.21 0.5 0.37 0 0 1.4 0.69 

0 10 0 15 0 0 0 25 

Cornus canadensis 
3.6 1.21 6 0.73 6.4 0.51 4.3 0.26 

0 40 0 15 0 15 0 5 

Sorbus canadensis 
0.8 0.5 0.1 0.1 1 0.15 0.6 0.28 

0 20 0 5 0 5 0 10 

Bare ground 
5.7 2.18 0.3 0.23 0.2 0.15 1.3 0.46 

0 70 0 10 0 5 0 15 

Epilobium angustifolium 
1.4 0.83 0.5 0.27 0.1 0.1 0 0 

0 30 0 10 0 5 0 0 

Gaultheria hispidula 
0.8 0.37 2.5 0.65 1.4 0.49 1.7 0.58 

0 10 0 20 0 20 0 20 
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Appendix C2: Mean and range of percent coverage for vegetation recorded during the 1998, 
1999 and 2000 field seasons at the Bryant's Cove site. 2000A denotes a normal larval 
correlation grid, 2000B denotes a mass trapping grid. 

Mean% coverage(+/- SEM) 
(Range) Minimum-Maximum 

Plant Species 1998 1999 2000A 2000B 

Vaccinium vitis-idaea 
19.2 2.07 21.1 2.03 22.1 2.37 15.9 1.96 

0 50 0 50 0 60 0 50 

Vaccinium angustifolium 
28.6 2.52 35.5 2.72 33.4 2.84 40.3 2.9 1 

0 80 0 90 0 75 0 80 

4.1 1.17 1.8 0.64 9.1 1.92 0 0 
Juniperus communis 

0 30 0 20 0 40 0 0 

0 0 2.3 1.05 0 0 0 0 
J uniperus horizon/a/is 

0 0 0 35 0 0 0 0 

Lichen spp. 
28.3 2.42 42.6 3.07 36.2 2.67 23 3.1 

0 60 5 90 0 80 0 80 

Potentilla tridentata 
3.9 1.1 7 0.3 0.3 1 4 0.83 4.4 0.69 

0 50 0 15 0 25 0 15 

1.3 0.5 0.5 0.43 2.9 1.5 4.4 1.98 
Empetrum nigrum 

0 15 0 20 0 60 0 65 

Maianthemum canadensis 
1.8 0.53 2.1 0.42 1.1 0.31 0.5 0.22 

0 15 0 10 0 5 0 5 

3.6 1.21 2.9 0.65 2.1 5.33 1.7 0.67 
Festuca ovina 

0 40 0 15 0 15 0 30 

4.6 1.23 1.7 0.69 4. 1 1.39 21.8 2.73 
Sphagnum spp. 

0 40 0 20 0 50 0 60 

Kalmia angustifolium 
2.1 2.08 2.9 1.13 2.9 2.05 7 2.4 

0 100 0 30 0 95 0 90 

Ledum groenlandicum 
0.9 0.67 0.5 0.37 0.3 0.31 1.1 0.69 

0 25 0 15 0 15 0 30 

Cornus canadensis 
0 0 6 0.73 0.3 0.18 0.9 0.35 

0 0 0 15 0 5 0 10 

Sorbus canadensis 
0.5 0.37 0.1 0.1 0 0 0 0 

0 15 0 5 0 0 0 0 

Bare ground 
2.6 0.83 0.3 0.23 0.4 0.29 2.6 1.25 

0 25 0 10 0 10 0 40 

Epilobium angustifolium 
1.4 0.83 0.5 0.27 0 0 0 0 

0 30 0 10 0 0 0 0 

Gaultheria hispidula 
0.8 0.37 2.5 0.65 0.2 0.15 0.1 0.1 

0 10 0 20 0 5 0 5 
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Appendix C3: Mean and range of percent coverage for vegetation recorded during the 1998, 
1999 and 2000 field seasons at the Little Catalina site. 2000A denotes a normal larval 
correlation grid, 20008 denotes a mass trapping grid. 

Mean% coverage(+/- SEM) 
(Range) Minimum-Maximum 

Plant Species 1998 1999 2000A 20008 

Vaccinium vitis-idaea 
25.8 1.18 21.4 1.81 10.9 0.68 9.8 0.84 

5 35 5 80 5 25 5 40 

Vaccinium angustifolium 
13.9 1.27 10.8 2.24 10 1.3 10.2 1.2 

0 40 0 65 0 50 0 40 

0 0 0 0 0.4 0 .25 0 0 
Juniperus communis 

0 0 0 0 0 10 0 0 

0 0 0 0 0 0 0 0 
Juniperus horizontalis 

0 0 0 0 0 0 0 0 

22.5 1.8 36.3 2.41 55.8 2.5 1 56.6 2.36 
Lichen spp. 

0 50 0 65 15 90 15 85 

Potentilla tridentata 
3.9 1.16 4.3 0.95 4.1 0.78 2.6 0.47 

0 40 0 30 0 25 0 15 

6.2 1.34 9.2 1.85 5.1 l.3 19.2 2.41 
Empetrum nigrum 

0 30 0 45 0 40 0 70 

0 0 1.5 0.87 0 0 0 0 
Maianthemum canadensis 

0 0 0 40 0 0 0 0 

0.2 0.21 0.8 0.27 0.3 0.18 0 0 
Festuca ovina 

0 10 5 40 0 5 0 0 

0 0 0 0 0 0 0 0 
Sphagnum spp. 

0 0 0 0 0 0 0 0 

Kalmia angustifolium 
10.9 2.08 4.6 1.15 14.8 1.79 1.1 0.4 

0 50 0 35 0 60 0 10 

Ledum groenlandicum 
8.2 1.03 6.7 1.62 1.9 0.47 15.4 2. 1 

0 20 0 50 0 10 0 70 

Cornus canadensis 
3.9 0.91 2 0.44 2.2 0.39 1.6 0.34 

0 20 0 10 0 10 0 5 

Sorbus canadensis 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

3.5 1.48 11.1 1.99 14 2.13 5.21 1.11 
Bare ground 

0 55 0 55 0 60 0 35 

Epilobium angustifolium 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Gaultheria hispidula 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
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Appendix C4: Mean and range of percent coverage for vegetation recorded during the 1998, 
1999 and 2000 field seasons at the Freshwater site. 2000A denotes a normal larval correlation 
grid, 2000B denotes a mass trapping grid. 

Mean% coverage(+/- SEM) 
(Range) Minimum-Maximum 

Plant Species 1998 1999 2000A 2000B 

Vaccinium vitis-idaea 
30.1 2.64 29.7 3.03 32.3 2.67 30.3 3.29 

0 80 0 80 0 65 0 85 

Vaccinium angustifolium 
17.7 1.38 23.8 2.55 30.3 2.2 30.5 2.28 

0 40 0 80 5 65 5 70 

22.9 2.92 0 0 18.3 3.07 17.7 3.16 
Juniperus communis 

0 75 0 0 0 80 0 85 

Juniperus horizontalis 
0 0 22.6 2.96 0 0 0.3 0.31 

0 0 0 60 0 0 0 15 

3.5 1.23 7 2.26 7.1 1.83 15.3 2.79 
Lichen spp. 

0 40 0 60 0 45 0 70 

Potentilla tridentata 
2.9 0.65 1.5 0.36 2.4 0.51 2.5 0.45 

0 20 0 10 0 15 0 10 

2.2 1.01 1.5 0.36 7.1 2.31 5.2 2.6 
Empetrum nigrum 

0 40 0 35 0 60 0 90 

Maianthemum canadensis 
1.4 0.4 1 0.9 0.27 0.7 0.26 2.1 0.39 

0 10 0 5 0 5 0 10 

1.3 0.57 2.1 0.63 l.4 0.36 1.5 0.47 
Festuca ovina 

0 20 0 20 0 10 0 15 

Sphagnum spp. 
14.5 1.74 34.7 2.89 22.1 2.44 19.5 2.39 

0 40 0 80 0 60 0 60 

Kalmia angustifolium 
l.7 0.97 2.4 1.36 0.5 0.3 1 2.5 1.72 

0 40 0 60 0 10 0 80 

Ledum groenlandicum 
4.7 1.49 0 0 0 0 0 0 

0 50 0 0 0 0 0 0 

Comus canadensis 
0.5 0.22 0 0 0 0 0.3 0.18 

0 5 0 0 0 0 0 5 

Sorbus canadensis 
0.2 0.21 0 0 0.3 0.18 0 0 

0 10 0 0 0 5 0 0 

Bare ground 
1.6 0.67 0.4 0.33 2.2 0.8 3.1 1.15 

0 20 0 15 0 20 0 40 

Epilobium angustifolium 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

Gaultheria hi!>pidula 
0.8 0.48 0 0 0 0 0.2 0.15 

0 20 0 0 0 0 0 5 
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Appendix D1: Weather summary for St. John's Airport with Pouch Cove adult catch per 
trap per night, 1996, 1998-2000. 

Maximum Minimum Mean 
Precipitation 

Average Adult catch 
Year Month Day temperature temperature temperature Wind Speed per 

.ec) ec) (°C) 
(mm) 

(km/hr) tmp/night 

June 24 14.6 3.6 9.1 1.9 21.5 0.0 

27 12.9 4.7 8.9 7.6 19.8 0.0 

2 19.5 12.6 16. 1 4.0 22.6 0.2 
5 24.3 16.4 20.3 I 1.7 29.8 0 .1 

8 21.9 10.2 16.1 3.2 25.0 0.2 

11 20.4 12.3 16.4 1.3 24.5 0.6 
July 15 20.3 9.3 14.8 14.7 23.6 0.3 

18 21.7 10.9 16.3 3.6 28.2 0.3 

1996 21 23.3 13.1 18.2 3.0 25.7 0.3 

24 16.7 10.2 13.5 0.6 15.1 0.5 

28 20.9 11.1 16.0 0.5 27.2 0.2 

31 20.8 10.6 15.7 0.0 11.9 0.2 
4 22.7 15.1 18.9 0.1 15.7 0. 1 

August 7 26.6 15.5 21.1 0.0 18.3 0.0 

11 24.3 14.8 19.5 2.2 26.2 0.0 

21.4 12.3 16.9 5.8 37.4 0.0 

19 20.8 12.8 16.8 0.2 21.8 0 

.Ttme 24 15.4 5.6 10.5 0.0 17.2 0.0 

1 18.3 8.4 13.4 12.2 24.5 0 .1 

7 19.2 12.3 15.8 11.5 18.1 0.7 

1998 July 14 16.8 10.0 13.5 0.1 14.8 0 .2 

20 25.1 14.6 19.9 4.2 18.3 0 

27 23.0 .. 11.9 17.5 . 5.8 20.0 0 

1 19.6 10.2 14.9 15.7 17.6 0 .1 

7 13.8 6.2 10.1 4.5 12.7 1.5 
July 

14 19.8 10.5 15.2 4.6 13.7 0.7 
1999 21 17.3 9.5 13.4 1.3 15.6 0.3 

28 18.3 12.9 15.6 9.4 13.9 0 

August 7 19.7 13.3 16.5 1.5 15.1 0 

I 18.9 10.4 14.7 5.2 11.9 0.0 

10 23.2 13.3 18.3 1.3 21.8 0.1 

2000 
July 19 21.5 12.7 17.1 2.3 21.2 0.1 

26 17.6 II .5 14.6 1.0 9.9 O.J 

31 16.5 10. 1 13.3 9.2 18.6 0 
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Appendix D2: Weather summary for Victoria weather station with Freshwater and 
Bryant's Cove adult catch per trap per night, 1996-2000. 

Ma;'<imum Minimum Mean 
Adult catch per 

Year Month Day temperature temperature temperature 
Precipitation trap/night 

(OC) CCC) CCC) 
(mm) 

Freshwater 
Bryant's 

Cove 
June 24 15.7 2.5 9.1 0.0 0.0 -

27 14.5 4.0 9.3 10.3 0.0 -
2 20.2 10.2 15.2 10.3 0.2 -
5 24.7 16.0 20.4 1.7 0.3 -
8 20.8 12.0 16.4 0.0 0.3 -

July 
11 20.7 11.0 15.8 3.5 0.5 -
14 22.7 13.3 18.0 12.7 0.3 -

1996 
18 21.2 10.2 15.7 3.9 0.2 -
22 21.8 14.5 18.2 2.3 0.3 -
25 15.3 10.0 12.7 0.3 0.1 -
29 21.5 12.8 17.2 2.7 0.1 -
1 23.5 ll.5 17.5 0.5 0.1 -

August 
5 23.8 14.5 19.2 0.3 0.0 -
8 28.3 15.3 21.9 0.0 0.0 -
12 25.0 15.5 20.3 8.0 0.1 -
15 21.0 14.2 17.6 5.8 0.0 -
2 12.0 7.8 12.6 0.0 - 0.0 
6 18.8 11.0 16.1 6.7 - 0.1 
10 26.2 12.5 19.2 0.0 - 0.6 

July 
13 22.8 13.3 17.2 1.9 - 0.8 
17 18.0 7.7 12.7 7.9 - 0.6 
20 24.5 13.7 19.3 0.4 - 0.3 
24 19.7 10.0 14.9 0.7 - 0.3 
27 2 1.8 9.2 14.9 0.0 - 0.1 

1997 
31 20.5 8.7 15.5 0.4 - 0.2 
3 16.5 12.8 17.9 1.2 - 0.0 
7 22.0 13.3 17.8 8.3 - 0.0 
10 22.3 11.2 17.3 3.2 - 0.1 
14 25.7 12.8 16.6 1.2 - 0.0 

August 
17 16.7 9.8 13.9 1.3 - 0.0 
21 16.3 6.0 11.3 0.0 - 0.0 
24 20.2 8.3 15.0 4.3 - 0.0 
27 20.0 10.2 14.4 0.3 - 0.0 
31 19.2 10.3 13.8 20.1 - 0.0 
1 23.0 3.2 15.1 7.1 1.0 3.4 

July 
7 19.7 10.5 16.4 8.5 6.1 0.4 

1998 13 14.8 7.3 11.6 0.3 2.1 0. 1 
20 24.3 16.3 19.5 10.9 0. I 0.0 
27 24.3 10.3 17.4 0.3 0.0 0.1 
I 22.0 8.0 17.0 3.3 0.2 1.6 

July 
7 16.2 7.8 12.2 4.3 4.3 1.0 

1999 15 21.3 11.2 16.8 6.2 0.4 0.4 
22 22.2 10.0 15.5 0.0 0.4 0.0 
29 19.7 I I .5 15.6 10.7 0.0 0.0 
I 19.2 8.7 13.9 5.1 0.0 0.0 

2000 
July 10 23.0 13.0 18.0 1.7 0.0 0.0 

18 23.7 10.3 17.0 0.7 0.0 0.0 
26 18.5 I 1.5 15.0 0.7 0.0 0.0 
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Appendix D3 : Weather summary for Bonavista weather station with Little Catalina adult 
catch per trap per night, 1996-2000. 

Maximum Minimum 
Mean temperature Precipitation Adult catch per 

Year Month Day temperature temperature 
CCC) (OC) CCC) (mm) trap/night 

June 24 11.8 3.1 7.5 0.8 0.0 
27 14.8 5.9 10.4 5.7 0.0 
2 22.6 11.3 17.0 0.0 0.6 
5 23 .1 13.1 18.1 4.7 3.5 
8 20.2 10.6 15.4 0.0 4.9 

July 
11 20.5 11.7 16.1 0.7 4.7 
15 19.9 9.2 14.6 10.3 6.5 
18 2 1.4 11.7 16.5 3.7 3.8 

1996 22 2 1.0 11.7 16.4 1.5 4.9 
25 16.7 9.4 13.1 0.0 1.6 
29 17.9 10.0 13.9 5.7 2.0 
1 25 .1 12.8 19.0 0.0 2. 1 
5 23.9 13.9 18.9 3.5 1.2 

August 8 25.0 16.3 20.7 0.0 1.0 
12 22.4 13.9 18.1 5.5 0.9 
15 19.4 12.7 16.0 0.7 0.4 
19 21.9 13.1 17.5 2.9 0.2 

June 30 10.6 6.4 8.5 0.0 0.0 
3 17.1 8.0 12.6 0.3 0.0 
7 21.6 11.5 16.5 3.3 0.1 
10 24.9 11.1 18.0 0.2 0.9 

July 
14 19.8 11.2 15.6 1.5 1.8 
17 14.0 7.7 10.8 16.5 1.4 
21 21.4 12.3 16.9 0.0 1.3 
24 17.8 9.9 13.9 0.0 1.3 

1997 28 15.4 5.5 10.5 0.2 0.6 
31 20.5 10.8 15.7 4.0 0.4 
4 21.6 13.5 17.6 3.2 0. 1 
7 19.5 11.4 15.5 7.8 0.0 
11 23.3 13.0 18.2 0.3 0.1 

August 14 18.8 12.8 15.8 0.3 0.4 
18 17.9 12.3 15.1 5.2 0.1 
21 15.2 8.8 12.0 0.3 0.1 
25 16.1 10.3 13.2 0.3 0.0 
1 17.8 9.1 13.5 3.5 1.0 
7 17.9 11.6 14.8 4.7 2.2 

1998 13 13.1 8.1 10.6 0.2 3.2 
20 25.2 14.8 20.0 2.5 0.0 

July 29 20.9 11.9 16.4 0.0 0.0 
I 17.6 10.2 13.9 2.3 0.0 
7 12.3 7.2 9.8 0.2 0.2 

1999 
14 18.6 10.4 14.5 6.5 1.5 
21 19.2 11.0 15.1 3.8 2.2 
28 20.7 12.5 16.5 3.0 1.5 

August 2 20.1 12.0 17.1 0.2 0.0 
1 16.8 8.6 12.8 1.9 0.0 

July 
.10 23.0 12.1 17.5 1.0 0.0 

2000 19 2 1.6 13.0 17.3 4.2 0.0 
26 17.5 11.2 14.4 0.2 0.0 
31 19.0 12.0 15.5 0.0 0 
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Appendix D4: Weather summary for Long Harbour weather station with Chance Cove 
adult catch per trap per night, 1997. 

Maximum Minimum Mean 
Precipitation Adult catch 

Year Month Day temperature temperature temperature 
(OC) (oC) ( oC) (mm) per trap/night 

June 30 12.5 6.8 9.7 0.1 0.0 

5 18.2 11.2 14.7 7.2 0.0 

10 22.5 10.8 16.7 4.6 0.4 

14 20.2 10.8 15.5 3.6 0.6 

July 17 17.3 9.8 13.6 1.9 0.5 

20 19.0 10.8 14.9 0.4 0.5 

23 17.3 11.2 14.3 0.0 0.3 

27 17.7 11.5 14.6 0.0 1.0 

1997 30 18.2 11.2 14.7 4.0 1.2 

3 18.8 14.7 16.8 2.4 0.8 

6 21.0 14.0 17.5 5.1 0.3 

9 20.3 12.3 16.3 3.3 0.1 

August 13 20.3 15.0 17.7 0.0 0.0 

16 17.0 11.8 14.4 2.3 0.0 

19 16.7 12.5 14.6 0.7 0.0 -
22 18.0 6.7 12.3 0.0 0.0 

25 19.2 12.3 15.8 2.4 0.0 
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