
CENTRE FOR NEWFOUNDLAND STUDIES 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author's Permission) 









INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus. some thesis and 

dissertation copies are in typewriter face. while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins. and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages. these will be noted. Also. if unauthorized 

copyright material had to be removed. a note will indicate the deletiun. 

Oversize materials (e.g.. maps. drawtngs. charts) are reproduced by 

sectioning the original. beginn1ng at the upper left-hand comer and continuing 

from left to right in equal sections with small over1aps. 

ProQuest Information and Learning 
300 North Zeeb Road. Ann Art>or, Ml 48106-1346 USA 

800-521-0600 

UMf 



1+1 National Ubrary 
of Canada 

Bibtiotheque nationale 
du Canada 

Acquisitions and 
Bibliographic Services 

Acquisitions et 
services bibliographiques 

395 Welington StrMt 
Ofta- ON Kl A ON4 
Canada 

395, f\18 Wellington 
oa..a ON K1 A ON-' 
c.Nda 

The author has granted a non
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distnbute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
pemnsston. 

.......... --

L' auteur a accorde une licence non 
exclusive permettant a la 
Bibliotheque nationale du Canada de 
reproduire, preter .. disttibuer ou 
vendre des copies de cette these sous 
Ia forme de microfiche/~ de 
reproduction sur papier ou sur format 
electronique. 

L' auteur conserve Ia propriete du 
droit d'auteur qui protege cette these. 
Ni la these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation. 

0-612-73644-X 

Can ad~ 



SCALING EELGRASS COMPLEXITY IN NEWMAN SOUND. 

NEWFOUNDLAND AND APPLICATIONS TO FISH ECOLOGY 

by 

0 Nadine J. Wells 

:\ thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the 

requirements for the degree of 

\"fasten of Science 

Environmental Science 

Memorial University ofNewfoundland 

January 2002 

St. John's Newfoundland 



Abstract 

Problems in ecology often exist at the scale of decades and large ecosystems while 

most variables can only be measured directly in small areas and over short periods of 

time. Therefore. multi-scale spatial analyses have become progressively more 

prevalent in ecological studies. Habitat. and the way in which organisms are 

distributed \\<ith respect to habitat. varies with scale both spatially and temporally. 

Eelgrass (Zosteru marina) habitat. which grows in complex structural arrangements 

in marine environments. has been shown to enhance the diversity and density of 

invertebrate and vertebrate species. including juvenile Atlantic cod (Gadus morhua) 

in Newfoundland. Eelgrass exhibits a hierarchical arrangement of spatial structure 

suggesting that area and complexity measures may not scale isometrically. I obtained 

scaling laws tor eelgrass habitat area and perimeter using two sources: underwater 

video along transect lines (small scales) and aerial photographs (large scales). I 

determined that a common scaling law tor eelgrass habitat holds at small and large 

scales if lateral hett!rogeneity within a site is insignificant. Also. fractal dimensions 

were used as a measure of complexity tor c:elgrass habitat at 8 sites where age 0 

Atlantic cod were collected by beach seine. In a two-phase analysis. I tirst determined 

that cod were more likely to be caught at eelgrass sites exhibiting high complexity 

during early months of recruitment (i.e .. July and August) whereas they were tound 

equally at all sites later in the season (i.e: .. September through November). In the 

second phase. it was determined that when cod were present. the relationship with 

eelgrass complexity was strong only in September. with cod being tound in highest 

densities at intermediately complex eelgrass sites. Relationships between cod density 

and eelgrass complexity for all other months and years were not consistent indicating 

that factors other than eelgrass complexity had a greater influence on the distribution 

of cod during these months. I have confirmed that incorporating scale into ecological 

studies is important and that studies should be carried out at scales appropriate to the 

questions being posed. 
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Chapter I: Introduction and Overview 

Multi-scale spatial analyses have become progressively more prevalent in 

t:cological studies (Schneider 2001 ). This is because problems in ecology often exist at 

the scale of decades and large ecosystems while most variables can only be measured 

directly in small areas and over short periods oftime. Investigators have become aware 

that patterns measured at small scales do not necessarily hold at larger scales (Turner 

1989: Schneider ~00 I) and that the scale at which studies are designed has a substantial 

impact on results obtained (Dayton and T egner 1984: Wiens 1989: Farmer and Adams 

!991: Gardner 1998). Many investigators (t:.g .. Farmer and Adams 1991: Hewitt et al. 

1998: Schndder t!t al. !997b: Thrush et al. 1997) suggest multi-scale studies to resolve 

issues of scale. 

Habitat. and the way in which organisms are distributed within it. varies both 

spatially and temporally with scale. Historically. multi-scale studies of habitat tocused on 

terrestrial systems (see Robbins and Bell I 994 ). Aspects of aquatic habitats. such as type 

1 Ross et al. I Q97). biomass (Adams 1976a: Orth and Heck 1980) areal extent (Gibson 

1994: Miranda and Pugh 1997). plant structure ( Orth et al. 1984 ). ecological efficiency 

(Adams !976b) and latitude (Nelson 1980). influence the distribution and behavior of 

organisms. However. these studies have t:xcluded the notion of scale. Contemporary 

research has tocused on the intluence of edge (Baltz et al. 1993). density (Bell and 

Westoby 1986a: Carr I 994: Graham et al. 1998). spatial contiguration ( Irlandi et al. 

1995: Irlandi 1997). fragmentation (Dunham et al. 1997). or complexity (Heck and Orth 

1980: Gotceitas and Colgan 1989: Mattila 199:2) ofhabitat on organisms and ecological 



processes: but again. these studies do not incorporate scale explicitly. Habitat patterns 

found at small spatial scales may be very ditTerent from those found at broader spatial 

scales (Wiens I 989). Thus. studies identifYing scale-dependent relationships between 

organisms and aquatic habitat are becoming more prevalent (Bell and Westoby I 986b: 

Gee and Warwick I 994: Syms I 995 : Davenport et al. I 996: Azovskii and Chertoprud 

I 9Q7: Beck I QQ8: Connell and Kingstord I 998: Palacin et al. 19Q8: Snover and Commito 

1998: Muotka et al. I Q98: Turner et al. i99Q: 0 200:2). 

Seagrass communities are distributed along temperate coasts worldwide. Eelgrass 

(Zosteru murinu) is the most wide-spread species. having a distribution in the northern 

portions of the Pacific and Atlantic oceans. extending into the Arctic seas (den Hartog 

1971 ). Eelgrass occurs as dense beds in tidal and subtidal areas (Rasmussen 1977) with 

substrates varying from sott mud to gravel mixed with coarse sand ( Tutin 1942). Eelgrass 

anatomy. g.ro-...th. and reproduction are described by Tutin (I Q42) and Rasmussen ( 1977). 

A plant consists of a more or less vertically growing group of leaves collected in a shoot 

which produces tour to six band! ike leaves per year. The leaves arise from a horizontal 

perennial rootstock. a rhizome. supplied with bundles of roots. The tlowers are tormed on 

a separate erect stem and are tertilized by waterborne pollen. Vegetative reproduction by 

rhizome growth also occurs. and under most marine conditions probably plays a more 

dominant role than sexual reproduction. However. vegetative reproduction is of limited 

duration and is dependent on light availability and temperature. 

Seagrass communities have a number of functions that have been reviewed 

extensively elsewhere (Wood et al. 1969: den Hartog 1977: Kikuchi and Peres 1977: 



Kikuchi 1980: Thayer et aL 1984 ). The main functions of seagrass (i.e .. eelgrass) can be 

summarized as follows: 

I . The long blades reduce water movement by currents and waves. otTering a calm 

underwater space within it (Kikuchi and Peres 1977: Kikuchi 1980: Fonseca et al. 

I 98:2 ). 

1 Velocity reduction increases the accumulation of inorganic and organic material 

and reduces turbulence and scouring (Wood et al. 1969: Kikuchi 1980: Thayer et 

aL 198..1 ). Though ~diment-trapping is one of the general teatures of seagrass 

beds. rhizomes of Zostera marina only grow horizontally (as opposed to upright) 

and this sediment-trapping action is less obvious (Kikuchi and Peres 1977: 

Kikuchi 1980). 

3. This habitat ~n,.es to reduce erosion. stabilize the bonom substrate._ and preserve 

sediment microtlora. resulting from its gregarious grow1h and dense root system 

(den Hanog 1977: Thayer et aL 1984: Wood et at. 1969). 

4 . By photosynthetic activity. seagrasses produce oxygen and consume CO:: 

dissolved in the water during the daytime (Kikuchi and Peres 1977). High 0~ 

concentration in the seagrass bed can suppon high densities of various animal 

torms in proximity to highly organic reducing substrates (Kikuchi and Peres 

1977). 

5. The leaf canopy diminishes illumination in the daytime. protecting the bonom 

from strong insolation and permitting a shaded microenvironment to develop at 

the base of the vegetation (Kikuchi and Peres 1977: Kikuchi 1980). 'When the 



intertidal seagrass bed is exposed to the air. leaves cover the bonom sw-fuce and 

protect their inhabitants against strong sunlight and minimize the tluctuation of 

temperature and salinity (Kikuchi and Peres 1977). 

6. Plants and detritus production influence nutrient cycling between sediments and 

overlying waters (Wood et aL 1969) and provide a significant and long-term 

source of nutrients tor sediment microheterotrophs (Thayer et aL 198~ L In 

addition. movement of water and tauna transpons living and dead organic matter 

(paniculate and dissolved) out ofeel~JTaSs meadows to adjacent systems (Thayer 

et aL 1984). 

7. Eelgrass increases available substrate surface tor epiph~1ic algae and associated 

tauna (Wood et aL 1969: Kikuchi and Peres 1977: Kikuchi 1980). with as much 

as 20 times more surtace area tor small sessile tlora and tauna as compared to 

unvegetated areas (McRoy and Helfferich 1980). Also. the differentiation of the 

plant body into leaves. stems and rhizomes increases the diversity of 

microhabitats. and as a result. it supports a great diversity of animals that do not 

teed directly upon the eelgrass (Kikuchi and Peres 1977: Kikuchi 1980). 

8. One of the most important functions of eelgrass is to provide a structural habitat 

or shelter to a variety of organisms t den Hartog 1977) by the variety of living 

spaces in the vertical and horizontal struc1ure ofthe grass bed itself(Thayer et al. 

1984 ). In this sense. it acts as a nursery to shellfish. crustaceans. and many 

juvenile and adult fishes. Roots and !eaves provide horizontal and venical 

complexity which. coupled with abundant and varied food resources. leads to 



densities of sessile and mobile tauna generally exceeding those in unvegetated 

habitats (Thayer et al. 1984 ). There are more hiding places which attract prey 

leading to high local concentration of prey tor predators to eat (McRoy and 

Helfrerich 1980). 

9. A variety of primary and secondary sources of organic carbon are present in 

eelgrass communities that provide multiple tood resources tor invenebrates and 

venebrates (Thayer et al. 1984). Ed grass is digested by a very restricted number 

of organisms (Wood eta!. 1969: den Hartog 1977: Kikuchi and Peres 1977: 

Kikuchi 1980). However. leaves produce large quantities of organic material that 

decomposes within the meadow and becomes available to bonom tauna via 

detritus 1 den Hartog 1977: Kikuchi and Peres 1977) or is transported to adjacent 

systems (Wood et al. 1969). Once washed ashore and decomposing. this detritus 

is eaten by several species of insect <den Hartog 1977). 

Eelgrass habitat has been sho\.\-11 to positively enhance the diversity and density of 

invertebrate and vertebrate Spc!cies relative to non-vegetated areas. Onh et al. ( 1984) 

summarize studies describing the int1uence of seagrass plant architecture on associated 

animal distributions and abundance. Onh and Heck ( 1980) tound that tish abundance and 

species number increased as water temperature and eelgrass biomass increased. Adams 

( 1976b) tound that eelgrass systems have high ecological efficiencies indicating that 

eelgrass beds are efficient systems tor convening consumed energy and solar radiation 

into tish biomass. 

5 



Eelgrass systems also protect organisms from predation. Eelgrass features such as 

shoot density. grassbed patchiness. plant biomass. individual leaf area. leaf morphology 

and the thickness. structure and proximity ofthe rhizome layer to the sediment surface. 

can potentially mitigate the etTects of predation ( Orth et al. 1984 ). However. the 

relationship between some of these characteristics and predator success does not appear 

to be linear 1 Orth et al. 1984 ). Instead. a threshold level of these plant characteristics 

seems necessary tor significant protection from predation to occur (Nelson 1979: Heck 

and Thoman 1981: Crowder and Cooper 1982: Savino and Stein 1982). Graham eta!. 

1 I 998) tound a decreasing exponential relationship between teeding etliciency of 

mummichogs and eelgrass shoot density. They attributed the higher abundance of tish in 

eelgrass beds compared to unvegetated habitats to greater tood availability because 

invertebrates benetit from the protection of eelgrass as well. Gotceitas and Colgan 

1 I 989). using artificial vegetation similar to eelgrass. tound a non-linear relationship 

between increasing plant stem density and predator (largemouth bass) toraging success. 

They also tound a positive non-linear relationship between increasing habitat complexity 

1 plant stem density) and prey (juvenile bluegill suntish) choice of habitat. lrlandi eta!. 

1 1995) demonstrated that the rates of predation on an epitilUnal bivalve increased with 

increasing fragmentation of seagrass habitat. These results indicate that seagrass 

structural patterns have a major effect on the organisms associated with them. 

In Newfoundland. juvenile Atlantic cod (Gadus morhua) are often associated witn 

eelgrass ( Gotceitas et al. 1997). Adult Atlantic cod spawn in the deep waters of the 

continental shelf(offshore stocks) and within inshore bays ("bay stocks") usually 
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between April and June (Scott 3fld Scott 1988). The number of eggs spawned can range 

from 200 thousand to 12 million per individuaL depending on temale size (Scott and 

Scott 1988). The tenilized eggs tloat with currents until they hatch as small t3-6 mm) 

larvae (Scott and Scott 1988). The larvae develop into pelagic ( 0+ )'T) juvenile CIJd that 

settle after 2-4 months into demersal habitats where ambient temperatures are often less 

than l0°C. In cold waters influenced by the Labrador Current. settlement often occurs in 

shallow (4-7 m) water along Newtoundland·s east coast (Methven and Schneider 1998). 

Juvenile cod are widely distributed throughout both the inshore and offshore 

environments ofNewtoundland and Labrador (Dalley and Anderson 1997). However. the 

cod stock otfthe east coast of southern Labrador and Newfoundland has been under a 

moratorium on commercial tishing since July 1992 (Shelton and Healey 1999). 

Understanding the ecology of juvenile cod in Newtoundland has been the tocus of a 

number of recent studies 1 Gotceitas and Brown I 993: Methven and Bajdik 1994: 

Gotceitas et al. 1995: Fraser eta!. 1996: Dalley and Anderson 1997: Gotceitas et al. 1997: 

Ings et al. 1497: Schneider et a!. 1997a: Methven and Schneider 1998: Shelton and 

Healey 1 <)<)9: Linehan et al. 2001: Gorman 1002: 0 2002). Gaining insight into how cod 

are distributed relative to panicular habitat types is an imponant pan of understanding 

their ecology. 

Post-settled (age 0+) Atlantic cod are associated with structurally complex 

habitats (Tupper and Boutilier 1995 ). They settle mainly in shallow sheltered areas and 

are often absent at exposed locations and in deep water (Gode et al. 1989). Moreover. 

juvenile cod show the ability to assess their surroundings and choose between habitat 
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types. In laboratory t!Xperimems. Gotceitas and Brown ( 1993) found that. with no 

apparent risk of predation. juvenile cod preferred sand or gravel-pebble substrate but 

when predators were present. cod utilized the interstitial spaces of cobble. Similar results 

were obtained by Fraser et al. ( 1996) on tests with age Q4- and age 1 + cod. Moreover. 

Gotceitas t!t al. ( 1995) found that when cod were exposed to an actively foraging 

predator. they hid in cobble or. when cobble was not available. in kelp. This behavior 

significantly reduced predation risk in both habitats. They suggested that juvenile cod are 

capable of assessing predator risk and adjust their response accordingly. Field 

observations have shown that juvenile cod may be associated with fleshy macroalgae 

1 Keats et al. 1987). which the investigators suggested is used mainly tor cover and. to a 

lesser degree. tor tood obtained from the algae. Recently. eelgrass has received more 

attention than other bottom cover rypes by investigators interested in juvenile cod habitat. 

Gotceitas et al. 1 1997) combined field and laboratory techniques to determine that 

eelgrass is used as a nearshore habitat by age 0+ cod and that latency until a predator 

captures an age 0-"- cod increases with both the presence and density of vegetation. 

However. investigators have not been able to tind a relationship between cod abundance 

and eelgrass cover (Norris et al. in prep). Limitations on suitable habitat availability. such 

as physical abundance and occupance by competitors (Fraser et al. 1996). may also affect 

the distribution and survival ofjuvenile cod (Lough et al. 1989: Tupper and Boutilier 

1995 ). 

Studies consistently show that age 0 cod abundance declines in vegetated sites at 

night while the reverse is true at non-vegetated sites C Borg et al. 1997: Linehan et al. 
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2001 ). Borg et al. ( 1997) suggested that availability of vegetation during the day as a 

predation refuge. as well as open areas tor teeding during night. seems to be important 

tor juvenile cod. I hypothesi7ed that eelgrass habitat with intermediate complexity (as 

measured by area and perimeter} would be most suitable tor cod (hereafter reterred to as 

the ··intermediate optimum hypothesis .. ). Eelgrass habitat low in complexity would have 

too little edge. possibly leading to decreased access to tood. Gorman (2002) tound that 

predation risk tor age 0 cod was greatest at the edge of eelgrass habitat compared to 

surrounding bare areas or eelgrass habitat. This risk decreased as distance from the edge 

increased. Theretore. I expect eelgrass habitat high in complexity to be less suitable than 

edgrass with intermediate complexity because it has too much edge. 

Eelgrass is one of several species of seagrass that grows in complex structural 

arrangements in marine environments. lt exhibits a hierarchical arrangement of spatial 

structure. ranging from millimeters to kilometers: from rhizomes and shoot groups. to 

discrete patches of eelgrass. to eelgrass meadows (Robbins and Bell 1994: Turner et a1. 

1999). Meadows may be extensive and continuous or highly fragmented and arranged in 

a mosaic of small patches (Robbins and Bell 1994 ). Seagrass patterns are apparently 

controlled by factors such as major storms. bottom geology and morphology. and light 

penetration (Kelly 1980). Wind-generated wave dynamics. tidal currents and water depth 

are also important influences on the spatial configuration of seagrass beds. both through 

direct control ofbed development. as well as through alteration ofbed heterogeneity or 

patchiness <Turner et al. 1999). 
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Several investigators have measured components of seagrass habitat structure. 

including patch size (lrlandi 1997). shoot density (Bell and Westoby 1986a: Graham et 

al. 1998). biomass (Adams 1976a). and leafheight (Bell and Westoby 1986a). However. 

complexity of seagrass habitat based on spatial patterning has rarely been quantified (but 

see Turner et al. 1999 and 0 2002). Investigators have often reterred to surrogate 

measures of complexity such as leaf height or density (e.g .. Bell and Westoby 1986a: 

Gotceitas and Colgan 1989: Graham et al. 1998). Alternatively. measurements of spatial 

paneming ofhabitat structure have been made. but only at one scale (lrlandi et at. 1995). 

Techniques developed tor terrestrial landscapes. such as scaling laws or fractal analyses 

tSugihara and May 1990: Williamson and La\\1on 1991 ). can be applied to measure the 

complex spatial patterning of seagrasses at several scales. 

Fractal geometry has been a useful tool in ecological sciences tor quanti~·ing 

aspects of habitat over multiple spatial scales 1 Sugihara and May 1990: Hastings and 

Sugihara 1993: Johnson et al. 1995: Kenkel and Walker 1996). Fractal analyses relate 

some dimension of habitat to the scale at which it is measured and provide a numerical 

expression of complexity independem ofthe nature ofthat habitat (Gee and Warwick 

1994 ). This type of analysis has been used to detennine spatial panerns in landscapes 

I Burrough 1981: Krummel et at. 1987: Milne et al. 1992: Ono 1996: Ritchie 1998: 

~ikora 1999). ecological habitats (Williamson and Lawton 1991: Sole et al. 1994). and 

vegetation (Morse et al. 1985: Palmer I 988: Scheuring and Riedi 1994: van Hees 1994 ). 

The majority of fractal studies are based on terrestrial systems. However. fractal analyses 

are becoming common in aquatic systems as well (Gee and Warwick 1994: Simon and 
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Simon 1995: Azovskii and Chertoprud 1997: Snover and Commito 1998: Turner et al. 

1999). 

Studies quantit)·ing eelgrass complexity have used ditTerent methods at different 

scales (e.g .. Turner et al. 1999:0 2002). In New Zealand. aerial photographs at scales of 

I: 1500 and I :3000 were used to detennine seagrass complexity by way of fractal 

analyses (Turner et al. 1999). In Newtoundland. 0 (2002) analyzed imagery collected 

using a Compact Airborne Spectrographic Imager lCASI) to determine a scaling law 

comparing perimeter-to-area ratios of eelgrass habitat over a range of resolutions. This 

enabled her to quantit)' the complexity of eelgrass habitat structure as a function of 

spatial scale. She tound consistent values tor the exponent of the scaling law over spatial 

scales spanning two orders of magnitude. This indicates that large-scale structural 

complexity is simply a magnitied version of small-scale! complexity within this range of 

spatial scales. Thus. eelgrass area and perimeter measurements taken using tiner 

resolutions (e.g .. aerial photography and underwater video) should provide information to 

extend scaling laws to these resolutions. 

Investigators addressing the same questions have often conducted studies at quite 

different scales. resulting in cont1icting tindings (Wiens 1989). I set out to determine if 

measurements of ee !grass area and perimeter made at small scales (as measured from 

underwater video) would have similar scaling relationships as measurements made at 

larger scales (as measured from aerial photographs). I compared several resolutions of 

eelgrass measurements from underwater transect video to several resolutions of 

measurements from aerial photographs to determine if a common scaling law tor eelgrass 
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habitat would hold at small and large scales. In a second study. using measurements of 

area and perimeter of eelgrass habitat. I determined complexity using fractal analyses. To 

determine if age 0 .-\tlantic cod are intluencc!d by structural complexity ofhabitat. I 

analyzed cod density data in relation to eelgrass complexity. 
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Chapter 2: A multi-scale analysis of eelgrass spatial patterns 

2.1 Introduction 

ln ecological research. problems often exist at temporal scales of decades and 

spatial scales of large ecosystems. whereas most variables can only be measured directly 

in small areas. over short periods of time. ln order to effectively conduct research. one 

must undertake studies at scales relevant to the problem (Wiens 1989: Fanner and Adams 

!991 : Gardner 1 998). which is tricky because patterns measured at small scales do not 

necessarily hold at larger scales (Turner 1989: Levin 1992: Schneider 2001 ). Many 

investigators (e.g .. Farmer and Adams 1991: Hewitt et al. 1998: Schneider et at. 1997: 

Thrush et al. 1997) have noted the importance of scale and have suggested that to solve 

scale-dependent problems. multi-scale studies be done whenever possible. 

Habitat. and more specitically. vegetation patterns. vary spatially and temporally 

Jepending on scale. Patterns tound at small spatial scales may be very different from 

those tound at broader spatial scales (Wiens 1989). Intormation is lost as spatial data are 

considered at coarser scales of resolution (Schneider and Piatt 1986: Turner 1990). Thus. 

the devdopment of methods that preserve information across scales is critical <Turner 

!990). Several studies <Conner and Bowers 1987: Farmer and Adams 1991: Ritchie 

1998: ~ikorn et al. 1999) have sho\\n that habitat can and should be measured at several 

scales. with the range depending on the processes being investigated. When habitat 

complexity or heterogeneity is measured at numerous scales. scaling laws or fractal 

analyses are often used (Gee and Warwick 1994: Otto 1996). thus permitting estimations 
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at any scale. Fractal analyses relate some dimension of habitat to the scale at which it is 

measured. Fractal analyses have been used to describe spatial patterns of various types of 

terrestrial! Krummel et al. 1987: Palmer 1988: Scheuring and Riedi 1994: van Hees 1994: 

Otto 1996) and aquatic vegetation (Gee and Warwick 1994: Azovskii and Chertoprud 

1997). including seagrasses (Turner et al. 1999). 

Seagrass habitat exhibits a hierarchical arrangement of spatial structure. ranging 

from millimeters to kilometers: from rhizomes and shoot groups. to discrete patches of 

edgrass. to edgrass meadows (Robbins and Bell 1994: Turner et al. 1999). Seagrass 

occurs naturally in a variety of complex but regular patterns. apparently controlled by 

such tactors as major stonns. bottom geology and morphology. and light penetration 

(Burrell 1977: Kdly 1980). Wind-generated wave dynamics. tidal currents and water 

depth are all important tactors that intluence the spatial configuration of seagrass beds. 

both through direct control of bed development. as well as through alteration of bed 

heterogeneity or patchiness (Turner et al. 1999). Eelgrass <Zostera marina) is one of 

several species of seagrass that grows in compiex structural arrangements in 

Ncwtoundland waters. Factors influencing the spatial complexity of eelgrass beds have 

not been studied in Newfoundland. 

Studies that have quantified eelgrass complexity have used different methods at 

ditlerent scales (e.g .. Turner et al. 1999: 0 2002). In New Zealand. aerial photographs at 

scales of I: 1500 and 1:3000 were used to determine seagrass complexity by way of 

fractal analyses (Turner et al. !999). Using CASI (Compact Airborne Spectrographic 

Imager) imagery. 0 (2002) determined a scaling law comparing perimeter-to-area ratios 



of eelgrass habitat over a range of resolutions. enabling her to quantify the complexity of 

eelgrass habitat structure as a function of spatial scale. She tound consistent values tor 

the exponent ofthe scaling law over spatial scales spanning two orders of magnitude. 

This pattern indicates that large-scale structural complexity is simply a magnified version 

of small-scale complexity within this range of spatial scales (0 2002). Thus. scaling laws 

should be extendable between measurements of eelgrass area and perimeter taken at 

coarse (e.g .. aerial photography) and tine (e.g .. underwater video) resolutions. 

The box counting method is commonly used to quantity habitat structure as a 

function of spatial scale (Sugihara and May 1990: Hastings and Sugihara 1993: Kenkel 

and Walker 1996: Ricotta 2000). This method involves counting the number of boxes 

containing some characteristic of habitat (e.g .. area or perimeter) in grids of decreasing 

resolution then regressing these counts against box size to obtain a scaling exponent. A 

derivation of this method involves calculating perimeter and area at each scale (Sugihara 

and May 1990). By regressing log area or log perimeter measurements at each scale 

against log resolution it is possible to obtain a scaling law that expresses change in area 

or perimeter as a function of scale. The area or perimeter can then be computed at any 

spatial measurement scale based on the scaling law. 

Investigators addressing the same questions have often conducted studies at quite 

ditlerent scales. resulting in conflicting tindings t Wiens 1989). I hypothesized that 

consistent results can be produced from analyses conducted at ditTerent scales. 

Specitically. I addressed the following question: do eelgrass area and perimeter 

measurements made at small scales have similar scaling relationships as measurements 
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made at larger scales? To answer this question. I measured eelgrass area and perimeter at 

6 sites in Newman Sound using two methods: underwater transect line video and aerial 

photographs. Video data was taken at three transect lines (perpendicular to the beach) per 

site. Several scales of eelgrass measurements from transect video were then compared to 

several scales of measurements from aerial photographs to determine if a common 

scaling law tor eelgrass habitat would hold at small and large scales. 

2.2 Methods 

2.2.1 Study area 

'\iewman Sound is a tjord. 41 km long and 1.5- 3.0 km wide. located in 

southwestern Bona vista Bay (Figure 2.1 ). on the northeastern coast ofNewtoundland. 

Canada ( 48°35' N. 53°55' \V). It is divided into two basins by a sill located -7 km from 

the head of the sound. which rises to a depth of 18m. The inner sound has a maximum 

depth of 55 m. The greatest depth of the outer sound is approximately 300m at its 

seaward end. For a detailed description of bottom substrates in the tjord. see Linehan et 

al.(2001). 

I selected 6 sites (Figure 2.1) based on the presence and spatial contiguration of 

eelgrass habitat. Eelgrass was associated with mud. silt. sand. and gravel substrates and. 

where present. is generally restricted to depths of less than 6 m in Newman Sound. 
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Figure 2.1: Map of the study area, Newman Sound, Newfoundland, showing the location 
of the 6 sites used in this study: Big Brook, White Rock, Mistaken Cove, Hefferns Cove, 
Minchins Cove, and South Broad Cove. 
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2.2.2 Aerial photography 

Aerial photographs ofthe 6 sites were taken in August 2000 from a single-engine 

Cessna tloatplane at altitudes between 150m and 300m. Prior to taking photographs. 

markers were set out at each site to delineate the area in which eelgrass habitat was to be 

quanti tied. This procedure allowed tor scaling of images and correction of camera angle 

tor each photograph. Each plywood marker measured 0.6 m x 0.6 m and was spray

painted tluorescent orange. One marker tloated on the ocean surtace 50 m otfshore and 

was anchored with a rope tied to a concrete block. Two other markers were placed on the 

beach 25m apart: a compass was used to ensure that the three markers tonned a 90 

degree angle (Figure 2.2 ). Flights were pertormed near midday when surtace glare and 

surtace winds were minimaL Pictures were taken with a 35-rnm Pentax FX 10 camera. 

titted with a 28-80 mm Pentax F Zoom lens (set to 50 rnm). haze tilter. and polarizer 

tiiter. Pictures were taken as close as possible to directly venical over the site to avoid 

glare. 

2.2.2.1 Image editing 

Aerial photographs were developed to a Kodak Digital Science Photo CD Master 

disc. with highest resolution level of2048 x 307::! pixels. Images were edited using 

Adobe Photoshop 5.5. Each image was adjusted to bring the markers into Q0° alignment. 

scaled using transtormation teatures (skewing and scaling) in Adobe Photoshop. and 

cropped to represent 3600 m~ (60m x 60m) on the ground (see Appendix 1 ). 
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SIIO~ --------------------- -- ---

WATER 50 m 

MARKER 

Figure 2.2: A depiction ofthe layout of markers at each site for purposes of scaling aerial 
photographs correctly. Onshore markers were 25 meters apart. The third marker was 50 
meters offshore. All three markers formed a 90° angle. 
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2.2.2.2 Ground trutbing 

Beton.! quantit)·ing habitat from the aerial photographs. each site was ground 

surveyed using an aquascope (PVC with Plexiglas bottom). A rough map of each site was 

dra\\n with a general layout ofhabitat types (e.g .. eelgrass. Fucus. mineral substrates). 

c.!nabling verification of habitat types observed on the aerial photographs. 

2.2.2.3 Box counting 

I used a box-counting method (Sugihara and May 1990) to quantify eelgrass area 

and perimeter at several scales of resolution from the aerial photographs. A grid 

~ontaining 3600 boxes ( I m.: each on the ground) was placed over each digital aerial 

photograph. Two types of data from the image were transferred manually to printed 

replicas of the grid: presence or absence of: (I) c>elgrass habitat (area measurement) and 

12) eelgrass habitat edge (perimeter measurement l. Once the area and perimeter data from 

the highest resolu!ion grid were transferred. grids of lower resolution (i.e .. tewer boxes) 

were placed over the 3600-box. grid. The number of boxes containing area and perimeter 

. ... , , .. ., , ., '\ ., 
were counted at resolutions ot I m-. 4 m-. 9 m-. 16m-. 25m-. 36m-. 100m-. 225m-. 

400 m.:. and 900 m.:. Eelgrass habitat area was calculated by multiplying the number of 

boxes that contained 1.-!elgrass at a given resolution by the size (m::) ofthe boxes. Eelgrass 

habitat perimeter was calculated by multiplying the number of boxes that contained 

perimeter at a given resolution by the length of a side (m) of a box. 
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2.2.3 Underwater video 

l" nden.vater video was taken in September 1999 along 3 transects at 6 sites. 

Transect lines were 100m long and laid do'All perpendicular to the shore stan.ing near the 

beach. separated by approximately 8 m. Two di·vers swam along the transect lines at a 

constant rate. One diver followed the transect line while the second diver held the video 

camera !Hl8 mm camcord!!r. Sony model VIOL enclosed in a waterproofhousingl at a 

45° angle center!!d over the transect line. 

2.2.3.1 Data extraction 

Data was extracted from the underwater video along the I m wide x 100m long 

transer:t strip using a timer. Video was played back on a computer and the amount of time 

Juring which eelgrass or no-eelgrass was visible was recorded. The average S'-"·imming 

rate in m s was calculated by dividing 1 00 rn by the total time it took to swim each 

transect line. Edgrass habitat measurements were calculated by multiplying the average 

swimming rate by the amount oftime that eelgrass and no-eelgrass habitats were visible. 

:\ scaled visual depiction of each transect line was created (Figure 2.3) and the ··distance 

along transect- on the x-axis was cropped to 60 m to be comparable to the size ofthe 

aerial photographs. Transect lines (I m wide) were split into bins of60m:. 30m~. 15m~. 

\Om=. sm=. 2m:. 1m=. 0.5m.:. 0.2m=. and 0.1m: for a total often scales of measurement. I 

quantified eelgrass habitat area by counting the number ofbins that contained eelgrass at 

each scale and multiplying them by bin size ( m.: l to obtain an area measurement ( m.:) tor 

each resolution. Perimeter measurements were made by counting the number ofbins that 
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figur~ 2.3: Depiction of ~elgrass gro\\lh along middle transect line from \1istaken Cnve. 
See inset tor enlargernl!nt ofO- 10m section ofthe transect. 
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contained t!elgrass habitat edge and multiplying by bin size ( m) to obtain a perimeter 

measurement (m) tor l!ach resolution. 

2.2.4 Test for lateral heterogeneity across transects 

To determine if the same scaling relation held tor area measurements across 

transect lines. I applied the tollowing model tor each site: 

log(A) = log(R) 1- [log(R)]'1 + L + log(R)*l + [log(R)]~*L ( 2.1) 

where:\:: area (m1
): R =resolution (bin size. m~): and L =transect line (categorical 

variable where L == left. middle or right). I used a quadratic model because the 

relationship between log area and log resolution was not linear. If[log(R)j:! was not 

signiticant. the! model was reduced to a linear model. lflog(R)*L and/or (log(R)j':!*L 

were signiticant. scaling exponents were dit1erent tor each transect line indicating that 

lateral heterogene!ity existed across transect linl!s. A similar model was applied to 

determine if lateral heterogeneity existed across transect lines tor perimeter: 

log(P) = log(R) • [Iog<R>f-+- L ~ log(R)*L + [log(R)J~*L 

where P = perimeter (m). R =resolution (bin size. m) and L = transect line . 

(2.2) 

. -\11 analyses were pertormed using SAS ( 1988). All models were based on a 

general linear model with a normal error structure. Tolerance of type I error was a= 0.05. 

Residuals were examined tor homogeneity. normality and independence. 
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2.2.5 Computing between scales 

l compared scaling exponents computed tor area and perimeter from underwater 

transect line data to scaling exponents computed tor area and perimeter from aerial 

photograph data. Area data from all transect lines were averaged and compared to area 

data from aerial photographs tor each site using the tollowing model: 

log(Al = log(R) + [log(R)I2 + M + log(R)*M + [log(R)f*M (1.3) 

where A:::: area (m~): R =resolution (bin/box size. m~): and M = method (categorical 

variable where M = underwater video or aerial photography). If the interaction terms 

log(R)*M and/or [log(R)f*M were signiticant. it was not possible to scale from area data 

collected from transect lines to area data collected from aerial photographs. l used a 

similar modd to determine if it was possible to scale perimeter measurements from 

transect line data to aerial photograph data: 

log(P) = log(Rl- [log(Rlf ... M + log(R)*M + [log(R)f*M 

where P =perimeter (m): R =resolution (binlbox size. m): and M =method. Once again. 

iflog(R)*M and/or [log(R)f*M were signiticant. it was not possible to scale from 

perimeter data collected from transect lines to perimeter data collected from aerial 

photographs. 

All analyses were pertonned using SAS 1 1988). All models were based on a 

general linear model with a normal error structure. Tolerance of type I error was a= 0.05. 

Residuals were examined tor homogeneity. normality and independence . 
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2.3 Results 

2.3. 1 Test for lateral heterogeneity across transeds 

Three sites (Big Brook. Mistaken Cove. and White Rock) did not exhibit lateral 

heterogeneity tor area measurements across transect lines <Table 2.1 ). Log(A)-log(R) 

regression line slopes tor three transect lines were not significantly ditTerent (see Figure 

2A and Appendix 2 tor example). For the other three sites. log(R)*L and/or [log(R)f*L 

were significant indicating that eelgrass spatial configurations vary across transects. 

For perimeter measurements. 3 sites (Big Brook. Minchins Cove. and South 

Broad Cove) did not exhibit lateral heterogeneity. while the other 3 sites did (Table 2.2). 

Regressing log( P) against log( R) and [log( R)).! resulted in parallel slopes at sites without 

lateral heterogeneity< Figure 2.5). However. only data from 2 lines was used tor South 

Broad Cove because eelgrass was not tound on the third line. 

2.3.2 Computing between scales 

Scaling up edgrass area measurements from transect lines to aerial photobTTaphs 

was possible at the three sites that did not exhibit latera! heterogeneity (Table 2.3 ). 

Interaction terms log(R)*M and [log(R)).!*M were not significant indicating that 

regression line slopes tor both methods were parallel (Figure 2.6 ). For these sites. it was 

possible to measure eelgrass area at a resolution ofO.l m.! and scale up to a resolution of 

I 00 m2 tor Big Brook and tor Mistaken Cove. and 36 m1 tor White Rock. For all other 



Tahle 2.1 Results testing lilr lateral hetcrogeneity of eelgrass an:a mcasurcmems collected in I 999 across three transc:ct lines at 
6 sites in Nc:wmun Sound showing p-vuluc: and li f(,r e<tch varia hie. 
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figure ~A: Log-log plot of::1re::1 d::1to. tor eelgrass h::1hitat ::1long 3 tr~msect lines (bheled 
right. middle and left. when looking offshore) from Big Brook. 
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lahlc 2.2: Results testing li•r latent\ heterogeneity of eelgrass perimeter mcusuremcnts wllcdcd in \'N'J uaoss three tnmse~.: t 
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lahlc 2.3 : Results ltlr compiirisun of eelgrass urea meusurements computed I rom underwater transects (collected in 1999) and 
aerial photographs (collected in 2000) l(lr 6 sites in Newman Sound showing p-valuc and Ji lilr each vuriahlc. 

Site Rcsoluthlll N Intercept log( R) llngt R 11· M log(R )•M llog(R)j"•M 
I 

1\ll I~ <rl I\ 1 r' ,~ IPI ~~ (p) fi ( p ) range 
· - - ·-- - - -· · - ----

BB 
O. lm-' 10m2 

14 LH2 
0.0 176M O.OOH09H -I .61 0, 0.0000 

N/A (NSI N/A (NSJ 
1m2 

· I 00m2 (<0.0001) ( 0. OOOH) ( <0.000 I ) 

IIC I<J .U5.l 
0.0 I htl5 ().()() 7205 -1 .664, 0.0000 0.025 70, 0.0000 

N/A (NSI 
( <0.000 I) (11.(1117} (<0.0001) (0.00 II 1 

MC IH l-HSo -0.006321 
NIA INS I 

-I . 7M2, 0.0000 0.09640, 0.0000 -0.02543, ().() 15(15 
( <11.000 I ) ( <0.000 I) (<0.0001) ( <.().()00 ]) 

l..J 
00 

Ml 
0. 11112 5m-' u ] .40tl 

0.04762 N/A (NS) 
-1 .6tJ6, 0.00011 

N/A(NSI N/A (NSI 
lm-' 1oom-' ( <0.000 I) ( <0.000 I ) 

SB 20 3. JI)J 
0.1187 

N/A (NSI 
0.0000, -I.M77 0.0000, 0.06936 

NIA (NS) 
( <0.000 I ) ( <0.000 I ) ( <0.000 I ) 

WR 
O.lm2 

- 5m-' 
12 3.446 

0.06230 -0.0 I 054 -I . 702, 0.0000 
N/A (NS) NIA (NS) 

1m2 
- 36m2 ( <11.(}00 I I (0.002M) ('0.0001) 

BB = Big Brook, I-IC = lleffcrn's Cove. MC =Minchin's Cove, Ml = Mistakcm Cove, SB = South Broad Cove, WR = White Rock 
N = number of observations; R = resnlution; M -= method; NS =- nnt ~ignilicant 

t Resolution range, 1~\h ~~~~~~~!< 1•\1 and ll11 .. ~1 1< ,1.>, \1 I is ted in ltll hm ing order: urH.Ic:rwuter transect I inc~. aerial photogruph 
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figure 2.6: Log-log plot of perimeter data tor eelgrass hahitat along 3 transect lines 
<labeled right. middle and left when looking otTshore) from Minchins Cove. 
Formula: logwP = 1.455- 0.6846*[logiO(R)j2 + ~L -
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sites. the interaction terms log(R)*L and/or [log(R)f'*L were significant. indicating that 

scaling exponents computed at the level oftransect lines were not comparable to scaling 

exponents computed from aerial photographs. 

Scaling eelgrass habitat perimeter measurements from transect line data to aerial 

photograph data was possible at the three sites that did not exhibit lateral heterogeneity 

tor perimeter measurements (Table 2.4). This is evident from parallel slopes when log(P} 

is regressed against log( R) and [log( R) f' tor both methods (Appendix 3 ). At Big Brook. it 

is possible to measure eelgrass area at a resolution of 1 musing data from transect lines 

or aerial photography and scale up to a resolution of60 m. and vice versa. At Minchins 

Cove I Figure 2. 7. Appendix 3 ). the scaling region tor perimeter measurements is 1 m to 

30m using either method. Finally. at South Broad Cove. perimeter measurements can be 

scaled between resolutions ranging from 1 m to 7.7 m. For the other three sites. log(R)*L 

and/or [log(R))2*L were significant. indicating that scaling exponents computed from 

transect line perimeter data were ditTerent from scaling exponents computed from aerial 

photogmph perimeter data. 

2.4 Discussion 

Seagrass habitat structure is known to vary spatially (Robbins and Bell 1994: 

lrlandi et al. 1995: Turner et aJ. 1999) and temporally (Olesen and Sand-Jensen 1994). 

The measurement of spatial pattern and heterogeneity is dependent upon the scale at 

which measurements are made (Turner 1989). In this study. I determined that it is 

possible to scale between large and small scale measurements ifthe small scale 
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luhle .2.4: Results ti.)r wmpurisnn of eelgrass perimeter measurements computed from underwater transects (collected in 1999) 

and aerial photographs (collected in 2000) ti.)r 6 sites in Newman Sound showing p-vuluc and li ltlr cad a variahlc. 

Site Resulut ion N Intercept log(R I !log( R IJ- M l.og(RI•M llog(R )j"•M 

' j\o ll (pI I\< r I li (pi Ji (pi li <pi range 
-- --- --- - . -·- . -- -- ··--- -- ·---. - -- - -- -- - - --- - · 

BB lm 7. 7m 
I!! 2.194 N/A (NS) 

-0.1 05o - I. I 84, 0.11000 
N/A (NS) N/A (NS) 

lm - 60m ( <0.000 I 1 (<0.0001 I 

IIC I 3 3.027 
-11.1 o76 -0.4 744 -1 .906, 0.0000 0. ()55 3. 0. 0000 -0.35 79, 0.0000 
(0.02!!5) ( <0.000 I l (<0.0001 I (0.0008 I (0.0349) 

MC 1.4111 - 7.7111 
lo 3. 176 

-0.397o -0.2382 -1 .710,0.0000 
N/A (NS) N/A (NS) 

lm - 30m ( <11.000 I 1 ( <0.000 I 1 ( <IUJOO I l 

... -0.3528 -1.456, 0.0000 -0.2318, 0.0000 
Ml 15 2.812 N!A eNS) 

( <().()00 I l ( <0.000 I) 
NIA (NS) 

(0.023!!) 

SB 2.2rn - 7. 7rn 
10 2. 942 N/A eNS) 

-O.W 16 0.0000,-1.755 
N/A (NS) N/A (NS) 

I m - 5rn (<0.0001) (<0.0001) 

WR 16 3.120 
-0.3951 -0.2063 -1.6969, 0.0000 0.3806, 0.0000 -0.4583, 0.0000 

( <0.000 I ) ( <(1.000 I 1 ( <0.000 I) (C>.0002) (<0.0001) 

BB =Big Brook, H(' = Heffern's Cove, MC =Minchin's Cove. Ml =Mistaken Cove, SB :.:; Snuth Broad Cove, WR = White Rock 
N =- numher of observations; R ""resolution; M ""method; NS "' nnt significant 

t Resolution range, Jl\~o jl,,111 ,w\•· and 11 1 ,,~1 (( 11!.,, listed in following order: undc:rwutcr transect lines, aerial photngraph 
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are homogeneous and can be averaged. First. I compared measurements of eelgrass area 

and perimeter made at several scales across 3 transect lines within 8 m of each other at 6 

sites. I tound that 50% of sites exhibited lateral heterogeneity tor both area and perimeter 

measurements. In other words. scaling exponents computed tor each tr.:msect iine were 

signiticantly different from each other. This supports the idea that eelgrass habitat varies 

with respect to scale and location. 

Several tactors aftect why only some sites exhibit lateral heterogeneity. including 

depth. modification ofnormal temperature and salinity regimes (Thayeret al. 198~). and 

level of exposure or wind and current. Light availability appears to be the primary tactor 

limiting both depth and up-estuary penetration of eelgrass within its temperature and 

salinity ranges (Thayer et al. 1984 ). Z. marina has relatively narrow temperature 

requirements ( Setchell 1929) but it is considered euryhaline (Rasmussen 1977). However. 

variation in eelgrass habitat between sites cannot be anributed to salinity and temperature 

because these factors do not ditTer signiticantly among sites in Newman Sound ( Gotceitas 

et a!. 19<)6 ). In shallow water. waves reshape eelgrass meadows. At all depths. currents 

erode sediments. matured plants. and seeds. and prevent deposition of material (Thayer et 

al. 1<)8~) . lngs et al. (in prep) tound that eelgrass abundance was positively correlated 

with coastline complexity. which can be an indicator of level of exposure. l suggest 

exploring the possibility that eelgrass complexity may also be related to coastline 

complexity. 

The fact that scaling exponents differed between transect lines was predictable at 

some sites based on visual observation. Eelgrass at Big Brook forms a meadow with very 
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few open areas of bare substrate "ithin the c;!c;!lgrass ~ds (Sc;!c;! Appendix 1 ). This 

distribution accounts tor the lack of lateral heterogeneity in area and perimeter scaling 

exponents at this site. South Broad Cove eelgrass is at the other end of the continuum 

\Vith distinct patches gro\\.ing in areas ofbare substrate (see Appendi.x I). All other sites 

fall betwc;!c;!n these two t!xtremes. generally resembling meadows with .. holes .. or bare 

areas of non-vegetated substrates (e.g .. mud. sand. silt. cobble. etc.). therefore making it 

ditlicult to predict if scaling exponents would be similar tor all three transect lines at 

these sites. 

From the second analysis. [ determined that it is sometimes possible to scale 

between large-scale measurements and small-scale measurements. ~easurements of 

edgrass area and perimeter taken at the resolution of an aerial photograph were 

extrapolated to the resolution of a transect line tor three sites. Common scaling exponents 

were computed tor these sites using two different methods which varied in resolution by 

up to -+orders of magnitude. There tore. it is possible to quanti!): eelgrass habitat 

~haracteristics at large scales and compute to smaller scales- and vice versa- using a 

common scaling law. This function can be applied to new data sets within the scaling 

region ~cause scaling exponents were constant tor both mc:thods. 

Scaling from 1 m wide transect lines to 60 m wide aerial photographs is not 

possible: when c;!c;!lgrass habitat is not laterally homogeneous. as tound at some sites. 

However. when all three transect lines exhibit similar scaling exponents. the average of 

eelgrass measurements resemble c:elgrass measurements at the scale of an aerial 

photograph.. Theretore. the problem lies not in scaling from small resolutions to large 



resolutions. or vice versa. but in having too tew transect lines to accurately represent the 

aerial photograph. lfthe precise location of the transect lines could be extracted from the 

aerial photographs. the problem of lateral heterogeneity may not be an issue. A direct 

comparison ofthe same strip of eelgrass could be made using either method. 

Both methods of eelgrass habitat measurement are valuable. depending on which 

range of resolutions one is interested in. Underv.'ater transect line video provides detail 

which cannot be captured in an aerial photograph. However. aerial photographs are easier 

and cheaper to obtain. and provide a broader view of spatial patterns of eelgrass bed 

grov.1h. Thus. if one had to choose. it would be sufficient to use the cheapest method 

\vhen measuring eelgrass spatial patterns. knowing that a scaling exponent can be used to 

compute measurements at smaller or larger scales. 

Parameters and processes important at one scale are frequently not imponant or 

predictive at another scale. and in!ormation is lost as spatial data are considered at 

coarser scales ofn:solution (Schneider and Piatt 1986: Turner 1990). This rate of loss of 

intormation \Vith resolution is a key piece of intormation that can be quantified with 

scaling laws. Ecological problems often require the extrapolation of fme-scale 

measurement tor the analysis ofbroader-scale phenomena. Therefore the development of 

methods that will allow computation across scales has become a critical task (Turner 

1990). I have shown that it is possible to conduct multi-scale studies of eelgrass habitat 

and compute common scaling laws ofhabitat measurements using different methods. 

These multi-scale analyses can be applied elsewhere in ecological studies to clarify issues 
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such as relationships between species abundance and habitat. which may occur at several 

scales. 
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Chapter 3: lnfluen~e of tbe spatial ~omplexity of eelgrass (Zostera marina) on age 0 

Atlanti~ ~od (Gadus morhua) densities 

3.1 Introduction 

Multi-scale spatial analyses have become progressively more prevalent in 

ecological studies (Schneider 2001 ). Investigators have become increasingly aware that 

the scale at which their study is designed can have a drastic impact on the results they 

will obtain (Dayton and T egner 1984 ). Multi-scale studies to date have focused mainly on 

terrestrial systems. However. studies in aquatic systems are becoming more common 

(e.g .. Robbins and Bell 1994: Turner et al. 1999). Ecologists are aware that aspects of 

aquatic habitats such as amount of available habitat (Adams 1976: Onh and Heck 1980). 

and size or shape of patches ( Hamazaki 1996) intluence the distribution and behavior of 

organisms. Contemporary research has tocused on the intluence of configuration or 

complexity of habitat on organisms and ecological processes (Gotceitas and Colgan 

1989: lrlandi eta!. 19<)5: lrlandi 19<)7: Graham et al. 19<)8: Hokit et al. 199<)). However. 

complexity patterns found at small spatial scales may be very ditlerent from those found 

at broader spatial scales (Wiens 1989). Thus. studies identifying scale-dependent 

relationships between organisms and habitat are becoming more prevalent (Otto 1996: 

Azovskii and Chertoprud 1997: Ritchie 1998: Snover and Commito 1998). 

Fractal geometry has been a useful tool in ecological sciences tor quantit)'ing 

aspects of habitat over a range of spatial scales (Sugihara and May 1990: Hastings and 

Sugihara 19<)3: Johnson et al. 1995: Kenkel and Walker 1996). Fractals provide a 
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numerical expression of complexity which is independent of the nature of habitat and are 

related to the scale at which the habitat is viewed (Gee and Waf\\·ick 1994 ). This t:--pe of 

analysis has been used to determine spatial patterns in landscapes (Krummel 1987: Otto 

I996: Ritchie I 998: Nikora 19<)9). ecological habitats (Williamson and La~1on 1991 ). 

and vegetation ( \torse et al. 1985: Palmer I 988: Scheuring and Riedi I994: van Hees 

I 994 ). The majority of these fractal-based studies focus on terrestrial systems. However. 

fractal analyses are becoming common in aquatic systems as well (Gee and Waf\\·ick 

I 994: Simon and Simon 1995: :\zovskii and Chertoprud 1997: Snover and Cornrnito 

I 998: Turner et al. 1999 ). 

Seagrasses grow in complex structural arrangements in marine environments. 

They exhibit hierarchical arrangements of spatial structure. ranging from individual 

rhizomes and shoot groups~ centimeters to meters 1. to discrete patches of seagrass 

~meters to tens of meters I. to seagrass meadows (tens of meters to kilometers) (Robbins 

and Be1II994: Turner et al. 1999). Seagrass meadows may be extensive and continuous 

or highly fragmented and arranged into a mosaic of small patches (Robbins and Bell 

1994). Several investigators have measured components of seagrass habitat. including 

patch size 1 lrlandi I997). shoot density (Bell and Westoby I986: Graham et al. 1998). 

biomass I Adams I976). and leafheight (Bell and Westoby I986). Complexity ofseagrass 

habitat based on spatial patterning has rarely been quantified (but see Turner et al. I999 

and 0 2002 L Investigators have often referred to certain aspects of seagrasses as 

measures of complexity. but often provide some measure of biomass. such as leaf height 

or density 1 Bell and Westoby 1986: Graham et al. 1998). and do not provide a 
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quantitative measurement of habitat structural complexity. When measurements of spatial 

panerning ofhabitat structure have been made. they have been measured at only one 

scale I lrlandi et al. 1995). Techniques developed for terrestrial landscapes. such as fractal 

analyses. can be applied to measure the complex spatial patterning of seagrasses at 

several resolutions. 

Organism density and diversity are often related to characteristics of seagrass 

habitat. Onh et al. ( 1984 l summarize studies that describe the intluence of seagrass plant 

architecture on the associated animal distribution and abundance. Onh and Heck ( 1980) 

found that tish abundance and species number were intluenced by water temperature and 

eelgrass biomass. Onh et al. ( 1984) proposed that the abundance of many species. both 

epit~mna and intimna. is positively correlated with two aspects of plant morphology: 1) 

the root-rhizome mat. and 2) the plant canopy. \Vhen they manipulated seagrass height 

and density. Bell and Westoby 1 !986) observed ambiguous eftects on tish and decapod 

abundance and species richness. They tound that the abundance of some species 

increased. while others decreased in response to manipulations. Bell and Westoby ( 1986) 

concluded that a model predicting responses of species richness and abundance to 

changes in physical complexity ofseagrasses existing at the time could not be supponed. 

Graham et al. 1 1998) tound a decreasing exponential relationship between teeding 

etliciency ofmummichogs and eelgrass shoot density. OveralL it has become clear that 

seagrass structural patterns have a major effect on the organisms associated with these 

habitats. 



Eelgrass (Zostera marina) is an important habitat for juvenile Atlantic cod (Gadus 

morhua) (Tupper and Boutilier 1995: Borg et al. 1997). The structurally complex plant 

provides refuge from predators ( Gotceitas et al. 1997) and provides a habitat tor 

invertebrate prey (0rth et al. !<)8-H. promoting rapid growth ofju"·enile cod (Tupper and 

Boutilier I <)95 ). In ~ewtoundland. studies using scuba have sho""'n that age 0 cod are 

often tound associated "'ith eelgrass. as opposed to other substrates such as mud. sand. 

gravel or rock ( Gotceitas et al. I <)Q7). However. cod densities measured by beach seine at 

paired eelgrass and non-eelgrass sites were significantly higher at only 2 out of 3 paired 

sites 1 Gotceitas et al. 19Q7). Furthermore. Norris et al. <in prep) tound that the number of 

cod at a given site could not be related to percent cover of eelgrass. lngs et al. (in prep.) 

tound the relationship between cod density and eelgrass cover was inconsistent between 

sites in ~ertain years. with significant associations in some years but not others. 

In this study. I undenook a two-phase analysis to examine the hypothesis that 

eelgrass structural complexity. rather than just percent cover at a tixed scale. would 

explain variation in the proportion of seine hauls that catch age 0 cod and in age 0 cod 

density among eelgrass sites. Specitically. I expected the highest proportion 0f seine 

hauls containing cod and the highest densities of cod to be found at intermediate eelgrass 

complexities. The intermediate optimum hypothesis is based on my beliefthat low 

complexity eelgrass habitat has too little edge (possibly leading to decreased access to 

tood) whereas high complexity eelgrass habitat has too much edge (possibly leading to 

increased risk ofpredationl. I analyzed density of age 0 Atlantic cod at 8 sites in 
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~ewman Sound. Newfoundland in relation to eelgrass complexity. Using measurements 

of area and perimeter of eelgrass habitat. I determined complexity using fractal analyses. 

3.2 Methods 

3.2.1 Stud~· area 

~ewman Sound is a tjord located in southwestern Bonavista Bay. on the 

northeastern coast ofNewtoundland. Canada (Figure 3.1 ). Eight sites were chosen based 

on the presence of eelgrass and because preexisting and concurrent juvenile cod data are 

available from these sites (Gregory et al. 2001. Ings et al. in prep. 0 2002). Eelgrass was 

associated with mud. silt. sand. and gravel substrates and. where present. is generally 

restricted to depths of less than 6 m in ~ewman Sound. 

3.2.2 Aerial photography 

Aerial photographs ofthe 8 sites were taken in August 2000 (see Appendix 1) 

from a single-engine Cessna tloatplane at altitudes between 150m and 300 m. Prior to 

taking photographs. markers were set out at each site to delineate the area sampled by 

beach seine. This procedure allowed for scaling of images and correction of camera angle 

tor each photograph. Each plywood marker measured 0.6 m x 0.6 m and was spray

painted tluorescent orange. One marker tloated on the ocean surtace 50 m offshore and 

was anchored "With a rope tied to a concrete block. Two other markers were placed on the 
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figure ~-1: \hp ofthe study area. ~e\\man Sound. ~e\\ioundland. showing the location 
of the 8 sites used in this study: Big Brook. Dockside. White Rock. Buckleys Cove. 
Mistaken Cove. Hetiems Cove. Minchins Cove. and South Broad Cove. 
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beach 25m apart: a compass was used to ensure that the three markers tormed a 90 

degree angle (Figure 3.2). Flights were performed near midday when surtace glare and 

surtace winds were minimaL Pictures were taken with a 35-mm Pentax FXlO camera. 

titted with a 28-80 mm Pentax F Zoom lens (set to 50 mm). haze filter. and polarizer 

tilter. Pictures were taken as close as possible to directly vertical over the site to avoid 

glare. 

3.2.2.1 Image editing 

Aerial photographs were developed to a Kodak Digital Science Photo CO Master 

disc. with the highest resolution level being 2048 x 3072 pixels. Images were edited using 

.-\dobe Photoshop 5.5. Each image was cropped to represent 3600 m~ on the ground and 

adjusted to the correct angle and scale using transtormation features (skewing and 

scaling) in Adobe Photoshop. 

3.2.3 Measuring habitat complexity 

3.2.3.1 Ground truthing 

Betore quantifying habitat from the aerial photographs. each site was ground 

surveyed using an aquascope (PVC with Plexiglas txmom). A rough map of each site was 

dra"'n with a general layout ofhabitat types (e.g .. eelgrass. Fucus. mineral substrates). 

enabling me to verify the habitat types observed on aerial photographs. 
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figure '- .2: .\depiction nfthe bynut of markers at each site fnr purposes of scaling aerial 
photographs corrc=ctly. Onshore markers were= :!5 mc=ters apart. The third marker was 50 
mc=ters offshore. All three markers tormed a 90° angle. 
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3.2.3.2 Box counting 

I used a box-counting method (Sugihara and May 1990) to quantitY eelgrass 

habitat dimensions (area and perimeter) at several scales of resolution from the aerial 

photographs.:\ grid containing 3600 boxes (I m.:! each on the ground) was placed over 

each digital aerial photograph. Two types of data from the image were transferred 

manually to printed hard copy replicas of the grid: presence or absence of: (I) eelgrass 

habitat (area measurement) and ( 2) eelgrass habitat edge (perimeter measurement). Once 

area and perimeter data from the highest resolution grid were transferred. grids o f lower 

resolution< i.e .. fewer boxes) were placed over the 3600-box grid. The number of boxes 

~ontaining area and perimeter were counted at resolutions of I m.:!. 4 m.:!. 9 m~ . 16 m~. 25 

m.:. 36 m.:. I 00 m.:. 225 m~ and ~00 m~. Eelgrass habitat area was calculated by 

multiplying the number of boxes that contained eelgrass at a give;:n resolution by the size 

< m~) of the boxes. Eelgrass habitat perimeter was calculated by multiplying the number of 

boxes that contained perimeter at a given resolution by the lt:ngth of a side (m) of a box. 

3.2.3.3 Fractal analysis of eelgrass habitat 

Area and perimeter of eelgrass habitat were used to calculate a fractal dimension 

[log(:\)- <Dr)log(P): where A= the area of a :!-dimensional section ofhabitat: P =the 

perimeter of habitat at a particular length-scale: D.- =the fractal dimension (Turner 

1989) J. which has been frequently used as an index of complexity in landscape and 

habitat studies (Lovejoy 1982. Turner 1989. Turner et al. 1999). Residuals were checked 

tor homogeneity. normality and independence. and the scaling region (linear portion) of 
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the line was chosen to extract Df. Df is computed by subtracting the slope of the 

regression line from 1. 

3.2.4 Historical cod catch data: beach seining 

Cod density data were collected bi-weekly by beach seine in 1998. 1999 and 2000 

at 8 sites from mid-July to mid-November. Fish samples were collected using a 25 m 

beach seine (wings and belly 19 mm stretch mesh. codend 9 mm stretch mesh bag: 24A 

m headrope. 26.2 m tootrope: aluminum spreader bars on each wing were 75 em long and 

25 mm in diameter). The nel was deployed from a 6 m boat at a distance of 55 m 

offshore. and then retrieved by two individuals standing 16 m apart on the shore. The 

:;eine was pulled along the bottom and sampled the lowest 2m of the water column and 

approximately 880 m.: of the bonom For additional details on deployment and retrieval 

of the :;eine. :;ee Schneidc=r et al. ( 1997). Scuba observations have shov.n that 

approximately 95% of the tish in the path ofbeach seine nets are captured (Gotceitas et 

al. 1996 ). All tish collected were identified to species and counted. Juvenile cod were 

aged by applying previously established age-length relationships tor juvenile Atlantic cod 

in ~ewtoundland waters (age 0: s 10 em SL (standard length). age I : I 0 to 20 em SL. 

age 2: 20 to 30 em SL and age 3 and older: > 30 em SL) <Gregory et al. 2000). All tish 

were released after sorting. \iortality due to sampling and handling was negligible (pers. 

obs.). Cod density data from 1999 and 2000 were not used for two sites (Dockside and 

Buckleys Cove) due to a concurrent manipulation experiment at these sites (Laurel et al. 

in prep). 
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3.2.5 Relating cod density and habitat complexity 

I conducted my analysis of the relationship between age 0 cod and eelgrass 

complexity in two phases: Phase I. presence of age 0 cod versus eelgrass complexity~ 

Phase II. density of age 0 cod. if present. versus eelgrass complexity. For Phase I. I 

computed the proportion of seine hauls that contained age 0 cod for each site tor each 

month (all years combined) and tor each year <all months combined). I regressed 

proportion of successful seine hauls against Dr tor each site. using a binomial error 

distribution with a logit link (most commonly used v.ith binomial error) (McCullagh and 

~t!lder 1989). 

In Phase 11. I investigated the relationship between habitat complexity and age 0 

cod density by regressing tish density against Dr tor each site. Analyses were done 

~paratdy by month tor July- Sovember in all years 1 1998-2000). and tor each month 

within each year based on a biological model with an intermediate optimum hypothesis. I 

chose a gamma error structure v.ith a log link (McCullagh and Neider 1989). 

All analyses were performed using SAS ( 1988). Tolerance of type I error was a= 

0.05. Residuals were examined tor homogeneity. normality and independence. 

3.3 Results 

3.3.1 Fractal analysis of eelgrass habitat 

Log-log plots of area versus perimeter (e.g .. see plot tor Mistaken Cove in Figure 

3.3) resulted in a Dr< index of complexity) tor each site. ranging from 1.0 to 1.3625 
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Figure 3.3: Log-log plot of area (A) and perimeter (P) tor Mistaken Cove eMil. 
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1 Table 3 .I ). Sites that were meadow-like had the lowest fractal dimensions (Dr= 1.0 -

1.093 ). Big Brook ditTered from other sites as it had a meadow-type arrangement of 

eelgrass and data did not tit a line. Hence Big Brook eelgrass habitat was considered 

Euclidean with a Dr of 1.0. A site with highly patchy eelgrass habitat (South Broad Cove) 

had the highest fractal dimension <Dr= 1.3625). All other sites were in the middle ofthe 

meadow-patchy continuum and had intermediate fractal dimensions. 

For each site. a scaling region (e.g .. Morse et al. 1985: Nikora et al. 1999) was 

chosen tor the regression lines based on an upper limit. When the box size is large in the 

box-counting method. it is probable that all boxes will contain eelgrass (i.e .. area 

measurements were at a maximum of 3600 m·\ This is an artefact of the method and 

beyond this upper limit. no new information tor habitat could be derived. The upper limit. 

and thus the scaling region. was ditTerent tor each site. v.ith the maximum box size 

ranging from 25m2 to ~00 m2 (Table 3.1 ). 

3.3.2 Phase 1: Presen~e of age 0 ~od versus eelgrass ~omplexity 

\\ben all months were combined. the proportion of successful seine hauls was 

positi·vely related to eelgrass complexity according to the tollowing equation: 

( 3. 1) 

where P = = seine hauls with age 0 cod/total # seine hauls: Dr= fractal dimension and ~ 

= month (see Appendix 4 ). The interaction between month and fractal dimension was not 

significant and was removed from the model. Thus. one equation could be used for all 5 

months with~'' varying according to month (Figure 3.4). During early months (July and 
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Tahle 3.1: Results of complexity analysis showing maximum scale ( hox size) used and parameter estimates ohtainL"d liH· each 
site. Regression cyuation: log A ..o flo +- jip•lngP. where A .:.=. area and P ~ perimeter. 

Site Maximum snle P•· Standard Po Standard p value 
(hox size m1

) error (u) error(~~ 
Big Brook NIA () N!A 0 NIA N/A 
Buckley's Cove 36 -0.0754 0.0045 3.7168 0.0128 <0.0001 
Dockside 36 -0.0930 0.0055 3. 7727 0.01 57 <0.000 I 
llellern's Cove 400 -O.IOIJ 0.0065 3.6611 0.0172 <0.0001 
Minchin's Cove 25 -0.0566 0.003 H 3.6635 0.0113 0.0007 

CJ, 
Mistaken Cove 225 -0.1649 0.0108 3.8991 0.0283 <0.0001 ~...~ 

South Broud ( 'ovc 400 -0.3625 0.<)249 4.3058 (),()653 <0.0001 
While Rock 100 -0.1565 0.0120 3.9413 0.()340 <0.000 I 
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Figure 3.4: Proportion of seine hauls ( P) with age 0 Atlantic cod tor July. August. 
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Formula: P = e'flo-~ .. ·o.-- ~·o.1 1/( 1 _._ e'flo - liQr"Dr- tlo.1"M). where l3o = -2.32. ~of= -4.54. and 

~M sho"'n tor each month. 
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.-\ugust) cod were caught more often at sites of higher eelgrass complexity. Late in the 

season (September. October. and November). nearly all seine hauls at every site 

contained age 0 cod. 

3.3.3 Phase II: Density of age 0 cod, if present, venus eelgrass complexi~· 

Age 0 cod density data from all years were combined in the foiJowing model: 

where C = cod density (#/seine haul). Y = year. and Dr= fractal dimension of eelgrass. 

The interaction terms ~" D: Y ·Dr and ~Y 0 :.. Y · Dr2 were not significant. nor was ~v· Y: all 
1 1 

three terms were removed from further analysis. To determine if the interaction between 

month and Dr was important I applied the following model: 

C =An+ r.t~ .. t"M ... AD ·Dr -r AD :·D/ + AM·D ·M·Dr +AM o :·M·Dr~ + £ (3.3) .... .... .... r .... f .... f 1-' f 

where C = cod density (#/seine haul). M = month. and Dr= fractal dimension of eelgrass. 

The interaction terms ~Mo:M·Drand ~Mo _:·M·D/ were not significant. However when I 
1 I 

removed one interaction term at a time. all variables became signiticant. I concluded that 

interaction was present and so analyzed the data separately for individual months. 

The relationship between cod density and eelgrass complexity (Dr) varied with 

month. The cod density-complexity relationship in September was similar throughout all 

three years- a quadratic - and supported the intermediate optimum hypothesis (see 

Figure 3.5 and Appendix 5): 

(3.4) 
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For all other months difficulties were encountered: ( 1) residuals were either non-normal: 

1 2) or heterogeneous: or 13) Dr was not significant I Appendix 6 ). I analyzed each month 

separately by year. with the exception ofSeptember I Appendix 6). Months that had 

significant results with acceptable residuals are given in Table 3.2. In total. cod densities 

in tour months out of 15 showed a relationship with eelgrass complexity (Dr). These 

relationships were either linear 1 August 2000 and November 1999) or quadratic (October 

2000 and ~ovember I !}98 ). 

3.4 Discussion 

Eelgrass habitat complexity ranged from Dr= 1.0 to 1.36. Sites that were low in 

complexity resembled a meadow with very little perimeter. At such sites. as resolution 

decreases. area and perimeter measurements change very little. resulting in a gentle 

regression line slope and a Dr that is close to 1.0. At sites where eelgrass habitat is 

slightly patchy. area and perimeter measurements change a lot as resolution decreases. 

These sites have intermediate values of Dr. Finally. high complexity sites 1 e.g .. South 

Broad Cove. Dr= 1.36 l have non-continuous patches of eelgrass. This results in area and 

perimeter measurements changing quickly as resolution decreases. a steep regression line 

slope. and a relatively high Dr. Based on personal observation and personal discussion 

with colleagues. it is believed that the fractal dimension of eelgrass at a given site does 

not change significantly throughout the season or over years. 
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Tahle 3.2: p \·alues and parameter estimates tor monthly analyses that had significant 
results tor the relationship between cod density (C) and eelgrass complexity ( 0 1): 

C = l e~') · (f: 13 or 0 t)- [ e ~Dr: dl,.: 1 ~ E or C = ( ello)·( e IJ Dr Dq + E 

Dr Dr Intercept 
'1onth Year p ,-aluc Pur p , -aluc Pu= po r 
.-\ugust 1999 0.0006 6.556~ ~- -.-\ ~ .. -\ -3.1876 
Octo~r 2000 0.0353 165.46 0.0375 -66.637 -98.677 
:\u \ t:mbt:r 1998 0.007~ 90.065 0.006~ -38.087 -51 .628 
~ovember 1999 0.0429 -11.523~ ~-'A Ni:\ 16.373~ 
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There are several tactors that may intluence growth and thus. complexity of 

eelgrass habitat. These tactors include sediment type (Probert and Benchly 1999). ice 

scour 1 Robertson and Mann 1984: Schneider and Mann 1991 ). light availability 

(Backman and Bariloni 1976: Dennison and Alberte 1982. 1985. 1986: Onh and Moore 

1983. 1988). turbidity (Orth and Moore 1983: Kemp et al 1983: Zimrnennan et a1 1991: 

Dennison et al 19Q3 ). moditication of normal tempcrature and salinity regimes (Thayer et 

al. 198~ ). and level of exposure or ""ind and currents (Fonseca et al. I Q83: Thayer et al. 

1984: Wanless et al 1988: Robblee et al I 991 ). Factors intluencing the complexity of 

eelgrass habitat have not been studied in Newtoundland. 

Eelgrass habitat providcs a number of nursery·type functions that bene tit 

organisms associated with it (e.g .. see Chapter 1 ). Studies have shown that age 0 Atlantic 

cod utilize eelgrass habitat <Tupper and Boutilier 19()5: Gotceitas l!t al. 1997). Cod and 

edgrass associations have bec!n tound using two scales of resolution tor eelgrass 

abundance ( Ings et al. in prep.). Cod density increased with eelgrass abundance on a large 

scale and this relationship was strongest at high densities ( lngs et al. in prep.) . Knowing 

that eelgrass measurements change with scale. I applied this information to cod density 

data with contidence that I had incorporated the scale at which these tish associate with 

this habitat. 

The analysis of age 0 cod abundance was carried out in two phases under the 

assumption that different processes. and hence a different modeL applied to presence of 

cod versus density of cod ifpresent. The proportion of successful seine hauls at a given 

site was dependent on eelgrass complexity. A high proportion of seine hauls contained 
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age 0 cod at higher complexity sites during all months of the year and in all years. Age 0 

cod were more likely to be caught at higher complexity sites in early months (July and 

August). However. later in the season. cod were tound equally at all sites. This 

relationship may be density-dependent because increases in the abundance of age 0 cod 

in less suitable habitat (non-a! I grass areas) are known to occur when settlement strength 

is high (Grant and Bro"'n 1998 ). 

Age 0 Atlantic cod appear to move into nearshore habitats in a recruitment pattern 

consisting of at least two settlement pulses each year -the tirst arriving in August. the 

second in late September to October (Beacham et al. :woo. Gregory et al. 2000). By 

~ovember. water temperatures start to decline and it is thought that juvenile cod begin to 

move into deeper waters ( Methven and Bajdik 1994 ). During recruitment pulses. it has 

been suggested that cod settle at all sites and density patterns seen thereafter are a result 

of ditferential survival (Tupper and Boutilier 1995 ). Alternatively. cod density patterns 

may also be a result of selective recruitment to areas ofpreterred habitat (Gregory and 

Anderson 1997). My results suggest a combination ofboth hypotheses is true. During the 

August pulse. proportions of seine hauls with age 0 cod are highest at sites with highly 

complex eelgrass suggesting - in support of the second hypothesis- that one is more 

likely to catch cod at these sites. However. when cod are present (i.e .. excluding seine 

hauls with no age 0 cod) in August. there is no significant relationship between density 

and eelgrass complexity. suggesting that differential survival may have influenced 

density patterns. However. in August of 2000. cod density increased linearly with 
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increasing habitat complexity. This indicates that high numbers of cod selectively 

recruited to areas of higher eelgrass complexity. 

\Vhen data from all three years were combined and analyzed tor each month. the 

relationship between cod density and eelgrass complexity was strong only tor September. 

During this month sites with eelgrass of intermediate complexity contained the highest 

densities of age 0 cod. In all other months. a relationship was evident only in some years. 

In July. when age 0 cod densities were low (Table 3.3). no relationship was tound 

between cod density and eelgrass complexity tor any year. Relationships between cod 

density and eelgrass complexity tor all other months and years were inconsistent. 

suggesting that tactors other than habitat complexity may also be imponant in 

determining the distribution of cod. Biological processes such as predation and tood 

availability atT;;d mortality rates and distribution patterns in periods within the year when 

there is no new recruitment <Tupper and Boutilier 1995. Linehan et al. 2001 ). 

In September. the agt! 0 cod population is somewhat stable in Newman Sound 

~ i.t! .. no nt!w recruitment is occurring). and cod densities are highest at sites with 

intermediate eelgrass complexity. Several authors have suggt!sted that patchy seagrass 

coverage is better than a meadow of seagrass. Tupper and Boutilier ( 1995) tound that 

postsettlement survival and subsequent juvenile cod densities were higher in more 

structurally complex habitats. mainly due to increased shelter availability and decreased 

predator dliciency within these habitats. lrlandi et al. ( 1995) suggested that unvegetated 

sediments associated \\lith patchy seagrass coverage may serve as corridors tacilitating 
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Tahle 3.3: \1ean density (:f 'seine haul/month or :t'seine haul'year) of age 0 cod in 
~t!wman Sound tor July. August. St!ptt!mber. October and November of 1998. 1999. and 
2000 (numbt!r of seine hauls in parentheses). 

Month 1998 density 1999 densi~· 2000 density All vears 2. 
July -un (7) 0.22 ( 12) 6.00 (} 2) 3.51 
.-\ugust 106.86 ( 16) 109.73 (12) 8.47 (12) 78.20 
Sept em her 25.30 ( 23) 156.33(12) 3 1.42 ( 12) 60.32 
Octobt!r 37.67 ( 15) 97. 17 (12) 17.42 (12) -'9.7-' 
~ovember 2. 77 ( 13) 36.00 (12) 13.\)2 ( 12) 17.16 
2. 39.55 79.89 15.-'-' 

71 



the movement into and among seagrass patches oflarge mobile organisms. Orth et al. 

( 1984) stated that heterogeneous grass beds (bare sand areas interspersed within the bed) 

should provide more tavorable foraging areas tor mobile fishes or invertebrates. This is 

because mobile tish or invertebrates. particularly juveniles. may torage over the 

unvegetated areas while at the same time remaining in close proximity to their protective 

vegetated habitat ( Orth et al. 1984 ). Moreover. a die! pattern has been suggested: fish use 

vegetation as a shelter by day and torage over sand under protection of night (Orth et al. 

198-t Borg et al. 1997). Linehan et aJ (2001) tound that predation on tethered prey (age 0 

cod) was lower at night than during day and dusk regardless of habitat and depth. Holt et 

al. ( 1983) h;r-pothesized that observed patterns in seagrasses were related to juvenile 

tishes· (red drum. Sciaenops ocellalus) requirements tor open teeding areas with 

simultaneous protection from large predators. Thus. patchy areas with a high percentage 

of edges or ··ecotones·· may actually support a higher density of some mobile to raging 

species than homogeneous areas. 

Why would a high complexity site. such as South Broad Cove (Dr= 1.3625) not 

support the same densities as a site with an intermediate Dr? I suggest the perimeter to 

area ratio can be too high. Even though more cod are caught at South Broad Cove than 

several of the lower complexity sites. it may be inferior to intermediate complexity sites 

because the corridors between patches of eelgrass are too large. or the patches themselves 

are too small. lrlandi ( 1997) states that small patches have greater edge to area ratios than 

large patches. theoretically making prey more available to predators. In a study on the 

effects of ee !grass habitat edge on predation on age 0 cod. Gorman ( 2002) found the edge 
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to be more dangerous than the surrounding mud and eelgrass habitats and that risk 

decreases with increasing distance from the edge. Orth ( 1992) suggests that prey 

abundances will be a balance between refuge from predation and the availability of 

increased space. 

Physical tactors such as dept~ salinity. and level of exposure may have a larger 

impact on cod densities during unstable times tor the nearshore population (i.e .. during 

recruitment pulses or when cod are moving offshore due to cooling water temperatures). 

These tactors may intluence where cod senle more than biological factors such as 

presence or absence of predators. Biological tactors (e.g .. predation. competition) almost 

certainly play a role during recruitment pulses as welL but evidence of such processes is 

less obvious when cod are in a state of tlux. Godo et al. ( 1989) tound that cod settled 

mainly in shallow (0-1 00 m) sheltered areas and were absent at the most exposed 

locations and in deep water. In a preliminary analysis. I tound that fractal dimension of 

eelgrass habitat may be inversely related to depth. From this. it may be speculated that 

age 0 cod may prefer complex eelgrass at deeper sites rather than low complexity at 

shallow depths. 

Other tactors that may affect eelgrass complexity and the presence or density of 

age 0 cod are salinity. substrate. and level of exposure. Riley and Parnell ( 1984) 

suggested that there is a negative relation between juvenile cod and salinity: however. 

Methven et al. ( 1997) did not tind such a relationship to be significant in similar tests in 

~ewtoundland. Several investigators have sho\vn the importance of substrate to juvenile 

cod (Lough et al. 1989. Gotceitas and Bro·wn 1993. Gotceitas et al. I 995. Tupper and 
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Boutilier 1995. Fraser et aJ. 1996. Gotceitas et aL 1997. Gregory and Anderson 1997). In 

the laboratory. age 0 cod are capable of assessing risk of predation and actively select 

habitat where predator risk was lowest ( Gotceitas et al. I 997). Level of wind or wave 

exposure at a site indirectly affects cod densities due to the impact it has on eelgrass 

habitat. lngs et al. (in prep.) found that areal extent of eelgrass increases with complexity 

of the coastline which they argue is a measure of level of exposure. They also found that 

cod abundance increases with coastline complexity. due to the relationship between 

coastline complexity and eelgrass areal ex"tent. 

The distribution and density of age 0 cod are undoubtedly atfected by a number of 

factors. both biological and physicaL In providing a multi-scale measure of habitat 

compkxity tor a preferred habitat of this species. I have provided an ans ... ver to one more 

question that we have about cod ecology: cod are more likely to be found associated with 

eelgrass habitat high in complexity. but the relationship between cod density and eelgrass 

complexity is strong only when cod are not moving into or out of the nearshore 

environment. Clearly. more investigation is required into factors such as predatorlprey 

relationships. inter- and intra-specific competition and food availability. This \\ill prm·ide 

more insight into density and distribution panerns of age 0 cod. Future studies should 

also investigate the mechanisms- physicaL geologicaL and chemical- that cause varying 

degrees of eelgrass complexity in '!\iewfoundland. As with any ecological study. 

investigators should realize the importance of performing studies at scales appropriate to 

the questions being posed. 
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Chapter 4: Summary 

4.1 Scaling in ecology 

Ecology is a scale-based science (Wiens 1989: Levin 1992). whether we choose 

to incorporate scale or not. This concept is becoming more recognized in ecological 

studies (Schneider 2001) as investigators realize that ecological processes operating at 

large scales are not always the same as those operating at small scales (Thrush et al. 

1997). However. tine-scale measurements are often extrapolated to broader-scale 

phenomena (Turner 1990 ). Intorrnation is lost as spatial data are considered at coarser 

scales of resolution (Schneider and Piatt 1986: Turner 1990). Developing methods to 

preserve intormation across scales is a critical task I Turner 1990). However. in order to 

determine scale-dependent etTects of ecological processes. we need to know how to 

interpret data and reliably extrapolate results across multiple scales I Gardner 1998 ). The 

best way to determine whether extrapolations are reliable is to tirst predict. and then test 

these extrapolations. In Chapter 2. I hypothesized that it would be possible to extrapolate 

between analyses of eelgrass habitat measurements collected at different scales. This was 

possible when lateral heterogeneity of eelgrass habitat was not a seriously confounding 

problem. 

Seagrass habitat structure varies spatially (Robbins and Bell 1994: lrlandi et al. 

1995: Turner et al. 1999) and temporally (Olesen and Sand-Jensen 1994). The 

measurement of spatial pattern and heterogeneity is dependent upon the scale at which 

measurements are made t Turner 1989). I have shown that scaling laws can be determined 
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tor eelgrass habitat. and these laws can be extended between small (underwater video 

transect lines) and large (aerial photographs) resolutions. Simply adding or multiplying 

the effects identified in small scale analyses would have been inaccurate. This is because 

summing of small scale processes does not allow the prediction of larger scale effects 

1 Thrush et al. 1997). 

The resolution at which a single-scale study is conducted often depends on the 

background and vie\\-point of the investigator. as well as the problem that is being 

investigated (Farmer and :\dams 1991 ). Which spatial scales are appropriate tor studies 

of the association between juvenile cod and eelgrass habitat? Certainly juvenile cod are 

associated with eelgrass at small scales (i.e .. size of a patch) tor predator refuge. and 

possibly even smaller scales (e.g .. eelgrass blades. rhizomes) due to teeding 

requirements. However. juvenile cod distributions and densities may be related to 

eelgrass habitat at the scale of coves. sounds. bays. or even coastlines. Syms ( 1995) 

discusses how oceanographic. geologicaL and physical factors all act on tish assemblages 

and population structure at different scales. Finding an appropriate ·scale· of sampling 

should be less important than multi-scale modeling and sampling. which may provide us 

with an increased ability to detect and interpret large-scale relationships (Hewitt et al. 

1998) . 

.a.2 Are eelgrass systems true fractals? 

Fractals can be used to describe the complexity of natural patterns and the 

changes in these patterns with changes in scale (Gardner 1998). While a true fractal is an 
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intinite mathematical set. natural objects are tinite. being limited by some fundamental 

building block (Johnson et aL 1995). Nevertheless. fractal geometry provides a more 

realistic characterization of naturally occurring objects. such as habitat. when compared 

to classical Euclidean geometry (Johnson et al. 1995). Palmer ( 1988) suggests that 

vegetation is a prime example of a fractal because it has detail at all spatial scales of 

interest. 

The key idea in fractal geometry is self-similarity (Hastings and Sugihara 1993 ). 

This can be detected by determining whether the fractal dimension (Or) shifts with 

changes in scale (Burrough 1981 ). A constant value of Dr at different spatial scales 

indicates a self-similar pattern. and any portion of the sample provides an adequate 

statistical representation of the whole (Gardner 1 Q98). Selt:similarity disappears when 

the value of Dr shifts with changes in scale. indicating that the patterns seen are 

dependent on the scak of measurement (Gardner 1998). Most natural objects do not 

display exact self-similarity but display some degree of ·statisticar selt:similarity. at least 

over a limited range of spatial scales (Kenkel and Walker 1996 ). [n any case. statistical 

selt: simi1arity is not a prerequisite to applying fractal concepts (Kenkel and Walker 

1996 ). Strictly speaking. eelgrass systems are not true fractals but eelgrass habitat 

complexity can be described using fractal analyses over a limited range of resolutions 

(see Chapter 3 ) .. 

vtany natural fractal-like structures (e.g .. vegetation) are determined by a large 

number of generating processes operating at different scales (Scheuring and Riedi 1994 ). 

Such structures (termed multifractals) are characterized by fractional dimensions that 
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vary with scale. and so require an infinite number of scaling exponents tor their 

description (Kenkel and Walker 1996 ). Instead of incorporating multifractals. I chose a 

limited range of resolutions and applied a quadratic tormula to eelgrass data from transect 

lines to compare with eelgrass data from aerial photographs (see Chapter 2). This 

simplified procedure allowed a direct comparison of parameters from each method. In 

addition. this allowed me to simplit)' to a linear model if values ofD/ were not 

significant (e.g .. see Figure 2.4). 

4.3 Applications for the future 

\tty thesis was. tirst. that eelgrass measurements could be scaled from small to 

large using two ditTerent methods: and second. that cod densities are influenced by 

eelgrass complexity in Newman Sound. as measured by fractal analyses. Few studies 

have been done on eelgrass habitat in Newfoundland. although it is knm~n to be 

important to cod distributions ( Gotceitas et al. 1997: lngs et al. in prep.). Understanding 

the mechanisms that contribute to varying degrees of eelgrass complexity and the 

distribution and densities ofjuvenile cod are important next steps. 

It is highly suggested that eelgrass habitat complexity be quantified at even larger 

scales: in particular. the entire east coast of Newfoundland must be quantified because 

this is the scale at which recruitment occurs. The standard way of incorporating scale in 

ecological research is to detine subsystems and relate them to the system as a whole 

(Allen and Starr 1982: O"Neill et al. 1986 ). The scaling relationship between eelgrass 

complexity at sites in Ne...,man Sound and sites along Newtoundland"s east coast could 
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be determined. Cod density data exists from 1992-1997 at 36-45 sites along the east coast 

from Fleming survey data ( Methven et al. 1998). The relationship between cod density 

patterns and eelgrass complexity could be investigated on an even larger scale. furthering 

our understanding ofjuvenile cod ecology. 

Finally. concepts from my study can also be applied to other aspects ofjuvenile 

cod ecology. For example. predation rates on juvenile cod in Newman Sound have bc!en 

calculated with respect to l!elgrass habitat edge at small scales (e.g .. the size of a patch) 

(Gorman 2002). Predictions could be made about these relationships at larger scales (e.g .. 

the size of a cove). By computing a scaling law tor the amount of edge! using aerial 

photography. it may be! possible to calculate predation rates at larger scales. These 

predictions could then be! tested by direct measurements in the tield. 
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Appendix 1: Aerial photographs of 8 sites in Newman Sound, Newfoundland, taken in 
August 2000. Fractal dimensions (Dr) given for each site as an index of complexity for 
eelgrass. 

Big Brook, Dr= 1.0 

Bu~kleys Cove, Dr =1.0754 
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Dockside, Dr = 1.0930 
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Mistaken Cove, Dr= 1.1649 
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South Broad Cove, Dr = 1.3625 

W!tite Rock, Dr= 1.1~65 

93 



Appendix 2: Example (using Big Brook data) oftest for lateral heterogeneity between 
eelgrass habitat over 3 transect lines. 

Model: 
logA = J3o + J3JogR*logR + J3 L *L 

Symbols: 
logA = log, o area 
logR = log10 resolution (i.e. box size, m2

) 

L =transect line (class variable: left, middle or right) 

Results: 
Cla s s : L 
Levels : 3 
Valu es : 1 2 3 
N uiT~er of obsorv a t i o us : 18 
Depe ndent Va r iable : logA 

Sum of 
Sour ce OF Squares Mean Square 

Model 3 0 . 06 1 05989 0 . 02 0 35330 
Error 14 0 . 00194 5 58 0 . 0001389 7 
Correct ed Total 1 7 0 . 06300547 

R- Squ are Coeff Var Ro o t MSE 

0 . 969 120 0 . 690639 0 . 011789 

Sour ce OF Type I II ss Mean Squa r e 

logR 1 0 . 00308 17 7 0 .0 0308 1 7 7 
L 2 0 . 05981979 0.02990990 

Standard 
Parame t er Es t imate Er r or t 

Intercept 1. 782488528 B 0 . 0054993 1 
logR 0 . 02 1684 8 98 0 . 004604 88 
L 1 - 0 . 14020 1 480 B 0 . 00708 4 53 
L 2 - 0 . 038140000 B 0 . 00 7 4 5 5 7 4 
L 3 0 . 000000000 B 

Therefore the regression equation is: 
logA = 1.782 + 0.02168*logR + J3L *L 
(where J3u = -0.1402, J3u = -0.03814 and J3u = 0.0000) 
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F Value Pr > F 

1 4 6 . 46 < . 000 1 

logA Mean 

1. 706906 

F Va l ue Pr > F 

22 . 18 0 . 0 0 03 
215 . 2 3 < . 0001 

Va l u e Pr > It I 

324 . 13 < . 0001 
4 . 7 1 0 . 000 3 

-1 9 . 79 < . 0001 
- 5 . 12 0 . 0002 



Plot of resids*predicted . Legend: A 

res ids 

0 . 04 + 

0 . 00 A 

0 . 03 + 

0 . 02 + 

res ids 

O. Ol + 

A 
A 

0 . 00 + 

A 
A 

A 
A 

- 0 . 01 + 

A 

- 0 . 02 + 

1 obs , B 

A 

2 obs , etc. 

A 

A 
A 

A 

A 

A 

A 

A 

A 

---+------------+------------+------------+------------+- -
1 . 60 1 . 65 1 . 70 1 . 75 1 . 80 

0 . 00 
predicted 
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Appendix 3: Example (using Minchins Cove data) of complete analysis for comparing 
eelgrass measurements from underwater video transect lines to eelgrass measurements 
from aerial photographs. 

Model: 
logP = j3o + 13togRI *logRl + 13togR2*logR2 + 13M*M 

Svmbols : 
logP = log10 perimeter 
logR1 = log 10 resolution (i.e . length of side of box, m) 
logR2 = log10 resolution squared 
M = method (class variable: Ma = aerial photography and Mu= underwater video) 

Results: 
Class : M 
Levels : 2 
Va lues : 1 2 
Number o f obs e r va Ll o n s : 1 6 
Depend en t Variable : l ogP 

Sou r ce OF 

Model 3 
Er r o r 1 2 
Co r rected To t al 15 

Surn. o f 
Squares 

9 . 760 4 67 61 
0 . 0 0323 71 5 
9 . 76370476 

Mean Square F Value Pr > F 

3 . 253 48920 12060 . 6 < . 0001 
0 . 000269 7 6 

R- Square Coeff Var Root MSE logP Mean 

0 . 999668 0 . 778283 0 . 0 1 6424 2 . 11 0344 

Source OF Type III ss Mean Square F Value 

l ogR1 
l ogR2 
M 

1 
1 
1 

0 . 03303913 0 . 03303913 1 2 2 . 47 
0 . 02 7 44 70 9 0 . 02 7 44 70 9 101 . 75 
9 . 29650857 9 . 29650857 34461 . 8 

SLa ndard 
Parameter Estimate Error 

Int ercept 3 . 175 9 64969 B 0 . 0 1263249 
l ogRl - 0 . 3 97 61 5 19 8 0 . 0 3 ;) 92 85 4 
logR2 - 0 . 238234 5 61 0 . 02361 824 
M 1 - 1 . 7 0 9494 5 17 i3 0 . 0 0 9 2 0 8 -ll 
M 2 0 . 000000000 B 

Therefore the regression equation is: 
logP = 3.176- 0.3976*logRl - 0.2382*logR2 + 13M*M 
(where 13Ma = 0.000 and 13Mu = -1.710) 
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t Value 

251.41 
- 11 . 0 "/ 
- 10 . 09 

- 185 . 64 

Pr > F 

< . 0001 
< . 0 00 1 
< . 0001 

Pr > I t I 

< . 0001 
< . 00 01 
< . 000 1 
< . OOO.l 



Plot of resids*predicted . Legend : A 1 obs , B 2 obs , etc . 

res ids 

0 . 02 + 
A 

A A 

A 

0 . 01 + A 

A 
A A 

A A 

0 . 00 + A 

A A 

- 0 . 01 -r 

A 

- 0 . 02 + 

A 

- 0 . 03 + 

A 

- 0 . 0 4 + 

- +----------+----------+----------+----------+----------+----------+ 
0 . 5 1.0 1. 5 2 . 0 2 . 5 3 . 0 3 . 5 

predicted 
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Appendix 4: Example of complete analysis for determining relationship between proportion of 
successful seine hauls with age 0 cod and eelgrass habitat complexity (using all months and all 
years). 

Model: 
P = ~o + ~Df*Df + ~M*M 

Symbols: 
P = perimeter 
Df= fractal dimension of eelgrass 
:M, Month= month (class variable: 1 =July, 2 = August and so on) 
Total= total number of seine hauls 
Success = number of seine hauls with age 0 cod 

Results: 
Distribut i on : Binomi a l 
Link Func tio n : Le git 
Response Variable (Events) : success 
Response Variable (Trials): tota l 
Observations Us ed: 30 
Number Of Events: 14 7 
Number Of Trials : 175 
Class: rnonLh 
Levels: 5 
Values : 1 2 3 4 5 

Analysis Of Pa rame ter Estimates 

Standard ~'Vald 95 % r-. c. 1 LOn . ..Llaence 
Parameter OF Est ima t e Error Limits 

Intercept 1 - 2 . 3186 2 . 6756 -7. 5627 2 . 9256 
month 1 1 - 2 . 58 95 0 . 8355 - 4 . 2271 - 0 . 9519 
month 2 1 -1. 47 72 0 . 8375 - 3 . 1186 0 .1 642 
month 3 1 - 0 . 2378 0 . 9492 - 2 . 0983 1. 6227 
rnoncn 4 1 - 0 . 3 7 49 0 . 952 1 - 2 . 2409 1. 4 912 
month 5 0 0 . 0000 0 . 0000 0 . 0000 0 . 0000 
L)[ 1 4 . 5433 2 . 3384 - 0 . 0399 9 .1 264 
Scale 0 1. 0000 0 . 0000 1.0000 1 . 0000 

LR Stat is tics For Type 3 An a lysis 

Source 

mont h 
Of 

OF 

4 
1 

Chi
Square 

20 . 70 
4 . 37 

Therefore the regression equation is : 
p = e(-2.32 + 4.54*Dr+ ~M*M)/( 1 + e(-2.32 + 4.54*Dr+ ~M*M)) 

Pr > ChiSq 

0 . 0004 
0 . 0366 

Ch i 
Square 

0 . 75 
9 .61 
3 . 11 
0 .0 6 
0 . 16 

3 . Ti 

(where ~MI = -2.5895, ~M2 = -1.4772, ~M3 = -0.2378, ~M4 = -0.3749, and ~M5 = 0.0000) 
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Plot of Stresdev*Pred. Legend : A 1 obs , B 2 obs , etc . 
I 
I 

2 + A 

A 

1. 5 + A 

A 

AA 
A 

1 -r BC 

AA 
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0 . 5 + A 

s A 

t A 
R 0 + 
e A A 

s A 
d 
e A 
v - 0 . 5 + A 

- 1 + A 
A 

- 1 . 5 + A A 

A 

A 

-2 + 
A 

- 2 . 5 + 

- +----------+----------+----------+----------+----------+----------+ 
0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 

Pred 
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Appendix 5: Example of complete analysis for determining relationship between density 
of age 0 cod when present and eelgrass habitat complexity (using September data, all 
three years). 

Model: 
C = ~o + ~or*Df + ~oa*Df2 

Symbols: 
C = age 0 cod density 
Df= fractal dimension of eelgrass 
Df2 = fractal dimension squared 

Results: 

Link Function: Log 
Dependent Va riable : count 
Observat i ons Used : 44 

Analysis Of 

Standard 
Parameter DF Estimate Error 

Intercept 1 -7 0 . 50 1 9 1 6 . 5480 
Df 1 120 . 1075 28 . 2093 
Di2 1 - 47 . 7304 1_1 . 94 4 0 
Sca l e 1 0 . 8137 0 .1 499 

Parameter Estimates 

Wald 95 % Chi -
Confidence Limits Square 

-1 02 . 935 - 38 . 0685 18 . 15 
64 . 8183 175 . 3966 1 8 .1 3 

- 7 1 . 1401 - 24.320 7 15 . 97 
0 . 5671 1. 167 6 

LR Stat is tics Fo r Type 3 Analys i s 

Source 

Of 
Df2 

Therefore the regression equation is: 
C = (e-7o.soz)-(ei20.II·Df)·[e-47.730·CD/)] 

DF 

1 
1 

100 

Chi 
Square 

13.39 
11 . 98 

Pr > ChiSq 

0 . 0003 
0 . 0005 

Pr>ChiSq 

< . 0001 
< . 000 1 
< . 0001 



Plot of Stresdev*Pred . Legend : A 1 obs, B 2 obs, etc. 
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A(JIJl'ndh 6: J{esulls lp values and residual cheds)liJr anal)~e~ of relationship hchH:cn llJIJX. Jl)l)l) and :!OliO ~.:ml densit ies and frac tal 

dimension of cclt2rass huhitnl. 
----

M y Model M y Dr o,' M"Dr M* oi' y•o, v· o,' Residuals 

All All c = M + Y + Dr + Dr~+ M·Dr + M·D,~ + v·o, • 
0 1248 0 3033 0 0149 0 0152 0 1520 0 1812 0 3184 0 3274 Not normal v·D/ + r: 

All All C = M + Y + Dr+ O/ + M•Or + Y"Dr + t: 0 0544 0 8594 00060 0 0067 0 0413 0 8411 Not normal 
All All C = M + Y + Dr+ D/ + M"D/ + Y"D/ t r: 0 0666 0 7853 0 0057 0 0064 0 0520 0 8652 Not normal 
All All C = Y + Dr+ D/ + v·o, + Y"D/ + r: 00729 0 0014 0 0018 0 0778 0 0762 Ok 
All All c = M +Dr+ o? + M"Dr + M"D/ t I. 0 0556 0 0867 0 0921 0 0707 0 0657 Ok 
All All C = M + D, + D? + M"O/ + r: 0 0106 0 0241 0 0280 0 0029 Ok 
All All C = M + Dr + D/ + M"Dr + r: 0 0052 0 0266 0 031 0 0023 Ok 
July All c = v .. Dr .. o? • v·o, • v·o/ • l 0 0134 0 5711 04906 0 0112 0 0086 Not normal 
July 1996 c = D, + o/ + ~: 0 0336 0 0276 Not normal 
July 1996 C "' Dr + r: 0 0233 Not normal 
July 1999 c = o, + o/ + 1: 0 1405 0 1363 Ok 

0 July 1999 C = Dr + r: 0 6997 Not normal 
I -..I Aug All C = Y + Dr+ D/ + Y"D, + Y"D/ + r: 0 4995 0 3456 0 3215 0 4445 0 3991 Ok 

Aug All c = D, • Dl + •: 0 3643 0 3202 Ok 
Aug 1996 C = O, + D/ + t: 0 6446 0 6423 Ok 
Aug 1996 c = D, + t: 0 9569 Ok 
Aug 1999 c = D, + ol + r: 0 2256 0 1646 Not normal 
Aug 1999 C = Dr t t: 0 0006 Ok 
Aug 2000 C = Dr + D? + t: 0 5202 0 5201 Not normal 
Aug 2000 c = o, + t: 0 9969 Not normal 
Sept All C = Y + Dr+ D/ t v·D, + y· O/ + t: 0 2062 <0 0001 <0 0001 0 2411 0 2669 Ok 
Sept All ' C =Dr+ Dr + t: 0 0003 00005 Ok 
Oct All c = Y + D, + D/ • v·D, • Y"Dr2 

• •: 0 2174 0 0494 0 0511 0 2366 0 2506 0!< 
Oct All C = Y + Dr+ Y"D, + r: 0 6540 0 6000 07272 Not normal 
Oct All c = o, + Dl + 1: 06493 06574 Ok 
Oct 1996 c = D, • Dl + 1: 0 3649 0 3579 Not normal 
Oct 1998 c = o, + t: 0 6801 Ok 
Oct 1999 c = o, + ol + t: 0 7183 0 7325 Ok 
Oct 1999 c = o, t t: 0 7175 Ok 
Oct 2ooo c = D, • D/ + 1: 0 0353 0 0375 Ok 



0 
l..J 

Allpendil6 ronl'd: Hcsult~ li1r imaly~c~ Llfrclationship hct\\ccn llJIJII, ILJlJLJ and ~tlllll ~:oJ tlcn~itics and fra~:tal dimcmion of eelgrass huhitat. 
M Y Model M Y 0, o,2 M*O, M* 0,2 Y*O, y• 0,2 

Oct 2000 C :: 0t + L 0 4798 

Nov All 2 l c = v • o,. o, • v·o,. v· o, • ,; 0 9555 0 0349 0 0262 0.9845 0 9945 
Nov All C = o, + D/ + t: 0 2930 0 2381 
Nov 1998 c = o, • o/ • L 0 0072 0 0064 
Nov 1998 C"' Dt + L 0 343 

Nov 1999 c = o, + o/ + t 0 2964 0 2415 

Nov 1999 c :: o, + t; 0 0429 

Nov 2000 c = o, + o/ + t 0 2598 0 2493 
Nov 2000 c = o, + t; 0 5567 

C =cod density: M "' month: Y = year: Dr ~ fractal dimension of eelgrass habitat: 1: "'error term 

Residuals 
.. ··-· - · - - ·--··- ·. 

Ok 
Not normal 
Not normal 
Ok 
Not normal 
Not normal 
Ok 
Not normal 
Ok 










