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ABSTRACT

A robust method for the estimation of limit loads of structures has been adopted for plate
structures. It involves the use of modified secant rigidity. The method makes use of
repeated linear elastic analyses to predict limit behavior. The results from an initial elastic
analysis are used to obtain the principal moments. A suitable yield criternion (such as
Tresca or Von Mises) in terms of generalized forces is used. A set of equivalent moments
is then computed for the plate. This is used to modify the secant nigidity of the plate. The
modified structure is re-analyzed iteratively until convergence is reached. The moment
distribution from the convergent analysis shows the collapse mechanism for the plate.
The average of the equivalent moments along the collapse (or yield) lines of the plate is
scaled to the plastic moment capacity of the section to obtain the limit load factor. The

method has several advantages in comparison to other traditional methods.

This method has been implemented on ANSYS software using APDL routines. Problems
solved include: simply supported and fixed square and circular plates with uniform and
concentrated loads, plates with imregular boundary conditions and shapes as well as
continuous plates with checkerboard loading. The results from the above analyses match

analytical results very closely, thus demonstrating the usefulness of the method used.
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Chapter 1

Introduction

1.1 General Background
Most structures are currently analyzed by assuming elastic behavior. The results of this
clastic analysis are used to design the structures for limit behaviour of individual

components.

Elastic analysis implies that the structure is subjected to elastic stresses at specified loads.
In adopting a limit design, the structure needs to be subjected to limiting stresses. Limit
stresses usually involve local or global plastic zones. Therefore, there is a discrepancy
between the analysis and design philosophies of structures. In case of determinate
structures, the effect of this discrepancy is usually negligible. Even for other structures,
the presence of residual stresses produced by repeated loading beyond elastic limit (shake
down) and other beneficial effects can sometimes offset this discrepancy [Adluri, 2001b].
However in general, for indeterminate structures and complex situations, the difference
could be very significant. Many practical structures are highly redundant and hence are

complex and indeterminate.

One way of removing this discrepancy is by analyzing structures using limit analysis.
Using limit analysis, the reserve strength which is available beyond the formation of first

plastic deformations in most practical structures could be made use of, thereby achieving



considerable economy in design. However, rigorous limit analysis has several difficulties

associated with it.

1.2 Need for the Proposed Work

The methods available for plastic analysis such as those based on the upper bound and
lower bound theorems are tedious for structures with a high degree of redundancy. They
are also impracticable for large structures. Finite element nonlinear analyses have
problems including, modeling difficulties and excessive computational requirements for
practical applications. Hence, a systematic, simple and robust estimation of limit loads

would be a useful addition to the tools currently available.

Methods such as the Gloss R-node method and the m, method have been developed for
this purpose. These methods work well for components where very large plastic zones
characterize collapse mechanism. However, these methods have some difficulties for
civil engineering type structures where a large number of members interact with
relatively small plastic zones at collapse. These methods are based on stress level
modification and therefore make use of solid elements with discretization through the
thickness. If shell elements can be adopted as in the case of the Elastic Compensation
method, they require additional calculation of matenial and cross sectional parameters

such as generalized stress resultants.

An approach involving the use of modified secant ngidity [Adluri, 1999, 2001a&b] built

on top of the existing robust methods addresses many of these difficulties. This approach



has not been applied in great detail for continuous structures such as plates. The present

work has been carried out to adopt and implement this method for the estimation of limit

loads of plates. The effectiveness of the technique is checked for both simple as well as

complex types of plate configurations.

1.3 Objectives

The present research has the following objectives:

1.

Implement the robust technique for limit load estimation of plates based on modified
secant rigidity using ANSYS software and it's APDL (Ansys Parametric Design

Language) routines.

Use different yield criteria and apply the scheme to:

a) Regular plates: Simply supported and fixed plates of various shapes and loading
b) Irregular plates: Plates with irregular boundary conditions as well as shape

c) Continuous plates: Continuous plates with different extreme end conditions and

loading on the panels.

Compare the method with analytical methods for the determination of limit loads,

existing robust methods or non-linear finite element analysis (wherever appropriate).



1.4 Organization of the Thesis

The thesis is organized on the following lines:
Chapter 1 briefly introduces the need for the present method and other relevant matenal.

Chapter 2 provides a detailed review of the available literature and appropriate theoretical
background. A description of plasticity, robust methods and their origin, has been given.
A brief outline of a few well-known robust methods has been presented. A section
describing the theoretical aspects of plate analysis is included. Elastic analysis of plates
using cartesian and cylindrical co-ordinate system has been discussed. Further, the upper

bound and lower bound theorems and their applicability to plates has been highlighted.

Chapter 3 provides a simple description of the original theory for the technique used in
the present work. This technique is discussed and compared with existing robust

methods.

Chapters 4 and 5 present the application of the present method to regular, irregular and
continuous plate structures, respectively. The description of the analyses and a discussion

of the results are presented.

Chapter 6 concludes the research. It contains a brief summary, the main conclusion of

the work along with recommendations for further study.



Several appendices are attached at the end of the thesis. These consist of ANSYS input
file listings and the implementation for the various problems analyzed. The input files

contain comments for the use of relevant information for future use.



Chapter 2

Literature review

2.1 Introduction to Plastic Analysis

The origin of plasticity as a branch of mechanics dates back to the period 1864-1872
when Tresca published a senies of papers on the extrusion of metals. He proposed the first
yield criterion for failure of metal structures. It states that a metal yields plastically when
the maximum shear stress attains a critical value. Prior to this, cnitena for yielding were
applied mainly to plastic solids such as soils, for example by Coulomb [1773], Poncelet
[1840] and Rankine [1853]. Tresca’s yield criterion was applied by Saint Venant to
determine the stresses in a partly plastic cylinder subjected to Torsion or bending [1870]
and in a completely plastic tube expanded by internal pressure [1872]. Tresca’s work was
followed by Levy [1870] and then by von Mises [1913], who introduced the well-known
pressure-insensitive yield criterion. Several studies have developed or extended the above
formulations, e.g., Prandtl [1924], Melan [1938], Drucker, Greenberg and Prager [1951],
and Hill [1951]. A good description of these and subsequent studies is given by Chen

and Han [1987), Hill [1950] and Calladine [1969] among others.

At small loads, most structures behave elastically. A number of elastic analysis
techniques have been well established, chief among them is the Finite Element Analysis

(FEA). A large number of software programs have been developed and used by



practising engineers to perform elastic analysis of structures. Elastic analysis indicates
linear load-deformation pattern. A design based on elastic analysis assumes that failure
would occur as soon as a critical point in the structure reaches yield stress. However,
once such yielding occurs in the structure, redistribution of stresses takes place. The
zones that would have yielded at a particular load level would not offer further resistance
to increased loads. Such increase in load will have to be resisted by the remaining
portions of the structure. This redistribution continues with increase in load and would
reach a stage when the structure would form a mechanism and would be on the verge of

collapse. This load is termed as “limit load™ of the structure.

This was initially observed during column buckling investigations during the 1880s.
Subsequently in 1914, Kazinczy observed that the ultimate load-carrying capacity of
clamped steel beams was considerably higher than that predicted by theory of elasticity
[Szilard, 1974]. The increased load carrying capacity is due to ductility or plasticity of

most structural matenals such as steel, aluminum and reinforced concrete.

Although, structural analysis based on elastic theory yields results for stresses and
deformations at working loads, 1t fails to assess the real load carrying capacity of the
structure at ultimate (or factored) loads. At failure, the fundamental assumptions of
elastic theory (such as Hooke’s law, etc.) are no longer valid. Hence, using elastic
analysis, information obtained on the basis of factor of safety against collapse is
inaccurate. This is recognized by the widely established “Limit States Design”

philosophy [CSA, 1994]. The discrepancy is partly offset by the use of nonlinear



component design and use of load factors. However, for a rational design, the structure

must be designed using a properly developed limit analysis [Adlun, 1999, 2001a, b].

Proper estimation of limit loads involves plastic analysis considering non-linear behavior
of materials and geometry. Such limit load estimates give us the amount of reserve
strength available beyond the initial yield. This results in efficient use of matenal, leading

to economy in design and improved safety.

Limit load may be estimated using upper bound or lower bound techniques depending on
the equations of mechanics invoived in its determination. Lower-bound techniques give
consideration to equilibrium and yield conditions. Whereas, upper bound techniques

consider failure modes and energy dissipation.

A complete non-linear analysis would involve complexities arising out of an incremental
iterative analysis. Although commercial software programs have been developed for this
purpose, they often require considerable judgement and result in high computational
costs. Also, if a structure is analyzed using both linear and non-linear FEA and the
results compared with corresponding classical analysis, the difference in results would be
considerably more for non-linear FEA. In other words, the accuracy obtained in nonlinear

FEA is not comparable to that obtained in linear analyses.

When a beam is loaded (Fig.2.1-a) such that at maximum moment location, stress is
below the proportional limit, the stress distribution is as shown (Fig 2.1-d (i)). With

further increase in load, the outer fibers of the beam in the vicinity of the maximum



moments reach yield stress f, (Fig. 2.1-d (ii)). As the load is increased further, the yield
stress will propagate towards the neutral axis of the section (Fig. 2.1-d (iii)) until the

stress distribution is nearly rectangular (Fig. 2.1-d (iv)).

When vielding propagates throughout the depth, a plastic hinge occurs at that location.
The constant moment of resistance offered by the section in this case would be the plastic
moment M, The beam can still carry an additional load P, with no further increase in
moment at the clamped section. Failure would occur due to formation of a second plastic
hinge in the span of the beam. The deformation pattern is called as collapse mechanism

and consists of rigid body motions.

By introducing an idealized stress-strain relationship, we can estimate the moment
carrying capacity of the beam. The fully plastic moment or ultimate moment capacity of a

rectangular beam is given by

Mp:[ﬂ)([y)!zl.—.f}_bh- @.1.1)

2
where, b is the breadth, 4 is the depth of the beam and f; is the yield stress.

Alternatively, ultimate moment per unit width is given by,

M,=f— (2.1.2)



It is assumed here that the material is elastic-perfectly plastic and can undergo large
strains without initiating strain-hardening effect. A comparison of this ultimate moment

with the moment capacity of the section, obtained from elasticity theory gives,

M h/4
e LR 2.13)
M, k76

From the above relationship, it is clear that there is a 50% increase in capacity by
adopting plastic analysis for the rectangular beam section instead of using elastic analysis
results. These benefits will be further compounded when the overall structural behaviour

is involved in estimating limit loads.

2.2 Theoretical Background

2.2.1 Plastic Bebavior in Simple Tension and Compression:

Uni-axial state of stress represents the simplest type of loading condition. The simple
tension test has 61>0 and 9;=03;=0 and the simple compression test has ¢,=g,=0 and

a3<0.

A plot- of the axial principal stresses (o) or a3) against the axial strain €(or €;) represents

the well known uniaxial stress strain diagram. (Fig. 2.2 a)

¢ Point A defines the limit of proportionality.

10



e Point B defines the elastic limit of the material. It ts also called as vield point.

o Usually, there is not much difference between proportional limit A and elastic limit

B. Mild steel exhibits an upper yield point B and a lower vield point C.

e Beyond point C, there is an increase in strain at approximately constant load. The

behavior in the flat region CD is termed as plastic flow.

Most metals exhibit neither a definite yield point nor plastic flow. For such cases, yield
strength is generally defined as an offset of stress corresponding to, usually a strain of

0.1%. (Fig 2.2 b)[Chen, 1988]. This offset yield stress is defined as initial vield stress.

Above the yield point, the response of the material is elastic-plastic. The slope of the

curve decreases steadily and monotonically leading to failure of the specimen at point E.

A ductile material like mild steel can sustain large strains without failure. On the other
hand, cast iron being brittle material fails with a little strain. Failure also depends on the
type of loading. For example, concrete exhibits brittle behavior under tensile loading, but

under compression it may exhibit a certain degree of ductility before failure.

2.2.2 Unloading and reloading

Consider the case of a test specimen loaded monotonically to some value beyond the

yield point and then completely unloaded. The behavior is as shown in Fig. 2.3.

e OB on the strain axis indicates the irrecoverable residual strain or plastic strain.

11



e BC is the recoverable strain and is called as elastic strain.

e At this stage, if the specimen is re-loaded, the stress-strain curve follows the path BA

similar to the unloading path AB.
e The material behavior is elastic till it reaches the previous maximum stress at point A.

e o, is called as subsequent yield stress, beyond which further plastic deformation is

induced and stress-strain curve follows the original path for monotonic loading.

2.2.3 Idealized stress-strain models

From the previous discussion, the following may be noted:

¢ No single relationship exists between stress and strain for different matenals.

e Stress need not be a function of strain alone, but also depends on the previous loading

history. Thus the material behaviour is load-path dependent.

e Residual strains of different magnitudes can be obtained by varying the loading

history with the stress starting and finishing at zero.

In order to obtain a solution for a deformation problem, it is necessary to idealize stress-
strain behavior of the material. A few well known idealized models are given below and

are shown in Fig.2.4:

12



a) Elastic-Perfectly plastic model

b) Elastic-Linear work hardening model

c) Elastic-Exponential work-hardening model

d) Ramberg-Osgood-model

2.2.4 Tangent moduius, Plastic modulus and Secant modulus

As can be seen from the previous discussions, elastic-plastic stress-strain response of a
material is non-linear and therefore an incremental approach is adopted to solve a
deformation problem. It is assumed that a strain increment de consists of two parts,

namely the elastic strain increment de® and plastic strain increment de® (Fig.2.5)

de=de‘+de® 2.2.1)

The stress increment do is related to the strain increment de by

do=Ede (2.2.2)

If plastic strain is separated from total strain, the stress increment do is related to the

plastic strain increment de® by

do=Epd¢’ (2.2.3)

where, E, is the tangent modulus and Ep is the plastic modulus

13



For elastic strain increment,

do=Ede* 2.24)

where, E is the elastic modulus.

The relationship between the three modulii E, E, and Ep is given by,

(/E)A/EXH(/E,) (2:23)

Secant modulus is the value of Young’s modulus derived from a secant drawn between
the origin and any point on a nonlinear stress-strain curve (Fig. 2.5). The secant modulus
is very useful in estimating the inelastic state directly without tracing the load path. It
was used for well over a century to solve a variety of nonlinear problems. Many robust
methods have been developed to take advantage of the secant modulus. The nonlinear
FEA schemes aiso use the secant stiffness. The most popular of these is the BFGS
(Broyden, Fletcher, Goldfarb and Shanno - named after founders of the method) scheme
commonly used with quasi-Newton methods. It has been implemented in several FEA

software packages.

2.2.5 Concept of Limit load

In the preceding discussions of stress-strain curves, there was a stage after “proportional
limit,” at which the strain increases at a constant value of load. This constant value of

load is called the limit load or plastic load. Altematively, plastic or limit analysis can be

14



defined as a method to predict the load at which the structure will fail through the
development of excessive deflections. Therefore, limit load or plastic load can aiso be

defined as that constant load on the structure at which the deflections can increase

indefinitely.

2.2.6 Mechanism of Failure

Plastic hinges occur in the yielded regions of structures. When sufficient number of
plastic hinges are developed in a structure, it forms a mechanism of free rotating links.
This leads to collapse. For a determinate structure a single plastic hinge is sufficient to
cause collapse. In the case of indeterminate structures, the number of plastic hinges
required to form a mechanism, is given by R+/, where ‘R’ is the degree of
indeterminacy. This implies that an indeterminate structure fails by shedding the

indeterminacy through the formation of plastic hinges.

2.2.7 Classical Upper and Lower Bound theorems

Classical limit analysis is carried out by applying static or kinematic theorems. The

following assumptions are used for their application:

1. Plane sections before bending remain plane even after bending (Kirchoff or

Euler-Bemoulii)

2. Deflections are such that equilibrium equations can be formulated for the undeformed

structure (Lagrangian formulation)
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3. The stress-strain relation is assurmed to be elastic-perfectly plastic

4. Local failure does not occur prior to the attainment of ultimate load

5. The loading is proportional, i.c., loads are increased in fixed proportions to one

another.

Upper Bound Method:

The theorem states that *the critical load that is calculated based on a possible mechanism
must either be equal to or greater than the actual collapse load.” The application of this is
also called as the “mechanism or kinematic method™ as the analysis is conducted based
on some assumed collapse mechanism and by equating the rate of external work with the

rate of dissipation of internal energy.

Lower Bound Method:

The collapse load is obtained based on an assumed equilibrium moment diagram that ts

safe everywhere. The load obtained is less than or equal to the true collapse load.

2.3 Yield Criterion and Yield locus

2.3.1 Yield criterion

The previous discussions were based on uni-axial state of stress. However, these concepts

can be generalized for a combined state of stress. Yield criterion defines elastic limit of

16



the material under a combined state of stress. In general, the principal stress is a function

of the state of stress &,;. This can be expressed as,
f(Oij, kl_ kz, ........ ) =0 (23 1)
where, k;, k3, etc., are material constants.

For isotropic materials, values of the three principal stresses or their invariants

sufficiently describe the state of stress and the corresponding yield conditions.

2.3.2 The Tresca Yield Criterion

The first yield criterion for a combined state of stress for metals was proposed by Tresca
in 1864. This is also known as the maximum shearing stress theory, or simply the
maximum shear theory, which results from observations that in a ductile material slipping
occurs during yielding along critically oriented planes. According to this theory, yielding
would occur when the maximum shear stress at a point reaches a critical value k. In
terms of principal stresses, this condition is fulfilled when one-half of the greatest
absolute difference between the principal stresses taken in pairs must be equal to k at

yield.

max (% lo1.02/, %Icz-ﬁsl, %|°3-°'l|) =k (2.3.2)

The material constant k can be determined from the maximum shear stress in a simple

tension test. Therefore,

17



=t (233)

A detailed explanation about this theory is provided in Section 3.2.3

2.3.3 The von Mises Yield Criterion

The octahedral shearing stress or strain energy of distortion is the basis of the von Mises
criterion. It states that yielding begins when the octahedral shearing stress reaches a

critical value k. In terms of principal stresses,
(01-62)° + (62 03)*H03-01)" = 6k 234
where k is the yield stress in pure shear. For uniaxial case, the above equation reduces

to,

S, 23.5)

A detailed explanation about this theory is provided in Section 3.2.3
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2.4 Robust methods for Limit Analysis

2.4.1 Need for robust methods

Limit load determination is usually based on classical upper bound and lower bound
theorems. However, this method becomes highly tedious for structures with high degree
of indeterminacy. It is also impracticable for complex structures. This has motivated
researchers to develop simplified methods to determine limit loads. Simplified methods

such as Gloss r-node method, Elastic compensation method and m, method have been

developed for a similar purpose.

Current robust methods provide a simple and quick estimate of limit loads for problems
involving material non-linearity. Since the process involves successive elastic analyses,
the solution is more stable and systematic and therefore has much lesser convergence

difficulties. It also saves enormous computation time.

2.4.2 Origin of Robust methods

Recent robust methods initially paved their way into limit design of pressure vessels by
use of reduced modulus technique. A reduced modulus technique was introduced to
categorize stresses in pressure vessels [Dhalla, 1984; Dhalla, 1987; Dhalla and Jones,
1986]. This was intended to classify local clamp stresses induced in Liquid Metal Fast
Breeder Reactors. However a significant observation from this technique was that clamp-

induced stresses could be secondary owing to their redistribution on account of material
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or geometric non-linearity. Hence, a systematic reduction of elastic modulus resulted in
inelastic response of the structure. The method was then extended to study inelastic
response and follow-up characteristics of piping problems and the results were found to

be satisfactory [Dhalla, 1984, 1987; Dhalla and Severud, 1984].

Subsequently, Marriott {1988] proposed a reduced modulus method for determining
primary stresses in pressure vessel components. The method involves performing an
elastic analysis and identifying elements having stresses greater than those defined by the

code. The elastic modulus of each element would then be modified using the relation:

Y (2.4.1)

where. E, is the original value of elastic modulus, Sy, is the code allowable stress and SI

is the stress intensity.

The modified structure is then re-analyzed. This is followed by further re-adjustment of
clastic modulii of critically stressed elements and the procedure is repeated until

maximum stress intensity is less than S, or some other convergence criteria.

Further to this, the method of robust limit load analysis has been under extensive study by
Seshadn and co-workers [Seshadri, 1991; Seshadri and Fermando, 1992; Fernando, 1992;
Mangalaramanan and Seshadri 1995; Seshadri, 1997] and Mackenzie and Boyle
[Mackenzie, et. al., 1992; Mackenzie and Boyle 1993; Mackenzie, et. al., 1993; Boyle, et.

al., 1997; Mackenzie, et. al., 2000; Nadarajah, et. al., 1993].
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Studies by Seshadri and co-workers led to the development of r-node method, which
predicts limit load by determining r-node stresses and subsequently modifying elastic

modulus in repeated elastic analysis.

2.4.3 Gloss Method

The Gloss method is a simple technique to determine the peak inelastic strains in
structures and mechanical components for a given load [Seshadri and Kizhatil 1990;
Kizhatil and Seshadri, 1991; Seshadni 1991; Raghavan, 1998]. It is a robust, systematic
and effective technique involving the use of two linear finite element analyses. The
structure under consideration is divided into a local region and remainder region for the
purpose of analysis. The local region is a portion in the structure that undergoes high

plastic deformations. The remainder exhibits normal elastic stresses.

The application of this concept involves relating the inelastic multiaxial stress
redistribution in the local region due to plasticity or creep, to the uniaxial stress relaxation

process. This is achieved in an approximate manner using a secant modulus scheme for

all the points that have yielded:
E, = —'(-’—Eo (24.2)
o

where, o, is the von Mises equivalent stress from the initial elastic analysis of the i

element.

21



After making the above modification, a second linear elastic analysis is conducted.

A typical GLOSS diagram is shown in Fig. 2.6. Here, OAF is the elastic perfectly plastic
stress-strain curve and OC is the elastic line. The pseudo elastic point C (o,,.€,, ). of the
local element is located on this elastic line. The stress and strain of the local element
(0.,,€,,) determined from the second linear analysis is represented by point E. The siope
of the line OE is called as the secant modulus and that of BE as the relaxation modulus.
The line BE can be extended tc intersect the material stress-strain curve. This gives the
inelastic strain in the focal region. Some researchers used techniques similar to the
GLOSS, e.g., Ralph [2000], who used the method to repeatedly increment the load to

obtain a limit value.
2.4.4 R- Node Method

The salient features of the GLOSS method and the reference stress method were
combined with ideas from Dhalla, Marriott, etc., by Seshadri [Seshadri and Marmiott,
1992]. They proposed the r-node method as an approximate procedure for determining
limit loads on the basis of two linear analyses [Seshadri and Fernando, 1991]. The r-
nodes are load-controlled locations in a structure and can be descnibed where the
distribution of stress corresponds to primary stresses. The method is briefly described

below:

1. The structure under consideration is discretized and a linear finite element analysis is

carried out for an arbitrary proportional load factor.
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2. The elastic modulii of all the elements in the structure are modified using the secant

scheme (similar to GLOSS).

3. An elastic reanalysis is carried out and r-nodes are identified as points where the

stress does not change between the two iterations.

Use of the modified modulii in a second linear finite element run produces a stress
distribution, which tends to a limit type distribution. From the results of the two runs, it is
possible to locate points in the structure where stresses remain the same between the
analyses. This means the stresses at these locations are insensitive to the matenal
constitutive relations. These stresses are thus load controlled. These load-controlled
locations are called redistribution nodes (r- nodes). The effective stresses at r-nodes are

linearly proportional to externally applied loads.

Thus, by knowing the effective r-node stress, the limit load on the structure can be readily
evaluated. The local maxima of the stresses at the r-nodes are estimated. Each such local
maxima are thought to be representing a plastic hinge location. These plastic hinges give

rise to collapse mechanisms. The combined r-node effective stress, o, can be found using

the following relation,

2%
o, =L (24.3)

[
n
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where, n is the number of r-node peaks or plastic hinges. The corresponding limit load is

given by,
k= [i}'“ (2.4.4)

The r-node method has been successfully applied to several applications by Seshadn and
associates. Of particular interest is the work by Mangalaramanan [1993] who applied the
r-node method to several plate problems to obtain limit load estimates using the von

Mises criterion. The present thesis uses several of his results to make comparisons.

2.4.5 m-a method

The m-a method [Mangalaramanan, 1997a; Seshadri, 2000; Seshadri and
Mangalaramanan, 1997] is based on Mura’s variational formulation [Mura and Lee,
1962; Mura, Rimawi and Lee, 1964]. According to Mura’s formulation, the exact limit
load factor is bounded by upper and lower bound multipliers namely, m' and m®. The key
to the m-a method is to identify the multipliers m' and m°, and the m-a method achieves
this on the basis of two linear elastic finite element analyses It determines an improved
lower bound limit load compared to Mura’s limit load estimate. The m-a method has also
introduced the concept of leapfrogging to limit state based on two linear finite element
analyses. From these results, the limit load multipliers and hence the limit load can be
evaluated. For proper identification of these multipliers, it is necessary to identify the

kinematically active portion of the structure (termed as “‘reference volume”) that is
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involved in the plastic action [Seshadri and Mangalaramanan, 1997]. An iteration

variable ¢ is used such that the infinitesimal changes in the elastic modulus of elements
during second and subsequent analyses would reflect corresponding changes in A{ . Itis
ascertained that repeated analysis with modified modulus results in a decrease in stress

distribution. The flatter (or even) distribution of stress during subsequent analyses would
result in increase of m® with ¢ . But m® evaluated on the basis of total volume would

decrease with increasing ¢ Referring to Fig. 2.7, for reference volume Vg, such that
AV, <V, <V,, the multiplier m® is assumed to remain invariant with successive

iterations. The calculation of reference volume based on m® is shown in Fig.2.7. The

variation of m', m° with < is shown (Fig.2.8).

The method involves a secant modulus adjustment scheme similar to the r-node method.
Firstly, a linear elastic analysis is conducted and the elastic-modulus of appropnate

elements are modified using:

Tors (2.4.5)

) {(?TJ E,

where, E; and E; are the Young’s modulus in the first and second elastic analysis

respectively.(a'f ),‘ is the equivalent stress for any element number k and &, is an

arbitrary stress value.

If V is the volume of the component or structure,
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o, 7

. LA (2.4.6)

m
V Z:-l (U:, )2 AV,

and m?and m? can be determined for the two analyses. The average surfaces of

dissipation can be expressed as

(2.4.7)

where ¢; and ¢, are constants. In Eq. 2.4.6, ¥, <V <V, . The theorem of nesting surfaces

necessitates that m’ > m; > m, where m is the exact factor of safety.

In terms of iteration variable, Mura's lower bound muitiplier is given by:

[} 2
2m°()f, (2.4.8)

m = -
7+l
where, &*,(¢)=(c?),, is the maximum equivalent stress at iteration number i.

The quantities m', m’ and oy are all functions of iteration variable £ . With the use of

repeated analysis, the multiplier mg,, which implies the use of a elements in the finite
element discretization that would lead to identification of an appropriate reference

volume. The idea of leapfrogging of intermediate iterations is itlustrated in Fig. 2.9.
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2.4.6 Reference Stress Method

The reference stress method [Sim, 1968] is a useful simplified method since it attempts to

overcome some of complications of creep analysis.

By definition, reference stress can be called as a stress which is a function of stress
components that must reach the value of yield stress in simple tension (or compression)
for yielding to occur. The basic principle of reference stress method is that the
deformation of structures subjected to multiaxial creep can be related to the results of a

uniaxial creep test carried out at the reference stress, through a scaling factor.
Therefore, deflection ‘8 at a point in a structure at sometime ‘t’ is given by:
(1) = Eec(t) (2.4.9)

where, & is the geometric scaling factor depending on configuration of

structure and boundary conditions,

€(t) is the creep strain at time °t’ as obtained by uniaxial creep test

performed at the reference stress (o, ).

During creep analysis of beams, it is seen that stresses are redistributed from an initial
elastic distribution to the stationary state, and the stresses at particular locations in the
cross-section are invariant. The r-node method is based on this concept. Deflections of

rectangular beams based on this reference stress were found to be reasonably accurate.
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Anderson [Anderson, Gardner, and Hodgkins, 1963] observed that reference stress is

insensitive to exact creep exponent ‘m’ in the strain rate to stress relationship.
e~Bo”" (2.4.10)

But as m = a, limit solution to perfect plasticity would be approached, i.e., at limit load,
the reference stress would equal the yield stress. Using this as a basis, reference stress at

any other load is,

O, = (;f-’:)f.. 2.4.11)

where, p = Load on the structure and p/~ the limit load.
2.4.7 Elastic compensation method

The elastic compensation method (ECM) to evaluate limit loads methods [Mackenzie,
Shi and Boyle, 1992; Shi, Mackenzie, and Boyle, 1993] is based on the secant modulus

scheme similar to that of the GLOSS and r-node.

The elastic compensation method can be used to define lower or upper bound limit loads
for any structure modeled by continuum finite elements. A finite element model is
created and a nominal load set Py is applied. A linear elastic finite element analysis is

then performed and the linear elastic stress field is obtained. The process then involves
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iteration in a series of linear elastic analysis of the model. After each iteration, the elastic

modulus of each element in the model is modified according to the equation:

E <E, 2= (2.4.12)

G-1)
ti-1)

where, i is the present iteration number, 6, a nominal stress value and o;.;) the maximum

(unaveraged) nodal equivalent stress associated with the element from the previous

solution.

A typical plot of the maximum stress in the entire model against the iteration number
results in a graph of the form shown in (Fig. 2.10). Modifying the elastic modulus causes
redistribution of stresses between iterations. In some cases the maximum stress increases
between iterations. Generally, over a number of iterations, there is a net decrease in

maximum stress with respect to the initial solution.

The stress field obtained for each iteration meets the lower bound limit load theorem
requirement of statical admissibility. The maximum stress may or may not violate the
requirement that it should not exceed yield, depending on the magnitude of applied load
set Pg. The best value for lower bound limit load possible for a given stress distribution is
one in which the maximum stress equals yield. The value of the load to cause such stress
can thus be calculated by using proportionality. Thus, the lower bound limit load Py is

given by:
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P, }:,-f-"- (2.4.13)

where, Pyis the applied load set, f, is the yield stress and o is the lowest value of

maximum stress over successive iterations

Similarly, the results of the above procedure can be used to estimate the upper bound
limit load as well. Generally, the upper bound method is considered to give a very close

result when compared to the lower bound.
2.4.8 Summary of the Current Robust Methods

The methods discussed have many similarities. They involve conducting linear elastic
finite element analyses and projecting the value of limit load or inelastic evaluations,
using stresses at points. They all adopt secant modification schemes. The r-node method
is a simple and systematic method that estimates the limit loads with ease. The plot of the
r-node peaks in the structure could sometimes give a quick idea about the collapse
mechanism of the structure. The reference stress method helps us to overcome difficuities
faced in creep analysis and also leads to the ideas used in developing the r-node analysis.
Determining reference stress by itself is a difficult task. But this difficulty can be
overcome by evaluating limit loads using the r-node method and thereby evaluating the
reference stress. The ECM uses schemes similar to the r-node method but does not
require the identification of any special points. The m-a method has a better theoretical

basis but essentially predicts limit loads with similar accuracy.
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2.5 Differential equation of plates in cartesian co-ordinate system

The present thesis is concemed with robust estimates of limit loads for plate structures.
The basic plate theory for elastic analysis is well established. It is brefly reviewed

below.

2.5.1 General

The deflected shape of a plate is adequately defined by describing the geometry of its
middle surface, which is a surface that bisects the plate thickness at each point. The small
deflection plate theory, generally attributed to Kirchoff and Love is based on the

following assumptions:
1. The matenial of the plate is elastic, homogeneous and isotropic
2. The plate is initially flat

3. The thickness of the plate is small compared to its other dimensions. The smallest

lateral dimension is at least ten times larger than its thickness
4. The deflections are small compared to the plate thickness.

5. The slopes of the deflected middle surface are small compared to unity

31



6. The deformations are such that straight lines, initially normal to the middle surface,
remain straight lines normal to the middle surface (deformations due to transverse

shear will be neglected)

7. The deflection of the plate is produced by the displacement of points of the middle

surface normal to its initial plane

8. The stresses normal to the middle surface are of negligible order of magnitude.

Many of these assumptions are similar to the assumptions in elementary beam theory.
Small and large-scale tests have proved the validity of these assumptions. An additional

simplifying assumption is also introduced often:

9. The strains in the middle surface produced by in-plane forces can usually be

neglected in comparison with the strains due to bending (inextensional plate theory).

2.5.2 Co-ordinate System and Sign Conventions

For rectangular plates the Cartesian co-ordinate system is the most convenient. The
external and internal forces and the deflection components u, v, and w are considered
positive when they point towards the positive direction of the coordinate axes x, y, and z.
In general engineering practice, positive moments produce tenston in the fibers located at

the bottom part of the structure. This sign convention is maintained for plates.
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~Considcr an elemental parallelepiped cut out of the plate as shown in Fig. 2.11. Assign
positive internal forces and moments to the near faces. To satisfy equilibrium of the
element, negative internal forces and moments must act on its far sides. The first
subscript of the internal forces indicates the direction of the surface-normal pertinent to

the section on which the force or moment acts.
2.5.3 Equilibrium of the Plate Element

Assuming that the piate is subjected to lateral forces only, from six fundamental

equilibrium equations, the following three can be used:
YM, =0 M, =0, YP=0 2.5.1)

The behavior of the plate is in many respects analogous to that of a two-dimensional
gridwork of beams. The external load P, is carried by transverse shear forces Q. and Q,
and by bending moments M, and M,. The significant derivation from the
two-dimensional gridwork action of beams is the presence of the twisting moments My,
and My,. In the theory of plates it is customary to deal with internal forces and moments
per unit length of the middle surface. To distinguish these internal forces from the above

mentioned resultants, the notations qy, gy, my, My, My, and my, are introduced.

In order to sct up the differential equation of equilibrium, the following steps need to be

adopted:

1. Select a convenient co-ordinate system such as the one shown in Fig. 2.12
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Show all the external and internal forces acting on the element

3. Assign positive internal forces with increments to the near sides and negative internal

forces to the far sides
4. Express the increments by a truncated Taylor’s senes

5. Express equilibrium of internal and external forces acting on the element. This leads

to derivation of the following equation:

&ém_ _O'm, . &'m,
o’ &xdy o’

==-p.(x.y) (2.5.2)

2.5.4 Relation between Stress, Strain and displacements

The moments m, and m, produce stresses o, and o given by,

. T (£, +Vveg,) (2.5.3)

P (e, +ve,)) (2.5.4)

The twisting moments m,y and my, produce shear stresses r_, and r,, which are again

related to shear strain giving:

T, =Gr, =(_17)'717 =T, (2.5.5)



Strains and displacements are related by:

L
z

g =-z2%. (2.5.6)
o

PR @2.5.7)
a'v-

The curvature changes of the deflected middle surface are defined by:
‘w o’ -d'w
=-——, K, =——F,and y =—— 258
Kx .xz K\ ay. R.' &a}' ( )

Where, y represents the warping of the piate.

2.5.5 Internal Forces Expressed in Terms of ‘w’

The stress components o, and o, produce bending moments in the plate element. Thus.

by integration of the normal stress components, the bending moments acting on the plate

elements are obtained:

«(k’2) ~(h:2)

m, = ja',zdz and m = Ia'zdz (2.5.9

¥ ¥
-(h/2) —h’2)

Similarly, the twisting moments produced by shear stresses 7 =7, =7 _canbe

calculated from:
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«(h' ) (k' 2)
m, = Irn_zdz and m, = Ir,,:dz
-{k2) (&)

Since r=7,_ =r_, m_=m,
Substituting all the above equations and integrating finally leads to,

Eh? o’w o*w

= +
m (a“:2 vay2

T 21— )

= D(x, +vx,)

ER* 3w d'w
1 %4

G e

m =

' -IZ(I—V:)

where,

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

(2.5.15)
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represents the bending or flexural rigidity of the piate. Similarly twisting moments are

given by,

m,=m,= [ zd (2.5.16)

w o,
=-2G —cd: (2.5.17)
—(iIZ) ay
&*w
=—(1-v)D 2.5.18
(1-v) oy ( )
=D(l-v)y (2.5.19)

2.5.6 Governing Differential Equation of the Plate Subjected to Lateral Loads

Using the above equations, we can obtain a single goveming differential equation of

equlibrium:

4 2 2 4, y
o :vdax‘ay +6 ?:P;(X,)) (2.5.20)
ox ow oy D

Using the two-dimensional Laplacian operator:

DV'Viw=p,_ (2.5.21)
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The equation is a fourth-order, non-homogeneous, partial differential equation of the
elliptic type with constant coefficients, often called a non-homogeneous bi-harmonic
equation. The equation is linear since the derivatives of w do not have exponents higher

than one.
2.5.7 Differential Equation of Plates in Polar Co-ordinate System

Polar co-ordinate system becomes necessary when solving circular plate problems. This

can be derived by using co-ordinate transformation or considering the equilibrium of a

infinitesimally small element.

The co-ordinate transformation between the Cartesian and polar co-ordinates is:

x=rcosQ, y=rsing (2.5.22)

r=yxi+y’, @ =tan™ (1] (2.5.23)

x
The Laplace operator on terms of polar co-ordinates becomes,

. 97 1 & 10
Vr' =___+__'—1+—._ 2_5.24
or’* r’oe’ ror ( )

The Laplacian operator V? is replaced by V,*to give:

V.V lw= &%“-’l (2.5.25)
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Moment equations in polar co-ordinates:

m =—p| ZWf LOW 10w\ (2.5.26)
or- r-op° ror
m =—p Lo, LOw, Ow 2.5.27)
’ ror r’oe® or’
10w 1 ow
=m_ =-(1-v)p|1ZW _1ow 2.5.28
mlo mr. (l V) [" ara¢ r: a¢] ( )

These equations are solved using a variety of classical techniques such as the double
trigonometric series, etc. The results are tabulated for severai cases by several authors

[e.g., Timoshenko and Woinowsky-Krieger, 1989].

2.6 Yield Line Theory for Plates

Duning the 1950s and 60s, Johansen [1972] extended the ultimate load analysis of beam
and frame structures to reinforced concrete siabs and plates by introducing the concept of
yield lines, which are two-dimensional counterparts of plastic hinges. Instead of
calculating the shape of elastically deformed slab, the yield line considers lowest load
corresponding to a failure pattern to be the critical or ultimate load. When a laterally
loaded slab is on the verge of collapse, yield lines are formed at locations of the
maximum negative and positive moments. These yield lines divide the slab into plane

segments. Once the correct failure pattern is known, the critical load can be obtained

39



cither from virtual work or from equilibrium considerations. In either case, following are

the assumptions:

)

At impending collapse, yield lines are developed at the location of maximum

moments

The yield lines are straight lines (strictly speaking for distributed loads only. For point

loads, yield lines may be curved)

Along the yield lines, constant ultimate moments are developed

The elastic deformations within the slab segments are negligible compared to the

rigid body motions, created by the large deformations along the yield lines

There are many possible collapse mechanisms and only one, corresponding to the

lowest failure load governs. For this case, the yield line pattern is optimum

When yield lines are in the optimum position, only ultimate bending moments and no

twisting moments or transverse shear forces are present along yield lines

For one-way slabs and for smaller span lengths of two-way slabs, the location of

maximum positive moment from elastic analysis gives an idea about coilapse

Along fixed edges, negative yield lines develop
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9. Yield lines pass through the intersection of the axis of rotation of adjacent slab

segments
10. Lines of support generally serve as axes of rotation

11. Increased stiffness in the plate enhances development of yield lines, while flexibility

counteracts their formation

12. The failure of individual points is govemned by a rectangular yield criterion rather
than the hexagonal criterion of Tresca or the octahedral shear stress criterion of von

Mises.

It is generally assumed that the slab is isotropic. Although, initialty yield lines were used
to obtain ultimate loads of under-reinforced or pre-stressed slabs, the method gives
accurate estimates of over-reinforced or ductile metallic plates as well [Wood, 1965].
[Szilard, 1974] has shown that in most cases, yield line analysis may be used to estimate

ultimate loads of metallic plates.

Yield lines generally foliow the above rules. However there may be certain cases wherein
the optimum collapse mechanism follows a different yield pattern. Therefore in order to
assess the optimum failure mechanism, a trial and error procedure coupled with an
iterative technique is usually adopted. For the most common plate problems, yield lines

are readily available.
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Johansen's superposition theorem offers a simple method of finding the optimum yield

line pattern. The theorem states that:

The sum of ultimate moments for a series of loads is greater than, or equal to, the

ultimate moment for the sum of loads. Mathematically,

my+m,+m,+m, to.tmy+....m, 2mg, (2.6.1)

Where my is the ultimate moment corresponding to load pu, while my ,, is the ultimate

moment corresponding to the yield line pattern produced by the total of the loads:

Pu# Puz+ Pus *oooPun 2P (2.6.2)

2.7 Summary

In the present chapter, the basic concepts of plastic analysis and limit analysis of
structures have been reviewed. Existing robust methods for the obtaining limit loads
such as the r-node, elastic compensation, m,, and yield line methods have been briefly
explained. The classical differential equations of equilibrium for the elastic analysis of
plates are introduced. The next chapter will describe a robust technique based on secant
rigidity, scaled yield criteria and weighted averages of generalized forces along special

regions. The method is specifically applied to obtain limit loads of plates.
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Fig. 2.1 Failure Mechanism of a Propped Cantilever |Szilard, 1974)
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Fig. 2.6 Typical GLOSS Diagram [Seshadri and Fernando, 1992|
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Fig. 2.7 m, Method: Calculation of Reference Volume

[Seshadri and Mangalaramanan, 1997]
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Fig. 2.8 m, Method: Variation of m’, m* with Iterations

[Seshadri and Mangalaramanan, 1997]
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Safety Factor

Fig. 2.9 m; Method: Leapfrogging of iterations to near limit state

[Seshadri and Mangalaramanan, 1997]
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Fig.2.10 Elastic Compensation Method: Maximum Stress vs. [teration

[Mackenzie, Shi and Boyle, 1994}
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Chapter 3

Robust Estimation of Limit Loads using Secant Rigidity

3.1 Introduction

The previous chapter reviewed plastic analysis of structures and robust methods for limit
load determination. The present chapter describes an easy and efficient anaiytical
technique for obtaining estimates of limit loads. This technique is generally applicable to
any element type in conjunction with any yield criteria. It can be used with mesh
densities generally lower than those needed for other types of robust methods described
in Chapter 2. The method also provides the collapse mechanism of the structure
automatically. In the process, it does not make use of r-nodes (or skeletal points) in the
analysis. The results given by it can be shown to be at least equal to or better than those
given by the r-node method. The general procedure and the rationale are orginally

described by Adluri [2001a and 1999].

There are several types of non-linearity including material non-linearity, geometric non-
linearity, etc. The present thesis deals with the material non-linearity aspects of limit load
estimation and assumes elastic-perfectly plastic material behaviour. The procedure can
be extended to any other matenial behaviour with ease. From the study of plastic analysis

and existing robust methods, one can ascertain the following:
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1.

Plastic hinges or yield lines develop along yielded zones of the structure. For a very
simple determinate structure, one plastic hinge is sufficient to initiate collapse. For an
indeterminate structure, the degree of indeterminacy decides the number of plastic
hinges. For continuous problems in 2D or 3D, yield lines and other yield patterns

decide collapse mechanism.

When yielding occurs in a structure, the yielded region cannot sustain any additional
loads. Hence, any additional load is taken by portions of structure surrounding the
yielded region. In other words, redistribution of stresses is necessary to allow more

loads to be carried by the structure after first yield.

Since the yielded region cannot carry any more loads, the secant stiffness of the
yielded part of the structure is relatively lower compared to other parts of the

structure.

Stresses may be classified into primary and secondary stresses. Primary stresses are
those which are not self-limiting. In many structures, stresses at certain points will not
be required to redistribute with increasing load. These points are called as
equilibrium or load controlled points. For example, consider a simple bar fixed at one
end, as shown in Fig 3.1a. When a load P is applied at one end, it causes stresses at
various points in the structure. As long as the load is constant, the stresses in the
structure remain constant. This is necessary to satisfy the equilibrium condition, i.e.,
the externally applied loads must be in equilibrium with the intemnally produced

stresses. There is no redistribution or relaxation by inelastic deformation. The
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structural response is equilibrium controlled or load controlled. When the stresses
reach yield, collapse of the structure sets in. The stress at these points is called

primary stress. Because these stresses will not be redistributed, they are called as

“non-self- limiting.”

. Secondary stresses on the other hand are developed because of the influence of
adjacent parts (self-constraint of the structure). These stresses are limited to a certain
value, usually the yield stress. They can go beyond the yield stress in an elastic
analysis. Since that violates the material law (for an elasticperfectly plastic matenial),
these stresses redistribute themselves. For example, consider deformation applied to
the free end of the bar. Let the deformation ‘6* be constant as shown in Fig. 3.1b. In
this case, deformation and hence the strain remains constant. Because of the nature of
the material and the constraint, the stresses calculated in an elastic analysis will not be
correct for some deformations. The stresses will be “self-limited” to the yield stress.

They are also called as deformation controlied stresses.

. If the state of redistribution has to be simulated by adopting elastic analysis, the
stiffness of yielded regions has to be reduced relative to that of the surrounding
regions. Altematively, stiffness of the surrounding regions can be increased, so as to

cause redistribution.
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7. Reducing stresses evervwhere in the structure below yield provides a statically
admissible stress field. Hence, modulus reduction generally yields a lower bound

limit load, provided stresses are everywhere below yield.

8. In r-node method, the modified Young’s modulus is inversely proportional to the von
Mises equivalent stress produced in the first elastic analysis. Only two analyses are

carmied out.

9. In elastic compensation method, the modified modulus is inversely proportional to the
maximum (unaveraged) nodal equivalent stress associated with the element from the
previous solution. Several analyses might be camed out to obtain a stationary value
for the maximum stress in the structure. The softening of modulus of highly stressed
zones after conducting an elastic analysis followed by repeated analyses can simulate
failure in a structure. This 1s the basic procedure adopted by all the existing robust

methods.

10. There may be several peaks for the maximum equivalent stress in the structure.

However, at collapse all these peaks are theoretically equal to the yield stress.

11. At collapse, structures become determinate.

This and other information was used by Adluni [1999 & 2001a, b] to propose that
modified equivalent secant rigidity be used instead of equivalent material modulus. Use

of material modulus implies stress level modifications. This requires modifying the
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modulus whenever the stress changes across the finite element mesh. For beam and plate
type structures, this would mean that the modulus needs to be changed at all relevant
points through the depth or thickness. If rigidity is used instead, through the thickness
maodification is eliminated. It has been shown theoretically by Adlun [1999, 2001b] that
this eliminates the need for the use of r-nodes. In fact, if secant rigidity is used, r-nodes
cannot be identified since they depend on ‘through the thickness’ variation of stresses
only. The analyses and softening of rigidity are repeated to achieve convergence. After
convergence, a weighted average of values at yield line points is computed. This value is
scaled up to obtain the limit load. It has been shown that this method is theoretically
equivalent to the r-node method after the first two analyses. It is also theoretically
equivalent to the elastic compensation method, if peak stress is used instead of weighted
average maxima. The method is very close to the m, method if weighted average is
taken as the integral mean. The method is quite efficient in the sense that the mesh
densities required are lower and special integration through the thickness is not needed.
The problems associated with the use of peak stress and other numerical difficulties are

avoided.

The present study applies this method for the determination of limit loads of plate
structures. It will be shown that a plot of the equivalent moments after the converged
analysis using modified rigidity represents the collapse mechanism for the structure. In
order to implement this concept to obtain limit load, an appropriate yield criterion such as

Tresca or von Mises has to be chosen.
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3.2 Yield Criteria

As mentioned previously, the present chapter describes an analytical procedure for the
estimation of limit loads of structures. The procedure is outlined by Adluri [200]a,
2001b] and Bolar & Adluri [2001). In general, this procedure can be used with any yield
criteria applicable for any type of element. In this thesis, this is applied to plate type
problems using plate and shell elements. In order to apply the method, the yield criteria
in terms of stresses need to be redefined in terms of plate (or shell) level generalized
forces. This allows the direct use of the generalized force output from the particular
elements chosen. In the following sections this is done for the commonly used yield

criteria, namely, Tresca and von Mises.

The general state of stress at a point in a continuum is shown in Fig. 3.2. Cauchy’s
formula states that the eighteen components of stress, as shown in the figure are sufficient
to represent traction across any surface of a continuum. In tensonal notation, this is

represented as,

T =oc.v. 3.2.1)

i L/ ]

where,  T.'is the traction along direction i,

o, is the stress in the direction of i on the plane whose normal is along



v, are the direction cosines of the traction forces with respect to the

reference axes of the stresses.

The equilibrium of forces in each of the co-ordinate directions furnishes three differential

equations of equilibrium represented as:

oo

2+B,=0 (3.2.2)

g
where, B is the body forces in the direction ;
Moment equilibrium around the coordinate axes leads to the symmetry of shear stresses,

c,=0,. j#i (3.2.3)

Consider an elementary tetrahedron such that the plane ABC is infinitely close to the
origin O (Fig. 3.3). The direction cosines of outward normal to ABC are represented by /,
m, and n. Let T, T,, and T: denote the components of the stress vector acting on this

face. From equilibrium considerations (Cauchy’s formula),

T,=c, l+t m+r_n
T =t l+0, m+r _n (3.24)

T =t i+t m+o_n

For different planes considered, different sets of stress vectors are obtained. However,

there are three cases wherein the shear stresses (7) are zero. These are the principal
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stresses and the directions in which they act are called the principal directions. They are

denoted as, 7,,0,,anda, In such a case, the traction vector is collinear with the normal

vector of the plane.
3.2.1 Evaluation of Principal Stresses

We can find the principal stresses 7,,0,,ando, by applying Cauchy’s formula. This

results in a cubic equation:
T c. -0 T, =0 (3.2.5)

The three roots of the equation are the principal stresses.

Consider a material subjected to direct stresses and shear stresses in 2-D. The stresses
may be the result of direct forces and bending. These stresses are shown in the Fig. 3.4.

The principal stresses for this case can be evaluated as,

(dx +6v) dx —6\' : 2
., =—2—'—i 3 —| +7, (3.2.6)

tan 2@ = —2 (3.2.7)
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The maximum and minimum shear stresses are given by:

o.x -a_l' i 2
r_y_ziJ[ 3 J +7, (3.2.8)

Thus the maximum and minimum shear stress differs only in sign. And these two

roots locate planes 90° apant. Hence, numerical values of shear stresses on the mutually
perpendicular planes are the same. From the physical point of view, these signs have not
meaning and the maximum shear stress regardless of sign is called the maximum shear

stress.

3.2.2 Mohr’s Circle

The state of stress for a two dimensional system shown in Fig. 3.4 can aiso be represented
in the form of the well known Mohr’s circle (Fig. 3.5). On a graph with axes o and r,
locate points A (&, -7,) and B (o5, 7). Join AB and locate center of line AB as C. With
C as center and radius as CA, draw a circle cutting the o axis at D and E. Principal planes
are those planes on which shear stresses are zero. Hence, the two points E and D located
on the o axis give the maximum and minimum principal stresses, respectively. The
co-ordinates of the points D and E and angle a, when calculated from this plot of Mohr’s

circle, give Eqs. 3.2.6 and 3.2.7
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3.2.3 Tresca Yield Criterion:

Tresca’s failure criterion states that if the maximum shear stress at any point is equal to
the shear stress at yield, the material is deemed to have failed. Thus whenever a critical
value r__, is reached, yielding in an element commences. For a given material, this value
is set equal to the shearing stress at yield in simple compression and tension. Hence,

according to Eq.3.2.8,if o, =t0, =toc#0 and o, =7, =0, then

(3.2.9)

N|:‘\

~
Il

|
"

This conclusion also follows from the Mohr’s circle of stress. To apply the maximum
shear stress criterion to a biaxial state of stress, the maximum shearing stress is

determined and equated to 7., given by equation 3.2.9. In doing so, for the principal
stresses o,anda,,witho, =0, two cases must be considered. If o, >0,, according to
Equation 3.2.9, o, must not exceed f;. Similarly if o, >0,, &, must not be greater than

o, Therefore the criterion for this case becomes,
lo\|so andlo,|<s0o, (3.2.10)

If the signs of o, and o, are opposite, the maximum shearing stress,
T = "a',l't-lcr2 |]l 2. The planes of these stresses correspond to possible slip planes. As

before, to obtain the yield criterion, tm., must not exceed the maximum shearing stress at

yield in uniaxial experiment. Expressed mathematically,



or, for impending yield,

G % _4 (3:2.11)

o-” a}‘P

Eq. 3.2.11 can be plotted as shown in Fig. 3.6. Its results have relevance only in the
second and fourth quadrants. In the first and third quadrants, the critenion expressed by

Eq. 3.2.10 applies.

By considering o, and &, as the coordinates of a point, the stresses falling within
the hexagon of Fig. 3.6 indicate that no yielding of the material has occurred and that the
material behaves elasticaliy. The state of stress corresponding to the points falling on the

hexagon shows that the matenal is yielding. No points can lie outside the hexagon.

For a multiaxial state of stress with principal stresses, o,,0,,andc, , the magnitude

Ial—all l0'1~0',| Ias-axl.

L}

of the maximum shearing stress is the largest of

2 202
o, -0, =%f,
o, -0, =%f, (3.2.12)
oy~ =%f,
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When one of the principal stress vanishes, say 6;=0, then the yield surface is represented

by a hexagon with yield condition (Fig. 3.6) as discussed before, the criterion becomes,

Max [|a1||oz]lo1-020] = f; (3.2.13)

which represents equations 3.2.10 and 3.2.11.

3.2.4 von Mises Yield Criterion:

A more appropriate yield condition for metals considering the fact that voiumetric strain
does not contribute to failure is the von Mises criterion. In this approach, the total elastic
energy is divided into two parts: one associated with the volumetric changes of the
material and other causing shear distortions. By equating the shear distortion energy at
yield point in simple tension to that under combined stress, the yield criterion for

combined stress is established.

In order to derive the expression giving the yield condition for combined stress, the
procedure of resolving the general state of stress must be employed. This is based on the
concept of superposition. For example, it is possible to consider the stress tensor of the

three principal stresses 4,,0,,ando, to consist of two additive component tensors. The

elements of one component tensor are defined as the mean hydrostatic stress

(3.2.14)



The elements of the other tensor are (a', -;). (a', -;), and (c'rJ —;).

Writing this in matrix representation,

o, 0 0) (¢ 0 0) (0,-0 0 0
0 0, 0|={0 ¢ O0|+| 0 a,-0 O (3.2.15)
0 0 o, 0 0 o 0 0 o,-0

The first tensor component of Eq. 3.2.15 is called spherical or dilational (hydrostatic)
stress tensor (represents change in volume). The last tensor of Eq. 3.2.15 is called

deviatoric or distortional stress tensor (represents change in shape).

The next step in deriving the von Mises yield criterion is to find the strain energy due to
distortion. This is given by,
U, = —1—( ;+0. +0! )—%(cr,ay +0,0,+0.0, )+ é(’i 4T, + t:,) (3.2.16)

° 2E

In terms of principal stresses, i.e with 7, =7 =7, =0, the strain energy per unit

volume is,

1
Uy = E(a-f +0! +0! )—%(a,cr2 +0,0,+0,0,) (3.2.17)
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The strain energy per unit volume due to hydrostatic stress can be determined from the
above equation by first setting o,=0,=0,=p and then replacing p by

(0, +0,+0,)/3 Thus,

[
=
|
[
<
N
.o

1-2v
P Tl =—55—(0.+02+63)’ (3.2.18)

Subtracting Eq.3.2.18 from Eq.3.2.17, simplifying and using G=E/2(1+v), the
distortion of strain energy for combined stress is given by,

] 2 2
U istorsarion =EE((G' —Gz)_ +(°'z "“-73) "’(0'3 “‘-71)2) 3.2.19)

According to the basic assumption of distortion energy theory, Eq. 3.2.19 must be
equated to the maximum distortion energy in simple tension. The latter condition occurs
when one of the principal stresses reaches the yield point £, of the material. The distortion
energy for this is 2j;2/ 12G. Equating this to Eq.3.2.19, after minor simplifications, one

obtains the basic law for ideally plastic material:

(6,-0,) +(,-0,f +(0,-0,) =207, (3.2.20)
This can be written as,
o +0; +0, -0,0,-0.0,-0,0,= f (3.2.21)
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For the case of plane stress o, =0, this reduces to equation of an ellipse (Fig. 3.7) with

the equation,
al+0;-0,0,=f! (3.2.22)

Any stress falling within the ellipse indicates that the material behaves elastically. Points
on the ellipse indicate that the material is yielding. It is important to note that this theory
does not predict changes in material response, when hydrostatic tensiie or compressive
stresses are added. This can be seen from Eq.3.2.20, adding a constant stress to each of
the stresses does not alter the yield condition. For this reason, in a three dimensional

stress space, the yield surface becomes a cylinder with an axis having all three direction

cosines equal to l/ V3.
For a uniaxial state of stress with 6,=0, 6,=0, and 5,=0. Eq. 3.2.11 becomes,
o’ +3c° = f} (3.2.23)

Therefore, in pure shear, yield stress is,

T, = % (3.2.24)
In terms of actual stresses, the von Mises yield surface is given by,
0, +0,+0,-0,0,-0,0,-0.0,+3t} +31, +3t] = [} (3.2.25)
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3.2.5 Principal Moments:

Consider a plate under bending. The state of general bending in a plate element is shown
in Fig. 2.4 (Ch.2). Stresses are produced as a result of applied loads. They vary through
the thickness at any given location. These can be integrated over the thickness of the

plate to obtain the bending moments about different directions.

+(h/2) +(h/2}
M,= [o2dz and M, = [0z (3.2:26)

~{k/2) -(h'2)

Similarly, the twisting moments produced by shear stresses =17, =7 canbe

calculated from:
+(h/2) +(h/2)}
M,= [r,2dz and M, = [r, 2z (3:2.27)
—{k/2) —(k/2}

Since t=t, =71,, M_ =M

LA x

Similar to principal stresses, principal moments can be defined as, moments M, and M,
on those planes where M,,=0. As in the case of principal stresses, Mohr’s circle can be

used as shown in Fig. 3.8. These are given by [Jaeger, 1964],

m -(M'+M’)¢ M.+ M, 2+M : 3228
12 = 2 2 3% (" a)

where,  M,, M, and M,, are the plate bending moments as shown in Fig. 2.4
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m, and m; are the maximum and minimum principal moments respectively

The inclination of the principal plane is given by,

an2e, =M= (3.2.28b)

where, 6, is the angle of the principal plane on the element.

3.2.6 Yield Criteria in Terms of Moments:

In bending of plates, the combined effect of all forces is collectively represented as
‘generalized’ stresses and the corresponding strains as ‘generalized’ strains. These
generalized stresses are usually the moment resultant M,, M, and M, (for rectangular
coordinates) or Mg M,, and M,4 (in polar coordinates). Since plane sections remain
plane, the simplest case occurs when there is no resultant axial strain. For this case, the
stresses at failure of the plate section reach the constant value o, on either side of the

neutral axis as shown in Fig. 3.9.

If a single moment is present in the plate, the state of stress when yielding has propagated
through the entire thickness is similar to that for a beam as shown in Fig. 2.1 (Ch.2) and
Fig. 3.9. The moment per unit length of the plate for this state of stress can be computed
by integration through the thickness. This moment is called as the plastic moment

capacity M,
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(3.2.29)

X

[

o
&~

where,  f, is the yield stress and 1 is the thickness of the plate.

If more than one moment component is present in the plate section, we need to use a
compound yield criterion. When the fiber yield is governed by a failure criterion such as
Tresca or von Mises, the failure of the overall section can be computed in terms of
generalized stress moments. By integration, we can express any such stress level yield
criterion in terms of resultant generalized forces. For example, the Tresca criterion (Eq.

3.2.10) can be integrated through the thickness as,
/2 /2
[ fmaxtobloz o - ool = [ 7, bz [, s (3.2.30)

or,

max{ : o ez, I::z lo; ledz, ‘[:/22 oy -0, I:dz} = £/2 (-1, bz + I,z (r, e

/2

]

I~
> |~

Using, m, = ]'a,zd:, my = }azzdz and M, = fw(-f_‘_)zdz,, I’zuv)zd;=z]'f\.zdz=[,,%,
L ! } o

max{m | o | o, — o |}= M, (3.2.31a)

Letting A, = max{m,|.|m;},|m, - m, |}, (3.2.31b)
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P (3.2.32)

where, ¢ is the thickness of the plate

z is the distance on the stress diagram at which a small strip d- is

considered (Fig.3.9)

M., is the equivalent moment for Tresca yield criterion,
m,; and m; are the principal moments, and

M, is the plastic moment capacity.

Similarly, for von Mises criterion,

2

Using m, = |ozdz=0,!/; . m, =

_zdz=a':'%and M, =f).’%

I.JI~|—-.“.‘
._.l.a|~
q
¥

{
3

in Eq.3.2.22, we get

M, =ym>+m:-mm, < M, (3.2.33)

where, M, is the equivalent moment from von Mises yield criterion
m; and m; are the principal moments

M, is the plastic moment capacity
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The yield locus is shown by an ellipse for von Mises in Fig. 3.10. Tresca yield locus is

shown as the inscribed hexagon. The parallel flat portions AB. AF represent sagging

moments and DC, DE are for hogging moments. The difference lm, —m,| is represented

by the line EF, assuming m, to be positive and m; to be negative. A similar case of

|m, — m,| occurs for line BC.

The yield criterion in Eq.3.2.31 or 3.2.33 are scaled versions of true M for the

respective yield criterions.

3.3 Secant Rigidity
Secant rigidity may be defined as the value of flexural nigidity obtained from a secant

drawn between the origin and any point of the moment-curvature diagram (Fig.3.11).

A pseudo-elastic analysis would be represented by line OA with initial flexural ngidity
D,. If the cross-section under consideration is fully load controlled (determinate), initial
elastic analysis would exhibit subsequent behavior shown by the horizontal line through
point A. If the cross-section is displacement controlled, then subsequent behavior is
shown by the downward line AC. A true secant line joins the origin to the actual
moment-rotation point. In the absence of accurate determination of that point, we can
make an approximate guess and iteratively improve the guess. The simplest guess would
be to use the slope of line OC. This is also the safest. This will require the maximum
amount of iterations to converge. This is the secant slope used by the r-node, ECM and

m, methods. For stress level criteria, using elastic-perfectly plastic material,
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E =-fL£ 3.3.1)

D, =—£D, (3.3.2)

Subject to certain conditions, other slopes are possible [ Adluri, 2001b], for example,

M, \ M2
D, =[ £ ] D, or D, =——2—D, (3.3.3)
Me My +M,

Since the actual yield curve (or moment-curvature relationship) will not be applicable for
an arbitrary load on the structure, we scale the yield criteria [Adluri, 2001a, b] to induce
failure at any given load level. This can be done by replacing the M; in Egs. 3.3.2 and
3.3.3 by any other suitable value. In the present work, it is chosen as the absolute
maximum equivalent moment in the entire field. Using this value will ensure that the

secant rigidity estimate will not be too small and cause numerical problems.

Using this process, we modify the secant rigidity of all points whether they lie above or
below the scaled yield criterion. This gives us an image of the relative stiffness of all the
clements in the plate with respect to each other. Also, the collapse mechanism is
dependent on the relative stiffness and not on the absolute values of the stiffness. This is
because whatever is the value of stiffness at a given part of a structure, the formation of

collapse is dictated by the stiffness of the surrounding parts as well since these contribute
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1o the formation of collapse. Hence the relative values of stiffness plays a role in reaching

a collapse mechanism.
3.4 Limit load estimation

When the plate structure is loaded with a small amount of load, it bends elastically.
When the load is increased gradually in a proportional manner, the maximum stress in the
plate reaches yield. Any further increase in the load results in plasticity and local loss of
rigidity. This could be simulated by a reduction of secant rigidity in the plastic zones or
an increase in the elastic zone. A combination of these two can also be used. Various
schemes for such an adjustment are possible. The simplest scheme is proportionate
adjustment. As mentioned above, this is a most conservative adjustment for structures
that do not exhibit “sudden stiffening” [Adluri, 2001b]. The proportionate adjustment is
applied uniformly across the structure and hence does not nced to identify the

demarcation between plastic and elastic zones.

1
D _ 4.
mIMqDold (341)

where, D is the rigidity and M,, is the equivalent generalized force.

The proportionality constant can be taken arbitrarily. This scheme adjusts the relative
rigidities across the plate structure. Regions that are prone to yield will attract more
forces in an elastic analysis. These will be made softer (i.e., provide lesser rigidity) using

the procedure. Similarly, the regions that will remain elastic need to attract the
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redistributed forces away from the highly stressed zones. These regions will be made
stiffer (i.e., provide more rigidity) by the procedure. Although it is possible that in a
complicated structure the redistribution does not happen proportionally to initial
rigidities, this procedure comes close to reality by adopting rigidity modification during

repeat analyses.

When the rigidity is adjusted iteratively using the above scheme, the redistribution of
forces is simulated. When the iteration converges, the locations that contribute to the
collapse mechanism of the structure emerge clearly. In a plate, this results in the clear
identification of yield lines. The equivalent moments at all the points on these simulated
yield lines will be equal to each other at collapse. Due to numerical and other difficulties,
the equivalent moment at these points may not be equal [Adluri, 2001a, b]. However,
using this data, we can obtain a representative equivalent moment for all the yield lines.
Again, several schemes are possible for obtaining this value. In case of simple structures,
selection of even the maximum equivalent moment can be adopted if complete yielding
has taken place and provided it is not a point of numerical error. Another method would
be to use a weighted average. The simplest weighted average is to assign equal weights
to all the points and obtain a simple average of all the equivalent moments on the
identified yield lines. It must be noted, that the r-node method does not obtain the average
of all the equivalent stresses along the yield lines. In contrast, the elastic compensation
method uses only the maximum stress in the entire plate for further calculations. Using
the weighted average along the yield lines is quite similar to using the integral mean in

the m, method.
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The representative equivalent moment for all the yield lines obtained as a weighted

average M,,.,, is used to obtain the collapse load. Since the analysis has been elastic

(with the use of secant stiffness), the load can be changed proportionately without the
need for reanalysis. The load at which the collapse occurs is the load that raises the value

of M to that of the plastic moment capacity Mp.

eq-av

M
P, = P2t (3.4.2)

eq-av
where, P, is the limit load of the structure and
P is the load applied during the analysis.

The above discussion is summarized in the following procedure for limit load estimation

as outlined in Adluri [1999, 2001a, b] and Bolar and Adluri [2001]:

1. Choose an appropriate failure criterion for the plate problem. For example, Tresca
type moment level yield criterion is routinely used for concrete plates. For normal
bending of plates, as per Tresca, the plate section is considered to have failed when
the maximum principal moment is equal to plastic moment capacity (or moment of

resistance).

2. Create a finite element mesh with plate or shell elements (no need for solid elements).
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3. Apply a loading, w(x,y) to the plate such that w is proportional to the intended
loading pattern. The load intensity can be arbitrary. The objective of the analysis is
to obtain the proportionality factor for this pattern that would result in collapse of the

plate structure.

4. Perform a linear elastic analysis of the plate with the original properties and rigidiues

using the finite element mesh.

5. Compute the principal moments M, and M; using Eq. 3.2.18a for each element (or

node). Fingd equivalent moment M,, using Eqs. 3.2.31 or 3.2.33 as appropriate. At

collapse,

M, (3.43)

6. Use the results to modify the local nigidity D¢x,)) in the inverse proportion of

equivalent moment at the point using,

Do (x, y)=‘%"—’ Dy (x.y) (3.4.4)

where, M, is an arbitrarily chosen scaling factor for local failure through hinge
formation (as well as for non-dimensionalization). It is recommended that this be the
global maximum for the entire plate. Choosing the global maximum would avoid
certain numerical difficulties. The factor a is kept as 1.0 for linear or proportional

modification of rigidity. It can be chosen as less than 1.0 if slower convergence is
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required in order to better represent the redistribution mechanism. If the problem
behaviour is well understood, the value of a can be taken as greater than 1.0 to speed
up the convergence greatly [Adluri, 1999, 2001b}. The rigidity can be changed by
modifying Young’s modulus, thickness or any other matenal or geometric property or

combination of properties.

. Repeat steps 4 to 6 above with modified properties till convergence is achieved.
Usually, it takes between 4 and 15 iterations. Note that the r-node method uses only
two analyses to project the limit load. However, for complex geometry including
plates with fixed comers, etc., identifying the r-nodes involves considerable
judgement. It can be theoretically shown that the present method predicts exactly the
same results as the r-node method at the end of two analyses -provided that the
average maxima for the yield lines is estimated instead of the weighted average of all

the values along all yield lines.

. For convergence, the percentage change between successive iterations is calculated

for each element as:

Percentage Change = [100 x (1 - -—h%"—"—) (3.4.5)

eqmm i+l

The mean of the percentage change of values for all the elements is then calculated.

This is repeated for successive iterations and the values obtained are compared.
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10.

Convergence of these values of mean percentage change would indicate convergence

of limit load values.

A plot of the equivalent moment after converged analysis will show the scaled
moment distribution similar to yield lines at collapse. The yield lines are obtained as
ridge lines in this plot. They can also be obtained using optimization techniques to
find local maxima in one direction (as opposed to a local peak that is obtained as a
stationary point by searching in two perpendicular directions). Find a simple or
weighted average of equivalent moments along these ‘yield’ or ridge lines

(Meg-average)- This average is used to scale the applied load and obtain limit load

using,
M,
Wiy = Wb (3.4.6)
- M oq-average
If the weighted average is difficult to compute, a simple maximum of M., across the

plate can also be used. However, it must be ensured that the search for maximum

does not pick up a localized numerical spike as a result of FEA discretization.

3.5 Modified Secant Rigidity Method vs. R-Node & Elastic

Compensation Methods

There are several similarities and differences between the present method and the well

established r-node method and the elastic compensation method. Some of these are

briefly outlined in the Table below:
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Table 3.1: Comparison of Secant Rigidity, R-none and Elastic Compensation
methods

R

Secant rigidity method

R-node & Elastic compensation methods

Redistribution is caused by modifying
secant rigidity which effectively means
modification of any geometric or material
property at local level.

ll?.edisu'ibution is caused by modifying

Elastic modulus.

Any clement type can be easily adopted for
the analysis. Shell/plate elements are used
for the present analyses. There is no need
for discretization along thickness.

For r-node method, solid elements are
needed to cffect stress level modifications
to modulii. Number of elements required is
high. ECM can use higher level elements
but needs more computation in estimating

equivalent properties through integration. |

Any yield criterion can be adopted.

Use of r-node method has not been shown
for different yield criteria. It can perhaps
be extended.

A plot of equivalent moments after
converged analysis clearly shows the
collapse mechanism for the structure. It is
necessary to obtain the collapse load.

Collapse mechanism is not used for limit
load.

Limit load is calculated by determining
average value of equivaient moment along
all yield lines.

The global maximum stress value is used in
ECM. Average of stationary values of
stress is used for r-node.

3.6 Plate Problems

The thickness of the plates analyzed in this thesis is small when compared to the lateral

dimensions. The normal stress in the plate through the thickness is negligible depending

on whether it is a thick or a thin plate. For a thin plate, the shear stress developed

through the thickness can also be neglected. However in case of thick plates, the effect of

shear deformation is important and needs to be considered in the analysis (e.g., Mindlin’s

theory). The present thesis deals only with the analysis of thin plates and hence assumes

that shear is neglected. If the shear stresses need to be accounted for, an appropriate
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failure criteria can be used in lieu of the Tresca or von Mises criteria that have been used

in the thesis.

As already mentioned, the analysis is for material nonlinearity only. Large deflections
caused by geometric nonlinearity are not included in the study. The effect of
deformations will not be significant for the collapse of plates analyzed here. It could
however, be considerable for other types of problems. The method could potentially be

extended to include these effects.

3.7 Finite Element Analysis Scheme

Details of finite element mesh for individual problems are discussed in Chapter 4.

General details of the analysis are given below:

For all the analyses in this thesis, ANSYS FEA software has been used [ANSYS, 1997a,
b, c]. Adluri [2001b] has used ABAQUS software to carry out a couple of plate problems
to see the effectiveness of this method. ANSYS Shell element was chosen for the
analysis. Depending on the type of analysis and accuracy required, four node (Shell 63)
or eight node elements (Shell 93) were used. They have been chosen since they are well
suited for linear analysis of thin to moderately thick shell structures. In the case of non-
linear analysis, Shell 143 element with additional capabilities to do non-linear analysis

was chosen. The elements have six degrees of freedom at each node.
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The procedure outlined in 3.4 above was implemented for plates using ANSYS finite
element software. A subroutine was developed for automatic processing of the data after

each iteration. The analysis consisted of the following steps:

1) Conduct a linear elastic finite element analysis and output the moments M,, M,,

and M,y using the ETABLE option of ANSYS.

2) Compute equivalent moments and new rigidity for each element using the APDL
(Ansys parametric design language) macro of ANSYS (see Appendix I for

listings).

3) The ngidity of each element is input via a separate file named ‘MODVALI’

created by the macro.
4) The problem is analyzed iteratively till convergence.

5) The values of equivalent moments for all the repeated analysis were stored in a
separate file called ‘results’ for plotting and calculation of limit load and

convergence, using a spread sheet (‘Excel’ or ‘Surfer32’).

6) Details of individual analyses are discussed in the next chapter.
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Chapter 4

Limit Analysis of Plates with Regular Shapes

4.1 Introduction

A robust method for the estimation of limit loads has been described in Chapter 3. The
method uses secant rigidity modifications using a scaled version of appropriate yield
criteria {Adluri, 2001a, b]. In this chapter, this method is employed to obtain limit load

estimates for plates with simple geometry and loading.

For each of the cases analyzed, the initial elastic analysis results have been compared
with the theoretical results available in standard references [e.g., Timoshenko &
Woyinowsky-Kreiger, 1989, Szilard, 1974]. All the cases showed very good correlation
indicating thereby that the finite element mesh used is acceptable. Details of subsequent

analyses and calculation of limit loads are described in the following sections.
4.2 Simply Supported Square Plate with UDL

A 1000x1000x10mm plate was chosen for the analysis. A uniform pressure (UDL) of 10
N/mm’ is applied on the plate. The load intensity is arbitrary. The material has a yield

stress of 350 MPa and Young's modulus of 200,000 MPa.
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ANSYS Shell 63 element, which is suitable for linear elastic finite element analysis, was
chosen. The thickness of the plate is such that it can be categorized as a thin shell
probiem [Young, 1989]. The FEA model for the analysis consists of a mesh grid of
40x40 forming 1600 elements and 1681 nodes (Fig. 4.1). Since shell elements are being
used, there is no need for discretization along the thickness. The pressure load is applied
in the z-direction, i.e., perpendicular to the surface of the plate. Full model was chosen
for the piate in order to demonstrate the formation of yield lines clearly. A quarter model
can be used with equal effectiveness. For the present problem, the quarter model would

need 400 elements to give the same accuracy as that for the full model.

4.2.1 Yield Criteria in Flexure

As per the Tresca yield critena of bending moments, when the numerically greater of the
principal moments reaches M,, failure is considered to have occurred (see Chapter 3).
The directions of the principal curvature rates are considered to coincide with the
curvatures of principal moments. The idealized moment-curvature relationship is shown

in Fig. 4.2.

If we consider the simplest case of a square slab on four supports with a uniformly
distributed load, with degree of fixity varying from =0 for simply supported to i=1.0 for
fully restrained on all four sides, the failure mechanisms are as shown in Fig. 4.3 [Nawy,
2000; Sobotka, 1989, Wood, 1965]. In case of the simply supported plate (Fig. 4.3a), the

twisting moments are zero along the diagonal lines. Hence, the moments along these



lines are principal moments. For simple bending under UDL, both the principal moments

have the same sign and hence, the |m, -m,| condition will not govern. Therefore, the

Tresca hexagon and the square yield criterion of Johansen [1972] are identical. It can be
shown theoretically that for this case the yield lines occur along the diagonals alone. In
case of a slab fully fixed along edges, failure occurs not only along diagonals, but also
along the fixed edges (Fig. 4.3c). The failure mechanism involves the formation of yield
fans near the comers [MacGregor, and Bartlett, 2000; Nawy, 2000]. For a partially

restrained slab, the failure mechanism is as shown in Fig. 4.3b.

In all the plate cases solved in the present thesis, the governing parameters have been |m,|
and |m,|. This is because both these moments happen to be of the same sense. i.e., either
hogging or sagging in respective directions. Hence, for Tresca criterion |m,| or |m,|

would always be greater than.|m, —m,|

However, in case of problems where opposite sense of moments occur (such as m, being

and

sagging and m; being hogging), the govering parameter would be |m, —(-m, )

should therefore be included in the analysis.
4.2.2 Limit Load

For the problem under consideration, a check on the first elastic analysis was initially

cammied out. At the center of the square plate, My= M, = 477699 N-mm. The
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theoretical value is given by [Table 6 & 7 in ., Timoshenko & Woyinowsky-Kreiger,

1989,]:

M_, =0.0479ga’ (4.2.1)

The error of the FEA result as compared to the above theoretical value was 0.27%. The
equivalent moment distribution after first analysis (Figs. 4.4and 4.6) calculated using
Egs. 3.2.21 or 3.2.23 shows regions of low and high magnitudes of moments along the
potential yield lines as well as in other regions. However, at the state of collapse,
moments all along the yield lines must be equal to each other. In order to simulate this
uniformity, a modification of rigidity is carried out using Eq. 3.4.4. The modification of
rigidity causes a redistribution of moments in such a way that regions with initially high
magnitude of moment are assigned low rigidity and vice-versa. This causes the state of
peak moments to even out with each successive iteration. In Fig. 4.4, the peak moment is
at the center. As analysis progressed, it was noticed that the peaks develop a ndgeline
from comers to the center. These ridgelines eventually match the yield lines. At the end
of iterations, the moments at these lines are approximately equal to each other. Fig. 4.5
shows the converged analysis for Tresca yield criterion. As can be seen, the yield lines
are right along the peak ridge lines. Figs. 4.6 and 4.7 show the results for the same plate
using von Mises yield criteria as specified in Eq. 3.2.23 For this criteria too, the yield
line pattern is similar to that obtained for Tresca criterion. This matches exactly with that
predicted theoretically (Fig. 4.8). The input file listing along with the macro, which

performs the post-analysis is given in Appendix A.1.1.
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The difference between Fig. 4.4 and Fig. 4.6 is because of the assumption of Tresca and
Von-Mises yield criterion. However, after convergence it can be seen that in both cases
the moment distribution is very flat, indicating that the peaks of moments have been

forced to attain a nearly uniform value.

After the convergence, the average moment along the yield lines is computed. This
average moment is generated for an arbitrary load. The limit load is then calculated using
Eq. 3.4.2. Fig. 4.9 shows a plot of limit load vs. iteration number for both Tresca and

Von Mises criteria.

The limit load values obtained above were compared with closed form results from
classical theory. The value of limit pressure by using Tresca criterion and applying

kinematic theorem is given by [Save, 1995; Save and Massonet, 1972]:

M
P, =24—- (4.2.2)
a

where, M , is the plastic moment capacity of the section

a is the width of the square plate

The same result is obtained by using both upper and lower bound theorems. Limit
pressure for Von Mises criterion has been treated by Iliouchine [Save, 1995; Save and

Massonet, 1972] and is given by:



M
P, =264—L (4.2.3)

a
Table 4.1 shows the comparison of results of theory and the present method.

The percentage errors as compared to theoretical results are 0.57 % and 0.43 % using
Tresca and Von-mises criterion, respectively. In comparison, a full nonlinear analysis
using ANSYS for the same mesh gave an error of 10.5% (Table 4.1). The present
problem is the same as that solved by Adluri {2001b] using ABAQUS software. The
ANSYS results from the present work for the modified secant rigidity method matched
the resuits by Adlun [2001b] perfectly. The nonlinear analysis results obtained from the
ABAQUS showed a limit load of 0.2208 N/mm°. This gives an error of 4.4%. While the
ABAQUS nonlinear analysis predicted better results than those by ANSYS, it can be seen
that the modified secant rigidity method used in this thesis outperformed the nonlinear

analysis of both software packages.

The present method used 1600 shell elements for the entire plate. The reason for
choosing a full model in the present case (as mentioned previously) is to facilitate the
surface plotting of equivalent moments, describing the behavior of the plate structure.
The same result can be obtained using quarter model as well. As mentioned in Chapter 3,
the present method avoids discretization along the thickness. As can be seen, there is a
significant improvement in results using the present method. These results have been
obtained after 8 iterations. It can be seen from Fig. 4.9 that limit load values even after

3rd iteration have a very good accuracy in comparison with theoretical results. Moreover,
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the value of equivalent moments piotted after the converged analysis clearly shows the
collapse mechanism of the structure. The method improves the results with each
successive iteration where as the r-node method is restricted to two analyses only. There
is however, no theoretical bar on why the r-node method cannot be used with more than

two iterations although Seshadri and associates restricted it to two analyses only.

4.2.3 Comparison with the R-Node Method

Another square plate of size 609.6x609.6x38.1 was solved by Mangalaramanan [1993]
using the r-node method. The mesh was 17x17x5 (total 1445) solid elements for quarter
model. The cormresponding limit load was 4.66 N/mm’. The analytical limit load was
5.334 N/mm’ using Eq. 423. This gives an eror of 12.6%. However,
Managalaramanan used 1.155*24MyL’ = 5.6013 N/mm’ as the theoretical value.
Compared to this, the r-node result showed an error of 16.8%. Using the present method,
the same problem was solved with a shell element grid of 17x17 (total 289) for quarter
model. The limit load afier convergence was 5.32 N/mm’ giving an error of 0.26% as
compared to that given by Eq. 4.2.3. For comparison, the limit load using the secant
rigidity method was computed after just two iterations as is the case with the r-node
method. The resulting value was 5.164 N/mm’ with an error of 3.2%. As can be seen,
the present method is much closer to the theoretical results than the r-node method even
after two iterations. This improvement can be attributed, among other things, to the use
of shell elements instead of solid elements and the fact that the average of the values

along yield lines is used instead of maxima.
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4.3 Simply Supported Circular Plate with UDL

A simply supported circular plate with uniformly distributed load has been analyzed
using the robust method discussed above. The plate has a radius of 250mm and a
thickness of 10 mm. An arbitrary uniform pressure of 0.5 N/mm’ is applied
perpendicular to the surface of the plate. The plate material has a yield stress of 350 MPa

and Young's modulus of 200,000 MPa.

As in the case of the square plate, ANSYS Shell 63 element was chosen for the anaiysis.
The plate is analyzed as a thin shell problem. The model for the analysis consists of 30
line divisions along the circumference and 24 line divisions along the radius forming 720
elements and 721 nodes (Fig. 4.10). This was generated, by revolving a line of length
equal to radius, to form a circular surface. This resulted in triangular shaped elements at
the center. Shell 63 is capable of generating solutions using triangular elements as well as
quadrilateral elements. Cylindrical co-ordinate system has been used for modeling as well
as the output. Symmetry has not been used in order to obtain a good surface plot
representation of the equivalent moments for demonstration purposes. In a practical

analysis, however, there is no difficulty in making use of symmetry.

The yield cnitena adopted for this problem are similar to those explained in Chapter 3 and
used for the square plate in section 4.2. Since cylindrical co-ordinate system is being

used, the principal moments are given by:
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- «;m)i \/(M;M) oM @34

The computations using ANSYS involve conducting a linear analysis and generating the
equivalent moments using Eqs. 3.2.22 and 3.2.23. The rigidity of each element is then
modified using Eq. 3.4.4. The next analysis is conducted on the modified structure
keeping all other conditions the same. The analysis is repeated till satisfactory
convergence is achieved. The input file listing along with the macro, which performs the

post-analysis is given in Appendix A.1.2.
4.3.1 Failure Criteria

In case of an isotropic circular plate with uniform loading, a great number of yield lines
start from the center. These radiating lines are shown in Fig. 4.11. Since this is an
axisymmetric problem, the principal moments become M, and Msg. Hence the

mathematical form of Tresca criterion {Save and Massonet, 1972] is (Fig. 4.12),

Max (M}, |M,|M, - M,))= M., (4.3.5)

The strain rate vector in polar co-ordinates has the form,

d*w 1)y dW
K,=- dRz Ko = ‘(EI-‘—{E] (4.36)
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where, K, and K, are the curvatures in the radial and tangential direction,

respectively and W is the velocity field which is a function of distance r

along the radius R.

Stress points located on or inside the yield curve will represent the state of stress at
various points on the plate. The locus of these stress points will be called the "stress
profile." The stress profile must start from point A (r=0) because axial symmetry requires

that M, = M, at the center. The stress profile must end at point B for =R since M =0 at
the edges. In the case of line AF, K ¢ =0 and hence W is constant. On the other hand, for

line AB, K, =0, which would result in a linear function. Hence, lines AF is not

considered for plastic flow. Similar condition applies for other direction too.
The corresponding figure for Von Mises condition is shown in Fig. 4.13.

4.3.2 Limit Load

For the problem under consideration, a check on the first elastic anaiysis was initially
carried out. This was achieved by checking the moments at the center and two arbitrary

points on the plate. The moment at any arbitrary point r, is given by [Table 5-11, Baker,

Kovalesky and Rish, 1972].

P =(LJ 4.3.7
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M, =[”I—f](3+yi1-p’) (4.3.8)

M9=[%][(3+,,)_(1+3,,)pz] 43.9)
At center, r=0. Therefore,

2
M, =M, =[i’lf6—)(3+y) (4.3.10)

where, R is the radius of the plate, r is the distance along the radius of the plate,

pis the applied UDL, uis the Poisson's ratio, M is the moment along

the radial direction, and M, is the moment along the tangential direction.

The elastic analysis moments at the center as well as two other arbitrary points compared
very well with the above theoretical values. Subsequently, re-analysis was performed

and 6 iterations led to convergence of values.

Hopkins and Wang [1954] solved the problem with Tresca criterion to obtain the limiting
value for a uniformly distributed load. They considered a velocity field and used

equilibrium considerations to show that,

P, =2 (4.3.11)
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Hopkins and Wang [1954] have also solved the same problem for Von Mises yield
criterion as well. The curved stress profile AB (Fig. 4.13) is used. From the very nature of
Von Mises condition, the resulting differential equilibrium equation is non-linear and has

to be integrated numerically. The resuiting limit load for Von Mises condition is given

by:

6.51M 43.12)

Limit load was calculated using Eq. 3.4.2. Fig. 4.14 shows a plot of the percentage

change vs. number of iterations. Table 4.2 shows the comparison of results from theory

and the present method.

The percentage errors as compared to theoretical results are -0.05 % and 0.46 % for Treca
and Von Mises criteria, respectively. These errors are very small and within the
convergence deviations thus pointing to a near perfect set of results. A similar problem
solved using r-node method as a two-dimensional axi-symmetric model with 100
elements along the radius and 10 elements through thickness, had an error of 1.8 %
[Mangalaramanan, 1993]. In the present problem, the number of elements used along the
radius is 24 only. The present results have been obtained using 6 iterations. However,
after the third iteration, the results are very close with analytical values as can be seen

from Fig. 4.14.
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From classical analysis, the coliapse mechanism is similar to that of an inverted cone
(Fig. 4.11). The initial analysis produces a moment distribution as shown in Fig. 4.15 for
Tresca criterion and Fig. 4.17 for Von Mises criterion. It must be noted that the plotting
software used for obtaining the surface plot could only handle rectangular regions.
Hence, for the sake of plotting, the circular plate is extended to look like a square with
dummy areas to fill the extra material. The extra space does not affect the results in any
way and is not part of the analysis. Fig. 4.16 and Fig. 4.18 show equivalent moment
distribution after converged analysis. It must be pointed out that Figs. 4.15 and 4.16
plotted for initial and final analyses look very similar. But the scales for moment values
are different. In Fig. 4.16 for final iteration, the difference between the maximum and
minimum moment is around 1%. Corresponding difference in Fig. 4.15 is more than

20%.
4.4 Fixed Square Plate with UDL

A 1000x1000x10 mm fixed square plate with uniformly distributed load is analyzed
using the procedure described earlier. An arbitrary uniform pressure of 6 N/mm? is
applied on the plate. The plate material has a yield stress of 350 MPa and young's

modulus of 200,000 MPa.

ANSYS Shell 93 element was chosen for the analysis. It is suitable for linear and non-
linear finite element analysis. The element has eight nodes with six degrees of freedom at

cach node. The finite element model for the analysis consists of a mesh grid of 80x80
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forming 6400 elements and 19521 nodes (the element is 8-noded). As before, since shell
elements are being used, there is no need for discretization along the thickness.
Symmetry has not been utilized. However, it can be used in a practical analysis without
any restriction. The plate model is as shown in Fig. 4.19. The input file listing along

with the macro, which performs the post-analysis is given in Appendix A.1.3.

4.4.1 Limit Load

For the problem under consideration, a check on the first elastic analysis was initially
carried out. The moment M, (=M,) at the center is given by [Table 35, .. Timoshenko &

Woyinowsky-Kreiger, 1989],

M, =0.0230ga’ 4.4.1)

The Finite Element result compared very well with the theoretical value (Table 4.3).
Subsequent re-analysis was done and 10 Iterations led to convergence of values. Limit

load was calculated using Eq. 3.4.2.

The equivalent moment distribution after first analysis shows regions of high moments at
the center and fixed edges (Figs. 4.20 and 4.22). But at the state of collapse, moment at
all former peaks even out. It can be seen from Fig. 4.21 and 4.23 that the yielded zones
are found along the diagonals and also the fixed edges. Hence an average value of the
equivalent moment along diagonal yield lines and those along fixed edges is adopted for

calculation of limit load.
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Fig. 4.24 shows a plot of the percentage change between iterations for Tresca and Von

Mises criteria:

The value of equivalent moment after the 10th iteration has been considered for

calculations after checking for convergence.

The theoretical value of limit pressure by using Tresca criterion is given by Sobotka

[1989]:
43.85M,
«= 3 (4.4.2)
a’
The upper bound limit load is given by [Szilard, 1974]:
48M
== (4.4.3)
4’

This value has been used in lieu of Von Mises criterion limit load. Table 4.3 shows the
comparison of results. The percentage errors as compared to theoretical results are
2.00% and 1.95%, respectively. A similar problem solved as a quarter model using
r-node method with a grid of 17x17x5 was reported to have an error of -13.4 % with the

corresponding theoretical value [Mangalaramanan, 1993).

It can be seen from Fig. 4.24 that the 10" iteration has resulted in a good accuracy of

analysis. Limit load values even after 4" iteration have considerably smalil error.
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From classical analysis, the collapse mechanism is as shown in Fig. 4.25. The initial
analysis produces a moment distribution as shown in Fig. 4.20 for Tresca and in Fig. 4.22
for Von Mises. The difference between the two figures is because of the assumption of
Tresca and Von-mises yield criterion. However, it can be seen that in both cases the
moment distribution after converged analysis (Fig. 4.21 for Tresca and Fig. 4.23 for Von
Mises) is much flatter, indicating that the peaks of moments have been forced to attain a
uniform value, which is equal to M; at collapse. It must be noted that Fig. 4.23 shows a
sudden increase in the moment at the four comers of the plate. This spike is unlikely to
be part of the collapse mechanism as indicated by the radial fans shown in Fig. 4.25. Itis
possibly just a numerical local error. Such spikes must obviously not accounted for in the
calculation of limit loads. The elastic compensation method, if followed, would use such
spikes rather than the average of the moments along the yield lines to obtain limit loads.

Using this spike would give a larger error than wouid otherwise be the case.
4.5 Circular Plate with Central Concentrated Load

A circular plate with central concentrated load is analyzed using the robust method
described earlier. The plate has a radius of 250 mm and a thickness of 10 mm (Fig. 4.26).
A central concentrated load of 1 kN is applied on the plate. The plate material has a yield

stress of 350 MPa and young's modulus of 200,000 MPa.
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The description of the model and other data is similar to that adopted in section 4.3. The
failure mechanism is similar to that shown in Fig. 4.11. The input file listing along with

the macro, which performs the post-analysis is given in Appendix A.1.4

4.5.1 Limit Load

The elastic moment at any arbitrary point r is given by [Appendix A, Szilard, 1974]:

o =(%) 4.5.1)
M, =(%)(l+p)(ln p) 45.2)
M, =(£)[(l—p)—(l+n)lnp] (4.5.3)

The moments from the initial FEA compared very well with the above theoretical values.
Subsequently, re-analysis was performed and 20 iterations led to convergence of values.
Fig. 4.31 shows a plot of the limit load vs. iteration for both Tresca and von Mises
criteria. The convergence is slower in this problem because of the presence of a large

concentrated force instead of a distnbuted pressure.

The equivalent moment distribution from initial analysis is shown is Fig. 4.27 (for
Tresca) and Fig. 4.29 (for Von Mises). The Final results are shown in Fig. 4.30 for

Tresca and Fig. 4.31 for Von Mises. It can be seen that in both cases the moment
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distribution after converged analysis is much flatter, indicating that the peaks of moments
have been forced to attain a uniform value along ridgelines. Note that in the converged

analyses representation (Figs. 4.28 and 4.30) the moment axis difference is very small.

Hopkins and Wang [1954] have solved the same problem for both Tresca and Von mises
criterion and have shown that both the limit load values coincide at limit state for a

simply supported circular plate with central concentrated load. It is given by,

P =2M (4.5.4)

P

Table 4.4 shows the comparison of resuits from theory and the present method.
4.6 Rectangular Plate Simply Supported on Shorter Edges

A uniformly loaded 1500x1000x 10 mm rectangular plate simply supported on the shorter
edges (Fig. 4.32) is analyzed using the secant rigidity method described earlier. An
arbitrary uniform pressure of 5 N/mm’ is applied on the plate. The plate material has a
yield stress of 350 MPa and Young's modulus of 200,000 MPa. ANSYS Shell 63 element
was chosen for the analysis. The model for the analysis consists of a mesh grid of 60x40
forming 2400 eclements and 2501 nodes. The analysis procedure is similar to that
described in section 4.1. The input file listing along with the macro, which performs the

post-analysis is given in Appendix A.1.5.
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4.6.1 Limit Load

The theoretical maximum moment is given by [Appendix A, Szilard, 1974):

M, .. =012787pl’ (4.6.1)

where, p is the UDL on the plate, L is the length of the plate.

This compared well with value obtained from the initial elastic analysis using FEA.

Subsequently, a re-analysis was performed and 9 iterations led to convergence of values.

The equivalent moment distribution after first analysis shows the mid plate region with a
high magnitude of moment (Fig. 4.33). A plot of equivalent moment after converged
analysis clearly shows one yield line as is expected at the center (Fig.4.34). Fig. 4.35

shows a plot of limit load vs. iteration.

The limit load value obtained above was compared with theoretical results. The value of

limit pressure by using Tresca criterion [Sobotka, 1989]:

P, =—=£ 4.6.2)

Table 4.5 shows the comparison of results from theory and the present method.

The percentage errors as compared to theoretical resuits is 0.1% by assuming Tresca's

yield criterion. A similar problem solved as a half model using r-node method with a grid
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of 18x12x6 was reported to have an ermor of -16.4% [Mangalaramanan, 1993] in

comparison with the corresponding theory.
4.7 Rectangular Plate Simply Supported on Three Edges with UDL

A uniformly loaded 1500x900x10mm rectangular plate simply supported on three edges
(longer edge free) is analyzed (Fig. 4.36). An arbitrary uniform pressure of 5 N/mm? is
applied on the plate. The plate matenal has a yield stress of 350 MPa and Young's

modulus of 200,000 MPa.

ANSYS Shell 63 element was chosen for the analysis. The finite element model for the
analysis consists of a mesh grid of 60x40 forming 2400 elements and 2501 nodes as
shown in Fig. 4.36. The input file listing along with the macro, which performs the post-

analysis is given in Appendix A.1.6.
4.7.1 Limit Load

For the problem under consideration, the maximum moment obtained in the first elastic

analysis compared very well with the theoretical value given by [Table 42, Timoshenko

& Woyinowsky-Kreiger, 1989]:
M. =00738gb° (4.7.1)

where, q is the UDL on the plate and b is the free length of the plate
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Fig. 4.10 Finite Element Model of a Circular Plate with UDL
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Fig.4.26 Finite Element Model of a Circular Plate with Central Concentrated Load
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Figure 4.32 Finite Element Model of a Rectangular Plate Simply Supported on Opposite Sides with UDL
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Figure 4.36 Finite Element Model of a Rectangular Plate Simply Supported on Three Sides with UDL
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Chapter §

Limit Analysis of Irregular Plate Structures

5.1 Introduction

The previous chapter dealt with plates of regular shape such as square, circle and
rectangle with different boundary and loading conditions. The present chapter deals
with a rectangular plate with partial boundary conditions, an irregularly shaped plate
and a continuous plate. Since theoretical results are not readily available to compare

with, a non-linear finite element analysis was conducted for some of the problems.
5.2 Rectangular Plate with Partial Boundary Conditions

A 254x381x12.7 mm plate was chosen with non uniform boundary conditions as shown
in Fig. 5.1 (a). The problem is similar to that used by Mangalaramanan [1993, Sec.
5.11]. An arbitrary uniform pressure of 5 N/mm’ is applied on the plate. The plate

material has a yield stress of 207 MPa and Young's modulus of 207,000 MPa.

ANSYS clement Shell 63 was chosen for the analysis. The analysis was initially
conducted for a mesh grid of 18x12 and then increased to 42x27 and 84x54. The finite
element model for the 84x54 mesh is shown in Fig. 5.1 (b). The Von Mises yield

criterion for moments as defined in Chapter 3 was used. The rigidity modification and
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re-analysis was conducted till satisfactory convergence was achieved. The input file
listing along with the macro, which performs the post-analysis is given in Appendix

A2l

5.2.1 Limit Load

The equivalent moment distribution after the first analysis is shown in Fig 5.2. It shows
relatively high magnitudes of moments at the fixed edges and discontinuity points. A
spike can be seen in the lower left side of the plot, which is a possible numerical error
because of local numerical error. The region between the clamped edge to simply
supported edge has a parabolic variation of equivalent moment. However, after re-
analysis and convergence, moment at all former peaks is flattened and is nearly equal as
shown in Fig 5.3. Fourteen iterations led to convergence. The yield lines were identified
in a manner similar to that for a fixed square plate described in Chapter 4. The value of
average equivalent moment along yield lines was considered. The average absolute

percentage change at the end of each iteration is noted and this is plotted in Fig. 5.4.

5.2.2 Comparison of Results

The limit load value obtained above was compared with that from non-linear finite
element analysis as obtained by Mangalaramanan [1993]. The limit load for various
mesh sizes was calculated and this is tabulated in Table 5.1. The input file for the

analysis is given in Appendix C.1.1.
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From Table 5.1, it can be seen that the difference between the present result and
nonlinear FEA is 8.9%. This is quite high compared to the very low errors obtained for
all the previous cases when compared to the closed form theoretical results. Part of the
reason must be the fact that nonlinear FEA gives inaccurate results. This can be seen
from the comparison made in Table 4.1. The nonlinear FEA for the simply supported
square plate under UDL gave an error of 10.5%. If a similar error is present in the
nonlinear FEA analysis reported in Table 5.1, it would explain the discrepancy between
the secant rigidity method and the nonlinear FEA for the present problem. The same
problem solved as a full model using solid elements with r-node method was reported to
have an error of -6.6% [Mangalaramanan, 1993] compared to non-linear Finite element
analysis. This needs to be contrasted with the more than 10% errors that he obtained for

other regular plates problems.
5.3 Irregular Plate

A plate that is irregular in shape and boundary conditions shown in Fig. 5.5 (a) is
analyzed in this section. Since theoretical results are not readily available to compare
with, a non-linear finite element analysis was carried out. The thickness of the plate is
10 mm. An arbitrary uniform pressure of S N/mm?’ is applied on the plate. The plate

matenal has a yield stress of 350 MPa and Young's modulus of 200,000 MPa.

ANSYS Shell 93 element was chosen for the analysis. The finite elernent model for the

analysis consists of 5962 elements and 18261 nodes (Fig. 5.5 (b))
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The Tresca vield criterion was chosen for the analysis. The input file listing along with

the macro, which performs the post-analysis is given in Appendix A.2.2.

5.3.1 Limit Load

The equivalent moment distribution for the first to fourth analyses is shown in Figs. 5.7
(a) to (d). Subsequent re-analysis was performed for 30 iterations in order to see the
possible trends (see Fig. 5.6(a) for 30 iterations and Fig. 5.6(b) for the first 12
iterations). It was noted that after 12 iterations the apparent convergence was reversed
and that there was an increase in the values of average absolute percentage change.
These results showed trends of convergence again after 30 iterations. For the present
analysis, the 12th iteration was considered as converged and the corresponding limit
load was calculated from yield lines as before. The equivalent moment distribution after

converged analysis (iteration 12) is shown in Fig. 5.8.

The limit load value obtained above was compared with the results from a non-linear
finite element analysis. The same model with ANSYS Shell 143 element was chosen for
the analysis. The material property assumed was bi-linear isotropic hardening with the
assumption of true stress-strain behavior. An arbitrary pressure of 0.5 N/mm’ was
applied. The input file for the analysis is given in Appendix.C.1.2. Table 5.2 shows the
comparison of results from non-linear finite element analysis and the present method.

The difference as compared to non-linear finite element analysis is 3.4%.
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5.4 Continuous Plates

A continuous plate system was analyzed using the modified rigidity method. If the
supporting beams are sufficiently strong to carry the imposed loads without developing
plastic hinges, the case involves merely the study of individual slab failures. This is also
valid if the plate is uniformly loaded on all panels. However, by superimposing on the
dead load a checkerboard type live loading, a different yield line pattem may be

obtained as shown in Fig. 5.9.

Details of the continuous plate are given in Table 5.3. The plates are also shown in
Figs. 5.10 (a) to (d). An arbitrary uniform pressure of 10 MPa is applied on all the
plates. The plate material has a yield stress of 350 MPa and Young's modulus of

200,000 MPa.

As before, ANSYS Shell 63 element was chosen for the analysis. For Cases | and 2, the
overall size of the system is 9mx4.5m. Supports have been provided at every 1.5m and
3m for shorter and longer direction, respectively. For cases 3 and 4, the total dimension
of the system is 10.5x2 I m. The boundary conditions for the plate along with loading are
shown in Fig 5.10. A macro was written for modeling the continuous plate. It can easily
generate the model for any panel size and divisions. This is given in Appendix A.3.1 for

the simply supported case and Appendix A. 3.2 for the fixed case.

166



5.4.1 Limit pressure

The analysis procedure is similar to that described for the previous analyses. The
average of absolute percentage changes of equivalent moment between iterations is
plotted in Fig. 5.11. Twelve to fourteen iterations led to convergence. After checking
for convergence, the equivalent moments across the plate were plotted as a surface plot.
The equivalent moment distributions for the first elastic analysis and for converged
analysis are shown in Figs. 5.12-15. The limit load of the central interior panel was

calculated using equivalent moment identified along yield lines.
5.4.2 Analytical Limit Loads

The critical load for an interior panel of a continuous slab can be calculated from an
equivalent simply supported slab having reduced span lengths. This can be calculated

from Johansen's formula given by [Szilard, 1974]:

(5‘4ol)

where,  ais the longer span of the individual panel,

b is the shorter span of the individual panel,
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i for an edge, is the ratio of the negative moment of resistance to the

positive moment of resistance of the slab.

In this case, the moment capacity of the plate was considered for obtaining the ratios p;,

H2, H3, Ha-

Initially, Case 1 and Case 2 were solved and compared with Johansen's formula. From
Figs. 5.12 (b) to 5.15 (b), it may be seen that, the effect of outer edges being fixed or
simply supported has a bearing on the behavior of the interior panels. This is also
evident from the corresponding limit load values. Keeping the mesh size and panel size
the same, the number of panels were increased to 7x7 (Cases 3 and 4) and the analysis
was repeated. The behavior of the plate in this case can be seen from the plot of the
equivalent moments after converged analysis. The limit load values for the interior
panel have not been affected by the outer edges of the plate being simply supported or
fixed. The interior panel behaves more like a fixed plate, since yield lines have formed
in the span and along the supports. For a different loading pattern, the yield pattern
might be different. If a dead load is present in addition to the live load as used in this
problem, the yield lines may not form at the support lines. Instead, a set of negative

bending yield lines might form in the panels where there is no live load.

Using the present analysis, two approaches were adopted for the calculation of limit

load. Firstly, the average equivalent moment of yield lines along edges and diagonals of
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the central panel was considered. Next, the average equivalent moment of yield lines all

over the plate was used to calculate limit load.

For Cases 3 and 4, the mesh density used was only 12x7 for each panel. Since there
were forty-nine panels in total, this coarse mesh was chosen to save time and
computational effort. An increase in mesh size would certainly improve results with the

comparisons mentioned in Table 5.4.

Also, for Case 3, since the extreme edges were simply supported, a non-linear finite
element analysis did not produce relevant results. The limit loads obtained were due to
failure of the comer four panels, which behave like a plate with two edges simply
supported and two edges fixed. Hence, a difference of 21 % was produced when the
failure load for the central panel using modified secant rigidity method was compared
with the non-linear finite element analysis. On the other hand, Case 4 which has
extreme edges fixed has produced good results in comparison with non-linear finite

element analysis.

As can be seen, the modified rigidity approach for limit load estimation can handle
simple or continuous plates with a variety of boundary conditions and shapes. Although
it has not been illustrated here, other types of loading patterns which produce

non-standard yield patterns in continuous plates can be handled with the same ease.
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Table §.1: Rectangular Plate with Partial Boundary Conditions under

UDL
Analvsi Secant rigidity Non-linear FEA
ysis (Mises) [Mangalaramanan, 1993]
o r~ b 4 (o]
- o~ v —
Mesh size ol & - -
st - o0 -
Limit Load | 3 79 | 350 | 3.05 3.48
N/mm

Table 5.2: Irregular Plate with Partial Boundary Conditions under

UDL

Non-linear FEA

Difference

Limit Load
N/mm?

0.132

3.65%
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Table 5.3: Details of Continuous Plates Analyzed

9.0x4.5

90x4.5

21.0 x 10.5

21.0 x 10.5

17



Table 5.4: Limit Loads of Continuous Plates with Loading on

Alternate Panels

Secant nigidity %Difference (*)
interior panel

0.0833

0.1023

Non-linear

0.0805

0.1022

(*) NOTE: Johansen's result is 0.10888 N/'mm?. All results are compared with the

theoretical values as per Johansen [Szilard, 1974)
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Note:

L=1700 mm

B=1000 mm
La=Ltan15°=455.5 mm
Lb=(L/cos15°)/2 = 880 mm

S ,_.u‘_ PR

Fig. 5.5 (a) Irregular Plate with Partial Boundary Conditions under UDL,
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Fig. 5.5 (b) Finite Element Model of a Irregular Piate with Partial Boundary Conditions under UDL
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Fig. 5.7 (b) Irregular Plate with Partial Boundary Conditions —-UDL, Tresca, Second Analysis
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Fig. 5.7 (¢) Irregular Plate with Partial Boundary Conditions -UDL., Tresca, Third Analysis
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Fig. 5.7 (d) Irregular Plate with Partial Boundary Conditions -UDL, Tresca, Fourth Analysis
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Chapter 6

Conclusions and Recommendations

6.1 Introduction

Limit load estimates are very useful for many engineering applications -both in design
and analysis type problems. There has always been a need for robust methods for limit
load analysis from the point of view of numerical stability and effort. Robust limit load
analysis has gained considerable attention over the past several years. Available robust
methods adopt secant modulus modification as a means to cause redistribution in an
elastic structure thereby producing limit behavior. The most significant among these
methods are the r-node method, elastic compensation method and the m, method. All of
these use the Von Mises yield criterion to define an effective stress. This effective stress
is used to obtain an estimate of secant modulus. The r-node method involves
identification of r-node peaks to obtain limit loads. Such identification might require
considerable judgement in some cases. The elastic compensation method is based on a
maximum stress value. Because of numerical local errors, it can sometimes be difficult
to properly identify the failure mechanism and the consequent limit ioad. The m, method
has a better theoretical basis but is more involved than the other methods. All of these
modulus modification methods need stress level modifications and consequent

discretization requirements. The present thesis made use of a robust method which has
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several features of the above mentioned robust techniques for the estimation of limit
loads along with additional advantages. The method generalizes the advantages of the
existing robust methods so that it can be applied for any yield criterion and any finite
element type [Adluri, 1999, 2001a, b]. The criteria can be in terms of stresses or
generalized forces such as moments and shears. The elements can be solid or plate/shell
or other types. The generalization uses scaled yield cnteria and is at least as accurate or
better than the existing methods. It is easier (and cheaper) to apply since any type of
finite element can be used. The use of this technique has been demonstrated in the

present work for a variety of plate type problems.

6.2 Summary

The robust method used in the present thesis [Adluri, 2001b] is briefly summarized

below:

For the plate to be analyzed, apply a loading that is proportional to the intended loading
pattern. The load intensity can be arbitrary. The objective of the analysis is to obtain the
proportionality load factor for this pattern that would result in the collapse of the plate
structure. Choose an appropriate pattern for failure criterion such as Tresca or von Mises
patterns. The actual values of the pattems are not relevant. The form of the criterion
must conform to the element output vanables, e.g., if plate or shell elements are used, the
failure criterion must be in terms of generalized forces and moments. The objective of the

analysis is to produce the relative secant stiffness field at or near collapse. Such
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simulation will automatically result in the identification of the failure mechanism of the

structure.

Perform a linear elastic analysis of the plate with the original properties and rigidities.
Compute the principal moments and find equivalent moment as appropnate to the yield

criterion chosen. Use the results to modify the local secant ngidity.

Repeat the iterative process with modified properties until convergence is achieved. A
plot of the equivalent moment after converged analysis will show the scaled moment
distribution similar to yield lines at collapse. Find a simple or weighted average of the
equivalent moments along these ‘yield’ lines. The ratio between this average and the

yield moment capacity of the plate section gives the required limit load factor.

This modified secant rigidity method has been implemented using plate/shell elements
and ANSY'S software. The implementation used fairly standard methods and was easy.
Several plate problems have been analyzed using this technique. The post analysis
consisted of surface plotting of equivalent moments after converged analysis. The
average equivalent moment along yield lines was identified and used for limit load

calculations.

6.3 Conclusions

The following are general conclusions of the present research:
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l.

Detailed implementation schemes have been developed for the robust method using
ANSYS software and APDL routines. These routines have been automated to take
any mesh and plate sizes as well as loading, material, etc. The implementation is
very simple and was achieved with relative ease. If desired, it can be fully automated
for any general problem thus freeing the user from any effort other than choosing the

finite element mesh for initial elastic analysis.

The robust method using modified secant rigidity has been shown to work very well
for plates of different shapes, sizes, boundary conditions, loading and yield criteria.
All mesh densities are considerably smaller than those employed for the other robust

techniques.

a) For simply supported square and circular plates with UDL the error was within

0.5% compared to theoretical values.

b) For fixed plates of regular shapes and plates with concentrated loads, the method
gives limit load estimates that are very close to the classical solutions (within

0.5% to 2.5%).

c) A rectangular plate with partial boundary condition was solved using the Von
Mises criterion. This gave a difference of nearly 9% for a very coarse mesh when
compared to the corresponding nonlinear FEA result. Further increase in mesh

density led to better results,
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d) An irregularly shaped plate with partial boundary conditions has produced an
error of 3.5 % in comparison to non-linear finite element analysis. Hence the

method is effective in solving irregular piate problems as well.

¢) In case of continuous plates, limit load for 3x3 panel had a difference of 6 %
when compared with Johansen's formula [Szilard, 1974]. The Johansen result was
derived assuming that the plate had unlimited number of panels on ecither side.
When the number of panels were increased to 7x7, the error fell to about 0.6%

(even with a very coarse mesh).

f) For all problems dealt with in this thesis, eight to fourteen iterations have led to
convergence. By convergence, it is meant that the average absolute percentage
change was between 0.25% to 0.9%. In some problems (such as square and
circular plates with UDL), limit load values computed even after the third
iteration have produced very good results (within 2%) and a clear plot of collapse
mechanism. In case of irregular plates, the convergence leads to divergence and

again convergence.

3. In all cases where classical solutions are available, the method used here significantly

out performed the nonlinear finite element analysis.

4. The method used does not require any discretization through the thickness of the
plates. Hence, much less number of elements is needed compared to those for other

robust methods that generally require solid elements.
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10.

The method can be shown to predict better limit load estimates in comparison to other
methods. For example, after two analyses, the method is theoretically guaranteed to

give at least as good an accuracy (or better) when compared to the r-node method.

The surface plot of the converged equivalent moment clearly shows the yield lines

and hence the collapse mechanism of the structure.

The study conducted in this thesis involved the use of both Tresca and Von Mises
yield criteria and has produced very good results for various types of plates. The
present method works with any other yield criterion. Other methods such as r-node

have not been implemented for general yield criteria such as Tresca.

The modification of secant rigidity can be performed by using any material or
geometric parameter, such as Young's modulus, area, thickness, etc. There is no need
for calculation of additional parameters (such as yield functions based on Ilyushin’s

model as in the case of ECM).

Some of the disadvantages of the existing modified modulus methods could be

avoided by using the present technique.

In some cases, the method suggested yield line patterns that slightly deviated from the
traditionally assumed yield line set. With further research, this might result in the

improvement of classical results.
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6.4 Recommendations for Further Research

The research presented in this thesis is applicable for thin plate structures with bending
capabilities. The present study was limited to material non-linearity and isotropic matenal

behavior. Further work is recommended for the following areas:

1. Thick plate structures, deep beams and shells that involve significant shear forces in

addition to bending moments.
2. Extending the method to large deformation or geometrically non-linear problems.

3. The effectiveness of the method needs to be checked on complicated areas such as

stress concentration, fracture, etc.

4. The selection of average equivalent moment along yield lines requires a bit of
judgement. Hence, research may be directed towards developing an automated

process, which can select the yield line pattern with ease.

5. Materials such as reinforced concrete are generally orthotropic in behavior. Hence, it

would be relevant to extend this technique for orthotropic material behavior.
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Appendices

The macros presented in Appendix A are for elastic analysis of the plate structures
analysed in this thesis. Appendix B has the macro for modifying secant ngidity,
calculating equivalent moments and repeated analysis. These have to work in conjunction
with the problems of Appendix A. The appropriate macro, Tresca (Appendix B.1.1) or
Von Mises (Appendix B.1.2) can be placed in the current working directory of the
operating system along with a plate model macro of Appendix A.. The results after the
analysis will be stored in a file named "results”

Appendix C consist of macros for non-linear analysis implemented in this thesis

The dimensions and mesh sizes for all these problems can easily be changed at places
mentioned in the comments of the macro. As for the continuous plates (A.3.1 and A.3.2),

the macro can permit different sizes of mesh, panel as well as number of panels.

215



APPENDIX A

A.l. ANALYSIS OF REGULAR PLATES USING MODIFIED

SECANT RIGIDITY.

A.1.1 Simply supported square plate subjected to uniform pressure.

! #HnE ANALYSIS OF A PLATE USING MODIFIED SECANT RIGIDITY #####

[TITLE, ANALYSIS OF A SQUARE PLATE USING MODIFIED SECANT RIGIDITY

/GRA,POWER
/GST,ON
/PREP7

ET,1,SHELL63

*SET,THK,10
*SET.EM, 200000
*SET,L1,1000
*SET,B1,1000
*SET,LZ,40
*SET,BZ,40
*SET,P,10

R1THK,,,,,,
RMORE, , ., ,,

UIMP, 1 EX, , .EM,

k,1,0,0,0,,,,
k,2,L1,0,0,,,
k,3,L1,B1,0,,,
k94’0’B 1 ,0”’,
L, 1,
L, 2
L 3
L, 4

— W N

LESIZE,l,,,LZ,1,
LESIZE,2, , ,.BZ,1,
LESIZE3,,,LZ,1,

! ENTER PRE PROCESSOR

! USE SHELL 63 ELEMENT

! THICKNESS IN MM

! YOUNG'S MODULUS IN N/SQ MM

' LENGTH IN MM

! BREADTH IN MM

! LINE DIVISIONS ALONG LENGTH

! LINE DIVISIONS ALONG BREADTH

! PRESSURE LOAD IN NEWTONS/SQ.MM
! INPUT THICKNESS

! INPUT YOUNG'S MODULUS

! DEFINE KEYPOINTS

! DEFINE LINES

! DEFINE DIVISIONS ON LINES
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LESIZE 4, , ,BZ,1,
AL,1,2,3,4
ASELALL,
AMESH,ALL
FINISH

/gopr
/SOLU,

nsel,s,loc,x,0
D!all,’!’!”’uz
nsel,all

nsel,s,loc,x,L1
¢all!"!””uz
nsel,all

nsel,s,loc,y,0
anll!!’!”"uz
nsel,all

nsel,s,loc,y,Bl,
anll’ 7799%99%" ’uz
nsel,all

nsel,s,loc,x,0
nsel,r,loc,y,0
Dall,,,,,, ux
nsel,all

nsel,s,loc,x,L1
nsel,r,loc,y,0
dal,,,,,,uy
nsel,all

nsel,s,loc,x,L1
nsel,r,loc,y,Bl
doa“; 1 a9y UX
nsel,all

nsel,s,loc,x,0
nsel,r,loc,y,Bl,
dall,,,,,, uy

! DEFINE AREAS

! MESH AREAS

! CONSTRAINTS UZ

! CONSTRAINTS UX

! CONSTRAINTS UY
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nsel,all

SFA,ALL,1,PRES,-P

SFTRAN

ANTYPE,0 ! DEFINE STATIC ANALYSIS
OUTRES,ALL,ALL

SAVE

SOLVE

FINISH

/INP,macrol ! ## INPUT MACRO FOR ANALYSIS ###

A.1.2 Circular plate subjected to uniform pressure.

! # ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT RIGIDITY #

/TITLE, ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT
RIGIDITY

/GRA,POWER

/GST,ON

/PREP7 ! ENTER PRE PROCESSOR
ET,1,SHELL63 ! USE SHELL 63 ELEMENT
*SET,THK,10 ! THICKNESS IN MM
*SET,EM,200000 ! YOUNG'S MODULUS IN N/SQ MM
*SET,RAD,250 ! RADIUS IN MM

*SET,LZ,30 ! LINE DIVISIONS ALONG CIRCUMFERENCE
*SET,P,0.5 ! PRESSURE LOAD IN NEWTONS
*SET,BZ,24 ! LINE DIVISIONS ALONG RADIUS
RI1,THK,,,,,, ! INPUT THICKNESS
RMORE,,,,,,,

UIMP,1EX, , .EM, ! INPUT YOUNG'S MODULUS
K,1,0,0,,

K,50,0,RAD,0,,

L,1,50

LSEL,ALL

LESIZE,L,, LZ,)1Z,

K.,51,0,0,20,

LSEL,ALL

AROTAT,L,,,,,,1,51,,BZ
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LSEL,S,RADIUS,,RAD
LESIZE all,, ,1,1,
LSEL.ALL

ASELALL
AMESHALL
FINISH
/GOPR
/SOLU,

CSYS,1
NSEL,S,LOC,X,RAD,360
DALLVUZ,,,,,,
NSEL,ALL

CSYS,0

NSEL,S,LOC,X,0
NSEL,R,LOC,Y,0
DALL,UX
D.ALL,UY
D,ALL,ROTZ
NSEL,ALL

SFA,ALL,1,PRES,-P
ANTYPE,0
OUTRES,ALLALL
SAVE

SOLVE

FINISH

/POSTI1

RSYS,1

/INP,macrol

! CYLINDRICAL CO-ORDINATES

! CARTESIAN CO-ORDINATES

! APPLY PRESSURE LOAD

! DEFINE STATIC ANALYSIS

! OUTPUT RESULTS IN CYLINDRICAL
! CO-ORDIANTES

! ## INPUT MACRO FOR ANALYSIS ###
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A.1.3 Fixed square plate subjected to uniform pressure.

!

i # ANALYSIS OF A FIXED PLATE USING MODIFIED SECANT RIGIDITY #

/TITLE, ANALYSIS OF A FIXED PLATE USING MODIFIED SECANT RIGIDITY

/GRA,POWER
/GST,ON

/PREP7

ET,1,SHELL93
*SET,THK, 10
*SET,EM, 200000
*SET,L1,1000
*SET,B1,1000
*SET,LZ,80
*SET,BZ,80
*SET,P,6

&IYTPK’,Y!”
RMOR'E',"”’
UIMP,1.EX, , ,EM,

k’ l 90’0,0!”9
k921L l 1090”7’
k,3,L1,B1,0,,,
k14’0'B l 90’19’
L,1.2

L23

L.3,4

L4,

LESIZE,l,.,LZ,1,
LESIZE,2,, ,BZ,1,
LESIZE,3,,,LZ,1,
LESIZE 4,, ,BZ,1,
AL 1,234
ASEL,ALL,
AMESH,ALL
finish

! ENTER PRE PROCESSOR

! USE SHELL 93 ELEMENT

! THICKNESS IN MM

! YOUNG'S MODULUS IN N/SQ MM

! LENGTH IN MM

! BREADTH IN MM

! LINE DIVISIONS ALONG LENGTH

! LINE DIVISIONS ALONG BREADTH

! UNIFORM LOAD IN NEWTONS PER NODE
! INPUT THICKNESS

! INPUT YOUNG'S MODULUS

! DEFINE KEYPOINTS

! DEFINE LINES

! DEFINE DIVISIONS ON LINES

! DEFINE AREAS

! MESH AREAS
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gopr
/SOLU,

nsel,s,loc,x,0
Dvalls 19909 ouZOrOty
nsel,all

nsel,s,loc,x,L1
dvalls TP ry ,uzomty
nsel,all

nsel,s,loc,y,0
dsa"v 1939 luz,mtx
nsel,all

nsel,s,loc,y,Bl1,
diall'O!,Qiiuz’mm
nsel,all

nsel,s.loc,x,0
nsel,r,loc,y,0
D,all,,,,, uxrotz
nsel,all

nsel,s,loc,x, L1
nsel,r,loc,y,0
dall,,,,, ,uyrotz
nsel,all

nsel,s,loc,x,L1
nsel,r.loc,y,Bl
dall,,,,, ux,rotz
nsel,all

nsel,s,loc,x,0
nsel,r,loc,y,Bl,
dall,,,,, ,uyrotz
nsel,all

SFA,ALL,1,PRES,-P
ANTYPE,0
OUTRES,ALL,ALL

! CONSTRAINTS

! APPLY PRESSURE LOAD
! DEFINE STATIC ANALYSIS
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SAVE
SOLVE

FINISH
/INP,macrol ! ## INPUT MACRO FOR ANALYSIS ###

A.1.4 Simply supported circular plate subjected to central concentrated
load.

i #HH ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT
'RIGIDITY ##HHH

/TITLE, ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT
RIGIDITY

/GRA,POWER

/GST,ON

/PREP7 ! ENTER PRE PROCESSOR
ET.1,SHELL63 ! USE SHELL 63 ELEMENT
*SET,THK,10 ! THICKNESS IN MM

*SET,EM, 200000 ! YOUNG'S MODULUS IN N/SQ MM
*SET,RAD,250 ! RADIUS IN MM

*SET,LZ,30 ! LINE DIVISIONS ALONG CIRCUMFERENCE
*SET,P,1000 ! CENTRAL CONC. LOAD IN NE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>