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ABSTRACT 

A robust method for the estimation of limit loads of structures has been adopted for plate 

sttuctures. It involves the use of modified secant rigidity. The method makes use of 

repeated linear elastic analyses to predict limit behavior. The results from an initial elastic 

analysis are used to obtain the principal moments. A suitable yield criterion (such as 

Tresca or Von Mises) in terms of generalized forces is used. A set of equivalent moments 

is then computed for the plate. This is used to modify the secant rigidity of the plate. The 

modified structure is re-analyzed iteratively until convergence is reached. The moment 

distribution from the convergent analysis shows the collapse mechanism for the plate. 

The average of the equivalent moments along the collapse (or yield) lines of the plate is 

scaled to the plastic moment capacity of the section to obtain the limit load factor. The 

method has several advantages in comparison to other traditional methods. 

This method has been implemented on ANSYS software using APDL routines. Problems 

solved include: simply supported and fixed square and circular plates with uniform and 

concentrated loads, plates with irregular boundary conditions and shapes as well as 

continuous plates with checkerboard loading. The results from the above analyses match 

analytical results very closely, thus demonstrating the usefulness of the method used. 
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Chapter 1 

Introduction 

1.1 General Background 

Most structures are currently analyzed by assuming elastic behavior. The results of this 

elastic analysis are used to design the structures for limit behaviour of individual 

components. 

Elastic analysis implies that the structure is subjected to elastic stresses at specified loads. 

In adopting a limit design, the structure needs to be subjected to limiting stresses. Limit 

stresses usually involve local or global plastic zones. Therefore. there is a discrepancy 

between the analysis and design philosophies of structures. In case of determinate 

structures, the effect of this discrepancy is usually negligible. Even for other structures, 

the presence of residual stresses produced by repeated loading beyond elastic limit (shake 

down) and other beneficial effects can sometimes offset this discrepancy [Ad Juri, 200 1 b]. 

However in general. for indetenninate structures and complex situations, the difference 

could be very significant. Many practical structures are highly redundant and hence are 

complex and indeterminate. 

One way of removing this discrepancy is by analyzing structures using limit analysis. 

Using limit analysis, the reserve strength which is available beyond the formation of first 

plastic defonnations in most practical structures could be made use of, thereby achieving 



considerable economy in design. However, rigorous limit analysis has several difficulties 

associated with it. 

1.2 Need for tbe Proposed Work 

The methods available for plastic analysis such as those based on the upper bound and 

lower bound theorems are tedious for structures with a high degree of redundancy. They 

are also impracticable for large structures. Finite element nonlinear analyses have 

problems including, modeling difficulties and excessive computational requirements for 

practical applications. Hence, a systematic, simple and robust estimation of limit loads 

would be a useful addition to the tools currently available. 

Methods such as the Gloss R-node method and the Dla method have been developed for 

this purpose. These methods work well for components where very large plastic zones 

characterize collapse mechanism. However. these methods have some difficulties for 

civil engineering type structures where a large number of members interact with 

relatively small plastic zones at collapse. These methods are based on stress level 

modification and therefore make use of solid elements with discretization through the 

thickness. If shell elements can be adopted as in the case of the Elastic Compensation 

method. they require additional calculation of material and cross sectional parameters 

such as generalized stress resultants. 

An approach involving the use of modified secant rigidity [Adluri, 1999, 200la&b] built 

on top of the existing robust methods addresses many of these difficulties. This approach 
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has not been applied in great detail for continuous structures such as plates. The present 

work has been carried out to adopt and implement this method for the estimation of limit 

loads of plates. The effectiveness of the technique is checked for both simple as well as 

complex types of plate configurations. 

1.3 Objectives 

The present research has the following objectives: 

1. Implement the robust technique for limit load estimation of plates based on modified 

secant rigidity using ANSYS software and it's APDL (Ansys Parametric Design 

Language) routines. 

2. Use different yield criteria and apply the scheme to: 

a) Regular plates: Simply supponed and fixed plates of various shapes and loading 

b) Irregular plates: Plates with irregular boundary conditions as well as shape 

c) Continuous plates: Continuous plates with different extreme end conditions and 

loading on the panels. 

3. Com~are the method with analytical methods for the determination of limit loads. 

existing robust methods or non-linear finite element analysis (wherever appropriate). 
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1.4 Organization of the Thesis 

The thesis is organized on the following lines: 

Chapter 1 briefly introduces the need for the present method and other relevant material. 

Chapter 2 provides a detailed review of the available literature and appropriate theoretical 

background. A description of plasticity, robust methods and their origin. has been given. 

A brief outline of a few well-known robust methods has been presented. A section 

describing the theoretical aspects of plate analysis is included. Elastic analysis of plates 

using cartesian and cylindrical co-ordinate system has been discussed. Further, the upper 

bound and lower bound theorems and their applicability to plates has been highlighted. 

Chapter 3 provides a simple description of the original theory for the technique used in 

the present work. This technique is discussed and compared with existing robust 

methods. 

Chapters 4 and 5 present the application of the present method to regular, irregular and 

continuous plate structures, respectively. The description of the analyses and a discussion 

of the results are presented. 

Chapter 6 concludes the research. It contains a brief summary, the main conclusion of 

the work along with recommendations for further study. 
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Several appendices are attached at the end of the thesis. These consist of ANSYS input 

file listings and the implementation for the various problems analyzed. The input files 

contain comments for the use of relevant infonnation for future use. 
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Chapter 2 

Literature review 

2.1 Introduction to Plastic Analysis 

The origin of plasticity as a branch of mechanics dates back to the period 1864-1872 

when Tresca published a series of papers on the extrusion of metals. He proposed the first 

yield criterion for failure of metal structures. It states that a metal yields plastically when 

the maximum shear stress attains a critical value. Prior to this, criteria for yielding were 

applied mainly to plastic solids such as soils, for example by Coulomb [1773], Poncelet 

(1840] and Rankine [1853]. Tresca's yield criterion was applied by Saint Venant to 

determine the stresses in a partly plastic cylinder subjected to Torsion or bending (1870] 

and in a completely plastic tube expanded by internal pressure (1872). Tresca's work was 

followed by Levy (1870] and then by von Mises [1913], who introduced the well-known 

pressure-insensitive yield criterion. Several studies have developed or extended the above 

formulations, e.g., Prandtl [1924], Melan [1938], Drucker, Greenberg and Prager [1951]. 

and Hill [ 195 1]. A good description of these and subsequent studies is given by Chen 

and Han [ 1987], Hill [ 1950] and Calladine [ 1969) among others. 

At small loads, most structures behave elastically. A number of elastic analysis 

techniques have been well established, chief among them is the Finite Element Analysis 

{FEA). A large number of software programs have been developed and used by 
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practising engineers to perform elastic analysis of structures. Elastic analysis indicates 

linear load-deformation pattern. A design based on elastic analysis assumes that failure 

would occur as soon as a critical point in the structure reaches yield stress. However. 

once such yielding occurs in the structure, redistribution of stresses takes place. The 

zones that would have yielded at a particular load level would not offer further resistance 

to increased loads. Such increase in load will have to be resisted by the remaining 

ponions of the structure. This redistribution continues with increase in load and would 

reach a stage when the structure would form a mechanism and would be on the verge of 

collapse. This load is termed as "limit load" of the structure. 

This was initially observed during column buckling investigations during the 1880s. 

Subsequently in 1914, Kazinczy observed that the ultimate load-carrying capacity of 

clamped steel beams was considerably higher than that predicted by theory of elasticity 

[Szilard, 1974]. The increased load carrying capacity is due to ductility or plasticity of 

most structural materials such as steel, aluminum and reinforced concrete. 

Although, structural analysis based on elastic theory yields results for stresses and 

deformations at working loads. it fails to assess the real load carrying capacity of the 

structure at ultimate (or factored) loads. At failure, the fundamental assumptions of 

elastic theory (such as Hooke's law, etc.) are no longer valid. Hence, using elastic 

analysis, information obtained on the basis of factor of safety against collapse is 

inaccurate. This is recognized by the widely established .. Limit States Design" 

philosophy [CSA, 1994]. The discrepancy is panly offset by the use of nonlinear 
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component design and use of load factors. However, for a rational design. the structure 

must be designed using a properly developed limit analysis [Adluri. 1999, 200la, b]. 

Proper estimation of limit loads involves plastic analysis considering non-linear behavior 

of materials and geometry. Such limit load estimates give us the amount of reserve 

strength available beyond the initial yield. This results in efficient use of material, leading 

to economy in design and improved safety. 

Limit load may be estimated using upper bound or lower bound techniques depending on 

the equations of mechanics involved in its determination. Lower-bound techniques give 

consideration to equilibrium and yield conditions. Whereas, upper bound techniques 

consider failure modes and energy dissipation. 

A complete non-linear analysis would involve complexities arising out of an incremental 

iterative analysis. Although commercia] software programs have been developed for this 

purpose, they often require considerable judgement and result in high computational 

costs. Also, if a structure is analyzed using both linear and non-linear FEA and the 

results compared with corresponding classical analysis, the difference in results would be 

considerably more for non-linear FEA. In other words, the accuracy obtained in nonlinear 

FEA is not comparable to that obtained in linear analyses. 

When a beam is loaded (Fig.2.1 -a) such that at maximum moment location, stress is 

below the proportional limit, the stress distribution is as shown (Fig 2.1-d (i)). With 

funher increase in load. the outer fiben of the beam in the vicinity of the maximum 
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moments reach yield stress fy (Fig. 2.1-d (ii)). As the load is increased further, the yield 

stress will propagate towards the neutral axis of the section (Fig. 2.1-d (iii)) until the 

stress distribution is nearly rectangular (Fig. 2.1-d (iv)). 

When yielding propagates throughout the depth, a plastic hinge occurs at that location. 

The constant moment of resistance offered by the section in this case would be the plastic 

moment Mp- The beam can still carry an additional load P2 with no further increase in 

moment at the clamped section. Failure would occur due to fonnation of a second plastic 

hinge in the span of the beam. The defonnation pattern is called as collapse mechanism 

and consists of rigid body motions. 

By introducing an idealized stress-strain relationship, we can estimate the moment 

canying capacity of the beam. The fully plastic moment or ultimate moment capacity of a 

rectangular beam is given by 

(2.1.1) 

where, b is the breadth, h is the depth of the beam and J;. is the yield stress. 

Alternatively, ultimate moment per unit width is given by, 

h2 
M =/,-

p y 4 (2.1.2) 
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It is assumed here that the material is elastic-perfectly plastic and can undergo large 

strains without initiating strain-hardening effect. A comparison of this ultimate moment 

with the moment capacity of the section, obtained from elasticity theory gives. 

(2.1.3) 

From the above relationship, it is clear that there is a 50% increase in capacity by 

adopting plastic analysis for the rectangular beam section instead of using elastic analysis 

results. These benefits will be further compounded when the overall structural behaviour 

is involved in estimating limit loads. 

2.2 Theoretical Background 

%.%.1 Plastic Behavior ia Simple Teasioa and Comprasioa: 

Uni-axial state of stress represents the simplest type of loading condition. The simple 

tension test has Gt>O and a2=a3=0 and the simple compression test has a,=a2=0 and 

A plot- of the axial principal stresses (<11 or <13) against the axial strain E1(or E3) represents 

the well known uniaxial stress strain diagram. (Fig. 2.2 a) 

• Point A defines the limit of proportionality. 
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• Point B defines the elastic limit of the material. It is also called as yield point. 

• Usually, there is not much difference between proponional limit A and elastic limit 

B. Mild steel exhibits an upper yield point B and a lower yield point C. 

• Beyond point C, there is an increase in strain at approximately constant load. The 

behavior in the flat region CD is tenned as plastic flow. 

Most metals exhibit neither a definite yield point nor plastic flow. For such cases, yield 

strength is generally defined as an offset of stress corresponding to, usually a strain of 

0.1 %. (Fig 2.2 b )(Chen, 1988). This offset yield stress is defined as initiaf.vield stress. 

Above the yield point, the response of the material is elastic-plastic. The slope of the 

curve decreases steadily and monotonically leading to failure of the specimen at point E. 

A ductile material like mild steel can sustain large strains without failure. On the other 

hand, cast iron being brittle material fails with a little strain. Failure also depends on the 

type of loading. For example, concrete exhibits brittle behavior under tensile loading, but 

under compression it may exhibit a cenain degree of ductility before failure. 

2.2.2 Ualoadiag aad reloadiag 

Consider the case of a test specimen loaded monotonically to some value beyond the 

yield point and then completely unloaded. The behavior is as shown in Fig. 2.3. 

• OB on the strain axis indicates the irrecoverable residual strain or plastic strain. 
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• BC is the recoverable strain and is called as elastic strain. 

• At this stage, if the specimen is re-loaded, the stress-strain curve follows the path BA 

similar to the unloading path AB. 

• The material behavior is elastic till it reaches the previous maximum stress at point A. 

• CJA is called as subsequent yield stress, beyond which further plastic deformation is 

induced and stress-strain curve follows the original path for monotonic loading. 

l.l.J Idealized stress-strain models 

From the previous discussion, the following may be noted: 

• No single relationship exists between stress and strain for different materials. 

• Stress need not be a function of strain alone, but also depends on the previous loading 

history. Thus the material behaviour is load-path dependent. 

• Residual strains of different magnitudes can be obtained by varying the loading 

history with the stress starting and finishing at zero. 

In order to obtain a solution for a deformation problem, it is necessary to idealize stress­

strain behavior of the material. A few well known idealized models are given below and 

are shown in Fig.2.4: 
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a) Elastic-Perfectly plastic model 

b) Elastic-Linear work hardening model 

c) Elastic-Exponential work-hardening model 

d) Ramberg-Osgood-model 

l.%.4 Taageat modulus., Plude modulus aad Secaat modulus 

As can be seen from the previous discussions. elastic-plastic stress-strain response of a 

material is non-linear and therefore an incremental approach is adopted to solve a 

deformation problem. It is assumed that a strain increment dE consists of two parts. 

namely the elastic strain increment dEe and plastic strain increment df:P (Fig.2.5) 

(2.2.1) 

The stress increment do is related to the strain increment dE by 

(2.2.2) 

If plastic strain is separated from total strain. the stress increment do- is related to the 

plastic strain increment df:P by 

(2.2.3) 

where. Et is the tangent modulus and Ep is the plastic modulus 
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For elastic strain increment. 

(2.2.4) 

where, E is the elastic modulus. 

The relationship between the three modulii E, Et and Ep is given by, 

(I lEt)=( liE )+(1 fE,) (2.2.5) 

Secant modulus is the value of Young's modulus derived from a secant drawn between 

the origin and any point on a nonlinear stress-strain curve (Fig. 2.5). The secant modulus 

is very useful in estimating the inelastic state directly without tracing the load path. It 

was used for well over a century to solve a variety of nonlinear problems. Many robust 

methods have been developed to take advantage of the secant modulus. The nonlinear 

FEA schemes also use the secant stiffuess. The most popular of these is the BFGS 

(Broyden, Fletcher, Goldfarb and Shanno - named after founders of the method) scheme 

commonly used with quasi-Newton methods. It has been implemented in several FEA 

software packages. 

2.2.5 Coacept of Limit load 

In the preceding discussions of stress-strain curves, there was a stage after .. proportional 

limit," at which the strain increases at a constant value of load. This constant value of 

load is called the limit load or plastic load. Alternatively, plastic or limit analysis can be 
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defined as a method to predict the load at which the structure will fail through the 

development of excessive deflections. Therefore, limit load or plastic load can also be 

defined as that constant load on the structure at which the deflections can increase 

indefinitely. 

2.2.6 Mecbaaism of Failure 

Plastic hinges occur in the yielded regions of structures. When sufficient number of 

plastic hinges are developed in a structure, it forms a mechanism of free rotating links. 

This leads to collapse. For a detenninate structure a single plastic hinge is sufficient to 

cause collapse. In the case of indeterminate structures, the number of plastic hinges 

required to form a mechanism, is given by R+l, where 'R' is the degree of 

indeterminacy. This implies that an indeterminate structure fails by shedding the 

indeterminacy through the formation of plastic hinges. 

2.2.7 Classical Upper aad Lower Bound tbeorems 

Classical limit analysis is carried out by applying static or kinematic theorems. The 

following assumptions are used for their application: 

1. Plane sections before bending remam plane even after bending (Kirchoff or 

Euler-Bernoulli) 

2. Deflections are such that equilibrium equations can be formulated for the undeformed 

structure (Lagrangian formulation) 
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3. The stress-strain relation is assumed to be elastic-perfectly plastic 

4. Local failure does not occur prior to the attainment of ultimate load 

5. The loading is proponional, i.e., loads are increased in fixed proponions to one 

another. 

Upper Bound Method: 

The theorem states that •'the critical load that is calculated based on a possible mechanism 

must either be equal to or greater than the actual collapse load." The application of this is 

also called as the ··mechanism or kinematic method" as the analysis is conducted based 

on some assumed collapse mechanism and by equating the rate of external work with the 

rate of dissipation of internal energy. 

Lower Bound Method: 

The collapse load is obtained based on an assumed equilibrium moment diagram that is 

safe everywhere. The load obtained is less than or equal to the true collapse load. 

2.3 Yield Criterion and Yield locus 

Z.J.l Yield criterioa 

The previous discussions were based on uni-axial state of stress. However, these concepts 

can be generalized for a combined state of stress. Yield criterion defines elastic limit of 
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the material under a combined state of stress. In general. the principal stress is a function 

of the state of stress 0'1j· This can be expressed as, 

f(<1iJ• kt. k2.········> = 0 (2.3.1) 

where, k~o k2, etc .• are material constants. 

For isotropic materials, values of the three principal stresses or their invariants 

sufficiently describe the state of stress and the corresponding yield conditions. 

l.J.l The Tresca Yield Criterioa 

The first yield criterion for a combined state of stress for metals was proposed by Tresca 

in 1864. This is also known as the maximum shearing stress theory, or simply the 

maximum shear theory, which results from observations that in a ductile material slipping 

occurs during yielding along critically oriented planes. According to this theory, yielding 

would occur when the maximum shear stress at a point reaches a critical value k. In 

terms of principal stresses, this condition is fulfilled when one-half of the greatest 

absolute difference between the principal stresses taken in pairs must be equal to k at 

yield. 

(2.3.2) 

The material constant k can be determined from the maximum shear stress in a simple 

tension test. Therefore, 
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k=/' 
2 

A detailed explanation about this theory is provided in Section 3.2.3 

2.3.3 The von Miles Yield Criterion 

(2.3.3) 

The octahedral shearing stress or strain energy of distortion is the basis of the von Mises 

criterion. It states that yielding begins when the octahedral shearing stress reaches a 

critical value k. In tenns of principal stresses. 

(2.3.4) 

where k is the yield stress in pure shear. For uniaxial case. the above equation reduces 

to, 

(2.3.5) 

A detailed explanation about this theory is provided in Section 3.2.3 
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2.4 Robust methods for Limit Analysis 

2.4.1 Need for robust metlaods 

Limit load determination is usually based on classical upper bound and lower bound 

theorems. However, this method becomes highly tedious for structures with high degree 

of indeterminacy. It is also impracticable for complex structures. This has motivated 

researchers to develop simplified methods to determine limit loads. Simplified methods 

such as Gloss r-node method, Elastic compensation method and 111a method have been 

developed for a similar purpose. 

Current robust methods provide a simple and quick estimate of limit loads for problems 

involving material non-linearity. Since the process involves successive elastic analyses, 

the solution is more stable and systematic and therefore has much lesser convergence 

difficulties. It also saves enonnous computation time. 

2.4.1 Origio of Robust methods 

Recent robust methods initially paved their way into limit design of pressure vessels by 

use of reduced modulus technique. A reduced modulus technique was introduced to 

categorize stresses in pressure vessels [Dhalla, 1984; Dhalla, 1987; Dhalla and Jones, 

1986]. This was intended to classify local clamp stresses induced in Liquid Metal Fast 

Breeder Reactors. However a significant observation from this technique was that clamp­

induced stresses could be secondary owing to their redistribution on account of material 
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or geometric non-linearity. Hence. a systematic reduction of elastic modulus resulted in 

inelastic response of the structure. The method was then extended to study inelastic 

response and follow-up characteristics of piping problems and the results were found to 

be satisfactory [Dhalla. 1984, 1987; Dhalla and Severud, 1984]. 

Subsequently, Marriott [ 1988] proposed a reduced modulus method for determining 

primary stresses in pressure vessel components. The method involves performing an 

elastic analysis and identifying elements having stresses greater than those defined by the 

code. The elastic modulus of each element would then be modified using the relation: 

£ =£ s,. 
R 0 Sf (2.4.1) 

where. Eo is the original value of elastic modulus. Sm is the code allowable stress and Sl 

is the stress intensity. 

The modified structure is then re-analyzed. This is followed by further re-adjustment of 

elastic modulii of critically stressed elements and the procedure is repeated until 

maximum stress intensity is less than Sm or some other convergence criteria. 

Further to this, the method of robust limit load analysis has been under extensive study by 

Seshadri and co-workers [Seshadri, 1991; Seshadri and Fernando, 1992; Fernando, 1992; 

Mangalaramanan and Seshadri 1995; Seshadri, 1997] and Mackenzie and Boyle 

[Mackenzie, et. al., 1992; Mackenzie and Boyle 1993; Mackenzie, et. al., 1993; Boyle. et. 

al., 1997; Mackenzie, ct. al., 2000; Nadarajah, et. al., 1993]. 
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Studies by Seshadri and co-workers led to the development of r-node method. which 

predicts limit load by detennining r-node stresses and subsequently modifying elastic 

modulus in repeated elastic analysis. 

1.4.3 Gloss Method 

The Gloss method is a simple technique to detennine the peak inelastic strains m 

structures and mechanical components for a given load [Seshadri and Kizhatil 1990; 

Kizhatil and Seshadri, 1991; Seshadri 1991; Raghavan, 1998]. It is a robust, systematic 

and effective technique involving the use of two linear finite element analyses. The 

structure under consideration is divided into a local region and remainder region for the 

purpose of analysis. The local region is a portion in the structure that undergoes high 

plastic defonnations. The remainder exhibits nonnal elastic stresses. 

The application of this concept involves relating the inelastic multiaxial stress 

redistribution in the local region due to plasticity or creep, to the uniaxial stress relaxation 

process. This is achieved in an approximate manner using a secant modulus scheme for 

all the points that have yielded: 

(2.4.2) 

where, a~; is the von Mises equivalent stress from the initial elastic analysis of the ,.u. 

element. 

21 



After making the above modification. a second linear elastic analysis is conducted. 

A typical GLOSS diagram is shown in Fig. 2.6. Here. OAF is the elastic perfectly plastic 

stress-strain curve and OC is the elastic line. The pseudo elastic point C (u~~"E~1 ). of the 

local element is located on this elastic line. The stress and strain of the local element 

( o-~2 ,et2 ) determined from the second linear analysis is represented by point E. The slope 

of the line OE is called as the secant modulus and that of BE as the relaxation modulus. 

The line BE can be extended to intersect the material stress-strain curve. This gives the 

inelastic strain in the local region. Some researchers used techniques similar to the 

GLOSS, e.g., Ralph [2000], who used the method to repeatedly increment the load to 

obtain a limit value. 

2.4.4 R- Node Method 

The salient features of the GLOSS method and the reference stress method were 

combined with ideas from Dhalla, Marriott, etc., by Seshadri [Seshadri and Marriott, 

1992]. They proposed the r-node method as an approximate procedure for determining 

limit loads on the basis of two linear analyses [Seshadri and Fernando, 1991 ]. The r­

nodes are load-controlled locations in a structure and can be described where the 

distribution of stress corresponds to primary stresses. The method is briefly described 

below: 

1. The structure under consideration is discretized and a linear finite element analysis is 

carried out for an arbitrary proportional load factor. 
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2. The elastic modulii of all the elements in the structure are modified using the secant 

scheme (similar to GLOSS). 

3. An elastic reanalysis is carried out and r-nodes are identified as points where the 

stress does not change between the two iterations. 

Use of the modified modulii in a second linear finite element run produces a stress 

distribution, which tends to a limit type distribution. From the results of the two runs, it is 

possible to locate points in the structure where stresses remain the same between the 

analyses. This means the stresses at these locations are insensitive to the material 

constitutive relations. These stresses are thus load controlled. These load-controlled 

locations are called redistribution nodes (r- nodes). The effective stresses at r-nodes are 

linearly proportional to externally applied loads. 

Thus, by knowing the effective r-node stress, the limit load on the structure can be readily 

evaluated. The local maxima of the stresses at the r-nodes are estimated. Each such local 

maxima are thought to be representing a plastic hinge location. These plastic hinges give 

rise to collapse mechanisms. The combined r-node effective stress, a,. can be found using 

the following relation, 

• Ia,.J 
a =..:..J·_•_ 

" n 
(2.4.3) 
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where, n is the number of r-node peaks or plastic hinges. The corresponding limit load is 

given by, 

(2.4.4) 

The r-node method has been successfully applied to several applications by Seshadri and 

associates. Of particular interest is the work by Mangalaramanan [ 1993] who applied the 

r-node method to several plate problems to obtain limit load estimates using the von 

Mises criterion. The present thesis uses several of his results to make comparisons. 

2.4.5 m-a method 

The m-a method [Mangalaraman~ 1997~ Seshadri, 2000; Seshadri and 

Mangalaramanan. 1997] is based on Mura's variational formulation [Mura and Lee, 

1962; Mura. Rimawi and Lee, 1964]. According to Mura's formulation. the exact limit 

load factor is bounded by upper and lower bound multipliers namely. m' and m0
• The key 

to the rn-a method is to identify the multipliers m' and m0
• and them-a method achieves 

this on the basis of two linear elastic finite element analyses It determines an improved 

lower bound limit load compared to Mura's limit load estimate. Them-a method has also 

introduced the concept of leapfrogging to limit state based on two linear finite element 

analyses. From these results. the limit load multipliers and hence the limit load can be 

evaluated. For proper identification of these multipliers. it is necessary to identify the 

kinematically active portion of the structure (tenned as '"reference volume") that is 
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involved in the plastic action [Seshadri and Mangalaramanan. 1997]. An iteration 

variable ( is used such that the infinitesimal changes in the elastic modulus of elements 

during second and subsequent analyses would reflect corresponding changes in ll( . It is 

ascertained that repeated analysis with modified modulus results in a decrease in stress 

distribution. The flatter (or even) distribution of stress during subsequent analyses would 

result in increase of m0 with ( . But m0 evaluated on the basis of total volume would 

decrease with increasing ( . Referring to Fig. 2. 7, for reference volume V R. such that 

ll~ < v. ~ Vr, the multiplier m0 is assumed to remain invariant with successive 

iterations. The calculation of reference volume based on m0 is shown in Fig.2. 7. The 

variation ofm', m0 with (is shown (Fig.2.8). 

The method involves a secant modulus adjusunent scheme similar to the r-node method. 

Firstly, a linear elastic analysis is conducted and the elastic-modulus of appropriate 

elements are modified using: 

(E.), = [ (:~, ] E, (2.4.5) 

where, Eo and Es are the Young's modulus in the first and second elastic analysis 

respectively. (u~}. is the equivalent stress for any element number k and u.., is an 

arbitrary stress value. 

IfV is the volume of the component or structure, 
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o u_, . .JV 
m = --;======= 

/~a (ao )2 ~V 
V~•-• d t 

and m~ and m~ can be determined for the two analyses. The average surfaces of 

dissipation can be expressed as 

0 m1 =c, 
0 

m2 =c2 

(2.4.6) 

(2.4.7) 

where c1 and c2 are constants. In Eq. 2.4.6, V11 $ V $ Vr. The theorem of nesting surfaces 

necessitates that m~ ~ m~ ~ m, where m is the exact factor of safety. 

In tenns of iteration variable, Mura's lower bound multiplier is given by: 

(2.4.8) 

where, u~ (()=(a~ t, is the maximum equivalent stress at iteration number i. 

The quantities m', m0 and <fM are all functions of iteration variable ( . With the use of 

repeated analysis, the multiplier ma. which implies the use of a elements in the finite 

element discretization that would lead to identification of an appropriate reference 

volume. The idea ofleapfrogging ofintennediate iterations is illustrated in Fig. 2.9. 
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2.4.6 Refereace Stress Metllocl 

The reference stress method [Sim, 1968] is a useful simplified method since it attempts to 

overcome some of complications of creep analysis. 

By definition, reference stress can be called as a stress which is a function of stress 

components that must reach the value of yield stress in simple tension (or compression) 

for yielding to occur. The basic principle of reference stress method is that the 

deformation of structures subjected to multiaxial creep can be related to the results of a 

uniaxial creep test carried out at the reference stress, through a scaling factor. 

Therefore, deflection '~' at a point in a structure at sometime 't' is given by: 

where, 

(2.4.9) 

s is the geometric scaling factor depending on configuration of 

structure and boundary conditions, 

Ec(t) is the creep strain at time 't' as obtained by uniaxial creep test 

performed at the reference stress (a .q ). 

During creep analysis of beams, it is seen that stresses are redistributed from an initial 

elastic distribution to the stationary state, and the stresses at particular locations in the 

cross-section are invariant. The r-node method is based on this concept. Deflections of 

rectangular beams based on this reference stress were found to be reasonably accurate. 
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Anderson [Anderson, Gardner, and Hodgkins, 1963] observed that reference stress is 

insensitive to exact creep exponent 'm' in the strain rate to stress relationship. 

(2.4.10) 

But as m ::::) a, limit solution to perfect plasticity would be approached, i.e., at limit load. 

the reference stress would equal the yield stress. Using this as a basis, reference stress at 

any other load is, 

p 
(T ,.q = (-)/,. 

Pt . 
(2.4.11) 

where, p = Load on the structure and PF the limit load. 

1.4. 7 Elastic compeasatioa method 

The elastic compensation method (ECM) to evaluate limit loads methods [Mackenzie, 

Shi and Boyle, 1992; Shi. Mackenzie, and Boyle, 1993] is based on the secant modulus 

scheme similar to that of the GLOSS and r-node. 

The elastic compensation method can be used to define lower or upper bound limit loads 

for any structure modeled by continuum finite elements. A finite element model is 

created and a nominal load set Pd is applied. A linear elastic finite element analysis is 

then perfonned and the linear elastic stress field is obtained. The process then involves 
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iteration in a series of linear elastic analysis of the model. After each iteration. the elastic 

modulus of each element in the model is modified according to me equation: 

(2.4.12) 

where. i is the present iteration number. Gn a nominal stress value and G(i.J) the maximum 

(unaveraged) nodal equivalent stress associated with the element from the previous 

solution. 

A typical plot of the maximum stress in the entire model against the iteration number 

results in a graph of the fonn shown in (Fig. 2.10). Modifying the elastic modulus causes 

redistribution of stresses between iterations. In some cases the maximum stress increases 

between iterations. Generally. over a number of iterations. there is a net decrease in 

maximum stress with respect to the initial solution. 

The stress field obtained for each iteration meets the lower bound limit load theorem 

requirement of statical admissibility. The maximum stress may or may not violate the 

requirement that it should not exceed yield. depending on the magnitude of applied load 

set P d· The best value for lower bound limit load possible for a given stress distribution is 

one in which the maximum stress equals yield. The value of the load to cause such stress 

can thus be calculated by using proportionality. Thus. the lower bound limit load PL is 

given by: 
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(2.4.13) 

where, P d is the applied load se4 fy is the yield stress and c:rR is the lowest value of 

maximum stress over successive iterations 

Similarly, the results of the above procedure can be used to estimate the upper bound 

limit load as well. Generally, the upper bound method is considered to give a very close 

result when compared to the lower bound. 

2.4.8 Summary of the Curreat Robust Metllods 

The methods discussed have many similarities. They involve conducting linear elastic 

finite element analyses and projecting the value of limit load or inelastic evaluations, 

using stresses at points. They all adopt secant modification schemes. The r-node method 

is a simple and systematic method that estimates the limit loads with ease. The plot of the 

r-node peaks in the structure could sometimes give a quick idea about the collapse 

mechanism of the structure. The reference stress method helps us to overcome difficulties 

faced in creep analysis and also leads to the ideas used in developing the r-node analysis. 

Determining reference stress by itself is a difficult task. But this difficulty can be 

overcome by evaluating limit loads using the r-node method and thereby evaluating the 

reference stress. The ECM uses schemes similar to the r-node method but does not 

require the identification of any special points. The rn-a method has a better theoretical 

basis but essentially predicts limit loads with similar accuracy. 
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2.5 Dift'ereatial equatioa of plates ia eartesiaa eo-ordiaate system 

The present thesis is concerned with robust estimates of limit loads for plate structures. 

The basic plate theory for elastic analysis is well established. It is briefly reviewed 

below. 

2.5.1 Geaeral 

The deflected shape of a plate is adequately defined by describing the geometry of its 

middle surface, which is a surface that bisects the plate thickness at each point. The small 

deflection plate theory, generally attributed to Kirchoff and Love is based on the 

following assumptions: 

1. The material of the plate is elastic, homogeneous and isotropic 

2. The plate is initially flat 

3. The thickness of the plate is small compared to its other dimensions. The smallest 

lateral dimension is at least ten times larger than its thickness 

4. The deflections are small compared to the plate thickness. 

5. The slopes of the deflected middle surface are small compared to unity 
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6. The deformations are such that straight lines, initially normal to the middle surface, 

remain straight lines nonnal to the middle surface (deformations due to transverse 

shear will be neglected) 

7. The deflection of the plate is produced by the displacement of points of the middle 

surface normal to its initial plane 

8. The stresses normal to the middle surface are of negligible order of magnitude. 

Many of these assumptions are similar to the assumptions in elementary beam theory. 

Small and large-scale tests have proved the validity of these assumptions. An additional 

simplifying assumption is also introduced often: 

9. The strains in the middle surface produced by in-plane forces can usually be 

neglected in comparison with the strains due to bending (inextensional plate theory). 

2.5.2 Co-ordiaate System aad Sign Coaveatioas 

For rectangular plates the Cartesian co-ordinate system is the most convenient. The 

external and internal forces and the deflection components u, v, and w are considered 

positive when they point towards the positive direction of the coordinate axes x, y, and z. 

In general engineering practice, positive moments produce tension in the fibers located at 

the bottom pan of the structure. This sign convention is maintained for plates. 
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Consider an elemental parallelepiped cut out of the plate as shown in Fig. 2.11. Assign 

positive internal forces and moments to the near faces. To satisfy equilibrium of the 

element. negative internal forces and moments must act on its far sides. The first 

subscript of the internal forces indicates the direction of the surface-nonnal peninent to 

the section on which the force or moment acts. 

2.5.3 Equilibrium of the Plate Eleaaeat 

Assuming that the plate is subjected to lateral forces only, from six fundamental 

equilibrium equations. the following three can be used: 

LM.v =0, L~ =0. (2.5.1) 

The behavior of the plate is in many respects analogous to that of a two-dimensional 

gridwork of beams. The external load Pz is carried by transverse shear forces Ox and Qy 

and by bending moments Mx and My. The significant derivation from the 

two-dimensional gridwork action of beams is the presence of the twisting moments Mxy 

and Myx. In the theory of plates it is customary to deal with internal forces and moments 

per unit length of the middle surface. To distinguish these internal forces from the above 

mentioned resultants~ the notations q11, qy. m11, my. mxy and myx are introduced. 

In order to set up the differential equation of equilibrium. the following steps need to be 

adopted: 

1. Select a convenient co-ordinate system such as the one shown in Fig. 2.12 

33 



2. Show all the external and internal forces acting on the element 

3. Assign positive internal fon::es with increments to the near sides and negative internal 

fon::es to the far sides 

4. Express the increments by a truncated Taylor's series 

5. Express equilibrium of internal and external fon::es acting on the element. This leads 

to derivation of the following equation: 

, a2 c2 a·m m.n· m,. 
--~ +2 · +--=-p (x y) ax 2 m-ay C:r 2 

: • 

2.5.4 Relation between Stress, Stnia ud displacements 

The moments mx and my produce stresses u ~ and u. given by, 

E 
(j~ =--,(c .. +V&w) 

1-v· ' 

E 
u,. =--2 (£, +vc~) 

· l-v · 

(2.5.2) 

(2.5.3) 

(2.5.4) 

The twisting moments m.y and my. produce shear stresses r .z:>· and rn which are again 

related to shear strain giving: 

E 
r .ry = Gy .ry = (1- v 2 ) r .ry = r )1% (2.5.5) 
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Strains and displacements are related by: 

a~w 
E =-.,--' - 0-·~ . 

The curvature changes of the deflected middle surface are defined by: 

Where, x represents the warping of the plate. 

2.5.5 Internal Forces Expressed ia Terms of 'w' 

(2.5.6) 

(2.5 .7) 

(2.5.8) 

The stress components u, and u _,. produce bending moments in the plate element. Thus. 

by integration of the normal stress components, the bending moments acting on the plate 

elements are obtained: 

•(A .' 2) 

m, = Ju,zdz and 
-(A / 2) 

•(A , ll 

m_,. = JO' rzdz 
-(A t 2) 

Similarly, the twisting moments produced by shear stresses ' = 'r:>· = r , .... can be 

calculated from: 

(2.5.9) 
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•(•12) 

ml) = Jrl)zdz and 
.... · 2) 

., • • 21 

m_,, = Jr~,zdz 
.... . l) 

Since r = r n · = r,,. mn· = m~, 

Substituting all the above equations and integrating finally leads to, 

::::: D(K, + ""' .. ) 

where, 

(2.5.10) 

(2.5.11) 

(2.5.12) 

(2.5.13) 

(2.5.14) 

(2.5.15) 
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represents the bending or flexural rigidity of the plate. Similarly twisting moments are 

given by, 

•(4 : 2) 

mn· = m, .• = J rzd:: 
-(4 12) 

= D(1-v)x 

(2.5.16) 

(2.5.17) 

(2.5.18) 

(2.5.19) 

2.5.6 Goveming Difl'ereatial Equatioa of the Plate Subjected to Lateral Loads 

Using the above equations, we can obtain a single governing differential equation of 

equlibrium: 

(2.5.20) 

Using the two-dimensional Laplacian operator: 

(2.5.21) 
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The equation is a fourth-order. non-homogeneous, partial differential equation of the 

elliptic type with constant coefficients. often called a non-homogeneous bi-hannonic 

equation. The equation is linear since the derivatives of w do not have exponents higher 

than one. 

2.5. 7 Differeatial Equatioa of Plates ia Polar C.ordiaate System 

Polar co-ordinate system becomes necessary when solving circular plate problems. This 

can be derived by using co-ordinate transfonnation or considering the equilibrium of a 

infinitesimally small element. 

The co-ordinate transformation between the Cartesian and polar co-ordinates is: 

x = rcostp, y = rsinq7 (2.5.22) 

(2.5.23) 

The Laplace operator on tenns of polar co-ordinates becomes, 

(2.5.24) 

The Laplacian operator V2 is replaced by v r ~to give: 

(2.5.25) 
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Moment equations in polar co-ordinates: 

m = -~o2w +v(_!_ a~w +.!. ew)] 
r .. ., !3. , .... ' ar- r- utp- r or 

(2.5.26) 

(2.5.27) 

(2.5.28) 

These equations are solved using a variety of classical techniques such as the double 

trigonometric series, etc. The results are tabulated for several cases by several authors 

[e.g., Timoshenko and Woinowsky-Krieger, 1989]. 

2.6 Yield Line Theory for Plates 

During the 1950s and 60s, Johansen [1972] extended the ultimate load analysis ofbeam 

and frame structures to reinforced concrete slabs and plates by introducing the concept of 

yield lines, which are two-dimensional counterparts of plastic hinges. Instead of 

calculating the shape of elastically deformed slab, the yield line considers lowest load 

corresponding to a failure pattern to be the critical or ultimate load. When a laterally 

loaded slab is on the verge of collapse, yield lines are fonned at locations of the 

maximum negative and positive moments. These yield lines divide the slab into plane 

segments. Once the correct failure pattern is known, the critical load can be obtained 
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either from vinual work or from equilibrium considerations. In either case. following are 

the assumptions: 

1. At impending collapse. yield lines are developed at the location of maximum 

moments 

2. The yield lines are straight lines (strictly speaking for distributed loads only. For point 

loads, yield lines may be curved) 

3. Along the yield lines, constant ultimate moments are developed 

4. The elastic deformations within the slab segments are negligible compared to the 

rigid body motions, created by the large deformations along the yield lines 

5. There are many possible collapse mechanisms and only one, corresponding to the 

lowest failure load governs. For this case, the yield line pattern is optimum 

6. When yield lines are in the optimum position, only ultimate bending moments and no 

twisting moments or transverse shear forces are present along yield lines 

7. For one-way slabs and for smaller span lengths of two-way slabs, the location of 

maximum positive moment from elastic analysis gives an idea about collapse 

8. Along fixed edges, negative yield lines develop 
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9. Yield lines pass through the intersection of the axis of rotation of adjacent slab 

segments 

10. Lines of support generally serve as axes of rotation 

11. Increased stiffiless in the plate enhances development of yield lines, while flexibility 

counteracts their fonnation 

12. The failure of individual points is governed by a rectangular yield criterion rather 

than the hexagonal criterion of Tresca or the octahedral shear stress criterion of von 

Mises. 

It is generally assumed that the slab is isotropic. Although. initially yield lines were used 

to obtain ultimate loads of under-reinforced or pre-stressed slabs, the method gives 

accurate estimates of over-reinforced or ductile metallic plates as well [Wood. 1965]. 

[Szilard, 1974] has shown that in most cases, yield line analysis may be used to estimate 

ultimate loads of metallic plates. 

Yield lines generally follow the above rules. However there may be certain cases wherein 

the optimum collapse mechanism follows a different yield pattern. Therefore in order to 

assess the optimum failure mechanism, a trial and error procedure coupled with an 

iterative technique is usually adopted. For the most common plate problems, yield lines 

are readily available. 
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Johansen's superposition theorem offers a simple method of finding the optimum yield 

line pattern. The theorem states that: 

The sum of ultimate moments for a series of loads is greater than, or equal to, the 

ultimate moment for the sum of loads. Mathematically, 

m,., +m,.2 +m,.3 +m,.4 + ..... +m.,. + ...... m,., ~ mr_p (2.6.1) 

Where milk is the ultimate moment corresponding to load p114, while mr_p, is the ultimate 

moment corresponding to the yield line pattern produced by the total of the loads: 

p,, + p,2 + P .. J + ......... p., ~ IP (2.6.2) 

" 

2.7Summary 

In the present chapter, the basic concepts of plastic analysis and limit analysis of 

structures have been reviewed. Existing robust methods for the obtaining limit loads 

such as the r-node, elastic compensation, 01a. and yield line methods have been briefly 

explained. The classical differential equations of equilibrium for the elastic analysis of 

plates are introduced. The next chapter will describe a robust technique based on secant 

rigidity, scaled yield criteria and weighted averages of generalized forces along special 

regions. The method is specifically applied to obtain limit loads of plates. 
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Chapter 3 

Robust Estimation of Limit Loads using Secant Rigidity 

3.1 Introduction 

The previous chapter reviewed plastic analysis of structures and robust methods for limit 

load determination. The present chapter describes an easy and efficient analytical 

technique for obtaining estimates of limit loads. This technique is generally applicable to 

any element type in conjunction with any yield criteria. It can be used with mesh 

densities generally lower than those needed for other types of robust methods described 

in Chapter 2. The method also provides the collapse mechanism of the structure 

automatically. In the process, it does not make use of r-nodes (or skeletal points) in the 

analysis. The results given by it can be shown to be at least equal to or better than those 

given by the r-node method. The general procedure and the rationale are originally 

described by Adluri [200la and 1999]. 

There are several types of non-linearity including material non-linearity, geometric non­

linearity, etc. The present thesis deals with the material non-linearity aspects of limit load 

estimation and assumes elastic-perfectly plastic material behaviour. The procedure can 

be extended to any other material behaviour with ease. From the study of plastic analysis 

and existing robust methods, one can ascertain the following: 
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1. Plastic hinges or yield lines develop along yielded zones of the structure. For a very 

simple determinate sttucture, one plastic hinge is sufficient to initiate collapse. For an 

indeterminate structure. the degree of indeterminacy decides the number of plastic 

hinges. For continuous problems in 2D or 3D, yield lines and other yield patterns 

decide collapse mechanism. 

2. When yielding occurs in a structure, the yielded region cannot sustain any additional 

loads. Hence. any additional load is taken by portions of structure surrounding the 

yielded region. In other words, redistribution of stresses is necessary to allow more 

loads to be carried by the structure after first yield. 

3. Since the yielded region cannot carry any more loads, the secant stiffness of the 

yielded part of the structure is relatively lower compared to other parts of the 

structure. 

4. Stresses may be classified into primary and secondary stresses. Primary stresses are 

those which are not self-limiting. In many structures, stresses at certain points will not 

be required to redistribute with increasing load. These points are called as 

equilibrium or load controlled points. For example, consider a simple bar fixed at one 

end, as shown in Fig 3.la When a load Pis applied at one end, it causes stresses at 

various points in the structure. As long as the load is constant, the stresses in the 

structure remain constant. This is necessary to satisfy the equilibrium condition, i.e., 

the externally applied loads must be in equilibrium with the internally produced 

stresses. There is no redistribution or relaxation by inelastic deformation. The 
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structural response is equilibrium controlled or load controlled. When the stresses 

reach yield. collapse of the structure sets in. The stress at these points is called 

primary stress. Because these stresses will not be redistributed. they are called as 

.. non-self- limiting ... 

5. Secondary stresses on the other hand are developed because of the influence of 

adjacent parts (self-constraint of the structure). These stresses are limited to a cenain 

value. usually the yield stress. They can go beyond the yield stress in an elastic 

analysis. Since that violates the material law (for an elasticperfectly plastic material). 

these stresses redistribute themselves. For example. consider deformation applied to 

the free end of the bar. Let the deformation 'o' be constant as shown in Fig. 3.lb. In 

this case. deformation and hence the strain remains constant. Because of the nature of 

the material and the constraint. the stresses calculated in an elastic analysis will not be 

correct for some deformations. The stresses will be .. self-limited .. to the yield stress. 

They are also called as deformation controlled stresses. 

6. If the state of redistribution has to be simulated by adopting elastic analysis. the 

stifliless of yielded regions has to be reduced relative to that of the surrounding 

regions. Alternatively. stiffuess of the surrounding regions can be increased. so as to 

cause redistribution. 
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7. Reducing stresses everywhere in the structure belo"' yield provides a statically 

admissible stress field. Hence. modulus reduction generally yields a lower bound 

limit lo~ provided stresses are everywhere below yield. 

8. In r-node meth~ the modified Young's modulus is inversely proponional to the von 

Mises equivalent stress produced in the first elastic analysis. Only two analyses are 

carried out. 

9. In elastic compensation method. the modified modulus is inversely proponional to the 

maximum (unaveraged) nodal equivalent stress associated with the element from the 

previous solution. Several analyses might be carried out to obtain a stationary value 

for the maximum stress in the structure. The softening of modulus of highly stressed 

zones after conducting an elastic analysis followed by repeated analyses can simulate 

failure in a structure. This is the basic procedure adopted by all the existing robust 

methods. 

10. There may be several peaks for the maximum equivalent stress in the structure. 

However, at collapse all these peaks are theoretically equal to the yield stress. 

II . At collapse, structures become determinate. 

This and other information was used by Adluri [ 1999 & 200 l a, b] to propose that 

modified equivalent secant rigidity be used instead of equivalent material modulus. Use 

of material modulus implies stress level modifications. This requires modifying the 

58 



modulus whenever the stress changes across the finite element mesh. For beam and plate 

type structures, this would mean that the modulus needs to be changed at all relevant 

points through the depth or thickness. If rigidity is used instead. through the thickness 

modification is eliminated. It has been shown theoretically by Adluri [ 1999. 200lb) that 

this eliminates the need for the use of r-nodes. In fact, if secant rigidity is used. r-nodes 

cannot be identified since they depend on 'through the thickness' variation of stresses 

only. The analyses and softening of rigidity are repeated to achieve convergence. After 

convergence, a weighted average of values at yield line points is computed. This value is 

scaled up to obtain the limit load. It has been shown that this method is theoretically 

equivalent to the r-node method after the first two analyses. It is also theoretically 

equivalent to the elastic compensation method, if peak stress is used instead of weighted 

average maxima_ The method is very close to the IDa method if weighted average is 

taken as the integral mean. The method is quite efficient in the sense that the mesh 

densities required are lower and special integration through the thickness is not needed. 

The problems associated with the use of peak stress and other numerical difficulties are 

avoided. 

The present study applies this method for the determination of limit loads of plate 

structures. It will be shown that a plot of the equivalent moments after the converged 

analysis using modified rigidity represents the collapse mechanism for the structure. In 

order to implement this concept to obtain limit load, an appropriate yield criterion such as 

Tresca or von Mises has to be chosen. 
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3.2 Yield Criteria 

As mentioned previously, the present chapter describes an analytical procedure for the 

estimation of limit loads of structures. The procedure is outlined by Adluri [200la. 

200lb] and Bolar & Adluri [2001]. In general, this procedure can be used with any yield 

criteria applicable for any type of element. In this thesis, this is applied to plate type 

problems using plate and shell elements. In order to apply the method. the yield criteria 

in tenns of stresses need to be redefined in tenns of plate (or shell) level generalized 

forces. This allows the direct use of the generalized force output from the particular 

elements chosen. In the following sections this is done for the commonly used yield 

criteria. namely, Tresca and von Mises. 

The general state of stress at a point in a continuum is shown in Fig. 3.2. Cauchy's 

fonnula states that the eighteen components of stress, as shown in the figure are sufficient 

to represent traction across any surface of a continuum. In tensorial notation, this is 

represented as, 

where, Ti v is the traction along direction i, 

a ii is the stress in the direction of i on the plane whose nonnal is along j 
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vif are the direction cosines of the traction forces with respect to the 

reference axes of the stresses. 

The equilibrium of forces in each of the co-ordinate directions furnishes three differential 

equations of equilibrium represented as: 

oa 
--"+B. =0 oJ , 

where, B; is the body forces in the direction i 

(3.2.2) 

Moment equilibrium around the coordinate axes leads to the symmetty of shear stresses, 

<7;i =aii• (3.2.3) 

Consider an elementary tetrahedron such that the plane ABC is infinitely close to the 

origin 0 (Fig. 3.3). The direction cosines of outward normal to ABC are represented by/, 

m, and n. Let T~> Ty, and T: denote the components of the stress vector acting on this 

face. From equilibrium considerations (Cauchy's formula), 

Tz = a "i + r"' m + r :r:n 

T,. = r_nl + an.m + r _,-:n 

~ = r n/ + r s:,·m +a ;:n 

(3.2.4) 

For different planes considered, different sets of stress vectors are obtained. However, 

there are three cases wherein the shear stresses ( r) are zero. These are the principal 
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stresses and the directions in which they act are called the principal directions. They are 

denoted as. u 1.u2 .andu3 In such a case, the traction vector is collinear with the nonnal 

vector of the plane. 

3.1.1 Evaluatioa of Priacipal Stresses 

We can find the principal stresses u 1,u2.anda3 by applying Cauchy's formula This 

results in a cubic equation: 

O"Jt-(j r..,. r~ j 
rn. aJ -a r~-= =0 (3.2.5) 

r.r: r}-:: a-

The three roots of the equation are the principal stresses. 

Consider a material subjected to direct stresses and shear stresses in 2-D. The stresses 

may be the result of direct forces and bending. These stresses are shown in the Fig. 3.4. 

The principal stresses for this case can be evaluated as, 

2r ..,. 
tan 2a = _ ___:.._._ 

(
ax -a,. )

2 

2 
--~· +r 2 ..,. (3.2.6) 

(3.2.7) 
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The maximum and minimum shear stresses are given by: 

r..y .... =± (3.2.8) 

Thus the maximum and minimum shear stress differs only in sign. And these two 

roots locate planes 90° apan. Hence, numerical values of shear stresses on the mutually 

perpendicular planes are the same. From the physical point of view, these signs have not 

meaning and the maximum shear stress regardless of sign is called the maximum shear 

stress. 

3.2.2 Mohr's Circle 

The state of stress for a two dimensional system shown in Fig. 3.4 can also be represented 

in the form of the well known Mohr's circle (Fig. 3.5). On a graph with axes a and r, 

locate points A ( Oi. - rzy) and B ( oy, ryx). Join AB and locate center of line AB as C. With 

C as center and radius as CA, draw a circle cutting the a axis at D and E. Principal planes 

are those planes on which shear stresses are zero. Hence, the two points E and D located 

on the a axis give the maximum and minimum principal stresses, respectively. The 

co-ordinates of the points D and E and angle a, when calculated from this plot of Mohr's 

circle. give Eqs. 3.2.6 and 3.2. 7 

63 



3.l.J Tresca Yield Criterioa: 

Tresca 's failure criterion states that if the maximum shear stress at any point is equal to 

the shear stress at yiei<L the material is deemed to have failed. Thus whenever a critical 

value r _ is reached, yielding in an element commences. For a given material, this value 

is set equal to the shearing stress at yield in simple compression and tension. Hence, 

according to Eq.3.2.8, if ax = ±a1 =±a~ 0 and a •. = r zy = 0, then 

a /,. 
r =-=-· 

nax 2 2 
(3.2.9) 

This conclusion also follows from the Mohr's circle of stress. To apply the maximum 

shear stress criterion to a biaxial state of stress, the maximum shearing stress is 

determined and equated to r _ given by equation 3.2.9. In doing so, for the principal 

Equation 3.2.9, a, must not exceed[, .. Similarly if (j~ >a,, a~ must not be greater than 

a Y Therefore the criterion for this case becomes, 

(3.2.10) 

If the stgns of a, and a~ are opposite, the maximum shearing stress, 

r _ = ~a,l + lo' 2l]t2 . The planes of these stresses correspond to possible slip planes. As 

before, to obtain the yield criterio~ 'tmax must not exceed the maximum shearing stress at 

yield in uniaxial experiment. Expressed mathematically, 
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or, for impending yield. 

~- u2 =±I 
u" u)., 

(3.2.11) 

Eq. 3.2.11 can be plotted as shown in Fig. 3.6. Its results have relevance only in the 

second and fourth quadrants. In the first and third quadrants, the criterion expressed by 

Eq. 3.2.10 applies. 

By considering u, and u 2 as the coordinates of a point. the stresses falling within 

the hexagon of Fig. 3.o indicate that no yielding of the material has occurred and that the 

material behaves elasticaliy. The state of stress corresponding to the points falling on the 

hexagon shows that the material is yielding. No points can lie outside the hexagon. 

For a multiaxial state of stress with principal stresses. u, ,u2 ,andup the magnitude 

. . lu, -a,l lu, -u11 lu3 -u,l 
of the maximum shearing stress IS the largest of • · . . 

a,-a2 =±f, .• 

a2 -a3 = ±fv, 

2 . 2 2 

(3.2.12) 
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When one of the principal stress vanishes, say o3=0, then the yield surface is represented 

by a hexagon with yield condition (Fig. 3.6) as discussed before, the criterion becomes, 

(3.2.13) 

which represents equations 3.2.10 and 3.2.11. 

3.2.4 voa Mises Yield Criterion: 

A more appropriate yield condition for metals considering the fact that volumetric strain 

does not contribute to failure is the von Mises criterion. In this approach, the total elastic 

energy is divided into two parts: one associated with the volumetric changes of the 

material and other causing shear distortions. By equating the shear distortion energy at 

yield point in simple tension to that under combined stress, the yield criterion for 

combined stress is established. 

In order to derive the expression giving the yield condition for combined stress, the 

procedure of resolving the general state of stress must be employed. This is based on the 

concept of superposition. For example, it is possible to consider the stress tensor of the 

three principal stresses CT1,CT2 ,andu3 to consist of two additive component tensors. The 

elements of one component tensor are defined as the mean hydrostatic stress 

(3.2.14) 
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The elements of the other tensor are (a, -a), (a! -a), and (a1 -u ). 

Writing this in matrix representation. 

0 

a~-a (3.2.15) 

0 

The first tensor component of Eq. 3.2.15 is called spherical or dilational (hydrostatic) 

stress tensor (represents change in volume). The last tensor of Eq. 3.2.15 is called 

deviatoric or distortional stress tensor (represents change in shape). 

The next step in deriving the von Mises yield criterion is to find the strain energy due to 

distortion. This is given by, 

(3.2.16) 

In terms of principal stresses, i.e with r ~· = r >-= = r =z = 0, the strain energy per unit 

volume is, 

(3.2.17) 
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The strain energy per unit volume due to hydrostatic stress can be determined from the 

above equation by first setting CT1 = u 2 = CT 3 = p and then replacing p by 

3(1 - 2v) 2 1 - 2v ' J U_.,,_ ' = p =- u, +CT~ +CTJ _,._ 2£ 6£ • (3.2.18) 

Subtracting Eq.3.2.18 from Eq.3.2.17, simplifying and using G=£/2(1+v). the 

distortion of strain energy for combined stress is given by, 

(3.2.19) 

According to the basic assumption of distortion energy theory, Eq. 3.2.19 must be 

equated to the maximum distortion energy in simple tension. The latter condition occurs 

when one of the principal stresses reaches the yield point/y of the material. The distortion 

energy for this is 2f/112G. Equating this to Eq.3.2.19, after minor simplifications, one 

obtains the basic law for idea)]y plastic material: 

(3.2.20) 

This can be written as, 

(3.2.21) 
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For the case of plane stress a 1 = 0, this reduces to equation of an ellipse (Fig. 3. 7) with 

the equation, 

(3.2.22) 

Any stress falling within the ellipse indicates that the material behaves elastically. Points 

on the ellipse indicate that the material is yielding. It is important to note that this theory 

does not predict changes in material response, when hydrostatic tensile or compressive 

stresses are added. This can be seen from Eq.3.2.20, adding a constant stress to each of 

the stresses does not alter the yield condition. For this reason, in a three dimensional 

stress space, the yield surface becomes a cylinder with an axis having all three direction 

cosines equal to t/ J3 . 

For a uniaxial state of stress with <fx=a, ay=O, and az=O. Eq. 3.2.11 becomes, 

2 ' ' u +3r· = J; (3.2.23) 

Therefore, in pure shear, yield stress is, 

f.. 
r,. = J3 (3.2.24) 

In terms of actual stresses, the von Mises yield surface is given by, 

(3.2.25) 
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3.2.5 Priaeipal Momeats: 

Consider a plate under bending. The state of general bending in a plate element is shown 

in Fig. 2.4 (Cb.2). Stresses are produced as a result of applied loads. They vary through 

the thickness at any given location. These can be integrated over the thickness of the 

plate to obtain the bending moments about different directions. 

+{.\12) 

M" = Ja .. zdz and 
-(.\ 12) 

+U 12) 

M). = Ja,.zdz 
-1' ' 2) 

Similarly, the twisting moments produced by shear stresses r = r z,· = r ,7 can be 

calculated from: 

+{.\ ! 2) 

M .ry = Jr z,·zdz and 
-(i/2) 

+{.12) 

M . ., = J r yx zdz 
-(A/2) 

Since r = r z,· = r _v .. , M ry = M ,. .. 

(3.2.26) 

(3.2.27) 

Similar to principal stresses, principal moments can be defined as, moments Mx and My 

on those planes where Mxy=O. As in the case of principal stresses, Mohr's circle can be 

used as shown in Fig. 3.8. These are given by [Jaeger, 1964], 

(3.2.28a) 

where, M:x. My and Mxy are the plate bending moments as shown in Fig. 2.4 
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m1 and m2 are the maximum and minimum principal moments respectively 

The inclination of the principal plane is given by, 

(3.2.28b) 

where, 8p is the angle of the principal plane on the element. 

3.2.6 Yield Criteria ia Terms of Momeats: 

In bending of plates, the combined effect of all forces is collectively represented as 

'generalized' stresses and the corresponding strains as •generalized' strains. These 

generalized stresses are usually the moment resultant Mx. My and M~. (for rectangular 

coordinates) or Me. M,, and M,e (in polar coordinates). Since plane sections remain 

plane, the simplest case occurs when there is no resultant axial strain. For this case, the 

stresses at failure of the plate section reach the constant value 0}· on either side of the 

neutral axis as shown in Fig. 3.9. 

If a single moment is present in the plate, the state of stress when yielding has propagated 

through the entire thickness is similar to that for a beam as shown in Fig. 2.1 (Ch.2) and 

Fig. 3.9. The moment per unit length of the plate for this state of stress can be computed 

by integration through the thickness. This moment is called as the plastic moment 

capacity Mp. 
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(3.2.29) 

where. fy is the yield stress and tis the thickness of the plate. 

If more than one moment component is present in the plate section. we need to use a 

compound yield criterion. When the fiber yield is governed by a failure criterion such as 

Tresca or von Mises, the failure of the overall section can be computed in terms of 

generalized stress moments. By integration, we can express any such stress level yield 

criterion in terms of resultant generalized forces. For example, the Tresca criterion (Eq. 

3.2.10) can be integrated through the thickness as, 

(3.2.30) 

or, 

I I I - -
~ 2 f. I'' 2 2 Using, m1 = Ja1zd::, m2 = Ja2zdz and MP = (- /,. ~ + • (rJtt= = 2 jf,.zdz = /,. !_, 

t/2 . . . . 4 
..!. ..!.. 0 

2 2 

(3.2.3la) 

(3.2.3lb) 
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M~ =Mp (3.2.32) 

where, tis the thickness of the plate 

z is the distance on the stress diagram at which a small strip d= as 

considered (Fig.3.9) 

Mrq is the equivalent moment for Tresca yield criterion. 

m 1 and m z are the principal moments, and 

Mp is the plastic moment capacity. 

Similarly, for von Mises criterion. 

!.. 

, 
2 

in Eq.3.2.22, we get 

(3.2.33) 

where, Mrq is the equivalent moment from von Mises yield criterion 

m1 and mz are the principal moments 

Mp is the plastic moment capacity 
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The yield locus is shown by an ellipse for von Mises in Fig. 3.1 0. Tresca yield locus is 

shown as the inscribed hexagon. The parallel flat portions AB. AF represent sagging 

moments and DC, DE are for hogging moments. The difference lm, - m~ I is represented 

by the line EF, assuming m1 to be positive and m2 to be negative. A similar case of 

1m2 - m,l occurs for line BC. 

The yield criterion in Eq.3.2.31 or 3.2.33 are scaled versions of true Mcq for the 

respective yield criterions. 

3.3 Secant Rigidity 

Secant rigidity may be defined as the value of flexural rigidity obtained from a secant 

drawn between the origin and any point of the moment-curvature diagram (fig.3.11 ). 

A pseudo-elastic analysis would be represented by line OA with initial flexural rigidity 

Do. If the cross-section under consideration is fully load controlled (determinate), initial 

elastic analysis would exhibit subsequent behavior shown by the horizontal line through 

point A. If the cross-section is displacement controlled, then subsequent behavior is 

shown by the downward line AC. A true secant line joins the origin to the actual 

moment-rotation point. In the absence of accurate detennination of that point, we can 

make an approximate guess and iteratively improve the guess. The simplest guess would 

be to use the slope of line OC. This is also the safest. This will require the maximum 

amount of iterations to converge. This is the secant slope used by the r-node, ECM and 

lila methods. For stress level criteria, using elastic-perfectly plastic material, 
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(3.3.1) 

For moment level criteria, 

MP 
D =-D s M o 

rq 

(3.3.2) 

Subject to certain conditions, other slopes are possible [Adluri. 2001b]. for example, 

(3.3.3) 

Since the actual yield curve (or moment-curvature relationship) will not be applicable for 

an arbitrary load on the structure, we scale the yield criteria [Adluri, 2001a, b] to induce 

failure at any given load level. This can be done by replacing the Mp in Eqs. 3.3.2 and 

3.3.3 by any other suitable value. In the present work, it is chosen as the absolute 

maximum equivalent moment in the entire field. Using this value will ensure that the 

secant rigidity estimate will not be too small and cause numerical problems. 

Using this process, we modify the secant rigidity of all points whether they lie above or 

below the scaled yield criterion. This gives us an image of the relative stiffitess of all the 

elements in the plate with respect to each other. Also, the collapse mechanism is 

dependent on the relative stiffitess and not on the absolute values of the stiffuess. This is 

because whatever is the value of stiffiless at a given part of a structure, the formation of 

collapse is dictated by the stiffitess of the surrounding parts as well since these contribute 
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to the fonnation of collapse. Hence the relative values of stiffitess plays a role in reaching 

a collapse mechanism. 

3.4 Limit load estimation 

When the plate structure is loaded with a small amount of load, it bends elastically. 

When the load is increased gradually in a proportional manner, the maximum stress in the 

plate reaches yield. Any further increase in the load results in plasticity and local loss of 

rigidity. This could be simulated by a reduction of secant rigidity in the plastic zones or 

an increase in the elastic zone. A combination of these two can also be used. Various 

schemes for such an adjustment are possible. The simplest scheme is proportionate 

adjustment. As mentioned above, this is a most conservative adjustment for structures 

that do not exhibit .. sudden stiffening" [Adluri, 200lb]. The proportionate adjustment is 

applied unifonnly across the structure and hence does not need to identify the 

demarcation between plastic and elastic zones. 

1 v_ cx:-Dold 
Mcq 

where, D is the rigidity and Mftl is the equivalent generalized force. 

(3.4.1) 

The proportionality constant can be taken arbitrarily. This scheme adjusts the relative 

rigidities across the plate structure. Regions that are prone to yield will attract more 

forces in an elastic analysis. These will be made softer (i.e., provide lesser rigidity) using 

the procedure. Similarly, the regions that will remain elastic need to attract the 
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redistributed forces away from the highly stressed zones. These regions will be made 

stiffer (i.e .• provide more rigidity) by the procedure. Although it is possible that in a 

complicated structure the redistribution does not happen proportionally to initial 

rigidities, this procedure comes close to reality by adopting rigidity modification during 

repeat analyses. 

When the rigidity is adjusted iteratively using the above scheme, the redistribution of 

forces is simulated. When the iteration converges, the locations that contribute to the 

collapse mechanism of the structure emerge clearly. In a plate, this results in the clear 

identification of yield lines. The equivalent moments at all the points on these simulated 

yield lines will be equal to each other at collapse. Due to numerical and other difficulties, 

the equivalent moment at these points may not be equal [Adluri, 2001a. b]. However, 

using this data, we can obtain a representative equivalent moment for all the yield lines. 

Again, several schemes are possible for obtaining this value. In case of simple structures, 

selection of even the maximum equivalent moment can be adopted if complete yielding 

has taken place and provided it is not a point of numerical error. Another method would 

be to use a weighted average. The simplest weighted average is to assign equal weights 

to all the points and obtain a simple average of all the equivalent moments on the 

identified yield lines. It must be noted, that the r-node method does not obtain the average 

of all the equivalent stresses along the yield lines. In contrast, the elastic compensation 

method uses only the maximum stress in the entire plate for further calculations. Using 

the weighted average along the yield lines is quite similar to using the integral mean in 

the Rla method. 
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The representative equivalent moment for all the yield lines obtained as a weighted 

average M tq-ov is used to obtain the collapse load. Since the analysis has been elastic 

(with the use of secant stiffiless), the load can be changed proportionately without the 

need for reanalysis. The load at which the collapse occurs is the load that raises the value 

of M ftl-ov to that of the plastic moment capacity Mp. 

(3.4.2) 

where, PL is the limit load of the structure and 

P is the load applied during the analysis. 

The above discussion is summarized in the following procedure for limit load estimation 

as outlined in Adluri [1999, 200la, b] and Bolar and Adluri [2001]: 

1. Choose an appropriate failure criterion for the plate problem. For example, Tresca 

type moment level yield criterion is routinely used for concrete plates. For normal 

bending of plates, as per Tresca, the plate section is considered to have failed when 

the maximum principal moment is equal to plastic moment capacity (or moment of 

resistance). 

2. Create a finite element mesh with plate or shell elements (no need for solid elements). 
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3. Apply a loading. w(x,y) to the plate such that w is proponional to the intended 

loading pattern. The load intensity can be arbitrary. The objective of the analysis is 

to obtain the proportionality factor for this pattern that would result in collapse of the 

plate structure. 

4. Perfonn a linear elastic analysis of the plate with the original propenies and rigidities 

using the finite element mesh. 

5. Compute the principal moments M1 and M1 using Eq. 3.2.18a for each element (or 

node). Fino equivalent moment M~ using Eqs. 3.2.31 or 3.2.33 as appropriate. At 

collapse, 

(3.4.3) 

6. Use the results to modify the local rigidity D(x,y) h"l the inverse proportion of 

equivalent moment at the point using, 

n_(x,y)=IM·I· D..,(x,y) 
Me~~ 

(3.4.4) 

where, M. is an arbitrarily chosen scaling factor for local failure through hinge 

formation (as well as for non-dimensionalization). It is recommended that this be the 

global maximum for the entire plate. Choosing the global maximum would avoid 

certain numerical difficulties. The factor a is kept as 1.0 for linear or proportional 

modification of rigidity. It can be chosen as less than 1.0 if slower convergence is 
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required in order to better represent the redistribution mechanism. If the problem 

behaviour is well underst~ the value of a can be taken as greater than 1.0 to speed 

up the convergence greatly [Adluri, 1999, 200lb]. The rigidity can be changed by 

modifying Young's modulus, thickness or any other material or geometric propeny or 

combination of properties. 

7. Repeat steps 4 to 6 above with modified properties till convergence is achieved. 

Usually, it takes between 4 and 15 iterations. Note that the r-node method uses only 

two analyses to project the limit load. However. for complex geometry including 

plates with fixed comers, etc.. identifying the r-nodes involves considerable 

judgement. It can be theoretically shown that the present method predicts exactly the 

same results as the r-node method at the end of two analyses -provided that the 

average maxima for the yield lines is estimated instead of the weighted average of all 

the values along all yield lines. 

8. For convergence, the percentage change between successive iterations is calculated 

for each element as: 

Percentage Change= I 00 x (1- ,,_.,..; Meq . ~ 
Meq itnatiolo ; . , 

(3.4.5) 

The mean of the percentage change of values for all the elements is then caJculated. 

This is repeated for successive iterations and the values obtained are compared. 
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Convergence of these values of mean percentage change would indicate convergence 

of limit load values. 

9. A plot of the equivalent moment after converged analysis will show the scaled 

moment distribution similar to yield lines at collapse. The yield lines are obtained as 

ridge lines in this plot. They can also be obtained using optimization techniques to 

find local maxima in one direction (as opposed to a local peak that is obtained as a 

stationary point by searching in two perpendicular directions). Find a simple or 

weighted average of equivalent moments along these 'yield' or ridge lines 

(M~-m-~). This average is used to scale the applied load and obtain limit load 

using, 

M 
"'lim = 'W p 

Mttt-~ 
(3.4.6) 

10. If the weighted average is difficult to compute, a simple maximum of Mcq across the 

plate can also be used. However, it must be ensured that the search for maximum 

does not pick up a localized numerical spike as a result ofFEA discretization. 

J.S Modified Secant Rigidity Method vs. R-Node & Elastic 

Compensation Methods 

There are several similarities and differences between the present method and the well 

established r-node method and the elastic compensation method. Some of these are 

briefly outlined in the Table below: 
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T•ble 3.1: Comp•riso• ofSecaat Rigidity, R-aoae ••d Elutic Compaas•tloa 
metllods 

Secut rigidity metlaod R-aode & Elude compeas•tioa metllods 

Redistribution IS caused by modifying Redistribution is caused by modifying 
secant rigidity which effectively means Elastic modulus. 
modification of any geometric or material 
prop=rty at local level. 
Any element type can be easily adopted for For r-node meth~ solid elements are 
the analysis. ShelVplate elements are used needed to effect stress level modifications 
for the present analyses. There is no need to modulii. Number of elements required is 
for discretization along thickness. high. ECM can use higher level elements 

but needs more computation in estimating 
equivalent_j)_ro~es through_ integration. 

Any yield criterion can be adopted. Use of r-node method has not been shown 
for different yield criteria. It can perhaps 
be extended. 

A plot of equivalent moments after Collapse mechanism is not used for limit 
converged analysis clearly shows the load. 
collapse mechanism for the structure. It is 
nee~'! to obtain the coll~se load. 
Limit load is calculated by determining The global maximum stress value is used in 
average value of equivalent moment along ECM. Average of stationary values of 
all yield lines. stress is used for r-node. 

3.6 Plate Problems 

The thickness of the plates analyzed in this thesis is small when compared to the lateral 

dimensions. The nonnal stress in the plate through the thickness is negligible depending 

on whether it is a thick or a thin plate. For a thin plate. the shear stress developed 

through the thickness can also be neglected. However in case of thick plates. the effect of 

shear defonnation is important and needs to be considered in the analysis (e.g., Mindlin's 

theory). The present thesis deals only with the analysis of thin plates and hence assumes 

that shear is neglected. If the shear stresses need to be accounted for, an appropriate 
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failure criteria can be used in lieu of the Tresca or von Mises criteria that have been used 

in the thesis. 

As already mentioned, the analysis is for material nonlinearity only. Large deflections 

caused by geometric nonlinearity are not included in tbe study. The effect of 

defonnations will not be significant for the collapse of plates analyzed here. It could 

however, be considerable for other types of problems. The method could potentially be 

extended to include these effects. 

3. 7 Finite Element Analysis Scheme 

Details of finite element mesh for individual problems are discussed in Chapter 4. 

General details of the analysis are given below: 

For all the analyses in this thesis, ANSYS FEA software has been used [ANSYS, 1997a, 

b, c]. Adluri [2001b] has used ABAQUS software to carry out a couple of plate problems 

to see the effectiveness of this method. ANSYS Shell element was chosen for the 

analysis. Depending on the type of analysis and accuracy required, four node (Shell 63) 

or eight node elements (Shell 93) were used. They have been chosen since they are well 

suited for linear analysis of thin to moderately thick shell structures. In the case of non­

linear analysis, Shell 143 element with additional capabilities to do non-linear analysis 

was chosen. The elements have six degrees of freedom at each node. 
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The procedure outlined in 3.4 above was implemented for plates using ANSYS finite 

element software. A subroutine was developed for automatic processing of the data after 

each iteration. The analysis consisted of the following steps: 

1) Conduct a linear elastic finite element analysis and output the moments M:~~.. My. 

and Mxy using the ET ABLE option of ANSYS. 

2) Compute equivalent moments and new rigidity for each element using the APDL 

(Ansys parametric design language) macro of ANSYS (see Appendix I for 

listings). 

3) The rigidity of each element is input via a separate file named 'MODV ALI' 

created by the macro. 

4) The problem is analyzed iteratively till convergence. 

5) The values of equivalent moments for all the repeated analysis were stored in a 

separate file called 'results' for plotting and calculation of limit load and 

convergence, using a spread sheet ('Excel' or 'Surfer32'). 

6) Details of individual analyses are discussed in the next chapter. 
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Chapter4 

Limit Analysis of Plates with Regular Shapes 

4.1 Introduction 

A robust method for the estimation of limit loads has been described in Chapter 3. The 

method uses secant rigidity modifications using a scaled version of appropriate yield 

criteria [Adluri, 2001a, b]. In this chapter, this method is employed to obtain limit load 

estimates for plates with simple geometry and loading. 

For each of the cases analyzed. the initial elastic analysis results have been compared 

with the theoretical results available in standard references [e.g., Timoshenko & 

Woyinowsky-Kreiger, 1989, Szil~ 1974). All the cases showed very good correlation 

indicating thereby that the finite element mesh used is acceptable. Details of subsequent 

analyses and calculation oflimit loads are described in the following sections. 

4.2 Simply Supported Square Plate with UDL 

A 1000xl000x10mm plate was chosen for the analysis. A uniform pressure (UDL) of 10 

N/mm2 is applied on the plate. The load intensity is arbitrary. The material has a yield 

stress of3SO MPa and Young's modulus of200,000 MPa 
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ANSYS Shell 63 element, which is suitable for linear elastic finite element analysis, was 

chosen. The thickness of the plate is such that it can be categorized as a thin shell 

problem [Young, 1989]. The FEA model for the analysis consists of a mesh grid of 

40x40 forming 1600 elements and 1681 nodes (Fig. 4.1 ). Since shell elements are being 

used, there is no need for discretization along the thickness. The pressure load is applied 

in the z-direction, i.e., perpendicular to the surface of the plate. Full model was chosen 

for the plate in order to demonstrate the formation of yield lines clearly. A quarter model 

can be used with equal effectiveness. For the present problem, the quarter model would 

need 400 elements to give the same accuracy as that for the full model. 

4.1.1 Yield Criteria iD Flexure 

As per the Tresca yield criteria of bending moments, when the numerically greater of the 

principal moments reaches M.,. failure is considered to have occurred (see Chapter 3). 

The directions of the principal curvature rates are considered to coincide with the 

curvatures of principal moments. The idealized moment-curvature relationship is shown 

in Fig. 4.2. 

If we consider the simplest case of a square slab on four supports with a uniformly 

distributed load, with degree of fixity varying from i=O for simply supported to i=l.O for 

fully restrained on all four sides, the failure mechanisms are as shown in Fig. 4.3 [Nawy, 

2000; Sobotka, 1989; Wood, 1965]. In case of the simply supported plate (Fig. 4.3a), the 

twisting moments are zero along the diagonal lines. Hence, the moments along these 
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lines are principal moments. For simple bending under UDL, both the principal moments 

have the same sign and hence, the jm, - m21 condition will not govern. Therefore, the 

Tresca hexagon and the square yield criterion of Johansen [1972) are identical. It can be 

shown theoretically that for this case the yield lines occur along the diagonals alone. In 

case of a slab fully fixed along edges, failure occurs not only along diagonals, but also 

along the fixed edges (Fig. 4.3c). The failure mechanism involves the fonnation of yield 

fans near the comers [MacGregor, and Bartlett, 2000; Nawy, 2000). For a partially 

restrained slab, the failure mechanism is as shown in Fig. 4.3b. 

In all the plate cases solved in the present thesis, the governing parameters have been lm, l 

and 1m2 I. This is because both these moments happen to be of the same sense. i.e., either 

hogging or sagging in respective directions. Hence, for Tresca criterion jm,l or jm2j 

would always be greater than.jm, - m~l 

However, in case of problems where opposite sense of moments occur (such as m1 being 

sagging and m2 being hogging), the governing parameter would be jm, - ( -m2 >I and 

should therefore be included in the analysis. 

4.1.2 Limit Load 

For the problem under consideration, a check on the first elastic analysis was initially 

carried out. At the center of the square plate, Mx = My = 477699 N-rnm. The 
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theoretical value is given by [Table 6 & 7 in ., Timoshenko & Woyinowsky-Kreiger, 

1989,]: 

M.,.,. =0.0419qa 2 (4.2.1) 

The error of the FEA result as compared to the above theoretical value was 0.27%. The 

equivalent moment distribution after first analysis (Figs. 4.4and 4.6) calculated using 

Eqs. 3.2.21 or 3.2.23 shows regions of low and high magnitudes of moments along the 

potential yield lines as well as in other regions. However, at the state of collapse, 

moments all along the yield lines must be equal to each other. In order to simulate this 

uniformity, a modification of rigidity is carried out using Eq. 3.4.4. The modification of 

rigidity causes a redistribution of moments in such a way that regions with initially high 

magnitude of moment are assigned low rigidity and vice-versa This causes the state of 

peak moments to even out with each successive iteration. In Fig. 4.4, the peak moment is 

at the center. As analysis progressed, it was noticed that the peaks develop a ridgeline 

from comers to the center. These ridgelines eventually match the yield lines. At the end 

of iterations, the moments at these lines are approximately equal to each other. Fig. 4.5 

shows the converged analysis for Tresca yield criterion. As can be seen, the yield lines 

are right along the peak ridge lines. Figs. 4.6 and 4. 7 show the results for the same plate 

using von Mises yield criteria as specified in Eq. 3.2.23 For this criteria too, the yield 

line pattern is similar to that obtained for Tresca criterion. This matches exactly with that 

predicted theoretically (Fig. 4.8). The input file listing along with the macro, which 

performs the post-analysis is given in Appendix A.l.l. 
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The difference between Fig. 4.4 and Fig. 4.6 is because of the assumption of Tresca and 

Von-Mises yield criterion. However, after convergence it can be seen that in both cases 

the moment distribution is very flat, indicating that the peaks of moments have been 

forced to attain a nearly unifonn value. 

After the convergence, the average moment along the yield lines is computed. This 

average moment is generated for an arbitrary load. The limit load is then calculated using 

Eq. 3.4.2. Fig. 4.9 shows a plot of limit load vs. iteration number for both Tresca and 

Von Mises criteria. 

The limit load values obtained above were compared with closed fonn results from 

classical theory. The value of limit pressure by using Tresca criterion and applying 

kinematic theorem is given by [Save, 1995; Save and Massonet., 1972]: 

M 
PL = 24-f 

a 

where, M Pis the plastic moment capacity of the section 

a is the width of the square plate 

(4.2.2) 

The same result is obtained by using both upper and lower bound theorems. Limit 

pressure for Von Mises criterion has been treated by Iliouchine [Save, 1995; Save and 

Massonet, 1972] and is given by: 
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(4.2.3) 

Table 4.1 shows the comparison of results of theory and the present method. 

The percentage enors as compared to theoretical results are 0.57 % and 0.43 % using 

Tresca and Von-mises criterion, respectively. In comparison. a full nonlinear analysis 

using ANSYS for the same mesh gave an error of 10.5% (Table 4.1 ). The present 

problem is the same as that solved by Adluri [2001b] using ABAQUS software. The 

ANSYS results from the present work for the modified secant rigidity method matched 

the results by Adluri [200 1 b] perfectly. The nonlinear analysis results obtained from the 

ABAQUS showed a limit load of0.2208 N/mm2
• This gives an error of 4.4%. While the 

ABAQUS nonlinear analysis predicted better results than those by ANSYS, it can be seen 

that the modified secant rigidity method used in this thesis outperformed the nonlinear 

analysis of both software packages. 

The present method used 1600 shell elements for the entire plate. The reason for 

choosing a full model in the present case (as mentioned previously) is to facilitate the 

surface plotting of equivalent moments, describing the behavior of the plate structure. 

The same result can be obtained using quarter model as well. As mentioned in Chapter 3, 

the present method avoids discretization along the thickness. As can be seen, there is a 

significant improvement in results using the present method. These results have been 

obtained after 8 iterations. It can be seen from Fig. 4.9 that limit load values even after 

3rd iteration have a very good accuracy in comparison with theoretical results. Moreover, 
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the value of equivalent moments plotted after the converged analysis clearly shows the 

collapse mechanism of the sttucture. The method improves the results with each 

successive iteration where as the r-node method is restricted to two analyses only. There 

is however, no theoretical bar on why the r-node method cannot be used with more than 

two iterations although Seshadri and associates restricted it to two analyses only. 

4.2.3 Comparison witb tbe R-Node Method 

Another square plate of size 609.6x609.6x38.1 was solved by Manga1aramanan [1993] 

using the r-node method. The mesh was 17xl7x5 (total 1445) solid elements for quarter 

model. The corresponding limit load was 4.66 Nlmm2
• The analytical limit load was 

5.334 Nlmm2 using Eq. 4.2.3. This gives an error of 12.6%. However, 

Managalaramanan used 1.155*24Mpt'L2 = 5.6013 N/mm2 as the theoretical value. 

Compared to this, the r-node result showed an error of 16.8%. Using the present method, 

the same problem was solved with a shell element grid of 17x 17 (total 289) for quarter 

model. The limit load after convergence was 5.32 N/mm2 giving an error of 0.26% as 

compared to that given by Eq. 4.2.3. For comparison, the limit load using the secant 

rigidity method was computed after just two iterations as is the case with the r-node 

method. The resulting value was 5.164 N/mm2 with an error of 3.2%. As can be seen, 

the present method is much closer to the theoretical results than the r-node method even 

after two iterations. This improvement can be attributed, among other things, to the use 

of shell elements instead of solid elements and the fact that the average of the values 

along yield lines is used instead of maxima. 
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4.3 Simply Supported Circular Plate with UDL 

A simply supponed circular plate with uniformly distributed load has been analyzed 

using the robust method discussed above. The plate has a radius of 250mm and a 

thickness of 10 mm. An arbitrary uniform pressure of 0.5 N/mm2 is applied 

perpendicular to the surface of the plate. The plate material has a yield stress of 350 MPa 

and Young's modulus of 200,000 MPa. 

As in the case of the square plate, ANSYS Shell 63 element was chosen for the analysis. 

The plate is analyzed as a thin shell problem. The model for the analysis consists of 30 

line divisions along the circumference and 24 line divisions along the radius fanning 720 

elements and 721 nodes (Fig. 4.1 0). This was generated. by revolving a line of length 

equal to radius, to form a circular surface. This resulted in triangular shaped elements at 

the center. Shell 63 is capable of generating solutions using triangular elements as well as 

quadrilateral elements. Cylindrical co-ordinate system has been used for modeling as well 

as the output. Symmetry has not been used in order to obtain a good surface plot 

representation of the equivalent moments for demonstration purposes. In a practical 

analysis, however, there is no difficulty in making use of symmetry. 

The yield criteria adopted for this problem are similar to those explained in Chapter 3 and 

used for the square plate in section 4.2. Since cylindrical co-ordinate system is being 

used, the principal moments are given by: 
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(M, +M8 ) 
m,, = ± .. 2 (

M, +Ms )! +M ! 
2 

r8 (4.3.4) 

The computations using ANSYS involve conducting a linear analysis and generating the 

equivalent moments using Eqs. 3.2.22 and 3.2.23. The rigidity of each element is then 

modified using Eq. 3.4.4. The next analysis is conducted on the modified structure 

keeping an other conditions the same. The analysis is repeated till satisfactory 

convergence is achieved. The input file listing along with the macro, which performs the 

post-analysis is given in Appendix A.l.2. 

4.3.1 Failure Criteria 

In case of an isotropic circular plate with uniform loading, a great number of yield lines 

start from the center. These radiating lines are shown in Fig. 4.11 . Since this is an 

axisymmetric problem, the principal moments become Mr and Me. Hence the 

mathematical form ofTresca criterion [Save and Massonet, 1972] is (fig. 4.12), 

Max ~M,j,jM8 11M.- M 8 1}= Mftl (4.3.5) 

The strain rate vector in polar co-ordinates has the form, 

K ={.!.. { dWJ 6 R{ dR 
(4.3.6) 
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where, K, and K 8 are the curvatures in the radial and tangential direction, 

respectively and W is the velocity field which is a function of distance r 

along the radius R. 

Stress points located on or inside the yield curve will represent the state of stress at 

various points on the plate. The locus of these stress points will be called the "stress 

profile." The stress profile must start from point A (r=O) because axial symmetry requires 

that M, = M 8 at the center. The stress profile must end at point 8 for r=R since M, =0 at 

the edges. In the case of line AF, K 9 =0 and hence W is constant. On the other hand, for 

line AB, K, =0, which would result in a linear function. Hence, lines AF is not 

considered for plastic flow. Similar condition applies for other direction too. 

The corresponding figure for Von Mises condition is shown in Fig. 4.13. 

4.3.2 Limit Load 

For the problem under consideration, a check on the first elastic analysis was initially 

carried out. This was achieved by checking the moments at the center and two arbitrary 

points on the plate. The moment at any arbitrary point ro is given by [Table 5-11, Baker. 

Kovalesky and Rish, 1972]. 

(4.3.7) 
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(4.3.8) 

(4.3.9) 

At center, r=O. Therefore, 

(4.3.10) 

where, R is the radius of the plate, r is the distance along the radius of the plate, 

p is the applied UDL, f.l is the Poisson's ratio, M, is the moment along 

the radial direction. and M 8 is the moment along the tangential direction. 

The elastic analysis moments at the center as well as two other arbitrary points compared 

very well with the above theoretical values. Subsequently. re-analysis was performed 

and 6 iterations led to convergence of values. 

Hopkins and Wang [1954] solved the problem with Tresca criterion to obtain the limiting 

value for a uniformly distributed load. They considered a velocity field and used 

equilibrium considerations to show that, 

(4.3.11) 
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Hopkins and Wang [1954] have also solved the same problem for Von Mises yield 

criterion as well. The curved stress profile AB (Fig. 4.13) is used. From the very nature of 

Von Mises condition, the resulting differential equilibrium equation is non-linear and has 

to be integrated numerically. The resulting limit load for Von Mises condition is given 

by: 

6.51M p 
PL =-__.:;.. 

R1 
(4.3.12) 

Limit load was calculated using Eq. 3.4.2. Fig. 4.14 shows a plot of the percentage 

change vs. number of iterations. Table 4.2 shows the comparison of results from theory 

and the present method. 

The percentage errors as compared to theoretical results are -0.05% and 0.46% for Treca 

and Von Mises criteria. respectively. These errors are very small and within the 

convergence deviations thus pointing to a near perfect set of results. A similar problem 

solved using r-node method as a twCHiimensional axi-symmetric model with 100 

elements along the radius and I 0 elements through thickness, had an error of 1.8 % 

[Mangalaramanan, 1993]. In the present problem. the number of elements used along the 

radius is 24 only. The present results have been obtained using 6 iterations. However, 

after the third iteration, the results are very close with analytical values as can be seen 

from Fig. 4.14. 
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From classical analysis, the collapse mechanism is similar to that of an invened cone 

(Fig. 4.11 ). The initial analysis produces a moment distribution as shown in Fig. 4.15 for 

Tresca criterion and Fig. 4.17 for Von Mises criterion. It must be noted that the plotting 

software used for obtaining the surface plot could only handle rectangular regions. 

Hence, for the sake of plotting, the circular plate is extended to look like a square with 

dummy areas to fill the extra material. The extra space does not affect the results in any 

way and is not part of the analysis. Fig. 4.16 and Fig. 4.18 show equivalent moment 

distribution after converged analysis. It must be pointed out that Figs. 4.15 and 4.16 

plotted for initial and final analyses look very similar. But the scales for moment values 

are different. In Fig. 4.16 for final iteration, the difference between the maximum and 

minimum moment is around l %. Corresponding difference in Fig. 4.15 is more than 

20%. 

4.4 Fixed Square Plate with UDL 

A 1 OOOx 1 OOOx I 0 mm fixed square plate with unifonnly distributed load is analyzed 

using the procedure described earlier. An arbitrary uniform pressure of 6 Nlmm2 is 

applied on the plate. The plate material has a yield stress of 350 MPa and young's 

modulus of 200,000 MPa. 

ANSYS Shell 93 element was chosen for the analysis. It is suitable for linear and non­

linear finite element analysis. The element has eight nodes with six degrees of freedom at 

each node. The finite element model for the analysis consists of a mesh grid of 80x80 
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Conning 6400 elements and 19521 nodes (the element is 8-noded). As before. since shell 

elements are being used. there is no need for discretization along the thickness. 

Symmetry has not been utilized. However, it can be used in a practical analysis without 

any restriction. The plate model is as shown in Fig. 4.19. The input fiJe listing along 

with the macro, which performs the post-analysis is given in Appendix A.I.J. 

4.4.1 Limit Load 

For the problem under consideration, a check on the first elastic analysis was initially 

carried out. The moment Mx (=My) at the center is given by [Table 35, .. Timoshenko & 

Woyinowsky-Kreiger, 1989], 

Mx = 0.0230qa 2 (4.4.1) 

The Finite Element result compared very well with the theoretical value (Table 4.3). 

Subsequent re-analysis was done and 10 Iterations led to convergence of values. Limit 

load was calculated using Eq. 3.4.2. 

The equivalent moment distribution after first analysis shows regions of high moments at 

the center and fixed edges (Figs. 4.20 and 4.22). But at the state of collapse, moment at 

all former peaks even out. It can be seen from Fig. 4.21 and 4.23 that the yielded zones 

are found along the diagonals and also the fixed edges. Hence an average value of the 

equivalent moment along diagonal yield lines and those along fixed edges is adopted for 

calculation of limit load. 
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Fig. 4.24 shows a plot of the percentage change between iterations for Tresca and Von 

Mises criteria: 

The value of equivalent moment after the 1Oth iteration has been considered for 

calculations after checking for convergence. 

The theoretical value oflimit pressure by using Tresca criterion is given by Sobotka 

(1989]: 

(4.4.2) 

The upper bound limit load is given by [Szilard, 197 4]: 

(4.4.3) 

This value has been used in lieu of Von Mises criterion limit load. Table 4.3 shows the 

comparison of results. The percentage errors as compared to theoretical results are 

2.00% and 1.95%, respectively. A similar problem solved as a quarter model using 

r-node method with a grid of 17x 17x5 was reported to have an error of -13.4 % with the 

corresponding theoretical value [Mangalaramanan, 1993]. 

It can be seen from Fig. 4.24 that the 10111 iteration has resulted in a good accuracy of 

analysis. Limit load values even after 41
h iteration have considerably small error. 
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From classical analysis, the collapse mechanism is as shown in Fig. 4.25. The initial 

analysis produces a moment distribution as shown in Fig. 4.20 for Tresca and in Fig. 4.22 

for Von Mises. The difference between the two figures is because of the assumption of 

Tresca and Von·mises yield criterion. However, it can be seen that in both cases the 

moment distribution after converged analysis (Fig. 4.21 for Tresca and Fig. 4.23 for Von 

Mises) is much flatter, indicating that the peaks of moments have been forced to attain a 

uniform value, which is equal to Mp at collapse. It must be noted that Fig. 4.23 shows a 

sudden increase in the moment at the four comers of the plate. This spike is unlikely to 

be pan of the collapse mechanism as indicated by the radial fans shown in Fig. 4.25. It is 

possibly just a numerical local error. Such spikes must obviously not accounted for in the 

calculation of limit loads. The elastic compensation method, if followed. would use such 

spikes rather than the average of the moments along the yield lines to obtain limit loads. 

Using this spike would give a larger error than would otherwise be the case. 

4.5 Circular Plate with Central Concentrated Load 

A circular plate with central concentrated load is analyzed using the robust method 

described earlier. The plate has a radius of 250 mm and a thickness of 10 mm (Fig. 4.26). 

A central concentrated load of l kN is applied on the plate. The plate material has a yield 

stress of 350 MPa and young's modulus of 200,000 MPa. 
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The description of the model and other data is similar to that adopted in section 4.3. The 

failure mechanism is similar to that shown in Fig. 4.11. The input file listing along with 

the macro, which performs the post-analysis is given in Appendix A.1.4 

4.5.1 Limit Load 

The elastic moment at any arbitrary point r is given by [Appendix A, Szilard, 1974]: 

p=(;) (4.5.1) 

M, = ( ~:)(1 + .uXInp) (4.5.2) 

M 9 = (:: )(1- ,u)-(1 + ,u)lnp) (4.5.3) 

The moments from the initial FEA compared very well with the above theoretical values. 

Subsequently, re-analysis was perfonned and 20 iterations led to convergence of values. 

Fig. 4.31 shows a plot of the limit load vs. iteration for both Tresca and von Mises 

criteria. The convergence is slower in this problem because of the presence of a large 

concentrated force instead of a distributed pressure. 

The equivalent moment distribution from initial analysis is shown is Fig. 4.27 (for 

Tresca) and Fig. 4.29 (for Von Mises). The Final results are shown in Fig. 4.30 for 

Tresca and Fig. 4.31 for Von Mises. It can be seen that in both cases the moment 
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distribution after converged analysis is much flatter, indicating that the peaks of moments 

have been forced to attain a unifonn value along ridgelines. Note that in the converged 

analyses representation (Figs. 4.28 and 4.30) the moment axis difference is very small. 

Hopkins and Wang [1954] have solved the same problem for both Tresca and Von mises 

criterion and have shown that both the limit load values coincide at limit state for a 

simply supported circular plate with central concentrated load. It is given by, 

(4.5.4) 

Table 4.4 shows the comparison of results from theory and the present method. 

4.6 Rectangular Plate Simply Supported on Shorter Edges 

A uniformly loaded 1500x 1 OOOx 10 mm rectangular plate simply supported on the shorter 

edges (Fig. 4.32) is analyzed using the secant rigidity method described earlier. An 

arbitrary uniform pressure of 5 Nlmm2 is applied on the plate. The plate material has a 

yield stress of 350 MPa and Young's modulus of 200,000 MPa. ANSYS Shell 63 element 

was chosen for the analysis. The model for the analysis consists of a mesh grid of 60x40 

forming 2400 elements and 2501 nodes. The analysis procedure is similar to that 

described in section 4.1. The input file listing along with the macro, which performs the 

post-analysis is given in Appendix A.l.5. 
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4.6.1 Limit Load 

The theoretical maximum moment is given by [Appendix A. Szilard, 1974]: 

(4.6.1) 

where, pis the UDL on the plate, Lis the length of the plate. 

This compared well with value obtained from the initial elastic analysis using FEA. 

Subsequently, a re-analysis was perfonned and 9 iterations led to convergence of values. 

The equivalent moment distribution after first analysis shows the mid plate region with a 

high magnitude of moment (Fig. 4.33). A plot of equivalent moment after converged 

analysis clearly shows one yield line as is expected at the center (Fig.4.34). Fig. 4.35 

shows a plot oflimit load vs. iteration. 

The limit load value obtained above was compared with theoretical results. The value of 

limit pressure by using Tresca criterion (Sobotka, 1989]: 

(4.6.2) 

Table 4.5 shows the comparison of results from theory and the present method. 

The percentage errors as compared to theoretical results is 0.1% by assuming Tresca's 

yield criterion. A similar problem solved as a half model using r-node method with a grid 
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of 18x12x6 was reported to have an error of -16.4% [Mangalaramanan, 1993] 10 

comparison with the corresponding theory. 

4. 7 R~tangular Plate Simply Supported on Three Edges with UDL 

A uniformly loaded 1500x900x 1 Omm rectangular plate simply supported on three edges 

(longer edge free) is analyzed {Fig. 4.36). An arbitrary uniform pressure of 5 Nlmm2 is 

applied on the plate. The plate material has a yield stress of 350 MPa and Young's 

modulus of200,000 MPa. 

ANSYS Shell 63 element was chosen for the analysis. The finite element model for the 

analysis consists of a mesh grid of 60x40 fonning 2400 elements and 2501 nodes as 

shown in Fig. 4.36. The input file listing along with the macro, which performs the post­

analysis is given in Appendix A.1.6. 

4.7.1 Limit Load 

For the problem under consideration, the maximum moment obtained in the first elastic 

analysis compared very well with the theoretical value given by [Table 42, Timoshenko 

& Woyinowsky-Kreiger, 1989]: 

M UIU = 0.0738qb~ (4.7.1) 

where, q is the UDL on the plate and b is the free length of the plate 
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Figure 4.33 Rectangular Plate Simply Supported on Opposite Sides -UDL, Tresca, First Analysis 



1600000 

1400'000-t 

1ZOU'UOU-t 

1000UIOO; 

Meq 

N-rnrn 

887.5 

x, rnrn y, rnrn 

Figure 4.34 Rectangular Plate Simply Supported on Opposite Sides- UDL, Tresca, Converged Analysis 



= r: ., -• riJ 

! J:l -
~ ! 

I 
A. 
A. 
Q 
I: 
0 

1 -.. 0 
A. 
A. 
:II 

riJ 
~ -A. 
E -.. riJ 

10 
., ., 
~ -E • -:II A. z .. 
I: • -~ 0 :II - Ill -• I: .. • ., -- ~ - ., 

=' 
~ • .. 

~ ., -., ..... 
ii • < ... 
0 ., 

N ~ • ., 
!,II ., 
~ • 0 
tJ ., 
~ • = ~ 
:II 

= = Ill - -~ 
ala•q=:J al-.aa:uad atnlosqy al8.1aAV 

156 



157 



...... 
Vl 
00 

Meq 

N-mm 

~ 
00 f'f') 

QO 
Q 
~ 

~ 
00 ~ 
Q 00 
N Q 

f'f') 

~ 
~ 00 

~ Q 00 
~ "':t Q 00 

II) Q 00 
\C Q 

t--

x,mm 

~ 
~ 00 

~ Q 00 
~ 00 Q 00 

~ Q\ Q 00 
~ Q Q 00 

~ 
~ ~ Q 00 

~ N Q 00 ~ f'f') Q 
~ "':t 

y, mm 

~ 

Figure 4.37 Rectangular Plate Simply Supported on Three Sides -UDL, Tresca, First Analysis 



x,nun 
y,nun 

Figure 4.38 Rectangular Plate Supported on Three Sides - UDL, Tresca, Converged Analysis 



' -................•...........................•.......................... = ~ ... .., 
"' c • ., .., 
"' -., .., .., ... 
.1: 
E-

1 c - 0 .. 
i 1: -:I ... 

{IJ 0 a. a-.. a. "!. • E ~ r;s .., -• -a. ... • -• Ul 
c • -w .., 

ell: 
• ... 
~ 
E ., 
a • ~ 
w .., 
~ .., ., 
a. 
.!! 
0 
'-J 
i -t a. 
M 

(lil 

~ 
~ 

~ 
u 

···············-·················································-····················-······················· -~ 
160 



., 
" -,::, 

0 ;j - " t .. 
~ 
a 
0 

'2 
1::: 
l 
A 
:1 

fl.2 
lilo-. -A 
E 
;j 

" -.. • .. -~ a.. 
E .. • :1 -z :1 .. c a 
0 • -- -• t .. .. Qr: -- • .. 

.! ., -.., 
lilo-. -• a 
< .... 
0 

" w 
Ill re .. 
" ... a 
0 

t-1 = ~ • t 
10 -

:1 u -~ 

161 



ChapterS 

Limit Analysis of Irregular Plate Structures 

5.1 Iatroduc:tion 

The previous chapter dealt with plates of regular shape such as square, circle and 

rectangle with different boundary and loading conditions. The present chapter deals 

with a rectangular plate with partial boundary conditions, an irregularly shaped plate 

and a continuous plate. Since theoretical results are not readily available to compare 

with, a non-linear finite element analysis was conducted for some of the problems. 

5.2 Rectangular Plate with Partial Boundary Conditions 

A 254x381 x 12.7 mm plate was chosen with non uniform boundary conditions as shown 

in Fig. 5.1 (a). The problem is similar to that used by Mangalaramanan [1993, Sec. 

5.11). An arbitrary unifonn pressure of 5 N/mm2 is applied on the plate. The plate 

material has a yield stress of207 MPa and Young's modulus of207,000 MPa. 

ANSYS clement Shell 63 was chosen for the analysis. The analysis was initially 

conducted for a mesh grid of 18xl2 and then increased to 42x27 and 84x54. The finite 

element model for the 84x54 mesh is shown in Fig. 5.1 (b). The Von Mises yield 

criterion for moments as defined in Chapter 3 was used. The rigidity modification and 
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re-analysis was conducted till satisfactory convergence was achieved. The input file 

listing along with the macro, which perfonns the post-analysis is given in Appendix 

A.2.1. 

S.2.1 Limit Load 

The equivalent moment distribution after the first analysis is shown in Fig 5.2.1t shows 

relatively high magnitudes of moments at the fixed edges and discontinuity points. A 

spike can be seen in the lower left side of the plot, which is a possible numerical enor 

because of local numerical error. The region between the clamped edge to simply 

supported edge has a parabolic variation of equivalent moment. However, after re­

analysis and convergence, moment at all former peaks is flattened and is nearly equal as 

shown in Fig 5.3. Fourteen iterations led to convergence. The yield lines were identified 

in a manner similar to that for a fixed square plate described in Chapter 4. The value of 

average equivalent moment along yield lines was considered. The average absolute 

percentage change at the end of each iteration is noted and this is plotted in Fig. 5.4. 

S.2.2 Comparison of Results 

The limit load value obtained above was compared with that from non-linear finite 

element analysis as obtained by Mangalaramanan [ 1993]. The limit load for various 

mesh sizes was calculated and this is tabulated in Table 5.1. The input file for the 

analysis is given in Appendix C.l.l. 
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From Table 5.1, it can be seen that the difference between the present result and 

nonlinear FEA is 8.9%. This is quite high compared to the very low errors obtained for 

all the previous cases when compared to the closed fonn theoretical results. Part of the 

reason must be the fact that nonlinear FEA gives inaccurate results. This can be seen 

from the comparison made in Table 4.1. The nonlinear FEA for the simply supported 

square plate under UDL gave an enor of I O.S%. If a similar error is present in the 

nonlinear FEA analysis reported in Table 5.1, it would explain the discrepancy between 

the secant rigidity method and the nonlinear FEA for the present problem. The same 

problem solved as a full model using solid elements with r-node method was reponed to 

have an error of -6.6% [Mangalaramanan, 1993] compared to non-linear Finite element 

analysis. This needs to be conttasted with the more than I 00/o errors that he obtained for 

other regular plates problems. 

5.3 Irregular Plate 

A plate that is irregular in shape and boundary conditions shown in Fig. 5.5 (a) is 

analyzed in this section. Since theoretical results are not readily available to compare 

with, a non-linear finite element analysis was carried out. The thickness of the plate is 

I 0 mm. An arbitrary uniform pressure of 5 Nlmm2 is applied on the plate. The plate 

material has a yield stress of350 MPa and Young's modulus of200,000 MPa. 

ANSYS Shell 93 element was chosen for the analysis. The finite element model for the 

analysis consists of 5962 elements and 18261 nodes (Fig. 5.S (b)) 
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The Tresca yield criterion was chosen for the analysis. The input file listing along with 

the macro, which perfonns the post-analysis is given in Appendix A.2.2. 

5.3.1 Limit Load 

The equivalent moment distribution for the first to fourth analyses is shown in Figs. 5.7 

(a) to (d). Subsequent re-analysis was perfonned for 30 iterations in order to see the 

possible trends (see Fig. 5.6(a) for 30 iterations and Fig. S.6(b) for the first 12 

iterations). It was noted that after 12 iterations the apparent convergence was reversed 

and that there was an increase in the values of average absolute percentage change. 

These results showed trends of convergence again after 30 iterations. For the present 

analysis, the 12th iteration was considered as converged and the corresponding limit 

load was calculated from yield lines as before. The equivalent moment distribution after 

converged analysis (iteration 12) is shown in Fig. 5.8. 

The limit load value obtained above was compared with the results from a non-linear 

finite element analysis. The same model with ANSYS Shelll43 element was chosen for 

the analysis. The material property assumed was bi-linear isotropic hardening with the 

assumption of true stress-strain behavior. An arbitrary pressure of 0.5 Nlmm2 was 

applied. The input file for the analysis is given in Appendix.C.l.2. Table 5.2 shows the 

comparison of results from non-linear finite element analysis and the present method. 

The difference as compared to non-linear finite element analysis is 3.4%. 
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S.4 Continuous Plates 

A continuous plate system was analyzed using the modified rigidity method. If the 

supporting beams are sufficiently strong to carry the imposed loads without developing 

plastic hinges, the case involves merely the study of individual slab failures. This is also 

valid if the plate is uniformly loaded on all panels. However, by superimposing on the 

dead load a checkerboard type live loading. a different yield line pattern may be 

obtained as shown in Fig. 5.9. 

Details of the continuous plate are given in Table 5.3. The plates are also shown in 

Figs. 5.10 (a) to (d). An arbitrary uniform pressure of 10 MPa is applied on all the 

plates. The plate material has a yield stress of 350 MPa and Young's modulus of 

200,000 MPa. 

As before, ANSYS Shell 63 element was chosen for the analysis. For Cases I and 2, the 

overall size of the system is 9mx4.5m. Supports have been provided at every 1.5m and 

3m for shorter and longer direction, respectively. For cases 3 and 4, the total dimension 

of the system is I 0.5x21 m. The boundary conditions for the plate along with loading are 

shown in Fig 5.10. A macro was written for modeling the continuous plate. It can easily 

generate the model for any panel size and divisions. This is given in Appendix A.3.1 for 

the simply supported case and Appendix A. 3.2 for the fixed case. 
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S.4.1 Limit pressure 

The analysis procedure is similar to that described for the previous analyses. The 

average of absolute percentage changes of equivalent moment between iterations is 

plotted in Fig. 5.11. Twelve to fourteen iterations led to convergence. After checking 

for convergence, the equivalent moments across the plate were plotted as a surface plot. 

The equivalent moment distributions for the first elastic analysis and for converged 

analysis are shown in Figs. 5.12-lS. The limit load of the central interior panel was 

calculated using equivalent moment identified along yield lines. 

S.4.2 Analytical Limit Loads 

The critical load for an interior panel of a continuous slab can be calculated from an 

equivalent simply supponed slab having reduced span lengths. This can be calculated 

from Johansen's formula given by [Szilard, 1974]: 

(5.4.1) 

where, a is the longer span of the individual panel, 

b is the shorter span of the individual panel, 

2a 
and b = 2b 

r J1 + Jll + .Jt + #3 
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J.li for an edge, is the ratio of the negative moment of resistance to the 

positive moment of resistance of the slab. 

In this case, the moment capacity of the plate was considered for obtaining the ratios f.l1. 

Initially, Case l and Case 2 were solved and compared with Johansen's fonnula. From 

Figs. 5.12 (b) to 5.15 (b), it may be seen that, the effect of outer edges being fixed or 

simply supported has a bearing on the behavior of the interior panels. This is also 

evident from the corresponding limit load values. Keeping the mesh size and panel size 

the same, the number of panels were increased to 7x7 (Cases 3 and 4) and the analysis 

was repeated. The behavior of the plate in this case can be seen from the plot of the 

equivalent moments after converged analysis. The limit load values for the interior 

panel have not been affected by the outer edges of the plate being simply supported or 

fixed. The interior panel behaves more like a fixed plate, since yield lines have formed 

in the span and along the supports. For a different loading pattern, the yield pattern 

might be different. If a dead load is present in addition to the live load as used in this 

problem, the yield lines may not fonn at the support lines. Instead, a set of negative 

bending yield lines might form in the panels where there is no live load. 

Using the present analysis, two approaches were adopted for the calculation of limit 

load. Firstly, the average equivalent moment of yield lines along edges and diagonals of 
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the central panel was considered. Nex~ the average equivalent moment of yield lines all 

over the plate was used to calculate limit load. 

For Cases 3 and 4, the mesh density used was only 12x7 for each panel. Since there 

were forty-nine panels in total, this coarse mesh was chosen to save time and 

computational effort. An increase in mesh size would certainly improve results with the 

comparisons mentioned in Table 5.4. 

Also, for Case 3, since the extreme edges were simply supported. a non-linear finite 

element analysis did not produce relevant results. The limit loads obtained were due to 

failure of the comer four panels, which behave like a plate with two edges simply 

supported and two edges fixed. Hence, a difference of 21 % was produced when the 

failure load for the central panel using modified secant rigidity method was compared 

with the non-linear finite element analysis. On the other hand, Case 4 which has 

extreme edges fixed bas produced good results in comparison with non-linear finite 

element analysis. 

As can be seen, the modified rigidity approach for limit load estimation can handle 

simple or continuous plates with a variety of boundary conditions and shapes. Although 

it has not been illustrated here, other types of loading patterns which produce 

non-standard yield patterns in continuous plates can be handled with the same ease. 
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Table S.l: Rectangular Plate with Partial Boundary Conditions under 

UDL 

Analysis Secant rigidity Non-linear FEA 
(Mises) [Mangalaramanan, 1993] 

N I"'- ~ N - N 11"1 -
Mesh size X X X X 

00 N ~ 00 - ~ 00 -
Limit Load 3.79 3.20 3.05 3.48 

N/mm2 

Table S.l: Irregular Plate with Partial Boundary Conditions under 

UDL 

AnaJysis SRM (Tresca) Non-linear FEA Difference 

Limit load 0.137 0.132 3.65% 
N/mm2 
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Table 5.3: DetaUs of Continuous Plates Analyzed 

Case No. of panels Overall t Mesh Total Boundary 
No. size(m) (mm) (/panel) elements cond. @ edges 

I 3x3 9.0 X 4.5 10 28 X 18 4536 s.s. 

2 3x3 9.0 X 4.5 10 28 X 18 4536 Fixed 

3 7x7 21.0 X 10.5 10 12 X 8 4704 s.s. 

4 7x7 21.0 X 10.5 10 12 X 8 4704 Fixed 
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Table S.4: Limit Loads of Continuous Plates with Loading on 

Alternate Panels 

3x3 Secant rigidity %Difference(*) 
panels interior panel 

Case 1 0.0833 23.5 
N/mm2 

Case2 0.1023 6.05 
N/mm2 

7x7 panels Interior % DitT. All panels % DitT. Non-linear % Diff. 
panel (*) (*) (*) 

Case3 0.1059 2.74 0.0975 10.5 0.0805 26.1 
N/mm2 

Case4 0.1068 1.92 0.1082 ~ 0.1022 6.14 
N/mm2 

(*) NOTE: Johansen's result is 0.10888 N/mm2
• All results are compared with the 

theoretical values as per Johansen [Szilard, 1974] 
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Cbapter6 

Conclusions and Recommendations 

6.1 Introduction 

Limit load estimates are very useful for many engineering applications -both in design 

and analysis type problems. There bas always been a need for robust methods for limit 

load analysis from the point of view of numerical stability and effon. Robust limit load 

analysis bas gained considerable attention over the past several years. Available robust 

methods adopt secant modulus modification as a means to cause redistribution in an 

elastic structure thereby producing limit behavior. The most significant among these 

methods are the r-node method, elastic compensation method and the IDa method. AJI of 

these use the Von Mises yield criterion to define an effective stress. This effective stress 

is used to obtain an estimate of secant modulus. The r-node method involves 

identification of r-node peaks to obtain limit loads. Such identification might require 

considerable judgement in some cases. The elastic compensation method is based on a 

maximum stress value. Because of numerical local errors, it can sometimes be difficult 

to properly identify the failure mechanism and the consequent limit load. The IDa method 

has a better theoretical basis but is more involved than the other methods. All of these 

modulus modification methods need stress level modifications and consequent 

discretization requirements. The present thesis made use of a robust method which has 
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several features of the above mentioned robust techniques for the estimation of limit 

loads along with additional advantages. The method generalizes the advantages of the 

existing robust methods so that it can be applied for any yield criterion and any finite 

element type [Adluri, 1999, 2001a, b]. The criteria can be in tenns of stresses or 

generalized forces such as moments and shears. The elements can be solid or plate/shell 

or other types. The generalization uses scaled yield criteria and is at least as accurate or 

better than the existing methods. It is easier (and cheaper) to apply since any type of 

finite element can be used. The use of this technique has been demonstrated in the 

present work for a variety of plate type problems. 

6.2 Summary 

The robust method used in the present thesis [Adluri, 200lb] is briefly summarized 

below: 

For the plate to be analyzed, apply a loading that is proportional to the intended loading 

pattern. The load intensity can be arbitrary. The objective of the analysis is to obtain the 

proportionality load factor for this pattern that would result in the collapse of the plate 

structure. Choose an appropriate pattern for failure criterion such as Tresca or von Mises 

patterns. The actual values of the patterns are not relevant. The form of the criterion 

must confonn to the element output variables, e.g., if plate or shell elements are used, the 

failure criterion must be in terms of generalized forces and moments. The objective of the 

analysis is to produce the relative secant stiffiless field at or near collapse. Such 
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simulation will automatically result in the identification of the failure mechanism of the 

structure. 

Perform a linear elastic analysis of the plate with the original properties and rigidities. 

Compute the principal moments and find equivalent moment as appropriate to the yield 

criterion chosen. Use the results to modify the local secant rigidity. 

Repeat the iterative process with modified properties until convergence is achieved. A 

plot of the equivalent moment after converged analysis will show the scaled moment 

distribution similar to yield lines at collapse. Find a simple or weighted average of the 

equivalent moments along these 'yield' lines. The ratio between this average and the 

yield moment capacity of the plate section gives the required limit load factor. 

This modified secant rigidity method has been implemented using plate/shell elements 

and ANSYS software. The implementation used fairly standard methods and was easy. 

Several plate problems have been analyzed using this technique. The post analysis 

consisted of surface plotting of equivalent moments after converged analysis. The 

average equivalent moment along yield lines was identified and used for limit load 

calculations. 

6.3 Conclusions 

The following are general conclusions of the present research: 
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1. Detailed implementation schemes have been developed for the robust method using 

ANSYS software and APDL routines. These routines have been automated to take 

any mesh and plate sizes as well as loading. material, etc. The implementation is 

very simple and was achieved with relative ease. If desired, it can be fully automated 

for any general problem thus freeing the user from any effon other than choosing the 

finite element mesh for initial elastic analysis. 

2. The robust method using modified secant rigidity has been shown to work very well 

for plates of different shapes, sizes, boundary conditions, loading and yield criteria. 

All mesh densities are considerably smaller than those employed for the other robust 

techniques. 

a) For simply supponed square and circular plates with UOL the error was within 

0.5% compared to theoretical values. 

b) For fixed plates of regular shapes and plates with concentrated loads, the method 

gives limit load estimates that are very close to the classical solutions (within 

0.5% to 2.5%). 

c) A rectangular plate with partial boundary condition was solved using the Von 

Mises criterion. This gave a difference of nearly 9% for a very coarse mesh when 

compared to the corresponding nonlinear FEA result. Funher increase in mesh 

density led to better results. 
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d) An irregularly shaped plate with partial boundary conditions has produced an 

error of 3.5% in comparison to non·linear finite element analysis. Hence the 

method is effective in solving irregular plate problems as well. 

e) In case of continuous plates, limit load for 3x3 panel had a difference of 6 % 

when compared with Johansen's formula [Szil~ 1974]. The Johansen result was 

derived assuming that the plate had unlimited number of panels on either side. 

When the number of panels were increased to 7x7, the error fell to about 0.6% 

(even with a very coarse mesh). 

f) For all problems dealt with in this thesis, eight to founeen iterations have led to 

convergence. By convergence, it is meant that the average absolute percentage 

change was between 0.25% to 0.94'/o. In some problems (such as square and 

circular plates with UDL), limit load values computed even after the third 

iteration have produced very good results (within 2%) and a clear plot of collapse 

mechanism. In case of irregular plates, the convergence leads to divergence and 

again convergence. 

3. In all cases where classical solutions are available, the method used here significantly 

out performed the nonlinear finite element analysis. 

4. The method used does not require any discretization through the thickness of the 

plates. Hence, much less number of elements is needed compared to those for other 

robust methods that generally require solid elements. 
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5. The method can be shown to predict better limit load estimates in comparison to other 

methods. For example, after two analyses, the method is theoretically guaranteed to 

give at least as good an accuracy (or better) when compared to the r-node method. 

6. The surface plot of the converged equivalent moment clearly shows the yield lines 

and hence the collapse mechanism of the structure. 

7. The study conducted in this thesis involved the use of both Tresca and Von Mises 

yield criteria and has produced very good results for various types of plates. The 

present method works with any other yield criterion. Other methods such as r-node 

have not been implemented for general yield criteria such as Tresca. 

8. The modification of secant rigidity can be performed by using any material or 

geometric parameter, such as Young's modulus, area. thickness, etc. There is no need 

for calculation of additional parameters (such as yield functions based on llyushin's 

model as in the case of ECM). 

9. Some of the disadvantages of the existing modified modulus methods could be 

avoided by using the present technique. 

10. In some cases, the method suggested yield line patterns that slightly deviated from the 

traditionally assumed yield line set. With further research, this might result in the 

improvement of classical results. 
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6.4 Recommeadations for Further Research 

The research presented in this thesis is applicable for thin plate structures with bending 

capabilities. The present study was limited to material non-linearity and isotropic material 

behavior. Further work is recommended for the following areas: 

1. Thick plate structures, deep beams and shells that involve significant shear forces in 

addition to bending moments. 

2. Extending the method to large deformation or geometrically non-linear problems. 

3. The effectiveness of the method needs to be checked on complicated areas such as 

stress concentration. fracture, etc. 

4. The selection of average equivalent moment along yield lines requires a bit of 

judgement. Hence, research may be directed towards developing an automated 

process, which can select the yield line pattern with ease. 

S. Materials such as reinforced concrete are generally orthotropic in behavior. Hence, it 

would be relevant to extend this technique for orthotropic material behavior. 
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Appendices 

The macros presented in Appendix A are for elastic analysis of the plate structures 

analysed in this thesis. Appendix 8 has the macro for modifying secant rigidity. 

calculating equivalent moments and repeated analysis. These have to work in conjunction 

with the problems of Appendix A. The appropriate macro. Tresca (Appendix 8.1 .1) or 

Von Mises (Appendix 8.1.2) can be placed in the cUITCnt working directory of the 

operating system along with a plate model macro of Appendix A.. The results after the 

analysis will be stored in a file named "results" 

Appendix C consist of macros for non-linear analysis implemented in this thesis 

The dimensions and mesh sizes for all these problems can easily be changed at places 

mentioned in the comments of the macro. As for the continuous plates (A.3.1 and A.3.2), 

the macro can pennit different sizes of mesh. panel as well as number of panels. 
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APPENDIX A 

A.l. ANALYSIS OF REGULAR PLATES USING MODiftED 
SECANT RIGIDITY. 

A.l.l Simply supported square plate subjected to uaiform pressure. 

! ####II# ANALYSIS OF A PLATE USING MODIFIED SECANT RIGIDITY ###### 

ffiTLE, ANALYSIS OF A SQUARE PLATE USING MODIFIED SECANT RIGIDITY 
/GRA,POWER 
/GST,ON 
~REP7 !ENTERPREPROCESSOR 

ET,l,SHELL63 

*SET,~IO 

*SET,EM.200000 
*SET,Ll,lOOO 
*SET .B 1,1000 
*SET,LZ,40 
*SET.B~40 
*SET,P,IO 

R,l,~ ••• ,, 
RMORE,,,,,, 
UIMP, l,EX, , ,EM, 

k, 1,0,0,0,, 
k,2,L 1,0,0,, 
k,3,L 1,B 1,0,, 
k,4,0,B 1,0,, 
L, 1, 2 
L, 2, 3 
L, 3, 4 
L, 4, 1 

LESIZE,l, , ,LZ,l, 
LESIZE,2, , ,BZ,l, 
LESIZE,3,, ,LZ,l, 

!USESHELL63ELEMENT 

! THICKNESS IN MM 
! YOUNG'S MODULUS IN N/SQ MM 
! LENGTH IN MM 
! BREADTH IN MM 
! LINE DMSIONS ALONG LENGTH 
! LINE DMSIONS ALONG BREADTH 
! PRESSURE LOAD IN NEWTONS/SQ.MM 

! INPUT THICKNESS 

! INPUT YOUNG'S MODULUS 

! DEFINE KEYPOINTS 

! DEFINE LINES 

! DEFINE DIVISIONS ON LINES 
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LESIZE,4,, ,BZ,1, 
AL,1,2,3,4 ! DEFINE AREAS 
ASEL,ALL, 
AMESH,ALL ! MESH AREAS 
FINISH 

/gopr 

/SOLU. 

nse1,s,loc,x,O 
D,all, ' ' ' ' ' ' ,UZ 
nsel,all 

nsel,s,loc,x,L 1 
d,all, ' ' ' ' ' ' ,uz 
nse1,all 

nsel,s,loc,y,O 
d,all, , , , , , , ,UZ 

nsel,all 

nse1,s,1oc,y,B 1, 
d,aJI, , , , , , , ,UZ ! CONSTRAINTS UZ 
nsel,all 

nse1,s,loc,x,O 
nse1,r,loc,y,O 
D,all, , , , , , ,ux ! CONSTRAINTS UX 
nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y,O 
d,all, , , , , , ,uy 
nsel,all 

nsel,s,loc,x,L 1 
nse1,r,loc,y,B 1 
d,all, , , , , , ,UX 

nsel,all 

nsel,s,loc,x,O 
nse1,r,loc,y,Bl, 
d,al1, , , , , , ,uy ! CONSTRAINTS UY 
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nsel,all 

SF ~L. 1 ,PRES,-P 
SFI'RAN 
ANTYPE,O 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 
IINP .macro I 

! DEFINE STATIC ANALYSIS 

! ## INPUT MACRO FOR ANALYSIS ### 

A.l.l Circular plate subjected to uniform pressure. 

! #ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT RIGIDITY# 

rriTLE, ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT 
RIGIDITY 
/GRA,POWER 
/GST,ON 
IPREP7 ! ENTER PRE PROCESSOR 

!USESHELL63ELEMENT 
! THICKNESS IN MM 
! YOUNG'S MODULUS IN N/SQ MM 
! RADIUS IN MM 

ET,1,SHELL63 
*SET, THK.,l 0 
*SET,EM.200000 
*SET,RAD,250 
*SET,U,30 
*SET,P,O.S 
*SET,BZ,24 

! LINE DMSIONS ALONG CIRCUMFERENCE 
! PRESSURE WAD IN NEWTONS 

R,1,THK., •• ''' 
RMORE, , , , , , , 
UIMP, l,EX, , ,EM, 

K,I,O,O, 
K,SO,O,RAD,O, 
L,1,50 
LSEL,ALL 
LESIZE, 1, , ,U,LZ, 
K,Sl ,0,0,20, 
LSEL,ALL 

AROT AT, I,,, 1,51 ,,BZ 

! LINE DIVISIONS ALONG RADIUS 

! INPUT THICKNESS 

! INPUT YOUNG'S MODULUS 
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LSEL,S.RADIUS,,RAD 
LESIZE,all, , ,1,1, 
LSEL,ALL 

ASEL,ALL 

AMESH,ALL 

FINISH 

/GOPR 

/SOLU, 

CSYS,l 
NSEL,S,LOC,X,RAD,360 
D,ALL,UZ, , , , , , 
NSEL,ALL 

CSYS,O 

NSEL,S,LOC,X,O 
NSEL,R.LOC, Y,O 
D,ALL,UX 
D,ALL,UY 
D,ALL,ROTZ 
NSEL,ALL 

SF ~L, l,PRES,-P 

ANTYPE,O 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 

/POST I 

RSYS,l 

IINP ,macro 1 

! CYLINDRICAL CO-ORDINATES 

! CARTESIAN CO-ORDINATES 

! APPLY PRESSURE LOAD 

! DEFINE STATIC ANALYSIS 

! OUTPUT RESULTS IN CYLINDRICAL 
! CO-ORDIANTES 

! ## INPUT MACRO FOR ANALYSIS ### 
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A.l.3 Fixed square plate subjected to uniform pressure. 

! # ANALYSIS OF A FIXED PLATE USING MODIFIED SECANT RIGIDITY # 

ffiTLE, ANALYSIS OF A FIXED PLATE USING MODIFIED SECANT RIGIDITY 
/GRA,POWER 
/GST,ON 

IPREP7 

ET, 1 ,SHELL93 
•SET, THK.,1 0 
•SET,EM,200000 
•SET,Ll,lOOO 
•SET,Bl,lOOO 
•sET,LZ,80 
*SET,BZ,80 
•sET,P,6 

R,J,THK, ''''' 
RMORE, ~ , , , , , 
UIMP, 1 ~X, , ,EM, 

k, 1 ,0,0,0,, 
k,2,Ll,O,O,, 
k,3,L 1 ,B 1 ,0,,, 
k,4,0,B l ,0,, 
L,1,2 
L,2,3 
L,3,4 
L,4,1 

LESIZE, 1,. ,IZ, 1, 
LESIZE,2, , ,BZ, l, 
LESIZE,3, , ,IZ, 1, 
LESIZE,4,, ,BZ,1, 
AL,l,2,3,4 
ASEL,ALL, 
AMESH,ALL 
finish 

! ENTER PRE PROCESSOR 

!USESHELL93ELE~ 
! THICKNESS IN MM 
! YOUNG'S MODULUS IN N/SQ MM 
! LENGTH IN MM 
! BREADTH IN MM 
! LINE DMSIONS ALONG LENGTH 
! LINE DMSIONS ALONG BREADTH 
! UNIFORM LOAD IN NEWTONS PER NODE 

! INPUT THICKNESS 

! INPUT YOUNG'S MODULUS 

! DEFINE K.EYPOINTS 

! DEFINE LINES 

! DEFINE DIVISIONS ON LINES 

! DEFINE AREAS 

! MESH AREAS 

220 



/gopr 

/SOLU, 

nsel,s,loc,x,O 
D,all, , , , , , ,uz,roty 
nsel.all 

nsel,s,loc,x,L 1 
d,all, , , , • , ,uz,roty 
nsel,all 

nsel,s,loc,y,O 
d,all, , , , , , ,uz,rotx 
nsel,all 

nsel,s,loc,y,B 1, 

d,all, ' ' ' ' ' ,uz,rotx 
nsel,all 

nsel,s,loc,x,O 
nsel,r,loc,y,O 
D,all, , , , , ,ux,rotz 
nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y,O 
d,all, , , , , ,uy,rotz 
nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y,B 1 
d,all, , , , , ,ux,rotz 
nsel,all 

nsel,s,loc,x,O 
nsel,r,loc,y,B 1, 
d,all, , , , , ,uy,rotz 
nsel,all 

SF A,ALL,l ,PRES,-P 
ANTYPE,O 
OliTRES,ALL,ALL 

! CONSTRAINTS 

! APPLY PRESSURE LOAD 
! DEFINE STATIC ANALYSIS 
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SAVE 
SOLVE 
FINISH 
IINP ,macro 1 ! ## INPUT MACRO FOR ANALYSIS ### 

A.1.4 Simply supported circular plate subjected to central concentrated 
load. 

#### ANALYSIS OF A CIRCULAR PLATE USING MODIFIED SECANT 
!RIGIDITY 111111##1111 

!TITLE, ANALYSIS 
RIGIDITY 
/GRAJ»QWER 
/GST,ON 
IPREP7 

ET.1,SHELL63 

•SET,~lO 

•sET,EM,200000 
•sET ,RAD,250 
•SET,LZ,30 
•sET,P,1000 
•SET,BZ,24 

R,1,~., t t t 

RMORE, , , , , , , 
UIMP, 1 ,EX, , ,EM, 

K.1,0,0, 
K.SO,O,RAD,O., 
L,l,SO 
LSEL,ALL 
LESIZE, 1, , ,LZ,LZ, 
K.S 1 ,0,0,20, 
LSEL,ALL 

AROTAT, 1,.,, 1 ,S l,,BZ 

OF A CIRCULAR PLATE USING MODIFIED SECANT 

!ENTERPREPROCESSOR 

!USESHELL63ELEMffiNT 

THICKNESS IN MM 
YOUNG'S MODULUS IN N/SQ MM 
RADIDS INMM 
LINE DMSIONS ALONG CIRCUMFERENCE 
CENTRAL CONC. LOAD IN NEWTONS 
LINE DMSIONS ALONG RADIUS 

! INPUT THICKNESS 

! INPUT YOUNG'S MODULUS 
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LSEL,S.RADnJS,RAD 
LESIZE,all, , , 1,1, 
LSEL.ALL 

ASEL.ALL 
AMESH,ALL 
FINISH 

/GOPR 

/SOLU, 

CSYS,l 
NSEL.S,LOC,X,RAD,360 
D.ALL,UZ, , , , , , 
NSEL.ALL 

CSYS,O 

NSEL.S,LOC){,O 
NSEL,R.LOC, Y,O 
D,ALL,UX 
D.ALL,UY 
D.ALL,ROTZ 
NSEL.ALL 

F,l,FZ,-P 
NODE 

ANTYPE,O 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 

/POSTl 
RSYS,l 

IINP ,macro I 

! CHANGE TO CYLINDRICAL CO-ORDINATES 

! CHANGE TO CARTESIAN CO-ORDINATES 

! APPLY CONCENTRATED LOAD AT CENTRE 

! DEFINE STATIC ANALYSIS 

! OUTPUT RESULTS IN CYLINDRICAL 
! CO-ORDIANTES 

! ## INPUT MACRO FOR ANALYSIS ### 
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A.1.5 Rectangular plate supported on opposite sides and subjected to 
uniform pressure. 

! # ANALYSIS OF A PLATE FIXED ON OPPOSITE SIDES USING MODIFIED 
!SECANT RIGIDITY METIIOD # 

ffiTLE, ANALYSIS OF A PLATE USING MODIFIED SECANT RIGIDITY 
/GRA,POWER 
/GST,ON 
/PREP? ! ENTER PRE PROCESSOR 

ET, 1 ,SHELL63 
*SET,THK,lO 
*SET,EM.200000 
*SET,Ll,lSOO 
*SET,Bl,lOOO 
*SET,LZ,60 
*SET,B~40 

*SET,P,5 

~l,THK, •• '.' 
RMORE, , , , , , , 
UIMP, l ,EX, , ,EM, 

k,l,O,O,O,,. 
k,2,L 1,0,0,,. 
k,3,Ll,Bl,O,., 
k,4,0,B 1 ,o .... 

L,l,2 
L,2,3 
L,3,4 
L,4,1 

LESIZE,l, , ,LZ,l, 
LESIZE,2, , ,BZ, 1, 
LESIZE,3,, ,LZ,l, 
LESIZE.4, , ,BZ, l, 
AL,l,2,3,4 

!USESHELL63ELEMrnNT 
! TIDCKNESS IN MM 
! YOUNG'S MODULUS IN N/SQ MM 
! LENGTII IN MM 
! BREADTH IN MM 
! LINE DMSIONS ALONG LENGTH 
! LINE DMSIONS ALONG BREADTH 
! PRESSURE LOAD IN NEWTONS 

! INPUT THICKNESS 

! INPUT YOUNG'S MODULUS 

! DEFINE KEYPOINTS 

! DEFINE LINES 

! DEFINE DIVISIONS ON LINES 

! DEFINE AREAS 

224 



ASEL,ALL, 
AMESH,ALL 
finish 

/gopr 

/SOLU, 

nsel,s,loc,x,O 
D~all,. , , , , , , ,uz 
nsel,all 

nsel,s,loc,x,L 1 
d,all, , , , , , , ,UZ 

nsel,all 

nsel,s,loc,x, 0 
nsel,r,loc,y,O 
D,all, , , , , , ,ux 
nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y,O 
d,all, , , , , , ,uy 
nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y ,B 1 
d,all, , , , , , ,ux 
nsel,all 

nsel,s,loc,x,O 
nsel,r,loc,y,B 1, 
d,all, , , , , , ,uy 
nsel,all 

SF A,all, 1 ,pres, -P 
SFTRAN 
nsel,all 

ANTYPE,O 
OUTRES,ALL,ALL 
SAVE 
SOLVE 

! MESH AREAS 

! CONSTRAINTS 

! APPLY UNIFORMLY DISTRIBUTED LOAD 

! DEFINE STATIC ANALYSIS 
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FINISH 

INP ,macmises ! ## INPUT MACRO FOR ANALYSIS ### 

A.1.6 Reetangular plate simply supported on three sides (longer edge 
free) and subjected to uniform pressure. 

! ## ANALYSIS OF A PLATE SUPPORTED ON THREE SIDES USING MODIFIED 
! SECANT RIGIDITY## 

ffiTLE, ANALYSIS OF A PLATE USING MODIFIED SECANT RIGIDITY 
/GRA.POWER 
/GST,ON 
IPREP7 ! ENTER PRE PROCESSOR 

ET,l,SHELL63 
*SET,THK,IO 
*SET,EM.200000 
*SET,L1,1SOO 
*SET ,81,900 
*SET,LZ,90 
*SET,BZ,60 
*SET,P,S 

R,l,THK,.'.'. 
RMORE, , , , , , , 
UIMP ,I ,EX, , ,EM, 

k,1,0,0,0,, 
k,2,L 1 ,0,0,, 
k,3,Ll ,B 1 ,0,, 
k,4,0,B 1 ,0,, 
L,l,2 
L,2,3 
L,3,4 
L,4,1 

LESIZE,l,, ,LZ,l, 
LESIZE,2,, ,BZ,l, 
LESIZE,3,, ,LZ,l, 
LESIZE,4,, ,BZ,l, 
AL,l,2,3,4 

!USESHELL63ELEMENT 
! THICKNESS IN MM 
! YOUNG'S MODULUS IN N/SQ MM 
! LENGTH IN MM 
! BREADTH IN MM 
! LINE DMSIONS ALONG LENGTH 
! LINE DMSIONS ALONG BREADTH 
! PRESSURE IN NEWTON PER SQ.MM 

! INPUT THICKNESS 

! INPUT YOUNG'S MODULUS 

! DEFINE KEYPOINTS 

! DEFINE LINES 

! DEFINE DIVISIONS ON LINES 

! DEFINE AREAS 

226 



ASEL.ALL, 
AMESH,ALL 
finish 

/gopr 

/SOLU, 

nsel,s,loc,x,O 
D,all, , , , • , , ,uz 
nsel,all 

nsel,s,loc,x,L 1 
d,all, , , , , , , ,uz 
nsel,all 

nsel,s,loc,y ,0 
d,all, •• , ' ' ' ,uz 
nsel,all 

nsel,s,loc,x,O 
nsel,r,loc,y,O 
D,all, ' • ' ' • ,UX 

nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y,O 
d,all, , , , , , ,uy 
nsel,all 

nsel,s,loc,x,L 1 
nsel,r,loc,y ,B 1 
d,all, •••• ' ,ux 
nsel,all 

nsel,s,loc,x,O 
nsel,r,loc,y ,8 1, 
d,all, , , , , , ,uy 
nsel,all 

SF A.all, 1 ,pres,-P 
SFrRAN 
nsel,all 
ANTYPE,O 

! MESH AREAS 

! CONSTRAINTS UX 

! APPLY UNIFORMLY DISTRIBUTED LOAD 

! DEFINE STATIC ANALYSIS 
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OUTRES,ALL.ALL 
SAVE 
SOLVE 
FINISH 
IINP ,macro 1 ! ## INPUT MACRO FOR ANALYSIS ### 

A.l. ANALYSIS OF IRRREGULAR PLATES USING SECANT 
RIGIDITY 

A.l.l Rectangular plate partially foed and partially simply supported. 

! ## ANALYSIS OF A RECf ANGULAR PLATE PARTIALLY FIXED AND 
! PARTIALLY SIMPLY SUPPORTED USING MODIFIED SECANT RIGIDITY## 

rriTLE,ANALYSIS OF A IRREGULAR PLATE USING MODIFIED SECANT 
rriTLE,RIGIDITY 
/G~POWER 
/GST,ON 
IPREP7 

ET,l,SHELL63 
•SET,THK,l2.7 
•SET,EM,206913.383 
•SET,L,381 
•sET.B,254 
•SET,I.Z,84 
•SET.BZ,S4 
•sET,P,S 

R,l,THK, •••• ' 
UIMP, 1 ,EX, , ,EM, 
UIMP,l,NUXY,, ,.3, 

k,l,O,O,O, 
IU.L.O,O 
~3,L,-B,O 

~4.0,-8,0 

L,1,2 
L,2,3 
L,3,4 

1 THICKNESS IN MM 
YOUNGS MODULUS 
LENGTHINMM 
BREADTH IN MM 
LINE DMSIONS ALONG LENGTH 
LINE DMSIONS ALONG BREADTH 
PRESSURE LOAD IN NEWTON PER SQ.MM 
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L,4,1 

LESIZE,l, , ,LZ, 1, 
LESIZE.l, , ,BZ, 1, 
LESIZE,3, , ,U, l, 
LESIZE,4, , ,BZ,l, 

LSEL,ALL 

AL,ALL 

ASEL,ALL 

AMESH.ALL 

FINISH 

/SOLU 

NSEL.S.LOC, Y ,0, 
NSEL,R.LOC,X,O,U3 

D,ALL.ALL 

NSEL.ALL 

NSEL,S,LOC, Y ,0 
NSEL,R.LOC,x,2*U3,L 

D.ALL.ALL 

NSEL.ALL 

NSEL,S,LOC, Y,0,-8/3 
NSEL,R.LOC,X,L 

D,ALL,UZ 

NSEL,ALL 

NSEL,S,LOC,Y,-2*8/3,-B 
NSEL,R.LOC,X,L 

D,ALL,UZ 

! CHANGE TO VARY MESH SIZE 
! CHANGE TO VARY MESH SIZE 

! CHANGE TO VARY MESH SIZE 
! CHANGE TO VARY MESH SIZE 
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NSE~L 

NSEL.S,LOC.X.U3,2•U3 
NSE~LOC,Y.-8 

D,ALL.ALL 

NSEL,ALL 

NSEL,S,LOC,Y,-8/3,-2•8/3 
NSEL.,R,LOC,X,O, 

D,ALL,UZ 

NSEL.ALL 

SF A.ALL.l,PRES,P 

SFTRAN 
DTRAN 

ANTYPE,O ! DEFINE STATIC ANALYSIS 
OUTRES,MISC,ALL 
SAVE 
SOLVE 
FINISH 

IINP,macrol ! ##INPUT MACRO FOR ANALYSIS### 

230 



A.2.2 Irregular plate partially fmed and partially simply supported. 

/GRA.POWER 
/GST,ON 
IPREP7 
ITITLE.ANAL YSIS OF A IRREGULAR PLATE USING MODIFIED SECANT 
ITITLE.RIGIDITY 

ET ,l,SHELL93 

! TIDCKNESS IN MM 
! YOUNGS MODULUS 
! LENGTH IN MM 
! BREADTHINMM 

*SET.~lO 
*SET.EM~e5 
*SET ,L,l700 
*SET .B. I 000 
*SET,P,S ! PRESSURE LOAD IN NEWTON PER SQ.MM 

R,l,THK, •••• , 
UIMP ,1 ,EX, , ,EM, 
UIMP ,l,NUXY, , ,.3, 

k,l,O,O,O, 
k,2,U3,0,0 
~3,U3,-B/3,0 

~4.2*U3,-8/3,0 

~5.2*U3,0,0 

~6,L,O,O 

~7,L,-8/3,0 

~S,L,-8,0 
~9,L,-(B+L *T AN(0.2618)) 
~10,0. 75*L,-(B+O. 75*L *T AN(0.2618)),0 
~11,0.25*L,-(B+0.25*L*TAN(0.2618)),0 

~12,0,-8,0 

~ 13,0,-2*8/3 
~14,0,-8/3 

L,l.2 
L.2,3 
L,3,4 
L,4,5 
L,5,6 
L,6,7 
L,7,8 
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L,8,9 
L,9,10 
L.IO.ll 
L.ll.12 
L.12.13 
L.I3,14 
L,14,1 

LESIZE,l. , ,25 ,1, 
LESIZE,l, , ,25, 1, 
LESIZE,3,, ,25,1, 
LESIZE,4, , ,25,1, 
LESIZE,5,, ,25,1, 
LESIZE,6,, ,25,1, 
LESIZE, 7, , ,SO, 1, 
LESIZE,8,, ,15,1, 
LESIZE,9,, ,20,1, 
LESIZE,lO,, ,55,1, 
LESIZE,11,, ,20,1, 
LESIZE,12,, ,25,1, 
LESIZE,13,, ,15,1, 
LESIZE,I4,, ,25,1, 

LSEL,ALL 
AL,ALL 
ASEL,ALL 
AMESH,ALL 

FINISH 

/SOLU 
DL,I,I,ALL 
DL,S,t,ALL 

DL,6,l,UX 
DL,6,l,UY 
DL,6,l,UZ 

DL,8,l,UX 
DL,8,l,UY 
DL,8,1,UZ 

DL,IO,l,ALL 
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DL.l3,l,UX 
DL.l3,l,UY 
DL,IJ,l,UZ 

SF A.ALL, l,PRES,-P 

SFTRAN 
DTRAN 
ANTYPE.O 
OUTRES.ALL,ALL 
SAVE 
SOLVE 
FINISH 

/inp,macro 1 

! DEFINE STATIC ANALYSIS 

A.J. ANALYSIS OF A CONTINUOUS PLATE 

A.J.l Continuous plate (3 X 3) witb outer edge simply supported. 

! # VALVES OF T A. TB. n, LA and LB may be changed to solve any panel size 
! and divisions# 

/GRA.POWER 
/GST,ON 
IPREP7 
/TITLE,ANAL YSIS OF A CONTINUOUS PLATE USING MODIFIED SECANT 
/TITLE,RIGIDITY 

ET ,l,SHELL63 

! TIDCKNESS IN MM 
! YOUNGS MODULUS 

*SET,THK,lO 
*SET,EM,2e5 
*SET,P,IO 
*SET,TB,4500 
*SET,TA.9000 
*SET,n,3 
•SET,LA,28 

! PRESSURE LOAD IN NEWTON PER SQ.MM 
!OVERALLLENGTH,SHORTSPAN 
!OVERALLLENGTH, LONGSPAN 
! NO OF PANELS DIVISIONS 
! LINE DMSIONS IN EACH PANEL 
! OF LONG SPAN 
! LINE DIVISIONS IN EACH PANEL 
! OF SHORT SPAN 
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R.I. TliK., ' ' ' ' ' 
UIMP,l,EX. , ,EM, 

b=TB/n 
a=TA/n 

k,l,O,O,O, 
u.a.o.o 
k.n+2,0,b,O 

L,1,2,LA 
LGEN,n,l,.,a.O,,l, 

L,l,n+2,LB 
LGEN,n,n+ l,.,O,b.,n+ 1, 

lsel,s,loc,x,O 
LGEN,n+ l,all,,a,O, 1 
lsel,all 

lsel,s,loc,y,O 
LGEN,n+ l,all,,O,b,,n+ 1 
lsel,all 

AL,l ,(n+ 1 ),( ( ( n+ 2)*n)+ 1 ),((2*n)+ 1) 
agen,n, 1 ,,a,, 1 
agen,n,ali,O,b,,n+ 1 

ASEL,ALL 

AMESH,ALL 

FINISH 

/SOLU 

*OO,SN,l,n, I 

NSEL,ALL 
NSEL,S,LOC, Y ,0, 
D,ALL,UZ 

NSEL,ALL 
NSEL,S,LOC, Y ,SN*b, 
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D,ALL,UZ 

NSEL,ALL 
NSEL,S,LOCXO. 
D,ALL,UZ 

NSEL,ALL 
NSEL,S,LOCXSN*~ 
D,ALL,UZ 

*END DO 

NSEL,S,LOC.X,O 
NSE~LOC,Y,O 

D,ALL,UX 
NSEL,ALL 

NSEL,S,LOC.X.n•a 
NSEL,~LOC, Y,O 
D,ALL,UY 
NSEL,ALL 

NSEL,S,LOC.X,n*a 
NSEL,~LOC,Y ,n*b 
D,ALL,UX 
NSEL,ALL 

NSEL,S,LOCXO 
NSEL~LOC, Y ,n*b 
D,ALL,UY 
NSEL,ALL 

ASEL,S.AREA.. 1 ,n*n,2 

SF A.ALL, 1 ,PRES,-P 
SFTRAN 
ANTYPE,O 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 

IINP ,macro 1 

! APPLY PRESSURE LOAD 

! DEFINE STATIC ANALYSlS 

! ## INPUT MACRO FOR ANALYSIS### 
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A.3.2 Coatiauous plate (3 X 3) witb outer edge fued. 

! # VALUES OF T ~ TB.n, LA and LB may be changed to solve any panel size 
! and divisions # 

/GRA.POWER 
/GST,ON 
IPREP7 
!fiTLE,ANAL YSIS OF A CONTINUOUS PLATE USING MODIFIED SECANT 
tTITLE,RIGIDITY 

ET,l,SHELL63 

THICKNESS IN MM 
YOUNGS MODULUS 

*SET,THK,lO 
*SET,EM,2e5 
*SET,P,IO 
*SET,TB,4500 
*SET,T~9000 
*SET,n.3 

PRESSURE LOAD IN NEWTON PER SQ.MM 
OVERALLLENGTH,SHORTSPAN 
OVERALLLENG~LONGSPAN 

*SET,LA,28 

*SET,LB,l8 

*SET,THK,lO 
*SET .EM,200000 
*SET,P,lO 

R,l,THK, •• ' •• 
UIMP ,l,EX, , ,EM, 

b=TB/n 
a=TA/n 

k, 1,0,0,0, 
k,2,a,O,O 
k,n+ 2,0,b,O 

L,l,2,LA 
LGEN,n.l ,a,O, 1, 

NO OF PANELS DMSIONS 

! LINE DMSIONS IN EACH PANEL 
! OF LONG SPAN 
! LINE DMSIONS IN EACH PANEL 
! OF SHORT SPAN 

! THICKNESS IN MM 
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L,l.n+2,LB 
LGEN~+ 1.,0,b,.n+ 1, 

lsel,s,loc,x,O 
LGEN.n+ l,all.,.a,O, 1 
lsel,all 

lsel,s,loc,y,O 
LGEN,n+ 1 ,all,O,b,.n+ 1 
lsel,all 

AL, 1,(n+ 1 ),(((n+2)*n)+ 1 ),((2*n)+ 1) 

agen,n, 1 ,,~, 1 

agen,n,all,O,b,.n+ 1 

ASEL,ALL 

AMESH,ALL 

FINISH 

/SOLU 

•oo.sN,t,n,1 

NSEL,ALL 
NSEL,S,LOC, Y,O, 
D,ALL,UZ 

NSEL,ALL 
NSEL,S,LOC, Y,SN*b, 
D,ALL,UZ 

NSELALL 
NSEL,S,LOC,X,O, 
D,ALL,UZ 

NSELALL 
NSEL,S,LOC,X,SN*a, 
D,ALL,UZ 

237 



*END DO 

NSEL,S,LOC~O 
D,ALL,ALL 
NSE~L 

NSEL,S,LOC,X, T A 
D,ALL,ALL 
NSEL.ALL 

NSEL,S,LOC, Y, TB 
D,ALL,ALL 
NSEL,ALL 

NSEL.RLOC,Y,O 
D,ALL,ALL 
NSEL.ALL 

ASEL,S,AREA,, 1 ,n*n.2 

SFA,ALL,1,PRES,-P ! APPLY PRESSURE LOAD 
SfTRAN 

ANTYPE,O ! DEFINE STATIC ANALYSIS 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 

IINP ,macro 1 ! ##INPUT MACRO FOR ANALYSIS ### 
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APPENDIXB 

B.1.MACRO FOR MODIFYING SECANT RIGIDITY 

8.1.1 Tresca Yield Criterion 

! lrll#tl#lf MACRO FOR MODIFYING SECANT RIGIDITY PROPERTIES #IUf#PIP~ 

! ###THICKNESS OF PLATE IS DEFINED AS PARAMETER "THK" ### 
! ###BELOW=> THK=thickness of plate in 'mm' ### 

! INITIAL: THK=lO mm 

*OO,IT,l,N 

V=0.3 
EM=2e5 
D=(EM*THK**3)/(I2•(1-V**2)) 

ENTER POST PROCESSOR AFTER FIRST ELASTIC ANALYSIS 

! N is the number of iterations 

*GET,SZ.ELEM,O,COUNT 

!POST I 

CSYS,l 
CSYS,O 

! Use this for Cylindrical co-ordinate system 
! Use this for Cartesian co--ordinate system 

*DIM,COLI,ARRA Y,l 
*DIM,COL2,ARRAY,l 
*DIM,COLJ,ARRA Y, 1 
*DIM,COlA,ARRA Y, 1 
*DIM,COLS,ARRA Y, 1 
*DIM,COL6,ARRA Y, 1 
*DIM,COL7,ARRAY,l 
*DIM,COL8,ARRA Y,l 
*DIM,COL9,ARRA Y,SZ 
*DIM,COLIO,ARRA Y,S,Z.l 
*DIM,COLll,ARRAY,l 

I lllllllllllftl . ............. . 
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

! DEFINE 
! ARRAY 
! PARAMETERS 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 
! !!!!!!!!!!!!!! 

! !!!!!!!!!!!!!! 
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•oiM.COL12.ARRA Y,l 
•oiM.COL13,ARRA Y,l 

! !!!!!!!!!!!!!! 
! !!!!!!!!!!!!!! 

READING MOMENTS Mxx, Myy, Mxy FROM FIRST ELASTIC ANALYSIS 

SET,l 
ET ABLE,Mxx,SMISC,4 
ET ABLE.Myy.SMISC,5 
ET ABLE.Mxy,SMISC,6 

!Mxx 
!Myy 
!Mxy 

STORING ALL OUTPUT IN FILE " result_ first " 

•SET,MN,2 

*GET ,MMAXI ,ELEM,O,COUNT 
•CFOPEN,result_ first 

! Get max number of elements- MMAXI 
! Open file " result_ first " 

•oo.KK.. 1 .MMAXI. 

•IF ,IT ,EQ, 1 ,then 
NU=l 
•ELSE 
NU=MN 
•END IF 

•GET,cdnx,ELEM,KK.,CENT ,x 
•GET,cdny,ELEM,KK.,CENT,y 
•GET ,Mxxl ,ELEM,KK.,ET AB.Mxx 
•GET ,Myyl,ELEM,KK.,ET AB.Myy 
•GET,Mxyl ,ELEM,KK.,ET AB,Mxy 
•GET,THK,RCON,NU,CONST, 1 

' 

! x coordinate 
! y coordinate 
! Mxxmoment 
! Myymoment 
! Mxymoment 
! Get thicknesses 

Meq 1 =abs(O.S•(Mxx l +Myyl )-((O.S*(Mxx 1-Myyl ))••2+(Mxyl )••2)•*0.5) 
Meq2=abs(O.S*(Mxx 1 +Myyl )+((0.5*(Mxx 1-Myyl ))••2+(Mxyl )**2)**0.5) 

*IF ,Meq l,GT ,Meq2, THEN ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
Meq=Meql 
*else 
Meq=Meq2 

! Choosing maximum of the two values of 
!MeqlandMeq2 

*endif 
THETA=0.5*ATAN((2*Mxyl)I(Mxxl-Myy1))*(180/3.1416) 
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COLI (I )=Ide 
COL2(1 )=cdnx 
COL3(1 )=cdny 
COL4(1)=Mxxl 
COL5(1)=Myyl 
COL6(1)=Mxyl 
COL7(1)=Meql 
COL8( 1 )=Meq2 
COLli (I )=Meq 
COL12(1 )=THETA 
COL13(1 )=THK 

*VWRITE,COLl(l ),COL2( I ),COL3( I ),COlA( 1 ),COLS( I ),COL6( 1 ),COL 7( 1 ),COL8( 1 ), 
COLI1(1),COL12(1),COL13(1) 
(x,f8.l,e23.1 0,3x,e21.1 0,3x,e21.1 0,3x,e21.1 0,3x,e21. 1 0,3x,e21.1 0,3x,e21.1 0,3x.e21.1 0,3 
x,e21.1 0,3x,e21.1 0,3x,e21.1 0) 

*SET .MN,MN+ I 
*END DO 
*CFCLOS 

!!!! GEITING MAXIMUM EQUIVALENT MOMENT V ALOE '' 11 

*VREAD,COLIO(l,l ),result_first, .. ij,SZ,1 
( 132x,e21.10) 

! Read Equivalent moments 

! Print values in output file *STAT,COLlO(l,l) 
*VSCFUN,COL9(l),.MAX,COL10(1,1) ! Maximum Meq ! Get maximum value 

!x means one spacing 
!f6.1 means 6 digits and one decimal place (6 incl) 
!e21.1 0 means 21 digits and one decimal p1ace(21 incl) 

MODIFYING THICKNESS USING VALUES OF EQUIVALENT MOMENTS 
AND STORING IN Fll..E " MODV AL 1 " 

*SET,MN,2 

*CFOPEN,MODV AL 1 
*OOJ.1,MMAX 1 

*IF ,IT ,EQ,1,then 
NU=1 
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*GET .Mxx l,ELEMJ,ET AB.Mxx 
*GET,Myyl,ELEMJ,ET AB,Myy 
*GET ,Mxyl,ELEMJ,ET AB.Mxy 
*GET,THJ(JtCON,NU,CONST,l ! Get thicknesses 

Meql=abs(0.5*(Mxxl+Myyl)-((O.S*(Mxxl-Myy1))**2+(Mxyl)**2)**0.5) 
Meq2=abs(0.5*(Mxx 1 +Myyl )+((O.S*(Mxx 1-Myyl ))**2+(Mxyl )**2)**0.5) 

•IF .Meq l,GT,Meq2,THEN 
Meq=Meql 
*else 
Meq=Meq2 
•endif 

*SET,GMODIF1,(COL9(1)/Meq)**(l/3)*THK 
*CFWRITE,IUdN,GMODIFl 
*CFWRITE,REAL,MN 
*CFWRITE,EMODIF J 
*SET ,MN,MN+ 1 
*END DO 
*CFCLOS 

/sys,cat result_ first>> results 
/sys,nn result_ first 

IUII#I#II ENTER NEXT LINEAR ANALYSIS AFTER MODIFYING ! ! 
!THICKNESSfilnillll# 

IPREP7 
RESUME 

!ENTERPREPROCESSOR 
! RESUME .db file 

###USE MACRO MODV ALl FOR ANALYSIS### 

*USE.MODV ALl 
FINISH 
/SOLU 
SAVE 
SOLVE 
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FINISH 

/sys,nn MODV AL 1 

*END DO ,, . . mp,tmac 

8.1.2 Von-Mises Yield Condition 

! ~t###!#ll MACRO FOR MODIFYING SECANT RIGIDITY ##I#Htff 

! ###THICKNESS OF PLATE IS DEFINED AS PARAMETER "THK" ### 
! ###BELOW=> THK=thickness of plate in 'nun' ### 

! INITIAL: THK=lO mm 
V=0.3 
EM=2e5 
D=(EM*THK**3)1(12*(1-V**2)) 

ENTER POST PROCESSOR AFTER FIRST ELASTIC ANALYSIS 

*OO,IT,l,N 

*GET,SZ,ELEM,O,COUNT 

/POST I 

CSYS,l 
CSYS,O 

*DIM,COLl,ARRA Y,l 
*DIM,COL2,ARRAY,l 
*DIM,COL3,ARRA Y,l 
*DIM,COIA,ARRAY,l 
*DIM,COLS,ARRA Y, 1 
*DIM,COL6,ARRA Y,l 
*DIM,COL7,ARRA Y,l 
*DIM,COL8,ARRA Y,l 
*DIM,COL9,ARRA Y,SZ 
*DIM,COLIO,ARRAY,SZ,l 

! N is the no. of iterations 

! Use this for Cylindrical co-ordinate system 
! Use this for Cartesian co-ordinate system 

! !!!!!!!!!!!!!! 
! !!!!!!!!!!!!!! 

! DEFINE 
! ARRAY 
! PARAMETERS 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 
! !!!!!!!!!!!!!! 
I 
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*DIM,COLll,ARRAY,1 
*DIM,COL 12,ARRA Y, 1 

! !!!!!!!!!!!!!! 
! !!!!!!!!!!!!!! 

READING MOMENTS Mxx, Myy, Mxy FROM FIRST ELASTIC ANALYSIS 

SET, I 
ET ABLE,Mxx,SMISC,4 ! Mxx 
ET ABLE,Myy,SMISC.S ! Myy 
ET ABLE,Mxy,SMISC,6 ! Mxy 

STORING ALL OUTPUT IN Fll..E " result_ first " 

*GET ,MMAXI,ELEM,O,COUNT 
*CFOPEN,result_ first 
•oo,KK, 1 ,MMAXI, 

*IF,IT,EQ,1,then 
NU=l 
*ELSE 
NU=MN 
*END IF 

! Get max number of elements - MMAX 1 
! Open file" result_fint" 

*GET,cdnx.ELEMJ(K.CENT,x ! x coordinate 
*GET,cdny,ELEMJ(K.CENT,y ! y coordinate 
*GET .Mxx 1 ,ELEM.,KK.ET AB,Mxx ! Mxx moment 
*GET ,Myyl.ELEM.,KK.ETAB,Myy ! Myy moment 
*GET ,Mxyl ,ELEMJ{K.ET AB,Mxy ! Mxy moment 
*GET,~CON,NU,CONST,1 ! Get thicknesses 

Meq 1 =abs(O.S*(Mxx 1 +Myy1 )-((O.S*(Mxx 1-Myyl ))**2+(Mxyl )**2)**0.5) 
Meq2=abs(0.5*(Mxx 1 +Myy1 )+((0.5*(Mxx 1-Myyl ))**2+(Mxyl )**2)**0.5) 

Meq=((Meq 1**2+Meq2**2-Meq l*Meq2)**0.5) 

THETA=0.5*ATAN((2*Mxyl)/(Mxx1-Myy1))*(180/3.1416) 

COLl(l)=kk 
COL2( 1 )=cdnx 
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COL3( 1 )=cdny 
COL4( 1 )=Mxx 1 
COLS(l)=Myy1 
COL6(1)=Mxy1 
COL 7(1 )=Meq 1 
COL8(1 )=Meq2 
COL11(1 )=Meq 
COL12(1 )=THK 

*VWRITE,COL 1 ( 1 ),COL2( 1 ),COL3( 1 ),COL4( 1 ),COLS( 1 ),COL6( 1 ),COL 7( 1 ),COL8( 1 ), 
COLli (I ),COL12(1) 
(x,f6.1,e21.1 0,3x,e21.10,3x,e21.10,3x,e21.10,3x,e21.10,3x,e21.1 0.3x,e21.1 0,3x,e21.10,3 
x,e21.1 0,3x,e21.1 0) 

*SET,MN,MN+l 
*END DO 
*CFCLOS 

!! !! GETIING MAXIMUM EQUIVALENT MOMENT VALUE '''' 

*VREAD,COL10(1,1),result_fi~,ij,SZ,l 
(132x,e21.10) 

! Read Equivalent moments 

! Print values in output file *STAT,COL10(1,1) 
*VSCFUN,COL9(l),MAX,COL10(1,1) ! Maximum Meq ! Get maximum value 

!x means one spacing 
!Ri.l means 6 digits and one decimal place (6 incl) 
!e21.1 0 means 21 digits and one decimal place(21 inc I) 

MODIFYING THICKNESS USING VALVES OF EQUIVALENT MOMENTS 
AND STORING IN Fll.E " MODV ALl " 

*CFOPEN,MODV ALl 
*DO,J,l,MMAXl 

*IF,IT,EQ,l,then 
NU=l 
*ELSE 
NU=MN 
*END IF 
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•GET .Mxx l,ELEMJ.ET AB.Mxx 
•GET,Myyl,ELEMJ,ET AB.Myy 
•GET .Mxyl ,ELEMJ.ET AB,Mxy 
•GET,THK.RCON.NU,CONST,l ! Get thicknesses 

Meql=abs(O.S•(Mxxt+Myyl)-((O.S•(Mxxt-Myyt))••2+(Mxyt)•*2) .. 0.5) 
Meq2=abs(O.S*(Mxx 1 +Myyl )+((O.S•(Mxx 1-Myyl ))*•2+(Mxyl )**2)**0.5) 

Meq=((Meq 1**2+Meq2•*2-Meq t•Meq2)**0.5) 

*SET,GMODIF 1 ,(COL9( 1 )1Meq)**(l/3)*THK 
*CFWRITE.~.GMODIFl 
•cFWRITE.REAL,MN 
*CFWRITE,EMODIF J 
•sET ,MN,MN+ 1 
*END DO 
*CFCLOS 

/sys,cat result_ first>> results 
/sys.,nn result_tirst 

#1##11#11 ENTER NEXT LINEAR ANALYSIS AFTER MODIFYING 
TF.UC~S###### 

IPREP7 ! ENTER PREPROCESSOR 
RESUME ! RESUME .db file 

###USE MACRO MODV ALl FOR ANALYSIS### 

*USE.MODV ALl 
FINISH 

/SOLU 
SAVE 
SOLVE 
FINISH 

/sys.,nn MODV ALl 

•END DO 
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APPENDIXC 

C. I Non-Hnear analysis of irregular plates 

C.l.l Rectangular plate partiaUy roed and partially simply supported. 

! ##NON-LINEAR ANALYSIS OF A PARTIALLY FIXED AND 
! PARTIALLY SIMPLY SUPPORTED RECTANGULAR PLATE USING MODIFIED 
! SECANT RIGIDITY ## 
I 

ffiTLE,NON-LINEAR ANALYSIS OF A IRREGULAR PLATE USING MODIFIED 
ffiTLE,SECANT RIGIDITY 

/GR.AJ»QWER 
/GST,ON 
IPREP7 
rriTLE,ANAL YSIS OF A IRREGULAR PLATE USING MODIFIED GEOMETRIC 
PROPERTIES 
ET,l,SHELL143 

*SET,~12.7 

*SET ,EM,206.85e3 

R,l,THK, •• , ', 
UIMP,l ,EX, , ,EM, 
UIMP,l,NUXY,, ,.3, 

TB,BKIN,l,,,, 
TBMODIF,2, 1,206.85 
TBPLOT ,8KIN,l, 

8=254 
L=381 

k,l,O,O,O, 
IU,L,O,O 
K,3,L,-8,0 
1<,4,0,-8,0 

L,l,2 

! TIDCKNESS IN MM 
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L,l,3 
L,3,4 
L,4,1 

LESIZE, 1,, ,81,1, 
LESIZE,l, , ,54,1, 
LESIZE,3,, ,81,1, 
LESIZE,4, • ,54,1, 

LSEL.ALL 
AL,ALL 

ASEL,ALL 
AMESH,ALL 

FINISH 

/SOLU 

NSEL,S,LOC, Y,O, 
NSEL,R,LOC,X,O,U3 
D,ALL,.ALL 

NSEL.ALL 

NSEL,S,LOC, Y ,0 
NSEL,R,LOC,x,l•U3,L 
D,ALL.ALL 

NSEL.ALL 

NSEL,S,LOC, Y,0,-8/3 
NSEL.~LOC,X,L 
D,ALL,UZ 

NSEL.ALL 

NSEL,S,LOC,Y,-2•Bt3,-B 
NSEL,R,LOC,X,L 
D,ALL,UZ 

NSEL.ALL 

NSEL,S,LOC,X,U3,2•U3 
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NSEL_R.LOC, Y,-8 

D,ALL,ALL 

NSEL,ALL 

NSEL,S,LOC,Y,-8/3,-2*8/3 
NSEL,R.LOC.X,O. 

D,ALL,UZ 

NSEL,ALL 

SF A.ALL, l.PRES,20 

SFTRAN 

ANTYPE,O 
NROPT,AUTO, , 
time, I 
NSUBST,SO, 
autots,on 
NEQIT,IOO, 
SSTIF,ON 
pred,o~.on 
OUTRES,ALL,ALL 
SAVE 
SOLVE 
FINISH 

! DEFINE STATIC ANALYSIS 

C.t.2 Irregular plate partiaUy rued and partially simply supported. 

! ##NON-LINEAR ANALYSIS OF A PARTIALLY FIXED AND 
! PARTIALLY SIMPLY SUPPORTED IRREGULAR PLATE USING MODIFIED 
! SECANT RIGIDITY ## 

/GRA.POWER 
/GST,ON 
IPREP7 
ffiTLE,ANALYSIS OF A IRREGULAR PLATE USING MODIFIED SECANT 
ffiTLE.RIGIDITY 
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ET,1,SHELL143 

~ 1 '1 0, ' ' ' ' ' 
UIMP,1,EX,, ,200533.344724, 
UIMP, 1 ,NUXY, , ,.3, 

TB.MISO, 1, , , , 

TBMODIF,1,1,0.0017484 
TBMODIF ,1 ,2,350.6125 

TBMODIF ,2, 1 ,0.095 
TBMODIF ,2,2,350.6125 

8=1000 
L=1700 

k,l,O,O,O, 
k,2,U3,0,0 
~J.UJ,-8/3,0 
~4.=*U3,-8/3,0 
~5,2*U3,0,0 
K.,6,L,O,O 
K., 7 ,L,-8/3,0 
K.,S,L,-8,0 
K.,9,L,-(B+L *T AN(0.2618)) 
K., 1 0,0. 75*L,-(B+O. 75*L *T AN(0.2618)),0 
K., 11,0.25•L,-(8+0.25•L *T AN(0.2618) ),0 
K., 12,0,-8,0 
K., 13,0,-2•8/3 
K., 14,0,-813 

L,l,2 
L,2,3 
L,3,4 
L,4,5 
L,5,6 
L,6,7 
L,7,8 
L,8,9 
L,9,10 
L,IO,ll 
L,ll,l2 
L,l2,13 
L,l3,14 

250 



L,l4,1 

LESIZE,l,, ,25,1, 
LESIZE,2,, ,25,1, 
LESIZE,3,, ,25,1, 
LESIZE,4, , ,25,1, 
LESIZE,S,, ,25,1, 
LESIZE,6,, ,25,1, 
LESIZE,7,, ,50,1, 
LESIZE,S,, ,15,1, 
LESIZE,9,, ,20,1, 
LESIZE,lO,, ,55,1, 
LESIZE,l1,, ,20,1, 
LESIZE,12,, ,25,1, 
LESIZE,l3,, ,15,1, 
LESIZE,l4,, ,25,1, 

LSEL,ALL 

AL,ALL 

ASEL,ALL 

AMESH,ALL 

FINISH 

/SOLU 

DL,1,1,ALL 
DL,5,l,ALL 

DL,6,1,UX 
DL,6,l,UY 
DL,6,l,UZ 

DL,S,l,UX 
DL,S,l,UY 
DL,S,l,UZ 

DL,10,1,ALL 
DL,l3,l,UX 
DL,l3,l,UY 
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DL.l3,l,UZ 

SF ~ALL,l,PRES,-0.5 

SFTRAN 
DTRAN 

ANTYPE,O 
NROPT ~UTO, , 
NSUBST, 100.250 
au tots, on 
kbc,O 
EQSLV,, ,0, 
NEQIT,IOO, 
LNSRCH,ON 
SSTIF,ON 
OUTRES,ALL.ALL 
SAVE 
SOLVE 
FINISH 

! DEFINE STATIC ANALYSIS 
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