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Abstract 

In wireless telecommunications. antennas play a very important role 

where they can either enhance or constrain system performance. The de­

sign characterization of such antennas is dependent upon. to large extent. 

the development of simulation tools that can accurately model general 

antenna system topologies. In this thesis, where the basic theory of finite­

difference time domain method (FDTD) is reviewed, an FDTD code is 

developed for antenna design, with particular emphasis on the modeling 

of the source region. The results from the developed code are compared 

with those produced by a moment method based code (Numerical Elec­

tromagnetic Code -2: NEC2) and very good agreement is obtained. The 

effects of the FDTD cell size and the distance between the outer absorb­

ing boundary and the antenna on accuracy are explored. Some criteria 

for the choice of above parameters in FDTD calculation are given for an­

tenna design. Using the developed code, a new planar monopole antenna 

which operates at dual wide band (800.MHz band and 1800MHz band) is 

developed by cutting slots and determining the geometrical parameters. 

This dual frequency performance is required for the existing and potential 

mobile communication system providing analogue and digital services. 
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Chapter 1 

Introduction 

1.1 Statement of the Problem 

The area of wireless communications is developing rapidly, which is well known among 

not only the technical community but also the general population. The public's 

continuing demands for personal and mobile communications causes the explosive 

growth in terrestrial and satellite communications systems that promise to become 

the preferred medium of telecommunications in the future. 

Antennas used in wireless communications play a very important role as they can 

either enhance or constrain the system performance. Present mobile communication 

antennas include whip antennas sticking out from automobile bodies, sleeve antennas 

and inverted-F antennas installed on portable telephones, and microstrip antennas 

and loop antennas for UHF pagers. A number of industrial groups are currently 



planning to construct global satellite systems to provide personal communications 

services PCS (typically voice, data and fax) to users who are supposed to employ 

small. hand-held, cellular-type handsets. The demand for developing corresponding 

mobile antennas is increasing by the day. 

The basic requirements for mobile antennas are small size. lightweight. and low 

cost. Since the inception of antennas, there has been continuing interest in reducing 

their physical size. ~Iuch more attention has been put on this especially after the 

appearance of hand-held, cellular-type handsets. Lightweight and low cost are also 

the key factors affecting the acceptance of a handset among the public. The specific 

environment for the handset antenna - the limited space provided on the surface 

of the housing unit of the handset as well as other requirements for the antenna 

present some difficulties for antenna designers. First. the radiation characteristic of 

an antenna on a small housing unit differs from that radiating in free space on a 

large conducting plane and also depends on the composition of the unit . The input 

impedance bandwidth can be quite narrow when an antenna is located on such a 

specific environment. Moreover, the antenna characteristics can be greatly affected 

by its operator because he/she is within the near field region of the antenna. 

In such a complex situation, the antenna design is far beyond the scope of the early 

methods, which were based upon analytical techniques that attempted to generate 

closed-form solutions expressible in terms of known functions. Characterization of 

such antennas for hand-held communications devices such as portable phones has 
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to rely on. to large extent. the de\·elopment of simulation tools that can accurately 

model general topologies. including conductors, dielectrics. thin wires and lumped 

elements. 

Among various numerical methods, the method of moment (:\10:\1) and finite­

difference time-domain method (FDTD) are preferred most frequently. :\[0:\I is a 

very efficient method for wire antennas, especially at low frequencies. It can also 

be used for antennas consisting of solid bodies, usually, by using wire-grids. which 

requires a large memory. For modern sophisticated antennas which involve compli­

cated geometry and materials structures, the large number of the unknowns needed 

for accurate results is a big burden for the matrix manipulation which is unavoidable 

in :\10:\L 

The finite-difference time-domain (FDTD) method is a simple and elegant way 

to soh·e :\Jaxwell's equations. Unlike MOM, FDTD does not involve matrix oper­

ation and moreover, the complexity of geometry and material does not make the 

algorithm more complicated. So a general purpose program can be developed, which 

is particularly useful in modern antenna design. 

Although past contributions in this area have demonstrated the effectiveness of 

the FDTD approach in characterizing antenna configurations, only a limited amount 

of research has appeared relating to the simulation of practical antenna geometry 

operating in their true radiating environment. A few commercial FDTD programs 

such as XFDTD and FIDELITY are available, but are very expensive -thousands 
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of C.S. dollars. Therefore. it is \-e~- useful to develop our own FDTD code for 

sophisticated antenna design. This program will add to the faculty of engineering 

infrastructure in electromagnetic codes. 

Once the code is validated through comparison of its results with those obtained 

from the moment method code (NEC) for special cases. it will be used to analyze 

a dual wide band antenna. Through variation of the antenna parameters. a design 

that can provide required characteristics can be achieved. 

1.2 Literature Review 

1.2.1 Antennas for Mobile Telecommunications 

\Vith the rapid development of mobile communications, the progress in mobile an· 

tenna design is keeping this trend. Antennas used in various antenna systems are 

different . and it is difficult to set a general rule for interfacing them with the rest of 

transmitting/receh;ng hardware assembly. Here, the antennas for portable phones 

will be introduced. Currently, frequencies from 800.MHz to 1.8GHz have been as. 

signed for mobile telephones, and future allocation of higher frequency bands is be· 

ing considered. At present, the most widely used antennas are monopole antennas, 

sleeve antennas as well as recently developed low-profile antennas such as microstrip 

antennas and planar inverted F antennas (PIFA). 
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Monopole antenna: The monopole antenna is the most commonly used mobile 

antenna because of its broad band characteristics and simple structure. This type 

of antenna normally employs a flexible antenna element, so it is also called the whip 

antenna. If the radiating element is mounted on an infinite ground plane. the char­

acteristics of the antenna are similar to those of a dipole. In practice. the monopole 

is not simply half of a dipole and even vel)· large ground planes give radiation pat­

terns significantly different from that on an infinite plane [1, 2]. In actual usage of 

our consideration, the "ground" is a portable housing unit, the input impedance and 

radiation patterns of the antenna depend on the actual size and composition of the 

housing unit [3, 4} . 

Sleeve antenna The radiating structure of a sleeve dipole is an asymmetric dipole 

made of conductors of different diameters and slightly different length. The thinner 

conductor is normally the inner conductor of the coa.xial line feeding the antenna. 

and the larger diameter conductor, which is shorted to the braid of the coa.xial line 

[5], must provide effective choking of the RF currents at its own open end and also 

one-half of the radiating dipole so that most of the an~enna current does not leak 

into the outer surface of the coaxial cable. The antenna has almost the same charac­

teristics as a monopole antenna, but it does not require a ground plane. so the gain 

degradation due to the mounting location is less than that experienced with whip 

antennas. The bandwidth limitation of this antenna is dictated more by radiation 

pattern performance than by impedance variation, since the deviation of operation 
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frequency will lead to the RF current leaking to the outer surface of the coa.xial 

feeding line and thus changing the radiation pattern greatly[6]. 

The disadvantage of the whip antenna and the sleeve antenna is that they are not 

rigid. so they are easy to break. The implementation of dual band without increasing 

the size is also difficult. 

Low-profile antennas: ~Iicrostrip antennas [i] and planar inverted F antenna..c;; 

[6] (PIFA) are well known as typical low-profile antennas. Microstrip antennas. also 

called patch antennas, are constructed by printing conductors on dielectric substrates. 

This antenna is derived from microstrip resonators, by using the radiation loss of the 

resonators in a positive manner. Therefore. the bandwidth of this antenna is basically 

narrow. PIFA was developed from the inverted L antenna. Because of its low-profile. 

it has been used in some cellular phones as a built-in antenna. PIFA has the same 

disadvantage as microstrip antenna. though some researchers are trying to improve 

its bandwidth by various methods [8]. 

To satisfy the great demand for the rapid growth of mobile telephones. it is often 

necessary to add a new frequency band to the existing system. For example. in the 

Cnited States, the existing Advanced ~v[obile Phone Service (A~lPS) analog standard 

and Interim Standard-54 (IS-54) digital standard cover the frequency range from 

824}.-lHz to 894MHz while the Global System for Mobile (GSM) communication, 

which is the digital telephone standard developed primarily in Europe and in Asia, 

covers the frequency range from 890MHz to 960MHz. The new generation of personal 
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communication systems (PCS) such as DCS-1800 has frequency band l.il0-1.880 

GHz. The co-existence of GS~I and DCS with a dual standard pro\·iding analogue 

and digital services in the same network means that the corresponding antennas 

should have the capability of operating at dual frequency bands (82-1-960~1Hz and 

1.71-1.88GHz). The development of corresponding dual frequency antennas is in 

great demand. 

It is understood that in any particular design only some of the objectives will 

be achievable, and each case must be treated as a separate entity. In this thesis. a 

dual wide-band antenna is our expectation. Some efforts have already been put to 

the development of dual-frequency antennas [9, 10]. Unfortunately. the bandwidth 

is not very wide. The planar monopole antenna has recently been proposed [11. 12]. 

This type of antenna has a very large impedance bandwidth when mounted on a 

large conducting plane. However. the application of this type antenna to mobile 

communication, in which the size of housing unit is generally small. has not been 

found in the literature. 

1. 2. 2 Numerical Tools for Antenna Design 

.-\ntenna design is increasingly dependent on computer-aided design (CAD) based 

on well-known mathematical methods. \Vhen mobile antennas are essentially bent 

wire sections, they can be modeled with wire-grid modeling [13] provided that the 

housing units are conducting. Actually, wire-grid model has been used in several 
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reports dealing with portable radio units [1-t 15]. But for radiating structures having 

arbitrary shape and composed of layers of heterogeneous material. one has to use other 

methods. One of the latest techniques is the finite difference time domain (FDTD) 

method. which shows much promise for complicated structures and material. and this 

can include components within a dielectric outer case. 

The present popular FDTD was first proposed by Yee [16] in 1966. Yee used an 

electric-field grid, which was offset both spatially and temporally from a magnetic­

field grid, to obtain update equations which yield the present fields throughout the 

computational domain, in terms of the past fields. The update equations are used in 

a leapfrog scheme, to incrementally march the E and H fields forward in time. In the 

1970·s, the FDTD method was not paid much attention because the outer absorbing 

boundary condition was not good enough to simulate the propagation of the out­

going waves and also computer facilities were very slow. \Vith the appearance of a 

better absorbing boundary condition [17, 18] and the decrease of computer cost. the 

interest in the FDTD method began to soar.. The method has been used in hundreds 

of applications, ranging from electromagnetic scattering to radiation. 

The application of FDTD to antenna problems is relative recent than other 

problems such as scattering, but the number of published papers is accumulating 

[2, 3, 4, 19, 8, 20, 21]. 

Despite many good papers on FDTD analysis of antenna problems, there are still 

some issues that need further discussion. When calculating the input impedance of 
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an antenna, the antenna is pulse excited so that wide band results can be obtained 

from a single FDTD computation. For the pulse, some researchers use Gaussian 

pulse[22]. other researchers uses Rayleigh pulse(8] . The issue is which pulse is better 

for a specific antenna problem. The effects of cell size and the distance between the 

absorbing boundary condition and the antenna on the accuracy also need further 

discussion. 

1.3 The Scope of the Thesis 

In this thesis, a general-purpose FDTD computer program code is developed for 

modern mobile/personal communications antenna design. Csing this code. a new 

planar monopole antenna. which can operate at dual wide-band. is de\·eloped to 

meet the requirements of existing and potential communication system providing 

both analogue and digital services. The main work in the thesis can be summarized 

as follows. 

An FDTD program is developed using C++. which is available in ~IS-DOS, win­

dows and Unix environment, with particular emphasis on the modeling of the source 

region including feed forms and source forms. The effects of the cell size and the 

distance between the absorbing boundary and the antenna on the accuracy are ex­

plored. The code is validated by comparison of its results with those obtained from 

NEC-2. 

Using the code, a new dual band antenna is developed [23] for modern commu-
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nications. The antenna performance is improwd [2-!] by modif~·ing the structures 

and geometrical dimensions to achieve required frequency band operation. This is a 

demonstration of using the code to design new types of antennas. It will be showed 

that a small modification of structure or changes in other physical parameters can 

produce great difference in antenna performance. 

1.4 Organization of the Thesis 

This thesis is divided into five chapters. The first chapter is an introductory chapter. 

including the statement of the problem, literature review and main contents to be 

discussed in the thesis. 

In Chapter 2, the basic theory for FDTD is introduced. The emphasis is put on 

the source form and the feeding form of the antenna. ~lain antenna parameters such 

as input impedance, power, efficiency and far fields in FDTD algorithm are presented. 

Chapter 3 introduces the FDTD code de,·eloped for antenna design as well as 

the effects of cell size and the Mur distance on the accuracy of the results. By 

calculating the input impedance and radiation patterns of various typical antennas 

and comparing the result with those from NEC-2, the FDTD code is validated. 

In Chapter 4, the FDTD code is applied to practical antenna design . .-\ new planar 

monopole antenna operating at dual wide-band is developed to meet the requirement 

of existing DCS/GSM communication system. 

Chapter 5 gives the conclusion and some recommendations for future work. 
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Chapter 2 

FDTD Approach 

2.1 Introduction 

The foundation of the FDTD (finite difference time domain) electromagnetic field 

analysis is Yee's algorithm [16], which was published in 1966. Yee used electric and 

magnetic field grids, which were offset spatially and temporally from each other. 

to obtain update equations that yield the present fields in terms of the past fields 

throughout the computational domain. Calculations of the electric field E and mag­

netic field H as governed by Maxwell's equations are marched forward in time in a 

leapfrog fashion. Although many alternative approaches have been proposed since his 

publication, Yee's algorithm is still the most elegant and simplest way of discretizing 

?\.Ia.xwell's equations. There are many applications of FDTD method such as electro­

magnetic scattering, radiation problems, and antenna analysis. In this chapter, Yee's 



algorithm is outlined with much emphasis on its related issues in antenna design. 

2.2 Maxwell's Equations 

All macroscopic electromagnetic phenomena are governed by Maxwell's equations. 

Both the differential and the integral forms of Maxwell's equations can be used to 

derive FDTD update equations. Here, the differential form is employed to demon-

strate the basic principle of FDTD. The integral form will be used later to include 

thin wire structures in antenna problems. 

Using the International System of Units (SI units), Maxwell's equations are given 

by 

__,. 

__,_ &B 
Faraday's Law (2.1) "V X E = --

&t 
__,_ __. &D 

"VxH=J+ &t Ampere's Law (2.2) 
__,. 

"V·D=p Gauss's Law for the electric field (2.3) 

"V·B=O Gauss's Law for the magnetic field (2.4) 

In linear isotropic medium, the constitutive relation is 

D = EE (2.5) 

B = J-LH (2.6) 

J = <JE (2.7) 

The above equations are all the information needed to completely specify the field 
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behavior. It should be noted that for simplicity the equations are given for linear 

isotropic materials, which is usually met in antenna design. 

The starting point for the FDTD formulation is the curl equations (2.1) and (2.2), 

which can be recast into the following form: 

8E 1 __. (j __. 

- = -\7 X H--E at t t 
--" 

8H 1 __,. 
- = --\7 X E at M 

(2.8) 

(2.9) 

The other two divergence equations (2.3) and (2.4) are in fact redundant as they 

are contained within the curl equations and the initial boundary conditions. However, 

they can be used as a test on the predicted field response so that after forming D = EE 

and B = f.J,H from the predicted fields, the resulting D and B should satisfy the 

divergence equations. 

In order to simplify the formulas and make the programming job easier, one must 

further decompose the vector Maxwell 's curl equations (2.8) and (2.9) into their 

component scalar parts, obtaining the following scalar equations in the Cartesian 

coordinate system: 
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.. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

The above six equations form the basis of the FDTD approach. The Cartesian 

coordinate is used here since it is convenient and therefore most frequently used in 

antenna design. For the cylindrical and spherical coordinate systems, the formulation 

is similar. One can refer to [22] for details. 

2.3 Discretization of Maxwell Equations 

In discretization of the Maxwell 's equations, finite differencing replaces derivatives 

with differences as follows: 
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aj 
at 

lim 6f 
Dot-tO 6t 

= lim J(x, t +?f)- f(x, t- ?f) 
D.t-tO 6t 

,...., f(x , t + ?f) - f(x , t- ?f) 
,...., 6t 

aj . 6f 
hm­

ax D.x-tO 6x 

l
. f(x + ~x , t) - f(x- ~x , t ) 

= liD 
D.x-tO 6x 

j (X + ~x, t) - j (X - ~x, t) 
~ ----~~~------~--

6x 

(2.16) 

(2.17) 

In the above approximation 6t and 6x are finite rather than infinitesimal. There-

after, calculus becomes algebra. An explicit central difference scheme is used in the 

above equations (2.16) and ( 2.17) to achieve the second-order accuracy. 

Following Yee's notation [16], we quantize space by letting x = i6 x, y = j6y, 

z = k6z , and time by letting t = n6t. Then the uniform cells in the problem 

can be defined by space index ( i , j , k) and time index n. For example, E ; o ( i0 , j 0 , k0 ) 

represents the z component of the electric field at time t = n06t and at spatial 

location x = i06x, y = j 06y, z = k06 z. It should be noted that the field components 

have different offset as shown in Figure 2.1. 
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X 

i+l 

/ 

z 

t k+l Ey(i.j+ 112.k+ 1) 

f-------c=~'::=-t-~, Ey( i+ 1 ,j+ l/2.k + 1) 
I I I 

'-I, l 

lit 
Ill 

/ 

/ 
/ 

/ 
/ 

Hy2~ 1DI-2__,j.k+ 1/~~ : 
I \ , I 

I 1 , 
I I / 
\ I " 
~--

/ 

/ 
/ 

Ey(i+ 1 ,j+ 112.k) 

j+l 
-->~ y 

Figure 2.1: Positions of the field components about a unit cell of the FDTD grid 

One can replace the time derivatives in equation (2.10) - (2.15) with differences. 

The time center for the first three equations (2.10)- (2.12) is set at (n- !).6.t while 

the time center for the second three equations (2.13) - (2.15) is set at n.6.t. Finally, 

one has 
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En_ En-1 1 (6Hn-1/2 
X X _ _ Z 

6t - t 6y 

1\Hn-1/2 ) 
u. Y _ En-1/2 

6z a x 
(2.18) 

U. z _ En-1/2 /\Hn-1/2 ) 
6x a Y 

(2.19) 

u. x _ aE~-112 
1\Hn-1/2 ) 

6y 
(2.20) 

H~+1/2 - H~-112 _ 1 ( 6E; 6E~) 
6t - {t 6z - 6y (2.21) 

H;+1/2- H;-1/2 - _!_ ( 6E~ - 6E~) 
6t - 1-l 6x 6z 

(2.22) 

H~+1/2- H~-1/2 - 1 ( 6E~ 6E;) 
6t - J;, 6y - 6x (2.23) 

It is observed that in the above three equations (2.18) - (2.20) each E filed 

component consists of three parts: En, En-1
, and En-k. The procedure involves 

predicting En from the values of En-1 and Hn-k only. Accordingly, En-~ should be 

replaced. In some publications [3], the mean value of En and En- 1 is used, while in 

other publications [25], En-! is just replaced by En-1 . Here En-! is replaced by En. 

By such a replacement, we have the tangential electrical component E!} = 0 in the 

limit as a goes to infinity. By replacing the space-derivatives of the equations (2.18) 

- (2.23) with difference, and after some simplification, the previous set of equations 
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become as follows: 

(2.24) 

En (. . 1 k) - [ 1 l n-1 (. . 1 
Y ~,J+2, - E(i,j+~,k)+a(i,j+~,k)6t Ey ~,J+2,k) 

6t + . 
E(i,j + ~' k) + a(i,j + !, k)6t 

[
H;-4 (i, j + !, k + !) - H;-4 (i, j + ~' k- ~) _ (2.25) 

6z 

Hn-4 ( · 1 · 1 k) Hn-4 (· 1 · 1 k)l 
z ~ + 2' J + 2' - z ~- 2' J + 2' 

6x 

En (i . k + ~) - [ 1 l En-1 ( . . k 1 ) 
z ,J, 2- E(i,j,k+!)+a(i,j,k+~)6t z 'l,J, +2 

6t + . 
E(i, j, k + ~) + a(i, j, k + !)6t 

[

Hn- 4(· 1 . k 1) Hn-~ (· 1 . k 1) 
y z+2,J, +2- y z-2,J, +2 

6x 

(2.26) 

Hn-~(·. 1 k 1) Hn- ~(·. 1 k 1)] 
X 'l,) + 2' + 2 - X 'l,) - 2' + 2 

6y 
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.. 

n+! . . 1 1 _ n-! . . 1 ~ 1) 6.t 
Hx ('l,J+-2,k+-2)-Hx (2,J+-2,k+-2 + (' . .!. k .!.) 

1-L 'l, J + 2' + 2 

[
E;(i,j + ~' k + 1)- E;(i,j + ~' k) ( ) 

6.z 2.27 

_ E~ ( i, j + 1, k + ~) - E~ ( i, j, k + ~) l 
6.y 

n+! . 1 . 1 _ n-~ (. 1 . 1) 6.t 
Hy (2 +2,J,k+;j)-Hy 2+2,J,k+2 + !-L(i+~,j,k+~) 

[E~(i + 1,j, k + ~)- E~(i,j, k + ~) (2.28) 
6.x 

E~ ( i + ~, j, k + 1) - E~ ( i + ~, j, k) l 
6.z 

n+~ . 1 . 1 _ n-~ . 1 . 1 6.t 
Hz (t+-

2
,J+-

2
,k)-Hz (t+-2,J+-2,k)+ (' .!. . .!. k) 

/-L'l+2,J+2, 

[ 
E~ ( i + ~, j + 1, k) - E~ ( i + ~, j, k) 

6.y (2.29) 

E;(i + 1,j + ~' k)- E;(i,j + ~, k)l 
6.x 

In the above formulation, there is a half cell offset in both space and time indices. 

One should note that both space and time indices must be integers in a computer 

code. 

2.4 Radiation Boundary Condition 

When the outer boundary of the domain concerned recedes to infinity, the domain 

is called "unbounded" or "open". A condition must also be specified at the outer 
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boundary in order to obtain a unique solution for the problem and such a condition 

is referred to as the radiation condition. 

2.4.1 The Sommerfeld Radiation Condition 

Assuming that all sources and objects are immersed in free space and located within 

a finite distance r'(x', y', z') from the origin of a coordinate system, the electric and 

magnetic fields at location r(x, y, z) are required to satisfy the following equations: 

}~~ [rv x (;) + jk,r x ( ~)] = o 

where r is the distance between the observing point and the origin, and 

r = J(x- x')2 + (y- y')2 + (z- z')2. 

(2.30) 

Equation (2.30) is usually referred to as the Sommerfield radiation condition for 

the general three-dimensional fields. 

However, Sommerfield radiation condition cannot be used in our computer pro­

gram, since no computer can store an unlimited amount of data. The field compu­

tation domain must be limited in size, but the computation domain must be large 

enough to enclose the structure of interest so that a suitable absorbing boundary 

condition (ABC) on the outer perimeter of the domain can be used to simulate its 

extension to infinity. 

20 



2.4.2 Absorbing Boundary Condition 

The quest for a good ABC that produces negligible reflections has been a Yery active 

area of FDTD research. ~lost of the popular ABCs can be grouped into those deri,·ed 

from differential equations [18, 1 i]. or those that employ a material absorber [26] . 

Among a large number of .-\BCs, the Mur absorbing boundary condition is both \·ery 

simple and accurate for engineering applications. In this thesis. the ~lur absorbing 

boundary condition, or more particularly the first and second order .\lur conditions 

are used to estimate the field on the boundary. The first order :\1ur condition looks 

back one step in time and into the space one cell location and the second order .\lur 

condition looks back two steps in time and inward two cell locations. The effects of 

the distance between the Mur condition and the antenna under consideration on the 

accuracy of the numerical results will be discussed in the next chapter. 

2.5 The Cell Size and Time Step for Stability 

The choice of cell size is critical in applying FDTD. It must be small enough to permit 

accurate results at the highest frequency of interest, and yet be large enough to keep 

resource requirements manageable. Due to the approximation inherent in FDTD, 

fields of different frequencies will propagate at slightly different speeds through the 

cells. This difference in propagation speed also depends on the direction of propaga­

tion relative to the cells. This phenomena is called numerical dispersion. In order to 
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get accurate and stable results, the numerical dispersion error must be reduced to an 

acceptable level, which can be readily accomplished by reducing the cell size. 

Another cell size consideration is that the important characteristics of the problem 

must be accurately modeled. Normally this will be met automatically by making the 

cells smaller than >../20 or so, unless some special geometry features smaller than this 

factors in determining the response of interest. An example is thin wire antennas, in 

which a small change in the wire thickness will affect the antenna impedance. Good 

results in these situations may require extremely small cells or alternative measures 

such as sub-cell modeling, which will be discussed later. 

The time step is generally determined by the Courant condition[25]. For three-

dimensional rectangular grid, the Courant condition is 

1 
v f::.t ~ ----,:.======= 1 1 1 1 

V (6x)2 + (6y)2 + (6z)2 

(2.31 ) 

where v is the wave velocity in the media, f::.t is the time for one time step and 

f::.x, f::.y, f::.z are the cell size. 

This is a basic requirement for stability. People usually use this equation for 

time step calculation if a pulse is used as source form. However, when the sine wave 

is used as the source form of the antenna, one may have to use smaller f::.t to get 

more accurate data, because the amplitude error and the phase error for steady-state 

response are decided directly by f::.t , which will be discussed later. 
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2.6 Antenna Parameters in FDTD 

There are lots of parameters for antennas, and it is not necessary to give the expression 

for each parameter. Here we discuss several parameters that are most important and 

also the basis of other parameters. 

2.6.1 Input Impedance, Power and Efficiency 

The electric and magnetic fields in the source region (generally one cell) are used to 

determine the input impedance of the antenna. The detailed expression for input 

impedance can be different for various feed forms, which will be discussed later. Here 

the feed of the antenna is assumed to be a thin gap voltage source. In time domain 

the impressed excitation voltage is defined by 

__. _. 1 
v5 (n6t)=-E·dl =-E;(i,j,k+2)6z (2.32) 

and the resultant current flowing in the source region is found by calculating 

= [Hn+~(i ). - ~ k + ~)- Hn+~(i ). + ~ k + ~)]6x 
X l 2' 2 X l 2' 2 

(2.33) 

n+~ . 1 . 1 n+~ . 1 . 1 
-[Hy (~- 2,J,k+ 2)-Hy (~+ 2,J,k+"2)]6y 

where n is the time index. 

The input impedance of the antenna is determined from the ratio of the Fourier 

transform of the voltage wave and that of the input current wave, i.e., 

Z(w) = Z(k6 f) = DFT[v5 (n)] = Vs(k6!) = Ys(w) 
DFT[i5 (n)] 15 (k6J) 15 (w) 

(2.34) 
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where D.f = N~t, and N is the total number of time steps needed for the current 

to attenuate to a very small value. It should be noted that the time difference D.t/2 

between voltage wave and current wave is ignored since its effect is very small. Either 

the discrete Fourier transform (DFT) or the fast Fourier transform (FFT) can be used 

for the transformation process, and the latter will be used in this thesis. 

The calculation of the input power is given by 

Pin(w) = Re [Vs(w)J;(w)] (2.35) 

The dissipated power can be computed as follows. Consider that an FDTD electric 

field component Ez(i,j, k+~) is in a region with conductivity a. If we assume that the 

electric field is uniform within a single FDTD cell, then the equivalent steady-state 

power dissipated in this region is given by 

aD.xD.y 
= a!Ez(w)j 26x6y6z = D.z jEz(w)D.zj2 (2.36) 

!Vz(w)j2 

R 

where R is the resistance, and R = ul:.;;-u. The antenna efficiency is determined from 

the input Pin and dissipated power Pdiss as follows 

(2.37) 
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2.6.2 Far Fields 

There are two different ways to obtain the far fields from the time-domain fields in 

the defined space. One is sine steady-state response method [25] . Another is the so-

called FFT method [27, 28]. Here the first method is used because it is more efficient 

when the radiation patterns of antenna are not very sensitive to frequency change 

where only two or three frequencies are required. 

Since the source is the form of sine wave, one can find the amplitude and phase of 

the fields when steady-state condition is reached. After obtaining the tangential elec-

tric and magnetic currents in terms of surface fields on a closed surface surrounding 

the antenna, one can use the equivalent electric and magnetic currents to compute 

the corresponding radiated fields in the far zone. 

It is assumed that Js = n X H and Ms = -n X E, where n is the unit normal 

vector of the surface surrounding the antenna while E and H are the fields on the 

surface. The retarded potentials F and A can be defined in terms of the magnetic 

source and electric source respectively [7]. For a homogeneous isotropic medium, the 

relations are 

A=~f 
J e-ikr 

s ds' (2.38) 
s' 4rrr 

__.. 1 M e-ikr 
F = t s ds' (2.39) 

s' 4rrr 
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The fields in terms of the potentials are [7] 

___.. . ___.. jw ___.. 1 ___.. 
E = -JWA- -\7(\7. A)- -\7 X F 

k2 E 

___.. . ___.. jw ___.. 1 ___.. 
H = -JWF- -\7(\7. F)- -\7 X A 

k2 E 

For simplicity, A and F can be expressed as 

where 

where 

--->. e-jkr--->. 

A =JL--N 
41fT 

--->. e-jkr--->. 

F=E--L 
41fT 

T
1 cos '1/J = z' cos () + ( x' cos ¢ + y' sin ¢) sin () 

and k is the wave number and (x', y', z') is the source point. 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

If electric and magnetic field components are now written in the usual way in 

terms of two vector potentials, the only components in the far fields not decreasing 

faster than 1/ T are 

-jkr 

Eo= TJH¢ = -j~(TJNo + L¢) 
2AT 

- jkr 

E¢ = -TJHo = j~( -TJN¢ + L¢) 
2AT 
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Figure 2. 2: Find the far field from equivalent currents 

In this thesis, N and L are expressed in terms of the Cartesian coordinate com­

ponent Nx, Ny, Nz since J and M are conveniently expressed in terms of fields in 
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Cartesian coordinates 

No= (Nx cos</>+ Ny sin¢) cos</>- Nz sin() 

N<P = -Nx sin</>+ Ny cos</> 

2. 7 Special Consideration 

(2.48) 

(2.49) 

The basic principle of FDTD for various electromagnetic problems is the same, but 

there are some differences for the application of FDTD in various aspects. In the 

problem of antenna radiation, special considerations for thin wire structures and the 

feed forms should be taken into account. 

2. 7.1 Thin Wire Structure 

In antenna design, a common geometry to be modeled is a thin wire of finite radius. 

Often a wire is much smaller in radius than its length, and approximation of the 

wires as being without a radius may yield poor results, as both antenna impedance 

and coupling are sensitive to the wire radius. Also it is often desirable to avoid 

sizing the FDTD cells small enough to accurately model the thin wire because the 

computational cost of the FDTD technique is decided directly by the number of 

cells. An alternative solution is a computational more efficient concept of a sub 

cell approach. A new set of equations that take the near-field characteristics of the 

problem into account is derived with the aid of the contour integral form of Maxwell's 
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equations. The new equations allow for a much larger spatial grid size to be used. The 

standard FDTD field equations are used for majority of the cells in the grid while the 

sub-cells are used near the wire structure. The sub cell approach was first proposed 

by Cmashankar and Taflove [29], and then widely used among other researchers. 

The geometry is shown in Figure 2.3. A conducting circular wire of radius r0 is 

positioned to align "';th the center on the E.{i,j, k +~)field component. The wire is 

assumed to have a radius smaller than 0.56x , and !::lx must be much smaller than 

the wavelength (less than .A/20) for FDTD to be applied, therefore, the wire radius 

also must be much smaller than a wavelength. The circumferential magnetic field 

component Hct>(r) and the radial electric field component Er(r) surrounding the wire 

are assumed to varv as l near the wire. where r is the radial distance form the center - r . 

of the wire. These fields are represented as follows: 

H
41
(r) = H 41 (0) · jl(t) 

r 
(2.50) 

Er(r) = Er(O) · f2(t) 
r 

(2.51) 

Strictly speaking, such an assumption holds only for the fields around an infinite 

cylindrical line source, but numerical results have verified that it can approximate 

the fields near the wire of finite length very well. 

\Vith the above assumptions, the spatial dependence of the fields in the vicinity 

of the wire can be approximated as follows: 

H (r) ~ H (i J. k + ! ) · 6.x 
!I Y ' ' 2 2r (2.52) 
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Ex(i,j,k+l) 

Hy(i,j,k+ 112) 

Ez(i,j,k+ /2) Ez(i+ 1 ,j,k+ 112) 

Ex(i,j,k) 

Figure 2.3: The geometry of thin wire in a subcell approach 

within the contour, and 

6.x 
Ex(r) ~ Ex(i, j, k) · 

2
r (2.53) 

along the upper and the lower integration contours. We now apply the Maxwell 

Faraday's law equation to the cell containing the wire. 

I _. _. f)!! _. _. 
E·dl =-J.Lot H·ds (2.54) 

After simplifying the integration, one gets 
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For each Ez ( i, j , k + ~) component at the center of the thin wire, there are four 

associated H field components in the surrounding adjunct cells that must be com-

puted at each time step. The electric field values are updated using the usual FDTD 

equations. The above equation is derived from the cell containing the conducting 

wire cell. If a thin gap source is to be modeled, then the voltage difference at the 

terminals of the dipole will give rise to a z-directed electric field in the source region. 

The modified time stepping expression for the circumferential magnetic field in the 

source region is given by 

n+t . 1 . 1 _ n-t . 1 . 1 
Hy (z+ 2,J, k+2,)-Hy (z+

2
,J,k+2) 

+ J-L~z [E~(i+~ , j, k)-E~(i+~,j,k+ l)l (2.56) 

+ 26.t 6x [E~(i+1,j, k+-21) -E~(i,j,k+-21)] 
J-L6.x ln-ro 

Actually, (2.56) is the formula that will be used in our program since it takes into 

account the situation of both thin wires and source region. 

2. 7. 2 Antenna Feed 

Modeling of the antenna feed can be accomplished using different methods: voltage 

source and current source method. The voltage source method has two different im-

plementation approaches. For the convenience of demonstration, a monopole antenna 

is studied as an example. One can start with the thin gap approach of voltage source 

method, which is shown in Figure 2.4. 
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Figure 2.4: The thin gap method of voltage source 

The Ez component along the wire axis is zero except at the feeding cell where Ez 

is excited. The electric field at the feeding cell is expressed as 

(2.57) 

The resultant current can be obtained by (2.33) . 

Another approach is shown in Figure 2.5, where the Ez field component along 
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the wire axis is set to zero, including the one of source region. The four electric field 

components going radially from the wire axis are given by 

I 

I 
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I 

, The plane perpendicular to the wire , passing through the source cell 

Figure 2.5: The equivalent magnetic current method of voltage source 
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(2.58) 

(2.59) 

where r 0 the radius of the wire. 

For current source, an impressed current source l 5 (n6t) can be incorporated 

directly into the Maxwell's equation (2.2) to give 

E n(· . k 1) En- 1( · . k 1) 
z 'l,), +2 = z 'l , J, +2 

[ 
1 1 l 6t + Hy(i + 2,j, k)- Hy(i- 2,j, k) · <:

6
x 

- H (i J. + - k) - H (i J. - - k) · -[ 
1 1 l 6t 

X ' 2' y l 2 l <:6y 

b.t 
- l 5 (n6t) · 

6 6 € X y 

The corresponding voltage can be found by (2.32). 

2.7.3 Source Forms 

(2.60) 

In this thesis, "source" is used to supply energy to the electromagnetic calculations. 

A great variety of waveforms for antenna source (current source or voltage source) 

are possible, but experience has led to only two or three waveforms suitable as source 

forms, which are Gaussian pulse[22], Rayleigh pulse[8] and sine wave[25]. Although 

modulated Gaussian and Rayleigh pulse, which are used for high operation frequency, 

have also been found in the literature (30] , they will not be discussed here since the 
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operation frequency to be considered is not ,·ery high -generally 1-2G H.: for mobilP 

communication. 

Gaussian Pulse 

The most frequently used waveform in published literature is the Gaussian pulse. 

which is expressed as 

(2.61) 

where T denotes the pulse width, t0 is the time delay, and .-1 is the amplitude, usually 

normalized as "1". Its waveform is shown in Figure 2.6. Since the spectrum of the 

Gaussian pulse can be very wide, if the parameters are chosen properly. the Gaussian 

pulse is usually used to obtain the input impedance of an antenna, which is usually 

sensitive to frequency change. 

Although an ideal Gaussian pulse extends to infinity in time. the Gaussian pulse 

for FDTD must be truncated in calculation to improve computing efficiency. t0 is 

chosen to enable a smooth "turn on'' of the pulse. The effects of the truncation 

must be considered since the discontinuity in time domain may produce ringing in 

frequency domain(22] . The pulse width T should be chosen so that its spectrum 

(FFT of the pulse) has a suitable bandwidth. 

For the convenience of programming, equation (2.61) is rewritten in the following 

form 

(2.62) 

35 



1/e - · - - · -

0~--------=--------------------------=--------------------~ 

t-T 
0 

Figure 2. 6: The waveform of Gaussian pulse with amplitude of 1 

where the time step 6.t , determined by Courant stability condition (2.31) , is depen-

dent on the cell size in FDTD. n is the time index. (3 = t0 / 6.t , and a= 1/ T 2
. 

In computer programming, the pulse is chosen to exist from n = 0 until n = 2(3, 

approximated as zero outside this range, where n is the time index and (3 is the 

number of time steps in the Gaussian pulse from the peak value to the truncation 
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,·alue. This can be formulated explicitly as 

{ 

.-le-o(n.6t-J.6tl2 

f(n6t) = 

0 

if 0 ~ n ~ 2J 

otherwise 

and the corresponding waveform is shown in Figure 2. T. 

The pulse amplitude at the truncation is .-le-o(B.6!)
2

• ~ow let 

er0 
a=--

.B6t 

(2.63) 

(2.6-!) 

where er0 is a constant, so that the amplitude of the pulse at truncation is always the 

same value for different /3 and 6t. \Vhen 6t is fi.xed, /3 controls the pulse width and 

therefore the corresponding spectrum band. It should be chosen according to actual 

design requirements for antenna operating frequency. 

Then we need to determine er0 so that th.is truncation does not introduce un-

wanted high frequency components into spectrum. and yet does not waste computa-

tion time on determining values of the source that are essentially zero. Because the 

accuracy for a single precision calculation is about -120 dB (six significant decimal 

digits) , we choose er0 = 16 so that a equals to exp( -16) or about -140 dB. 

To illustrate the effect of this choice of er0 we consider a situation which will be 

used later for antenna design. For a three dimensional cubic cell with 0.5cm sides. 

applying the Courant stability condition (2.31) which is 6t ~ 0.005/{ v'3c) here, one 

obtains a 6t of 0.00963ns. Taking the FFT of equation (2.63) , one can get the 

amplitude variation with frequency as plotted in Figure 2.8. From the figure one 
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Figure 2. 7: The waveform of Gaussian pulse with amplitude of 1 in FDTD 

can see increase in a increases the dynamic range. For single precision calculation, 

er0 = 16 is accurate enough. 

Figure 2.9 shows the effect of f3 on its frequency band. It is clear that the bigger· 

/3 , the narrower the corresponding frequency band. 

When choosing /3, the frequency band should not be too narrow or too wide. 
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Figure 2.8: The effects of a on high frequencies with (3 = 32. 

On one hand, the frequency band should be wide enough to contain the operation 

frequency range of the antenna. On the other hand, the spectrum component outside 

the operation frequency should be as small as possible since those components can 

possibly cause numerical noise in the interested operating frequency band due to the 

numerical dispersion in the calculation. 
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Figure 2.9: The effects of {3 on frequency band with ero = 16 

Rayleigh Pulse 

20 

Rayleigh pulse is the time derivative of the Gaussian pulse. Because of its smooth 

shaped spectrum (FFT of the Gaussian pulse) , it provides information from a little 

above de to the desired frequency simply by adjusting the width of the pulse. Its 
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mathematical form is given as 

Q) 
"0 

0.5 

.€ a. 01-----.,..,.-
E 
<( 

-0.5 . 

-1 

(2.65) 

-1 .5 '------'-------'----'--------'-----'-------'-----..J'------' 

0 10 20 30 40 50 60 70 80 
Number of time steps 

Figure 2.10: The waveform of Rayleigh pulse 
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Similarly. the formulation in FDTD calculation should be changed as follows 

{ 

-2o(nD.t- 3D.t).4e-o<nb.t-B.6t)~ if 0:::; n :::; 23 
f(nD.t) = (2.66) 

0 M~~~ 

where the parameters in the above formula have the same definitions as those for the 

Gaussian pulse in the last section. Figure 2.10 shows the waveform of the Rayleigh 

pulse and Figure 2.11 is the corresponding spectrum ( FFT) of the Rayleigh pulse with 

the same parameters as in the Gaussian pulse. It should be noted that Rayleigh pulse 

has no DC component and the maximum of the spectrum amplitude is not located 

at the frequency approaching zero. The Gaussian pulse and the Rayleigh pulse have 

similar spectrum characteristics, and it seems that the choice of using either form 

will produce the same results. But the similarity may not hold true for all cases as 

will be shown in a later chapter. 

Sine Wave 

Sine wave has a fixed frequency. It is efficient to use sine wave for calculating the 

radiation patterns, which are not very sensitive to frequency change. At t = 0, a 

source of frequency f is assumed to be turned on. The radiation of this source is 

simulated by solving the finite-difference update equations on the grids of cells, within 

the computational domain. Time-stepping is continued until the sinusoidal steady 

state is achieved at each cell. The field envelope, or maximum absolute value, during 

the final cycle of time-stepping is taken as the magnitude of the phasor of the steady-

state field at each cell. In the meantime, the phase of the field at each cell can also 
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Figure 2.11: The spectrum of Rayleigh pulse with f3 = 32 and ero = 16 

be obtained. After obtaining the field information on the outer surface containing 

the entire antenna system, it is easy to get the far-field information such as radiation 

patterns by field integration[7] . 

In this thesis, the Gaussian pulse and the Rayleigh pulse are used to find the input 

impedance of antennas, while sine wave is used to calculate the radiation pattern. 
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Chapter 3 

Development of the FDTD Code 

In this chapter the FDTD code developed for antenna design is introduced first. 

Then the factors that effect the accuracy of the results such as input impedance 

and radiation patterns are demonstrated numerically. These factors include the grid 

size. the distance between the Mur boundary and the antenna. the feed forms of the 

antenna and the source forms. 

3.1 FDTD Code 

Based on the formulation shown in the previous chapter, an FDTD code was devel­

oped for antenna design purpose. The code was written using C++, which can run 

in Z...JS-DOS, \Vin95 and Uni..x environment. 

The code is composed of one header file, one main program and several subroutine 

programs. The flow chart for the code is shown in Figure 3.1. The main program 
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Figure 3.1: Flow chart of a C++ program for FDTD algorithm 
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··main·· in the code reads the primary parameters. calls subroutines for initialization 

and controls the execution of the subroutines for field calculation as well as the data 

output. The functions of the subroutines are summarized in Table 3.1. while organi­

zation of the subroutines and data files in the FDTD code is shown in Figure 3.2. 

First. "para'' and ''inif' are called for parameter definition and ,·ariable initial­

ization. Then .. geo" is callerl : o read the data file for the user-defined structure( an 

antenna and its surroundings) .. -\.fter that, ''exfid" , ''eyfl.d", and "ezfld" are called for 

updating the E field at each grid except those on the boundaries. For the fields at 

those grids on the boundaries, "murx)'l>'', "murxyn", "muryzp", "muryzn" . ··murxzp'· 

and ··murxzn", which implement the Mur boundary conditions introduced in the pre­

vious chapter are called instead. Then "h."'fid" , '"hyfl.d" and "hzfld" are called for up­

dating the H fields. If the antenna contains wire structures. "thin.wire" is called for 

the data input of the wire structures. This subroutine also saves the current (in time 

domain) on the wire in a separate output file , which can be used for post-processing 

such as impedance calculation. 

If the source is sine wave and the far field is expected, "wave.stable" is called to 

decide if the steady-state is reached. If the steady-state is reached, "find..amp'' and 

"find_phase'' are called to find the field amplitude and the relative phase, respectively. 

Then "out.surface..field" is called to get the surface fields, and "far _field" is called to 

calculate the far field which will be output for plotting or other analysis. 

In the following sections, we will introduce the subroutines in terms of their func-
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Table 3.1: The fun ctions of the subroutines 

Subroutines Functions 

para, init parameter definition and initialization 

geo antenna data input 

exfld, eyfld, ezfld E field updating 

murxyp, murxyn, muryzp, Mur boundary condition implementation 

muryzn, murxzp, murxzn 

exfld, eyfld, ezfld H field updating 

thin_ wire dealing with the thin wire structures 

wave_stable judging if the steady-state is reached 

find_amp getting the field amplitude on the surface 

find_phase getting the relative field phases 

out...surface_field surface field calculation 

far _field far field calculation 

tions. The description of the subroutines with similar functions will be put in the 

same section. Since there are detailed descript ion in the previous chapter for the field 

updating, the boundary conditions as well as the treatment for thin wire st ructures, 

the emphasis here will be put on the subroutines for steady-state response, which 

were not described before. After that we will introduce the data input and output 

format as well as the procedures for using the program. 
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3 .1.1 Header File 

In the header file. various standard header files in the C++ library such as .. math.h .. 

(math library) and "iostream .h" (library for input and output) are included. In 

addition to the standard header files. the maximal size of the problem to be analyzed 

is given. For example. consider a problem of 100 x 110 x 120 cells. we define n...r 2: 101. 

n_y 2: 111. and n_z 2: 121. Here we define one more cell for the reason of code 

simplicity, since the arrays in C++ start from 0 instead of 1 and we do not want 

to use. say x(O], as the data for the cell Number 1. Various data structures also are 

defined, including: 

• the actual size of the problem "n_xyz", which defines the number of the cells in x. 

y. z directions; 

• the cell size "delO" defining the cell length in the x, y, z directions: 

• the constant coefficient "co f jO" for the convenience of expressing E fields in a 

simple way. 

3.1.2 Initialization 

Two subroutine programs "para" and "init" are called for initialization. The functions 

of "para" are 

• defines the parameters conductivity (j, relative permittivity ir for the materials in 

the problem; 
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• calculates the time step size .6.t by Courant stability condition equation (2.31) 

according to the cell size 6x, 6y, 6.:;: 

• calculates the constant a: ( = ;~t) in Gaussian pulse in terms of the parameter J: 

• defines the various constant coefficients such as t~= in the field update equations. 

The functions of "init.cpp'' are 

• initializes the E and H fields to zero: 

• initialize the identity variable arrays for the material to free space: 

• initialize the arrays. which temporarily store the field values on the boundary. to 

zero. 

3. 1.3 Field Computation within the Boundary 

\Vhile looping over n (the index of the time steps), the subroutines .. exftd". "eyftd" 

and "ezftd" are called for the E field updating in x-, y- and z- direction. respectively. 

The subroutines "hxfld", "hyfld" and "hzfld" are called for the H field updating. in 

x-, y- and z- direction, respectively. These subroutines calculate the present value 

of a component from its own prior time value and that of the nearest-neighbor field 

quantities according to the type of material present at that component location. The 

expressions for each field component can be found in the previous chapter, and the 

code for the field updating is straightforward, therefore we will not introduce them 
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furthermore. Since the formulae for the fields in different directions are different. we 

use different subroutines for the field updating in different directions here. 

3.1.4 Fields on the Artificial Boundary 

On the artificial boundary. the fields cannot be updated directly. as introduced in the 

previous chapter. The outer radiation boundary condition should be used instead 

to absorb the radiated fields at the outermost ponion of the antenna space. In our 

code, the subroutines "murxyp". "murxyn", "muryzp", ''muryzn". ·'murxzp" and 

··murxzn" are called for field updating on the outer boundary. 

3.1.5 Thin Wire Structure 

If there are thin wire structures, ;;thin_wire" will be called to calculate the H fields 

around the wire. At each time step the fields in the source region are stored for 

post-processing such as input impedance calculation. 

3.1.6 Steady-State Response 

As mentioned before, for the far field calculation, sine steady-state response method 

is more efficient than FFT method. Specifically, far fields are not sensitive to the 

distance between the outer absorbing boundary and the antenna, which will be ver­

ified later numerically. This makes the problem size much smaller, and hence the 

corresponding running time of the program is reduced greatly. In this program, if the 
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source is sine wave, the subroutine "wave_stable" can decide if the steady state has 

been reached or not. If the steady-state is reached, "find_amp" and "find_phase" will 

be called respectively to obtain the amplitude and phase information on the surface 

containing the antenna for far field computation. 

A. Steady-State Condition 

Figure 3.3 shows the electric field varying with time at a certain point. The corre-

sponding steady-state wave form is shown in Figure 3.4. It is clear from the figures 

that one cannot judge that the response has reached steady-state condition just by 

comparing the peak-values within two continuous cycles. 

To solve this problem, one may consider peak-values in four continuous cycles. 

Assume the positive peak values are A1 , A2, A3 , A4 in four cycles, respectively, if 

i = 1, .. .4, j = 1, .. .4, i # j (3.1) 

a steady-state condition is considered achieved. Note ec is a constant controlling the 

steady-state error and is input from the data file "ant.dat" , varying from 1% to 0.1% 

in this program. 

From Figure 3.4, one can also observe that the discreting error around the peaks( the 

curve is not smooth). Obviously, when ec is very small, the corresponding 6t should 

be decreased also. Otherwise, we have the risk of getting into dead looping(in which 

case the expected steady-state will never be reached). 
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B. Find the Amplitude and Phase of the Sine Wave 

It is easy to get the amplitude information for fields at each cell. When steady state 

condition is achieved, one can find the maximum values for each field component 

at each point just by simple comparison. The maximum values are the amplitude 

information expected. 

For the phase information, a point is chosen as a reference point, as shown in 

Figure 3.5. When the field (E or H) at this reference point jump from a negative 

value to a positive one or zero, the phase for the field at this point is chosen to be 

zero, the index of time step is recorded. To find the relative phase of other fields in 

the space with respect to the field at this point, one just needs to find the index of 

time step when the field value jumps from negative to positive or zero. The formula 

for the relative phase is 

27r ( ) . - l(Ex) ¢ = - * n - no - s~n -
Nc A 

(3.2) 

where Nc is the number of time steps in one period and n0 is the index of time 

step at the reference time and n is the index of time step when a field value jump 

from negative value. A is the amplitude of the field and Ex is the value the field 

jump to from a negative value. It should be noted that for the phase of H field , 1r / Nc 

should be added because there is a time difference l:::.t/2 between E field and H field . 

As soon as one finds the fields on the surface enclosing the antenna and its attached 

structure, the formulation in section 2.6.2 can be used to obtain the far fields. The 

radiation pattern is obtained by using plotting tools such as "M atlab". 
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Figure 3.5: Method of finding the steady-state phase information 

3.1. 7 Data Input 

There are three input data files: "ant.dat", "material.dat", "wire.dat" . An example 

for the data files is given in the appendix. The data file "ant.dat" contains the primary 

parameters for the problem to solved, such as the number of cells, the cell size, and 

the data file name of the antenna geometry and material structures whose format is 

given in table 3.2. The user just needs to change the values of the parameters in the 
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file. 

Table 3.2: The data format of file ant.dat 

Input data Comments 

line 1 nn.x, nn.y, nn.z number of cells along x, y, z direction 

line 2 del.x, del.y, del.z cell size (unit: meter) 

line 3 ro thin wire radius (unit: meter) 

line 4 amp, beta, lambda "A" and "/3" of the pulse which are used only for im-

pedance calculation, wavelength" X' for sine wave which 

is used only for radiation pattern calculation 

line 5 nstop maximal allowed number time step. 

line 6 materiaLFile file name of the antenna structure 

line 7 flag_inc flag controlling the form of the source. 0: pulse; 2: sine 

wave 

line 8 Ist,Ind, Jst, Jnd , the surfaces for far field calculation, which should be as 

Kst, Knd small as possible provided they enclose the antenna 

line 9 ec the constant controlling the steady-state error 

line 10 cen.x, cen.y, cen.z the index numbers for the origin of the coordinate for 

far field calculation 

line 11 epsil , epsi2, ... the dielectric constant for the materials used 

If the file name of the antenna structure(in the sixth line of "ant.dat" ) is "mate-
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rial.dat", the user will create this file manually or by a small program. There are six 

integers in each line in "material.dat" . They are i, j , k, I D...x[i][j ][k], I D_y[i][j][k], 

I D_.z[i][j][k]. The former three numbers are the cell index numbers, and the latter 

three numbers are the material(permittivity) index numbers. We use three index 

numbers here because the field components are offset by half cell size, as discussed 

in the second chapter. In this code, the index number for perfect conductor is 1. For 

dielectric material, an index number can be any number which is less than 10, but 

it cannot be 1. It should be noted that the dielectric constant corresponding to the 

index number has to be input in the last line of "ant.dat". 

"wire.dat" contains the thin wire structure in the antenna problem. The structure 

of "wire.dat" is shown in table 3.3. It should be noted that no inclined wires are 

allowed directly. The inclined wires can be represented by using stair step. 

Table 3.3: The data format of file wire.dat 

Input data Comments 

n total number of straight thin wires involved 

Z, x, y, zl, z2 "Z" oriented wire, starting and ending index number 

Y, x, yl , y2, z "Y" oriented wire, starting and ending index number 

X, xl, x2, y, z "X" oriented wire, starting and ending index number 
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3.1.8 Data Output 

The currents on the antenna( in time domain) are output to the file .. cur.daf'. If the 

wide band impedance is expected(the source is a pulse). we need to take the Fourier 

transform of the data, which is straightfon,·ard. If the patterns are what we are 

interested in(the source is a sine wave}. we can get them directly from the output 

data files ;;Ectx.dat", "Ecty.dat~, and "Ectf.daf'. which correspond to the pattern 

in xz- yz- and xy- planes respectively. 

3.1.9 Procedure for Using the Code 

( l.) Prepare the three input data files. (2.) Run the code "'antm". (3.) Take the 

FFT of the time domain data to get the input impedance or use 1\l atlab to plot the 

radiation patterns. 

3.2 Validation of Present FDTD Code 

To test the accuracy and robustness of this developed code, comparison is made with 

an available code Numerical Electromagnetic Code (NEC-2) for some cases. Three 

models are presented here. They are a dipole, a loop antenna, and a monopole on a 

finite plate. The results from NEC-2 will be used as reference. In NEC-2, which is 

based on the method of moment, wire-grid replaces the flat plate shape. First the 

effects of Mur distance and cell size on the accuracy will be discussed. Then one 
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compares the results from Gaussian pulse and Rayleigh pulse for different feed forms. 

3.3 Dipole 

Dipole has been the simplest antenna since the early time when antenna was in\"ented. 

It is a \"ery good model for the validation of our code since no approximation is 

introduced for the antenna when using l\'"EC-2. The :\""EC solution is actually being 

used as exact solution for dipole antennas. The computation cost is low for this 

simple structure. 

A center fed dipole of total length 15cm with diameter of l.Omm is considered 

here (the diameter of the inner conductor for RG402/u 50 semi-rigid coaxial cable is 

0.9195mm, hence l.Omm is a very good approximation to the actual antenna). The 

radiation patterns and the input impedance will be calculated separately. 

3.3.1 Radiation Pattern 

Figure 3.6 shows the radiation pattern of the above antenna at 3GHz. The solid line 

is obtained from NEC-2, where 61 segments, which corresponds to >../40 length per 

segments, was used. The dashed line and the dotted line are obtained by our present 

FDTD code. For the dashed line, the cell size is >../20, the distance between the outer 

boundary and the antenna is>.. (i.e. 20 cells) . For the dotted line, the cell size is >../40, 

the distance between outer boundary and the antenna is still >.. (i.e. 40 cells) . From 

the Figure one can see that for the cell size of >../40 very good agreement between 
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FDTD and NEC-2 is obtained for the radiation patterns of a dipole antenna. When 

the steady-state judging constant ec changes from 1% to 0.1%, no obvious change in 

radiation patterns is observed. It should be noted that when ec is very small , the 

time step D.t should be comparatively small too, otherwise it it possible that one 

will not get the steady-state expected. Since the running time would be much longer 

when ec is smaller, ec will be fixed at 1% in the following calculations. 

0 

90 

180 

Figure 3.6: The radiation pattern of a dipole at 3GHz obtained using different FDTD cell 

szze 

--NEC-2,- - - cell size:A/20, ······cell size:>../40. 

61 



\"ext we test the effects of the distance between :\1ur boundary and the antenna 

(we call this distance the :\-lur distance herein). Theoretically. the larger the :\lur 

distance, the better the radiation pattern results. In the meantime. the computational 

cost will be much higher when using larger distance. Figure 3. i shows the radiation 

pattern for various ~\:Iur distances. The cell size is .A/40. Mur distance of 10 space cells 

(.A/ 40 per cell) is acceptable, though more cells produce better results. So at initial 

stage of radiation pattern estimation, lO cells are used and in the final design stage 

20 cells or more are used until the radiation patterns converge to accurate values. 

Then the radiation patterns of the antenna at 2GHz for various cell sizes and 

different ~:Iur distances are calculated. Figure 3.8 shows the radiation pattern of the 

above antenna at 2GHz with different FDTD cell size. The solid line is obtained from 

).""EC-2, where 41 segments, which corresponds to .A/ 40 per segments, were used. For 

the dashed line, the cell size is .A/20. For the dotted line, the cell size is .A/ 40. For 

the dash dotted line, the cell size is .A/80. The distance between the outer boundary 

and the antenna for all the cell size is 20 cells. It can be seen that keeping the .Mur 

distance a constant number of cells (with varying absolute distance), the accuracy 

can still be improved a lot by reducing the cell size. 

\Vhen the cell size is small enough, one can see the effects of Mur distance on the 

accuracy from Figure 3.9, where the cell size is .A/80 and the dashed and dotted line 

correspond to the M ur distance of 10 cells and 20 cells, respectively. 

From the above numerical results, one can draw the follo~ing conclusion for the 
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180 

Figure 3. 7: The radiation patterns of the dipole at 3GHz with different Mur distance 

-- NEC-2, · · · · · · 10 cells, - · - 20 cells, - - - 40 cells. 

radiation pattern calculations: The cell size must be less than -\j 40 in order to get 

very accurate result. The radiation patterns are not sensitive to the Mur distance. 

The steady-state controlling constant is chosen to be 1% to get good result , while 

not wasting computational time. 

Actually, the radiation pattern of dipoles has been studied before [21]. But the 

results in [21] are not very good, though it coincides with that of sine current 
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Figure 3.8: The radiation patterns of the dipole at 2GHz with different cell size 

- NEC-2· - - - A/20· · · · · · · A/40· - · - A/80· ' ' ' ' 

approximation. 

3.3.2 Input Impedance 

First, the input impedance of the above dipole with a thin gap voltage feed was cal-

culated by using Gaussian pulse and Rayleigh pulse as the source form, respectively, 

and no difference was observed. So we used only the Gaussian pulse to test the effects 
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Figure 3. 9: The effects of Mur distance on the accuracy of the radiation patterns 

--NEC-2; - - -lOcells ; · · · · · · 20 cells. 

of Mur distance and cell size unless specified otherwise. 

Figure 3.10 shows the input impedance versus frequency, where the cell size is 

-X/40 and the dashed and dash dotted lines correspond to the Mur distance of 20 cells 

and 40 cells, respectively. From the figure, one can observe that the Mur distance 

affects the input impedance mainly near its peak values of the real and imaginary 
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Figure 3.10: The effects of Mur distance on the accuracy of the input impedance 

- NEC-2; - - - 20 cells ; - · - 40cells. 

Then the role of the cell size is explored. Figure 3.11 shows the effects of cell size, 

where the Mur distance is 40 cells and the dash dotted and dotted lines correspond 

to the cell size of >./40 and >./50, respectively. It is clear the smaller cell size produces 

more accurate results at the expense of much higher computational costs. The input 

impedance is more sensitive to cell size and Mur distance than radiation patterns. In 
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... 

order to get meaningful data, cell size of .\/40 and M ur distance of at least 20 cells 

are to be used for input impedance calculation in final designing process. 
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3.4 Loop Antenna 

Loop antennas are very important antennas in mobile communications. At present. 

they are widely used in pagers. Since the input impedance is very small at low 

frequencies. it has not been applied in transmitters such as cellular phones. But its 

resistance against noise has received much attention. The radiation pattern is shown 

in Figure 3.12. Clearly, the agreement between the result from FDTD and from 

XEC-2 is very good. 

Then a thin gap voltage source with Gaussian pulse is used for input impedance 

calculation. It is found that the current in source region approaches a constant not 

equal to zero, as shown in Figure 3.13. The corresponding input impedance is shown 

in Figure 3.14. Obviously, the input resistance cannot be negati\·e. Therefore the 

solution is not acceptable. It may be explained by what happens when a ,·oltage 

source is shorted. \Vhen the load impedance is very very smalL the current in the 

circuit cannot be measured accurately, the input impedance obtained from the ratio 

of the voltage to the current is not correct. 

Then the source form is changed to Rayleigh pulse with the same thin gap feed. 

The resulting current wave is shown in Figure 3.15. and the input impedance in 

shown in 3.16. In this case, excellent agreement between our FOTD approach and 

~EC-2 is obtained. 

\Vhen a current source is used to feed the loop antenna. both Gaussian and 

Rayleigh pulse produce accurate impedance results. 
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Table 3.4: Feed forms and pulse forms for loop antennas 

Feed Form 
input impedance result 

thin gap Voltage Magnetic frill Current 

Gaussian not acceptable not acceptable good 
Pulse Form 

Rayleigh good good good 

Table 3.5: Feed forms and pulse forms for open circuit type antennas 

Feed Form 
input impedance result 

thin gap Voltage Magnetic frill Current 

Gaussian good good not acceptable 
Pulse Form 

Rayleigh good good good 
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(a) x-z plane (b) y-z plane 
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180 
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Figure 3.12: The radiation pattern of a loop antenna using delta-gap voltage source 

- NEC-2; -- - FDTD. 
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3.5 A Monopole on a Finite Conducting Plate 

In this section. the performance of a monopole on a finite conducting ground plane 

will be studied, which is an approximation of practical situation. The monopole is 

7.5cm long. and the ground plane is 30cm x 30cm. The operation frequency is 1GH :.. 

Figure 3.17 shows the normalized amplitude radiation pattern of the monopole. 

The FDTD grid resolution is .A/40. The agreement between the result from FDTD 

and that from NEC-2 is excellent. 

Figure 3.18 shows the input impedance of the antenna at frequency band up to 

-!G Hz. The agreement is not as good as for radiation patterns because the input im­

pedance calculation procedure varies considerably between the two codes. i.e. FDTD 

and ~EC-2. The wire-grid model is just an approximation of the solid surface. and 

the input impedance, unlike the radiation pattern. is very sensitive to the model. For 

the FDTD approach, it is perceived that the results are considered reliable if one gets 

the same result using different cell size. 

Figure 3.19 shows the same antenna on a 60 x 60cm2 plate. where the cell size is 

6x = 6y = .A/20 and 6z = .A/40. Again, the agreement is very good, though the 

grid on the horizontal plane is not small. 
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Figure 3.17: The radiation pattern of a monopole on >. x >. ground 

- NEC-2; -- - FDTD. 
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Figure 3.1 g,. The radiation pattern of a monopole on 2>. x 2>. ground 

- NEC-2;-- - FDTD. 
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Chapter 4 

A Proposed Mobile 

Communication Antenna Design 

In modern terrestrial-based \\'ireless communications systems, the antenna for mobile 

radio telephone is a key element for system performance. The monopole and sleeve 

antennas have been the dominant radiating elements in mobile phones until now 

because of their wide bandwidth. omni-directional radiation pattern. and low cost. 

\\"ith higher requirement for small size, light weight , and low profile for modern 

mobile antennas, much research effort has turned to planar inverted-F antenna (PIFA) 

and microstrip antenna, which are low-profile and produce lower specific absorption 

rate(SAR) [3]. While the radiation patterns of PIFA and microstrip antennas satisfy 

the demand basically, much emphasis has been put on improving the impedance 

bandwidth recently [31] . Since the impedance bandwidth is not only limited by 



antenna type itself but also sensith·e to the radio case dimensions [1-t] as well as 

the existence of operators [3], it is particularly difficult to meet with the ever higher 

demands of modern communications. 

As stated in [19], "At present. the most widely adopted systems are the Global 

System for 1VIobile (GSM) Communications developed primarily in Europe and Asia 

and Interim Standard-54 (IS-54) developed in North America. The communication 

between the mobile station and base station is implemented through two links: uplink 

and downlink. The frequency bands for GS.M are 890-9151\-IHz and 935-960N!Hz for 

the uplink and downlink, respectively. While for /S-54 they are 869-894A-!Hz for the 

uplink and 824-849MHz for the downlink. The new generation of personal communi­

cation services (PCS) such as DCS-1800 has frequency bands of 1. 710-1. 785GHz and 

1.805-1.880 GHz for the uplink and downlink. respectively. The co-existence of GSA! 

and DCS with c dual standard providing analogue and digital services in the same 

network means the corresponding antennas should have the capability of operating at 

dual frequency bands (824-960MHz and 1. 71-l.BBGHz)'". Some efforts have already 

been put to the development of dual-frequency antennas [9, 10]. 

The planar monopole antenna has recently been proposed [1 L 12], that has a 

very large impedance bandwidth. However, the application of this type of antenna 

to mobile communication has not been found in the literature yet. In this chapter, 

FDTD method is applied to obtain the characteristics of a planar monopole antenna, 

mounted on a conducting housing of limited size. A modified structure of planar 
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monopole is de,·eloped to provide dual-band operation while its radiation pattern is 

still approximately omni-directional in the horizontal plane. 

4.1 A Planar Monopole on a Conducting Box 

The input impedance of a planar monopole disc mounted on a large conducting 

plate was studied both numerically [11] and experimentally [12] . It was found that 

an elliptical planar monopole on a large conducting plane has very wide impedance 

bandwidth. However the performance of a planar monopole on a small conducting 

plate or box has not been reported. In order to apply this wide band antenna to 

mobile communications, the following model is set to study the antenna performance. 

The geometry of the planar monopole mounted on a conducting box is shown 

in Figure 4.1. The conducting box is used to simulate a small hand-held portable 

telephone. The size of the box is 1-F x L x H in x , y, z direction as shown in Figure 

4.1. The planar monopole antenna consists of an elliptic conducting disc with an 

extended short wire, which is connected to the central conductor of the feed on the 

top of the box. The length of the major and minor axes of the elliptical disc are 2a 

and 2b respectively. The parameters that affect the input impedance are the size of 

the monopole plate and the distance between the monopole plate and the conducting 

box. i.e. the height h of the extended wire and the box dimensions. 

The box dimensions for our calculations are 2 x 6 x lOcm in x, y, z directions, 

respectively. The size of the elliptical planar monopole is 6 x 4.8cm. The return loss 
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Figure 4.1: The geometry of planar monopole on a conducting box 

of the planar monopole is shown in Figure 4.2 

It is found that the frequency band of the antenna mounted on the small hand-

held portable telephone is still very wide, though narrower than that on an infinite 

ground. However, the VSWR is greater than 2 when the frequency is lower than 

about 1.3GHz which means that the antenna cannot be use for existing analogue 

communication (around 900MHz) unless its size is increased or other measures are 

taken to create another resonant frequency around 900MHz. Obviously, the method 

of increasing the size the antenna should be avoided. 
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Figure 4.2: The return loss of a planar monopole mounted on ground and a box 

--on a infinite ground; - - - on the box of finite size 

4.2 The Implementation of Dual-Band Operation 

The dual frequency operation was implemented by cutting an elliptical slot near the 

edge of the plate[23). The antenna structure before and after the cutting is shown in 

Figure 4.3 

The new antenna consists of two parts: 
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Original planar monopole New dual-band antenna 

Figure 4.3: The implementation of dual-band operation by cutting a slot 

Part A is an elliptical ring. Its size is controlled by 

(4.1) 

(4.2) 

Part B is a small elliptical disc with similar equations 

(4.3) 

When cutting the disc in this way, we actually changed the original disc into a 

planar monopole combined with a strip monopole. This can explain why the combined 

antenna operates at dual frequencies. While the sizes of the disc and the box have 

not changed, the width of the slot is about 4mm (al = 2.6cm, a2 = 2.2cm , bl = 

2.0cm, b2 = 1.6cm). Figure 4.4 shows the input impedance of the antenna for h = 

2mm. The corresponding return loss at the input port is shown in Figure 4.5. One 
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resonant frequency is 800MHz and another resonant frequency is around 2100MHz. 

It is found that the reactance of the antenna around the resonant frequencies almost 

vanishes and the resistance approaches 50f2, which is the characteristic impedance 

of the standard coaxial cable. Since very good impedance match is obtained, the 

complicated matching circuit can be avoided. 
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Figure 4.4: Input impedance of the antenna 

Shown in Figure 4.5, the impedance bandwidth at 800MHz is about 30%. The 

bandwidth at 2100MHz is much wider. 

Within each operating band, the radiation patterns do not change much. Figure 

4.6 shows the radiation patterns of E8 at 1900MHz. The solid line was obtained by 
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Figure 4.5: Return loss at the feed of the antenna 

FDTD and the dash line was obtained by NEC-2. 

4.3 Development of Controlling Two Specific Res-

onant Frequencies 

Instead of cutting an elliptical slot near the edge of the plate, one can cut the disc in 

the way [24] shown in Figure 4.7. 

The new antenna consists of three parts: 

Part A is a big elliptical ring. Its size is controlled by 

( 4.4) 

(4.5) 

86 



... 

0 0 

180 180 

(a) x-z plane (b) y-z plane 

0 

180 

(c) x-y plane 

Figure 4.6: Radiation pattern of the antenna 

87 



2a 
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2a4 

2a3 

2al 

Figure 4. 7: Geometry of the new planar monopole 

Part B is a small elliptical ring with similar equations 

(4.6) 

(4.7) 

Part C is an elliptical disc with an equation 

(4.8) 

The three parts are connected together in series, as shown in Figure 4.7. The 

purpose to do this is to lower the second resonant frequency without increasing the size 
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of the antenna. When the resonant frequency is adjusted to the operating frequency, 

the antenna performance will be enhanced. 
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Figure 4.8: Return loss of the antenna with and without the second slot 

The box dimensions are still 2 x 6 x lOcm in x, y, z directions, respectively. The 

size of the original elliptical planar monopole is 6 x 4.8cm (a = 3cm, b = 2.4cm). 

The height of the extension wire is h = 2mm. In the rest of chapter, the unit for the 

dimensions of the disc will be in centimeters. 

Figure 4.8 shows the effect of the second cutting on the return loss of the antenna. 

The parameters for different configurations are shown in Table 1. For the new cutting, 

a3 = 1.8, b3 = 1.2, a4 = 1.4, b4 = 0.8. The other parameters have not changed, i.e. 
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a, b, a1 , b1 , a2 , b2 are the same as in previous shape. It is found that the resonant 

frequency at 845MHz has not changed. But the higher resonant frequency is lowered 

about 450MHz. The new resonant frequency is 1.65GHz, which is lower than the 

DCS operation frequency. 
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Figure 4.9: Return loss of the antenna for different major axis length 

Next, one can reduce the major axis of the elliptical disc with two slots. The return 

loss is shown in Figure 4.9, where the dash line represents a= 2.4, a1 = 2.0, a2 = 1.6, 

a3 = 1.2, a4 = 0.8, with bi(i= l , 2, 3, 4) unchanged. It is found that reduction of 

the axis let the resonant frequencies shift toward higher frequency. Therefore, the 

resonant frequency at 845MHz can be adjusted by changing the length of major axis. 
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Figure 4.10: Return loss of the antenna for different size of the second slot 

Then one can change the size of the small disc (part C). From Table 1, one can see 

a4 = 1.0, b4 = 0.6. The rest of the parameters are not changed. The resultant return 

loss is shown in Figure 4.10. From the figure one can see that the resonant frequency 

at 845MHz is not affected while the higher resonant frequency can be adjusted. 

The return loss of the antenna covered with lossless dielectric material is shown in 

Figure 4.11. The conducting box is not covered by dielectric material. The cover of 

the antenna has the same height (5cm) and width(6cm) as the antenna. For the thin 

cover, the thickness is 0.6cm, while for the think one, the thickness is l.Ocm. The 

parameters for the material are tr = 2.1, J.L = J.Lo, The resonant frequencies are shifted 
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Table 1: The effect of the parameters of the disc with slots to the resonant frequencies 

parameters controlling the size of the disc (em) resonant fre-

quencies ( M Hz) 

action a al a2 a3 a4 b bl b2 b3 b4 the first the sec-

ond 

original (one 3.0 2.6 2.2 - - 2.4 2.0 1.6 - - 845 2100 

slot) 

adding a slot 3.0 2.6 2.2 1.8 1.4 2.4 2.0 1.6 1.2 ·o.8 845 1650 

reducing 2.4 2.0 1.6 1.2 0.8 2.4 2.0 1.6 1.2 0.8 1020 1850 

major axis 

length 

changing 3.0 2.6 2.2 1.8 1.0 2.4 2.0 1.6 1.2 0.6 845 1740 

part C 

downwards. The thicker the dielectric material, the more the resonant frequencies are 

shifted down. It is also found that the impedance bandwidth becomes much narrower 

when the antenna is covered with dielectric material. It is suggested that the dielectric 

cover should not be very thick in order to satisfy the bandwidth requirement. 

From above numerical results, we can summarize our design procedure as follows: 

I 

1. change the size of the original disc so that the first resonant frequency is 

900MHz(GSM operation frequency); 
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Figure 4.11: Return loss of the antenna with dielectric cover 

2. change the size of part C (inner most part) so that the second resonant frequency 

is 1800MHz(DCS operation frequency) ; 

3. change the major axis so that the first resonant frequency is the exact frequency 

expected; 

4. repeat step 2 to control the second frequency. 

In practical design, the dielectric constant should be taken into account before 

beginning the above steps. 

In the above procedure, no obvious changes have been observed for the antenna 
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radiation patterns. 
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Chapter 5 

Conclusion and Future Work 

A FDTD code is developed for mobile antenna design purposes, with particular em­

phasis on the modeling of the source region. The feed forms of the source region 

include a thin gap voltage source and a current source, the latter can be integrated 

directly into the :\-Ia.xwell's curl equation. For input impedance calculation. the 

Gaussian pulse or the Rayleigh pulse is chosen to be the function of the sources. It 

is found that whatever is the feed form (voltage source or current source). Rayleigh 

pulse always produces good results. The results from Gaussian pulse is dependent on 

the antenna type. If the antenna is dipole type (it is a open circuit as the operating 

frequency is low), the impedance results are good provided that the feed form is volt­

age source. The current source of Gaussian pulse will result in negative resistance 

(the real part of the input impedance). If the antenna is loop type (it is short circuit 

as the operating frequency is low) , current source produces good impedance results, 



while the results from a ,·oltage source are not acceptable. 

Se,·eral typical antenna structures including a dipole antenna. a loop antenna and 

a monopole mounted on a finite conducting plane are used to validate thP de,·eloped 

FDTD code. The effects of the FDTD cell size and the ~Iur distance (the distance 

between the outer absorbing boundary and the antenna) on accuracy are explored. 

Some criteria for the choice of above parameters in FDTD calculation are gh·en for 

practical antenna design. The results from the developed code are compared with 

those producing by a moment method based code Numerical Electromagnetic Code 

(:'\EC-2) and very good agreement is obtained when the criteria is satisfied. 

using the developed code, a new planar monopole antenna which operates at 

dual wide band (800MHz band and 1800:'viHz band) is developed by cutting slots and 

determining the geometrical parameters. This dual frequency performance is required 

for the existing and potential mobile communication system providing analogue and 

digital sen·ices. 

The absorbing boundary condition used in this thesis is ~lur boundary condi­

tion, which requires that the distance between the antenna and the computational 

boundary is more than 10 cells for radiation pattern calculation and 30 cells for input 

impedance calculation. Since the computational cost is directly related to the com­

putational domain, the reduction of the cells between the antenna and the boundary 

will lower the computational cost greatly. Some other absorbing boundary conditions, 

which can simulate the free wave propagation in a better way, are needed. 
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Appendix A 

A Input Data File Example 

A.l The Data File "ant .dat" 

41 61 62 
0.00375 0.00375 0 .003571429 
0 . 0005 
1 . 0 32.0 0.1499 
90000 
material.dat 
0 
19 21 19 43 19 44 
. 010 
21.0 30.5 31.0 
4 . 0 

! ! ! ! ! ! ! ! ! ! ! 
line 1 
line 2 
line 3 
line 4 
l i ne 5 
l i ne 6 
line 7 

line 8 
line 9 
line 10 
line 11 

nx ny nz 
dx dy dz 
wire radii 
amp beta wavelength 
nstop 
material file name 
flag:A 

A :O>pulse; l>sine wave (the form of the source); 
Ist Ind Jst Jnd Kst Knd ; (integral surface size) 
value_ERROR : condition to judge the stability 
the origin for the far field 
dielectric constant of the surrouding material 



A.2 The Data File "wire.dat" 

4 
z 21 21 22 40 31 
z 21 41 22 40 2 
y 21 22 39 21 2 
y 21 22 39 42 2 

/••line 1 number of wires(single wire:l; two wires:2 ....... ) 
/••line 2 first wire: Ic Jc Kst Kend(starting point t ending point) 
/••line 3 second wire:Ic Jc Kst Kend(starting point t ending point) 
I•• ....................................... . 

A.3 A Program to Create "material.dat' 

#include <iostream.h> 
#include <math.h> 
#include<stdio.h> 
II***************** 
//•••material id••• 
II***************** 
const int LL-= 21; 
const int L1= 43; 
const int L2= 57; 
const int nx0=70, ny0=70, nz0=190; 

int idone[nxO][nyO][nzO], idtwo[nxO][nyO][nzO], idthre[nxO][nyO][nzO]; 
main() 
{int i ,j ,k; 
int nx-=51, ny=62, nz=182; 
int mtype=l; 

for( i=1; i<:nx;i++) 
for( j:l; j<=ny;j++) 

for( k=l; k<=nz;k++) 
{ 

idone [i] [j] (k] =0; idtvo (i] [j] [k] =0; idthre (i] [j] [k] =0; 
if(i==21 tt (j==211 lj==41) tt k>=21 tt k<=41) idthre[i][j][k]-=1; 
if(i==21 tt (ks=211 lk==42) tt j>=21 tt j<=40) idtwo[i][j][k]=1; 
} 

idthre [21] [21] [31] =-1; 
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FILE * fp; 
fp= fopen("material.dat", "w"); 
for( i=l; i<=nx ; i++) 

for( j=l; j<=ny;j++) 
for(k=l; k<=nz;k++) 

if (idone [i) [j] [k] ! =0 I I idtwo [i] [j] [k] ! =0 I I idthre [i] [j] [k] ! =0) 
fprintf(fp, "%5i Y.Si Y.Si Y.Si %5i %5i\n", i,j,k, idone[i](j][k],\ 

idtwo [i] [j] [k] , idthre [i] [j] [k]) ; 

fclose(fp); 
} 
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Appendix B 

The FDTD Code 

*************defin.h••••••••••••••• 

#include <stdlib.h> 
#include <stdio.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <string.h> 
#include <ctype.h> 
#include "complex.h" 
#define nxO 42 
#define nyO 42 
#define nzO 73 
typedef double dou; 
enum Mybool{falseO,truel}; 
struct nxyz{int x,y,z;}; 
struct delO{dou x,y,z;}; 
struct disO{dou x,y,z;}; 
struct coffO{dou ecrlx[lO] I ecrly(lO], ecrlz(10]1 

esctc[lO] I eincc(lO], edevcn(lO];}; 
************************************ 

************antm.cpp*************** 

#include "defin.h11 

coffO coff; 
delO del; 
disO disp; 
nxyz nn, nl ; 



void init() ; 
void geo(char •); 
void par(int, dou, dou); 
void exfld(), eyfld() 1 ezfld() 
void hxfld(), hyfld(), hzfld() 
void radeyx()l radezx(); 
void radezy(), radexy(); 
void radexz() 1 radeyz(); 
void fine_wire(); 
void wave_stable(double I int •~ int •); 
void find_max(); 
void find_phase( double); 
void out_surface_field( double); 
void out_surface_flow( double); 
void current(intl fstream t); 
void save_diag(int 1 dOU 1 douldouldou 1 douldou); 
//void datsave(delO I dou I int I int I int ); 
void far_field(int, int • char •); 
void readFile(char *• fstream t); 
void writeFile(char * 1 fstream t); 

dou eps0=8.854e-12~xmu0=1.2566306e-61eta0=376.733341; 
dou C=l.O/sqrt(epsO•xmuO); 
dou PI=4•atan(1.0); 
const unsigned NAME_SIZE=64; 

int idone[nxO][nyO][nzO] ,idtvo[nxO][nyO] [nzO]Iidthre[nxO](nyO][nzO]; 
dou exs[nxO][nyO](nz0] 1eys[nxO][nyO][nz0] ,ezs[nxO][nyO][nzO]. 

hxs[nxO][nyO][nzO],hys[nxO][nyO][nz0] 1hZs[nxO][nyO][nzO]; 
dou eysx1[5][nyO][nzO], ezsx1[5][nyO][nz0], 

ezsyl[nx0][5][nz0], exsyl[nx0][5] [nzO], 
exszl[nx0][ny0](5], eysz1[nxO][ny0][5]; //radsav 

dou eysx2[5][ny0][nz0], ezsx2[5](nyO][nz0], 
ezsy2[nx0][5][nz0], exsy2[nx0](5] [nzO] I 

exsz2[nx0][ny0](5], eysz2[nx0][ny0][5]; //radsav2 

!!••················ 
dou ex_y[2][nxO][nyO],hx_y[4][nxO][ny0], 

ex_z[2][nxO][nzO],hx_z[4][nx0][nz0], 

ey_x[2][nxO](ny0] 1hy_x[4](nxO][ny0] 1 

106 



ey_z[2][nyO](nzO],hy_z[4][nyO] [nzO], 

ez_x[2][nxO](nzO],hz_x[4][nxO] [nzO], 
ez_y[2][nyO][nzO],hz_y[4][nyO] [nzO]; //surface_current 

complex ex_y_p[2][nxO][nyO],hx_y_p[4] [nxO][nyO], 
ex_z_p[2][nxO][nzO],hx_z_p[4][nxO](nzO], 

ey_x_p[2)[nxO][nyO],hy_x_p[4] [nxO][nyO], 
ey_z_p[2][nyO][nz0] ,hy_z_p[4] [nyO][nzO], 

ez_x_p[2](nxO][nz0] ,hz_x_p[4][nxO][nzO], 
ez_y_p[2][nyO][nzO],hz_y_p[4] [nyO][nzO]; //surface_current_phase 

complex exy[2][nxO](nyO],hxy[2)[nxO][ny0], 
exz[2][nxO][nzO],hxz[2][nxO][nzO], 

eyx[2][nxO](nyO],hyx[2][nxO][ny0], 
eyz[2][nyO][nzO],hyz[2][nyO][nz0], 

ezx[2][nxO][nzO],hzx(2][nxO][nzO], 
ezy[2][nyO][nzO],hzy[2][nyO][nzO]; //surface_current 

!!••················· 

dou dtedx,dtedy,dtedz; 
dou dtmdx,dtmdy,dtmdz; 
dou cxd,cxu,cyd,cyu,czd,czu, //mur 1 

cxx,cyy,czz,cxfyd,cxfzd,cyfxd,cyfzd,czfxd,czfyd; //mur2 

dou alpha, betadt, period, off; 
dou delay, ampx, ampy, ampz; 

dou t,dt; 
dou wl; 
dou rO; 

int flag_inc, flag_stable=O, flag_max=O, flag_phase=O; 
int Ist, Ind, Jst, Jnd, Kst, Knd; 
double value_ERROR; 
double dielc; 
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double cen_x, cen_y, cen_z, fi; 

!!••·············· 
//•••management••• 

!!•••············· 
double SOURCE_OLO=O.O, SOURCE_NEW=O.O; 
main() 
{ 

int nstop; 
dou thinc=O, phinc=O, ethinc=O, ephinc=O; 
dou amp, beta; 
int ntest=4; 
char material_File[NAME_SIZE+1]; 

fstream fin ; 
char inFile[NAME_SIZE+1]="ant.dat"; 
readFile(inFile, fin); 
fin>>nn.x>>nn.y>>nn.z; 
fin>>del . x>>del.y>>del.z; 
fin>>rO; 
fin>>amp>>beta>>vl; 
fin >>nstop; 
fin>>material_File; 
fin»flag_inc; 
fin>>Ist >>Ind >>Jst >>Jnd >>Kst >>Knd; 
fin>>value_ERROR; 
fin>>cen_x>>cen_y>>cen_z; 
fin>>dielc; 
fi=90; 
fin. close 0 ; 

nl .x=nn.x-1; nl .y=nn .y-1; n1.z=nn.z-1; 

cout<<"nstop="<<nstop<<,.\n"; 

// _______________________________ operation 

cout << "qmd"; 
initO; 
par(nstop,amp, beta); 
geo(material_File); 

int step_add=-1; // step -1 : initialize; step 0 
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double ONE_cycle=vl/C/dt; 

cout<<"cycle="<<ONE_cycle<<"\n"; 
for(int nO=l; nO<=nstop; nO++) 
{ cout<<nO<< endl; 
exfld(); eyfld(); ezfld(); 

radeyx(); 
radezxO; 
radezyO; 
radexyO; 
radexz(); 
radeyz(); 

t=t+dt/2.; 
hxfld(); hyfld(); hzfld(); 

fine_wire 0; 
t=t+dt/2.; 

!!••············································ 
if(flag_inc==l) 

{ 

if(flag_stable!=l) 
wave_stable(hxs[nn .x-10] [nn.y-lO][nn.z-10], tflag_stable, tnO) 

else 
{find_max(); 

} 

double _tn=step_add•(360/0NE_cycle); 
f ind_phase (_ tn) ; 
if( (step_add++)==(int)(ONE_cycle+l) I I nO==nstop) 

{out_surface_flow(ONE_cycle); 
out_surface_field(ONE_cycle); 
far_field(O,l, "Ectx.dat"); 
far _field (90 ,1, "Ecty . dat") ; 
far _field(90 ,0, "Ectf .dat"); 
break; 

} 

}//•• sin_inc wave , steady response.•• 

!!•••••••········································ 
} // for-loop ends••••••• 
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return 0; 
}// main end 

!!•••·············· 
//•••material id••• 

!!••*************** 
void geo(char •inFile) 
{ 

int i 1 j 1 k1 id_X 1 id_yl id_z; 
char c_tmp [160]; 
fstream fin ; 
readFile(inFile, fin); 
while( !fin. eof() ) 

{fin>>c_tmp ; if( !isdigit(c_tmp[O]) ) break; 
i=atoi(c_tmp); fin>>j>>k>>id_x>>id_y>>id_z; 
idone [i] [j] [k] =id_x; idtwo [i] [j] [k] =id_y; idthre [i] [j] [k] =id_z; 
} 

fin. close 0 ; 
} 

********************************* 

**********•init . cpp************** 

#include "defin .h" 

!!•••·················· 
//•••initial value O••• 

!!••··················· 
extern int idone[nxO] [nyO][nzO] ,idtwo[nxO][nyO] [nzO] 1 

idthre[nxO][nyO][nzO]; 
extern dou exs[nxO](nyO][nz0] 1 eys[nx0] [nyO](nzO] I 

ezs [nxO] [nyO] [nzO] 1 hxs [nxO] [nyO] [nzO] , 
hys [nxO] [nyO] [nzO] , hzs [nxO] [nyO] [nzO] ; 

extern dou eysx1[5][nyO][nz0] 1 ezsx1[5][nyO][nzO] I 

ezsy1 [nxO] [5] [nzO] , exsy1 [nxO] [5] [nzO] I 

exsz1[nxO](ny0][5], eyszl(nxO][nyO](S]; //radsav 
extern dou eysx2[5][nyO](nzO], ezsx2[5][nyO](nz0] I 

ezsy2 [nxO] [5] [nzO] I exsy2 [nxO] (5] [nzO] , 
exsz2[nxO][ny0][5], eysz2[nxO][ny0][5]; //radsav2 

!!••················ 
extern dou ex_y[2][nx0][ny0] ,hx_y[2][nx0] [nyO], 
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ex_z [2] [nxO] [nzO] , hx_z [2] [nxO] [nzO] , 

ey_x[2] [nxO] [nyO) ,hy_x[2] [nxO] [nyO], 
ey_z[2][nyO][nzO] ,hy_z[2][nyO][nzO], 

ez_x [2] [nxO] [nzO] , hz_x [2] [nxO] [nzO] , 
ez_y [2] [nyO] [nzO] , hz_y [2] [nyO] [nzO] ; 

//surface_current 

!!•••················ 
extern nxyz nn,nl; 
extern coffO coff; 

void initO 
{ 

int i,j,k,l; 
for( k=l; k<=nn.z; k++) 

for( j=l; j<=nn.y; j++) 
for( i=l; i<=nn.x; i++) 

{exs[i] [j] (k]=O.O; eys(i] (j] [k]=O.O; 
ezs [i] [j] [k] =0. 0; hxs [i] [j] [k] =0. 0; 
hys [i] [j] [k] =0. 0; hzs [i] [j] [k] =0. 0; 

idone [i] [j] [k] =0; idtwo [i] [j] [k] =0; 
idthre (i] [j] [k] =0; 

} 

for(k=l; k<=nl.z; k++) 
for( j=l; j<=nl.y; j++) 

for( i=l; i<=4; i++) 
{eysxl(i] [j][k]=O.O; eysx2(i] [j][k]=O.O; 
ezsxl[i] [j] (k]=O.O; ezsx2[i] [j] [k]=O.O; 

} 

for(k=l; k<=nl.z; k++) 
for( j=l; j<=4; j++) 

for( i=l; i<=nl.x; i++) 
{exsyl[i](j][k]=O.O; exsy2[i](j][k]=O . O; 
ezsyl [i] [j] [k] =0. 0; ezsy2 (i] [j] [k] =0. 0; 

} 

for(k=l; k<=4; k++) 
for( j=l; j<=nl.y; j++) 

for( i=l; i<=nl.x; i++) 
{exszl [i] [j] [k] =0. 0; exsz2 [i] [j] [k] =0. 0; 
eyszl [i] [j] (k] =0 . 0; eysz2 (i] [j] [k] =0. 0; 
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} 

for( 1=1; 1<=9; 1++) 
{ coff.esctc[l]=O.O; coff.eincc[l]=O .O; coff.edevcn[l]=O . O; 

coff.ecrlx[l]=O.O; coff.ecrly[l]=O.O; coff.ecrlz[l]=O.O ; 
} 

II•••······················ 
for( int ind=O; ind<=l; ind++) 

{ 

for(i=1; i<snn.x; i++) 
for(j=l; j<=nn.y; j++) 

{ex_y [ind] [i] [j] =0; hx_y [ind] (i] [j] =0; 
ey _x [ind] [i] [j] =0; hy _x [ind] [i] [j] =0; 

} 

for(i=l; i<=nn.x; i++) 
for(k=1; k<=nn.z; k++) 

{ex_z [ind] [i] [k] =0; hx_z [ind] [i] [k] =0; 
ez_x [ind] [i] [k] =0 ; hz_x (ind] (i] [k] =0 ; 

} 

for(j=1; j<=nn.y; j++) 
for(k=l; k<=nn.z; k++) 

{ey_z[ind](j][k]=O; by_z(ind][j][k]=O; 
ez_y [ind] [j] [k] =0; hz_y [ind] [j] [k] =0; 

} 
} 

} 

********************************* 

***********par .cpp************** 

II••····························· II setup to get initial values••• 

II••····························· 
#include 11 defin .h11 

extern delO del; 
extern disO disp; 
extern coffO coff; 
extern nxyz nn,nl; 
extern int nstop; 
extern dou C, PI, epsO, muO, dielc; 
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extern dou amp,beta; 
extern dou dtedx,dtedy,dtedz; 
extern dou dtmdx,dtmdy,dtmdz; 
extern dou cxd,cxu,cyd,cyu,czd,czu, llmur 1 

cxx,cyy,czz,cxfyd,cxfzd,cyfxd,cyfzd,czfxd,czfyd; llmur2 
extern dou alpha, betadt, period, off, dt, delay, ampx, ampy, ampz; 

void par(int nstop,dou amp, dou beta) 
{int i; 
dou eps[lO], sigma[lO]; 
dou dtxi=Cidel.x, dtyi=Cidel.y, dtzi=Cidel.z; 

dt=l.Oisqrt(dtxi•dtxi+dtyi•dtyi+dtzi•dtzi); 
lie••• parameter alpha is the decay rate determined by beta. 
betadt = beta•dt; 
period= 2.0•(betadt); 
alpha =pow(4.l(betadt) ,2); 

off=l.O; 

for( i=l; i<=9; i++) 
{ eps[i]=epsO; sigma[i]=O .O;} 

lie••• define eps and sigma for each material here 
eps[2]=dielc•eps0; 
sigma[2]=0.005; 

lie••• generate multiplicative constants for field update equations 
lie••• free space 
dtedx=dtl(epsO•del .x); 
dtedy=dtl(epsO•del.y); 
dtedz=dtl(epsO•del .z); 
dtmdx=dtl(xmuO•del.x); 
dtmdy=dtl(xmuO•del .y); 
dtmdz=dt/(xmuO•del.z); 

lie••• lossy dielectrics 
for(i=2; i<=9; i++) 

{coff.esctc[i]=eps[i]/(eps[i]+sigma[i] •dt); 
coff . eincc[i]=sigma[i] •dtl(eps[i]+sigma[i] •dt); 
coff.edevcn[i]=dt•(eps[i]-epsO)/(eps[i]+sigma[i] •dt); 
coff .ecrlx[i]=dtl((eps[i]+sigma[i] •dt)•del.x); 
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eoff.ecrly[i]=dt/((eps[i]+sigma[i] •dt)•del .y); 
coff . ecrlz[i]=dt/((eps(i]+sigma(i] •dt)•del .z); 

} 

lie••• compute outer radiation boundary condition Corbc) constants 
cxd=CC•dt-del.x)/(C•dt+del.x); 
cyd=(C•dt-del.y)/(C•dt+del.y); 
ezd=CC•dt-del.z)/CC•dt+del.z); 
cxu=cxd; eyu=cyd; czu=czd; 

lie••• compute 2nd order orbc constants 
cxx=2 . •del.x/CC•dt+del.x); 
eyy=2.•del.y/CC•dt+del.y); 
czz=2 . •del .z/CC•dt+del .z); 
cxfyd=del.x•C•dt•C•dt/(2.•del.y•del.y•CC•dt+del .x)); 
cxfzd=del.x•C•dt•C•dt/(2.•del.z•del.z•CC•dt+del.x)); 
cyfzd=del . y•C•dt•C•dt/(2.•del.z•del.z•(C•dt+del.y)); 
eyfxd=del.y•C•dt•C•dt/(2.•del.x•del .x•(C•dt+del.y)); 
ezfxd=del.z•C•dt•C•dt/(2.•del.x•del .x•CC•dt+del.z)); 
czfyd=del.z•C•dt•C•dt/(2.•del.y•del.y•CC•dt+del.z)); 

} 

***************************************** 

********••••••e_field.cpp••••••••••••••• 

II••············· II••• E field *** 

II••············· 
#include "defin.h" 
extern coffO coff; 
extern delO del; 
extern nxyz nl; 
extern int flag_inc; 
extern int idone[nxO][nyO][nzO] ,idtwo[nxO][nyO][nzO],idthre[nxO][nyO][nzO]; 
extern dou exs[nxO][nyO][nzO] ,eys[nxO](nyO][nzO],ezs[nxO][nyO][nzO], 

hxs[nxO][nyO](nzO] ,hys[nxO] [nyO][nzO] ,hzs[nxO][nyO][nzO]; 
extern dou dtedx,dtedy,dtedz; 
extern dou wl; 
extern dou SOURCE_ OLD, SOURCE_NEW; 
dou ez_sourceO(); 
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dou ez_source1(); 

void exfld () 
{ 

for(int k=2; k<=n1.z; k++) 

} 

} 

for(int j=2; j<=n1.y; j++) 
for(int i=1; i<=n1.x; i++) 

{ II determine material type 
if(idone[i] [j][k]==O) II free space 

exs[i] [j] (k]+=(hzs(i] [j] [k]-hzs(i] [j-1] [k])•dtedy 
- (hys (i] [j] [k] -hys (i] (j] [k-1]) •dtedz; 

else if(idone(i](j](k]==1) II perfect conductor 
exs [i] [j] [k] =0. 0; 

else if(idone[i](j] [k]==-1) II source; 
{if(flag_inc==O) exs(i][j](k]=-ez_sourceO()Idel.x; 

} 

else if(flag_inc==1) { dou TMP;TMP=ez_source1(); 
exs[i] [j] [k]=-TMP/del.x; 
SOURCE_OLD=SOURCE_NEW; SOURCE_NEW=TMP;} 

else {cout<<"flag error in ex field flag_inc=" 
<<flag_inc<<"\n"; exit(O);} 

cout<<"ex"<<exs [i] [j] (k] <<endl; 

void eyfldO 
{ 

for(int k=2; k<=n1.z; k++) 
for(int j=1; j<=n1.y; j++) 

for(int i=2; i<=n1.x; i++) 
{ II determine material type 
if(idtwo[i][j][k]==O) II free space 

eys [i] [j] (k] =eys [i] [j] [k] + (hxs [i] [j] [k] -hxs [i] [j] [k-1]) •dtedz 
- (hzs [i] [j] (k] -hzs [i -1] [j] [k] ) •dtedx; 

else if(idtwo(i][j][k]==1) II perfect conductor 
eys [i] [j] (k] =0. 0; 

else if(idtvo[i] [j] [k]==-1) II source; 
{if(flag_inc==O) eys[i](j][k]=-ez_sourceO()Idel.y; 
else if(flag_inc==1) { dou TKP;TMP=ez_sourcel(); 

eys[i][j](k]=-TMP/del.y; 
SOURCE_OLD=SOURCE_NEW; SOURCE_NEW=TKP;} 

else {cout<<"flag error in ey field flag_inc= .. 
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} 

} 

} 

<<flag_inc<<"\n"; exit(O);} 
cout<<"ey"<<eys[i][j][k]<<endl; 

void ezfld() 
{ 

lldou ez_sourceO(); 
lldou ez_source1(); 
for(int k~1; k<=n1.z; k++) 

} 

for(int j=2; j<=n1.y; j++) 
for(int i~2; i<=n1.x; i++) 

{ II determine material type 
if(idthre[i][j][k]==O) II free space 

ezs [i] [j] [k] =ezs [i] [j] [k] +(hys [i] [j] [k] -hys [i -1] [j] [k]) •dtedx 
- (hxs [i] [j] [k] -hxs [i] [j-1] [k]) •dtedy; 

else if(idthre[i][j](k]==1) // perfect conductor 
ezs[i](j][k]=O.O; 

else if(idthre[i][j](k]==-1) //source point of the antenna••• 

} 

{if(flag_inc==O) ezs[i](j](k]=-ez_sourceO()/del .z; 
II Rayleigh pulse {if(flag_inc~=O) ezs[i][j][k]=-ez_sourceO()/del.z; 
II if(flag_inc==O) ezs[i](j][k]+=(hys[i] [j] [k]-hys[i-l](j] [k])•dtedx 
II -(hxs[i] [j] [k]-hxs[i] [j-1] [k])•dtedy 
//current source!! -ez_sourceO()•dtedx/del.y; 

//if(flag_inc==O) 
II {ezs[i](j](k]=O; 
II exs[i][j](k]=-ez_source0()•2ldel.xllog(del.x/0.0005); 
II eys[i][j][k]~-ez_source0()•2ldel.yllog(del . y/0.0005); 

II exs[i-1](j][k]=ez_source0()•2ldel.x/log(del.xl0.0005); 
II eys(i] [j-1] [k]=ez_source0()•2/del.y/log(del.y/0.0005); 
II } for magnetic frill source!! 

} 

else if(flag_inc==1) { dou TKP;TMP=ez_source1(); 
ezs[i][j](k]=-TMPidel.z; 
SOURCE_OLD=SOURCE_NEW; SOURCE_NEWaTMP;} 

else {cout<<"flag error in ez field flag_inc=" 
<<flag_inc«"\n"; exit(O);} 

cout<<"ez"<<ezs[i] [j] [k]<<"\n"; 
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*********************************** 

•••••••••••source.cpp************* 

#include "defin.h" 
extern delO del; 
extern disO disp; 

extern dou PI, C; 
extern dou wl,t; 

extern int i,j,k; 
extern dou t,alpha,betadt; 

dou ez_sourceO 0 
II••• Gaussian pulse••• 
{dou vl; 

if(t<OI lt>2•betadt) v1=0; 
else v1=1.0•exp( -alpha•pov(t-betadt,2) ); 
return(v1); 

} 

dou ez_sourceOR() 
II••• Rayleigh pulse --the derivative of Gaussian pulse••• 
{dou v1; 

if(t<OI lt>2•betadt) v1=0; 
else v1=-2•alpha•(t-betadt)•exp( -alpha•pov(t-betadt,2) ) ; 
return(vl); 

} 

dou ez_sourcel() II••• sine wave source••• 
{dou v1=1 .0•sin(2•PI•C/wl•t ); 
return(vl); 

} 

••••••••••••••••••••••••••••••••••• 
•••••••••••Mur.cpp**************** 

II••······················· II••• Boundary condition••• 

!!••••····················· 
#include "defin.h" 

• 
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extern nxyz nn; 
extern dou exs[nxO](nyO][nzO] ,eys[nxO][nyO][nzO] ,ezs[nxO] [nyO][nzO], 

hxs [nxO] [nyO] [nzO] , hys (nxO] [nyO] [nzO] , hzs [nxO] [nyO] [nzO] ; 
extern dou eysx1[5][ny0][nz0], ezsx1[5][ny0][nz0], 

ezsyl [nxO] (5] [nzO] , exsy1 [nxO] [5] [nzO] , 
exsz1 [nxO] [nyO] [5] , eyszl [nxO] [nyO] [5] ; I /radsav 

extern dou eysx2(5] [nyO] (nzO], ezsx2[5][nyO][nz0], 
ezsy2 [nxO] [5] [nzO] • exsy2 [nxO] [5] [nzO] , 
exsz2[nxO][ny0][5], eysz2[nx0][ny0][5]; //radsav2 

extern dou cxd,cxu,cyd,cyu,czd,czu, //mur 1 
cxx,cyy,czz,cxfyd,cxfzd,cyfxd,cyfzd,czfxd,czfyd; //mur2 

inti, j, k; 
void radeyx() 
{int nxl=nn . x-1, nyl=nn.y-1, nz1=nn .z-1; 

1/c do edges with first order orbc 
for( k=2; k<=nz1; k++) 

{ j=l; 

} 

eys [1] [j] [k] =eysx1 [2] [j] [k] +cxd• (eys [2] (j] [k] -eysx1 [1] (j] [k]); 
eys [nn. x] [j] [k] =eysx1 [3] [j] [k] +cxu• (eys [nxl] [j] [k] -eysx1 [4] [j] [k]); 
j=nyl; 
eys [1] (j] [k] =eysx1 (2] [j] (k] +cxd• (eys [2] [j] (k] -eysxl [1] [j] [k]) ; 
eys [nn. x] [j] [k] =eysx1 [3] [j] [k] +cxu• (eys [nxl] [j] [k] -eysx1 (4] [j] [k]); 

for( j=2; j<=ny1-1; j++) 
{k=2; 

} 

eys[l][j](k] =eysx1[2] [j][k]+cxd•Ceys[2)[j] [k]-eysxl[l](j][k]); 
eys[nn.x] [j] [k]=eysx1(3] [j] [k]+cxu•Ceys[nxl] [j] [k]-eysx1[4] [j] (k]); 
k=nzl; 
eys[l][j][k] =eysx1[2][j][k]+cxd•Ceys[2][j][k]-eysx1[1)[j][k]) ; 
eys [nn . x] [j] [k)=eysx1[3] [j] (k]+cxu•Ceys[nx1] [j] [k]-eysx1 [4] [j] [k]); 

1/c now do 2nd order orbc on remaining portions of faces 
for(k=3; k<=nzl-1; k++) 

for(j=2; j<=ny1-1; j++) 
{eys[1] [j] [k]=-eysx2[2] [j] [k]+cxd•(eys[2] [j] [k]+eysx2[1] [j] [k]) 

+cxx•Ceysx1[1] [j] (k]+eysx1[2] [j] [k]) 
+cxfyd•(eysx1[1](j+l)[k]-2.•eysx1[1][j][k] 

+eysxl [1] [j -1] [k] +eysx 1 [2] [j + 1] [k] 
-2. •eysxl [2] [j] [k] +eysxl [2] [j -1] [k]) 

+cxfzd•(eysx1[1][j][k+1]-2 . •eysx1[1][j][k) 
+eysxl [1] [j] [k-1] +eysxl [2] [j] [k+l] 
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-2.•eysx1[2][j][k]+eysx1[2] [j] [k-1]); 
eys [nn. x] (j] [k] =-eysx2 [3] [j] [k] +cxd• (eys [nxl] (j] [k] +eysx2 [4] [j] [k]) 

+cxx•(eysxl [4] [j] [k]+eysx1[3] [j] [k]) 
+cxfyd•Ceysx1[4][j+l][k]-2.•eysx1[4][j][k] 

} 

+eysxl [4] [j-1] (k] +eysxl [3] [j+l] (k] 
-2-•eysx1[3][j] [k]+eysx1[3] [j-l][k]) 

+cxfzd• (eysxl [4] (j] [k+1] -2. •eysxl [4] [j] [k] 
+eysx1 [4] [j] [k-1] +eysx1 [3] [j] [k+l] 
-2. •eysxl [3] [j] [k] +eysxl [3] [j] [k-1]); 

II now save past values 
for(k=2; k<=nz1; k++) 

} 

for(j=l; j<=nyl; j++) 
{ eysx2(1][j](k]=eysx1[1][j](k]; 

} 

eysx2 [3] [j] [k] =eysxl [3] [j] (k] ; 
eysxl (1] [j] [k] =-eys [1] [j] [k] 
eysx1 [3] [j] [k] =eys [nxl] [j] [k] ; 

eysx2 (2] [j] [k] =eysx 1 [2] (j] [k] ; 
eysx2 [ 4] [j] [k] =eysxl[ 4] (j] [k] ; 
eysxl (2] [j] [k] =eys [2] [j] [k] ; 
eysx1 [ 4] [j] [k] =eys [nn . x] [j] [k] 

void radezxO 
{int nx1=nn.x-1, ny1=nn.y-1, nzl=nn.z-1; 
for( k=1; k<=nzl; k++) 

{ j=2; 

} 

ezs [1] [j] [k] =ezsxl [2] [j] [k] +cxd• (ezs [2] [j] [k] -ezsx1 [1] (j] [k]); 
ezs [nn. x] (j] (k] =ezsx1 (3] (j] [k]+cxu•Cezs [nx1] [j] [k] -ezsxl [4] [j] [k]); 
j=nyl; 
ezs [1] [j] [k] =ezsxl [2] [j] (k] +cxd• (ezs (2] (j] [k] -ezsxl (1] [j] [k]); 
ezs [nn. x] [j] (k] =ezsx1 [3] [j] [k] +cxu• (ezs [nxl] [j] [k] -ezsxl [4] [j](k]) ; 

for( j=3; j<=nyl-1; j++) 
{k=l; 

} 

ezs[1][j](k]=ezsx1[2][j][k]+cxd•(ezs[2][j] [k]-ezsx1[1][j](k]); 
ezs[nn.x] [j] [k]=ezsx1[3] [j] [k]+cxu•(ezs[nxl] (j] [k]-ezsx1(4] [j] (lt]); 
k=nzl; 
ezs(1] [j] [k]=ezsx1[2] [j] [k]+cxd•(ezs[2] [j] [k]-ezsxl[l] [j] [k]); 
ezs[nn.x] [j] [k]=ezsx1[3] [j] [k]+cxu•(ezs[nxl] [j] [k]-ezsx1[4] [j] [lc]); 

1/c nov do 2nd order orbc on remaining portions of faces 
for( k=2; k<=nzl-1; k++) 
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for( j=3; j<=ny1-1; j++) 
{ ezs [1] [j] [k] =-ezsx2 [2] [j] [k] +cxd• ( ezs [2] [j] [k] +ezsx2 [1] [j] [k] ) 

+cxx• (ezsx1 [1] [j] [k] +ezsx1 [2] [j] [k]) 
+cxfyd• (ezsx1 [1] [j+1] [k] -2. •ezsx1 [1] [j] [k] 

+ezsx1[1][j-1][k]+ezsx1[2) [j+1](k] 
-2.•ezsx1[2][j][k)+ezsx1[2][j-1] [k]) 

+cxfzd•(ezsx1[1](j][k+1]-2 . •ezsx1[1] [j][k] 
+ezsx1(1] [j][k-1]+ezsx1(2] (j] [k+l] 
-2.•ezsx1[2][j) [k]+ezsx1[2] [j] [k-1]) 

ezs[nn.x] [j] [k]=-ezsx2[3] [j] [k]+cxd•(ezs[nxl] [j] [k]+ezsx2[4] [j] [k]) 
+cxx• ( ezsx1 [ 4] [j] [k] +ezsxl [3] [j] [k] ) 
+cxfyd•(ezsx1[4][j+l)[k]-2.•ezsx1[4] [j][k] 

} 

+ezsx 1[ 4] [j -1] (k] +ezsx 1 [3] [j + 1] [k] 
-2.•ezsx1[3][j][k]+ezsx1[3] [j-l][k]) 

+cxfzd• (ezsx1[4] [j] [k+1] -2. •ezsxl [4] [j] [k] 
+ezsx1(4][j][k-1]+ezsx1[3] [j][k+l] 
-2. •ezsx1[3] [j] [k] +ezsxl [3] [j] [k-1]) 

1/c now save past values 
for(k=l; k<=nz1; k++) 

} 

for(j=2; j<=ny1; j++) 
{ ezsx2 [1] (j] [k] =ezsxl [1] [j] (k] ; 

ezsx2 [3] [j] [k] =ezsxl [3] [j] (k] ; 
ezsx1 [1] [j] [k] =ezs [1] [j] [k) ; 
ezsx1 [3] [j] [k] =ezs [nx1] [j] [k] ; 

} 

ezsx2(2](j] (k]=ezsx1[2][j][k]; 
ezsx2 [ 4] [j] [k] =ezsx1 [ 4] [j] [k] ; 
ezsx1[2] [j][k]=ezs[2][j][k] 
ezsxl [ 4] [j] [k] =ezs [nn. x] [j] [k] 

void radezyO 
{int nxl=nn.x-1, ny1=nn.y-1. nz1=nn.z-1; 

1/c do edges with first order orbc 
for( k=l;k<=nz1;k++) 

{ i=2; 
ezs [i] [1] (k] =ezsy1 [i] [2] [k] +cyd• (ezs [i] [2) [k] -ezsy1 [i] [1] [k]); 
ezs [i] [nn. y] [k] =ezsy1 [i] [3] [k] +cyd• (ezs [i] [ny1] (k] -ezsy1 [i] [4] [k]) 

i=nx1; 
ezs[i][1][k]=ezsyl[i][2][k]+cyd•(ezs[i][2][k]-ezsy1[i][1][k]); 
ezs [i] [nn. y] [k] =ezsyl [i] [3] [k] +cyd• (ezs [i] [nyl] [k] -ezsy1 [i] [4] [k]) ; 

} 

for( i=3; i<=nx1-1; i++) 
{ k=l ; 
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} 

ezs [i] [1] (k] =ezsyl [i] [2] (k] -+cyd• (ezs [i] [2] [k] -ezsyl (i] [1] [k]) ; 
ezs (i] [nn. y] [k] =ezsy1 (i] [3] [k] +cyd• (ezs [i] [ny1] [k) -ezsy1 [i] (4] (k]) ; 

k=nzl; 
ezs (i] [1] [k] =ezsyl[i] [2) [k] -+cyd• (ezs [i] [2] [k] -ezsyl [i] [1] [k]) ; 
ezs(i] [nn.y] [k]=ezsy1(i] [3] [k]+cyd•(ezs[i] [ny1] (k]-ezsy1[i] [4] [k]); 

lie nov do 2nd order orbc on remaining portions of faces 

for(k=2;k<=nz1-1; k++) 
for(i=3;i<=nx1-1; i++) 

} 

{ ezs [i] [1] [k] =-ezsy2 (i] [2] [k] +cyd• (ezs (i] [2] [k] +ezsy2 (i] [1] (k]) 
+cyy• ( ezsy1 [i] [1] [k] +ezsy1 [i] (2] [k]) 
+cyfxd•(ezsy1[i+1] (1] [k]-2.•ezsy1(i] [1] (k] 

+ezsyl[i-1] [1) [k]+ezsy1[i+1] (2] [k] 
-2. •ezsyl (i] (2] [k] +ezsy1 [i -1] [2] [k]) 

+cyfzd•(ezsy1(i][1][k+1]-2.•ezsy1[i)[1][k] 
+ezsy1 [i] [1) [k-1] +ezsy1 [i] (2] [k+1] 
-2.•ezsy1[i][2][k]+ezsy1(i](2][k-1]) ; 

ezs[i] [nn.y] [k]=-ezsy2(i] [3] [k]+cyd•(ezs[i) [ny1] (k]+ezsy2[i] [4] [k]) 
+cyy• (ezsy1 (i] [4] [k] +ezsy1 [i] [3] [k]) 
+cyfxd•(ezsy1[i+1] [4] [k]-2.•ezsy1[i] [4] [k] 

+ezsy1[i-1][4][k]+ezsy1[i+1][3)[k] 
-2.•ezsy1[i][3][k]+ezsy1[i-1][3][k]) 

+cyfzd•(ezsyl[i] [4)[k+1]-2.•ezsy1[i] [4][k] 
+ezsy1[i](4][k-1]+ezsy1[i][3][k+1] 
-2.•ezsy1[i] [3][k]+ezsy1[i][3] [k-1]) 

1/c nov save past values 
for(k=l;k<=nzl; k++) 

} 

for(i=2;i<=nx1; i++) 
{ezsy2[i] [1] [k]=ezsy1(i] (1] [k] 
ezsy2[i] [3](k]=ezsyl[i] (3][k] 
ezsy1 [i] (1] (k] =ezs [i] [1] [k] 
ezsy1 [i] [3] (k] =ezs [i] [ny1] [k] 

} 

void radexyO 
{int nx1=nn.x-1, nyl=nn.y-1, nz1=nn . z-1; 

ezsy2 (i] [2] (k] =ezsy1 [i] [2] [k] 
ezsy2 [i] [ 4] [k] =ezsy1 [i] [ 4] [k] 
ezsy1[i)[2] (k]=ezs[i] (2](k] 
ezsy1 [i] [ 4] [k] =ezs [i] [nn. y] [k] 

1/c do edges vith first order orbc 
for( k=2;k<=nz1; k++) 

{i=1; 
exs [i] [1] [k] =exsyl (i] [2] [k] +cyd• (exs [i] [2] [k] -exsy1 [i] [1] [k)) ; 
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exs [i] [nn. y] [k] =exsyl [i] [3] [k] +cyd• (exs [i] [ny1] (k] -exsy1 [i) [4] [k]) ; 

i=nxl; 
exs [i] [1] [k] =exsy1 [i] [2] [k] +cyd• Cexs [i] [2] [k] -exsyl[i] [1] [k]); 
exs [i] [nn. y] [k] =exsy1 [i] [3) [k) +cyd• Cexs [i] [ny1] (k] -exsy1 [i] [ 4] [k]) ; 

} 

for( i=2; i<=nx1-1; i++) 
{ k=2; 

exs [i] [1] (k] =exsy1 [i] [2] [k] +cyd• (exs [i] [2] (k] -exsy1 [i] [1] (k]); 
exs [i] [nn. y] [k] =exsy 1 [i] [3] [k] +cyd• ( exs [i] [ny1] [k] -exsyl [i] [ 4] [k] ) ; 

k=nz1; 
exs[i] [1](k]=exsy1[i] [2] [k]+cyd•Cexs[i][2][k]-exsy1(i][1][k]); 
exs [i] [nn. y] [k] =exsy1 (i] (3] [k] +cyd• (exs [i] [nyl] [k] -exsyl [i] [4) [k]); 

} 

1/c nov do 2nd order orbc on remaining portions of faces 
for(k=3;k<=nz1-1; k++) 

for(i=2;i<=nx1-1; i++) 
{exs [i) (1] [k] =-exsy2 [i) [2] [k] +cyd• (exs [i] [2] [k] +exsy2 [i] [1] [k]) 

+cyy• (exsy1 (i] (1] [k] +exsy1 [i] [2] (k]) 

} 

+cyfxd• (exsy1 [i +1] [1] [k] -2. •exsy1 [i] [1] [k] 
+exsy1[i-1] [1] [k]+exsy1[i+1] [2] [k) 
-2.•exsy1[i](2] [k]+exsyl[i-1] (2] [k]) 

+cyfzd• (exsyl [i] [1] [k+l] -2. •exsyl [i] [1] [k] 
+exsyl [i] (1] [k-1] +exsy1 [i] [2] [k+1] 
-2.•exsyl(i][2](k]+exsy1[i](2][k-1]) 

exs[i] [nn.y] [k]=-exsy2[i] [3] [k]+cyd•(exs[i] [nyl] (k]+exsy2[i] [4] [k]) 
+cyy•Cexsy1[i](4][k]+exsy1[i] [3] [k]) 
+cyfxd•(exsy1[i+1][4] [k]-2.•exsyl[i] [4] [k] 

+exsy1[i-1][4] [k]+exsy1[i+1][3] [k] 
-2. •exsy1 [i] [3] [k] +exsy1 [i -1] [3] [k]) 

+cyfzd•Cexsy1[i][4](k+l]-2.•exsyl[i][4][k] 
+exsy1[i][4][k-1] +exsy1[i][3][k+1] 
-2.•exsyl(i][3] [k]+exsyl(i][3] [k-1]) 

1/c nov save past values 
for(k=2;k<=nz1; k++) 

for(i=1;i<=nxl; i++) 
{ exsy2[i][1][k]=exsy1[i][1][k] 

} 

exsy2 [i] [3] [k] =exsy1 (i] [3] (k] 
exsy1 [i] [1] [k] =exs (i] [1] (k] 
exsy1 [i] [3] [k] =exs (i] [nyl] [k] 
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exsy2[i][2][k]=exsyl[i][2][k] 
exsy2[i] [4] [k]=exsyl[i] [4] [k] 
exsyl [i] [2] [k] =exs (i] [2] (k] 
exsy1 [i] [4] [k] =exs [i] [nn. y] [k] 



} 

void radexz() 
{int nx1-nn.x-1, ny1-nn.y-1, nzl=nn.z-1; 

1/c do edges with first order orbc 
for( j=2;j<=ny1; j++) 

{ i=1; 

} 

exs[i) [j] [1]=exszl[i] [j] (2]+czd•(exs[i](j] [2]-exsz1[i] [j] [1]); 
exs[i] [j] [nn . z]=exszl[i] [j] [3]+czd•(exs[i] [j] [nz1]-exsz1[i] [j) [4]); 

i=nx1; 
exs [i] [j] [1] =exszl (i] [j] [2] +czd• (exs [i][j] (2] -exsz1 [i] [j] [1]) ; 
exs [i] [j] [nn. z] =exsz 1 [i] [j] [3] +czd• ( exs (i] [j] [nz 1] -exsz 1 [i] [j] [ 4] ) ; 

for( i=2;i<=nx1-1; i++) 
{ int j=2; 

} 

exs[i] [j] [l]=exszl(i] [j] [2]+czd•Cexs(i][j] [2]-exszl[i] [j] [1]); 
exs [i] [j] [nn. z] =exszl (i] [j] [3] +czd• (exs[i] [j] [nz1] -exsz1 [i] [j] [ 4]) ; 

j=ny1; 
exs[i] [j] [l]=exszl(i] [j) [2]+czd•(exs[i][j] [2]-exsz1[i] [j] [1]); 
exs [i] [j] [nn. z] =exszl (i] [j] (3] +czd• (exs[i] (j] [nzl] -exsz1 [i] [j] (4]); 

1/c now do 2nd order orbc on remaining portions of faces 
for( j=3; j<=ny1-1; j++) 

for(i=2; i<=nx1-1; i++) 
{ exs [i] [j] [1] =-exsz2 [i] [j] [2] +czd• (exs [i] [j] [2] +exsz2 [i] [j] [1]) 

+czz• Cexsz1 [i] [j] [1] +exszl[i] [j] [2]) 

} 

+czfxd* Cexsz1 [i+1] [j] [1] -2. •exsz1 [i] [j] [1] 
+exsz1 [i -1] [j] [1] +exsz1 [i +1] (j] [2] 
-2 . •exszl[i][j](2]+exsz1(i-1][j][2]) 

+czfyd• (exsz1 (i] [j+1] (1] -2. •exsz1 [i] [j] [1] 
+exsz1 [i] [j-1] [1] +exszl [i] [j+1] [2] 
-2. •exszl (i] (j] [2] +exszl [i] [j-1] [2]) ; 

exs[i] [j] [nn.z]=-exsz2[i] [j] [3]+czd•(exs[i] [j] [nz1]+exsz2[i] [j] (4]) 
+czz• (exszl [i] [j] [4] +exszl [i] [j] [3)) 
+czfxd•(exszl[i+l][j](4]-2.•exsz1[i)[j][4] 

+exsz1 [i -1] [j] [4] +exsz1 [i +1] [j] [3] 
-2.•exszl[i] [j] (3]+exsz1[i-1] [j] [3]) 

+czfyd• (exszl (i] [j+1] [4] -2. •exsz1 (i] [j] [4] 
+exszl(i] [j-1] [4]+exsz1[i] [j+1] (3] 
-2.•exsz1[i][j)[3]+exsz1[i] [j-1][3]) 

1/c now save past values 
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for(j=2;j<=ny1; j++) 
for(i=1; i<=nxl; i++) 

} 

{ exsz2 [i] [j] [1] =exsz1 [i] [j] [1]; 
exsz2[i][j] [3]=exsz1[i][j][3]; 
exsz1 [i] [j] [1] =exs [i] [j] [1] ; 
exsz1 [i] [j] [3] =exs (i] [j] [nz1] ; 

} 

exsz2 [i] [j] [2] =exszl[i] [j] [2] ; 
exsz2 [i] [j] [4] =exsz1 [i] [j] [4]; 
exsz1 [i] [j] [2] =exs [i] [j] [2] 
exszl [i] [j] [ 4] =exs [i] [j] [nn . z] 

void radeyz() 
{int nx1=nn . x-1, ny1=nn.y-1, nz1=nn.z-1; 

/lc do edges with first order orbc 
for( j=1; j<=nyl; j++) 

{ i=2; 

} 

eys [i] [j] [1]=eysz1 [i] [j] [2] +czd•(eys [i] [j] [2] -eyszl [i] [j] [1]); 
eys[i] [j] [nn.z]=eyszl[i] [j] (3]+czd•(eys[i] [j] [nz1]-eysz1[i] [j] [4]); 
i=nxl; 
eys[i] [j] [l]=eyszl[i] [j] [2]+czd•(eys[i] [j] [2]-eyszl[i] [j] [1]); 
eys[i] [j] [nn . z]=eyszl[i] [j] [3]+czd•(eys(i] [j] [nz1]-eysz1[i] [j] [4]); 

for( i=3; i<=nx1-1; i++) 
{ j=1; 

} 

eys[i] [j] [1]=eysz1[i] [j] [2]+czd•(eys[i] [j] [2]-eyszl[i] [j] [1]); 
eys [i] [j] [nn. z] =eysz1 [i] [j] [3] +czd• (eys [i] [j] [nz1] -eyszl[i] [j] [4]); 
j=ny1; 
eys[i] [j] [1]=eysz1[i] [j] [2]+czd•(eys[i] [j] [2]-eysz1[i] [j] [1]); 
eys [i] [j] [nn. z] =eysz1 [i] [j] [3] +czd• (eys [i] [j] (nz1] -eyszl [i] (j] [4]) ; 

1/c now do 2]nd order orbc on remaining portions of faces 
for(j=2; j<= ny1-1; j++) 

for(i=3; i<=nxl-1; i++) 
{eys [i] [j] [1] =-eysz2 [i] [j] [2] +czd• (eys (i] (j] (2] +eysz2 [i] [j] (1]) 

+czz•Ceysz1[i][j][1]+eysz1(i][j][2]) 
+czfxd• Ceyszl [i +1] (j] [1] -2. •eyszl (i] [j] (1] 

+eysz1[i-l][j][1]+eyszl[i+1][j][2] 
-2.•eysz1[i](j](2]+eyszl[i-1] (j](2]) 

+czfyd• (eyszl [i] [j+1] [1] -2. •eyszl [i] [j] [1] 
+eyszl [i] [j-1] [1] +eyszl (i] [j+l] (2] 
-2.•eysz1(i][j][2]+eyszl[i][j-1][2]); 

eys[i] [j] [nn . z]=-eysz2[i) [j] [3]+czd•(eys[i] [j] [nz1]+eysz2[i] [j] [4]) 
+czz•Ceysz1[iJUJ[4]+eyszl[i][j][3]) 
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+czfxd•(eysz1[i+1](j](4]-2 . •eysz1[i][j] [4] 
+eysz1 [i -1] [j] [4] +eyszl [i+1] [j] (3] 
-2 . •eysz1[i][j] [3]+eysz1[i-1](j](3]) 

+czfyd•(eysz1[i][j+1][4]-2.•eysz1[i][j][4] 
+eyszl[i][j-1] [4]+eysz1[i][j+1][3] 
-2. •eysz l[i] [j] [3] +eysz l[i] [j -1] (3] ) ; 

} 

lie now save past values 
for( j=1; j<=ny1;j++) 

} 

for(i=2; i<=nxl; i++) 
{eysz2 [i] [j] [1] =eyszl (i] [j] [1]; 
eysz2[i](j][3]=eyszl[i][j][3]; 
eyszl [i] (j] [1] =eys [i] [j] [1) 
eysz1 [i] (j] [3) =eys [i] [j] [nzl]; 

} 

*********************************** 

*********h_field.cpp*************** 

II•••********************** 
II••• H field component *** 
II************************* 

#include "defin.h" 
extern nxyz n1; 

eysz2 [i] (j] [2] =eysz1 [i] [j] [2] ; 
eysz2 [i] [j] [ 4] =eysz l[i] [j] [ 4] ; 
eyszl [i] [j] [2] =eys (i] (j] (2] 
eysz1[i] [j] (4]=eys[i] [j] [nn .z] 

extern dou exs[nxO][nyO][nzO],eys[nxO][nyO][nzO] ,ezs[nxO][nyO](nzO], 
hxs[nxO)[nyO][nzO],hys[nxO][nyO][nzO] ,hzs[nxO][nyO][nzO]; 

extern dou dtmdx,dtmdy,dtmdz; 

void hxfldO 
{ 

for(int k=1; k<=nl.z;k++) 
for(int j=l; j<=nl.y;j++) 

for(int i=2; i<=nl.x;i++) 
hxs [i] [j] [k] =hxs [i] (j] [k] -Cezs [i] [j+l] [k] -ezs [i] (j] [k]) •dtmdy 

+(eys [i] [j] [k+1] -eys [i] [j] [k]) •dtmdz; 
} 

void hyfldO 
{ 

for(int k=1; k<=nl .z;k++) 
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for(int j=2; j<=nl.y;j++) 
for(int i=l; i<=nl .x;i++) 

hys [i] [j] [k] =hys [i] (j] [k] -(exs (i] [j] [k+l] -exs [i] [j] (k]) •dtmdz 
+(ezs [i +1] [j] [k] -ezs [i] [j] [k]) •dtmdx; 

} 

void hzfld() 
{ 

for(int k=2; k<=nl.z;k++) 
for(int j=l; j<=nl . y;j++) 

for(int i=l; i<=nl.x;i++) 
hzs [i] [j] [k] =hzs [i] [j] [k]-(eys [i+l] [j] [k] -eys [i] [j] [k]) •dtmdx 

+(exs[i] [j+1] [k]-exs[i] [j] [k])•dtmdy 
} 

**************••·············· 

************wires.cpp•••••••• 

#include "defin.h" 
#include <fstream.h> 
extern dou exs[nxO][nyO][nzO],eys[nxO][nyO][nzO],ezs[nxO] [nyO][nzO], 

hxs[nxO] [nyO] [nzO] ,hys[nxO][nyO][nzO] ,hzs[nxO] [nyO][nzO]; 
extern delO del; 
extern coffO coff; 
extern dou dtmdx, dtmdy, dtmdz, rO, t; 
void writefile(char •. fstream t); 
void current(int, fstream t); 
static int flag=O; 
static char FL[20]; 
static int A[20][6]; 
static int num_wires; 
void fine_wire() 
{fstream op; 
int i, j, k; 
int IA, JA, KA, IA1, IA2, JA1, JA2, KAl, KA2; 
if Cflag==O) 

{op.open("wire .dat", ios : : in); 
op>>num_wires; 
for(i=l; i<=num_wires; i++) 

op>>FL[i]>>A[i] [l]>>A[i] [2]>>A[i] [3]>>A[i] [4]>>A[i] [5]; 
op.close(); 
cout<<FL[l]<<" "<<A[l] [1]<<" "<<A[l] [2]<<" "<<A[l] [3]<<" " 

126 



<<A [1] [ 4] << 11 11 <<A [1] [5] <<endl; 
} 

!!••************************************************************ 
fstream foutl, fout2; 

for(i=l; i<=num_wires; i++) 
{switch(FL[i]){ 

case 'z': IA=A[i][l]; JA=A[i][2]; KA1=A[i][3]; KA2=A[i][4]; 
for(k=KAl+l; k<KA2; k++) 

{int IT=IA-l,JT=JA-1; 
hys[IA][JA](k]+= (2/log(del.x/rO)-l)•dtmdx•(ezs[IA+l][JA][k] 

-ezs[IA][JA][k]); 
hys[IT][JA][k]+= (2/log(del .x/rO)-l)•dtmdx•(ezs(IT+l][JA][k] 

-ezs[IT][JA][k]); 
hxs[IA](JA][k)+=-(2/log(del.y/rO)-l)•dtmdy•Cezs[IA] [JA+l](k] 

-ezs[IA][JA][k]); 
hxs[IA][JT](k]+=-(2/log(del.y/r0)-1)•dtmdy•(ezs[IA)[JT+l] [k] 

-ezs [IA] [JT] [k] ) ; 
}break; 

case 'y' : IA=A [i] [1] ; JA1=A [i] [2] ; JA2=A [i] [3] ; KA=A [i] [ 4] ; 
for(j=JA1+1; j<JA2; j++) 

{int IT=IA-l,KT=KA-1; 
hzs[IA][j] [KA]+=-(2/log(del.x/r0)-1)•dtmdx•(eys[IA+l] [j] [KA] 

-eys[IA][j][KA]); 
hzs[IT][j][KA]+=-(2/log(del.x/r0)-l)•dtmdx•(eys[IT+1][j](KA] 

-eys [IT] [j] [KA] ) ; 
hxs[IA][j][KA]+= (2/log(del.z/rO)-l)•dtmdz•(eys[IA] [j] [KA+l] 

-eys[IA](j][KA]); 
hxs[IA][j][KT]+= (2/log(del.z/rO)-l)•dtmdz•(eys[IA][j] [KT+1] 

-eys [IA] [j] [KT] ) ; 
}break; 

case 'x': IA1=A[i][1]; IA2=A(i] [2]; JA=A[i][3]; KA=A[i] [4]; 
for(i=IA1+1; i<IA2; i++) 

{int KT=KA-1,JT=JA-1; 
hzs[i][JA](KA]+= (2/log(del.y/r0)-1)•dtmdy•(exs[i](JA+1](KA] 

-exs [i] [JA] [KA]); 
hzs[i][JT][KA]+= (2/log(del.y/r0)-1)•dtmdy•(exs[i][JT+1][KA] 

-exs [i] [JT] [KA] ) ; 
hys[i][JA][KA]+=-(2/log(del.z/r0)-1)•dtmdz•(exs[i][JA][KA+1] 

-exs [i] [JA] [KA]); 
hys[i][JA][KT]+=-(2/log(del.z/rO)-l)•dtmdz•Cexs[i][JA][KT+l] 

-exs [i] [JA] [KT]) ; 
}break; 
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} 

} 

if(flag==O) 
{flag++; 

} 

foutl. open("cura.dat",ios: :out); fout2.open("curb.dat" ,ios: :out);} 
else 

{foutl. open("cura.dat", ios: : app); fout2. open("curb .dat", ios:: app);} 
current(!, fout1); 
fout1.close0; 
fout2. close 0; 

II******************************** 
If*** save the data for current••• 

If******************************** 
void current(int flag, fstream t fout) 
{int k,j,i,IA, JA, KA; 
dou ca; 
1/cout<<A[l] [5]<<endl; 
fout<<t<<" " ; 
if(flag==l) 

{switch (FL [1]) { 
case 'z' : IA:A (1] [1] ; JA=A [1] [2] ; 

for( k=A[1][5]; k<=A[1][4]; k++) 
{ca=(hxs[IA][JA-l][k]-hxs[IA](JA][k])•del.x+ \ 

(hys[IA][JA] [k]-hys[IA-l][JA](k])•del.y; 
fout<<ca<<" 

}fout<<"\n"; 
break; 

II • 
I 

case 'y' : IA=A (1] [1] ; KA=A [1] [4] ; 
for( j=A[1][5]; j<=A[1][3]; j++) 

{ca=(hxs [IA] [j] [KA] -hxs [IA] [j] [KA-1]) •del. x+ \ 
(hzs [IA-1] [j] [KA] -hzs [IA] [j] [KA]) •del. z; 

fout<<ca<<" 
}fout<<"\n"; 
break; 

II • 

• 

case 'x': JA=A[1](3]; KA=A[1][4]; 
for( i=A(1][5]; i<=A(1][2]; i++) 
{ca=(hzs(i] [JA] [KA]-hzs[i] [JA-1] [KA])•del.z+ \ 

(hys [i] [JA] [KA-1] -hys (i] [JA] [KA]) •del. y; 
fout<<ca<<" 

}fout<<"\n"; 

II • 

• 
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break; 
} 

} 

else; 
} 

************************************* 

*******•••wave_stable.cpp************ 

#include "defin.h" 

extern double value_ERROR; 
extern double SOURCE_NEW, SOURCE_OLD; 
void wave_stable(double t2, int •flag_stable, int •nO) 
{ 

static double tl=O; 
static unsigned stable[S]={O,O,O,O,O}; //used as flags ********* 
static double maxium_f[S]={-1,-2,-3,-4,-5}; //4 maxiums needed••••••• 
static enum max_psss_flag 

{ pass0,passl,pass2,pass3,pass4,stay } max_pass=passO; 

double error_stl, error_st2,error_st3, error_st4; 

//if ( •flag_stable!=l ) //not reached the stable status. 
switch(max_pass) 

{ 

case passO: if( t2>t1 ~~ tl>=O ~t t2>maxium_f[1] ) 
{ maxium_f[1]=t2; stable[l]=-1; } 

else if( t2<t1 tt tl<O tt stable[l]==-1 ) 
max_pass=passl; 

break; 
case passl: if( t2>t1 tt tl>=O tt t2>maxium_f[2] ) 

{ maxium_f[2]=t2; stable[2]=-1; } 
else if( t2<t1 t~ tl<O tt stable[2]==-1 ) 

max_pass=pass2; 
break; 

case pass2: if( t2>t1 tt tl>=O tt t2>maxium_f[3] ) 
{ maxium_f[3]=t2; stable[3]=-1; } 

else if( t2<t1 tl tl<O tt stable[3]==-1 ) 
max_pass=pass3; 

break; 
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case pass3: if( t2>tl tt tl>=O tt t2>maxium_f[4] ) 
{ maxium_f[4]=t2; stable[4]=-1; } 

case pass4: 

else if( t2<t1 tt tl<O tt stable[4]==-1 ) 
{ max_pass=pass4; stable[4]=0; } 

break; 

error_st1=fabs(maxium_f[l]-maxium_f[2])/maxium_f[2]; 
error_st2=fabs(maxium_f[2]-maxium_f[3])/maxium_f[3]; 
error_st3=fabs(maxium_f[3]-maxium_f[4])/maxium_f[4]; 
error_st4=fabs(maxium_f[1]-maxium_f[4])/maxium_f[4]; 
if( error_stl<value_ERROR tt error_st2<value_ERROR \ 

tterror_st3<value_ERROR tt error_st4<value_ERROR ) 
max_pass=stay; II but not found the 'zero' point••••• 

else 
{max_pass=pass3; 
maxium_f[1]=maxium_f[2]; 
maxium_f[2]=maxium_f[3]; 
maxium_f[3]=maxium_f[4]; 
maxium_f[4]=0; 

} 

break; 
case stay : if(SOURCE_NEW>=O ttSOURCE_OLD<O) 

{•flag_stable=1; // found the starting point•••. 
•n0-=2; II go back two step for phase finding 

} 

else break; 
default: 

};//switch ends! 

t1==t2; 
} 

********************************* 

***********find_amp.cpp********* 

#include "defin .h" 

#define In1 Ind-1 
#define Jn1 Jnd-1 
#define Kn1 Knd-1 
#define Is1 Ist-1 
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#define Js1 Jst-1 
#define Ks1 Kst-1 

#define MAX(a,b) a>b?a:b 

extern dou exs[nxO][nyO][nzO],eys[nxO] [nyO][nzO],ezs[nxO][nyO] [nzO], 
hxs[nxO] [nyO] [nzO] ,hys[nxO] [nyO][nzO],hzs[nxO] [nyO] [nzO]; 

//•••••••••••••surface_field amplitude(maxium value••••• 
extern dou ex_y[2][nxO][nyO],hx_y[4][nx0] [nyO], // X-component 

ex_z[2][nxO][nzO],hx_z[4][nxO] [nzO], II•••********* 

ey_x[2](nxO](nyO],hy_x[4][nx0] [nyO], II Y-component 
ey_z[2][ny0] [nz0],hy_z[4] [nyO][nzO], II************ 

ez_x[2][nxO][nzO],hz_x[4](nxO] [nzO], II Z-component 
ez_y[2][nyO][nzO],hz_y[4][nyO] [nzO]; II************ 

extern int Ist, Ind, Jst, Jnd, Kst, Knd; 
II••················· 

void find_maxO 
{ 

int i, j ,k; 

for(i=Ist; i<=Ind ; i++) II X-component************** 
{for(j=Jst; j<=Jnd; j++) II z-constant plane••••••••• 

{ex_y[O] [i] [j]=MAX(ex_y[O] [i] [j] ,exs[i] [j] [Kst]); 
ex_y [ 1] [i] [j] =MAX ( ex_y [ 1] [i] [j] , exs [i] [j] [Knd] ) ; 
hx_y[O) [i] [j]=MAX(hx_y[O) (i] [j] ,hxs[i] (j] [Kst)); 
hx_y (1] [i] [j) =MAX (hx_y [1] [i] [j] , hxs [i] (j] [Kn1]) ; 
hx_y[2] [i] [j)=MAX(hx_y[2] [i] [j] ,hxs[i] [j] [Ks1]); 
hx_y [3] [i] [j) =MAX (hx_y [3] [i] [j) , hxs [i] [j] [Knd] ) ; 

} 

for(k=Kst; k<=Knd; k++) lly-constant plane••••••••• 
{ex_z (0] [i] [k] =MAX (ex_z [0] [i] (k] , exs [i] [Jst] [k]) ; 
ex_z [1] [i] [k] =MAX (ex_z [1) [i] [k] , exs [i] [Jnd] [k]) ; 
hx_z[O] [i] [k]=MAX(hx_z[O] [i] [k] ,hxs[i] [Jst] (k]); 
hx_z[l] [i] [k]=MAX(hx_z[l] [i] [k] ,hxs [i] [Jnl) [k]); 
hx_z[2] (i] [k]=MAX(hx_z[2] [i] (k] ,hxs[i] [Jsl] [k]); 
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} 

hx_z [3) [i] [k] =MAX (hx_z [3] [i] [k) , hxs [i] [Jnd] [k] ) ; 
} 

for(j=Jst; j<=Jnd; j++) II Y-component•************* 
{for(i=Ist; i<=Ind; i++) II z-constant plane•******** 

{ey_x[O] [i) [j]=MAX(ey_x[O) [i] [j] ,eys[i] [j] [Kst]); 
ey_x[1] [i] [j]=MAX(ey_x[1] (i] [j] ,eys[i] [j] [Knd]); 
hy_x[O] [i] [j]=MAX(hy_x[O] [i] [j] ,hys[i] [j] [Kst]); 
hy _x (1] [i] [j] =MAX (hy _x [1] [i] [j] , hys [i] [j] [Kn1]); 
hy_x[2] [i) [j]=MAX(hy_x[2] (i] [j] ,hys[i] [j] [Ks1]); 
hy_x[3] [i) [j)=MAX(hy_x[3) [i] [j] ,hys[i] [j] [Knd]); 

} 

for(k=Kst; k<=Knd; k++) II x-constant plane•••••••• 
{ey _z [0] (j] [k] =MAX (ey _z [0] [j] [k] , eys [Ist] [j] [k]) ; 

ey _z [1] [j] [k] =MAX(ey _z [1) [j] (k] , eys [Ind] [j] [k]) ; 
hy_z[O) [j] [k)=HAX(hy_z[O] [j] [k] ,hys[Ist] [j] [k]); 

hy_z[1) [j] [k]=MAX(hy_z[l) (j] (k] ,hys[Inl] (j] [k]); 
hy _z [2] [j] (k] =MAX (hy _z [2] [j] (k] , hys [Is1] [j] [k]); 

} 

hy _z [3) [j] [k] =MAX (hy _z [3] (j] (k] ,hys [Ind] [j] [k]); 
} 

for(k=Kst; k<=Knd; k++) II Z-component**************** 
{for(i=Ist; i<=Ind; i++) II y-constnat plane••********* 

} 

{ez_x[O) (i](k]=MAX(ez_x[O](i] [k],ezs[i][Jst][k]); 
ez_x (1] [i] [k] =MAX (ez_x [1] (i] [k] , ezs (i] [Jnd] [k]) ; 
hz_x[O] [i][k]=MAX(hz_x[O](i] [k],hzs[i][Jst][k]); 
hz_x [1] [i] [k] =MAX (hz_x [1] [i] (k] , hzs [i] [Jnl] [k]) ; 
hz_x [2] [i] [k] =MAX (hz_x [2] [i] [k] , hzs [i] [Js 1] (k]) ; 
hz_x [3] [i] [k] =MAX (hz_x [3] (i] [k] , hzs [i] [Jnd] [k] ) ; 

} 

for(j=Jst; j<=Jnd; j++) llx-constant plane************* 
{ez_y[O] (j] [k]=HAX(ez_y[O] [j) (k] ,ezs[Ist] [j] [k]); 

ez_y [ 1] [j] [k] =MAX ( ez_y [ 1] [j] [k] , ezs [Ind] [j] [k] ) ; 
hz_y[O) [j] [k)=HAX(hz_y[O] (j] (k] ,hzs[Ist] [j] [k]); 
hz_y[l] (j] [k]=MAX(hz_y[1] (j] (k] ,hzs[In1] [j] [k]); 
hz_y[2) [j] [k]=HAX(hz_y[2] [j] (k] ,hzs[Isl] [j] [k]); 
hz_y[3) [j] [k]=HAX(hz_y[3] [j] [k] ,hzs [lnd] [j] [k]); 

} 
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} 

******************************* 

*********find_phase.cpp*********** 

#include "defin.h" 

#define In1 Ind-1 
#define Jn1 Jnd-1 
#define Kn1 Knd-1 
#define Is1 Ist-1 
#define Js1 Jst-1 
#define Ks1 Kst-1 

extern dou exs[nxO][nyO][nzO],eys[nxO][nyO][nzO],ezs[nxO][nyO][nzO], 
hxs[nxO][nyO](nzO],hys[nxO][nyO][nzO],hzs[nxO] [nyO](nzO]; 

//•••••••••••••••••relative phase of the surface current•••••••••• 
extern complex ex_y_p[2][nxO][nyO] ,hx_y_p[4] [nxO][nyO], //•••X-component•• 

ex_z_p[2][nxO][nzO],hx_z_p[4] [nxO] [nzO], //•••••••••••••••• 

ey_x_p[2][nx0] [nyO] ,hy_x_p[4] [nxO][nyO], //•••Y-component•• 
ey_z_p[2](ny0] [nzO],hy_z_p[4] [nyO] [nzO], II•••••••••••••••• 

ez_x_p[2][nx0] (nzO] ,bz_x_p[4] [nxO](nzO], //•••Z-component•• 
ez_y_p[2][nyO](nzO],bz_y_p(4] [nyO] [nzO]; II•••••••••••••••• 

!!••······························································ 
extern int Ist, Ind, Jst, Jnd, Kst, Knd; 
extern nxyz nn; 
extern int nO; 

void find_phase(double phase_n) 
{phase_n+=0 .0000001; II give a very small value for later judgement 
complex jjc=complex(O,phase_n); 
int i,j,k; 
static flag_first=l; 

if( (flag_first--)==1 ) //••••••initial amplitude for comparision•••••••••••• 
{for(i=Ist; i<=Ind; i++) II X-component•••••••••••••• 

{for(j=Jst; j<=Jnd; j++) II z-constant plane••••••••• 
{ex_y_p[O] (i] [j]=exs[i] [j] [Kst]; ex_y_p[l] (i] [j]=exs[i] [j] [Knd]; 

hx_y_p[O] [i] [j]=hxs[i] [j] [Kst]; hx_y_p[l] [i] [j]=hxs[i] [j] [Knl]; 
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} 

hx_y _p [2) (i] [j] =hxs (i] [j) [Ksl] ; hx_y _p [3] (i] [j] =hxs [i] [j] [Knd] ; 

} 

for(k:Kst; k<=Knd; k++) //y-constant plane••••••••• 
{ex_z_p [0] [i] (k] =exs [i] [Jst] [k] ; ex_z_p [1] [i] [k] =exs [i] [Jnd] [k] ; 

hx_z_p[O] [i] [k]=hxs(i] [Jst] [k]; hx_z_p[l] [i] (k]=hxs[i] [Jnl] [k]; 
hx_z_p (2] (i] [k] =hxs [i] [Jsl] [k] ; hx_z_p [3] [i] [k] ""hxS [i] [Jnd] [k] ; 

} 

for(j=Jst; j<=Jnd; j++) II Y-component************** 
{for(i=Ist; i<=Ind; i++) // z-constant plane••••••••• 

} 

{ey_x_p(O] [i] [j]=eys[i] [j] [Kst]; ey_x_p[l] [i] [j]=eys(i] [j] [Knd]; 
hy_x_p(O] [i] [j]=hys[i] [j] [Kst]; hy_x_p[l] [i] [j]=hys [i] [j) [Knl]; 
hy_x_p[2] [i] [j]=hys[i] [j] [Ksl]; hy_x_p[3] [i] [j]=hys[i] [j] [Knd]; 

} 
for(k=Kst; k<=Knd; k++) // x-constant plane•••••••• 

{ey_z_p[O] [j] [k]=eys[Ist] [j] [k]; ey_z_p[l] [j] [k]=eys [Ind] [j] [k]; 
hy_z_p[O] (j] [k]=hys[Ist] (j] [k]; hy_z_p[l] [j] [k]=hys[Inl] [j] [k]; 
hy_z_p[2] [j] [k]=hys[Isl] [j] [k]; hy_z_p[3] [j] [k]=hys[Ind] [j] [k]; 

} 

for(k=Kst; k<:Knd; k++) // Z-component•*************** 
{for(i=Ist; i<=Ind; i++) // y-constnat plane••••••••••• 

} 

{ez_x_p[O) [i][k]=ezs[i][Jst] [k]; ez_x_p[l][i) (k]=ezs[i] [Jnd][k]; 
hz_x_p[O] [i] [k]=hzs[i] [Jst] [k]; hz_x_p[l] [i] (k]=hzs [i] [Jnl] [k); 
hz_x_p [2] [i] [k] :hzs [i] [Jsl] [k) ; hz_x_p [3] [i] [k] =hzs [i] [Jnd] [k] ; 

} 

for(j=Jst; j<=Jnd; j++) //x-component***************** 
{ez_y_p[O][j][k]=ezs[Ist] [j](k]; ez_y_p[l](j][k]=ezs[Ind][j)[k]; 

hz_y _p [0] [j] [k] =hzs [Ist] [j] [k] ; hz_y _p [1] [j] (k] =hzs [Inl] [j] [k] ; 
hz_y_p[2] [j] [k]=hzs[Isl] (j] [k]; hz_y_p(3] [j] (k]=hzs[Ind] [j] [k]; 

} 

}// end if ******** 

//Till now, the imaginary parts of the phases are 0! 

else 
{ 

for(i=Ist; i<=Ind; i++) // X-component*************** 
{for(j:Jst; j<=Jnd; j++) II z-constant plane•••••••••• 
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{ 

if(imag(ex_y_p[O][i][j])==.O tt real(ex_y_p(O][i](j])<.O 
tt exs[i][j][Kst]>=.O) 

ex_y_p[O][i][j]=exs(i] [j] [Kst]+jjc; II just found the point! 
else if(imag(ex_y_p[O][i] [j])!=.O); II already found :do nothing! 

else ex_y_p[O][i][j]=exs[i] [j] [Kst]; 

if(imag(ex_y_p[l][i][j])==.O tt real(ex_y_p[l] [i] [j])<.O 
tt exs[i][j] [Knd]>=.O) 
ex_y_p[l][i] [j]=exs(i] [j] [Knd]+jjc; II just found the point! 

else if(imag(ex_y_p[l][i][j])!=.O); II already found : do nothing! 
else ex_y_p[l] [i] [j]=exs(i] [j] [Knd]; 

if(imag(hx_y_p[O][i][j])==.O tt real(hx_y_p[O](i][j])<.O 
tt hxs[i][j][Kst]>=.O) 
hx_y_p[O][i](j]=hxs[i] [j](Kst]+jjc; II just found the point! 

else if(imag(hx_y_p[O](i][j])!=.O); II already found :do nothing! 
else hx_y _p [0] [i] (j] =hxs [i] [j] [Kst] ; 

if(imag(hx_y_p[l][i][j])==.O tt real(hx_y_p[l](i][j])<.O 
tt hxs[i][j] [Knl]>=.O) 
hx_y_p[l][i][j]=hxs[i] [j](Knl]+jjc; II just found the point! 

else if(imag(hx_y_p[l][i][j])!=.O); //already found :do nothing! 
else hx_y_p[1] [i] (j] =hxs [i] (j] [Knl]; 

if(imag(hx_y_p[2][i][j])==.O tt real(hx_y_p[2][i] [j])<.O 
tt hxs(i][j][Ksl]>=.O) 
hx_y_p[2][i][j]=hxs[i] [j] [Ksl]+jjc; II just found the point! 

else if(imag(hx_y_p(2][i][j])!=.O); II already found: do nothing! 
else hx_y_p[2] [i] [j] =hxs [i] [j) [Ksl) ; 

if ( imag (hx_y _p [3] [i] [j] ) == . 0 tt real (hx_y _p [3] [i] [j] ) < . 0 
tt hxs [i] [j] [Knd] >=. 0) 
hx_y_p[3] [i] [j]=hxs[i] [j] [Knd]+jjc; II just found the point! 

else if(imag(hx_y_p[3][i](j])!=.O); //already found : do nothing! 
else hx_y _p (3] [i] [j] =hxs (i] [j] [Knd] ; 

} 

for(k=Kst; k<=Knd; k++) //y-constant plane•*********** 
{if(imag(ex_z_p[O][i][k])==.O tt real(ex_z_p(O] [i][k])< . O 

tt exs[i][Jst][k]>=.O) 
ex_z_p[O][i](k]•exs[i) [Jst][k]+jjc; II just found the point! 

else if(imag(ex_z_p[O](i][k])!=.O); //already found : do nothing! 
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else ex_z_p[O][i][k]=exs[i] [Jst][k]; 

if(imag(ex_z_p[l] [i][k])== .O tt real(ex_z_p[l][i] [k])<.O 
tt exs[i][Jnd][k]>=.O) 
ex_z_p[l][i][k]=exs[i] [Jnd][k]+jjc; II just found the point! 

else if(imag(ex_z_p[l][i][k])!=.O); II already found :do nothing! 
else ex_z_p [1] [i] [k] =exs (i] [Jnd] [k] ; 

if(imag(hx_z_p[O](i] [k])== .O tt real(hx_z_p[O][i][k])<.O 
tt hxs[i][Jst][k]>=.O) 
hx_z_p[O](i][k]=hxs[i][Jst](k]+jjc;ll just found the point! 

else if(imag(hx_z_p[O][i][k])!=.O); II already found : do nothing! 
else hx_z_p [0] (i] [k] =hxs [i] [J st] [k] ; 

if(imag(hx_z_p[l](i] [k])==.O tt real(hx_z_p[l](i][k])<.O 
l:t hxs [i] [Jnl] (k] >=. 0) 
hx_z_p[l] (i] [k]=hxs[i] (Jnl] (k]+jjc; II just found the point! 

else if(imag(hx_z_p[l](i][k])!=.O); II already found : do nothing! 
else hx_z_p (1] (i] [k] =hxs [i] (Jnl] [k] ; 

if(imag(hx_z_p[2][i] [k])==.O tt real(hx_z_p[2][i](k])<.O 
1:1: hxs [i] [Jsl] [k] >= . 0) 
hx_z_p[2][i][k)=hxs[i][Js1][k]+jjc;ll just found the point! 

else if(imag(hx_z_p[2][i][k])!=.O); II already found : do nothing! 
else hx_z_p [2] [i] [k] =hxs [i] [Js 1] [k] ; 

if(imag(hx_z_p[3][i] [k])==.O tt real(hx_z_p[3][i](k])< . O 
tt hxs [i] [Jnd] [k] >= . 0) 
hx_z_p[3][i][k]=hxs[i)[Jnd] [k]+jjc; II just found the point! 

else if(imag(hx_z_p[3)[i][k])!=.O); II already found :do nothing! 
else hx_z_p [3] [i] [k] =hxs [i] [Jnd] [k] ; 

} 

} 

for(j=Jst ; j<=Jnd; j++) II Y-component**************** 
{for(i=Ist; i<=Ind; i++) II z-constant plane••••••••••• 

{if(imag(ey_x_p[O) [i] [j])==.O tt real(ey_x_p[O] [i] (j])<.O 
tt eys[i][j][Kst]>= .O) 
ey_x_p[O][i][j]=eys[i][j][Kst]+jjc; II just found the point! 

else if(imag(ey_x_p[O][i][j])!=.O); II already found : do nothing! 
else ey _x_p [0] (i] [j] =eys [i] [j] [Kst] ; 
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if(imag(ey_x_p[l] [i] [j])==.O l:lz real(ey_x_p[l] [i] [j])<.O 
lzlz eys[i][j] [Knd]>=.O) 
ey_x_p[l] [i] [j]=eys(i] (j] [Knd]+jjc; II just found the point! 

else if(imag(ey_x_p[l][i][j])!=.O); II already found :do nothing! 
else ey_x_p[l) [i] [j]=eys(i] (j] [Knd]; 

if(imag(hy_x_p[O](i](j])==.O 1:1: real(hy_x_p[O) (i][j])<.O 
1:1: hys[i][j] [Kst]>=.O) 
hy_x_p[O] [i] [j]=hys[i] [j] [Kst]+jjc; II just found the point! 

else if(imag(hy_x_p[O][i][j])!=.O); II already found : do nothing! 
else hy _x_p [0] [i] [j] =hys [i] [j] [Kst] ; 

if(imag(hy_x_p[l] [i][j])==.O 1:1: real(hy_x_p(l] [i] [j])<.O 
lzi: hys [i] (j] [Knl] >= . 0) 
hy_x_p[l] (i] [j]=hys[i] [j] [Knl]+jjc; II just found the point! 

else if(imag(hy_x_p[l][i] [j])!=.O); II already found :do nothing! 
else hy _x_p (1] [i] [j] =hys [i] [j] [Knl] ; 

if (imag(hy _x_p [2] [i] [j]) ==. 0 t.t real(hy _x_p [2] [i] [j]) <. 0 
1:1: hys[i][j][Ksl]>=.O) 
hy _x_p [2] [i] [j] =hys [i] [j] [Ksl] +jjc; I I just found the point! 

else if(imag(hy_x_p[2)(i] [j])!=.O); II already found :do nothing! 
else hy_x_p[2][i] [j]=hys(i][j][Ksl]; 

if(imag(hy_x_p[3][i][j])== .O .tt real(hy_x_p[3][i][j])<.O 
tt hys[i][j][Knd]>=.O) 
hy_x_p[3][i)[j]=hys[i][j)[Knd]+jjc; II just found the point! 

else if(imag(hy_x_p[3](i](j])!=.O); II already found :do nothing! 
else hy _x_p [3) [i] [j] =hys [i] [j] [Knd] ; 

} 

for(k=Kst; k<=Knd; k++) II x-constant plane•********** 
{if(imag(ey_z_p[O][j] [k))==.O .tt real(ey_z_p[O] [j] [k])<.O 

1:1: eys[Ist][j][k]>= .O) 
ey_z_p[O][j][k]=eys[Ist][j] [k]+jjc; II just found the point! 

else if(imag(ey_z_p[O][j][k])!=.O); II already found :do nothing! 
else ey_z_p[O][j](k]=eys[Ist][j][k]; 

if(imag(ey_z_p[l](j][k])==.O 1:1: real(ey_z_p[l][j][k])<.O 
1:1: eys[Ind][j][k]>=.O) 
ey_z_p[l][j][k]=eys[Ind][j][k]+jjc; II just found the point! 

else if(imag(ey_z_p[l](j][k])!=.O); II already found :do nothing! 
else ey_z_p[l][j][k]=eys[Ind][j][k]; 

137 



if (imag(hy _z_p[OJ [j] [k] )==. 0 l:t real (hy _z_p [0] [j] [k] )<. 0 
tt hys[Ist][j][k]>=.O) 
hy_z_p[O][j][k]=hys[lst] [j](k]+jjc; II just found the point! 

else if(imag(hy_z_p[O](j] (k])!=.O); II already found :do nothing! 
else hy _z_p [0] [j] (k] =hys [Ist] [j] [k] ; 

if(imag(hy_z_p[l] [j] [k])==.O tt real(hy_z_p[l] [j] [k])<.O 
l:t hys [Inl] [j] [k] >=. 0) 
hy_z_p[l] [j][k]=hys[Inl] [j][k]+jjc; II just found the point! 

else if(imag(hy_z_p[l][j)[k]) !=.0); II already found: do nothing! 
else hy_z_p[l](j] [k]=hys[Inl][j] [k]; 

if(imag(hy_z_p[2] [j](k])==.O tt real(hy_z_p[2][j][k])<.O 
l:t hys[Isl][j] [k]>=.O) 
hy_z_p[2][j][k]=hys[ls1][j][k]+jjc; II just found the point! 

else if(imag(hy_z_p[2][j] (k])!=.O); II already found : do nothing! 
else hy_z_p[2] (j] [k]=hys[Isl] [j] [k]; 

if ( imag (hy _z_p [3] [j] [k] ) == . 0 l:t real (hy _z_p [3] [j] [k] ) <. 0 
l:t hys [Ind] [j] [k] >= . 0) 
hy_z_p[3](j][k]=hys[Ind][j][k]+jjc; II just found the point! 

else if(imag(hy_z_p[3)[j] [k])!=.O); II already found : do nothing! 
else hy _z_p [3] [j] [k] =hys [Ind] (j] [k); 

} 
} 

for(k=Kst; k<=Knd; k++) II Z-component**************** 
{for(i=Ist; i<=Ind; i++) II y-constnat plane••••••••••• 

{if(imag(ez_x_p[O] [i][k])==.O l:t real(ez_x_p[O][i] [k])<.O 
tl: ezs(i][Jst] [k]>=.O) 
ez_x_p[O][i][k]=ezs[i][Jst][k]+jjc; II just found the point! 

else if(imag(ez_x_p[O][i] [k])!=.O); II already found :do nothing! 
else ez_x_p[O)[i](k]=ezs[i][Jst](k]; 

if(imag(ez_x_p[l][i](k])==.O tt real(ez_x_p[l][i](k])<.O 
1:1: ezs[i][Jnd] [k]>=.O) 
ez_x_p[l)[i][k]=ezs[i][Jnd][k]+jjc; II just found the point! 

else if(imag(ez_x_p[l](i][k])!=.O); II already found :do nothing! 
else ez_x_p[l][i][k]=ezs(i][Jnd][k]; 

if(imag(hz_x_p[O][i][k])==.O tt real(hz_x_p[O](i](k])<.O 
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~~ hzs (i] [Jst] [k] >=. 0) 
hz_x_p[O][i](k]=hzs[i][Jst][k]+jjc; // just found the point! 

else if(imag(hz_x_p[O][i][k])!=.O); //already found :do nothing! 
else hz_x_p [0] [i] [k] =hzs [i] [Jst] [k] ; 

if(imag(hz_x_p[l] [i] [k] )==.0 &:&: real(hz_x_p[l] [i] [k] )<.0 
&:&: hzs [i] [Jnl] (k] >=. 0) 
hz_x_p[l] [i] [k]=hzs[i] [Jnl] [k]+jjc; II just found the point! 

else if(imag(hz_x_p[l](i][k])!=.O); //already found :do nothing! 
else hz_x_p [1] [i] [k] =hzs [i] [Jnl] [k] ; 

if(imag(hz_x_p[2] [i](k])== .O &:&: real(hz_x_p[2][i][k])<.O 
~&: hzs [i] [Js 1] [k] >= . 0) 
hz_x_p[2][i](k]=hzs[i][Jsl][k]+jjc; II just found the point! 

else if(imag(hz_x_p[2](i](k])!=.O); II already found : do nothing! 
else hz_x_p[2] (i] [k]=hzs [i] [Jsl] [k]; 

if(imag(hz_x_p[3](i][k])==.O &:&: real(hz_x_p[3][i] [k])<.O 
&:&: hzs[i](Jnd] (k]>= .O) 
hz_x_p[3][i](k]=hzs[i][Jnd](k]+jjc; // just found the point! 

else if(imag(hz_x_p[3](i] [k])!=.O); II already found :do nothing! 
else hz_x_p (3] [i] [k] =hzs [i] [Jnd] [k] ; 

} 

for(j=Jst; j<=Jnd; j++) 1/x-constant plane*********** 
{if(imag(ez_y_p[O] [j] [k])==.O &:&: real(ez_y_p[O] [j](k])<.O 

&:&: ezs[Ist][j](k]>=.O) 
ez_y_p[O] [j] (k]=ezs[Ist] [j] [k]+jjc; II just found the point! 

else if(imag(ez_y_p[O][j](k])!=.O); II already found : do nothing! 
else ez_y_p[O] [j] [k]=ezs[Ist] [j] [k]; 

if(imag(ez_y_p[l] (j] [k])== .O 1:1: real(ez_y_p[1] [j] [k])<.O 
1:1: ezs[Ind] [j] (k]>=.O) 
ez_y_p[l](j][k]=ezs[Ind][j][k]+jjc; II just found the point! 

else if(imag(ez_y_p[l][j][k])!=.O); II already found :do nothing! 
else ez_y_p[1] (j] (k]=ezs[Ind] [j] [k]; 

if (imag (hz_y _p [0] [j] [k]) ==. 0 1:1: real(hz_y _p [OJ [j] (k]) <. 0 
1:1: hzs [Ist] [j] [k] >= . 0) 
hz_y_p[O][j][k]=hzs[Ist][j][k]+jjc; II just found the point! 

else if(imag(hz_y_p[O](j](k])!= .O); //already found :do nothing! 
else hz_y _p (0] [j] (k] =hzs [Ist] [j] (k] ; 
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if ( imag (hz_y _p [1] [j] [k]) ==. 0 let real(hz_y _p [ 1] [j] [k] ) <. 0 
&:&: hzs Unl] [j] [k] >= .0) 
hz_y_p[1][j][k]=hzs[Inl][j] [k]+jjc; II just found the point! 

else if(imag(hz_y_p[l][j] [k])!=.O); II already found :do nothing! 
else hz_y_p[1] [j] [k]=hzs [Inl] [j] [k]; 

if(imag(hz_y_p[2][j][k])==.O let real(hz_y_p[2](j][k])<.O 
&:&: hzs [Isl] (j] [k] >=. 0) 
hz_y_p(2] [j] [k] =hzs [Isl] [j] [k] +jjc; I I just found the point! 

else if(imag(hz_y_p[2][j] [k])!=.O); II already found : do nothing! 
else hz_y_p[2] [j] [k]=h2s [Isl] [j] [k]; 

if(imag(hz_y_p[3][j][k])==.O ta real(hz_y_p[3] [j][k])<.O 
tt hzs [Ind] [j] [k] >= . 0) 
hz_y_p [3) [j] [k] •hzs [Ind] [j] [k] +jjc; I I just found the point! 

else if(imag(hz_y_p[3][j][k])!•.O); II already found :do nothing! 
else hz_y_p[3] [j] [k)=h2s[Ind] [j] [k]; 

} 

} 

}/1 ends if••••• 
}//ends main•••••••••• 
•••••••••••••••••••••••••• 

************Out_surface_field.cpp********* 

#include "defin.h" 
#include <iostream .h> 
ll•••••••••••••surface_field***** 
extern dou ex_y[2][nxO][nyO],hx_y[4][nxO][ny0], II X-component 

ex_z [2] (nxO] [nzO] , hx_z [ 4] [nxO] [nzO] , I I************ 

ey_x[2] [nxO][nyO] ,hy_x[4][nxO][nyO], II Y-component 
ey_z[2][nyO)[nzO],hy_z[4][nyO] [nzO], //•••••••••••• 

ez_x[2][nxO][nzO],hz_x[4][nxO](nzO], II Z-component 
ez_y(2][nyO][nzO],hz_y[4)[nyO][nzO]; 

ll••surface_current_amplitude•• 

extern complex ex_y_p[2)[nx0] [nyO],hx_y_p[4][nxO][nyO], 
ex_z_p[2] [nxO] [nzO] ,hx_z_p[4] [nxO] [nzO], 

ey_x_p[2] [nxO] [nyO] ,hy_x_p[4] [nxO] [nyO], 
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ey_z_p[2) [nyO][nzO],hy_z_p[4] [nyO] [nzO], 

ez_x_p[2] [nxO] [nzO] ,hz_x_p[4] [nxO] [nzO], 
ez_y _p [2) [nyO] [nzO] , hz_y _p [ 4] [nyO] [nzO] ; 
//••surface_current_phase 

extern complex exy[2][nxO](nyO].hxy[2][nxO][ny0], II X-component 
exz(2][nxO)[nzO],hxz[2] [nxO][nzO], !!•••••••••••• 

eyx[2][nx0][ny0] ,hyx[2][nxO][nyO], II Y-component 
eyz(2][nyO](nzO],hyz[2][nyO][nzO], !!•••••••••••• 

ezx [2] [nxO] [nzO] , hzx (2] [nxO] [nzO] , I I Z-component 
ezy[2] [nyO][nzO],hzy[2][ny0][nzO]; //••final surface_field•• 

extern int Ist, Ind, Jst, Jnd, Kst, Knd; 
extern dou PI, ONE_cycle; 

II•·················· 
void out_surface_field(double ONE_cycle) 
{double dtor; dtor=PI/180; 

!!••············································ int i,j,k; 
complex jj; jj=complex(0.0,-1.0); 
double eO,el,hO,hl,h2,h3; 
double dp; dp=PI/ONE_cycle; //The delayed phase angle••• 
for(i=Ist; i<=Ind; i++) II X-component************** 

for(j=Jst; j<=Jnd; j++) II z-constant plane••••••••• 
{eO=dtor•imag(ex_y_p[O](i](j]); 

el=dtor•imag(ex_y_p[l] [i][j]); 
hO=dtor•imag(hx_y_p[O][i](j]); 
hl=dtor•imag(hx_y_p(l](i][j]); 
h2=dtor• imag (hx_y _p (2] [i] [j] ) ; 
h3=dtor• imag (hx_y _p [3] [i] [j] ) ; 
if(ex_y[O] (i] [j] !=0.) eO-=asin(real(ex_y_p[O] [i] [j])/ex_y[O] [i] [j]); 
if(ex_y(l] [i) [j] !=0.) el-=asin(real(ex_y_p[l] [i] [j])/ex_y[l) [i] (j]); 
if(hx_y[O] [i] [j] !=0.) hO-=asin(real(hx_y_p[O] [i] [j])/hx_y[O] [i] (j])-dp; 
if(hx_y[l] [i] [j] !=0.) hl-=asin(real(hx_y_p[l] [i] (j])/hx_y[l] [i] [j])-dp; 
if (hx_y [2] [i] [j] ! =0 . ) h2-=asin (real (hx_y _p [2] [i] [j]) /hx_y [2] (i] [j)) -dp; 
if (hx_y [3] [i] [j] ! =0.) h3-=asin (real (hx_y _p [3] (i] (j]) /hx_y [3] [i] [j 1) -dp; 
exy[O] [i] [j]= ex_y[O] [i] [j]•exp(jj•eO); 
exy[1] [i] [j]= ex_y[l] [i] [j]•exp(jj•el); 
hxy[O] (i] [j]=(hx_y[O] [i] [j)•exp(jj•hO)+hx_y[2] [i] [j]•exp(jj•h2) )/2.0; 
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hxy(l] (i] [j]=(hx_y[l] (i] (j]•exp(jj•hl)+hx_y[3] [i] [j]•exp(jj•h3) )12.0; 

} 

for(i=Ist; i<=Ind; i++) II X-component************** 
for(k=Kst; k<=Knd; k++) fly-constant plane********* 

{double eO=dtor•imag(ex_z_p[O](i][k]); 
double e1=dtor•imag(ex_z_p[1][i][k]); 
double hO=dtor•imag(hx_z_p[O][i][k]); 
double h1=dtor•imag(hx_z_p[1][i][k]); 
double h2=dtor•imag(hx_z_p[2][i][k]); 
double h3=dtor•imag(hx_z_p[3)(i][k]); 

} 

if (ex_z [0] [i] [k] ! =0.) eO-=asin(real (ex_z_p [0] [i] [k]) lex_z [0] [i] [k]); 
if(ex_z[1] [i] [k] !=0.) e1-=asin(real(ex_z_p[1] [i] [k])lex_z[1] [i] (k]); 
if (hx_z (0] [i] [k) ! =0.) hO-=asin (real (hx_z_p [0] [i] [k]) lhx_z [OJ [i] [k]) -dp; 
if(hx_z[1] [i) [k] !=0.) h1-=asin(real(hx_z_p[1) [i] [k])lhx_z[1] [i] [k])-dp; 
if(hx_z[2][i)[k) !=0.) h2-=asin(real(hx_z_p[2)[i][k])lhx_z[2][i] [k])-dp; 
if(hx_z[3](i][k] !=0.) h3-=asin(real(hx_z_p[3][i][k])lhx_z[3](i] [k])-dp; 
exz [0] [i] [k] = ex_z (0] [i] (k] •exp (j j •eO) ; 
exz [1] [i] [k] = ex_z [ 1] [i] [k] •exp (j j •e 1) ; 
hxz(O] [i] [k]=(hx_z[O] [i] [k]•exp(jj•hO)+hx_z[2] [i) [k]•exp(jj•h2) )12.0; 
hxz(l] [i] [k]=(hx_z[1] [i] [k]•exp(jj•h1)+hx_z[3] [i] [k]•exp(jj•h3) )12.0; 

II•************************************************** 

for(j=Jst; j<=Jnd; j++) II Y-component************** 
for(i=Ist; i<=Ind; i++) II z-constant plane********* 

{double eO=dtor•imag(ey_x_p[O][i][j]); 
double e1=dtor•imag(ey_x_p[l][i][j]); 
double hO=dtor•imag(hy_x_p[O](i][j]); 
double h1=dtor•imag(hy_x_p[1](i](j]); 
double h2=dtor•imag(hy_x_p[2](i][j]); 
double h3=dtor•imag(hy_x_p[3](i](j]); 
if(ey_x[O] [i] [j] !=0.) eO-=asin(real(ey_x_p[O] [i] (j] )ley_x[O] [i] (j]); 
if (ey _x [1] (i] [j] ! =0.) el-=asin(real (ey_x_p [1] (i] [j]) ley _x (1] [i] [j]) ; 
if(hy_x(O] [i] [j] !=0.) hO-=asin(real(hy_x_p[O) [i] [j])/hy_x[O] [i] [j])-dp; 
if(hy_x[1] [i] (j] !=0.) h1-=asin(real(hy_x_p[1] (i] [j])lhy_x[l] [i] [j])-dp; 
if (hy _x [2] [i] [j] ! =0.) h2-=asin (real (hy _x_p (2] [i] [j]) lhy _x [2] [i] [j] ) -dp; 
if (hy_x[3] [i] [j]! =0.) h3-=asin(real (hy_x_p[3] [i] [j]) lhy_x [3] [i] [j] )-dp; 
eyx[O] [i] [j]= ey_x[O] [i] [j]•exp(jj•eO); 
eyx(1] [i] [j]= ey_x[l] [i] [j]•exp(jj•el); 
hyx[O] [i] [j]=(hy_x[O] [i] [j]•exp(jj•hO)+hy_x[2] [i] [j]•exp(jj•h2) )/2.0; 
hyx[1] [i] [j]=(hy_x[1] [i] [j]•exp(jj•h1)+hy_x[3] (i] [j]•exp(jj•h3) )12.0; 
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} 

for(j=Jst; j<=Jnd; j++) II Y-component************** 
for(k=Kst; k<=Knd; k++) II x-constant plane••******* 

{double eO=dtor•imag(ey_z_p[O][j][k]); 
double el=dtor•imag(ey_z_p[l][j][k]); 
double hO=dtor•imag(hy_z_p[O][j][k]); 
double hl=dtor•imag(hy_z_p[l][j][k]); 
double h2=dtor•imag(hy_z_p[2][j][k]); 
double h3=dtor•imag(hy_z_p[3][j][k]); 

} 

if(ey_z[O][j][k] !=0 . ) eO-=asin(real(ey_z_p[O][j] [k])ley_z[O](j] (k]); 
if(ey_z[l][j][k] !=0 . ) el-=asin(real(ey_z_p[l](j](k])/ey_z[l] [j] [k]); 
if(hy_z[O][j][k] !=0 . ) hO-=asin(real(hy_z_p[O][j][k])lhy_z[O] [j] [k])-dp; 
if(hy_z[l][j][k]!=O.) hl-=asin(real(hy_z_p[l](j] (k])lhy_z[l](j] (k])-dp; 
if(hy_z[2](j][k] !=0 . ) h2-=asin(real(hy_z_p(2](j] [k])lhy_z(2] [j] (k])-dp; 
if(hy_z[3](j][k] !=0.) h3-=asin(real(hy_z_p[3][j] [k])/hy_z[3][j][k])-dp ; 
eyz [0] [j] (k]= ey_z[O] [j] (k] •exp(jj•eO); 
eyz[l] [j] (k]= ey_z[l] (j] (k]•exp(jj•el); 
hyz[O][j][k]=(hy_z[O] (j] (k]•exp(jj•hO)+hy_z[2] (j](k]•exp(jj•h2) )12 .0; 
hyz[l] (j] [k]=(hy_z[l] [j] [k]•exp(jj•h1)+hy_z(3] [j] [k]•exp(jj•h3) )12.0; 

If*************************************************** 

for(k=Kst; k<=Knd; k++) II Z-component•*************** 
for(i=Ist; i<=Ind; i++) II y-constnat plane•••******** 

{double eO=dtor•imag(ez_x_p(O][i][k]); 
double el=dtor•imag(ez_x_p[l][i][k]); 
double hO=dtor•imag(hz_x_p[O](i](k]); 
double hl=dtor•imag(hz_x_p[l][i][k]); 
double h2=dtor•imag(hz_x_p[2](i][k]); 
double h3=dtor•imag(hz_x_p[3][i][k]); 

} 

if(ez_x[O][i][k]!=O.) eO-=asin(real(ez_x_p[O] [i] [k])lez_x(O] (i] (k]); 
if(ez_x[l][i][k]!=O . ) el-=asin(real(ez_x_p[l][i][k])lez_x[l] [i] [k]) ; 
if (hz_x (0] [i] [k] ! =0 . ) hO-=asin (real (hz_x_p [0] [i] (k]) lhz_x [0] [i] [k]) -dp; 
if (hz_x [1] [i] [k] ! =0 . ) hl-=asin(real(hz_x_p [1] [i] [k]) lhz_x (1] [i) [k]) -dp; 
if(hz_x[2][i][k]!=O.) h2-=asin(real(hz_x_p[2][i][k])lhz_x[2][i][k])-dp; 
if (hz_x (3] [i] [k] ! =0.) h3-=asin (real (bz_x_p [3] [i] (k] ) lhz_x [3] (i] [k] ) -dp; 
ezx[O] [i] [k]= ez_x[O] [i] [k] •exp(jj•eO); 
ezx[1] [i] [k]= ez_x[l] [i] [k]•exp(jj•el) ; 
hzx(O] [i] [k]=(hz_x[O] (i] [k]•exp(jj•hO)+hz_x[2] (i] [k]•exp(jj•h2) )12.0 ; 
hzx[l] [i) (k]=(hz_x[l] (i] [k]•exp(jj•hl)+hz_x[3] [i] [k]•exp(jj•h3) )12.0; 
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for(k=Kst; k<=Knd; k++) II Z-component**************** 
for(j=Jst; j<=Jnd; j++) llx-constant plane *********** 

}//end 

{double eO=dtor•imag(ez_y_p[O] [j][k]); 
double el=dtor•imag(ez_y_p[l][j][k]); 
double hO=dtor•imag(hz_y_p[O][j](k]); 
double hl=dtor•imag(hz_y_p[l][j][k]); 
double h2=dtor•imag(hz_y_p[2][j][k]); 
double h3=dtor•imag(hz_y_p[3][j][k]); 

} 

if(ez_y[O][j][k] !=0.) eO-=asin(real(ez_y_p[O] [j] [k])lez_y[O][j][k]); 
if (ez_y [1] [j] [k] ! =0.) el-=asin(real (ez_y_p [1] [j] [k]) lez_y (1] [j] [k]) ; 
if(hz_y[O](j](k] !=0.) hO-=asin(real{hz_y_p[O] [j][k])lhz_y[O][j](k])-dp; 
if(hz_y[l] [j] [k] !=0.) hl-=asin(real{hz_y_p[l] [j] [k])lhz_y[l] [j] [k])-dp; 
if(hz_y(2][j][k] !=0.) h2-=asin{real(hz_y_p[2] [j)[k])lhz_y[2][j](k])-dp; 
if {hz_y [3] [j] [k] ! =0.) h3-=asin (real (hz_y _p [3] [j] [k]) lhz_y [3] [j] [k]) -dp; 
ezy(O] [j] [k]= ez_y[O] [j] [k]•exp{jj•eO); 
ezy[1] [j] [k]= ez_y[l] [j] [k]•exp(jj•el); 
hzy[O] [j] [k]={hz_y[O] [j] [k]•exp(jj•hO)+hz_y[2] [j) [k]•exp(jj•h2) )/2.0; 
hzy[l] [j] [k)=(hz_y[l] [j] (k]•exp(jj•hl)+hz_y[3] [j) [k)•exp(jj•h3) )/2.0; 

******************************* 

*********far_field.cpp********* 

#include "defin.h11 

#include "complex .h" 
void readfile(char •, fstream t); 
void writefile(char •. fstream t); 
extern dou PI, etaO; 
extern delO del; 
extern double wl; 
extern double cen_x, cen_y, cen_z; 
extern int Ist, Ind , Jst , Jnd • Kst, Knd; 
extern complex exy[2] [nxO)[nyO] ,hxy[2][nxO][nyO], II X-component 

exz[2][nxO][nzO],hxz[2)[nxO][nzO], II************ 

eyx[2](nxO][nyO],hyx(2][nxO][nyO], II Y-component 
eyz[2][nyO][nzO],hyz[2](nyO][nz0], II************ 

ezx[2](nxO][nzO],hzx[2][nxO)[nz0], // Z-component 
ezy[2)[nyO][nzO],hzy[2][nyO][nzO]; II•••••••••••• 
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const double dtor=0 .0174532925199; // degree to radian 
const double rtod=57.295779513082; // radian to degree 
complex Nx[362], Ny[362], Nz[362], 

Lx[362], Ly[362], Lz[362]; 
fstream fout; 
int qaz; 

!!••············································· 
void far_field(int angle, int ID_ang, char •OUTPUT_name ) 
{void find_Nx(double ), find_Ny(double ), find_Nz(double ), 

find_Lx(double ), find_Ly(double ), find_Lz(double ); 
void find_Nxl(double ), find_Nyl(double ), find_Nzl(double ), 

find_Lxl(double ), find_Lyl(double ), find_Lzl(double ); 
double fi, ct; 
complex Ect[362], Efi[362]; 
complex Net, Let, Nfi, Lfi; 
double cosfi, sinfi, coset, sinct; 
if (ID_ang==l) 

{fi-angle•dtor; 
find_Nx(fi); find_Ny(fi); find_Nz(fi); 
find_Lx(fi); find_Ly(fi); find_Lz(fi); 
cosfi=cos(fi); 
sinfi=sin(fi); 
writeFile(OUTPUT_name, fout); 
for(int i=l ; i<=180; i++) 

{cosct=cos(i•dtor); 

} 

sinct-sin(i•dtor); 
Nct=(Nx[i)•cosfi+Ny[i]•sinfi)•cosct-Nz[i]•sinct; 
Lct=(Lx[i]•cosfi+Ly[i]•sinfi)•cosct-Lz[i]•sinct; 
Nfi=-Nx[i]•sinfi+Ny[i]•cosfi; 
Lfi=-Lx[i]•sinfi+Ly[i]•cosfi; 

Ect[i]=Lfi+Nct•etaO; 
Efi(i]=Lct-Nfi•etaO; 
fout<<i<<" " « abs(Ect(i])<<endl; 

fout. close 0 ; 
} 

else 
{ct=angle•dtor; 

find_Nxl(ct); find_Nyl(ct); find_Nzl(ct); 
find_Lxl(ct); find_Ly1(ct); find_Lzl(ct); 
cosct=cos(ct); 
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sinct=sin(ct); 
writeFile(OUTPUT_name, fout); 
for(int i=l; i<=360; i++) 

{ cosfi=cos(i•dtor); sinfi=sin(i•dtor); 
Nct=(Nx[i]•cosfi+Ny[i]•sinfi)•cosct-Nz[i]•sinct; 
Lct=(Lx[i]•cosfi+Ly[i]•sinfi)•cosct-Lz[i]•sinct; 
Nfi=-Nx[i]•sinfi+Ny[i]•cosfi; 
Lfi=-Lx[i]•sinfi+Ly[i]•cosfi; 

} 

Ect(i]=Lfi+Nct•etaO; 
Efi[i]=Lct-Nfi•etaO; 
fout<<i<<" ,. << abs(Ect(i])<<endl; 

fout. close 0 ; 
} 

} 

!!••············································· 
II••• exp(jkr'cos()) **************************** 
complex exp_phase(double xl, double yl, double zl, double ct, double fi) 
{double cosf; 

complex y ; 
cosf=zl•cos(ct)+( xl•cos(fi)+yl•sin(fi) )•sin(ct); 
y=exp(complex(0.0,1 .0)•2•PI/Yl*COSf); 
return(y); 

} 

ll**********************over••••************* 

!!••············································· 
void find_Nx(double fi) 
{int ct, i,j,k,m; 
double xl, yl, zl, ct_r, coff; 
complex Jx, Nxl, Nx2; 
writeFile("NX.dat", fout); 
for(ct=l;ct<=180;ct++) 

{ct_r=ct•dtor; 
Nxl=O; Nx2=0; 
for(i=Ist; i<=Ind-1; i++) 

{xl=(i-cen_x+O .S)•del.x; 

!!••························ 
for(j=Jst; j<=Jnd; j++) 

for(m=O; m<=l; m++) 
{yl=(j-cen_y)•del.y; 

if(m==O) {zl=(Kst-cen_z)•del .z; Jx= hyx[O][i] [j] ;} 
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else {zl=(Knd-cen_z)•del.z; Jx=-hyx[l][i][j] ;} 
if(j==Jst I I j==Jnd) coff=O.S; else cof£=1.0; 
Nx1+=Jx•exp_phase(x1,y1,z1,ct_r,fi)•coff; 

} 

II••························ 
for(k=Kst; k<=Knd; k++) 

for(m=O; m<=1; m++) 
{zl=(k-cen_z)•del.z; 

if(m==O) {yl=(Jst-cen_y)•del.y; Jx=-hzx[O](i][k];} 
else {yl=(Jnd-cen_y)•del.y; Jx= hzx[l][i] [k];} 
if(k==Kst I I k--Knd) coff=O.S; else coff=l.O; 
Nx2+=Jx•exp_phase(x1,y1,z1,ct_r,fi)•coff; 

} 

} 

Nx[ct]=del .x•(Nx1•del.y+Nx2•del.z); 
fout<<ct<<"," << real(Nx[ct])<<", " «imag(Nx[ct])<<endl; 

} 

fout.close(); 
} 

ll**************••••••••over••••••••••••••••• 
II*********************************************** 
void find_Ny(double fi) 
{int ct, i,j,k,m; 
double x1, yl, z1, ct_r, coff; 
complex Jy, Ny1, Ny2; 
writeFile("NY.dat", fout); 
for(ct=1;ct<=180;ct++) 

{ct_r=ct•dtor; 
Ny1=0; Ny2=0; 
for(j=Jst; j<=Jnd-1; j++) 

{yl=(j-cen_y+O.S)•del.y; 
II•••••••••••••••••••••••••• 

for(i=Ist; i<=Ind; i++) 
for(m=O; m<=1; m++) 

{xl=(i-cen_x)•del.x; 
if(m==O) {zl=(Kst-cen_z)•del.z; Jy=-hxy[O][i][j];} 
else {zl=(Knd-cen_z)•del.z; Jy= hxy[l][i][j] ;} 
if(i==Ist I I i==Ind) coff=O.S; else coff=l .O; 
Ny1+=Jy•exp_phase(x1,y1,z1,ct_r,fi)•coff; 

} 

II•••••••••••••••••••••••••• 
for(k=Kst; k<=Knd; k++) 
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} 

for(m:O; m<=l; m++) 
{zl=(k-cen_z)•del.z; 

} 

if(m==O) {xl=(Ist-cen_x)•del.x; Jy= hzy[O] (j][k] ;} 
else {xl=Cind-cen_x)•del.x; Jy=-hzy(l] [j][k] ;} 
if(k==Kst I I k==Knd) cof£=0.5; else coff=t.O; 
Ny2+=Jy•exp_phase(x1,yl,zl,ct_r,fi)•coff; 

} 

Ny[ct]=del.y•CNy1•del.x+Ny2•del.z); 
fout<<ct<<"," << real (Ny [ct]) <<", " «imag(Ny [ct]) <<endl; 

fout. close 0 ; 
} 

ll•*******************••over***************** 
II*********************************************** 
void find_Nz(double fi) 
{int ct, i,j,k,m; 
double xt, yt, zl, ct_r, coff; 
complex Jz, Nzl, Nz2; 
writeFile("NZ.dat", fout); 
for(ct=l;ct<=180;ct++) 

{ct_r=ct•dtor; 
Nzl=O; Nz2=0; 
for(k=Kst; k<=Knd-1; k++) 

{zl=(k-cen_z+O.S)•del.z; 
II************************** 

for(j=Jst; j<=Jnd; j++) 
for(m=O; m<=l; m++) 

{yl=(j-cen_y)•del.y; 
if(m==O) {xl=(Ist-cen_x)•del.x; Jz=-hyz[O][j][k] ;} 
else {xt=(Ind-cen_x)•del.x; Jz= hyz[l][j] [k];} 
if(j==Jst I I j==Jnd) cof£=0.5; else coff=t.O; 
Nz2+=Jz•exp_phase(x1,y1,z1,ct_r,fi)•coff; 

} 

II••························ 
for(i=Ist; i<=Ind; i++) 

for(m=O; m<=l; m++) 
{xl=(i-cen_x)•del.x; 

if(m==O) {yl=(Jst-cen_y)•del.y; Jz= hxz[O][i] [k];} 
else {yl=(Jnd-cen_y)•del.y; Jz=-hxz[l][i](k] ;} 
if(i==Ist I I i==Ind) coff=O.S; else coff=l.O; 
Nzt+=Jz•exp_phase(xl,yl,zl,ct_r,fi)•coff; 
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} 

} 

Nz[ct]=del.z•(Nzl•del.x+Nz2•del.y); 
fout<<ct<<"," « real (Nz [ct]) <<", " «imag(Nz [ct]) <<endl; 

} 

fout. close 0 ; 
} 

ll********************••over•••************** 
!!•********************************************** 
void find_Lx(double fi) 
{int ct, i,j,k,m; 
double xl, yl, zl, ct_r, coff; 
complex Hx, Lxl, Lx2; 
writeFile("LX.dat", fout); 
for(ct=l;ct<=180;ct++) 

{ct_r=ct•dtor; 

} 

Lxl=O; Lx2=0; 
for(i=Ist; i<=Ind; i++) 

{xl=(i-cen_x)•del.x; 
!!••························ 

for(j=Jst; j<=Jnd-1; j++) 
for(m=O; m<=l; m++) 

{yl=(j-cen_y+O.S)•del .y; 

} 

if(m==O) {zl=(Kst-cen_z)•del.z; Mx= eyx[O] [i] [j] ;} 
else {zl=(Knd-cen_z)•del.z; Mx=-eyx[l] [i][j];} 
if(i==Ist II i==Ind) cof£=0.5; else coff=l.O; 
Lxl-=Mx•exp_phase(xl,yl,zl,ct_r,fi)•coff; 

!!••························ 
for(k=Kst; k<=Knd-1; k++) 

for(m=O; m<=t; m++) 
{zl=(k-cen_z+0.5)•del .z; 

} 

if(m==O) {yl=(Jst-cen_y)•del.y; Mx=-ezx[O] [i](k];} 
else {yt=(Jnd-cen_y)•del.y; Mx= ezx[l] [i](k] ;} 
if(i==Ist I I i==Ind) cof£=0.5; else cof£=1.0; 
Lx2-=Mx•exp_phase(x1,y1,zl,ct_r,fi)•coff; 

} 

Lx[ct]=del.x•(Lxl•del.y+Lx2•del.z); 
fout<<ct<<"," << real(Lx [ct]) <<", " <<imag(Lx [ct]) <<endl; 

fout. close 0 ; 
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} 

//••••••••••••••••••••••over••••••••••••••••• 
!!••············································· 
void find_Ly(double fi) 
{int ct, i,j,k,m; 
double xl, yl, zl, ct_r, coff; 
complex My, Lyl, Ly2; 
wri teFile ( "LY. dat" , fout) ; 
for(ct=1;ct<=180;ct++) 

{ct_r=ct•dtor; 

} 

Lyl=O; Ly2=0; 
for(j=Jst; j<=Jnd; j++) 

{yl=(j-cen_y)•del.y; 

!!••························ 
for(i=Ist; i<=Ind-1; i++) 

for(m=O; m<=l; m++) 
{xl=(i-cen_x+O.S)•del.x; 

} 

if(m==O) {zl=(Kst-cen_z)•del.z; My=-exy[O](i] [j] ;} 
else {zl=(Knd-cen_z)•del .z; My= exy[l][i] (j] ;} 
if(j==Jst I I j==Jnd) coff=O .S; else coff=l.O; 
Ly1-=My•exp_phase(x1,y1,z1,ct_r,fi)•coff; 

!!••························ 
for(k=Kst; k<=Knd-1; k++) 

for(m=O; m<=l; m++) 
{zl=(k-cen_z+O .S)•del.z; 

} 

if(m==O) {xl=(Ist-cen_x)•del .x; My= ezy[O] [j](k];} 
else {xl=(Ind-cen_x)•del.x; My=-ezy[l][j][k];} 
if(j==Jst I I j==Jnd) coff=0.5; else coff=l .O; 
Ly2-=My•exp_phase(xl,y1,z1,ct_r,fi)•coff; 

} 

Ly[ct]=del.y•(Lyl•del .x+Ly2•del.z); 
fout<<ct<<"," << real(Ly[ct])<<", " <<imag(Ly[ct])<<endl; 

fout . close 0; 
} 

//••••••••••••••••••••••over***************** 
!!•••············································ 
void find_Lz(double fi) 
{int ct, i,j,k,m; 
double xl, yl, zl, ct_r, coff; 
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complex Mz, Lzl, Lz2; 
writeFile("LZ.dat", fout); 
for(ct=1;ct<=180;ct++) 

{ct_r=ct•dtor; 
Lzl=O; Lz2=0; 
for(k=Kst; k<=Knd; k++) 

{zl=(k-cen_z)•del .z; 

!!••························ 
for(j=Jst; j<=Jnd-1; j++) 

for(m=O; m<=l; m++) 
{y1=(j-cen_y+0.5)•del.y; 

if(m==O) {xl=(Ist-cen_x)•del.x; Mz=-eyz[O] [j][k];} 
else {xl=(Ind-cen_x)•del.x; Mz= eyz[l] [j](k];} 
if(k==Kst I I k==Knd) cof£=0.5; else cof£=1.0; 
Lz2-=Mz•exp_phase(x1,yl,z1,ct_r,fi)•coff; 

} 

!!•••······················· 
for(i=Ist; i<=Ind-1; i++) 

for(m=O; m<=l; m++) 
{xl=(i-cen_x+O .S)•del.x; 

if(m==O) {yl=(Jst-cen_y)•del.y; Mz= exz[O] [i][k];} 
else {yl=(Jnd-cen_y)•del.y; Mz=-exz[l][i] [k];} 
if(k==Kst I I k==Knd) cof£=0.5; else coff=l . O; 
Lzl-=Mz•exp_phase(xl,yl,zl,ct_r,fi)•coff; 

} 
} 

Lz[ct]=del . z•(Lz1•del.x+Lz2•del .y); 
fout<<ct<<"," << real(Lz[ct])<< 11

, 
11 <<imag(Lz[ct])<<endl; 

} 

fout.close(); 
} 

ll•••••*****************over•**************** 
/!••••••****************over•••••••********** 

!!••············································· 
void find_Nxl(double ct) 
{int fi, i,j,k,m; 
double xl, yl, zl, fi_r, coff; 
complex Jx, Nxl, Nx2; 
writeFile ("NX. dat 11

, fout); 
for(fi=l;fi<=360;fi++) 

{fi_r=fi•dtor; 
Nxl=O; Nx2=0; 
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} 

for(i=Ist; i<=Ind-1; i++) 
{xl=(i-cen_x+O.S)•del.x; 

!!••························ 
for(j=Jst; j<=Jnd; j++) 

for(m=O; m<=l; m++) 
{yl=(j-cen_y)•del .y; 

} 

if(m==O) {zl=(Kst-cen_z)•del.z; Jx= hyx[O][i][j] ;} 
else {zl=(Knd-cen_z)•del.z; Jx=-hyx[l][i][j] ;} 
if(j==Jst I I j==Jnd) coff=0.5; else coff=l . O; 
Nxl+=Jx•exp_phase(x1,y1,zl,ct,fi_r)•coff; 

!!••························ 
for(k=Kst; k<=Knd; k++) 

for(m=O; m<=l; m++) 
{z1=(k-cen_z)•del.z; 

} 

if(m==O) {yl=(Jst-cen_y)•del.y; Jx=-hzx[O][i][k] ;} 
else {yl=(Jnd-cen_y)•del.y; Jx= hzx[l][i][k] ;} 
if(k==Kst I I k==Knd) coff=0.5; else coff=1.0; 
Nx2+=Jx•exp_phase(x1,y1,zl,ct,fi_r)•coff; 

} 

Nx[fi]=del.x•(Nxl•del.y+Nx2•del.z); 
fout<<fi<<"," << real(Nx[fi])<<", "<<imag(Nx[fi])<<endl; 

fout .close(); 
} 

//••••••••••••••••••••••over••••••••••••••••• 

!!••············································· 
void find_Nyl(double ct) 
{int fi, i,j,k,m; 
double xl, y1, zl, fi_r, coff; 
complex Jy, Nyl, Ny2; 
writeFile("NY.dat", fout); 
for(fi=1;fi<=360;fi++) 

{fi_r=fi•dtor; 
Nyl=O; Ny2=0; 
for(j=Jst; j<=Jnd-1; j++) 

{yl=(j-cen_y+0.5)•del.y; 

!!••••······················ 
for(i=Ist; i<=Ind; i++) 

for(m=O; m<=l; m++) 
{xl=(i-cen_x)•del.x; 
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} 

if(m==O) {zl=(Kst-cen_z)•del.z; Jy=-hxy(O] (i][j] ;} 
else {zl=(Knd-cen_z)•del.z; Jy= hxy[l] [i][j] ;} 
if(i==Ist I I i==Ind) coff=O.S; else coff=l.O; 
Nyl+=Jy•exp_phase(xl,yl,zl,ct,fi_r)•coff; 

} 

II************************** 
for(k=Kst; k<=Knd; k++) 

for(m=O; m<=l; m++) 
{zl=(k-cen_z)•del.z; 

} 

if(m==O) {xl=(Ist-cen_x)•del.x; Jy= hzy[O](j][k] ;} 
else {xl=(Ind-cen_x)•del.x; Jy=-hzy[l] [j] [k] ;} 
if(k==Kst I I k==Knd) coff=O .S; else coff=l.O; 
Ny2+=Jy•exp_phase(xl,yl,zl,ct,fi_r)•coff; 

} 

Ny[fi]=del.y•(Nyl•del.x+Ny2•del.z); 
fout<<fi<<"," << real(Ny[fi])<<", " <<imag(Ny[fi])<<endl; 

fout. close 0 ; 
} 

ll********************••over•••************** 
II*********************************************** 
void find_Nzl(double ct) 
{int fi, i,j,k,m; 
double xl, yl, zl, fi_r, coff; 
complex Jz, Nzl, Nz2; 
writefile("NZ.dat", fout); 
for(fi=l;fi<=360;fi++) 

{fi_r=fi•dtor; 
Nzl=O; Nz2=0; 
for(k=Kst; k<=Knd-1; k++) 

{z1=(k-cen_z+0 .5)•del .z; 
II••························ 

for(j=Jst; j<=Jnd; j++) 
for(m=O; m<=l; m++) 

{yl=(j-cen_y)•del .y; 
if(m==O) {xl=(Ist-cen_x)•del.x; Jz=-hyz[O][j][k];} 
else {xl=(lnd-cen_x)•del.x; Jz= hyz[l][j] [k];} 
if(j==Jst II j==Jnd) coff=0.5; else coff=l.O; 
Nz2+=Jz•exp_phase(x1,y1,z1,ct,fi_r)•coff; 

} 

!!••························ 
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for(i=Ist; i<=Ind; i++) 
for(m=O; m<=l; m++) 

{xl=(i-cen_x)•del.x; 
if(m==O) {yl=(Jst-cen_y)•del.y; Jz= hxz[O][i][k] ;} 
else {yl=(Jnd-cen_y)•del.y; Jz=-hxz[1][i] [k] ;} 
if(i==Ist I I i==Ind) coff=O.S; else cof£=1.0; 
Nz1+=Jz•exp_phase(x1,y1,zl,ct,fi_r)•coff; 

} 

} 

Nz[fi]=del.z•(Nz1•del.x+Nz2•del.y); 
fout<<fi<<"," << real(Nz[fi])<<", "<<imag(Nz[fi])<<endl; 

} 

fout. close() ; 
} 

/l•********************•over••*************** 

!!•••············································ 
void find_Lx1(double ct) 
{int fi, i,j,k,m; 
double x1, y1, zl, fi_r, coff; 
complex Mx, Lxl, Lx2; 
writeFile("LX.dat", fout); 
for(fi=1;fi<=360;fi++) 

{fi_r=fi•dtor; 
Lxl=O; Lx2=0; 
for(i=Ist; i<=Ind; i++) 

{xl=(i-cen_x)•del.x; 

!!••························ 
for(j=Jst; j<=Jnd-1; j++) 

for(m=O; m<=1; m++) 
{yl=(j-cen_y+O.S)•del .y; 

} 

if(m==O) {zl=(Kst-cen_z)•del.z; Mx= eyx[O][i][j] ;} 
else {z1=(Knd-cen_z)•del.z; Mx=-eyx[1][i][j] ;} 
if(i==Ist I I i==Ind) coff=O.S; else cof£=1.0; 
Lxl-=Mx•exp_phase(xl,yl,zl,ct,fi_r)•coff; 

!!••························ 
for(k=Kst; k<=Knd-1; k++) 

for(m=O; m<=l; m++) 
{zl=(k-cen_z+O.S)•del .z; 

if(m==O) {ylE(Jst-cen_y)•del.y; Hx=-ezx[O][i][k];} 
else {yl=(Jnd-cen_y)•del.y; Mx= ezx[l][i][k];} 
if(i==Ist II i==Ind) coff=O.S; else coff=l.O; 
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Lx2-=Mx•exp_phase(xl,y1,z1,ct,fi_r)•coff; 
} 

} 

Lx[fi]=del.x•(Lx1•del.y+Lx2•del.z); 
fout<<fi<<"," << real(Lx[fi])<<", " <<imag(Lx[fi])<<endl; 

} 

fout. close(); 
} 

ll**********************over•**************** 

!!••············································· 
void find_Lyl(double ct) 
{int fi, i,j,k,m; 
double xl, yl, z1, fi_r, coff; 
complex My, Ly1, Ly2; 
writeFile("LY.dat", fout); 
for(fi=1;fi<=360;fi++) 

{fi_r=fi•dtor; 

} 

Lyl=O; Ly2=0; 
for(j=Jst; j<=Jnd; j++) 

{yl=(j-cen_y)•del.y; 

!!•························· 
for(i=Ist; i<=Ind-1; i++) 

for(m=O; m<=l; m++) 
{xl=(i-cen_x+O.S)•del.x; 

} 

if(m==O) {zl=(Kst-cen_z)•del .z; My=-exy[O][i] [j] ;} 
else {zl=(Knd-cen_z)•del.z; My= exy[l] [i][j] ;} 
if(j==Jst I I j==Jnd) coff=O.S; else coff=1.0; 
Lyl-=My•exp_phase(xl,yl,zl,ct,fi_r)•coff; 

!!••························ 
for(k=Kst; k<=Knd-1; k++) 

for(m=O; m<=l; m++) 
{zl=(k-cen_z+O.S)•del.z; 

} 

if(m==O) {xl=(Ist-cen_x)•del.x; My= ezy[O] [j][k] ;} 
else {xl=(Ind-cen_x)•del.x; My=-ezy[l][j][k] ;} 
if(j==Jst I I j==Jnd) coff=O.S; else coff=l.O; 
Ly2-=My•exp_phase(xl,yl,zl,ct,fi_r)•coff; 

} 

Ly[fi]=del.y•(Lyl•del.x+Ly2•del.z); 
fout<<fi<<"," << real(Ly[fi])<<", " <<imag(Ly[fi])<<endl; 
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fout. close 0 ; 
} 

//••••••••••••••••••••••over••••••••••••••••• 

!!••············································· 
void find_Lzl(double ct) 
{int fi, i,j,k,m; 
double xl, yl, zl, fi_r, coff; 
complex Mz, Lzl, Lz2; 
writefile("LZ.dat", fout); 
for(fi=l;fi<=360;fi++) 

{fi_r=fi•dtor; 
Lzl=O; Lz2=0; 
for(k=Kst; k<=Knd; k++) 

{zl=(k-cen_z)•del.z; 

!!•••······················· 
for(j=Jst; j<=Jnd-1; j++) 

for(m=O; m<=l; m++) 
{yl=(j-cen_y+0.5)•del .y; 

} 

if(m==O) {xl=(Ist-cen_x)•del .x; Mz=-eyz[O] [j][k] ;} 
else {xl=(Ind-cen_x)•del.x; Mz= eyz[l][j](k] ;} 
if(k==Kst II k==Knd) coff:0.5; else coff=l .O; 
Lz2-=Mz•exp_phase(xl,y1,zl,ct,fi_r)•coff; 

!!••························ 
for(i=Ist; i<=Ind-1; i++) 

for(m=O; m<=l; m++) 
{xl=(i-cen_x+O.S)•del.x; 

} 

if(m==O) {yl=(Jst-cen_y)•del.y; Mz= exz[O][i][k] ;} 
else {y1=(Jnd-cen_y)•del.y; Mz=-exz[l][i][k] ;} 
if(k==Kst I I k==Knd) coff=0 . 5; else cof£=1 .0; 
Lzl-=Mz•exp_phase(xl,yl,zl,ct,fi_r)•coff; 

} 

Lz[fi]=del .z•(Lzl•del.x+Lz2•del .y); 
fout<<fi<< .. ," << real(Lz[fi])<<11

, " <<imag(Lz[fi])<<endl; 
} 

fout.closeO; 
} 

//••••••••••••••••••••••over••••••••••••••••• 

••••••••••••••••••••••••• 
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*******•mis.cpp********* 

!!••******************* 
II••• input filename••• 
!!••··················· 
#include "defin . h" 
extern canst unsigned NAME_SIZE=64; 
extern char • inFile; 
extern fstream f; 

void getinputFilename( char * inFile, fstream t f) 
{Mybool ok; 
do{ 

ok=truel; 
cout«"Enter input file name:"; 
cin.getline(inFile, NAME_SIZE); 
f.open(inFile, ios: :in); 
if( !f){cout<<"Cannot open the file" <<inFile<< "\n\n"; 

ok=falseO;} 
}while ( ! ok) ; 

} 

!!••············· 
//•••read file••• 
!!••············· 
void readFile(char * inFile, fstream t f) 
{f.open(inFile, ios: :in); 
if(!f) {cout<<"Cannot open the material " << inFile« "\n\n"; exit(O) ;} 

} 

!!••·············· 
//•••write file••• 
!!•••••••••••••••• 
void writeFile(char • inFile, fstream t f) 

{f . open(inFile, ios: :out); 
if (!f) {cout<<"Cannot open the file " << inFile<< "\n\n"; exit (0);} 

} 
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• 

2.6.2 Far Fields 

There are two different ways to obtain the far fields from the time-domain fields in 

the defined space. One is sine steady-state response method [25]. Another is the so-

called FFT method [27, 28]. Here the first method is used because it is more efficient 

when the radiation patterns of antenna are not very sensitive to frequency change 

where only two or three frequencies are required. 

Since the source is the form of sine wave, one can find the amplitude and phase of 

the fields when steady-state condition is reached. After obtaining the tangential elec-

tric and magnetic currents in terms of surface fields on a closed surface surrounding 

the antenna, one can use the equivalent electric and magnetic currents to compute 

the corresponding radiated fields in the far zone. 

It is assumed that ls = n X H and Ms = -n X E, where n is the unit normal 

vector of the surface surrounding the antenna while E and H are the fields on the 

surface. The retarded potentials F and A can be defined in terms of the magnetic 

source and electric source respectively [7]. For a homogeneous isotropic medium, the 

relations are 

A=MJ 
J e-ikr 
s ds' (2.38) 

s' 4rrr __. 1 M e-ikr 
F = E s ds' (2.39) 

s' 4rrr 
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