
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

. ._.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directty from the Original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, begiming at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6• x g• black and white

photographic prints .. available for any photographs or illustrations appearing

in this copy for an additional charge. Contad UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 481()8..1346 USA

800-521-0600

1+1 National Library
of Canada

Bibliotheque nationale
duCanada

Acquisitions and
Bibliographic Services

Acquisitions et
seiVices bibliographiques

395 Wellington Street
Ottawa ON K1 A ON4
Canada

395. rue Wellington
Ottawa ON K1A ON4
canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, lo~ distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permiSSIOn.

L' auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L' auteur conserve Ia propriete du
droit d' auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-47470-4

Canada

An FDTD Code
for Mobile Telecommunications

Antenna Design

St. John's

By

@l\Ieide Qiu

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirement for

the degree of Master of Engineering

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

August 1998

Newfoundland Canada

Abstract

In wireless telecommunications. antennas play a very important role

where they can either enhance or constrain system performance. The de­

sign characterization of such antennas is dependent upon. to large extent.

the development of simulation tools that can accurately model general

antenna system topologies. In this thesis, where the basic theory of finite­

difference time domain method (FDTD) is reviewed, an FDTD code is

developed for antenna design, with particular emphasis on the modeling

of the source region. The results from the developed code are compared

with those produced by a moment method based code (Numerical Elec­

tromagnetic Code -2: NEC2) and very good agreement is obtained. The

effects of the FDTD cell size and the distance between the outer absorb­

ing boundary and the antenna on accuracy are explored. Some criteria

for the choice of above parameters in FDTD calculation are given for an­

tenna design. Using the developed code, a new planar monopole antenna

which operates at dual wide band (800.MHz band and 1800MHz band) is

developed by cutting slots and determining the geometrical parameters.

This dual frequency performance is required for the existing and potential

mobile communication system providing analogue and digital services.

Acknowledgements

The author would like to thank Dr. B. P. Sinha and Dr. S . .-\ . Saoudy

for their supervision of this research.

The financial support from the Faculty of Engineering and Applied

Science of the ~lemorial C niversity of ~ewfoundland and the research

grant from National Science and Engineering Research Council (:\SERC)

are gratefully acknowledged.

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

1 Introduction

1.1 Statement of the Problem

1.2 Literature Review

1.2.1 Antennas for Mobile Telecommunications .

1.2.2 Numerical Tools for Antenna Design

1.3 The Scope of the Thesis .

1.4 Organization of the Thesis

2 FDTD Approach

2.1 Introduction .

ii

iii

vi

VI

1

1

-'

-'

7

9

10

11

11

2.2 :\laxwell's Equations

2.3 Discretization of Ma'\."Well Equations .

2.-1 Radiation Boundary Condition . . .

2.6

? ---1

2.-1.1 The Sommerfeld Radiation Condition .

2.-1.2 Absorbing Boundary Condition ..

The Cell Size and Time Step for Stability .

Antenna Parameters in FDTD

2.6.1 Input Impedance, Power and Efficiency

2.6.2 Far Fields . . .

Special Consideration .

2.7.1 Thin 'Wire Structure

2.7.2 Antenna Feed

2. 7.3 Source Forms

3 Development of the FDTD Code

3.1 FDTD Code

3.1.1 Header File

3.1.2 Initialization .

3.1.3 Field Computation within the Boundary

3.1.4 Fields on the Artificial Boundary

3.1.5 Thin Wire Structure .

3.1.6 Steady-State Response

v

12

1-1

19

20

21

21

23

23

28

28

31

3-1

44

4-l

49

49

50

51

51

51

3.1.7 Data Input

3.1.8 Data Output

3.1.9 Procedure for Using the Code

3.2 Validation of Present FDTD Code .

3.3 Dipole . .

3.3.1 Radiation Pattern .

3.3.2 Input Impedance

3.4 Loop Antenna . . .

3.5 .-\. .Monopole on a Finite Conducting Plate

4 A Proposed Mobile Communication Antenna Design

-l.1 A Planar .Nlonopole on a Conducting Box . . .

-l.2 The Implementation of Dual-Band Operation

56

59

59

59

60

60

6--!

68

IV

79

81

83

-!.3 Development of Controlling Two Specific Resonant Frequencies . 86

5 Conclusion and Future Work

A A Input Data File Example

A.1 The Data File "ant.dat" .

A.2 The Data File '~re .. dat" .

A.3 :\. Program to Create "material.dat' .

B The FDTD Code

vi

95

102

102

103

103

105

List of Figures

2.1 Positions of the field components about a unit cell of the FDTD grid 16

2.2 Find the far field from equivalent currents . . . 2i

2.3 The geometry of thin wire in a subcell approach 30

2.-l The thin gap method of voltage source

2.5

2.6

')­-·'

The equivalent magnetic current method of voltage source

The waveform of Gaussian pulse with amplitude of 1 .. .

The waveform of Gaussian pulse with amplitude of 1 in FDTD .

2.8 The effects of a on high frequencies with B = 32.

2.9 The effects of ,8 on frequency band with er0 = 16

2.10 The waveform of Rayleigh pulse

2.11 The spectrum of Rayleigh pulse with B = 32 and er0 = 16

3.1 Flow chart of a C++ program for FDTD algorithm

3.2 Subroutine and data file linkage chart

3.3 The form of a field component in time domain

3.4 Steady-state wave form .

32

33

36

38

39

40

41

43

45

48

53

54

3.5 :\lethod of finding the steady-state phase information 56

3.6 The radiation pattern of a dipole at 3G Hz obtained using different

FDTD cell size 61

3.1 The radiation patterns of the dipole at 3GHz with different :\lur distance 63

3.8 The radiation patterns of the dipole at 2GHz with different cell size . 6-t

3.9 The effects of .Mur distance on the accuracy of the radiation patterns 65

3.10 The effects of Mur distance on the accuracy of the input impedance 66

3.11 The effects of the cell size on the accuracy of the input impedance . 61

3.12 The radiation pattern of a loop antenna using delta-gap voltage source 70

3.13 The resultant current in the source region of the loop antenna 71

3.14 The input impedance of an loop antenna using delta-gap voltage source 72

3.15 The resultant current in source region of loop antenna with Rayleigh

pulse . 73

3.16 The input impedance of an loop antenna with Rayleigh pulse . 74

3.11 The radiation pattern of a monopole on ..\ x ..\ ground 76

3.18 The input impedance of a 7.5cm monopole on a 30cm x 30cm ground 1 1

3.19 The radiation pattern of a monopole on 2..\ x 2..\ ground 78

4.1 The geometry of planar monopole on a conducting box 82

4.2 The return loss of a planar monopole mounted on ground and a box . 83

4.3 The implementation of dual-band operation by cutting a slot

4.4 Input impedance of the antenna

viii

84

85

-!.5 Return loss at the feed of the antenna

-L6 Radiation pattern of the antenna _ - _

Geometry of the new planar monopole

4.8 Return loss of the antenna with and \\ithout the second slot

4.9 Return loss of the antenna for different major axis length . .

4.10 Return loss of the antenna for different size of the second slot

4.11 Return loss of the antenna with dielectric cover . _

ix

86

87

88

89

90

91

93

List of Tables

3.1 The functions of the subroutines . .fj

3.2 The data format of file ant.dat . ;)I

3.3 The data format of file wire.dat 58

3..1 Feed forms and pulse forms for loop antennas 69

3.5 Feed forms and pulse forms for open circuit type antennas 69

Chapter 1

Introduction

1.1 Statement of the Problem

The area of wireless communications is developing rapidly, which is well known among

not only the technical community but also the general population. The public's

continuing demands for personal and mobile communications causes the explosive

growth in terrestrial and satellite communications systems that promise to become

the preferred medium of telecommunications in the future.

Antennas used in wireless communications play a very important role as they can

either enhance or constrain the system performance. Present mobile communication

antennas include whip antennas sticking out from automobile bodies, sleeve antennas

and inverted-F antennas installed on portable telephones, and microstrip antennas

and loop antennas for UHF pagers. A number of industrial groups are currently

planning to construct global satellite systems to provide personal communications

services PCS (typically voice, data and fax) to users who are supposed to employ

small. hand-held, cellular-type handsets. The demand for developing corresponding

mobile antennas is increasing by the day.

The basic requirements for mobile antennas are small size. lightweight. and low

cost. Since the inception of antennas, there has been continuing interest in reducing

their physical size. ~Iuch more attention has been put on this especially after the

appearance of hand-held, cellular-type handsets. Lightweight and low cost are also

the key factors affecting the acceptance of a handset among the public. The specific

environment for the handset antenna - the limited space provided on the surface

of the housing unit of the handset as well as other requirements for the antenna

present some difficulties for antenna designers. First. the radiation characteristic of

an antenna on a small housing unit differs from that radiating in free space on a

large conducting plane and also depends on the composition of the unit . The input

impedance bandwidth can be quite narrow when an antenna is located on such a

specific environment. Moreover, the antenna characteristics can be greatly affected

by its operator because he/she is within the near field region of the antenna.

In such a complex situation, the antenna design is far beyond the scope of the early

methods, which were based upon analytical techniques that attempted to generate

closed-form solutions expressible in terms of known functions. Characterization of

such antennas for hand-held communications devices such as portable phones has

2

to rely on. to large extent. the de\·elopment of simulation tools that can accurately

model general topologies. including conductors, dielectrics. thin wires and lumped

elements.

Among various numerical methods, the method of moment (:\10:\1) and finite­

difference time-domain method (FDTD) are preferred most frequently. :\[0:\I is a

very efficient method for wire antennas, especially at low frequencies. It can also

be used for antennas consisting of solid bodies, usually, by using wire-grids. which

requires a large memory. For modern sophisticated antennas which involve compli­

cated geometry and materials structures, the large number of the unknowns needed

for accurate results is a big burden for the matrix manipulation which is unavoidable

in :\10:\L

The finite-difference time-domain (FDTD) method is a simple and elegant way

to soh·e :\Jaxwell's equations. Unlike MOM, FDTD does not involve matrix oper­

ation and moreover, the complexity of geometry and material does not make the

algorithm more complicated. So a general purpose program can be developed, which

is particularly useful in modern antenna design.

Although past contributions in this area have demonstrated the effectiveness of

the FDTD approach in characterizing antenna configurations, only a limited amount

of research has appeared relating to the simulation of practical antenna geometry

operating in their true radiating environment. A few commercial FDTD programs

such as XFDTD and FIDELITY are available, but are very expensive -thousands

3

of C.S. dollars. Therefore. it is \-e~- useful to develop our own FDTD code for

sophisticated antenna design. This program will add to the faculty of engineering

infrastructure in electromagnetic codes.

Once the code is validated through comparison of its results with those obtained

from the moment method code (NEC) for special cases. it will be used to analyze

a dual wide band antenna. Through variation of the antenna parameters. a design

that can provide required characteristics can be achieved.

1.2 Literature Review

1.2.1 Antennas for Mobile Telecommunications

\Vith the rapid development of mobile communications, the progress in mobile an·

tenna design is keeping this trend. Antennas used in various antenna systems are

different . and it is difficult to set a general rule for interfacing them with the rest of

transmitting/receh;ng hardware assembly. Here, the antennas for portable phones

will be introduced. Currently, frequencies from 800.MHz to 1.8GHz have been as.

signed for mobile telephones, and future allocation of higher frequency bands is be·

ing considered. At present, the most widely used antennas are monopole antennas,

sleeve antennas as well as recently developed low-profile antennas such as microstrip

antennas and planar inverted F antennas (PIFA).

4

Monopole antenna: The monopole antenna is the most commonly used mobile

antenna because of its broad band characteristics and simple structure. This type

of antenna normally employs a flexible antenna element, so it is also called the whip

antenna. If the radiating element is mounted on an infinite ground plane. the char­

acteristics of the antenna are similar to those of a dipole. In practice. the monopole

is not simply half of a dipole and even vel)· large ground planes give radiation pat­

terns significantly different from that on an infinite plane [1, 2]. In actual usage of

our consideration, the "ground" is a portable housing unit, the input impedance and

radiation patterns of the antenna depend on the actual size and composition of the

housing unit [3, 4} .

Sleeve antenna The radiating structure of a sleeve dipole is an asymmetric dipole

made of conductors of different diameters and slightly different length. The thinner

conductor is normally the inner conductor of the coa.xial line feeding the antenna.

and the larger diameter conductor, which is shorted to the braid of the coa.xial line

[5], must provide effective choking of the RF currents at its own open end and also

one-half of the radiating dipole so that most of the an~enna current does not leak

into the outer surface of the coaxial cable. The antenna has almost the same charac­

teristics as a monopole antenna, but it does not require a ground plane. so the gain

degradation due to the mounting location is less than that experienced with whip

antennas. The bandwidth limitation of this antenna is dictated more by radiation

pattern performance than by impedance variation, since the deviation of operation

5

frequency will lead to the RF current leaking to the outer surface of the coa.xial

feeding line and thus changing the radiation pattern greatly[6].

The disadvantage of the whip antenna and the sleeve antenna is that they are not

rigid. so they are easy to break. The implementation of dual band without increasing

the size is also difficult.

Low-profile antennas: ~Iicrostrip antennas [i] and planar inverted F antenna..c;;

[6] (PIFA) are well known as typical low-profile antennas. Microstrip antennas. also

called patch antennas, are constructed by printing conductors on dielectric substrates.

This antenna is derived from microstrip resonators, by using the radiation loss of the

resonators in a positive manner. Therefore. the bandwidth of this antenna is basically

narrow. PIFA was developed from the inverted L antenna. Because of its low-profile.

it has been used in some cellular phones as a built-in antenna. PIFA has the same

disadvantage as microstrip antenna. though some researchers are trying to improve

its bandwidth by various methods [8].

To satisfy the great demand for the rapid growth of mobile telephones. it is often

necessary to add a new frequency band to the existing system. For example. in the

Cnited States, the existing Advanced ~v[obile Phone Service (A~lPS) analog standard

and Interim Standard-54 (IS-54) digital standard cover the frequency range from

824}.-lHz to 894MHz while the Global System for Mobile (GSM) communication,

which is the digital telephone standard developed primarily in Europe and in Asia,

covers the frequency range from 890MHz to 960MHz. The new generation of personal

6

communication systems (PCS) such as DCS-1800 has frequency band l.il0-1.880

GHz. The co-existence of GS~I and DCS with a dual standard pro\·iding analogue

and digital services in the same network means that the corresponding antennas

should have the capability of operating at dual frequency bands (82-1-960~1Hz and

1.71-1.88GHz). The development of corresponding dual frequency antennas is in

great demand.

It is understood that in any particular design only some of the objectives will

be achievable, and each case must be treated as a separate entity. In this thesis. a

dual wide-band antenna is our expectation. Some efforts have already been put to

the development of dual-frequency antennas [9, 10]. Unfortunately. the bandwidth

is not very wide. The planar monopole antenna has recently been proposed [11. 12].

This type of antenna has a very large impedance bandwidth when mounted on a

large conducting plane. However. the application of this type antenna to mobile

communication, in which the size of housing unit is generally small. has not been

found in the literature.

1. 2. 2 Numerical Tools for Antenna Design

.-\ntenna design is increasingly dependent on computer-aided design (CAD) based

on well-known mathematical methods. \Vhen mobile antennas are essentially bent

wire sections, they can be modeled with wire-grid modeling [13] provided that the

housing units are conducting. Actually, wire-grid model has been used in several

7

reports dealing with portable radio units [1-t 15]. But for radiating structures having

arbitrary shape and composed of layers of heterogeneous material. one has to use other

methods. One of the latest techniques is the finite difference time domain (FDTD)

method. which shows much promise for complicated structures and material. and this

can include components within a dielectric outer case.

The present popular FDTD was first proposed by Yee [16] in 1966. Yee used an

electric-field grid, which was offset both spatially and temporally from a magnetic­

field grid, to obtain update equations which yield the present fields throughout the

computational domain, in terms of the past fields. The update equations are used in

a leapfrog scheme, to incrementally march the E and H fields forward in time. In the

1970·s, the FDTD method was not paid much attention because the outer absorbing

boundary condition was not good enough to simulate the propagation of the out­

going waves and also computer facilities were very slow. \Vith the appearance of a

better absorbing boundary condition [17, 18] and the decrease of computer cost. the

interest in the FDTD method began to soar.. The method has been used in hundreds

of applications, ranging from electromagnetic scattering to radiation.

The application of FDTD to antenna problems is relative recent than other

problems such as scattering, but the number of published papers is accumulating

[2, 3, 4, 19, 8, 20, 21].

Despite many good papers on FDTD analysis of antenna problems, there are still

some issues that need further discussion. When calculating the input impedance of

8

an antenna, the antenna is pulse excited so that wide band results can be obtained

from a single FDTD computation. For the pulse, some researchers use Gaussian

pulse[22]. other researchers uses Rayleigh pulse(8] . The issue is which pulse is better

for a specific antenna problem. The effects of cell size and the distance between the

absorbing boundary condition and the antenna on the accuracy also need further

discussion.

1.3 The Scope of the Thesis

In this thesis, a general-purpose FDTD computer program code is developed for

modern mobile/personal communications antenna design. Csing this code. a new

planar monopole antenna. which can operate at dual wide-band. is de\·eloped to

meet the requirements of existing and potential communication system providing

both analogue and digital services. The main work in the thesis can be summarized

as follows.

An FDTD program is developed using C++. which is available in ~IS-DOS, win­

dows and Unix environment, with particular emphasis on the modeling of the source

region including feed forms and source forms. The effects of the cell size and the

distance between the absorbing boundary and the antenna on the accuracy are ex­

plored. The code is validated by comparison of its results with those obtained from

NEC-2.

Using the code, a new dual band antenna is developed [23] for modern commu-

9

nications. The antenna performance is improwd [2-!] by modif~·ing the structures

and geometrical dimensions to achieve required frequency band operation. This is a

demonstration of using the code to design new types of antennas. It will be showed

that a small modification of structure or changes in other physical parameters can

produce great difference in antenna performance.

1.4 Organization of the Thesis

This thesis is divided into five chapters. The first chapter is an introductory chapter.

including the statement of the problem, literature review and main contents to be

discussed in the thesis.

In Chapter 2, the basic theory for FDTD is introduced. The emphasis is put on

the source form and the feeding form of the antenna. ~lain antenna parameters such

as input impedance, power, efficiency and far fields in FDTD algorithm are presented.

Chapter 3 introduces the FDTD code de,·eloped for antenna design as well as

the effects of cell size and the Mur distance on the accuracy of the results. By

calculating the input impedance and radiation patterns of various typical antennas

and comparing the result with those from NEC-2, the FDTD code is validated.

In Chapter 4, the FDTD code is applied to practical antenna design . .-\ new planar

monopole antenna operating at dual wide-band is developed to meet the requirement

of existing DCS/GSM communication system.

Chapter 5 gives the conclusion and some recommendations for future work.

10

Chapter 2

FDTD Approach

2.1 Introduction

The foundation of the FDTD (finite difference time domain) electromagnetic field

analysis is Yee's algorithm [16], which was published in 1966. Yee used electric and

magnetic field grids, which were offset spatially and temporally from each other.

to obtain update equations that yield the present fields in terms of the past fields

throughout the computational domain. Calculations of the electric field E and mag­

netic field H as governed by Maxwell's equations are marched forward in time in a

leapfrog fashion. Although many alternative approaches have been proposed since his

publication, Yee's algorithm is still the most elegant and simplest way of discretizing

?\.Ia.xwell's equations. There are many applications of FDTD method such as electro­

magnetic scattering, radiation problems, and antenna analysis. In this chapter, Yee's

algorithm is outlined with much emphasis on its related issues in antenna design.

2.2 Maxwell's Equations

All macroscopic electromagnetic phenomena are governed by Maxwell's equations.

Both the differential and the integral forms of Maxwell's equations can be used to

derive FDTD update equations. Here, the differential form is employed to demon-

strate the basic principle of FDTD. The integral form will be used later to include

thin wire structures in antenna problems.

Using the International System of Units (SI units), Maxwell's equations are given

by

__,.

__,_ &B
Faraday's Law (2.1) "V X E = --

&t
__,_ __. &D

"VxH=J+ &t Ampere's Law (2.2)
__,.

"V·D=p Gauss's Law for the electric field (2.3)

"V·B=O Gauss's Law for the magnetic field (2.4)

In linear isotropic medium, the constitutive relation is

D = EE (2.5)

B = J-LH (2.6)

J = <JE (2.7)

The above equations are all the information needed to completely specify the field

12

behavior. It should be noted that for simplicity the equations are given for linear

isotropic materials, which is usually met in antenna design.

The starting point for the FDTD formulation is the curl equations (2.1) and (2.2),

which can be recast into the following form:

8E 1 __. (j __.

- = -\7 X H--E at t t
--"

8H 1 __,.
- = --\7 X E at M

(2.8)

(2.9)

The other two divergence equations (2.3) and (2.4) are in fact redundant as they

are contained within the curl equations and the initial boundary conditions. However,

they can be used as a test on the predicted field response so that after forming D = EE

and B = f.J,H from the predicted fields, the resulting D and B should satisfy the

divergence equations.

In order to simplify the formulas and make the programming job easier, one must

further decompose the vector Maxwell 's curl equations (2.8) and (2.9) into their

component scalar parts, obtaining the following scalar equations in the Cartesian

coordinate system:

13

..

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

The above six equations form the basis of the FDTD approach. The Cartesian

coordinate is used here since it is convenient and therefore most frequently used in

antenna design. For the cylindrical and spherical coordinate systems, the formulation

is similar. One can refer to [22] for details.

2.3 Discretization of Maxwell Equations

In discretization of the Maxwell 's equations, finite differencing replaces derivatives

with differences as follows:

14

aj
at

lim 6f
Dot-tO 6t

= lim J(x, t +?f)- f(x, t- ?f)
D.t-tO 6t

,...., f(x , t + ?f) - f(x , t- ?f)
,...., 6t

aj . 6f
hm­

ax D.x-tO 6x

l
. f(x + ~x , t) - f(x- ~x , t)

= liD
D.x-tO 6x

j (X + ~x, t) - j (X - ~x, t)
~ ----~~~------~--

6x

(2.16)

(2.17)

In the above approximation 6t and 6x are finite rather than infinitesimal. There-

after, calculus becomes algebra. An explicit central difference scheme is used in the

above equations (2.16) and (2.17) to achieve the second-order accuracy.

Following Yee's notation [16], we quantize space by letting x = i6 x, y = j6y,

z = k6z , and time by letting t = n6t. Then the uniform cells in the problem

can be defined by space index (i , j , k) and time index n. For example, E ; o (i0 , j 0 , k0)

represents the z component of the electric field at time t = n06t and at spatial

location x = i06x, y = j 06y, z = k06 z. It should be noted that the field components

have different offset as shown in Figure 2.1.

15

X

i+l

/

z

t k+l Ey(i.j+ 112.k+ 1)

f-------c=~'::=-t-~, Ey(i+ 1 ,j+ l/2.k + 1)
I I I

'-I, l

lit
Ill

/

/
/

/
/

Hy2~ 1DI-2__,j.k+ 1/~~ :
I \ , I

I 1 ,
I I /
\ I "
~--

/

/
/

Ey(i+ 1 ,j+ 112.k)

j+l
-->~ y

Figure 2.1: Positions of the field components about a unit cell of the FDTD grid

One can replace the time derivatives in equation (2.10) - (2.15) with differences.

The time center for the first three equations (2.10)- (2.12) is set at (n- !).6.t while

the time center for the second three equations (2.13) - (2.15) is set at n.6.t. Finally,

one has

16

En_ En-1 1 (6Hn-1/2
X X _ _ Z

6t - t 6y

1\Hn-1/2)
u. Y _ En-1/2

6z a x
(2.18)

U. z _ En-1/2 /\Hn-1/2)
6x a Y

(2.19)

u. x _ aE~-112
1\Hn-1/2)

6y
(2.20)

H~+1/2 - H~-112 _ 1 (6E; 6E~)
6t - {t 6z - 6y (2.21)

H;+1/2- H;-1/2 - _!_ (6E~ - 6E~)
6t - 1-l 6x 6z

(2.22)

H~+1/2- H~-1/2 - 1 (6E~ 6E;)
6t - J;, 6y - 6x (2.23)

It is observed that in the above three equations (2.18) - (2.20) each E filed

component consists of three parts: En, En-1
, and En-k. The procedure involves

predicting En from the values of En-1 and Hn-k only. Accordingly, En-~ should be

replaced. In some publications [3], the mean value of En and En- 1 is used, while in

other publications [25], En-! is just replaced by En-1 . Here En-! is replaced by En.

By such a replacement, we have the tangential electrical component E!} = 0 in the

limit as a goes to infinity. By replacing the space-derivatives of the equations (2.18)

- (2.23) with difference, and after some simplification, the previous set of equations

17

become as follows:

(2.24)

En (. . 1 k) - [1 l n-1 (. . 1
Y ~,J+2, - E(i,j+~,k)+a(i,j+~,k)6t Ey ~,J+2,k)

6t + .
E(i,j + ~' k) + a(i,j + !, k)6t

[
H;-4 (i, j + !, k + !) - H;-4 (i, j + ~' k- ~) _ (2.25)

6z

Hn-4 (· 1 · 1 k) Hn-4 (· 1 · 1 k)l
z ~ + 2' J + 2' - z ~- 2' J + 2'

6x

En (i . k + ~) - [1 l En-1 (. . k 1)
z ,J, 2- E(i,j,k+!)+a(i,j,k+~)6t z 'l,J, +2

6t + .
E(i, j, k + ~) + a(i, j, k + !)6t

[

Hn- 4(· 1 . k 1) Hn-~ (· 1 . k 1)
y z+2,J, +2- y z-2,J, +2

6x

(2.26)

Hn-~(·. 1 k 1) Hn- ~(·. 1 k 1)]
X 'l,) + 2' + 2 - X 'l,) - 2' + 2

6y

18

..

n+! . . 1 1 _ n-! . . 1 ~ 1) 6.t
Hx ('l,J+-2,k+-2)-Hx (2,J+-2,k+-2 + (' . .!. k .!.)

1-L 'l, J + 2' + 2

[
E;(i,j + ~' k + 1)- E;(i,j + ~' k) ()

6.z 2.27

_ E~ (i, j + 1, k + ~) - E~ (i, j, k + ~) l
6.y

n+! . 1 . 1 _ n-~ (. 1 . 1) 6.t
Hy (2 +2,J,k+;j)-Hy 2+2,J,k+2 + !-L(i+~,j,k+~)

[E~(i + 1,j, k + ~)- E~(i,j, k + ~) (2.28)
6.x

E~ (i + ~, j, k + 1) - E~ (i + ~, j, k) l
6.z

n+~ . 1 . 1 _ n-~ . 1 . 1 6.t
Hz (t+-

2
,J+-

2
,k)-Hz (t+-2,J+-2,k)+ (' .!. . .!. k)

/-L'l+2,J+2,

[
E~ (i + ~, j + 1, k) - E~ (i + ~, j, k)

6.y (2.29)

E;(i + 1,j + ~' k)- E;(i,j + ~, k)l
6.x

In the above formulation, there is a half cell offset in both space and time indices.

One should note that both space and time indices must be integers in a computer

code.

2.4 Radiation Boundary Condition

When the outer boundary of the domain concerned recedes to infinity, the domain

is called "unbounded" or "open". A condition must also be specified at the outer

19

boundary in order to obtain a unique solution for the problem and such a condition

is referred to as the radiation condition.

2.4.1 The Sommerfeld Radiation Condition

Assuming that all sources and objects are immersed in free space and located within

a finite distance r'(x', y', z') from the origin of a coordinate system, the electric and

magnetic fields at location r(x, y, z) are required to satisfy the following equations:

}~~ [rv x (;) + jk,r x (~)] = o

where r is the distance between the observing point and the origin, and

r = J(x- x')2 + (y- y')2 + (z- z')2.

(2.30)

Equation (2.30) is usually referred to as the Sommerfield radiation condition for

the general three-dimensional fields.

However, Sommerfield radiation condition cannot be used in our computer pro­

gram, since no computer can store an unlimited amount of data. The field compu­

tation domain must be limited in size, but the computation domain must be large

enough to enclose the structure of interest so that a suitable absorbing boundary

condition (ABC) on the outer perimeter of the domain can be used to simulate its

extension to infinity.

20

2.4.2 Absorbing Boundary Condition

The quest for a good ABC that produces negligible reflections has been a Yery active

area of FDTD research. ~lost of the popular ABCs can be grouped into those deri,·ed

from differential equations [18, 1 i]. or those that employ a material absorber [26] .

Among a large number of .-\BCs, the Mur absorbing boundary condition is both \·ery

simple and accurate for engineering applications. In this thesis. the ~lur absorbing

boundary condition, or more particularly the first and second order .\lur conditions

are used to estimate the field on the boundary. The first order :\1ur condition looks

back one step in time and into the space one cell location and the second order .\lur

condition looks back two steps in time and inward two cell locations. The effects of

the distance between the Mur condition and the antenna under consideration on the

accuracy of the numerical results will be discussed in the next chapter.

2.5 The Cell Size and Time Step for Stability

The choice of cell size is critical in applying FDTD. It must be small enough to permit

accurate results at the highest frequency of interest, and yet be large enough to keep

resource requirements manageable. Due to the approximation inherent in FDTD,

fields of different frequencies will propagate at slightly different speeds through the

cells. This difference in propagation speed also depends on the direction of propaga­

tion relative to the cells. This phenomena is called numerical dispersion. In order to

21

get accurate and stable results, the numerical dispersion error must be reduced to an

acceptable level, which can be readily accomplished by reducing the cell size.

Another cell size consideration is that the important characteristics of the problem

must be accurately modeled. Normally this will be met automatically by making the

cells smaller than >../20 or so, unless some special geometry features smaller than this

factors in determining the response of interest. An example is thin wire antennas, in

which a small change in the wire thickness will affect the antenna impedance. Good

results in these situations may require extremely small cells or alternative measures

such as sub-cell modeling, which will be discussed later.

The time step is generally determined by the Courant condition[25]. For three-

dimensional rectangular grid, the Courant condition is

1
v f::.t ~ ----,:.======= 1 1 1 1

V (6x)2 + (6y)2 + (6z)2

(2.31)

where v is the wave velocity in the media, f::.t is the time for one time step and

f::.x, f::.y, f::.z are the cell size.

This is a basic requirement for stability. People usually use this equation for

time step calculation if a pulse is used as source form. However, when the sine wave

is used as the source form of the antenna, one may have to use smaller f::.t to get

more accurate data, because the amplitude error and the phase error for steady-state

response are decided directly by f::.t , which will be discussed later.

22

2.6 Antenna Parameters in FDTD

There are lots of parameters for antennas, and it is not necessary to give the expression

for each parameter. Here we discuss several parameters that are most important and

also the basis of other parameters.

2.6.1 Input Impedance, Power and Efficiency

The electric and magnetic fields in the source region (generally one cell) are used to

determine the input impedance of the antenna. The detailed expression for input

impedance can be different for various feed forms, which will be discussed later. Here

the feed of the antenna is assumed to be a thin gap voltage source. In time domain

the impressed excitation voltage is defined by

__. _. 1
v5 (n6t)=-E·dl =-E;(i,j,k+2)6z (2.32)

and the resultant current flowing in the source region is found by calculating

= [Hn+~(i). - ~ k + ~)- Hn+~(i). + ~ k + ~)]6x
X l 2' 2 X l 2' 2

(2.33)

n+~ . 1 . 1 n+~ . 1 . 1
-[Hy (~- 2,J,k+ 2)-Hy (~+ 2,J,k+"2)]6y

where n is the time index.

The input impedance of the antenna is determined from the ratio of the Fourier

transform of the voltage wave and that of the input current wave, i.e.,

Z(w) = Z(k6 f) = DFT[v5 (n)] = Vs(k6!) = Ys(w)
DFT[i5 (n)] 15 (k6J) 15 (w)

(2.34)

23

where D.f = N~t, and N is the total number of time steps needed for the current

to attenuate to a very small value. It should be noted that the time difference D.t/2

between voltage wave and current wave is ignored since its effect is very small. Either

the discrete Fourier transform (DFT) or the fast Fourier transform (FFT) can be used

for the transformation process, and the latter will be used in this thesis.

The calculation of the input power is given by

Pin(w) = Re [Vs(w)J;(w)] (2.35)

The dissipated power can be computed as follows. Consider that an FDTD electric

field component Ez(i,j, k+~) is in a region with conductivity a. If we assume that the

electric field is uniform within a single FDTD cell, then the equivalent steady-state

power dissipated in this region is given by

aD.xD.y
= a!Ez(w)j 26x6y6z = D.z jEz(w)D.zj2 (2.36)

!Vz(w)j2

R

where R is the resistance, and R = ul:.;;-u. The antenna efficiency is determined from

the input Pin and dissipated power Pdiss as follows

(2.37)

24

•

2.6.2 Far Fields

There are two different ways to obtain the far fields from the time-domain fields in

the defined space. One is sine steady-state response method [25] . Another is the so-

called FFT method [27, 28]. Here the first method is used because it is more efficient

when the radiation patterns of antenna are not very sensitive to frequency change

where only two or three frequencies are required.

Since the source is the form of sine wave, one can find the amplitude and phase of

the fields when steady-state condition is reached. After obtaining the tangential elec-

tric and magnetic currents in terms of surface fields on a closed surface surrounding

the antenna, one can use the equivalent electric and magnetic currents to compute

the corresponding radiated fields in the far zone.

It is assumed that Js = n X H and Ms = -n X E, where n is the unit normal

vector of the surface surrounding the antenna while E and H are the fields on the

surface. The retarded potentials F and A can be defined in terms of the magnetic

source and electric source respectively [7]. For a homogeneous isotropic medium, the

relations are

A=~f
J e-ikr

s ds' (2.38)
s' 4rrr

__.. 1 M e-ikr
F = t s ds' (2.39)

s' 4rrr

25

The fields in terms of the potentials are [7]

___.. . ___.. jw ___.. 1 ___..
E = -JWA- -\7(\7. A)- -\7 X F

k2 E

___.. . ___.. jw ___.. 1 ___..
H = -JWF- -\7(\7. F)- -\7 X A

k2 E

For simplicity, A and F can be expressed as

where

where

--->. e-jkr--->.

A =JL--N
41fT

--->. e-jkr--->.

F=E--L
41fT

T
1 cos '1/J = z' cos () + (x' cos ¢ + y' sin ¢) sin ()

and k is the wave number and (x', y', z') is the source point.

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

If electric and magnetic field components are now written in the usual way in

terms of two vector potentials, the only components in the far fields not decreasing

faster than 1/ T are

-jkr

Eo= TJH¢ = -j~(TJNo + L¢)
2AT

- jkr

E¢ = -TJHo = j~(-TJN¢ + L¢)
2AT

26

(2.46)

(2.47)

Figure 2. 2: Find the far field from equivalent currents

In this thesis, N and L are expressed in terms of the Cartesian coordinate com­

ponent Nx, Ny, Nz since J and M are conveniently expressed in terms of fields in

27

Cartesian coordinates

No= (Nx cos</>+ Ny sin¢) cos</>- Nz sin()

N<P = -Nx sin</>+ Ny cos</>

2. 7 Special Consideration

(2.48)

(2.49)

The basic principle of FDTD for various electromagnetic problems is the same, but

there are some differences for the application of FDTD in various aspects. In the

problem of antenna radiation, special considerations for thin wire structures and the

feed forms should be taken into account.

2. 7.1 Thin Wire Structure

In antenna design, a common geometry to be modeled is a thin wire of finite radius.

Often a wire is much smaller in radius than its length, and approximation of the

wires as being without a radius may yield poor results, as both antenna impedance

and coupling are sensitive to the wire radius. Also it is often desirable to avoid

sizing the FDTD cells small enough to accurately model the thin wire because the

computational cost of the FDTD technique is decided directly by the number of

cells. An alternative solution is a computational more efficient concept of a sub

cell approach. A new set of equations that take the near-field characteristics of the

problem into account is derived with the aid of the contour integral form of Maxwell's

28

equations. The new equations allow for a much larger spatial grid size to be used. The

standard FDTD field equations are used for majority of the cells in the grid while the

sub-cells are used near the wire structure. The sub cell approach was first proposed

by Cmashankar and Taflove [29], and then widely used among other researchers.

The geometry is shown in Figure 2.3. A conducting circular wire of radius r0 is

positioned to align "';th the center on the E.{i,j, k +~)field component. The wire is

assumed to have a radius smaller than 0.56x , and !::lx must be much smaller than

the wavelength (less than .A/20) for FDTD to be applied, therefore, the wire radius

also must be much smaller than a wavelength. The circumferential magnetic field

component Hct>(r) and the radial electric field component Er(r) surrounding the wire

are assumed to varv as l near the wire. where r is the radial distance form the center - r .

of the wire. These fields are represented as follows:

H
41
(r) = H 41 (0) · jl(t)

r
(2.50)

Er(r) = Er(O) · f2(t)
r

(2.51)

Strictly speaking, such an assumption holds only for the fields around an infinite

cylindrical line source, but numerical results have verified that it can approximate

the fields near the wire of finite length very well.

\Vith the above assumptions, the spatial dependence of the fields in the vicinity

of the wire can be approximated as follows:

H (r) ~ H (i J. k + !) · 6.x
!I Y ' ' 2 2r (2.52)

29

Ex(i,j,k+l)

Hy(i,j,k+ 112)

Ez(i,j,k+ /2) Ez(i+ 1 ,j,k+ 112)

Ex(i,j,k)

Figure 2.3: The geometry of thin wire in a subcell approach

within the contour, and

6.x
Ex(r) ~ Ex(i, j, k) ·

2
r (2.53)

along the upper and the lower integration contours. We now apply the Maxwell

Faraday's law equation to the cell containing the wire.

I _. _. f)!! _. _.
E·dl =-J.Lot H·ds (2.54)

After simplifying the integration, one gets

30

..

For each Ez (i, j , k + ~) component at the center of the thin wire, there are four

associated H field components in the surrounding adjunct cells that must be com-

puted at each time step. The electric field values are updated using the usual FDTD

equations. The above equation is derived from the cell containing the conducting

wire cell. If a thin gap source is to be modeled, then the voltage difference at the

terminals of the dipole will give rise to a z-directed electric field in the source region.

The modified time stepping expression for the circumferential magnetic field in the

source region is given by

n+t . 1 . 1 _ n-t . 1 . 1
Hy (z+ 2,J, k+2,)-Hy (z+

2
,J,k+2)

+ J-L~z [E~(i+~ , j, k)-E~(i+~,j,k+ l)l (2.56)

+ 26.t 6x [E~(i+1,j, k+-21) -E~(i,j,k+-21)]
J-L6.x ln-ro

Actually, (2.56) is the formula that will be used in our program since it takes into

account the situation of both thin wires and source region.

2. 7. 2 Antenna Feed

Modeling of the antenna feed can be accomplished using different methods: voltage

source and current source method. The voltage source method has two different im-

plementation approaches. For the convenience of demonstration, a monopole antenna

is studied as an example. One can start with the thin gap approach of voltage source

method, which is shown in Figure 2.4.

31

I

I

-~ ,

Ground

I

I

I

I

I

I

I
I

Wire

I

I

I

I

I
I

I
I

I

I

I

I

I

I

I

I

I
I

I

I
I

I

I

I
I

\ ••• • The plane perpendicular to the wire , passing through the source cell

Figure 2.4: The thin gap method of voltage source

The Ez component along the wire axis is zero except at the feeding cell where Ez

is excited. The electric field at the feeding cell is expressed as

(2.57)

The resultant current can be obtained by (2.33) .

Another approach is shown in Figure 2.5, where the Ez field component along

32

the wire axis is set to zero, including the one of source region. The four electric field

components going radially from the wire axis are given by

I

I

,:? ,

...............

I

I

I I

I

I

I
I

I
I

I

I

I

I

I
I

I
I

-- - ~ -------- ----------------~~I ql~- -------------------------- .

I ~ I

I

I

I
I

I

I

I I I

I I I
I I I

I I --- -- ,---- --

I

I

I

I
I

, The plane perpendicular to the wire , passing through the source cell

Figure 2.5: The equivalent magnetic current method of voltage source

33

(2.58)

(2.59)

where r 0 the radius of the wire.

For current source, an impressed current source l 5 (n6t) can be incorporated

directly into the Maxwell's equation (2.2) to give

E n(· . k 1) En- 1(· . k 1)
z 'l,), +2 = z 'l , J, +2

[
1 1 l 6t + Hy(i + 2,j, k)- Hy(i- 2,j, k) · <:

6
x

- H (i J. + - k) - H (i J. - - k) · -[
1 1 l 6t

X ' 2' y l 2 l <:6y

b.t
- l 5 (n6t) ·

6 6 € X y

The corresponding voltage can be found by (2.32).

2.7.3 Source Forms

(2.60)

In this thesis, "source" is used to supply energy to the electromagnetic calculations.

A great variety of waveforms for antenna source (current source or voltage source)

are possible, but experience has led to only two or three waveforms suitable as source

forms, which are Gaussian pulse[22], Rayleigh pulse[8] and sine wave[25]. Although

modulated Gaussian and Rayleigh pulse, which are used for high operation frequency,

have also been found in the literature (30] , they will not be discussed here since the

34

operation frequency to be considered is not ,·ery high -generally 1-2G H.: for mobilP

communication.

Gaussian Pulse

The most frequently used waveform in published literature is the Gaussian pulse.

which is expressed as

(2.61)

where T denotes the pulse width, t0 is the time delay, and .-1 is the amplitude, usually

normalized as "1". Its waveform is shown in Figure 2.6. Since the spectrum of the

Gaussian pulse can be very wide, if the parameters are chosen properly. the Gaussian

pulse is usually used to obtain the input impedance of an antenna, which is usually

sensitive to frequency change.

Although an ideal Gaussian pulse extends to infinity in time. the Gaussian pulse

for FDTD must be truncated in calculation to improve computing efficiency. t0 is

chosen to enable a smooth "turn on'' of the pulse. The effects of the truncation

must be considered since the discontinuity in time domain may produce ringing in

frequency domain(22] . The pulse width T should be chosen so that its spectrum

(FFT of the pulse) has a suitable bandwidth.

For the convenience of programming, equation (2.61) is rewritten in the following

form

(2.62)

35

1/e - · - - · -

0~--------=--------------------------=--------------------~

t-T
0

Figure 2. 6: The waveform of Gaussian pulse with amplitude of 1

where the time step 6.t , determined by Courant stability condition (2.31) , is depen-

dent on the cell size in FDTD. n is the time index. (3 = t0 / 6.t , and a= 1/ T 2
.

In computer programming, the pulse is chosen to exist from n = 0 until n = 2(3,

approximated as zero outside this range, where n is the time index and (3 is the

number of time steps in the Gaussian pulse from the peak value to the truncation

36

,·alue. This can be formulated explicitly as

{

.-le-o(n.6t-J.6tl2

f(n6t) =

0

if 0 ~ n ~ 2J

otherwise

and the corresponding waveform is shown in Figure 2. T.

The pulse amplitude at the truncation is .-le-o(B.6!)
2

• ~ow let

er0
a=--

.B6t

(2.63)

(2.6-!)

where er0 is a constant, so that the amplitude of the pulse at truncation is always the

same value for different /3 and 6t. \Vhen 6t is fi.xed, /3 controls the pulse width and

therefore the corresponding spectrum band. It should be chosen according to actual

design requirements for antenna operating frequency.

Then we need to determine er0 so that th.is truncation does not introduce un-

wanted high frequency components into spectrum. and yet does not waste computa-

tion time on determining values of the source that are essentially zero. Because the

accuracy for a single precision calculation is about -120 dB (six significant decimal

digits) , we choose er0 = 16 so that a equals to exp(-16) or about -140 dB.

To illustrate the effect of this choice of er0 we consider a situation which will be

used later for antenna design. For a three dimensional cubic cell with 0.5cm sides.

applying the Courant stability condition (2.31) which is 6t ~ 0.005/{ v'3c) here, one

obtains a 6t of 0.00963ns. Taking the FFT of equation (2.63) , one can get the

amplitude variation with frequency as plotted in Figure 2.8. From the figure one

37

Q)

"0
:::l

0.9

0.8

0.7

0.6

~0.5
E
<(

0.4

0.3

0.2

0.1

-a +-e
0~--------------------------------------~--------------~
0

Time step n
2~

Figure 2. 7: The waveform of Gaussian pulse with amplitude of 1 in FDTD

can see increase in a increases the dynamic range. For single precision calculation,

er0 = 16 is accurate enough.

Figure 2.9 shows the effect of f3 on its frequency band. It is clear that the bigger·

/3 , the narrower the corresponding frequency band.

When choosing /3, the frequency band should not be too narrow or too wide.

38

-50

aJ -100
~
Q)
"C
::J

.'!:
a.
~ -150

-200

-250

...
... -:--..

·'

' , .
\

' .. ' .. ,
' ' ' ' :,

... · '
\

\
\

\
\

. \ .' ..
\

: \
: \

\

\

\
\

\

I :, I ' I"' r
I I/ I I/

-300~----~-----L----~------~----~----~----~~~~

0 5 10 15 20 25 30 35 40
Frequency (GHz)

Figure 2.8: The effects of a on high frequencies with (3 = 32.

On one hand, the frequency band should be wide enough to contain the operation

frequency range of the antenna. On the other hand, the spectrum component outside

the operation frequency should be as small as possible since those components can

possibly cause numerical noise in the interested operating frequency band due to the

numerical dispersion in the calculation.

39

0
\

\

' '
,-.. ' !D
"0

' Q)

' "0 -50 ::l
;t=

a.
E
~

-100

-150
0 2 4 6

' ' \
' '

8

' \

I~ ~=321
~=64

I "' \ ,... ~ I
il//1/1/ f\t\f\f\r\ 1\r I I I

1/ II 1/ II II

10 12 18
Frequency (GHz)

Figure 2.9: The effects of {3 on frequency band with ero = 16

Rayleigh Pulse

20

Rayleigh pulse is the time derivative of the Gaussian pulse. Because of its smooth

shaped spectrum (FFT of the Gaussian pulse) , it provides information from a little

above de to the desired frequency simply by adjusting the width of the pulse. Its

40

mathematical form is given as

Q)
"0

0.5

.€ a. 01-----.,..,.-
E
<(

-0.5 .

-1

(2.65)

-1 .5 '------'-------'----'--------'-----'-------'-----..J'------'

0 10 20 30 40 50 60 70 80
Number of time steps

Figure 2.10: The waveform of Rayleigh pulse

41

Similarly. the formulation in FDTD calculation should be changed as follows

{

-2o(nD.t- 3D.t).4e-o<nb.t-B.6t)~ if 0:::; n :::; 23
f(nD.t) = (2.66)

0 M~~~

where the parameters in the above formula have the same definitions as those for the

Gaussian pulse in the last section. Figure 2.10 shows the waveform of the Rayleigh

pulse and Figure 2.11 is the corresponding spectrum (FFT) of the Rayleigh pulse with

the same parameters as in the Gaussian pulse. It should be noted that Rayleigh pulse

has no DC component and the maximum of the spectrum amplitude is not located

at the frequency approaching zero. The Gaussian pulse and the Rayleigh pulse have

similar spectrum characteristics, and it seems that the choice of using either form

will produce the same results. But the similarity may not hold true for all cases as

will be shown in a later chapter.

Sine Wave

Sine wave has a fixed frequency. It is efficient to use sine wave for calculating the

radiation patterns, which are not very sensitive to frequency change. At t = 0, a

source of frequency f is assumed to be turned on. The radiation of this source is

simulated by solving the finite-difference update equations on the grids of cells, within

the computational domain. Time-stepping is continued until the sinusoidal steady

state is achieved at each cell. The field envelope, or maximum absolute value, during

the final cycle of time-stepping is taken as the magnitude of the phasor of the steady-

state field at each cell. In the meantime, the phase of the field at each cell can also

42

200

Ql

~ 150
a.
E
<(

100 ...

50~--~----~----~----~----~--~----~----~----~~~

0 2 4 6 8 10 12 14 16 18 20
Frequency (GHz)

Figure 2.11: The spectrum of Rayleigh pulse with f3 = 32 and ero = 16

be obtained. After obtaining the field information on the outer surface containing

the entire antenna system, it is easy to get the far-field information such as radiation

patterns by field integration[7] .

In this thesis, the Gaussian pulse and the Rayleigh pulse are used to find the input

impedance of antennas, while sine wave is used to calculate the radiation pattern.

43

Chapter 3

Development of the FDTD Code

In this chapter the FDTD code developed for antenna design is introduced first.

Then the factors that effect the accuracy of the results such as input impedance

and radiation patterns are demonstrated numerically. These factors include the grid

size. the distance between the Mur boundary and the antenna. the feed forms of the

antenna and the source forms.

3.1 FDTD Code

Based on the formulation shown in the previous chapter, an FDTD code was devel­

oped for antenna design purpose. The code was written using C++, which can run

in Z...JS-DOS, \Vin95 and Uni..x environment.

The code is composed of one header file, one main program and several subroutine

programs. The flow chart for the code is shown in Figure 3.1. The main program

No

Define parameters

Initialization

' Read data file for

antenna problem

' Update E fields at

t=(n+ 112)dt

' Apply Mur ABC at

outer boundary

' Update H fields at

t=(n+l)dt

Pulse l

Save data for

post-processing

'

Yes

'
STOP

Sine wave

No

Yes

'
Steady response:

amplitude and phase information

on the surface that contains

the antenna

'
Far fields and

radiation patterns

Figure 3.1: Flow chart of a C++ program for FDTD algorithm

45

··main·· in the code reads the primary parameters. calls subroutines for initialization

and controls the execution of the subroutines for field calculation as well as the data

output. The functions of the subroutines are summarized in Table 3.1. while organi­

zation of the subroutines and data files in the FDTD code is shown in Figure 3.2.

First. "para'' and ''inif' are called for parameter definition and ,·ariable initial­

ization. Then .. geo" is callerl : o read the data file for the user-defined structure(an

antenna and its surroundings) .. -\.fter that, ''exfid" , ''eyfl.d", and "ezfld" are called for

updating the E field at each grid except those on the boundaries. For the fields at

those grids on the boundaries, "murx)'l>'', "murxyn", "muryzp", "muryzn" . ··murxzp'·

and ··murxzn", which implement the Mur boundary conditions introduced in the pre­

vious chapter are called instead. Then "h."'fid" , '"hyfl.d" and "hzfld" are called for up­

dating the H fields. If the antenna contains wire structures. "thin.wire" is called for

the data input of the wire structures. This subroutine also saves the current (in time

domain) on the wire in a separate output file , which can be used for post-processing

such as impedance calculation.

If the source is sine wave and the far field is expected, "wave.stable" is called to

decide if the steady-state is reached. If the steady-state is reached, "find..amp'' and

"find_phase'' are called to find the field amplitude and the relative phase, respectively.

Then "out.surface..field" is called to get the surface fields, and "far _field" is called to

calculate the far field which will be output for plotting or other analysis.

In the following sections, we will introduce the subroutines in terms of their func-

46

•

Table 3.1: The fun ctions of the subroutines

Subroutines Functions

para, init parameter definition and initialization

geo antenna data input

exfld, eyfld, ezfld E field updating

murxyp, murxyn, muryzp, Mur boundary condition implementation

muryzn, murxzp, murxzn

exfld, eyfld, ezfld H field updating

thin_ wire dealing with the thin wire structures

wave_stable judging if the steady-state is reached

find_amp getting the field amplitude on the surface

find_phase getting the relative field phases

out...surface_field surface field calculation

far _field far field calculation

tions. The description of the subroutines with similar functions will be put in the

same section. Since there are detailed descript ion in the previous chapter for the field

updating, the boundary conditions as well as the treatment for thin wire st ructures,

the emphasis here will be put on the subroutines for steady-state response, which

were not described before. After that we will introduce the data input and output

format as well as the procedures for using the program.

47

I defin.h I
I

a.nt:m.cpp
I I

ant.dat. I I I

I
~
~
>:!
;:;;
~
~
C/:)
>:!

pa.r.cpp I I ma.teri a.l.da.t: I I I

I
e_field.cpp I

0"'

cs
>:! I
.......
~
("l)

murx.yp.cpp. m urx.yn .cpp. muryzp.cpp

,j::>.. s;::l

00 ~
~

~
s;::l
s;::l

muryzn.cpp, murx.zp.cpp, murx.zn.cpp

I
~ -("l) h _ field.cpp

-.... ~
;>t-
s;::l
~

("l)

~
:;::,-
s;::l
~

I
I thin _vvire.cpp I

I

vva.ve_sta.ble.cpp. find _a.mp.cpp

find _ pha.se.cpp, out - surface _field.cpp

I
fa.r_field.cpp

3 .1.1 Header File

In the header file. various standard header files in the C++ library such as .. math.h ..

(math library) and "iostream .h" (library for input and output) are included. In

addition to the standard header files. the maximal size of the problem to be analyzed

is given. For example. consider a problem of 100 x 110 x 120 cells. we define n...r 2: 101.

n_y 2: 111. and n_z 2: 121. Here we define one more cell for the reason of code

simplicity, since the arrays in C++ start from 0 instead of 1 and we do not want

to use. say x(O], as the data for the cell Number 1. Various data structures also are

defined, including:

• the actual size of the problem "n_xyz", which defines the number of the cells in x.

y. z directions;

• the cell size "delO" defining the cell length in the x, y, z directions:

• the constant coefficient "co f jO" for the convenience of expressing E fields in a

simple way.

3.1.2 Initialization

Two subroutine programs "para" and "init" are called for initialization. The functions

of "para" are

• defines the parameters conductivity (j, relative permittivity ir for the materials in

the problem;

49

• calculates the time step size .6.t by Courant stability condition equation (2.31)

according to the cell size 6x, 6y, 6.:;:

• calculates the constant a: (= ;~t) in Gaussian pulse in terms of the parameter J:

• defines the various constant coefficients such as t~= in the field update equations.

The functions of "init.cpp'' are

• initializes the E and H fields to zero:

• initialize the identity variable arrays for the material to free space:

• initialize the arrays. which temporarily store the field values on the boundary. to

zero.

3. 1.3 Field Computation within the Boundary

\Vhile looping over n (the index of the time steps), the subroutines .. exftd". "eyftd"

and "ezftd" are called for the E field updating in x-, y- and z- direction. respectively.

The subroutines "hxfld", "hyfld" and "hzfld" are called for the H field updating. in

x-, y- and z- direction, respectively. These subroutines calculate the present value

of a component from its own prior time value and that of the nearest-neighbor field

quantities according to the type of material present at that component location. The

expressions for each field component can be found in the previous chapter, and the

code for the field updating is straightforward, therefore we will not introduce them

50

furthermore. Since the formulae for the fields in different directions are different. we

use different subroutines for the field updating in different directions here.

3.1.4 Fields on the Artificial Boundary

On the artificial boundary. the fields cannot be updated directly. as introduced in the

previous chapter. The outer radiation boundary condition should be used instead

to absorb the radiated fields at the outermost ponion of the antenna space. In our

code, the subroutines "murxyp". "murxyn", "muryzp", ''muryzn". ·'murxzp" and

··murxzn" are called for field updating on the outer boundary.

3.1.5 Thin Wire Structure

If there are thin wire structures, ;;thin_wire" will be called to calculate the H fields

around the wire. At each time step the fields in the source region are stored for

post-processing such as input impedance calculation.

3.1.6 Steady-State Response

As mentioned before, for the far field calculation, sine steady-state response method

is more efficient than FFT method. Specifically, far fields are not sensitive to the

distance between the outer absorbing boundary and the antenna, which will be ver­

ified later numerically. This makes the problem size much smaller, and hence the

corresponding running time of the program is reduced greatly. In this program, if the

51

source is sine wave, the subroutine "wave_stable" can decide if the steady state has

been reached or not. If the steady-state is reached, "find_amp" and "find_phase" will

be called respectively to obtain the amplitude and phase information on the surface

containing the antenna for far field computation.

A. Steady-State Condition

Figure 3.3 shows the electric field varying with time at a certain point. The corre-

sponding steady-state wave form is shown in Figure 3.4. It is clear from the figures

that one cannot judge that the response has reached steady-state condition just by

comparing the peak-values within two continuous cycles.

To solve this problem, one may consider peak-values in four continuous cycles.

Assume the positive peak values are A1 , A2, A3 , A4 in four cycles, respectively, if

i = 1, .. .4, j = 1, .. .4, i # j (3.1)

a steady-state condition is considered achieved. Note ec is a constant controlling the

steady-state error and is input from the data file "ant.dat" , varying from 1% to 0.1%

in this program.

From Figure 3.4, one can also observe that the discreting error around the peaks(the

curve is not smooth). Obviously, when ec is very small, the corresponding 6t should

be decreased also. Otherwise, we have the risk of getting into dead looping(in which

case the expected steady-state will never be reached).

52

Q)
"0

X 10-3
6~----------~----------~----------~----------~----------~----------,

4

2

~
~
0. 0
E
<(

-2 ..

-4

-6~----------~----------~----------~----------~----------~--------~
100 200 300

Time steps
400 500 600

0

Figure 3.3: The form of a field component in time domain

4

3

2

...

Q)
"'0

~ 0 . ' ~ . ······ ···· · · c.
E
<(

- 1 ~ . .

-2

-3

-4

- 5
500 510 520 530 540 550 560 570 580 590 600

Time steps

Figure 3.4: Steady-state wave form

54

B. Find the Amplitude and Phase of the Sine Wave

It is easy to get the amplitude information for fields at each cell. When steady state

condition is achieved, one can find the maximum values for each field component

at each point just by simple comparison. The maximum values are the amplitude

information expected.

For the phase information, a point is chosen as a reference point, as shown in

Figure 3.5. When the field (E or H) at this reference point jump from a negative

value to a positive one or zero, the phase for the field at this point is chosen to be

zero, the index of time step is recorded. To find the relative phase of other fields in

the space with respect to the field at this point, one just needs to find the index of

time step when the field value jumps from negative to positive or zero. The formula

for the relative phase is

27r () . - l(Ex) ¢ = - * n - no - s~n -
Nc A

(3.2)

where Nc is the number of time steps in one period and n0 is the index of time

step at the reference time and n is the index of time step when a field value jump

from negative value. A is the amplitude of the field and Ex is the value the field

jump to from a negative value. It should be noted that for the phase of H field , 1r / Nc

should be added because there is a time difference l:::.t/2 between E field and H field .

As soon as one finds the fields on the surface enclosing the antenna and its attached

structure, the formulation in section 2.6.2 can be used to obtain the far fields. The

radiation pattern is obtained by using plotting tools such as "M atlab".

55

-0.2 ..

)~ ~~It ~~ I

~~ I ~i\ ~~ i _i .. ~~ ·r'\
; ~~ ~ (K

<D I \
.I . .. ~~ - . , .

(~ 1\ (~
. c(I \ 1\

. ·:· ... ; - ~~ <K . . '
• I <D c~

. : <~ . . I . \ . _I\ .. .
•I V <D \

<D 1\ <v ··· ~t · ·J · · · \ ·· I\ ·· · · ·· · ·· ~~

/ (~ (~\ JD . l
I \ 1\ <~

(~ : ·:· - ~\ .)D i/ (~
I • \ 1\ (D I

. <\ . \ I .. If. .
(K v P

.)~ . . \ VK vv ..
)~ I ("\ • ~~)~

I I I .L "tc \l"'~"" I{ -1L_ ______ _L ______ ~L_ ______ _L ______ ~L---~~~~----~

I

0.8

0.6

0.4

0.2
Q)
'0

:e 0 a.
E
<(

-0.4

-0.6

-0.8

-10 0 10 20 30 40 50
time steps

Figure 3.5: Method of finding the steady-state phase information

3.1. 7 Data Input

There are three input data files: "ant.dat", "material.dat", "wire.dat" . An example

for the data files is given in the appendix. The data file "ant.dat" contains the primary

parameters for the problem to solved, such as the number of cells, the cell size, and

the data file name of the antenna geometry and material structures whose format is

given in table 3.2. The user just needs to change the values of the parameters in the

56

file.

Table 3.2: The data format of file ant.dat

Input data Comments

line 1 nn.x, nn.y, nn.z number of cells along x, y, z direction

line 2 del.x, del.y, del.z cell size (unit: meter)

line 3 ro thin wire radius (unit: meter)

line 4 amp, beta, lambda "A" and "/3" of the pulse which are used only for im-

pedance calculation, wavelength" X' for sine wave which

is used only for radiation pattern calculation

line 5 nstop maximal allowed number time step.

line 6 materiaLFile file name of the antenna structure

line 7 flag_inc flag controlling the form of the source. 0: pulse; 2: sine

wave

line 8 Ist,Ind, Jst, Jnd , the surfaces for far field calculation, which should be as

Kst, Knd small as possible provided they enclose the antenna

line 9 ec the constant controlling the steady-state error

line 10 cen.x, cen.y, cen.z the index numbers for the origin of the coordinate for

far field calculation

line 11 epsil , epsi2, ... the dielectric constant for the materials used

If the file name of the antenna structure(in the sixth line of "ant.dat") is "mate-

57

rial.dat", the user will create this file manually or by a small program. There are six

integers in each line in "material.dat" . They are i, j , k, I D...x[i][j][k], I D_y[i][j][k],

I D_.z[i][j][k]. The former three numbers are the cell index numbers, and the latter

three numbers are the material(permittivity) index numbers. We use three index

numbers here because the field components are offset by half cell size, as discussed

in the second chapter. In this code, the index number for perfect conductor is 1. For

dielectric material, an index number can be any number which is less than 10, but

it cannot be 1. It should be noted that the dielectric constant corresponding to the

index number has to be input in the last line of "ant.dat".

"wire.dat" contains the thin wire structure in the antenna problem. The structure

of "wire.dat" is shown in table 3.3. It should be noted that no inclined wires are

allowed directly. The inclined wires can be represented by using stair step.

Table 3.3: The data format of file wire.dat

Input data Comments

n total number of straight thin wires involved

Z, x, y, zl, z2 "Z" oriented wire, starting and ending index number

Y, x, yl , y2, z "Y" oriented wire, starting and ending index number

X, xl, x2, y, z "X" oriented wire, starting and ending index number

58

3.1.8 Data Output

The currents on the antenna(in time domain) are output to the file .. cur.daf'. If the

wide band impedance is expected(the source is a pulse). we need to take the Fourier

transform of the data, which is straightfon,·ard. If the patterns are what we are

interested in(the source is a sine wave}. we can get them directly from the output

data files ;;Ectx.dat", "Ecty.dat~, and "Ectf.daf'. which correspond to the pattern

in xz- yz- and xy- planes respectively.

3.1.9 Procedure for Using the Code

(l.) Prepare the three input data files. (2.) Run the code "'antm". (3.) Take the

FFT of the time domain data to get the input impedance or use 1\l atlab to plot the

radiation patterns.

3.2 Validation of Present FDTD Code

To test the accuracy and robustness of this developed code, comparison is made with

an available code Numerical Electromagnetic Code (NEC-2) for some cases. Three

models are presented here. They are a dipole, a loop antenna, and a monopole on a

finite plate. The results from NEC-2 will be used as reference. In NEC-2, which is

based on the method of moment, wire-grid replaces the flat plate shape. First the

effects of Mur distance and cell size on the accuracy will be discussed. Then one

59

compares the results from Gaussian pulse and Rayleigh pulse for different feed forms.

3.3 Dipole

Dipole has been the simplest antenna since the early time when antenna was in\"ented.

It is a \"ery good model for the validation of our code since no approximation is

introduced for the antenna when using l\'"EC-2. The :\""EC solution is actually being

used as exact solution for dipole antennas. The computation cost is low for this

simple structure.

A center fed dipole of total length 15cm with diameter of l.Omm is considered

here (the diameter of the inner conductor for RG402/u 50 semi-rigid coaxial cable is

0.9195mm, hence l.Omm is a very good approximation to the actual antenna). The

radiation patterns and the input impedance will be calculated separately.

3.3.1 Radiation Pattern

Figure 3.6 shows the radiation pattern of the above antenna at 3GHz. The solid line

is obtained from NEC-2, where 61 segments, which corresponds to >../40 length per

segments, was used. The dashed line and the dotted line are obtained by our present

FDTD code. For the dashed line, the cell size is >../20, the distance between the outer

boundary and the antenna is>.. (i.e. 20 cells) . For the dotted line, the cell size is >../40,

the distance between outer boundary and the antenna is still >.. (i.e. 40 cells) . From

the Figure one can see that for the cell size of >../40 very good agreement between

60

FDTD and NEC-2 is obtained for the radiation patterns of a dipole antenna. When

the steady-state judging constant ec changes from 1% to 0.1%, no obvious change in

radiation patterns is observed. It should be noted that when ec is very small , the

time step D.t should be comparatively small too, otherwise it it possible that one

will not get the steady-state expected. Since the running time would be much longer

when ec is smaller, ec will be fixed at 1% in the following calculations.

0

90

180

Figure 3.6: The radiation pattern of a dipole at 3GHz obtained using different FDTD cell

szze

--NEC-2,- - - cell size:A/20, ······cell size:>../40.

61

\"ext we test the effects of the distance between :\1ur boundary and the antenna

(we call this distance the :\-lur distance herein). Theoretically. the larger the :\lur

distance, the better the radiation pattern results. In the meantime. the computational

cost will be much higher when using larger distance. Figure 3. i shows the radiation

pattern for various ~\:Iur distances. The cell size is .A/40. Mur distance of 10 space cells

(.A/ 40 per cell) is acceptable, though more cells produce better results. So at initial

stage of radiation pattern estimation, lO cells are used and in the final design stage

20 cells or more are used until the radiation patterns converge to accurate values.

Then the radiation patterns of the antenna at 2GHz for various cell sizes and

different ~:Iur distances are calculated. Figure 3.8 shows the radiation pattern of the

above antenna at 2GHz with different FDTD cell size. The solid line is obtained from

).""EC-2, where 41 segments, which corresponds to .A/ 40 per segments, were used. For

the dashed line, the cell size is .A/20. For the dotted line, the cell size is .A/ 40. For

the dash dotted line, the cell size is .A/80. The distance between the outer boundary

and the antenna for all the cell size is 20 cells. It can be seen that keeping the .Mur

distance a constant number of cells (with varying absolute distance), the accuracy

can still be improved a lot by reducing the cell size.

\Vhen the cell size is small enough, one can see the effects of Mur distance on the

accuracy from Figure 3.9, where the cell size is .A/80 and the dashed and dotted line

correspond to the M ur distance of 10 cells and 20 cells, respectively.

From the above numerical results, one can draw the follo~ing conclusion for the

62

0

90

180

Figure 3. 7: The radiation patterns of the dipole at 3GHz with different Mur distance

-- NEC-2, · · · · · · 10 cells, - · - 20 cells, - - - 40 cells.

radiation pattern calculations: The cell size must be less than -\j 40 in order to get

very accurate result. The radiation patterns are not sensitive to the Mur distance.

The steady-state controlling constant is chosen to be 1% to get good result , while

not wasting computational time.

Actually, the radiation pattern of dipoles has been studied before [21]. But the

results in [21] are not very good, though it coincides with that of sine current

63

0

90

180

Figure 3.8: The radiation patterns of the dipole at 2GHz with different cell size

- NEC-2· - - - A/20· · · · · · · A/40· - · - A/80· ' ' ' '

approximation.

3.3.2 Input Impedance

First, the input impedance of the above dipole with a thin gap voltage feed was cal-

culated by using Gaussian pulse and Rayleigh pulse as the source form, respectively,

and no difference was observed. So we used only the Gaussian pulse to test the effects

64

•

0

90

180

Figure 3. 9: The effects of Mur distance on the accuracy of the radiation patterns

--NEC-2; - - -lOcells ; · · · · · · 20 cells.

of Mur distance and cell size unless specified otherwise.

Figure 3.10 shows the input impedance versus frequency, where the cell size is

-X/40 and the dashed and dash dotted lines correspond to the Mur distance of 20 cells

and 40 cells, respectively. From the figure, one can observe that the Mur distance

affects the input impedance mainly near its peak values of the real and imaginary

65

parts.

£
Q)
u
c:
ctl
"0
Q)
c.
.§
'5
c.
E

1500 ..------.------.------.------.------.------.------,----,

1000

500

0 -":"-

-500

-1000

-1500 L.......ll-----'-------'-------'-------'-------'-------'--------'------'

0.5 1.5 2 2.5 3 3.5 4
Frequency (GHz)

Figure 3.10: The effects of Mur distance on the accuracy of the input impedance

- NEC-2; - - - 20 cells ; - · - 40cells.

Then the role of the cell size is explored. Figure 3.11 shows the effects of cell size,

where the Mur distance is 40 cells and the dash dotted and dotted lines correspond

to the cell size of >./40 and >./50, respectively. It is clear the smaller cell size produces

more accurate results at the expense of much higher computational costs. The input

impedance is more sensitive to cell size and Mur distance than radiation patterns. In

66

...

order to get meaningful data, cell size of .\/40 and M ur distance of at least 20 cells

are to be used for input impedance calculation in final designing process.

1000

500

£
Q)
u
c
t1l
"0 o·- · Q)
a.
.s
'5
a.
c

-500
I.

/,

0.5 1.5

-.,;:
....,

/
/

2
Frequency (GHz)

..
- ·: ..

\
/.

; ·

\ .
/.

\
~

<" ")
,r

2.5 3 3.5

' \

":"'-: .

4

Figure 3.11: The effects of the cell size on the accuracy of the input impedance

- NEC-2; - · - >-./40; ·· · ··· >.j50

67

3.4 Loop Antenna

Loop antennas are very important antennas in mobile communications. At present.

they are widely used in pagers. Since the input impedance is very small at low

frequencies. it has not been applied in transmitters such as cellular phones. But its

resistance against noise has received much attention. The radiation pattern is shown

in Figure 3.12. Clearly, the agreement between the result from FDTD and from

XEC-2 is very good.

Then a thin gap voltage source with Gaussian pulse is used for input impedance

calculation. It is found that the current in source region approaches a constant not

equal to zero, as shown in Figure 3.13. The corresponding input impedance is shown

in Figure 3.14. Obviously, the input resistance cannot be negati\·e. Therefore the

solution is not acceptable. It may be explained by what happens when a ,·oltage

source is shorted. \Vhen the load impedance is very very smalL the current in the

circuit cannot be measured accurately, the input impedance obtained from the ratio

of the voltage to the current is not correct.

Then the source form is changed to Rayleigh pulse with the same thin gap feed.

The resulting current wave is shown in Figure 3.15. and the input impedance in

shown in 3.16. In this case, excellent agreement between our FOTD approach and

~EC-2 is obtained.

\Vhen a current source is used to feed the loop antenna. both Gaussian and

Rayleigh pulse produce accurate impedance results.

68

•

Table 3.4: Feed forms and pulse forms for loop antennas

Feed Form
input impedance result

thin gap Voltage Magnetic frill Current

Gaussian not acceptable not acceptable good
Pulse Form

Rayleigh good good good

Table 3.5: Feed forms and pulse forms for open circuit type antennas

Feed Form
input impedance result

thin gap Voltage Magnetic frill Current

Gaussian good good not acceptable
Pulse Form

Rayleigh good good good

69

•

100 100

(a) x-z plane (b) y-z plane

0

180

(c) x-y plane

Figure 3.12: The radiation pattern of a loop antenna using delta-gap voltage source

- NEC-2; -- - FDTD.

70

3.5

3

2.5

. . . 2 ,

~
I c 1.5
~
:J u

. ' . .

0.5

0

· · , .. ·

-0.5 :····" ' '"'''''' " ':'""'"":· · · ·· ·" ' '""'''' '

0 2 3 4 5
Time(ns)

6 7 8 9 10

Figure 3.13: The resultant current in the source region of the loop antenna

71

X 10
12

8

II

7 Jl .
II
II

6 li ·
I I
I

5 . r J.

I a 4 I .

Q)
I

u I
c::
C1l 3 I
"0
Q)

0.
E
'5 2 . I ·
0.

I E

..... , ..

0 ·······;,

\ /
/

-1

-2

0 0.5

\
I I
I

r · t
I

I

I\
.. , .. 1 .

I

I

I

. _r. - : I

\ :t

I \

I \
: I

Resistance
reactance

I"' I

'
.. \ ...

\
\ . /

./

.. / ,

1.5 2 2.5 3 3.5
Frequency(GHz)

4

Figure 3.14: The input impedance of an loop antenna using delta-gap voltage source

72

x1d
8

6

4

2

~
0

'E
[1;>

:; -2
()

-4

-6

-8

-10 ~ ·

0 2 3 4 5 6 7 8 9 10
Time(ns)

Figure 3.15: The resultant current in source region of loop antenna with Rayleigh pulse

73

•

'S
c.
c:

2000 .-------.-....-------,------r---~---r---...-----,----,

1500

/.

-500

-1000 '-----'---'-----'------'-----'-----''-----'-------'----'
0 0.5 1.5 2 2.5 3 3.5 4

Frequency(GHz)

Figure 3.16: The input impedance of an loop antenna with Rayleigh pulse

- NEC-2; - - - FDTD

74

3.5 A Monopole on a Finite Conducting Plate

In this section. the performance of a monopole on a finite conducting ground plane

will be studied, which is an approximation of practical situation. The monopole is

7.5cm long. and the ground plane is 30cm x 30cm. The operation frequency is 1GH :..

Figure 3.17 shows the normalized amplitude radiation pattern of the monopole.

The FDTD grid resolution is .A/40. The agreement between the result from FDTD

and that from NEC-2 is excellent.

Figure 3.18 shows the input impedance of the antenna at frequency band up to

-!G Hz. The agreement is not as good as for radiation patterns because the input im­

pedance calculation procedure varies considerably between the two codes. i.e. FDTD

and ~EC-2. The wire-grid model is just an approximation of the solid surface. and

the input impedance, unlike the radiation pattern. is very sensitive to the model. For

the FDTD approach, it is perceived that the results are considered reliable if one gets

the same result using different cell size.

Figure 3.19 shows the same antenna on a 60 x 60cm2 plate. where the cell size is

6x = 6y = .A/20 and 6z = .A/40. Again, the agreement is very good, though the

grid on the horizontal plane is not small.

75

•

0

90

180

Figure 3.17: The radiation pattern of a monopole on >. x >. ground

- NEC-2; -- - FDTD.

76

1000~----~------~------~------r-------.-------,------,,------,

800

600

400

a 2oo
Ql
(.)
c
ell

~ 0~---------c.
.§
:;
g. -200

-400

-600 (

..-.
~-·· ..., . ""\.

....,.

I
-1000~· ~--~------~------~-------L------~------~------~----~

0.5 1.5 2 2.5 3 3.5 4
Frequency(GHz)

Figure 3.18: The input impedance of a 7.5cm monopole on a 30cm x 30cm ground

- - NEC-2; - - - cell size FDTD:.A/40; · · · · · · cell size FDTD:.A/50.

77

•

0

90

180

Figure 3.1 g,. The radiation pattern of a monopole on 2>. x 2>. ground

- NEC-2;-- - FDTD.

78

Chapter 4

A Proposed Mobile

Communication Antenna Design

In modern terrestrial-based \\'ireless communications systems, the antenna for mobile

radio telephone is a key element for system performance. The monopole and sleeve

antennas have been the dominant radiating elements in mobile phones until now

because of their wide bandwidth. omni-directional radiation pattern. and low cost.

\\"ith higher requirement for small size, light weight , and low profile for modern

mobile antennas, much research effort has turned to planar inverted-F antenna (PIFA)

and microstrip antenna, which are low-profile and produce lower specific absorption

rate(SAR) [3]. While the radiation patterns of PIFA and microstrip antennas satisfy

the demand basically, much emphasis has been put on improving the impedance

bandwidth recently [31] . Since the impedance bandwidth is not only limited by

antenna type itself but also sensith·e to the radio case dimensions [1-t] as well as

the existence of operators [3], it is particularly difficult to meet with the ever higher

demands of modern communications.

As stated in [19], "At present. the most widely adopted systems are the Global

System for 1VIobile (GSM) Communications developed primarily in Europe and Asia

and Interim Standard-54 (IS-54) developed in North America. The communication

between the mobile station and base station is implemented through two links: uplink

and downlink. The frequency bands for GS.M are 890-9151\-IHz and 935-960N!Hz for

the uplink and downlink, respectively. While for /S-54 they are 869-894A-!Hz for the

uplink and 824-849MHz for the downlink. The new generation of personal communi­

cation services (PCS) such as DCS-1800 has frequency bands of 1. 710-1. 785GHz and

1.805-1.880 GHz for the uplink and downlink. respectively. The co-existence of GSA!

and DCS with c dual standard providing analogue and digital services in the same

network means the corresponding antennas should have the capability of operating at

dual frequency bands (824-960MHz and 1. 71-l.BBGHz)'". Some efforts have already

been put to the development of dual-frequency antennas [9, 10].

The planar monopole antenna has recently been proposed [1 L 12], that has a

very large impedance bandwidth. However, the application of this type of antenna

to mobile communication has not been found in the literature yet. In this chapter,

FDTD method is applied to obtain the characteristics of a planar monopole antenna,

mounted on a conducting housing of limited size. A modified structure of planar

80

monopole is de,·eloped to provide dual-band operation while its radiation pattern is

still approximately omni-directional in the horizontal plane.

4.1 A Planar Monopole on a Conducting Box

The input impedance of a planar monopole disc mounted on a large conducting

plate was studied both numerically [11] and experimentally [12] . It was found that

an elliptical planar monopole on a large conducting plane has very wide impedance

bandwidth. However the performance of a planar monopole on a small conducting

plate or box has not been reported. In order to apply this wide band antenna to

mobile communications, the following model is set to study the antenna performance.

The geometry of the planar monopole mounted on a conducting box is shown

in Figure 4.1. The conducting box is used to simulate a small hand-held portable

telephone. The size of the box is 1-F x L x H in x , y, z direction as shown in Figure

4.1. The planar monopole antenna consists of an elliptic conducting disc with an

extended short wire, which is connected to the central conductor of the feed on the

top of the box. The length of the major and minor axes of the elliptical disc are 2a

and 2b respectively. The parameters that affect the input impedance are the size of

the monopole plate and the distance between the monopole plate and the conducting

box. i.e. the height h of the extended wire and the box dimensions.

The box dimensions for our calculations are 2 x 6 x lOcm in x, y, z directions,

respectively. The size of the elliptical planar monopole is 6 x 4.8cm. The return loss

81

•

Antenna

H

Radio Case z

-
I ,------------------ L w

'
Front view Side view

X (yz plane) (xz plane)

Figure 4.1: The geometry of planar monopole on a conducting box

of the planar monopole is shown in Figure 4.2

It is found that the frequency band of the antenna mounted on the small hand-

held portable telephone is still very wide, though narrower than that on an infinite

ground. However, the VSWR is greater than 2 when the frequency is lower than

about 1.3GHz which means that the antenna cannot be use for existing analogue

communication (around 900MHz) unless its size is increased or other measures are

taken to create another resonant frequency around 900MHz. Obviously, the method

of increasing the size the antenna should be avoided.

82

0

' ' ' ' -5

-10

iD
"0
U> / ' U) / ' .Q -15 I ' c

I ' :;
Qi I
a: I

I

I
-20 I

I

- 25 I

'/
I

-30
0.5 1.5 2 2.5 3 3.5 4

Frequency(GHz)

Figure 4.2: The return loss of a planar monopole mounted on ground and a box

--on a infinite ground; - - - on the box of finite size

4.2 The Implementation of Dual-Band Operation

The dual frequency operation was implemented by cutting an elliptical slot near the

edge of the plate[23). The antenna structure before and after the cutting is shown in

Figure 4.3

The new antenna consists of two parts:

83

•

Original planar monopole New dual-band antenna

Figure 4.3: The implementation of dual-band operation by cutting a slot

Part A is an elliptical ring. Its size is controlled by

(4.1)

(4.2)

Part B is a small elliptical disc with similar equations

(4.3)

When cutting the disc in this way, we actually changed the original disc into a

planar monopole combined with a strip monopole. This can explain why the combined

antenna operates at dual frequencies. While the sizes of the disc and the box have

not changed, the width of the slot is about 4mm (al = 2.6cm, a2 = 2.2cm , bl =

2.0cm, b2 = 1.6cm). Figure 4.4 shows the input impedance of the antenna for h =

2mm. The corresponding return loss at the input port is shown in Figure 4.5. One

84

•

resonant frequency is 800MHz and another resonant frequency is around 2100MHz.

It is found that the reactance of the antenna around the resonant frequencies almost

vanishes and the resistance approaches 50f2, which is the characteristic impedance

of the standard coaxial cable. Since very good impedance match is obtained, the

complicated matching circuit can be avoided.

600

500 1=-= Resistance I
reactance

400 -a 300 11 -Q)
(.) 11 c:::
«3 200 "C
Q)
a.

100 E
...... -::J

0 I I- ---a. -- --- --c::: / --/ I /

-100 / I /
I 1/

-200 I

-300
0 0.5 1 1.5 2 2.5 3

Frequency(GHz)

Figure 4.4: Input impedance of the antenna

Shown in Figure 4.5, the impedance bandwidth at 800MHz is about 30%. The

bandwidth at 2100MHz is much wider.

Within each operating band, the radiation patterns do not change much. Figure

4.6 shows the radiation patterns of E8 at 1900MHz. The solid line was obtained by

85

•

-5

iil
~ -10 .
(/)

..Q

E
~ -15 •' .. .
a:

-20

-25~--~--~--~--~--~--~

0 0.5 1 1.5 2 2.5 3
Frequency(GHz)

Figure 4.5: Return loss at the feed of the antenna

FDTD and the dash line was obtained by NEC-2.

4.3 Development of Controlling Two Specific Res-

onant Frequencies

Instead of cutting an elliptical slot near the edge of the plate, one can cut the disc in

the way [24] shown in Figure 4.7.

The new antenna consists of three parts:

Part A is a big elliptical ring. Its size is controlled by

(4.4)

(4.5)

86

...

0 0

180 180

(a) x-z plane (b) y-z plane

0

180

(c) x-y plane

Figure 4.6: Radiation pattern of the antenna

87

2a

2a2

2a4

2a3

2al

Figure 4. 7: Geometry of the new planar monopole

Part B is a small elliptical ring with similar equations

(4.6)

(4.7)

Part C is an elliptical disc with an equation

(4.8)

The three parts are connected together in series, as shown in Figure 4.7. The

purpose to do this is to lower the second resonant frequency without increasing the size

88

of the antenna. When the resonant frequency is adjusted to the operating frequency,

the antenna performance will be enhanced.

5~------,-------~--------r-------.--------.-------,

0 - · -
"' : !

I ' ' 1: \ '
I · '

\ -5 oo l•: 00 \ ..

1i)
'0
'iii
UJ

.2 -10
E
:J
Qi
a:

-15

-20

I . \ :

. 1 .. : ..

I I

,:

: I
: I

I

I . 1
....... \ I

I I
II

I

I

I I
I I
I I

I .• 1 ...

\

With one slot
With two slots

''''\ '''

' ' ' ' :
' ., ...

'
' ' '

-25L-------~-------L------~L-------~-------L------~
0 0.5 1.5

Frequency(GHz)
2 2.5 3

Figure 4.8: Return loss of the antenna with and without the second slot

The box dimensions are still 2 x 6 x lOcm in x, y, z directions, respectively. The

size of the original elliptical planar monopole is 6 x 4.8cm (a = 3cm, b = 2.4cm).

The height of the extension wire is h = 2mm. In the rest of chapter, the unit for the

dimensions of the disc will be in centimeters.

Figure 4.8 shows the effect of the second cutting on the return loss of the antenna.

The parameters for different configurations are shown in Table 1. For the new cutting,

a3 = 1.8, b3 = 1.2, a4 = 1.4, b4 = 0.8. The other parameters have not changed, i.e.

89

a, b, a1 , b1 , a2 , b2 are the same as in previous shape. It is found that the resonant

frequency at 845MHz has not changed. But the higher resonant frequency is lowered

about 450MHz. The new resonant frequency is 1.65GHz, which is lower than the

DCS operation frequency.

5r-------,-------~--------r-------,-------~------~

0

-5 . 0 0 ••••• •

- 10

I '
' I \ :

I \
: 1

I

I
.. \ . I

\ : I
I : I

. Tj .

1: I

\I

Without changing the major axis
Smaller length of the major axis

I \
I · \

.. / ··:· ·\··
\

: \
. \

. . I . . . , ,
I \

.. , 1.

/

: ~ ... ~ ' ·.··. T . I

-25

- 30

I
I I

.... \. . I
I I
I I
I I

······· · ·····1· 1

II

. ·\ ..
\

'

-35~------~------~--------~------~------~------~
0 0.5 1.5

Frequency(GHz)
2 2.5 3

Figure 4.9: Return loss of the antenna for different major axis length

Next, one can reduce the major axis of the elliptical disc with two slots. The return

loss is shown in Figure 4.9, where the dash line represents a= 2.4, a1 = 2.0, a2 = 1.6,

a3 = 1.2, a4 = 0.8, with bi(i= l , 2, 3, 4) unchanged. It is found that reduction of

the axis let the resonant frequencies shift toward higher frequency. Therefore, the

resonant frequency at 845MHz can be adjusted by changing the length of major axis.

90

•

5.-------.-------.--------.-------.-------,,-------,

0

-5

-10

-25

-30

1.
I

I :

I :

I

f

I

I

I

Without changing part C
With smaller part C

I'
I \

\
\

\
\

\

'
'

-35~------~------~------~------~------~~----~
0 0.5 1.5

Frequency(GHz)
2 2.5 3

Figure 4.10: Return loss of the antenna for different size of the second slot

Then one can change the size of the small disc (part C). From Table 1, one can see

a4 = 1.0, b4 = 0.6. The rest of the parameters are not changed. The resultant return

loss is shown in Figure 4.10. From the figure one can see that the resonant frequency

at 845MHz is not affected while the higher resonant frequency can be adjusted.

The return loss of the antenna covered with lossless dielectric material is shown in

Figure 4.11. The conducting box is not covered by dielectric material. The cover of

the antenna has the same height (5cm) and width(6cm) as the antenna. For the thin

cover, the thickness is 0.6cm, while for the think one, the thickness is l.Ocm. The

parameters for the material are tr = 2.1, J.L = J.Lo, The resonant frequencies are shifted

91

Table 1: The effect of the parameters of the disc with slots to the resonant frequencies

parameters controlling the size of the disc (em) resonant fre-

quencies (M Hz)

action a al a2 a3 a4 b bl b2 b3 b4 the first the sec-

ond

original (one 3.0 2.6 2.2 - - 2.4 2.0 1.6 - - 845 2100

slot)

adding a slot 3.0 2.6 2.2 1.8 1.4 2.4 2.0 1.6 1.2 ·o.8 845 1650

reducing 2.4 2.0 1.6 1.2 0.8 2.4 2.0 1.6 1.2 0.8 1020 1850

major axis

length

changing 3.0 2.6 2.2 1.8 1.0 2.4 2.0 1.6 1.2 0.6 845 1740

part C

downwards. The thicker the dielectric material, the more the resonant frequencies are

shifted down. It is also found that the impedance bandwidth becomes much narrower

when the antenna is covered with dielectric material. It is suggested that the dielectric

cover should not be very thick in order to satisfy the bandwidth requirement.

From above numerical results, we can summarize our design procedure as follows:

I

1. change the size of the original disc so that the first resonant frequency is

900MHz(GSM operation frequency);

92

5.---.----.----.---.----,----,----.---,----.---,

-5

-15

-20

Without cover
With thin cover

o- · · · o With think cover

' ' \

0 \ :
0 , :

0 I

0 i I
:1 I

• I I

6 : I I
: II

:o11
:: II

: ::
: I

6
-25L---~--~----~--~--~----~--~--~----~--~

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency(GHz)

Figure 4.11: Return loss of the antenna with dielectric cover

2. change the size of part C (inner most part) so that the second resonant frequency

is 1800MHz(DCS operation frequency) ;

3. change the major axis so that the first resonant frequency is the exact frequency

expected;

4. repeat step 2 to control the second frequency.

In practical design, the dielectric constant should be taken into account before

beginning the above steps.

In the above procedure, no obvious changes have been observed for the antenna

93

radiation patterns.

94

Chapter 5

Conclusion and Future Work

A FDTD code is developed for mobile antenna design purposes, with particular em­

phasis on the modeling of the source region. The feed forms of the source region

include a thin gap voltage source and a current source, the latter can be integrated

directly into the :\-Ia.xwell's curl equation. For input impedance calculation. the

Gaussian pulse or the Rayleigh pulse is chosen to be the function of the sources. It

is found that whatever is the feed form (voltage source or current source). Rayleigh

pulse always produces good results. The results from Gaussian pulse is dependent on

the antenna type. If the antenna is dipole type (it is a open circuit as the operating

frequency is low), the impedance results are good provided that the feed form is volt­

age source. The current source of Gaussian pulse will result in negative resistance

(the real part of the input impedance). If the antenna is loop type (it is short circuit

as the operating frequency is low) , current source produces good impedance results,

while the results from a ,·oltage source are not acceptable.

Se,·eral typical antenna structures including a dipole antenna. a loop antenna and

a monopole mounted on a finite conducting plane are used to validate thP de,·eloped

FDTD code. The effects of the FDTD cell size and the ~Iur distance (the distance

between the outer absorbing boundary and the antenna) on accuracy are explored.

Some criteria for the choice of above parameters in FDTD calculation are gh·en for

practical antenna design. The results from the developed code are compared with

those producing by a moment method based code Numerical Electromagnetic Code

(:'\EC-2) and very good agreement is obtained when the criteria is satisfied.

using the developed code, a new planar monopole antenna which operates at

dual wide band (800MHz band and 1800:'viHz band) is developed by cutting slots and

determining the geometrical parameters. This dual frequency performance is required

for the existing and potential mobile communication system providing analogue and

digital sen·ices.

The absorbing boundary condition used in this thesis is ~lur boundary condi­

tion, which requires that the distance between the antenna and the computational

boundary is more than 10 cells for radiation pattern calculation and 30 cells for input

impedance calculation. Since the computational cost is directly related to the com­

putational domain, the reduction of the cells between the antenna and the boundary

will lower the computational cost greatly. Some other absorbing boundary conditions,

which can simulate the free wave propagation in a better way, are needed.

96

Bibliography

[1] R. A. Burberry. VHF and UHF Antennas. Peter Peregrinus Ltd .. London. Cnited

Knigdom, 1992.

[2] P. A. Tirkas and C. A. Balanis, "Finite-difference time-domain method for an­

tenna radiation:' IEEE Trans. on Ant. Prop .. vol. 40, pp. 334-3-10. ~larch 1992.

[3j ~1. :\ . .Jensen andY. Rahmat-SamiL "EM interaction of handset antennas and a

human in personal communications," Proc of IEEE, vol. 83, pp. I -1 I .. January

1995.

[-l] R. Luebbers, L. Chen. T. Uno, and S .. -\dachi. "FDTD calculation of radiation

patterns, impedance, and gain for a monopole antenna on a conducting box."

IEEE Trans. Ant. Prop ., vol. 40, pp. 1577- 1583, December 1992.

[5] C. A. Balans, Antenna Theory: Analysis and Design. John \Viley & Sons, Inc ..

1982.

[6] K. Fujimoto and I. R. James, Mobile Antenna System Handbook. Artech House,

Inc., 1994.

[7] S. Ramo. J. R. \Vhinnery, and T. \-. Duzer. Fields and Waves in Communication

Electronics. John \Viley &. Sons Inc .. 199-l.

[8] C. R. Rowell and R. D. :\·lurch. "A capacitively loaded PIF:\ for compact mobile

telephone handsets:' IEEE Trans. Ant. Prop., vol. -15. pp. 831-8-12. ~Iay 1997.

(9] \\". S. Chen. ''Single-feed dual-frequency rectangular microstrip antenna with

square slot," Electronics Letters. vol. 34. pp. 231-232. February 1998.

[10] :\. Serrano-Vaello and D. Sanchez-Hernandez, "Printed antennas for dual-band

GS~I/DCS 1800 mobile handsets." Electronics Letters. vol. 34. pp. 1-l0-1-ll.

.January 1998.

[11] ;\. P. :\grawalL G. Kumar. and K. P. Ray, ''.-\ wide-band planar monopole

antennas." IEEE Trans. Ant. Prop., vol. 46, pp. 294- 295. February 1998.

[12] ~I. Hammoud, P. Poey, and F. Colombel. "~latching the input impedance of a

broadband disc monopole," Electronics Letters, vol. 29, pp. 406-407, February

1993.

(13] C. J. Burke and A. J . Poggio, Numerical Electromagnetics Code (NEG}: User 's

Jvfanual. Lawrence Livermore Nat. Lab., Livermore, C:\ , Jan., 1981.

(14] T . Taga and K. Tsunekawa, "Performance analysis of a built-in planar inverted

F antenna for 800 mhz band portable radio units," IEEE Journal on selected

areas in communicatio~, vol. 5, pp. 921- 929, June 1987.

98

[1.5] K. Sato. K. \latsumoto. K. Fujimoto. and K. Hirasawa. ·'Characteristics of a

planar inverted F antenna on a rectangular conducting body:· Electronics and

Communications in Japan, vol. 72. no. 10, pp. 43-51. 1989.

[16] K. S. '{ee. ·'Numerical solution of initial boundary value problems im·oh·ing

:\Ia.xwell's eqations in isotropic media," IEEE Trans. Ant. Prop .. vol. 1-L p. 302.

:\larch 1966.

[17] G. ~[ur. "Absorbing boundary conditions for the finite-difference approximation

of the time-domain electromagnetic-field equations." IEEE Trans. Ant. Prop ..

vol. 39, pp. 429-433, April 1991.

[18] z. P. Liao, H. L. \Vong, and Y. F. Yuan, "A transmitting boundary for the

transient wave analysis," Scince Sinica, vol. 27, no. 10, pp. 1063-1076. 1984.

[19] K. D. Katsibas, C. A. Balanis. P. A. Tirkas, and C. R. Birtcher, "Folded loop an­

tenna for mobile hand-held units," IEEE Trans. on Ant. Prop., vol. 46. pp. 260-

266. February 1998.

[20] J. G . :Maloney, G. S. Smith, and \V. R. Scott, "Accurate computation of the

radiation from simple antennas using the finite-difference time-domain method.''

IEEE Trans. on Ant. Prop., vol. 38, pp. 1059-1068, July 1990.

[21] J . J . Boonzaaier and C. \V. I. Pistorius, "Thin wire dipoles-a finite-difference

time-domain approach," Electronics Letters, vol. 26, pp. 1891-1892, October

1990.

99

[22] K S. Kunz and R . .J. Luebbers. The Finite Difference Time domain Method for

Electromagnetics. CRC Press. Inc., 1993.

[23] :\I. Qiu. B. P. Sinha. and S. :\. Saoudy. "A dual-band planar monopole antenna

for mobile handsets." lOth International Symposium on Antennas. \"member

17-19. 1998. ~ice Acropolis, France.

[2-!J :\f. Qiu. B. P. Sinha. and S. A. Saoudy, aPerformance optimization of planar

monopole antenna for mobile telephone handsets," 1998 Asia-Pacific Microwave

Conference. December 8-lL 1998, Pacifico Yokohama, Yokohama, Japan.

[25] .-\. Taflove and M. E. Brodwin, ":'oiumerical solution of steady-state electromag­

netic scattering problems using the time-dependent :\1axwelrs equations,'' IEEE

Trans. on AfTT. \ 'Ol. 23. pp. 623- 630. August 1975.

[26] J. P. Berenger, "Improved P:\,IL for the FDTD solution of wave-structure inter­

action problems," IEEE Trans. Ant. Prop., vol. -15, pp. 466-473, :\larch 1997.

[27] R. J. Luebbers, K. S. Kunz, M. Schneider, and F . Hunsberger, ":\. finite­

difference time-domain near zone to far zone transformation,'' IEEE Trans. Ant.

Prop. , vol. 39, pp. 429- 433, April 1991.

[28] 0 . :\[. Ramahi, :'Near- and far-field calculation in FDTD simulations using kirch­

hoff surface integral representation," IEEE Trans. Ant. Prop. , vol. 45, pp. 753-

759, May 1997.

100

[29] :\. Taftove. K. R. Cmashankar. B. Beker. F. Harfoush. and K. S. Yee. "Detailed

FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped

joints in thick conducting screens," IEEE Trans. on Ant. Prop .. vol. 3u. pp. 2-17-

257. Febuary 1988.

[30] :\I. A . .Jensen andY. Rahmat-Samii. ·'Performance analysis of antennas for hand­

held transivers using FDTD." IEEE Trans. on Ant. Prop., ,·ol. 42. pp. 260?'?-266.

August 1994.

[31] K. L. \Vong and Y. F . Lin, "Small broadband rectangular microstrip antenna

with chip-resistor loading," Electronics Letters, vol. 33, pp. 1593- 159-t. February

1997.

101

Appendix A

A Input Data File Example

A.l The Data File "ant .dat"

41 61 62
0.00375 0.00375 0 .003571429
0 . 0005
1 . 0 32.0 0.1499
90000
material.dat
0
19 21 19 43 19 44
. 010
21.0 30.5 31.0
4 . 0

! ! ! ! ! ! ! ! ! ! !
line 1
line 2
line 3
line 4
l i ne 5
l i ne 6
line 7

line 8
line 9
line 10
line 11

nx ny nz
dx dy dz
wire radii
amp beta wavelength
nstop
material file name
flag:A

A :O>pulse; l>sine wave (the form of the source);
Ist Ind Jst Jnd Kst Knd ; (integral surface size)
value_ERROR : condition to judge the stability
the origin for the far field
dielectric constant of the surrouding material

A.2 The Data File "wire.dat"

4
z 21 21 22 40 31
z 21 41 22 40 2
y 21 22 39 21 2
y 21 22 39 42 2

/••line 1 number of wires(single wire:l; two wires:2)
/••line 2 first wire: Ic Jc Kst Kend(starting point t ending point)
/••line 3 second wire:Ic Jc Kst Kend(starting point t ending point)
I••

A.3 A Program to Create "material.dat'

#include <iostream.h>
#include <math.h>
#include<stdio.h>
II*****************
//•••material id•••
II*****************
const int LL-= 21;
const int L1= 43;
const int L2= 57;
const int nx0=70, ny0=70, nz0=190;

int idone[nxO][nyO][nzO], idtwo[nxO][nyO][nzO], idthre[nxO][nyO][nzO];
main()
{int i ,j ,k;
int nx-=51, ny=62, nz=182;
int mtype=l;

for(i=1; i<:nx;i++)
for(j:l; j<=ny;j++)

for(k=l; k<=nz;k++)
{

idone [i] [j] (k] =0; idtvo (i] [j] [k] =0; idthre (i] [j] [k] =0;
if(i==21 tt (j==211 lj==41) tt k>=21 tt k<=41) idthre[i][j][k]-=1;
if(i==21 tt (ks=211 lk==42) tt j>=21 tt j<=40) idtwo[i][j][k]=1;
}

idthre [21] [21] [31] =-1;

103

FILE * fp;
fp= fopen("material.dat", "w");
for(i=l; i<=nx ; i++)

for(j=l; j<=ny;j++)
for(k=l; k<=nz;k++)

if (idone [i) [j] [k] ! =0 I I idtwo [i] [j] [k] ! =0 I I idthre [i] [j] [k] ! =0)
fprintf(fp, "%5i Y.Si Y.Si Y.Si %5i %5i\n", i,j,k, idone[i](j][k],\

idtwo [i] [j] [k] , idthre [i] [j] [k]) ;

fclose(fp);
}

104

Appendix B

The FDTD Code

*************defin.h•••••••••••••••

#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <ctype.h>
#include "complex.h"
#define nxO 42
#define nyO 42
#define nzO 73
typedef double dou;
enum Mybool{falseO,truel};
struct nxyz{int x,y,z;};
struct delO{dou x,y,z;};
struct disO{dou x,y,z;};
struct coffO{dou ecrlx[lO] I ecrly(lO], ecrlz(10]1

esctc[lO] I eincc(lO], edevcn(lO];};

************antm.cpp***************

#include "defin.h11

coffO coff;
delO del;
disO disp;
nxyz nn, nl ;

void init() ;
void geo(char •);
void par(int, dou, dou);
void exfld(), eyfld() 1 ezfld()
void hxfld(), hyfld(), hzfld()
void radeyx()l radezx();
void radezy(), radexy();
void radexz() 1 radeyz();
void fine_wire();
void wave_stable(double I int •~ int •);
void find_max();
void find_phase(double);
void out_surface_field(double);
void out_surface_flow(double);
void current(intl fstream t);
void save_diag(int 1 dOU 1 douldouldou 1 douldou);
//void datsave(delO I dou I int I int I int);
void far_field(int, int • char •);
void readFile(char *• fstream t);
void writeFile(char * 1 fstream t);

dou eps0=8.854e-12~xmu0=1.2566306e-61eta0=376.733341;
dou C=l.O/sqrt(epsO•xmuO);
dou PI=4•atan(1.0);
const unsigned NAME_SIZE=64;

int idone[nxO][nyO][nzO] ,idtvo[nxO][nyO] [nzO]Iidthre[nxO](nyO][nzO];
dou exs[nxO][nyO](nz0] 1eys[nxO][nyO][nz0] ,ezs[nxO][nyO][nzO].

hxs[nxO][nyO][nzO],hys[nxO][nyO][nz0] 1hZs[nxO][nyO][nzO];
dou eysx1[5][nyO][nzO], ezsx1[5][nyO][nz0],

ezsyl[nx0][5][nz0], exsyl[nx0][5] [nzO],
exszl[nx0][ny0](5], eysz1[nxO][ny0][5]; //radsav

dou eysx2[5][ny0][nz0], ezsx2[5](nyO][nz0],
ezsy2[nx0][5][nz0], exsy2[nx0](5] [nzO] I

exsz2[nx0][ny0](5], eysz2[nx0][ny0][5]; //radsav2

!!••················
dou ex_y[2][nxO][nyO],hx_y[4][nxO][ny0],

ex_z[2][nxO][nzO],hx_z[4][nx0][nz0],

ey_x[2][nxO](ny0] 1hy_x[4](nxO][ny0] 1

106

ey_z[2][nyO](nzO],hy_z[4][nyO] [nzO],

ez_x[2][nxO](nzO],hz_x[4][nxO] [nzO],
ez_y[2][nyO][nzO],hz_y[4][nyO] [nzO]; //surface_current

complex ex_y_p[2][nxO][nyO],hx_y_p[4] [nxO][nyO],
ex_z_p[2][nxO][nzO],hx_z_p[4][nxO](nzO],

ey_x_p[2)[nxO][nyO],hy_x_p[4] [nxO][nyO],
ey_z_p[2][nyO][nz0] ,hy_z_p[4] [nyO][nzO],

ez_x_p[2](nxO][nz0] ,hz_x_p[4][nxO][nzO],
ez_y_p[2][nyO][nzO],hz_y_p[4] [nyO][nzO]; //surface_current_phase

complex exy[2][nxO](nyO],hxy[2)[nxO][ny0],
exz[2][nxO][nzO],hxz[2][nxO][nzO],

eyx[2][nxO](nyO],hyx[2][nxO][ny0],
eyz[2][nyO][nzO],hyz[2][nyO][nz0],

ezx[2][nxO][nzO],hzx(2][nxO][nzO],
ezy[2][nyO][nzO],hzy[2][nyO][nzO]; //surface_current

!!••·················

dou dtedx,dtedy,dtedz;
dou dtmdx,dtmdy,dtmdz;
dou cxd,cxu,cyd,cyu,czd,czu, //mur 1

cxx,cyy,czz,cxfyd,cxfzd,cyfxd,cyfzd,czfxd,czfyd; //mur2

dou alpha, betadt, period, off;
dou delay, ampx, ampy, ampz;

dou t,dt;
dou wl;
dou rO;

int flag_inc, flag_stable=O, flag_max=O, flag_phase=O;
int Ist, Ind, Jst, Jnd, Kst, Knd;
double value_ERROR;
double dielc;

107

double cen_x, cen_y, cen_z, fi;

!!••··············
//•••management•••

!!•••·············
double SOURCE_OLO=O.O, SOURCE_NEW=O.O;
main()
{

int nstop;
dou thinc=O, phinc=O, ethinc=O, ephinc=O;
dou amp, beta;
int ntest=4;
char material_File[NAME_SIZE+1];

fstream fin ;
char inFile[NAME_SIZE+1]="ant.dat";
readFile(inFile, fin);
fin>>nn.x>>nn.y>>nn.z;
fin>>del . x>>del.y>>del.z;
fin>>rO;
fin>>amp>>beta>>vl;
fin >>nstop;
fin>>material_File;
fin»flag_inc;
fin>>Ist >>Ind >>Jst >>Jnd >>Kst >>Knd;
fin>>value_ERROR;
fin>>cen_x>>cen_y>>cen_z;
fin>>dielc;
fi=90;
fin. close 0 ;

nl .x=nn.x-1; nl .y=nn .y-1; n1.z=nn.z-1;

cout<<"nstop="<<nstop<<,.\n";

// _______________________________ operation

cout << "qmd";
initO;
par(nstop,amp, beta);
geo(material_File);

int step_add=-1; // step -1 : initialize; step 0

108

begin

double ONE_cycle=vl/C/dt;

cout<<"cycle="<<ONE_cycle<<"\n";
for(int nO=l; nO<=nstop; nO++)
{ cout<<nO<< endl;
exfld(); eyfld(); ezfld();

radeyx();
radezxO;
radezyO;
radexyO;
radexz();
radeyz();

t=t+dt/2.;
hxfld(); hyfld(); hzfld();

fine_wire 0;
t=t+dt/2.;

!!••··
if(flag_inc==l)

{

if(flag_stable!=l)
wave_stable(hxs[nn .x-10] [nn.y-lO][nn.z-10], tflag_stable, tnO)

else
{find_max();

}

double _tn=step_add•(360/0NE_cycle);
f ind_phase (_ tn) ;
if((step_add++)==(int)(ONE_cycle+l) I I nO==nstop)

{out_surface_flow(ONE_cycle);
out_surface_field(ONE_cycle);
far_field(O,l, "Ectx.dat");
far _field (90 ,1, "Ecty . dat") ;
far _field(90 ,0, "Ectf .dat");
break;

}

}//•• sin_inc wave , steady response.••

!!•••••••··
} // for-loop ends•••••••

109

return 0;
}// main end

!!•••··············
//•••material id•••

!!••***************
void geo(char •inFile)
{

int i 1 j 1 k1 id_X 1 id_yl id_z;
char c_tmp [160];
fstream fin ;
readFile(inFile, fin);
while(!fin. eof())

{fin>>c_tmp ; if(!isdigit(c_tmp[O])) break;
i=atoi(c_tmp); fin>>j>>k>>id_x>>id_y>>id_z;
idone [i] [j] [k] =id_x; idtwo [i] [j] [k] =id_y; idthre [i] [j] [k] =id_z;
}

fin. close 0 ;
}

**********•init . cpp**************

#include "defin .h"

!!•••··················
//•••initial value O•••

!!••···················
extern int idone[nxO] [nyO][nzO] ,idtwo[nxO][nyO] [nzO] 1

idthre[nxO][nyO][nzO];
extern dou exs[nxO](nyO][nz0] 1 eys[nx0] [nyO](nzO] I

ezs [nxO] [nyO] [nzO] 1 hxs [nxO] [nyO] [nzO] ,
hys [nxO] [nyO] [nzO] , hzs [nxO] [nyO] [nzO] ;

extern dou eysx1[5][nyO][nz0] 1 ezsx1[5][nyO][nzO] I

ezsy1 [nxO] [5] [nzO] , exsy1 [nxO] [5] [nzO] I

exsz1[nxO](ny0][5], eyszl(nxO][nyO](S]; //radsav
extern dou eysx2[5][nyO](nzO], ezsx2[5][nyO](nz0] I

ezsy2 [nxO] [5] [nzO] I exsy2 [nxO] (5] [nzO] ,
exsz2[nxO][ny0][5], eysz2[nxO][ny0][5]; //radsav2

!!••················
extern dou ex_y[2][nx0][ny0] ,hx_y[2][nx0] [nyO],

110

ex_z [2] [nxO] [nzO] , hx_z [2] [nxO] [nzO] ,

ey_x[2] [nxO] [nyO) ,hy_x[2] [nxO] [nyO],
ey_z[2][nyO][nzO] ,hy_z[2][nyO][nzO],

ez_x [2] [nxO] [nzO] , hz_x [2] [nxO] [nzO] ,
ez_y [2] [nyO] [nzO] , hz_y [2] [nyO] [nzO] ;

//surface_current

!!•••················
extern nxyz nn,nl;
extern coffO coff;

void initO
{

int i,j,k,l;
for(k=l; k<=nn.z; k++)

for(j=l; j<=nn.y; j++)
for(i=l; i<=nn.x; i++)

{exs[i] [j] (k]=O.O; eys(i] (j] [k]=O.O;
ezs [i] [j] [k] =0. 0; hxs [i] [j] [k] =0. 0;
hys [i] [j] [k] =0. 0; hzs [i] [j] [k] =0. 0;

idone [i] [j] [k] =0; idtwo [i] [j] [k] =0;
idthre (i] [j] [k] =0;

}

for(k=l; k<=nl.z; k++)
for(j=l; j<=nl.y; j++)

for(i=l; i<=4; i++)
{eysxl(i] [j][k]=O.O; eysx2(i] [j][k]=O.O;
ezsxl[i] [j] (k]=O.O; ezsx2[i] [j] [k]=O.O;

}

for(k=l; k<=nl.z; k++)
for(j=l; j<=4; j++)

for(i=l; i<=nl.x; i++)
{exsyl[i](j][k]=O.O; exsy2[i](j][k]=O . O;
ezsyl [i] [j] [k] =0. 0; ezsy2 (i] [j] [k] =0. 0;

}

for(k=l; k<=4; k++)
for(j=l; j<=nl.y; j++)

for(i=l; i<=nl.x; i++)
{exszl [i] [j] [k] =0. 0; exsz2 [i] [j] [k] =0. 0;
eyszl [i] [j] (k] =0 . 0; eysz2 (i] [j] [k] =0. 0;

111

}

for(1=1; 1<=9; 1++)
{ coff.esctc[l]=O.O; coff.eincc[l]=O .O; coff.edevcn[l]=O . O;

coff.ecrlx[l]=O.O; coff.ecrly[l]=O.O; coff.ecrlz[l]=O.O ;
}

II•••······················
for(int ind=O; ind<=l; ind++)

{

for(i=1; i<snn.x; i++)
for(j=l; j<=nn.y; j++)

{ex_y [ind] [i] [j] =0; hx_y [ind] (i] [j] =0;
ey _x [ind] [i] [j] =0; hy _x [ind] [i] [j] =0;

}

for(i=l; i<=nn.x; i++)
for(k=1; k<=nn.z; k++)

{ex_z [ind] [i] [k] =0; hx_z [ind] [i] [k] =0;
ez_x [ind] [i] [k] =0 ; hz_x (ind] (i] [k] =0 ;

}

for(j=1; j<=nn.y; j++)
for(k=l; k<=nn.z; k++)

{ey_z[ind](j][k]=O; by_z(ind][j][k]=O;
ez_y [ind] [j] [k] =0; hz_y [ind] [j] [k] =0;

}
}

}

***********par .cpp**************

II••····························· II setup to get initial values•••

II••·····························
#include 11 defin .h11

extern delO del;
extern disO disp;
extern coffO coff;
extern nxyz nn,nl;
extern int nstop;
extern dou C, PI, epsO, muO, dielc;

112

extern dou amp,beta;
extern dou dtedx,dtedy,dtedz;
extern dou dtmdx,dtmdy,dtmdz;
extern dou cxd,cxu,cyd,cyu,czd,czu, llmur 1

cxx,cyy,czz,cxfyd,cxfzd,cyfxd,cyfzd,czfxd,czfyd; llmur2
extern dou alpha, betadt, period, off, dt, delay, ampx, ampy, ampz;

void par(int nstop,dou amp, dou beta)
{int i;
dou eps[lO], sigma[lO];
dou dtxi=Cidel.x, dtyi=Cidel.y, dtzi=Cidel.z;

dt=l.Oisqrt(dtxi•dtxi+dtyi•dtyi+dtzi•dtzi);
lie••• parameter alpha is the decay rate determined by beta.
betadt = beta•dt;
period= 2.0•(betadt);
alpha =pow(4.l(betadt) ,2);

off=l.O;

for(i=l; i<=9; i++)
{ eps[i]=epsO; sigma[i]=O .O;}

lie••• define eps and sigma for each material here
eps[2]=dielc•eps0;
sigma[2]=0.005;

lie••• generate multiplicative constants for field update equations
lie••• free space
dtedx=dtl(epsO•del .x);
dtedy=dtl(epsO•del.y);
dtedz=dtl(epsO•del .z);
dtmdx=dtl(xmuO•del.x);
dtmdy=dtl(xmuO•del .y);
dtmdz=dt/(xmuO•del.z);

lie••• lossy dielectrics
for(i=2; i<=9; i++)

{coff.esctc[i]=eps[i]/(eps[i]+sigma[i] •dt);
coff . eincc[i]=sigma[i] •dtl(eps[i]+sigma[i] •dt);
coff.edevcn[i]=dt•(eps[i]-epsO)/(eps[i]+sigma[i] •dt);
coff .ecrlx[i]=dtl((eps[i]+sigma[i] •dt)•del.x);

113

eoff.ecrly[i]=dt/((eps[i]+sigma[i] •dt)•del .y);
coff . ecrlz[i]=dt/((eps(i]+sigma(i] •dt)•del .z);

}

lie••• compute outer radiation boundary condition Corbc) constants
cxd=CC•dt-del.x)/(C•dt+del.x);
cyd=(C•dt-del.y)/(C•dt+del.y);
ezd=CC•dt-del.z)/CC•dt+del.z);
cxu=cxd; eyu=cyd; czu=czd;

lie••• compute 2nd order orbc constants
cxx=2 . •del.x/CC•dt+del.x);
eyy=2.•del.y/CC•dt+del.y);
czz=2 . •del .z/CC•dt+del .z);
cxfyd=del.x•C•dt•C•dt/(2.•del.y•del.y•CC•dt+del .x));
cxfzd=del.x•C•dt•C•dt/(2.•del.z•del.z•CC•dt+del.x));
cyfzd=del . y•C•dt•C•dt/(2.•del.z•del.z•(C•dt+del.y));
eyfxd=del.y•C•dt•C•dt/(2.•del.x•del .x•(C•dt+del.y));
ezfxd=del.z•C•dt•C•dt/(2.•del.x•del .x•CC•dt+del.z));
czfyd=del.z•C•dt•C•dt/(2.•del.y•del.y•CC•dt+del.z));

}

********••••••e_field.cpp•••••••••••••••

II••············· II••• E field ***

II••·············
#include "defin.h"
extern coffO coff;
extern delO del;
extern nxyz nl;
extern int flag_inc;
extern int idone[nxO][nyO][nzO] ,idtwo[nxO][nyO][nzO],idthre[nxO][nyO][nzO];
extern dou exs[nxO][nyO][nzO] ,eys[nxO](nyO][nzO],ezs[nxO][nyO][nzO],

hxs[nxO][nyO](nzO] ,hys[nxO] [nyO][nzO] ,hzs[nxO][nyO][nzO];
extern dou dtedx,dtedy,dtedz;
extern dou wl;
extern dou SOURCE_ OLD, SOURCE_NEW;
dou ez_sourceO();

114

dou ez_source1();

void exfld ()
{

for(int k=2; k<=n1.z; k++)

}

}

for(int j=2; j<=n1.y; j++)
for(int i=1; i<=n1.x; i++)

{ II determine material type
if(idone[i] [j][k]==O) II free space

exs[i] [j] (k]+=(hzs(i] [j] [k]-hzs(i] [j-1] [k])•dtedy
- (hys (i] [j] [k] -hys (i] (j] [k-1]) •dtedz;

else if(idone(i](j](k]==1) II perfect conductor
exs [i] [j] [k] =0. 0;

else if(idone[i](j] [k]==-1) II source;
{if(flag_inc==O) exs(i][j](k]=-ez_sourceO()Idel.x;

}

else if(flag_inc==1) { dou TMP;TMP=ez_source1();
exs[i] [j] [k]=-TMP/del.x;
SOURCE_OLD=SOURCE_NEW; SOURCE_NEW=TMP;}

else {cout<<"flag error in ex field flag_inc="
<<flag_inc<<"\n"; exit(O);}

cout<<"ex"<<exs [i] [j] (k] <<endl;

void eyfldO
{

for(int k=2; k<=n1.z; k++)
for(int j=1; j<=n1.y; j++)

for(int i=2; i<=n1.x; i++)
{ II determine material type
if(idtwo[i][j][k]==O) II free space

eys [i] [j] (k] =eys [i] [j] [k] + (hxs [i] [j] [k] -hxs [i] [j] [k-1]) •dtedz
- (hzs [i] [j] (k] -hzs [i -1] [j] [k]) •dtedx;

else if(idtwo(i][j][k]==1) II perfect conductor
eys [i] [j] (k] =0. 0;

else if(idtvo[i] [j] [k]==-1) II source;
{if(flag_inc==O) eys[i](j][k]=-ez_sourceO()Idel.y;
else if(flag_inc==1) { dou TKP;TMP=ez_sourcel();

eys[i][j](k]=-TMP/del.y;
SOURCE_OLD=SOURCE_NEW; SOURCE_NEW=TKP;}

else {cout<<"flag error in ey field flag_inc= ..

115

}

}

}

<<flag_inc<<"\n"; exit(O);}
cout<<"ey"<<eys[i][j][k]<<endl;

void ezfld()
{

lldou ez_sourceO();
lldou ez_source1();
for(int k~1; k<=n1.z; k++)

}

for(int j=2; j<=n1.y; j++)
for(int i~2; i<=n1.x; i++)

{ II determine material type
if(idthre[i][j][k]==O) II free space

ezs [i] [j] [k] =ezs [i] [j] [k] +(hys [i] [j] [k] -hys [i -1] [j] [k]) •dtedx
- (hxs [i] [j] [k] -hxs [i] [j-1] [k]) •dtedy;

else if(idthre[i][j](k]==1) // perfect conductor
ezs[i](j][k]=O.O;

else if(idthre[i][j](k]==-1) //source point of the antenna•••

}

{if(flag_inc==O) ezs[i](j](k]=-ez_sourceO()/del .z;
II Rayleigh pulse {if(flag_inc~=O) ezs[i][j][k]=-ez_sourceO()/del.z;
II if(flag_inc==O) ezs[i](j][k]+=(hys[i] [j] [k]-hys[i-l](j] [k])•dtedx
II -(hxs[i] [j] [k]-hxs[i] [j-1] [k])•dtedy
//current source!! -ez_sourceO()•dtedx/del.y;

//if(flag_inc==O)
II {ezs[i](j](k]=O;
II exs[i][j](k]=-ez_source0()•2ldel.xllog(del.x/0.0005);
II eys[i][j][k]~-ez_source0()•2ldel.yllog(del . y/0.0005);

II exs[i-1](j][k]=ez_source0()•2ldel.x/log(del.xl0.0005);
II eys(i] [j-1] [k]=ez_source0()•2/del.y/log(del.y/0.0005);
II } for magnetic frill source!!

}

else if(flag_inc==1) { dou TKP;TMP=ez_source1();
ezs[i][j](k]=-TMPidel.z;
SOURCE_OLD=SOURCE_NEW; SOURCE_NEWaTMP;}

else {cout<<"flag error in ez field flag_inc="
<<flag_inc«"\n"; exit(O);}

cout<<"ez"<<ezs[i] [j] [k]<<"\n";

116

•••••••••••source.cpp*************

#include "defin.h"
extern delO del;
extern disO disp;

extern dou PI, C;
extern dou wl,t;

extern int i,j,k;
extern dou t,alpha,betadt;

dou ez_sourceO 0
II••• Gaussian pulse•••
{dou vl;

if(t<OI lt>2•betadt) v1=0;
else v1=1.0•exp(-alpha•pov(t-betadt,2));
return(v1);

}

dou ez_sourceOR()
II••• Rayleigh pulse --the derivative of Gaussian pulse•••
{dou v1;

if(t<OI lt>2•betadt) v1=0;
else v1=-2•alpha•(t-betadt)•exp(-alpha•pov(t-betadt,2)) ;
return(vl);

}

dou ez_sourcel() II••• sine wave source•••
{dou v1=1 .0•sin(2•PI•C/wl•t);
return(vl);

}

•••••••••••••••••••••••••••••••••••
•••••••••••Mur.cpp****************

II••······················· II••• Boundary condition•••

!!••••·····················
#include "defin.h"

•

117

extern nxyz nn;
extern dou exs[nxO](nyO][nzO] ,eys[nxO][nyO][nzO] ,ezs[nxO] [nyO][nzO],

hxs [nxO] [nyO] [nzO] , hys (nxO] [nyO] [nzO] , hzs [nxO] [nyO] [nzO] ;
extern dou eysx1[5][ny0][nz0], ezsx1[5][ny0][nz0],

ezsyl [nxO] (5] [nzO] , exsy1 [nxO] [5] [nzO] ,
exsz1 [nxO] [nyO] [5] , eyszl [nxO] [nyO] [5] ; I /radsav

extern dou eysx2(5] [nyO] (nzO], ezsx2[5][nyO][nz0],
ezsy2 [nxO] [5] [nzO] • exsy2 [nxO] [5] [nzO] ,
exsz2[nxO][ny0][5], eysz2[nx0][ny0][5]; //radsav2

extern dou cxd,cxu,cyd,cyu,czd,czu, //mur 1
cxx,cyy,czz,cxfyd,cxfzd,cyfxd,cyfzd,czfxd,czfyd; //mur2

inti, j, k;
void radeyx()
{int nxl=nn . x-1, nyl=nn.y-1, nz1=nn .z-1;

1/c do edges with first order orbc
for(k=2; k<=nz1; k++)

{ j=l;

}

eys [1] [j] [k] =eysx1 [2] [j] [k] +cxd• (eys [2] (j] [k] -eysx1 [1] (j] [k]);
eys [nn. x] [j] [k] =eysx1 [3] [j] [k] +cxu• (eys [nxl] [j] [k] -eysx1 [4] [j] [k]);
j=nyl;
eys [1] (j] [k] =eysx1 (2] [j] (k] +cxd• (eys [2] [j] (k] -eysxl [1] [j] [k]) ;
eys [nn. x] [j] [k] =eysx1 [3] [j] [k] +cxu• (eys [nxl] [j] [k] -eysx1 (4] [j] [k]);

for(j=2; j<=ny1-1; j++)
{k=2;

}

eys[l][j](k] =eysx1[2] [j][k]+cxd•Ceys[2)[j] [k]-eysxl[l](j][k]);
eys[nn.x] [j] [k]=eysx1(3] [j] [k]+cxu•Ceys[nxl] [j] [k]-eysx1[4] [j] (k]);
k=nzl;
eys[l][j][k] =eysx1[2][j][k]+cxd•Ceys[2][j][k]-eysx1[1)[j][k]) ;
eys [nn . x] [j] [k)=eysx1[3] [j] (k]+cxu•Ceys[nx1] [j] [k]-eysx1 [4] [j] [k]);

1/c now do 2nd order orbc on remaining portions of faces
for(k=3; k<=nzl-1; k++)

for(j=2; j<=ny1-1; j++)
{eys[1] [j] [k]=-eysx2[2] [j] [k]+cxd•(eys[2] [j] [k]+eysx2[1] [j] [k])

+cxx•Ceysx1[1] [j] (k]+eysx1[2] [j] [k])
+cxfyd•(eysx1[1](j+l)[k]-2.•eysx1[1][j][k]

+eysxl [1] [j -1] [k] +eysx 1 [2] [j + 1] [k]
-2. •eysxl [2] [j] [k] +eysxl [2] [j -1] [k])

+cxfzd•(eysx1[1][j][k+1]-2 . •eysx1[1][j][k)
+eysxl [1] [j] [k-1] +eysxl [2] [j] [k+l]

118

-2.•eysx1[2][j][k]+eysx1[2] [j] [k-1]);
eys [nn. x] (j] [k] =-eysx2 [3] [j] [k] +cxd• (eys [nxl] (j] [k] +eysx2 [4] [j] [k])

+cxx•(eysxl [4] [j] [k]+eysx1[3] [j] [k])
+cxfyd•Ceysx1[4][j+l][k]-2.•eysx1[4][j][k]

}

+eysxl [4] [j-1] (k] +eysxl [3] [j+l] (k]
-2-•eysx1[3][j] [k]+eysx1[3] [j-l][k])

+cxfzd• (eysxl [4] (j] [k+1] -2. •eysxl [4] [j] [k]
+eysx1 [4] [j] [k-1] +eysx1 [3] [j] [k+l]
-2. •eysxl [3] [j] [k] +eysxl [3] [j] [k-1]);

II now save past values
for(k=2; k<=nz1; k++)

}

for(j=l; j<=nyl; j++)
{ eysx2(1][j](k]=eysx1[1][j](k];

}

eysx2 [3] [j] [k] =eysxl [3] [j] (k] ;
eysxl (1] [j] [k] =-eys [1] [j] [k]
eysx1 [3] [j] [k] =eys [nxl] [j] [k] ;

eysx2 (2] [j] [k] =eysx 1 [2] (j] [k] ;
eysx2 [4] [j] [k] =eysxl[4] (j] [k] ;
eysxl (2] [j] [k] =eys [2] [j] [k] ;
eysx1 [4] [j] [k] =eys [nn . x] [j] [k]

void radezxO
{int nx1=nn.x-1, ny1=nn.y-1, nzl=nn.z-1;
for(k=1; k<=nzl; k++)

{ j=2;

}

ezs [1] [j] [k] =ezsxl [2] [j] [k] +cxd• (ezs [2] [j] [k] -ezsx1 [1] (j] [k]);
ezs [nn. x] (j] (k] =ezsx1 (3] (j] [k]+cxu•Cezs [nx1] [j] [k] -ezsxl [4] [j] [k]);
j=nyl;
ezs [1] [j] [k] =ezsxl [2] [j] (k] +cxd• (ezs (2] (j] [k] -ezsxl (1] [j] [k]);
ezs [nn. x] [j] (k] =ezsx1 [3] [j] [k] +cxu• (ezs [nxl] [j] [k] -ezsxl [4] [j](k]) ;

for(j=3; j<=nyl-1; j++)
{k=l;

}

ezs[1][j](k]=ezsx1[2][j][k]+cxd•(ezs[2][j] [k]-ezsx1[1][j](k]);
ezs[nn.x] [j] [k]=ezsx1[3] [j] [k]+cxu•(ezs[nxl] (j] [k]-ezsx1(4] [j] (lt]);
k=nzl;
ezs(1] [j] [k]=ezsx1[2] [j] [k]+cxd•(ezs[2] [j] [k]-ezsxl[l] [j] [k]);
ezs[nn.x] [j] [k]=ezsx1[3] [j] [k]+cxu•(ezs[nxl] [j] [k]-ezsx1[4] [j] [lc]);

1/c nov do 2nd order orbc on remaining portions of faces
for(k=2; k<=nzl-1; k++)

119

for(j=3; j<=ny1-1; j++)
{ ezs [1] [j] [k] =-ezsx2 [2] [j] [k] +cxd• (ezs [2] [j] [k] +ezsx2 [1] [j] [k])

+cxx• (ezsx1 [1] [j] [k] +ezsx1 [2] [j] [k])
+cxfyd• (ezsx1 [1] [j+1] [k] -2. •ezsx1 [1] [j] [k]

+ezsx1[1][j-1][k]+ezsx1[2) [j+1](k]
-2.•ezsx1[2][j][k)+ezsx1[2][j-1] [k])

+cxfzd•(ezsx1[1](j][k+1]-2 . •ezsx1[1] [j][k]
+ezsx1(1] [j][k-1]+ezsx1(2] (j] [k+l]
-2.•ezsx1[2][j) [k]+ezsx1[2] [j] [k-1])

ezs[nn.x] [j] [k]=-ezsx2[3] [j] [k]+cxd•(ezs[nxl] [j] [k]+ezsx2[4] [j] [k])
+cxx• (ezsx1 [4] [j] [k] +ezsxl [3] [j] [k])
+cxfyd•(ezsx1[4][j+l)[k]-2.•ezsx1[4] [j][k]

}

+ezsx 1[4] [j -1] (k] +ezsx 1 [3] [j + 1] [k]
-2.•ezsx1[3][j][k]+ezsx1[3] [j-l][k])

+cxfzd• (ezsx1[4] [j] [k+1] -2. •ezsxl [4] [j] [k]
+ezsx1(4][j][k-1]+ezsx1[3] [j][k+l]
-2. •ezsx1[3] [j] [k] +ezsxl [3] [j] [k-1])

1/c now save past values
for(k=l; k<=nz1; k++)

}

for(j=2; j<=ny1; j++)
{ ezsx2 [1] (j] [k] =ezsxl [1] [j] (k] ;

ezsx2 [3] [j] [k] =ezsxl [3] [j] (k] ;
ezsx1 [1] [j] [k] =ezs [1] [j] [k) ;
ezsx1 [3] [j] [k] =ezs [nx1] [j] [k] ;

}

ezsx2(2](j] (k]=ezsx1[2][j][k];
ezsx2 [4] [j] [k] =ezsx1 [4] [j] [k] ;
ezsx1[2] [j][k]=ezs[2][j][k]
ezsxl [4] [j] [k] =ezs [nn. x] [j] [k]

void radezyO
{int nxl=nn.x-1, ny1=nn.y-1. nz1=nn.z-1;

1/c do edges with first order orbc
for(k=l;k<=nz1;k++)

{ i=2;
ezs [i] [1] (k] =ezsy1 [i] [2] [k] +cyd• (ezs [i] [2) [k] -ezsy1 [i] [1] [k]);
ezs [i] [nn. y] [k] =ezsy1 [i] [3] [k] +cyd• (ezs [i] [ny1] (k] -ezsy1 [i] [4] [k])

i=nx1;
ezs[i][1][k]=ezsyl[i][2][k]+cyd•(ezs[i][2][k]-ezsy1[i][1][k]);
ezs [i] [nn. y] [k] =ezsyl [i] [3] [k] +cyd• (ezs [i] [nyl] [k] -ezsy1 [i] [4] [k]) ;

}

for(i=3; i<=nx1-1; i++)
{ k=l ;

120

}

ezs [i] [1] (k] =ezsyl [i] [2] (k] -+cyd• (ezs [i] [2] [k] -ezsyl (i] [1] [k]) ;
ezs (i] [nn. y] [k] =ezsy1 (i] [3] [k] +cyd• (ezs [i] [ny1] [k) -ezsy1 [i] (4] (k]) ;

k=nzl;
ezs (i] [1] [k] =ezsyl[i] [2) [k] -+cyd• (ezs [i] [2] [k] -ezsyl [i] [1] [k]) ;
ezs(i] [nn.y] [k]=ezsy1(i] [3] [k]+cyd•(ezs[i] [ny1] (k]-ezsy1[i] [4] [k]);

lie nov do 2nd order orbc on remaining portions of faces

for(k=2;k<=nz1-1; k++)
for(i=3;i<=nx1-1; i++)

}

{ ezs [i] [1] [k] =-ezsy2 (i] [2] [k] +cyd• (ezs (i] [2] [k] +ezsy2 (i] [1] (k])
+cyy• (ezsy1 [i] [1] [k] +ezsy1 [i] (2] [k])
+cyfxd•(ezsy1[i+1] (1] [k]-2.•ezsy1(i] [1] (k]

+ezsyl[i-1] [1) [k]+ezsy1[i+1] (2] [k]
-2. •ezsyl (i] (2] [k] +ezsy1 [i -1] [2] [k])

+cyfzd•(ezsy1(i][1][k+1]-2.•ezsy1[i)[1][k]
+ezsy1 [i] [1) [k-1] +ezsy1 [i] (2] [k+1]
-2.•ezsy1[i][2][k]+ezsy1(i](2][k-1]) ;

ezs[i] [nn.y] [k]=-ezsy2(i] [3] [k]+cyd•(ezs[i) [ny1] (k]+ezsy2[i] [4] [k])
+cyy• (ezsy1 (i] [4] [k] +ezsy1 [i] [3] [k])
+cyfxd•(ezsy1[i+1] [4] [k]-2.•ezsy1[i] [4] [k]

+ezsy1[i-1][4][k]+ezsy1[i+1][3)[k]
-2.•ezsy1[i][3][k]+ezsy1[i-1][3][k])

+cyfzd•(ezsyl[i] [4)[k+1]-2.•ezsy1[i] [4][k]
+ezsy1[i](4][k-1]+ezsy1[i][3][k+1]
-2.•ezsy1[i] [3][k]+ezsy1[i][3] [k-1])

1/c nov save past values
for(k=l;k<=nzl; k++)

}

for(i=2;i<=nx1; i++)
{ezsy2[i] [1] [k]=ezsy1(i] (1] [k]
ezsy2[i] [3](k]=ezsyl[i] (3][k]
ezsy1 [i] (1] (k] =ezs [i] [1] [k]
ezsy1 [i] [3] (k] =ezs [i] [ny1] [k]

}

void radexyO
{int nx1=nn.x-1, nyl=nn.y-1, nz1=nn . z-1;

ezsy2 (i] [2] (k] =ezsy1 [i] [2] [k]
ezsy2 [i] [4] [k] =ezsy1 [i] [4] [k]
ezsy1[i)[2] (k]=ezs[i] (2](k]
ezsy1 [i] [4] [k] =ezs [i] [nn. y] [k]

1/c do edges vith first order orbc
for(k=2;k<=nz1; k++)

{i=1;
exs [i] [1] [k] =exsyl (i] [2] [k] +cyd• (exs [i] [2] [k] -exsy1 [i] [1] [k)) ;

121

exs [i] [nn. y] [k] =exsyl [i] [3] [k] +cyd• (exs [i] [ny1] (k] -exsy1 [i) [4] [k]) ;

i=nxl;
exs [i] [1] [k] =exsy1 [i] [2] [k] +cyd• Cexs [i] [2] [k] -exsyl[i] [1] [k]);
exs [i] [nn. y] [k] =exsy1 [i] [3) [k) +cyd• Cexs [i] [ny1] (k] -exsy1 [i] [4] [k]) ;

}

for(i=2; i<=nx1-1; i++)
{ k=2;

exs [i] [1] (k] =exsy1 [i] [2] [k] +cyd• (exs [i] [2] (k] -exsy1 [i] [1] (k]);
exs [i] [nn. y] [k] =exsy 1 [i] [3] [k] +cyd• (exs [i] [ny1] [k] -exsyl [i] [4] [k]) ;

k=nz1;
exs[i] [1](k]=exsy1[i] [2] [k]+cyd•Cexs[i][2][k]-exsy1(i][1][k]);
exs [i] [nn. y] [k] =exsy1 (i] (3] [k] +cyd• (exs [i] [nyl] [k] -exsyl [i] [4) [k]);

}

1/c nov do 2nd order orbc on remaining portions of faces
for(k=3;k<=nz1-1; k++)

for(i=2;i<=nx1-1; i++)
{exs [i) (1] [k] =-exsy2 [i) [2] [k] +cyd• (exs [i] [2] [k] +exsy2 [i] [1] [k])

+cyy• (exsy1 (i] (1] [k] +exsy1 [i] [2] (k])

}

+cyfxd• (exsy1 [i +1] [1] [k] -2. •exsy1 [i] [1] [k]
+exsy1[i-1] [1] [k]+exsy1[i+1] [2] [k)
-2.•exsy1[i](2] [k]+exsyl[i-1] (2] [k])

+cyfzd• (exsyl [i] [1] [k+l] -2. •exsyl [i] [1] [k]
+exsyl [i] (1] [k-1] +exsy1 [i] [2] [k+1]
-2.•exsyl(i][2](k]+exsy1[i](2][k-1])

exs[i] [nn.y] [k]=-exsy2[i] [3] [k]+cyd•(exs[i] [nyl] (k]+exsy2[i] [4] [k])
+cyy•Cexsy1[i](4][k]+exsy1[i] [3] [k])
+cyfxd•(exsy1[i+1][4] [k]-2.•exsyl[i] [4] [k]

+exsy1[i-1][4] [k]+exsy1[i+1][3] [k]
-2. •exsy1 [i] [3] [k] +exsy1 [i -1] [3] [k])

+cyfzd•Cexsy1[i][4](k+l]-2.•exsyl[i][4][k]
+exsy1[i][4][k-1] +exsy1[i][3][k+1]
-2.•exsyl(i][3] [k]+exsyl(i][3] [k-1])

1/c nov save past values
for(k=2;k<=nz1; k++)

for(i=1;i<=nxl; i++)
{ exsy2[i][1][k]=exsy1[i][1][k]

}

exsy2 [i] [3] [k] =exsy1 (i] [3] (k]
exsy1 [i] [1] [k] =exs (i] [1] (k]
exsy1 [i] [3] [k] =exs (i] [nyl] [k]

122

exsy2[i][2][k]=exsyl[i][2][k]
exsy2[i] [4] [k]=exsyl[i] [4] [k]
exsyl [i] [2] [k] =exs (i] [2] (k]
exsy1 [i] [4] [k] =exs [i] [nn. y] [k]

}

void radexz()
{int nx1-nn.x-1, ny1-nn.y-1, nzl=nn.z-1;

1/c do edges with first order orbc
for(j=2;j<=ny1; j++)

{ i=1;

}

exs[i) [j] [1]=exszl[i] [j] (2]+czd•(exs[i](j] [2]-exsz1[i] [j] [1]);
exs[i] [j] [nn . z]=exszl[i] [j] [3]+czd•(exs[i] [j] [nz1]-exsz1[i] [j) [4]);

i=nx1;
exs [i] [j] [1] =exszl (i] [j] [2] +czd• (exs [i][j] (2] -exsz1 [i] [j] [1]) ;
exs [i] [j] [nn. z] =exsz 1 [i] [j] [3] +czd• (exs (i] [j] [nz 1] -exsz 1 [i] [j] [4]) ;

for(i=2;i<=nx1-1; i++)
{ int j=2;

}

exs[i] [j] [l]=exszl(i] [j] [2]+czd•Cexs(i][j] [2]-exszl[i] [j] [1]);
exs [i] [j] [nn. z] =exszl (i] [j] [3] +czd• (exs[i] [j] [nz1] -exsz1 [i] [j] [4]) ;

j=ny1;
exs[i] [j] [l]=exszl(i] [j) [2]+czd•(exs[i][j] [2]-exsz1[i] [j] [1]);
exs [i] [j] [nn. z] =exszl (i] [j] (3] +czd• (exs[i] (j] [nzl] -exsz1 [i] [j] (4]);

1/c now do 2nd order orbc on remaining portions of faces
for(j=3; j<=ny1-1; j++)

for(i=2; i<=nx1-1; i++)
{ exs [i] [j] [1] =-exsz2 [i] [j] [2] +czd• (exs [i] [j] [2] +exsz2 [i] [j] [1])

+czz• Cexsz1 [i] [j] [1] +exszl[i] [j] [2])

}

+czfxd* Cexsz1 [i+1] [j] [1] -2. •exsz1 [i] [j] [1]
+exsz1 [i -1] [j] [1] +exsz1 [i +1] (j] [2]
-2 . •exszl[i][j](2]+exsz1(i-1][j][2])

+czfyd• (exsz1 (i] [j+1] (1] -2. •exsz1 [i] [j] [1]
+exsz1 [i] [j-1] [1] +exszl [i] [j+1] [2]
-2. •exszl (i] (j] [2] +exszl [i] [j-1] [2]) ;

exs[i] [j] [nn.z]=-exsz2[i] [j] [3]+czd•(exs[i] [j] [nz1]+exsz2[i] [j] (4])
+czz• (exszl [i] [j] [4] +exszl [i] [j] [3))
+czfxd•(exszl[i+l][j](4]-2.•exsz1[i)[j][4]

+exsz1 [i -1] [j] [4] +exsz1 [i +1] [j] [3]
-2.•exszl[i] [j] (3]+exsz1[i-1] [j] [3])

+czfyd• (exszl (i] [j+1] [4] -2. •exsz1 (i] [j] [4]
+exszl(i] [j-1] [4]+exsz1[i] [j+1] (3]
-2.•exsz1[i][j)[3]+exsz1[i] [j-1][3])

1/c now save past values

123

for(j=2;j<=ny1; j++)
for(i=1; i<=nxl; i++)

}

{ exsz2 [i] [j] [1] =exsz1 [i] [j] [1];
exsz2[i][j] [3]=exsz1[i][j][3];
exsz1 [i] [j] [1] =exs [i] [j] [1] ;
exsz1 [i] [j] [3] =exs (i] [j] [nz1] ;

}

exsz2 [i] [j] [2] =exszl[i] [j] [2] ;
exsz2 [i] [j] [4] =exsz1 [i] [j] [4];
exsz1 [i] [j] [2] =exs [i] [j] [2]
exszl [i] [j] [4] =exs [i] [j] [nn . z]

void radeyz()
{int nx1=nn . x-1, ny1=nn.y-1, nz1=nn.z-1;

/lc do edges with first order orbc
for(j=1; j<=nyl; j++)

{ i=2;

}

eys [i] [j] [1]=eysz1 [i] [j] [2] +czd•(eys [i] [j] [2] -eyszl [i] [j] [1]);
eys[i] [j] [nn.z]=eyszl[i] [j] (3]+czd•(eys[i] [j] [nz1]-eysz1[i] [j] [4]);
i=nxl;
eys[i] [j] [l]=eyszl[i] [j] [2]+czd•(eys[i] [j] [2]-eyszl[i] [j] [1]);
eys[i] [j] [nn . z]=eyszl[i] [j] [3]+czd•(eys(i] [j] [nz1]-eysz1[i] [j] [4]);

for(i=3; i<=nx1-1; i++)
{ j=1;

}

eys[i] [j] [1]=eysz1[i] [j] [2]+czd•(eys[i] [j] [2]-eyszl[i] [j] [1]);
eys [i] [j] [nn. z] =eysz1 [i] [j] [3] +czd• (eys [i] [j] [nz1] -eyszl[i] [j] [4]);
j=ny1;
eys[i] [j] [1]=eysz1[i] [j] [2]+czd•(eys[i] [j] [2]-eysz1[i] [j] [1]);
eys [i] [j] [nn. z] =eysz1 [i] [j] [3] +czd• (eys [i] [j] (nz1] -eyszl [i] (j] [4]) ;

1/c now do 2]nd order orbc on remaining portions of faces
for(j=2; j<= ny1-1; j++)

for(i=3; i<=nxl-1; i++)
{eys [i] [j] [1] =-eysz2 [i] [j] [2] +czd• (eys (i] (j] (2] +eysz2 [i] [j] (1])

+czz•Ceysz1[i][j][1]+eysz1(i][j][2])
+czfxd• Ceyszl [i +1] (j] [1] -2. •eyszl (i] [j] (1]

+eysz1[i-l][j][1]+eyszl[i+1][j][2]
-2.•eysz1[i](j](2]+eyszl[i-1] (j](2])

+czfyd• (eyszl [i] [j+1] [1] -2. •eyszl [i] [j] [1]
+eyszl [i] [j-1] [1] +eyszl (i] [j+l] (2]
-2.•eysz1(i][j][2]+eyszl[i][j-1][2]);

eys[i] [j] [nn . z]=-eysz2[i) [j] [3]+czd•(eys[i] [j] [nz1]+eysz2[i] [j] [4])
+czz•Ceysz1[iJUJ[4]+eyszl[i][j][3])

124

+czfxd•(eysz1[i+1](j](4]-2 . •eysz1[i][j] [4]
+eysz1 [i -1] [j] [4] +eyszl [i+1] [j] (3]
-2 . •eysz1[i][j] [3]+eysz1[i-1](j](3])

+czfyd•(eysz1[i][j+1][4]-2.•eysz1[i][j][4]
+eyszl[i][j-1] [4]+eysz1[i][j+1][3]
-2. •eysz l[i] [j] [3] +eysz l[i] [j -1] (3]) ;

}

lie now save past values
for(j=1; j<=ny1;j++)

}

for(i=2; i<=nxl; i++)
{eysz2 [i] [j] [1] =eyszl (i] [j] [1];
eysz2[i](j][3]=eyszl[i][j][3];
eyszl [i] (j] [1] =eys [i] [j] [1)
eysz1 [i] (j] [3) =eys [i] [j] [nzl];

}

*********h_field.cpp***************

II•••**********************
II••• H field component ***
II*************************

#include "defin.h"
extern nxyz n1;

eysz2 [i] (j] [2] =eysz1 [i] [j] [2] ;
eysz2 [i] [j] [4] =eysz l[i] [j] [4] ;
eyszl [i] [j] [2] =eys (i] (j] (2]
eysz1[i] [j] (4]=eys[i] [j] [nn .z]

extern dou exs[nxO][nyO][nzO],eys[nxO][nyO][nzO] ,ezs[nxO][nyO](nzO],
hxs[nxO)[nyO][nzO],hys[nxO][nyO][nzO] ,hzs[nxO][nyO][nzO];

extern dou dtmdx,dtmdy,dtmdz;

void hxfldO
{

for(int k=1; k<=nl.z;k++)
for(int j=l; j<=nl.y;j++)

for(int i=2; i<=nl.x;i++)
hxs [i] [j] [k] =hxs [i] (j] [k] -Cezs [i] [j+l] [k] -ezs [i] (j] [k]) •dtmdy

+(eys [i] [j] [k+1] -eys [i] [j] [k]) •dtmdz;
}

void hyfldO
{

for(int k=1; k<=nl .z;k++)

125

for(int j=2; j<=nl.y;j++)
for(int i=l; i<=nl .x;i++)

hys [i] [j] [k] =hys [i] (j] [k] -(exs (i] [j] [k+l] -exs [i] [j] (k]) •dtmdz
+(ezs [i +1] [j] [k] -ezs [i] [j] [k]) •dtmdx;

}

void hzfld()
{

for(int k=2; k<=nl.z;k++)
for(int j=l; j<=nl . y;j++)

for(int i=l; i<=nl.x;i++)
hzs [i] [j] [k] =hzs [i] [j] [k]-(eys [i+l] [j] [k] -eys [i] [j] [k]) •dtmdx

+(exs[i] [j+1] [k]-exs[i] [j] [k])•dtmdy
}

**************••··············

************wires.cpp••••••••

#include "defin.h"
#include <fstream.h>
extern dou exs[nxO][nyO][nzO],eys[nxO][nyO][nzO],ezs[nxO] [nyO][nzO],

hxs[nxO] [nyO] [nzO] ,hys[nxO][nyO][nzO] ,hzs[nxO] [nyO][nzO];
extern delO del;
extern coffO coff;
extern dou dtmdx, dtmdy, dtmdz, rO, t;
void writefile(char •. fstream t);
void current(int, fstream t);
static int flag=O;
static char FL[20];
static int A[20][6];
static int num_wires;
void fine_wire()
{fstream op;
int i, j, k;
int IA, JA, KA, IA1, IA2, JA1, JA2, KAl, KA2;
if Cflag==O)

{op.open("wire .dat", ios : : in);
op>>num_wires;
for(i=l; i<=num_wires; i++)

op>>FL[i]>>A[i] [l]>>A[i] [2]>>A[i] [3]>>A[i] [4]>>A[i] [5];
op.close();
cout<<FL[l]<<" "<<A[l] [1]<<" "<<A[l] [2]<<" "<<A[l] [3]<<" "

126

<<A [1] [4] << 11 11 <<A [1] [5] <<endl;
}

!!••**
fstream foutl, fout2;

for(i=l; i<=num_wires; i++)
{switch(FL[i]){

case 'z': IA=A[i][l]; JA=A[i][2]; KA1=A[i][3]; KA2=A[i][4];
for(k=KAl+l; k<KA2; k++)

{int IT=IA-l,JT=JA-1;
hys[IA][JA](k]+= (2/log(del.x/rO)-l)•dtmdx•(ezs[IA+l][JA][k]

-ezs[IA][JA][k]);
hys[IT][JA][k]+= (2/log(del .x/rO)-l)•dtmdx•(ezs(IT+l][JA][k]

-ezs[IT][JA][k]);
hxs[IA](JA][k)+=-(2/log(del.y/rO)-l)•dtmdy•Cezs[IA] [JA+l](k]

-ezs[IA][JA][k]);
hxs[IA][JT](k]+=-(2/log(del.y/r0)-1)•dtmdy•(ezs[IA)[JT+l] [k]

-ezs [IA] [JT] [k]) ;
}break;

case 'y' : IA=A [i] [1] ; JA1=A [i] [2] ; JA2=A [i] [3] ; KA=A [i] [4] ;
for(j=JA1+1; j<JA2; j++)

{int IT=IA-l,KT=KA-1;
hzs[IA][j] [KA]+=-(2/log(del.x/r0)-1)•dtmdx•(eys[IA+l] [j] [KA]

-eys[IA][j][KA]);
hzs[IT][j][KA]+=-(2/log(del.x/r0)-l)•dtmdx•(eys[IT+1][j](KA]

-eys [IT] [j] [KA]) ;
hxs[IA][j][KA]+= (2/log(del.z/rO)-l)•dtmdz•(eys[IA] [j] [KA+l]

-eys[IA](j][KA]);
hxs[IA][j][KT]+= (2/log(del.z/rO)-l)•dtmdz•(eys[IA][j] [KT+1]

-eys [IA] [j] [KT]) ;
}break;

case 'x': IA1=A[i][1]; IA2=A(i] [2]; JA=A[i][3]; KA=A[i] [4];
for(i=IA1+1; i<IA2; i++)

{int KT=KA-1,JT=JA-1;
hzs[i][JA](KA]+= (2/log(del.y/r0)-1)•dtmdy•(exs[i](JA+1](KA]

-exs [i] [JA] [KA]);
hzs[i][JT][KA]+= (2/log(del.y/r0)-1)•dtmdy•(exs[i][JT+1][KA]

-exs [i] [JT] [KA]) ;
hys[i][JA][KA]+=-(2/log(del.z/r0)-1)•dtmdz•(exs[i][JA][KA+1]

-exs [i] [JA] [KA]);
hys[i][JA][KT]+=-(2/log(del.z/rO)-l)•dtmdz•Cexs[i][JA][KT+l]

-exs [i] [JA] [KT]) ;
}break;

12i

}

}

if(flag==O)
{flag++;

}

foutl. open("cura.dat",ios: :out); fout2.open("curb.dat" ,ios: :out);}
else

{foutl. open("cura.dat", ios: : app); fout2. open("curb .dat", ios:: app);}
current(!, fout1);
fout1.close0;
fout2. close 0;

II********************************
If*** save the data for current•••

If********************************
void current(int flag, fstream t fout)
{int k,j,i,IA, JA, KA;
dou ca;
1/cout<<A[l] [5]<<endl;
fout<<t<<" " ;
if(flag==l)

{switch (FL [1]) {
case 'z' : IA:A (1] [1] ; JA=A [1] [2] ;

for(k=A[1][5]; k<=A[1][4]; k++)
{ca=(hxs[IA][JA-l][k]-hxs[IA](JA][k])•del.x+ \

(hys[IA][JA] [k]-hys[IA-l][JA](k])•del.y;
fout<<ca<<"

}fout<<"\n";
break;

II •
I

case 'y' : IA=A (1] [1] ; KA=A [1] [4] ;
for(j=A[1][5]; j<=A[1][3]; j++)

{ca=(hxs [IA] [j] [KA] -hxs [IA] [j] [KA-1]) •del. x+ \
(hzs [IA-1] [j] [KA] -hzs [IA] [j] [KA]) •del. z;

fout<<ca<<"
}fout<<"\n";
break;

II •

•

case 'x': JA=A[1](3]; KA=A[1][4];
for(i=A(1][5]; i<=A(1][2]; i++)
{ca=(hzs(i] [JA] [KA]-hzs[i] [JA-1] [KA])•del.z+ \

(hys [i] [JA] [KA-1] -hys (i] [JA] [KA]) •del. y;
fout<<ca<<"

}fout<<"\n";

II •

•

128

break;
}

}

else;
}

*******•••wave_stable.cpp************

#include "defin.h"

extern double value_ERROR;
extern double SOURCE_NEW, SOURCE_OLD;
void wave_stable(double t2, int •flag_stable, int •nO)
{

static double tl=O;
static unsigned stable[S]={O,O,O,O,O}; //used as flags *********
static double maxium_f[S]={-1,-2,-3,-4,-5}; //4 maxiums needed•••••••
static enum max_psss_flag

{ pass0,passl,pass2,pass3,pass4,stay } max_pass=passO;

double error_stl, error_st2,error_st3, error_st4;

//if (•flag_stable!=l) //not reached the stable status.
switch(max_pass)

{

case passO: if(t2>t1 ~~ tl>=O ~t t2>maxium_f[1])
{ maxium_f[1]=t2; stable[l]=-1; }

else if(t2<t1 tt tl<O tt stable[l]==-1)
max_pass=passl;

break;
case passl: if(t2>t1 tt tl>=O tt t2>maxium_f[2])

{ maxium_f[2]=t2; stable[2]=-1; }
else if(t2<t1 t~ tl<O tt stable[2]==-1)

max_pass=pass2;
break;

case pass2: if(t2>t1 tt tl>=O tt t2>maxium_f[3])
{ maxium_f[3]=t2; stable[3]=-1; }

else if(t2<t1 tl tl<O tt stable[3]==-1)
max_pass=pass3;

break;

129

case pass3: if(t2>tl tt tl>=O tt t2>maxium_f[4])
{ maxium_f[4]=t2; stable[4]=-1; }

case pass4:

else if(t2<t1 tt tl<O tt stable[4]==-1)
{ max_pass=pass4; stable[4]=0; }

break;

error_st1=fabs(maxium_f[l]-maxium_f[2])/maxium_f[2];
error_st2=fabs(maxium_f[2]-maxium_f[3])/maxium_f[3];
error_st3=fabs(maxium_f[3]-maxium_f[4])/maxium_f[4];
error_st4=fabs(maxium_f[1]-maxium_f[4])/maxium_f[4];
if(error_stl<value_ERROR tt error_st2<value_ERROR \

tterror_st3<value_ERROR tt error_st4<value_ERROR)
max_pass=stay; II but not found the 'zero' point•••••

else
{max_pass=pass3;
maxium_f[1]=maxium_f[2];
maxium_f[2]=maxium_f[3];
maxium_f[3]=maxium_f[4];
maxium_f[4]=0;

}

break;
case stay : if(SOURCE_NEW>=O ttSOURCE_OLD<O)

{•flag_stable=1; // found the starting point•••.
•n0-=2; II go back two step for phase finding

}

else break;
default:

};//switch ends!

t1==t2;
}

***********find_amp.cpp*********

#include "defin .h"

#define In1 Ind-1
#define Jn1 Jnd-1
#define Kn1 Knd-1
#define Is1 Ist-1

130

#define Js1 Jst-1
#define Ks1 Kst-1

#define MAX(a,b) a>b?a:b

extern dou exs[nxO][nyO][nzO],eys[nxO] [nyO][nzO],ezs[nxO][nyO] [nzO],
hxs[nxO] [nyO] [nzO] ,hys[nxO] [nyO][nzO],hzs[nxO] [nyO] [nzO];

//•••••••••••••surface_field amplitude(maxium value•••••
extern dou ex_y[2][nxO][nyO],hx_y[4][nx0] [nyO], // X-component

ex_z[2][nxO][nzO],hx_z[4][nxO] [nzO], II•••*********

ey_x[2](nxO](nyO],hy_x[4][nx0] [nyO], II Y-component
ey_z[2][ny0] [nz0],hy_z[4] [nyO][nzO], II************

ez_x[2][nxO][nzO],hz_x[4](nxO] [nzO], II Z-component
ez_y[2][nyO][nzO],hz_y[4][nyO] [nzO]; II************

extern int Ist, Ind, Jst, Jnd, Kst, Knd;
II••·················

void find_maxO
{

int i, j ,k;

for(i=Ist; i<=Ind ; i++) II X-component**************
{for(j=Jst; j<=Jnd; j++) II z-constant plane•••••••••

{ex_y[O] [i] [j]=MAX(ex_y[O] [i] [j] ,exs[i] [j] [Kst]);
ex_y [1] [i] [j] =MAX (ex_y [1] [i] [j] , exs [i] [j] [Knd]) ;
hx_y[O) [i] [j]=MAX(hx_y[O) (i] [j] ,hxs[i] (j] [Kst));
hx_y (1] [i] [j) =MAX (hx_y [1] [i] [j] , hxs [i] (j] [Kn1]) ;
hx_y[2] [i] [j)=MAX(hx_y[2] [i] [j] ,hxs[i] [j] [Ks1]);
hx_y [3] [i] [j) =MAX (hx_y [3] [i] [j) , hxs [i] [j] [Knd]) ;

}

for(k=Kst; k<=Knd; k++) lly-constant plane•••••••••
{ex_z (0] [i] [k] =MAX (ex_z [0] [i] (k] , exs [i] [Jst] [k]) ;
ex_z [1] [i] [k] =MAX (ex_z [1) [i] [k] , exs [i] [Jnd] [k]) ;
hx_z[O] [i] [k]=MAX(hx_z[O] [i] [k] ,hxs[i] [Jst] (k]);
hx_z[l] [i] [k]=MAX(hx_z[l] [i] [k] ,hxs [i] [Jnl) [k]);
hx_z[2] (i] [k]=MAX(hx_z[2] [i] (k] ,hxs[i] [Jsl] [k]);

131

}

hx_z [3) [i] [k] =MAX (hx_z [3] [i] [k) , hxs [i] [Jnd] [k]) ;
}

for(j=Jst; j<=Jnd; j++) II Y-component•*************
{for(i=Ist; i<=Ind; i++) II z-constant plane•********

{ey_x[O] [i) [j]=MAX(ey_x[O) [i] [j] ,eys[i] [j] [Kst]);
ey_x[1] [i] [j]=MAX(ey_x[1] (i] [j] ,eys[i] [j] [Knd]);
hy_x[O] [i] [j]=MAX(hy_x[O] [i] [j] ,hys[i] [j] [Kst]);
hy _x (1] [i] [j] =MAX (hy _x [1] [i] [j] , hys [i] [j] [Kn1]);
hy_x[2] [i) [j]=MAX(hy_x[2] (i] [j] ,hys[i] [j] [Ks1]);
hy_x[3] [i) [j)=MAX(hy_x[3) [i] [j] ,hys[i] [j] [Knd]);

}

for(k=Kst; k<=Knd; k++) II x-constant plane••••••••
{ey _z [0] (j] [k] =MAX (ey _z [0] [j] [k] , eys [Ist] [j] [k]) ;

ey _z [1] [j] [k] =MAX(ey _z [1) [j] (k] , eys [Ind] [j] [k]) ;
hy_z[O) [j] [k)=HAX(hy_z[O] [j] [k] ,hys[Ist] [j] [k]);

hy_z[1) [j] [k]=MAX(hy_z[l) (j] (k] ,hys[Inl] (j] [k]);
hy _z [2] [j] (k] =MAX (hy _z [2] [j] (k] , hys [Is1] [j] [k]);

}

hy _z [3) [j] [k] =MAX (hy _z [3] (j] (k] ,hys [Ind] [j] [k]);
}

for(k=Kst; k<=Knd; k++) II Z-component****************
{for(i=Ist; i<=Ind; i++) II y-constnat plane••*********

}

{ez_x[O) (i](k]=MAX(ez_x[O](i] [k],ezs[i][Jst][k]);
ez_x (1] [i] [k] =MAX (ez_x [1] (i] [k] , ezs (i] [Jnd] [k]) ;
hz_x[O] [i][k]=MAX(hz_x[O](i] [k],hzs[i][Jst][k]);
hz_x [1] [i] [k] =MAX (hz_x [1] [i] (k] , hzs [i] [Jnl] [k]) ;
hz_x [2] [i] [k] =MAX (hz_x [2] [i] [k] , hzs [i] [Js 1] (k]) ;
hz_x [3] [i] [k] =MAX (hz_x [3] (i] [k] , hzs [i] [Jnd] [k]) ;

}

for(j=Jst; j<=Jnd; j++) llx-constant plane*************
{ez_y[O] (j] [k]=HAX(ez_y[O] [j) (k] ,ezs[Ist] [j] [k]);

ez_y [1] [j] [k] =MAX (ez_y [1] [j] [k] , ezs [Ind] [j] [k]) ;
hz_y[O) [j] [k)=HAX(hz_y[O] (j] (k] ,hzs[Ist] [j] [k]);
hz_y[l] (j] [k]=MAX(hz_y[1] (j] (k] ,hzs[In1] [j] [k]);
hz_y[2) [j] [k]=HAX(hz_y[2] [j] (k] ,hzs[Isl] [j] [k]);
hz_y[3) [j] [k]=HAX(hz_y[3] [j] [k] ,hzs [lnd] [j] [k]);

}

132

}

*********find_phase.cpp***********

#include "defin.h"

#define In1 Ind-1
#define Jn1 Jnd-1
#define Kn1 Knd-1
#define Is1 Ist-1
#define Js1 Jst-1
#define Ks1 Kst-1

extern dou exs[nxO][nyO][nzO],eys[nxO][nyO][nzO],ezs[nxO][nyO][nzO],
hxs[nxO][nyO](nzO],hys[nxO][nyO][nzO],hzs[nxO] [nyO](nzO];

//•••••••••••••••••relative phase of the surface current••••••••••
extern complex ex_y_p[2][nxO][nyO] ,hx_y_p[4] [nxO][nyO], //•••X-component••

ex_z_p[2][nxO][nzO],hx_z_p[4] [nxO] [nzO], //••••••••••••••••

ey_x_p[2][nx0] [nyO] ,hy_x_p[4] [nxO][nyO], //•••Y-component••
ey_z_p[2](ny0] [nzO],hy_z_p[4] [nyO] [nzO], II••••••••••••••••

ez_x_p[2][nx0] (nzO] ,bz_x_p[4] [nxO](nzO], //•••Z-component••
ez_y_p[2][nyO](nzO],bz_y_p(4] [nyO] [nzO]; II••••••••••••••••

!!••··
extern int Ist, Ind, Jst, Jnd, Kst, Knd;
extern nxyz nn;
extern int nO;

void find_phase(double phase_n)
{phase_n+=0 .0000001; II give a very small value for later judgement
complex jjc=complex(O,phase_n);
int i,j,k;
static flag_first=l;

if((flag_first--)==1) //••••••initial amplitude for comparision••••••••••••
{for(i=Ist; i<=Ind; i++) II X-component••••••••••••••

{for(j=Jst; j<=Jnd; j++) II z-constant plane•••••••••
{ex_y_p[O] (i] [j]=exs[i] [j] [Kst]; ex_y_p[l] (i] [j]=exs[i] [j] [Knd];

hx_y_p[O] [i] [j]=hxs[i] [j] [Kst]; hx_y_p[l] [i] [j]=hxs[i] [j] [Knl];

133

}

hx_y _p [2) (i] [j] =hxs (i] [j) [Ksl] ; hx_y _p [3] (i] [j] =hxs [i] [j] [Knd] ;

}

for(k:Kst; k<=Knd; k++) //y-constant plane•••••••••
{ex_z_p [0] [i] (k] =exs [i] [Jst] [k] ; ex_z_p [1] [i] [k] =exs [i] [Jnd] [k] ;

hx_z_p[O] [i] [k]=hxs(i] [Jst] [k]; hx_z_p[l] [i] (k]=hxs[i] [Jnl] [k];
hx_z_p (2] (i] [k] =hxs [i] [Jsl] [k] ; hx_z_p [3] [i] [k] ""hxS [i] [Jnd] [k] ;

}

for(j=Jst; j<=Jnd; j++) II Y-component**************
{for(i=Ist; i<=Ind; i++) // z-constant plane•••••••••

}

{ey_x_p(O] [i] [j]=eys[i] [j] [Kst]; ey_x_p[l] [i] [j]=eys(i] [j] [Knd];
hy_x_p(O] [i] [j]=hys[i] [j] [Kst]; hy_x_p[l] [i] [j]=hys [i] [j) [Knl];
hy_x_p[2] [i] [j]=hys[i] [j] [Ksl]; hy_x_p[3] [i] [j]=hys[i] [j] [Knd];

}
for(k=Kst; k<=Knd; k++) // x-constant plane••••••••

{ey_z_p[O] [j] [k]=eys[Ist] [j] [k]; ey_z_p[l] [j] [k]=eys [Ind] [j] [k];
hy_z_p[O] (j] [k]=hys[Ist] (j] [k]; hy_z_p[l] [j] [k]=hys[Inl] [j] [k];
hy_z_p[2] [j] [k]=hys[Isl] [j] [k]; hy_z_p[3] [j] [k]=hys[Ind] [j] [k];

}

for(k=Kst; k<:Knd; k++) // Z-component•***************
{for(i=Ist; i<=Ind; i++) // y-constnat plane•••••••••••

}

{ez_x_p[O) [i][k]=ezs[i][Jst] [k]; ez_x_p[l][i) (k]=ezs[i] [Jnd][k];
hz_x_p[O] [i] [k]=hzs[i] [Jst] [k]; hz_x_p[l] [i] (k]=hzs [i] [Jnl] [k);
hz_x_p [2] [i] [k] :hzs [i] [Jsl] [k) ; hz_x_p [3] [i] [k] =hzs [i] [Jnd] [k] ;

}

for(j=Jst; j<=Jnd; j++) //x-component*****************
{ez_y_p[O][j][k]=ezs[Ist] [j](k]; ez_y_p[l](j][k]=ezs[Ind][j)[k];

hz_y _p [0] [j] [k] =hzs [Ist] [j] [k] ; hz_y _p [1] [j] (k] =hzs [Inl] [j] [k] ;
hz_y_p[2] [j] [k]=hzs[Isl] (j] [k]; hz_y_p(3] [j] (k]=hzs[Ind] [j] [k];

}

}// end if ********

//Till now, the imaginary parts of the phases are 0!

else
{

for(i=Ist; i<=Ind; i++) // X-component***************
{for(j:Jst; j<=Jnd; j++) II z-constant plane••••••••••

134

{

if(imag(ex_y_p[O][i][j])==.O tt real(ex_y_p(O][i](j])<.O
tt exs[i][j][Kst]>=.O)

ex_y_p[O][i][j]=exs(i] [j] [Kst]+jjc; II just found the point!
else if(imag(ex_y_p[O][i] [j])!=.O); II already found :do nothing!

else ex_y_p[O][i][j]=exs[i] [j] [Kst];

if(imag(ex_y_p[l][i][j])==.O tt real(ex_y_p[l] [i] [j])<.O
tt exs[i][j] [Knd]>=.O)
ex_y_p[l][i] [j]=exs(i] [j] [Knd]+jjc; II just found the point!

else if(imag(ex_y_p[l][i][j])!=.O); II already found : do nothing!
else ex_y_p[l] [i] [j]=exs(i] [j] [Knd];

if(imag(hx_y_p[O][i][j])==.O tt real(hx_y_p[O](i][j])<.O
tt hxs[i][j][Kst]>=.O)
hx_y_p[O][i](j]=hxs[i] [j](Kst]+jjc; II just found the point!

else if(imag(hx_y_p[O](i][j])!=.O); II already found :do nothing!
else hx_y _p [0] [i] (j] =hxs [i] [j] [Kst] ;

if(imag(hx_y_p[l][i][j])==.O tt real(hx_y_p[l](i][j])<.O
tt hxs[i][j] [Knl]>=.O)
hx_y_p[l][i][j]=hxs[i] [j](Knl]+jjc; II just found the point!

else if(imag(hx_y_p[l][i][j])!=.O); //already found :do nothing!
else hx_y_p[1] [i] (j] =hxs [i] (j] [Knl];

if(imag(hx_y_p[2][i][j])==.O tt real(hx_y_p[2][i] [j])<.O
tt hxs(i][j][Ksl]>=.O)
hx_y_p[2][i][j]=hxs[i] [j] [Ksl]+jjc; II just found the point!

else if(imag(hx_y_p(2][i][j])!=.O); II already found: do nothing!
else hx_y_p[2] [i] [j] =hxs [i] [j) [Ksl) ;

if (imag (hx_y _p [3] [i] [j]) == . 0 tt real (hx_y _p [3] [i] [j]) < . 0
tt hxs [i] [j] [Knd] >=. 0)
hx_y_p[3] [i] [j]=hxs[i] [j] [Knd]+jjc; II just found the point!

else if(imag(hx_y_p[3][i](j])!=.O); //already found : do nothing!
else hx_y _p (3] [i] [j] =hxs (i] [j] [Knd] ;

}

for(k=Kst; k<=Knd; k++) //y-constant plane•***********
{if(imag(ex_z_p[O][i][k])==.O tt real(ex_z_p(O] [i][k])< . O

tt exs[i][Jst][k]>=.O)
ex_z_p[O][i](k]•exs[i) [Jst][k]+jjc; II just found the point!

else if(imag(ex_z_p[O](i][k])!=.O); //already found : do nothing!

135

else ex_z_p[O][i][k]=exs[i] [Jst][k];

if(imag(ex_z_p[l] [i][k])== .O tt real(ex_z_p[l][i] [k])<.O
tt exs[i][Jnd][k]>=.O)
ex_z_p[l][i][k]=exs[i] [Jnd][k]+jjc; II just found the point!

else if(imag(ex_z_p[l][i][k])!=.O); II already found :do nothing!
else ex_z_p [1] [i] [k] =exs (i] [Jnd] [k] ;

if(imag(hx_z_p[O](i] [k])== .O tt real(hx_z_p[O][i][k])<.O
tt hxs[i][Jst][k]>=.O)
hx_z_p[O](i][k]=hxs[i][Jst](k]+jjc;ll just found the point!

else if(imag(hx_z_p[O][i][k])!=.O); II already found : do nothing!
else hx_z_p [0] (i] [k] =hxs [i] [J st] [k] ;

if(imag(hx_z_p[l](i] [k])==.O tt real(hx_z_p[l](i][k])<.O
l:t hxs [i] [Jnl] (k] >=. 0)
hx_z_p[l] (i] [k]=hxs[i] (Jnl] (k]+jjc; II just found the point!

else if(imag(hx_z_p[l](i][k])!=.O); II already found : do nothing!
else hx_z_p (1] (i] [k] =hxs [i] (Jnl] [k] ;

if(imag(hx_z_p[2][i] [k])==.O tt real(hx_z_p[2][i](k])<.O
1:1: hxs [i] [Jsl] [k] >= . 0)
hx_z_p[2][i][k)=hxs[i][Js1][k]+jjc;ll just found the point!

else if(imag(hx_z_p[2][i][k])!=.O); II already found : do nothing!
else hx_z_p [2] [i] [k] =hxs [i] [Js 1] [k] ;

if(imag(hx_z_p[3][i] [k])==.O tt real(hx_z_p[3][i](k])< . O
tt hxs [i] [Jnd] [k] >= . 0)
hx_z_p[3][i][k]=hxs[i)[Jnd] [k]+jjc; II just found the point!

else if(imag(hx_z_p[3)[i][k])!=.O); II already found :do nothing!
else hx_z_p [3] [i] [k] =hxs [i] [Jnd] [k] ;

}

}

for(j=Jst ; j<=Jnd; j++) II Y-component****************
{for(i=Ist; i<=Ind; i++) II z-constant plane•••••••••••

{if(imag(ey_x_p[O) [i] [j])==.O tt real(ey_x_p[O] [i] (j])<.O
tt eys[i][j][Kst]>= .O)
ey_x_p[O][i][j]=eys[i][j][Kst]+jjc; II just found the point!

else if(imag(ey_x_p[O][i][j])!=.O); II already found : do nothing!
else ey _x_p [0] (i] [j] =eys [i] [j] [Kst] ;

136

if(imag(ey_x_p[l] [i] [j])==.O l:lz real(ey_x_p[l] [i] [j])<.O
lzlz eys[i][j] [Knd]>=.O)
ey_x_p[l] [i] [j]=eys(i] (j] [Knd]+jjc; II just found the point!

else if(imag(ey_x_p[l][i][j])!=.O); II already found :do nothing!
else ey_x_p[l) [i] [j]=eys(i] (j] [Knd];

if(imag(hy_x_p[O](i](j])==.O 1:1: real(hy_x_p[O) (i][j])<.O
1:1: hys[i][j] [Kst]>=.O)
hy_x_p[O] [i] [j]=hys[i] [j] [Kst]+jjc; II just found the point!

else if(imag(hy_x_p[O][i][j])!=.O); II already found : do nothing!
else hy _x_p [0] [i] [j] =hys [i] [j] [Kst] ;

if(imag(hy_x_p[l] [i][j])==.O 1:1: real(hy_x_p(l] [i] [j])<.O
lzi: hys [i] (j] [Knl] >= . 0)
hy_x_p[l] (i] [j]=hys[i] [j] [Knl]+jjc; II just found the point!

else if(imag(hy_x_p[l][i] [j])!=.O); II already found :do nothing!
else hy _x_p (1] [i] [j] =hys [i] [j] [Knl] ;

if (imag(hy _x_p [2] [i] [j]) ==. 0 t.t real(hy _x_p [2] [i] [j]) <. 0
1:1: hys[i][j][Ksl]>=.O)
hy _x_p [2] [i] [j] =hys [i] [j] [Ksl] +jjc; I I just found the point!

else if(imag(hy_x_p[2)(i] [j])!=.O); II already found :do nothing!
else hy_x_p[2][i] [j]=hys(i][j][Ksl];

if(imag(hy_x_p[3][i][j])== .O .tt real(hy_x_p[3][i][j])<.O
tt hys[i][j][Knd]>=.O)
hy_x_p[3][i)[j]=hys[i][j)[Knd]+jjc; II just found the point!

else if(imag(hy_x_p[3](i](j])!=.O); II already found :do nothing!
else hy _x_p [3) [i] [j] =hys [i] [j] [Knd] ;

}

for(k=Kst; k<=Knd; k++) II x-constant plane•**********
{if(imag(ey_z_p[O][j] [k))==.O .tt real(ey_z_p[O] [j] [k])<.O

1:1: eys[Ist][j][k]>= .O)
ey_z_p[O][j][k]=eys[Ist][j] [k]+jjc; II just found the point!

else if(imag(ey_z_p[O][j][k])!=.O); II already found :do nothing!
else ey_z_p[O][j](k]=eys[Ist][j][k];

if(imag(ey_z_p[l](j][k])==.O 1:1: real(ey_z_p[l][j][k])<.O
1:1: eys[Ind][j][k]>=.O)
ey_z_p[l][j][k]=eys[Ind][j][k]+jjc; II just found the point!

else if(imag(ey_z_p[l](j][k])!=.O); II already found :do nothing!
else ey_z_p[l][j][k]=eys[Ind][j][k];

137

if (imag(hy _z_p[OJ [j] [k])==. 0 l:t real (hy _z_p [0] [j] [k])<. 0
tt hys[Ist][j][k]>=.O)
hy_z_p[O][j][k]=hys[lst] [j](k]+jjc; II just found the point!

else if(imag(hy_z_p[O](j] (k])!=.O); II already found :do nothing!
else hy _z_p [0] [j] (k] =hys [Ist] [j] [k] ;

if(imag(hy_z_p[l] [j] [k])==.O tt real(hy_z_p[l] [j] [k])<.O
l:t hys [Inl] [j] [k] >=. 0)
hy_z_p[l] [j][k]=hys[Inl] [j][k]+jjc; II just found the point!

else if(imag(hy_z_p[l][j)[k]) !=.0); II already found: do nothing!
else hy_z_p[l](j] [k]=hys[Inl][j] [k];

if(imag(hy_z_p[2] [j](k])==.O tt real(hy_z_p[2][j][k])<.O
l:t hys[Isl][j] [k]>=.O)
hy_z_p[2][j][k]=hys[ls1][j][k]+jjc; II just found the point!

else if(imag(hy_z_p[2][j] (k])!=.O); II already found : do nothing!
else hy_z_p[2] (j] [k]=hys[Isl] [j] [k];

if (imag (hy _z_p [3] [j] [k]) == . 0 l:t real (hy _z_p [3] [j] [k]) <. 0
l:t hys [Ind] [j] [k] >= . 0)
hy_z_p[3](j][k]=hys[Ind][j][k]+jjc; II just found the point!

else if(imag(hy_z_p[3)[j] [k])!=.O); II already found : do nothing!
else hy _z_p [3] [j] [k] =hys [Ind] (j] [k);

}
}

for(k=Kst; k<=Knd; k++) II Z-component****************
{for(i=Ist; i<=Ind; i++) II y-constnat plane•••••••••••

{if(imag(ez_x_p[O] [i][k])==.O l:t real(ez_x_p[O][i] [k])<.O
tl: ezs(i][Jst] [k]>=.O)
ez_x_p[O][i][k]=ezs[i][Jst][k]+jjc; II just found the point!

else if(imag(ez_x_p[O][i] [k])!=.O); II already found :do nothing!
else ez_x_p[O)[i](k]=ezs[i][Jst](k];

if(imag(ez_x_p[l][i](k])==.O tt real(ez_x_p[l][i](k])<.O
1:1: ezs[i][Jnd] [k]>=.O)
ez_x_p[l)[i][k]=ezs[i][Jnd][k]+jjc; II just found the point!

else if(imag(ez_x_p[l](i][k])!=.O); II already found :do nothing!
else ez_x_p[l][i][k]=ezs(i][Jnd][k];

if(imag(hz_x_p[O][i][k])==.O tt real(hz_x_p[O](i](k])<.O

138

~~ hzs (i] [Jst] [k] >=. 0)
hz_x_p[O][i](k]=hzs[i][Jst][k]+jjc; // just found the point!

else if(imag(hz_x_p[O][i][k])!=.O); //already found :do nothing!
else hz_x_p [0] [i] [k] =hzs [i] [Jst] [k] ;

if(imag(hz_x_p[l] [i] [k])==.0 &:&: real(hz_x_p[l] [i] [k])<.0
&:&: hzs [i] [Jnl] (k] >=. 0)
hz_x_p[l] [i] [k]=hzs[i] [Jnl] [k]+jjc; II just found the point!

else if(imag(hz_x_p[l](i][k])!=.O); //already found :do nothing!
else hz_x_p [1] [i] [k] =hzs [i] [Jnl] [k] ;

if(imag(hz_x_p[2] [i](k])== .O &:&: real(hz_x_p[2][i][k])<.O
~&: hzs [i] [Js 1] [k] >= . 0)
hz_x_p[2][i](k]=hzs[i][Jsl][k]+jjc; II just found the point!

else if(imag(hz_x_p[2](i](k])!=.O); II already found : do nothing!
else hz_x_p[2] (i] [k]=hzs [i] [Jsl] [k];

if(imag(hz_x_p[3](i][k])==.O &:&: real(hz_x_p[3][i] [k])<.O
&:&: hzs[i](Jnd] (k]>= .O)
hz_x_p[3][i](k]=hzs[i][Jnd](k]+jjc; // just found the point!

else if(imag(hz_x_p[3](i] [k])!=.O); II already found :do nothing!
else hz_x_p (3] [i] [k] =hzs [i] [Jnd] [k] ;

}

for(j=Jst; j<=Jnd; j++) 1/x-constant plane***********
{if(imag(ez_y_p[O] [j] [k])==.O &:&: real(ez_y_p[O] [j](k])<.O

&:&: ezs[Ist][j](k]>=.O)
ez_y_p[O] [j] (k]=ezs[Ist] [j] [k]+jjc; II just found the point!

else if(imag(ez_y_p[O][j](k])!=.O); II already found : do nothing!
else ez_y_p[O] [j] [k]=ezs[Ist] [j] [k];

if(imag(ez_y_p[l] (j] [k])== .O 1:1: real(ez_y_p[1] [j] [k])<.O
1:1: ezs[Ind] [j] (k]>=.O)
ez_y_p[l](j][k]=ezs[Ind][j][k]+jjc; II just found the point!

else if(imag(ez_y_p[l][j][k])!=.O); II already found :do nothing!
else ez_y_p[1] (j] (k]=ezs[Ind] [j] [k];

if (imag (hz_y _p [0] [j] [k]) ==. 0 1:1: real(hz_y _p [OJ [j] (k]) <. 0
1:1: hzs [Ist] [j] [k] >= . 0)
hz_y_p[O][j][k]=hzs[Ist][j][k]+jjc; II just found the point!

else if(imag(hz_y_p[O](j](k])!= .O); //already found :do nothing!
else hz_y _p (0] [j] (k] =hzs [Ist] [j] (k] ;

139

if (imag (hz_y _p [1] [j] [k]) ==. 0 let real(hz_y _p [1] [j] [k]) <. 0
&:&: hzs Unl] [j] [k] >= .0)
hz_y_p[1][j][k]=hzs[Inl][j] [k]+jjc; II just found the point!

else if(imag(hz_y_p[l][j] [k])!=.O); II already found :do nothing!
else hz_y_p[1] [j] [k]=hzs [Inl] [j] [k];

if(imag(hz_y_p[2][j][k])==.O let real(hz_y_p[2](j][k])<.O
&:&: hzs [Isl] (j] [k] >=. 0)
hz_y_p(2] [j] [k] =hzs [Isl] [j] [k] +jjc; I I just found the point!

else if(imag(hz_y_p[2][j] [k])!=.O); II already found : do nothing!
else hz_y_p[2] [j] [k]=h2s [Isl] [j] [k];

if(imag(hz_y_p[3][j][k])==.O ta real(hz_y_p[3] [j][k])<.O
tt hzs [Ind] [j] [k] >= . 0)
hz_y_p [3) [j] [k] •hzs [Ind] [j] [k] +jjc; I I just found the point!

else if(imag(hz_y_p[3][j][k])!•.O); II already found :do nothing!
else hz_y_p[3] [j] [k)=h2s[Ind] [j] [k];

}

}

}/1 ends if•••••
}//ends main••••••••••
••••••••••••••••••••••••••

************Out_surface_field.cpp*********

#include "defin.h"
#include <iostream .h>
ll•••••••••••••surface_field*****
extern dou ex_y[2][nxO][nyO],hx_y[4][nxO][ny0], II X-component

ex_z [2] (nxO] [nzO] , hx_z [4] [nxO] [nzO] , I I************

ey_x[2] [nxO][nyO] ,hy_x[4][nxO][nyO], II Y-component
ey_z[2][nyO)[nzO],hy_z[4][nyO] [nzO], //••••••••••••

ez_x[2][nxO][nzO],hz_x[4][nxO](nzO], II Z-component
ez_y(2][nyO][nzO],hz_y[4)[nyO][nzO];

ll••surface_current_amplitude••

extern complex ex_y_p[2)[nx0] [nyO],hx_y_p[4][nxO][nyO],
ex_z_p[2] [nxO] [nzO] ,hx_z_p[4] [nxO] [nzO],

ey_x_p[2] [nxO] [nyO] ,hy_x_p[4] [nxO] [nyO],

140

ey_z_p[2) [nyO][nzO],hy_z_p[4] [nyO] [nzO],

ez_x_p[2] [nxO] [nzO] ,hz_x_p[4] [nxO] [nzO],
ez_y _p [2) [nyO] [nzO] , hz_y _p [4] [nyO] [nzO] ;
//••surface_current_phase

extern complex exy[2][nxO](nyO].hxy[2][nxO][ny0], II X-component
exz(2][nxO)[nzO],hxz[2] [nxO][nzO], !!••••••••••••

eyx[2][nx0][ny0] ,hyx[2][nxO][nyO], II Y-component
eyz(2][nyO](nzO],hyz[2][nyO][nzO], !!••••••••••••

ezx [2] [nxO] [nzO] , hzx (2] [nxO] [nzO] , I I Z-component
ezy[2] [nyO][nzO],hzy[2][ny0][nzO]; //••final surface_field••

extern int Ist, Ind, Jst, Jnd, Kst, Knd;
extern dou PI, ONE_cycle;

II•··················
void out_surface_field(double ONE_cycle)
{double dtor; dtor=PI/180;

!!••·· int i,j,k;
complex jj; jj=complex(0.0,-1.0);
double eO,el,hO,hl,h2,h3;
double dp; dp=PI/ONE_cycle; //The delayed phase angle•••
for(i=Ist; i<=Ind; i++) II X-component**************

for(j=Jst; j<=Jnd; j++) II z-constant plane•••••••••
{eO=dtor•imag(ex_y_p[O](i](j]);

el=dtor•imag(ex_y_p[l] [i][j]);
hO=dtor•imag(hx_y_p[O][i](j]);
hl=dtor•imag(hx_y_p(l](i][j]);
h2=dtor• imag (hx_y _p (2] [i] [j]) ;
h3=dtor• imag (hx_y _p [3] [i] [j]) ;
if(ex_y[O] (i] [j] !=0.) eO-=asin(real(ex_y_p[O] [i] [j])/ex_y[O] [i] [j]);
if(ex_y(l] [i) [j] !=0.) el-=asin(real(ex_y_p[l] [i] [j])/ex_y[l) [i] (j]);
if(hx_y[O] [i] [j] !=0.) hO-=asin(real(hx_y_p[O] [i] [j])/hx_y[O] [i] (j])-dp;
if(hx_y[l] [i] [j] !=0.) hl-=asin(real(hx_y_p[l] [i] (j])/hx_y[l] [i] [j])-dp;
if (hx_y [2] [i] [j] ! =0 .) h2-=asin (real (hx_y _p [2] [i] [j]) /hx_y [2] (i] [j)) -dp;
if (hx_y [3] [i] [j] ! =0.) h3-=asin (real (hx_y _p [3] (i] (j]) /hx_y [3] [i] [j 1) -dp;
exy[O] [i] [j]= ex_y[O] [i] [j]•exp(jj•eO);
exy[1] [i] [j]= ex_y[l] [i] [j]•exp(jj•el);
hxy[O] (i] [j]=(hx_y[O] [i] [j)•exp(jj•hO)+hx_y[2] [i] [j]•exp(jj•h2))/2.0;

141

hxy(l] (i] [j]=(hx_y[l] (i] (j]•exp(jj•hl)+hx_y[3] [i] [j]•exp(jj•h3))12.0;

}

for(i=Ist; i<=Ind; i++) II X-component**************
for(k=Kst; k<=Knd; k++) fly-constant plane*********

{double eO=dtor•imag(ex_z_p[O](i][k]);
double e1=dtor•imag(ex_z_p[1][i][k]);
double hO=dtor•imag(hx_z_p[O][i][k]);
double h1=dtor•imag(hx_z_p[1][i][k]);
double h2=dtor•imag(hx_z_p[2][i][k]);
double h3=dtor•imag(hx_z_p[3)(i][k]);

}

if (ex_z [0] [i] [k] ! =0.) eO-=asin(real (ex_z_p [0] [i] [k]) lex_z [0] [i] [k]);
if(ex_z[1] [i] [k] !=0.) e1-=asin(real(ex_z_p[1] [i] [k])lex_z[1] [i] (k]);
if (hx_z (0] [i] [k) ! =0.) hO-=asin (real (hx_z_p [0] [i] [k]) lhx_z [OJ [i] [k]) -dp;
if(hx_z[1] [i) [k] !=0.) h1-=asin(real(hx_z_p[1) [i] [k])lhx_z[1] [i] [k])-dp;
if(hx_z[2][i)[k) !=0.) h2-=asin(real(hx_z_p[2)[i][k])lhx_z[2][i] [k])-dp;
if(hx_z[3](i][k] !=0.) h3-=asin(real(hx_z_p[3][i][k])lhx_z[3](i] [k])-dp;
exz [0] [i] [k] = ex_z (0] [i] (k] •exp (j j •eO) ;
exz [1] [i] [k] = ex_z [1] [i] [k] •exp (j j •e 1) ;
hxz(O] [i] [k]=(hx_z[O] [i] [k]•exp(jj•hO)+hx_z[2] [i) [k]•exp(jj•h2))12.0;
hxz(l] [i] [k]=(hx_z[1] [i] [k]•exp(jj•h1)+hx_z[3] [i] [k]•exp(jj•h3))12.0;

II•**

for(j=Jst; j<=Jnd; j++) II Y-component**************
for(i=Ist; i<=Ind; i++) II z-constant plane*********

{double eO=dtor•imag(ey_x_p[O][i][j]);
double e1=dtor•imag(ey_x_p[l][i][j]);
double hO=dtor•imag(hy_x_p[O](i][j]);
double h1=dtor•imag(hy_x_p[1](i](j]);
double h2=dtor•imag(hy_x_p[2](i][j]);
double h3=dtor•imag(hy_x_p[3](i](j]);
if(ey_x[O] [i] [j] !=0.) eO-=asin(real(ey_x_p[O] [i] (j])ley_x[O] [i] (j]);
if (ey _x [1] (i] [j] ! =0.) el-=asin(real (ey_x_p [1] (i] [j]) ley _x (1] [i] [j]) ;
if(hy_x(O] [i] [j] !=0.) hO-=asin(real(hy_x_p[O) [i] [j])/hy_x[O] [i] [j])-dp;
if(hy_x[1] [i] (j] !=0.) h1-=asin(real(hy_x_p[1] (i] [j])lhy_x[l] [i] [j])-dp;
if (hy _x [2] [i] [j] ! =0.) h2-=asin (real (hy _x_p (2] [i] [j]) lhy _x [2] [i] [j]) -dp;
if (hy_x[3] [i] [j]! =0.) h3-=asin(real (hy_x_p[3] [i] [j]) lhy_x [3] [i] [j])-dp;
eyx[O] [i] [j]= ey_x[O] [i] [j]•exp(jj•eO);
eyx(1] [i] [j]= ey_x[l] [i] [j]•exp(jj•el);
hyx[O] [i] [j]=(hy_x[O] [i] [j]•exp(jj•hO)+hy_x[2] [i] [j]•exp(jj•h2))/2.0;
hyx[1] [i] [j]=(hy_x[1] [i] [j]•exp(jj•h1)+hy_x[3] (i] [j]•exp(jj•h3))12.0;

142

}

for(j=Jst; j<=Jnd; j++) II Y-component**************
for(k=Kst; k<=Knd; k++) II x-constant plane••*******

{double eO=dtor•imag(ey_z_p[O][j][k]);
double el=dtor•imag(ey_z_p[l][j][k]);
double hO=dtor•imag(hy_z_p[O][j][k]);
double hl=dtor•imag(hy_z_p[l][j][k]);
double h2=dtor•imag(hy_z_p[2][j][k]);
double h3=dtor•imag(hy_z_p[3][j][k]);

}

if(ey_z[O][j][k] !=0 .) eO-=asin(real(ey_z_p[O][j] [k])ley_z[O](j] (k]);
if(ey_z[l][j][k] !=0 .) el-=asin(real(ey_z_p[l](j](k])/ey_z[l] [j] [k]);
if(hy_z[O][j][k] !=0 .) hO-=asin(real(hy_z_p[O][j][k])lhy_z[O] [j] [k])-dp;
if(hy_z[l][j][k]!=O.) hl-=asin(real(hy_z_p[l](j] (k])lhy_z[l](j] (k])-dp;
if(hy_z[2](j][k] !=0 .) h2-=asin(real(hy_z_p(2](j] [k])lhy_z(2] [j] (k])-dp;
if(hy_z[3](j][k] !=0.) h3-=asin(real(hy_z_p[3][j] [k])/hy_z[3][j][k])-dp ;
eyz [0] [j] (k]= ey_z[O] [j] (k] •exp(jj•eO);
eyz[l] [j] (k]= ey_z[l] (j] (k]•exp(jj•el);
hyz[O][j][k]=(hy_z[O] (j] (k]•exp(jj•hO)+hy_z[2] (j](k]•exp(jj•h2))12 .0;
hyz[l] (j] [k]=(hy_z[l] [j] [k]•exp(jj•h1)+hy_z(3] [j] [k]•exp(jj•h3))12.0;

If***

for(k=Kst; k<=Knd; k++) II Z-component•***************
for(i=Ist; i<=Ind; i++) II y-constnat plane•••********

{double eO=dtor•imag(ez_x_p(O][i][k]);
double el=dtor•imag(ez_x_p[l][i][k]);
double hO=dtor•imag(hz_x_p[O](i](k]);
double hl=dtor•imag(hz_x_p[l][i][k]);
double h2=dtor•imag(hz_x_p[2](i][k]);
double h3=dtor•imag(hz_x_p[3][i][k]);

}

if(ez_x[O][i][k]!=O.) eO-=asin(real(ez_x_p[O] [i] [k])lez_x(O] (i] (k]);
if(ez_x[l][i][k]!=O .) el-=asin(real(ez_x_p[l][i][k])lez_x[l] [i] [k]) ;
if (hz_x (0] [i] [k] ! =0 .) hO-=asin (real (hz_x_p [0] [i] (k]) lhz_x [0] [i] [k]) -dp;
if (hz_x [1] [i] [k] ! =0 .) hl-=asin(real(hz_x_p [1] [i] [k]) lhz_x (1] [i) [k]) -dp;
if(hz_x[2][i][k]!=O.) h2-=asin(real(hz_x_p[2][i][k])lhz_x[2][i][k])-dp;
if (hz_x (3] [i] [k] ! =0.) h3-=asin (real (bz_x_p [3] [i] (k]) lhz_x [3] (i] [k]) -dp;
ezx[O] [i] [k]= ez_x[O] [i] [k] •exp(jj•eO);
ezx[1] [i] [k]= ez_x[l] [i] [k]•exp(jj•el) ;
hzx(O] [i] [k]=(hz_x[O] (i] [k]•exp(jj•hO)+hz_x[2] (i] [k]•exp(jj•h2))12.0 ;
hzx[l] [i) (k]=(hz_x[l] (i] [k]•exp(jj•hl)+hz_x[3] [i] [k]•exp(jj•h3))12.0;

143

for(k=Kst; k<=Knd; k++) II Z-component****************
for(j=Jst; j<=Jnd; j++) llx-constant plane ***********

}//end

{double eO=dtor•imag(ez_y_p[O] [j][k]);
double el=dtor•imag(ez_y_p[l][j][k]);
double hO=dtor•imag(hz_y_p[O][j](k]);
double hl=dtor•imag(hz_y_p[l][j][k]);
double h2=dtor•imag(hz_y_p[2][j][k]);
double h3=dtor•imag(hz_y_p[3][j][k]);

}

if(ez_y[O][j][k] !=0.) eO-=asin(real(ez_y_p[O] [j] [k])lez_y[O][j][k]);
if (ez_y [1] [j] [k] ! =0.) el-=asin(real (ez_y_p [1] [j] [k]) lez_y (1] [j] [k]) ;
if(hz_y[O](j](k] !=0.) hO-=asin(real{hz_y_p[O] [j][k])lhz_y[O][j](k])-dp;
if(hz_y[l] [j] [k] !=0.) hl-=asin(real{hz_y_p[l] [j] [k])lhz_y[l] [j] [k])-dp;
if(hz_y(2][j][k] !=0.) h2-=asin{real(hz_y_p[2] [j)[k])lhz_y[2][j](k])-dp;
if {hz_y [3] [j] [k] ! =0.) h3-=asin (real (hz_y _p [3] [j] [k]) lhz_y [3] [j] [k]) -dp;
ezy(O] [j] [k]= ez_y[O] [j] [k]•exp{jj•eO);
ezy[1] [j] [k]= ez_y[l] [j] [k]•exp(jj•el);
hzy[O] [j] [k]={hz_y[O] [j] [k]•exp(jj•hO)+hz_y[2] [j) [k]•exp(jj•h2))/2.0;
hzy[l] [j] [k)=(hz_y[l] [j] (k]•exp(jj•hl)+hz_y[3] [j) [k)•exp(jj•h3))/2.0;

*********far_field.cpp*********

#include "defin.h11

#include "complex .h"
void readfile(char •, fstream t);
void writefile(char •. fstream t);
extern dou PI, etaO;
extern delO del;
extern double wl;
extern double cen_x, cen_y, cen_z;
extern int Ist, Ind , Jst , Jnd • Kst, Knd;
extern complex exy[2] [nxO)[nyO] ,hxy[2][nxO][nyO], II X-component

exz[2][nxO][nzO],hxz[2)[nxO][nzO], II************

eyx[2](nxO][nyO],hyx(2][nxO][nyO], II Y-component
eyz[2][nyO][nzO],hyz[2](nyO][nz0], II************

ezx[2](nxO][nzO],hzx[2][nxO)[nz0], // Z-component
ezy[2)[nyO][nzO],hzy[2][nyO][nzO]; II••••••••••••

144

const double dtor=0 .0174532925199; // degree to radian
const double rtod=57.295779513082; // radian to degree
complex Nx[362], Ny[362], Nz[362],

Lx[362], Ly[362], Lz[362];
fstream fout;
int qaz;

!!••···
void far_field(int angle, int ID_ang, char •OUTPUT_name)
{void find_Nx(double), find_Ny(double), find_Nz(double),

find_Lx(double), find_Ly(double), find_Lz(double);
void find_Nxl(double), find_Nyl(double), find_Nzl(double),

find_Lxl(double), find_Lyl(double), find_Lzl(double);
double fi, ct;
complex Ect[362], Efi[362];
complex Net, Let, Nfi, Lfi;
double cosfi, sinfi, coset, sinct;
if (ID_ang==l)

{fi-angle•dtor;
find_Nx(fi); find_Ny(fi); find_Nz(fi);
find_Lx(fi); find_Ly(fi); find_Lz(fi);
cosfi=cos(fi);
sinfi=sin(fi);
writeFile(OUTPUT_name, fout);
for(int i=l ; i<=180; i++)

{cosct=cos(i•dtor);

}

sinct-sin(i•dtor);
Nct=(Nx[i)•cosfi+Ny[i]•sinfi)•cosct-Nz[i]•sinct;
Lct=(Lx[i]•cosfi+Ly[i]•sinfi)•cosct-Lz[i]•sinct;
Nfi=-Nx[i]•sinfi+Ny[i]•cosfi;
Lfi=-Lx[i]•sinfi+Ly[i]•cosfi;

Ect[i]=Lfi+Nct•etaO;
Efi(i]=Lct-Nfi•etaO;
fout<<i<<" " « abs(Ect(i])<<endl;

fout. close 0 ;
}

else
{ct=angle•dtor;

find_Nxl(ct); find_Nyl(ct); find_Nzl(ct);
find_Lxl(ct); find_Ly1(ct); find_Lzl(ct);
cosct=cos(ct);

145

sinct=sin(ct);
writeFile(OUTPUT_name, fout);
for(int i=l; i<=360; i++)

{ cosfi=cos(i•dtor); sinfi=sin(i•dtor);
Nct=(Nx[i]•cosfi+Ny[i]•sinfi)•cosct-Nz[i]•sinct;
Lct=(Lx[i]•cosfi+Ly[i]•sinfi)•cosct-Lz[i]•sinct;
Nfi=-Nx[i]•sinfi+Ny[i]•cosfi;
Lfi=-Lx[i]•sinfi+Ly[i]•cosfi;

}

Ect(i]=Lfi+Nct•etaO;
Efi[i]=Lct-Nfi•etaO;
fout<<i<<" ,. << abs(Ect(i])<<endl;

fout. close 0 ;
}

}

!!••···
II••• exp(jkr'cos()) ****************************
complex exp_phase(double xl, double yl, double zl, double ct, double fi)
{double cosf;

complex y ;
cosf=zl•cos(ct)+(xl•cos(fi)+yl•sin(fi))•sin(ct);
y=exp(complex(0.0,1 .0)•2•PI/Yl*COSf);
return(y);

}

ll**********************over••••*************

!!••···
void find_Nx(double fi)
{int ct, i,j,k,m;
double xl, yl, zl, ct_r, coff;
complex Jx, Nxl, Nx2;
writeFile("NX.dat", fout);
for(ct=l;ct<=180;ct++)

{ct_r=ct•dtor;
Nxl=O; Nx2=0;
for(i=Ist; i<=Ind-1; i++)

{xl=(i-cen_x+O .S)•del.x;

!!••························
for(j=Jst; j<=Jnd; j++)

for(m=O; m<=l; m++)
{yl=(j-cen_y)•del.y;

if(m==O) {zl=(Kst-cen_z)•del .z; Jx= hyx[O][i] [j] ;}

146

else {zl=(Knd-cen_z)•del.z; Jx=-hyx[l][i][j] ;}
if(j==Jst I I j==Jnd) coff=O.S; else cof£=1.0;
Nx1+=Jx•exp_phase(x1,y1,z1,ct_r,fi)•coff;

}

II••························
for(k=Kst; k<=Knd; k++)

for(m=O; m<=1; m++)
{zl=(k-cen_z)•del.z;

if(m==O) {yl=(Jst-cen_y)•del.y; Jx=-hzx[O](i][k];}
else {yl=(Jnd-cen_y)•del.y; Jx= hzx[l][i] [k];}
if(k==Kst I I k--Knd) coff=O.S; else coff=l.O;
Nx2+=Jx•exp_phase(x1,y1,z1,ct_r,fi)•coff;

}

}

Nx[ct]=del .x•(Nx1•del.y+Nx2•del.z);
fout<<ct<<"," << real(Nx[ct])<<", " «imag(Nx[ct])<<endl;

}

fout.close();
}

ll**************••••••••over•••••••••••••••••
II***
void find_Ny(double fi)
{int ct, i,j,k,m;
double x1, yl, z1, ct_r, coff;
complex Jy, Ny1, Ny2;
writeFile("NY.dat", fout);
for(ct=1;ct<=180;ct++)

{ct_r=ct•dtor;
Ny1=0; Ny2=0;
for(j=Jst; j<=Jnd-1; j++)

{yl=(j-cen_y+O.S)•del.y;
II••••••••••••••••••••••••••

for(i=Ist; i<=Ind; i++)
for(m=O; m<=1; m++)

{xl=(i-cen_x)•del.x;
if(m==O) {zl=(Kst-cen_z)•del.z; Jy=-hxy[O][i][j];}
else {zl=(Knd-cen_z)•del.z; Jy= hxy[l][i][j] ;}
if(i==Ist I I i==Ind) coff=O.S; else coff=l .O;
Ny1+=Jy•exp_phase(x1,y1,z1,ct_r,fi)•coff;

}

II••••••••••••••••••••••••••
for(k=Kst; k<=Knd; k++)

147

}

for(m:O; m<=l; m++)
{zl=(k-cen_z)•del.z;

}

if(m==O) {xl=(Ist-cen_x)•del.x; Jy= hzy[O] (j][k] ;}
else {xl=Cind-cen_x)•del.x; Jy=-hzy(l] [j][k] ;}
if(k==Kst I I k==Knd) cof£=0.5; else coff=t.O;
Ny2+=Jy•exp_phase(x1,yl,zl,ct_r,fi)•coff;

}

Ny[ct]=del.y•CNy1•del.x+Ny2•del.z);
fout<<ct<<"," << real (Ny [ct]) <<", " «imag(Ny [ct]) <<endl;

fout. close 0 ;
}

ll•*******************••over*****************
II***
void find_Nz(double fi)
{int ct, i,j,k,m;
double xt, yt, zl, ct_r, coff;
complex Jz, Nzl, Nz2;
writeFile("NZ.dat", fout);
for(ct=l;ct<=180;ct++)

{ct_r=ct•dtor;
Nzl=O; Nz2=0;
for(k=Kst; k<=Knd-1; k++)

{zl=(k-cen_z+O.S)•del.z;
II**************************

for(j=Jst; j<=Jnd; j++)
for(m=O; m<=l; m++)

{yl=(j-cen_y)•del.y;
if(m==O) {xl=(Ist-cen_x)•del.x; Jz=-hyz[O][j][k] ;}
else {xt=(Ind-cen_x)•del.x; Jz= hyz[l][j] [k];}
if(j==Jst I I j==Jnd) cof£=0.5; else coff=t.O;
Nz2+=Jz•exp_phase(x1,y1,z1,ct_r,fi)•coff;

}

II••························
for(i=Ist; i<=Ind; i++)

for(m=O; m<=l; m++)
{xl=(i-cen_x)•del.x;

if(m==O) {yl=(Jst-cen_y)•del.y; Jz= hxz[O][i] [k];}
else {yl=(Jnd-cen_y)•del.y; Jz=-hxz[l][i](k] ;}
if(i==Ist I I i==Ind) coff=O.S; else coff=l.O;
Nzt+=Jz•exp_phase(xl,yl,zl,ct_r,fi)•coff;

148

}

}

Nz[ct]=del.z•(Nzl•del.x+Nz2•del.y);
fout<<ct<<"," « real (Nz [ct]) <<", " «imag(Nz [ct]) <<endl;

}

fout. close 0 ;
}

ll********************••over•••**************
!!•**
void find_Lx(double fi)
{int ct, i,j,k,m;
double xl, yl, zl, ct_r, coff;
complex Hx, Lxl, Lx2;
writeFile("LX.dat", fout);
for(ct=l;ct<=180;ct++)

{ct_r=ct•dtor;

}

Lxl=O; Lx2=0;
for(i=Ist; i<=Ind; i++)

{xl=(i-cen_x)•del.x;
!!••························

for(j=Jst; j<=Jnd-1; j++)
for(m=O; m<=l; m++)

{yl=(j-cen_y+O.S)•del .y;

}

if(m==O) {zl=(Kst-cen_z)•del.z; Mx= eyx[O] [i] [j] ;}
else {zl=(Knd-cen_z)•del.z; Mx=-eyx[l] [i][j];}
if(i==Ist II i==Ind) cof£=0.5; else coff=l.O;
Lxl-=Mx•exp_phase(xl,yl,zl,ct_r,fi)•coff;

!!••························
for(k=Kst; k<=Knd-1; k++)

for(m=O; m<=t; m++)
{zl=(k-cen_z+0.5)•del .z;

}

if(m==O) {yl=(Jst-cen_y)•del.y; Mx=-ezx[O] [i](k];}
else {yt=(Jnd-cen_y)•del.y; Mx= ezx[l] [i](k] ;}
if(i==Ist I I i==Ind) cof£=0.5; else cof£=1.0;
Lx2-=Mx•exp_phase(x1,y1,zl,ct_r,fi)•coff;

}

Lx[ct]=del.x•(Lxl•del.y+Lx2•del.z);
fout<<ct<<"," << real(Lx [ct]) <<", " <<imag(Lx [ct]) <<endl;

fout. close 0 ;

149

}

//••••••••••••••••••••••over•••••••••••••••••
!!••···
void find_Ly(double fi)
{int ct, i,j,k,m;
double xl, yl, zl, ct_r, coff;
complex My, Lyl, Ly2;
wri teFile ("LY. dat" , fout) ;
for(ct=1;ct<=180;ct++)

{ct_r=ct•dtor;

}

Lyl=O; Ly2=0;
for(j=Jst; j<=Jnd; j++)

{yl=(j-cen_y)•del.y;

!!••························
for(i=Ist; i<=Ind-1; i++)

for(m=O; m<=l; m++)
{xl=(i-cen_x+O.S)•del.x;

}

if(m==O) {zl=(Kst-cen_z)•del.z; My=-exy[O](i] [j] ;}
else {zl=(Knd-cen_z)•del .z; My= exy[l][i] (j] ;}
if(j==Jst I I j==Jnd) coff=O .S; else coff=l.O;
Ly1-=My•exp_phase(x1,y1,z1,ct_r,fi)•coff;

!!••························
for(k=Kst; k<=Knd-1; k++)

for(m=O; m<=l; m++)
{zl=(k-cen_z+O .S)•del.z;

}

if(m==O) {xl=(Ist-cen_x)•del .x; My= ezy[O] [j](k];}
else {xl=(Ind-cen_x)•del.x; My=-ezy[l][j][k];}
if(j==Jst I I j==Jnd) coff=0.5; else coff=l .O;
Ly2-=My•exp_phase(xl,y1,z1,ct_r,fi)•coff;

}

Ly[ct]=del.y•(Lyl•del .x+Ly2•del.z);
fout<<ct<<"," << real(Ly[ct])<<", " <<imag(Ly[ct])<<endl;

fout . close 0;
}

//••••••••••••••••••••••over*****************
!!•••··
void find_Lz(double fi)
{int ct, i,j,k,m;
double xl, yl, zl, ct_r, coff;

150

complex Mz, Lzl, Lz2;
writeFile("LZ.dat", fout);
for(ct=1;ct<=180;ct++)

{ct_r=ct•dtor;
Lzl=O; Lz2=0;
for(k=Kst; k<=Knd; k++)

{zl=(k-cen_z)•del .z;

!!••························
for(j=Jst; j<=Jnd-1; j++)

for(m=O; m<=l; m++)
{y1=(j-cen_y+0.5)•del.y;

if(m==O) {xl=(Ist-cen_x)•del.x; Mz=-eyz[O] [j][k];}
else {xl=(Ind-cen_x)•del.x; Mz= eyz[l] [j](k];}
if(k==Kst I I k==Knd) cof£=0.5; else cof£=1.0;
Lz2-=Mz•exp_phase(x1,yl,z1,ct_r,fi)•coff;

}

!!•••·······················
for(i=Ist; i<=Ind-1; i++)

for(m=O; m<=l; m++)
{xl=(i-cen_x+O .S)•del.x;

if(m==O) {yl=(Jst-cen_y)•del.y; Mz= exz[O] [i][k];}
else {yl=(Jnd-cen_y)•del.y; Mz=-exz[l][i] [k];}
if(k==Kst I I k==Knd) cof£=0.5; else coff=l . O;
Lzl-=Mz•exp_phase(xl,yl,zl,ct_r,fi)•coff;

}
}

Lz[ct]=del . z•(Lz1•del.x+Lz2•del .y);
fout<<ct<<"," << real(Lz[ct])<< 11

,
11 <<imag(Lz[ct])<<endl;

}

fout.close();
}

ll•••••*****************over•****************
/!••••••****************over•••••••**********

!!••···
void find_Nxl(double ct)
{int fi, i,j,k,m;
double xl, yl, zl, fi_r, coff;
complex Jx, Nxl, Nx2;
writeFile ("NX. dat 11

, fout);
for(fi=l;fi<=360;fi++)

{fi_r=fi•dtor;
Nxl=O; Nx2=0;

151

}

for(i=Ist; i<=Ind-1; i++)
{xl=(i-cen_x+O.S)•del.x;

!!••························
for(j=Jst; j<=Jnd; j++)

for(m=O; m<=l; m++)
{yl=(j-cen_y)•del .y;

}

if(m==O) {zl=(Kst-cen_z)•del.z; Jx= hyx[O][i][j] ;}
else {zl=(Knd-cen_z)•del.z; Jx=-hyx[l][i][j] ;}
if(j==Jst I I j==Jnd) coff=0.5; else coff=l . O;
Nxl+=Jx•exp_phase(x1,y1,zl,ct,fi_r)•coff;

!!••························
for(k=Kst; k<=Knd; k++)

for(m=O; m<=l; m++)
{z1=(k-cen_z)•del.z;

}

if(m==O) {yl=(Jst-cen_y)•del.y; Jx=-hzx[O][i][k] ;}
else {yl=(Jnd-cen_y)•del.y; Jx= hzx[l][i][k] ;}
if(k==Kst I I k==Knd) coff=0.5; else coff=1.0;
Nx2+=Jx•exp_phase(x1,y1,zl,ct,fi_r)•coff;

}

Nx[fi]=del.x•(Nxl•del.y+Nx2•del.z);
fout<<fi<<"," << real(Nx[fi])<<", "<<imag(Nx[fi])<<endl;

fout .close();
}

//••••••••••••••••••••••over•••••••••••••••••

!!••···
void find_Nyl(double ct)
{int fi, i,j,k,m;
double xl, y1, zl, fi_r, coff;
complex Jy, Nyl, Ny2;
writeFile("NY.dat", fout);
for(fi=1;fi<=360;fi++)

{fi_r=fi•dtor;
Nyl=O; Ny2=0;
for(j=Jst; j<=Jnd-1; j++)

{yl=(j-cen_y+0.5)•del.y;

!!••••······················
for(i=Ist; i<=Ind; i++)

for(m=O; m<=l; m++)
{xl=(i-cen_x)•del.x;

152

}

if(m==O) {zl=(Kst-cen_z)•del.z; Jy=-hxy(O] (i][j] ;}
else {zl=(Knd-cen_z)•del.z; Jy= hxy[l] [i][j] ;}
if(i==Ist I I i==Ind) coff=O.S; else coff=l.O;
Nyl+=Jy•exp_phase(xl,yl,zl,ct,fi_r)•coff;

}

II**************************
for(k=Kst; k<=Knd; k++)

for(m=O; m<=l; m++)
{zl=(k-cen_z)•del.z;

}

if(m==O) {xl=(Ist-cen_x)•del.x; Jy= hzy[O](j][k] ;}
else {xl=(Ind-cen_x)•del.x; Jy=-hzy[l] [j] [k] ;}
if(k==Kst I I k==Knd) coff=O .S; else coff=l.O;
Ny2+=Jy•exp_phase(xl,yl,zl,ct,fi_r)•coff;

}

Ny[fi]=del.y•(Nyl•del.x+Ny2•del.z);
fout<<fi<<"," << real(Ny[fi])<<", " <<imag(Ny[fi])<<endl;

fout. close 0 ;
}

ll********************••over•••**************
II***
void find_Nzl(double ct)
{int fi, i,j,k,m;
double xl, yl, zl, fi_r, coff;
complex Jz, Nzl, Nz2;
writefile("NZ.dat", fout);
for(fi=l;fi<=360;fi++)

{fi_r=fi•dtor;
Nzl=O; Nz2=0;
for(k=Kst; k<=Knd-1; k++)

{z1=(k-cen_z+0 .5)•del .z;
II••························

for(j=Jst; j<=Jnd; j++)
for(m=O; m<=l; m++)

{yl=(j-cen_y)•del .y;
if(m==O) {xl=(Ist-cen_x)•del.x; Jz=-hyz[O][j][k];}
else {xl=(lnd-cen_x)•del.x; Jz= hyz[l][j] [k];}
if(j==Jst II j==Jnd) coff=0.5; else coff=l.O;
Nz2+=Jz•exp_phase(x1,y1,z1,ct,fi_r)•coff;

}

!!••························
153

for(i=Ist; i<=Ind; i++)
for(m=O; m<=l; m++)

{xl=(i-cen_x)•del.x;
if(m==O) {yl=(Jst-cen_y)•del.y; Jz= hxz[O][i][k] ;}
else {yl=(Jnd-cen_y)•del.y; Jz=-hxz[1][i] [k] ;}
if(i==Ist I I i==Ind) coff=O.S; else cof£=1.0;
Nz1+=Jz•exp_phase(x1,y1,zl,ct,fi_r)•coff;

}

}

Nz[fi]=del.z•(Nz1•del.x+Nz2•del.y);
fout<<fi<<"," << real(Nz[fi])<<", "<<imag(Nz[fi])<<endl;

}

fout. close() ;
}

/l•********************•over••***************

!!•••··
void find_Lx1(double ct)
{int fi, i,j,k,m;
double x1, y1, zl, fi_r, coff;
complex Mx, Lxl, Lx2;
writeFile("LX.dat", fout);
for(fi=1;fi<=360;fi++)

{fi_r=fi•dtor;
Lxl=O; Lx2=0;
for(i=Ist; i<=Ind; i++)

{xl=(i-cen_x)•del.x;

!!••························
for(j=Jst; j<=Jnd-1; j++)

for(m=O; m<=1; m++)
{yl=(j-cen_y+O.S)•del .y;

}

if(m==O) {zl=(Kst-cen_z)•del.z; Mx= eyx[O][i][j] ;}
else {z1=(Knd-cen_z)•del.z; Mx=-eyx[1][i][j] ;}
if(i==Ist I I i==Ind) coff=O.S; else cof£=1.0;
Lxl-=Mx•exp_phase(xl,yl,zl,ct,fi_r)•coff;

!!••························
for(k=Kst; k<=Knd-1; k++)

for(m=O; m<=l; m++)
{zl=(k-cen_z+O.S)•del .z;

if(m==O) {ylE(Jst-cen_y)•del.y; Hx=-ezx[O][i][k];}
else {yl=(Jnd-cen_y)•del.y; Mx= ezx[l][i][k];}
if(i==Ist II i==Ind) coff=O.S; else coff=l.O;

154

Lx2-=Mx•exp_phase(xl,y1,z1,ct,fi_r)•coff;
}

}

Lx[fi]=del.x•(Lx1•del.y+Lx2•del.z);
fout<<fi<<"," << real(Lx[fi])<<", " <<imag(Lx[fi])<<endl;

}

fout. close();
}

ll**********************over•****************

!!••···
void find_Lyl(double ct)
{int fi, i,j,k,m;
double xl, yl, z1, fi_r, coff;
complex My, Ly1, Ly2;
writeFile("LY.dat", fout);
for(fi=1;fi<=360;fi++)

{fi_r=fi•dtor;

}

Lyl=O; Ly2=0;
for(j=Jst; j<=Jnd; j++)

{yl=(j-cen_y)•del.y;

!!•·························
for(i=Ist; i<=Ind-1; i++)

for(m=O; m<=l; m++)
{xl=(i-cen_x+O.S)•del.x;

}

if(m==O) {zl=(Kst-cen_z)•del .z; My=-exy[O][i] [j] ;}
else {zl=(Knd-cen_z)•del.z; My= exy[l] [i][j] ;}
if(j==Jst I I j==Jnd) coff=O.S; else coff=1.0;
Lyl-=My•exp_phase(xl,yl,zl,ct,fi_r)•coff;

!!••························
for(k=Kst; k<=Knd-1; k++)

for(m=O; m<=l; m++)
{zl=(k-cen_z+O.S)•del.z;

}

if(m==O) {xl=(Ist-cen_x)•del.x; My= ezy[O] [j][k] ;}
else {xl=(Ind-cen_x)•del.x; My=-ezy[l][j][k] ;}
if(j==Jst I I j==Jnd) coff=O.S; else coff=l.O;
Ly2-=My•exp_phase(xl,yl,zl,ct,fi_r)•coff;

}

Ly[fi]=del.y•(Lyl•del.x+Ly2•del.z);
fout<<fi<<"," << real(Ly[fi])<<", " <<imag(Ly[fi])<<endl;

155

fout. close 0 ;
}

//••••••••••••••••••••••over•••••••••••••••••

!!••···
void find_Lzl(double ct)
{int fi, i,j,k,m;
double xl, yl, zl, fi_r, coff;
complex Mz, Lzl, Lz2;
writefile("LZ.dat", fout);
for(fi=l;fi<=360;fi++)

{fi_r=fi•dtor;
Lzl=O; Lz2=0;
for(k=Kst; k<=Knd; k++)

{zl=(k-cen_z)•del.z;

!!•••·······················
for(j=Jst; j<=Jnd-1; j++)

for(m=O; m<=l; m++)
{yl=(j-cen_y+0.5)•del .y;

}

if(m==O) {xl=(Ist-cen_x)•del .x; Mz=-eyz[O] [j][k] ;}
else {xl=(Ind-cen_x)•del.x; Mz= eyz[l][j](k] ;}
if(k==Kst II k==Knd) coff:0.5; else coff=l .O;
Lz2-=Mz•exp_phase(xl,y1,zl,ct,fi_r)•coff;

!!••························
for(i=Ist; i<=Ind-1; i++)

for(m=O; m<=l; m++)
{xl=(i-cen_x+O.S)•del.x;

}

if(m==O) {yl=(Jst-cen_y)•del.y; Mz= exz[O][i][k] ;}
else {y1=(Jnd-cen_y)•del.y; Mz=-exz[l][i][k] ;}
if(k==Kst I I k==Knd) coff=0 . 5; else cof£=1 .0;
Lzl-=Mz•exp_phase(xl,yl,zl,ct,fi_r)•coff;

}

Lz[fi]=del .z•(Lzl•del.x+Lz2•del .y);
fout<<fi<< .. ," << real(Lz[fi])<<11

, " <<imag(Lz[fi])<<endl;
}

fout.closeO;
}

//••••••••••••••••••••••over•••••••••••••••••

•••••••••••••••••••••••••

156

*******•mis.cpp*********

!!••*******************
II••• input filename•••
!!••···················
#include "defin . h"
extern canst unsigned NAME_SIZE=64;
extern char • inFile;
extern fstream f;

void getinputFilename(char * inFile, fstream t f)
{Mybool ok;
do{

ok=truel;
cout«"Enter input file name:";
cin.getline(inFile, NAME_SIZE);
f.open(inFile, ios: :in);
if(!f){cout<<"Cannot open the file" <<inFile<< "\n\n";

ok=falseO;}
}while (! ok) ;

}

!!••·············
//•••read file•••
!!••·············
void readFile(char * inFile, fstream t f)
{f.open(inFile, ios: :in);
if(!f) {cout<<"Cannot open the material " << inFile« "\n\n"; exit(O) ;}

}

!!••··············
//•••write file•••
!!••••••••••••••••
void writeFile(char • inFile, fstream t f)

{f . open(inFile, ios: :out);
if (!f) {cout<<"Cannot open the file " << inFile<< "\n\n"; exit (0);}

}

157

•

2.6.2 Far Fields

There are two different ways to obtain the far fields from the time-domain fields in

the defined space. One is sine steady-state response method [25]. Another is the so-

called FFT method [27, 28]. Here the first method is used because it is more efficient

when the radiation patterns of antenna are not very sensitive to frequency change

where only two or three frequencies are required.

Since the source is the form of sine wave, one can find the amplitude and phase of

the fields when steady-state condition is reached. After obtaining the tangential elec-

tric and magnetic currents in terms of surface fields on a closed surface surrounding

the antenna, one can use the equivalent electric and magnetic currents to compute

the corresponding radiated fields in the far zone.

It is assumed that ls = n X H and Ms = -n X E, where n is the unit normal

vector of the surface surrounding the antenna while E and H are the fields on the

surface. The retarded potentials F and A can be defined in terms of the magnetic

source and electric source respectively [7]. For a homogeneous isotropic medium, the

relations are

A=MJ
J e-ikr
s ds' (2.38)

s' 4rrr __. 1 M e-ikr
F = E s ds' (2.39)

s' 4rrr

25

..

