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ABSTRACT 

An important class of compounds within the plant and animal kingdom are phenolic acids 

(i.e. hydroxyl substituted benzoic acids). Traditional methods used for the determination of these 

compounds are very time-consuming. involving procedures that include extraction. derivatization 

and fmally GC analysis. An alternative method. called Pyrolysis/Methylation-GC (or 

thermochemolysis). applies the use of a derivatizing reagent. such as tetramethylammonium 

hydroxide (TMAH) for direct and rapid determination of these compounds in one analytical step. The 

polar functional groups (i.e. carboxylic and phenolic acid groups) are rapidly methylated and the 

products thermally desorbed onto the GC/MS column. Most analyses are on-line. where the pyrolysis 

unit is directly connected to the GC. However. there are serious drawbacks to on-line technique 

including the introduction ofthe methylating reagent onto the column and the requirement of a 

dedicated GC/MS. 

This study investigated method development for off-line thermochemolysis using solid-phase 

microextraction (SPME) for the analysis of phenolic acids using syringic acid as a model compound. 

The parameters investigated included pyrolysis temperature. SPME adsorption temperature and time. 

fibre size/phase. and split flow required for GC. Other thermochemolysis reagents investigated were 

tetramethylammonium acetate (TMAAc) and N,O-bis (trimethylsilyl) tritluoroacetamide (BSTFA). 

The effect of the solvent (i.e. methanol and water) used to dissolve the different reagents was also 

investigated. It was determined that aqueous TMAH was the most suitable reagent for phenolic acid 

analysis. The SPME off-line method was successfully optimized for highest quantity of methylated 

product. It was also determined that reagents BSTF A and TMAAc did not give reproducible results 

due to volatility ofBSTFA and the insufficient basicity ofTMAAc. 
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The above method was applied to the analysis of phenolic acids present in white pine needles 

rPinus strobus). Although most phenolic acids were successfully methylated. it was found that the 

SPME step was too selective as an extraction technique. that is. the phenolic acids observed in the 

chromatogram were dependent on the SPME adsorption temperature during headspace analysis. 

Future work should be focused on the use ofSPME in aqueous solution of methylated products. 
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Chapter I 

lntroductioa 

1.1 Overview of pyrolysis and thermocbemolysis 

1.1.1. Introduction to analytical pyrolysis 

Analytical pyrolysis is a thermal degradation technique that breaks larger molecules into 

smaller volatile and semi-volatile fragments for easier identification and study which is often coupled 

with gas chromatography/ mass spectrometry (GC/MS) ( 1.2.3). The first application of analytical 

pyrolysis was for the structural identification of natural rubber. in 1860 (2). More recently. in the last 

thirty years. pyrolysis!MS was improved by the combination of the pyrolysis unit with GC/MS (2.4). 

For example. Anderson et al. (5) showed that structural identification of natural resins and resinites 

with PY/MS could only be determined when combined with other spectral data. However. with the 

combination ofPY/GC/MS. the structural identification of natural resins was no longer restricted by 

the limitations ofMS. instead. chemical structures of pyrolysis products could now be determined 

directly from the pyrolysis of those resins using PY/GCIMS (5). This advancemem has also led to 

the structural analysis of many types of natural macromolecules at the molecular leveL without any 

sample pre-treatment and with very small sample quantities ( 4. 6). However. conventional 

PY /GCIMS has been found to lead to decarboxylation ( 4. 6) of underivatized carboxyl groups. such 

as benzenecarboxylic acids and large fatty acids. Also. structures of molecules may be modified by 

unwanted thermal reactions. which may lead to misinterpretation of those structures (6). The major 



limitation of conventional PY /GC/MS is that of molecules which contain polar components (i.e. 

COOH. OH"). because these compounds are difficult to transfer from the pyrolysis unit to the GC and 

are also difficult to chromatograph due to their higher boiling points (2.4). 

A relatively new technique created in the last 20 years by Challinor. known as Pyrolysis/ 

Methylation (high temperatures in the presence of tetramethylammonium hydroxide (TMAH)) has 

been shown to eliminate some of the limitations due to the presence of polar functional groups (2). 

This approach was shown to yield methyl esters of carboxylic acid groups and the methyl ethers of 

hydroxyl groups of phenolic acids. rendering many of the polar compounds volatile enough for GC 

( 6 ). through the production of non· polar compounds. This technique used for determining the 

structural components of polar compounds has had one important implication towards the 

identification ofunderivatized carboxylic acids found in natural resins. For example. prior to 

Challinor' s Pyrolysis/Methylation technique. carboxylic acids were known to be problematic in their 

analysis. such as poor chromatographic behaviour on most stationary phases of the chromatographic 

column. and the formation of decarboxylation products. which may or may not be readily related to 

the original structure. Thus. production of methyl esters and ethers for the respective carboxylic acid 

and hydroxyl groups has contributed to easier identification of many polar compounds (5). 

Today. many researchers have used this concept (Pyrolysis/Methylation) under titles such as 

Simultaneous Pyrolysis Methylation (SPM). Thermally Assisted Hydrolysis Methylation(THM), 

Thermally Assisted Chemolysis (TAC). or thermochemolysis. To avoid confusion, this report uses 

thermochemolysis to describe the technique created by Challinor ( 4. 7.8.9.1 0). 
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1.1.2. TMAH/ tbennocbemolysis 

The mechanism of methylation in thennochemolysis involves two sequential 

reactions as shown in figure I .I ( 13 ). The mechanism provides a method for the analysis of 

molecular components of polar macromolecular substances. where basic hydrolysis of weak 

linkages along with subsequent methylation occurs (I 0). TMAH. a highly alkaline ionic 

compound. acts as a derivatizing reagent that replaces the acidic proton (hydrogen) of 

carboxylic and hydroxyl groups to fonn methyl esters and methyl ethers. respectively 

(3.6.13.14 ). The methodology behind TM A.H/thermochemolysis has Jed to its applications to 

alkyd resins. natural polyester cutins. aromatic polyesters, and other units bearing carboxyl 

groups in humic substances. lignins, and most importantly. phenolic acids (7). 

r;;rr 
D-H 
/U 

0 
CH:J 
I+ 

• CH:J~-CH:J 
CH:J 

Pnenot TMAH 

• N(CH:J~· 6
0~ 

I 

Figure 1.1. The mechanism ofTMAH/ thennochemolysis 

N(CH:Jh 
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Thennochemolysis has been considered an appropriate tenn for Challinor"s 

Pyrolysis/Methylation technique because it has been shown. by a number of researchers such 

as Challinor himself. that the reaction involved is a chemolysis reaction (8). In other words. 

the use of a base-derivatizing reagent allows ester and ether bond breakage to occur at both 

relatively low (i.e.:S: 400°C) and intermediate temperatures (i.e. up to 700 °C) compared to 

conventional pyrolysis. which requires elevated temperatures (i.e. > 800 °C) ( I 1.12.13 ). 

1.1.3. Other derivatiziag reagents 

TMAH/ on-line thennochemolysis (i.e. the direct connection between the pyrolysis 

unit and the GC) allows larger and more derivatized fragments of polymeric material to reach 

the chromatographic column. However. in time. these compounds (including the reagent 

TMAH) tend to lead to column degradation and often show higher background noise in 

chromatograms ofthe pyrolysates (2). 

TMAH (figure 1.2). with high alkalinity. has been shown to result in unfavorable 

cleavage of substructures in some polymers. such as lignins. through thermally assisted 

hydrolysis ( 15.18). Another group of compounds affected by the alkalinity ofTMAH is 

triglycerides (i.e. Lipids). The rapid conversion into their fatty acid methyl esters has been 

shown to be successful for fats that have saturated fatty acid components such as butter fat. 

However. additional isomerization products are obtained in triglycerides such as linseed oil 

which have significant polyunsaturated fatty acids (PUF As). Thus. in fatty acid 

TMAH/thermochemolysis. the alkalinity ofTMAH results in a based-catalyzed isomerization 

of the unsaturated polyunsaturated fatty acids (PUF As) ( 17). This has led to research into less 
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harsh derivatizing reagents such as tetramethylammonium acetate (TMAAc} and N.O-

bis(trimethylsilyl) trifluoroacetamide (BSTF A). 

c~ oH" 
I 

c~~+"H:3 
c~ 

TMAH 

Figure 1.2. Tetramethylammonium hydroxide (TMAH). 

TMAAc (figure 1.3) is a weaker base compared to TMAH. It has been shown to offer 

an alternative methylating method for the analysis of free fatty acids found in wood extracts 

and wood pulps. Research showed that when free unsaturated fatty acids were heated in the 

presence of TMAAc no isomerization was observed. in contrast to that occurring when 

TMAH was employed ( 16.17.18). The TMAAc methylating mechanism results in the same 

formation of methyl esters and methyl ethers for carboxylic and hydroxyl groups. 

respectively. as TMAH (2.4). 

TM.6AC 

Figure 1.3. Tetramethylammonium acetate (TMAAc}. 

5 



BSTFA (figure 1.4) is another alternative reagent that provides a less harsh 

environment compared to TMAH. It involves a trimethylsilyl (TMS) derivatization of 

hydroxyl groups followed by thermolysis of the derivatized TMS-polymer ( 17 .18). 

Advantages ofBSTFA include producing thermally stable TMS derivatives. which do not 

easily degrade and are transferable to the injector port and separated by GC. No sample 

preparation is needed and the analysis can be operated under milder conditions ( 18). 

Research has shown that BSTF A was successfully applied to the thermochemolysis of 

lignin in place ofTMAH ( 15). However. the volatility ofBSTFA is high. which makes its 

effectiveness dependent on the equipment used in thermochernolysis. The reagent also 

hydrolyzses in the presence of moisture and this is a problem for wet samples. For 

example. research completed on a bulk dehydrogenative polymer of coniferyl alcohol (G-

DHP) was detennined to be successful in obtaining the TMS derivatives only when a 

Bio-Probe was used which enclosed the sample along with BSTF A and prevented the 

escape (or decomposition) of the reagent (15). 

F 

' F C -F 

c\ /)=a 
Si-N 

Ct'fJ I I 
HaC Si-c~ 

~\ 
c~ 

BSTFA 

Figure 1.4. N.O-bis (trimethylsilyl) trifluoroacetamide (BSTF A). 
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Other reagents investigated and found in the literature. for use in thermochemolysis. 

include hexamethyldisilazane (another silylating reagent) (HMOS) ( 18). other quaternary n­

alkyl ammonium hydroxides such as tetrabutylammonium hydroxide (TBAH) • 

trimethylphenylammonium hydroxide (TMPAH) and (m-trifluoromethylphenyl)-trimethyl 

ammonium hydroxide (TMTFTH) (2). In most thermochemolysis studies. alternative 

reagents are investigated to determine their effectiveness compared to TMAH. which is 

highly alkaline. In other words. to acquire reagents that may produce stable pyrolysates as 

those obtained from TMAH/thermochemolysis. but without the use of a highly alkaline 

environment (2.18). 

This type of research is crucial for the analysis of fatty acid compounds present in 

lipid materials. For example. Chiavari et al. (2001) showed that the use ofTMAH resulted in 

side reactions such as the isomerization of double bonds of unsaturated fatty acids (called 

base-catalyzed isomerization) and methylation of the carbon atom in the 2-position ( 18). The 

major concern is that this type of alteration is that it may result in incorrect identification of 

the fatty acid structure ( 18). This problem was minimized by replacing TMAH with a milder 

reagenL such as. hexamethyl- disilazane (HDMS) ( 18). 

Regardless of the reagent used. thennochemolysis has offered a method for the 

analysis and identification for both phenolic acids and fatty acid compounds. through the 

production of less polar compounds for rapid sample analysis. This study funher investigates 

the use of TMAH. TMAAc. and BSTF A for the off-line thermochemolysis of samples that 

contain phenolic acids. 
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1.2. Solid-phase microestradioa (SPME) 

Solid-phase microextraction (SPME) utilises a ~i.ort. thin. solid fibre of fused silica (typically 

I em long and 0.1 I mm outer diameter) coated with an absorbent polymer. The fibre is composed of 

the same chemically inert fused silica used to make capillary columns and is very stable at high 

temperature (22) (figure 1.5). The development of many fibre coatings was important for its use in 

thennochemolysis because different types of sorbents will extract different groups of analytes. The 

different fibre coatings available range from non-polar (e.g. polydimethylsiloxane) to polar (e.g. 

polyacrylatc) phases. The theory behind SPME is the same as that ofGC column. where ··like 

dissolves like ... For example. when the volatile compound is non-polar then a non-polar fibre would 

be used (20). 

SPME techniques include direct immersion of the fibre into an analyte solution or exposure 

of the fibre to the headspace of the sample. where the target analytes are subsequently extracted from 

the vial into the fibre coating. After a pre-determined adsorption time. the fibre is withdrawn back 

into its sheath. which is then pulled out of the vial and immediately transported to the injector liner of 

the GC where the concentrated analytes are thermally desorbed onto a GC column. as shown in 

figure 1.6 (22). The particular SPME extraction technique used here for off-line thennochemolysis 

was headspace extraction. In this report. the analyte produced by thermochemolysis condenses on the 

walls of the vial. The SPME coating absorb the analyte when the vial is heated (see section 2.2.1) 
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SPME Fiber 

Figure 1.5. Solid-phase microextractiom (SPME) device 

Figure 1.6. Extraction method for SPME (i.e. Headspace) 
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Many parameters affect the successful use ofSPME. For example. increasing the thickness of 

the fibre coating has been shown to increase the amount of analyte that may be adsorbed onto the 

fibre. Determination of the appropriate coating polarity that would be most suitable for an aqueous 

samp!e must be done. however. this is more of a trial and error process. Finally. the most important 

parameter that must be controlled is the optimisation of the sample temperature. This is because an 

increase in sample temperature has been shown to result in faster extraction times because a higher 

concentration of the anal)1e is present within the headspace. Also. an increase in temperature allows 

higher boiling point analytes to be adsorbed onto the fibre. However. this may be considered a 

limitation because low volatility components have been shown to be adversely affected. Thus. when 

SPME is used in analysis it is important that optimisation of conditions is penormed in order to 

obtain the most effective result (22). 

SPME can be used in conjunction with off-line analysis ofthermochemolysis products 

whereby the SPME coating adsorbs the products and these are subsequently transferred to the GC. 

The advantage ofSPME is that it prevents non-volatile compounds from reaching the GC. thereby 

producing chromatograms with less background noise. which unlike on-line thermochemolysis 

permits all material to reach the chromatographic column resulting in higher background noise over 

time (2). Before SPME can be an effective extraction technique. the optimisation of SPME 

conditions is crucial. Thus. this study optimizes SPME using a syringic acid standard for the 

subsequent analysis of phenolic acids of white pine needles (Pinus strobus). 

10 



l.J. Use of pure pbeaolic a(:ids u models for optimisation of off-line tberm~hemolysis 

Until TMAH was included in pyrolysis. the analyses of polar components (e.g. phenolic 

acids) were limited. TMAH/on-line thennochemolysis offers an alternative method for the analysis 

of polar compounds. This study used off-line thermochemolysis with reagents TMAH. TMAAc. and 

BSTF A for the analysis of phenolic acids such as syringic acid. atranorin and usnic acid. shown in 

figure I. 7. to determine the effectiveness of off-line thermochemolysis in combination with SPME. 

All model phenolic acids contain hydroxyl and carboxylic acid groups that fonn methyl 

derivatives with TMAH and TMAAc. and silane derivatives with BSTF A. Syringic acid was used as 

a model compound to optimize the parameters of off-line TMAH/thennochemolysis using SPME. 
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Figure 1. 7. The phenolic acids used as models for optimisation in off-line thermochemolysis. 
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1.4. Model study: Plant phenolics ia white pine needles 

1.4.1. Plant phenolics 

Plant phenolics are important to the survival and evolution of land plants. These 

compounds play an important role at the molecular level where they are components of the structure 

of plants which screen against irradiation. help regulate the nutrient cycle. and in the defence against 

pathogens (21 ). Some compounds found in plants that have phenolic acid components include 

lignins. anthraquinones. phenylpropanoids, and condensed tannins (21 ). For example. the two major 

groups of phenolic acids that usually occur in the conjugated and esterified forms commonly found in 

leaves include a range of substituted benzoic acid derivatives and those derived from cinnamic acids. 

An important benzoic acid. syringic acid. combines with other acids such as p-hydroxyl benzoic and 

vanillic acid to form components of lignins. which are highly branched polyphenolic compounds 

with complex structures that play an important role in the rigidity of cell walls (20). 

Thermochemolysis is important in determining the chemical structures found in plants and 

towards the quantification of their changed abundances as a result of exposure to environmental 

stresses such as pollution. and disease (20). The research completed on plants using 

thermochemolysis has or involves determination of the structure of the pyrolysates in order to 

recreate the original molecule. Thus. analysis of plant chemistry through thermochemolysis ideally 

requires a thorough knowledge of the structures that are present within a plant. 

Up to now. applications ofthermochemolysis of plants has been completed using TMAH/on­

line. in which the pyrolysis unit and the GC are coMected. This method is not without problems. For 

example, large quantities of unchromatographable sample reaches the chromatographic column 
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which. after time may lead to column degradation. Thus. this study of off-line thermochemolysis 

offers an alternative method to on-line lhennochemolysis for plant structural analysis (of white pine 

needles (Pinus strobus) or any other plant species). 

1.4.2. Phenolics in white pine needles (Pi11u strobiiS) 

When analyzing wood by thermochemoiysis. it is important to be specific about the species. 

This is because different species of wood have been shown to have different structures and quantities 

of phenolics (3). Clifford et al. ( 12) showed that on-line TMAH!lhennochemolysis was very 

selective for lignin and the predominant peaks obtained were guaiacyl derivatives. which are 

primarily monomethylphenol units found in Gymnosperm lignin ( 13 ). 

Other research completed by Zhang ( 1993) using on-line lhennochemolysis of white pine 

needles (Pinus strobus) showed the presence of small amounts ofhydrolysable and condensed 

taMins (20). A major peak was determined to be 3.4-dimethoxy benzoic acid methyl ester (Mm= 

196 ). figure 1 .8~ and a minor peak 3-methoxy benzoic acid methyl ester (Mm= 166). figure 1.8b. 

The work completed by Zhang is important in this study for the comparison of on-line to off-line 

thermochemolysis of the same white pine needles (Pinus strobus). in relation to the above 

compounds (20). 

14 



Figure 1.8a. 3.4-Dimethoxy benzoic acid methyl ester (Mm=l96) 

0 

()_II )--!I C -OCH3 

~co 

Figure 1.8b. 3-Methoxy benzoic acid methyl ester (Mm = 166) 
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1.5. Objectives oftht. study 

There has been much research on the structural identification of plant phenolic acids using 

TMAWthennochemolysis. However. much of this research entails the use of on-line 

thennochemolysis (limitations discussed in section 1.4.1 ). thus. the objectives of this study include: 

I) The optimisation of off-line thennochemolysis/SPME using syringic acid as a model 

phenolic acid. 

2) The effectiveness ofaltemative reagents TMAAc. and BSTFA. including the solvent in 

which the reagent should be dissolved (i.e. methanol or water). 

3) Application of the developed method to the analysis of the phenolic acids present in white 

pine needles (Pinus strobus). 
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Chapter 2 

Experimentation: Approaeb and Results 

2.1. Materials and Solutions 

Derivatizing reagents 

Tetramethylammonium hydroxide (TMAH) as a 25 mass% solution in methanol 

TMAH-pentahydrate (97%) and tetramethylammonium acetate (TMAAc; 95%) were purchased 

from Aldrich. N.O- bis(trimethylsily[) trifluoroacetarnide (BSTFA + tms. 99:1) was purchased 

from Supelco. TMAH and TMAAc were dissolved in either nanopure water or spectrograde 

methanoL Fresh solutions were prepared weekly. 

The BSTFA/TMS was shipped in sealed vials and only opened when required for 

analysis. Any unused reagent was discarded if not consumed during the day. 

Standards and pine needles 

Syringic acid and atranorin were purchased from Sigma while usnic acid (98%) was 

purchased from Aldrich. The standards were used as is and methanolic solutions of each were 

prepared weekly. For accuracy. known quantities of standards used for experiments were 

delivered volumetrically (e.g. 0.2 J.lg/ J.1l) because of the small quantities needed. 

The white pine needles. I.D. 38 (Pinus Strobus) were obtained from work completed by 

Forestry Canada. Maritimes region and used in a previous study (20). Powdered samples (200 J.lg 

± 5 J.1g) were directly weighed onto a quartz boat using a microbalance. 
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l.l. Off-line tbennocbemolysis GC/MS using SPME 

l.l.l. Optimisation ofsolid-pbase microextnction (SPME) ofsyringic acid 

Solid-phase microextraction (SPME) was optimized using syringic acid. A schematic of 

the SPME method used for this study is sho~ in figure 2.1 (2). 

Figure 2.1 . Off-line thennochemolysis GCIMS using solid -phase microextraction 
(SPME) where by the SPME device is placed into vial. 
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The amount ofanalyte and reagent used varied throughout the study. Their amounts are 

either given in the text or along with the figures and tables. Initially. solid syringic acid was 

weighed out onto quartz pyrolysis tubes. but it was very difficult to accurately weigh these small 

quantities (i.e. 5. I 0 ~). Solutions of syringic acid were therefore used in optimisation experiments. 

Syringic acid (a known amount dissolved in methanol) was added to a quartz boat 

containing a small piece of glass wool. To this. a known amount of derivatizing reagent (i.e. 

TMAH. TMAAc. or BSTF A dissolved in methanol) was added. The quartz boat was then placed 

within the platinwn coil filament of a model 120 pyroprobe from Chemical Data Systems. and 

enclosed by a vial. Syringic acid was added to the quartz boat and then the reagent to ensure an 

accurate amount of the acid used could be maintain throughout the experiment. Also. placement 

ofthe anal}1e into the quartz boat allowed the regent to be placed directly on to the sample 

helping to ensure that there was adequate time for the analyte and reagent to react. 

All chromatograms of off-line thermchemolysis of syringic acid gave only one 

chromatographic peak. that of the fully derivatized compound. The identity ofthe product was 

confirmed by comparing its mass spectrum with that in the NBS mass spectra hbrary. All mass 

spectral data is listed in the appendix. 

The optimal pyrolysis temperature used for syringic acid was determined to be 500°C for 

10 seconds. as shown in table 2.1. with a relative peak area of I 00 %. When thermochemolysis 

was completed. the SPME syringe was inserted into the vial (see figure 2.1) and placed into a 

pierce Reacti-Therm Stirring/Heating module. The optimal temperature determined for 
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adsorption onto the SPME fibre was 90°C. as shown in table 2.2. which gave a relative peak area 

of98 %. The optimwn heating time for the SPME fibre was determined to be l 0 minutes. as 

shown in table 2.3. which gave a relative peak area of l 00 %. Finally. the size and type of fibre 

chosen for SPME was I 00 ~diameter coated with polydimethylsiloxane. as shown in table 2.4. 

Although the 30 J.LIIl diameter fibre had a slightly higher relative peak area. the 1 00 !liD fibre was 

chosen for thermochemolysis because of its ability to handle more sample (20). 

I Temperature (0 C) Relative peak height(%) 
I relative to 500°(. run 1 

i Run I Run2 
I 300 76 72 I 

j 400 92 89 

! 500 100 I 01 

! 600 105 107 

I 7oo 90 87 

Conditions: 10 Jll of syringic acid {0.2 !J.g/ J.1l) with 
I 0 Jl) of25% methanolic TMAH. SPME: 90°C for to min. 

Table 2. I . Optimization of pyrolysis temperature for syringic acid using solid-phase 
microextraction (SPME): duplicate analysis. 

! Temperature ( 0 () Relative peak height(%) I 
I relative to 120°C. run I 
i 
i Run I Run2 
I 30 5 8 

50 20 22 
70 85 79 
90 98 95 
120 100 105 

Conditions: 10 Jll of syringic acid (0.2 Jlg/lll) with 
10 J.1l of25% methanolic TMAH. SPME: for to min 
P)Tolysis temperature: 500°C. 

Table 2.2. Optimization of solid-phase microextraction (SPME) adsorption temperature for 
syringic acid: duplicate analysis. 
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Time (min) Relative Peak height(%) 
relative to I 0 min. run I 
Run I Run2 

4 70 62 
6 80 82 
8 85 88 
10 100 102 
12 103 105 
14 110 107 

Conditions: I 0 J.il of syringic acid (0.2 ~gl J.il) with 
I 0 J.il of25% methanolic TMAH. SPME: 90°C 
Pyrolysis temperature: 500°C. 

Table 2.3. Optimization of solid-phase microextraction (SPME) adsorption time using a heating 
module: duplicate analysis. 

Stationary Phase Description Relative peak height(%) 
relative to 30f.Ull 

I OOJ.Ull polydimethylsiloxane Non-bonded 97 
30f.Ull polydimethylsiloxane Non-bonded 100 
7J.Ull polydimethylsiloxane Bonded 87 
85f,UTl poly acrylate Partially crossed-linked 76 

Conditions: I 0 J.il of syringic acid (0.2 J.lg/ J.ll} with 
10 J.ll of25% methanolic TMAH. SPME: 90°C for 10 min 
Pyrolysis temperature: 500°C. 

Table 2.4. Optimization of coat thickness and type. 

21 



The optimisation shown in tables 2.1-2.3 was perfonned twice to detennine reproducibility 

and to detennine the optimum parameters for use in the off-line thennochemolysis of white pine 

needles (Pinus strobus). The reproducibility between runs was shown to be within 10-15%. which 

indicate that the conditions optimised for syringic acid were effective in obtaining results that could 

be quantified. Most imponantly. optimisation of the SPME conditions improves the ability of the 

device to acquire sample that is to be introduced into GC/MS. The SPME also eliminates non­

volatile compounds before they reach the chromatographic column. thus improving the sensitivity of 

GC/MS. The optimisation of the SPME coating thickness and type (table 2.4) indicates the choice of 

coating thickness most beneficial to off-line to be the non-bonded polydimethylsiloxane. This I OOJ.Ull 

fibre was selected in part due to its ability to hold more sample compared to other smaller coating 

thicknesses . 

2.2.2. Optimization of gas chromatography/mass spectrometry (GC/MS) 

For qualitative analysis. a Hewlett-Packard 5890 series Gas Chromatograph was interfaced to 

a Hewlett-Packard 5971 Series Mass Sensitive detector. Both instruments were controlled by Hp­

Chem software. which also collected the mass spectral data. The optimization was carried out again 

using syringic acid. 

The GC injector port temperature was 250"C and the oven temperature program was 

initially set at 150°C and held for 2 minutes before ramping up to 250°C at l6°C/min. The final 

temperature was held for 2 minutes. The GC column pressure was 18.05 psi. The optimal split 

flow. ofheliwn gas. was determined. through duplicate analysis. to be at 18.0 mL'min. as shown 

in table 2.5. The duplicate analysis showed the variation to be better than 10% for the chosen 
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split flow (i.e. 18 rnVmin). The GC column was a DB-5 capillary colunm (Chromatographic 

Specialities) length 28m. i.d. of0.25 mm. and a film thickness of0.25 JJID. The film consisted of 

5% phenyl and 95% methyl groups on a siloxane backbone. 

I Split flow (mVmin) peak area (xl03
) I 

Run I Run 2 
9.0 9.1 8.9 
18.0 25.1 25.4 
40.0 2.2 2.4 

Conditions: 10 J..Ll of syringic acid (0.2 J..Lg/ JJI) with 
10 J..Ll of25% methanolic TMAH. SPME: 90°C for 10 min 
Pyrolysis temperature: 500°C. 

Table 2.5. Optimization ofGC/MS split flow using syringic acid: duplicate analysis 

The mass detector was tuned daily using the Autotune program. Ionization occurred by 

electron impact using electrons with 70 eV. The mass analyzer was a quadrupole used in the scan 

mode for m'z of 50 to 650. 

2.3. Qualitative results using GC/MS 

2J.I. TMAH and TMAAcl off-line tbermochemolysis ofsyringic acid 

The TMAH and TMAAc/ off-line thermochemolysis of syringic acid produced the dimethyl 

derivative (Mm=226). shown in Figure 2.2.The resuking chromatogram from each experiment gave a 

peak at the same retention time (RT = 4.500 min) and the same mass spectrum. which was identified 

as that of the dimethyl derivative. This was in agreement with the reactions ofTMAH and TMAAc 
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with syringic acid as reported in the literature. which resulted in the fonnation of the same product 

(3.4.5-trimethoxybenzoic acid methyl ester) (3.5.12.13). 

OH 

~co 
oc~ 

+ TMAH 
or 

TMAAC 
c=o 

OH 

_Syrlngic Acid 

Figure 2.2. The dimethyl derivative of syringic acid (Mm= 226) through off-line/ 
thennochemolysis with TMAH or TMAAc. 

OCH:l 

c=o 

I 
OCH:3 

Chromatograms ofTMAH and TMAAc-thermochemolysis of syringic acid [0.2 J..Lg/Jll] 

showed a reasonably linear correlation between the volumes ofsyringic acid and the peak area as 

sho"n in figure 2.3. 
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Conditions: 5.10,20 Jll of syringic acid (0.2 Jlg/ J..Ll) with 
10 Jll of25% methanolic TMAH. SPME: 90°C for 10 min 
Pyrolysis temperature: 500°C. 

.-..-TMAH , 
. I 

:-TMAAc 1 

Figure 2.3. Correlation between volwne of syringic acid (0.2 Jlg/J.ll) added to the peak area 
detennined through TMAH and TMAAc/ off-line thennochemolysis. 
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Additional experiments were also performed to observe the reproducibility ofTMAH 

and TMAAc-thennochemolysis. For TMAH as methylating reagent. the reproducibility was quite 

reasonable with SD== 4.79% (table 2.6a). However. the use ofTMAAc showed less reproducibility. 

SD== 44.0 %. and these results are shown in table 2.6b. The plausible reason for this is the weakly 

basic conditions when the acetate sakis employed. 

I 4.39 
4.83 
4.60 

I SD == 4.79% 

Conditions: I OJ.!l of syrh,gic acid (0.2 J.tg/ J.tl) with 
10 JJ.l of 10% methanolic TMAH. SPME: 90°C for 10 min 
Pyrolysis temperature: 500°C. Spilt flow: 18 mVmin 

Table 2.6a. Reproducibility ofTMAH/off-line thennochemolysis GC/MS for syringic acid 
[0.2 Jlg/JJ.I] using SPME 

peak area (xI 06
) 

1.35 
1.45 
3.04 
3.22 

SD ==44.0% 

Conditions: I OJ.!l of syringic acid (0.2 J.tg/ J.tl) with 
10 J.tl of JO% methanolic TMAH. SPME: 90°C for 10 min 
Pyrolysis temperature: 500°C. Spilt flow: 18 mJ/min 

Table 2.6b. Reproducibility ofTMAAc/off-line thennochemolysis GC/MS for syringic acid 
[0.2 Jlg/JJ.I] using SPME. 
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2.3.2. BSTF AI off-line tbermochemolysis of syringic acid 

The BSTF AI off-line thennochemolysis of s)Tingic acid produced the silane derivative 

(Mm = 342). as shown in figure 2.4. The BSTF AI off-line thennochemolysis of syringic acid 

produced only one peak. the di-silane derivative (Mm== 342) shown in figure 2.4 (its mass spectra 

listed in appendix). The resulting chromatograms showed aRT of6.282 min for the silylated 

derivative compared to 4.500 min for the methylated derivative of s)Tingic acid. The longer retention 

time is due to the increased mass of the derivative and hence lower volatility as a result of the larger 

silyl group compared to the methyl group. 

OH 

~co 
~co 

oc~ 

+ BSTFA+TMS • 
c=o 

OH 

Syringic Acid 

Figure 2.4. The silane derivative from BSTF AI off-line thennochemolysis with syringic 
acid [0.2 J,Lg/J.LI] using SPME. 
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The reproducibility of BSTF N off-line thennochemolysis of syringic acid. as shown in table 

2.7. was not as good as with TMAH (with SD =4.79%). However. this may be due to the volatility of 

BSTF A. which will tend to evaporate during sample heating. Thus. care must be taken to ensure that 

sample has actually reacted with BSTF A before chromatographic analysis. Therefore. for this study. 

no assumptions may be applied to whether or not BSTF A can be used as an alternative reagent in off-

line thermochemolysis until further precautions are taken to ensure BSTF A has reacted only with the 

sample in question and not lost to evaporization. 

I methylated peak area (xI 06
) 

! 21.0 
. 4.3 

Conditions: I 0~1 of syringic acid (0.2 ~g/ ~I) with 
3 ~I ofBSTFA+tms. SPME: 90°C for to min 
Pyrolysis temperature: 500°C. Spilt flow: 18 rnVmin 

Table 2.7. Reproducibility ofBSTFN off-line thennochemolysis GC/MS with syringic acid 
[0.2 J.lg/J.ll] using SPME. 
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2.3.3. TMAH. TMAAc. and BSTF AI off-line thermochemolysis of atnnorin alld unic 
acid 

The products that may result from an expected thermochemolysis of atranorin and usnic acid 

with their individual reagents (TMAH. or TMAAc) are shown in Figures 2.5a. and 2.5b. respectively. 

For reagent BSTF A. the groups designated by ( •) would have silyl groups present. It is important to 

understand that many researchers have shown that each reagent has a chemical effect on the products 

obtained. For example. MacGillivary (3) showed that when atranorin was exposed to TMAH. the 

intact structure was broken down into fragments. and that each fragment was methylated (3 ). 

The experimental conditions used were the same as those used for the analysis of syringic 

acid. The results of off-line thermochemolysis of atranorin and usnic acid were very poor. No 

chromatographic peaks were observed in any of the chromaotgrams. not even TMAH-methylated 

fragments of atranorin observed by MacGillivary (3). 
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Figure 2.5a Expected product from TMAH or TMAAc/ thermochemolysis of atranorin with 
methylated groups designated by (•) (Mm = 416). 

f-i:3CO 0 
~c II 

c-c~ 

c=o 
I 
CH3 

Figure 2.5b. Expected product from TMAH or TMAAc/ thennochemolysis of usnic acid 
with methylated groups designated by (•) (Mm = 372). 
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It is possible that atranorin and usnic acid were derivatized by thennochemolysis and 

condensed on the walls of the collected vials. But the products may not have been able to desorbed 

onto the SPME fibre because of their high boiling points (or molar mass. ( methylated atranorin: 

Mm= 416: usnic acid: Mm= 372)). SPME temperature as high as 150 °C was tried without success. 

For this study. the important aspect was to verify if off-line thermochemolysis has potential 

in the analysis of phenolic acids in white pine needles (Pinus strobus) in comparison to the results 

obtained from on-line thennochemolysis (i.e. Zhang. 1993) (20). Thus. TMAH/syringic acid was 

used as an internal standard for the method development of off-line thermochemolysis of white pine 

needles (Pinus strobus) to ensure that optimum methylation conditions were maintained. 

2.3.4. TMAH/tbermocbemolysis/SPME ofwbite piae needles (Pi1111s strobus) 

The verification of off-line thermochemolysis potential in white pine needle (Pinus strobus) 

analysis was made possible with the work completed by Zhang ( 1993 ). The peaks of interest were 

peak 46. 3-methoxy benzoic acid methyl ester (Mm= 166). and peak 55. 3.4-dimethyl benzoic acid 

methyl acid (Mm= 196). as shown in figure 2.6. 

The chromatograms ofTMAH/ off-line thermochemolysis of white pine needles (Pinus 

strobus) showed an easily determined peak to be 3,4-dimethoxy benzoic acid methyl ester (Mm= 

196) with retention (RT) 3.290 min. while a mioor 3-methoxy benzoic acid methyl ester peak 

( Mm = 166) was shown to be present only when an extracted ion chromatogram was performed, 

as shown in figure 2. 7. The mass spectra data is given in the appendix 
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T t me C min. ) 

Figure 2.6. TMAHJ on-line thermochemolysis of white pine needles (Pinus strobus) 
completed by Zhang (1993) (20). 
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GC conditions: injector port temperature: 290°C: Oven temperature: I00°C 
(held for 2 min) to 280°C (held for 3 min) at 32 °C/min. 
Other conditions: I OOflg white pine needles: 20 fll (25%) TMAH 

Figure 2.7. TMAW off-line thennochemolysis of white pine needles at SPME 
adsorption of90°C for I 0 minutes. 
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The comparison of chromatograms (figures 2.6. and 2. 7) was imponant for detennining the 

potential of off-line thennochemolysis in white pine needle analysis. However. to obtain the above 

chromatogram (figure 2.7). the injector pon temperature was increased to 290°C. Also. the oven 

temperature program was changed to I 00 °C. held for 2 minutes. and increased to 280 °C at 32 °C/ 

min and held for 3 minutes. in order to resemble the operation of on-line thennochemolysis 

perfonned by Zhang (20). in figure 2.6. The peaks obtained from the chromatogram (figure 2.7) are 

relatively different from the chromatogram obtained by Zhang (figure 2.6) because only the phenolic 

acid components are shown (RT less than 10 minutes). along with a fatty acid- like spectrum. This is 

due to the use ofSPME. which allowed only volatile compounds to reach the GC column. while 

figure 2.6 results from the complete introduction of all pyrolysates onto the column due to the direct 

connection between the GC and the pyrolysis unit. 

One major difference in off-line thennochemolysis is the presence of the solvent in which the 

derivatizing reagents TMAH and TMAAc are dissolved. Prior to off-line thennochemolysis of white 

pine needles. all optimised conditions of syringic acid were completed with the reagents dissolved in 

methanol solution. However. a comparison was made between the affect of water and methanol as 

the solvent. It was detennined that when dealing with the real sample of white pine needles (Pinus 

strobus). the use of water appeared to produce a chromatogram that showed a higher abundance of 

3-methoxy benzoic acid methyl ester (Mm = 166) and 3.4-dimethoxy benzoic acid methyl ester (Mm 

== 196) peaks. However. the methanol solvent seemed to suppress the 3-methoxy benzoic acid methyl 

ester peak. Thus. for off-line thennochemolysis of white pine needles (Pinus strobus). water was 

used as the solvent for the TMAH and TMAAc reagents. 
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2.3.5. lnterul standard (syringic acid)/ TMAH in water for oll'-liae thermocbemolysis 
of white pine needles (PillllS strobllS) 

Syringic acid was used as an internal standard in off-line thennochemolysis of white pine 

needles (Pinus strobus) to ensure that the reproducibility ofGC/MS was maintained. Reproducibilit} 

is important in GC analysis so that quantitative results may be determined. 

The optimisations made to off-line thermochemolysis for syringic acid were discussed in 

section 2.3.4. However. for white pine needles. the pyrolysis temperature needed to be optimized to 

ensure that all the products are observed in good quantity. Using pyrolysis temperatures of 300 and 

500 °C the chromatogram results indicated that the methylated product (Mm= 196) was present but 

only in small quantities. which was not satisfactory. But a pyrolysis temperature of 750 °C produced 

some 3-methoxy benzoic acid methyl ester (Mm = 166) peak. a major 3.4-dimethoxy benzoic acid 

methyl ester (Mm=J96) peak. and a methylated syringic acid (Mm = 226) peak (see figure 2.8). The 

SPME adsorption temperature used was 90°C for I 0 min. 
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GC Conditions: injector port temperature: 250°C; Oven temperature: 150°C 

(held for 2 min) to 250°C (held for 2 min) at 16 °C/min: Split 
flow: 18.0 mVmin 

Other conditions: 200J.Lg white pine needles: I 0 J.tl (25%) TMAH: 
5J.LI syringic acid (0.2 ~g/Jll) 

Figure 2.8.TMAH (in water)/ off-line thennochemolysis of white pine needles (Pinus 
strobus) using the internal standard, syringic acid. at pyrolysis temperature 
of 750°C and SPME at 90°C. 

12.00 

Triplicate samples of white pine needles (200Jl.g) pyrolysed at 750°C were taken to detennine 

the reproducibility of off-line thennochemolysis using a SPME adsorption temperature of90°C for 

I 0 minutes. as shown in table 2.8. From this table, the reproducibility of syringic acid (Mm = 226) 

was best although lower than the standard by itself(< 5 %). The two peaks at Mm = 166 and 1% had 

a much worse reproducibility. There was indication that the SPME adsorption temperature was 

affecting the recovery of these two products to a greater extent than the methylated syringic acid. To 

determine the limitation of this method. the adsorption temperature was changed to 25 °C, 55 °C, and 

75 oc. as shown in table 2.9. Chromatograms of the different SPME adsorption temperatures are 

shown in figures 2.9-2.11. respectively. 

13 OD 
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Molar mass Peak area (xl07
) 

166 1.17 
166 4.04 
166 9.54 
so= 86.4% 
196 2.87 
196 7.26 
196 11.7 
so =60.6% 

! :!26 9 .03 

i 226 8.28 
: 226 11.2 

SD = 16.0% 

Table 2.8. Triplicate samples of white pine needles (Pinus strobus) with syringic acid internal 
standard. for TMAH/water-thermochemolysis at 750°C for 20 seconds with a 
SPME adsorption temperature of90°C. 

! Molarmass Temperature (°C) peak area (xI 0 ' ) 
i 
I 

25 5.49 j 

I 
166 55 4.94 

75 5.60 

r 25 0.20 
; 196 55 0.30 
I 75 7. 14 

Table 2.9. The TMAWoff-line thermochemolysis of white pine needles with internal standard 
of syringic acid. done at different SPME adsorption temperatures of25. 55. and 
75°C. 
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An analysis of table 2.9 indicates that SPME temperatures affected the methylated peaks of 

3.4-dimethoxy benzoic acid methyl ester (Mm = 196). but not 3- methoxy benzoic acid methyl ester 

(Mm = 166). This is also shown in figures 2.9-2.11. Also. the change in SPME temperatures altered 

the abundance of the internal standard. syringic acid (Mm= 226) as can be clearly observed in the 

chromatogram. This is a major problem for using syringic acid as an internal standard 

'I'K: ~J..Jt..~ 

1500000 166 
'---- 196 

1800000 

( 226 SGOOOO 

\.A-a ! .... lh) _lj'" .Li .... -~ 
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GC Conditions: injector port temperature: 250°C: Oven temperature: 150°C 
(held for 2 min) to 250°C (held for 2 min) at 16 °C/min; Split 
flow: 18.0 mVmin 
Other conditions: 200j..i.g white pine needles; I 0 fll (25%) TMAH; 5fll syringic acid 
(0.2 flgffll) 

Figure 2.9 The TMAWoff-line thennochemoly3is of white pine needles with internal standard of 
syringic acid. an adsorption temperature of 25°C 
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GC Conditions: injector port temperature: 250°C: Oven temperature: 150°C 
(held for 2 min) to 250°C (held for 2 min) at 16 °C/min: Split 
flow: 18.0 mllmin 
Other conditions: 200~g white pine needles: 10 ~I (25%) TMAH: 5~1 syringic acid 
(0.2 ~g/~1) 

Figure 2. 1 0. The TMAH/otf-line thennochemolysis of white pine needles with internal standard 
of syringic acicl an adsorption temperatures of 5 5°C. 
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GC Conditions: injector port temperature: 250°C: Oven temperature: 150°C 
(held for 2 min) to 250°C (held for 2 min) at 16 °C/min: Split 
flow:l8.0 mllmin 
Other conditions: 200Jlg white pine needles: I 0 J.d (25%) TMAH: 5J.1l syringic acid 
(0.2 J.lg/Jll) 

Figure 2.11. The TMAH/off-line thennochemolysis of white pine needles with internal standard 
of syringic acid. an adsorption temperatures of 75°C. 
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2.4 Future work 

The off-line thermochemolysis of white pine needles (Pinus strobus) has been shown to have 

some potential in the analysis ofthe phenolic compounds found in plants. The method of off-line 

thennochemolysis still requires a lot of future work aimed towards validating its results with on-line 

thermochemolysis. Some potential work includes: the use ofSPME by directly insening the fibre 

into a solution containing dissolved pyrolysates (as in figure 1.6}. along with optimisation of the 

SPME fibre. the use of other reagents such as TMAAc and BSTF A. the investigation of the use of 

13C-Iabelled TMAH. in off-line thermochemolysis. in order to distinguish the difference between 

reagent methylated carboxylic acid and hydroxyl groups from those methyl groups that may already 

be present within that compound (23). and finally. off-line thennochemolysis may be explored as a 

qualitative method for the analysis of fatty acids (figure 2.7}. 
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CbapterJ 

CONCLUSIONS 

The method development of off-line thennochemolysis using SPME for analysis of white 

pine needles was completed with use ofsyringic acid as a model compound. The use ofTMAH. 

TMAAc and BSTF A as derivatizing reagents was applied to syringic acid and it was detenn!ned that 

TMAH was imponant here since it gave more reproducible results than either TMAAc or BSTF A. 

The main requirement for off-line thennochemolysis compared to on-line (the direct 

connection bet\veen the GC and pyrolysis unit) was the use ofSPME (Solid-Phase microextraction). 

The off-line thermochemolysis SPME parameters were determined to be a pyrolysis temperature of 

500°C for 20 sec. an SPME adsorption temperature of90°C for 10 minutes and a GC split flow of 

18mVmin using syringic acid. This optimisation of the off-line thermochemolysis was imponant for 

the application of syringic acid as an internal standard in white pine needles analysis. The method of 

TMAH/off-line thermochemolysis using SPME of white pine needles (section 2.3.5). with syringic 

acid as an internal standard. was shown to be dependent on the adsorption temperature of the SPME 

apparatus (section 2.2.1) with a change in peak abundances of3- methoxy benzoic acid methyl ester 

(Mw=l66) and 3.4-dimethoxy benzoic acid methyl ester (Mw=l96) (table 2.8). 

The chromatogram of the methylated peaks (Mw =166 and 196) determined by off-line 

thermochemolysis was compared to the chromatogram completed by Zhang ( 1993) (20) on white 

pine needles. The above peaks were found to be present in both methods. however the 

chromatograms for off-line thermochemolysis were not as congested as those of Zhang. This resul\ed 

from the use of SPME in off-line thermochemolysis. where only the non-polar compounds are 
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adsorbed onto the fibre and desorbed to reach the chromatographic column. The comparison of the 

above peaks. regardless of the different chromatograms for both methods. shows that use ofTMAW 

off-line thermochemolysis using SPME has great potential in qualitative analysis of white pine 

needles. 

The solvent in which the reagents were dissolved (i.e. methanol or water) was also 

investigated. The optimisation of the off-line t.hennochemolysis method was completed with the 

reagents dissolved in methanol. The use of water as a solvent was not investigated except for the 

experiment involving the thennochemolysis of white pine needles. It was found that solvent in which 

reagents are dissolved alters the chromatograms produced. Water as a solvent was determined to be 

the most effective for the thermochemolysis of white pine needles in both off-line and on-line 

methods. 

This study was a major development towards a complementary method to on-line 

thermochemolysis. However with off-line thermochemolysis. there are many parameters that must be 

investigated to ensure that the chromatograms are realistic for a particular sample. In particular. the 

adsorption temperature ofSPME (i.e. 90°C) was the most important parameter when analyzing real 

samples. Regardless of the difference between chromatograms for off-line and on-line 

thermochemolysis (figures 2.7 and 2.6. respectively.) the identification of peaks with Mm= 166 and 

196 in off-line thermochemolysis verify the potential that may exist for this method to be an 

alternative to on-line thermochemolysis. 
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APPENDIX 

Mass Spectnl Data of Important Chromatographic Peaks used in This Study 

: NAME Molar mass Spectnl Data: m/z (relative abundance) 
Methylated syringic acid 226 226 (1000/o). 211(600/o). 155 (50%). 195 (35%) 
Silylated syringic acid 342 342 ( 83% ). 327 (I 00% ). 312 ( 85% ).297( 80% ). 283 

I (35%). 253 (65%). 223 (45%) 
3-methoxy benzoic acid methyl ester 166 166 (60%). 135 (100%). 107 (40%). 92 (30%). 77 

(35%). 64 (20%) 
3.4 methoxy benzoic acid methyl ester 196 196(100%).181(12%) 165(85%). 79(20%). 

51( 19% ). 15 (15%) 
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