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ABSTRACT 

Prior information regarding a statistical model frequently constrains the shape of 

the parameter set and can often be quantified by placing inequality constraints on 

the parameters. For example, a regression function may be nondecreasing or convex 

or both; or the treatment response may stochastically dominate the control. The 

order restricted statistical inference has been well developed since the 1950's. The 

isotonic regression solves many restricted maximum likelihood estimation problems. 

And the theory of duality ( cf. Barlow and Brunk (1972)) has provided insights into 

new problems. Both the isotonic regression and Fenchel duality play the important 

roles in order restricted statistical inference. 

Kuhn and Tucker (1951) proposed a necessary and sufficient condition for the solu

tion to an inequality constrained maximization problem. Since then, the Kuhn-Tucker 

equivalence theorem has been extensively applied to many fields such as optimization 

theory, engineering, the economy and so on. 

In this paper, we focus on the applications of the Kuhn-Tucker equivalence theo

rem to order restricted estimation. This equivalence theorem provides a completely 

different approach to prove many important results such as the generalized isotonic 

regression problem due to Barlow and Brunk (1972), {-projection problems due to 

Dykstra (1985) and so on. We provide some insights into its extensive applications to 

ordered statistical inference. We expect that the kuhn-Tucker equivalence theorem 



will become a powerful tool in this field. 

Key words: Convex cone, Isotonic regression, Linearity space, Partial ordering, 

Polyhedral convex sets, Simple tree ordering, Van Eeden 's algorithm. 
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On the Kuhn-Tucker Equivalence Theorem and its 
Applications to Isotonic Regression 

1. INTRODUCTION 

Statistical inference is frequently involved in orderings and inequalities. For in-

stance, the probability of a particular response may increase with the treatment level; 

the failure rate of a component may increase as it ages. The fact that the utilization 

of such ordering information increases the efficiency of statistical inference procedures 

is well documented. The one-tailed, two-sample t-test provides a familiar example 

in which the procedure which utilizes the prior information dominates procedures 

which ignore this information. Tests for identifying this structure often require good 

estimates under inequality constraints. 

The isotonic regression solves many restricted maximum likelihood estimation 

problems (cf. Ayer et al. {1955), Van Eeden {1956, 1957a, 1957b, 1957c)). Perhaps 

the following (cf. Bartholomew {1959)) is the prototype problem leading to the iso-

tonic regression problem. Given k normal distributions, N(p.i, ul) (i = 1, 2, · · · , k) , 

let Xi be the sample mean from the ith distribution and ni the sample size. One 

supposes that Ui ( i = 1, 2, · · · , k) are known and considers the problem of maximizing 
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the likelihood function subject to an order restriction on the means; i.e., 

subject to P,i ~ Jl.i when i --< j, 

where the binary relation ..( is a specified partial ordering on f! = {1, 2, · · ·, k }. The 

partial ordering is provided by some prior knowledge concerning the means of the 

distributions. 

This is equivalent to the problem 

(1.1) 

subject to ;.ti ~ Jl.i when i ..( j, 

where Wi = (niful) > 0. This is called the isotonic regression problem since one seeks 

to minimize (1.1) subject to Jl. being an isotonic (i.e. order preserving) function on 

0. The solution to this problem is called the isotonic regression and is characterized 

in the next section. The solution to the isotonic regression problem is interesting 

because it also solves many other seemingly unrelated problems. 

Barlow and Brunk (1972) formulated a generalization of the isotonic regression 

problem and studied its Fenchel duality. Their paper is an important milestone in 

the theory of order restricted inference. Since then, both the isotonic regression and 

Fenchel duality have become the critical tools in order restricted statistical inference. 

Kuhn and Tucker (1951) provided a necessary and sufficient condition for the so-

lution to an inequality constrained maximization problem. The Kuhn-Tucker equiv-

alence theorem is one of the most important results in mathematical programming 
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and operations research. Applications to this equivalence theorem seem to have been 

centered largely in the econometrics literature where an active investigation has been 

taking place. Sources of work in this area are Gourieroux, Holly, and Monfort (1982), 

Farebrother (1986), and Wolak (1987). Although Kuhn and Tucker's result was pub

lished in 1951 and was extensively applied to many areas such as optimization theory, 

engineering, the economy and so on, their result has not been widely used in order 

restricted statistical inference. 

Here we focus on the applications of the Kuhn-Tucker equivalence theorem to 

order restricted estimation. This equivalence theorem provides a completely different 

approach to proving many important results such as the generalized isotonic regression 

problem due to Barlow and Brunk (1972), [-projection problems due to Dykstra 

(1985) and so on. We hope that this important result will be more extensively applied 

in Statistics and become a powerful tool in order restricted statistical inference. 

In this paper the properties of isotonic cones are discussed in Section 3. We solve 

the generalized isotonic regression problem due to Barlow and Brunk (1972) using 

the Kuhn-Tucker equivalence theorem in Section 4. Some related problems such as 

the maximum likelihood estimates for ordered parameters from an exponential family 

and [-projection with linear inequality constraints are solved in Section 5. Finally we 

consider some special cases in Section 6 and 7. 
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2. PROPERTIES OF THE ISOTONIC REGRESSION 

The fact that the isotonic regression solves a wide class of restricted optimization 

problems was discovered independently by W. T . Reid and by Brunk, Ewing, and Utz 

(1957). Applications of their results to maximum likelihood estimation of ordered 

parameters were made in Brunk (1958). Futher statistical applications were noted in 

Brunk (1965). 

The isotonic regression problem is to 

k 
Minimize L (gi - xi)2wi, 

i=l 

subject to Xi ~ Xj when i -< j, 

where Wi > 0 and 9i ( i = 1, · · ·, k) are given and the binary relation -< is a specified 

partial ordering on n = { 1, 2, · · ·, k }. We call the solution to this problem the isotonic 

regression. A vector x = (x11 x2, • • ·, Xk) is said to be isotonic or order preserving on 

n with respect to the partial ordering -< if i , j E n and i -< j implies Xj ~ X j. Note 

that the set of isotonic functions x E Rk is a closed convex cone, say I<. This property 

is all that is needed for the following theorem. 

Theorem 2.1. Let g and w be given functions on n = { 1, 2, · · · , k} , w > 0. 

Let K be a closed convex cone of functions on 0 (not necessarily the cone of isotonic 

functions with respect to a partial ordering). Then 

a. There is a unique u E K solving 

Minimize t (gi- xi)2wi. 
i=l 

4 

(2.1) 



b. u E K solves (2.1) if and only if 

k 

""'(g·- u ·)u ·w· - 0 L..J I I I 1- I (2.2) 
i=l 

and 
k 

L (9i- ui)xiwi ~ 0, Vx E K . (2.3) 
i=l 

Notice that the above problem is equivalent to projecting g onto K with respect 

to the inner product < x, y >w= Ef=1 XiYiWi. The theorem follows immediately from 

Theorem 2.1 and Corollaries 2.3 and 2.1 of Brunk (1965). 

We denote the solution to (2.1) by g• to indicate that it is the isotonic regression 

on g with respect to the weights w. If K is the cone of linear functions, for example, 

then g• becomes the ordinary linear regression. 

The convex cone of isotonic functions is also a lattice. This is the additional 

property used to prove Theorem 2.2. 

Theorem 2.2. Let g and w be given functions on 0 = {1,2, · · · ,k}, w > 0. Let 

K be a convex cone of isotonic functions on 0 with respect to some partial ordering 

~-

The isotonic regression g• of g solving (2.1) exists and is unique. 

If ai and bi are isotonic in i and ai ~ 9i ~ bi, (i = 1, 2, · · ·, k), then ai ~ gi ~ bi. 

A proof in a more general context may be found in Brunk (1965), and an elemen-

tary proof appeared in Barlow et al. (1972) . 
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If K is a cone of isotonic functions, we can characterize g• in terms of upper and 

lower sets determined by the partial ordering -<. 

Definition 2.1. A subset L of !l is a lower set with respect to -< if i E L and 

j -< i implies j E L. A subset U off! is an upper set if i E U and i-< j implies j E U. 

The solution to the isotonic regression problem can be characterized by 

g; = m.ax ~in Av(L U U) , 
U:1EU L:1EL 

(2.4) 

where for any nonempty subset B C !l, 

Av(B) = Lw;gifLw;. 
iEB iEB 

This expression is given in Brunk et al. (1957) and in Brunk (1955). 
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3. THE ISOTONIC CONES 

Now we introduce some definitions and notations for partial orderings. And then 

we will discuss the construction of isotonic cones. 

For a partial ordering on f!, if i -< j and there does not exist r E f! such that i -< r 

and r -< j, then we express i-< j as i -<1 j. 

Set E = {( i, j); i-< 1 j}. 

Note that the collection K of isotonic functions x E Rk with respect to a partial 

ordering is a closed convex cone. We call K an isotonic cone. 

Examples of isotonic cones include the simple ordering (x1 ::; x2 ::; · · · ::; xk): the 

simple tree ordering (x1 :::; Xj, Vj), the unimodal ordering (x1 ::; x2 :::; · · · ::; Xm ~ 

Xm+t ~ • • • ~ xk), among others. 

We can use graphs to express partial orderings. For example, f! = {1,2,3,4}, 

• simple ordering 

1 -< 2 -< 3 -< 4, 

E = {(1,2),(2, 3),(3,4)}. 

7 
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4 
• simple loop 

1 -< [2, 3] -< 4, 

2 3 
I?= {(1,2),(1,3),(2,4),(3,4)}. 

1 

Definition 3.1. A partial ordering -< is called connected if for every pair of u 

and V in !l, there is a sequence {xo, X11 · · ·, Xr} such that Xo = u, Xr = V and either 

Xi -< Xi+l or x;+l -< xi. Otherwise -< is said to be disconnected. 

Comparing the above two examples, both of them are connected. For a connected 

partial ordering, if# E = k -1, we call it a tree. If# E 2: k, we say it contains cycles. 

For example, the simple ordering is a tree, but the simple loop contains one cycle. 

For a partial ordering on n, K can be expressed as 

k 

K {x: Xi :::; xi, (i,j) E E} 

{x: xi- x; ~ 0, (i,j) E E} 

- {x: < aii, x >~ 0, (i,j) E E}, 

where< x, y >= 2: x;y;, aiil = -1, 1, 0 if l = i, j, otherwise (o/w), respectively. 
i=l 

Lemma 3.1. (Dual Basis). Let a.,···, an (n :::; k) be linearly independent and 

letS(~ Ric) be the linear subspace generated by a 1, ···,an. Then there exist unique 

bh · · ·, bn inS such that 

8 

z = J, 
ojw, 

(3 .1) 



and b 17 • • ·, bn are linearly independent. (b17 • • ·, bn) IS called the dual basis of 

(ah · · ·,an). 

Proof. Since a1 , • • • , an are linearly independent, 

A= ( 1) 
is a n x k matrix with full row rank. We expand the matrix A into the k x k non

singular matrix A by adding the (k- n) linearly independent vectors in SL to rows 

of A. 

For ht, we have < b 1, a 1 >= I, < b1, ai >= 0, i = 2, · · ·, n . Then b 1 satisfies 

A b1 = (f) 
kxl. 

So there exists a unique b 1 satisfying the condition 

So 

< b., a 1 >= 1, < b 11 8i >= 0, i = 2, · · · , n. 

Similarly, there exist unique b2 , • • · , bn satisfying the equalities (3.1). 

Consider a linear combination of b 11 · • ·, bn, .A1b 1 + · · · + Anbn. 

Ai = 0, i = 1, · · · , n . 
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Therefore, b1, • · • , bn are linearly independent. 0 

Note that we separate the isotonic cones on the basis of whether they contain only 

trees or cycles. Now we will characterize the isotonic cones containing only trees. 

Theorem 3.1. Let a1, · • • , an ( n ~ k) be Linearly independent and let S ( ~ Rk) 

be the linear subspace generated by a 11 • • ·, ~· Assume that (b1 , · · · , bn) is the dual 

basisof(a1 ,· · ·,~). IfxEK={x:<Clt, x>~O, i=l , ···,n}~S,then 

n 

X = L a; b;, all a; ~ 0. 
i=l 

Proof. Since b11 · · ·, bn are linearly independent by Lemma 3.1, for any x E K (~ S) , 

there exist a; E R, i = 1, · · ·, n, such that 

n 

X= La; b;. 
i=l 

By the definition of the dual basis, we have 

n 

0 :::; < ai, x > = < ai, 2: a; b; > 
j;;;;;l 

n 

- 2: a;< aj, b; > = ai , Vj = l, · · · , n . 
j;;;;;l 

Hence ai ~ 0, j = l , · · ·, n. The result of this theorem follows. 0 

Theorem 3.2. Suppose a partial ordering corresponding to E = {(i,j); i--<1 j} 

contains only m(~ 1) disconnected trees and # E = q. Then q + m = k. Also, q 

constraints Clti 's corresponding to E are linearly independent. 
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Proof. Since the partial ordering contains only trees, it is straightforward that q+m = 

k. And there exist p disconnected trees corresponding to nonempty sets Ea, o = 

1, · · · ,p (~ m), such that 
p 

E = U Ea. 
a=l 

Let !la be the subset of !1 corresponding to Ea, o 1, · · · , p. It is evident that 

p 

Let '*Ea = q0 • Then L q0 = q. 
a=l 

For any Ea (1 ~ o ~ p), we can express Ea as 

the first element (r~a) 1 r~a)) with a (a) (a) 
1 

- -1, 1, 0 if l 
rl •"2 ' 

respectively. And 

(a) [ 
rl ' 

(a ) / r 2 , o w 1 

respectively or (rJa) 1 x~a)) with a (a) (a) 
1 

= - 1, 1, 0 if l = rJa), l = x]a) , ofw, 
r

1 
,x

1 
, 

• 1 h (a) { (a) (a) (a) } respective y, w ere xi E r 1 , r 2 1 • • ·, ri-l , j = 2, · · · , qa. Thus ai/ s, (i, j) E 

Ea, are linearly independent. 

Since !la n flp = 0, o :/:- (3, 1 < a, {3 ~ p, q contraints 3.ii 1S corresponding to E 

are linearly independent. 0 

Theorem 3.3. Suppose a partial ordering corresponding to E contains only 

m(> 1) disconnected trees and # E = q. Then, we have 

m 

K = {x: X= E /aCa + E 1/ij bij, all vii ~ 0}, (3 .2) 
a=l (i,j)EE 
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where C0 's are k-dimensional vectors defined as 

{ 
1, 

Car= 0, o: = l, · · · , m, 

with !la being the subsets of !l corresponding to disconnected trees, and {bii: ( i , j) E 

E} is the dual basis of {aij, (i,j) E E}. 

Proof. K is a polyhedral convex cone and contains lines. Thus, K can be expressed 

as 

K= L+Ko, 

where L is the linearity space of K and K0 is a closed convex set containing no lines, 

namely K0 = Kn Ll. (cf. Rockafellar (1970), the proof of Theorem 19.1, p171). 

And 
L = (-K)n K = {x: < aii, x >=0, (i,j) E E} 

= {x : Xr = Xs , r, s E no, 0: = l, . .. ' m}. 

It is evident that m c/ s are linearly independent. We will show that 

m 

L = {X : X = 2: /0 Ca} · 
a = l 

In fact, apparently, the right hand side of (3.3) ~ L. 

On the other hand, for Vx E L, we can write x as 

m 

X = L Xie n a Ca 
a=l 

(3.3) 

which belongs to the right hand side of (3.3) . And dim(L) = m = k - q by Theorem 

3.2. 
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Next we consider K0 = Kn Ll.. Of course, &..ji E Ll., (i,j) E E. And by Theorem 

3.2, aii 's are linearly independent. 

Therefore, by Theorem 3.1 1 

Ko = {x: x = L Vii bij 1 all Vii > 0}. 
(i,j)EE 

Finally the result of this theorem follows. 0 

For a partial ordering containing only trees, we denote Uii and Lii as the largest 

connected subsets of n containing j but not i and containing i but not j, respectively, 

(i,j) E E. And let lu;
1 

and h,
1 

be the indicators of Uii and Lii , respectively. Then 

we will have the following theorem. 

Theorem 3.4. In expression (3.2), 

{3.4) 

Vij = Xj- Xj, {i,j) E E. 

Proof. Note that bii• (i,j) E E, in Theorem 3.3 satisfy the following conditions 

. ., . ., 
t=t,]=J, 
ojw, (i,j), (i',/) E E, 

< bii, x > = 0, Vx E L. 

On the construction of &..jj, lu;
1 

and h;
1 1 ( i 1 j) E E, it is evident that the right 

hand side of (3.4) satisfies the above conditiions. 

13 



Since there exists the unique dual basis of {a1i, (i,j) E E} by Lemma 3.1, 

#£ .. #ij, . . 
b .. - I] Trr - I] [L (; J.) E £ 
t]- #£ .. +# U.··'L- ;; #£ .. +# U.·· •J' ., • 

t] I] I] I] 

For V x E K, by Theorem 3.3 we have 

m 

X= L Ia Co+ L l/j'j' bi'i'• all l/i'j' ~ 0. 
o=l (i',j')EE 

For V a1i, (i,j) E E, 

On the other hand, 

m 

< aij, L /a Ca + L £li1j' bi'i' > 
cr=l (i',j')EE 

m 

L Ia < aij, Co > + L l/i'i' < ~i• bi'i' > 
a=l (i',j')EE 

- l/jj· 

Therefore, l/ij = Xj -Xi. 0 

By Theorem 3.4, we can display K as 

m #£.. #[J. . . 
K = {x: X= L Ia Ca+ L (xi- xi)(#£ .. +~ lj, . . Iu;1 - #£ .. +~ U.· · h.)}. (3.5) 

o=l (i,j)EE I ] IJ I] I] 

Example 3.1. Consider !l = { 1, 2, 3, 4} and the simple tree: 1 -< (2, 3, 4]. We 

can write E = {(1, 2), (1, 3), {1, 4)}. The simple tree cone is expressed as 

K = {x: x 1 ~Xi , i = 2, 3, 4} 

= {x : < atj, x >~ 0, (i ,j) E E}, 
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where the constraints 
a12 = (-1~ 1,0,0) 

a13 = (-1,0, 1,0) 

a14 = ( -1, 0, 0, 1). 

And the corresponding Ui;, lu,
1 

and #Ui; are 

u12 = {2}, fu12 = (0, 1, 0, 0), 

u.3 = {3}, fu13 = (0, 0, 1, 0), 

U14 = {4}, fu14 = (0,0,0, 1), 

Similarly, the corresponding L1;, h,
1 

and # Lii are 

L12 = {1,3,4}, h,2 = (1,0, 1, 1), 

£13 = {1,2,4}, hll = (1, 1, 0, 1), 

£14 = {1, 2, 3}, h,4 = (1, 1, 1, 0), 

Therefore, we can obtain the dual basis of B.t.i 's as 

b12 = H -1, 3, -1, -1), 

bt3 = ~( -1, -1, 3, -1), 

b14 = H -1, -1, -1, 3). 

The only one c = 14 = (1, 1, 1, 1)'. We can express Kin the form of (3.5) as 

where xis the mean of x. 

We have observed the construction of isotonic cones containing only trees. This 

will be used in the following section. Van Eeden (1958) provided the following im-

portant result which supports Van Eeden's algorithm. Although her algorithm is not 

feasible for a more complicated partial ordering, her result is valuable in theory. 
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Lemma 3.2. (Van Eeden). Suppose that a partial ordering on n corre

sponds to E and # E = q. Order E = {(i11 jt), (i2,i2), · · ·, (iq,jq)} and let E = 

{(i.,j.), (i2,j2), ... '(iq-biq-d}. Then for any given function X on n, there are two 

possible cases. 

(a) (Ew(xiKE)]iq ~ [Ew(xiKE)]jq' then 

Ew(x!KE) = Ew(x!Kt)i 

(b) [Ew(xiKE)]iq > [Ew(xiKE)]jq, then 

(Ew(x!KE)]iq = [Ew(x!KE)]iq' 

where KE is the isotonic cone corresponding to E, and Ew(xiK) IS the isotonic 

regression of x with respect to the weights w. 

We mainly discussed the construction of isotonic cones containing only trees. For 

partial orderings containing cycles, we have the following theorem. 

Theorem 3.5. If a partial ordering corresponding to Ec contains cycles , then for 

any given function x on !l, there exists a consistent partial ordering corresponding to 

Et C Ec, which contains only trees, such that 

where KE is the isotonic cone corresponding to E, and Ew(xiK) is the isotonic re

gression of X with respect to the weights w. 

Proof. Let *Ec = q. First we order Ec = {(i,j); i-<1 j} = {(it,jt), (i2,j2), · · · , (iq,jq)} 

16 



eration algorithm. 

Step 0. Let E(o) = Ec, x<o) = x, w<o) = w and let F(O) be an empty set . Set 

i = 0. 

Step 1. Compute the isotonic regression of x(il with respect to i;(i), the first 

(#E(i)- 1) pairs in E(il. We will now list two possible cases, (a) and (b). 

(a). If Ew(iJ(x(i)IKEc;l) is isotonic with respect to E(i), then we drop the last pair in 

E(i) as a redundant pair. Let x(i+l) = x(i>, E(i+l) = £(i) and F(i+l) = F(i). If 

E(i+l) contains only trees, we obtain a consistent partial ordering corresponding 

to Et = E(i+l). Otherwise, set i = i + l. Go to Step l. 

(b). If Ew<iJ(X(i)IKEc;J) is not isotonic with respect to E(i>, then we replace x~i) and 
q 

x(i> as well as their weights w(il and w(i) by (w(i) x(i) + w(i) x(_i))/(w(i) + w(i)) 
]q ' lq ]q lq lq ]q )q lq Jq 

and ( w}!l + w~!l) respectively, where ( i~i), j~i)) is the last element in E(i) while 

the remaining components of x(i+l) and w(i+l) stay the same as x(i) and w(il. 

Let p(i+l) = p(i) U {( i~i), j~i))} and let E(i+l) = i;(i) but replacing i~i) and j~i) 

by a single index in E(i) . Delete all redundant pairs from E(i+l) (i.e. ( i, j) 

is redundant if (i, s) E E(i) and (s, j) E E(il). If £(i+l) contains only trees, 

we obtain a consistent partial ordering corresponding to E1 = E(i+l) U F(i+l). 

Otherwise, set i = i + 1. Go to Step 1. 

Since # £(i) ( i :2: 1) decreases, when the number of each disconnected subset of 
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E(i) is not greater than 3, E(i) is sure to contain only trees. So there always exists 

a consistent partial ordering, which contains only trees, corresponding to E: = E(i) 

such that Ew(xiKsJ = Ew(xiKsr). 0 

The following example illustrates the iteration algorithm in Theorem 3.5. Using 

it, we will finally obtain a consistent partial ordering Et C Ec, which contains only 

trees, such that Ew(xiKs.J = Ew(xiKsr). 

Example 3.2. We will consider the simple loop. This partial ordering is the sim

plest ordering among those with cycles. We first order E as {(1, 2), (1, 3), (3, 4), (2, 4)}. 

If the data x = (6,-2,-1,2) with the equal weights w = (1,1,1,1), then the 

isotonic regression with respect to the first three elements in E is (1, 1, 1, 2). For the 

last element (2, 4) in E, we found that EwcoJ (x(o)IK.EcoJ h = 1 ~ 2 = Ewco1 (x(O)IK.Eco>)4 • 

This is Case (a). So (2, 4) is redundant. We now delete it and obtain the partial 

ordering Et = {(1, 2), (2, 3), (3, 4)} containing only a tree. The isotonic regression 

x· = (1,1,1,2) ofx = (6,-2,-1,2) with the equal weights corresponding toE is 

that one corresponding to Et = {(1, 2), (1, 3), (3, 4)}. 

If the data x = (2, 4, -1, -5) with the equal weights w = (1, 1, 1, 1), then the iso

tonic regression with respect to the first three elements in E is ( -4/3, 4, -4/3, -4/3). 

Now we consider the last element (2, 4) in E. Since EwcoJ (x<0>IK£(ol h = 4 '1:. 

-4/3 = EwcoJ(x<0liK£co>)4 , this is Case (b). We obtain the reduced problem by 

pooling x~o) and x~o) ordered by (2, 4) so that x(l) = (2, -1, -1/2), w<1) = (1, 1, 2), 
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E(l} = {{1,4•),(1,3),(3,4•)} and p(l) = {{2,4)}. However, (1,4•) is a redundant 

pair in E(l) and hence £(l) = {{1, 3), (3, 4•)}. The remainder partial ordering corre

sponding to Et = {{1, 3), (3, 4), (2, 4)} contains only a tree. The isotonic regression 

x· = (0, 0, 0, 0) of x = (2, 4, -1, -5) with the equal weights corresponding to E is 

that one corresponding to Et = {{1, 3), (3, 4), (2, 4)}. 
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4. THE GENERALIZED ISOTONIC REGRESSION PROBLEM 

Barlow and Brunk (1972) formulated a generalization of the isotonic regression 

problem. The solution is closely associated with the isotonic regression. The authors 

provided two different approaches in proving their Theorem 3.1 for the generalized 

isotonic regression problem using the concavity of function and the Fenchel duality 

theorem. In this section, we will use the Kuhn-Tucker equivalence theorem to prove 

their theorem and provide a new approach for solving some related problems in Section 

5. Also, we will show some important results for isotonic regression using the Kuhn-

Tucker equivalence theorem. As will be seen, some proofs are much simpler using the 

Kuhn-Tucker equivalence theorem than those approaches in the literature. 

Let g = (g., ... ,g!c) and w = (w., ... 'Wk) > 0 be given functions on n = 

{ 1, 2, · · · , k}. Let 4» be a proper convex function on R. 

The generalized isotonic regression problem due to Barlow and Brunk (1972) is to 

lc 
Minimize L: («<»(xi)- gixdwi , 

i=l ( 4.1) 

subject to Xi$ xi when i ~ j, 

where the binary relation ~ is a specified partial ordering on n. 

If ~( x) = x2 /2, then the generalized problem ( 4.1) is formally equivalent to the 

isotonic regression problem, since 
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The following theorem due to Barlow and Brunk (1972) provides the solutions to 

many problems of restricted maximum likelihood estimation for ordered parameters 

of distributions such as multinomial, Poisson, normal, beta, and gamma distributions. 

We will verify this theorem using the Kuhn-Tucker equivalence theorem. 

Theorem 4.1. (Barlow and Brunk). Let~ be a proper convex function on 

R, r.p a finite determination of its derivative and let r.p- 1(t) = inf{x : r.p(x) > t}. 

Suppose K is a convex cone of isotonic functions on 0 having range in R. Suppose 

also that the range of g is in the effective domain of r.p- 1 where g is a given function on 

!1. Then the solution x· to the generalized problem (4.1) is given by r.p- 1(Ew(giK)), 

where Ew(gl K) is the isotonic regression of g with respect to the weights w. The 

solution is unique if~ is strictly convex. 

Proof. The generalized problem ( 4.1) is equivalent to 

k 
Maximize - 2: [cfl(xi)- gixi]wi, 

i=l (4.2) 

subject to Xi ::; Xj when i-< j. 

since~ is a proper convex function. Using the Kuhn-Tucker equivalence theorem, we 

construct the function 

k 

\ll(x, ..\) =-L [~(xi)- gix,]w, + L ..\ij(xi- xi). 
i=l (i,j)EE 

Then the solution to problem ( 4.2) is x• if and only if there exists a vector ..\ such 
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that 

;:.I = (gi - c,o(xi))wi- _E >.ii + _E >.ii = 0, i = 1, · · ·, k ( 4.3)'" 
x• JES, JEPi 

{4.3) 
:>.~1 ~ =xj-xi~O, (i,j)EE 

x• 

>.ii(:>.~1 ~ ) = >.ij(xj -xi)= 0, (i,j) E E 
x• 

>.,i ~ 0, {i,j) E E 

where 

S, = {j: (i,j) E E}, 

Pi = {j: (j, i) E E}, i E 0. 

From the Kuhn-Tucker conditions (4.3), we have xj- xi~ 0 if (i,j) E E. 

And 

= 0, 

since cp( x) is non decreasing in x and >.ii ( xj - xi) = 0 if ( i, j) E E. 
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For any x E K, 
k 

L [gi- cp(xi)Jx~wi 
i=l 

:::; 0, 

since Aij ~ 0 and xj ~ x~ if (i,j) E E. By Theorem 2.1 , we have 

If ~ is strictly convex, the solution is unique since K is a closed convex cone. D 

Note that the parameters Aij's, (i,j) E E, are involved in the Kuhn-Tucker con-

ditions (4.3). Next we will consider the values of these ).ij's. From Theorem 4.1 , 

we know that x· = cp-1(Ew(giK)) is the unique solution to problem (4.1) if~ is 

strictly convex. In this case, we will present the unique values of the parameters 

Ai/s, (i,j) E E if the partial ordering corresponding to E contains only trees. How-

ever, the values of these Ai/s may not be unique for the partial ordering with cycles. 

Case One. The partial ordering corresponding to E contains only m(~ 1) discon-

nected trees. It suffices to consider that the partial ordering is a tree, i.e. m = L 

Then # E = k- 1. And apparently, ±lk = ±(1, · · ·, 1)' belong to K . 
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Suppose 
d' = ([gt - cp(xi)]w., · · ·, [gk- cp(xk)]wk), 

e' = (cp(xi),··· ,cp(x;)). 

Since x• = cp-1[Ew(gjK)], by Theorem 2.1, cp(x•) = Ew(gjK) satisfies 

cp(xj) ~ cp(xi), (i,j) E E (4.4) 

k 
E (gi- cp(x;)][cp(xi)]wi =< d, e >= 0 (4.5) 
i=l 

k 
E [gi- cp(xi)]x~wi =< d, x >~ 0, Vx' E K. (4.6) 
i=l 

By Condition ( 4.6), we can obtain 

< d, lk >= 0. 

Note that we have obtained the expressions of bi/s, (i,j) E E, in Theorem 3.4. 

Clearly, all bi/s are in K. And by Condition (4.6), 

< d , bii >~ 0, (i,j) E E. 

Observe that the equations ( 4.3t are equivalent to 

{ 

< d , lk >= 0 

< d, bii > +Aij = 0, (i,j) E E. 

Let Aij = - < d, bii >~ 0, (i,j) E E. Thus, x· and A satisfy the equations 

(4.3t and x; ~x;, Aij ~ 0, (i, j) E E. Since cp(x) is increasing in x, by Theorem 3.3 

and 3.4, the vector e can be expressed as 

e = 1 lk + L: (ei- ei) bii· 
(i,j)EE 
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By Condition (4.5), we have 

So 

k 
0 = L: fgi - cp(xi)][cp(xi)]wi =< d, e > 

i=l 

= 1 < d, lk > + L: (ei- ei) < d, bii > 
(i,j)EE 

Aij{ei - ei) = 0 for each (i,j) E E 

since Aij ~ 0 and ei - ei > 0. 

Further, 

).ii(xj- xi) = 0, (i,j) E E 

since r.p( x) is increasing in x. Thus, x· and ).ii 's satisfy the Kuhn-Tucker conditions 

(4.3). 

Case Two. E contains cycles. By Theorem 3.5, there exists a consistent partial 

ordering corresponding to Ee, which contains only trees, such that 

By Case one, x· and Ai/s, (i,j) E E, satisfy the Kuhn-Tucker conditions (4.3) 

corresponding to E,. However, we compared the Kuhn-Tucker conditions ( 4.3) corre-

sponding to E with E, and found that the difference between them is that there exist 

some .Xi/s corresponding to the redundant pairs in E in the course of the iteration 
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algorithm of Theorem 3.5. Therefore, we set all such >.ii 's equal to 0. Then x· and 

>.ij's, (i,j) E E, satisfy the Kuhn-Tucker conditions (4.3) corresponding to E. 

The calculation of Ew(gl K E), given g, the weights w, and the partial ordering 

on f! corresponding to E, can be accomplished via quadratic programming. An 

extensive literature on methods of computing quadratic programming solutions for 

such problems exists. The problem of computing the isotonic regression is special and 

a number of algorithms have been proposed for this specific problem. The graphical 

representation and the pool-adjacent-violators algorithm (PAVA) discussed in Section 

6 are very elegant algorithms, but they apply only to simple order restrictions. The 

algorithms presented here all involve averaging g over suitably selected subsets off!; 

the term amalgamation of means has frequently been used in connection with such 

computations. 

The Minimum Lower Sets algorithm is given in Brunk, Ewing and Utz (1957) and 

in Brunk (1955). The iterative algorithm for the matrix partial ordering is developed 

in Dykstra and Robertson (1982). This type of iterative algorithm has been extended 

to a large number of restricted optimization problems (cf. Dykstra (1983) and Lee 

(1983) ). We will prove the Minimum Lower Sets algorithm by using the Kuhn-Tucker 

equivalence theorem. Our proof is much simpler than Theorem 2.7 due to Barlow's 

et al. (1972). 

To simplify the notation, throughout the remainder of the section L and U will 

only be used to denote lower sets and upper sets respectively. 
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Theorem 4.2. (Minimum Lower Sets). Suppose that ai <a;< · · · < ai are 

the l distinct values taken by the solution x· to problem ( 4.1) . Let Bm = {j : xj = 
m 

a~}andLm= U 8;, m=1,···,l. Thenform=l,···,l, 
i== 1 

Av(Bm) =min Av(L- Lm-d, 
L 

where for VB~ !l, 

Av(B) = Lg;wJ L w;. 
iEB iEB 

Proof. By the construction of Bm, m = 1, · · ·, l, the Kuhn-Tucker conditions ( 4.3) 

imply 

A·· { t) 

= 0, (i,j) E E and i E Bm, j r/. Bm ar j E Bm,i r/. Bm, m = 1,·· · ,1, 

~ 0, ojw. 

And 

rp(xi) = Av(Bm), i E Bm, m = 1, · · ·, l . 

It is straightforward to show that Lm, m = 1, · · · , l, are lower sets. For any 

L- Lm-1! let GL-Lm-l = {(i,j) E E : i E L- Lm-1! j rf. L - Lm-d· 

If L- Lm-1 :f; 0, since Aij = 0, (i,j) E E, i E Bm, j ¢ Bm or j E Bm,i r/. 
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Bm, m = 1, · · ·, l and Aij ~ 0, ojw, by the equations ( 4.3t, We have 

L [gi- cp(xi)]wi- L >..ii = 0 (4.7) 
iEL-Lm-l (i,j)EG L-Lm-l 

=> L fgi- cp(xi)]wi ~ 0 
iEL-Lm-t 

9iWi ~ L cp(xi)wi ~ Av(Bm) L Wi 
iEL-Lm-t iEL-Lm-1 iEL-Lm-1 

=> Av(L- Lm-d ~ Av(Bm)· 

If L- Lm-l ') Bm, from (4.7) we have 

L 9iWi 
iEL-Lm-1 

> L ~p?( xi)wi 
iEL-Lm-1 

L cp(xi)wi + L cp(xi)wi 
iEBm iEL-Lm-t-Bm 

> Av(Bm) L Wj. 

iEL-Lm-1 

Therefore, Av(L- Lm-d > Av(Bm)· 0 

The Max-Min formulas for isotonic regression are the important results in the 

theory of isotonic regression. We can also use the Kuhn-Tucker equivalence theorem 

to prove these results. 

Theorem 4.3. (Max-Min formulas). The solution x· to problem (4.1) is given 
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by 
x~ = m.ax ~n cp- 1(Av(L U U)) 

' U:tEU L:tEL 

= max min cp-1(Av(L U U)) 
U:iEU L:LUU¥-0 

= ~n m.ax cp-1(Av(L U U)) 
LaEL U:rEU 

= min max cp-1(Av(L U U)). 
L:iEL U:LuU¥-0 

Proof. We use the notations in Theorem 4.2. For each i E n, there exists Bm 

Lm- Lm-1 such that i E Bm and 

cp(Jei) = Av(Bm) 

by the proof of Theorem 4.2. Now we consider 

max min Av(L n U). 
U:iEU L:iEL 

By Theorem 4.2, taking Um-1 = L~_ 1 , then we have Av(Bm) = ~in Av(L n Um-d· 
L:tEL 

It suffices to show that 

Av(Bm) =max min Av(L n U). 
U:iEU L:iEL 

For any U : i E U, we consider LmnU. There exist some Bip • · · , Bir' i 1, • • ·, ir E 

r 

{1 , · · ·, m}, such that U n Big # 0, g = 1, · · · , r, and Lm n U = U (U n Bi
9

) . 

g=1 

For any U n Big# 0, g = 1, · · ·, r, set 

HunBig = {{i,j) E E: i E Big - Big n U, j E Bi9 n U}. 

29 



Since Aij = 0, (i,j) E E, i E Bm, j ¢ Bm or j E Bm,i ¢ Bm, m = 1,··· ,l, 

L {[gi- ~(xi)]wi- L Aij + L Aji} = 0 
iEUn8;9 iES; iEP; 

==> L (gi- cp(xi)]wi + L (- E Aij + L Aji) = 0 
ieUnB;

9 
ieUnB;

9 
jES; iEP; 

L (gi- cp(xi)]wi + L Aij = 0 
iEUnB,9 (i,j)EHuna;

9 

==> L (gi- cp(xi)]wi ::50 
ieuns,

9 

By Theorem 4.2, Av(Bi) < Av(Bi), i < j. Therefore, 

r 

Av(Lm n U) = Av( U (U n Bi
9
)) < Av(Bm) 

g:;:;l 

==> rp._ax ~n Av(L n U) = Av(Bm) = cp(xi) 
VaeU LaEL 

==> xi= m.ax ~n cp- 1(Av(L n U)). 
U :tEU L:tEL 

The other parts of the theorem are argued similarly. 0 
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5. SOME RELATED PROBLEMS 

In the beginning, I tried to use the Kuhn-Tucker equivalence theorem to solve re

stricted Maximum Likelihood Estimation (MLE) for simply ordered binomial param

eters. And then I generalized this approach to restricted MLE for partially ordered 

parameters of exponential families of distributions. This provides a very different 

way to prove Theorem 4.1. In this section, we will discuss four problems using the 

Kuhn-Tucker equivalence theorem. 

5.1. Exponential Families 

Robertson et al. (1988) studied the order restricted MLE for exponential fami

lies of distributions. They considered a regular one-parameter exponential family of 

distributions defined by probability densities of the form 

f(y; 6, r) = exp{p1(6)J>2(r)K(y; r) + S(y; r) + q(6~ r)} 

for y E A, () E (Ot, 62), T E T. 

Here the parameter T is thought of as a nuisance parameter and it was treated as 

a known one. Their Theorem 1.5.2 requires three regularity conditions. 

For an application of the Kuhn-Tucker equivalence theorem, we consider the fa

miliar one-parameter exponential family of distributions 

f(x; 6) = exp{c(6)T(x) + d(6) + S(x)}IA(x), (5.1) 
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We require the following two regularity conditions for 0: 

1. c(O) and d(O) both have continuous second derivatives on (O., 82). 

2. c'(O) > 0 for all 0 E (01, 82). 

Under these regularity conditions, the density function (5.1) can be expressed in 

the natural form 

f(x;O) = j(x;71) 
(5.2) 

= exp{77 T(x) + d0 (q) + S(x)}IA(x), 

where 1J = c(O) is increasing in 0, do(TJ) = d(c- 1(77)). And by Theorem 2.3.2 (cf. 

Bickel and Doksum (1977) ), we have 

E(T(X)) = -d~(77), 

Var(T(X)) = -d~(77) > 0. 

Suppose one has independent random samples from k populations belonging to the 

above one-parameter exponential family with the sample sizes denoted by ni and the 

observations by Xiil i.e. Xii has density J(x; Oi) for j = 1, · · ·, ni and i = 1, · · ·, k. If 

one has prior information that 0 is isotonic with respect to a specified partial ordering, 

an estimate of 0 possessing the property is desired. The log likelihood function is 

(5.3) 

- nt 
where Ti = l: T(xii)/ni· 

i=l 

Clearly, the restricted MLE o· of 0 which maximizes 

k 

L ni [c(Oi) Ti + d(Oi)] 
i=l 
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is equivalent to the restricted MLE r( of TJ which maximizes 

k 

~ ni [TJi t + do(TJi)] 
i=l 

since TJ = c( 8) is increasing in (}. 

Notice that ni [TJi t + do(TJi)] is a strictly concave function of TJi since 

{ni [TJi t + do(TJi)]}" = ni d~(TJi) 

= -ni Var(Ti(X)) < 0. 

Using the Kuhn-Tucker equivalence theorem and a similar proof of Theorem 4.1, 

we can first obtain the unique order restricted MLE TJ. of TJ : -d~ -t ( E0 (T I K)), where 

Remark 5.1. 

1. Compared to the regularity conditions of Theorem 1.5.2 ( cf. Robertson et al. 

(1988) ), our conditions are essentially its first two conditions. 

2. In Robertson et al. (1988), the third condition of Theorem 1.5.2 was used for 

a transformation. Thus, they use Theorem 1.5.1 to obtain the restricted MLE of 8. 

On the other hand, our transformation is more natural and simpler. We directly use 

the properties of the exponential family of distributions and the concavity of do(TJ). 

5.2. A Dykstra-Lee Theorem 

In order to discuss the multinomial estimation procedures for isotonic cones, Dyk-

stra and Lee (1991) showed a generalization of Theorem 4.1 in terms of a saddlepoint 

of Lagrangian function. 
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Theorem 5.1. (Dykstra and Lee). Under the conditions of Theorem 4.1, the 

solution to the problem 

k 
Minimize 2: [()(x.:)- g.:xdwi, 

i=l 

subject to x.: ::; Xj when i -< j, 

k 
and E a.:x.: = c 

i=l 

(5.4) 

is given by <p-1[Ew(g+.A0 a/wJK)) (where vector multiplication and division are done 

coordinatewise) provided that 

k 

:Eai<p-1[Ew(g+.Aoa/w[K)i] =c. 
i=l 

Proof. Let 

(5.5) 
k 

+ .\0 ( 2: aix.:- c). 
i=l 

By the Kuhn-Tucker equivalence theorem, the solution to problem (5.4) is x· if and 

only if there exists a vector .,\ such that 

xj- xi ~ 0, (i,j) E E 

(5.6) A.:j(xj- xi) = 0, (i,j) E E 

.A.:i ~ 0, (i,j) E E 

k 
L a.:xi =c. 
i=l 

(5.6t 
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Similarly to the proof of Theorem 4.1, from (5.6)•, we conclude that x· = c.p- 1[Ew(g+ 

~0a/wiK)J. Then the result of Theorem 5.1 follows. 0 

5.3. 1-projection Problems 

Dykstra (1985) dealt with the [-projection problems using the Fenchel duality 

theorem. Consider the problem 

Minimize i~ Pi ln( ~), 
(5.7) 

subject to Pi ~ Pi when i ~ j, 

where p and rare two probability vectors and r is given. The binary relation ~ is a 

specified partial ordering on n = { 1' 2' ... ' k}. 

Let P be the collection of probability vectors. 

The solution to problem (5. 7) is often referred to as an [-projection of r onto 

K n P and is important in a wide variety of problems. In particular, minimization 

problems of the form ( 5. 7) play a key role in the information-theoretic approach to 

statistics (e.g. Kullback (1959), and Good (1963)) and also occur in other areas such 

as the theory of large deviations (Sanov {1957)) and maximization of entropy (Rao 

(1965), and Jaynes (1957)). This type of problem also occurs in maximum likelihood 

estimation problems for log-linear models. 

k 
Note that -[p ln(pfr )] is a concave function of p over the hyperplane L: Pi = 1. 

i=l 

Directly using the Kuhn-Tucker equivalence theorem and a similar proof of Theorem 

5.1, the solution to problem (5.7) is given by p• = exp {E[lnr + (~0 - l)lkiK]} 

35 



provided that 

lc 
2: exp {E[ln r + (.~o- l)hiK]} = 1, 
i=l 

(5.8) 

where l'1c = {1, 1, · · ·, 1). And E(xiK) is the isotonic regression of x with respect to 

the equal weights. 

However, we can show 

E[ln r +Po- l)I~ciK] = E[ln riK] + (Ao- 1) l~c. 

In fact, it suffices to check the necessary and sufficient conditions of Theorem 2.1. 

First, since E[ln riK] E K, for V ( i,j) E E, 

E[ln riK]i $ E[ln riKJi 

implies that 

E[ln riK]i + Ao- 1 $ E[ln riKJi + Ao- 1. 

Thus, E[ln riK] + (Ao- 1)1~c E K . 

Secondly, 

lc 
2: [(ln ri + Ao- 1)- (E[ln riK]i + Ao- 1)][E[ln r iK]i + Ao- 1] 
i=l 

lc 
- .L [ln ri- E[ln riK]i][E[ln riK]i + Ao- 1] 

t=l 

lc lc 
- 2: [ln ri - E[ln riK]i][E[ln riK]i + (Ao- 1) 2: [ln ri- E[ln riK]i] 

i=l i=l 

- 0 
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by the properties of the isotonic regression: 

k 
L: [ln r;- E[ln riK];] E[ln r!K]i = 0, 
i=l 

k k 
L: In ri = L: E[ln riKJ;. 
i=l i=l 

Finally, for V p' E K, 

k 
L: [(In ri + Ao- 1)- (E[ln riK]i + Ao -1)]pi 
i=l 

k 
- L: [In ri- E[ln riK)i]P~ 

i::l 

< 0. 

Solving the equation {5.8), we obtain the solution p• to the problem (5.7) given 

by 
k 

exp[E(ln riK)]/ L exp[E(ln riK)i). (5.9) 
i=l 

Remark 5.2. Cressie and Read (1984) defined the divergence of the PV r with 

respect to the PV p of order A as 

(5.10) 

The {-projection problem (5.7) is a special case of (5.10) when A = -1. Dykstra 

and Lee (1991) gave the general results for ,\ E R. They used Theorem 5.1 and 

some properties of the isotonic regression to obtain those results. Although we only 

discussed the case of,\= -1 here, in fact, we may use the Kuhn-Tucker equivalence 

theorem to show their general results. The proof is similar to that of problem (5.7) 
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but we still need those properties of the isotonic regression used by Dykstra and Lee 

(1991 ). 

5.4. Maximum Likelihood Estimations of the Probabilities in k Binomial 

Populations 

For i = 1, · · ·, k, let ni independent trials be made of an event with probabil-

ity Pi, and suppose that the probabilities Pi are known to satisfy the inequalities 

Pt 2:: P2 2:: · · · ~ Pk· Let ai and bi denote the number of successes and failures in the i-

th trial, respectively, and Pi the ratio ai/ni (i = 1, 2, · · ·, k). Ayer et al. (1955) showed 

their Theorem 2.1 on the basis of the monotonic property of pa(l- p)6 with respect 

to p. Their theorem provides an important means of calculating the maximum likeli-

hood estimate p• of p = (pt, · · · ,pk)-the pool-adjacent-violators algorithm (PAVA) 

discussed in the next section. Here we will use the Kuhn-Tucker equivalence theorem 

to prove their theorem 2.1. 

Theorem 5.2. (Ayer et al.). If p• is the restricted maximum likelihood esti-

mate of p, and if Pi > P'i+t for some i, 1 ~ i ~ k- 1, then Pi 2:: Pi > Pi+t 2:: Pi+t· 

Also, fit ~ Pi, and Pk 2:: Pi:· 

Proof. The log likelihood function for k populations is 

Since the second term in l(p) does not involve p, the restricted MLE p• solves the 
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reduced problem 
/c 

Maximize L: { ai In Pi + bi ln(1 -pi)}, 
i=l 

subject to P1 2:: P2 2:: · · · 2:: Pic· 

Since the function {a In p + bIn( 1 - p)} is a concave function of p, by the Kuhn-

Tucker equivalence theorem, let 

k k-l 

\lt(p, A) = L {ai In pi+ bi In( l- pi)}+ L Ai(Pi- Pi+d· 
i=l i=l 

Then p• is the restricted maximum likelihood estimate of p if and only if there 

exists a vector A such that 
.!!.i.._...l&_+A · -A· -0 Pi l-p: t t-1 - 1 i = 11· .. lk 

(5.11) 

Pi 2:: P2 2:: · · · 2:: Pi 

A· > 0 i- 1 · · · k- 1 I- I - I I 

with convention 0/0 = 0 and Ao = Ak = 0. 

Assume that Pi< Pi- From the Kuhn-Tucker conditions (5.11), we have 

.>. --..... \ 0-->... .!!.i.. ...Ji_ \ 0 Pi Pi+l ____,. .1\j = ____,. p: - l-p: -Ai-l = 

==> Pi- Pi = Ai-t Pi(! - pi)f(ai + bi) 

==> Ai-l < 0. Contradiction. 

Therefore, Pi 2:: Pi. Similarly, we can prove the other parts of the theorem. 0 
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6. ON THE SIMPLE ORDERING 

Here we discuss some results on a particular case of partial orderings-the simple 

ordering. The motivation to do this is to use the Kuhn-Tucker eqivalence theorem to 

prove the famous pool-adjacent-violators algorithm (PAVA) and to give the graphical 

representation-greatest covex minorant (GCM). 

Now we still consider the generalized isotonic regression problem. However, the 

specified partial ordering is the simple ordering. That is, 

k 
Minimize L: [~(xi)- gixi]wi, 

i=l 

subject to x 1 ~ x2 ~ • • • ~ xk. 

Note that (cf)(x)- gx] is a convex function of x. Let 

k k-1 

'lt(x, ..\) =-L [()(xi)- 9iXi]wi + L ..\i(xi+l- Xi)· 
i=l i=l 

(6.1) 

Using the Kuhn-Tucker equivalence theorem, the solution to problem (6.1) is x· 

if and only if there exists a vector ..\ such that 

;: I = fgi- <p(xi)]wi +Ai-l- ,\i = 0, i = 1, · .. , k 
x• 

;~I = xi+t- xi ~ 0, i = 1, · · ·, k- 1 
(6.2) lx• 

Ai(~~~ ) = ,\i(xi+l -xi) =0, i = 1,···,k-l 
x• 

Aj~o, i=l,· · ·,k-1, 

where we use the convention that ..\0 = Ak = 0. Apparently, the Kuhn-Tucker condi-

tions (6.2) are the special case of the Kuhn-Tucker conditions ( 4.3). 

40 



Graphical representation-greatest convex minorant 

This very elegant algorithm is due to W. T. Reid (cf. Brunk (1956)). Plot the 

j = 1, 2, · · ·, k and Po = (0, 0). The plot of these points is called the cumulative sum 

diagram (CSD) for the given function g with the weights w. Note that the slope of 

the segment joining Pi-t to Pi is gi, j = l, 2, · · · ,k. Let G· be the greatest con-

vex minorant (GCM) of the CSD over the interval [0, Wk]· The value, Gj, is the 

supremum of the values, at j, of all convex functions which lie entirely below the 

CSD. It is straightforward to see that the function defined in this way is convex over 

[0, Wk]· A graph of the CSD and GCM for a given set of points is given in Figure 6.1. 

... 
p ... " 

1 

.... 
..-.... .... 

p4·..,, ..-

.... 

w4 Ws 

Figure 6.1. The cumulative sum diagram (CSD) and the greatest convex minorant 

(GCM) 
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Theorem 6.1. Ifx• is the solution to problem (6.1), then (c,o(xi), c,o(x;), · · ·, c,o(x;)) 

is the left-hand slope of the greatest convex minorant. 

Proof For the simple ordering, the sets {1, · · · ,j}, j = 1, · · ·, k are all lower sets. 

Among the equations (6.2)• we sum some of them together corresponding to all lower 

sets respectively. Then the Kuhn-Tucker conditions (6.2) imply 

(6.3) 

,\i ~ 0, i = 1, ... 'k- 1 

since r.p( x) is nondecreasing in x. 

Plot the points pi· = (Wj, Gj), j = 0, 1, ... 'k with wi = r::=l Wi and Gj = 

L:1=1 c.p(xi)wi for j = 1,2,···,k and Po= (0,0) . The plot of these points is called 

PLOT a·. Thus, from Conditions (6.3), we have 

G1 ~ Gj, j = 1, · · ·, k- 1 

which means PLOT c· is a convex minorant of the CSD over the interval [0, Wk}· 

Now we discuss some properties of PLOT c·, which will be employed to show that 
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PLOT G• is the greatest one among all convex minorants of the CSD. Clearly, 

(1). Go= G~, 

(2) . Gi-t > Gj_1 implies xj_1 = x;. 

In fact, Gi-l > Gj_1 ==? Aj-l > 0 ==> xj_ 1 = xj by Conditions (6.3). 

Let M be the non-empty subset of {0, 1, 2, · · ·, k} consisting of mE M, Gm = G~. 

Consider j E 0- M. Then we have Gi > Gj . Let a and /3 be consecutive indices 

in M such that a < j < f3. Property (2) implies that Pr lies on the line segment 

between P; and PJ. 

Let G' be any convex minorant of CSD over the interval [0, W~.:]. Then Gj ::5 

Gi, j = 1, 2, · · ·, lc. Therefore, c:n ::::; G~ for each m E M. The covexity of G' over 

[0, Wk] implies that Gj ::::; Gj, j = 1, 2, · · · , k. So PLOT c· is the greatest convex 

minorant and (cp(x';), <p(x;), · · ·, <p(x;)) is the left-hand slope of PLOT c·. o 

The pool-adjacent-violators algorithm (PAVA) 

The most widely used algorithm for computing the isotonic regression for a simple 

order is the pool-adjacent-violator algorithm (PAVA) first published by Ayer et al. in 

1955. We will use the Kuhn-Tucker equivalence theorem to prove this algorithm. 

Lemma 6.1. If g; ~ 9i+h then xi= x;+l. 

Proof. Assume that x; < xiH· By the Kuhn-Tucker conditions (6.2), we have A;= 0. 

Now we consider the relevant equations in (6.2)• 

{ 

(gi- r.p(xi))wi +Ai- l = 0, 

(9i+l - r.p(xi+l))wi+l - Ai+l = 0. 
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Since all .-Vs are nonnegative, 9i < cp(xi) and cp(xi+l) < 9i+l· It follows that 

rp( xi+l) < cp( xi) which contradicts the assumption that xi < xi+l. Therefore, xi = 

0 

Theorem 6.2. The final solution of PAVA tog= (g17 · · · ,gk) with respect to the 

weights w = (w17 • • ·, wk) is (cp(xi), · · · ,cp(xk)). 

Proof. We check the Kuhn-Tucker conditions (6.2). If 91 < · · · < gk, then all ~,'s are 

zero. Hence, (cp(xi),···,cp(xk)) = (gt,···,gk)· Otherwise, thereexistsgi ~9i+h 1:::; 

i $ k-1. By Lemma 6.1, we know that xi= xi'+t· Then problem (6.1) is reduced to 

k 

Minimize E 
j=1 

j # i,i + 1 

subject to x 1 < · · · $ Xi-1 $ x $ Xi+2 $ · · · $ Xk· 

Also, 

Therefore, problem ( 6.1) is equivalent to 
k 

Minimize 2: 
i=1 

j # i, i + 1 

subject to X 1 $ · · · $ Xi-1 $ X ~ Xi+2 $ · · · $ Xk· 

(6.4) 

Using Lemma 6.1, we repeat the above process. This is just the PAVA. And the 

solution of PAVA is (cp(xi'), · · · ,cp(xk)). 0 
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Two other algorithms, namely the minimum-lower-sets algorithm and the min

max formulas, have been used extensively in deriving properties of the isotonic regres

sion. As with the PAVA, they are both straightforward consequences of the graphical 

representation of the isotonic regression for the simply ordered case. However, these 

algorithms hold in the more general context discussed in the last section. 
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7. MULTINOMIAL ESTIMATION UNDER STOCHASTIC 

ORDERING 

Consider an experiment, the outcome of which must be one of k mutually exclusive 

events which have probabilities p1, • • ·, Pk and suppose these probabilities are to be 

estimated. If n independent trials of this experiment are performed, then Pi could be 

estimated by the relative frequency Pi of the event which has probability Pi· However, 

in some situations, one may believe that the pi's satisfy certain order restrictions and 

may desire estimates which also satisfy these restrictions. For instance, C. G. Park, 

through a private communication, considers the problem that the Pi's satisfy 

(7.1) 

where q = (q1, · · · ,qk) is a given probability vector. We will discuss the maximum 

likelihood estimate and Neyman modified minimum chi-square estimate of p subject 

to some constraints. This will give us some insights into the applications of the Kuhn

Tucker equivalence theorem. 

7.1. Maximum Likelihood Estimate 

We will discuss the special case of (7.1) in k = 3 here. Suppose x., x2 , x3 are 

observed random variables which possess a multinomial distribution with parameter 

n and probability vector (PV) p. Assume also that p satisfies the restriction (7.1 ). 

We wish to estimate p. 
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The maximum likelihood estimate problem can be expressed by the problem 

3 
Maximize L Xi ln Pi, 

i=I (7.2) 

Since the function ln p is strictly concave and K = {p : PI - qi ~ P2 - q2 ~ 

PJ- lJJ, p1 + p2 + P3 = l} is a closed covex cone~ the solution to problem (7.2) exists 

uniquely. Let 

By the Kuhn-Tucker equivalence theorem, p· is the solution to problem (7.2) if 

and only if there exists a vector A= (.Ax, .A2, .A3) such that 

Ar[(pi - Cfl) -(pi - qr)] = 0 

.A2[(pj- q3)- (p; - q2)] = 0 

Pi + Pi + P3 = 1. 

(7.3) 

From the constraint PI- q1 ~ p2 - q2 ~ P3- q3 , we may divide the solution p· into 

four cases. We will discuss these four cases of the solution respectively as follows. 
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From the Kuhn-Tucker conditions (7.3), we have A1 = A2 = 0. So 

::::::} { P2 = r;~i 

P
• _ rapj 
3- Z'J 

Substituting p• = p into the Kuhn-Tucker conditions (7.3), we conclude that 

Moreover, p• = p. 

On the basis of the Kuhn-Tucker conditions (7.3), we obtain ,\ 1 ;::: 0, ..\2 ;::: 0. In this 

case, 

==> { P2 = Pi - ql + q2 

pj = Pi - qt + q3 
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Substitute p• = q into the Kuhn-Tucker conditions (7 .3) which become 

(7.5) 

Summing the first three equations in Conditions (7.5), we solve 

Replace A3 by the above expression in Conditions (7.5) and sum the first two equa-

tions. Then Conditions (7.5) are equivalent to 

which are equivalent to 

{ 

~>~+~ 
q, - 112 q3 

:a+~>~. 
ql q2 - q3 

(7.6) 
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Case Ill. Pi- ql = P2- q2 < pj- q3. 

That means .\2 = 0, At ~ 0. So the Kuhn-Tucker conditions (7.3) are changed into 

(7.7) 

Solving Conditions (7.7), we obtain a quadratic equation for Pi as 

Note that the solution p· to problem (7.2) exists uniquely. Solving the above 

equation, we can get two candidates of solution Pi, and then obtain two corresponding 

candidates of P2 and pj by 

It is not difficult to delete one unreasonable candidate of the solution by checking 

Conditions (7.7). Thus we finally obtain the unique solution to problem (7.2). 

Case IV. Pi - qt < Pi - q2 = pj - q3. 

This is the situation analogous to Case JJ/. Here At = 0, .\2 ~ 0. We can write the 

50 



Kuhn-Tucker conditions (7.3) as 

(7.8) 

Pi+ P2 + pj = 1 

Solving Conditions (7.8), we can obtain a quadratic equation for P2 as 

A similar discussion to Case Ill makes us get a unique solution p• to problem (7.2). 

Remark 7.1. 

1. Although we do not provide the exact expression of solution p· to problem 

(7.2) in Case Ill and IV, it is not hard to solve those quadratic equations and get the 

unique solution to problem (7.2). 

2. We proposed the two regions (7.4) and (7.6) correspondiong to the solutions 

of Case I and Case II, respectively. These two regions also divide the sample space 

into four regions. The other two regions correspond to the solutions of Case Ill and 

Case IV, respectively. Figure 7.1 illustrates the relationship between sample regions 

and formats of solution p·. 
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(0,0,6) 

Figure 7.1. The relationship between sample regions and formats of solution p'" 

Here n = 6. 

q=(2/6, 1/6, 3/6). 

(/).Pi- ql < P2- q2 < pj- q3 corresponding to Region (7.4): x 1 - 2 < x2 - 1 < x3 - 3. 

{ 
3xt ~ Jx2 + XJ 

(I f). Pi - q1 = Pi - ~ = pj - ilJ corresponding to Region (7.6): Jx
1 
+ 6x

2 
~ 4x

3
. 
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Example 7.1. We will now illustrate how to solve the solution p• when p· has 

the format of Case Ill or Case IV. Given q = (2/6, 1/6, 3/6), we have the data 

X = ( 1, 4, 1), n = 6 

p = (1/6, 4/6, 1/6). 

From Figure 7.1, we can conclude that the solution p• has the format of Case IV. 

So we obtain the quadratic equation for P2 as 

Solving the above equation, we can get two candidates of P2 as follows 

P2 = .272 or P2 = -.272. 

Since P2 = -.272 < 0, this candidate is unreasonable. Hence, P2 = .272. Then 

P3 = P2 + (CJ3- Q2) = .605, 

Pi= 1-P2- pj = .123. 

Checking the Kuhn-Tucker conditions (7.3), we obtain the solution to problem 

(7.2) as 

p· = (.123, .272, .605). 

7.2. Neyman Modified Minimum Chi-square Estimate 

The Neyman modified minimum chi-square estimation technique for p leads to 

the optimization problem which can be phrased, in the following manner: 

mznzmzze 
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Also, 

" ( )2 " ( A )2 " x; - np; _ " p; - p; 
L...- -nL...- . x · pA· 
i=l I i=l I 

Now we consider the above optimization problem. We add the constraint that p-q 

satisfies a specified partial ordering. Thus, this optimization problem is equivalent to 

(7.9) 

subject to p;- q; $Pi- qi when i ~ j, 

where both p and q (given) are probability vectors, and the binary relation ~ is a 

specified partial ordering. We can write the objective function in (7.9) as 

-~ t [(p;- q;) --: (p;- qi)]2 
2 i=l Pi 

Let r = p- q and r = p - q. Then problem (7.9) is equivalent to 

.Maximize -! E (r;-:ri)
2

, 

2 i=l Pi 

subject to r; $ ri when i ~ j, (7.10) 

" and :L r; = 0. 
i=l 

Note that - (r;-_r;)
2 

is a strictly concave function of r;. Using the notations for 
2p; 

partial orderings, let 

Using the Kuhn-Tucker equivalence theorem, we conclude that r· is the solution 
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to problem (7.10) if and only if there exists a vector ,\ such that 

(7.11) 

where 

(r\ + ,\ofii- ri) · f + L: ,\ii- L: ,\;i = 0, i = 1, · · · , k 
I iEPi iESi 

,\;i(rj- ri) = 0, (i,j) E E 

(i,j) E E 

,\ii ~ 0, (i,j) E E 

k 
L: r; = 0, 
i=l 

S; = {j: (i,j) E E}, 

P; = {j: (j, i) E E}, i E fl. 

(7.llt 

Similarly to the proof of Theorem 4. l, we have r· = Ep-' (r + ,\opiK) from Condi-

tions (7.11)•, where K = {x: x; :5 Xj, (i,j) E E}. Thus, the solution r· to problem 

(7.10) is given by Ep-t(r+ ,\0 pjK) provided that 

k 

E Ep-1(r + ,\opiK) = o. 
i=I 

The key to obtaining the solution r· is to determine ,\0 . Now we discuss the 

property of ,\0 so that we can get the solution r· more effectively. Note that r = p-q 

and that r + ,\0p = (1 + ,\o)P- q is increasing in ,\o. Since min&{1\ + ,\ofi;} :5 r; :5 

max; {r; + ,\0p;} by Theorem 2.2, there exist ,\~and ,\5 such that min; {r; + ,\~p;} ~ 0 

and max; {r; + ,\Afi;} :50. Under the restriction L:f=t ri = 0, we limit ,\o E [,\A, ,\~]. 

Since much is known about computing the isotonic regression ( cf. Robertson et al. 

(1988)), the Neyman modified minimum chi-square estimate of p is tractable when 
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dealing with isotonic cones. 

Example 7.2. Consider k = 3 and the specified partial ordering is the simple 

ordering. We will determine .X0 and calculate the approximate solution r• and p· . 

We have the data and q as follows. 

q = (2/6, 1/6, 3/6) 

X= (1, 4, 1 ), n=6 

p = (1/6, 4/6, 1/6) 

p-1 = {6, 1.5, 6) 

r = p- q = ( -1/6, 3/6, -2/6). 

First of all, we determine the interval [.X~, .X~] of .X0 • By the data, we have 

A A A _ ( Ao - 1 4-Xo + 3 .X0 - 2 ) 
r + oP - 6 ' 6 ' 6 . 

Then [.X~, ..\5] = (-.75, 2]. Table 7.1 presents the choice of .X0 using linear interpola-

tion and the approximate solution r•. 

TABLE 7.1. THE CALCULATION OF APPROXIMATE SOLUTION r· 
Ao r + AoP r· Li-1 ri 

-.7500 (-.2917, .0000, -.4583) (-.3333, -.3333, -.3333) -.9999 
2.0000 (.1667, 1.8333, .0000) (.1667, .3667, .3667) .9001 

.6972 (-.0505, .9648, -.2171) (-.0505, .0193, .0193) -.0119 

.7141 (-.0477, .9761, -.2143) (-.0477, .0238, .0238) -.0001 

.7142 (-.0476, .9761, -.2143) (-.0476, .0238, .0238) .0000 

From Table 7.1, we take ..\0 = . 7142 and obtain the approximate solution r· = 

( -.0476, .0238, .0238). Thus, the approximate solution p • = r· + q = (.2857, .1905, 

.5238) is the Neyman modified minimum chi-square estimate of p. 
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Remark 7.2. In Section 5, we mentioned the divergence of the PV p with respect 

to the PV p of order A defined by Cressie and Read {1984) as 

(7.13) 

In particular, the maximum likelihood estimate and the Neyman modified minimum 

chi-square estimate of p correspond to the two special cases of the optimization prob

lem min 2n/>-(p : p) when A = 0 and ). = -2, respectively. As discussed in Dykstra 

and Lee {1991) , if A = 1, the solution to min2n/'\(p: p) is the Pearson minimum 

chi-square estimate of p. And if A= -1, min 2n/>-(p: p) means the estimation tech

nique of minimum discriminant information by continuity in .A. Unfortunately, when 

we add the simply ordered constraint on p - q, it is very difficult to use the Kuhn

Tucker equivalence theorem to solve the latter two optimization problems even when 

k = 3. Apparently, there is no one theorem to solve every problem. This encourages 

us to continuously pursue other powerful methods to solve our problems. 

So far we have provided some insights into the applications of the Kuhn-Tucker 

equivalence theorem. This equivalence theorem itself solves inequality constrained 

maximization problems, and we believe it will be extensively applied as a powerful 

and effective tool to order restricted statistical inference. Clearly, the more tools that 

are available for solving a problem, the better the possibility of attaining success. 

The Kuhn-Tucker equivalence theorem gives a series of equations and inequalities for 

the solution to order restricted problems. At this point, it is very intuitive to use 
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this equivalence theorem to solve these problems. Moreover, its application has made 

many proofs much simpler compared to the other proof approaches. 
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