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Abstract 

Performance evaluation of systems is a very important part of system design. 

~lodeling tools which allow the analysis of systems and their behaviors should also 

provide performance analysis of the modeled system as it is less costly to perform 

changes at the model level. Petri nets are becoming popular modeling tools that can 

represent and analyze concurrency, parallelism, synchronization, mutual exclusion 

and conflicts. However, time and space requirements of the classical approach of 

exhaustive generation of all possible behaviors of the system (or its state space) grow 

quickly with the size of the model. An alternative approach based on structural 

properties can be applied only to particular classes of nets. 

:\ new way to derive performance measures for timed Petri nets is based on de­

composition of the state space. This is a hybrid method that uses both reachability 

and structural analysis. The state space of the original net is decomposed into state 

spaces of smaller nets, and these smaller nets are then analyzed by the reachability 

analysis method. Since the nets are quite simple. reachability analysis is straight­

forward and cannot be affected by the "state explosion" problem. The performance 

indices for smaller nets are then used for performance analysis of the original net. 
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Chapter 1 

INTRODUCTION 

Many present- day systems have become so complex that predicting their performance 

cannot be done without some form of mathematical modeling. Communication net­

works, multiprocessor distributed systems, distributed databases, but also traffic con­

trol systems, large manufacturing plants and economic systems are simple examples 

of such problems. A model is a representation, often in mathematical terms, of those 

features of the original system, which are believed to be important for the study (e.g., 

for performance analysis). By the manipulation of this representation, new know ledge 

about the modeled system can be obtained without the danger, cost, or inconvenience 

of manipulating the real system. 

Despite the diversity of these systems, several features are common to most of 

them. Complex systems are usually composed of separate, interacting components. 

Each component may itself be a system, but its behavior can be described indepen­

dently of other components of the system. Often the components of a system exhibit 

concurrency or parallelism; activities of one component may occur simultaneously 

with activities of other components. The concurrent nature of activities must be 

reflected in the modeling process. Since the components of the system interact, it is 
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necessary to synchronize some activities: the transfer of information or materials from 

one component to another requires that the activities of the involved components be 

coordinated while the interaction takes place. This may result in one component 

waiting for another component. The timing of actions of different components may 

be quite complex, and the resulting interactions difficult to describe. 

Petri nets have been proposed specifically to model systems with interacting con­

current components. Petri nets are graph-like models with two types of nodes, places 

which correspond to conditions (in a very general sense) and transitions representing 

events; such place/transition nets are also called condition/event systems. Directed 

arcs connect places with transitions and transitions with places, representing the 

causality relation between conditions and events. The dynamic behavior is repre­

sented by tokens which are assigned to places of a net. If all conditions of an event 

are satisfied, i.e., if all places connected with a transition contain tokens, an event can 

occur, and the occurrence of an event removes a single token from each input place 

of a transition and a single token is deposited in each output place of this transition, 

creating a new distribution of tokens and a new set of events (or transitions) that can 

occur. The behavior of such a model can be represented by a collection of all possible 

distributions of tokens that can be derived in a net. 

Concurrent activities are represented in Petri nets by several possible occurrences 

of events. Synchronization of concurrent activities is obtained by fusion of events (i.e. 

transitions) which are supposed to occur simultaneously. Consequently, representa­

tion of concurrency and synchronization is "natural" in Petri nets, and in recent years 

different classes of net models have been gaining popularity in modeling and analysis 

of complex systems. 

For the study of system performance the concept of time had to be introduced 

in the definition of Petri nets and the resulting net is called a timed Petri net. For 

condition/event systems, time is naturally associated with events. The behavior of 
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systems can be represented either by a detailed deterministic description of system's 

evolution or probabilistically, by capturing the essence of the system's behavior and 

avoiding the details which add to the complexity of the model. Thus, time in a Petri 

net model can be specified in either a deterministic or a stochastic manner. 

A system's evolution in time may be described by the chronological sequence 

of states the system operates in. Thus, the behavior of the system's model is also 

described by all possible states of the net. A state provides information on token 

distribution and on the status of events. Reachability analysis is one of the methods 

which provide detailed information about each state. From this information, perfor­

mance indices of interest can be obtained very easily. However, the complexity of 

the reachability method increases very quickly with the size of the system, making it 

impractical for large systems. 

This thesis proposes a less costly method which provides the same detailed infor­

mation as a reachability analysis. This method uses composition/ decomposition of 

the net state space (or state graph). Thus, complex state graphs, corresponding to 

the existence of a large number of tokens in the net are being composed from simpler 

state graphs corresponding to fewer tokens in the net. State information and perfor­

mance indices for smaller nets are then used for performance analysis of the original 

net. 

The thesis is organized as follows: Chapter 2 presents an introduction to Petri 

nets and their analysis methods. A survey of current research on analysis methods 

is included here as well. Chapter 3 formally defines the composition of state graphs 

and of the performance indices. Chapter 4 presents the application of the method on 

two real systems for which performance measures are obtained. The numerical results 

obtained by decomposition of state graphs are validated by the reachability analysis 

method. Conclusions and discussions on future work are addressed in Chapter 5. 



Chapter 2 

PETRI NETS 

Sections 2.1 and 2.2 recall the fundamental concepts and properties of Petri nets. 

Section 2.3 introduces Petri nets with time and outlines their analysis. The chapter 

concludes with an overview of the methods for analyzing timed Petri nets. 

2.1 Basic concepts of Petri nets 

Several books discussing various aspects of Petri net theory were published recently 

([26], [27], [8], [5] and [22]) . This section recalls basic concepts of Petri nets which 

are needed for subsequent chapters; it does not intend to present an exhaustive in­

troduction in Petri net theory. 

There are many slightly different ways in which Petri nets can be defined. The 

approach used in this thesis follows [26], [25], (27] and (8] . 

Definition 1 {[27]) A Petri Net is a triple N = (P, T , A) where: 

• P is a finite nonempty set of places, 

• T is a finite nonempty set of transitions, 

• A is a set of directed arcs, A~ P x T U T x P, such that 

5 
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The arcs can have weights, in which case a weight function w : A----t {1, 2, 3, · · ·} 

is added to the definition of a net. By default the arc weights are equal to 1, and 

the net with default weights is called ordinary or standard. Only ordinary nets are 

considered in this thesis. 

Graphically, a Petri net is represented as a directed graph with two types of nodes 

(i. e., a bipartite graph): places represented by circles and transitions represented 

by bars, with directed arcs connecting places with transitions and transitions with 

places. The dynamic behavior of a net is represented by tokens, which are distributed 

over places. This distribution can change if some conditions are satisfied. 

Definition 2 {[8]) A marking of a net (P, T, A) is a mapping which assigns a non­

negative number of tokens to each place in P , m : P ----t N. A marking is often 

represented by a vector [m(pl) ... m(pn)J, using an {arbitrary) ordering of the set of 

places P . 

Definition 3 {[8]) A marked net M is a pair M = (N, m0 ) where: 

• N is a net N = ( P, T , A) , and 

• m 0 is a marking of N , m0 : P ----t N, called the initial marking. 

Example: Fig. 2.1 represents a Petri net which models the behavior of a simple 

interactive system. Place p1 models the queue of waiting jobs. A token in place p3 

means that the server is available. Transitions t 1 and t 2 and place p2 model the server 

servicing a job in two stages. Once a job is serviced, the server is freed. Transition t3 

and place P4 model the thinking time after which a new job joins the waiting queue 

(place p1). The initial marking is m0 = [3, 0, 1, 0) which means that the system has 

three terminals and one server . . D 
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Figure 2.1: A model of an interactive system. 

The places which are connected to a transition are called input places of this 

transition and places connected by arcs outgoing from a transition are called output 

places for that transition. 

The set of input places of transition t is defined as Inp(t) = {p I (p, t) E A}, and 

the set of output places of t as Out( t) = {p I ( t, p) E A}. Similarly, sets I np(p) = 
{t I (t,p) E .4.} and Out(p) = {t I (p,t) E A} , denote the input and output sets of 

transitions of the place p. 

In an ordinary net, a transition t is enabled by a marking m if all its input places 

contain at least one token. If t is enabled then it can fire and the firing of t will create 

the successor marking m' (written m ~ m'), defined by: 

m(p) - 1, if p E Inp(t) \ Out(t), 

'if p E P: m'(p) = m(p) + 1, if p E Out(t) \ lnp(t) , 

m(p), otherwise. 

A marking m which enables no transition is called dead. 

In our example, the initial marking m0 = [3, 0, 1, 0] , enables transition t1 and after 

its firing marking m1 = [2, 1, 0, 0] is created. This new marking enables transition t2 , 
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and its firing creates marking m2 = [2,0, 1, 1). Marking m2 is called reachable from 

mo. 

A marking m' is immediately reachable in a marked net (N, m0 ) from marking m 

if it can be obtained by firing a transition enabled by m. 

L b k. . , r If t1 t:z t,. h . et m e a mar mg m Jv. m ~ m 1 ---=-+ . .. ~ ffin, t en a = t 1t2 • .. tn lS 

called a firing sequence leading from m to ffin and is written as m ~ ffin. This 

notion includes the empty sequence €, so m ~ m for every marking m. Marking m' 

is (generally) reachable from marking m. m ~ m', if there exists a firing sequence 

u such that m ~ m'. The set of all markings reachable from m in a net N is called 

the set of reachable markings and denoted R(N, m). 

Definition 4 A place p E P is shared iff it belongs to the input set of more than one 

transition: 

Definition 5 .4 shared place p is free-choice iff the input sets of all transitions sharing 

p are identical: 

pis free-choice¢:> 't/ ti, tiE T: ti # ti 1\ p E lnp(ti) n lnp(ti) ~ lnp(ti) = lnp(ti)· 

Definition 6 A shared place which is not free-choice is a conflict place. 

It can be observed that for each marking m, either all transitions sharing a free­

choice place are enabled or all are disabled. This is not true for transitions sharing a 

conflict place, as shown in Fig. 2.2 where P2 and P3 are conflict places, and t 1 can be 

enabled while t 2 is disabled, or t 2 can be enabled while t1 is disabled. 

Let E(m) denote the set of all transitions enabled by m. Enabled transitions ti 

and ti are in conflict at marking m iff: 
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Figure 2.2: An example of a conflict. 

2) 3 t~r: E E(m) : lnp(ti) n lnp(t~c) # 0 /\ t~c: is in conflict with tr 

The relation of being in conflict at a marking m is reflexive, symmetric and tran­

sitive, so it is an equivalence relation in the set of transitions T; it implies a partition 

of this set into a collection of disjoint conflict classes: 

Conf(t, m) = {Tt, T2 , . .. , T~c}. (2.1) 

It should be observed that classes of transitions sharing free-choice places are 

conflict classes. 

Figure 2.3: Different classes of conflicts. 

In Fig. 2.3 transitions t2 and t4 are in conflict, and the partition ofT is: 

{ { ti}, { t2, t4, t6}, { t3}, { ts}} 
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For any marking m a selection function e : T -+ N is any function which deter­

mines all those firings which can occur simultaneously ([36}), i.e., any function e for 

which: 

1) there exists a sequence of transitions w = ( t;1 , t;2 , ••• t;,.) such that 

t;
1 

E E(m;i_ 1 ), j = 1, 2, .... k, where 111.;0 = m and 

V p E p : . (p) _ . ( ) _ { 1, if p E I np( t;); 
m,i - m;J-l p 

0, otherwise. 

2) E(m;,.) = 0, and 

3) V t E T: e(t) = count(w, t), where caunt(w, t) is the number of occurrences of 

transition t in the sequence w. 

Example: For the previous example. the two selection functions are: 

e1 = (0, 1, 0.1, 0. OJ and e2 = (0, 1, 0, 0, 0, 1]. 

For e1, the sequence w is (t2,tt) or (t1,t2). 0 

The set of all selection functions for a marking m is denoted S el ( m). 

The structure of the net can also be represented by the so called incidence (or 

connectivity) matrix of a net. 

Definition 7 ([8]) Let N = (P, T, A) be a net. The incidence matrix C: (P x T) -+ 

{ -1, 0, 1} is defined as: 

-1, if (p, t) E A 1\ (t,p) ~A; 

V p E P : 't/ t E T : C(p, t) = 1, if (p, t) ~ A 1\ (t, p) E A; 

0, otherwise. 

The matrix representation is unambiguous only for pure nets, i.e., nets without 

self-loops. Fig. 2.4 is an example of a self-loop where the flow of tokens from place 

p to place p is not represented in the incidence matrix. 



11 

Figure 2.4: An example of a self-loop. 

For the net in Fig. 2.1. the incidence matrix is: 

-1 0 1 

1 -1 0 
C= 

-1 1 0 

0 1 -1 

Lemma 1 {Marking Equation Lemma [8]) For every finite firing sequence w and 

any markings m and m' of a net N such that m ~ m', the following marking equa­

tion holds: 

m' = m +c x e (2.2) 

where markings m and m' are represented by column vectors and, for all t E T, 

e(t) = count(w, t). 

For the previous example (Fig. 2.1), let w = t1t2 and e = [1, 1. 0]. Using the 

~arking Equation Lemma, we have: 

3 -1 0 1 
1 

0 1 -1 0 
m'= + X 1 

1 -1 1 0 
0 

0 0 1 -1 
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which yields marking m' = [2, 0, 1, 1], the marking obtained after firing transitions t 1 

and t2. 

2 .1.1 Properties of Petri nets 

An important advantage of using Petri nets is their support for analysis of many 

properties of concurrent systems. There are two types of properties that can be 

studied with a Petri net model: behavioral properties, which depend on the initial 

marking of the net, and structural properties, which are independent of the initial 

marking. 

Behavioral properties 

The most popular behavioral properties include: liveness, boundedness and reachabil­

ity. 

Definition 8 {[8]) A marked net is live if, for every reachable marking m and every 

transition t , there exists a marking m' reachable from m which enables t . If M = 

(N, m0 ) is a live net, then also m0 is called a live marking of N. 

Definition 9 {[26]) A marking m of net M = (N, m 0 ) is live iff 

V t E T: 3m' E R(N, m) : t E E(m') . 

Proposition 1 ([26]) A marked net M is live if and only if all markings m E 

R(N, m0) are live. 

Liveness of a system is closely related to the absence of dead markings in the 

set of reachable markings. If a net is live, then from any reachable marking m, any 
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transition in the net can be fired either directly or through some firing sequences. If 

a net is live, then the system modeled by the net can always continue to operate. 

In many cases, the number of tokens which can be associated with a place at any 

time is finite. Such a place is called bounded. 

Definition 10 ([8]) A marked net is bounded if for every place p there is a natural 

number k such that m(p) < k for every reachable marking m. If a net (N, m 0 ) is 

bounded, m 0 is also called a bounded marking of N . 

The bound of a place pin a bounded net (N, m 0 ) is defined as: 

max{m(p) I mE R(N, mo)}. (2.3) 

A net with places whose bound is not greater than k is called k-bounded. 

Proposition 2 ([8]) Every bounded net is k-boundedfor some kEN. Every bounded 

net has a finite set of reachable markings. 

Definition 11 A Petri net is safe if it is 1-bounded. 

The net in Fig. 2.1 is live but not safe; it is 3-bounded. 

Structural properties 

Structural properties depend only on the structure of the net and hold for any initial 

marking. They can often be characterized by the incidence matrix. 

More detailed information on structural properties can be found in [25], [26] and 

[22]. Some structural properties used in this thesis are presented below. 

Definition 12 (structuralliveness [25]) A Petri netN is structurally live if there 

exists a live initial marking for N. 
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Definition 13 (structural boundedness [25)) A Petri net N is structurally bounded 

if it is bounded for any finite initial marking m0 • 

Definition 14 (conservativeness (25]} A Petri net N is partially conservative if 

there exists a place p and a positive integer y(p) such that for every m E R(N, m 0 ) 

and for any fixed initial marking m0 , the weighted sum of tokens: 

mT x y = mij x y =canst 

where mT denotes the transpose of m, and m cmd y are represented by vectors. 

Net invariants 

The set of reachable markings set for the net shown in Fig. 2.1 is as follows: 

R(N, m 0 ) = {[3, 0, 1, OJ, [2, 1, 0, OJ, [2, 0, 1, 1), [1 , 1. 0, 1), [1, 0, 1, 2J, (0, 1, 0, 2], (0, 0, L 3)}. 

It can be observed that the total number of tokens in places Pt,P2 and p4 is always 3 

for any reachable marking and the total number of tokens in places P2 and p3 is always 

1. These sets of places are net invariants called place invariants or P-invariants. 

Also, the marking obtained by firing the sequence t1t2t3 is the initial marking. 

The set of transition in this firing sequence represents another net invariant, called 

transition invariant, or T -invariant, which indicates how many times, starting from 

one marking, each transition has to fire to reproduce that marking. 

The following definitions, lemmas and theorems considering properties of P- and 

T-invariants are taken mostly from (26). (8] presents some alternative definitions of 

place and transition invariants. [23] gives a simple and quick algorithm for finding 

out these invariants for a given net. More detailed descriptions of net invariants can 

be found in (8], [16], [5} and [22]. 

In the following definitions Z denotes the set on non-negative integers. 
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Definition 15 ([26]) Let N = (P, T, A). A non-zero card{P )-element vector s, 

s : p--+- Z, is called P-invariant iff cr X s = 0, where c is the incidence matrix of 

N. 

It can be observed that any linear combination of P-invariants is also a P­

invariant. 

The following is an alternative of the conservativeness property: 

Theorem 1 ([26]) Let N = (P, T, A) be a conseroative net. Then for each P­

invariant s of N and for each marking m reachable from the initial marking m 0 , 

the following holds: 

s x m0 = s x m. (2.4} 

The converse of this theorem is true only if every transition fires at least once [26]. 

Definition 16 ([26}) A net N = (P. T, A) is covered by place invariants iff for each 

place pEP there exists a P-invariant s of N such that s(p) > 0. 

If a net is covered by ?-invariants then there exists an invariant s such that 

s(p) > 0 for all places p E P. 

Fig. 2.5 represents the net of Fig. 2.1 with its place invariants indicated by broken 

lines. The place invariants are: s1 = [1, 1, 0, 1] and s2 = [0, l, 1, 0]. The invariant 

s = s1 + s2 = [1 , 2, 1, l] has all its components positive, therefore the net is covered 

by P-invariants, its reachability set is finite, and the net is bounded. 

Definition 17 ([26]) Let N = (P, T, A) . A non-zero card(I'}- element vector v : 

T--+- Z is called T -invariant iff C x v = 0. 

As for ?-invariants, any linear combination ofT-invariants is also aT-invariant. 
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t3 

'-------------------------

Figure 2.5: Place invariants. 

Definition 18 ( [26]) A net N is covered by T -invariants iff for each transition t E T 

there exists aT -invariant v of N such that v(t) > 0. 

Proposition 3 ([26]} If a net N is covered by T -invariants then there exists a T­

invariant v of N such that u(t) > 0 for all t E T . 

Theorem 2 ([26]) Every net which is finite, live and bounded, is covered by T­

invariants. 

The net in Fig. 2.1 has only one T-invariant consisting of all transitions in the net: 

v = [1, 1, 1]. The net is covered by a T-invariant, therefore it is live and bounded. 

The net in Fig. 2.6 is an example of a net covered by two T-invariants: v1 = [1, 0, 1, OJ 

and v2 = [0, 1, 0, 1]. It is also covered by two ?-invariants: s 1 = [1, 0, 1, 1] and 

s2 = [0, 1, 0, 1]. This net is also live and bounded. 

The approach presented in [8] finds the net invariants without using the connec­

tivity matrix. 

Definition 19 ([8]; an alternative definition of ?-invariants) LetN = (P, T, A). 
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t3 ..... _ 

Figure 2.6: Net covered by 2 T-invariants and 2 ?-invariants. 

A mapping i: P -+ Z is a ?-invariant iff for every transition t: 

:E i(p) = :E i(p). (2.5) 
pE/np(t) pEOut(t) 

Definition 20 ([8]; an alternative definition ofT-invariants) LetN = (P, T. A) . 

• 4 mapping j : T -+ Z is a T -invariant iff for every place: 

2: j(t) = L j(t). (2.6) 
tE/np(p) tEOut(p) 

2.2 Analysis methods 

Petri net analysis methods can be grouped in two categories: reachability methods 

which can also be used in combination with reduction or decomposition techniques 

([25, 5, 22]) and structural methods. 
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2.2.1 Reachability analysis 

This method performs exhaustive analysis of all reachable markings for a given net. 

It can be applied to any bounded net, but its use is limited to cases when the number 

of reachable markings is not too large. 

Given a marked net (N, mo), the reachability set R(N, m0 } can be represented 

by a graph, starting from the initial marking m0 and adding all markings which are 

immediately reachable from m0 , and so forth. 

Definition 21 ([25]) The reachability graph of a Petri net (N, m0 ) is a labeled graph 

g = (V, E). The set of nodes V is the set of all reachable markings, and the set of 

arcs E represents the relation of immediate reachability, that is: 

Figure 2.7: Reachability graph for the initial marking m0 = (3, 0, 1, 0]. 

Example: Fig. 2. 7 shows the reachability graph for the net of Fig. 2.1 with the 

initial marking m0 = (3, 0, 1, 0]. 0 
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Reduction or decomposition techniques are applied together with the reachability 

analysis; if a large net can be reduced to a simpler net, the complexity of reachability 

analysis can be reduced. However, the reduction techniques must preserve the prop­

erties of the original net and, as a consequence, the applicability of this method is 

limited to special classes of nets. 

The following reduction rules preserve the properties of liveness ((25]): 

• fusion of series places Fig. 2.8 (a), 

• fusion of series transitions, Fig. 2.8 (b), 

• fusion of parallel places, Fig. 2.8 (c), 

• fusion of parallel transitions, Fig. 2.8 (d). 

(a) (b) 

(c) (d) 

Figure 2.8: Some reduction rules. 
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2.2.2 Structural methods 

Structural methods are used to investigate structural properties of the net. 

The incidence matrix and marking equation have already been defined along with 

the equations for obtaining the place and transition invariants of a given net. Reach­

able marking can be determined by using the Marking Equation Lemma. Using the 

net invariants, structural properties can be derived, e.g.: if the net is covered by P­

invariants then the net is structurally bounded. The upper bound on the number of 

tokens in a place can be determined due to the coverage of P-invariants. For example, 

in the net shown in Fig.2.1, places {p1,,P2,p.t} are 3-bound and place P3 is 1-bound. 

Also, in the case when the net is covered by P-invariants, and at least one transition 

is not included in any T-invariants, then the net is not live. 

Definition 22 ([22]) A deadlock is such a subset of places Pv C P that the set of 

its input transitions is a subset of the set of its output transitions, that is: 

U lnp(p) C U Out(p). (2.7) 
pEPo pEPo 

Definition 23 ([22]) A trap is such a subset of places PT C P that the set of its 

output transitions is a subset of the set of its input transitions, that is: 

U Out(p) C U lnp(p). (2.8) 
pEPr pEPr 

Traps and deadlocks can be used to study properties of the nets: there is no way 

an empty deadlock can increase its number of tokens, and therefore all transitions 

which have input places in Pv cannot fire, so the net cannot be live. Also, it is known 

that a trap, if it is marked by the initial marking, will never loose its tokens; therefore 

a deadlock will not loose its tokens if it contains a marked trap. 
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More information on structural methods can be found in [25}, (26], [8] and (22]. 

2.3 Petri Nets with time 

Time can be introduced into Petri nets in several different ways. The characteristics 

associated with introducing time into a Petri net are as follows: 

• the net elements (places or transitions) with which timing is associated. 

• the rules applied for transition firing, 

• the nature of the temporal specification (deterministic or probabilistic) . 

Time associated with places 

In nets in which time is associated with places, a token that reaches a place be­

comes available only after a delay B. Therefore, any token can be in one of the two 

states: available or unavailable, and only available tokens can enable a transition. An 

unavailable token models the time the system spends performing an activity. It is 

known (32] that Petri nets with time associated with places can be transformed into 

equivalent timed Petri net models in which time is associated with transitions. Only 

this other class of timed Petri nets is considered in this thesis. 

Time associated with transitions 

The association of time with transitions seemed to many authors as more natural [2]: 

"interpreting PN as state/event models, time is naturally associated with 

activities that induce state changes, and hence with the delays incurred 

before firing transitions" . 

There are, in the literature, two ways in which a timed transition fires. The firing 

is either instantaneous or not. In the former case, once a transition is enabled, the 



22 

tokens spend the time associated with this transition in its input places, and after this 

time has elapsed, the transition fires removing the tokens from its input places and 

depositing them in its output places in one instantaneous operation. In the latter 

case, the transition initiates its firing absorbing the tokens from input places, and 

after the time associated with the transition has elapsed, the tokens are deposited 

into the output places of the transition. In [20] , the Petri nets in which time is 

associated with transitions are called Timed Transition Petri Nets (TTPN). 

The behavior of systems can be represented either by a detailed deterministic 

behavior of the system or probabilistically, by capturing the essence of the system's 

behavior and avoiding the details which add to the complexity of the model. Thus, 

time in a Petri net model can be specified in either a deterministic or stochastic 

manner. For the latter, random durations are characterized by a probabilistic distri­

bution function, and the most popular of such functions is the (negative) exponential 

distribution. 

A TTPN in which time is specified in a stochastic manner and the firing of a 

transition is an instantaneous event is called a stochastic Petri net ([21, 19, 20, 2, 3] 

and others). On the other hand, a TTPN in which the firing of a transit ion is not 

instantaneous and time is specified in either a deterministic or stochastic manner is 

called a timed Petri net ([34], [35], [14], [36] and (37]). 

2.3.1 Stochastic Petri nets 

Stochastic Petri nets were introduced as an extension of Petri nets for performance 

evaluation of modeled systems. This extension introduces exponentially distributed 

holding times (or sojourn times) associated with the markings. These holding times 

are obtained by assigning 'firing rates' to transitions of the net. The holding time of 
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a marking is determined by the transitions enabled by it. 

By taking a standard Petri net and associating with each of its transitions an ex­

ponentially distributed random variable which models the time between the enabling 

and the firing of a transition, a Stochastic Petri Net (SPN) is obtained. 

Definition 24 ([21]) A stochastic Petri net is a 5-tuple: S = (P, T, A. m0 , r) where: 

• P, T. A, and mo are as for standard PN; 

• r : T --+- R T is a firing time function which assigns the rate of firings to each 

transition of the net. Firing rates can be marking dependent, and then r is 

defined as r: T x R(N, m) --+- R+. 

Consider an SPN with a marking m which enables several transitions. It is known 

that a random variable which is equal to the smaller of two exponentially distributed 

random variables with parameters r 1 and r2 is an exponentially distributed random 

variable, and its rate is equal to (r1 + r 2). Therefore, the sojourn time associated 

with marking m is 
1 

(2.9) 
Lt,eE(m) r(ti) 

where E(m) is the set of transitions enabled by marking m, and r is the firing rate 

function. 

If m' is the marking obtained by firing transition t, some of the transitions enabled 

by m' might still be enabled. Because the exponential distribution yields a residual 

time distribution equal to the distribution of the firing delay itself (the memory less 

property), the activity associated with each transition can be considered as restarted 

in a new marking. 

The reachability graph of the basic SPN model is isomorphic with the reachability 

graph of the underlying standard Petri Net. Therefore, all the results of structural 
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anal:ysis of standard Petri nets can be applied to stochastic nets. Molloy [24] has 

shown that SPNs are isomorphic to continuous-time Markov chains. 

The continuous-time Markov chain corresponding to an SPN can be determined 

as follows [21]: 

1. the state space S of the Markov chain is the reachability set R(N, m 0 ) of the 

standard Petri net modeling the stochastic net; 

2. the rate qii of transitions from state i (marking Tn.i) to state j (marking mi) is 

equal to: 

qii = L r(t), 
teE,(m;) 

(2.10) 

where Ei(Tni) is the set of transitions enabled by marking ffii whose firings 

generate marking mi. 

The steady-state (stationary or equilibrium) probabilities 1r(i) for each state i are 

obtained by solving the system of linear equations: 

{ 

1!"XQ=0 

E7r=l 
(2.11) 

where Q is the transition probability matrix with elements qii, as defined above. 

2.3.2 Timed Nets 

In timed nets the firing times can be either deterministic or stochastic. The class 

of nets with deterministic firing times is called D-timed Petri nets. For stochastic 

firing times, the only case considered in the literature is when the firing times are 

exponentially distributed random variables ([36]), due to the memoryless property 
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of this distribution which simplifies the state description of the corresponding nets. 

This class of nets is called M-timed Petri nets. 

Zuberek ([34], (35], (36j) proposed solutions for several classes of timed nets: 

conflict-free, free-choice, inhibitor nets, extended (with interrupt arcs) nets and en­

hanced Petri nets. Inhibitor M-timed Petri nets provide a mechanism to model pri­

orities. Extended M-timed Petri nets use interrupt arcs to discontinue the firing of 

transitions. Enhanced M-timed Petri nets have two classes of transitions: immediate 

and timed. One can see them as being a combination of an ordinary (without time) 

free-choice Petri nets and timed extended free-choice bounded M-timed Petri nets. 

The modeling power is increased in this way. 

More detailed information on timed Petri nets, their analysis and applicability to 

modeling different systems can be found in [34], [35], [14], [36], (37]. A collection of 

software tools for analysis of timed Petri nets, called TPN-tools, is under development 

([39] and (38]). 

M-timed Petri nets 

Definition 25 ([36]} An M-timed netT is a quadrupleT= (N, m0 , c, r) where: 

• N is a standard net, N = ( P, T, A.), and m 0 is the initial marking, m0 : P --+ N; 

• cis a conflict-resolution function which assigns a positive relative frequency of 

firings to each transition t E T, c : T --+ R +; 

• r is a firing-rate function which assigns a rate of exponentially distributed firing 

times to each transition t E T, r : T --+ R +. 

The behavior of timed Petri nets is described by states and state transitions. Each 

state describes the distribution of tokens in places and also the firings of transitions. 
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Definition 26 ([36)} A states of a timed netT= (N, mo, c, r), N = (P, T , A), is a 

pair of functions, s = (m, f), m: P ~ N, f: T ~ N, where m describes the marking 

of a net (in states), and f describe3 the number of (active) firings of transitions. 

Definition 27 ([36]) An initial state of a net T = (N, mo, c, r) is any state Si = 

( mi, fi) such that: 

1) fiE Sel(m0 ), and 

2) 't/ p E P: Tn.j(p) = mo - Lteout(p) /i(t). 

Example: The net in Fig. 2.6 is converted into an M-timed net by associating 

firing rates with all transitions. For the initial marking mo = [1, 1, 0, 0), the two 

possible initial states are, s1 = [0, 0, 0, 0; 0 , 1, 0, 0] and s2 = [0, 1, 0, 0; 1, 0, 0, 0]. 0 

Definition 28 ([36]) A state s1 = (mj, iJ) is directly (t~c, ez) -reachable from a state 

( f) (t~o,e~) fJ 
Si = Tn.j, i , Si Sj, l : 

1) fi(t~c) > 0; 

3) 't/ pEP: mj(p) = 1'11.ij(p) - LteOut(p) ez(t) ; 

4) 't/ t E T : fJ(t) = fij - ez(t) , 

where: 

{ 

1, if t1c E /np(p); 
5) 't/ p E P: 1nj1{p) = mi(p) + . 

0, otherr.mse; 

{ 

1, ift = t~c; 
6} 't/ t E T : fii(t) = fi(t) -

0, otherwise. 



For each states= (m, f), the holding time (or sojourn time) is: 

1 
h(s)=----­

~tET f(t) * r(t) 

27 

(2.12} 

If a state s; = ( m;, f;) is directly ( t~c, e1) reachable from a state si = ( ~, fi) , then 

the rate of transitions from si to s; is: 

(2.13} 

where the probability that transition t~c will terminate is: 

(2.14) 

and 
n len(w) 

b(el) = L IT d(Tn.in, tiJ (2.15} 
1 n=l 

where n represents all firing sequences w such that count(w) = e1, len(w} is the length 

of w, e, is the selection function used, d(m, t) is the probability that transition t will 

be selected for firing and Conf(m, t) denotes the conflict class oft at marking m: 

d(m, t) = c(t) . 
Lt'EConf(m,t) c(t') 

(2.16) 

Definition 29 ([34]) A state graph g of an M-timed Petri netT is a labeled directed 

graph Q(n = (S, E, h, q) where: 

• - S is a set of vertices which is equal to the set of reachable states of the netT, 

• E is a set of directed arcs, E ~ S x S, such that (si, s;) E E iff s1 is directly 

reachable from si in T, 

• h is the holding time function which assigns the sojourn time of a state s to 
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each s E S, h: S ~ R+, where: 

1 
h(s) = ( ) ( ) , 

LteT f t * r t 
(2.17) 

• q is a transition-rate function which a3signs the rate of transitions from state 

Si to states; to each arc (si , s;) E E, q : E--+ R+. 

The state graphs of bounded M-timed Petri nets are finite continuous-time ho­

mogeneous Markov chains ([34]) . The steady-state probabilities can be obtained by 

solving the system of linear equations: 

{ 
L.19~K q(s;, si) * 7r(s;)/h(s;) = 1r(si)jh(si); 

L1~i~K 1r(si) - 1, 

i = 1, ... , K- 1, 

where K in the total number of states. 

Example: Table 2.1 shows the states and the stationary probabilities of states 

for the net of Fig. 2.1 with the following firing rates of transitions: r(tt) = 10, r(t2) = 
10, r(t3 ) = 20. D 

state Si = (m;, /i) 1ri 
1 [2, 0, 0, 0; 1, 0, 0, 0] 0.11538 
2 [2, 0, 0, 0; 0, 1, 0, 0] 0.21429 
3 [1, 0, 0, 0; 1, 0, 1, 0] 0.23077 
4 [1, 0, 0, 0; 0, 1, 1, 0] 0.19780 
5 (0, 0, 0, 0; 0, 1, 1, 0] 0.13187 
6 {0, 0, 0, 0; 0, 1, 2, 0] 0.06593 
7 (0, 0, 1, 0; 0, 0, 3, 0] 0.04396 

Table 2.1: Stationary probabilities for net of Fig. 2.1. 

Different performance measures can be obtained from the stationary probabilities, 

e.g. the average number of jobs waiting in the queue or the utilization of a server. 
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The average number of jobs waiting in the queue can be obtained by interpreting 

the states. Place p1 models the queue of waiting jobs. In states s 1 and s2 , there 

are two jobs in the queue, in states s3 and s4 there is one job in the queue, and in 

the remaining states the queue is empty. The average number of waiting jobs in the 

queue is thus: 

D-timed Petri nets 

ForD-timed Petri nets, the firing times of transitions are deterministic. so the mem­

oryless property does not apply to such models. Therefore the description of such 

nets must include the history of the firings, i.e., a state description must contain the 

remaining firing time for each transition's firing. The state graph for aD-timed net is 

a discrete-state discrete-time semi-Markov process ([361), and thus, the steady-state 

probabilities can be obtained in a similar manner as for M-timed Petri nets. A de­

tailed description of the behavior of different classes of 0-timed Petri nets is presented 

in [35) and [36]. 

Holliday and Vernon ([14]) proposed an extension of timed nets called a General­

ized Timed Petri Net (GTPN), which imposes no restrictions on the net apart from 

the finite state space. GTPNs can also include geometric and deterministic transition 

firing times, as well as state-dependent firing times. 

2.3.3 Other types of Petri nets 

A.n SPN with immediate transitions is called a Generalized SPN and a TPN with 

immediate transitions is called an Enhanced TPN. In both cases immediate transitions 
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have priority over the timed ones. The analysis of these nets is more complex due 

to the existence of two different kinds of states or markings: vanishing and tangible. 

The vanishing states are those in which at least one immediate transition is enabled, 

and therefore the sojourn times of such states are zero; the tangible states are those 

in which only timed transitions are enabled. 

In the case of GSPNs, the underlying process is semi-Markovian, so the solution 

is based on extracting the embedded Markov chain ([3}) . All vanishing states can be 

eliminated either during the generation of the state space or just before the solution 

of the steady-state equation. 

2.3.4 Performance measures 

As was shown previously, stationary probabilities of states can be used very conve­

niently to obtain the performance characteristics of the modeled system. This is true 

not only for timed Petri nets, but for any discrete-state model. The average number 

of waiting tokens in a place, the utilization of a transition or a place or the average 

waiting time of a token in place can be used for the performance evaluation of the 

modeled system. The formulae for performance indices are different for stochastic 

and timed nets. 

For a stochastic Petri net (P, T, A, m0 , r) some of the performance indices are as 

follows: 

• transition utilization U(t;) is given by the steady state probability that transi­

tion t; is enabled: 

V p E Inp(t;): U(t;) = Prob(t;,enabled) = L 1r(m) 
m(p)>O 

(2.18) 
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• the stationary probability that there are at least k tokens in place p E P: 

Prob(m(p) ~ k) = L rr(m) 
m(p)~k 

(2.19) 

• the throughput 8(ti) of a transition ti E T represents the average number of 

firings of ti per unit of time: 

(2.20) 

where mE R(N, rno). 

For a timed Petri net r = (N, mo, C, r), N = (P, T , A), the same indices are 

defined slightly differently due to the different firing rules: 

• the stationary probability that a transition ti E T is firing in a state s = ( m, f) 

is given by: 

V (m, f) E S(T) : Prob(f(ti) > 0) = L 1r(m, f) (2.21) 
f(t.)>O 

• the utilization of transition ti E T is defined by: 

n 

V (m, f) E S(T) : U(ti) = L f(ti) * 1r(m, f) (2.22) 
/(t.}=l 

where n is the upper bound on the number of firings of transition ti. 

• the throughput of transition ti E T is given by: 

(2.23) 
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Example: For theM-timed Petri net in Fig. 2.1, the following performance mea­

sures are an example of indices that can be calculated from stationary probabilities 

1r ([31], (34]): 

the utilization of the server in the first stage: 

Ut = 7rt + 1r3 + 7rs = 0.47802 

the utilization of the server in the second stage : 

the average number of jobs serviced per time unit: 

O(tt} = 8(t2) = Ut * r(!t) = U2 * r(!
2

) = 0.047802 

the average number of waiting jobs in the queue: 

2.4 Approaches to analysis of Petri net models 

The basic approaches to analysis of timed Petri nets include: reachability analysis 

and structural analysis. Since reachability analysis performs an exhaustive analysis 

of the state space, its time and space requirements can increase very quickly with the 

size of the model (number of places and number of tokens in the system). Structural 

reduction methods can be used to reduce the size of the net (the number of places and 

transitions) but the application of such methods is limited to special classes of nets. 
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Structural methods determine various properties of the model without generating the 

state space. 

Simulation is also widely used. and many simulation tools are available: TPN-tools 

([39], [38]), GreatSPN, ALPHA/Sim, etc. ([1]). However, one of the drawbacks of 

simulation methods is that the states which have very small stationary probabilities 

might never occur even in very long simulation runs, and sometimes such rarely 

occurring states are the most interesting ones, e.g. the probability of transmission 

error over a fiber optic link, or a deadlock in an operating system. 

In [6], Berthomieu and Menasche reduced the size of the state space by aggregating 

states into a state classes. A state class contains all those states which are reachable 

by a firing sequence sequence rather than a single transition. All such classes are 

enumerated and relations between classes are determined. Reachability analysis is 

then applied to the graph of state classes rather than states. 

In recent years, work has been done on applying results from queueing theory to 

Petri nets ([18], [21], [11], and [5]). A special class of stochastic Petri nets has been 

defined. which has the property of having product form solution (PFS). The term 

"product form solution" is understood less strictly than for queueing networks. The 

steady-state solution for PFS nets has a product form composed of a normalization 

constant and as many terms as the number of places in the net. Stochastic Petri nets 

which have this property are called Product Form Stochastic Petri Nets (PF SPN) . 

The other queueing theory technique applied for SPN is the Mean Value Analysis 

(MVA) ([15], [31], [28], and [29]), which reduces the complexity of computing the 

normalization constant for PFS. As is the case for queueing networks, if a net has a 

product form solution, then MVA can be used to obtain the performance measures 

of interest. 

The first application of the queueing network Product Form Solution to stochastic 

Petri nets is given in [10] where the authors observed that the underlying Petri net is a 
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bounded stochastic Petri net. The solution is similar to the product form for queueing 

networks using matrix and vectors instead of scalars. The underlying Petri nets are 

ordinary, bounded and strongly connected (live) . The firing rates of transitions are 

assumed to be independent of the markings. 

Live and 1-bounded (safe) stochastic Petri nets are considered in [17] where the 

necessary conditions are given for the equilibrium state probabilities to satisfy the 

local balance equations. It is known that for a queueing network with product form 

solution, the state diagram is decomposable into elementary building blocks. The 

approach presented in [17] is based on Theorem 2, which is equivalent to the state 

graph (reachability graph) being decomposable into building blocks. At a more careful 

inspection, Theorem 2 also gives the structural constraints which SPNs have to satisfy 

in order to have PFS. Recently, a particular class of stochastic Petri nets which display 

Product Form like Solutions has been investigated ([12], [13], [33],[30], [7], [4], [31], 

(28] and (29]). The generation of the reachability set for these nets is reduced to 

the analysis of the Markov chain associated with the transitions, and called routing 

process. For the routing process to be well defined, the input sets of any two transitions 

ti, ti E T must be different. For a positive solution of this process, the flow condition 

((13]) given in various forms in [12], (33], (30] and others, has to be satisfied: 

In [13], the class of nets is extended and more flexible than in [6] . The authors 

considered alternating enabling and firing time points. At these points, a product 

form solution for the equilibrium probability that the net has a marking m is given. 

Tokens are absorbed by transitions just before firing points and deposited into output 

places just before enabling points. The change in state is due to the firing of only one 

transition, and no two transitions can have the same input sets. 

By observing the model at different points, Henderson and Taylor ([13]) were able 
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to derive product form like solutions for two different cases: when transition firings 

are instantaneous (this corresponds to Stochastic Petri Nets) and when there is zero 

time between an enabling point and the following firing point (this corresponds to 

timed Petri nets). 

Henderson et all ([12}) proved that for a stochastic Petri net which satisfies the 

condition given above the equilibrium probabilities 1r are given by: 

1r(m) = K * ~(m} * g(m) (2.24) 

where: 

K is a normalization constant; 

<1?(.) is a given positive function ([12]); 

g: R(N, mo) ~ R is the solution of the routing process. 

The two approaches presented in [17] and [12] and [13] are compared in (9]. In 

[17], the PFS is determined by inspecting the structure of the reachability graph, 

while (12] derives conditions for PFS to exist from the structure of the net. The 

equivalence between the two approaches is given by Lemma 6 in (9] which states that 

the state transition diagram is completely decomposable into building blocks (the 

approach used in [17]) if the SPN is covered by T -invariants, the sets of transitions 

corresponding to invariants satisfy the flow condition, and the initial marking enables 

at least one transition (these conditions are also given in [12}). 

In [33], Ziegler and Szczerbicka extended the PFS to Generalized SPN's. The 

considered class of GSPN's has no inhibitor arcs and no marking dependent arc car­

dinalities. [33] presents an algorithm which checks if the GSPN can have a product 

form solution, and if it does, the solution is computed. First, structural transforma­

tions are performed in order to obtain a net which satisfies the structural constraints 

for a product form solution. These transformations eliminate all immediate transi-
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tions and remove identical input sets of transitions. If the net has some subnets which 

do not satisfy the structural conditions for a PF solution, they can be replaced by a 

block transition. The algorithm then performs all the necessary steps for computing 

the product form solution of the same form as in [12]. 

One of the problems is the computation of the normalization constant. [30] 

presents an algorithm to recursively compute this constant, and obtains the steady 

state probabilities for PF SPN's. The recursion is both on the number of tokens and 

the number of places in the net. The algorithm is polynomial in the number of places 

and the number of tokens in the initial marking. Sereno and Balbo prove that for the 

same conditions as in [12], the equilibrium distribution of the SPN is given by: 

1r(m) = ~ * h(m) (2.25) 

where m E R(N, m0 ) , and h(m) contains as many terms as there are places or 

transitions in the net. and under certain conditions, has the form: 

h(m) = II f;:'<P> (2.26) 
pEP 

where JP is a function given in [30]. 

Coleman [7] proposed a new algorithm to calculate the normalization constant for 

PF SPN. This algorithm depends only on the structure of the net and not on the size 

of the reachability graph (as is the case of the algorithm presented by Sereno and 

Balbo [30]). Hence, the time complexity of Coleman's algorithm is much simpler. 

Balbo et al. [4] analyze the same class of nets as in [30], and derive a formula 

to compute the mean sojourn time of a token in a place. The approach is similar 

to arrival theorems for queuing theory. The formula is recursive, depending on the 

average number of tokens in the same place, but for a smaller number of tokens in the 
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initial marking. This is the basis for deriving and applying the Mean Value Analysis 

(MVA) algorithm to solve a PF SPN. 

MVA or Approximate MVA are used for the derivation of performance measures 

in [311, [28}: [29), without obtaining the PFS. The basis for MVA for SPN is the 

recursive computation of the normalization constant derived in [30). For MVA. the 

nets have to satisfy the same conditions as for PFS. The advantage of Approximate 

MVA is that it can be applied to more general classes of nets. 

In [311, the authors present the derivations of different performance indices like: 

utilization of a place, of a transition, the mean sojourn time of a token in place, the 

mean number of tokens in a given place. These performance indices are then used 

for deriving the performance measures of the modeled system. The formulae used are 

recursive on the number of tokens in the net and the place invariants are considered 

for the reduction of tokens. 

An iterative Approximate MVA algorithm for stochastic nets which do not have 

product form solution is proposed in [28) and [29) for special classes of nets, and in 

particular, marked graphs. Marked graphs (MGs) are Petri nets in which each place 

has only one input transition and only one output transition. MGs seem quite simple 

but they can model synchronization and the fork-join constructs. It is well known 

that synchronizations are in general non-product features, and therefore MG are not 

PF SPNs. As in the case of queueing networks, one of the difficulties of Approximate 

MVA is the inability to provide bounds for the performance measures obtained this 

way. To quote Sereno [29): 

"the quality of the results is stated by means of experimental evidence." 

This thesis proposes a new way to derive performance measures for timed Petri 

nets. This is a hybrid method that uses both reachability and structural analysis. 

Independent and self-independent initial markings are identified and used for com-
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position of state graphs. In this way, complex state graphs for nets with a large 

number of tokens can be composed from simpler state graphs of the same net. The 

markings which need to be analyzed exhaustively are quite simple, their reachability 

analysis is straightforward and cannot be affected by the "state explosion" problem. 

Consequently, the analysis of large state graphs is reduced by their decomposition, 

and the component state graphs provide results which are combined into the values 

of interest for the original system. Both, stationary probabilities and performance 

indices of interest can be obtained in this way. 



Chapter 3 

STATE SPACE DECOMPOSITION 

An overview of the methods used to analyze different classes of Petri nets ''with time" 

concludes that the reachability analysis becomes impractical for complex models due 

to time and space comple.xity. Therefore, research has been focused on methods which 

do not require the generation of the state space for obtaining the values of performance 

indices. However, only a few such methods have been proposed for timed Petri nets; 

stochastic nets have been studied and used more extensively. 

This chapter explores the state graphs of M-timed Petri nets and proposes a 

method of decomposing state graphs with a large number of states into smaller state 

graphs. A composition of state graphs is then defined so that more complex state 

graphs can be constructed from simpler state graphs. These simpler graphs are gen­

erated for simple initial markings. Reachability analysis of these initial markings is 

quite straightforward and stationary probabilities of states and values of performance 

indices can be easily derived. These results are then composed into the stationary 

probabilities and performance measures of the original net. 

The sections that follow use the concepts of state graph and labeled state graph. 

The state graph of a net (N, m, c, r) is denoted by g(N, m, c, r) = (S, E) where 

S is the set of nodes and E the set of directed arcs. A labeled state graph is 
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Q(N, m, c, r) = (S, E, h, q) where h is a state labeling function, h : S ~ R , spec­

ifying the holding times of states, and q is an arc labeling function, q : E ~ R, 

describing the probabilities of transitions between states. 

3.1 Composition of state graphs 

The state graph of a timed net describes the behavior of the net. The composition of 

two state graphs is defined in such a way that it describes a change of state in only 

one of the composed graphs. 

Definition 30 Let Q1 = ( S 1 , E 1 , h 11 qt) and Q2 = ( S2, E 2 , h2, q2 ) be two state graphs 

of the same timed net with two initial marlcings, m 1 and m2 . The composition of 

state graphs Q1 and <d2, Q1 ® Q2 , is a labeled graph g = (S, E , h, q) where: 

• S is the set of nodes: 

• E is a set of directed arcs, E ~ S x S: 

( S S ) E E ~ 3 s' s' E S 1\. s" s" E S · s - s' 101 s" 1\ s · = s'-101 s'~ 1\ i• j ~ i• j l i, j 2 . i - i '01 i ] ] '01 ] 

((s~ , sj) E E 1 1\ s~' = s'J) 1\. (s~ = sj 1\ (s~', s'J) E E2) 
(3.2) 

• h is the holding time function labeling the nodes: 

\:1 s = (m, f) E S _ 1_ = L f(t) *r(t) = _ 1_ + _1_ 
h(s) f(t)>O h1(si) h2(si) 

(3.3) 
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• q is the transition probability function labeling the arcs: 

Lemma 2 Let g = (S, E. h, q) = Q1 ® Q2 , where Q1 = (51 , Et. ht. qr) and Q2 = 
(S2, E2 • h2 , q2 ) are state graphs of the same timed net uri.th two initial markings, m 1 

and m 2 , respectively. Then the stationary probabilities of composed states are deter­

mined by the stationary probabilities of the components: 

V s E S: rr(s) = L 1rt(si) * 1r2(sj) (3.5) 
.f=.s;®sJ 

where Si E sl, Sj E S2, 1rt and 1r2 describe the stationary probabilities of states in sl 

and s2, respectively. 

Proof: It is straightforward to check that this solution satisfies the balance equa­

tions that describe the stationary probabilities of states. 0 

3.2 Independent Markings 

Definition 31 An initial marking m in a net (N, m, c, r ) is self-independent if and 

only if the labeled state graphs r}(N, m + m, r) and Q(N, m, c, r) ® r}(.N, m, c, r ) are 

isomorphic: 

Q(N, m + m,c, r) = Q(N, m , c, r) ® r}(.N, m , c, r ) {3.6) 

Definition 32 The remainder marking set, Rem(.N, m), is defined as: 

Rem(N, m) = {m~ I e E Sel(N, m)} (3.7) 
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where: 

V p E P: m~{p) = m(p) - L e(t) . (3.8) 
tEOut(p) 

Lemma 3 If m is the initial marking in (N, c, r) then: 

V m' E Rem(m) : Sel(N, m) = Sel(N, m + m'). (3.9) 

Proof: From the definition of selection functions, E(m') = 0 and for all p E P. 

m'(p) > 0 ==> m{p) > 0, therefore E(m + m') = E(m), and then Sel(N, m) = 
Sel(.N, m + m'). 0 

Lemma 4 Let m be a self-independent marking in a timed net in (N. m, c. r). Then: 

(a) The selection functions can be obtained by composition: 

Sel(.N, 2 * m) = Sel(.N, m) ® Sel(.N, m). (3.10) 

{b) The set S0 of initial states of (N, 2 * m, c, r) can be obtained by composition of 

the set of initial states of (.N, m, c, r) with itself: 

So(N, 2 * m, c, r) = So(N, m, c, r) ® So(.N, m , c, r) . (3.11) 

Proof: Part (a) is a consequence of lemma 3, and part {b) is a consequence of 

part (a). 0 

Theorem 3 If m is self-independent in (N, c, r), then: 

Sel(.N, k * m) = Sel(N, m) ® Sel(.N, (k - 1) * m). (3.12) 
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Proof: Since E(k * m) = E(m), Sel(k * m) can be expressed as follows: 

Sel(k * m) - UteE(m) Sel(N, k * m- Inp(t)) ® 1t 

- UteE(m) Sel(N, (k- 1) * m ® Rem(N, m))) ® 1t 

- Sel(N. (k- 1) * m) ® (UteE(m) 1t) 

Sel(N, (k- 1) * m) ® Sel(m) 

where Inp(t) is represented as a vector, and 1t is a card(T)-element vector with 1 as 

the t-th element and zeros elsewhere: 

{ 

1 if t - t'· 
V t' E T : 1t{t') = ' - ' 

0, otherwise; 

and Tis the set of transitions of the net (N, m, c, r) . 0 

Definition 33 Initial markings Tni and m; are independent in a net (N, c, r) if and 

only if: 

Q(N, 17l.i + m1, c, r) = Q(N. 71'1.i , c, r) ® Q(N, m1, c, r ). (3.13) 

Lemma 5 Let ffii and m; be independent markings in (N, c, r) . Then: 

(a) The set of selection functions of (N, mi +m;, c, r) can be obtained by composition 

of the sets of selection functions for mi and m;: 

Sel(N, Tni + m;) = Sel(N, TTl.i) ® S el(N, m1) . (3.14) 

{b) The set of initial states of (N, 17l.i + m; , c, r) can be obtained by composition of 

the sets of initial states of (N, mi, c, r) and (N, m;, c, r) : 

So(N, 17l.i + m;, c, r) = So(N, mi, c, r) ® So(N, m;, c, r). (3.15) 
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Proof: The lemma is a straightforward modification of lemma 4 with self-independence 

replaced by independence. 0 

Theorem 4 If 7'ni and m1 are independent markings in (N, c, r) and mi is self­

independent in (N, c, r), then: 

Sel(N, k * ~ + m1) = Sel(N, (k- 1) * mi + m1) ® Sel(N, ffii). (3.16) 

Proof: Same as for the theorem 3. 0 

Theorem 5 If m is self-independent in (N, c, r), then 2 * m and m are independent 

in (N,c,r). 

Proof: By induction on reachable states. 

Step 1: The sets of initial states are identical: 

So(N, 3 * m , c, r) = S0 (N, 2 * m, c, r) ® So(N, 2 * m, c, r) 

because 

Sel(N, 3 * m) = Sel(N. 2 * m) ® Sel(N, m). 

Step 2: Sets Inp(t) and Out(t) are used here in vector representation. 

Assumption: For each state si = (ffii, fi) E S(N, 3 * m, c, r) there exist states 

s~' = (m~', !:') E S(N, 2 * m, c, r) and s~ = (m~, JI) E S(N, m, c, r) such that si = 
(m~' + m~, f:' + ft). Then for a firing of a transition t which can terminate: 

and: 

{ 

m~' + Out(t), if ff'(t) > 0; 
E(N, ·nli + Out(t)) = 

m~ + Out(t), if ft(t) > 0; 



and: 

N 
{ 

Sel(N, m~ + Out(t)), if l:'(t) > 0; 
Sel( , mi + Out(t)) = 

Sel(N, m~ + Out(t)), if II(t) > 0. 

Therefore: 

'V e1 E Sel(N,mi +Out(t)): s; = (m;,fi) E S(N,3*m,c,r) 1\ 

{ 
s'J = (m'J, lj') E S(N, 2 * m, c, r), if l:'(t) > 0, 

sj = (mj, lj) E S(N, m. c. r), if II(t) > 0. 
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Once the firing of transition t terminates, other firings can start. The change in 

markings and firings is expressed as follows: 

and 

m; = 1'ni + d, 

m" = m"+d 
J ' ' 

m' = m' +d 1 t ' 

11 = 1, + e1 - lt, 

I ll-!"+ - 1 i - , el - t, 

lj = 1: + e,- lt, 

where vector d is defined as: 

{ 

1, if t E /np(p); 
't/ P E P : d(p) = - LteOut(p) el(t) + 

0, otherwise. 

The new states; E Sis thus defined as: 

s; = { (m~ + m'J, 1: + lj'), if II'(t) > 0, 

(m~ + mj, II'+ lj), if JI(t) > 0. 

Consequently, for any state in S(N, 3 * m, c, r), there exists a corresponding state 

in S(N, 2 * m, c, r) ® S(N, m, c, r). 0 
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Lemma 6 If m is a self-independent marking in a net (N, c, r), then k * m and m 

are also independent for k > 1. 

Proof: This is a straightforward extension of lemma 3. 0 

Theorem 6 If m; and m; are independent markings in (N, c, r) and Tnt is self­

independent in (N, c. r), then Tnt and 'm.i + m1 are also independent in (N. c, r). 

Proof: By induction on the states, similarly to the previous theorem. 

Step 1: The sets of initial states are the same: 

So(N. 2 * m; + m1, c, r) = So(N, m;, c, r) ® S0 (N. mi + mi, c, r) , 

because: 

Step 2 follows the same line as the previous proof. In conclusion, 

Q(N, 2 * mi + m;, c, r) = Q(N, m;, c, r) ® Q(N, TT/.i + m;, c, r). 0 

The following lemma is a generalization of the previous steps: 

Lemma 7 If marking m; and mi are independent in (N, c, r) and both Tnt and m; 

are self-independent then for k > 0 and l > 0: 

Q(N, k * mi + l * m; , c, r) = Q(N, k *Tnt, c, r) ® Q(N, l * mi, c, r). (3.17) 

Proof: The lemma can be shown using induction on k and the results of Theo­

rems 5 and 6 and Lemma 6. 0 

Definition 34 Initial markings TT1.i and mi in (N, c, r) are equivalent if and only if: 

Q(N, TTI.i, c, r) = Q(N, mi, c, r). {3.18) 
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Definition 35 Initial marking m is reducible in (N, c, r) if there exists another mark­

ing m' such that m' < m and: 

9(N. m, c, r) = 9(N, m', c, r). 

Example: Consider the net in Fig. 2.6. Transition firing rates are given in Table 

3.1. The initial marking m~ = [1. 1, 0, OJ is self-independent. That means that: 

9(N, 2 * m~, c, r) = 9(N, m~, c, r) ® 9(N, m~, c, r). 

transition t firing rate r ( t) 
tl 10 
t2 15 
t3 20 
t4 25 

Table 3.1: Transition firing rates. 

The set of reachable states S(N, m~, c, r) and the stationary probabilities are 

given in Table 3.2. The set S(N, 2 * m~, c, r) is obtained by the composition of state 

graphs. The results of the composition and the set of reachable states for the same 

initial marking obtained through reachability analysis are given in Table 3.4 (states 

and stationary probabilities). 

states (m, f) rr(s) 
1 [0, 1, 0. 0; 1, 0, 0, 0) 0.17647 
2 [0, 0, 0, 0; 0, 1, 0, 0) 0.17647 
3 [0, 1. 0, 0; 0, 0, 1, OJ 0.35294 
4 {0, 0, 0, 0; 0, 0, 0, 1] 0.29412 

Table 3.2: State space and stationary probabilities for m 0 = [1, 1, 0, 0). 
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Fig. 3.1 and Fig 3.2 show the state graphs for (N, m~, c. r) and (N. 2 * m~, c, r), 

while Table 3.3 details the correspondence between the state sets obtained through 

the composition and through reachability analysis. 

sl~s4 

() () 
s3 .......____.,. s2 

Figure 3.1: State graph for m0 = [1, 1, 0, OJ. 

state (m,J) state composition 
1 [0, 2, 0, 0; 2, 0, 0, 0] s1+s1 
2 (0,1,0,0;1,1,0,0] s1 +s2=s2+s1 
3 (0, 0, 0, 0; 0, 2, 0, 0] s2+s2 
4 [0, 2, 0, 0; 1, 0, 1, 0] s1+s3=s3+s1 
5 [0, 1, 0! 0; 0, 1, 1, 0] s2+s3=s3+s2 
6 [0, 1, 0, 0; 1, 0, 0, 1] s1+s4=s4+s1 
7 [0, 0, 0, 0; 0, 1, 0, 1] s2+s4=s4+s2 
8 (0, 2, 0, 0; 0, 0, 2. 0] s3+s3 
9 [0, 1, 0, 0; 0, 0, 1, 1] s3+s4=s4+s3 
10 [0,0,0,0;0,0,0,2] s4+s4 

Table 3.3: States for m0 = [2, 2, 0, 0] obtained by composition and reachability. 

On the other hand it can be observed that markings m~ = [1, 1, 0, 0] and m~ = 

[1, 0, 0, 0] are not independent. State graphs for m~ and mri are shown in Fig. 3.1 

and Fig. 3.3 respectively. Fig. 3.4 shows the state graph for the initial marking m = 

m~ + mri. The dotted arc from state s2 to state ss exists in graph g (N, m0 + m~, c, r) 

but does not exist in the composition g(N, m~, c, r) ® Q(N, m0, c, r). 
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state reachability analysis composition 
1 0.03114 0.03114 
2 0.06228 0.06228 
3 0.03114 0.03114 
4 0.12457 0.12456 
5 0.12457 0.12456 
6 0.10381 0.10380 
7 0.10381 0.10380 
8 0.12457 0.12456 
9 0.20761 0.20761 
10 0.08651 0.08650 

Table 3.4: Stationary probabilities of states for m 0 = [2, 2, 0, 0]. 

Initial markings [1 , 1, 0. 0] and (0, 1, 1, 0] are equivalent and the state graph which 

is generated by them is shown in Fig. 3.1. It can be observed that the initial marking 

[1, k, 0, 0] , where k > 0, is reducible to marking [1, 1, 0, 0], as they generate the same 

state graph as in Fig. 3.1. 0 

3.3 Performance measures 

Definition 36 An initial marking m is decomposable in net (N, c, r) if and only if 

there exist independent markings 'TTl.i and m1 such that m = mi + m; . 

Theorem 7 If an initial marking m is decomposable into mi and m; in (N, c, r ), the 

performance properties of (N, m, c, r) can be determined from nets (N, m', c, r) and 

(N, m", c~ r). In particular: 

'TIt E T: O(t) = O'(t) + O''(t) (3.19) 

where Om(t) is the throughput of transition t for initial marking m . 
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Figure 3.2: State graph for initial marking 2 * m 0 . 

Proof: From operational analysis, throughput is defined as: 

B(t) = ·u(t) * r(t) (3.20) 

where u(t) is the utilization of a transition and r(t) is the firing rate of that transition. 

The utilization of a transition is given by (see Chapter 2): 

u(t) = L rr(s) * f(t). 

Therefore: 

O'(t) = r(t) * L.s'=(m'./')es1 i'rt (s') 

lJ"(t) = r(t) * L.s"=(m" ./")es2 1r2(s") 

For the composed state graph: 

sES 

(3.21) 
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sle 

() 
Figure 3.3: State graph for initial marking (1, 0, 0, OJ. 

Figure 3.4: State graph form= (1, l,O,OJ and the composition g(N, m~)®g(N, m~)-

B(t) r(t) * Ls=(m./)ES 7r(s) * f(t) 

- r(t} * Ls'=(m' ,f')ES1 L.s"=(m"./")ES2 1rt(s'} * 1r2(s"} * {f'(t} + f"(t)) 

- r(t) * Ls'ES1 1rt(s') * (Ls"ES2 1r2(s") * f(t) + L.s"ES2 1r2(s") * f"(t)) 

- r(t) * Ls'ESt 7rt (s') * f'(t) * L.s"ES2 7r(s")+ 

r(t) * L.t''ES2 1r2 * f"(t) * L.s'ES1 7rt(t) 

From the definition of stationary probabilities, 

E.ses7r(s) = 1 

it follows that 

B(t) - r(t) * L.t'ES1 1rt(s') * f'(t) + r(t) * L:,uEs2 1rt(s") * f"(t) 

- B'(t) + B"(t). D 
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transition 8(t) for O(t) for [2, 2, 0, OJ 9(t) for [2, 2, 0, 0] 
[1, 1, 0, 0] (reachability) (composition) 

1 0.01765 0.03529 0.0353 
2 0.01176 0.02353 0.02352 
3 0.01765 0.03529 0.0353 
4 0.01176 0.02353 0.02352 

Table 3.5: Throughputs. 

Example: For the previous example of a self-independent marking, Table 3.5 lists 

the throughput of each transition for initial marking [1, 1, 0, 0]. For initial marking 

(2, 2, 0, 0] , the values obtained with the proposed method are compared with the values 

obtained through reachability analysis. 0 



Chapter 4 

EXAMPLES 

This chapter presents the apPlication of the proposed method (presented in Chapter 

3) for two different cases. The performance measures computed according to the 

proposed method are validated by the calculation of the equilibrium probabilities 

and applying the formulae for performance indices discussed in Chapter 2. The 

ge_neration of the state graph and the calculation of equilibrium probabilities were 

performed with the TPN-tools package ([39. 38]). 

4.1 Example 1 

The net (N, c, r) in Fig. 4.1 is similar to Example 1 from [31] with few modifications. 

In our case the net is an M-timed Petri net, and it depicts a slightly different system. 

The system modeled by the net in Fig. 4.1 is composed of servers servicing two types 

of jobs: first class and second class jobs. A second class can be serviced only by 

interrupting a first class job. Other second class jobs can then be serviced as well 

after which the interrupted first class job resumes. If there are no first class jobs 

waiting for it, the processor is running a diagnostic repair sequence to detect any 

53 
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possible problems and to solve them. 

tl 

t2 

Figure 4.1: Servers with two classes of jobs. 

Tokens in place p1 model the servers being idle. From here they either start 

servicing a first class job or start on the diagnostic repair sequence. Transitions tt. t2 

and place P2 represent the internal activities of the servers. Tokens in places p3 and 

p5 model the waiting queues for first class jobs and respectively for second class jobs. 

Transition t 3 represents the server running a first class job until it is interrupted 

by a second class job. If it is not interrupted, then it continues immediately with 

the activity modeled by transition t4 • Transition ts represents a second class job 

service. Transitions have the following firing rates: R = {1, 2, 3, 5, 4} and conflicts 

are solved by probabilities on the associated arcs: Prob(p1 , tt) = 0.2, Prob(p1, t 3 ) = 
0.8, Prob(p4, ts) = 0.3 and Prob(ps, ts) = 0. 7. 

Initial markings m1 = (1 , 0, 1, 0, 1} and m2 = [0, 0, 0, 1, 1} are independent and are 

represented by the black, respectively white tokens. Fig. 4.2 and 4.3 show the state 

graphs for each initial marking and tables 4.1 and 4.2 give the states and stationary 

probabilities. The states for the composed graph are given in Table 4.3 and the 

graph for the composed marking m1 + m2 is shown in Fig. A.L The two graphs 
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state s~ = (Tni,/i) 7r(sD 
1 [0,0,1,0,1;1,0,0,0,0) 0.00997 
2 ~,0,0,0.1;0,0,1,0,0) 0.11960 
3 [0, 0, 1, 0, 1; 0, 1, 0, 0, 0) 0.01993 
4 [0,0,0,0,1;0,0,0,1,0) 0.19934 
5 [0, 0, 0, 0, 0; 0, 0, 0, 0, 1] 0.65116 

Table 4.1: Stationary probabilities for marking [1, 0, 1, 0, 1). 

state s~' = (~, fd 1r(s?) 
1 ~.0,0,0,1:0,0,0,1,0] 0.19934 
2 [0, 0, 0, 0, 0; 0, 0, 0, 0, 1) 0.65116 
3 [0.0,1.0,1; 1,0,0,0,0] 0.00997 
4 [0,0,0,0,1;0,0,1,0,0] 0.11960 
5 [0, 0, 1, 0, 1; 0, 1, 0, 0, 0) 0.01993 

Table 4.2: Stationary probabilities for marking [0, 0, 0, 1, 1]. 

state Si = (ffii, fi) composition of states 1r( si) 
1 [0, 0, 1. 0, 2; 1, 0, 0, 1, 0] s' + s" s' + s" 1 1• 4 3 0.0039735 
2 (0,0,1,0, 1;1,0, 0.1,0] s~ + s2, s~ + s3 0.0129800 
3 {0,0,0,0,2;0,0,1,1,0] s' + s" s' + s" 2 1, 4 4 0.0476816 
4 {0,0,0,0,1;0,0,1,0, 1] s' + s" s' + s" 2 2• 5 4 0.1557599 
5 {0,0,1,0,2;0,1,0,1,0] s' + s" s' + s" 3 1, 4 5 0.0079469 
6 [0,0,2,0,2;2.0,0,0,0] s1 + s3 0.0000993 
7 [0,0,1,0,2;1,0,1,0,0] s~ + s~, s~ + s3 0.0023841 
8 [0, 0, 1, 0, 1; 0, 1, 0, 0, 1] s' + s" s' + s" 3 2• 5 5 0.0259600 
9 (0,0,0,0,2;0,0,0,2,0] s' + s" 4 1 0.0397347 
10 [0, 0, 0, 0, 1; 0, 0, 0, 1, 1] s~ + s;, s5 + s~ 0.2595998 
11 [0.0,0,0,2:0,0,2,0,0] s' + s" 2 4 0.0143045 
12 [0,0,0,0,0;0,0,0,0,2] s' + s" 5 2 0.4240130 
13 [0, 0, 2, 0, 2; 1, 1, 0, 0, 0] s' + s" s' + s" 1 5• 3 3 0.0003973 
14 [0, 0, 1, 0, 2; 0, 1, 1, 0, 0] s' + s" s' + s" 3 4• 2 5 0.0047682 
15 [0,0,2,0,2;0,2,0,0,0] s; + s~ 0.0003973 

Table 4.3: State composition. 
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Figure 4.2: State graph for m 1 = [1, 0, 1, 0, 1] . 

Sl.. s3" 

(~~·· 
,_.__ -· \gi' s4" 

Figure 4.3: State graph for m2 = [0, 0, 0, 1, 1]. 

Q(N, m 1 +m2 ) and Q(N! mt) ®9(N, m2) are isomorphic as the set of states and arcs 

are equivalent. Appendix A presents detailed information on the set of arcs of the 

composed graph. Stationary probabilities for the composed graph are obtained from 

stationary probabilities for the smaller graphs as defined in Chapter 3. For example: 

and 

rr(s6 ) = rr(s~) * rr(s;) = 0.00997 * 0.00997 = 0.0000994 

and so forth. 

It can also be observed that both m 1 and m2 are equivalent and self-independent . 

According to Corollary 10: 
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transition O(t) for 9(t) 
[3, 0, 3, 2, 5] (proposed method) 

tl 0.04983 0.04985 
t2 0.04983 0.04985 
t3 0.19934 0.19935 
t4 0.19934 0.19935 
ts 0.46512 0.46510 

Table 4.4: Throughputs of transitions for net of Fig. 4.1 with m0 = [3, 0, 3, 2, 5]. 

'V k, l E {1, 2, 3, ... } : Q(N, k * m 1 + l * m2) = (}(N, k * mt) ® (}(N, l * m 2) 

and 

Table 4.4 shows this equality for all transitions t E T and for k = 3 and l = 2. The 

results obtained through the proposed method are also validated by the reachability 

analysis method. It can be observed that the error is less than 0.05%. As was 

shown in Chapter 3, the performance indices of the net can be obtained from the 

stationary probabilities which are shown in Table 4.3. Having these probabilities any 

performance measure of interest can be obtained. 

4.2 Example 2 

The net shown in Fig. 4.4 is more complex. The system modeled consists of two 

servers which share a common resource. Whenever the resource is obtained, the 

service can begin. A first server services two classes of jobs while the other offers the 

same service for all jobs. 

Places p1 and P3 represent the two servers, idle, waiting for the resource which is 

modeled by place P2· Transition t2 and t6 represent the service for one of the servers. 
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Figure 4.4: System with 2 servers and a common resource. 

Transition t 1 represents the amount of time a first class job can run without being 

interrupted by a second class job. Transitions t 4 and t5 model the second class job 

service. At this point it is possible for more than one second class job to "steal" the 

processor. Transition t 3 models the end of first class job service and the common 

resource is freed again. It should be noted that the servers are infinite servers and are 

limited only by the number of available common resources represented by the token 

count in place P2. 

The firing rates for transitions have the following values: R = {10, 3, 15, 5, 6, 7, 2}. 

When transitions t 1 and t2 are enabled at the same time and a conflict arises, it is 

solved by the associated probabilities (same for transitions t 3 and t,t): Prob(P2, tt) = 

0.4, ProiA.P2, t2 ) = 0.6, Prob(p4, t4) = 0.2 and Prob(p4 , t3 ) = 0.8. 

Markings m 1 = [1, 1, 1, 0, 0, 0, 0] and m2 = [1, 0, 0, 0, 0, 1, 0] are independent and 

self-independent. It follows that the net can be analyzed for any linear combination m 

of marking m 1 and m2. Thus performance indices for the marking m = k * m 1 + l * m2 
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for the net in Fig. 4.4 can obtained. Numerical results for transition throughputs are 

given in Table 4.5 for the case when k = 2 and l = 4. 

transition 9(t)far 9(t) 
[6, 2, 2, 0, 0, 4, 0} (RA) (proposed method) 

tl 0.13408 0.13410 
t2 0.20112 0.20112 
t3 0.13408 0.13410 
t4 0.03352 0.03354 
ts 0.03352 0 .03354 
t6 0.20112 0.20112 
tr 0.13408 0.13410 

Table 4.5: Throughputs of transitions for net of Fig. 4.4 with m0 = (4, 2, 2, 0, 0, 4, 2}. 



Chapter 5 

CONCLUSIONS 

An approach based on decomposition of state graphs is proposed as a method for 

analysing M-timed Petri nets and obtaining their performance indices. The proposed 

approach avoids the state explosion problem of reachability analysis by decomposing 

large state spaces into several smaller components. An overview of recent work on 

applying some of the analysis methods from queueing theory, like the Product Form 

Solution and Mean Value Analysis, is also given. 

The proposed method is a combination of reachability analysis and state graph 

composition. The composition of state graphs for the same net and different initial 

markings is formally defined. Independent and self-independent markings are then in­

troduced, using state graph composition. Independent markings provide the basis for 

decomposition of large state spaces into simpler components which can be analyzed 

in isolation. Equations for obtaining performance indices, and in particular transi­

tion throughputs, are derived from transition throughputs for component markings. 

Stationary probabilities of states for the composed state graph are also obtained from 

the stationary probabilities of component graphs. Since the component nets are quite 

simple, reachability analysis is straightforward and is not affected by the state explo-

60 
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sion problem. The proposed method is thus much more efficient than the reachability 

analysis directly applied to the net. The approach can be automated by developing 

software tools for checking independence and composition of the state graphs. 

There are many issues which need further investigation. They include: 

• How are the markings determined as being (self)-independent without the gen­

eration of the state graph for the combined marking? Are there any structural 

properties that a net has to satisfy for its markings to be independent? The ex­

amples used in this thesis are covered by P and T-invariants, but this is clearly 

insufficient. 

• Let (N, c, r) be an M-timed net and m 1, m2 and m 3 be mutually independent 

markings in N . Is it true that: 

~umerical results indicate a positive answer, but a formal proof is needed. 

• Can the proposed approach be applied to D-timed nets? The state description 

of a deterministic timed net is more complicated as it has to consider the history 

of firings. Some experimental work done with 0 -timed nets seems to indicate 

that graph composition is possible, but again, formal proof is needed. 

• Can the proposed approach be extended to high level nets, in particular colored 

nets? The intuition is very simple; if the colored tokens do not "mix", the 

corresponding colored layers of the net should be independent but again, formal 

support of this observation is needed. 

Independence of markings, used in this thesis for a decomposition of the state 

space, is a very restrictive property which requires behavioural equivalence between 
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composed state graphs and state graphs of composed markings. It is felt that a 

less restrictive relation, allowing a "controlled" interaction of components, would be 

very helpful for further decomposition of state spaces. The approach presented in 

this thesis can thus be regarded as a starting point for more investigations in this 

direction. 
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Appendix A 

Graph Composition: Arc Composition 

The graph composition for the net shown in Fig. 4.1 is presented in detail here. The 

arc composition for markings m1 = [1, 0, 1, 0.1] and m2 = [0, 0, 0, 1, 1] is detailed in 

Table A.l. The state graph for the combined marking m1 + m2 is represented in Fig. 

A.l. .An examination of the Table and the graph reveals the equality of the two sets 

of arcs. 

Table A.l: Arc composition. 

arc in E composition of arcs 

St--+ 5s (s' s") --+ (8
1 s") A. (5

1 
5

11
) --+ (5

1 s") } I 1 31 1 41 3 41 5 

81 --+ 86 ( s' s") --+ ( s' s") A. ( s' 8
11

) --+ ( s' s") 41 3 1 I 3 1 I 1 1 I 3 

81--+ 87 ( s' s") --+ ( 8
1 s") A. ( 8 1 s") --+ (5

1 s") 41 3 21 3 11 4 I• 1 

s2--+ 5s (s1 s") --+(5
1 s") A. (s1 

8
11

) --+ (8
1 s") 1 I 2 31 2 51 3 51 5 

82--+ 51 (81 s") --+ (81 s") A. (s1 811
) --+ (51 8 11

) 51 3 4• 3 1' 2 1, 1 

82--+ 82 ( I ") ( I II) f\ ($, ") ( I ") 5s, s3 --+ 8s, 83 1• 82 --+ 51,82 

83--+ 89 (s;, sn --+ (s~, sn A. (8~, 8~) --+ (8~, s~) 

83--+ 810 ( s1 s") --+ ( 8
1 s") A. ( s1 l 1

) --+ ( s1 
8

11
) 2• 1 5• 1 4• 4 41 2 

68 
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Table A.l: Arc composition. 

arc in E composition of arcs 

S3--+ 87 (s~,8~)--+ (8~,8~) 1\ (8~,s~)--+ (8~,8~) 

83--+ 8u ( I ~I) ( I ") 1\ ( I ") ( I ") 54, 4 --+ 52, s4 82, s1 --+ 82, 84 

84--+ 810 ( I s!l) ( I II) 1\ ( I ") ( I If) 52, 2 --+ s4 , s2 85, 84 --+ 85, 81 

84 --+ 812 (s~, s;) --+ (s~, 8;) 1\ (s~, 8;) -+ (s~, 8~) 

s4 --+ s 3 ( I If) ( I ") 1\ ( I II) ( I s!l) s5, 84 --+ 54,54 82, s1 -+ 82, 2 

84--+ S4 (8~, s~) --+ (s~, 8~) 1\ (s~, s~) --+ (8~, s;) 

S5--+ 8t ( 81 5") -+ ( s1 811
) 1\ ( s1 811

) --+ ( s1 511
) 3• 1 1' 1 5• 3 5• 4 

85 --+ s 3 ( I If) ( I II) 1\ ( I II) ( I II) s3, sl -+ 81' s1 Ss , s3 -+ s5, s4 

85--+ 813 (s' s") -+ (s1 s") 1\ (81 s") -+ (s' s") 41 5 . ll 5 3• l 31 3 

S5 --+ 814 ( s~, s~) --+ (s~, s~) 1\ ( s~, s'{) -+ ( s;, s~) 

Ss -+ StJ (s1 s") -+ (s' s") 1\ (s1 s") -+ (s1 s") l• 3 3• 3 3• 5 3• 1 

S7 --+ 814 (8~,8~)-+ (s;,s~) 1\ (s;,s~)-+ (8;,s;) 

S7--+ 81 ( s' s") -+ ( s' 811
) A ( s' s") -+ ( s' s") 2• 3 4• 3 1• 4 1• 1 

87--+ 82 (8~ , 83) --+ (8~, 83) 1\ (8~, 8~) -+ (8~, 81
{) 

8g--+ S2 (s' 811
) -+ (s' s") 1\ (s' s") -+ (s' s") 3• 2 1• 2 5• 3 5• 5 

8s--+ 84 ( s' s") -+ ( s' s") 1\ ( 81 
s") -+ ( 81 s") 3• 2 2• 2 51 4 5• 5 

8s--+ 55 ( s1 811
) -+ ( s1 811

) 1\ ( s' s") -+ ( 81 s") 5• 5 4• 5 2• 1 2• 3 

ss --+ ss ( s' s") -+ ( s' s") 1\ ( s1 s") -+ ( s' s") 5• 5 5• 5 3• 2 3• 2 

Sg-+ St ( s' s") -+ ( s' s") 1\ ( s' s") -+ ( s' s") 4• 1 1• 1 1• 3 1• 4 

Sg--+ 83 (s~, s~) -+ (s~, s~) 1\ (s~, s~)-+ (s~, s~) 

81o--+ s2 (s~,s~)-+ (s~,s~) 1\ (s~,s~)-+ (s~,s~) 

Sto--+ S4 (s~, s~) --+ (s~, s~) 1\ (s~, sl) -+ (s;, s~) 

Sto -+ Sg (s~, s~) -+ (8~, s~) 1\ (8~, 8;) -+ (s4, s~) 
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Table A.l: Arc composition. 

arc in E composition of arcs 

s1o -+ Sto (do ") ( I II) I\ ( I ") ( I II) 5• s1 -+ s5, St s4, s2 -+ s4, s2 

Sa -+ s 3 ( s1 s") -t ( S1 s") I\ ( s1 s") -t ( s1 s") 2• 4 4• 4 41 1 "' 2 

sa -t s4 ( I II) ( I ") I\ ( I ") ( s', II) s2, s4 -t s5, s4 s4, s2 -t 4• s2 

St2 -+ Sto ( s1 s") -t ( s1 s") I\ ( s1 s") -t ( s1 s") 5• 2 4• 2 5• 2 5! l 

s12 -+ s12 ( s1 s") -t ( s1 s") I\ ( s1 s") -+ ( s1 s") 5• 2 5• 2 5! 2 5• 2 

S13 -+ St5 (s1 s") -t (s1 
s") I\ (s1 

s") -t (s1 s") l' 5 3• 5 3• 3 3! 5 

St3 -+ S6 (s~,s~) -t (s~,s~) I\ (s~,s~) -t (s~,sV 

St3 -+ 87 (s~,s~) -t (s~~s~)/\(s~,s~) -t (s~,s~) 

814 -t S7 (s~, s~) ~ (s~, s~) 1\ (s~, s~) ~ (s~ 1 s~) 

S14 -+ Su ( s1 s") -t ( s1 s") I\ ( s1 
s") -t ( s1 s") 31 4 2• 4 2! 5 21 4 

St4 -+ 85 (s1 s") ~ (s1 s") I\ (s1 s") -+ (s1 s") 21 5 4• 5 3• 4 31 1 

814 -+ Sg (s~~ s~) -+ (s~, s~) I\ (s~~ s~) -+ (s;, s2) 

St5 -+ St3 ( s1 s") -+ ( s1 s") I\ ( s1 s") -+ ( s1 s") 3• 5 1 ' 5 3! 5 3• 3 

Sts -+ S14 ( I ") ( I ") I\ ( ~ II) ( I ") s3, Ss -+ s2, ss 3• s5 -t s3, s4 



A 1· State grap Figure .. h for the camp king [1 , 0, 1, 1, 2]. osed mar 
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