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Abstract 

Most structures suffer fatigue damage at some point during their operational life. 

This damage may lead to a structural failure. An early damage identification is needed to 

prevent such a structural failure. A technique which depends on the measurement of the 

changes in the vibration charactetistics of the structure can be effective, since inspection 

can be performed while the structure is in normal operation. This work presents a 

methodology for using neural networks in identifying structural damage employing the 

vibration signature data. 

An experimental study was carried out to measure the random response of 

undamaged and damaged beam models. The damage was simulated by introducing a 

hand-made saw cut at different points along the length of the beam. The depth of crack 

was also varied. Two beam models were used: one was simply supported, and the other 

was a fixed-fixed beam. The beam was excited using random excitation. The auto

correlation function was calculated and used as an approximation for the free vibration of 

the model. A neural network technique was performed to identify the crack occurrence 

and its extent. The results show that this technique is able to detect the occurrence of the 

crack. 
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CHAPTER! 

INTRODUCTION 

Structural condition monitoring has received great attention from many 

researchers and industrial experts in recent years. Condition monitoring can be used to 

detect the occurrence of structural damage. This is very important since early detection 

of a crack may save the structure from catastrophic failure. Nondestructive evaluation 

techniques (NDE), such as magnetic particle inspection, ultrasonic inspection, 

radiography, alternating cmTent field measurement, eddy current, and acoustic emission, 

are some of the techniques used for structural damage identification. However, the use of 

the above NDE techniques may not be feasible when the structure is in operation. As 

well, the NDE techniques are complicated and very costly when the structure is located 



underwater, as in the case of an offshore platform or a ship structure. In the case of 

underwater structures, sophisticated equipment and intelligent remote operated vehicles 

or NDE divers may be needed to assess the structure condition. 

Vibration monitoring has a great potential since it can be carried out without 

shutting down the operation of the structure. It is ideally suited for developing an on-line 

crack detection and monitoring system. The approach also requires very simple and 

commercially available instrumentation. This technique may be able to detect cracks 

which are far away from the measuring sensors. This eliminates the need of costly 

remotely operated vehicles and other sophisticated equipment needed for inspection. 

Moreover, vibration monitoring can identify the occurrence of the crack, as well as its 

location and extent. Vibration monitoring can be an inexpensive and sophisticated 

technique in damage identification of structure when compared to other NDE techniques. 

In the past few years, many concepts have been developed for vibration 

monitoring to get a better identification of damage occurrence, extent and location. The 

basic idea behind this technology is to identify modal parameters (natural frequencies, 

mode shapes, and modal damping) which are functions of the physical properties of the 

structure (mass, damping and stiffness). When there are changes in the physical 

properties, such as reductions in the stiffness resulting from the presence of a crack, it can 

be detected by observing the changes in the modal parameters. Estimates for modal 

parameters were obtained using the measured response of the structure. The change in 

2 



the natural (fundamental) frequency is the indicator that most researchers have used to 

identify the presence of a crack. Other indicators used by the researchers to identify the 

cracks on a structure are mode shapes, damping ratio and modal fJexibilities. The 

information of the fundamental frequency of a structure could be easily known by 

vibrating the structure with a low frequency excitation. However, the main disadvantage 

of this indicator is the fact that for large structures, the fundamental frequency will only 

change slightly as a result of a crack. On the other hand, in practice it is difficult to 

excite the higher frequency of a structure. As well, the environmental conditions may not 

allow this type of excitation. The literature review in Chapter 2 will discuss further about 

the indicators and methods that have been used in crack identification using vibration 

analysis. 

Recently, many researchers have been trying to develop non-parametric 

identification approaches to predict the occurrence of a crack or damage. One of the 

well-known techniques is using a new computing architecture called artificial neural 

networks. Artificial neural networks are biologically inspired and analogous to the most 

elementary functions of the biological neuron. The ability of learning from experience, 

generalising from previous examples to new ones, and performing abstract essential 

characteristics from inputs make neural networks a powerful tool to recognise a given 

system and detect the changes. 

3 



In this study a neural network technique is performed to determine the change in 

the modal parameters in the equation of motion due to the presence of a crack. A 

sensitive indicator is developed to predict the occurrence of cracks. 

1.1 Scope of Work 

The main purpose of this work is to develop a technique for the prediction of 

crack development in structures. The technique is based on the use of the concept of 

random decrement and neural networks techniques to identify the parameters in the 

equation describing the free vibration of the structure. The work is primatily based on 

experimental study. The experiment included performing vibration testing on beams with 

different boundary conditions, different crack depths and locations. The scope of the 

work is developing and employing the neural network technique on the experimental 

measurements to obtain a sensitive indicator to the presence of cracks as well as utilizing 

the random decrement concept in predicting free vibration response of the structure. 

1.2 Methodology 

A simple structure was used to develop a technique for the identification of the 

development of cracks in a structure. An approximation of the free vibration response of 

the beam was obtained from its stationary random response which later will be used in 
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predicting the beam's natural frequency. Then, the estimated free vibration response is 

employed on the equation of motion of the beam in order to determine a crack 

identification indicator. This indicator is a function of the natural frequency, damping 

ratio and the restoring parameters of the beam. A neural networks algorithm is utilized to 

determine the magnitude of the indicator for a number of cracks of different depths and 

locations. 

The procedural steps for this experiment are given as follows: 

a. Measuring the experimental steady state random vibratory response of the beam 

models. 

b. Determining an analogous representation for the free vibration response of the models 

using their auto-correlation functions. 

c. Predicting natural frequency of the beam using the estimated free vibration, then 

comparing with the actual natural frequency from exact solution and finite element 

analysis (PEA). 

d. Analyzing the changes of the natural frequency due to a presence of crack 

e. Defining an indicator more sensitive than the fundamental frequency to the presence 

of crack. 

f. Predicting a crack inception indicator defined in step (e), using neural networks. 

g. Determining the sensitivity of the crack inception indicator, and comparing this with 

the sensitivity of the natural frequencies to crack inception. 
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h. Performing multivariate linear regression analysis to the results to study the 

relationship between the indicator and the crack depth and location. 

1.3 Organisation of the Thesis 

The organisation of this thesis is described as follows: Chapter One gives a 

background of the research, states the scope of work of this research and describes the 

methodology used. 

Chapter Two contains a study of the literature regarding this topic of research. 

The study will help to give an insight of the problem and the progresses of the researchers 

that have been done in this area. Also, it gives information about the limitations and 

advantages of the existing methods in damage identification. 

Chapter Three describes theoretical background and mathematical formulations 

pertaining to the technique used for crack identification in this work. The procedure uses 

auto-correlation function for determining estimated free vibration response as application 

of random decrement technique. Then, the function is applied into a neural networks 

algotithm to determine a parameter from the equation of motion. The parameter is a 

function of frequency, damping ratio and acceleration of the random response of the 

beam. 

6 



Chapter Four, Experimental Study, contains the detail descriptions of 

experimental study. It includes the experiment model descriptions, instrumentation, 

experimental setup, and procedures employed on the experiment. The details of the 

instrumentation used are also explained in this chapter. 

Chapter Five presents the results and discussion of the identification technique 

used in this experimental work. The changes of natural frequency of each crack 

condition were observed from the estimated free vibration response. A verification of the 

predicted natural frequency with the values from exact solution and finite element 

method is also discussed. Then, results of the neural network identification technique are 

presented. All the results obtained were tabulated and presented in figures, plots and 

discussion. A linear multivatiable regression is employed to the experiment results to 

study the expetimental results and the model's trend. 

Chapter Six gives the conclusions and recommendations of the research for future 

works. 
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CHAPTER2 

LITERATURE REVIEW 

Research in the area of vibration-based damage identification has been rapidly 

expanding over the last 30 years. This chapter will explore and review a number of 

works that have been completed by researchers in the area of damage identification using 

vibration analysis. An excellent review about vibration-based damage identification has 

been done by Doebling et al. (1996). Another excellent literature survey in this topic also 

was done by Wauer (1990). Pappa et al. (2000) provided an on-line bibliographic 

database of vibration-based damaged detection experiments by researchers around the 

world. The database can be searched and sorted in many ways and it provides 
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photographs of test structures where available. This database is available for public use 

on the Intemet. 

2.1 Damage Identification 

Cole (1971, 1973), Dimarogonas (1970), Adams et al (1975), Cawley (1979), 

Ibrahim (1977), and Vandiver (1975, 1977, 1982) are a number of the earlier researchers 

who performed the investigation in identifying damage using vibration analysis. Henry 

Cole (1971, 1973) first developed the Random Decrement Technique (RDT) for 

dete1mining modal damping and detecting mechanical failure of aerospace structures. 

The RDT was developed as a technique in averaging the random response of a structural 

system under random excitation to obtain an estimation of its free vibration. Cole 

hypothesised that the random decrement signature is equivalent to the free vibration 

response of the system. Even if it is based on empirical induction, the basic conclusion 

has been widely accepted and used in the aerospace industry. The major advantage of the 

technique is that the free vibration of a structure can be identified by measured random 

response without disrupting the structure from normal operation condition. 

Ibrahim (1977) extended the work and developed another more general vibration 

analysis technique known as "Ibrahim Time Domain Modal Vibration Testing 

Technique". The technique identified the natural frequencies, mode shapes and damping 

ratios of a structural system by fitting a mathematical model to the free vibration response 
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o~ the structure. After Ibrahim' s work published, many researchers used and developed 

either Ibrahim Time Domain Technique or the Random Decrement Technique. Vandiver 

et al. (1982) established a mathematical interpretation for the Random Decrement 

Technique of vibration signature analysis, while Yang (1976, 1980, 1984) applied the 

Random Decrement method in detection of induced cracks and incipient failure on 

offshore platform models. 

In 1970, still in the early development of vibration-based damage identification, 

Dimarogonas investigated the dynamic response of a cracked rotor. He introduced the 

bending stiffness description of the rotor crack and determined it from compliance 

measurements. Cawley and Adams (1979) described a method of crack detection and 

localisation which uses measurement of the structural natural frequencies. This method 

gave a rough indication of the magnitude of the damage, although it was not precise. 

Imam et al.(1989) developed a new vibration mohitoring technique based on the 

vibration signature analysis called Histogram Technique. Before the histogram analysis 

was taken, they eliminated the background noise of the vibration data by summing and 

averaging the identical samples. Then, the histogram analysis is carried out in the 

following three steps: first, synchronously summing the data in time domain, second, 

repeating step 1 periodically for crack monitoring purposes and subtracting data in step 1 

with data in step 2 in time domain. Lastly, performing a Fourier transform on this 

difference. They [Imam et al.] used the resulting differential harmonics called histogram 
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harmonics as a parameter in detecting the cracks. The technique can be performed in on

line mode, but it only works on rotor machines, such as turbines, generators, pumps, and 

others. They claim that this technique has successfully detected cracks of the order of 

one to two percents of shaft diameter deep in an on-line mode. 

Qian et al. (1990) investigated numerically the dynamic behaviour of a beam. 

They derived the equation of motion of the beam and its stiffness matrix by applying 

fracture mechanics and finite element methods. From these equations, the 

eigenfrequencies were determined for different crack lengths and positions. The results 

showed that the frequencies were shifted slightly as the crack occurred and grew. The 

small differences of the frequencies between the beam without a crack and with a crack 

made the detection scheme difficult to apply. 

Rajab et al. (1991) also presented a method for the detection of cracks based on 

measuring changes in the natural frequencies. The structure observed was Timoshenko 

shafts. In regards to the fact that the natural frequencies and mode shapes will change 

due the presence of a crack, they used it inversely to predict the crack characteristics from 

measurement of those parameters. A functional relationship between the crack 

parameters and the changes in the structure's dynamic characteristics was determined. 

The results again show that at the fundamental frequencies, there are only small changes. 

Therefore, information of the higher frequencies is also needed in order to predict the 
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crack precisely. The crack location was predicted successfully once the changes in shaft 

frequencies at several modes were known. 

There are a number of other researchers, such as Sekhar and Prabhu.(1992), Shen 

and Pierre (1990), Hamidi et al. (1992), El-Dannah et al.(1994) and others, who were 

working on crack detection using the changing of the natural frequencies . Sekhar and 

Prabhu used a simply supported shaft for the experiment and derived the analytical 

expression to describe the relationship between crack position, depth and their natural 

frequencies. Shen and Pierre also used an Euler Beam and derived the mathematical 

modelling for the beam with symmetric cracks. They showed the results as plots of 

changing natural frequencies, crack depth, and its position. They also presented the 

changing of mode shape due to the cracks for several modes. Hamidi et al. developed 

mathematical models for a rotor system with a crack. They compared the mathematical 

models with the experimental results to validate them. The results showed an excellent 

agreement between the analytical models and the experimental results. The results of that 

study are confined to changes in the system's natural frequencies due to the presence of 

cracks. El-Dannah et al. modified Rajab's work by adding elastically mounted end 

masses on the beam. They also de1ived the equation of motion of the beam and its 

general solutions. The result was plotted as a variation in natural frequencies in terms of 

crack depths and locations. 
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Liao et al.(1992) presented a new technique in crack detection for rotating shafts. 

The technique used deflection signals, velocity and acceleration signals for FFf signal 

processing. With proximity probes, the experiment results showed that a crack could be 

identified even when the change of the shaft frequency due to the crack is about 1%. 

Doyle (1995) applied a spectral element method combined with a stochastic 

generic algorithm to give a scheme in identifying and locating cracks in structural 

components. The results are demonstrated with experimental data from an aluminium 

beam with a transverse crack. However, the study still needed more improvement in 

order to predict the crack accurately and efficiently. The choice of a stochastic search in 

the scheme is computationally inefficient and less successful in predicting the cracks. 

Juneja et al. (1997) developed another approach in damage detection using a 

combination of changing frequency signature and contrast maximisation approach. 

Contrast maximisation was applied to find the excitation forces that create maximum 

differences in the response between the damaged structure and the analytical response of 

the undamaged structure. The optimal excitations for the damage structure were then 

matched against a database of optimal excitations to locate the damage. Therefore a 

prestudy about a number of damage scenarios on the structure was needed for a database. 

In this work, they verified the success of the method by applying the technique 

numerically and experimentally on a 36-degree-of-freedom space truss model. The 

results show an excellent prediction of damage location, but the effectiveness of the 
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technique depends on the ratio of the magnitude of damage to the cross-sectioned area 

and errors in the measurements. 

Liew and Wang (1998) attempted for the first time, a wavelet theory for the crack 

identification on structures. The work showed that by using wavelet analysis a crack 

location could be identified clearly in contrast with the use of eigenfunctions that only 

gave a minor effect for the cracked beam. They also claimed that the wavelet analysis 

could be applied easily to investigate the eigenfunctions rather than a tedious application 

of eigentheory. However, in this technique it is hard to decide which wavelet should be 

selected in order to get an appropriate result. 

Kosmatka and Rides (1999) developed a new methodology for the nondestructive 

detection of structure damage based on vibration modal data. This methodology used 

measured modal data along with a correlated analytical structural modal to locate the 

damage and conduct a weighted sensitivity analysis. Residual modal force vectors were 

used to locate the potentially damaged region. By analysing the correlated analytical 

structural modal data, the change in the stiffness and mass of the existing crack can be 

determined. From the experimental and numerical work, it is concluded that the method 

successfully determined the location of potential damage as well as estimated its 

magnitude. The method works exceptionally well even if the frequency shift due to 

damage is small. The weakness of this method is the complexity of the approach that 
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requires a correlated analytical model and the residual force calculation, beside the need 

of high frequency modes which are hard to obtain in real practice. 

Zhao and DeWolf (1999) developed a sensitivity study comparing use of natural 

frequencies, mode shapes, and modal flexibilities for vibration-based damage monitoring. 

Their analysis was based on theoretical analysis to determine which dynamic parameters 

are best for damage monitoring purposes. The result of their study showed that in several 

different damage scenarios used, modal flexibility indicator is more sensitive to detect 

damage than either the natural frequencies or the mode shapes. While as, the natural 

frequencies is a more sensitive indicator than mode shapes to damage identification. 

2.2 Auto-correlation Function 

In the late 1960's, Cole (1971) developed a new identification technique on 

structures using random decrement technique. This technique has been used widely in 

the aerospace industry for the analysis of experimentally generated vibration data in 

identification of space structures. Vandiver et al. (1982) derived a mathematical 

relationship between the auto-coiTelation function and the random decrement signature. 

In their work, they showed the random decrement signature for a linear system excited 

using a stationary, Gaussian random excitation represents the free response of the system. 

Vandiver et al. showed that the auto-correlation function is proportional to the free 

vibration decay of the linear system for the case of a single degree of freedom oscillator 
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excited by a white noise, stationary, Gaussian process. Moreover, the auto-correlation 

function can be used to replace the random decrement signature and usually is more 

accurate than random decrement signature in estimating the free vibration decays in a 

single degree of freedom case. Ibrahim (1977), Haddara (1992, 1995, 1998) and Zubaydi 

et al. (2000) expanded the use of random decrement and auto-correlation function for 

multi degrees of freedom. 

2.3 Summary 

There are a great number of researchers who are interested and developed 

vibration-based damage detection on structures. The vibration-based damage detection 

can be included in the real time monitoring of damage inspection. The works by 

researchers in this area can be divided into three categories: analytical, experimental 

works and combination of both. In its early development, the researchers were trying to 

investigate the global dynamic behaviour of the structures due to a presence of cracks, 

and develop a technique to identify the crack without regarding its effectiveness. The 

most parameter that the researchers were interested in is the fundamental natural 

frequencies of the system. While after that period, most researchers were interested in 

developing new techniques in crack detection rather than just observing the changing of 

the natural frequencies. As well, they were working on sensitivity analysis and 

developing a technique that has high sensitivities in the prediction of the location and 

magnitude of the cracks. 
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From the literature review, one can conclude that identification of the change in 

modal parameters is of the most interest to the researchers in the area of crack detection. 

The common parameter used in the studies is the changing of natural frequencies. 

However, the structure damage or the presence of cracks will not give a major effect on 

its natural frequencies unless the ratio of the magnitude of the damage is large, or the 

frequencies observed are of the higher mode. On the other hand, in the real practice it is 

rather difficult to obtain higher modes of frequencies if the measurement is taken in the 

real time. 

Most of the successful detection methods combined several approaches in 

predicting the cracks. The hybrid approach will prevent the technique giving mislead 

information regarding the damage. Moreover, it will increase the sensitivity of the 

proposed technique. 

From the study of literature, we also know that auto-correlation function of a 

random response system is exactly proportional to the free vibration decay of the linear 

system for the case of a single degree of freedom oscillator excited by a white noise, 

stationary, and Gaussian process. Therefore, the auto-correlation function can be used to 

estimate an approximation of the free vibration responses of a single degree of freedom 

linear system. 
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CHAPTER3 

MATHEMATICAL FORMULATION 

In this study, we use a Neural Network algorithm to identify structural cracks. 

The auto-correlation function was used as an input to the algorithm of neural networks in 

order to estimate a parameter that can be used for crack identification. In this chapter, the 

mathematical expression, background, and the concept for this technique are presented. 

3.1 Equation of Motion 

As mentioned earlier, in this study, two beam models were used: one was simply 

supported, and the other was a fixed-fixed supported beam. The vibrations of the two 

beams are described using the same basic equation, but they have different boundary 
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conditions. The equation of motion describing the response of a slender beam acted upon 

by an external forcing function is given by Thompson (1993): 

2 o
4
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(3.1) 

where: 

a z = El 

pA 

E = modulus elastisitas [N/m2
] 

I= moment inertia [m4
] 

p = mass density [kg!m3
] 

c = the damping coefficient [N.s/m] 

E (t) =exciting force (random excitation) [N] 

w(x,t) =random response [m] 

The beam is assumed to have viscous damping. Consider: 

w = B(x ).y(t) (3.2) 

Equation (3.1) can be written as: 

(3.3) 

2giV E( ) .. . a y t 
y + cy + = e e (3.4) 

a z0 1v 
For a fixed value of x , 

e 
and c are constants. 

The equation (3.1) can be written as: 

y + ay + yy = H(t) (3.5) 
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where a= c = 2~'m ';,I II 

H (t) = E(t) 
B 

Equation (3.5) can be written as 

y + m;y + G(x, y, y) = H(t) 

where: 

(3.6) 

H (t) is assumed to be a Gaussian, zero mean stationary random process. Taking the 

average of equation (3.6), we get: 

(3.7) 

where 11 =< y > , and < > indicates the time average of the function . 

and the function G is expressed in terms of the averages of the deflection y and its 

derivative. Equation (3 .7) is obtained by averaging the stationary random response. It is 

clear that this equation describes the free vibration of the beam measured at point x. It 

has been shown by Zubaydi (2001) that this equation also describes the auto-correlation 

function of the random response of the beam. A detailed explanation regarding the use of 

auto-coiTelation function in this study will be presented next in this chapter. The function 

G above will be used in this study as the indicator to identify a presence of a crack. 

20 



3.2 Random Decrement Signature 

3.2.1 Random Decrement Technique 

The random decrement technique, which was initially developed by Cole in 1973 

is an averaging technique applied to the stationary random response of the structure to 

obtain its free vibration response. This technique has been widely used in aerospace 

industry to identify the dynamic parameters of structures. Since the technique only 

needed the measured dynamic reponse of the structure, the test could be performed on

line without disrupting the normal operation of the structure. 

The concept of this technique is that, by averaging the random response, { y(t)}, 

of a system in a certain manner, it is possible to obtain the free vibration response of the 

structure. The estimated free vibration by random decrement technique is usually refered 

as the random decrement signature { x( r)} . Cole hypothesized that the random 

decrement signature is equivalent to the free vibration response of the system with initial 

displacement equal to the threshold level and an initial slope equal to zero. The theory is 

explained further as follows. The random response of a structural system under random 

excitation is composed of two components: 

a deterministic (transient) component 

a random (stationary) component 
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If the excitation is a zero average, white nmse random process, then the stationary 

random response will be also a zero average random process. By averaging samples of 

the stationary random response, the random component of the response will average out 

to zero, and only the deterministic component is left, which is the random decrement 

signature. 

A trigger value is chosen. The trigger value corresponds to the initial 

displacement for the free response. The stationary random response is divided into 

segments of equal length. Each segment starts when the trigger value intersects the 

response. Some of these segments will start with a positive slope and an equal number 

will start with a negative slope. Thus, when all these segments are averaged, the result 

will be a curve similar to the free response of the system with initial displacement equal 

to the trigger value and zero slope. If y(t) is a segment of the random response, N is the 

number of segments, and 'tis time length, the random decrement signature is given by: 

1 N 
{x(r) }=-:L{y(t" +r} 

N 11=1 

N = number segments, 

y(tn) = Ys =threshold or trigger level when n = 1,2,3, ... 

(3.8) 

. YCt) ~ 0 , when n = 1,3,5, ... , and y(t) ~ 0 when n = 2,4,6, ... The function of 

{ x( r)} is only defined in the time interval of 0 ~ r ~ r 1 , where r 1 is the time length of 

response. 
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3.2.2 Auto-correlation Function 

Vandiver et al (1982) established a mathematical basis for the random decrement 

technique and derived the relationship between the auto-correlation function of a random 

process and the random decrement signature. They have shown that the random 

decrement signature is related to the auto-conelation function by: 

R YY (r) 
x(r) = R (O) Y, 

yy 

(3.9) 

where Ys is the trigger value and Ryy is the auto-correlation function of the random process 

y(t). For the case of a single degree of freedom, excited by a white noise, stationary, 

gaussian process, the auto-correlation function is shown to be proportional to the free 

vibration decay from a specified initial displacement. 

In this study, the auto-correlation function is used to estimate the free vibration 

response of the beam because it is much easier and more reliable (Zubaydi, 2001) to 

calculate the auto-correlation of the response rather than attempt to calculate the average 

value of the response. Therefore, the average of deflection y and its derivative that are 

employed in the equation (3.7) are replaced with the auto-con-elation function of the 

random response at point x and its derivative. In equation (3.7), the variable f.1 and /J, 

denote the auto-correlation function and its derivative. This equation will be used in 

determining the function G . 
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The mathematical expression of the auto-correlation function 1s g1ven as 

(McConnel, 1995): 

} N- t 

RYY (t) = N - t ~ y(j)y(j + t) (3.10) 

Another mathematical term that is important m determining dynamic 

charactetistic of vibration data is Power Spectral Density (PSD). PSD provides 

information on the random response in the frequency domain. In fact, PSD is the Fast 

Fourier Transform (FFT) of Ryy (t) as shown in Equation (3.11): 

~ 

S yy (W) = fR yy (t)e -iaxdt (3.11) 

Therefore, the auto-correlation function can also be determined in the form of an Inverse 

Fast Fourier Transform (IFFT) of the PSD. From the PSD plot, the dominant frequency 

of the random response can also be obtained. In this study, PSD plot was used to check 

the predicted natural frequency from the estimated free vibration. 
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3.3 Neural Networks Technique 

3.3.1 Artificial Neural Networks Computing 

Artificial Neural Networks computing is biologically inspired. It is inspired by 

human brain characteristics and biological neuron architecture. Artificial neural 

networks are composed of elements that perform in a manner that is analogous to the 

most elementary functions of the biological neuron. Like the characteristics of the brain, 

artificial neural networks can learn from experience or training, generalize from previous 

examples to new ones, and abstract essential characteristics from inputs containing 

relevant data. 

In biological terms, neurons are complex cells that respond to electrochemical 

signals. They are composed of a processing body or a cell body, a nucleus, numerous 

dendrites, transmitting axon, and receiving synapses. The concept of biological neurons 

is explained as follows. Dendrites extend from the cell body to other neurons where they 

receive signals at a synapse. On the receiving side of the synapse, these inputs are 

conducted to the cell body. There they are summed with some inputs tending to excite 

the cell, others tending to inhibit its firing. When the cumulative excitation in the cell 

body exceeds a threshold, the cell fires, sending a signal down the axon to other neurons. 
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While it sounds simple, this basic functional outline has many complexities and 

exceptions. However, artificial neural networks model these simple characteristics. As 

an example, a computational unit or an m1ificial neuron could be modelled as a single 

nerve cell. The receiving sites/input represent the synapses, while the receiving 

connections represent the dendrites of the cell. A processing element is representing the 

cell body and the transmitting connections to output is representing axons which connect 

to other neuron. In mathematical expression, it could be described as an input layer, one 

or more hidden/middle layer and an output layer of neurons. The connections are 

associated with different weights that are representative of the strength of the connection. 

The rest of this section will present the basics of the artificial neural network algorithm 

applied in this study. 

3.3.2 The Neural Network Algorithm 

A neural network technique was used to predict the function G, using f.1 and j1 

as inputs. As mentioned earlier in the previous section, f.1 and j1 are the auto-correlation 

function of the measured random response of the beam at point x, and its derivative, 

respectively. A block diagram showing the network used in this work is shown in figure 

3.1. A three layers network is used; an input layer, an output layer and a hidden or 

middle layer. In the input and middle layers, each layer contains a bias neuron with input 

unity. The input to neuron kin the middle layer is obtained as: 
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2 

zk = Iw?k)uj 
j ; Q 

where: u0 = 1 , u1 = f1. , and u2 = jJ, 

The output of the k neuron in the middle layer is: 

where f is called the squashing function and is given by: 

f(i) = 1- e~' 
1+e ' 

The network output, G function, is then obtained as 

6 

G(x, f1., /l) = L W0(k) M k 

k;O 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

w?k) are the weights employed to the input through zk to obtain the input to the 

hidden/middle layer neurons, while W0<kl are the weights applied to the hidden layers 

output to produce the G(x,J1.,/J,) function. 

Since we cannot measure values for G corresponding to f1. and jJ,, we have to use 

a hyb1id approach. In this approach, the function G predicted by the network (Eq. 3.15) 

is substituted in equation (3.7) and the equation is integrated numerically to obtain the 

corresponding values of f1. or the auto-correlation function . The estimate or predicted 

auto-correlation function is then compared with the input auto-correlation function 

obtained using equation (3.10) from the measured random response. The error obtained 

in terms of the difference between the actual values of f1. and that obtained from the 
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integration of equation (3.7) was used as a criterian to optimize the network. A least 

square technique was used and the process was continued until the values of G obtained 

minimized the mean square error between measured and predicted f.1 . 

The values of the G function is used as the indicator to identify the crack 

presence. The next chapter will present the details of the experiment performed in this 

study and discuss how the data was analyzed. 

3.4 Summary 

This chapter provided the mathematical approach used in the present study and 

the basic concept of the method of analysis. Section 3.1 described the mathematical 

formulation of the equation of motion of the beams and the derivation of the parameter 

that would be used as a crack indicator. Basically, it derived the equation of motion of 

beams under forced vibration. The other section discussed the use of the auto-correlation 

in this study, based on the random decrement technique. The section also provided the 

basic theory of the random decrement technique. The last section described the neural 

network concept and how it would be employed in the study. 
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Figure 3.1 Block diagram for the Neural Network used in crack identification. 
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CHAPTER4 

EXPERIMENTAL STUDY 

An extensive experimental program was designed and carried out to validate the 

identification technique developed to predict crack inception and progressiOn. The 

experimental study was carried out in the Structural Laboratory of ·the Faculty of 

Engineering and Applied Science. In this chapter, the details of the experimental 

program are described. These include descriptions of the model, instrumentation, 

experimental setup, scope, and procedure. 
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4.1 Model Description 

Two sets of beam models were tested. One set was with a fixed-fixed support, 

while the other was simply supported. Each set consisted of seven aluminium beams. 

Model dimensions are shown in Figure 4 .1. Table 4.1 shows the material properties of 

the models. Cracks were made using saw-cuts on the model. The models were tested 

intact and with cracks at different locations and with different depths. The depth of each 

crack ranged from 1110 in (2.54 mm) to 7/10 in (17.78 mm). The cracks were located at 

a distance from the support, which ranged from 1116 L to 11/16 L, where Lis the length 

between the supports. Two notches were introduced at the ends of the simply supported 

beams to simulate the simply supports, as shown in Figure 4.2. Figures 4.3 and 4.4 show 

pictures of the models. 

~ 
25.4mm 

t 
790mm 

_L 
25.4mm 

T 
~~ 

25.4mm 

Figure 4.1. Aluminium beam model and its dimensions. 
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Table 4.1: Material properties of the beam model. 

Material Properties 

Material Type Aluminium 

Mass 12.3 gr. 

Young's Modulus E 70Gpa 

Density (p) 2.696 gr/cm3 

Poisson ratio 0.35 

j_ 
3.175mm 

T 

~~-----~~ 

4rnm 650rnm 4mm 

790mm 

Figure 4.2. The idealisation and dimensions for the simply-supported beam model. 
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Figure 4.3. The fixed-fixed beam. 

Figure 4.4. The simply-supported beam. 
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4.2 Instrumentation 

This section briefly describes the instruments used in the experiments. The 

instruments are a signal generator, a vibration exciter, transducers, power amplifiers, a 

load cell, an oscilloscope, and a personal computer. It is very important to have a proper 

selection and functioning of the instruments to obtain reliable results. 

4.2.1 Signal Generator 

There are many types of signal generators that are commonly used in vibration 

testing. Generally, they can be divided into two types: impact and continuous signal 

generators. In this experiment we used a continuous signal generator with a random 

exciting force so that we could measure the random response of the beam. The 

identification technique developed in this work is based on the analysis of the random 

response of the structure. A pseudo-random signal is used to excite the beam model so 

that the dynamic response of the model can be obtained. The signal generator used in 

this experiment is a W A VETEK model 132 noise generator. This generator can generate 

signals varying over a frequency range of 0.2 Hz to 2.0 MHz in 6 decade-ranges. 
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4.2.2 Vibration Exciter 

Signals generated from the generator were sent to a power amplifier and then 

transmitted to a vibration exciter. The purpose of the exciter is to generate a dynamic 

force that will excite the structures. There are many different types of exciters that are 

employed in vibration testing. The selection of the proper exciter will significantly 

influence the test results. In this experiment, an electromagnetic exciter was used. It was 

a B&K 4809 vibration exciter with a force rating of 44.5 N (10 lbf), which can be used 

for vibrating small specimens at a range of frequency 10 Hz to 20 kHz. The vibration 

exciter is shown in Figure 4.5. 

4.2.3 Load Cell 

The function of the load cell is to measure force signal delivered to the model. By 

measuring the force, we can also monitor the amplitude of the force signal using an 

oscilloscope. The load cell used was a Kistler model 912-2010 quartz type. Before 

performing the vibration testing, the load cell should be calibrated. The scheme of the 

load cell position can be seen in Figure 4.5. 

4.2.4 Power Amplifiers 

As mentioned above, before the force signal can be applied on the structure it 

must be amplified using a Power amplifier. The reason is that the force will have enough 
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magnitude to vibrate the structure. Thus, the dynamic characteristics of the structures can 

be observed. Other power amplifiers are also needed to amplify the signal from the 

accelerometers, so that the structure response signal can be observed properly. Three 

amplifiers were used during the experiment. One was a small size B&K power amplifier 

type 27067 that amplified the signal from generator to exciter. The other two were a 

charge and a differential amplifier to amplify the signal from the accelerometers and load 

cell, respectively. The charge amplifier used was a Dual-Mode Amplifier Model 504E 

while the differential amplifier was a PCB 433A . 

4.2.5 Transducers 

The function of transducers is to measure the structure's response. Piezoelectric 

accelerometers were selected for measuring the response in this experiment. 

Accelerometers are compact, light weighted, and suitable for measuring high frequency 

vibrations. The model of the Piezoelectric transducers used was STRUCTCEL No.330A. 

In this experimental setup, there were seven accelerometers attached to the model. The 

reason for using a number of accelerometers was to investigate which one would yield 

the best measured signal. The detailed locations of the accelerometers will be described 

in the experimental setup part of this chapter. Before the accelerometers can be used, 

they must be calibrated first. The characteristics of the accelerometers and their 

sensitivities after calibration are shown in Table 4.2 and 4.3, respectively. 
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Figure 4.5. Vibration Exciter B&K 4809, Load Cell and Accelerometers. 
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Table 4.2: Characteristics of accelerometers. 

Resolution (G) 0.001 

Range (± 1 OV) (G) 10 

Shock (max) (G) 5000 

Range of frequency 1-1000 Hz 

Excitation (±DVC) 15 

Temperature Range (°F) 0-130 

Mass 2gm 

Connectors (Pins) 3 

Table 4.3: Sensitivities of calibrated accelerometers. 

Accelerometer No. Series Number (SINO) Sensitivity (mV/g) 

1 20093 160 

2 20502 180 

3 20503 180 

4 20504 200 

5 20403 200 

6 19906 160 

7 19907 200 

8 20505 170 
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4.2.6 Oscilloscope 

The purpose of the oscilloscope in the vibration testing is to monitor one or two 

signals from either the force or the accelerometer. By monitoring the signals, an 

improper signal or noise can be discovered. The oscilloscope was also used to recheck 

the amplitude, frequency, or the phase of the force and structure response signals. 

The detailed block diagram for the instrumentation scheme can be seen in Figure 4.6, 

while a picture of the setup is given in Figure 4.7. 

4.3 Experimental Setup 

The support for the beam models consisted of two stiff steel H-section columns. 

The beam model was clamped at each end using two thick square steel plates on the top 

of the H-sections columns. The exciter was suspended using a square flat plate which 

was fixed on top of a steel frame. The complete experimental setup is shown in Figure 

4.8. 

As mentioned previously, in order to determine the best location for the 

accelerometer, seven accelerometers were attached to each beam model at seven different 

locations for acquiring the responses of the model. The detailed locations of the 

accelerometers can be seen in Figure 4.9. 
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Figure 4.6. Detailed vibration testing instrumentation scheme. 
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Figure 4.7. Instrumentation setup 

Figure 4.8. Experimental setup 
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4.4 Experimental Procedure 

First, the intact model was tested and its response to the random excitation was 

measured. The measurements were recorded at a rate of 1/9000 sec and the length of 

each data sample was 1 sec. The signal was digitised, manipulated and stored on the hard 

disk drive of a personal computer. Then, a crack of depth 1110 in (2.54 mm) was created 

at a particular location on the model. The crack was made by a thin saw-cut (around 

0.4mm thick). The test was repeated for that crack depth. The crack depth was then 

increased to the next depth and the test was repeated again. The process was continued 

with crack depths increasing at an increment of 1110 in (2.54 mm) until the crack depth 

reached a magnitude of7/10 in (17.78 mm). 

In every set, seven beams were tested with cracks of different depths and at 

different locations. The testing was carried out very carefully to obtain a reliable set of 

data with a high degree of accuracy. Table 4.4 gives the locations of the cracks on each 

beam. Table 4.5 shows the dimensions of the cracks. Examples of the beams tested are 

shown in Figures 4.10 and 4.11. 
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Figure 4.9. Locations of accelerometers 
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Table 4.4: Crack Location 

Beam Specimen No. Crack position from one end (mm) 

L = 650 mm Fixed-Fixed Beam Simply-Supported 

1 Uncracked uncracked uncracked 

2 1/16 L 41 41 

3 3/16 L 122 122 

4 5/16 L 203 203 

5 7/16 L 284 284 

6 8/16 L 325 325 

7 11/16 L 447 447 

Table 4.5: Crack Depth 

Depth No. Depth of cuts (mm) 

d = 25.4 mm 

1 1/10 d 2.54 

2 2/10 d 5.08 

3 3/10 d 7.62 

4 4/10 d 10.16 

5 5/10 d 12.70 

6 6/10 d 15.24 

7 7/10 d 17.78 
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Figure 4.10. A Fixed-fixed beam with a crack at 1/16 L. 

Figure 4.11. A Simply-supported beam with a crack at 1/16 L. 
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4.4.1 Auto-correlation Calculation 

In this work, random responses of the beam model at different locations were 

measured using accelerometers. Initially, the experiment was started with seven 

accelerometers to determine the best location for measurements. Comparing the signals 

measured by the different accelerometers, we found that accelerometers 3 and 4 gave 

clear and reliable signals. Since accelerometer 4 is located at mid length, it was decided 

to choose measurements obtained for accelerometer number 3 for analysis. Because of 

symmetry, accelerometer 4 lies at the node of asymmetric modes. Figure 4.12 shows an 

example of signals taken by accelerometer number 3. 

As mentioned previously in this chapter, before the analysis can be done, the data 

should be calibrated using calibration sheets for the accelerometers and the load cell. 

Next, the acceleration random response was filtered using a wide-band frequency filter to 

reduce the noise. The filtered signature then was analysed by using Equations 3.16 to 

obtain the Auto-correlation function. Not only the low frequencies from the noise, 

ground and building vibration were taken out in the filtering process, but also the 

frequencies higher than the first mode were eliminated. The filtering process was 

performed using MATLAB 5.3 software package (The Math Works, Inc, 1999). Figure 

4.13 shows the procedure used in this experiment for obtaining the auto-correlation 

function of a random response. 
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Figure 4.12 A random response data taken from accelerometer No. 3 

(after calibration). 

As discussed in previous chapter, the auto-correlation function is used to estimate 

the free vibration response of the structure. Then, by calculating the period of the 

response the fundamental natural frequency can be determined. The signal processing 

scheme from filtering until obtaining the natural frequency of the model was shown in 

Figure 4.14.a - 4.14.d. The predicted natural frequency of the structure and its auto-

correlation function then were used as input to the neural networks algorithm for crack 

identification. 
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Figure 4.13. Procedure for obtaining the Auto-correlation function. 
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Signal Processing Scheme 

Figure 4.14.a. Random response from an accelerometer, before Filtering. 

Figure 4.14.b. Random response from an accelerometer, after Filtering. 

Figure 4.14.c. The auto-correlation function (half side, only circled part is 

used in the analysis). 
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One Period 

Natural frequency = 2PI/ Period 

Figure 4.14.d. The Free vibration decay (the first 3 cycles). 

4.5 Summary 

The complete experimental setup, model and equipment descriptions used in this 

work, were briefly described in this chapter. To obtain accurate and reliable results, the 

experiment should have proper experimental setup, calibration and careful test treatment. 

The chapter also provides the experiment procedure, pictures and sample of calculations 

performed during the data analysis. These procedures have been carefully followed in the 

present study in order to minimize the errors occurred. The results obtained were analyzed, 

tabulated, and discussed in Chapter Five follows. 
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CHAPTERS 

RESULTS AND DISCUSSION 

In this work, a technique for crack identification in beams using neural networks 

was developed. First, the recorded random responses of the beam were filtered and 

analyzed. Then, the auto-correlation function was obtained from the filtered random 

response. The auto-correlation function represents the free vibration response of the 

beam as discussed in Chapter 3, and it can be used in the identification of the vibration 

characteristics of the beam. The fundamental natural frequency of the beam was 

estimated from the period of the auto-correlation function. The estimated natural 

frequency was compared to the values of the natural frequencies obtained from a finite 

element model and the exact solution. Following this, the changes of the natural 

frequencies for each crack condition were observed and analyzed. Next, the auto-
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con-elation function and its derivative were used as inputs to the neural network 

algorithm. The neural network algorithm was employed to identify the function 

G(x,f-i,/J), which is used as an indicator for crack inception and progression. Appendix 

A provides the FORTRAN program 'neural.for' that was used in this study. In this 

chapter, all the results and discussions of the technique are presented. 

5.1 Natural Frequency Prediction 

In this study, the auto-correlation function was obtained from the random 

response to predict the natural frequency of the first mode (fundamental frequency) of the 

beam based on the random decrement technique described in Chapter 3. As mentioned in 

the previous chapter, only a small number of cycles of the auto-correlation are used in 

representing the free vibration of the beam. The natural frequency is obtained from the 

measured period of the auto-correlation as: liJ'd = Zn 
Td 

5.1.1 Filtering 

In predicting the natural frequency using the auto-correlation, the filtering process 

plays an important role. The noise from low frequencies (ground/building, machinery 

vibration, etc) and high mode frequencies affect the accuracy of the calculations. The 

filter window should eliminate frequencies of the higher modes of the beam's dynamics 

as well as the low frequency noise. A wide band filter from MATLAB was used in this 
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work. Figure 5.1 shows an example of the auto-correlation of the simply supported beam 

before and after filtering the process. 

1.0 

0.8 

0.5 

0.3 
;;... 
;;..... 0.0 
~ 

-o.:!l· 0. ·14 

-0.8 
-1.0 _.__ _____________________ __, 

time (sec) 

- - Before filtering --After filtering 

Figure 5.1 Comparison of the auto-correlation function before and after filtering. 
(simply-supported, no crack) 

In figure 5.1, the auto-correlation function before filtering contains high frequencies 

caused by the superposition of two (or more) sinusoids at different frequencies . The filter 

succeeded in eliminating the high frequency noise. After filtering, the function becomes 

more representative of the free vibration of the beam. All random response 

measurements from the experiment were filtered and analyzed carefully and consistently 

for each crack condition and location. 
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5.1.2 Experimental Results 

The auto-correlation function for each crack condition was normalized. Figure 

5.2 to 5.8 present the auto-correlations for the case of fixed-fixed beam with a center 

crack, having a depth that varies from 2.54mm to 17.78mm (1/10, 2/10, 3/10, 4/10, 5110, 

6110 and 7110 of the beam's depth). Appendix B contains the auto-correlation functions 

for the case of simply-supported beam. To show the effect of crack depth on the auto

correlation function, the auto-correlation functions obtained at the same location for cases 

of different crack depths are plotted together in Figure 5.9. The plots of the auto

con-elation function for different end conditions, crack positions and crack depths are 

presented in Appendix B. 

The estimated natural frequencies obtained from the auto-correlation functions are 

shown in Tables 5.1 and 5.2 for the fixed-fixed and simply supported beams, 

respectively. The natural frequencies were normalized and plotted as a function of crack 

depth, for each crack location. Figure 5.10 and 5.11 show the changes in the natural 

frequency as functions of crack depths and crack locations for the simply supported and 

fixed-fixed beams, respectively. The same information have been plotted in three 

dimensional plots in Figure 5.12. 

54 



1.00 ---- --------·-- -----·--- --

0.80 

0 .60 

0.40 

0 .20 
>-
>- 0.00 a: 

-0.28· 0 0. 25 

-0.40 

-0.60 

-0 .80 

-1.00 ---------------------- ---·-------- -

time (sec) 

Fig 5.2 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a 2.54mm crack depth at the center of the beam 
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Fig 5.3 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a S.OSmm crack depth at the center of the beam 
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Fig 5.4 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a 7.62mm crack depth at the center of the beam 
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Fig 5.5 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a 10.16mm crack depth at the center of the beam 
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Fig 5.6 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a 12.70mm crack depth at the center of the beam 
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Fig 5.7 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a 15.24mm crack depth at the center of the beam 
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Fig 5.8 Estimated free vibration (auto-correlation function) of fixed-fixed beam with 
a 17.78mm crack depth at the center of the beam 

Table 5.1: Predicted fundamental frequency for different crack depths and locations 

on simply supported beam. 

Crack depth Crack location from one end (L =beam's length) 

[mm] 1/16 L 3/16 L 5/16 L 7/16 L 8/16 L 11/16 L 

No crack 135.9195 

2.54 134.831 133.601 134.459 133.856 132.817 133.587 

5.08 132.322 132.284 133.149 133.725 131 .123 133.070 

7.62 131 .395 131.608 131 .758 127.867 130.710 128.895 

10.16 126.521 130.389 125.286 125.802 128.995 125.104 

12.70 126.435 128.536 124.465 118.342 122.249 124.429 

15.24 113.100 125.092 117.323 116.320 110.478 113.011 

17.78 115.642 112.763 107.880 102.388 94.528 113.982 
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Table 5.2: Predicted fundamental frequency for different crack depths and locations 

on fixed-fixed beam. 

Crack depth Crack location from one end (L =beam's length) 

[mm] 1/16 L 3/16 L 5/16 L 7/16 L 8/16 L 11/16 L 

No crack 282.363 

2.54 274.336 276.306 274.733 275.512 274.224 277.360 

5.08 271 .571 273.415 273.508 270.055 269.509 274.592 

7.62 259.824 258.773 256.212 266.803 251.350 266.635 

10.16 251.433 247.819 243.658 247.188 252.444 259.219 

12.70 248.202 245.871 239.211 242.827 236.859 240.875 

15.24 239.523 245.008 228.114 210.963 211.160 215.652 

17.78 236.767 217.952 217.935 216.757 224.288 na 

Table 5.3: The reduction of natural frequencies due to a presence of a 1110 d crack 

(2.54 mm) for simply supported and fixed-fixed beam model. 

Crack Location Simply Supported Beam Fixed-Fixed Beam 

(L =beam's length) (%) (%) 

1/16 L 0.801 2.843 

3/16 L 1.706 1.772 

5/16 L 1.074 2.702 

7/16 L 1.518 2.426 

8/16 L 2.283 2.882 

11/16 L 1.716 2.145 
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Figure 5.9 Auto-correlation functions for simply supported, crack at 8/16 L. 

60 



crack at 1/16L crack at 3/16L 

-~- -- -- -·----- ----------, 
.... 

.A 
c 0.8 ~ c 0.8 ;: ;: 

"C 0.6 "C 0.6 
Q) Q) 

"" "" u 
0.4 

u 
0.4 ~ ~ 

u u 
c 
;: 0.2 c 

;: 0.2 

0 0 

0 5 10 15 20 0 5 10 15 20 
crack depth [mm] crack depth [mm] 

··-

crack at 5/16L crackat7116L 

-- -------... c 0.8 c 0.8 -;: ;: 
"C 0.6 "C 0.6 
Q) 

"" ~ 
u 
~ 0.4 

u 
~ 0.4 

u u 
c 
;: 0.2 c 

;: 0.2 

0 0 

0 5 10 15 20 0 5 10 15 20 
crack depth [mm] crack depth [mm] 

crack at 8116L crack at 11/16L 

1 t- . =... -~-

c ;: 0.8 c ;: 0.8 - 0.6 "C 
Q) 

"" 
- 0.6 j 

u 0.4 e 
u 

u 0.4 e 
u 

c ;: 0.2 ~ 0.2 

0 0 
0 5 10 15 20 0 5 10 15 20 

crack depth [mm) crack depth [mm] 

Fig 5.10 Fundamental frequency ratio (CDn crack/W1111ocrac0 as a function of crack depth 
and location on the simply supported beam. 

61 



c ;: 0.8 
..... 
'0 
~ 

0.6 

"' 0.4 e! 
"' c ;: 0.2 

0 

c 
;: 0.8 

'0 
~ 

0.6 

"' 0.4 e! 
"' c ;: 0.2 

0 

1: ::: 0.8 

'0 .. 
""' 

0.6 

"' E 0.4 

"' c 
;: 0.2 

0 

crack at 1/16L 

-

0 5 10 15 20 
crack depth [mm] 

crack at 5/16L 

T"-"'=-==.::::·------- ·----, 

0 

0 

5 10 
crack depth [mm] 

crack at 8/16L 

15 

I 

20 

l 
I 

5 10 15 20 
crack depth [mm] 

crack at 3/16L 

c ;: 0.8 
..... 
'0 .. 
~ 

0.6 

"' e! 0.4 

"' ~ 0.2 

0 
0 5 10 15 20 

crack depth [mm] 

crack at 7/16L 

1 ~--------·-·-·------
~ 

c 
;: 0.8 

'0 
~ 

0.6 

"' 0.4 e! 
"' c 
;: 0.2 

0 

0 5 10 15 20 
crack depth [mm) 

crack at 11/16L 

1=+='~::::;::::::;:::·----·---.. 

~ 0.8 

'0 .. 
""' 

0.6 

"' 0.4 E 
"' c ;: 0.2 

0 
0 5 10 15 20 

crack depth [mm] 

Fig 5.11 Fundamental frequency ratio (<On cracki<On nocrac0 as a function of crack depth 
and location on the fixed-fixed beam. 

62 



290 
280 
270 

(l)n 260 
[Hz]' 250 

240 
230 
220 
210 
200 

~ 

<-:? "ro 
Crack depth [mm] "()· "<orfr 

(l)n 
[Hz] 

Fixed-fixed beam 

(\)co 
<:>· "Q:) 

"(\) . 

Crack depth [mm] 

Simply supported beam 

•280-290 

0 270-280 

•260-270 

D 250-260 

• 240-250 

0230-240 

0220-230 

• 210-220 

0 200-210 

Crack location from 
one end [mm] 

B 135-140 

•130-135 

0 125-130 

•120-125 

EJ115-1 20 

• 110-115 

0 105-110 

0100-105 

1195-100 

fi!) 90-95 

Crack location from 
one end [mm] 

Fig 5.12 3D plots of the natural frequencies for different crack locations and depths. 

63 



5.1.3 Exact and Finite Element Solution 

The natural frequency for the beam without crack were obtained using the exact 

solution, see DeSilva (1999). The exact solution was obtained as follows: 

where Ai = 4.730041 for the simply supported beam and Ai = n for the fixed-fixed beam. 

A finite element model for the beam was formulated using ABAQUS. The beams were 

modeled using 2D beam elements. The model used a notch section to represent a crack. 

The notched section was replaced by a section having a smaller cross-section of the 

beam. The results show good agreement between the experiment, the exact solution and 

the finite element solution. Table 5.4 shows the comparisons. 

Table 5.4: The comparison of the natural frequencies obtained from the experiment, 

the exact solution and the finite element solution. 

Beam with no crack 

Model Experimental Exact Finite Element 
Results Solution Method 

Simply Supported 135.919 138.553 138.550 

Fixed-fixed 282.363 314.448 314.070 
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Simply supported beam, crack at the center 

Crack depth Experimental Finite Element % Difference 
[mm] results Method 

2.54 134.831 138.320 2.522 

5.08 132.322 137.910 4.052 

7.62 130.710 137.200 4.730 

10.16 128.995 135.890 5.074 

12.70 126.435 133.360 5.193 

Fixed-fixed beam, crack at the center 

Crack depth Experimental Finite Element % Difference 
[mm] results Method 

2.54 274.22 313.79 12.609 

5.08 269.51 313.22 13.955 

7.62 251.35 312.14 19.475 

10.16 252.44 310.11 18.595 

12.70 236.86 306.13 22.628 

For the fixed-fixed beam, the difference between the experimental results and the exact 

solution or finite element method is significant. This may be caused by the fact that the 

experimental setup could not simulate the fixed-fixed boundary conditions accurately. 
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5.1.4 Discussion 

It is clear from the results presented that the auto-conelation function gives a 

good approximation of the free response. The auto-conelation function can be easily 

obtained from the random response of the system. The natural frequency obtained from 

the auto-conelation function is in good agreement with the ones that were obtained from 

the exact solution and the finite element method. For the simply supported beam, the 

difference between the natural frequency obtained from the auto-conelation function and 

that obtained from the analytical solutions is less or equal than 5%. This is within the 

range of experimental enor. For the fixed-fixed beam, the difference reaches 23 %. This 

may be caused by the way the beam is supported in the experiment. The beam ends were 

clamped between two thick plates. This is the nearest we can come experimentally to a 

fixed supported. However, this support does not completely prevent the beam ends from 

rotating during the test. 

Figures 5.10 and 5.11 show that the fundamental frequency decreases as the crack 

grows. This is true for both boundary conditions and for all crack locations. The 

difference between the natural frequency for the beam with crack and the natural 

frequency of the beam with no crack reaches an average of 2.28% for a crack depth of 

2.54mm and 30 % for a crack depth of 17.78mm, for the simply supported beam. For the 

fixed-fixed beam the values are 2.88% for a crack depth of 2.54mm and 20.6% for a 

crack length of 17.78mm. 
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For the simply supported beam, the reduction in frequency is minimum when the 

crack at a distance of 1116L from the support and the maximum reduction when the crack 

is at midlength. For the fixed-fixed beam the minimum change in the frequency occurs 

when the crack is located at a distance of 3/16L from the support, while the maximum 

change occurs for a crack at midlength. It seems then that the crack affects the natural 

frequency most when it occurs at the maximum deflection point, for both beams. 

However, it should be noted that even the maximum change in the frequency is not 

appreciable. The maximum change is shown to be in the range of 2-3%. This is not 

going to be an effective tool for crack detection. In the next section, we discuss a more 

effective tool for crack detection. 

5.2 Identification of G(x,f-1,/1) 

In this work, we will use G(x,f.l,/1-) function as a second criterion for identifying 

the occurrence and progression of a crack. A neural network algorithm is used to obtain 

the magnitude of the G(x,f.l,/1-) function usingj.l(t) and /J-(t) as inputs. 

5.2.1 Results 

Figures 5.13 to 5.19 show samples of the comparison between the original auto

correlation functions and their predictions from the neural network training for the case 

of crack at the center and crack depth from 2.54mm to 17.78mm. The results for all cases 
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can be seen in Appendix C. Figures 5.20 to 5.26 show the plots of G(x,f.l,/1) as a 

function of time. As can be seen from those figures , the amplitude of G (x ,f.l,JL) 

decreases as the crack depth increases. The decrease in the G(x,f.l,/1) amplitude is used 

in identifying the presence of a crack. Table 5.5 and 5.6 summarize the amplitude of 

G(x,f.l,/1) for both the simply supported and fixed-fixed beam. 
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Fig 5.13 Comparison between original Auto-correlation function and the neural 
network prediction for fixed-fixed beam (2.54mm crack depth, center crack). 
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Fig 5.14 Comparison between original Auto-correlation function and the neural 
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Fig 5.15 Comparison between original Auto-correlation function and the neural 
network prediction for fixed-fixed beam (7.62mm crack depth, center crack). 
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Fig 5.16 Comparison between original Auto-correlation function and the neural 
network prediction for fixed-fixed beam (10.16mm crack depth, center crack). 
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Fig 5.17 Comparison between original Auto-correlation function and the neural 
network prediction for fixed-fixed beam (12.70mm crack depth, center crack). 
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Fig 5.18 Comparison between original Auto-correlation function and the neural 
network prediction for fixed-fixed beam (15.24mm crack depth, center crack). 
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Fig 5.19 Comparison between original Auto-correlation function and the neural 
network prediction for fixed-fixed beam (17.78mm crack depth, center crack). 

71 



250000 

200000 

150000 

100000 

50000 

0 

-500~ 

-100000 

-150000 

-200000 

-250000 

OJOO 0.0010 0.0020 0.0030 0.0040 0.005 0.0060 0.0 70 

time (sec) 

Fig 5.20 Plot of G(x,f..l, /1) function as a function of time, for fixed-fixed beam 
(2.54mm crack depth, center crack). 
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Fig 5.21 Plot of G(x, f..l , /1) function as a function of time, for fixed-fixed beam 
(5.08mm crack depth, center crack). 
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Fig 5.22 Plot of G(x, f.-l,/1) function as a function of time, for fixed-fixed beam 
(7 .62mm crack depth, center crack). 
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Fig 5.23 Plot of G(x, f.-l ,/1) function as a function of time, for fixed-fixed beam 
(10.16mm crack depth, center crack). 
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Fig 5.24 Plot of G(x,p,jt) function as a function of time, for fixed-fixed beam 
(12. 70mm crack depth, center crack). 
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Fig 5.25 Plot of G(x,p , jt) function as a function of time, for fixed-fixed beam 
(15.24mm crack depth, center crack). 
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Fig 5.26 Plot of G(x,p,/J,) function as a function of time, for fixed-fixed beam 
(17.78mm crack depth, center crack). 

The amplitude is normalized by dividing by the highest value (the amplitude of 

G(x,p,/J,) for the beam without crack), then plotted in Figure 5.27 for fixed-fixed 

supported beam with crack located at 1116, 3/16, 5/16, 7/16 and 8116 of the beam's 

length. Figure 5.28 shows plots of the normalized G(x,p,/J,) amplitude for simply 

supported beam. Figure 5.29 presents the 3D plot of the amplitude in terms of crack 

location and crack length for fixed-fixed beam, while Figure 5.30 shows for the case of 

simply supported beam. Table 5.7 summarizes the percentage change in the amplitude of 

G for fixed-fixed and simply- supported beam due to the presence of a 2.54mm crack. 
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Table 5.5: Amplitude of G(x,f.l, /1 ) for different crack depths and locations on 

simply supported beam. 

Crack depth Crack location from one end (L = beam's length) 

[mm] 1116 L 3/16 L 5/16 L 7/16 L 8/16 L 11/16 L 

No crack 162320 162320 162320 162320 162320 162320 

2.54 154400 134185 116602 89100 73369 98000 

5.08 147550 95674 67092 47837 38269 60469 

7.62 126779 72230 55915 66607 33541 66607 

10.16 124641 73003 45441 55915 25915 36607 

Table 5.6: Amplitude of G(x, f.l , /1 ) for different crack depths and locations on fixed

fixed beam. 

Crack depth Crack location from one end (L =beam's length) 

[mm] 1/16 L 3/16 L 5/16 L 7/16 L 8/16 L 

No crack 222678 222678 222678 222678 222678 

2.54 196495 179982 179982 179982 173898 

5.08 170221 141156 139482 129618 120879 

7.62 168696 124830 121986 101538 61578 

10.16 154499 96703 96442 55980 45441 

12.70 80368 64295 41328 38818 34320 

15.24 102960 72013 35086 34320 33541 

17.78 72013 42642 30510 24024 23859 
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Table 5.7 Reduction in the amplitude of G(x,Jl,/1-) in presence of a 1/lOd crack (2.54 

mm) for simply supported and fixed-fixed beam. 

Crack Location Simply-Supported Beam Fixed-Fixed Beam 

(L - beam's length) (%) (%) 

1/16 L 4.88 11.75814 

3/16 L 17.33 19.17387 

5/16 L 28.17 19.17387 

7/16 L 45.11 19.17387 

8/16 L 54.80 21 .90607 

11/16 L 39.63 Na 

5.2.2 Discussions 

A number of observations can be made from these results: 

• The neural network has predicted the auto-correlation function accurately. Figures 

5.13 to 5.19 show good agreement between the original auto-correlation and the 

neural network's predictions. This shows that the network can identify the 

G(x,Jl,/1-) function, accurately. 

• The predicted G(x,Jl,/1-) for all cases have the same pattern corresponding to 

their auto-correlation functions in terms of their dependence on time. When the 

period of the auto-correlation function increases, the period of the G(x,Jl,/1-) also 

increases. It can also be seen that the magnitude of the G(x,Jl,/1-) decreases 

consistently as the crack grows larger. 
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Fig 5.27 Plot of normalized G(x, fi ,/1) amplitude for fixed-fixed beam. 
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• The change of the amplitude of G(x,Ji,Jt) can be used as an indicator to identify 

the occurrence of a crack. This amplitude decreases significantly and consistently 

as the crack grows larger. This applies for both simply supported and fixed-fixed 

beam for a crack at any location. 

• The amplitude of G is a function of the crack depth. The amplitude decreases as 

the crack depth increases. For the fixed-fixed support, the percentage decrease in 

the amplitude takes the values of 11.7% to 89.3% for crack depths 2.54mm to 

17.78mm, respectively. For the simply supported, the percentage decrease in the 

amplitude of G is 4.8% to 84% for crack depths of 2.54mm to 10.16mm, 

respectively. 

• These results lead us to conclude that the value of the amplitude of the function 

can be used as an indicator for the occurrence of a crack. The changes in the 

amplitude of G are much more significant than the corresponding changes in the 

natural frequency. G is a nonlinear function of both the natural frequency and the 

damping coefficient. This makes the amplitude of G sensitive to the occurrence 

of cracks. 

5.2.3 Multivariate Linear Regression 

A multivariate regression is performed to study the experimental results as a 

model for crack identification using G(x,Ji,Jt). The regression analysis is performed 

using Minitab software. A multivariate regression analysis will explore the relationship 
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between a response variable and several independent variables from the available data. 

The amplitude of G(x, Jl , jJ..) is used as the response variable, while crack locations and 

depths are the independent variables. Table 5.8 and 5.9 summarize the results of the 

analysis for both models. 

Table 5.8: Summary output for fixed-fixed beam. 

Regression Equation 

G(x, Jl , jJ..) = -10368.1 *crackdepth -182.4* cracklocation + 239819.9 

Residuals Statistics 
Multiple R 95.50% 
R Square 91 .19% 
Adjusted R Square 90.72% 

Table 5.9: Summary output for simply supported beam. 

Regression Equation 

G(x, Jl ,jJ..) = -9637.64 *crackdepth -148.03 *cracklocation + 180030.6 

Residuals Statistics 
Multiple R 85.40 % 
R Square 72.93 % 
Adjusted R Square 70.92 % 

The residual square values from the output regression analysis, 91 % for fixed-

fixed beam and 73% for simply supported beam, show the goodness of fit obtained from 

the regression models. The numbers mean that the model would represent at least 91% 
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and 73% of the experimental data points, for the fixed-fixed beam and simply supported 

beam, respectively. This shows that the multivariate regressions have successfully 

modeled the experimental results on the particular beam models. Using the equation 

from the multivariate regression output, the amplitudes of G(x, Ji,/J,) are predicted and 

plotted as functions of crack depth and location. Figure 5.31 to 5.34 show the amplitude 

of G(x, f.J,,/J,) and the predicted value corresponding to the crack depths and locations for 

both fixed-fixed and simply supported beam. The figures show excellent agreement 

between the amplitudes of G(x,f.J,,/J,) and the predicted values correspond to the crack 

depths and locations. This btings the conclusion that the equations can be used to 

identify and predict an occurrence of a crack in beam for particular beam models used in 

this experiment. 
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Figure 5.31 Plot of amplitude G and the predicted value versus crack depth for 
fixed-fixed beam. 
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Figure 5.32 Plot of amplitude G and the predicted value versus crack location for 
fixed-fixed beam 

84 



Crack Depth Line Fit Plot 
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Figure 5.33 Plot of amplitude G and the predicted value versus crack depth for 
simply supported beam. 
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Figure 5.34 Plot of amplitude G and the predicted value versus crack location for 
simply supported beam 
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CHAPTER6 

CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 Conclusions 

The main objective of this study is to develop a methodology for the identification 

of crack inception in structures. The study is comprised of two components: 

experimental and analytical. In the experimental study, two beam models were used: a 

simply supported model and a fixed-fixed model. The models were made out of 

aluminum and cracks of different depths and at different locations on the models were 
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made using a saw blade. The stationary response of a beam model subjected to a random 

excitation was measured in each case. The auto-correlation function was obtained from 

the stationary random response. The analytical study was performed to check the 

experimental results. The natural frequencies of the models were obtained using exact 

solution formulation and finite element technique. Two indicators were considered for 

the detection of crack inception: the change in the natural frequency and the change in the 

amplitude of a function, G. G is a nonlinear function of the natural frequency and the 

damping of the system. The function G was obtained using a neural network technique. 

The results of this study show that: 

1. The auto-correlation function of the random response of structures proved to 

be a powerful tool to estimate the free vibration of structures when the 

excitation is a white noise, stationary, Gaussian process. The auto-correlation 

function can be used to predict the natural frequency accurately. The process 

is simple and can be performed on the structure during normal operation (on

line mode). The prediction of the natural frequency has been verified using 

results from the exact solution and finite element analysis. The verification 

shows an excellent agreement between the experimental and the analytical 

results. 

2. The natural frequency decreased consistently as a crack occurred and grew 

larger. The reduction depends on the crack depth ratio and the location of the 

crack. The maximum decrease occurs when the crack is located at the center 
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of the beam. This applies both for the simply supported and the fixed-fixed 

beam. This can be explained by the fact the stiffness of the beam would 

decrease most when the crack located at the point of highest deflection. 

3. The change in values of the natural frequency of the model as the result of 

crack occurrence is not appreciable. The changes are within the experimental 

error limits. Thus, a change in the natural frequency cannot be used as a 

reliable indicator in detecting crack inception and growth. 

4. The amplitude of the function G changes appreciably as a crack occurs and 

grows. The amplitude of the function G can be used as a reliable indicator for 

crack occurrence and growth. 

5. A multi-variable regression analysis was used to obtain the relationship 

between crack depth and the function G, and the crack location. The results 

show that this relationship is reliable. 

6.2 Recommendations 

The present study has demonstrated the use of auto-correlation function in 

predicting natural frequency and the use of neural networks in predicting G(x,fl,/J.) for 

identifying crack inception. The results of the study were verified using the exact 

solution and the finite element method. The regression analysis models the experimental 

88 



results and studies the cotTelation for each independent variable to the expetiment results. 

The following recommendations are drawn for future studies: 

(a) Another experiment can be conducted using more complicated type of structure to 

ensure that the technique developed in this study could be applied in the field. 

(b) To verify the effectiveness of the technique in the field, it is also suggested to use 

random excitation that close to the field conditions, such as excitations from wave 

generator in a wave basin. An experiment using a model scale conducted in wave 

basin is recommended. 

(c) A more detailed study about the characteristics and behaviour of the G(x,Jl,jl) 

function as a parameter of damage identification would be a benefit before applying 

the technique in industry. 

(d) Developing more advanced neural network algorithm based on the equation of 

motion that can identify not only the crack inception, but also its extent and location 

accurately. It is recommended to train the network using data obtained from finite 

element analysis on the structure for a number of locations and depths of crack. 
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APPENDIX A 



* Input layer weight - - ->wi 
* Output layer weight - ->wo 
* Suspension inputs---->ri 
* Suspension outputs--->ro 
* Middle layer outputs->rm 
* Natural frequency---->rr 

NEURAL.FOR 

* Time end & time step-->tend & delt 
* Middle layer neurons- - >Net 
* Number of inputs - - ---->kin 
* Number of outputs --- - - >kon 
* variation o f data points- - > rate 
* # of iterations:kit, and Count er for iterations: it 
* Logical IF operator mig 
* Natural roll Frequency rr 
* If statment condition for RM(i) - power 
* Weight manipulator del 
* Number of input velocities,and angles data npoint 
* Use old or new weights CHOICE (choice < 0 old, choice > 0 new) 
* Declare variables 

implicit real*8 (a- z ) 
integer i,j,count1,kin,kon,net,met, j f 
intege r npoint,mf,mig,kit, it,nfi les 
character*20 ff,ffl 
dimension timer2(2500),result3(2500),sense(2 5000) 
dimension res1(2500 ) ,res2(2500) 

* 
* 
* 

common/blockl/ met,net,kin,kon,big,choice,power,del,rr,tend, 
delt,time , count1,mig,wig,wrong,yi(2) ,wo(l5,15),wi(l5,15) ,rm(15) 
,ri(15) ,ro(15) ,k1(2),k2(2) ,k3( 2 ),k4(2) , rsim (2500,4) , 
result1(2500) ,result2(2500) ,oo(15,15,15) , o i (1 5 , 15,15) 

* input cons t a n ts a nd i nitial var iable v alues 
ope n(l ,file= ' initial .d' ,status = 'old') 
read(l,*) rate,big,wig,mig,power ,de l 
read(l,*) net,kin,kon 
read(l,*) del t ,tend,kit 
read(1,*) choice,ddel 
c lose( l ) 
print *,' rate:??? ?? : ' ,rate 
print * '#of Middle layer n e urons : net ' , net 
print * 'Number of inputs:kin = ' ,kin 
p rint * 'Number of outputs:kon = ' ,kon 
prin t* 'Total time ',te nd, ' a n d t ime step', delt 
print * ,' big' ,big , 'wig ' ,wig 
print * ,'#of i terat ions :' ,ki t, 'Counter for iterat i ons : i t' 
p r i nt * , 'Logical IF operator mig : ',mig 

print * ' I f statment condi t ion for RM(i) : power 
print* 'Weight manipulator : del= ',del 

',power 

print *,'Use old or new wieghts(choice > 0 old, choice< 0 n ew)' 
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print *, 'choice = ' , choice 
open(1,file='data.d',status = 'old') 
write(1 , *}' rate:?????:',rate 
write(l,*) '# of Middle layer neurons: net 
write( l ,*) 'Number of inputs:kin = ', kin 
write(l,*) 'Number of outputs:kon = ', kon 

',net 

write(l, *) 'Total time ',tend, 'and time step',delt 
write(l,*} 'big' ,big, ' wig',wig 
write(l,*) '# of iterations: ',kit, 'Counter for iterations: it' 
write(l,*) 'Logical IF operator mig: ',mig 

write(1,*) 'If statment condition for RM (i) : power 
write(l,*) 'Weight manipulator: del= ',del 

write ( 1, *) 'choice = ' , choice 
close (1) 

* input weight inputs and outputs 
met = net + 1 
open(l,file= ' filenames.txt' , status 
read(l,*) nfiles 
do jf = 1, n files 

read (l, *) ff 
ffl = trim(ff) // ".d" 

' old' ) 

* input structure natural frequency and freq rate 
open(2, file = ffl ,status ='old') 
read(2,*) rr, npoint 
npoint = 60 

do countl = l,npoint 
read(2,*) dummy,rsim (countl,l) ,rsim(count1,2) 

end do 
close(2) 
do count l = 1 , npoint 

rsim(count1,2 ) = rsim (countl,2 ) 
end do 
print*, ' Natural Frequency rr ', rr 

' , power 

print*, 'Number of input velocities , and angles data = ',npoint 
it = 1 
crit = 1 
sense(it) = 1 

do while (it . lt . kit) 
* loops to end of program 
* do while (crit.gt.ddel 

time = O.dO 
countl = 1 
deep = O. dO 
resul tl(l ) 
result2 (1) 

mf = 2 

rsim (l,l) 
rsim(l,2) 

do whil e (time .lt. t end) 
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* call Middle layer and net output subroutine 
ri(1) result1(mf-l) 
ri(2) = result2(mf-l) 

ri(kin) = 1.d0 
call mid_net_out 
call runge 
result3(mf- 1) = ro(1) 
mf = mf + 1 
result1(mf-1)= ri(1) 
result2(mf-1)= ri(2) 
count1 = count1 + 1 
wrong = ri(1) - rsim(count1,1) 

if (mig . eq.O) then 
deep = deep + wrong**2 

else if (mig.eq.1)then 
deep = deep + DABS(wrong) 

end if 
* do while time < tend loop ends 

end do 

it=it+1 
Sense(it) = sqrt(deep)/npoint 
crit = sense(it)/rsim(1,1) 
write(*, *) it,sense(it), crit 
call wi_oi(result3) 
call wo_oo(timer2,result3) 
call corcalc(cor,rate) 
if (it > kit) then 
go to 3 
else if (it < kit) then 
go to 5 
end if 

* do while it < kit loop ends 
5 
3 

end do 
call results(npoint,timer2,result3,sense,kit,ff,ff1) 
end do 
close (1) 
end 

subroutine intweight 
implicit real*8 (a - z ) 
integer met,net,kin,kon,i,j,count1 
integer mig 
integer*4 iseed 
character*30 string,string1 

* 
* 
* 

common/blockl/ met , net,kin,kon,big,choic e,power,del, r r,tend, 
delt,time,countl,mig,wig,wrong,yi(2) ,wo( 15,15) ,wi(15,15),rm(15) 
, ri ( 15) , ro ( 15) , kl ( 2) , k 2 ( 2 ) , k3 ( 2) , k4 ( 2) , rsim ( 2 50 0, 4) , 
result1(2500),result2(2500) ,oo(15,15,15) , oi(15,15,15) 

If (choice.GE.O) Then 
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5 

20 

15 

30 

open(l,file='weights.d' ,status='old') 
read(l,S) string 

else 

format(a) 
do 20 j = l,met 
do 20 i = l,kon 

read (1,*) wo(j,i) 
continue 

read(1,15) stringl 
format(a) 

do 30 j = l,net 
do 30 i = l,kin 

read (1,*) wi(j,i) 
continue 

close(1) 

* initialize random layer weight input and output 
iseed 123457 
do 40 j = l,met 
do 40 i = 1,kon 

gwo = RAN(iseed)*big 
wo(j,i)=gwo 

40 continue 

* 

50 
end if 
return 
end 

do 50 j = l,net 
do 50 i = 1,kin 

gwo = ran(iseed)*big 
wi(j,i) = gwo 

continue 

subroutine mid_net_out 
implicit real*8 (a- z ) 
integer i,j,net,met,kin,kon,count1 
integer mig 
common/block1/ met ,net , kin,kon,big,choice,power , del ,rr , tend , 

* delt,time,count1,mig,wig,wrong,yi(2),wo(l5,15) ,wi(l5,1 5) ,rm(15) 
* , ri ( 15) , ro ( 15) , k1 ( 2) , k2 ( 2 ) , k3 ( 2 ) , k4 ( 2 ) , rsim ( 2 5 00, 4) , 
* result1(2500),result2(2500),oo(15,15,15) , oi(15 ,1 5 ,15) 

* middle layer output 

70 

do 60 i = 1,net 
rm(i) O.dO 
do 70 j = l.kin 

rm ( i ) = rm ( i ) + wi(i,j)*ri(j) 
continue 

if(rm(i) .ge.power) then 
rm(i) =1 . 0d0/(l.Od0+de xp (-rm(i))) 

else if(rm(i) .lt.power) the n 
rm(i) =O.dO 

end i f 
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rm(i) = 2.dO*(rm(i)- 0.5d0 ) 
60 continue 

rm(met)=l.OdO 
* net ouput calculation 

80 

do 80 i=l,kon 
ro(i)= O. dO 

do 80 j=l,met 
ro(i)= ro(i) + wo(j,i)*rm(j) 

continue 
return 
end 

Subrout i ne runge 
implicit real*8 (a-z) 
integer n,i,net,met,kin,kon,count1 
integer mig 
common/ blockl/ met,net,kin,kon,big,ch o i ce,power,del,rr , tend, 

* delt,time,countl,mig,wig , wrong,yi(2),wo(15,15) ,wi(l5,15) , rm(15 ) 
* ,ri(15) ,ro(15) ,kl(2) ,k2 (2) ,k3 ( 2 ) , k4(2) ,rsim(2500,4), 
* result1(2500) ,result2(2500) ,oo(l5 , 15,15),oi(15 , 15,15) 

n = 2 
ti = time 
do 90 i = l,n 

yi(i) = ri(i) 
90 continue 

100 

150 

1 20 

rslt = - rr**2 * ri(l) - ro(l) 
k1(1) de1t *ri (2) 
k1(2) = delt* rslt 

do 100 i = l,n 
r i(i) = y i ( i) + k1(i)/2.d0 

continue 
call mid_ net_ out 
t ime = ti + delt / 2 
rslt = - rr** 2*ri(1) - ro(l) 
k2(1) = d e lt*ri(2) 
k2(2) = d e lt*rslt 
do 150 i = 1 ,n 

ri ( i ) = yi(i) + k2(i)/ 2 .d0 
continue 

call mid_ net_ out 
rslt = -rr**2* ri(l) - ro(l) 
k3(1) = delt*ri(2) 
k3(2) = delt*rs lt 
do 120 i = 1 ,n 

ri (i ) = yi(i) + k3 (i) 
continue 

call mid_net_out 
time = ti + delt 
rslt = - rr**2* ri (1) - ro (1 ) 
k4(1 ) = d e l t*ri (2) 
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130 

k4(2) = delt * rslt 
do 130 i = 1, n 
ri(i)= yi(i) + (k1(i) +2.d0*(k2(i) + k3(i)) 

* + k4(i)) /6 .d0 
continue 

call mid_net_out 
return 
end 

subroutine corcalc(cor,rate) 

implicit real*8 (a- z) 
integer n,i,net,met,kin,kon,count1 
integer mig 
common/blockl/ met,net,kin , kon,big,choice,power,del,rr,tend , 

* delt,time,count1,mig,wig , wrong,yi(2) ,wo(15,15) ,wi(15,15),rm(15) 
* , ri ( 15) , ro ( 15) , k1 ( 2) , k2 ( 2) , k3 ( 2) , k4 ( 2) , rsim ( 2 5 00, 4) , 
* result1(2500) ,result2(2500) ,oo(15,15,15),oi(15,15,15) 

* 

* 
* 
* 

do i = 1,kon 
do j = 1,met 
cor= (oo(j,i , 1) - oo(j,i,2))/2.d0/del 
wo(j,i) = wo(j,i) - cor*rate 
end do 
end do 
do i = 1,kin 
do j = 1,net 
cor= (oi(j,i,1)-oi( j , i,2))/2.d0/del 
wi(j,i) = wi(j,i) - cor*rate 
end do 
end do 
return 
end 

subroutine wi_oi(result3) 
implicit real*8 (a - z) 
integer n,i ,net,met,kin,kon,count1,ii,jj,kk 
integer mig 
dimension result3(2500) ,result4 (2500) ,result5(2500) 

,result6(2500),res1(2500) ,res2(2500) 
common/blockl/ met,net,kin,kon,big,choice,power , del,rr,tend, 

delt,time,count1,mig,wig,wrong,yi(2) ,wo(15,15),wi(15,15),rm(15) 
, ri ( 15) , ro ( 15) , k1 ( 2) , k2 ( 2) , k3 ( 2 ) , k4 ( 2) , rsim ( 2500, 4 ) , 
result1 (2500 ) , result2(2500 ), oo(15,15,15) ,oi ( l5 ,15,15) 

do 999 jj = l,net 
do 999 ii = 1,kin 

wi(jj ,ii) = wi(jj,ii)+del 
do 888 kk=l,2 
oi(jj,ii,kk)=O.dO 
time = O. dO 
count1 = 1 
result5(1) = rsim (1, 2) 
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result4(1) rsim(l , 1) 

mf = 2 
do while(time . lt. tend) 
ri(l) result4(mf-1) 
ri(2) = resultS(mf - 1 ) 

ri(kin) = l.dO 
call mid_net_out 
call runge 
result6(mf - 1) = ro(1) 
mf = mf + 1 
result4(mf-1)= ri(1) 
result5(mf-1)= ri(2) 

countl = countl + 1 
wrong= ri(l) - r s im(countl , l) 
wrong = wrong/wig 

if (mig.eq.O) then 
oi(jj,ii,kk) =oi ( jj , ii,kk)+wrong**2 

else if (mig.eq . l)then 
oi(jj,ii,kk)=oi(jj , ii,kk)+DABS (wrong) 

end if 
* end of do wh ile TIME loop 

888 

999 

end do 
wi(jj , ii)=wi(jj,ii)-2.d0*del 

continue 
wi(jj,ii)=wi(jj , ii)+del 

continue 
return 
end 

subroutine wo_ oo(timer2,result3) 
impl icit real*8 (a-z ) 
inte ger n , i,net,met,kin , kon , count1 , ii,jj,kk 
integer mig 
dimension tirner2(2500), result3(2500) ,result7(2500) 

* , result8(2500) , r es1(2500),res2(2500) 
cornmon/blockl/ met , net , kin,kon,big,choice,power,del,rr,tend, 

* delt , tirne , countl,mig,wig,wrong , yi(2),wo(l5 , 15) , wi(l5,15) ,rm( 15) 
* ,ri(15) ,ro(15) ,kl(2) ,k2(2) , k3(2) ,k4(2) ,rsirn(2500,4) , 
* result1(2500) ,result2 (2500),oo(15,15,15) ,oi(l5,15,15) 

d o 777 jj = l,rnet 
do 777 ii = 1,kon 

wo(jj,ii) = wo(jj,ii)+del 
do 666 kk=l,2 
oo(jj,ii,kk) =O. dO 
time = O.dO 
countl = 1 

result8 (1) 
result7(1) 

rsim(1 , 2 ) 
rsim(1,1) 

tirner2(1) = time 
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mf = 2 
do while(time .lt . tend) 
ri (1) result? (mf-1) 
ri(2) = result8(mf-1) 

ri(kin) = l.dO 
call mid_net out 
call runge 
mf = mf + 1 
timer2(mf -1) =time 
result7(mf-1)= ri(1) 
result8(mf-1)= ri(2) 

count1 = count1 + 1 
wrong = ri(1) - r sim( count1,1) 
wrong = wrong/wig 

if (mig.eq.O)then 
oo(jj,ii,kk)=oo(jj,ii,kk)+wrong**2 

else if (mig.eq.1)then 
oo(jj , ii,kk)=oo(jj,i i ,kk)+DABS(wrong) 

end if 

* end of do while TIME loop 

666 

777 

* 
* 
* 

end do 
wo(jj,ii)=wo(jj,ii) - 2.dO*del 

continue 
wo(jj,ii)=wo(jj,ii)+del 

continue 
return 
end 

subroutine results(npoint,timer2,result3,sense,kit,ff,ff1) 
implicit real*8(a-z) 
integer i,j,net,met,kin ,kon,count1,npoint,count3 
integer mig,kit 
character*20 ff,ff1,ff2,ff3,ff4,ff5,ff6 
dimension timer2(2500 ) ,result3(2500) , sense(25000) 
common/block1/ met,net , kin,kon,big,choice,power,del,rr ,tend, 

delt,time,count1,mig,wig,wrong,yi(2),wo(15,15) ,wi(15,15) ,rm(15) 
,ri( 15 ) ,ro(15) ,k1 ( 2) ,k2( 2) , k3(2) ,k4(2) , rsim(2500,4), 
result1(2500) ,result2(2500) ,oo(15,15,15) , oi (15,15,15 ) 

* print net outputs 
ff2 t r im(ff) I I ". a" 
ff3 trim( ff ) I I " .w" 
ff4 = trim ( ff) I I " .v" 
ffS t r im(ff ) I I ". r" 
f£6 trim(ff) // ". e " 

open(2,file=ff2 , status 'replace ') 
open(3,file=ff3 , status ' replace') 
open (4,file=ff4,status ' replace ') 
open ( 5 ,file=ff5 ,status 'replace ') 
open(6,file=ff6,status 'replace') 
do 140 count3 = 1, npoint 
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write(2,*) timer2(count3) ,rsim(count3,1),resultl(count3) 
140 continue 

do 170 count3 = 1,npoint 
write(4,*) timer2(count3) ,rsim(count3,2),result2(count3) 

170 continue 
do 180 i = 1, npoint 
write(5,*) result1(i),result3(i) 

180 continue 
do 190 i =1, kit 
write(6,*) sense (i) 

190 continue 
write(3,*) 'WO - Output layer weights' 
do 150 j = 1,met 
do 150 i = 1,kon 

write(3,*) wo(j,i) 
150 continue 

write(3,*) 'WI- Input layer weights' 
do 160 j = 1, net 
do 160 i = 1,kin 

write(3,*) wi(j,i) 
160 continue 

close(3) 
close(4) 
close(2) 
close(5) 
close(6) 
return 
end 
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Figure B.1 Auto-correlation functions for fixed-fixed beam, crack at 1/16 L. 

-+-no crack 

- 2.54mm crack depth 

- 5.08mm crack depth 

-7.62mm crack depth 

--1 0.16mm crack depth 

107 



0 

~no crack 

- 2.54mm crack depth 

- 5.08mm crack depth 

-7.62mm crack depth 

-- 1 0.16mm crack depth 

0.002 0.004 

Time (sec) 

0.006 0.008 

Figure B.2 Auto-correlation functions for fixed-fixed beam, crack at 3/16 L. 
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Figure B.3 Auto-correlation functions for fixed-fixed beam, crack at 5/16 L. 
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Figure 8.4 Auto-correlation functions for fixed-fixed beam, crack at 7/16 L. 
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Figure B.S Auto-correlation functions for fixed-fixed beam, crack at 8/16 L. 
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Figure B.6 Auto-correlation functions for fixed-fixed beam, crack at 11/16 L. 
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Figure B.7 Auto-correlation functions for simply supported, crack at 1/16 L. 
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Figure B.8 Auto-correlation functions for simply supported, crack at 3/16 L. 
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Figure B.9 Auto-correlation functions for simply supported, crack at 5/16 L. 
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Figure B.lO Auto-correlation functions for simply supported, crack at 7/16 L. 
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Figure B.ll Auto-correlation functions for simply supported, crack at 8/16 L. 
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Figure B.12 Auto-correlation functions for simply supported, crack at 11116 L. 
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Fig C.l Auto-correlation function and the neural network prediction for fixed-fixed beam (2.54mm). 
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Fig C.2 Auto-correlation function and the neural network prediction for fixed-fixed beam (5.08mm). 
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Fig C.3 Auto-correlation function and the neural network prediction for fixed-fiXed beam (7.62mm). 
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Fig C.4 Auto-correlation function and the neural network prediction for fixed-fixed beam (10.16mm). 
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Fig C.S Auto-correlation function and the neural network prediction for fixed-fixed beam (12.7mm). 
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Fig C.6 Auto-correlation function and the neural network prediction for fixed-fixed beam (15.24mm). 
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Fig C.7 Auto-correlation function and the neural network prediction for fixed-fixed beam (17.78mm). 
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Fig C.8 Auto-correlation function and the neural network prediction for fiXed-fixed beam (2.54mm). 
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Fig C.9 Auto-correlation function and the neural network prediction for fixed-fixed beam (5.08mm). 
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Fig C.IO Auto-correlation function and the neural network prediction for fixed-fixed beam (7.62mm). 

F316410 

1.5 ~------------------------------------, 

0.5 

!::: 0 a: 
0. 

·0.5 

-1 

-1 .5 

time (sec) -+--data --prediction 

Fig C.ll Auto-correlation function and the neural network prediction for fixed-fixed beam (10.16mm). 
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Fig C.12 Auto-correlation function and the neural network prediction for fixed-fixed beam (12.7mm). 
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Fig C.13 Auto-correlation function and the neural network prediction for fixed-fixed beam (15.24mm). 
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Fig C.14 Auto-correlation function and the neural network prediction for fixed-fixed beam (2.54mm). 
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Fig C. IS Auto-correlation function and the neural network prediction for fiXed-fixed beam (5.08mm). 
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Fig C.16 Auto-correlation function and the neural network prediction for fixed-faxed beam (7.62mm). 
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Fig C.17 Auto-correlation function and the neural network prediction for fixed-fixed beam (10.16mm). 
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Fig C.18 Auto-correlation function and the neural network prediction for fixed-faxed beam (12.7mm). 
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Fig C.19 Auto-correlation function and the neural network prediction for fixed-fixed beam (15.24mm). 
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Fig C.20 Auto-correlation function and the neural network prediction for fixed-fixed beam (17.78mm). 
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Fig C.21 Auto-correlation function and the neural network prediction for fixed-fixed beam (2.54mm). 
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Fig C.22 Auto-correlation function and the neural network prediction for fixed-fixed beam (5.08mm). 
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Fig C.23 Auto-correlation function and the neural network prediction for fixed-fixed beam (7.62mm). 
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Fig C.24 Auto-correlation function and the neural network prediction for fixed-fixed beam (10.16mm). 
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Fig C.25 Auto-correlation function and the neural network prediction for fixed-fixed beam (12.7mm). 
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Fig C.26 Auto-correlation function and the neural network prediction for fixed-fixed beam (15.24mm). 
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Fig C.27 Auto-correlation function and the neural network prediction for fixed-fixed beam (17.78mm). 
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Fig C.28 Auto-correlation function and the neural network prediction for simply supported (2.54mm). 
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Fig C.29 Auto-correlation function and the neural network prediction for simply supported (5.08mm). 
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Fig C.30 Auto-correlation function and the neural network prediction for simply supported (7.62mm). 
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Fig C.31 Auto-correlation function and the neural network prediction for simply supported (10.16mm). 
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Fig C.32 Auto-correlation function and the neural network prediction for simply supported (2.54mm). 
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Fig C.33 Auto-correlation function and the neural network prediction for simply supported (5.08mm). 
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Fig C.34 Auto-correlation function and the neural network prediction for simply supported (7.62mm). 
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Fig C.35 Auto-correlation function and the neural network prediction for simply supported (10.16mm). 
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Fig C.36 Auto-correlation function and the neural network prediction for simply supported (2.54mm). 
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Fig C.37 Auto-correlation function and the neural network prediction for simply supported (5.08mm). 
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Fig C.38 Auto-correlation function and the neural network prediction for fixed-fixed beam (7.62mm). 
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Fig C.39 Auto-correlation function and the neural network prediction for fixed-fixed beam (10.16mm). 
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