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Abstract 

This thesis presents a new method of the 2-D partially occluded object 

discrimination for the computer vision application. A binary modified Hopfield neural 

network was applied to perform the global feature matching. To obtain the feature 

points of the object, a Gaussian function was implemented to smooth the object 

boundary curve and a curvature estimation method was used to extract the dominant 

points. A 3-point matching method was used to perform the initial comparison and to 

build the disparity matrix. Finally, the coordinate transformation was used to eliminate 

the false matched points. Two image banks, a model object image bank and an occluded 

object image bank, were built for the discrimination test. The result showed that the 

discrimination algorithm was successful. 

Keyword: occluded object discrimination, disparity matrix, dominant points, 

modified Hop.field neural network. image bank, global optimization 
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Chapter 1 

Introduction 

1. 1 Problem Statement and Application 

2-D object discrimination is an important issue in the pattern recognition and 

computer vision domain. In the past two decades, numerous work on isolated and 

occluded object recognition has been done in medical diagnosis, industrial 

automation, character recognition and military applications (Brzakovic, D. et al., 

1990) (Gamage, L. B. et a/., 1996) (Heinemann, P. H. et al., 1996) (Kim, I .H. et al., 

1996) (McClure, J .E. and Morrow, C. T ., 1987) (Meulders, S. et a/., 1980) (Shen, 

D.G. and lp, H.H.S., 1999) (Wen, W. and Lozzi, A., 1992). Isolation means the object 

in the scene is complete, with no shading or overlappin& while occlusion occurs 

when two or more objects in a scene touch or overlap with each other. 

The discrimination of an object requires an accurate shape description. The shape 

descriptors (Loncaric, S., 1998) can be classified into two types: global descriptors 
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and local descriptors. Global shape descriptors such as object contour, area, 2-D 

moments, Fourier descriptors and Hough transforms are robust with the isolated 

object recognition, but are not suitable in case of occlusion due to the difficulty in 

extracting the complete features of the object. Local shape descriptors, however, are 

usually applied to occluded object recognition. Such descriptors include comers, 

holes, protrusions, lines and curve-segments on the object. 

Before performing the discrimination tas~ some image processing operations are 

required to extract the object characteristics such as contours and texture. Figure l.l 

shows a general approach to perform the recognition task in a computer vision 

system. The sample objects are compared with the models in the model image 

database and the matching result is evaluated. 

For local shape representation, a possible solution (Ansari, N. and Delp. E.J., 

1990) is to describe an object shape with a set of characteristics each defining a small 

part of the object. The extracted features should be well distributed along the entire 

object such that under partial occlusion, the remaining representation can still provide 

sufficient information for the accurate discrimination. It has been suggested from the 

viewpoint of the human visual system (Gavrila. D.M., 1998) that some dominant 

points along the object contour are rich in information content and are sufficient to 

characterize the shape of the object. A dominant point (Ansari, N. and Delp. E.J., 

1991) is defined as a point in a curve at which its curvature is local maximum or 

minimum. In the proposed algori~ dominant points extracted from the object 

contour are used as the shape attributes. The discrimination of an object in a partially 

occluded scene is determined by how well the dominant points of the test object and 
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the model object are matched to each other. The matching is usually based on the 

local features of the dominant points, such as the distance and the angle between each 

other. However, such a simple comparison has two deficiencies. First, the 

geographical relationships of a dominant point and other dominant points are not fully 

explored, which leads to the ambiguous recognition of the object identity. Secondly, a 

contour may be separated into a set of small isolated clusters such that none are long 

enough to form a significant part of the object. Identification of an unknown object 

based only on a small cluster of dominant points is obviously unreliable. How to 

achieve a global matching only based on the local attributes is a challenging problem 

in the domain of partially occluded object discrimination. 

1.2 Approach Description 

The proposed research is mainly devoted to the partially occluded object 

recognition. In the experiment, a model hand-tool image bank was built, the test scene 

images including lightly, moderately and heavily occluded model objects were tested 

and successful results have been achieved. 

This thesis offers a new algoridun for the occluded object recognition. Dominant 

points along the object boundary are extracted as the shape features. Local attributes 

of the dominant points, such as distance ratio and interior angle between the 

neighboring pairs are extracted as features for the initial matching. The initial 

matching result is then imposed as the initial states of the modified Hopfield neural 

network (Haykin, S., 1994), and the geographical characteristics of the dominant 

points are used as the converging constraints. The final convergent state of the 
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modified Hopfield neural network is regarded as the optimal global matching result 

between the sample and model object. The flow chart of the discrimination algorithm 

is illustrated in Figure 1.2. 

1.3 Thesis Structure 

Chapter 2 gives the related background and comments. Chapter 3 shows the image 

processing methods that proceed the object discrimination. Chapter 4 details the 

proposed discrimination algorithm. Chapter 5 analyzes the discrimination results 

based on different objects, discusses the parameters and offers some suggestions for 

the future research. Chapter 6 concludes the work done in the thesis. 
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Figure 1.2 Flow chart of the thesis discrimination algorithm 
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Chapter 2 

Background 

Shape is an object property that has been carefully investigated in the past thirty 

years in computer vision domain. Numerous applications are involved with shape 

description and examples include alphanumeric optical character recognition (OCR) 

(Shen, D.G. and Ip, H.H.S., 1999) (Wang, S.S. et al., 1994), planar shape classification 

(Adler, S.L. and Krishnan, B., 1998) (Cantoni, V. et al., 1998), industrial object 

discrimination (Ayache, N. and Faugeras, 0.0., 1986) (Lamdan, Y. et al., 1990), 

automatic inspection (Howarth, M.S. and Searcy, S.W., 1989) (Tao, Y. et a/., 1996), 

medical diagnosis (Brzakovic, D. et a/., 1990), biological analysis (Meulders, S. et a/., 

1980), etc. As mentioned in Chapter 1, the first step in object discrimination is shape 

description. Loncaric (Loncaric, S., 1998) and Marshall (Marshall, S., 1989) summarized 

the shape description methods which have been developed in the past thirty years. 

According to their summatio~ despite the variety of the approaches, shape description 

7 



can be classified into different categories with different criteria, such as global and local 

descriptors based on representing the global or local features, region and boundary 

descriptors based on representing only the outside silhouette or the whole shape region. A 

problem in object discrimination research is bow to choose an appropriate shape 

description method, because the choice of the method depends on the property of the 

shape to be discriminated and the particular application. Since the proposed topic is 

dealing with partially occluded object recognitio~ only global and local shape 

description methods will be discussed. 

2.1 Global Shape Description 

Global shape description has a long history and is comparatively mature. It is 

usually applied in the isolated shape representation and object discrimination. The 

ordinary global descriptors include: 2-D moments (Hu, M.K., 1962), Fourier descriptors 

(Person, E. and Fu, K, 1977) (Zahn, C.T. and Roskies, R.Z., 1972), Hough transform 

(Ballard, D.H., 1981), medial axis transform (Mott-Smi~ J, 1970) (Beatty, D.A., 1993), 

shape numbers (Sonka, M. et a/., 1998), polygonal approximation (Pavalidis, T. and 

Horowitz, S.L., 1974) (Ramer, U., 1972) and morphological representation (Pitas, I. and 

Venetsanopoulos, A.N., 1992). Many descriptors are robust and invariant under rotatio~ 

orientation and scaling. 2-D moments and Fourier descriptors may be the most popular 

and classical global shape descriptors, for an overall understanding, these two methods 

are discussed in the following examples. 
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2.1.1 2-D Moments 

The concept of2-D moments was first presented by Hu in 1962 (Hu, M.K., 1962) 

and since then has been applied as an effective approach for shape description. It is a 

region-based algorithm which interprets a nonnalized gray-level or binary image in a 

density distribution function p(x,y). Hu defined the (p+q)th order moments in tenns of 

Riemann integrals as: 

mpq = .[ ( xPyq p(x,y)dxdy 

p, q = 0,1,2, ... 
(Equation 2.1) 

Where :c. y are the region pixel coordinates, the above function can be denoted in the 

digitized form as: 

oc oc 

mpq = L Lip jq t<i.j) (Equation 2.2) 
i•-i•-«> 

Where i. j are the pixel coordinates in the digitized fonn. Translation invariance can be 

achieved when central moments are used here: 

.. oc 

mpq = L L(i -xc)'(j-Yc>'' /(i,j) (Equation 2.3) 
i•-caj•-GO 

Where (."tc, yr.) is the centroid of the region and can be obtained by: 

(Equation 2.4) 

The scale-invariant features can also be found in the scaled central moments llpq· Suppose 

the scale factor is a, that is, x '=ax andy '=ay: 
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J.lpq 
11 pq = (p~ )' 

where r - p + q + 1 u' - jJ pq --2- ,,..pq - a(P•t~•l> 

(Equation 2.5) 

Then a rotation, translation and scale invariant moment to describe the object shape can 

be characterized in the following heuristic forms: 

¢1, = 1l2o + 11m 

,2 = ('120 -qf12 )2 + 411J21 

¢13 = ('7Jo - 3'112 )
2 + (3'1zt - '703 )

2 

'· = (1130 + 11t2 )
2 

+ ('12t + '103 )
2 

(Equation 2.6) 

Generally, the first four terms are enough to describe the object shape. 2-D moments are 

frequently implemented in the shape description domain. However, since it is a region-

based method, it is computationally extensive. Several papers presented fast methods for 

computing moments (Jian, X.Y. and Bunke, H., 1991) (Li, B. C. and Shen, J., 1991) (Li. 

B.C. and Shen, J., 1994), such methods just compute the moments from the object 

boundary, greatly improve the computation efficiency. 

2.1.2 Fourier Descriptors 

The Fourier descriptor used in shape description. which was first offered by Zahn 

and Roskies in 1972 (Zahn, C.T. and Roskies, RZ., 1972), is a boundary-based method. 

Fourier descriptors require that the shape boundary is a closed curve and can be denoted 

by a complex function z(t}, usually t is the index variable of the pixel sequence along the 
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boundary, so actually z(t) is a parameter-form function. If the boundary curve has N 

points, then z(t) can be expressed as: 

z(t) = LT,e1"' (Equation 2. 7) 

" 

Where T11 is regarded as the Fourier descriptor. In a Tn=an+b, form, the Fourier 

descriptors can be written as following: 

} N-1 -;2!.._ 
a =--I:x e N-l 

" N -1 ... 1 .. 

1 N-1 . 2 .. 

b, = --Ly,..e -• N-1""' 

N-1,.,.1 

(Equation 2.8) 

Since the Fourier transform requires that the number of the boundary points is 2", 

the points have to be normalized before applying the transform. Though an and b, are not 

invariant after the transform, their normalized magnitude: 

I 

r, =(Ia, 12 +!b,. 12)2 (Equation 2.9) 

is rotation and translation invariant. 

An object shape can be described by a set of Fourier coefficients, the following 

table indicates the relation between the order of Fourier coefficient and the corresponding 

property of the object shape (Tao, Y. et al., 1996). 
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Table 2.1 Fourier coefficients and the implying shape properties 

Fourier Coefficieat lmpUed Shape Property 

F(O) Average radius 

F(l) Bendingness 

F(2) Elongation 

F(3) Triangle 

F(4) Square 

Fourier representation is a usual approach for shape description, it is robust, 

accurate and easy for shape classification (Persoon, E. and Fu, K.S., 1977) (Tao, Y et al., 

1995). Since the coefficients are a combination of a set of sine and cosine heuristics, it 

can also be viewed as a kind of regression. 

2.2 Shape Discrimination with Global Description 

Almost all the global shape discrimination methods can be concluded as udistance 

measure". The usual discrimination process is the comparison between the corresponding 

coefficients or the segments matching. In such a process, the square of Euclidean distance 

between the corresponding coefficients (same coefficient number can be achieved after 

element normalization) and segments (can be aligned after coordinates transfonnatio~ to 

be discussed later) may be used to evaluate the resemblance of the model and the test 

object. The zero distance means a perfect match, and a quality score of the matching can 

be granted based on the distance value. 
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The most convenient approach for the global shape discrimination is using a 

classifier. As stated above, usually the shape can be represented by a set of feature 

vectors (such as heuristic items). Some pattern recognition methods, such as statistical, 

syntactical, neural network or fuzzy classifiers, may be implemented to discriminate 

different shapes. 

Wang (Wang, S.S. et al., 1994) presented a shape descriptor called a moment 

Fourier descriptor (MFD), which combines 2-D moments and Fourier descriptors, to 

describe complex objects. A set of MFD heuristic elements can uniquely represent the 

object shape. After normalization, similarity between the model and the test object is 

determined by the mean square value of the distance between the heuristic elements. This 

algorithm is invariant under rotation, translation and scaling of the object, and can 

recognize Chinese characters and keys accurately. This paper is a very good example for 

the object recognition by a global shape representation. 

2.2.1 Chamfer % Distance Transformation 

Chamfer ¥4 distance transformation (Borgefors. G., 1986) {Liu, H.C. and Srinath, 

M.D., 1990) is a popular approach for object recognition and image comparison. It 

converts the boundary pixels of a shape into a gray-level image where all pixels have a 

value corresponding to the distance to the nearest boundary pixel. In order for two shapes 

to be compared, one object boundary is aligned and imposed onto another. The model 

image is created with the boundary pixels set to zero and non-boundary pixels set to 

infinity. The transformation consists of two passes: a forward pass and a backward pass. 
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Suppose (i. j) is an index point of the image, the forward pass modifies the distance 

image as follows: 

for i = 2,· ··,rows do 

for j = 2, ·· ·,columns do 

11 . . =min(11. 1 · I +4,V. I · +3,11. I· I +4,11. · I +3,11 .. ) 
' · ' ,_ .j- ,_ . ) ·- .)+ 1. }- 1.) 

Similarly, the backward pass operates as follows: 

for i =rows -1,···,1 do 

for j = columns - 1, · · · ,1 do 

11. . = min( 11. . '11. . I + 3, 11 . I . I + 4, 11 . I . + 3, 11. I . I + 4) 1,1 I ,J l , j+ •• ,)- •• • } l+ . j+ 

Where viJ is the value of the pixel in position (i, }). As shown in Figure 2.1, the value in 

Figure 2.1 (b) is the distance between two corresponding boundary pixels. 

Computing the boundary value in the above way, the distance between the two 

objects can be obtained and the average distance value is used to evaluate the goodness of 

the match. 
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(b) Distance between the model and the test object boundary. Obtained by computing the 
Euclidean distance between the model boundary pixels and their nearest distances from 

the test object boundary pixels. 

Figure 2.1. Compute the distance. The normalized boundary pixel is placed over 
the distance images. The average distance of the normalized boundary pixels on the 
distance image is used to measure the goodness of fit. 
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2.2.2 Curve and Line Segment Matching 

Curve and line segment matching is also a common method for shape 

discrimination. Both methods are contour-based. For curve matching (Lamdan, Y. eta/., 

1990) (Wolfson, H.J., 1990), the general approach is to first use a coordinate 

transformation to align the two curves and then compute the distance between the 

corresponding pixels. For line segment matching, a polygonal approximation is usually 

used to represent the object boundary, and the length and the angle of each line segment 

to the x or y axis are regarded as the features. The feature distance between the objects is 

used to evaluate the resemblance. 

2.2.3 Deficiencies of Global Matching Method 

Object overlapping often happens in industrial applications. For example, in a fish 

inspection conveyor, two fish maybe overlap under the digital camera, thus cause 

difficulty for recognition and failure of automatic grading. How to deal with such a 

problem is an important topic for pattern recognition and computer vision research. 

A common deficiency of global shape descriptors under object occlusion lies in 

that distortion of a local area in the object will affect the overall shape representation as a 

whole. For example, in Fourier descriptors, all the elements of the object are involved in 

normalization and Fourier transfonnation. If a few elements are changed or lost, all of the 

final coefficients will be consequently changed. Obviously, such a global representation 

is not suitable for the occluded object recognition. Also, for the curve or line segment 
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matching, if some parts of the object are occluded, it is difficult to find the corresponding 

sub-curve or line segments, thus only calculating the distance between the curves or line 

segments cannot reflect the goodness of the matching between two objects. Under such a 

circumstance, the object matching needs a local shape description. 

2.3 Local Shape Description 

Local shape descriptors have been applied to the partially occluded object 

discrimination domain since early 1980s (Loncaric, S., 1998). Many early methods 

attempted to find some salient attributes of the object, such as holes, right angles, and 

protrusions, then search for common attributes between the sample and the model object. 

However, such methods are very primitive and limited. They fail when these attributes 

themselves are occluded, hence are discarded by more recent local shape descriptors. 

Local shape descriptors ·are a set of representations extracted from the object 

region or boundary, and the representations are independent. Thus the distortion or lost of 

a few representations does not affect the rest ones. The development of the local shape 

descriptors is based on the global ones and many local shape descriptors borrow ideas 

from the global descriptors. Many global descriptors, after some modification, can be 

used as local shape descriptors, such as Fourier descriptors and 2·0 moments (to be 

discussed later). Some popular local representations include auto-regression, 8-Spline, 

dominant points, polygonal approximation, etc. Almost all of these descriptors are 

boundary·based. For discrimination, they can be classified into two fields: sub-curve 

isomorphism and sub-polygon isomorphism. 
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2.3.1 Sub-curve Isomorphism 

Wolfson (Wolfson, H.J., 1990) proposed a curve representation algorithm to find 

the longest matching sub-curve that appears in the test and the reference curves. This 

algorithm does not depend on special features of the curves such as the critical points that 

require a polygonal approximation. Wolfson represented both curves by characteristic 

strings of the real numbers. He first built the arc-length versus total turning angle graph 

of the curve by accumulating the total turning angle of the curve at each vertex (pixel on 

the curve) and denoted it as +(s). Then he sampled +(s) at equally spaced points and 

computed the mean difference for each equally spaced segment. Finally, the longest 

matching sub-curve is determined by comparing the set of mean differences. This 

algorithm shares some ideas with many auto-regression methods (Dubois~ S.R. and 

Glanz, F .H., 1986) (Kuri~ T. et al., 1994) used to describe complex and isolated objects 

with the accumulated angle along the curve as the features. Wolfson's experiment shows 

his algorithm achieves a good result for the isolated object recognitio~ and can deal with 

partially occluded objects. However, it also suffers shortcomings. First, the representation 

based on arc-length versus total turning angle is not unique. Secondly~ how to deal with 

the sporadic short matching curves is not explored. 

2.3.2 Sub-polygon Isomorphism 

As stated above, many global representation methods can be applied to the local 

shape representation after some modification. Among them, sub-polygon isomorphism 
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(line segment matching) is a popular one. Line segments matching is based on the 

piecewise linear approximation of the object boundary, it is usually categorized into two 

approaches (Ansari, N. and Delp, E.J., 1991): 

1) Polygonal approximation of the digital curve subject to certain constraints on the 

goodness of fit. 

2) Dominant points extraction through angle or comer detection schemes. 

Both the polygonal approximation and the dominant point extraction are popular 

representations for the global and local shape description and are discussed in detail in 

this chapter (dominant point extraction will be discussed in next chapter). 

Polygonal approximation is to represent object boundary by a polygon. the line 

segments of the polygon are usually used as the shape features. A common characteristic 

shared by most polygonal approximation methods is the col/inearity test. Collinearity is 

usually determined by the maximum pefl'endicular distance from a point on the boundary 

portion to the straight line connecting the two terminal points of that portion. The basic 

idea of many current advanced polygonal approximation algoritluns is offered by Ramer 

and Pavlidis (Ramer, U., 1972) (Pavlidis, T. and Horowitz, S.L., 1974). Ramer suggested 

the top left most point and the bottom right most points of the boundary be used as the 

two initial break points, and sought the new break points by using the col/inearity 

criterion repeatedly. Pavdilis and Horowitz approximated boundary points by 

interpolating straight line segments. The procedure was first to assign an arbitrary 

number of points along the boundary as the initial set break points, then to combine the 

co/linearity criterion and a split-and-merge process to achieve the final set of break 
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points. However, these two methods suffer from the same problem: the break points 

generated are not stable under rotation, scaling and shifting. Based on these two methods, 

Ansari and Delp (Ansari, N. and Delp, E., 1991) proposed a more robust algorithm: 

curvature guided polygonal approximation. This method first uses the Gaussian function 

to smooth the boundary curve to remove the false local concavities and convexities, then 

computes the curvature for every point along the boundary. The points with the positive 

maximum and negative minimum curvature are selected as the initial break points. 

Finally, a set of break points are detected by Pavlidis' algorithm. Satisfying results are 

achieved by this method. 

The above piecewise linear approximation methods are frequently applied in the 

occluded object recognition because it is easy to extract local features from the polygonal 

segments, such as segment length, orientation, length ratio or interior angle between the 

adjacent line segments. These features are appropriate for matching after affine 

transformation. Such methods are used in (Ansari, N. and Delp, E.J., 1990) (Ayache, N. 

and Faugeras, O.D., 1986) (Gorman, J.W. and Mitchell, O.R., 1988) (Han, M.H. and 

Jang, D.S., 1988) (Lamdan, Y. et al., 1990) (Liu, H.C. and Srinath, M.D, 1990) (Loch, 

M.W. and Kashyap, R.L., 1987) (Tsang, P.W. et al., 1994) (Wen, W. and Lozzi, A., 

1 992) to discriminate the partially occluded objects. 
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2.3.3 B-Spline, Auto-regression and Other Local Descriptors 

Besides the sub-curve and sub-polygon isomorphism, some other global shape 

descriptors can be used in the local shape description after modification. Such as B

Spline. auto-regression, Fourier descriptors and hidden Markov model. 

B-Spline (Salari, E. and Balaji, S., 1991) is a method derived from ship and 

aircraft design, it is attractive because it exhibits local control and can be used in the 

presence of incomplete boundary information. B-Spline uses the piecewise polynomial 

curves that are guided by a set of control points (CP) combined with blending functions. 

The tangents and curvatures at the CPs are viewed as local features. This method is 

effective for some occluded object discrimination, but it is computationally extensive 

since for every CP the B-Spline equation, which is formulated in a matrix form, has to be 

solved. 

Gorman (Gonnan, J.W. eta/., 1988) uses Fourier descriptors to describe a set of 

polygonal segments represented by chain codes. Since the Fourier representation requires 

that the code be a close or periodical fonn, the chain codes are formed by searching from 

the first break point, travelling through the line to the second and third break points, then 

searching through the old route back to the first break point. When the method works for 

partially occluded object recognition, every line segment needs to be represented by a set 

of Fourier coefficients, it is very computationally extensive if the number of the break 

points increases. 
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Auto-regression (AR) (Dubois, S.R. and Glanz. F., 1986) is a popular method for 

the local shape representation. The AR parameters as a feature vector can be used to 

characterize shapes in a very systematic manner. The major disadvantage of AR is that it 

is very sensitive to the shape occlusion since AR models the whole shape with only one 

set of predictive parameters. If the shape contains a large number of sample points and 

the contour varies radically, the shape becomes unpredictable. However, hidden Markov 

model (HMD) (Aas, K. et al., 1999) (He, Y. and Kundu, A., 1991) does not model the 

whole shape as a single feature vector, it explores the relationship between the 

consecutive segments of the shape to be classified in a probabilistic domain. The 

combination of AR and HMD was developed to discriminate different maps and achieve 

a good result. But at the same time, this algorithm is complicated and very 

computationally extensive. 

2.4 Local Matching Problem 

A difficult problem often encountered in the occluded object recognition is 

matching the local representations after the feature extraction. In isolated object 

discrimination, the feature matching between the test and the reference object is simple 

and straightforward. For the heuristic representation, the usual approach is to normalize 

the number of heuristic items to the same and compute the Euclidean distance between 

the corresponding features (Tai, Y. et al., 1996) (Zahn, C.T. and Roskies, R.Z., 1972). 

For the line or curve segment representation, the usual method is first to apply the 
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coordinate transformation to align the segments~ then match the corresponding segments 

by comparing their length and orientation, or just calculating the coordinate difference 

between each other. Another effective approach is to apply a statistical (Tao, Y. et al., 

1996), fuzzy (Hu, B.G. eta/., 1998) (Liu, X.F. eta/., 1994) or neural classifier (Mitzias, 

D.A. and Mertzios, B.G., 1994) to discriminate the object shapes based on the shape 

feature vectors. 

However, for local shape discrimination, though some ideas are borrowed from 

the global methods, such straightforward algorithms do not function well under 

occlusion. The problem lies in the criterion for evaluation of the resemblance between 

two objects. A uniform standard such as the total square sum of the distance or the 

average distance between two comparing objects may be regarded as the criterion. But 

under occlusion, some unmatched representations between the model and the scene 

object may be almost totally different, such a uniform standard has no meaning for the 

discrimination. Borgefors, Liu and Tsang (Borgefors, G., 1988)~ (Liu, H.C. and Srinath, 

M.D, 1990) (Tsang, P.W.M, et al., 1994) all used Chamfer¥. distance transformation and 

a partial distance measurement scheme to perform the local matching for the occluded 

object discrimination. Liu and Srinath (Liu, H.C. and Srinath, M.D, 1990) first extracted 

the dominant points of the object boundary, then approximated the boundary by a set of 

line segments. They designed a two-step segment matching approach. The first step was 

the segment matching based on length ratio and interior angle between the adjacent 

segments of the reference and the test object. The second step used a group matching to 

remove the segments for which fewer than three consecutive segments in one shape 
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match consecutive segments in the other shape. They then normalized the unknown shape 

by the scaling, rotation and shifting parameters. The evaluation of similarity was based 

on the distance transfonnation and partial distance measurement. The goodness of the 

match was computed from the average of the boundary distance computed by the 

Chamfer :Y ... Distance Transformation. To deal with the occlusion. the boundary was 

broken into N equal length segments with an arbitrary starting, the local distance between 

each segment and the test object is defined from the boundary distance: 

(Equation 2.1 0) 

Where n is the number of boundary points in the segment and v; is their superimposed 

distance value. Then the minimum distance between the N/2 consecutive segments is 

regarded as the partial distance between two shapes. The simulation results show the 

algorithm is satisfactory for discriminating map and airplane images. But from a "global" 

view, this method is not good enough because the relationships between the remote 

points on the model and the test boundary are not explored. That is also the common 

deficiency for many local comparison algorithms. Tsang (Tsang, P.W.M. eta/., 1994) 

almost shares the same idea as Borgefors (Borgefors, G., 1988) in the local comparison 

and suffers the same shortcoming. 

Dynamic programming (Appendix m is another popular algorithm applied in the 

occlude object recognition (Ansari, N. and Delp, EJ., 1990) (Gonnan, J.W. eta/., 1988). 

A fundamental property of dynamic programming is the "principle of optimality'' which 

implies that the minimum or maximum distance path found by the dynamic programming 
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will be of the minimum or maximum distance in the global sense. Ansari and Delp first 

extracted the dominant points from the smoothed object boundary, then arranged the 

dominant points in an ordered form. The feature of every dominant point is achieved 

through the sphericity (Appendix ill) (Ansari, N. and Delp, E. J., 1990) of the ordered 

triplets. Sphericity is also viewed as a kind of local property. Dominant triplets (three 

consecutive dominant points) always form a triangle in which an ellipse can be inscribed. 

The sphericity is defined as the ratio of the geometric mean to the arithmetic mean of the 

lengths of the principal axis of the inscribed ellipse. An entry support table is built to 

denote the resemblance between the reference and the test object. The row index 

indicates the dominant point number of the reference object, while the column index 

corresponds to those of the test object. Hopping dynamic programming (HDP) is used by 

Ansari and Delp (Ansari, N. and Delp, E.J., 1990) to retrieve the maximum value path 

penetrating through the entry support table. Unlike Gonnan's method (Gorman, J.W. et 

al., 1988), both forward and backward transition rules are applied. The final maximum 

value path corresponds to the best match of the entry index, and HDP is used as an 

optimization approach. However, HOP cannot always guarantee the "global 

optimization". Like the Hopfield neural network coping with the Travelling Salesperson 

Problem (See Appendix IV), HOP suffers the same ••1oca1 minima" problem. 

Wen and Lozzi (Wei, W. and Lozzi, A., 1992) presented a sub-polygon matching 

algorithm for the partially occluded object recognition. They first approximated the 

object boundary by a polygon, then divided the polygon into a set of sub-polygons. Each 

sub-polygon was then represented by the 2-D moments. The moment distance between 

25 



the sub-polygons within the "mother'' polygon and the moment distance of each sub

polygon in the reference object with all the sub-polygons in the test and the reference 

object are all explored. Finally all the parameters are used for matching. Since in this 

algorithm, the relations between remote segments of both the model and the test object 

are explored from a "global view", the matching may be viewed as .. global matching". 

Actually, the idea is also reflected in this thesis by use of a modified Hopfield neural 

network. 

In general, most algorithms applied up to now for the local matching are not 

mature and they are still based on the "local distance measure". Hopping dynamic 

programming and Hopfield networks can deal with such issues because both methods 

cope with global optimization problems. While the physical meaning for optimization is 

quite clear, they suffer from the "local minima" problem. 

2.5 Hopfield Neural Network 

2.5.1 Neural Network Application In General 

Since middle 1980s, neural networks (Schalkoff, R., 1992) (Taoukalas, L.H. and 

Uhrig, R.E, 1997) have been applied to shape classification (Gup~ L and Sayeh, M.R., 

1988) (Neocognitron, K.F, 1988) (Tsang, P.W.M. et al., 1992). Unlike the traditional 

statistical and syntactical classifiers which process data sequentially, neural network 

classifiers compute data in parallel to provide a high computation rate. Moreover, neural 

network classifiers can learn in the training process and they are robust because the loss 
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or distortion of a few computing units does not significantly affect the overall 

performance. The most popular network used in shape discrimination is the 

backpropagation (BP) network. The BP network is also widely used in digital signal 

processing, character and speech recognition and it comprises 70% of all the neural 

network applications (Tsoukalas, L.H. et al., 1997). 

Gupta (Gupta, L. et al., 1989) adopted a three layer perceptron (backpropagation) 

network to classify a set of closed planar shapes. The input data was the one dimensional 

radius boundary signature after normalization. The result shows that this BP classifier is 

more robust and powerful compared with conventional classifiers under the noise 

environment. 

However, for the local shape classification, the BP network is not useful since it 

was not designed for optimization. No global and local concepts are involved in this 

network and it uses a set of feature vectors for training and testing. The first paper 

exploring Hopfield neural network (HNN) for solving partially occluded object 

discrimination was proposed by Nasrabadi and Li in 1991 (Nasrabadi, N.M. and Li, W., 

1991). The HNN used by Nasrabadi and Li is actually a modified version compared with 

the standard Hopfield network. In the following several years, many papers (Ansari, N. 

and Li, K.W., 1992) (Chung, P.C. et al., 1994) (Kim, J.H. et al., 1996) (Lee, J.S. et al., 

1996) improved the algorithm based on Nasrabadi and Li's work. 
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2.5.2 Hopfield Neural Network 

2.5.2.1 Concept of Hopfleld Neural Network 

The Hopfield neural network may be viewed as a nonlinear associative memory 

or content-addressable memory (CAM) (Haykin, S., 1994) (Scbalkoff, R.J .• 1992) that 

was presented first by Hopfield in 1982 (Hopfield, J.J., 1982). The primary function of 

this network is to retrieve a pattern stored in memory in case a noisy or incomplete 

version presented. An important property of a CAM is to retrieve a stored pattern 

provided with a reasonable subset of the information content of that pattern. It is robust 

and error-correcting because it can recover the inconsistent pattern information. To 

perform the retrieving task. a set of stable patterns must first be putted into the network 

which are regarded as fundamental memories. If the noise or inconsistent pattern is close 

to the stable memory, the system should evolve with time and finally converge to the 

fundamental memory. Therefore, the Hopfield network may be described as a 

dynamically convergent system. 

Neurons are the basic computing units in the Hopfield model, they have two 

states: on and otT, which can be denoted by s;=+l or s;=-1. For a network made up of N 

neurons, the state of the network is defined by the vector: 

(Equation 2.11) 

The diagram of the Hop field network structure is shown in Figure 2.2 
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Figure 2.2 The diagram ofHopfield neural network 

Figure 2.3 Signal-flow graph of the net activation potential Vj ofneuronj 

29 



As shown in Figure 2.2, neurons are connected with each other by synaptic weights. For 

example, w1; is used to denote the synaptic weight between neuron i andj. Since the rest 

of the neurons are coupled with neuron j by the weights, as shown in the signal-flow 

graph of Figure 2.3 (Haykin, S., 1994), the contribution of all the net neurons acting on 

neuron j may be denoted in a following summation form: 

N 

vi= L wi.-s.- -8i 
i•l 

(Equation 2.12) 

where 91 is a fixed threshold applied externally to neuron j. Neuron j changes its state 

according to the following deterministic rule: 

(Equation 2.13) 

2.5.2.2 Hopfield Network Operation Procedure 

Haykin (Haykin, S., 1994) concludes the operation procedure for the Hopfield 

network may be summarized as follows: 

1) Storage (learning). Let E,u denote a known set of N-dimensional memories. 

Construct the network by using the outer product rule (Hebb's postulate of 

learning) to compute the symmetric synaptic weights of the network as 

w .. = { ~ t ~ ,ll.j~ l'.i' j ~ i 
Jl ,~~ ... 

0, j=i 

(Equation 2.14) 

where w1; is the weight from neuron ito neuronj. The elements of the vector t:,u 

equal +I and -1. Once they are computed, the synaptic weights are fixed. 
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2) Initialization. Let x denote an unknown N-dimensional input vector presented to 

the network. The algorithm is initialized by setting 

j = 1,···,N (Equation 2.1 5) 

where sj(O) is the state of neuronj at time n =0, and Xj is the jth element of the 

vector x. 

3) Iterate on until convergence. Update the elements of state vector s(n) 

asynchronously (i.e., randomly and one at a time) according to the rule: 

(Equation 2.16) 

Repeat the iteration until the state vectors remain unchanged. 

4) Outputting. Let Sf11141 denote the stable state computed at the end of step 3. The 

resulting output vector y of the network is 

y: S fiMI (Equation 2.1 7) 

2.5.2.3 Convergence Discussion 

Since the property of the Hopfield network as a dynamically convergent system is 

the key to the retrieving of the incomplete or noise version pattern, it functions well 

only when the network is convergent. Consider a Hopfield network with symmetric 

synaptic weights Wj;=wii (wu=O), lets; denote the state of neuron i, where i= 1.2 •.... N. The 

Liapunov (energy) function of the Hopfield network considered here is proved by Haykin 
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(Hay kin, S., 1994) to be a convergent system. For example, the energy function is 

described as: 

(Equation 2.18) 

The energy change llE due to the change .dSj in the state ofneuronj is denoted as: 

N 

liE= -As j L Wj;S; 
i•l 
i•j 

Since the network is binary, when the state ofneuronj changes 

N 

when sj =+1--.Sj =-1, Mj <0, LWj;S; =Sj =-1<0 
i•l 
i•j 
N 

when sj =-1--.Sj =+1, ASj >0, LWj;S; =Sj =+1>0 
i•l 
i•j 

(Equation 2.19) 

(Equation 2.20) 

Thus the change of the state of the neuron always causes the energy function E to be a 

monotonically decreasing function. State changes will continue until a local minimum of 

the energy landscape is reached. 

Like other network structures, Hoptield network suffers from the "local minima" 

problem, but it does work under most applications. In this thesis, some algorithms dealing 

with occluded object discrimination using Hopfield network are implemented and 

modified to fit the specific problem. The network is more complicated than the standard 

Hopfield network since it involves with a 2-D matrix, so the network applied in this 

thesis is actually a modified one, it is used to deal with the global optimization of the 

matching. 
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Chapter3 

Image Processing 

Image processing is an important part of a computer vision system. Succeeding 

the image acquisitio~ the functions of image processing generally include visual 

enhancement and feature presentation. Since the object features, such as edge or color, 

are regarded as the input information for the later processing, it is important that these 

features can accurately represent the original object. For example, in a computer 

integrated manufacturing system, robotic hands may handle the industrial objects in the 

conveyor by its 2-D or 3-D contour generated by the image processing operations. If the 

high precision is required, the contour should match the original object very accurately. 

Hence, the selection of appropriate image operations is important for the feature 

representation of the objects. 
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In the following discrimination algorithm, the dominant points are extracted 

from the object boundary, so the purpose for the image processing operations is to 

achieve an accurate object boundary from the scene. The cascading operations 

performed on the input images are Laplacian operation, image binarization, 

morphological operation and edge detection. The flow chart for the image processing 

algorithm is shown as Figure 3.1. 

3.1 Laplacian Operation 

Laplacian operator (Russ, J.C., 1995) is a local or neighborhood operator, which 

increases the local contrast of the image. In practical applications, sometimes the 

objects cannot be directly extracted from the background due to no crisp gray-level 

differences between the object boundary and the background. In image processing, a 

low-pass filter is used to sharpen the image by locally increasing the contrast at 

discontinuities and making the edge easy to see. For this purpose, Laplacian operator 

was first applied. Experimentation showed that an object thresholded after a Laplacian 

operation was smoother than directly applied a thresholding on it. While there are many 

different approaches for the image enhancement, what is applied here is a 3x3 kernel 

written as an array of integers as following: 
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Input Image 

l 
Laplacian Smoothing 

, 
Binarization 

, 

Morphological Operation 

,, 
Shen~Casten Edge Detection 

Feature Extraction 

Figure 3.1 Image operations flow chart 
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1 2 1 

2 4 2 

1 2 1 

Table 3.1 A standard Laplacian kernel 

This kernel is convolved with the whole image as follows: First a pixel in the image is 

regarded as the central pixel. This central pixel and its eight neighbors form a mask and 

their gray-level values are multiplied with the corresponding values of the Laplacian 

mask and the summation is obtained. The new gray-level value of this central pixel is 

then obtained by dividing this summation by 16 (the sum of the 9 weights of the 

Laplician mask). This process is performed from the top-left to the bottom-right of the 

image. 

3.2 Morphological operation 

The binary image is achieved by thresholding the Laplacian filtered image. 

However, sometimes the complete binary object in the scene can not always be 

achieved by simply applying a uniform gray-level threshold (see Figure 3.2 (c) ), 

morphological operation is a good approach to repair them. Morphological operations 

are actually the most extensive operations for binary image processing. Erosio~ dilation 

and their cascaded combinations are frequently used in such applications. 
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Binary erosion and dilation are logical decision-making operations (Burdick, 

H.E., 1997). Like the convolutio~ binary erosion and dilation combine the local 

neighboring pixels with a mask to achieve a result. For simplicity, the pixels in the 

binary image are denoted as 1 and 0. Binary erosion uses a 3x3 mask as following: 

1 1 1 

1 1 1 

1 l l 

Table 3.2 The mask used for erosion 

The pixels in the mask have an "AND" relationship, that means every pixel in the mask 

must be l in order for the output of the central pixel to be 1, othetWise the central pixel 

will be 0. It can be imagined that the effect of erosion on a binary image is to diminish 

the edge of a white area of pixels and can be used to separate edge-overlapped objects. 

On the contrary, the effect of dilation on a binary image is to increase the black edge 

area, it has a following convolution mask: 

0 0 0 

0 0 0 

0 0 0 

Table 3.3 The mask used for dilation 
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The logical relationship between the neighborhoods is .. OR .. , which means only one 

pixel being l can result in the output of the central pixel to be 1. Dilation is the opposite 

operation of erosion and can be used to repair some .. cracks .. in an object to achieve a 

complete one. 

The combination of an erosion followed by a dilation is called an opening, while 

a dilation followed by a erosion is called a closing (Bassmann, H. and Basslich~ P.W., 

1992). Such morphological operations are used to separate or repair .. cracks" in objects 

in the scene. In the proposed experimen~ closing was applied to the binary image 

because after threshold filtering, some parts within the object are missing due to uneven 

gray-level of the object. 

3.3 Boundary Detection 

The Shen-Castan algorithm (Parker, J.~ 1997) was used for boundary 

extraction. Compared with the template-based edge detection methods such as the Sobel 

edge detector, Kirsch edge detector, Marr-Hildreth edge detector (Parker, J.R, 1997) 

(Russ, J.C., 1995) and Canny edge detector (Canny, J.F., 1986), the Shen-Castan 

detector is regarded as superior (Parker, J.R., 1997). The comparison was achieved by 

Parker through testing several typical square template images under different signal-to

noise ratio (SNR). Shen-Castan and Canny edge detector are now the most popular edge 

detectors used in image processing domain, they are insensitive to noise and the optimal 

result may be achieved via adjusting the involved parameters. 
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More than l 00 images were tested in the experiment by the Shen-Castan edge 

detector and several examples of the extracted boundaries are shown in Figure 3.2-3.4. 

By adjusting the thinning and smoothing parameters, the complete boundaries could be 

achieved even with oblique portions. 
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(c) 

(d) (e) 

Figure 3.2 (a) Original overlapped image (b) After Laplacian smoothing 
(c) After binarization (d) After morphological operation (e) After edge detection 
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Figure 3.3 Different model hand-tool images after boundary detection 
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Figure 3.4 Overlapped band-tool images after boundary detection 
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Chapter4 

Shape Discrimination Method 

As mentioned in Chapter 2, the first step to object discrimination should be 

based on the feature extraction. For the proposed algorithm, dominant points on the 

object boundary are regarded as the shape features. The advantage for choosing 

dominant points rather than polygons with Ramer and Pavlidis' method as shape 

features has been discussed in Chapter 2. Simply speaking, dominant points are more 

stable under image rotation, scaling and shifting (Ansari, N. and Delp, E.J., 1991). The 

dominant points are obtained by searching the pixels along the boundary whose 

curvature values are local extreme (maximum or minimum). The initial comparison 

between the test and the model object is performed by building a disparity matrix whose 
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elements denote the measure between the local properties of the dominant points of the 

test and the model object. However, as discussed earlier, a matching only based on the 

local features is not reliable. Therefore, a modified Hopfield neural network is 

implemented to perform the global optimization based on the initial local comparison. 

The algorithm flow chart is shown in Figure 4.1. 

4.1 Boundary Pixel Linking 

Boundary pixel linking is the first step toward indexing of the dominant points. 

Because the detection of dominant points is achieved by searching for the local extreme 

curvatures along the object boundary, the coordinates and curvature value of each point 

must be indexed from its identity (sequence along the boundary). There should exist a 

correspondence between the pixel's sequence, its curvature value and coordinates. Such 

a mapping can be obtained by building a linked list of all of the boundary pixels. In this 

linked list exists a correspondence of the coordinates, sequence and curvature value for 

each boundary pixel. Therefore, only by indexing the identities of the dominant points, 

their corresponding coordinates and curvature values can be retrieved. 

The linking algorithm is a Freeman chain coding method (Freeman, H., 1961 ). It 

is performed by first choosing a boundary pixel, then searching its neighborhood along 

the boundary in a counterclockwise way as illustrated in Figure 4.2. 
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Scene boundary Object boundary 

~ ~ 
Boundary pixel linking Boundary pixel linking 

+ l 
Curve smoothing Curve smoothing 

• ~ 

Curvature estimation Curvature estimation 

• ~ 
Dominant point extraction Dominant point extraction 

I I • • 
Disparity matrix building 

~ 
Global optimization 

Figure 4.1 Algorithm flow chart for object discrimination 
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o .. o .. 0 

l llnitial searching neighbor 

0 0 0 .. 

l Curent point 

l 

0 •0 •0 

Figure 4.2 Boundary linking algorithm by a 8-neighbor Freeman coding 

{i-1,j) (i-1, j) 

0 0 
(i, j). 0 {i, j+1) 

(i,j). 0 (i,j+1) 

0 0 
(i+1, j) (i+1, j) 

Figure 4.3 Four cases of spurious pixels (spurious pixels are marked as shadow) 
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As shown in Figure 4.2,. a pixel and its 8 neighbors form a 3x3 mask. The 

central pixel in the mask is always regarded as the ••current pixel" along the bounda!y 

and the searching is performed from its initial searching neighbor. Once a neighbor is 

identified as a boundary pixel, the current pixel is marked as '"found" and its properties 

(i.e., its coordinates and sequence number along the boundary) are recorded in a linked 

list. The identified neighbor takes the "current pixel" position and the searching 

continues until all the pixels along the boundary are marked as "'found". 

It can be seen that to achieve an acceptable linked list, the boundary should be 

exactly one-pixel wide, otherwise, the searching will not function. However, to date no 

edge detectors, including the Shen-Casten (Parker, J.R., 1997) and Canny edge detector 

(Canny, J.F., 1986), can achieve such a perfect boundary for an arbitrary object. There 

are always some spurious pixels along the boundary after the boundary thinning which 

may locate as shown in Figure 4.3. 

Under such circumstances, the spurious pixels have to be removed before 

linking. Before the linking, the boundary pixels are marked as 0 and the non-boundary 

pixels are marked as 255. Then the spurious pixel removing can be performed using the 

following algorithm: 
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if (i,j] = 0 

if [i,j-1]=0 

if (i-l,j]=O or [i+l,j]=O 

remove [i,j];[i,j] = 255 

elseif [i,j + 1] = 0 

if [ i - 1, j] = 0 or [ i + 1, j] = 0 

remove [i,j];[i,j] = 255 

The choice of the initial searching pixel does not matter since all of the pixel's 

sequences on the boundary are relative. So just by scanning, the first boundary pixel 

encountered may be regarded as the initial searching pixel. 

4.2 Dominant Point Extraction 

When objects are occlud~ shape discrimination methods using global features 

usually fail due to the lack of reliable information. Hence, to discriminate the occluded 

object, the feature set should be robust enough so that when some features are missing, 

the rest can still provide some discrimination information. In the proposed research, a 

set of dominant points are extracted as the object shape features. The physiological 

research on the human visual system has shown that some dominant points of the 

boundary are rich in information content and are sufficient to characterize the shape of 

the object (Attneave, F., 1954). Here the dominant points are extracted as the points 

which possess the highest curvature magnitudes among a local boundary portion. As 

discussed in Chapter 2, there are many approaches for dominant point detection. 

Polygonal approximation is the most common approach for solving such a problem 
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(Pavlidis, R. and Horowitz, S.L., 1974) (Ramer, U., 1972). However, the extraction of 

the dominant points only based on the polygonal approximation is not stable and robust 

since a unique representation usually cannot be achieved under rotation, shifting and 

scaling for the same object. As a result, methods combining curvature estimation and 

polygonal approximation were developed. Curvature guided polygonal approximation 

and cardinal curvature points method had been discussed in detail by Ansari and Delp 

(Ansari, N. and Delp, E.J., 1991) which achieved a robust and stable representation 

under rotation, scaling and shifting of the object. 

Since 1993, multiresolution wavelet transform (Lee, J.S. et a/., 1993) (Yoon, 

S.H. et a!., 1998) has been applied to detect the dominant points. Wavelet transform 

combines the multiresolution approximation and curvature scale-space representation to 

detect the dominant points. If a point can be detected under different scale parameters, 

it will be regarded as a dominant point. This method. however, involves extensive 

computation. 

Chung (Chung, P.C., et al., 1994) presented a competitive Hopfield neural 

network for polygonal approximation which can be regarded as a method for the 

dominant point extraction. Based on this parallel algorithm, the extraction is then 

performed as a minimization of a criterion function defined as the arc-to-chord 

deviation between the curve and the imposed polygon. This method is novel for parallel 

implementation in shape representation and therefore offers the potential of real-time 

computation. But it obtains valid results only when the network convergence is 
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guaranteed due to the "local minima" problem, and it is not rotation, shifting and 

sealing independent. 

The dominant point extraction in the proposed algorithm is using the curvature 

estimation. The points with local extreme curvature values are regarded as the dominant 

point candidates, and the final dominant points are chosen from such candidates by a 

magnitude thresholding. 

4.2.1 Curvature Estimation 

The curvature is generally defined as the derivative of the tangent angle to the 

curve (Asada, H and Brady, M., 1986). As described earlier, after the boundary pixel 

I inking, the pixels along the boundary are put into a linked list in which the sequence 

and coordinates of each pixel can be indexed. To achieve such a data structure, the 

boundary pixels are expressed in a parameterized way. If the indexed variable of the 

boundary pixels is t, in the Cartesian coordinate system, the boundary can be described 

by the following function: 

C = {x(t),y(t)} 
(Equation 4.1) 

and the curvature function can be expressed as: 

so 



. .. .. . 
k(t) = x(t)y(t)-x(t)y(t) 

• l • 2 3~ 
[x(t) + y(t) ] 2 

(Equation 4.2) 

Where t = 0,1,2, · · · N, N is the boundary pixel number 

However, if the curvature estimation is directly performed on the original boundary, the 

points detected usually cannot optimally represent the object shape because some local 

concavities and convexities may be introduced during the boundary extraction. 

Therefore, to optimally represent the object shape based on the dominant points, the 

boundary curve smoothing is necessary for removing the local concavities and 

convexities. A Gaussian filter (Kim, J.H, et al., 1996) (Mokhtarian, F. and Mackworth, 

A., 1986) (Nasari, N. and Li, K.W., 1993) (Tsang, P.W.M. et al., 1992), which has been 

shown to be an ideal smoothing filter, is used here. The extreme (positive maximum and 

negative minimum) curvature points along the boundary smoothed by the Gaussian 

filter with an approximate smoothing width are stable with respect to rotation, shifting 

and scaling (Mokhtarian, F. and Mackwortb, A., 1986). Consequently, provided the 

smoothing width being correctly chosen, the dominant points on the smoothed curve 

will be the most salient points to represent the object shape. 

4.2.2 Gaussian Smoothing 

The Gaussian smoothing filter ((Mokhtarian, F. and Mackwo~ 1986) is a low-

pass filter which can be described as following: 
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(Equation 4.3) 

Where t is the indexed sequence of the boundary pixels, t=O.l.2, ... ,N. a is the 

smoothing width. The selection of a is very important to achieve a satisfying smoothed 

curve. If cr is too big, some salient points may be removed and the feature information 

will be lost. On the contrary, when a is too small, some small local perturbations cannot 

be removed thus spurious features may remain. 

The smoothed curvature function is obtained by convolving the original 

curvature function with the Gaussian function and may be denoted as: 

k(t,O') = k(t) ® g(t,O') 

. .. - . 
k( ) 

= x(t,a) y(t,a)- x(t,a) y(t,a) 
t,cr ~ 2 

[x(t:a)- + y(t:a) 1% 
(Equation 4.4) 

Where t = 0,1,2, · · · N, N is the boundary pixel number 

The convolution fonns of x(t), y(t) and their corresponding one-order and two-order 

derivatives are described as (Mokhtari~ F. and Mackworth, A., 1986): 

x(t,a) = x(t)® g(t,CT), y(t,a) = y(t)® g(t,a) 
• • • 

x(t,a) = x(t) ® g(t,a), y(t,a) = y(t) ® g(t,a) (Equation 4.5) 

- - .. -
x(t,a) = x(t) ® g(t,a), y(t,a) = y(t)® g(t,a) 

Since 
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(Equation 4.6) 

the discrete convolution forms are expressed as: 

l -(1-11)2 

x(t,o-) = x(t)® g(t,o-) = [ x(u)g(t -u,a)du = i x(u) .[2; e 2a: 
~ J- 0' 2K 

N-1 l -(1-11)2 

= Lx(u) e 2a: 

11-o u..fii 
-(1-u)l 

x(r:a-) = x(t) ® g(;,a) = [x(u)g(t _:u,u)du = i x(u)( t- u e 2;;'1 )du 
- 1.., (Tl J2i 

N-1 -(1-11)2 

= Lx(u)( t -u e -;;r )du 
u..O (jl Jfii 

2 -(1-11)2 - .. - i l t l --
x(t,U)=x(t)®g(t,u)= i x(u)g(t-u,u)du=L.,x(u) ~(-5 --3

)e 2
"

2 

1.., ""2.tr u u 
l 

N-1 1 t 2 } -(t-~) 

= L x(u) --<-s --l )e 2a 

11•0 .J2i CT CT 

where N is the total boundary pixel number 

(Equation 4. 7) 

Similarly 
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-(1-ll): N -l •(t-Il): 

y(t,o-)=y(t)®g(t,CT)= [y(u)g(t-u,CT)du=[y(u) &e 2a: =Ly(u) &e la: 
CT 2tr .. -o a 2tr 

N-l -it-u): 

= LY(u)( ~5e za: )du 
w..O a 2Jr 

2 -11-u): 
•• •• .. ( 1 t 1 -. 

y(t,a)=y(t)®g(t,o-)= i y(u)g(t-u,u)du= y(u) ~(-5 --
3

)e 2"'-
.L.. -y 2tr CT CT 

N-l 1 12 1 -<r-~): 
= LY(U)-(-s --J )e 2a· 

.,.o J2i CT CT 

where N is the total boundary pixel number 

(Equation 4.8) 

Figure 4.5 (a) (b) illustrate an original screw driver boundary and an overlapped 

wrench and cutter boundary. Figure 4.6 and Figure 4. 7 show their smoothed forms 

under different smoothing widths. Figure 4.8 and Figure 4.9 plot the corresponding 

smoothed curvature functions. It can be seen that an appropriate smoothing parameter 

is important for the final smoothing effect. For example, when a=2, some small local 

perturbations still exist and the pixels with local extreme curvatures cannot best 

describe the curve features. Also, It can be imagined that when a approaches infinite, a 

curve can be smoothed to a straight line. Therefore, the appropriate selection of the 

smoothing width is important for the final shape description. By experimentation, it was 

found that the optimal smoothing width for hand-tools was a=8. 

However, in practice, when performing the convolutio~ the initial and terminal 

portions of the boundary curve are always false after the smoothing. The false portion 
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varies with the change of the smoothing width. A bigger 0' causes a bigger false ponion. 

This problem happens because the convolution is always out of bound at the initial and 

terminal portion. As shown in Figure 4.4, this problem can be overcome by adding a 

mask respectively to the initial and the terminal portion. Since the boundary is a closed 

curve, the data of the initial mask can be extracted from the terminal portion. Similarly, 

the data of the terminal mask can be extracted from the initial portion. After the 

convolution, the data retrieved from the middle portion will be the data of desired 

smoothed curve. In the experimen~ the mask size is chosen as 40. 

t 
Initial 
mask 

Curve data 
t 

Terminal 
mask 

Figure 4.4 Formation of the initial and the terminal mask in smoothing 
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(a) 

(b) 

Figure 4.5 (a) Original screw driver boundary 
(b) Original overlapped wrench and cutter boundary 

56 



250 

200 

1 

100 

~ sigma=2 

Figure 4.6 Smoothed boundaries of Figure 4.5 (a) under different smoothing widths 
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Figure 4.7: Smoothed boundaries of Figure 4.5 (b) under different smoothing widths 
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·sigma=2" 
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Figure 4.8 Corresponding curvature function plottings of Figure 4.6 
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Figure 4.9 Corresponding curvature function plottings of Figure 4.7 

60 



4.2.3 Dominant Point Extraction 

The dominant point extraction is performed on the smoothed boundary. A point 

whose cui·vature is either local positive maximum or negative minimum is regarded as a 

dominant point candidate, and the curvature is calculated according to (Equation 4.4). 

The term "candidate" is used here because not all of the points along the boundary 

satisfying the "local extreme" condition are final dominant points. As shown in the 

curvature function plots in Figure 4.8-4.9, some dominant point candidates having very 

small curvature magnitudes have to be discarded because the small perturbations along 

the boundaries cannot be viewed as the salient features. In order for automatic 

extraction of the dominant points, the candidates first are detected by the following 

derivative equation which is usually used to solve extreme value problems: 

dc(t) = 0 
dt 

(Equation 4.9} 

Where c(t) is the curvature of tth point along the boundary. (Equation 4.9) is the 

continuous form, its discrete expression may be described as: 

if c(t) > c(t -l) and c(t) > c(t + 1) 

then c(t) is a dominant point candidate 

t = 0,1,2, · · ·, N, N is the boundary pixel number 

As shown in Figure 4.8-4.9, many points along the boundaries may satisfy such a 

criterion. In order for the final feature points to be the most salient points along the 

boundaries, some spurious candidates have to be removed. The removing of the 

spurious candidates is performed by the following steps: 
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1) detect the maximum curvature magnitude of all the candidate points 

2) setting a magnitude threshold (some percentage of the maximum curvature 

magnitude) 

3) assign the candidates whose curvature magnitudes exceed the setting threshold as 

the final dominant points. 

The selection of an appropriate threshold is critical to the final extraction of the 

dominant points and is greatly affected by the smoothing width. For different objects, 

the threshold may be different. The threshold selected in the proposed software package 

is an experimental parameter and 0.045 is optimal for most hand-tool images. 

Generally, the value is from 0.035 to 0.050. The dominant points extracted by this 

method remain stable under image rotation, shifting and scaling, as shown in Figure 

4.10-4.13. 
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Figure 4.10 Dominant points of a cutter under rotation and shifting 

63 



.------~ 
C--~---<i-Y 

Figure 4.11 Dominants of a wrench under rotation and shifting 
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Figure 4.12 Dominant points of a screw driver under rotation, scaling and shifting 
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4.3 Building Disparity Matrix 

As mentioned in Chapter 2, to explore the resemblance between the objects in 

the model and the test image, the proprieties of their feature points are compared. A 

disparity matrix is fonned to perform the initial local comparison and a modified 

Hopfield neural network is used for the global optimization. For the local comparison, 

the elements in a disparity matrix indicate whether the corresponding feature points in 

the model and the test image are matched or not. To fonn the disparity matrix, the 

number of the dominant points of the model object is regarded as the column number. 

Similarly, the number of the dominant points of the test object is regarded as the row 

number. Therefore, the ijth element of the disparity matrix indicates the measure 

between the ith dominant point of the test object and the jth dominant point of the 

model object. 

The method of building a disparity matrix for the occlude object recognition has 

been applied since late 1980s (Ansari, N. and Delp, EJ., 1990) (H~ M.H. and Jang, 

D.S, 1990) (Nasrabadi, N.M. and Li, W., 1991) (Tsang, P.W.M. et al., 1994). In such 

applications, the identity of a partially occluded object in the scene image is determined 

by how well its dominant points match the dominant points of a model object. A 

matched dominant point pair between the test and the model object is called a 

.. correspondence pair". To accurately reflect the resemblance between a partially 

occluded object and a model object in the disparity matrix, the properties of the 
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dominant points used for the comparison should be able to represent the geometry of the 

shape and denote the relationships of the dominant points. 

Tsang (Tsang, P.W.M. et a/., 1994) used a 3-point matching algorithm to 

compare two objects (Chamfer ~ Distance Transformation used as the similarity 

evaluation). He firit used the curvature guided polygonal approximation to approximate 

a boundary curve and the vertices of the polygon were regarded as the feature points. 

Then the feature points were ananged as a set of ordered triplets (three consecutive 

points), the length ratio and the interior angle between the neighboring segments 

connecting the triplet points were regarded as the local proprieties of the feature points. 

If both the length ratio and interior angle of a feature point in the test and the model 

object is similar within a tolerant threshold, then they can be viewed as a 

correspondence pair. Nasrabadi and Li (Nasrabadi, N. and Li, W., 1991) used the 

Pavlidis' polygonal approximation method to extract the feature points on the object 

boundary. The line segments used as the feature properties were compared and a 

disparity manix was formed. Ansari and Li (Ansari, N. and Li, K.W., 1993) used the 

polygonal approximation with the cardinal curvature detection to extract the feature 

points which were arranged as a set of ordered triplets. The sphericity (Appendix II) of 

a triplet is regarded as the local propriety. The disparity matrix was built based on the 

sphericity comparison of the feature points between the test and the model image. 

Tsang's method, a 3-point matching algorithm for building the disparity matrix, 

was used in the thesis because this 3-point matching method can reflect the local 

proprieties between neighboring feature points and it is computationally simple 
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compared with the sphericity computation. In Tsang's disparity matrix, the elements 

are heuristic since they are the values of length ratios and interior angles. In the 

proposed disparity matrix, since the initial matching result is used as the input of the 

succeeding discrete modified Hopfield neural network for the global optimization, the 

elements are binary, either 1 or 0, which means matched or mismatched. Some early 

papers (Gorman, J.W. eta/., 1988) (Liu, H.C. and Srinath, M.D., 1990) extracted the 

local features and expressed them in a heuristic way which would be processed by the 

distance transformation and the dynamic programming. Since the elements in the 

proposed disparity matrix are binary, they actually simplify the computation. 

As discussed earlier, the dominant points are detected by searching along the 

boundary counterclockwise, their coordinates and sequences are recorded in an ordered 

list. If the ith dominant point of the model object is denoted as T;, the length ratio of the 

triplet (T;.f, T;, T;+J) (indexing point T;) is expressed as: 

R(T T T ) = L(T;_1,J;) 
1-1' I' 1+1 L(T T ) 

It 1+! 

(Equation 4.10) 

Where L(T;, T) denotes the length {Euclidean distance) between the neighboring 

dominant point Ti and 1j . The interior angle of (Ti-l· T;. 1i+1) (indexing point T;) is 

expressed as following: 

(j(T) _ -• < L(T;_1 • T; ), L(T; • ., T;) > 
- -COS 
I L(T;_1 , T;) • L(T;.1 , T;) {Equation 4.11) 

Where < A, B > is the inner product of A and B 

Suppose a triplet of the test object is (Mj.1, Mj. ~+I) (indexing point~), the criterion 

for matching the local properties between T; and~ is expressed as following: 
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Thres1 < R(T,-_, .1';' T..,) < 1 
R(M;_1,M,,M;.1 ) Thresl 

I 8(1';_1, T;, 1';.1)-B(Mi-1 ,M;, M ;.1) I< Thres2 

(Equation 4.12) 

Where Thres 1 is the similarity tolerance for the length ratio comparison and Thres2 is 

the similarity tolerance for the angle comparison. The selection of Thresl and Thres2 is 

based on the specification condition. In the experiment, Thres I varies form 0. 8 to 1 and 

Thres2 varies from 3 to 10. 

The procedure for building the disparity matrix is first to choose a triplet from 

the ordered dominant points of the model object and compare it with every triplet from 

the test object, then to perform the matching using the similarity criterion (Equation 

4.12). If the ith triplet from the model object and thejth triplet from the test object are 

matched, the (i, )} element of the disparity matrix is set to I, otherwise is set to 0. Thus 

by indexing all the triplets of the model object, the binary disparity matrix can be built 

and its elements indicate the matching measure of the feature points between the model 

and the test object. Figure 4.13-Figure 4.16 illustrate a set of model and test images, 

Table 4.1-Table 4.4 show their corresponding disparity matrices. 

However, the disparity matrix is only based on a local comparison. The 

neighboring length ratio, interior angle and sphericity only explore the local proprieties 

of a feature point. From a global view, the relationships of a feature point with the rest 

ones are not explored. For occluded object discriminatio~ it is quite possible for two 
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actually different objects have some similar local portions, which may cause fault of 

matching if only based on a local comparison. On the other side, when comparing the 

objects under occlusion, the matched elements may form a set of sporadic clusters in the 

disparity matrix (See Table 4.1-4.6), which are not reliable for the object recognition. 

Hence, the 3-point matching algorithm can only serve as an initial comparison and the 

global optimization is necessary for an accurate and reliable discrimination. 
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Figure 4.13 A model cutter, screw driver and their overlapped image 
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Table 4.1 Disparity matrix ofthe cutter and the overlapped image in Figure 4.13 

(a) The indexed length ratios and the interior angles of the model cutter 
(b) 

Sequence 1 2 3 4 s 6 

Length ratio 1.592 0.981 0.633 4.450 0.997 0.228 

Interior an1le 11 .94 41.62 11.59 26.50 34.28 25.87 

(b) The indexed length ratios and the interior angle of the overlapped cutter and wrench 

Sequence I :z 3 4 ! 6 7 I 9 10 11 ll 13 

Le~gtb ratio 1.60 2.01 1.64 2.64 0.87 0.24 2..5S 1.23 0 .14 12.1 2.72 0.02 6.42 

Interior angle 12.1 48.1 38.0 63.8 107 46.8 129 41.7 100 102 lSI 134 58.9 

(c) Disparity matrix forming by 3-point matching algorithm 
(Thresl=l.2, Thres2=10) 

lodes number 1 l 3 4 s 6 
(scene \model) 
1 1 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 0 1 0 0 1 0 

IS 0 0 0 0 0 1 
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Figure 4.14 A wire clipper, screw driver and their overlapped image 
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Table 4.2 Disparity matrix of wire clipper and the overlapped image in Figure 4.14 

(a) The indexed length ratios and the interior angles of the wire clipper 

Sequence 1 l 3 4 5 6 

Length ratio 8.391 1.036 0.117 1.567 0.976 0.643 

Interior angle 33.79 44.58 30.54 10.01 39.50 9.736 

(b) The indexed length ratios and the interior angles of the overlapped clipper and driver 

Sequence I 2 3 .. 5 6 7 I 9 10 II 1% 

Length ratio 2.02 1.92 1.04 0.80 O.J8 21.2 0.58 0.07 0.62 1.12 0.98 0 .94 

Interior angle 120 26 44.5 30.7 82.8 114 1.51 106 107 8.41 39.5 8.22 

(c) Disparity matrix forming by 3-point matching algorithm 
(Thres l = 1.2, Thres2= 1 0) 

lodes number 1 z 3 4 5 6 
(scene \model) 
1 0 0 0 0 0 0 

l 0 0 0 0 0 0 

3 0 1 0 0 1 0 

4 0 0 0 0 1 0 

5 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 1 0 0 1 0 

ll 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 0 0 0 0 0 0 
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Figure 4.15 A model wire clipper, cutter, wrench and their overlapped image 
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Table 4.3 Disparity matrix of the cutter and the overlapped image in Figure 4.15 

lndes number 1 1 3 4 5 6 
(scene\model) 
1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 1 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 1 0 

8 0 0 0 0 0 1 

9 1 0 0 0 0 0 

10 0 0 0 0 0 0 

l1 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 0 0 0 0 0 0 

15 0 0 0 0 0 0 

16 0 0 0 0 0 0 

17 0 1 0 0 0 0 

18 0 0 0 0 0 0 

19 0 0 0 0 0 0 

20 0 0 0 0 0 0 
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Table 4.4 Disparity matrix ofthe wire clipper and the overlapped image in Figure 4.15 

lodes number I l 3 4 5 6 
(scene \model) 
1 1 0 0 0 0 0 

l 0 l 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

s 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 1 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

11 0 1 0 0 0 0 

13 0 0 0 0 0 0 

14 0 0 0 0 0 0 

IS 0 0 0 0 0 0 

16 0 0 0 0 0 0 

17 0 0 0 0 0 0 

18 0 0 0 0 0 0 

19 0 0 0 0 0 0 

10 0 0 0 0 0 l 
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Figure 4.16 A wire clipper, screw driver, wrench and their overlapped image 
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Table 4.5 Disparity matrix of the wrench and the overlapped image in Figure 4.16 

lades number 1 l 3 4 
(seeae\model) 

1 0 0 0 0 

l 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

9 0 0 1 0 

10 0 0 0 0 

11 0 1 0 0 

ll 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

ll 0 0 0 0 

l3 0 0 0 0 

14 0 0 0 0 

25 0 0 0 0 

26 0 0 0 0 
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Table 4.6 Disparity matrix of the screw driver and the overlapped image in Figure 4.16 

Index number 1 2 3 4 s 6 7 8 
( scene\model) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 1 0 0 0 

7 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

ll 0 0 0 0 0 0 0 0 

13 0 0 0 0 I 0 0 0 

14 0 0 0 0 0 0 0 0 

IS 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 

ll 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 
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4.4 Modified Hopfield Neural Network 

4.4.1 Neural Networks In General 

Neural networks are the computing structures simulating the human brain. As 

the brain neurons interconnect and interact between each other, computing units of 

neural networks are coupled by synaptic weights. The human brain can process the 

input information parallelly, similarly, neural networks provide high computation 

efficiency due to their inherently parallel structures. Under the applications involved 

extensive computation, neural networks are superior to conventional algorithms. 

The feedforward backpropagation (BP) and the Hopfield network are the most 

popular network structures in the neural network domain. The BP network is used in 

weather predication, image analysis, voice recognition, etc (Tsoukalas, L.H. and Uhrig, 

R.E., 1997). The Hopfield network may be viewed as a kind of content·addressable 

memory and is usually used to recover the correct pattern from its incomplete or noise 

version (Schalkoff, R., 1992). 

4.4.2 Hopfield Neural Network 

The Hopfield network operates in an unsupervised manner and can be used to 

solve the optimization probl~ which is the reason why the Hopfield is selected in the 
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thesis. This optimization property lies in the physical principle of the Hop field network. 

In the Hop field network, the information is stored in a dynamically stable configuration. 

This configuration can be described by a Liapunov (energy) function which is a 

monotonically decreasing function of the network state. The retrieval of the information 

stored in the network is accomplished by randomly picking a neuron and updating it 

according to an asynchronous dynamic procedure which is repeated until no further 

state changes (Pandya, A.S. and Macy, R.B., 1996). 

4.4.3 Global Matching Problem 

As discussed earlier this chapter, the initial matching between the occluded 

object and the model object is first performed by a 3-point matching algorithm which 

explores the local properties of the feature points. This local matching algorithm may 

cause problem in the occluded object discrimination. For example, two quite different 

objects may have some small similar portions and the feature points in an object may be 

divided into a set of small sporadic clusters that are not reliable for an accurate 

discrimination. As shown in Table 4.1-Table 4.6, the elements in the disparity matrix 

cannot provide a clear and accurate discrimination result. 

A modified Hopfield network is applied to the thesis as a global optimization 

tool to obtain the optimal match between the model and the test object based on the 

initial comparison. Thus, the disparity matrix is regarded as the input of the network. In 

the standard Hopfield neural network (Figure 2.2) (Haykin, S., 1994), the symmetric 

synaptic weights are computed as the outer product of the fUndamental memories. In 
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this modified version, the symmetric synaptic weights coupling the neurons (elements 

in the disparity matrix) are more complicated (As shown in Figure 4.19) because the 

network is two·dimensional. 

4.4.3.1 Deficiencies of Local Property Comparison 

As shown in Table 4.1-Table 4.6, the elements in the disparity matrices cannot 

accurately reflect the resemblance between the corresponding model and the overlapped 

objects because some actual correspondence pairs are not obtained since only the 

neighboring length ratio and the interior angle are considered as the matching criterion. 

For the point 5 {triplet points 4, 5, 6) in the model clipper of Figure 4.16, it cannot be 

identified as the point 25 in the overlapped image when its indexed triplet points (2 1, 

25. 26) are occluded or separated. 

Another deficiency is that the geographic relationships of the remote dominant 

points are not explored by the 3-point matching algorithm. To overcome both 

deficiencies, the modified Hopfield neural network is applied here. 

4.4.3.2 Modified Hopfteld Neural Network 

As shown in Figure 4.17, a 2-D matrix is constructed to form the modified 

Hop field network. The row and the column number of the matrix respectively indicate 

the feature point number of the test and model object. The values of the elements denote 

the initial states of the neurons. Since the disparity matrix only contains the binary 

elements (1 or 0), the network is a discrete version. If the test object has M dominant 
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points and the model object has N dominant points, then a MxN network is formed and 

the matching process may be characterized as minimizing the following energy 

function: 

Where V;k is a neuron state which converges to .. I" if the ith feature point of the test 

object matches the klh feature point of the model object. Otherwise, it converges to 0. i 

and j are the indexing variables for the model feature points. k and I are the indexing 

variables for the scene feature points. 
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Figure 4.17 A 2-D modified Hopfield neural network model used for discrimination 
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Like the energy function in the Travelling Salesperson Problem (Appendix lli) 

and the energy function presented by Nasrabadi-Li (Nasrabadi, N.M and Li, W., 1991), 

the first tenn of (Equation 4.13) is a compatibility constraint which is used to impose 

the condition that the lowest energy should favor the best set of correspondence pairs. 

The last two terms of (Equation 4.13) are used to enforce the uniqueness constraint so 

that each point in the model object matches only one point in the test object, that is, the 

summation of the outputs of the neurons in each row or column is no more than 1. 

In the energy function of the Travelling Salesperson Problem, the coefficient B 

and C are more emphasized than A because B and C contribute yielding valid solutions. 

For simplicity, let A=l and B=C=2 in (Equation 4.13). The coupling symmetric 

synaptic weights C;kf/ is denoted as: 

(Equation 4.14) 

Where F(."C, y) is a step function as shown in Figure S.l(a). F(x. y) has a value of 1 for a 

positive support and a value of -1 for a negative support. The value of F(x. y) is 1 if the 

difference between x andy is within a setting threshold, otherwise is -1. Hence, the first 

term F(f;. f,J denotes the measure between the ith feature point of the test object and the 

/..:1h feature point of the model object. Similarly, F(fj.fiJ denotes the measure betweenjth 

feature point of the test object and the lth feature point of the model object. The third 

term is related to the relational features between two neurons. If the distance between 

the ith and the jth feature point in the scene is similar to the distance between the jth and 

the lth feature point of the model object within a setting tolerance, then F(rij. riel) is set to 
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1 , otherwise is set to -1. Hence, the third tenn actually explores the geographic relation 

between the two objects. This idea is the key to the successful retrieval of the optimal 

correspondence pairs. 

For the comparison convenience, the weighting factors W; in C;kjl are normalized 

as following: 

(Equation 4.1 5) 

For a Hop field-style expression, the energy function may be denoted as 

following: 

(Equation 4.16) 

It can be shown that (Equation 4.16) is equivalent to (Equation 4.13) by some simple 

manipulations as following: 

and 

Iii. =2 

Where o is the Kronecker delta parameter and is denoted as: 

{
1 if i = j 

8 .. = 
IJ 0 if i~j 

(Equation 4.17) 

(Equation 4.18) 

(Equation 4.19) 

It is shown from the energy function that the optimization process tries to 

provide excitatory and inhibitory support to find the final matching nodes. The dynamic 

convergence operates parallelly under the global constraints and is characterized as a 
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stochastic process. The network arrives at a stable state when the energy function is at 

its minimum state. The convergence process can be summarized as following: 

1) The initial states of neurons are set to 1 or -1 based on the measure between the 

corresponding feature points with the 3-point matching method. 

2) Randomly pick up a neuron (i, k). 

3) Calculate its input as following: 

uiJ; = LL<cjjj, -oij -otl)vj, +IiJ; (Equation 4.20) 
j I 

4) Decide the new state of each neuron according to the following rules: 

viA;= 1, 

viA; =O. 

if uiJ; > o.5 
if uiJ; <-0.5 

no change if - 0.5 S U '* S 0.5 

(Equation 4.21) 

5) Count the changes of the state. If there is no change after a given number of 

iterations, stop and go to next step or repeat to process from step (2). 

6) Output the final states of neurons that denote the final correspondence pairs between 

the dominant points of the model object and the test object. 

The final discrimination results of Table 4.1-Table4.6 are illustrated in Table 

4. 7-Table 4.12. After the optimization, the consecutive correspondence pairs reliable for 

the discrimination are achieved and some initial false correspondence pairs are 

eliminated. 

4.4.3.3 Parameter Diseussioa 
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The selection of parameters plays a significant role in this experiment. As 

shown in (Equation 4.14), three items are used to characterize the symmetric weights 

C/cjl· For the first two terms, F(ji. f,J and F(jj, f,). their values are obtained from the 

initial 3-point matching, that is, if the length ratio and the interior angle of a triplet 

from the model and the test object are similar within a setting threshold, then the value 

is set to I, otherwise is set to -1. The selection of the threshold must be careful and it 

depends on the specific situation. For example, if a model object and a test object in the 

scene are almost exactly the same (in scale), for an accurate discrimination, the 

threshold for the length ratio should be near 1 and the threshold of the interior angle 

should be around 0. As the thresholds become larger, the robustness of the algorithm is 

increased, at the same time the mismatching may occur. On the contrary, as the 

thresholds become smaller, the algorithm becomes more sensitive to the variance of the 

object and an actually matched correspondence pair may be overlooked. 

The third item indicates the geographic relationships of the feature points. 

Specifically, it indicates the distance. A structural threshold is applied here because for 

occluded object discrimination, the distance is usually a more reliable feature than the 

angle. The selection of the structural threshold is based on the specific objects too. In 

the experiment, some model objects in the scene have some variances with the 

compared model objects. Such variances may be obtained by changing the distance and 

the viewing angle between the camera and objects when taking the pictures. The 

variances may be used to test the robustness of the algorithm. Generally, the structural 

parameter is set from 3-10 for a 320X240 image. 
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The selection of the weighting factors greatly affects the operation time and the 

final convergence correctness. In Nasrabadi-Li's algorithm (Nasrabadi, N.M. and Li, 

w., 1991 ), W; is different for the isolated and the occluded object discrimination and only 

the angle feature considered in setting the initial states of the neurons. As stated earlier, 

the distance is a more reliable feature than the angle. Hence, the values suggested by 

Nasrabadi and Li are W1=W1=0.2 and W1=0.6. In Lee's algorithm (Lee, J.S. et al., 

1 997), the feature points are detected by the wavelet transform and compared based on 

the integrated multiscale features (IMF). Lee regarded the IMFs nearly important as the 

feature distance, so he set W1=Wz=0.3 and WJ=0.4. In the proposed algorithm, since 

both the interior angle and the length ratio are considered in determining the initial 

neuron states, the distance play a role of a compromise between Lee and Nasbaradi-Li's 

method. From the simulation result, it is found that W1=W2=0.25 and WJ=0.5 can 

achieve the best optimization result for most objects. 

4.4.3.4 Energy Convergence Discussion 

The success for the global optimization is based on the convergence of the 

energy function of the network. Suppose the change of the network energy due to a state 

change (Lee, J.S., et al., 1997) in V;k is given by: 

(Equation 4.22) 
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For the decreasing of the system energy, the two items of (Equation 4.22) should have 

similar signs. Substituting (Equation 4.17) and (Equation 4.20) into (Equation 4.22), a 

more simplified version is obtained: 

(Equation 4.23) 

From (Equation 4.1 7), (Equation 4.18) and (Equation 4.19}, it is found that 

cikik = 1 

Tiki1 = Ciki1 - 6ii- 6 11 (Equation 4.24) 

Tikik =Cikik -6" -6u =1-1-1=-1 

Substituting (Equation 4.24) into (Equation 4.23): 

{Equation 4.25) 

The neuron V;k may change its state in two cases: 

{ 
when U a > 0.5, Va = 0 ~ 1, ~Va = 1, M < 0 } 

{Equation 4.26) 
when Ua <-Q.S, Va =1~0, ~Va =-1, ~<0 

Thus, the energy of the network is always decreasing, which ensures the convergence of 

the network. 
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Table 4. 7 Final discrimination result of Table 4.1 after optimization 

number I 2 3 4 5 6 
(scene\model) 
I 1 0 0 0 0 0 

2 0 1 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

s 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 1 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0 0 0 1 0 0 

14 0 0 0 0 1 0 

15 0 0 0 0 0 1 

Table 4.8 Final discrimination result of Table 4.2 after optimization 

lnde:s: number I 2 3 4 5 6 
(scene\model) 
1 0 0 0 0 0 0 

2 1 0 0 0 0 0 

3 0 1 0 0 0 0 

4 0 0 1 0 0 0 

s 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 1 0 0 

11 0 0 0 0 1 0 

12 0 0 0 0 0 1 

13 0 0 0 0 0 0 

14 0 0 0 0 0 0 
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Table 4.9 Final discrimination result of Table 4.3 after optimization 

Index number 1 2 3 4 5 6 
(scene \model) 
1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 1 0 0 0 0 0 

5 0 1 0 0 0 0 

6 0 0 1 0 0 0 

7 0 0 0 0 1 0 

8 0 0 0 0 0 1 

9 0 0 0 1 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 0 0 0 0 1 0 

15 0 0 0 0 0 0 

16 0 0 0 0 0 0 

17 0 0 0 0 0 1 

18 0 0 0 0 0 0 

19 0 0 0 0 0 0 

20 0 0 0 0 0 0 
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Table 4.10 Final discrimination result of Table 4.4 after optimization 

lodes: number 1 2 3 4 5 6 
(seene\model) 
1 1 0 0 0 0 0 

2 0 l 0 0 0 0 

3 0 0 1 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 l 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

II 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 0 0 0 0 0 0 

15 0 0 0 0 0 0 

16 0 0 0 1 0 0 

17 0 0 0 0 0 0 

18 0 0 0 0 0 0 

19 0 0 0 0 1 0 

20 0 0 0 0 0 1 
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Table 4.11 Final discrimination result ofTable 4.5 after optimization 

lndu number I z 3 4 
(sceae\model) 

1 0 0 0 0 

1 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 1 0 0 

9 0 0 1 0 

10 0 0 0 1 

11 0 0 0 0 

11 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 1 0 0 0 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 

zo 0 0 0 0 

11 0 0 0 0 

11 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 
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Table 4.12 Final discrimination result of Table 4.6 after optimization 

Index number 1 z 3 4 5 6 7 8 
( S(:ene\model) 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 

7 0 0 1 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 

12 0 0 0 1 0 0 0 0 

13 0 0 0 0 1 0 0 0 

14 0 0 0 0 0 1 0 0 

15 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 

18 0 1 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 

23 1 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 
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4.5 Location Estimation 

4.5.1 Coordinate Transfonnatlon 

After identifying the model object from the scene using the 3-point matching 

method and the modified Hopfield neural network optimization, the location of the 

model object in the scene can be estimated by performing a coordinate transformation 

(Ansari, N. and Li, K. W., 1993) (Lee, J.S. et al., 1997). In the discrimination 

experiment, the scale of the test and the model objects is not changed, so only rotation 

and translation are involved in the coordinate transformation. The location estimation of 

the occluded model object in the scene is by superimposing the model object to the 

scene and checking if it matches the identified object in the scene or not. 

In the coordinate transformation, two correspondence feature point pairs from 

the model object and the scene is extracted and used to calculate the translation 

parameter (denoted as tx and ty) and the rotation parameter (denoted as S,. Suppose two 

feature points in the model object be denoted as Pml (x"''' Yml) and Pml (Xml· Ym2J. and 

their corresponding feature points in the scene object be denoted by Psi (XsJ, YsJ) and Psz 

(Xs:z. YszJ. then Pml and Pm1 are mapped to Psi and Ps2 by the following equation: 

[
X11 ] [cosO -sin8Ix·,] [tx] 
Yst = sinB cosB y.,1 + ty 

(Equation 4.27) 
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The mapping of point P m1 to Ps2 can be obtained from the same equation. In (Equation 

4.27), the rotation angle 8 is computed from the angles of the two line segments 

Angle(.) e [O,tr] 

(Equation 4.28) 

In order to cover the whole range of rotation from 0 to 2"' the rotation angle 8 is 

obtained as: 

Where 

O = {/)/)+ K if Ax,..6x1 < 0 
otherwise 

And the translation parameters (tx. ty) are calculated as following: 

tx = X 11 - (x1111 cosO- y,..1 sinO) 

ty = Y11 -(X1111 sinD+ Y1111 cosO) 

(Equation 4.29) 

(Equation 4.30) 

(Equation 4.31) 

In the object discrimination, if two objects are matched with each other, all points in the 

model object and their corresponding points in the scene should satisfy the same 

equation for the coordinate transformation. Hence, the transformation parameters (tx. ty. 

B) computed from two correspondence pairs satisfy the rest correspondence pairs. 

Figure 4.18 illustrates two recovered scene images from the model objects by the 

coordinate transformation. 
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Ansari-Li (Ansari, N. and Li, K. W., 1993) and Lee (Lee, J.S. et a/., 1997) 

performed the location estimation by computing the distance between the model object 

and its recovered object in the scene. A score based on the distance was used to indicate 

the location difference between the two objects and regarded as a criterion to evaluate 

the discrimination accuracy. However, such a method has deficiencies. First, it is quite 

possible for the recovered boundary curve in the scene is not closed and an one-to-one 

correspondence between the points in the model and the recovered object cannot be 

obtained. Secondly, even if a model object is identified from the scene, its boundary 

curve usually does not exactly fit the recovered model object in the scene. The pixels of 

the identified object in the scene usually shift in curve smoothing, which may cause 

some error in calculating the parameters of the coordinate transformation. 

The location estimation is used to eliminate the false corresponding pairs in this 

thesis. As stated above, all of the correspondence pairs between two matched objects 

satisfy the same transformation parameters (tx, ty, 9). If there exists a false matched 

pair, its transformation parameters will not conform to those of the rest pairs. This idea 

can be implemented to eliminate the false matched pairs in object discrimination 

(Nasrabadi, N.M. and Li, W., 1991). 

4.5.2 Elimination of the False Matched Pair 
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(a) Recovered image of Figure 4.9 

./J n / I " 4 ' t f :' / 
! i I I 
~v~ 

if!J 
(b) Recovered image ofFigure 4.12 

Figure 4.18 Recovered images after coordinate transformation 
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As illustrated in Table 4.6-Table 4.12. although the Hoptield network enforces 

the constraint that each dominant point of the model object cannot match more than one 

dominant point of the scene and vice ve~ it cannot guarantee a unique match in the 

final result. As discussed earlier, the correctly discriminated correspondence pairs 

satisfy the same transfonnation parameters (e, tx, ty). Generally, a set of consecutive 

correspondence pairs (not less than 3) can be viewed as the reliable matched pairs and 

the parameters computed from these consecutive pairs can be regarded as the correct 

parameters for the coordinate transformation. Other correspondence pairs whose 

transformation parameters do not confonn to the correct parameters may be regarded as 

the false matched pairs and eliminated. Figure 4.19 illustrates a model wire clipper and 

its overlapped image with a cutter, Table 4.13 lists the discrimination pairs which 

include a false matched pair (4.8). To eliminate it, the transfonnation parameters for all 

the discriminated pairs are computed as shown in Table 4.14, which indicates (4,8) is a 

false matched pair because its parameters are too different from those of the rest ones. 

By eliminating the false matched pairs, the discrimination accuracy of the algorithm 

was improved. 
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Figure 4.19 A model clipper and its overlapped image with a cutter 
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Table 4.13 Discrimination result for Figure 4.19 

lades number I z 3 4 5 6 
(scene \model) 

I 1 0 0 0 0 0 

2 0 1 0 0 0 0 

3 0 0 1 0 0 0 

4 0 0 0 0 0 0 

s 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 0 1 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 1 0 0 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 0 0 0 0 0 0 

15 0 0 0 0 1 0 

16 0 0 0 0 0 1 

Table 4.14 False matched pair elimination by coordinate transformation 

Matched pair (ts, ty, 8) 

(1, 1) (1, 1, 0) 

(2. 2) ( o. 1, 0) 

(3, 3) (1. 1, 0) 

(4, 8) (7, 81, 213) 

(4, 11) (0, 0, 0) 

(5, 15) (1, o. 1) 

(6, 16) (1, o. 0) 
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ChapterS 

Result and Discussion 

5.1 Result 

A model image bank, which includes 15 model screw drivers. 15 model cutters, 

15 model wire clippers and 15 model wrenches, was built. The model objects were 

obtained by changing the rotation. translation and viewing distance {size) of the hand

tool objects when taking the photoes. 52 scene images consisting of the different 

overlapped combinations of the model objects were used as occluded samples to test the 

discrimination accuracy. To identify a model object in a scene image which consists of 

two or three overlapped objects, the scene image is compared with all of the model 

hand-tools in the image bank. For a scene image consisting of a cutter and a screw 

driver, if only one cutter in the model cutter bank is identified from the scene, then the 
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cutter in the scene can be regarded as a ••detected" object. If the cutter in the scene 

cannot be retrieved after being compared with all the model cutters, it is viewed as a 

.. missed" object. If the cutter or driver in the scene is falsely retrieved as an another 

model object (for example, the cutter is retrieved as a wire clipper), then it is regarded 

as a ''false matched" object. 

In the scene images, the overlapped objects can be classified into lightly, 

moderately and heavily occluded. The cutter in Figure 4.13, the wire clipper in Figure 

4.14 and the screw driver in Figure 4.16 may be viewed as lightly, moderately and 

heavily occluded respectively. A successful discrimination object means that at least 

three consecutive dominant points (the number of the dominant points in the model 

object varies from 4 to 8) of the model object are identified from its occluded version in 

the overlapped image. 

By the above standar~ the discrimination result is illustrated in Table 5.1 as 

following: 

Table 5.1: Discrimination result by comparing scene images with model image bank 

Real object in scene Detected object Missed object F•llely deemed ebjecl 

Scene 1 Cutter, wrench Both No No 
Scene 2 Screw driver, cutter Both No No 
Scene3 Wire clipper, cutter Both No No 
Scene 4 Wrench, cutter Both No No 
Scene 5 Screw driver, cutter Both No No 
Scene6 Wire clipper, cutter Both No No 
Scene 7 Cutter, screw driver Both No No 
SceneS Wire clipper, ~ driver Both No No 
Scene9 Screw driver, cutter Both No No 
Scene 10 Cutter, wrencb Both No No 
Scene 11 Cutter, wrencb Both No No 
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Scene 12 Wire clipper, screw driver Both No No 
Scene 13 Wire clipper, wrench Both No No 
Scene 14 Cutter, screw driver Both No No 
Scene 15 Wm: clipper, screwdriver, wrench Screw driver, wile clipper wrench No 
Scene 16 Wire clipper, wrench, screw dnver Screw driver. wmtch clipper No 
Scene 17 Wire clipper, wrench. ~driver Three No No 
Scene 18 Wire clipper, wrench, screw driver Wire clipper Wrench • driver No 
Scene 19 Cutter, wire clipper Both No No 
Scene 20 Cutter, wire clipper Both No No 
Scene 21 Cutter, screw driver Both No No 
Scene 22 Cutter, wire clipper Both No No 
Scene 23 Cutter, wrench, wire clipper Wire clipper Cutter, wrench No 
Scene 24 Cutter, wrench Both No No 
Scene 25 Cutter, wrench Both No No 
Scene 26 Wrench, screw driver Wrench Screw driver No 
Scene 27 Wrench. screw driver, win: clipper Wire clipper, wrench Screw driver No 
Scene 28 Screw driver, wire clipper, wrench Three No No 
Scene 29 Wire clipper, cutter Both No No 
Scene 30 Wrench. cutter Both No No 
Scene 31 Cutter, wire clipper Both No No 
Scene 32 Wrench, screw driver Both No No 
Scene 33 Wire clipper, cutter Both No No 
Scene 34 Wrench, screw driver Both No No 
Scene 35 Wire clipper. Screw driver Wire clipper wrench No 
Scene 36 Screw driver, wire clipper Both No No 
Scene 37 Two wrenches( small and big) Both No No 
Scene 38 W1re c:hpper, screw driver, wrench Three No No 
Scene39 Wire cliooer screw driver Both No No 
Scene 40 Screw driver. wrench Both No No 
Scene 41 Wrench, cutter Both No No 
Scene42 Wrench, cutter Both No No 
Scene 43 Screw driver, cutter Both No No 
Scene44 Screw driver, cutter Both No No 
Scene 45 Wire clipper, cutter Both No No 
Scene 46 Screw driver, cutter, win: clipper Cutter, wire clipper Screw driver No 
Scene 47 Wire clipper, cutter, wrench Three No No 
Scene48 Screw driver, wrench Both No No 
Scene49 Screw driver, wrench Screw driver wrench No 
Scene SO Screw driver, wrench Both No No 
Scene 51 Cutter, wrench, screw driver Wrench, cutter Screw driver No 
Scene 52 Cutter, wrench, screw driver Three No No 
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The summation for the result is shown in Table 5.2: 

Table 5.2 Summation of the discrimination result 

Total scene images 52 
Total objects in scene images 118 
Discriminated scene images (all objects are discriminaaed) 42 
Total discriminated objects in scene images 106 
Percentage of discriminated scene image 81% 
Percentage of discriminated object in scene image 9()0.4, 

Percentage of falsely discriminated object 0% 

The discrimination result shows that the proposed discrimination algorithm is 

successful. It almost discriminated out all of the lightly and moderately occluded 

objects, and could discriminate out some heavily occluded objects. 

5.2 Problem and Discussion 

5.2.1 Discrimination Rate 

The discrimination accuracy is affected by the sample objects. Generally, more 

difference between the occluded objects in the scene, more opportunity for them to be 

discriminated. For example, if two objects are almost similar and overlapped together, 

the algorithm may encounter difficulty in determining their identities from the model 

image bank. 

Another factor affecting the discrimination rate is the number of feature points 

extracted from the objects. More feature points will provide more information for the 

discrimination. For example, in the map discrimination (Ansari, N. and Li, K. W., 1993), 
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it is easy to extract many feature points from the map boundaries. Sometimes a map can 

provide 30-40 feature points after the curve smoothing. Consequently, when a model 

map is occluded in the scene, many consecutive feature points can still be obtained even 

more than half of the map is occluded. In the proposed experimen~ the heavily occluded 

objects have less opportunity to be identified than the lightly and moderately occluded 

objects. 

5.2.2 Robustness 

Robustness is an important criterion to evaluate a discrimination algorithm and 

it was considered in the algorithm development of the thesis. As discussed in Chapter 4, 

when extracting the dominant points from the object boundary, the curvature estimation 

rather than the polygonal approximation was selected because the dominant points 

obtained by the curvature estimation are more stable under image rotation and 

translation. Experiments showed that the same dominant points were extracted under 

rotation and translation of the object {See Figure 4.10-Figure 4.12). 

The algorithm was tested in the experiment by deliberately setting some 

variances between the model objects and their occluded versions in the scene. For 

example, the size and viewing angle of the hand-tools may be changed when they are 

put into the scene. Under such circumstances, the correct discrimination still can be 

obtained by adjusting the tolerance parameters in the 3-point matching process and the 

weighting factors and the structure parameter in the modified Hopfield network. 

However, since the algorithm is only rotation and translation independent (because 
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distance is considered in the Hopfield optimization), it is sensitive to the size change of 

the objects. In the discrimination test, some objects in the scene cannot be identified 

from the model image bank because their size is too different from that of the model 

objects in the image bank. 

The coordinate transformation which was applied to eliminate the false 

correspondence pairs also improved the robustness of the algorithm. 

5.2.3 Parameters 

Almost every step of the discrimination algorithm is involved with parameters. 

The functions and problems of the parameters have been discussed in detail in Chapter 

4. In the dominant point extractio~ the curve smoothing parameter and the magnitude 

threshold parameter for removing the spurious dominant candidates were introduced. 

Experiments showed that the smoothing width chosen as 8 was optimal for most 

objects. A bigger width may eliminate some salient points, while a smaller width may 

not remove the small concavities and convexities. The magnitude threshold parameter 

for removing the spurious dominant point candidates is important for the final dominant 

point extraction. For example, by selecting different magnitudes, different dominants 

can be obtained (See the wrench in Figure 4.11 and Figure 4.13). The number of 

dominant points can be adjusted to meet specific requirement by changing the 

magnitude threshold. 
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The disparity matrix fonnation step is involved with two parameters, the length 

ratio threshold and the interior angle threshold. The length ratio may vary from 0.8-1.2, 

while the angle threshold may vary from 5 to15 in the experiment. 

As discussed in the part of the modified Hop field network, the weighting factors 

W; and the structural parameter greatly affect the accuracy and computing time of the 

discrimination. During the optimization, the distances between the points are more 

emphasized, so W1 is bigger than Wt and W1. Experiments showed that Wt=Wl=0.25 

and W3 =0.5 were optimal for the hand-tool objects. The structural parameter was 

selected from 3 to 10 (the image size is 320X240). The performance of the network is 

sensitive to these parameters. A small change in the weighting factors probably 

introduces several false correspondence pairs and a small change of the structural 

parameter may increase the computing time from several seconds to several minutes. 

5.2.4 Algorithm Deficiencies and Future Improvement 

Two steps in the discrimination algorithm may be improved in the future. One is 

the 3-point matching method for building the disparity matrix, another is the modified 

Hop field neural network for the global optimization. 

As discussed earlier, the 3-point matching method may cause problem under two 

circumstances. One is that two different objects have similar small portions, another is 

an overlapped version of a model object is divided into several parts in the scene. The 

correspondence feature point pairs obtained under both cases will form sporadic clusters 

in the disparity matrix, which is not reliable for an accurate discrimination. The same 
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problem happens when using the sphericity analysis (Appendix m to perform the local 

comparison. 

The Integrated Multiscale Feature (IMF) (Lee, J. S. eta/., 1997) (Parker, J. R., 

1997) for extracting the object feature points may be an improvement for the 3-point 

matching method. The IMF uses the wavelet transfonnation to extract the feature points 

from the object boundary and express them in a heuristic form. By using the IMF, Lee 

(Lee, J. S. et al., 1997) offered the following equation to compute the coupling 

symmetric weights between the neurons: 

s s 
ciJ:il = W.F<"LI /;.,-f.:., n + w2F(Ll fj.y- t,,, I>+ wlF<I di.j - d~_J I> 

_v•l ,-1 

(Equation 5.1) 

Where/;.>· and jj.y are the yth elements of the IMF for the ith and the jth feature points of 

the model object, /k.y and fi.y are the yth elements of the IMF for the kth and lth feature 

points of the test object. The advantage of the above expression is that the threshold 

function F(x,y) can be expressed in a ramp-like fonn (Figure 5.1 (b)), not in the step 

form which was used in the proposed algorithm. The ramp-like function used to 

describe the symmetric weights can provide a more stable matching in the optimization 

process (Lee, J. S. et al., 1997). The wavelet transformation is very computationally 

extensive, but its fast computing algorithm may be used in extracting the object 

features. 

The .. local minima" problem is another problem which may be overcome in the 

future. In the discrimination experimen~ the correct discrimination result cannot always 
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be obtained because the modified Hopfield network cannot guarantee to converge to the 

global minimum energy state. A Monto Carlo algorithm such as simulated annealing 

(Haykin, S., 1994) (Herault. L. eta/., 1990) may be used to overcome such a problem. 

F(x,y) 

1 

' t 
lx-yl 0 

-1 

(a) 

F(x) 

1 

0 
X 

-1 

(b) 

Figure 5.1 (a) A step function (b) A ramp-like function 
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Chapter& 

Conclusion 

An algorithm applying a modified Hopfield neural network was designed for 

occluded object discrimination and a software package realizing the algorithm was 

developed with Unix C++. A model hand-tool image bank was built and 52 scene 

images containing overlapped model objects were compared with the image bank. The 

experiment result showed that the discrimination algorithm was successful. 

The thesis reviewed the current shape representation and discrimination 

methods, including global and local shape descriptors, graphic isomorphism and their 

specific applications. A Gaussian function was applied to smooth the object boundary 

and the curvature estimation was used to extract the feature points of the objects. A 3-

point matching method was implemented to build the disparity matrix for the initial 

comparison. A modified Hopfield neural network was used for the global optimization 

and the coordinate transformation was used to eliminate the false matched pairs. 

Finally, the parameters involved in the algorithm were discussed and suggestions for 

future improvement were presented. 
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Appendix/ 

Dynamic programming 

A fundamental property of the dynamical programming is the .. principle for 

optimality" (Dreyfus, S.E. and Law, A.M., 1977). The dynamic programming is usually 

used as a tool for the global optimization in image matching (Gorman, J.W .• et al .• 1988) 

(Ansari, N. and Delp, E.J., 1990) and voice recognition (Sakoe, H. and Chiba, S., 1978). 

The optimization of the dynamic programming is based on an initial comparison. 

For example, in shape matching, the Fourier descriptor or the sphericity can be extracted 

as the feature property of the object. The feature point matching can be performed by 

comparing the properties of all of the feature points of the model object with those of the 

test object. The comparison can be clearly illustrate by building a disparity matrix whose 

row indexing number is the feature point number of the test object and column indexing 

number is that of the model object. An elements in the disparity matrix, ijth, indicates the 

measure between ith feature point of the test object and jth feature point of the model 

object. This measure is described by a value. For example, if the property is described by 

the sphericity, a value of 1 means a perfect match. However, from a global view, the 

above local matching method for identifying a model object from its occluded version in 

a scene is not good enough. 
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This problem may be overcome by the dynamic programming. The task for the 

dynamic programming is to find a shortest path which traverses through either all the 

rows or all the columns of the disparity matrix (the elements along this shortest path will 

be the optimized matched correspondence pairs). The traversing path should satisfy the 

following two constraints: 

1) A feature point of the model object cannot match with more than one feature point 

of the test object. 

2) A feature point of the test object cannot match with more than one feature point of 

the model object. 

Obviously, the dynamic programming can be viewed as a global optimization 

approach. However, it produces desired paths when the locally optimal path is also 

globally optimal. The case that the locally optimal path is not globally optimal is still to 

be explored. 
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Appendix II 

Sphericity under Triangle Transformation 

The sphericity (Sonk~ M. et al., 1998) is usually used in 2-D shape analysis and 

regarded as a similarity or dissimilarity measure method. In shape classification, after 

extracting the shape features from a model object and a test object. The similarity or 

dissimilarity measures are used to quantify the difference between the shape features. 

As illustrated in Figure A2.1, a triangle bas an inscribed ellipse, the sphericity is 

defined as the ratio of the geometric mean to the arithmetic mean of the lengths of the 

principal axes (denoted as d1 and d2) of the inscribed ellipse (Ansari, N. and Delp, EJ., 

1990), that is: 

For two similar triangles, their sphericities are same. To explore the resemblance between 

two triangles based on the sphericity analysis, a triangle transformation is introduced 
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The triangular transformation is uniquely defined by an affine transform. The 

affine transform is the mapping of X to U (X Ubelong to~). and defined as: 

U=AX+T 

Where 

X = [; J. U = [: J. T=[;]. A = [: ! ] and det(A) ,. 0 

Coefficients of the affine transform which maps one triangle into another, as shown in 

Figure A2. 1, are computed using the following equation: 

and 

Where 

(u;, vJ are the mapped points of (x;, yJ, i=/,2,3. Since vertices of a triangle are 

noncollinear, det(B)~ and K 1 exists. The sphericity of the affine transform can be 

computed as follows: 
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If two triangles are similar, the sphericity under the affine transformation will be 

1. The less similar are the two triangles, the smaller is the value of the sphericity. The 

affine transformation is invariant under image rotation and translation. Since the 

sphericity can be used to measure the similarity between two sets of triplets, thus can be 

extended to measure the similarity between two objects. 

(x,, y,) 

Figure A2.1 Sphericity under the affine transformation 
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Appendix IV 

Travelling Salesperson Problem 

The travelling Salesperson Problem (Schalkoff, R.J ., 1992) is a good example for 

understanding the Hopfield neural network. The problem statement is for a travelling 

salesperson to travel n cities, how he can find an optimal route to travel all of the cities 

while achieving the shortest total travelling distance. 

As shown in Figure A3.1, for n cities, N=n1 nodes are required to represent the 

tour. The output will be Vx;, where the subscript X refers to the city and i refers to the 

position in the tour. The tour begins and ends at the same city: 

and 

The Liapunov function describing the problem should satisfy the following conditions: 

1) Energy minimum must favor states that have each city once on the tour. 

2) Energy minimum must favor states that have each position on the tour only once. 

3) Energy minimum must favor states that include all n cities. 

4) Energy minimum must favor states with shortest total distance. 
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So the energy function may be expressed as: 

II II II 

+ L L Ld.rrVx;(VY,i+l +Vr.I-1) 
Xal Y•l.YotX i•l 

Where A. B. C and D are positive, E is non-negative. The meaning of each item in the 

energy function is as following: 

1) First term is 0 iff there is a single Vx;= 1 and all the other Vx;=O, which corresponds to 

that each city is only in the tour once. 

2) Second term is 0 iff each column of the matrix contains a single value of 1, which 

corresponds to that each position on the tour has unique city associated. 

3) Third term is 0 iff only n of the terms of the sum of Vx; that have value of l, which 

corresponds to total number of .. 1" in the matrix is n. 

4) The final term gives the total distance travelled, the last term also enforces the 

constrains: 

and 

Where the connection between the nodes (X; and lj) is: 
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The first item is the lateral inhibition on the rows in the matrix with weight -A, the 

second item is the lateral inhibition on the columns with weight -B, the third item is the 

global inhibition with weight -C and the forth item is the inhibition on the two 

neighboring columns and the weight -D is in proportion of the distance between the two 

corresponding cities. 

position on tour 

0 

0 

0 0 . o 

0 0 

0 0 

0 0 

0 0 

0 0 

city 

A 

B 

c 

D 

E 

Figure A3.1 A 5-city example of travelling salesperson problem 
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