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Abstract

In this monograph, we develop a subclass of variable cosflicient multistep (VUM)
methods, which is A-contractive.

We introduce a set of simplifying conditions to relate VOM methods to the
Padé approximants of the exponential function exp(:). We then proceed with the
construction of ne arbitrary order, A-contractive, variable stepsize VOM methods.
Both linearly implicit and fully implicit families are considered.

The convergence properties of VCM methods are discussed in chapter 3. We
show the stiff-independent convergence for VCM methods on general nonlinear dis-
sipative problems. We also demenstrate convergence of VCM methods when applied
to singular perturbation problems with the convergence being independent of the
perturbation parameter.

Finally, in chapter 4 we report on a set of numerical experiments with fourth

and fifth order linearly implicit and fully implicit methods.
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Chapter 1

Preliminaries

1.1 Initial value problems and the concept of
stiffness

The mathematical modelling of many problems in physics, engineering, chemistry,
biology etc. gives rise to initial value problems for systems of ordinary dilferential
equations

v=Jley)e ylee) = g (re1)

wherer €R. y € R" and [ : RxR" — R"*. For [ continuous in .~, a sufficient condition
)

to ensure (1.1.1) has a unique solution is the following Lipschitz condition:
|[{x.7) = f(c. )| < L|g = vl for all 4.y < R" and |[or — ryl - & (1.1.2)

There have been many studies on the numerical methods to solve initial value prob-
lems as described above. Among all initial valce problems, the class of so-called
“stiff” initial value problems commands more attention {rom numerical analysts.
Nowadays, the most popular methods for computing solutions of stiff problems ate

implicit BDF (Backward Difference Formula) methods (see for example, Gear (1971),
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Lambert 1991)), which in part involve computing solutions to nonlinear systems of
equations at each step of the computation.

We will develop a subclass of variable coefficient multistep methods that deals
with stiffness. For the numerical solution of (1.1.1) we shall deal with finite difference
equations solved in a step-by-step fashion. Only an approximation y, to the solution
y at grid points r, is produced. These grid points are defined by r, = v,y +A, (1 =
1 . .N') where the numbers /i, > 0 are the stepsizes and ry = . If all stepsizes are
equal, say h, = h (1 <n < N) the grid {r,} is said to be uniform.

During the numerical integration errors will inadvertently be introduced. Such
errors are mainly caused by replacing the differential equation with a difference
equation, which account for so-called local discretization errors. Errors will also be
introduced in the computation by virtue of the computer arithmetic. We should
always make efforts to keep these local errors small when integrating a differential
equation. For example, if we have two sequences {{,. i, } satisfying the same dif-
ference equation for different initial values, we would like to know whether |7, — y.|
remains small for all n when |7, — yo| is so. Furthermere, we would like to know
whether the global error |y(r,) — y,| remains small.

We consider the following simple illustration problem from Hundsdorfer (1984).

Example 1.1.1 Consider solving
y' =\ A= ~10% y(eo) =yo #0
using Euler’s method, which on y' = f(y) reads

Yn = Yn=1 + A f(yn-1). (1<n<N) (1.1.3)



Assuming 1, is exact, one can easily show that the error between exact and nu-

merical solution would be

h* hene
."('Pn) = ln = “2_””(6)1) =

. . (" .
LTI B o PR S AN

Away from ¢ = ., where the solution becomes quite smooth, the error term above
suggests small errors even with relatively large values of h. Moreover, we already

know this problem is contractive, that is
lu(en +0) = G(ra + R < |y(r.) = i(r)l

for any A > 0 and any two solutions y(.r,). 7(r,) of the differential equation. Sub-

stituting f(y) = Ay into (1.1.3) and solving the resulting difference equation gives
Yn = (1 4+ hA)"yo. 1<n<y

for the problem y' = \y whose exact solution is y(¢) = ¢ *'y. For two sequences of

approximations computed with different starting values #y, o, we have

[§n = ] = {1+ WA 0 = wol, 1<n< .V

~ 10%

When h) is large, as would be the case with say A = 107", then |1 + /A

Assuming a uniform grid, .V = &~' = 10%, and we thus have the unfavorable result
|Gy = yx| = 1000y — yo

which does not correspond with the behavior of the exact solution. For this example,
Euler's method preserves the problems’ contractivity property only if 0 < & -~ 107"

a severe restriction in light of considerations based only on the error term.



When employing the backward Euler method, i.e.

Yow = Yot + hf(.'/n)
from which §, — .. = (1 = hA)™"(jjo — yo) is obtained , and therefore
l.’7n - .'/u| = [!]'n - .'ju|- 1<n <N

for all step sizes ## > 0. This is a completely different behavior compared with result
by the explicit Euler method. The latter compares favorably with the behavior of

the exact solution.

Stiffness in a differential system is the combination of many factors, such as the
maximal eigenvalue, the ratio of the maximal and minimal eigenvalues of Jacobian
matrix of f(.r.y), the integration interval. It is difficult to give a completely satisfy-
ing definition for there are many facets to the concept of stiff differential equations.
The most important common feature is that when such equations are being solved
with standard numerical methods (e.g., the Adams’ methods), the step size h is
forced to be extremely small in order to maintain stability — and far smaller than
would appear to be necessary based on a consideration of the truncation error alone.

For our purposes, we employ a definition from Shampine and Gear (1979, p.2):

“ By a stiff problem we mean one for which no solution component is
unstable (no eigenvalue of the Jacobian matriz has a real part which is
at all lnrge and positive) and at least some component is very stable {at
[rast one eigenvalue has a real part which is large and negative). Further,

we will not call a problem stiff unless its solution is slowly varying with



respect o the most negative part of the vigenvalues... . Consequently o

problem may be stiff for some intervals and not for others. ™
Lambert (1991, p.217-221) also gives the foliowing characteristics for a stiff problem:

1) all its cigenvalues have negative real parts a od the stiffness rabio is
large,
2) stability requirements, rather than those of accuracy, constram the

steplength,
3} some components of the solution decay much more vapedly than others,

4) it oa given interval, the urighbouring solution curres approach the
solution curve at a rate which is very lavge in comparison with the it

at which the solution varies in that inéerval,

1.2 The one-sided Lipschitz condition and the
logarithmic norm

For the stability analysis as well as for existence and uniqueness of solution, it is
often assumed that the function [ appearing in the right-hand side of the difterential

equation satisfies a Lipschitz condition (1.1.2) which implies
5z + Dr) = yla + D) € 40N(0) = pla)l, forva € o <+ Lo 2 7 (1.21)

for any two solutions 7, y of the differential equation. There exists a rather satis-
factory theory by means of which one can predict how well a numerical scheme will
approximate the exact solution y of (1.1.1) provided that the product Z/ is not too

large and h L is sufficiently small.



Many results concerning the stability, convergence and solvability of numerical
methods for initial value problems are based on /i L small . it is clear this condition
is not practical for dealing with stiffness because stiff problems usually involve large
values for /.. So we turn our attention to the one-sided Lipschitz condition and
the notion of logarithmic matrix norm to improve our analysis. On R" let < -.. >
be an inner product and || - || the corresponding inner product norm defined by
| v ||*:=< n.u >. Let M, C R" be a convex region on which the function f(r.y)

can be regarded as a function of y only.

Definition 1.2.1 The function f(r.y) and the system y' = f(r.y) are said to

satisfy a one-sided Lipschitz condition if

< fley)=fleg)y—g><v(e)ly-q I (1.2.2)

holds for all y. 7 € M, and for « < r < b. The function v(r) is called an one-sided

Lipschitz constant.

It is important to note that 1/(.r) need not be restricted to being positive. If f(z.y)
satisfies a Lipschitz condition, then it satisfies a one-sided Lipschitz condition. This

can be seen from
< Seoy) = i)y =G > W (eey) = Sl -y = 3l < Lily = 511%
Let y(z), (). r € [*0,F] , be any two solutions of y' = f(r,y) with initial values
Yo. Hoe Yo # jJo. We introduce the function
®(r) =i §lr) = y(o) 17
We have

#(r) = 2 < () — i(e), §(2) - y(2) >,



and when (1.2.2) holds, it follows that ® then satisfies the differential inequality
‘b(.r) < 20 (ar yB(r). 2 [ea. J.
Multiplication of both sides with the integrating factor

nf=) = exp(—?l/rr v(r)dr)
gives
S(c)n(r) + ®(r)i(r) < 0

which in turn leads to the inequality
d
—[®(r)n(r)] <0
dr

This means that ®(.r)y(r) decreases monotonically for .~ € [, F|]. So we have,

I 5(c2) = y(22) [I< exp( / p(r)dr) || i) = ylen) I (1.2.3)

for all ry. r, satisfying ry <oy < up < F. Thus if v(r) < 0 on [ry.F], we see that

the true solution to y' = f(r.y) bears a contractivity property with respect to the

norm in use, that is, from (1.2.3) we see that with v(r) nonpositive

I 5(22) = p(ea) NN Aen) =yl 1 (1.2.4)

An initial value problem with this property is normally referred to as being dissipa-
tive.

The results concerning the one sided-Lipschitz condition are based on the norms
derived from inner products. Dahlquist (1959) further introduced the logarithmic
matrix norm which is not restricted to the inner product norms. Contractivity
results can then be obtained for arbitrary norms on R" and they are related closely

to the one-sided Lipschitz condition.



Definition 1.2.2 The logarithmic norm ji{A] of a square matrix .1 is defined by

(1.2.5)

. T+La) -1
plAd] = &h_l‘t(1'+ A

where [ is the identity matrix and A € R.

Note that jufA] is well defined since the above limit exists for all norms. For the

., on R", the fomulae to compute the corresponding

norms || - |, || - [}z and ||

logarithmic norm are as following,

mid] = mjax(ajj-}-Z]a,Jl).

£
A+ AT
ﬂ'l[l"] = '\nmx (_2—‘)»
fo[d] = max (a,, + Z I”Ul)-
' J#

The logarithmic norm is also useful tool in studying the contractivity of two

solutions. The following theorem was derived by Dahlquist (1959):

Theorem 1.2.3 Let || - || be a given norm. Let v(r) be a piccewise continuous

funetion such that

Then, for any two solutions y(r), j(e) of y' = f(x.y) satisfying initial conditions

W) = o) =0 # 7
| Gea) = e2) IS exp( [ (et 1] 3er) = ) I

forall &y, rqy salisfying ro <y <y < F.



We can also see the close connection between the one-sided Lipschitz condition
for inner product norms and the logarithmic matrix norm from the following lenima

of Hundsdorfer (1984) (see also Hairer & Wanner (1991,p.192)).

Lemma 1.2.4 Lel D C R" be open and conver, and Ikl v & R Suppose [ s

differentiable on 1. Then

Re < flo g)= Sy —y><vii-yl~ Jorall (e.g) (ron) e R -,

if and only if

wlfulroy)] € v for all(r.y) e R < 1)

We have seen that the one-sided Lipschitz condition or logarithmic matrix norm
ensure the dissipativity of the problem y' = f(.r.y). The classical Lipschitz condition
cannot do this, Look at the simple examples ' = y and 3" = ~y, both have the
same Lipschitz constant +1, but the solution of the second is dissipative while the

first is not.

1.3 Classical linear multistep methods

The standard form of a linear multistep method is
k !
Z”].‘h&; = hz#’jjfntv (k b 1) (1-3~])
j=0 =0

where h = &, — Loy, n = 1,2,..., f, = f(2,,4;), £, = £y + jh, y is the munerical

approximation to y(r,) and «j, 3, are constants subject to the conditions

o =1, || + Ao} # 0.
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More precisely, (1.3.1) is called linear k-step method because y,,, is computed
from the data v.. 441, Yusik-1. The methods are distinguished between explicit
(.3, = 0) and implicit {;% # 0). An implicit scheme necessarily involves solving a
nonlinear system of equations at each r, 4, n >0,

As the numerical solution of a multistep method does not depend only on the ini-
tial value problem (1.1.1) but also on the choice of the starting values {y;. ys..... Y1}
we introduce the following definitions following closely Hairer, Ngrsett & Wanner

(1987).
Definition 1.8.1 The local crror of the multistep method (1.3.1) is defined by
Lo :=y(er) — m

where y(r) is the exact solution of y' = f(.z. y), y(re) = yo and y, is the numerical
solution obtained from (1.3.1) by using the exact starting values y; = y(«;) for

J=0.1,-- k-1
Now associate with (1.3.1) the linear differential operator L defined by

L(y, o h): Z[nu(r-}-ﬂz -—hHJJ(L-}-Jh)]

Definition 1.3.2 The multistep method (1.3.1) is said to be of order p, if one of
the following two conditions is satisfied:

1) for all sufliciently regular functions y(r), we have L(y,r,h) = O(h"*1);

2) the local error of (1.3.1) is O(h"*!) for all sufficiently regular differential equations

(1.1.1).
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We define the first and second characteristic polynomials of (1.3.1) by
: .
p(€) = ZHJCJ. (q) :::}_J A, (1.3.2)
a=0 =0

where ¢ € C is a dummy variable. Now the linear multistep method (1.3.1) can be

written in the form
p(E)y, = ha(I) ],

where [ is the forward shift operator defined by
EF, = Fup, E*F, = E(IEF,) = Fhyy. et

Theorem 1.3.3 (Hairer & Negrsett & Wanner 1987) The mullistep method (1.:3.1)

is of order p, if aud omly if ane of the following cquivalenl condilions is salisficd:

k k k
/) an =0, Z(U_j"‘—mz,d_,_j"'_l =0 Jor m=1,....p
=u =0 =0

2) ple*) — ha(e")y = O(A™YY  for h — 0.

) B0 =0¢-) o <

For a given numerical method, we are concerned about not only its convergence

but also the speed of convergence. We introduce the following notation for conve-

Jo= Iy . . .
= n is a fixed integer, denote the numerical

h

nience, given .r and h such that
solution:

() =y when o — .oy = nh.

A minimal requirement would be that y,(r) converges to the exact solution y(.:) as
h — 0. Furthermore, when [ is smooth, it is natural to expect the rate of conver-

gence to be roughly comparable to the order of the method. Let 1) = {(.r,y)|r
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[ran Bl w(r) — y < 0} where y(r) is the exact solution of (1.1.1) and b is some

positive number.

Definition 1.3.4 (Convergence) The linear multistep method (1.3.1) is called con-
nergend, if for all initial value problems (1.1.1) satisfying the Lipschitz condition

(1.1.2) on 1) and [ is continuous on [J),
() = m(r) -0 for h —0,.r € [T
whenever the starting values satisfy
y(ro 4+ jl) = yr(eo+ jh) -0 for h—0, j=0.1.... bk —1.

Method (1.3.1) is convergent of order p, if for any problem (1.1.1) with f sufficiently

diflerentiable, there exists a positive hg such that
Il u(r) = yn(e) || CH for h<hy
whenever the starting values satisfy
I} wloo+ Jh) = yn(ao +jH) |S Coh? for h< hy, j=0,1,.... k-1
We assume that a unique solution of (1.1.1) exits on [z¢, I].

Definition 1.3.5 The multistep method (1.3.1) is said to be consistent if, for all

initial value mroblems satisfying Lipschitz condition (1.1.2),

.1
,ll.l_l.'rll) -EL(y. r,h) =0, L =g+ nh.
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Definition 1.3.6 The multistep method (1.3.1) is said to be :zero-stuble if, for all
initial value problems satisfying Lipschitz condition (1.1.2), there exist constants A
and hg such that

“.’/n - .’7n” E I\'”.’Ill - ’.hl”

for all vy < F andall # €(0.4,), where y,,. . are two numnerical solutions.

Dahlquist (1956) was the first to find the equivalency of consistency, zero-stable and

convergence.

Theorem 1.83.7 Necessaryand sufficient eonditions for Hie wnllistep welhod (1.0.1)
/] J /

to be convergent are that it be both consistenl and zrro-stable,

The most popular convergent multistep methods are Adams methods and BDI
methods. These methods have a long history and are efficient in integrating differ-
ential equations. Adams methods are derived through numerical integration from

the identity

Lot h

!/(J?n+k) = !/(J‘n+k—1) + / ,u'(l)(H.

Loy ph

Replace y'(r) by f(r, y) and deal with the integration term by polynomial interpo-

lation at
(-'L.n, fn)q (-[u+ls fn+1 )a e (-rn+k-—i 3 fn+k-l )

Using Newton backward difference formula, we obtain the explicit Adams-Bashforth

formula:
kel
Yntk = Yntk=1 + h Z'/] vJ fn+k—l
J=U
where
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The following implicit Adams-Moulton method

k
Yotk = Untk=1 + h Z '7; VA P

=0

T i—s+1
At 1V q
= 1)/“( ; ),/.

can be obtained similarly but with the interpolation at

where

('rvu fn)n(-’:n+lvfn+l) ----- ('rn+k-fn+k)~

For instance, taking & =3 in the above, we have:

23 16 a9 ..
Unes = Ynt2 + 0 [Efr[+’2 - Efn+] + ﬁf”] ,  Adams-Bashforth (explicit);

and
9 19 5 1 T

o = Ung2 +h ['2_4f:1+5i + 5’1{71-{-’.’ - E‘i'fn-H + 5‘_1[11 . Adams-Moulton (lmphClt).
Backward Differentiation Formulae (BDF) have the form

k

Z Gling; = h'.dkfn+k- (1.3.3)

=D
Adams methods are based on numerical integration whereas BDF methods are based
on numerical differentiation of a given function. Assume that the approximations
Yneeo o Untk—y to the exact solution of (1.1.1) are known. We consider the polynomial

¢(.r) which interpolates the values {(&;,4,)]i = n,.... 71 + & — 1} to detive a formula

for y,4++. Express this polynomial in form of backward differences, that is,

k —s+1 ;
q(£)=q(rn+sh) = Z(—I)J( j ) O Yk

=0



The unknown value 4,44 will now be determined in such a way that the polynomiul

() satisfies the differential equation at at least one grid-point, i.c.,

‘I’(-ru+i;-r) = f(-"n+k—r cWytk—r )

When » = 0, we obtain the implicit formula

1
S A sk = b (1.340)
=0

For kb = 1,2..... 6, BDF methods are convergent and zero-stable. We list BDF

coeflicients as follow:

k=1,
k=2,

L =3,
k=4,
k=5,
k=86,

Yapt — 0 = /’ju-H
3 | .
E.U!H—'.! - 2.'/u+l + Tj.'/rx = hjn-{—z

11 4 1 .
T ¥n+n — Sinae + aHutr = JUn = hy, o7

%.’/n«{-'l - 4.'/1:-6—.'! + 3.'/11-{-1 - i.’/n-}-l + ,—["”n - hfu [

137 IR}
T()'!}"'H" - 5.’/n+-i + 5.'/11+.'1 - 'Tf.'/n+'.’

5 1 -
FJUngt = Fln = hfoss
147

15 20
w0 Unt6 = Onas + Tt — FUnsn

15 [ 1 .
+T'.'/u+2 - _E‘yu-}-l + nlhe = h.ln-fli

1.4 A-stability and A-contractivity

For integrating stiff problems, one cannot be satisfied with the zero-stability and

convergence which requires the product of stepsize and Lipschitz constant he kept

small. In the 1950's, people began noting inefficiencies when integrating some prob-

lems despite using convergent methods. Dahlquist (1963) formalized the notion of

A-stability for dealing with stiffness and provided several important contributions

in this subject area.
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Consider once again the linear equation
y' = Ay Ite(A) <0. (1.4.1)

Apply (1.3.1) to (1.4.1), we get a difference equation

& k
>0y =hA > s, (1.4.2)

1=u J=0

whose characteristic equation is
a(¢) = pup(¢) =0, p=hA
So the stability region of (1.3.1) can be regarded as the following set in C
Se={pect(p)] <1y

where (1) are the roots of the characteristic equation. The solution of the difference
equation (1.4.2) is bounded when |[((;0) < 1.
Cienerally, we can define the stability region of a numnerical method to be the set

in €
S = {yi « € : the numerical approximation to (1.4.1) are bounded for arbitrary r}

where jo = h A\, \is a complex constant and % is the stepsize used to get the approx-

imation.

Definition 1.4.1 (A-stability) A numerical method is said to be A-stable if all
numerical approximations are bounded for arbitrary n when it is applied to the test
equation (1.4.1) with a fixed positive /# and a (complex) constant A with a negative

real part, f.e., S D C_.
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Figure 1.4.1: A(a)-stability region on i1\ plane

Theorem 1.4.2 (Dahlquist barrier) An A-stable lincar multistep nrcthod (1.0.1)
must be of arder p < 2. Fuvthcrmore, an A-siable ndteste p aecthod cannot be

caplicit,

This restrictive result indicates that if linear mullistep methods are to he used,
the requirement of A-stability has to be relaxed. Widlund (1967) defined A(n)-

stability as follows:

Definition 1.4.3 (A(«)-stability) A numerical method is called A{a)-stuble, for
some 0 < «v < I, il all numerical approximations to (1.4.1) are bounded for arbitrary
n with & fixed and \ satisfying [arg(—A)| < v, [A} #£0. ie.,

S8, ={p|urg(—p) < o}

A typical region of A(«)-stability is shown in Figure 1.4.1. When « = 5, we have
A-stability.
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I|
Il

AR l

Figure 1.4.2: Stiff-stability region on h)A plane
An alternative weakening of A-stability was introduced by Gear {1969):

Definition 1.4.4 (Stiff-stability) The method (1.3.1) is called stiffly-stable if S D

{yi: He(ji) < =D} for some [) > 0 and that the method is accurate in a rectangle
~ 1} < Re(yt) € a, -0 <Im{p) <0
for some 0. u > 0.

A typical region of stiff-stability is shown in Figure 1.4.2.

The region of absolute stability of the Adams-Moulton methods, though reason-
ably sized, turn out to be inadequate to cope with the problem of stiffness, where
stability rather than accuracy is paramount. A class of implicit linear A-step meth-
ods with regions of absolute stability large enough to make them relevant to the
problem of stiffness is the class of Backward Differentiation Formulae (1.3.3). BDF

methods are widely used for the integration of stiff differential equations. They
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Table 1.4.1: Angles of A(n)-stability for BDF methods

k 1 2 3 4 5 6
o 90° 90° 88° 7T3° 52 1Y°

were introduced by Curtiss and Hirschfelder (1952). For & = 1.2, BDF methods are
A-stable and for 3 < &k < 6, BDF methods are A{n)-stable and the corresponding
a values are shown in Table 1.4.1.

Nevanlinna & Liniger (1978, 1979) point out however that in the context of a
variable step length method, A-contractivity may be a more appropriate property

than A-stability. Let
Vi 1= (Wntkets Sithimzs o oo Yo )l"
Definition 1.4.5 A multistep method is called A-contractive if
| Vi 11 Y2l forall n2z0
when the method is applied to test equation (1.4.1).

Clearly, contractivity of a method at = implies stability at z; if a method is A-
contractive, then, by induction, |} y, || || yu || for all v, i.e., the discrete solutions of
the test equation computed by such a method are globally non-increasing whereas
those generated by a stable method which is not contractive may grow, bonndedly.
In the variable step size case, stability is more difficult to characterize. Stability is
a global property, while contractivity is a local property. So contractivity results
as opposed to A-stability results are easier to generalize to time-dependent and

nonlinear systems, or to discrete solutions computed with variable steps. By virtue
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of Dahlquist’s order barrier theorem, there exist no linear multistep method of order
;- 2 which are A-contractive and an explicit linear multistep method cannot be

A-contractive.

1.5 Variable stepsize multistep methods

For reasons of efliciency one needs to be able to change the stepsize as the integration
proceeds. There are two basic methods to do this. The first is to interpolate the
previously calculated back points and use this to determine the new back points at
a new uniform grid spacing. The main problem with this method is that frequent
changes in the stepsize may cause instability in the calculated solution. The second
method is to allow the stepsize to vary and maintain the proper order by adjusting
the coeflicients in the multistep method. This method is generally superior to the
first method in terms of stability. There is no reason to expect those important
results (such as stability, convergence) derived for fixed stepsize, still to hold when
a stepsize change is in effect. So we need to reconsider the stability and convergence
properties of a method during the step size changing,.

Gear & Tu (1974) study convergence and stability of variable stepsize multistep
methods. In general, let h, = r,4; - ry4,-1, J = 1,2,...,k Now the coefficients
o, 3 of multistep methods (1.3.1) depend on #j. For high order methods, the
coeflicients become complicated and difficult to analyze, since k& is large. So they
consider simultaneously another strategy for variable stepsize multistep methods.

Namely, for & step methods, keep h fixed for at least £ — 1 consecutive steps. Let



ri=hyfhy and for v € {1..... k—1}, let

Fngy —dnpymr = hye j=1o000 b —u;
Wngy — dnpg—t =hoe J=k—u+1,... .k

Results by Gear & Tu (1974) and Gear & Watanabe (1974) show thal a variable step-
size variable order algorithm based on Adams-Bashforth-Moulton (ABM) methud
with step-changing achieved by a variable coefficient technique is always zero-stable
and convergent. Calvo & Lisbona & Montijano (1987) obtained zero-stability under

the condition the step ratio r < rj for k-order BDF method with
Py =30, 15 = 2781, ) = 1.971, ri = 1.681, r} = 1.312.

These bounds are for keeping stepsize fixed at least & steps. The bounds are inuch
smaller when stepsize changes are allowed at every step. Obtaining an upper bound
r for step ratios of zero-stable and convergence methods is the underlying idea in
Gear & Tu (1974), Grigorieff (1983) and Skeel & Jackson (1983).

Moreover, Rockswold (1988) points out that the BDF methods do not necessar-
ily remain zero-stable {even for a fixed order) when the stepsize is varied. When
changing the stepsize, the region of absolute stability of a BDF method decreases
according to a rule dependent on stepsize ratios h, /li, ;. He gives the A{cr)-stability

region with varying r for BDF and so-called n-type methods (see table 1.5.1).

1.6 Results about Padé approximations and ma-
trix functions

In the analysis of stability and contractivity of numerical method: for ODE’s, the

Padé approximation to the exponential function ¢° plays a pivotal role. A Padé ap-



Table 1.5.1:  Angles of A(n)-stability for variable stepsize BDF methods

BDF -2 r 0.5 1 1.5 2 2.5
(v 90° 90° 76° 52° —
BDF -3 » 0.5 1 1.5 2 2.5
o 90° 86° 26° - -
BDF -4 » 0.6 1 1.1 115 2
o 90° T73° 55° 42 —

A dash means no positive value for a. r = hy/hy.
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proximant to a function [ is defined by a rational function [11t/n](2) := P (2)/Qu(2),

where /°,, and (J,, are polynomials of order 1 and 1 respectively, satisfying

) ~
lnx(‘v) - f(:) — ()(:m+n+l)l

Qu(+)

The Padé approximantions to the exponential function ¢ is well-known and bears

a good number of important properties. The following explicit representation is in

Perron (1913). More accessible references are Baker & Graves-Morris (1981, p.8-14)

and Butcher (1987, p.75).

Lemma 1.6.1 The [m/n] member of the Pad¢ table for the crponential function e

is given by Py /Qu. where

m

mi(m +n-~i)

ot

Pu(z) =
(2) 2 (m + )il (m — i)™

1e=0

2 ol (m+n—1)!

Qu(z) = Z “ (m 4+ n)lil(n ~ z)'(_:)i'
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In the stability analysis of most numerical methods for initial value problems
applied to the linear test equation y’ = Ay, where A is an n ~ » matrix, one derives

recursion relations of the form
oo(h Vg = (W VDnan—y + .o+ oc(h )y

where each (=) is a polynomial. The size of the ratios ¢u(h:1)"'w,(h:1) becomes
important and these rational functions furthermore tend to be intrinsically linked to
rational approximants of the natural exponential. We give the following two results

pertaining to this issue and these will later play an important role in our analysis.

Lemma 1.6.2 (Wanner, Hairer and Norsett, 1978) The [ini/a} Pade upprorimants
of & with n =2 < m < nare strictly Lewnded by 1in maodulus for all ¢ G2 omth

Re(z) < 0.

The A-stability analysis for systems is usually based on the transformation of
the Jacobian J = df/i)y to diagonal form. For large dimensional systems, how-
ever, the matrix which performs this transformation may be badly conditioned awnd
destroy all the nice estimations which have been obtained, that is, in the study of
A-contractivity one simply cannot diagonalize the system under consideration and
expect that results applying to scalar problems will antomatically transfer over to

the higher dimensional case. For instance, we consider

“ -2 10
R(z) = L+:/2 and A= { ] .

1-2/2 0 —4
Note that |R(z)| < 1 for all - € C_ and that A is diagonalizable, has negative

eigenvalues, but ||R(A)||, > 10/6 for all p satisfying 1 < p < . Thus we need to
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consider the stability function directly in matrix norm. Let || - ||, be the Euclidean

norm and < -« . be the corresponding scalar product.

Lemima 1.6.3 (von Neumann, 1951) Lot the valional function W(z).2 € C b
hownded for fe(z) < v,

1) Assuwme the wmalrie A salisfics
Re <o, lo>< 0, forall v ec"

Thew in the malrir norm corresponding to the scalar product we have

| W (). < sup [I(z)].

Ie(2)<0

2} Assume the watrie A salisfies
Re < e de> < vielli Jorall vec”

Then

W (A la < sup [H(2)].
Re(2)<

(4

As a direct consequence, we have the important result:

Corollary 1.6.4 The [m/n] Padd approrimants to the matrir exponential e with

n—2<m<n and ;4-,»[.-1] < 0 satisfy
JQu(A) P A)l2 < L

This result unfortunately cannot be extended to any other norm. The study
on contractivity of matrix functions in general norms has been carried out mainly

by Spijker (1983, 1985, 1987). Spijker (1983) proved the order of A-contractive



=t

numerical methods (linear multistep methods, Runge-Kutta methods, Rosenbrock
methods) cannot exceed p = 1, when applied to the system y’ = Iy with arbitrary
norms. Studics on the so-called threshold factor which describe the size of the
contractivity region allow the comparison between methods with order p =~ 1 possible

(see Hairer & Wanner (1991) ).



where bﬁ“‘) := 0 for each j. A method of class (2.1.1) is said to be lincarly implicit
if bi,') =0./=0.1..... s — 1, otherwise is said to be fully implicit. Fully implicit
methods require the solution of a non-linear system at each step, while for a linearly
implicit method the system of equations to be solved is linear.

A-, A(a)- and stifl-stability of VCM methods are investigated by Lambert &
Sigurdsson (1972) and Sanz-Serna (1981) by applying (2.1.1) to the test equation
y' = Ay, A an m x m matrix with all its eigenvalues in the left half planc and with
n = A. When dealing with stiffness, VCM methods enjoy the following potential
advantages:

1) For any p > 1, there exist A-stable VCM methods with order p. This is in sharp
contrast to the situation with linear multistep methods,

2} furthermore such high order A-stable methods can be found even if we require
them to be linearly implicit and therefore avoid the expensive Newton iteration
necessitated by implicit methods,

3) the order of the method, being independent of the choice of (), does not sufler
if 0, is a poor approximation to the Jacobian of the initial value problem.

We remark however that a poor approximation to the Jacobian does affect the
stability properties of the method. Sanz-Serna (1981) suminarizes the 1ollowing

three interesting theorems:

Theorem 2.1.1 (An order barrier) A convergent, A-stable VOM mithod has order

p < 2s.

Theorem 2.1.2 (fiven a convergent lincar k-step mothod of orderp Z &+ 1, there

exist convergenl, linearly implicit VO'M methods with the same order and stability
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region with s =1 and al most k+1 sleps,

Theorem 2.1.3 Glincn a convergent linear k-step method of order k (such as the
BOEF withods, k < 6), thore erists a convergenl, lincarly implicit VOM method with
s =1, and the same step nwnber and ovder, such that both methods gcnerale the

same wwwerical solution when applivd to the fest system
!
u o= Ay

when G is chosen to be = (And henee they have the same region of absolule

stahility.)

Another interpretation of VCM methods presents itself if we simply gather the

terms in (2.1.1) in a different way as

S| k . k
SonQL S (el s, = 0 ]+ 3 @R Q2 s, = 0. (2.1.3)
=0 =0 =0

Thus a VCM method can be interpreted as a combination of classical linear multistep

methods. If the VCM method has order p, then the linear multistep methed

Sl gy = 008 fo]

=0
has order not less than p — /. Combinations such as (2.1.3) are christened blended
lincar multistep mcthods by Skeel & Kong (1977), who develop a variable stepsize
variable order (VSVOY} algorithm based on blends of the Adams-Moulton and BDF
methods with s = 1,

The idea to put the Jacobian directly into the coefficients of a numerical method

was first proposed by Rosenbrock (1963) in the context of Runge-Kutta methods.
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Rosenbrock methods have been extensively developed in recent years, and various
forms have been studied. One can regard Rosenbrock methods as cither a mod-
ification of an explicit Runge-Kutta method or a linearization of a semi-implicit
Runge-Kutta method. Rosenbrock methods are lincarly implicit and A-stable (or
nearly A-stable); methods of order up to 6 have been constructed (Kaps & Wanner,
1981). Convergence results and application to singular perturbation problems can
be found in Hairer & Wanner (1991).

There is a short summary of VCM methods in Lambert (1991, p.253- 254). The
A-stability properties of VCM methods with fixed step length have been studied in
Lambert & Sigurdsson (1972) and Sanz-Serna (1981). However, there are Lo date
no studies on contractivity, nor on stifl-independent convergence, nor on variable
stepsize formulation of VCM methods. It is necessary in practice to work with a
variable stepsize formulation. As stated earlier in section 1.5, the results obtained
by Gear & Tu (1974) and Rockswold (1988) indicate that the for BDF methods
* he stepsize ratio r = h, /b, are restricted to a value near | in order to maintain
zero-stability and A(a)-stability of corresponding fixed stepsize formulae. This is

undesirable in the context of a stiff problem.

2.2 Simplifying conditions and contractivity func-
tion

For the balance of this monograph, we use the following strategy for varying step-
sizes: we restrict the exposition to situations where there are two stepsizes in use
within the range of steps covered by the A-step formula. Without the additional nse

of interpolation formulae, this therefore allows for a step-size change to take place
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after every I successive steps, which is practical since we should avoid frequent step-
stze changes in order to not incur excessive computing effort. For formula (2.1.1)

with variable stepsize, let v be any integer between 1 and k& — 1, it becomes

[T

s 3 s
2 [Z "ﬁ""'Qi.]!m.f + ) [Z a)( "/')‘Qf,}.'/m

p=t Se=h J=k=u+1 " 1=0
k=ur s k s
= b [ s+ S [ B QL fun,
J=t =0 . J=h=n41 ti=0
where
Prgy — Eugy—r = . J=1l.... k—
Lty = Tugy—1 = I'I’). j = A' -+ l..... ’v.'.

We now note that this equation can be rewritten in the form (2.1.1) with /i, := rh

in place of  if the u.j') and the hi') coefficients are redefined to include scale factors

(n (o
. . . . t 43 3
consisting of reciprocal powers of r , i.e. aj) becomes —4- and (,S.') becomes -4 for

J=0000. k — u and all /. Now the variable stepsize VCM can be written as

[ s k s—1
Z [Z ”_Sl’hi!(l.);[ ””+J = h'g Z [Z IJSI)I"ZQ:;] f”+J' (2'2'1)

J=0 L=l J=0 Li=0

When r = 1, h, = h, this equation reduce to (2.1.1). Expand py.+,. fu+, about

X = ry4k-u, we then obtain the order conditions for (2.2.1) to be of order p

B
Youl'=0. i=0.1,....min(p,s), (2.2.2)

1 k—u k
—"‘[v(/—l\'}'!l)m“-{-! z (_}—-’;-{-H)m (1)]

!
m = J=k—u+l

k—u
- [Z(, CE S G k], (223)
- J)=k—u+l

m=12.....p=i. {=01....min{(p.s).
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For convenience, define hﬂ"’ =0 and 1( "= 0 for each J.

Definition 2.2.1 A VCM method is of type (k. p.¢) if it is k-step, order p with

N =

From order conditions (2.2.2) and (2.2.3), we can see the coeflicients {u‘(,", By
depend on r and u. For r = 1, we can choose any integer 00 -~ « & to get the
fixed stepsize formula. When r # 1, this means /I, # /), we need £ -~ 1 steps to
complete the stepsize change from /i) to /;, so we need & — 1 scts of coeflicients with
respect to = 1.2..... 4k~ 1. For given «, the coeflicients will only depend on ». As
we will see shortly, the order conditions to be imposed on the VUM methods leaves
too many degrees of freedom for our analysis. With a view to rigorous contractivily

properties, we add on the following restriction to the VCM methods:

7 = 0 =0 k-2,

’ 2.2,
(') _— (""]) Yoo . ¥ N ] ( 4)
a, = b J=0,1... k=2, i=12,...,~

With these, a VCM method applied to the test equation (1.4.1) with ), = \ for all
n, gives the relation
[Z(um b“ ” \‘]y,lﬂ. + [Z(”S.‘)l — h};_—‘l))h',\'].r/,,H_,, = ).
=0 1=}

Thus, locally on [r,,.r,4x], contractivity is assured if the contractivity function

.Z[”.r) - I’Ll }) -

R(z) = —=

Z[uf” - I),t ”]

1=0)

with = := M satisfies {[#(z)| < 1, and this same condition assures ||Vl Z ||Vall

for n > k& — 1. In practice, one uses a succession of low order schemes to generate



the approximations to the solution over [irg.r;] that are needed to start a A-step
formula and if they are all A-contractive, then the condition |/#(z)] < 1 will, for
all practical purposes, ensure the formula indeed A-contractive. We introduce the
following asswnption.
Assumption A: the witial data val. {y1. .. ... Untk—1} are generated using A-
contractive methods,

Throughout this monograph, it is always assumed that assumption A holds.

For scalar test problem (1.4.1) and the linear system
y'=dAy, Aecm ™ (2.2.5)

with matrix .1 being normal, the contractivity results hold for all norms. When
considering a general matrix .1 which may not be normal, the contractivity results
depend on the famous theotem of von Neumann (lemma 1.6.3). However, the
theorem only holds for the Euclidean norm with < -.- > denoting the corresponding
inner product. So the contractivity results we derive can be extended to the more
general linear problem (2.2.5) provided Re < y. Ay >< 0 Vy € €™ in Euclidean
norm. For other norms the extension to (2.2.5) of the A-contractivity results we
derive in this chapter is not possible.

Although the matrix (2, in (2.2.1) is independent of the order conditions, we will
set (), to be the Jacobian of f(.r.y) computed at (ryqpaty Ynsr-1)-

The case with s = 1 needs to be treated separately. By employing a Taylor series

expansi~n about the point »r = ., one can easilv verify that the one-step method

(-1 +h@Qu)yn + (1 = hQ)yner = h [ (2.2.6)



is generally of order one, and is of order two in the special instance when o -
0.5, (1.1.1) is autonomous and (), = f,(#.). Furthermore, method (2.2.6) is A-

contractive so long as the real parameter n >

tole—

. In fact, when (), 1s the Jacobian
of [(r.y) (as we've chosen it) then (2.2.6) corresponds to a vne-stage Rosenbrock
method whose nonlinear stability characteristics have been well-studied (e.g. Hunds-

dorfer, 1981).

2.3 Existence of A-contractive variable stepsize

VCM methods

In this section, we will prove there indeed exist arbitrary order, variable stepsize,
fully implicit, and linearly implicit VCM methods and give a constructive proof
which gives the procedure for computing the corresponding coeflicients elliciently.

First define for any natural number ¢ <y

q!(f’ + g - i)!

;= (-1 .i=0...., 2.3.1
o= CUG o d (23.1)
e+ g -0 0 /
B = T TR (2..2)
0 i=f+1,042,....4.
Lemma 2.3.1 For any real number w the cquations
1 1 A
> Gl e+ 0= 1 gl =0 = 12 (2.3.3)
g=0 '
i 1 .
z '(}-'[lta(.lfi_g + (e — l)oﬁ,_o] =0, t=0,1.2,...,¢, (2.3.4)
=0 7"

hold if i, 3 (i = 0,1....,q) satisfy (2.9.1)-(2.4.2).
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Proof. Let w =14 v and rewrite (2.3.3) as

1m0 1 ,
I, m 0 g ; 17,,_.9 mt-0

L) Y ™t =0, m=1.2.....1.
RPN ( )(m st & Tr oy

=) y=t J =0

Comparing coefficients of equal powers of v, we have

5”: (m + ()) “-5 ¢ J = 01.... m =1 (2.3.5)
( )

s \ J m 4 0)! mo o= 1.2,....0
and
o R A WA i 7 = 0,1,.... q
- 5 =0 ’ 2.3.6
(gj (m +j)("l + 0)! * (no =J)! m = 1.2.... ¢ ( )

Similarly from (2.3.4) we have

¥i-p i Bi-g 5 .
ZZ( )——-—11 -{-)—!—v =0, +=0.1,..., q

=0y =0 =0

so that comparing coefficients of equal powers of v we get

Z(({)”"—'”%d‘—“’:o. J = 0L (2.3.7)

i \JJ O J! N Y
Now it is clear that the lemma holds if equations (2.3.5), (2.3.6) and (2.3.7) hold.

The left hand side of (2.3.5) becomes

Lm0\ oy _ om0 (=1)=21(¢ + 0)!
Z( J )('"+0)! - Z( J )(”I-+”)!(f+'l)~(‘? 0)i0!

=1 =0
(t=m+j0 of (+0
JH+q) :Z‘:O( 1 g—0)\m+0—;
_ (—1)‘7+""j((’—-m+j)!i q m—j—(’—l)
SN+ q)! i \1—10 m—j+80 )

Because ¢ — ( > 0, mn — j — 1 > 0, therefore

‘Z'( q )(m—j—-f—-l _ q+m-—j—1’—l)_0
\q-0 m—j+0 qg4+m-—j o



This means (2.3.5) holds. Likewise,

o N (9 ) Y A STy’
ng (m +J) (m + 0)! - (4 )HUE + o) g(—l)l <‘[ ! H) (” ' J)

N G A UL q -1
 (m +j)!((+q)!ﬁ§=_;u(q—()—j) ( 0 )
I G Vi ) (q —Jj=l- 1)

(e + )+ g)! qg—-J

(=4 ) --l"—"( { )
(m 4+ )+ )

q—J
0 i og—j 0
- R (e V) | T
(m 4+ DU+ g = DO =g + )] I
iy

(m+ )
This proves equation (2.3.6) holds. Furthermore,

SO\ eice (LT — NS e N[
Z(,‘) o - ST ) Z(i—{))( 0 )

#=0 =t

_ (—1)“J(f’—+—q—i+j)!(i—F—_i+l)
B e+ o) i—J

(=)t qmit ),
o Y C—j)

0 i G-t
= (&{-q—i%—_}lp! if i—j<{'

M+ == +))! =
= P

J'l

This is just equation (2.3.7). 0
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We are now in the position to establish our main results. Hereafter FIM and

LIM mean fully implicit and linearly implicit methods respectively.

Theorem 2.8.2 [or any infcger g 2 2 there are A-contractive, rvariable stepsiz
IPIN eethods (2.2.1) of ype (29— 2.29 — 2.q), (29 — 1.29 ~ 1. 9). (29.2q.q). Their
contractinily functions R(z) arc respectively the [q — 2/q). {q = 1/y4] and {y/q] Padc
approrimanls of ¢ The cocflicients depend on the step changing ratio r = hy/h,

and cach method has g(q + 1)/2 degree of frecdom.

I'roof. In each of the three cases, let & denote both order and number of steps in the

method, & € {2¢ — 2.2y — 1.2¢}. In addition to the simplifying conditions (2.2.4)

let :
uL') - bﬁ,'—” = oy,
_ , 1=0.1.....,q. (2.3.8)
a0 =g,

with ( = & — ¢. From known formulae (see for instance, Butcher (1987), p.75), it is
clear that /() resulting from the selection (2.3.8) equals the [¢/q] Padé approximant
of ¢ from which A-contractivity of the resulting method (2.2.1) is an immediate
consequence since ¢ ~2 < { < ¢, There remains to determine the terms {ugn. bgi)} not
already specified and to prove that the order conditions (2.2.2)-(2.2.3) are satisfied
by this selection.

For/ = 0, {uiﬂ)} are determined by equations (2.2.4) and (2.3.8), i.e., ag_o) =0, for
J=0.1..... k—2 and uﬂ,), =y = —-l.a(ko) = ag = 1 (thelatier is sometimes referred
as normalization condition). Thus (2.2.3) represents a full rank linear Vandermonde
system with & equations for the & + 1 unknowns { bf,o’}j;u. Under this condition, a

solution therefore exists with 1 degree of freedom.



Now for i = 1, { “)}“_“, u(k”, and u(k,” are determinzd by (2.2.41) and (2.3.8)

respectively. Equations (2.2.3) then specifies a full rank linear Vandermonde system
with & -- 1 equations for the ¥ -+ 1 unknowns {1:5”}52” for which a solution with 2

degrees of freedom exists.
For i = 2,....y — 1, we proceed in a completely analogous manner solving for

{u_(,']. bﬂ”}j;“ with / + 1 degrees of {reedom each time. For: = ¢, we only need

to determine {uﬂ"l}j":(, according to (2.2.4) and (2.3.8) because we already know

I:f,") := 0. We have so far determined {u.i‘), hi')} for i =0.1,....q, 7 =01,k
with ¢(¢ 4+ 1)/2 degrees of freedom. From the above procedure, it is clear the
conditions (2.2.3) with / < ¢ holds. What remains to he proved is that (2.2.2) for
i =0,1,...,qand (2.2.3) with / = ¢ is compatible with our sclection.

Recalling that bﬁ"' := 0 for each j, condition (2.2.3) with / = ¢ hbecomes

k—n

Z(J -k + )"a, b L pm Z (j— A 4u)e (",] =10, (2.39)

m
m =0 J=hk—re+l

me=12,.0. .00 q.

Using (2.2.4), we havefor 0 <i < ¢

k—n 3
- [Z(} —k+ u)"q, W4 DD T u)“‘uf,"]

=0 J=hk-u41

7L

7
= [u"‘uL + (n=1)"al? ,]

r:'

1 i - k= -
+—[Z(J —k+ u)"‘bﬂ' oy S o (—k+ u)"‘hi ”}

m! j=0 J=hk—utl

J7

— 7 [um( () _['(k'—l)) +( l)m("") __[’“ ”)]

ml



38

1 k=u ' ) ke . .
+— [Z(j — k4 u)’”hi' Vo Z (j— A&+ n)"‘hi ”]. (2.3.10)

]
ter: J=0 Jmk—nu4l

Substituting into the last line of (2.3.10) relation (2.2.3) with / < ¢, we therefore

obtain the recursion relation

‘\_'l
”'I[L(j"“’ -+ ”)m ()+'m Z (J _ l-,'f'fl)m (z)]

=0 J=hk—utl

: 5 "L+‘ (t 1 it - ; ml (i—1}
- r(m +l)' [Z(J ktu) + z (J—k+uw) N ]

J=0 J=k=ntl
IU’H 2em " !_-
—}—m1 w" (¢ {')—!‘ l))+( w —1)"( Li")l——hi_,]))] (2.3.11)
for /i = 1.....q. Using this recursior. relation, the left hand side of (2.3.9) becomes
A
|[L(J —h+ “)mufl) + ,m Z (j S u)maf"”
ML =0 =k—u+1

1 k—u ‘ . | " ' ;
[ S — [Z(J _ ;‘._*_ “)m+lu‘('I 1) + ,.nH.! z (J _ k-’r u)m-Hu.(rJ ])]

"(”’ + 1! J=0 J=k—utl

NI

. |[um( 12 B 4 (o _1)...(119_)'_1,?—!))]

rn

k—u k
= (J — k4 u)m+iy; O 4 ot () —k+ u)"‘ﬂa(-u)]
'l(na+rj)' [2_';, )= ,;,,H ’

g-—1 Pt
Pyl

T G B I RV O )|
=0 *

]

p—0— - —0=1)4]
m+0(rl(kf 9) [(l )+ (e — 1)m+0(ag}_l9) - bi.ll_.]f’ 1))J‘

d
g[m + 9)!

since a Ofor ;j =0,1.....k — 2. This we know equals zero for the selection

(2.3.8) by virtue of Lemma 2.3.1 since ( = & — 4.
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To establish that (2.2.2) also holds, using (2.2.4) we have the relation

k
S alt) 2 g 0SS gy,

=0 g=i

Substituting the last term }:j 0 Y " in the above by (2.2.3) with 1 == 1, then use

(2.3.11) in the same recursive fashion as before, we eventually derive

k
Eu_(/'] = ui,')—- b(k"” -+ 11'” b(k'_',”

h—u ke
[Z(J—ﬁ-ﬂt D S Ve ) "]

=0 J=k—-n+t

= o ) e

anfr o™ =) 4 0= DT - )
:
k

1 il 2 (1=2) (e .3]
[Z(J”‘*‘”) } +rf Z (}—-l+u)u ]f

=0 J=k—n+i

[0l = D) 4 (= ) - )

C:l._n

- 3

=0

k—u k
122! [Z(J bt ) (l R Y. (U-k+ ”)2”3.—”]
T =0 J=k=-nut!
= Zb}'[ (k™ = 07" 4 (= )l = 0T ”)] (23.12)

fori = 1.2,...,q. which also equals zero for the selection (2.3.8) by virtue of Lemina

2.3.1. I
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We have the following similar result for LIM methods.

Theorem 2.3.3 [or any integer ¢ > 2 there arc A-conlraclive, variable stepsize
LAM mthods (2.2.1) of type (29 ~2.2q = 2.4), (2q —1.2q = 1.4). (2¢,2¢.q4). Their
condractioity functions R(z) are respeetively the [q —2/q]. (g ~ 1/q] and [q/q] Padd
approriman! of ¢, The cocfficients depend on the step changing ratio v = hyfh)

and cach method has (g = 1)/2 degrees of freedom.

Proof. Let b(k’) = 0for : =0.1,...,4 — 1, other coefficients are determined in the
same way as in the proof of the previous theorem except for losing one degree of
freedom while solving {bﬁ”} for given i. So the total degree of freedom of coefficients
will be ¢(¢ —1)/2 which is ¢ degrees less than the FIM case.

The remainder of the proof is exactly the same as the proof in the previous

theorem. |

When r =1, u = £k, the fixed step size FIM and LIM methods are obtained

Corollary 2.3.4 For any inleger q > 2 there are A-contractive FIM and LIM meth-
ods (2.1.1) of type (2¢~2.29-2. q), (2q—1.2¢=1. ¢). (2q,2q.q). Their contractivity
Junctions R(:) are respectively the [q—2/q], [q — 1/q] and [q/q] Padé approrimant
of ¢*. The coefficicents arc constants with q(q+1)/2 or ¢(q — 1)/2 degrees of freedom
respectively for FIM and LIM methods.

Listed in the appendix are examples of such methods along with their respective
truncation error terms. Also listed in the appendix are the coefficients of the (4,4.2)
algorithms. The parameter a is totally free and would normally be chosen in such

a way as to minimize local truncation errors.



Note that unlike stability results for BDF methods (see Rockswold, 1988), there
1s no restriction on hy/h, for presetving A-contractivity. The coctlicients {uf,']. h‘,"}
are continuous functions of 7 on 0 < rr < &, so they are bounded on w .« Q
forany 0 < w < land 1 < R < 20. For norms other than the Euclidean norm,
the boundedness of || 7(/1}|| by one with //(:) being a Padé approximant of ¢ is
a complicated problem. The reader can consult Hairer & Wanner (19891, p.185-188)

for more details, particularly theorem 11.10 and the section on threshold factors.

2.4 Local error terms of VCM methods

As seen in the previous section, there still remains some degree freedom in choosing
the coefficients of A-contractive VCM methods for given order p = k. Usually these
are chosen such that the local error terms are as small as possible. Here we give a way
to fix all coefficientsin a given method in such a way as to lead to a manageable local
error term which will in turn facilitate our convergence analysis of general nonlinear
problems. For simplicity, we consider fixed stepsize which means v = &, r = 1 in
our notation of the previous section. The results can then be extended to variable

stepsize without difficulties. Define the local error of VCM methods to be

&

] N k -1
TEppsy := 3. | D alWQi y(rne)) =03 [Z NQL| ' (ery)  (240)

Jj=0 Li=0 =0 Li=u

and define the Peano kernel by,

k : bd . p-1
iy selwlU =1 -7y
K.V ()= Z[a, o b, —-———(p )

=0

where
0 ifj—-r<0
(J = 1) otherwise

G- =
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Substituting the Taylor series derived about » = s, 14, = &, for y, and y' with
integral representation for the remainder into the right hand side of (24.1), we
obtain

gy =

{e) m, (m) pvl (J (])-{-l) ]
ZL:: /(J[Z f () + /; (ry +7h)dT

tzx) y=i) mi=th

,_—_‘ k " mt—1 ; (J _ T)]’—-l
) w“)ll”'[ Ly et P T e zr].
S|S0 Gt + 0 [T 7

That is,

vk
TEgpy = Y Zrty'lz.'(‘,)'g/m’(.t',l)

=1 =0

m (') _
[m' Z Z 4 Q (1

=1 =0 =0

ZZ "“‘b(')h Q]hm ("‘]( 0)

n= =0 ;=0

H:”*‘[ZZ e Q/ L0, 4 7Y ds

1={) p=()

ZZ("’/ Q G=r™ ‘P“’(::n +rh) dr|. (2.4.2)

=0 j=0 ( )

IFrom the above it can be seen that if

ko
Yd'=0, i=0,...q (2.4.3)
J=u
1 & () =1 i) m=12....k
‘_____ Jmll J” b — . (2.4.4)
nzlg d (m —1 J;) i=0,1,...,¢q.

hold, where the parameter & can take on each of the values 2¢ — 2, 2¢ — 1, 2¢, then

we have the following result.
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Theorem 2.4.1 For A-contractive FIM methods of tupe (29 =220 - 2.4). (2
1.2¢g = 1.y). (2¢.2q.q) the local error can be writton as
! &
TE gy = hF! ;“/ncg' [’ WU (Y D o+ b

Remark 2.4.2 We give an explanation for the suggested way to reconstruct the
coeflicients {uy). b",')} such that equations (2.4.3) and (2.4.4) holl. For example,
consider the (4,4,2) method , ie, ¢ =2,k = p = 4. We recommend Table 2.1
as an outline for proof of the theorem. Let [/.1n] denote the system (2.4.1) with
certain 7.1, which have (4 + 1) -k = 12 equations. Adding the (4 +1) - 3 equations
in (2.4.3), the total number of equations to be solved is 15, Duc to the simplifying
conditions (2.2.4) and (2.3.8), noting I)_(}"’ = hﬂ’” =10, for j = O,....F, we have only
¢ (k+1) = 10 unknown {bﬁ')} which is far less than the total number of the equa-
tions. Thus any solution will not be straightforwardly solved. Fortunately, we know
from the proof of theorem 2.3.2 that equations {2.1|.[2, 2] and all three equations in
(2.4.3) hold automatically when {i{"} satisfy [0. 1],[0. 2].{0.3]. [0,4). 1. 1]. 1. 2).[1. 3]
and conditions (2.2.4), (2.3.8) hold. Therefore we really have ten equations for ten
unknowns. Qur next step is to express [1,4],[2,3],[2. 4] as [0.5],{1.4]. [1.5] respee-
tively through an index substitution. The focus therefore will be on the nonsingular

character of this reduced linear system of equations.

Proofof Theorem 2.4.1. We need to choose {:zg". bg"} such that systems (2.4.3) and
(2.4.4) hold. We know from the proof of theorem 2.3.2 that if conditions (2.4.4) hold
fori=0..... g—1.m =1.... k—7 together with (2.2.4) and (2.3.8), then (2.4.3)
and (2.4.4) with ! = ¢.m = 1,..., & — ¢ also hold. So we nced only to prove that

there exist {bf,”} satisfying (2.4.4) with/ =0...., g 1.m = 1,....k -7 and with
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Table 2.4.1:  An example fixing the coefficients of method (4,4,2)

m=1 m=2 m=3 m=4
0ff{o1] [02] [03] {04
i=1| [1,1] 1,2 1,3 J (1,4
2 [ [2,1] [2.2] | [2,3] [2,4]

m=1 m=2 m=3 m=4 m=>5
i=01{[0,1] [0,2] [0,3] [0,4] [0,5]
i=1|[1,1] [L,2] [1,3] [1,4] [1,5]

r=0,000g.m=k—i41..... &. Using (2.2.4) and (2.3.8), the condition (2.4.4)

can be rewritten as

(m i Zﬂj = ;, N+ — [(A g+ kg (245)
for ¢ = 0. 1.....,q.m = 1.2...., k. Now we consider m = 1,2....,.k—iand m =
k=i 1 h—i+2..... Ak separately.

For (24.5) withi=1.2.....q.m=hk—i4+ 1 k—i+2..... ky change ¢ to /1 +1.m

to m — 1, it becoines

m—1y (1)
(m - 1)' ZJ v

1 k . 1
= - -m-.'((l+l) _ k- 1)y"- -1 f }1." ]
(m—2)! J:“" g (rm = 1) (k=)™ i + i

forr=0.1L...¢y—lm=h—i+1hb-i+2.... b+ 1.



Now put together with i = 1.2,.... k-1, we have,
( k ,
1 g li= 1 : .
_ZJ'"hi ”+——[(k— 1)”.f,+k"“u,].
m < "
)=t
k form =1.2..... J C—
ij—lh(!') = (2_1“)
a=1l | k . 2141} 1 1
(i = )3 = 1 4R
=l
{ form=hk—1 4+ 1L bk=742..... ko1,
with /i =0.1..... i — 1. The system has ¢ - (k+ 1) equations with - (& + 1) variables

{bﬁ')}. It remains to prove that the coefficient matrix has full rank, then we have a

unique solution. Let A;, be (k+ 1) x (k i-1) matrices and () be the (4 1)~ (k+1)

null matrix. Noting l:ﬁ_” = bﬂ") := 0 for each j, we can write (2.4.6) as
Ab =c¢
where
b= (b 00 B Y T e = (L
and
/1”.0 .“l“ @) 0 () () ()
Ao g A O e () ) ()
O A'Z.l ’12.2 4’12.:5 s () () ()
() () /‘3‘2 .‘!:],:; e () () ()
1 =

() () () () e /‘,‘._,L,‘_,' /1,,_.4},,-;5 ()
() () () () v .‘1,,_:;.,,_4 .‘1.,_:;‘,,_:; /‘.,-;;,,...g

{)
{)
()

()

()

()

O 0 0O O - O Apgey Ayesgez Ayorgo
\ 0 0 0 () oo () () /l,,,|',,~.z /1,,_.;',,~|)
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with
[0 0 0 0 0\
0 0 0 0 0
.“u_[ =
0 0 0 0 0
0 —k —k P71 o (k=1 g
(0 -1 —2 (k1) =k
;1 92 (k-1 &
2 2 2 2
“h‘” - 0 1 B 2‘.—-2 ‘-(k __ l)k—‘z Ak—-i
b —2 de—2 ke —2 k-2
0 1 2k—l (A. _ l)k—-l A.k—-l
k-1 k-1 k-1 k=1
0 0 0 0] 0
\ 0 0 0 0 oo

and in general, we have the following expressions for the block matrices A; ;, A g1, Aigri

with 7 =0,1..... g — 1.
(111 -1 L)
012 o k-1 k
. o1 2 e (k-1 A
[N -

\0 1 28 ... (k=1 K
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{0 0 0 0 0 \
0 0 0 0 U
0 =(k=t) ~(k=iy bt | R ET) M oAk o
-’\x.L-H =
0 —(k=1—=1)  —fhk=p=1) 2t e R Uk ) ey 1y e e
0 —{k=1) —(k=1)2h=0 —(k=1){hk—1h-2 —(h—3) At
\ o - _kake k=)A= ST
[0 -1 -2 v (k=1 ke
0 1 2¢ (k ~1)? I
2 2 2 3
0 | 21:-;-] (/‘, _ l)l.'—l—l /.'k_ 1 -1
h—i-1 h—1-1 ko —i-1 k=0 -1
‘4!+I.l = 0 O 0 A 0 0
0 1 2k-—t (L, - 1)k~( l‘,l.'—‘l
k- k— k —1 h—1
0 0 0 ] 0
\ 0 0 0 0 0

Noting the special structure of the matrix A, we manipulate it by elementary matrix
operations in the following order. From i = 0to / = ¢ — 2, Jhe {i(k + 1) + j]-th

row of A multiplied by ,_-I-f is added to the [{( + L)(# + 1) + j — 1]-th row of A for
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7 =2,3.....k— 1. The matrix A becomes

( 1““'(, .“In'l () v () {)
(} .‘1|.| .‘11‘2 0 @]
@ 0 A o 0

vam {

() () (,J e /‘,,_3‘,,_2 .‘1,,_2‘,,..]
@ () @ e O .“7_1',,_] }

\
whose determinant is the 4th power of the Vandemonde determinant |.1,,| which is

not zero. Therefore with this selection of parameters, we have

ik (- S)P+l
1B,y = W't [ QT [T e P (1, sh) dls
{(kopar) ?;ujgu : o (p+1)!

1=
*ZZ S'U Q/ (P (p+])( wtsh)ds

=0 =0

For LIM methods, there are fewer free parameters since bf\.') =0,:=0,1.....¢.

Instead of (2.4.3) and (2.4.4), we have

k .
Sadl=0,  i=0,...,q (2.4.7)
t

1 i W Z g =1.2,....k for i =0,

— ) J"u T 1)

IN!_,=n J m-1 'J—U m=12..... k=1 fori=1,...,q

(2.4.8)

With essentially the same construction as that of Theorem 2.4.1 we also have:



Theorem 2.4.3 For A-contractive LIM methods of type (2¢ = 2.2¢ - 2.4). (:

1.2¢ = 1.q). (2¢.2q.q) the {oeal crror can be wrtten as

' i
T gy = 1S hQ! /“ KOy + sh)ds

1=0

where pois the order of the corresponding mcthod.

4

2q

¢ mark 2.4.4 The theorems in this section also hold for variable stepsize formulae,

We can see this by writing (2.4.6) in the following way:

k—u k
Z(.’ — k4 “)m-lbsl] + ,,m-«l Z (J S ”)m—lb.('l)
=0 J1=k-u41i

(111, mpfi=1) IR A e (=)
—[-—Z(;-—k%—u)”hj + ™ Yo =k, ]

mir _;Izl) J=hk~utl
-
+—[(u - 1)"s, + u'"n,] . form =1.2,....k—1.

m

k-u k

J=U J=k=nu+t

(m— 1)[1‘ Z(_] —k+ u)'”"zbim) + Z (J — A+ r:.)”“"'h(,” ”]

—pm-l [(u — 1)+ u"“‘m}. formm=k—i+Lbk—74+2,....01 L

In order to simplify the presentation, we consider u = 2, but note that a similar

argument is valid for any integer » € {0,1,...,k. With the same notation for the

coefficient matrix A, the blaock matrices A;,, —A, 141, —Aipe1s ate now respectively

as follows,



[ 1 1 1
(0 — k) (v—-k+1) - (u-3)
(u — k) (v=h+1)% <« (n=3)°

(u = kP (e =h4+ 1) o (u—3)k!
\(”-“"-')k (e —k+1)* .- (”_3)k

L= B s




\

0
(k=1)r{u—k)* =}

{k~i=1)r(u-k)*=r=2

(k—l)r(u—k)k_z

kriu—k)*?

0
(k=t)r(u—k41)c— 1

(k=1=1)r{u~k+1 ye—=2

{k—r{u—k+1)* 2

kriu—k+1)5-1

0
{k—1)r(u—3)*—*-!

th—1—1)r(u-3)c—+=2

(k—1)r(u—=3)*—2

kriu—3)*~!

0
(k—iyr* =t (u—p)s !

(h—i=1)rk— =y p—r-2

(k=)= u=1)*—2

brk(u—1p*?

0
(k—rprk—ryé—e—t

”:_‘_'_l)rk—v—l uk—l—.'

(k—yyrb—ty k=

| Sl el /

1y
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and
( T w—h+1 u—3 0 (1 — 1) .
r r r
(n = k)¢ (n—k+1)° (i —3)* 0 r(u—1)* ru®
2r 2y 2r 2 2
(” _ A.)L—-l—-l (” Y + 2)k—t—l (” _ 3)1:-1-1 0 ,.k-i-l(” _ 1)k—x-l ’J:—x-'zuk-—l--l
G-y GEi-Dr E—i-1)r h—i-1 P
(10~ k) (10— bk +2)k¢ (10— 3)k 0 ph=i=t(y — 1)+ phoi=t k=
FZi)r &= i =iy [ r—i
0 ¢ e 0 0 0 0
0 0 0 0 0 0

With the similar operations in page 48 we again reduce matrix A to the equivalent

cocllicient matrix:

A O O .- 0 O
0 Ay G oo O 0]
0 0 Ay oo 0 0

O 0 0 - dygg O
\ O 0O 0 0 Apigmr )

whose determinant is qth power of the Vandemonde determinant |.1go| which is not

Z¢10.

Remark 2.4.5 One should not overlook the fact that the local error is dependent on
the Jacobian matrix whose norm can be quite large with a stiff problem. The error
term derived here is useful mostly as a tool for our analysis. We postpone this issue

to Chapter 3.
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2.5 Examples
We borrow from Byrne and Hindmarsh (1987) the following two problems.

Example 2.5.1 Robertson’s problem

wo= —0.04y, + 10"y,
vy = 0.0dy; ~ 10" yams — 3 < 1074y, (2.5.1)
wy = 3% 107y
with the initial data
m(0) =1, y(0) =0, ys5(0)=0
whose solution over the interval [0.107] is desired.
Example 2.5.2 The Field-Noyes chemical oscillator
vy o= s(y— g2+ - ayi)
Yo = (Y3 — w2 = yup)fs (2.5.2)

yy = w(n —ys).

where

s =177.27, w=0.1610, ¢ =8.375 » 107"

with the initial data
y1(0) = 4.0, 3,(0) = L1, yy(0) =4.0

whose sclution over [0,600] is desired.
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Table 2.5.1: Results for examples 1-2 of FIM (4,4,2) method

Tol Nstep Nsc¢ Hmin Hmax Rmin Rmax Eabs

Example 1. 107" 363 91 1.00d-5 1.24d+6 0.35 3.50 131 x107°
10-* 130 43 1.00d-5 5.84d+6 0.91 3.50 269 x 10"

Example 2. 10-% 2083 567 1.00d-5 5.61 0.26 3.50 1.31 x10~°
10-* 608 183 1.00d-5 24.6 0.23 350 140 x10°*

We defer to chapter 4 the complete description of the algorithm used, the results
are obtained by the code labelled as code (c) there. But we briefly report on some
statistics and observations here.

The results are summarized in table 2.5.1 and figures 2.5.1 - 2.5.2. The notations
"E+x" and "E-x" mean logscale in the figure. The notations in the table have the

following meanings:

¥ Tol: local error tolerance (we use scalar error control here and set both absolute

and relative error tolerance equal to Tol),
Nstep: number of steps,

¥ Nsc: number of times stepsizes changed,
Hmin: smallest value of stepsize,

Hmax: largest stepsize,

Rmin: smallest value of i, 41/,

Rmax: largest value of /i,41/h,,



r,
A

* Eabs: actual error at the endpoint.

Robertson’s problem is a typical stiff problem with its Jacobian having an eigen-

value of large negative real part.
AN =0\ = 0=, \y = =10", forsr — ~.

Its solution components are quite smooth, so the stepsizes used in the code grows
very fast (around 10° when + > 107). This means the product of stepsizes and
the eigenvalue can reach |hA| = 10'", and the stepsize is clearly not hampered by
the stiffness of the problem (see also figure 2.5.1). The second cxample has several
narrow transient regions which are about 10% of the total integration interval. The
code spends around 50% of the total computing efforts to go through these transient

regions.
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Figure 2.5.1: Robertson's problem
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Chapter 3

Convergence analysis of VCM
methods

3.1 Introduction

Prothero & Robinson (1974) were the first to notice an orde. reduction phenomenon
in the context of stiff problems. They found that the ade :uate stability prop-
erties together with classical order results would not suffice to characterize the
global error hehavior of numerical methods. Frank & Schneid & Ueberhuber (1981,
1985a, 1985Dh) studied intensively B-convergence properties for Runge-Kutta meth-

ods. Their idea was to study the global error bound of a numerical method
Huw — g ) < ChP. for all h € [xo. T

with the constants (" and r independent of stiffness of the problem, then the method
is said to be B-convergent of order p. For avoiding dependency on the Lipschitz
constant, instead, they considered the one-sided Lipschitz condition or logarithmic
matrix norm for the convergence analysis of integration methods for nonlinear prob-
lems. In an analogous manner, Lubich (1991) and Hundsdorfer & Steininger (1991)

considered the converger.ce properties for linear multistep methods.
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In the definition of B-convergence, the global error hound ¢ "4 should not depend
on ||/, || and other derivatives f.. [... f,,. .... However, Frank et al (1985h) also
pointed out that a successful application of Newton's method can be guaranteed only
for problems with moderately sized second derivative of [ (or similar properties of
). TLubich (1991) studied convergence for nonlinear stiff problems with a condition
of the form

A7 (%(!/) ~ -'\) | <t
The assumption on continuity of f, is reasonable, since in real computation most
codes tend to keep the Jacobian fixed for as many € - as possible.

In this chapter we consider convergence of VCM methods (2.1.1). We analyze the
convergence properties of VCM methods for nonlinear stiff problems in section 3.3
and derive the global error bound ¢ '/ with constant (' independent of the classical
Lipschitz constant but dependent on the continuity of the derivative f,.

In section 3.4 we consider solving autonomous singular perturbation problems

yo= I alen) = (3.1.1)

!

2= g(nz) () =

)

where y. = € R™, by VCM methods of the form (2.1.1).

Singular perturbation problems (SPP) form a special class of problems containing
a parameter &. When this paraineter is small, the corresponding differential syst:lrm
is stiff; when ¢ tends to zero, the system loses somne of its highest derivatives and
then becomes a differential algebraic system. SPP have several origins in applied
mathematics such as flu.d dynamics, nonlinear oscillations with large parameters and
chemical kinetics with slow and fast reactions (cf. van der Pol 1926, Dorondicyn

1947). A typical singular perturbation problem is van der Pol's equation (van der
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Pol 1926).

Example 3.1.1
o=l
. (3.1.2)
vy = 1=y —m
. . . I
Rescale the solutions by introducing t = ~. z((1) = yi(r). =2(t) = ,.,2(r). In the
I
resulting equation the factor ;i multiplies the entire second line of f. Substituting

. 5 1 )
again y for 2, .r for / and p° = ~ we obtain

U= i
(3.1.3)

sy = L=y —m-

For moderate values of ;1 or ¢, Van der Pol’s equation is easily integrated. But
when ;i is large, say greater than 500, (ie., ¢ is small), the problem becomes stiff.
Hairer and Wanner (1991) point out the predictor-corrector Adams code DEABM
of Shampine and Watts computes 451 steps and stops at & = 8.61 x 10~ with the
message “the problem appears to be stiff” for initial values y,(0) = 2, y,(0) = 0 and
Atol = 1077, Rtol = 1072, We should note that DEABM is designed for non-stiff

problems, so is not suitable for singular perturbation problems.

3.2 Estimation of the local error and related ra-
tional functions

Since the von Neumann theorem will be cited in the following sections, we always
assume the norm || - || is the inner product norm | - ||, and the logarithmic matrix
norm (-} is j2|| from now on. Insert the exact solution of the initial value problem

(1.1.1) into VCM method (2.1.1) and obtain

k

Z [Z tlﬁl)hiQ:wk_]].‘/(In-ﬂ)

J=0" =0
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Z[Z BORQ! ,] Ftunseilress)) + s (3.2.1)

J=0 "=
where the perturbation terms d, ;1 are determined by theorem 2.4.1 (theorem 2,4.3
in the case of a linearly implicit method) with () replaced by () ,41-;.
We now connect the local error terms with the contractivity function 2(:). Sub-

‘raction of (3.2.1) from (2.1.1) yields for # > 0

Z[Zn"’/, ke ,] Ay, = "Z[Z WORQ ,] A foy, F ok (3.2.2)

1=04=0 J=i =0

where the global errors

A.‘In+J = ?/('l'u—l-)) = Ut Afn-u = f(-rn-}-J\ .‘/(-"u l—_l)) - f("'n TR H)'

As usual we define for j <0
Dy, =0, Af,:=0

and for convenience we further define additional quantities d,,, d,..... i\ according
to (3.2.2) for negative values of n.
Noting the simplifying condition (2.2.4), we have from (3.2.2) after some manip-

ulation
z t 1—1 IPRY)
Z[([L) _ bL )]lf (27l+k-| A !/"_*.A-

= _Z[“Li-)-l - 1’(‘ l)]” k-1 AT
i"U

+ h Z Z b(t)h (J H.k_l[Afn—i-_] - ('\.)n-H\‘-—l A .‘/nf}] + ‘Iu-H. . (323)

1=0 t=0

Now define over R™*"™

o(h, Q) [Z[u‘" — b

t=l}
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r(h. Q)

[Z[u“’ b~ ”]hQ] Z[u L= 0. (3.2.4)

1=t) t={)

q,(h.Q) = [Z[(IL'] - h;f’”]h'(,}‘]_ Zhj')h‘()‘. for j = 0.1, ldots k.

=l t=t)

and on R™

k
A-"‘u+k = h Z(b(h'czn-i-k-l)[Afn-i-J e (Jn+k—1 A.’/n l-j]

=0

+“J(h . Qn+k—-l )’lu-H.w
By multiplying both sides of (3.2.3) with w(h. (), 41-1), we can rewrite it in the form
A”H+L‘ = I'(h, ((,)1¢+k~] ) A Wntk=1 + Alﬁn-}—k'

Define

n—1

H r(h,Qr) =

f=n

The recursion relations with respect to Ay, imply

n—

D = z[n (h-Q0] & P

m=t} “=m

noopn=-1 k

= Z" [IH r'(h,Qf)] h Z)([J(h.(),,L_])[Afm—k-f-j = Qut A Yonmicyy]
m=0f=m 1=t
+ 'z[rf Q)]s Qi Y (3.25)
m=t tr=m
When we consider LIM methods with ¢i(/. Q) = O since b{.') =0.t=0,1...,s,
(3.2.5) becomes
Ay = ZULH' (h. Qs ]h Z:,) 0y (s QeI ity = ot D i ]
m=0‘¢=m =

n pn-l
+ \;[H (h.Q.) ]u,'(h.(),,,_.)d,,,. (3.2.6)

m={) "f=m



For general VCM methods, it 1s better to write (3.2.5) as

A.‘/n = ’“H:(h-(gu—l)[Afn - ()u-l AN .‘/ul
ket

+h Zq](h'(zn—l)[Afn-k-i-_) - (Ju—l A”n—‘ck,]
=0

n-{pn—

+ Z[H h. Q ]h _”‘II h QNI l)[A/m by ™ Lru 1 \'/m kH‘

m=0"=m

n—-1pn

-+ Z [H (h.Qv) ]u’(h.()m_,):/,,, +00(h Qi ),

m=0"=n

We now consider »(/1.Q), ¢,(k.(Q) and 1w(/. Q) in closer detail with -

still denoting the inner product corresponding to the Euclidean norm.

Lemma 3.2.1 Let {u_(}l), b_(’n} be the respeetive cocflicients of (252,25 -2, s

3N

1.2.7)

1.2s — 1,8). (25.2s.8) VOM methods satisfying (2.1.2), (2.2.]) and (2.5.58) with

s> 1. If a sequenee of malrices {Q¢} de fined over R™™ salisfivs
Re < 0,Qo><0, Joral ovec™ andalll,

then

(A Qi) < 1 for all (4.

and
B, (R QO <O (Rl Qe)liQell < 'y, 7 =1,2,..0 k.

Jor some constants Cy, Ca. Furthormore, if
Re < 0,Qu >< v|o|l*,  for some v <0, forall v & R and all 1,
thew there crists @ conslant £, 0 < & < 1, such thal
el Qedll < & for all Qq

Jor the (2s — 2,25 = 2.5), (25 -- 1.2s — 1.5) VO mclthods,
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Uruof. For each of the cases considered in the hypothesis, let p denote both order
and number of steps in the method. By hypothesis, (=} defined on page 31 is the

[p — s/s] Padé approximant of «°. From lemmas 1.6.2 and 1.6.3 we then have
[r(h. Q)| = || (hQA|| £ sup |R(z} < 1. when 2s — 2 < p < 2s,
Re(:)<o

The rational functions ¢,(h. z) are bounded along the imaginary axis and are analytic
in €. since they have no poles in C_. Therefore by lemma 1.6.3 (von Neumann

theorem), there exist constants (', (", such that

g, (b Q) < _sup g, (h.2)] < O,
RE(:)SU

and

Ny, (. Q)AQe|| £ sup  |qj(h, =)= £ Ca.

€(:)<0

When p = 25 — 1 or p = 25 — 2, [{(2) correspondingly is the [s — 2/s] or [s — 1/4]

Padé approximant of ¢ thus

sup |A(2)| < &
RE(:)-EV

with 0 < x << 1. The last inequality of this result can be now obtained noting

(b Qo = [7(Q) < _sup |R(:) < &,

Re(:)<w
]
Lemma 3.2.2 Let {uﬁ'). b.(,')} be the respective cocflicients of (26 —2.2s -2, 5), (25—
126 = 1, 8), (28,25, 8) FIM methods satisfying (2.4.3), (2.4.4), (2.2.4) and (2.3.8)

with s > 1. If a sequence of matrices {Q} defined over C"*™ satisfies

Re< v Qe >< 0, forallvecC™ and all ¥,



Bh

then for some constant

('/1"] ) Jor 0~k
fre(h. Qe )del] £ Te-d
( (l}g;gg, & el + Juax I Aﬁll)~ Jor 0« (. k
where p denotes the corresponding ovder of the method.

[Proof. By definition

3y R A
ho(h. Qe))dell = | o7 Elx'(ll.(gf_l)/l'CJ:'—I[) [\',(,'](.s'),r/("“)(.r,'-k. foshyeds|]

1=t)

A

s k
U Z(-'.”u’(h.Qf—l LY / ' Moreie - sh)lleds
J)

1=

Ch / T dr

We go from the second to the third inequality using the fact that re(h ()¢ is

IN

analytic in the left half plane and bounded along the imaginary axis fori <. For
{ < k, we get the result by substituting «; into (3.2.3) directly. L

With essentially the same construction we also have:

Lemma 3.2.3 Let {(zﬂi), l)_(’i)} be the respeetive cocfficionls of (25 -2,25 =25}, (2

P

1,25 — 1. 5). (28,258, 8) LIM methods satisfying (2.4.7), (2.4.8), (2.2.4) and (:2.4.5)

with s > 1. f @ sequence of matviees {Qe} de fined over (57" satisfie s

Re<v, Qe ><0, for allve €™ and all ¥,

then for some constant C

AN

=k

t . * U - {’/ ,-7
( ("u &l + max | & o). o

where p denofes the corresponding order of the method.

(e Qoo | e [T ) de. for ¢
w(fe. Qe )eoll < ’
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3.3 Convergence for nonlinear dissipative prob-
lems

We can now formulate convergence results for nonlinear problems.

Theorein 3.3.1 Supposc e indliel valuc problem (1. 1.1) satisfics

i [fu(ey)] < 0.

Asswme furtlier that the starting values are in a small neighborhood of the exact
solution. Then the errvor for FIM methods of types (25 — 2,28 — 2.5), (28— 1,25 -

Los)o (2585, 8) saisfying (2.4.9), (2.4.4), (2.2.4) and (2.3.8) is bounded by

Huw = (e )l € (j(max_ IAY] +J£f‘<’§.- I A Fll +/;I'/ n 1y ()l d.v)

<) <k
providod that hCM < 1 where the conslant Cy depends on the cocfficients of the
method and N depends on the conlinuity of the Jucobian. The constant ' depends

on ('yo M oand the length of the integration interval.

Proof. Denote d, = |[w(h,€Q,_,}{,||. From (3.2.7), using the mean value theorem
for X fi-k4,, noting the fact that .y = fy(2L-1 Y1), and lemma 3.2.1, there

exist a constant (| dependent on the coefficients of the method such that

Al < WCHEA fu— Qua &y + 0 C kz-:l | A fuekts = Quet O Yuokss ||
net k = n
+h(y '“Z:UJ:ZU A finkts = Quct & Yon—iy || + 1uz=:()flm
< WOy (e (o) + 6 A y) — fulencroy-)l - 1Ayl
+hCy i,kzu I1fy (-"nt-k+js.'l("'m-—k+j) + bk O Ynimkos )
S

- fy(-l'm—la.’/m—l)” ’ " A ym—k+j” + Z Jm-

m=0



N
Suppose there exists a constant .M such that for 0 </, J 1,

”/'u (-I.m—k+1~.U(-rrn~k+_,) + Im—k-{-_j A .’I’m—k+,l) - .’;‘I(‘Ilrll—l'!/’llt-—l )“ l ”.

then

-l "

H A ’/n” S ”(15 A‘l” A JI/'n” + b(“' -+ 1)(']‘\1 Z ” A .'r'm“ + Z ’;m'

el re={)

From the assumption A¢("; M < 1, we have

(k+1)CTM & 1 .

n <} ' N -m-
I8 wl< hS—5m :4;,” Bumll + T ,”Zm,"
. (k4 1) M . 1 2, - .
Let V™ 1= —— U = o [, the above c: 'n be writte
e I AC and YaY miz:“ e, the above can then be written
as,
n—1
Al <hM: Z Ayl + Lo
m=U0
| EE
By induction, and noting nh = r, — oy and for j < n, —1 d, -
L= I 1‘” =
1 n -
&yl € (WM™ + D)MEMT|| & wl| + L7)
< [exp(RMINMAAMT|| A ol + L7)
= exp(&,, — )M YN Doyl + L7)
exp|(.r,, — .:'(,)M']( . L. )
(N . L, 1.
1 - Wt M ARC LML o F,g,' "
The result of the theorem now can be obtained by lemma 3.2.2. O

Similarly as above, we can get the theorem for LIM methods.



68

Theorem 3.83.2 Suppose the initial valee problom (1.1.1) salisfies

i lfu(eay)) 0.

Assumee further that starting values are in a small neighborhood of the cract solution.
Then the error for LIM methods of lypes (25 —2,25—2, 8), (25 —1,25—1,8). (2s. 25, 5)

salisfying (2.4.7), (2.4.8)0 (2.2.4) apd (2.3.8) is bounded by
— s v p=1 [T G
I = el < C(max 8l + max AL +07 [ 7)) )

wheve e constant (" depends on the continuity of the Jacobian of the problem, the

cocflicients of the wethods and the length of the integration interval.

I’rouf. Similar as proof of theorem 3.3.1, but use (3.2.6) instead of (3.2.7),

o k=1

FAmE < 0C 30 3 1y (nmtris W(mbed)) + bramtts D Yumit)

m=t) ;=0

- fy(*rm-lv ym-'l)” " ” A Yin—kj ” + Z dm'

m=0

Suppose there exists a constant .}/ such that for 0 < ¢; < 1,

”[u (-"m—k-&-_ye.’/(~rm—k+1) + Im—k+j A .'/m-k-{-j) - fv'(‘rm—l Y1 )” < M,

then
n-~1 noo_
” A .‘/n" < h,"("l M z ” A.'Im” + Z dm-
m=0 m=0

Let M*:= k("M and L° := Z Jm, the above then can be written as,

m=0

n-1|
| Ayl <863 ([ Ayl + L7

m=0



(Y}
By induction,

Al < (BT + )R A poll +17)

< expl(ry = )M A ol -+ 1),

The result of the theorem niow can then be obtained by lemma 3.2.3. 0

As we noted in remark 2.4.4, the coeflicients of VCM methods are continous
functions of r = Ay/h, when two stepsize are in use. We can choose positive con-
stants w, ) with w < 1and Q > 1 such that all coeflicients are hounded if we restrict
the stepsize ratio w < r < Q. So hy/hy > w/Q when hy - 0. The theorems in this

section can be extended to variable stepsize VCM methods without difliculty.

3.4 Convergence for singular perturbation prob-
lems

We consider convergence when VCM methods are applied to the autonomous sin-
gular perturbation problems (3.1.1). In the event that the Lipschitz assumption
on f(v,:) cannot be met, it becomes impossible to provide convergence estimates
independent of <. One could tailor the convergence results of section 3.3, albeit
they would provide little insight. This is due to the dependence nn < that results
from this approach. So we suppose that the singular perturbation problem has the

properties
e [(y,z) satisfies a Lipschitz condition with moderate Lipschitz constant.

o sy S v <O
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(.2)" e R¥ and F(u):= (S (u),c"'g(u)) : R® — R*", The problem

Let u :=
(3.1.1) can be written simply as
(3.4.1)

w' = [(u). n(ro) = wy.

The Jacobian matrix of the problem 15

/“:( fy f:)::(/ 0 (f'/[z)
" sy, 27l 0 Y] 9 Y9 )

When : is small, the eigenvalues of 4. may be the dominant eigenvalues of the system
(3.1.1) (Hairer and Wanner (1991, pp 411)). Since () in the VCM formulae does not

alfect the order, we base our analysis on the alternative selection

0 0
= ( 0 ¢ 'y, )

for capturing the charactetistic of the problems. It is equivalent to the following

schemne:

k k
)
§ :”50 ngy = h Z [)‘(;O)fuﬂ
=0 /=t (3.4.2)

k s k rs=1
tpeeyt h IRPRY)
S [Soalh Qhovtict | 710 = by [ o Q:.”H_l]guﬂ

J=1Te=t < y=lti=0
where
1
Qrngk-1 = '_:_(I:(f/ni-k—l » Sntk-1 ).
fn+,) = f(.'/nﬂv :ﬂ+.))‘ Yugy = !](!/n+j . :n+j)'
Since
(1) 0
0 =_1, u(k.) =1,

=0 forj=0.1.....k =2, o« =

then y, is being solved by a classical Adams method which is zero-stable.
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We insert the exact solution of (3.1.1) into the method (3..£2) and by manipula-

tions similar to those in section 3.2, the relations for Ay, and Nz, can be written

as
n opn-l L
Bpw = & [H o(h. ())] S0, (1.O) A oo,
=i =0
(308

m=()

n n~-1
P [n r(1.0)

=t} “F=ymn

] w(h. O)d,,.

.'/:(.l/m—h Sm-1 ) A :m-k{-;]

k

Z ‘/}(h‘ (32.m—| )[A!/m—H-_;
(3.1.1)

=0

-—

1l

n-—1|

As, = Z[Hr'(h.(,,)z,r)
m=0*f=m
] ll.‘(lh (22.111—1)(""

+ 3 [T @)

t=m

m=0
vhere the relation for Ay, can be explained as chosing the zero matrix O in the

and ,

({1 l

corresponding VCM formula. The following definitions are similar to those in section

Dzpyy = 2(r04) = Zupy

3.2
A.’/uﬂ' = .’/(-"M-J) — Yuty»

and
= f(-'/(‘L"H'J)’ :("’"4-1)) - f(-'/u+.1 ’ :nH)

A.fu+1 :

Ay”-+_] = .'/(.’/(-"n+1)a :("'uﬂ)) - .’/(.’/u Fyo=n H)'

As usual we define for ;j <0
Af,i=0, Lz =0, Ly, =0,

Ay; =0,
} be the respective coc flicients of (25 = 2,25 =2, s). (25 —

(0 40
2 ’I,J

Lemma 3.4.1 Le! {«
1.25 — 1,8) VCM methods satisfying (2.1.2), (2.2.4) and (2.3.8) with s 1. If
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the logurithmie norm of the scquenee of matvices {Q¢} defined over C*7" satisfies
Q] 2 v 00 then for any constants he 0 b > 2 there crist constants 0 k.0 <

& Lo such that
1 h 1 .
r(he —Qa)ll < . =g, QA 20 j=12..... k.

lroof. Using lemma 1.6.3 (von Neumann theorem) and theorem 2.3.1 of Dekker &
Verwer (1984, p. 43), we have

/
| < | H(—;Q;)“ < sup  R(z)| £ sup |K(:)] <k <1, for h>-:.
c

Hr(z)<hyfe Re(2) <y

(.= Q0)

From the condition < ¢, Qsr >< j12[Qr]) < v <0 we know Q' exists,

1 5~1

1

gf"l.,(/";(-;"*)ll = jll[z: b 1’)h( ~Qs )J_ Zb( e Lo
= “[Z (ay, (n 1’; (%Qi)] ‘sz:h(«),m (=Q )'HQ f

IA

M7 sup  |zq,(h.2)].

e(z)<o

The second inequality is now proved since ||(Q7'|| is bounded as || Q7] < — (jr2[Q/])" <

—1~', 1 is a negative constant, ¢,(/.z) has no poles in C.. and |z¢,(. )| is also

bounded in C.. 0

Lubich (1991) gives a convergence result with restrictions on the eigenvalues of
u:(u. 3) for reasons of stability of the employed underlying multistep method. We
can give essentially the same result except relax the eigenvalue restrictions given the

stronger stability properties of the VCM methods considered here.
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Theorem 3.4.2 :Assume the logarithmic matric norm of g, salisfics

jalg-(n.2)] < v o0
Asswme further that starting values ave inoa suflicicotly small h-—- and <~ ide pen-
dent neighborhood of the exact solution and that b~ hy with hy sufliciently simall but
independent of &0 Then the crror for FIM methods of types (28 = 2,24 - 2.8}, (25 -

1.2 — L. s} satisfying (2.4.3), (2.0.4). (2.2.4) and (2.5.8) is bouwnded Jorh - = by

ot = gl + = ()
< ('(],n /r" PO dar + 7 /:.. =t )

+ mmax | &yl + Jax |RAWHAESCE I [Jf;‘ff:’i- &zl + Juax | A .u,.ll])

with 0 < p < 1. The eonstants (O and p arc independent of = and I,

Proof. Define
JJ = w(h.0)d,, éy=a(h Qo).

From (3.4.3), using the assumed smoothness of [(y.z) and lemma 3.2.1, there exist

constants A/, NV such that

n

Nan <3 (VIS pl+ NI A 1) + S I (3.4.5)

=N 4=

From (3.4.4), using lemma 3.4.1, there exist constants L,=,, » such that

TS e TN F VN ) B wpl (3.46)

)=l J=0

The rest of the proof is along the similar lines as in Hairer & Wanner (1991, p.412-

415). Now define the sequence {u, }, {m.} by

n

Uy = I:.Z(.Wu, + Nu_,) + Z 1, )]

=0 J=n (3.4'7)

n Tt
v = Z KT (Lu} + 5]”;) + Z S| [

=0 =0
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By induction one can show that
” A“ "/n” S ), ” VA :n“ S ",

provided =, < 1, and h < h,. Rewrite (3.4.7) as

e =ty F WM+ hNe | | (3.4.8)
r, = K+ l«”rl + syt H Fn || o

Solving for u,, r,. we get
i, . -1 ‘En
() =) o () oi

() = 1+ 0Oy OW)
A(h) = O(1)  p+0(h)

where

and

B (L +0a). e c(idn+1a).

[nserting to (3.4.9) repeatedly we have
( tn ) = f: A(hyr=4 ( ; ) (3.4.10)
Uy €
=0 J
If =, is small enough so that p := —(-I—"_—) < 1 and if & < hgy, then the eigenvalues
—

of A(h) are distinet and A(/i) can be diagonalized as

A(h) = '1'—'(/,)( ”g’(") ﬂ+(())(h))’1'(h), T(h) = (0(/1) 1

Inserted into (3.4.10) the latte~ yields
n . n .
u, + t, < constant - Z d, + ):(h + p" e,
=1 J=1
where p = ~ /(1 — ). This is done using the continuity of y.{y. =) and knowing =,

can be made arbitrarily small by assumption provided # itself is sufficiently small,



=

The statement of the theorem now follows from lemma 3.2.2 and the definitions of

lf,. €. 11

Similarly we have

Theorem 3.4.3 tuder the assumplions of theoram 5.4.2, the creor for LIM micth-
ods of types (25 = 2,28 — 2.5), (28 = 1.2s = Ls) salisfying (2.0.7), (24.8), (2.0}

and (2.5.8) is bounded for h > 2 by

“.‘/n - _l[(.l',.)” + ”:“ - :‘(.l',,)”
< (it [ de et [0 de
Jry v ry

+ max || 0l + gmax ) & Ll + (04 ) [wax 1A 5+ s 1| A,

with 0 < p < 1. The constants (" and p are independent of s and h.

Remark 3.4.4 Theorems 3.4.2-3.4.3 also hold for corresponding variable step vize

methods in as much as /, — 0 while the ratio A,/h; > w > 0.

3.5 Example

We have tested the (5, 5,3) method on van der Pol's equation
no= n(0) =2
| (3.5.1)
= (1=l —n y2(0) = —0.66.
integrated over [0.2] and set ¢ = 10~". We note that the assumptions on smoothness
of the functions [ and g in the begining of section 3.4 are satisfied by this particular

SPP in all of the integration interval except ji,ly.] > O in two narrow transient

intervals.
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Table 3.5.1: Results of FIM (5,5,3) code for van der Pol's equation

Selection Tol Nstep Nsc Nfe Nje Nlu Eabs
S0, 10-% 1281 294 2614 296 604 1.42 x 107"
10~ 553 137 1478 139 370 3.23 x 10~
SQ., 10-% 1316 301 2700 303 622 7.32 x10°°
10~ 546 129 1424 131 344 3.23 x 107"

The description of code is again left to chapter 4 where we always choose the
matrix (¢ in VCM formulae as the full Jacobian of the corresponding problem. For

van der Pol’s equation, the full Jacobian is

_ I Sf:
Q= ( 5—Iy!ly & ly. ) .

Whereas we also test here the setting

0 0
Q"(O f“az)

according to our analysis in section 3.4. Denote the former and the latter setting
() respectively as 5@, SQ:. Illustrated in figure 3.5.1 is the y; component of the
solution and the stepsizes used in the computation. We list the results in table 3.5.1.

The entries noted in the table correspond to:

¢ Tol: local error tolerance (we use scalar error control here and set both absolute

and relative error tolerance equal to Tol),
¢ Nstep: number of steps,
o Nsc: number of stepsize chang:s,

e Nfe: number of function evaluations,



-1
-1

s Nje: number of Jacobian evaluations,
e Nlu: number of LU-decomposition,
e Eabs: actual absolute error at end point.

We can see {rom the table the nuinbers of function and Jacobian evaluations and
of LU-decompositions are similar for both selections. But the code with selection

S();, is overall much faster given the simpler structure of () for this case.
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Figure 3.5.1: van der Pol’s equation



Chapter 4

Implementation and numerical
testing

4.1 Implementation

To use the VCM methods efficiently, we implement them in variable stepsize {orm
and an increase in stepsize is considered only if the stepsize has been constant for
k — 1 steps (where £ is the number of steps in the formula being used).

Even though the powers of the Jacobizn matrix appear in the formula, one should
always avoid matrix multiplication in a practical implementation. The number of

! while the work in a real

operations in matrix multiplication is approximately n’
LU-decomposition is about n*/3 operations. Moreover, as is often in licated in the
literature (eg. see Enright 1973) matrix multiplication destroys sparseness, whereas
LU-decomposition retains sparsity. Since many large dimensional problems appear
in sparse form, retaining this structure is quite important.

We can avoid matrix multiplication by factorirg the denominator polynomial of

Padé approximant to ¢°. For implementation, we rewrite (2.1.1) in the fortn

79
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5 s k-1
[Z :zﬁf’/t'(}:l] Yngk = Z Y [-—-ui"y,‘ﬂ + ltﬂl)hf"t,] . (4.1.1)

t=0 1=1} =0

Furthcrmore, we factor the left hand side of (4.1.1) and represent the right hand

side using the nested multiplication scheme, that is,

wo(hQ, — wy W, — 1wy D) - (hQ\ — 1w ) ynex

ket
= Z ['_”"]“’.’/n-l'-j + b_(,”}hfu'f'_l]

=0

k-1
+ hQn{Z ["“ﬁl)!/n+) + bj'l)hfrwj]

1=t
k-1

+ h()n{ Z [—aﬂny,,ﬂ + (r&z)hf,lﬂ]

1=0

4 e

k=1
+hQ, Z [-(153)!/,,4.] + {)E-s)hf,,ﬂ] } .- } (4.1.2)

=0

Now for the right hand side, there are only matrix-vector multiplications involved.

To solve the above linear system, we use the approach suggested by Willoughby (see

Enright (1973)). For a complex pair w. &, w with non-zero imaginary part, consider
solving the problem

(hQ — whY(hQ) = BNy = b (4.1.3)

where i and b are real vectors, () is a real matrix. This equation can be solved using

a single complex LU decomposition. Setting
(hQ -- @)y = =,
we can determine = by solving the complex system

(hQ—1whz=1
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Since both 7 and y are real, we can equate ir~ginary parts of (1.1.3) and obtain

y = Im(z)/Tm{ew).

Thus for each real root, we need a real LU-decomposition. For a pair of complex
roots, we need a single complex LU-decomposition which is four times as much
work as a real LU-decomposition. If the corresponding formula has s real roots
and s, complex pairs of roots, we can solve (4.1.1) by s, real LU-decompositions, s,
complex LU-decompostions and s + 5, backsolves. For example, we need one real
LU-decomposition for a method with s = 1, one complex LU-decotnpusition for a
method with s = 2, one real and one complex when s = 3.

Finally, in our codes Jacobian updates are performed only when the stepsize is
changed.

To implement a variable stepsize method efliciently, one needs a stepsize changing
strategy and an esvimate of the local error at each step or at several steps.

As is commonly done, we use the {ollowing formnula for chosing a new stepsize.

lol Iﬁ
hnew = hold « fae- (—-——)

“rr
where hold, hnew are old and new stepsizes respectively, inl is the error tolerance,
err is the estimated local error and fuc is a safety factor which is usually chosen
between 0 and 1 (we use fac = 0.8).

Two popular ways to implement variable stepsizes method are:

s use one formula with two stepsize sequences, obtain the error estimatle by local

extrapolation;
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o use¢ a pair of methods which belong to a family with differer.t order (eg., some

classical RK pairs) or with same order (eg. predictor-corrector methods).

We implement the above two different strategies for the fourth and fifth order
LIM methods, we also implement FIM methods of the fourth and fifth order in the
predictor-corrector form. We then test the three codes on a set of 17 problems. Now
we begin with a description of these codes.

Code a: This approach is based on the classical idea of Richardson extrapolation
(see for example, Atkinson 1989). Let p denote the order of the method in use. For
given stepsize I and r,,._; at which the solution has been accepted, the code will

compute two steps at stepsize /i to give an estimate
Unthtr = Y(Logr + 20) + C AT
‘Then a double step fromn .r,, of size 2/ is taken to give another estimate
Duskst = Y( gk + 20) + C(20)F

If the above two estimates are used to solve for the error term, we obtain

(oY = Untk+1 = Yudk+1
! ortt —1

The above can serve as an estimate of the local error and we can also locally crirap-

olate the solution to

Yndb4l — Unth+1
op+1 _ 1 ‘

,'7u+k+l = Un4k41 +

If the error tolerances are met on every second step, the intermediate steps are also

accepted without a second explicit error check for them. Thus the overall method
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cannot have order greater than p + 1 since local extrapolation is performed only
every second step. Methods of type (4.4.2) and (5.5.3) have been coded. Bach of
these uses methods of orders one and two for generating the necessary start-up data
and thus are self-starting. For the {4.4.2) code, stepsize changes are considered
after every four steps and the Richardson extrapolation scheme blends in well with
this requirement. In order to allow for stepsize change to vecur after every live
steps in the (5,5,3) code, a slight modification to the strategy is needed. Our
approach used here is to compute Richardson extrapolation with two half steps/one
full step combination for the first step, then a pair of double step caleulations thus
generating a complement of five consecutive steps with no more than two stepsizes
in use. Finally, at order p, a stepsize change is considered after p consceutive steps
only if the stepsize control formula suggests a step ratio greater than 1.1 for the
next set of p steps. In the data presented later, we note the large number of LU
factorizations this code necessitates. In actual fact, about half of these lactorizations
could be spared with further allocation of memory to the code. The codes used here
are a modification of those presented in Charron (1993) which in their original design
permit stepsize changes to occur as frequently as on every step.

Code b: The local etror is estimated by a pair of LIM methods which are both & step
methods with different free parameters chosen to detezmine coeflicients of the meth-
ods. The coeflicients of one method are determined according to Theorem 2.4.1-2.4.3
to minimize the complexity of the error term and this is used as the main method to
calculate the approximation values of y,. A second selection of parameters gives a
formula whose approximations are used only for error estimation. According to the-

crem 2.4.3 with the usual localizing assumption ( yny, = Yl Fns; ) g = 0,1, 0, k—1.)



34

in place, we have
)
Wrwak) = gk = 2 WQ(e "y P (wgr) + O(R7H)) (4.1.4)
r=I(}
whereas with j, ..
1
Wrss) = fugs = 3 HQUER Y (2 4) + O(AT=H)) (4.1.5)
1=1)

since the selection of parameters for 7, satisfies (2.2.2)-(2.2.3) only. When work-
ing with stiff problems, ||(2,|| is not of moderate size and therefore the principle
contributions to the local error term in (4.1.5) originate with the terms whose index
satisfies 7 > 1. Thus the difference j, 4+t — ¥n++ obtained from the difference of equa-
tions (4.1.4) and (4.1.5) above will provide an estimate for the local truncation =rror
expressed in (4.1.5). We can see from (4.1.2) that the left hand side is independent
of the parameter selection, so the pair ciu share the same LU decompositions. The
codes start from low order methods (1,2,.... 4 — 1), so they are also self-starting.
Code c: Charron (1993) tested VSFIM methods, which are variable stepsize FIM
methods without the re “riction on only two stepsizes in the current k-steps, in
the predictor-corrector form where the nonlincar equations in VSFIM formulae are
solved by fixed point iteration. He noticed VSFIM performs better than VSLIM
code and has more reliable local error estimate as

] q o k=t
[“'n [1hQ, — wit )](.t/(-rn) — )= hQ, [Z My, - ¢$|,ll.q)]
i=0 j=

¢
where o, y

{(vaey fu=)} i=01,....qg< k-1

can be expressed as an integration of the polynomial to the data

Here we consider implementing VCM methods in the predictor-corrector form,



with the nonlinear equations solved by simplified Newton iterativn. For VOM meth-
ods, (4.1.1) can be adjusted to

[Z ”A)h Q” Untk — I [Z (J(Al'i/, ® n] fu+k

=0 [3=1}]

s k=1
=3 0O, Y [~y 60, "y (4.1.6)

i=() J=t
This is a nonlinear system for y,4.x since fipx = [ ks Wngr ). Applying Newton
iteration to (4.1.6), we have

N .’—l ’
([ ama] - 0[S hwa] Ao o) PO = )

i=0 1=20

= rz uk)h Qn '/E:i]k + h [Z f}f‘_')/) Q”] /a(x’i]k + Z e, E [——u uy, F b " oy ,l .

—n 1=(0) 1==t) =0
We replace the Jacobian f,(.r, 4k, i) evaluated at o,y by (J,,, which is an approx-
imation of the Jacobian. Then the simplified Newton iterations for (4.1.6) becomes
[l s mi0i] it - otk

1=0

K] k—1
= SR (=l W] QLS [, 4 6 1)

=0 1=() =t

Note that if the predictor and corrector are of the same order, then the matrices
in ihe left hand side of (4.1.1) and (4.1.7) are equal. We use a LIM as predictor
and the same order FIM as corrector, so the code can share the LU-decomposition,
For simplicity, we adopt the PECE mode described in Lambert (1991, p.104) where
only one iteration for the corrector is allowed at each step.

Error control: All three codes use a weighted error control as in the popular code

I SODE. Define the error weight as

cwl(f] i= alol[j] + rtol[j" wbs(ylf]), forj=12....,m



SH

where «fol and rtol are absolute and relative error tolerances respectively. If in the
current step, errjjl/ewifj] < 1forj = 1.2... .. m, we accept the result at that step,
otherwise, it is a rejected step. When all «fof)] are equal and riof]j] are equal,
we essentially have scalar error control. Scalar error control is suitable for most of
our test problems. For simplicity, we always set atol[j| = rlollj] = Tol for all test

problems in next section except for Robertson problem.

4.2 Numerical testing results

The first extensive test set for stiff problems was presented by Enright et al (1975),
and was later supplemented by Enright & Hull (1976). Byrne & Hindmarsh (1987
presented another test set which contains 10 test problemns. We choose all 10 prob-
lems from Enright & Hull (1976) and the first 6 problems from Byrne & Hindmarsh
(1987).
Problem 1. {chemical pyrolysis)
yy = =785 x 107"y, — 1.1 » 107yyys 11 (0) = L.76 » 1077
yh = 17.89 x 1071 — 1.13 x 10%y,45  12(0) =0
vy =T7.89 < 107y, — 1.1 « 107y, 4
F1.13 % 108, — 1.13 » 107000 #5(0) = 0
g =11 % 107y — 113 % 16%m,y, pa(0) = 0
Integration interval: 0 < ¢ < 1000.
Problem 2. (chemistry: Robertson (1966))
yy = —0.0dy, + 0.01p2y3 yi(0) =1
yy = 400y, — 100y,y5 — 3000y y,(0) =0

3/3 = 30.'/-3 .'l:s(o)

i

0
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Integration interval: 0 < ¢ < 40. This is the scaled Robertson problem obtained

from Problem 11 by transform
ye= s v = 107y, gy = 10% s,

Problem 3. (chemistry: Bjurel et al (1970))

¥y = 4z — 100y, 12 n(0) =

vy = g3 + 254 = 100y, — 2 % 10*y5  15(0) =1
¥y = =—ys + 100y, 1, y3(0) =0
wh o= —yg + 1073 ya(0) =0

Integration interval: 0 </ < 20.
Problem 4. (chemistry: Gear (1969))
yy = ~0.013y, — 1000y, i, y(0) =1
Wy = —2500y;y; y2(0) =1
¥y = —0.013y; — 1000y, y5 — 250023 3(0) =0
Integration interval: 0 < /¢ < 50.
Problem 5. (reactor kinetics: Liniger & Willoughby (1967))
= 0.01 — [T+ (y1 + 1000)(y, + 1)}(0.01 + y1 +52) 9 (0)=0
yo = 0.0L — (1 4+ y3)(0.01 + y; + y2) n(0)=0
Integration interval: 0 < ¢ < 100.
Problem 6. (dynamics of a catalytic fluidized bed: Luss & Amundson (1968))
y1 = 13(ys — 1) + 10400ky,  y,(0) = 761
5 = 1880[y4 = y2(1 + &)] y2(0) =0
wy = 1752 — 269y, + 267y, y3(0) = 600
¥y =0.14 320y, — 321y, y4(0) = 0.1
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where b = (*7-10/u Integration interval: 0 < ¢ ~ 1000,

Problem 7. (thermal decomposition of ozone: Lapidus et al (1974))
Uy= == e+ 294y, 0 (0) = 1
.'/-2 = .'ll(l - .’/:)/93 — Sk !/.'(0) = U
Integration interval: 0 < ¢ < 240.
Problem 8. (nuclear reactor theory: Liniger & Willoughby (1967))
yy =0.2(u2 — 1) yi(0) =0
yh =10y — (60 — 0125y )y + 0.125y5  y(0) =0
yy =1 ' ya(0) =0
Integration interval: 0 < ¢ < 400.
Problem 9. (oscillating chemical system: Field & Noyes (1974))
wy = sy =y + o= qui) n(0) =4
vy = (43 — w2 = u2)/s 1(0) = 11
Yy = wlyr = ys) ys(0) =4
where

s=17.27, w=0.1610, ¢=8.375 » 107",

whose solution over [0,300] is desired.
Problem 10. (enzyme kinetics: Garfinkel et al (1966))
y) = 101 (=3y,ys + 0.0012y5 — 99y s)  #:(0) = 3.365 ~ 1077
Yy = =3 x 10"y yy + 2 % 107y, i2(0) = 8.261 ~ 107
y5 = 10" (=9y1y3 + 0.001y,) y3(0) = 1.642 ~ 10~
¥y = 10" (3y1y2 — 0.0012y, + 9y1y3)  #a(0) = 9.38 £ 107"
Integration interval: 0 < ¢ < 100.

The following are six problems from Byrne & Hindmarsh (1987).
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Problem 11. Robertson’s Problem

yy = —0.04y; + 107y, n(0) =1

yy = 0.04y; — 10,5 — 3 x 107y, 12(0) =0

uy =3 107y, y3(0) =0
Integration interval: 0 <t < 4,047.
Problem 12. The Field Noyes chemical oscillator. This is the same problem as
Problem 9 except the integration is from 0 to 600.
Problem 13. Two Species Diurnal Kinetics
Y= =k — kanye + 2k(Dys + k(w2 n(0) = 10°
yy = ks = ko = k(e 12(0) = 10"

with _
s = 3.7 < 10

ky =1.63 x 107
ky =4.66 x 1071°

exp(—u,/sinwt], sinwt >0

ky, = 1=3,4
0. sinwf <0

iy = 22.62. fly = 7.601

w = 1/43200

and the integration interval is 0 < < 8.64 x 10°, or 10 days.

Problem 14. A Kidney Model
u = alys — i/ m n(0) = 1.0

yy = —alys —in) y2(0) = 1.0

-

vy =alys—m) y4(0

!

(©)
(0)

vy = [0 = e(ys = ys) — aps(ya — y1)l/ys ys(0) = 1.0
(0)

vi = —c(ys — ys)/d y5(0) = 0.9

with

a=100, bh=0.9, ¢=1000, =10.
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Problem 15. A Laser Oscillator Model
n=-—r o4 Jd) 49 n(0) = —1

u =o(p =)+ (14 1) »(0) =0

with _
n=15x10""J4=25x«<10"

4 =21x10"% ;=08

o=0.18. r=0.016.
The interval is 0 < § < 0.7 x 109,

Problem 16. Burgers’ Equation
Wy + ity = 1My, 0< <1, 20

This is a partial differential equation with travelling wave solutions. It is discretized
along the + axis with a uniform mesh and we replace all spatial derivatives by

centered finite difference analogues:

i, = —( /20)(0tig1 — winy) + (V)20 iy — 20, +umy)y, =120 N

1
NIl Initial and boundary conditions are:
ui(0) = (1 +exp(i & /2v)] ', i=1,2...,N

uo(t) = [1 + exp(—t/4v)|~!,

un1(t) = [1 + exp(ﬁ - ',t;‘)]—]

We chose v = 0.04, N =50 in the test.

where A =

The last problem we tested is the van der Pol equation which can bhe classified
as singular perturbation problem.
Problem 17. (van der Pol’s equation: (van der Pol 1926))
Yy =12 n(0) =2
yo=((1= 42— m)fe y.(0) = ~0.66
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with = = 107" on the interval [0.2].
The test results are shown on table 4.2.1- 4.2.12. The notations in the tables

have the following meanings:
¢ Tol: local error tolerance (see page 86 for detail about the error control),
o Nstep: number of steps,
o Nsc: number of stepsizes changed,
o Nfe: nuinber of function evaluations,
e Nje: number of Jacobian evaluations,
¢ Nlu: number of LU-decomposition,
» Fabs: absolute error at end point.

e Erel: relative error according to the component with the largest abstract value

at end point.

The last two items are estimated by comparing our solution to that obtained by
calling IMSL subroutines with a tolerance of 1.0E-10 (problem 13 is a challenging
problem, only one significant figure can be obtained by calling both IMSL and NAG
subroutines). We restrict the stepsize ratio » < 3.5. The numerical test is performed

on a MIPS M/120s machine in double precision.



‘Table 4.2.1:

Results of LIM (4,4,2) on problems 1-5

Problem Code Tol Nstep Nsc Nfe Nje Nlu Eabs Erel

P1 (a) 10 68 18 74 18 68 269 x10"" 1.66 x 10~
1072 44 12 50 12 44 T7.32x1077 4.53 < 107!

(b) 10°% 46 15 49 17 18 3.23x107° 2.07 x 107!

103 43 14 46 16 17 100<10"> 663 x 107"

P2 (a) 107® 192 43 198 43 192 4.53 x 1077 1.59 x 107°
1073 64 17 73 17 70 803 x107% 2.83 <107

(b) 10°® 457 31 460 33 34 2.94x1077 1.03» 107F

100 73 23 16 25 26 150x10"% 5.08 <10°°

P3 (a) 107 192 48 203 48 202 257 x 107" 1.08 <10~
1073 84 22 99 22 102 3.12x107% 1.03 -~ 107"

(b) 10™% 165 47 168 49 50 2.80 - 107®* 9.61 < 107"

107 66 27 69 23 24 867 «107° 3.40 - 107"

P4 (a) 10°% 56 14 62 15 56 3.85x10"° 2.74 - 107°
10~ 36 10 42 10 36 2.00<107° 1.42 107"

(t) 10% 32 10 35 12 13 556 » 10" 3.84 - 167"

10~ 31 1 34 12 13 931 <107 540 - 10!

P5 (a) :7° 100 22 130 24 140 3.28 A~ 10°' 290 - 107}
107 40 11 46 11 40 1.06 - 10~° 1.06 - 10~

(b) 107® 107 33 122 35 40 35.60 « 107" 4.85 - 107"

1073 34 11 40 13 15 1.37 -~ 10°' 1.20 - 107!

i

G



Table 4.2.2: Results of LIM (4,4,2) on problems 6-10

Problem Code Tol Nstep Nsc Nfe Nje Nlu Eabs Erel
P6 (a) 107 212 29 225 31 222 173 x<107° 1.42~107°
107 64 16 73 16 70 234x107° 193 «107°
(b) 10°% 578 167 647 169 192 1.91 ~10"° 1.58 ~ 10-°
10* 61 13 64 21 22 1.24%107" 1.03 x107!
P7 (a) 10°¢ 88 22 94 22 8 422x10™ 103 x107°
1073 44 2 50 12 44 236107 6.03 »107*
(b) 107 50 15 53 17 18 1.36x10"° 3.78 x107°
1077 34 131 37 13 14 6.12x10" 1.63 ~ 10~
P8 (2) 107® 372 18 394 26 398 234 x 10 1.21 x 10~™
107° 64 10 84 16 86 2.79 x107' 213 x107*®
(p) 10°®* 80 82 883 84 85 6.03x1077 1.18x 107"
102 121 38 124 40 41 157x107" 114 % 10°P
P9 (a) 10°° 1044 95 1229 152 1340 810 x 10-° 1.83 x 10~°
1073 212 33 295 49 334 258 x10° 141 x 10"
(b) 107%* 1763 400 1772 402 405 1.51 x10™* 3.42x 107"
10 331 103 379 105 121 7.22x107° 157 x107°
P10 (a) 10-° 3772 180 4033 264 0 4.09 x 10~% 2.86 x 1077
(b) 10°® 573 164 633 166 186 9.84 x 107" 1.59 x 107"
10-* 149 18 152 20 21 3.56 x 10~' 2.06 x 10™*

€6



Table 4.2.3: Resualts of LIM (4,4,2) on problems 11-15

Problem Code Tol Nstep Nsc¢ Nfe Nje Niu Eabs Erel
P11* (a) 10° 540 109 554 112 552 3.11x10~° 2.30 x 107°
(b) 10°% 1039 107 104> 109 111 1.87 x 10~* 1.87 x 107°
Pi2 (a) 107% 2080 181 2456 300 2688 8.77 x 10°° 2.64 x 107°
1073 448 63 667 102 796  1.80 x 16 1.18 < 10Y
(b) 10°® 3546 807 3561 809 814 1.19 x 10~* 3.58 x 10~°
1073 651 201 744 203 234 T7.12x107* 213 <107
P13 (a) 107 22240 823 23735 1060 24860 4.57 x 10'" 2.59 < 107!
1073 3788 520 5476 607 6976 4.57 x 10" 259 < 147!
(b) 107% 77779 3115 78190 3135 3290 4.57 x 10" 2.59 x 107!
10-% 7549 1337 7873 1350 1469 4.57 x 10'' 2.59 - 107!
P14 (a) 107% 152 28 170 37 174 3.96 x 107" 6.79 ~ 10"
107 144 29 213 35 242 7.76 x 10* 1.53 ~ 10!
(b) 10-° 229 58 235 60 124 7.93 x 10Y 1.04 - 107}
10°% 147 16 177 13 116 2.95 ~ 10" 3.20 - 10™!
P (a) 107° 6964 246 7492 522 7752 2.05 £ 10" 414 - 107°
107% 1844 157 2162 70 2336  9.37 - 10" 6.53 ~ 107}
(b) 107" 8610 1329 8730 1331 1371 1.37 - 10" 2.74 -107F
10-% 2249 593 2465 595 €47 1.18 - 10'* .73 . 10
* For Robertson problem. we set error tolerance: rtol = 107", and atel = (107", 107*.107") (see Byrne &

Hindmarch (1987) ).

b6



Table 4.2.4: Results of LIM (4,4,2) on problems 16-17

Pro m Code Tol Nstep Nsc Nfe Nje Nlu Eabs Erel

P16 {a) 107® 232 53 289 55 316 1.94x 107" 120~ 107"
1072 48 12 58 12 54 4.27x10™° 3.03 x107?

(b) 10% 410 54 413 56 57 296 x10"° 1.87x 10"

10~3 97 23 103 25 27 3.72x107% 237 x10°W

P17 (a) 10°° 1988 95 2349 215 2558 3.18 x 107 2.18 x 10-°
107 420 47 669 95 826 1.54 x107* 5.87 x107°

(b) 107 4048 807 4063 809 814 384 x10"° 191 x107°

109 603 190 669 192 214 1.01 x107¢ 468 x 107"

G6



Table 4.2.5: Results of LIM (5,5,3) on problems 1-5

Problem Code Tol Nstep Nsc Nfe Nje Nlu Eabs Erel
P1 (a) 10°° 93 17 125 18 212 3.35x 107 211 ~ 107*
10~ 58 13 83 12 128 211 x10"® 1.29 < 10~?
(b) 10°° 69 17 77 19 44 1.83x107® 1.15x107¢
1073 57 14 61 16 36 842x10"% 351107
P2 (a) 107 198 40 251 40 464 1.27x107° 4.46 <107
1072 73 16 104 16 170 6.37 x 10~ 224 « 107
(b) 107% 117 29 121 31 66 147 x10"* 495 <107°
1073 57 14 61 16 36 1.10x<10"° 3.78 » 10~
P3 (a) 107 188 39 244 39 450 2.05x 107 2.05 <1077
107 98 21 140 21 242 359 %107 562~ 107"
(b) 107% 154 38 158 40 84 236 <107 3.68 - 107"
1073 T4 18 78 20 44 295107 461 - 10°W
P4 (a) 10 73 16 101 16 164 3.36 ~10™° 238 -~ 10~"
107 48 11 71 11 104 898 ~10™® 6.40 ~ 107"
(b) 107 41 10 45 12 28 1.06 <10 6.66 - 107"
107% 41 10 45 12 28 488 10°% 267 - 1071
P35 (a) 107 98 20 157 20 2388 2.08 ~ 10" 209 - 107}
10°* 53 12 77 12 116 897 -107° 896 . 10°°
(b) 107° 49 12 53 14 32 1.11-10"' 997 .10°¢
10 41 10 45 12 28 588 -10"° 5534 - 10~

it



Table 4.2.6: Results of LIM (5,5,3) on problems 7-9

Problem Code Tol Nstep Nsc Nfe Nje Nl Eabs Erel

P7 (a) 10% 63 20 125 20 212 254 x 107" 6.48 x 107"
103 53 12 77 12 116 1.18 x10™* 3.01 »107°

(b) 10® 60 14 4 16 36 3.55x10° 1.06x107°

107 45 11 49 13 30 3.12x 107" 946 x 107"

P8 (a) 107° 323 18 446 27 872 247 x10~" 1.93x 10"
1073 73 13 127 15 228 1.98x107' 2.37x10°M

(b) 107 237 59 241 61 126 1.24x107° 1.28x 107"

1073 87 14 99 16 40 1.48x107% 3.12x107"

P9 (a) 10°® 818 68 1261 122 2604 1.90 x 10 4.30 x 10~°
107* 218 29 415 43 876 2.78 x10° 1.69 x 10Y

(b) 107% 891 188 931 190 402 2.87x107% 6.34 x 1077

107 480 106 564 108 260 4.76 x 107 9.85 x 107




Table 4.2.7: Results of LIM (5,5,3) on problems 12-15

Problem Code Tol Nstep Nsc Nfe Nje Nlu Eabs Erel

P12 (a) 107° 1593 117 2441 230 5088 1.02 < 10™> 3.06 x 10~°
1073 438 55 878 84 1936 3.46 x 107! 1.16 x 107!

(b) 10°® 1771 375 1859 377 800 2.59 x 107% 7.71 x 1077

7% 974 215 1158 217 528 244 x 107! T.12 < 107?

P13 () 107 20098 589 25635 787 52896 4.57 x 10" 2.59 x 107"
1073 2498 288 4192 38 9760 4.57 x 10'' 2.59 » 107!

(b) 107% 10954 1390 11374 1395 3014 4.57 < 10'' 259 » 107!

107 769 164 961 170  45¢ 338 « 10'' 1.98 « 107"

P14 (a) 107 163 29 240 33 460 B.64x 107! 1.48 - 107"
107 148 20 280 27 588  9.06 ¥ 10° 1.58 x lU~*

(b) 10° 689 138 857 160 406  6.31 ~10° 1.06 ~ 107}

10-* 297 68 313 70 166  1.39 ~ 10> 9.62 ~ 107!

P15 (a) 107® 4878 216 6523 359 13332 1.66 ~ 10" 3.44 - 107"
107° 1643 129 2510 226 5260 4.98 - 10 259 - 10

(b) 107° 6038 929 6294 931 1982 9.16 - 19* 1.84 - 107’

10-* 97 2 101 24 52 431 .10 248, i0°

Nt)



Table 4.2.8: Results of LIM (5,5,3) on problems 16-17
Problem Code Tol Nstep Nsc Nfe Nje Nlu Eabs Erel

P16 (a) 107 183 34 276 35 540 3.73 x 10™® 2.05x 107"
103 48 9 77 11 120 1.79 x107* 5.81 x 107"

(b) 107® 252 27 264 29 66 3.09x 1073 2.03 x 107"

1072 84 14 88 16 26 3.44x107° 229 x 107V

P17 (a) 107% 1518 67 2340 181 4872 591 x 107° 3.46 x 10~°
1003 Ty 40 899 76 2000 2.59 x 107% 9.20 x 10~

(b) 107 1250 279 1342 281 610 4.90 x 107! 5.11 x 107°

1073 324 79 488 82 252 559x10° 1.22 x 10"

66



Table 4.2.9: Results of FIM codes on problems 1-5

Problem Code Order Tol Nstep Nsc Nfe Nje Nlu Eabs Erel

P1 () (553) 10° 71 17 154 19 44 3.95x107° 245x10°"
1073 61 15 134 17 40 6.85 x10°° 4.67 x 107

(4,4,2) 107% 46 15 94 17 18 273 x107% 184 x107°

1073 43 14 8 16 17 3.70x10°7 2.44x 107

P2 (c) (5,5,3) 1075 144 20 292 31 66 241x107" 8.28x 107"
103 66 16 136 18 40 1.71 x10°* 521 x 10°%

(44,2) 100° 179 33 366 35 37 9.07x107" 3.15x107®

1073 56 18 114 20 21 505x10"* 1.70 x107?

P3 (c) (55,3) 107° 172 40 176 42 88 1.78 x107'? 268 x 107'*
1072 81 20 85 22 48 3.09x107' 4.81 x 10°!*

(4,4,2) 102 70 23 142 25 26 295x107® 3.89x107°

10°° 184 46 376 48 50 4.23 x10~'° 6.62 » 107!

P4 (c) (5,5,3) 10~® 41 10 8 12 28 424x107% 277 x107°
1073 41 10 86 12 28 9.24 x10°* 5.07 ~ 107

(44.2) 10° 34 11 70 13 14 137 x107" 9.22x10°°

1073 31 10 64 12 13 824x10"* 493 -10°°

P5 (c) (5,53) 10° 86 21 216 23 60 3.21 x10°® 2.65~ 107"
1073 85 21 222 25 T4 244 x107' 3.15 - 107!

(44.2) 100° 86 25 216 27 35 593 x10" 5.20 107"

1073 34 11 76 13 15 195~10"* 1.92. 107

ool



Table 4.2.10: Results of FIM codes on problems 6-10

Problem Code Order Tol Nstep Nse¢ Nfe Nje Nlun Eahs Erel

P6 (¢) (44,2) 100 291 83 614 8 91 290x107 2.39»10°°

107° 56 18 114 26 21 1.34x107% 1.08 x 107"

P7 (c) (553) 10°° 61 14 126 16 36 1.15x10°% 2.93 x10°°

103 45 11 94 13 30 7.87x107% 216 x10°?

(4,4,2) 107° 56 15 114 17 18 331x107° 8.48x107°

10-* 37 12 76 14 15 2.5€ x107° 7.99 x 10~°

P8 (¢) (55,3) 107° 178 43 360 45 94 4.98x10"7 567 x 107"
1072 88 14 196 16 40 2.40 x 1073 0.0

(44,2) 10® 266 88 534 90 91 267 x 1077 851 x 107!

1073 82 18 178 20 23 6.32x107% 4.19 x10°!®

P9 (c) (553) 10°° 776 174 1636 176 376 1.71 x 10~ 3.79 x 10~°

107 337 82 902 84 228 9.94x107' 2.17 x 1077

(4,4,2) 107% 1041 276 2108 278 283 101 x10~° 2.23 x 10-°

10> 309 92 770 94 120 158 x 107? 3.44 x 107*

P10 () (44,2) 107® 1589 345 3186 347 349 1.61 x 10°° 8.47 x 107°

107 142 18 286 20 21 279 x 107 4.29 x 1u~!

10T



Table 4.2.11:

Results of FIM codes on problems 11-15

Problem Code Order Tol Nstep Nsc Nfe Nje Nlu Eabs Erel

P11- (¢) (4,4,2) 107% 486 106 980 108 110 8.92x10~7 8.74 x 10°°
1073 149 48 300 50 51 1.30 x10~% 1.13 x 10~

P12 (¢} (5,5,3) 107% 1537 343 3214 345 728 160x10"% 461 x 10"
1073 627 153 1642 155 410 2.83x10"* 7.39x 107!

(4,4,2) 10~° 2083 567 4204 569 576 1.31x10"° 3.92x10°°

10~ 608 183 1524 185 237 1.40x10"% 3.98 x107*

P13 (c) (553) 10°° 8126 1126 17224 1130 2514 4.57 x 10" 2.59 x 107!
10~ 2441 506 5798 511 1266 4.57 x< 10'' 2.59 x 107!

(4,4,2) 107° 15932 2023 32580 2025 2145 4.57 x 10'' 2.59 x 107!

1072 3160 719 6970 723 834 4.57 < 10'! 2.59 x 167!

P14 (¢) (5,53) 107° 221 49 470 51 112 512 <x107° 8.01 x10™°
1073 150 36 352 38 92 3.12 x 10* 5.15 x 107*

(4,4,2) 10-¢ 148 41 352 43 53 1.22 x 10Y  1.55 <1077

103 87 28 194 30 34 4.55 x 10> 4.11 » 107

P15 (¢) (5,53) 10°° 6739 978 13802 980 2044 1.90 » 10 3.37 - 10~°
10~° 2364 531 5348 533 1224 4.48 »«10'* 7.81 ~107°

(4,4,2) 10™° 9085 1465 18466 1467 1517 1.90 «10° 3.35 107>

1073 2523 648 5564 650 737 874~ 10'' 1.29 - 107!

" For Robertson problem. we set error tolerance: rtol = 1078, atol = (107°.107!°.107") and rtol = 1077,

atol = (1073.1077.1073) respectively.

ol



Table 4.2.12: Results of FIM codes on problems 16-17

Problem Code

Order

Tol Nstep Nsc¢ Nfe Nje Nlu Eabs Erel
P16 (¢) (55,3) 10° 199 11 402 13 30 7.26 %1071 533 x10°%
1072 69 11 142 13 30 5.93 x107° 4.24 x 1072
(44,2) 107 246 24 494 26 27 263 x107? 1.79 x 10°M
107* 64 12 130 14 15 222x10"% 247 x10~Y
P17 () (5,5,3) 107°® 1281 294 2614 296 608 1.42x 107" 4.25 x107°
1073 553 137 1478 139 374 323 x107' 349 x 10~
(4,4,2) 107° 1823 543 3690 545 553 9.59 x 10~7 5.68 x 107
107 562 167 1480 169 229 1.40 x10-% 1.3 » 10~1

€01
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4.3 Discussions on numerical test

In this section, we group the results obtained in section 4.2 to hring the data into
a more accessible form, such that the comparison between codes becomes easier,
Since the numbers of function and Jacobian evaluation are generally considered to
be most important factor for a integration method, we focus on them.

Comparison between the fourth and the fifth order codes: Table 4.3 13 shows (5,5,3)
codes are more efficient than the (4,4,2) codes on most problems. However, the
(4,4,2) codes are more robust, which work on all 17 test problems whereas the
(5,5,3) codes failed to solve problems 6, 10, 11. We believe the reason for (5,5,3)
codes’ failing is due to the larger error constant in higher order methods, and the
turee problems are poorly scaled.

Compurison between the FIM and LIM codes: For predictor-corrector codes, we refer
to Lambert (1991, p.104), where the mode /’(/(’)*/s'=" is discussed for positive
integer y. and { = 0 or 1. But we only implement the mode PECE which has two
function evaluations at each step. The FIM code (c) is always more accurate than
the LIM codes (a), (b) at the expense by one more function evaluation each step.
If we only evaluate the function once at each step, i.e., in PEC scheme, then the
accuracy will be similar for code (a), (b), (c).

Comparison ezamples for VOM, BDF and Radaws codrs: We do not compare VCM
methods with other common methods such as BDF and Runge-Kutta methods sys-
tematically. However, we compute two problems by VCMS5, IMSL and Radaub.
VCMS5 is the fifth order predictor-corrector code, in which the predictor is LIM

(6,5,3) and the correct is FIM (5,5,3), the coeflicients of hoth satisfy the condi-
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tion (2.4.3)-(2.4.4), the implementation is same as code (c). IMSL is the subroutine
divpag in IMSL Fortran library based on BDF methods and Radau5 is the code
developped by Hairer & Wanner (1991, p.547). We present in table 4.3.14-4.3.15
comparative data only for function calls, Jacobian evaluation calls and number of
steps for given accuracy wlerances. Comparison of CPU times with well established
cudes would k- inappropriate at this time since these codes are finely tuned and our
codes are still in early stages of development.

Possible improvements: In order to develop VCM methods as a practical pack-
age, it is important to vary their order as well as stepsize so that we can take
advantages of both the high order methods’ efficiency and the lower order methods'
robustness. This is the strategy used in variable-order variable-step BDF methods.
Another possible improvement is adopting the idea in Enright (1978), factoring
(Q +wil) = LIL"", where Il is upper Hessenberg and L is unit low triangular.
The decomposition of each remaining matrices only needs n additions noting the

relation

(Q+w, D)=L+ (w, —w)[)L".

One half of LU-decompositions for (5,5,3) codes in section 4.2 can be eliminated if
we adopt this strategy.
The test results indicate that the VCM codes work well on stiff problems. This

confirms our stability and convergence analysis in the preceding two chapters.



Table 4.3.13: Comparison for problems 1-17

LIM (4,4,2) LIM (5,5.3) FIM

Problem (a) (b) (a) (b) (4,4,2) (5,5,3)
P1 (74, 18) (29,17) (125, 18) (77,19) (94, 17) (154,19)
P2 (198, 43) (460, 33) (251, 40) (121, 31) (366, 35) (292, 31)
P3 (203,48) (168, 49) (244, 39) (158, 40) (142, 25) (176, 42)
P4 (62, 15) (35, 12) (101, 16) (45, 12) (70, 13) (86, 12)
P5 (130, 24) (122, 35) (157, 20) (53, 14) (218, 27) (216,23)
P6 (225, 31) (647, 169) (614, 85)
P7 (94, 22) (53, 17) (125, 20) (64, 16) (114, 17) (126, 16)
P8 (394, 26) (883, 84) (446, 27) (241, 61) (534, 90) (360, 45)
P9 (1229, 152) (1772, 402) | (1261,122)  (931,190) | (2108, 278) (1636, 176)
P10 | (4033,264) (633, 166) (3186, 347)
P11 (554, 112) (1045, 109) (980, 108)
P12 | (2456,300) (3561, 809) | (2441, 230) (1859, 377) | (4204, 569) (3214, 345)
P13 | (23735, 1060) (78190, 3135) | (25635, 78T) (11374, 1395) | (32580, 2025) (17224, 1130)
P14 (170, 37) (235, 60) (240, 33) (857, 160) (352, 43) (470, 51)
P15 (7492, 522) (8730, 1331) (6523, 359) (6294, 931) | (18466, 1467) (13802, 980)
P16 (289, 55) (413,56) | (276, 35) (264, 29) (494, 26) (402, 13)
P17 (2349, 215) (4063. 309) (2340. 181) (1342, 281) (3690, 545) (2614, 296)

The entries in the table are numbers of function and Jacobian evaulation (Nfe, Nje) under the 7ol = 107".

901
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Table 4.3.14: Comparison results for problem 12

Method Tol Nstep Nfe NlJe Eabs

VCM5 10~ 1168 2922 222 6.76 x 107°
10-% 1450 3356 274 2.40 x 107®
10~ 1837 3890 339 2.71 x 107

IMSL 10™% 1648 2768 1yl 1.23 x 10°*
107 2236 3563 207 5.54 x 107"
107 3184 47256 264 144 x 1077

RADAUS 10" 581 4433 434 7.54 x 10~7
107" 968 6691 587 1.22 x 10~F
10-7 1694 10809 760 4.80 x 10°%

Table 4.3.15: Comparison results for problem 17

Method  Tol Nstep Nie Nle Eabs

VCM5 10~ 1042 2530 200 2.29 x 10°°
10-% 1175 2636 220 6.34 x 10~
10-7 1501 3088 275 8.30 x 10°®

IMSL 10°% 1299 1923 160 1.00 x 10~°
10~ 1811 2615 181 9.44 x 1077
10~* 2576 3511 207 1.68 x 10~

RADAUS5 10 476 3473 294 1.20 x 10°°
10~% 834 5451 377 1.02 x 1078
10-7 1475 9168 475 6.23 x 10~
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Summary

By introducing a set of simplifying conditions, we constructed the contractive
function of VCM methods as the Padé approximants of the exponential function
exp(:z). To determine the coefficients, we first separate the order condition to three
parts, one of the three parts can be satisfied because the relations between the
coeflicients. For the remain two parts, transfer them to a linear system by index
change. Through elemantary matrix operation, we expressed the coeflicient matrix
of the linear system in the powers of a Vandomone matrix. So we can determine all
the coefficients of a specific method by solving a linear system.

The convergence properties of VCM tethods are important since the stability
properties based on the linear test equation can not guantee convergence for VOM
methods on norlinear problems. By using the contractive function and the recursion
relations of the solution, we showed the stiff-independent convergence for VCM
methods on general nonlinear dissipative problems. By selecting the main parl of
the Jacobian, we proved the convergence being independent of the perturbation
parameter for singular perturbation problems.

The numerical test results on a set of test problems indicate that the VOM codes
work well on stiff problems. This confirms our stability and convergence analysis in

this monograph.
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Appendix: coefficients of several

VCM methods

We list herc the coefficients of the linearly implicit VCM methods. For fixed
stepsize, the list is from order 3 to 6, for variable stepsize, we only list the fourth
order VCM method. The free parameters ov. 4, 5 can, in specific instances, be

chosen so as to minimize the truncation errors according to theorem 2.4.1 or 2.4.3.

Table A.1: Coefficients of (3,3,2) algorithm

uf,”) =0 (”) = u.(;” = -1 u;(,(” =1
i n ) K 1 1 1 ;
di,z: = ‘1—2 “(‘2) = —; ”'(2 ] = ':'2! (1::32) = —':2;
ity =+ 4a V=1 _2,4 P = a u_-)=l.
3 | 2 2 3 G
pm 5 RSS! Pl _ 2
W =1 NN =73 2 T2
l;f,” = -'; + v 1)(11) =—1 -2 h.(z” =«
Table A.2: Coefficients of (4,4,2) algorithm
p ‘('n] -0 m) -0 (u) =0 a:(!u) =1 rzf,O) =1
”(()l) = ’“:‘ "(ll) = ::‘1 ”lz” = ;—':' “.!1” = 3 ﬂ‘(x” = —lg
u,‘,‘l = «-% -0 a(,z) = f‘; + 3a af,” = 1‘ —3a af,'” = —|'—2 +a a&” = #
(0 _ 3 0y _ av 0 _ _s0 (0) _ 55
b = -3 bl =5 b ~ 1)3 =5
bf,”:-—é —~a Y= L + 3a 1).(21)_ -+ —3a W = a
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Table A.3: Coeflicients of (5,5,3) algorithm

ug” =0 ”(ln) 0 rl,.(;]) =0 M = (l
”'('u) -1 (n; — -
(1) _ 231 m_ (N 1o (ll TN -
tly = -TTl-) i = T t, ar — —?ﬁ'
| U L
rl.(f) = "‘17: + o ;{“ = ——-—- -4 il.-g.‘) = I‘.:s‘ -+ By u;"') = -—1':—" — dn
u,‘,‘” = ~—-L + o u! 9 - E:]
a2k —3-3y o= —L4aa 48y oV =106y o) =4
{ ) . ”((‘-)) 1 H(g? - *'ijlﬁ T
0) _ il (0 _ 6y B 100 )
by = 70 by 00 by iy by’ = — i)
[(“) 1901
: : } 720 3 :
byt = 5‘—: + bm = —-—- ~ 4oy h.(.,” = L 4 gy b:(, = 2
b(,” = (v
W=k —3-3y W= —1430+8y 0=L-3F-67 b =4
/A"'




Table A.4: Coeflicients of (6.6,3) algorithm

al) =9 ap =0 ay’ =0 a) =0
a.[tD) =0 (l;m = —1 (li;u) =1
o= =% T 7= 5T
) _ _ 261 (1) _ 3357 n _ 1
(1.1 - _m (15 - m “t'i = -'E
(1((,2) = _574% —a ugz) = % + 5a a.(_,l) = __',1;'161 — 10a ag')) = % + 10
o) = 12 _5q = —=+a att = +
3 ; 3 T 3 :
a£)=—5+5+47 (1“:%5—43—15', a(g)=—-'2—j:+6.i+20‘, (19:&-43—107
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_ e T 7T 5 = 1a4n
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b = —Zp 344y =1 4315, )= 1634205 MY =1-43-10,
b(z) = 3 b('l) — -
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Table A.5: Coeflicients of variable stepsize (4,4,2) algorithm, « =1

u{,u) =0 agul =0 ugu) =0 ! =1
=

”1’1) _ _rg-.»;r)-‘ ”(‘1} — r(lS+l:lr+3r:rl u_(:n _ _r{3h+.-’:l.l‘r+'ir"') ugu — __{; N (l+r‘)“.i-)-‘§;~lr+r2_)
W= -1
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Table A.6: Coeflicients of variable stepsize (4,4,2) algorithm, u« = 2

0 ) 0
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Table A.7: Coeflicients of variable stepsize (4,4,2) algorithm, u = 3
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