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ABSTRACT 

This thesis documents the tolerance of E. maimaiga protoplasts to media with a 

broad range of pH levels and osmolalities. Growth curve data were statistically analyzed 

using a general linear model approach which utilizes the data from the entire growth 

curve. Although E. maimaiga grew in media ranging from pH 5.5 to 7 .I, sensitivity to 

pH 5.5 was evident. Growth of E. maimaiga in media with osmolality levels of250 to 400 

mOsm did not show any significant differences. Further investigation of osmotic 

tolerance showed that this organism was capable of surviving osmolality treatments in 

solutions of 0 to 550 mOsm. However. a 350 to 550 mOsm range appeared optimal. The 

osmotolerance of E. aulicae was also determined and found to be similar to that exhibited 

by £. maimaiga. Further investigation is required to determine the mechanism used by 

these protoplasts for osmoregulation. Such a mechanism may include the activity of ion 

channels in the cell membrane. 

A protocol developed for patch clamping E. aulicae protoplasts is presented in 

this paper. An appropriate pipette solution (140 mM NaCl, 5mM KCl, 2 mM CaCl2, 2.4 

mM MgCl2•6H20. 10 mM MES, 3.8 mM glucose, 2.2 mM fructose, 29.8 mM sucrose. 

pH 6.2} and bath solution (140 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1.2 mM 

MgCl2•6H20. 10 mM MES, 3.8 mM glucose, 2.2 mM fructose, 36 mM sucrose, pH 6.2) 

were developed. Recording from cells 30 to 90 minutes after suspension in the bath 

solution using the cell-attached recording configuration and a pipette size of 20 Megan 

resulted in low noise gigaseal recordings. 

Use of the developed patch clamping methodology resulted in the identification of 

outward rectifying, voltage-gated multichannel activity sensitive to membrane 
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depolarization. Using the mean channel amplitude. the current-voltage relationship was 

identified as having a conductance value of 31 pS. Use ofK+ channel blockers. TEA+ 

and Ba2+, caused reduced channel activity suggesting that the channels are involved in 

K+ transport. Further evidence of this classification is based on the reduced membrane 

conductance values obtained when elevated levels of K+ were present in the pipette 

solution. The conductance values were reduced to 10.6 pS and -20.1 pS with K+ 

concentrations of 60 and 140 mM respectively. This serves as further evidence that the 

voltage-gated channels in the protoplast membrane of E. aulicae are K+ channels. 
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1.1 The Organism 

Chanter l 

General Introduction 

Entomopathogenic fungi belonging to the genus Entomophaga are potential 

biocontrol agents for use against forest defoliators and agricultural pests (Lacey and 

Goettel. 1995). Two species pathogenic to forest pests are currently being investigated in 

our laboratory. The host range of E. aulicae includes the eastern hemlock looper, 

Lambdina .fiscellaria (Otvos et al., 1973 ), and eastern spruce budwonn, Choristoneura 

fumiferana (Vandenberg and Soper, 1975). E. maimaiga is a pathogen of the gypsy moth. 

Lymantria dispar (Soper et al.. 1988). Both E. au/icae and E. maimaiga are responsible 

for epizootics in the field (Otvos et al., 1973; Hajek et al., 1990). 

The infection process and subsequent propagation of E. aulicae in spruce 

budwonn larvae has been documented (Murrin and Nolan, 1987). Pathogenesis begins 

with the adhesion of fungal conidia to the cuticle. After conidia attach, they germinate and 

develop appressoria. At the site of appressorial development, electron-dense material is 

present in association with the fungal wall. Suggested roles of this material are to secure 

fungal/host attachment and for enzymatic digestion of the insect cuticle (Murrin and 

Nolan, 1987). Infection hyphae develop from the appressoria and penetrate the cuticle. 

underlying tissues and hemocoel. The cell wall of the infection hypha is not continuous at 

its tip. Protoplasts are released directly from the hyphal tip into the hemocoel. The wall

free protoplast phase of the fungal life cycle allows for easy nutrient uptake and rapid cell 

division in the hemocoel. This wall-free state also allows for avoidance of the host 
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immune system (Beauvais and Latge, 1991 ). 

Following protoplast proliferatio~ cell wall formation is initiated, resulting in the 

presence of hyphal bodies in the hemocoel. The fourth or fiifth day of the infection 

process results in hypha! bodies in most of the insect tissue. Those located directly 

beneath the host cuticle produce conidiophores. These structures protrude through the 

cuticle. Conidia produced and ejected from the conidiophores may contact host larvae 

directly, or, they may germinate and produce secondary conidia. This completes the 

asexual life cycle of the fungus. Conidial discharge is dictated by environmental factors, 

with moisture being very influential. E. maimaiga infected gypsy moth have been shown 

to initiate and terminate sporulation when favorable and adverse relative humidity levels 

exist (Hajek and Soper, 1992). 

The approach of using environmentally acceptable biocontrol agents for insect 

pests has led to the investigation of fungi as control agents (Lacey and Goettel, 1995). E. 

maimaiga has been shown to naturally control gypsy moth populations with 60-88% 

mortality (Hajek et al., 1990). The naturally occurring E. au/icae is pathogenic to major 

forest defoliators (Otvos et al., 1973). Based on the economic importance of controlling 

their host insects and the effectiveness of their pathogenesis, these two fungal species are 

candidates for biocontrol development. An artificial fermentation medium, supporting E. 

aulicae hypha! body production, has been developed using protoplast inoculum (Nolan, 

1993). E. aulicae hyphal bodies have been shown to be viable for up to one year when 

produced in vivo and air dried (Tyrrell, 1988). These documented methodologies in 

productio~ drying and storage suggest that the development of inoculum for field 

application is attainable. 
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Entomophaga species also serve as model organisms for studies in fungal cell 

biology. They readily grow in artificial medium in their naturally-occurring protoplast 

state. This distinguishes them from most fungi that grow only as walled hyphae. Since 

protoplasts eventually form walled hyphal bodies, research on these cells are expected to 

contribute to the understanding of fungal morphogenesis (Farkas, 1985). Investigations 

involving E. aulicae protoplasts include those on genome composition, nuclear cycle, 

cytoskeletal distribution and adhesion properties (Murrin et al., 1986; Murrin et al., 1988: 

Taylor, 1992; Lake, 1994). 

1.2 Osmolality 

The identity of favourable growth conditions is required in the development of 

artificial media capable of supporting E. aulicae and E. maimaiga protoplast growth and 

proliferation. E. aulicae protoplasts lack cell wall material (Murrin and Nolan. 1987: 

Beauvais et al., 1989) that could otherwise serve as a protective barrier. An important 

factor in determining suitable artificial growth media is osmolality. Cell shrinkage, i.e .. 

crenation or plasmolysis, can occur when the osmolality of a bath solution is high 

(Arnold, 1981 ). At low osmolalities, protoplast lysis can occur (Boulton, 1965). 

Cells are generally capable of surviving some fluctuations in medium osmolality. 

Maintenance of cell volume is due to a balanced movement of solutes across the cell 

membrane (Sarkadi and Parker, 1991 ). Ion movement is performed by channels, or by 

coupling to cotransport or countertransport. Channel opening and closing as well as 

transport mechanisms respond to a number of stimuli including changes in cell volume 

(Hoffmann and Simonsen, 1989). When cells are subjected to solutions of low osmolality 
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they swell up due to the influx of water into the cell. The cells then decrease their volume 

by extruding solutes and water from their cytoplasm. Cells subjected to high osmolality 

solutions tend to shrink. This activates the intake of water and solutes. which causes a 

volume increase. 

Microfilaments are believed to play a role in cell volume regulation since the use 

ofmicrofilament-specific disruptive agents have been shown to affect volume regulation 

of cells. However, the mechanism by which the cytoskeleton is involved is not clear 

(Pierce and Politis, 1990). 

In order to propagate protoplasts in artificial medium the identity of compatible 

osmolality levels is required. Commercially available osmometers have been used to 

measure solution osmolalities in E. aulicae studies (Dunphy and Nolan. 1979; Dunphy 

and Chadwick, 1985). The values generated by osmometers are in close agreement with 

theoretical calculations of a solution. The discrepancies are believed to be due to errors 

encountered in weighing the contents of the solutions. In theory, the osmolality of a 

solution can be determined by calculating the millimolar concentration of the ions present 

in a solution. Millimolar levels of components having a completely covalent nature are 

also determined. A solution's osmolality is the sum of the millimolar values of the ions 

and covalent compounds and has the units ofmilliosmoles (m.Osm). Using this method 

one milliosmole is equivalent to one millimolar unit. 

1.3 Ion Channels 

1.3.1 Introduction 
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Ion movement across cell membranes is involved in a number of vital cell 

processes including osmoregulation (Hoffin~ 1992), cell growth (Kropf, 1994) and 

signaling (Neher, 1992). One way in which ions move across membranes is through ion 

channels. Ion channels are pore-forming proteins that traverse the cell membrane (Neher 

and Sakmann, 1992). 

The opening and closing, i.e., gating, of channels can be triggered a number of 

ways (Garrill and Davies, 1994 ). Channels that open or close with changes in membrane 

potential are referred to as voltage-gated. Ligand-gated channels respond to the addition 

of a chemical. Channels that respond to mechanical stretching of the membrane are 

referred to as stretch-activated or mechanosensitive. 

1.3.2 Patch Clamping 

The patch clamp technique, first reported in 1976 (Neher and Sakmann. 1976), 

records current flowing across cell membranes through ion channels. The methodology is 

based on having a glass microelectrode tightly sealed onto a cell membrane. Current 

flowing through ion channels in the membrane is detected and recorded. 

For recording, the cells are suspended in a bath solution. The microelectrode. a 

glass pipette filled with the pipette solution, is mounted over a silver wire coated with 

silver chloride. The terms pipette and electrode are used interchangeably for 

microelectrode. A gigaseal refers to a gigaohm level of seal resistance between the pipette 

and the membrane. A level greater than 1 x 1 o9 0, which equals 1 gigaohm. reduces 

background noise and allows for the detection of current levels in the picoampere { pA ) 

range. 
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A number of recording configurations can be used for studying channel activity: 

each configuration has advantages and disadvantages (Sakmann and Neher~ 1995a}. The 

major configurations include cell-attached~ whole cell~ outside-out and inside-out. 'Cell

attached' mode (Fig.l.l} consists of having an electrode on the cell membrane with a 

gigaseallevel of resistance. This arrangement is non-invasive to the cell and allows the 

investigator to study the channel properties in a near-physiological environment. 

However, information on the cell's resting membrane potential cannot be determined. 

Also, since no access to the cytoplasm is made. changing the composition of the solutions 

on both sides of the membrane is not possible. This limits the amount of information one 

can obtain about the properties of a channel. 

The 'whole cell' recording configuration is achieved by first fanning a gigaseal 

with the pipette and membrane followed by disruption of the membrane in the patch by 

using a voltage pulse or suction (Fig. 1.1 ). This allows investigation of the ion channel 

population of the whole cell and a means of introducing agents to the cytoplasm through 

the pipette solution. Information on resting membrane potentials can be collected. A 

major limitation with this set-up. is the inability to easily change pipette solutions while 

working with the same cell. 

'Outside-out' and 'inside-out' patch recordings again require a gigaseal at 'cell

attached' mode. The 'outside-out' name refers to a patch of membrane which has the non

cytoplasmic side, i.e., the outside, exposed to the bath solution. This is achieved by first 

achieving a 'whole-cell' configuration and then pulling the pipette away from the cell 

(Fig.l.l ). The membrane bilayer which then fonns at the pipette tip is then oriented in the 

'outside-out' fashion. An 'inside-out' patch has a portion of membrane on the pipette tip. 
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with the cytoplasm side of the membrane, i.e, the inside, exposed to the bath solution. It 

requires a gigaseal at 'cell-attached' mode. Then the pipette is pulled away from the cell 

pinching off a small portion of the membrane (Fig.l.l ). After exposure to air. a patch of 

membrane remains on the pipette tip in the 'inside-out' orientation. With these two patch 

recording modes, one can easily change bath solutions which facilitates data collection on 

channel properties. However, some cytoplasmic factors controlling channel behaviour 

may be lost in these configurations (Sakmann and Neher, 1995a). These procedures are 

possible only with cells that adhere to the recording dish while pipette manipulation is 

performed. This drawback may limit applications of these techniques. 

Transmembrane potential (Vm) is the potential at the cytoplasmic side of the 

membrane relative to the potential at the extracellular side of the membrane. In 'whole 

cell' recordings the pipette forms a continuum with the inside of the cell. Therefore the 

V m equals that which is applied by the pipette (V c). The resting membrane potential 

(RMP) does not affect the Vm in 'whole cell' recordings. 

In 'cell-attached' recordings any voltage applied by the pipette (Vc) will not be the 

actual membrane potential (Vm). In fact Vm = RMP -Vc (Axonet, 1996). For example, 

an applied voltage, Vc, of -60 mV, the Vm is changed from its RMP to 60 mV more 

positive. Since one cannot determine the RMP of a cell during 'cell-attached' mode, the 

actual Vm is unknown. In this thesis, the relative change in the Vm, +60 mV in the above 

case, is the voltage referred to in discussions involving single channel studies. 

1.3.3 Fungal/on Channels 

Ion channels have been found in the plasma membrane of a number of fungi. 

7 



Stretch-activated channels permeable to Ca2+ have been found in growing tips of 

Saprolegnia fer ax ( Garrill et al., 1992b; Levina et al., 1994 ). The channels are located in a 

tip-high gradient and are believed to be involved in hypha! tip growth (Garrill et al., 

1992b ). Another tip growing fungus. Neurospora crass a, also has stretch-activated 

channels involved in ca2+ movement (Levina et al .• 1995). However, they are not present 

in a tip-high gradient. A tip-high gradient of cytoplasmic Ca2+ is present in these cells 

and is associated with tip growth. ca2+ transporting mechanosensitive channels have 

been incorporated in a proposed model of calcium regulation in fungal tips (Jackson and 

Heath, 1993). 

Other mechanosensitive channels have been found in yeast (Gustin et al .• 1986; 

Zhou and Kung, 1992). They may be involved in osmoregulation. Since they are Ca2+ 

permeable, they may also be involved in areas of new growth in the cell, i.e., yeast 

budding (Garrill and Davies, 1994). 

Depolarizing voltage-activated channels involved in K+ efflux have been 

identified in the plasma membranes of Saccharomyces cerevisiae (Gustin et al., 1986; 

Berti and Slayman, 1992). They may be involved in osmotic regulation. The large 

amounts of K+ may be accumulated in a cell during nutrient uptake. With a co-ordinated 

anion intake and opening of outward rectifying K+ channels, excess K+ could be 

eliminated (Berti and Slayman, 1992). These channels may also be involved in charge 

balancing during proton-coupled transport. A K+ efflux has been noted in Saccharomyces 

during H+ -coupled maltose uptake (Serrano, 1977). 

Ion channels have also been identified in fungal vacuolar membranes (Garrill and 

Davies, 1994 ). Voltage-activated and mechanosensitive K+ channels have been found in 
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this membrane as well as stretch-activated cation and cation/anion channels. Two recent 

review articles use schematic diagrams to summarize the types of channels present in 

fungi (Garrill and Davies, 1994; Garrill, 1994). The latter article focuses on transport 

processes used by fungi and includes carrier-mediated and pump mechanisms in addition 

to ion channels. 

Investigations of the structure and function of ion channels is facilitated by their 

incorporation into foreign membranes (Elinder et al., 1996; Yu et al., 1996) or lipid 

bilayers (Chen and Miller, 1996). Recent applications of patch clamping in a fungal 

system involves the expression of transport proteins in yeast. Inward rectifying K+ 

channels from a plant, Kat 1, and guinea pig cells, gpiRK 1, have been incorporated into 

the membrane of Saccharomyces cerevisiae (Berti et al., 1995 and Tang et al., 1995, 

respectively). Expression in the yeast system resulted in functional ion channel behaviour. 

Oocytes from Xenopus /aevis are often used for heterologous expression since they are 

large and easy to manipulate (Berti et al., 1995). However, expression is not always 

successful using this system (Gaymard et al., 1996). The two 1995 studies (Berti et 

al.,1995; Tang et al., 1995) show that S. cerevisiae can be used for heterologous protein 

expression. Therefore, the yeast system can be used as an alternative to expression in 

Xenopus. 

1.4 Aims of this study 

In order for E. maimaiga and E. aulicae to be used in field applications, mass 

production of infective propagules is required. Protoplast inoculum is used in mass 
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fermentation production of E. aulicae hyphal bodies (Nol~ 1993 ). The mediwn 

developed by Nolan has physical parameters that are compatible for E. aulicae protoplast 

growth. In order to identify a suitable medium for in vitro growth of E. maimaiga, 

appropriate growth conditions must be identified. Temperature effects on E. maimaiga 

have been investigated (Butt et al .• 1994 ). However, the effects of osmolality and pH have 

not been studied. This study investigates the effects of these parameters on E. maimaiga 

protoplasts. 

The second area of research undertaken here involves the area of membrane 

transport which may shed some light on the mechanisms of osmoregulation in protoplasts 

of entomophthoralean fungi. Since the introduction of patch clamp technology ion 

channel activity has been studied in a number of systems including fungi (Caldwell et al .. 

1986; Garrill et al .• l992a and 1992b; Levina et al., 1994; Levina et al., 1995). A major 

challenge in adapting the patch clamp technique to these organisms is the establishment 

of a gigaseal. The inability to fonn high resistance seals has been stated by investigators 

in a number of fields (Elzenga et al .• 1991; Lew et al .• 1992; Saimi et aJ., 1992). The main 

obstacle for high level pipette/membrane seals with plant and fungal cells is the existence 

of a cell wall. Since E. aulicae forms wall-free protoplasts spontaneously in artificial 

medium (Nolan, 1985), it is an attractive candidate for fungal patch clamp studies. 

No patch clamp protocol exists for E. aulicae protoplasts. A major goal of 

my research was to develop a reproducible methodology from which ion channel activity 

could be assessed. Use of the developed protocols to identify£. aulicae protoplast ion 

channels constituted the final aspect of research undertaken. 
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Fig. 1.1: Patch clamp recording configurations. A, cell-attached; 8 , whole- cell; C. 

outside-out patch; D, inside-out patch. Ill indicates the exterior of the cell. 

(adapted from Sakmann and Neher, l99Sa) 
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Chapter2 

pH and Osmotolerance of Entomophaga protoplasts. 

2.1 Introduction 

Entomophthoralean fungi have potential for use as biological control agents 

against a number of insects including major forest defoliators and agricultural pests 

(Lacey and Goettel, 1995). Entomophaga maimaiga a naturally occurring pathogen of 

gypsy moth, Lymantria dispar (Soper et al., 1988), has established epizootics in gypsy 

moth populations (Hajek et al., 1990). The closely related species, £. au/icae, is a 

pathogen of eastern hemlock looper (Otvos et al., 1973) and eastern spruce budwonn 

(Vandenberg and Soper, 1975). It has been successfully grown under mass fermentation 

conditions, a major advance in the technology for development of entomophthoralean 

fungi as biocontrol agents (Nolan, 1993). 

Protoplast formation is a naturally occurring phase in the life cycle of these fungi 

(Tyrrell, 1977; Soper et al., 1988). Protoplasts are released from the infection hypha as it 

enters the hemocoel where these spindle-shaped cells multiply in the nutrient-rich 

hemolymph prior to wall formation (Murrin and Nolan, 1987). Protoplast inoculum is 

important for mass fermentation production of infective cells and requires a medium with 

physical parameters compatible with protoplast growth (Nolan, 1993). Thus, identifying 

appropriate growth conditions for protoplasts is crucial for development of these fungi for 

biocontrol purposes. 

Previous studies of E. aulicae concentrated on identifying an optimal value for 

pH and osmolality (Dunphy and Nolan, 1979; Dunphy and Chadwick, 1985) in which the 

criterion used to assess these parameters was cell yield at mid-log phase growth. Although 
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the effect of temperature on E. maimaiga has been investigated (Butt et al., 1994) pH and 

osmolality effects have not. The focus of this study was to identify ranges of pH and 

osmolality tolerated by E. maimaiga protoplasts. Growth of the organism through both 

log and stationary phases was monitored in different test solutions. In addition, an 

assessment of osmotic tolerance based on the effects of solution osmolality on protoplast 

morphology was performed with both E. maimaiga and E. aulicae. 

2.2 Materials & Methods 

2.2.1 Stock Cultures. 

Protoplasts of Entomophaga maimaiga (isolate FPMI 990-4 s12B) and E. aulicae 

(isolate FPMI 646) were maintained at 200 C in modified Grace's insect tissue culture 

medium (GM, Canadian Life Technologies, Inc., Burlington) supplemented with 2. 7% 

fetal calf serum (FCS, as above). In this paper this medium will be referred to as 

GM+FCS. 

2.2.2 Growth Curves Comparing Different Media, pH Levels and 

Osmolalities. 

Growth of protoplasts of E. maimaiga was initially compared in GM+FCS and a 

modification of the basal medium described previously (Nolan, 1993). The modified basal 

medium was used for all subsequent experiments and consisted of the following changes: 

glucose and sucrose levels of0.3g/10L and 338g/10L respectively as well as the addition 

of2.7% FCS. This medium will be referred to as BM+FCS. The pH was adjusted to 6.2 

using 3N NaOH and the medium filter sterilized through a 0.45J.L pore size Nalgene 

disposable filter unit prior to the addition of the FCS. 
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Media with different pH values were prepared from BM+FCS using 3N NaOH 

and 3N HCI for pH adjustments. pH manipulation was performed prior to the addition of 

FCS. 

Media of different osmolalities were prepared by altering sucrose levels of 

BM+FCS. Theoretical milliosmolar (mOsm) calculations were confirmed by osmolality 

readings from an Osmette A Automatic Osmeter (Precision Systems, Inc.) Thirty 

millilitres of medium were added to duplicate, oven sterilized, 125ml Bellco flasks. They 

were inoculated with lxlo4 cells delivered in a 0.1 m1 volume of a 24-48 hour old 

culture. Flasks were incubated at 200c in a New Brunswick Scientific Controlled 

Environment Incubator at 100 rpm. 

All counts were made using an Almedic baemocytometer. Individual uninucleate 

protoplasts and each nucleate swelling on a multinucleate protoplast chain were recorded 

as one cell. The average count from four haemocytometer chambers was recorded. Cell 

counts were perfonned until clumps ofhyphal bodies were noted. 

Generation time calculations were determined by the following mathematical 

expression for exponential cellular growth: 2=ert where t is the generation time and r is 

the rate of increase in the natural log of cell numbers (Rhodes and Fletcher, 1966). All 

statistical analysis was determined using Minitab Statistical Software (Release 9.1, 

Minitab, Inc. University Park, PA). The approach was General Linear Model (GLM)

based. Type I error (a) was set at 0.05 for numerical analysis. 

2.2.3 Osmotic Tolerance Test. 

Test solutions from zero to 550 mOsm, at pH 6.2, were prepared as follows. The 0 
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mOsm test solution consisted of distilled water. The 10 mOsm solution was I 0 mM 2-(N

morpholino) ethanesulfonic acid (MES). The 150-550 mOsm solutions consisted of 10 

mOsm MES with additions of sucrose to attain their respective osmolality values. The 

Osmette A Automatic Osmometer was used to validate mOsm levels. 

Equal aliquots from a 24-48 hour protoplast culture in GM+FCS were centrifuged 

at 150xG for 5 minutes in 15ml Falcon conical centrifuge tubes. Duplicate pellets were 

resuspended in test solutions for l hour at room temperature without shaking, and then 

examined by light microscopy for cell numbers and shape. Control pellets were 

resuspended in GM to determine the number of cells subjected to each treatment. 

Cell viability was determined using duplicate 30 ml volumes of GM+FCS 

inoculated with 0.3 ml volumes from the different test solutions. Growth conditions were 

as stated above. Cell concentration levels were monitored using a haemocytometer as 

described above. 

2.3 Results 

2.3.1 G'owth Cu111es Compa,ing Diffe,ent Media, pH Levels and 

Osmolalities. 

The growth pattern of E. maimaiga in BM+FCS was similar to that of growth in 

GM+FCS (Fig. 2.1). Growth in the two media did not significantly differ CF[t,24]=2.93 

p=O.l 00). This is based on a GLM with log transformed cell concentration values. 

Generation times (GTs) for the two media were 9.0 hours for BM+FCS and I 0.1 hours for 
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GM+FCS 

E. maimaiga grew at all pH levels tested, but at the lowest pH levels reduced 

growth was noted (Fig. 2.2). There is a significant difference in growth of E. maimaiga in 

media of different pH (F[6,54]=11.85 p<O.OOl). This is based on a GLM incorporating 

log transformations of both cell concentration and time values as well as a time-based 

level at 80 hours. Based on further analysis of the data using Gabriel's Approximate 

Method (Sokal and Rohlf, 1995). growth in media with pH values ranging from 5.8 to 7 .I 

do not significantly differ (lower and upper limits for regression coefficients were as 

follows: 2.951 to 4.009 for pH 5.8, 3.298 to 7.760 for pH 6.0, 3.001 to 5.559 for pH 6.2. 

3.442 to 5.058 for pH 6.5, 2.940 to 6.020 for pH 6.8 and 3.088 to 5.272 for pH 7.1 ). 

However, growth at pH 5.5 does differ significantly from the others (lower and upper 

range: 0.986 to 2.894). This is evident from the generation times obtained from the 

growth curves (Table 2.1). The GT for growth in pH 5.5 medium was 20.75 hours 

whereas the GT for growth in the pH 5.8 to 7.1 media ranged from 10.0 to 12.01 hours. 

The correlation coefficient. r, for pH ranging from 5.8-7.1 and generation time was-

0.103. 
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Table 2.1: Effect of pH on generation time of Entomophaga maimaiga. 

pHa Generation Timeb 
(hours) 

5.5 20.75 

5.8 12.01 

6.0 10.28 

6.2 10.98 

6.5 10.88 

6.8 10.00 

7.1 11.75 

a medium is BM+FCS 

b derived from exponential cellular growth equation 

2=ert (Rhodes & Fletcher, 1966). 

Growth patterns in medium with osmolality values of 250 to 400 mOsm were very 

similar (Fig. 2.3). Statistical analysis resulted in the decision that no significant difference 

in growth exists between the media of different osmolalities tested (F[6,54]= 0.88 
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p=0.518). This is based on a model with a log transformation of the cell concentration 

values with the addition of a time-based level at 80 hours. The shortest GT, 8.76 hours. 

was found with 350 mOsm medium (Table 2.2). However, the GTs across the osmolality 

spectrum tested exhibited little deviation with a mean value of9.36 ± 0.54 hours. The 

correlation value, r, for osmolality and GT is 0.533 suggesting little association between 

the two. 

2.3.2 Osmotic Tolerance Tests. 

The osmotic tolerance tests resulted in the loss of some cells through lysis, the 

adoption of a round shape by a number of cells and the retention, by other cells, of the 

characteristic spindle shape. The percent distributions of these three cell types in the 

solutions of different osmolality are given for E. maimaiga (Fig. 2.4) and E. au/icae (Fig. 

2.5). The general pattern of cell types was the same for both species. The highest level of 

cell loss was in the 0 mOsm solution. At this osmolality only round cells were noted 

representing 30 to 45% of control cells. For both species, the highest numbers of round 

cells were associated with the I 0 mOsm treatment. Spindle shaped cells were found in 

solutions of osmolality equal to or greater than 150 mOsm with the highest levels of these 

cells at 550 mOsm. Growth was noted in all GM+FCS inoculated flasks with the 

initiation of logarithmic phase growth occurring 55-70 hours after inoculation. Therefore, 

cells survived all osmolality treatments. 
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Table 2.2: Effect of osmolality on generation time of Entomophaga maimaiga. 

2.4 Discussion 

Osmolality a Generation Timeb 

(mOsm) (hours) 

250 9.05 

275 9.11 

300 9.72 

325 8.87 

350 8.76 

375 10.03 

400 10.00 

a medium is BM+FCS 

b derived from exponential cellular growth equation 

2=ert (Rhodes & Fletcher, 1966). 

The major· •cus of this paper was to determine the tolerance of E. maimaiga to 

different osmolality and pH levels. Whereas earlier studies identifying optimal growth 

conditions for Entomophaga aulicae protoplasts were based on cell concentration values 

at mid-log phase growth (Dunphy and Nolan, 1979; 1982), we used a statistical modelling 

approach for data evaluation. By using a General Linear Model method, the complete 

growth curve was used in the analysis. This advantage of having all growth information 

incorporated in the analysis makes it an attractive approach for assessing physical 
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parameter tolerance. 

2.4.1 Growth curves comparing different media, pH levels and osmolalities. 

In order to determine optimal pH and osmolality levels for E. maimaiga. a 

medium that would accommodate pH and osmolality adjustments was required. 

Commercially available Grace's medium cannot accommodate reductions in osmolality. 

Due to the complexity of Grace's medium identification of a more simplified preparation 

was desirable. A highly modified Grace's mediwn, BM+FCS (Nolan. 1993), was 

investigated for its ability to support E. maimaiga growth. Using GM+FCS as the 

benchmark medium, the growth of E. maimiaga in BM+FCS was assessed. The resultant 

growth curves (Fig. 2.1) clearly showed the ability of E. maimaiga growth in BM+FCS to 

mimic that of growth in GM+FCS. The close agreement of the GTs, 9.0 and 10.1 hours 

for BM+FCS and GM+FCS respectively, suggested that these media are comparable in 

supporting growth of E. maimaiga. In fact, statistical analysis of the growth curve data 

resulted in the decision that there was no significant difference in the growth between 

these media CF[1,24]=2.93 p=O.lOO). Based on this information and the relative ease of 

preparation, BM+FCS was deemed appropriate for use in pH and osmolality studies. 

E. maimaiga growth was supported in BM+FCS with pH levels ranging from 5.5 

to 7.1 (Fig. 2.2). This is in agreement with earlier reports on E. aulicae protoplasts and 

walled cells (Dunphy and Chadwick, 1985; Vandenberg and Soper, 1975). The GT was 

20.75 hours for the pH 5.5 medium (Table 2.1). This parameter was reduced to 12.01 

hours when the media's pH was 5.8. This suggests protoplast sensitivity at pH values in 

the acidic range below 5.8. GLM-based statistical analysis of pH growth curve data 

identified pH as having a significant effect on cell growth (F [ 6,54 1= 11.85 p<.OO 1 ). For 
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further analysis, Gabriel's Approximate Method was chosen. The results from this 

computation indicate that there is no difference in £. maimaiga growth in media ranging 

from pH 5.8 to 7 .1. However growth in media with a pH value of 5.5 significantly differs 

from that in media of higher pH. This is based on the fact that the upper and lower limits 

of the regression coefficients overlap for pH 5.8-7.1 but do not for pH 5.5. This 

documented sensitivity to acidic pH may be due to a number of factors. pH indirectly 

affects cell growth through changes in the extracellular medium or on the cell surface 

(Griffin, 1994 ). Medium constituents may become unavailable due to precipitation at low 

pH levels. Acidic pH levels may also be detrimental to components on the outer 

membrane surface involved in metabolic processes. 

The shortest GTs were found in the 5.8 to 7.1 range with the lowest value of 10.00 

hours at pH 6.8 (Table 2.1 ). However, the second shortest GT was found in the pH 6.0 

medium. A pattern ofpHIGT association is evident when the data is grouped in GTs less 

than or greater than 11 hours. This results in a pH 6.0-6.8 group with a mean GT value of 

10.54±0.47 hours and a pH 5.817.1 group having a mean GT value of 11.88±0.18 hours. 

GT calculations are based on only logarithmic phase growth. Therefore protoplasts of E. 

maimaiga do not have one optimal pH level but rather a favourable pH range of6.0 to 6.8 

for log phase growth. Based on mid-log phase cell concentration levels, Entomophaga 

species have been documented as having optimal pH values of 6.2 for E. aulicae and 6. 7 

for E. grylli (Nolan, 1985). These values are in agreement with the acceptable range found 

for E. maimaiga. 

In order to investigate the effect of osmolality on protoplasts, sucrose levels were 

adjusted to achieve the desired osmolality levels. This compound was chosen since it is 
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not metabolized by a number of entomopthoralean species (Latge, 1975). The E. 

maimaiga growth pattern did not vary in 250 to 400 mOsm media (Fig. 2.3). No 

significant effect by osmolality on growth was derived by statistical analysis 

(F[6,54]=0.88 p=.518). The GTs ofthe cells grown in different media (Table 2.2) show 

little deviation (mean= 9.36 ± 0.54). No clear pattern of osmolality/GT association is 

evident as reflected by the value of the correlation coefficient (r=0.503). Based on this 

information, it is proposed that the protoplast has an osmoregulation system capable of 

sustaining comparable growth in media with osmolality levels from 250 to 400 mOsm. 

2.4.2 Osmotic tolerance tests 

Earlier studies (Dunphy and Nolan, 1979; Dunphy and Chadwick, 1985) based 

optimal osmolality on the ability of the medium to retain spindle protoplast morphology. 

This approach was adopted for E. maimaiga to further investigate the osmotolerance of 

this organism. Our results (Fig. 2.4) showed that cell responses fit into three categories. 

These included cells that maintained their spindle shape, those that became round due to 

depolymerization of shape-maintaining microtubules (Taylor, 1992) and those that were 

lost through lysis in the most extreme hypo-osmotic media. The percent of cells lost due 

to a treatment was also recorded. In some cases, the total number of cells enumerated 

exceeded the average number of control cells. The percent difference is displayed as a 

negative value of lysed cells. Observations of increased cell numbers may be due to the 

occurrence of cytokinesis during processing or an error in counting individual nucleate 

swellings in protoplast chains that have coalesced with one another, i.e., formed fusion 

spheres (Nolan, 1985). Fusion spheres are inherent to in vitro growth of Entomophaga 
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species and therefore cannot be avoided. This source of error would be present in lower 

osmolality solutions too. Assuming a uniform degree of counting error with fusion 

spheres and a uniform level of cytokinesis, the effects would be evenly distributed over 

all of the treatments and the trends resulting from the osmotic tolerance tests remain valid. 

Protoplasts maintained spindle morphology at osmolality levels equal to or greater 

than 150 mOsm. The highest level, 98.8%, was found at 550 mOsm. The second highest 

level was 91.4% at 450 mOsm. Growth of these treated cells in GM+FCS is evidence that 

they were viable. These data suggest that E. maimaiga protoplasts are osmotolerant at 

high osmolality levels. At the other end of the spectrum, 0 mOsm, the majority of the 

cells were lost but 45.7% of the cells maintained intact membranes and adopted a round 

cell shape. Some of these cells were viable since when transferred to GM+FCS. growth 

was noted. Based on these data, E. maimaiga is an osmotolerant organism. It is not known 

whether or not this is due to an osmoregulation mechanism. a tough cell membrane or a 

combination of the two. 

The range of osmotolerance of E. maimaiga led us to question whether this trend 

was common with other Entomophaga species. E. au/icae showed a similar trend of cell 

survival at low osmolality levels and a high level of spindle shape retention in the 3 50 to 

550 mOsm range (Fig. 2.5). Again, survival across the osmolality range tested was noted. 

All of the GM+FCS flasks inoculated with treated cells supported growth. Dunphy and 

Chadwick (1985) showed a peak percent spindle protoplast level at 350 to 375 mOsm for 

E. au/icae with a significant drop at 400 mOsm. The isolate used in this study approached 

maximal percent spindle protoplasts in solutions of 450-550 mOsm. This suggests that 

broad range osmotolerance may be isolate specific. 
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Both transmission electron microscopy and fluorescence microscopy show that 

protoplasts of E. aulicae are devoid of cell wall material (Murrin and Nolan, 1987; 

Beauvais et al., 1989) and indeed possess a glucan synthetase inhibitor (Beauvais, 1989). 

Based on light microscopy, their tendency to round up quickly in hyposmotic media, and 

on fluorescence microscopy using wheat genn agglutinin-FITC labelling, protoplasts of 

E. maimaiga are also devoid of wall material which might otherwise contribute to 

osmotic tolerance (unpublished results). Thus the mechanism by which some of these 

cells survived the osmolality extremes used in this study warrants further investigation. 

2.5 Summary 

E. maimaiga protoplasts are capable of broad range pH and osmotic tolerance. No 

significant difference in growth was found in 350 mOsm medium ranging in pH from 5.8 

to 7 .1. At a pH level of 5.5 growth was adversely affected. Also no difference in growth 

was found in pH 6.2 media ranging from 250 to 400 mOsm. Further investigation of 

osmotic tolerance showed that E. maimaiga and £. aulicae protoplasts are capable of 

surviving one hour treatments in solutions ranging in osmolality from 0 to 550 mOsm. 

The mechanism involved in osmoregulation by these organisms is not clear and warrants 

further investigation. 
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Fig. 2.4: Osmotic tolerance of Entomophaga maimaiga. Values are mean of 

duplicates. Data shown is from one trial. Two earlier trials ranging in 

medium osmolality from 10 to 600 mOsm had similar patterns. In some cases, the 

total number of cells enumerated exceeded the average number of control cells. 

The percent difference is displayed as a negative value of lysed cells. 
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Fig. 2.5: Osmotic tolerance of Entomophaga aulicae. Values are mean of duplicates. 

Data shown is from one trial. An earlier trial had a similar pattern. 
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Chapter3 

Development of patch-clamp methodology for studying Entomophaga aulicae 

protoplasts. 

3.1 Introduction 

The study of the movement of ions across cell membranes is of interest since their 

transport is involved in cell signalling (Neher, 1992), growth (Kropf, 1994) and 

osmoregulation (Hoffmann, 1992). With the introduction of the patch clamp technique 

(Neher and Sakmann, 1976) came the ability to study current flow across cell membranes 

through ion channels. The methodology is based on having a glass microelectrode tightly 

sealed onto a cell membrane. The ion-generated current, flowing through channels in the 

membrane, is detected and recorded. In order to detect small current fluctuations, in the 

picoAmpere range, the level of seal resistance between the pipette and membrane should 

be in the gigaOhm range, i.e. a gigaseal. 

Investigators studying plant, bacterial and fungal systems have reported an 

inabilty to form high resistance seals (Elzenga et al., 1991; Saimi et al., 1992; Lew et al., 

1992). The cell wall of plants and fungi interfere with the formation of a high level 

pipette/membrane seal. Protocols incorporating the enzymatic digestion of wall material 

have been developed for sreme systems (Barbara et al., 1994; Garrill et al., 1992b ). 

However, even with the removal of the cell wall, gigaseal recordings are rare in some 

fungal systems (Lew et al., 1992; Levina et al., 1994; Levina et al., 1995). 

The entomopathogenic fungus, Entomophaga aulicae. spontaneously forms 

protoplasts in vivo (Tyrrell, 1977) and in vitro (Nolan, 1985) and these cells show a broad 
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range of osmotolerance (Chapter I). The mechanism by which this osmotolerance is 

maintained is unknown but may include the activity of ion channels in the protoplast 

membrane. The easy propagation of E. aulciae in artificial medium as a protoplast is a 

desirable feature for patch clamping studies, since no wall digestion protocol is required. 

However, a protocol generating reproducible, high quality patch clamp recordings for this 

fungal system does not exist. 

This chapter documents the parameters investigated during the development of a 

patch clamping methodology suitable for E. aulicae protoplasts. The appropriate 

recording configuration. pipette size, recording solutions and optimal recording times for 

attaining gigaseal-generated data are identified. 

3.2 Materials and Methods 

3.2.1 Culture Preparation 

Entomophaga aulicae (isolate FPMI 893) protoplasts were maintained at 2ooc in 

Grace's insect tissue culture medium (Canadian Life Technologies, Inc.) supplemented 

with 2.7% fetal calf serum (Canadian Life Technologies, Inc.). 

Culture dishes for cell recording were prepared from 35xl 0 mm petri dishes 

(Becton Dickson Labware). A l5mm diameter circular disk was excised from the bottom 

of each dish and discarded. Glass coverslips, 22x22 mm, were ethanol cleaned. Prior to 

assembly, the culture dishes, coverslips and a syringe filled with valve lubricant/sealant 

(Dow Coming 111 Compound) were UV sterilized. Using a thin layer of the sealant, the 

coverslip was mounted on the exterior of the dish bottom covering the excised area. The 
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assembled dishes were lN sterilized prior to use. 

A 24-hour culture was transferred to a 15 mi conical centrifuge tube, centrifuged 

at 150xG for 5 min and the pellet resuspended in the appropriate recording bath solution. 

Approximately 30 minutes after introduction of the bath solutio~ an aliquot of the cell 

suspension was transferred to the coverslip section of a prepared culture dish. 

3.2.2 Recording Equipment & Methods 

All preparation and experimentation was performed at room temperature. 

3.2.2.1 Agar Bridges 

Agar bridges were prepared from glass capillary tubes (Drummond Scientific Co.) 

bent at a 900 angle. They were filled with a solution consisting of2%(w/w) agar (Difco 

Laboratories) prepared in the appropriate recording bath solution. Bridge holders were 

filled with the same bath solution passed through a 0.22 !lm syringe filter. 

3.2.2.2 Microelectrodes (Pipettes) 

Patch pipettes were made from fiber-filled borosilicate glass capillary tubes 

(World Precision Instrwnents, Inc., Narco Scientific). They were cut on a two stage 

vertical puller (Narishige Model PP-83, Japan). For single channel recording studies, the 

pipettes were heat polished to assist in forming pipette/membrane seals. They were heated 

for 3 seconds at approximately 800t.Lm from a wire passing a 1.7 ampere current at 0.5 

volts. Heat polishing was viewed at 1 OOx magnification with a Micromaster microscope. 

Pipette solutions were passed through a 0.22t.Lm syringe filter and then loaded in a fmely 
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tapered. heat-pulled, 1 m1 syringe. The pipettes were filled by placing the tapered end of 

the syringe in the patch pipette and moving it to the tip. Application of pressure to the 

syringe while pulling it away from the tip of the pipette resulted in a backfilled pipette. 

Pipettes were inspected for evidence of bubbles and, if present. were dislodged by tapping 

the pipette. The tips were then dipped in Sigmacote (Sigma Chemical Co.) and mounted 

on the pipette holder with care being taken to minimize glass contact with the electrode 

wire. 

3.2.2.3 Recording Hardware 

The hardware used for all recordings consisted of the following components: 

Zeiss IM-35 inverted microscope, Zeiss micromanipulator, List patch clamp probe and 

controller LIM-EPC7 (Medical Systems Corp) with a 10kHz filter setting, TL-1 

Interface (Axon Instruments, Inc.), and a Nicolet Model 310 digital oscilloscope. An 

IBM compatible Impulse computer with a Samsung monitor was used to control and 

monitor data acquisition. For equipment orientation refer to Fig. 3.1. A close-up view of 

the equipment located in the area of the microscope stage is found in Fig. 3.2. 

3.2.2.4 Measurement of Pipette Resistance 

The protocol used for measuring pipette and seal resistance was as follows. The 

amplifier was set on Search mode. Using PCLAMP version 5.5.1 (Axon Instruments, 

Inc.) the Clampex Set-Up data acquisition program (see Appendix I) was initiated. This 

ran a +1Om V pulse. The oscilloscope grid size was set at 250m V per square and the 

amplifier had a gain of 1 pA/mV. The pipette was lowered to the bath solution while 
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applying a slight positive pressure in the pipette. The oscilloscope trace was viewed and 

the transient spikes reduced resulting in a plateau-like oscilloscope pattern. The height of 

the plateau, measured in both grid squares (gsq ) and grid voltage (gv ) of one square, was 

recorded. The calculation of pipette resistance was based on the following equation: 

where 

and where 

R=E 
I 

R =resistance (Ohms), 

V= voltage (volts) 

(Eq'n. 3.I) 

I= current (pico amps (pA)) 

I= (gain)·(gsq #)·{gv #) (Eq'n. 3.2) 

Since the applied voltage in Set-Up was I Om V and the gain setting was 1 pAlm V the 

above equation was simplified in the following manner: 

R = I 0 X l 0 volts 
1 RA · gsq #·gv # (mV) 
mV 

= l X 10 volts 

1 X w-12 A· gsq # ·gv # 

= #ohms (Q). 
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The calculated resistance values of the pipette were recorded. 

3.2.2.5 Pipette-cell contact 

Before proceeding to cell attachment, offset potentials were reduced by adjusting 

the pipette offset control until the corresponding voltage LED reading approached zero. 

In general, initiation of gigaseal formation consisted of running the same SET UP 

data acquisition software as stated earlier. While viewing the cells at 400x magnification. 

the pipette was brought into close proximity of a cell. The pipette was positioned near a 

cell. by use of a micromanipulator. and then pushed up against it. During this procedure, 

care was taken to choose only the cytoplasmic-rich areas of the nucleate region of the cell 

while avoiding terminal extensions, internuclear restrictions and vacuolated areas. Fig. 3.3 

shows a typical uninucleate cell with an attached pipette. Suction was applied to the 

pipette, held for approximately 30 seconds and gently released. During the 30 second 

suction period. the rapid transients were reduced using the fast capacitance controls. 

3.2.2.6 Whole-cell Studies 

After achieving pipette-cell contact, as described in section 3.2.2.5. preparation 

for whole-cell recording could be made. Attainment of whole cell mode was based solely 

on the transient pattern viewed on the oscilloscope. An acceptable pattern consisted of a 

sharp vertical rise in the current at the begining ofthe SET UP 10 mV pulse, followed by 

an exponential decay to the baseline (Fig. 3.4). When this pattern was obtained, the 

amplifier was switched to current clamp (CC) mode and the resting membrane potential 
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was recorded. With the amplifier mode at voltage clamp (VC), data acquisition programs 

were initiated. 

The data acquisition programs used in whole cell recordings were a 

hyperpolarization program, K100MSH, and a depolarization program, K100MSD. Their 

parameters are stated in Appendix I. The K I OOMSH protocol consists of holding the cell 

at a potential of -60 m V and applying 10 voltage steps which changed by -1 0 m V every 

10 msec. The first hyperpolarizing voltage step was -70 m V and the maximum 

hyperpolarizing voltage step was -160 mV. The K100MSD protocol consisted of applying 

13 voltage steps which increased by 10 m V every 10 msec. The first depolarizing step 

was -80 m V and the maximum depolarizing voltage step was +50 m V. The voltage steps 

were 10 msec in duration. The acquisition protocols were set up to record current for 5 

msec before the voltage step, 10 msec during the voltage step and 5 msec after the voltage 

step. 

The recording solutions used in whole-cell recordings are stated below in Table 

3.1. 
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Table 3.1: Pipette and bath solutions used for whole-cell recordings. 

Chemical 1 HEPES-based Solns. 2MES-based Solutions 

Bath Soln. Pipette Soln. Bath Soln. Pipette Soln. 

NaCl 140mM 5mM 140mM 

KCl 5mM 140mM 5mM 140mM 

CaCl2 1mM 1mM 1mM 

MgCl2·6H20 1.2mM 1.2mM 1.2mM 5mM 

HE PES 10mM 10mM 

MES 10mM 10mM 

3BAPTA 1mM 1mM 

final pH 7.4 7.4 6.2 7.0 

1 n-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid 

22 N-morpholino ethanesulfonic acid 

31 ,2-bis ( o-aminophenoxy )-ethane- N ,N ,N' ,N -tetraacetic acid 

3.2.2. 7 On-cell Configuration - Single Channel Activity 

Quality of on-cell single channel seals was determined by calculating the 

resistance of the seal in a manner similar to that described for pipette resistance (Eq'ns. 
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3.1 & 3 .2). Since a gigaseal requires a current value, l of 10 pA, the amplifier gain and 

oscilloscope grid voltage were changed to enlarge the pattern on the oscilloscope. This 

allowed for a more accurate reading of the gsq #,which would result in a more precise 

value for the current , I, in Eq'n. 3 .2. 

The methodology used after the pipette was on the cell, including seal quality 

monitoring and initiation of data collection was as follows. After suction was applied (see 

previous section) and with the pulse to the membrane turned off, the membrane was 

allowed to rest. If a gigaseal fonned, recordings were made; if not, a new electrode was 

used. The specific process followed for this is summarized in Fig. 3.5. This figure is in 

flow-chart format and represents the reproducible approach used in attempts to attain 

gigaseals. If seal levels did not reach gigaohm values after 3 runs of the Singles data 

acquisition program, the patch pipette was replaced with a new one and the process of 

seal formation with another cell was initiated. 

The Singles data acquisition program was used for single channel recordings (for 

parameters see Appendix 1). Each episode involves subjecting the membrane to a 

specified voltage for a period of 5 seconds followed by 1 0 seconds with no applied 

voltage, i.e., the resting membrane potential (RMP). Ten episodes were run in the Singles 

program with the same applied voltage for each episode. Patches with gigaseal levels of 

resistance were obtained with approximately 40 cells in total, and cells exhibiting activity 

suitable for data analysis, i.e. flat baseline and uniform activity within each episode, were 

analyzed. 

3.2.2. 7.1 140 mM Na+ & 5 mM P Recording Solutions 
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The bath and pipette solutions used in early single-channel studies are listed below 

in Table 3.2. 

Table 3.2: Single channel recording solutions using 140 mM Na+ and 5 mM K+. 

Chemical Bath & Pipette Solutions 

NaCl 140m.M 

KCI 5mM 

CaCI2 lmM 

MgClz•6HzO 1.2mM 

MES IOmM 

sucrose 42.4mM 

final pH 6.2 

3.2.2. 7.2 Sucrose & 11.5 mM NaCI Recording Solutions 

The recording solutions investigating a lower sodium chloride composition and 

the use of sucrose as the osmotic stabilizer are shown in Table 3.3. 
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Table 3.3: Recording solution formulations incorporating a low level of NaCl and the 

use of sucrose as an osmotic stabilizer. 

Chemical Pipette and Bath Solutions 

NaCl 11.5 mM 

KCl SmM 

CaCI2 lmM 

MgCI2•6H20 1.2m.M 

MES lOmM 

sucrose 299m.M 

final pH 6.2 

3.2.2. 7.3 Improving Chances of Gigasea/ Formation 

In general, the approaches taken in attaining pipette-cell contact and gigaseals 

were as stated in section 3.2.2.5 and 3.2.2. 7. A modification of this procedure was 

investigated for its potential in improving pipette-membrane seals. It involved setting the 

data acquisition program to SINGLES with an Epoch A amplitude initial setting of +40 

m V prior to approaching the cell. Shonly after cell contact was made the data acquisition 

program was changed to SET UP to determine the level of seal resistance. 

Another approach investigated for improvements in gigaseal formation was 

formulation changes in the recording solutions. In panicular, the divalent cation levels 

were altered (see Table 3.4 below). Data were collected on different combinations of 

pipette and bath formulations and different pipette voltages when approaching a cell. 
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Table 3.4: Single channel recording solutions with different levels of divalent cations. 

Chemical 11 X Divalent Cations 22X Divalent Cations 

Bath Pipette Bath Pipette 

So ln. So ln. So ln. So ln. 

NaCl 140m.M 140mM 140m.M 140mM 

KCl SmM SmM SmM SmM 

CaCl2 lmM 1 mM 2m.M 2mM 
MgCl2 1.2m.M 1.2mM 2.4mM 2.4 rnM 
6H20 

MES 10mM lOmM lOmM lOmM 

sucrose 42.4m.M 42.4mM 42.4mM 35.8mM 

final pH 6.2 6.2 6.2 6.2 

1 level of divalent cations in Table 3.2 multiplied by 1. 

2level of divalent cations in Table 3.2 multiplied by 2. 

3 level of divalent cations in Table 3.2 multiplied by 5. 

3 SX Divalent Cations 

Bath Pipette 

So ln. So ln. 

140mM 140mM 

5mM SmM 

5mM 5mM 

6mM 6mM 

lOmM lOmM 

42.4 mM 16mM 

6.2 6.2 

3.2.2. 7.4 Formulation Changes to Reduce Channel Rundown 

In order to eliminate channel rundown, the addition of an energy source was 

required. Glucose and fructose were added to the recording solution formulations (see 

below, Table 3.5). 
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Table 3.5: Recording solutions used to eliminate channel rundown in single-channel 

recordings. 

Chemical Bath Solution Pipette Solution 

NaCl 140mM 140mM 

KCI SmM SmM 

CaCl2 1 mM 2mM 

MgCl2•6H20 l.2mM 2.4mM 

MES lOmM IOmM 

glucose 3.8mM 3.8mM 

fructose 2.2 mM 2.2mM 

sucrose 36mM 14.8 mM 

final pH 6.2 6.2 

3.2.3 Setting Recording Period Guidelines 

Changes in protoplast morphology were noted during patch clamp experiments. 

Also, the probability of attaining a gigaseal was higher during the early part of a patch 

clamping session. In order to determine whether or not a correlation existed between 

patch clamping time and morphological changes, protoplasts, suspended in the bath 

solution listed in Table 3.5, were photographed in a time series. At different time periods. 

aliquots were removed and wet mounts were prepared. Cells were viewed using a Zeiss 

Axioscope microscope at 1 OOX. Photographs were taken using a Zeiss camera 
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3.3 Results 

3.3.1 Pipette Size- Resistance Measurements 

The average pipette size, measured using Eq'n. 3.3, was 20 Megan. 

3.3.2 Pipette-Cell Contact 

In most cases the cells did not adhere to the glass coverslip in the recording dish. 

They often moved when approached by a pipette. Their microtubule-rich extensions were 

prone to movement and/or depolymerization during recordings. When an attached pipette 

was removed from solution, the cell usually remained attached to the pipette. 

3.3.3 Whole-cell Recordings 

The n-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES)-based 

recording solutions {Table 3.1) were used for experimentation for a number of weeks. 

Whole-cell configuration was never obtained when using the HEPES-containing 

solutions. 

Using the N-morpholino ethanesulfonic acid (MES)-based solutions (Table 3.1) 

few positive results were obtained. The majority of the cells showed no activity during 

depolarization (Fig. 3.6a). No increase in the slope ofthe episodes was evident. Only one 

cell out of 15 showed activity in the last four episodes corresponding to voltages of +20, 

+30, +40 and +50 mV (Fig. 3.6b). In the 15 cells tested, there was no evidence of 

sensitivity to hyperpolarization (Fig. 3.6c). The RMPs were recorded for 5 cells in which 

'whole cell' configuration was achieved. The RMPs were -1.4, -1.9, -3.0, -20 and -23.4 

mV. 
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3.3.4 On Cell Single Channel Stutfies 

3.3.4.1 140 mM NaCJ & 5 mM KCI Recording Solutions 

Use of the recording solutions listed in Table 3.2 resulted in none of the cells 

forming a gigaseal with the pipette (n- 8 cells). 

3.3.4.2 Sucrose & 11.5 mM NaCI Recording Solutions 

Use of sucrose as an osmotic stabilizer and 11.5 mM NaCl in the recording 

solutions did not prove to be compatible with E. aulicae patch clamping. The current 

patterns shown on the oscilloscope during pipette and seal resistance measurements were 

not the rectangular traces expected. The signal pattern did not respond to transient 

cancellation controls. Also, adjustments in the pipette offset control did not affect the 

corresponding LED reading. Due to the atypical signal pattern, no pipette or seal 

resistance readings could be made. The solutions using 11.5 mM NaCl (Table 3.3) were 

deemed inappropriate for use in patch clamp studies of E. au/icae (n-5 cells). 

3.3.4.3 Improving Chances of Gigaseal Formation 

Table 3.6 documents the frequency of gigaseals when different pipette voltages. 

+10 and -40 mV, were used in combination with different recording solutions. The 

solutions differed in their levels of ca2+ and Mg2+ , i.e. their divalent cations. The 

sample sizes are low and, while not statistically significant, they may suggest trends and 

are reproduced here for their potential usefulness in future work. 
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Table 3.6: Effect of pipette voltage and divalent cations on the occurrence of gigaseals 

between pipettes and E. aulicae protoplasts 

Pipette Pipette Bath Solutions 
Solution Voltage (mV) 

1 xi 2X2 

1 xi +10 0114 0/1 

-40 0/1 -

2X2 +10 3115 113 

-40 0/1 -
3X3 +10 011 0/2 

-40 0/1 -
I 1 X divalent cations solutions as listed in Table 3.4. 

2 2 X divalent cations solutions as listed in Table 3.4. 

3 5 X divalent cations solutions as listed in Table 3.4. 

4 numerator = # of cells that formed a gigaseal 

denominator = total # of cells attempted. 

• high level of noise in current recording. 

5 x3 

Ill* 

-
-
-
-

-

Three combinations did result in gigaseals. With a 2X divalent cation pipette 

solution combined with a IX divalent cation bath solution and the pipette at +10 mV had 

gigaseals in 3 out of 15 cells. One out of 3 cells had gigaseals using 2X divalent cation 

pipette and bath solutions and a pipette voltage of+ 10 m V. A third combination, using 
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5X divalent cation bath solution, IX divalent cation pipette solution and the pipette at+ I 0 

mV, did give a gigaseal; however, the data collected had more background noise 

associated with it compared to other gigaseal data (Fig. 3.7). Although the highest success 

rate, I/3 (bath solution: 2X , pipette solution: IX, pipette voltage: +I 0 m V) is 

considerably higher than 3115 (bath solution: 2X, pipette solution: 2X, pipette voltage: 

+I 0 m V), early in the data collection process the latter parameter settings gave a success 

rate of 2/3 cells. 

3.3.4.4 Formulation Changes to Reduce Channel Rundown 

Data collected from gigaseal patches showed some evidence of reduced channel 

activity over the IO episodes of the Singles data acquisition program. Figs. 3.8 and 3.9 

show high levels of activity in episodes 1 and 2 with a noticeable decrease in the last 

episode; although the majority of the cells showed no evidence of channel rundown with 

uniform activity present in all episodes (Fig. 3 .I 0). Channel rundown is undesirable since 

it would interfere with the interpretation of recordings from channel blocker 

characterization studies. Blockers, in the presence oftheir specific ion channel targets, 

cause reduced activity. If a decrease in activity is noted, one would not know whether it 

is due to rundown or the blocker. 

The addition of 3.8 mM glucose and 2.2 mM fructose to the recording solutions 

resulted in the absence of rundown from all recordings. Their addition did not affect the 

noise level of the data collected. 

3.3.5 Setting Recording Period Guidelines 

While collecting patch clamping data, the chance of obtaining a gigaseal appeared 
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to be highest when the cells were in the recording bath solution for approximately 30 to 

90 minutes. Within that time frame the cells were rich in cytoplasm and had tapered 

internuclear restrictions (Fig. 3.lla). At times greater than 90 minutes the cells became 

highly vacuolated (Fig. 3.11 b & c). A number of vacuoles were also present in cells 

exposed to bath solutions for less than 30 minutes (Fig. 3.11d). Thus, cells in solution for 

from 30 to 90 minutes were used routinely for patch clamping. 

3.4 Discussion 

3.4.1 Pipette Preparation & Size- Resistance Measurements 

Pipette fabrication plays an important role in recording noise and the formation of 

a gigaseal. Borosilicate glass used in these experiments are associated with low noise 

(Cavalie et al., 1992; Penner, 1995; Rae and Levis, 1996). The pipettes were heat polished 

to smooth their edges in order to assist in the formation of high level seals. A source of 

noise associated with the pipette is the capacitance of the immersed section of the pipette 

tip. Its effect is reduced when the pipette is coated with an insulating agent (Penner, 

1995). Therefore, in the pipette preparation steps used, the tip was dipped in a silicone

based product, Sigmacote, to minimize noise. 

The criterion used to identify an appropriate pipette diameter for use with E. 

aulicae pro top lasts was the ability of the cell to remain attached to the tip of the pipette. 

The second heater knob of the pipette puller controls pipette diameter. The setting 

adopted for these studies was 58±1 since a lower setting, associated with larger pipette 

diameters, often resulted in cells being sucked into the pipette shortly after cell contact 
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was made. One would expect that use of an even higher setting would ensure no cell loss; 

however, the resultant reduction in the patch size could be detrimental to detecting 

channel activity. This would depend on the channel density within the membrane. 

The mean pipette resistance value was 20 Mega Q. Resistance values are 

commonly used in documenting pipette sizes in patch clamp studies (Brink and Fan, 

1989; Caldwell et al., 1986; Garrill et al., 1992b ). An investigator, when reproducing a 

technique from a publication, can easily determine whether the pipette size is close to a 

stated resistance value. 

3.4.2 Pipette-Cell Contact 

Protoplast movement occurred intermittently during recording sessions making 

cell-pipette contact often difficult to attain. E. aulicae protoplast attachment studies 

(Lake, 1994) showed that ethanol-cleaned glass coverslips, used in the recordings in this 

study, have been associated with high levels of cell attachment in salt solutions similar in 

composition to that used in patch clamp recordings. However, forces inherent to patch 

clamping, i.e, probing cells with pipettes and withdraw I of membrane-attached pipettes 

from cells, probably require the cells to be more firmly attached to their coverslips than 

the dislodgment protocols used in the Lake study. Since gigaseal recordings were possible 

with ethanol-cleaned coverslips in the recording dish no modifications were made in their 

preparation. 

The lack of complete cell attachment to the recording dish did however, affect 

another aspect of patch clamping data collection. Four major pipette-membrane 

configurations are possible in patch clamping. These include 'whole cell', 'cell-attached', 
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'inside-out' and 'outside-out'. The latter two involve the removal of a patch of membrane 

from the cell. Both require the cell to remain stationary while the pipette is pulled away 

from the cell. As stated above (section 3.3.2 ), after a gigaseal is attained. the cells remain 

attached to the pipette even when it is removed from the bath solution. Until protocols are 

developed for improved adhesion of protoplasts to recording dishes, patch clamp 

recording using 'inside-out' and 'outside-out' modes is not possible. Therefore, in this 

preliminary study of E. aulicae protoplast ion channels only 'whole-cell' and 'cell

attached' recording configurations were investigated. 

3.4.3 'Whole-cell' Recordings 

Early studies performed in our laboratory were in the whole cell configuration 

(Hicks and Murrin, unpublished results). Using HEPES-based solutions with pH values of 

7.4, depolarizing voltage-activated channels were evident. Their sensitivity to a K+ 

channel blocker, tetraethylamoniwn (TEA+), suggested that they are involved in 

potassium ion transport. 

Attempts to duplicate these results were unsuccessful; no channel activity was 

noted, with either depolarization or hyperpolarization of the membrane. using the same 

HEPES-based solutions used in the early Hicks and Murrin study. Fonnulation changes of 

the recording solutions were made in an attempt to promote channel activity. A number 

of formulations, with sucrose as a osmotic stabilizer and different pH values, were used 

from which no channel activity was evident. Limited success was gained with one 

formulation. A discussion of its development and resultant activity follows. 

52 



In early experiments, both the pipette and bath solution pH levels was 7.4. E. 

aulicae protoplast cultures are maintained in Grace's insect tissue culture medium 

supplemented with 2.7% fetal calf serum. This growth medium has a pH of6.2. Transport 

systems in fungi can be inhibited at internal pH levels greater than 7 (Griffin, 1994). 

Therefore, pH adjustments were made in an attempt to more closely reflect physiological 

conditions. The pH of bath and pipette solutions were changed to 6.2 and 7.0, 

respectively. HEPES is not an effective buffer at either of these pH levels, while MES is 

capable of buffering over this range and has been deemed suitable for E. au/icae growth at 

a concentration of 10 mM (Dunphy and Chadwick, 1985). Therefore, MES was 

substituted for HEPES in an equimolar concentration. Since E. au/icae can tolerate a 

variety of minimal media, including phosphate buffered saline. saline solution, MES

sucrose and microtubule stabilizing buffer (Lake, 1994), no further adjustments were 

made to the bath solution. The contents of the pipette solution were also reconsidered for 

their approximation of intracellular physiological conditions. No quantitative data on the 

cytoplasmic ion contents of E. au/icae exist. Using cellular ionic content information of 

another fungus, Saccharomyces cerevisiae, adjustments to the pipette solution were 

made. The three major cations of S. cerevisiae are K+, Mg2+ and Ca2+ at 150, 20 mM 

and 3 mM, respectively (Griffin, 1994). Sodium may exist in trace amounts. The 'whole

cell' HEPES formulation (Table 3.1) had a K+ concentration of 140 m.M. Since this is 

similar to the intracellular S. cerevisiae value, no change was made in its concentration. 

Due to the reported absence of significant sodium levels inS. cerevisiae , sodium was 

removed from the pipette MES formulation (Table 3.1 ). Mg2+ and ca2+ exist in the yeast 

cytoplasm in a 6.7:1 ratio. Considering this information, along with the interest in keeping 
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the osmolality basically the same as the HEPES pipette solution, ca2+ was removed and 

Mg2+ was added at SmM in the MES formulation (Table 3.1 ). The early results 

incorporated BAPT A in the pipette solution. The same level of this free calcium chelator 

(Dieter et al., 1993) was used in theMES formulation. 

The number of reports of 'whole-cell' recordings are few for fungal systems. 

Saprolegnia (Lew et al., 1992; Levina et al., 1994) and Neurospora (Levina et al., 1995) 

studies used the 'cell attached' recording configuration. However, 'whole-cell' recordings 

have been achieved in Saccharomyces cerevisiae (Gustin et al., 1986; Berti et al., 1995). 

TheMES-based pipette formulation given in Table 3.1 resembles that used by Berti et al. 

(1995). The level ofKCl in theMES formulation is 140 mM and is 175 mM in the Berti 

et al. formulation. NaCl is absent from both formulations. MgCl2 is present in 5 mM 

concentration for both formulations. CaCl2 is absent in the MES formulation and is 

present at only 1 00 nM in the solution from Berti et al. (1995). Both solutions have a 

calcium chelator present; 1mM BAPTA is in theMES solution and 1mM EGTA is in the 

Berti et al. formulation. Both formulations have a pH of 7 .0. The differences between the 

two formulations is the presence ofMES in the Table 3.1 formulation and the presence of 

A TP in the Berti et al. solution. Since the MES-based solution is very similar to a 

formulation proven to be· acceptable for 'whole-cell' recording of yeast channel activity 

(Berti et al., 1995), the former was investigated for its compatibility with E. aulicae patch 

clamping. 

Using theMES-based recording formulations the majority of the cells showed no 

activity during depolarization. Only one cell responded to voltages ranging from +20 to 

+50 m V. This evidence of membrane depolarization-activated channels are consistent 
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with the Hicks and Murrin study (unpublished results). However, the inability to 

reproducibly detect whole-cell activity led to the rejection of this mode of patch clamp 

recording. 

The MES-based solutions used in the 'whole-cell' recordings seemed theoretically 

sound. However, their fonnulations were based on knowledge of yeast intracellular ionic 

content and yeast patch clamping results. This suggests that generalizations of fungal 

biochemistry may not be of assistance in developing patch clamp recording solutions for 

E. aulicae. 

Although very limited channel activity was recorded during the whole-cell 

recordings, data of resting membrane potentials (RMPs) were collected. RMP values vary 

according to the specific ionic concentrations in the bath and pipette solutions. One can 

only state that the values range from -1.4 to ·23.4 mV when the bath and pipette K+ 

concentrations are 5 mM and 140 mM respectively. The negative value of the voltages 

found in E. au/icae is consistent with other systems however their magnitude is much 

smaller. Byrne and Schultz ( 1994) state that nerve cell RMP's range from -40 to ·90 m V. 

RMPs for Neurospora crassa have been docwnented by electrode implantation (Griffm. 

1994). Their RMP values ranged from -170 to -230 mV. However, Lew et al. (1992) 

reported RMPs near 0 m V for Saprolegnia, with extracellular and approximate 

intracellular potassium ion concentrations of 1 OOmM and 10 mM, respectively .. 

Inhibition of cellular respiration and substrate uptake have been linked to membrane 

depolarization, i.e., more positive RMP values, inN crassa. Transport mechanisms may 

play a role in maintaining the RMP of E. aulicae. 
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3.4.4 On-cell Single Channel Studies 

The inability to easily reproduce the whole-cell recording results (Hicks and 

Murrin, unpublished) led to a re-assessment of the approach to patch clamping E. aulicae 

protoplasts. HEPES-based recording solutions, used in the early study, did not result in 

any recordings with activity. Use ofMES-based solutions in whole-cell recording resulted 

in channel activity in only 1 out of 15 cells tested, i.e., 6. 7% of the time. This level of 

success is within the range found with other cells. Only 5% of S. cerevisiae experiments 

resulted in activity (Garrill and Davies, 1994). Perhaps with further adjustments to the 

solutions, this value could increase. However, lack of information on the intracellular 

composition of fungi, especially E. aulicae, was seen as a barrier to making sound 

decisions on pipette solution adjustments. Therefore, another patch clamping 

configuration was sought, in which similarity between the pipette solution and the 

cytoplasm would not be a critical factor. 

The four main recording configurations are 'whole-cell', 'cell-attached', 'inside-out' 

and 'outside-out'. The latter two require cells to remain firmly attached to the bottom of 

the recording dish so the pipette can be withdrawn from the cell isolating a patch of 

membrane. As discussed earlier, E. au/icae protoplasts do not adhere to the glass bottom 

of recording dishes. Therefore, the 'inside-out' and 'outside-out' recording configurations 

could not be used for this study. Further work on cell attachment is required before these 

methods can be utilized. Therefore, by process of elimination, 'on-cell'. or 'cell-attached'. 

single channel recording was used for ion channel studies of E. au/icae protoplasts. 

The main advantage of'cell-attached' mode is that it does minimal damage to the 

biological structure of the channels while allowing low- noise recordings (Jackson. 1992). 
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Patch excisio~ not performed in 'cell-attached' mode, has been implicated in causing 

significant drops in open times of some channels (Trautmann and Siegelbaum, 1983). 

Undrovinas et al. ( 1995) suggest that changes in channel open times, recorded using 

excised patches, may be due to cytoskeletal disruption caused by the excision process. 

Cytoplasmic-free patches, used in 'inside-out' and 'outside-out' modes, and intra-cellular 

modifications, available through 'whole-cell' manipulations, help determine what channels 

are present in a cell. However, they may not reflect what channels are active under 

physiological conditions. Therefore, the information gained from 'cell-attached' mode is 

believed to reflect near-physiological activity. 

Gigaseal formation is not necessary for reproducible single-channel recordings in 

fungi (Garrill et al. ,1992b; Lew et al., 1992; Levina et al., 1995). Structural changes to 

membranes, during gigaseal formation, have been documented (Ruknudin et al.. 1991) 

suggesting deviation from physiological conditions. However, gigaseal formation is often 

viewed as a requirement (Sakmann and Neher, 199Sb; Hille, 1984) because it gives low

noise recording. It also ensures that the current originating from the membrane patch v.ill 

be captured by the electrode and will not leak from the pipette/membrane interface 

(Hamill et al., 1981 ). Wide-range applied voltage experiments are attainable with gigaseals 

(Garrill and Davies, 1994). During voltage-activation experiments with£. aulicae. 

warnings of possible resistor damage to the recording equipment, manifested by the 

clipping light on the amplifier. accompanied sub-gigaseal recordings. Sometimes this 

occurred with applied voltages of only +20 or -20 mV. Therefore, without gigaseals, 

information gained from voltage treatments would be very limited. It was imperative that 

gigaseal formation was attained in£. aulicae 'cell-attached' recordings in order to 
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determine whether voltage-gated channels existed in these cells. 

3.4.4.1 140 mM NaCI & Sm.M KCI Solutions 

The initial composition of solutions used for single channel recording were chosen 

on the basis of their success with animal cell studies. Modifications were made to 

accomodate E. aulicae growth parameters and improve chances of gigaseal formation. 

The first set of solutions tested, consisting of 140 mM NaCI and 5 mM KCl (Table 3.2 ). 

were very similar to the bath solution used by Hancock et al. (1996) for frog muscle cell 

recording. Since the low noise recordings documented in that paper were attained using 

the same equipment that the E. aulicae recordings were to be generated from, their 

solutions served as a starting point from which modifications were developed. The low 

K+ concentration, SmM, in the pipette was deemed appropriate for £. aulicae work. The 

whole-cell data of Hicks and Murrin (unpublished results) showed TEA+ sensitivity to an 

outward current suggested the presence of a K+ channel. This information, in addition to 

the knowledge that a K+ concentration gradient with a low level of K+ outside the cell 

will favour outward K+ movement (Byrne and Schultz, 1994), suggested a low level of 

K+ in the pipette as a wise choice. External K+ concentrations exceeding I 0 mM and a 

complete lack of external K+ have been shown to reduce outward K+ (K+ ouV current 

(Adams and Nonner, 1990). Therefore, 5 mM K+ was used in most E. aulicae patch 

clamping experiments. 

The formulations given in Table 3.2 include modifications to accomodate E. 

au/icae. The pH was set at 6.2 and the osmolality was adjusted to 349 mOsm. Both of 

these physical parameter settings have been identified as being suitable for E. aulicae 
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growth (see Chapter 2). Adjustments in pH levels have previously been made to 

recording solutions to reflect fungal growth conditions (Garrill et al., 1992b ). However. 

no gigaseals were formed with the solutions presented in Table 3.2. Therefore. more 

formulation changes to the recording solutions were required. 

3.4.4.1 Sucrose & 11.5 mM KCI Recording Solutions 

In an effort to develop patch solutions more closely related to growth conditions. 

and perhaps also, I thought, to be more conducive to gigaseal formation. the solutions 

listed in Table 3.3 were developed. The major component of the earlier formulation 

(Table 3.2) is NaCl at a concentration of 140 mM. Although NaCl is not a common 

ingredient in£. au/icae growth medium, Na+ serves as the cation for polyatomic 

phosphate and carbonate anions. In the mass fermentation medium developed for E. 

aulicae (Nolan, 1993), the Na+ concentration is 34.21 mM. This value includes the level 

ofNaCI in the tryptic soy broth added to the medium. In both Grace's insect tissue culture 

medium and the 13 amino acid medium (see Chapter 2) the Na+ concentration is 11.51 

mM. Therefore, a reduction in the Na+ concentration seemed appropriate; however. a 

decrease in the NaCllevel would also affect the CI- level. Since the wire microelectrode 

used in patch clamping requires at least a 1 0 mM level of Cl- (Penner. 1995), it seemed 

that decreasing the NaCllevel close to 11.5 mM would not be detrimental. Solutions used 

in fungal patch clamping studies have a range ofO to 12 mM Na+ (Caldwell et al., 1986; 

Bertyl and Slayman, 1992; Garrill et al., 1992a). Therefore. a reduced level ofNaCl. 11 .5 

mM. was deemed appropriate for investigation of patch clamp suitability. In order to 

maintain 349 mOsm solutions for E. aulicae , sucrose, an osmotic stabilizer (Dunphy and 
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Nol~ 1979), was used in the formulation listed in Table 3.3. Although theoretically, the 

solution changes seemed sound, they showed no compatibility with E. aulicae patch 

clamping. No pipette or seal resistance readings could be made. Consequently. the 

solutions listed in Table 3.3 were deemed inappropriate. Due to the poor performance of 

the low level NaCl in these solutions, the concentration was restored to 140 mM for all 

future solution formulations. 

J.4.4.J Improving Chance of Gigaseals 

The problem with the first single channel recording formulations (Table 3.2) was 

the inability to attain gigsaeals. Changes in solution and pipette voltages have been 

associated with gigaseal formation. Changes in osmolality, with the pipette solution being 

10% hyperosmolar relative to the bath solution, have been adopted for fungal (Levina et 

al., 1995) and plant studies (Assman, 1996). The potential exists for future investigation 

of the role of ion channel activity in osmotolerance exists based on the knowledge of the 

broad range osmotic tolerance of E. au/icae (see Chapter 2). Information on channel 

activity using isosmolar pipette and bath solutions would be useful as a reference point for 

osmolality changes. Therefore, achieving gigaseals by osmolality modifications was not 

considered an ideal approach. 

Two approaches were investigated for their effects on gigaseal formation with E. 

aulicae protoplasts: pipette hyperpolarization and increased divalent cation levels. 

Hyperpolarization of the pipette during membrane contact. has been suggested by Penner 

( 1995) for gigaseal formation. Natalia Levina (personal communication) suggested a 
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pipette voltage of -40 m V based on success she has had with fungal patch clamping. The 

second approach involves the levels of divalent cations in the solutions. Higher CaCl2 

concentrations, up to 10 mM, in the bath solution has helped with gigaseal formation with 

plant systems (Assmann, 1996). Higher levels ofMg2+ relative to Ca2+ have also been 

linked to gigaseal formation (Roger Lew, personal communication).The approach used in 

this study looked at 3 different divalent cation levels and two pipette voltages. The results 

have a small sample size and missing data points. This is a reflection of cell/pipette 

behaviour. Cells moving off the pipette early in the seal formation process was a common 

occurrence in the protoplasts during all patch clamping experiments. 

Three combinations resulted in gigaseals. One, with a 2X divalent cation pipette 

solution combined with a 1 X divalent cation bath solution and the pipette at + 1 0 m V, had 

gigaseals in 3 out of I5 cells. One out of 3 cells had gigaseals using 2X divalent cation 

pipette and bath solutions and a pipette voltage of+ l 0 m V. A third combination, using 

5X divalent cation bath solution, IX divalent cation pipette solution and the pipette at+ l 0 

mV, did give a gigaseal. However, the background noise associated with this combination 

deemed it unacceptable for future studies. Although the highest success rate, 113, is 

considerably higher than 3/I5, I did not feel confident in the success rate of the I/3 

probability group. This was because of the small sample size of 3. Due to the time

intensive nature of patch clamping £. au/icae protoplasts, I decided to identify a 

gigaseal-fonning protocol with the existing data. The encouraging early data. 2/3 success 

rate, in the final 3/I5 probability group and its larger sample size led to the choice of its 

parameters for future studies. Therefore, use of a pipette solution with 2X divalent cations 

in combination with a bath solution with IX divalent cations and a pipette set at +10 mV 
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was used for seal formation for E. aulicae protoplasts. 

3.4.4.4 Formulation Changes to Reduce Channel Rundown 

Having the ability to attain gigaseals allowed a major hurdle in E. aulicae 

protoplast patch clamping to be crossed. However, with the initiation of data collection 

one other obstacle became apparent. A decay in activity, commonly referred to as 'run

down' (Rorsman and Trube, 1990), was noted in some recordings. Fig. 3.8 and Fig. 3.9 

show reduced activity with time. The magnitudes of their current traces differ 

considerably eventhough they resulted from identical recording conditions. The reason for 

the differences is not known. The data are presented as the current activity recorded over 

the 1 0 episodes. When dealing with channel rundown, presenting the data in terms of 

channel activity per unit time would be ideal. An investigator using pCLAMP software 

must be able to clearly identify the number of channels present in order to generate such a 

figure. The nature of ion channel activity in E. aulicae does not lend itself to this type of 

analysis (see section 4.4.3.2). Therefore the rundown figures used in this document do not 

supply channel activity per unit time information. 

The major problem with run-down activity is that it complicates channel 

characterization. One method of classifying channels depends on the use of specific 

blockers that reduce activity. Using channel blockers on a cell type prone to 'run-down'. 

an investigator would not be able to determine whether a reduction in activity is due to the 

blocker or due to 'run-down'. This could result in incorrect characterization of channels.£. 

au/icae protoplasts, during 'cell-attached' recording adhere to the pipette when it is 

removed from solution. It is impossible to record the activity of the same cell before and 
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after the addition of a blocker. This is because the original pipette would have to be 

removed and replaced with a blocker-containing solution; the original cell would be lost 

during the manipulation. Therefore, it was imperative to find a solution adjustment that 

would eliminate 'run-down'. Channel activity in excised membrane patches can be 

restored when A TP is added (Misler et al., 1986). Since a major advantage of 'cell

attached' recordings is the ability to identify activity at near-physiological conditions. 

substituting A TP with an energy source common to protoplast growth medium seemed 

logical. A TP-free, glucose-containing solutions have been used in patch clamp studies 

(Undrovinas et al., 1995). Three monosaccharides, glucose, fructose and mannose are 

utilized by species ofEntomophthorales (Latge, 1975). Both glucose and fructose are 

present in the 13 amino acid medium (see Chapter 2) at concentrations of 3.8 and 2.2 mM 

respectively. Therefore these two sugars were added to the solutions at these 

concentrations (Table 3.5). The resultant curves showed low noise recordings with no 

evidence of'run-down'. Therefore these solutions were adopted for all future studies of E. 

aulicae protoplast single channel recordings. 

3.4.5 Setting Recording Period Guidelines 

The length of time E. aulicae protoplasts are present in the bath solution appears 

to affect gigaseal formation. The best chance of getting a gigaseal occurred when the 

cells had been in the solution for 30 to 90 minutes. Outside of this time frame large 

numbers of vacuoles were present indicating cellular stress. It is therefore recommended 

that patch clamping of cells occurs 30 to 90 minutes after introduction of the recording 

bath solution. This is suggested in order to improve gigaseal formation and allow the 
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investigator to record signals during a period of minimal cellular stress. 

3.5 Summary 

A protocol was developed for ion channel studies of E. aulicae protoplasts. 

Reproducible, low-noise recordings were attained with membrane/pipette gigaseals using 

a 'cell-attached' recording configuration. The protocol involves 

the use of borosilicate glass pipettes that are heat polished and silicone-coated. An 

appropriate pipette size for patch clamp recording imparts a resistance value of 20 Mega 

n when contacting the recording bath solution. The pipette solution consists of the 

following components: 140 mM NaCI. 5 mM KCI, 2 mM CaCI2, 2.4 mM MgCI2•6H20. 

10 mM MES. 3.8 mM glucose, 2.2 mM fructose, 29.8 mM sucrose, fmal pH of6.2. The 

bath recording solution contains 140 mM NaCl, 5 mM KCI, I mM CaCI2, 1.2 mM 

MgCl2•6H20, 10 mM MES, 3.8 mM glucose, 2.2 mM fructose, 36 mM sucrose and had a 

final pH of 6.2. Recommended recording times are 30 to 90 minutes after the cells are 

suspended in the bath solution. 



Fig. 3.1: Patch clamp recording equipment. a, Nicolet Model 31 0 digital oscilloscope; b, 

List patch clamp probe and controller L/M-EPC 7 (Medical Systems Corp.); c, 

TL-1 interface (Axon Instruments); d,Zeiss IM-35 inverted microscope; e, 35mm 

camera; f, pipette holder; g, manual pipette manipulation controls; h, vibration 

isolation table; i, Faraday cage; j, Zeiss motorized pipette micromanipulator. 
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Fig. 3.2: Orientation of patch clamp recording equipment. a, bridge holder;b, agar bridge; 

c, cell suspension; d, recording dish; e, pipette filled with pipette solution; f, 

pipette holder. 
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Fig. 3.3: Entomophaga aulicae protoplast (a) with an attached recording 

pipette (b). The magnification bar is approximately lOf.lm. 
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Fig. 3.4: Oscilloscope pattern indicating attainment of 'whole cell' recording 

configuration. Large arrows indicate period of applied voltage. Small arrows 

indicate transient current spikes. 
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Fig. 3.5: Method used in monitoring seal formation and initiating data 
acquisition for single channel on cell recordings. 
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Fig. 3.6: Whole-cell recordings. a, depolarized cell with no discernible activity in 

voltages ranging from -70 to +50 m V. b, depolarized cell with channel activity in 

the last 4 episodes which correspond to voltages of+20 mV to +50 ~V. c, 

hyperpolarized cell with no discernible activity in the range of-70 to -160 m V. 
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Fig. 3. 7: Single channel recordings in cell attached configuration showing recording noise 

associated with the use of SX divalent cation bath solution. IX divalent cation 

pipette solution and a pipette voltage of+ 1 0 m V. Representative recordings. 

episodes 1, 5 and 1 0, are shown. 
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Fig. 3.8: Single channel recordings in cell attached configuration showing evidence of 

run-down in channel activity in solutions without glucose and fructose. High 

amplitude current is present in episodes I and 2 followed by a more uniform level 

of activity in the following episodes. Episode number is found in the right-hand 

end of each trace. The time period between the start of each episode is I 0 seconds. 
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Fig. 3.9: Single channel recordings in cell attached configuration showing evidence of 

run-down in channel activity in solutions without glucose and fructose. There are 

high amplitude current in episodes 1, 2 and 4 followed by very limited activity. 

Episode numbers are located at the right side of each trace. The time period 

between the start of each episode is 10 seconds. 
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Fig. 3.10: Single channel recordings in cell attached configuration showing no evidence 

of run-down in channel activity in solutions without glucose and fructose. Episode 

numbers are located at the right side of each trace. 
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Fig. 3.11: Morphological changes in Entomophaga aulicae protoplasts with time when 

suspended in recording bath solution. A, spindle-shaped cells with low numbers of 

small vacuoles in cells 50 min. after suspension in solution. Band C, round cells 

with large vacuoles in cells 120 and 150 min., respectively, after exposure to bath 

solution. D, rounded cells with large vacuoles 9 minutes after suspension in bath 

solution. Magnification bar represents 50J..Lm. 
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Chapter4 

Potassium ion channels in protoplasts of Entomophaga au/icae. 

4.1 Introduction 

Since the introduction of patch clamp technology ion channel activity has been 

studied in a number of systems. Early studies investigated mammalian. squid, frog and 

snail cells (Hille, 1984). More recently, the techniques have been used with non-animal 

systems including algae (Lew et al., 1990), bacteria (Buechner et al., 1990), plants 

(Fairley and Walker, 1989) and fungi (Caldwell et al., 1986; Garrill et al., 1992a & 

1992b; Levina et al., 1994 & 1995). A major challenge in adapting the patch clamp 

technique to these organisms is the establishment of a gigaseal. The inability to form high 

resistance seals has been reported by investigators in a number of fields (Elzenga et al .. 

1991; Saimi et al., 1992; Lew et al., 1992). The main obstacle for high level 

pipette/membrane seals with plant and fungal cells is the existence of a cell wall. 

Protocols for enzymatic digestion of wall material have been developed for specific 

cellular systems (Garrill et al., 1992b; Barbara et al.. 1994 ). 

One does not need to apply wall-degrading enzymes for E. aulicae to form 

protoplasts; they form spontaneously in vivo (Tyrrell, 1977) and in artificial medium 

(Nolan, 1985). Transmission electron microscope and fluorescent microscopy studies 

have not detected any cell wall on these protoplasts (Murrin and Nolan, 1987; Beauvais et 

al., 1989). Chitin and b-glucans are major components of fungal cell walls (Gooday and 

Gow, 1990). £. aulicae possesses a protoplast-specific chitin synthase inhibitor and has 

low levels of glucan synthase activity (Beauvais and Latge, 1991 ). Ease of protoplast 
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propagation and the lack of a cell wall make E. aulicae an attractive candidate for patch 

clamp studies. 

Voltage-activated K+ channels, cation-selective stretch-activated channels and 

anion-selective channels have been identified in fungal plasma membranes (GarrilL 

1994). Calcium-transporting stretch-activated channels are involved in hyphal tip growth 

of Saprolegnia ferax (Garrill, 1992b ). In yeast, osmoregulation may involve stretch

activated channels (Gustin et al., 1988) and voltage-activated channels (Berti and 

Slayma.n, 1992}. A depolarization-activated K+ channel identified in Saccharomyces 

cerevisiae is believed to be involved in balancing charge movements during transport 

(Bertl et al., 1993). 

Ion channel studies can be performed in a number of recording configurations. 

'Whole cell', 'cell-attached' and excised patches in 'outside-out' or 'inside-out' orientation 

are the major configurations. An early study of E. aulicae protoplasts using whole cell 

recordings (Hicks and Murrin, unpublished results) showed the presence of outward 

rectifying voltage-activated channel activity. The channels were present only during 

depolarizing voltages. Tetraethylammonium ion (TEA+), a potassium ion channel 

blocker (Begenisich, 1994 ), when added to the bath solution reduced activity of the 

outward current. This early work suggested that £. aulicae protoplasts may have outward 

rectifying, voltage-activated potassium ion (K.o +)channels. Pharmacological channel 

blockers have been known to behave differently in different biological systems 

(Swandulla and Chow, 1992). Therefore a more rigorous study of channel 

characterization was required to confirm the preliminary results. 
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This chapter documents the characterization of ion channel activity in E. aulicae 

protoplasts using the methodology presented in Chapter 3. Briefly, it entails recording in 

the 'cell-attached' mode using recording solutions with osmolality and pH levels 

equivalent to those of in vitro growth conditions. Bath and pipette solutions used were 

identified in Chapter 3 for being associated with acceptable chances of gigaseal formation 

and good quality, consistent recordings. 

The approaches used for data analysis. as well as channel characterization. are 

presented. Mean current amplitude values were used to determine the current-voltage 

relationship of the voltage-activated channels. Two K+ channel blockers, TEA+ and 

barium ion (Ba2+), were used in channel characterization. The reduction in activity 

associated with these blockers suggest that these channels are indeed involved with K+ 

transport. The current-voltage pattern was sensitive to elevated levels of K+ applied to 

the exterior of the cell. This serves as further evidence that E. aulicae pro top lasts contain 

K+ channels. 

4.2 Materials and Methods 

4.2.1 Culture Preparation 

Protoplasts of Entomophaga au/icae (isolate FPMI 893) were maintained at 2QOC 

in Grace's insect tissue culture medium (Canadian Life Technologies. Inc.) supplemented 

with 2.7% fetal calf serum (Canadian Life Technologies, Inc.). 

Culture dishes for cell recording were prepared from 35xl0 mm Petri dishes 

(Becton Dickson Labware ). A 15mm diameter circular disk was excised from the bottom 

of each dish and discarded. Glass coverslips, 22x22 mm, were ethanol cleaned. Prior to 
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assembly, the culture dishes, coverslips and a syringe filled with valve lubricant/sealant 

(Dow Coming 111 Compound) were UV sterilized. The coverslip was mounted on the 

exterior of the dish bottom covering the excised area with a thin layer of sealant. The 

assembled dishes were UV sterilized prior to use. 

A 24-hour protoplast culture was transferred to a 15 ml conical centrifuge, 

centrifuged at 15 OxG for 5 minutes and the pellet resuspended in the appropriate 

recording bath solution. Approximately 30 minutes after introduction of the bath solution, 

an aliquot of the cell suspension was transferred to the coverslip section of a prepared 

culture dish. 

4.2.2 Recording Methods 

All preparation and experimentation was performed at room temperature. Agar 

bridges were prepared from glass capillary tubes (Drummond Scientific Co.) bent at a 90° 

angle. They were filled with a solution consisting of 2%(w/w) agar (Difco Laboratories) 

prepared in the same formulation of recording bath solution used for the cell suspension. 

The bridge holder was filled with the same bath solution passed through a 0.22 J..Lm 

syringe filter. 

Patch pipettes were made from fiber-filled borosilicate glass capillary tubes 

(World Precision Instruments, Inc., Narco Scientific). They were cut on a two stage 

vertical puller (Narishige Model PP-83, Japan). The pipettes were heat polished by 

positioning them close to a heated wire. The pipettes were backfilled using a finely 

tapered syringe filled with 0.22 J..Lm filter sterilized pipette solution. More detail on the 



backfilling technique can be found in section 3.2.2. The tips were dipped in Sigmacote 

(Sigma Chemical Co.) and mounted on the pipette holder. 

The hardware used for all recordings consisted of a Zeiss IM-35 invened 

microscope. Zeiss micromanipulator, List patch clamp probe and controller L/M-EPC7 

(Medical Systems Corp.) with a 10kHz filter setting, TL-1 Interface (Axon Instruments. 

Inc.), and a Nicolet Model 310 digital oscilloscope. An IBM-compatible Impulse 

computer with a Samsung monitor was used to control and record data acquisition. Refer 

to Figs. 3.1 and 3.2 for equipment orientation. 

The methodology used for monitoring gigaseal formation is as stated in section 

3.2 .. 2.5 and 3.2.2. 7. All of the data presented in this chapter are from gigaseallevels of 

pipette/membrane resistance. 

Single channel currents were recorded in the 'cell-attached' recording 

configuration 

4.2.3 Ramp voltage studies 

Bath and pipette solution formulations used in ramp experiments are found 

below in Table 4.1. 

The data acquisition protocol, Ramp 5S, used pCiamp Clampex software (Axon 

Instruments Inc.). The parameters of Ramp 5S are listed in Appendix 1. The program runs 

a repetitive cycle in which the membrane is subjected to programmed voltages for 5 

seconds followed by aS second period at the resting membrane potential (RMP). In 

Ramp5S the voltage protocol is referred to as a ramp. In this study a voltage ramp from 

100 m V hyperpolarized to 100 m V depolarized was applied for 5 sec. Data are collected 

90 



at the voltages between these specified limits. The ramp is repeated every 10 sec. 

Deviations from the linear baseline represent activity. This allows one to scan a broad 

range of voltages for channel activity in a short time period. 

Table 4.1: Patch clamp recording solutions used in Ramp voltage studies of 

E. aulicae protoplasts. 

Chemical Bath Solution Pipette Solution 

NaCl 140mM 140mM 

KCl 5mM 5mM 

CaCl2 1mM 2mM 

MgCl2•6H20 1.2mM 2.4mM 

1MES 10mM 10mM 

glucose 3.8mM 3.8mM 

fructose 2.2mM 2.2mM 

sucrose 36mM 29.8 mM 

final pH 6.2 6.2 

1 MES = 2 N -morpholino ethanesulfonic acid 

4.2.4 Hyperpolarization studies 

The recording solutions used for monitoring channel activity during membrane 

hyperpolarization are listed in Table 4.1. 
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The parameters for the pClamp data acquisition protocol, Singles, are listed in 

Appendix 1. For hyperpolarization studies the Singles program holds the membrane at a 

specified voltage below its RMP for a period of 5 seconds. This is followed by a 1 0 

second period with no applied voltage, i.e., at RMP. This is repeated 10 times at the same 

voltages. Current fluctuations from the flat baseline represent channel openings. Activity 

above the baseline represents outward movement of cations from the cell; inward 

movement is characterized by activity below the baseline. 

4.2.5 Depolarization studies 

4.2.5.1 Channel recordings 

Table 4.11ists the solutions used for membrane depolarization recordings. 

The Singles pClamp data acquisition protocol was used in these studies. The 

acquisition parameters are listed in Appendix 1. Data are acquired in a similar fashion to 

that stated in section 4.2.4 with the exception of the applied voltages. In the case of 

depolarization. the voltages used in the program were in the positive mV range. 

4.2.5.2 Analysis of Multiple Current Level Recordings 

Data analysis consisted of first using pClamp's Fetchan Demohist program (see 

Appendix 2) with visual validation of channel activity to extract an idealized plot of the 

data. This entailed setting a baseline, i.e. closed channel level, for the plotted data and 

then setting a level representing open channel activity. Individual open and closed events 

were visually scrutinized for acceptance. If the program did not detect obvious channel 

activity or recorded false openings, the baseline and/or level settings were adjusted until 
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channel detections were deemed acceptable. The program compiled an events list from 

the idealized plot and these data were stored in separate files in ASCII format. 

To facilitate further data analysis, amplitude values from the idealized plot events 

list were binned for graphical representation as histograms using pStat (see Appendix 2 

for parameter settings). Several approaches were then attempted to analyze data in 

histogram format including 1. pStat's Gaussian fit command, 2. pStat's arithmetic mean, 

3. the "findmean" program and 4. the use of Origin software to perform weighted mean 

calculations. 

The mean current amplitude value was determined by using the weighted average 

calculation as defined by Sokal and Rohlf (1995). The use of the weighted mean is 

appropriate with histograms, i.e. binned data. It is the same as determining the number of 

values in a bin and multiplying them by the mean bin value. This is repeated for all of the 

bins. The sum of these products is then divided by the total number of data points. Its 

calculation is as follows: 

I:(amp • n) (Eq'n. 4.1) 
Amp 

I:n 

where 

amp= current amplitude (pA) 

n = # of events having an amplitude value. 

The multichannel analysis program, 'fmdmean', was retrieved from the internet. It 

is a MS-DOS program and was found through a document (Ramanan et al., 1996) in a 
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patch clamping website. It was received through ftp from patch.pnb.sunysb.edu 

(129.49.110.105) and loaded on an IBM-compatible computer for use. 

4.2.5.3 Current-voltage relationship 

Mean current amplitude values (I) were calculated using equation 4.1. They were 

plotted against the applied voltage (V) from which the data were collected. Linear 

regression of the values was used to calculate the slope of the IN plot. The slope value 

represents the membrane conductance with the units in picoSiemens (pS). 

4.2.5.4 Channel blockers 

In order to block K+ channel activity, 5mM Ba Cl2 or 1 0 mM TEA Cl were added 

to the pipette. The pipette and bath recording solutions used in channel blocking 

experiments are as listed in Table 4.2. 

Data acquisition was performed with the same set-up as stated in section 4.2.5.1. 

Membrane depolarization was performed using the Singles protocol. 

Data analysis was based on visual inspection of the channel recordings only. 

Comparisons based on the level of activity were made between recordings with and 

without the presence of channel blockers. Numerical analysis was not performed because 

of some difficulty with baseline drift. 
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Table 4.2: Patch clamp recording solutions for channel blocker studies in protoplasts of 

Entomophaga aulicae. 

Chemical Bath Control Ba2+ I TEA+ 

Solution Pipette Pipette Pipette 

Solution Solution Solution 

NaCl 140mM 140mM 140mM 140mM 

KCI 5mM SmM 5mM SmM 

CaCl2 1mM 2mM 2mM 2mM 

MgCl2 6H20 1.2mM 2.4 mM 2.4mM 2.4mM 

MES IOmM IOmM IOmM IOmM 

glucose 3.8mM 3.8mM 3.8mM 3.8mM 

fructose 2.2 mM 2.2mM 2.2mM 2.2mM 

sucrose 36mM 29.8mM 14.8 mM 19.8 mM 

BaCl2 2H20 - SmM 

2TEA Cl IOmM 

final pH 6.2 6.2 6.2 6.2 

1 TEA+ = tetraethylammonium ion 

2TEA Cl = tetraethylammonium chloride 

4.2.5.5 Effect of elevated x+ levels on conductance 

In order to compare the effects of elevated K+ on channel activity, data collected 

under 'control' conditions were required. For this study, 'control' conditions are those 

identified in Chapter 3 of this document, i.e., the protocol deemed most suited for E. 
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aulicae ion channel studies. 'Control' conditions differ from elevated K+ levels only by 

the recording solution formulations. Control potassium levels were 5mM, and elevated 

levels were 60 and 140 mM. 'Control' bath and pipette solutions used in this study are 

listed in Table 4.1. The solutions with different K+ levels are listed below in Table 4.3. 

Mean current amplitude values were determined using the same methodology 

stated in section 4. 2. 5. 2 . Membrane conductance was calculated in the same manner 

stated in section 4. 2. 5. 3. 

Table 4.3: Patch clamp recording solution formulations for studying the effects of 

elevated potassium ion levels on channel activity. 

Chemical 60mMK+ 60mMK+ 140mMK+ 140mMK+ 

Bath Solution Pipette Bath Pipette 

Solution Solution Solution 

NaCl 85mM 85mM 5mM 5mM 

KCl 60mM 60mM 140mM 140mM 

CaCl2 1mM 2mM lmM 2mM 

MgCl2 6H20 1.2mM 2.4mM 1.2mM 2.4mM 

MES 10mM 10mM 10mM 10mM 

glucose 3.8mM 3.8mM 3.8mM 3.8mM 

fructose 2.2mM 2.2mM 2.2mM 2.2 mM 

sucrose 36mM 29.8mM 36mM 29.8 mM 

final pH 6.2 6.2 6.2 6.2 



4.3 ResuiJs 

4.3.1 Ramp voltage studies 

Ramp voltages, in which the membrane is subjected briefly to voltages ranging 

from -100 mV to +100 mV, were used to identify the voltage activation range. The 

RampSS protocol used in this study runs l 0 episodes consisting of 5 seconds of ramping 

voltage followed by 10 seconds at the RMP. Ramp experiments were performed on 

approximately IS cells. In all cases channel activity showed a high level of variability. In 

a typical recording from one cell, an episode's channel pattern would be restricted to 

negative voltages, i.e., hyperpolarization (Fig. 4.1 ). The next episode, recorded only I 0 

seconds later, showed very little activity (Fig. 4.2). This was followed by activity with 

only positive voltages (Fig. 4.3). This pattern seemed to be random; depolarization 

activity did not always occur after hyperpolarization-activated signals. 

4.3.2 Hyperpolarization studies 

Hyperpolarization resulted in sporadic current patterns (Figs. 4.4 and 4.5) during 

which delayed, short-lived, inward ion movement patterns were common (n=l8 cells). 

The hyperpolarization-generated patterns were. in general, spiky and did not reach easily 

discernible plateau amplitudes. 



4.3.3 Depolarization studies 

4.3.3.1 Channel recordings 

Depolarization studies resulted in easily discernible channel recordings when the 

membrane was subjected to voltages in the +60 to +100 mV range (Fig. 4.6) (n=34 cells). 

The current pattern of ion transport across E. aulicae protoplast membranes indicates 

multiple current channel activity, i.e., a number of channel amplitudes were present. 

Three current amplitudes, 3.13, 5.83 and 7.71 pA, are identified in Fig. 4.7a to serve as a 

scale for this recording of one episode. Fig. 4.7b is a histogram of the current amplitudes 

from 10 episodes, one ofwhich is found in Fig. 4.7a. No pattern of clusters at equidistant 

amplitudes is discernible in Fig.4.7b. In fact it was not found in any ofthe recordings. 

4.3.3.2 Analysis of Multiple Current Level Recordings 

Analysis of multiple current channel recordings is a complex issue. A 

multichannel data analysis program found on the internet, 'fmdmean', and its 

corresponding journal publication (Ramanan et al., 1992) were investigated for their 

potential use in analyzing the E. au/icae channel data. The program requires information 

on a number of parameters before data analysis can proceed. The investigator must supply 

the program with a value for the number of channels present. This was unknown in the 

collected recordings. Probabilities and meantime data information was also required. I can 

only assume that these last two parameters were referring to channel open times. I was 

therefore unable to supply the required information which resulted in the inability to use 

this software program to analyze the data. 
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The data collected by visually validating channel openings (i.e. the events lists 

from the idealized plots) were compiled in histogram format from which the mean current 

amplitude values were calculated. I found the application of pST AT's histogram 

generation and Gaussian fit functions to the data to be of little value. A correct fit of a 

Gaussian equation to a histogram allows one to extract a mean value of the histogram 

plot. A poorly fitting equation results in lack of confidence in the derived value of the 

mean. Fig. 4.8 shows an amplitude histogram with a Gaussian fit. Large discrepancies 

exist between the Gaussian equation and the actual histogram values. The difference 

between a theoretical value, in this case generated from a Gaussian equation, a.'ld an 

actual value, in this case an amplitude histogram value, is known as a residual. It is used 

to assess closeness of fit between theoretical and true values. Fig. 4. 9 shows the residual 

plot for the amplitude data of Fig. 4.8. Because the pattern of residuals does not form a 

regular band about the x·axis, we conclude that a normal distribution is not a good model 

for the data. The closeness of fit of a Gaussian equation can be subjective. If one chose to 

accept the Gaussian fitting standards of the pCLAMP program for E. au/icae ion channel 

activity another problem can arise. Multiphasic curve fitting would be required to cover 

the multiple levels of current activity. The curve fitting program allows one to have a 

maximum of 4 curves. In some instances the E. aulicae current amplitudes showed more 

than 4 peaks. 

pST AT offers information on collected data without invoking the Gaussian fit 

command. One of the values generated is the arithmetic mean. Fig. 4.10 shows an 

amplitude histogram of channel activity. Visual inspection of this graph suggests that the 

mean current amplitude is approximately 4.5 pA. The pST AT's arithmetic mean value of 
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the same data is 2.36±2.45 pA (Table 4.4). The large discrepancy resulted in abandoning 

this approach for determining mean current amplitude values. 

Use of the weighted average formula (Eq'n. 4.1) for determining mean amplitude 

values was deemed appropriate. Use of the formula resulted in a mean value of 4.60 pA 

for the data presented in Fig. 4.10 which is more credible than pSTATs generated 2.36 

pA. This resulted in the adoption of the weighted mean formula for all calculations of 

mean amplitude. 
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Table 4.4: The pSTAT-generated information on the amplitude values represented in Fig. 

4.1 0. Note the value for the amplitude arithmetic mean value of 2.36 pA indicated by the 

arrowhead. 

General information for file L6301Cl6.EVL 

Number of events ......•.......•.• 3434 
Total record time in file ........ 39.033 s 
Number of conductance levels •.••. 1 

Level 1 amplitude data 

Bin distribution mode: Standard 

Arithmetic mean ( S.D.) .... 2.36 t 2.45 pA ~ 
Histogram area .............. 34.72 event-pA 
Fitting range area .•••.••••. 34.72 event-pA 
Fit area as% of data area .. 100.0% 
Number of outliers .•........ o 
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4.3.3.3 Current-voltage relationship 

IN plots were based on mean amplitude values derived from ion channel 

recordings performed at different voltages. Fig. 4.11 shows channel activity at different 

voltages. The amplitude histograms and mean amplitude values derived from Fig. 4.11 

data are represented in Fig. 4.12. The resultant IN plot, based on a number of cell 

recordings is found in Fig. 4.13 . The slope of the IN curve gives a conductance value of 

31 pSiemens (pS). 

4.3.3.4 Channel blockers 

Use of two K+ channel blockers, TEA+ and barium, resulted in reduced ion 

channel activity (n=2 and 4 cells, respectively). Fig. 4.14 shows typical channel activity 

when no blockers were present. Channel openings are easily recognized as plateau

forming patterns. Use of both barium and TEA+ resulted in major reductions in activity 

(Figs. 4.15 & 4.16 respectively). Unfortunately high levels ofbaseline drift occurred, and 

precluded numerical analysis ofthe data. However, figures such as 4.15 and 4.16 allow 

for visual assessment of channel activity. The presence of background noise and non

horizontal baselines masks possible brief openings since the latter, if present, have low 

amplitude values. The effects of these channel blockers on channel activity suggest that 

K+ channels exist in E. aulicae protoplast membranes. 

4.3.3. 5 Effect of elevated x+ levels on conductance 

The effects of elevated levels of K+ on membrane conductance are found in Fig. 

4.17. Control recordings of E. aulicae protoplast ion channels used 5 mM K+ in the 
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recording solutions. The resultant conductance value is 31 pS. The IN slope was 

reduced to 10.6 pS and -20.1 pS with K+ concentrations of 60 mM and 140 mM 

respectively. This sensitivity to K+ concentrations suggests that there are K+ ion 

channels in £ . aulicae . The negative value of the conductance with 140 mM potassium 

means that the channels are less conductive at the higher voltages. Negative conductance 

values have not been found in the literature. However, the values generated from the 60 

and 140 mM K+ are based on only one recording per voltage. 

4.4 Discussion 

The identification of voltage-activated channels from the 'whole-cell' recordings 

(Hicks and Murrin, unpublished results) warranted further investigation using single 

channel signals. With the protocol developed for attaining gigaseal recordings from E. 

aulicae protoplasts, documented in Chapter 3, ion channel studies were initiated. Voltage

activated channels have been found in fungi (Garrill, 1994). Gigaseals, attained with E. 

aulicae protoplasts (see Chapter 3), allow the investigator to acquire data over a broad 

range of voltages. This initial study of ion channels in pro top lasts of£. au/icae deals with 

channels sensitive to changes in voltage. 

4.4.1 Ramp voltage studies 

Ramp voltage experiments are commonly used in patch clamp experiments 

(Sakmann and Neher, 1995a; Hancock et al., 1996). They allow 
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the investigator to examine the effects of a broad range of voltages on channel activity. 

The data collected in the -1OOm V to + 1 00 m V range in this study showed no consistent 

pattern. The high level of variability and apparent unpredictable nature of the ion current 

pattern generated from ramp voltage runs led us to discontinue this approach. With such a 

high level of variability channel characterization using specific blockers could not be 

done. A reduction in activity or a shift from hyperpolarization sensitivity to depolarization 

activation may falsely be attributed to channel blockage. 

4.4.2 Hyperpolarization studies 

Hyperpolarization-sensitive channels are present in the plasma membrane of 

plants (Roberts and Tester, 1995) and animals (Hancock et al., 1996) and in vacuolar 

membranes of fungi (Berti and Slayman, 1992). K+ channels sensitive to both positive 

and negative voltages have been identified in yeast plasma membranes (Ramirez et al.. 

1989). 

Membrane hyperpolarization of E. aulicae protoplasts did elicit a response; 

however, the recorded data showed sporadic activity. No channel activity was recorded 

during whole-cell hyperpolarization of E. aulicae protoplasts in the earlier study (Hicks 

and Murrin, unpublished data). This suggests that hyperpolarization-activated channels 

may not function during normal physiological conditions. The current pattern may have 

been caused by undue application of negative voltage to the membrane. The absence of 

hyperpolarized-activated channel activity suggests that E. aulicae protoplasts do not 

contain the same type of channels fotmd in the plasma membrane of S. cerevisiae 
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(Ramirez et al., 1989). No tonoplast studies have been performed on E. aulicae. It is 

therefore unclear as to whether E. aulicae cells contain hyperpolarization-sensitive 

channels similar to those found by Berti and Slayman (1992) inS. cerevisiae. 

4.4.3 Depolarization studies 

4.4.3.1 Channel recordings 

Depolarizing voltage-activated channels with outward currents are present in E. 

aulicae protoplasts. Channel activity shows openings of non-equidistant current 

amplitude. Depolarization-sensitive K+ channels are present in the plasma membrane of 

Saccharomyces cerevisiae (Gustin et al., 1986; Berti et al., 1993). However the S. 

cerevisiae recordings showed open channel current flow at easily discernible amplitudes; 

they did not exhibit multiple current channel openings with numerous current amplitudes. 

Multiple current channel openings have been found in stretch-activated channels of an 

oomycete Saprolegnia fer ax (Lew et al., 1992). 

4.4.3.2 Analysis of Multiple current Level Recordings 

Analysis of multiple current channel recordings is a complex issue. A number of 

software packages are available for recordings with openings at a single current amplitude 

value. They include pCLAMP by Axon Instruments, CED 1401 by Cambridge Electronic 

Design and VCAN by Strathclyde Electrophysiology Software (Dempster, 1993). 

However, commercially available software packages for ion channel behaviour are not 

suitable for data containing non-equidistant multiple amplitudes (V anDongen, 1996). At 
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least three multichannel analysis programs do exist. They are TRANSIT (Van Dongen, 

1996), "findmean" by S.V. Ramanan and ADAM by Dabrowski (Ramanan et al., 

1996).The documentation for the "findmean" program (Ramanan et al., 1992) and its MS

DOS program required knowledge of parameters not calculated by the program and 

therefore unknown to the investigator. The general acceptance of use of these programs 

by researchers actively engaged in patch clamping is unknown. General patch-clamp 

reference books {Sakmann and Neher , 1995a; Hille, 1992) do not discuss the use of these 

programs, no doubt due to their lack of discussion of multichannel analysis. 

Based on widespread use and acceptance of pCLAMP software as a standard for 

ion channel analysis (Dempster, 1993) and its availability, it was employed in 

multichannel analysis. The Fetchan program of the pCLAMP software system was used 

to detect channel openings. Although this software allows for automated measurement of 

channel amplitudes, one cannot solely rely on the resultant data (Heinemann, 1995). 

Subtle errors, which may go undetected, may occur if a flaw in the automated method is 

present. Visual inspection by the investigator validating current amplitudes is an accepted 

approach (Heinemann, 1995; Dempster, I 993) and was incorporated in all of the data 

collected. Although this is introducing a subjective view to the information collected, one 

must acknowledge the ability of the human eye to effectively discriminate pattern from 

background noise. Also, it seems that experimenter subjectivity is inherent in patch clamp 

data analysis. Visual inspection is used to check current amplitude values in manual data 

analysis too. Therefore, the approach used in this study is considered valid. 

Since pCLAMP comes with a statistical package, pST AT, it was initially used in 

determining mean channel amplitude values. However, my own confidence in the ability 
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ofthis program to analyze multichannel records was low. The standard approach to 

determining current amplitude is to use the current amplitude histogram plot and, have a 

Gaussian equation fit it (Colquhoun and Sigworth, 1995). The theoretical mean of the 

equation, Jl, is then used as the mean amplitude value. However, with the multichannel 

recordings generated, fitting one Gaussian equation to an all-points amplitude histogram 

proved to be inaccurate. 

pST AT offers another means of determining mean amplitude. Without invoking 

any curve-fitting to the amplitude histogram data, some numerical information on the data 

is available. One such parameter available is the arithmetic mean. Its accuracy was 

questionable and it was therefore deemed inappropriate for use. 

A weighted average formula (Eqn.4.1; Sokal and Rohlf, 1995) was used for 

determining mean amplitude. Using this formula, mean amplitude calculations were in 

agreement with visual estimations from amplitude histograms. Therefore, it was used in 

all future calculations. 

4.4.3.3 Current-voltage relationship 

Ion channels are characterized by their current-voltage relationship (Hamill et 

al., 1981 ). With information on mean amplitude values and their associated voltages, a 

current-voltage (1-V) plot can be made. The slope ofthe 1-V curve for E. aulicae gave a 

conductance value of 31 pS. Gustin et al. (1986) reported a conductance of 20.5 pS for 

outward rectifying potassium ion channels in the plasma membrane of Saccharomyces 

cerevisiae. Conductance values reported for inward rectifying potassium ion channels 

include the whole cell value of 4 7 .8nS for Saprolegnia (Lew et al. , 1992), and single 
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channel values of 30 and 65 pS in the alga Mougeotia (Lew et al .• 1990) and 28pS and 

11.4 pS for frog muscle (Hancock et al., 1996). 

Channel conductances have a broad range. K+ channels have been shown to range 

from 2 to 200 pS (Moczydlowski et al .• 1988). Since the conductance values depend on 

the ionic content of the recording solutions used, it is difficult to state whether the 

conductance values are due solely to channel type. 1-V plots and their resultant 

conductance values are, however, still commonly used in publications for channel 

characterization. Comparison of conductance values, using identical recording solutions 

for a particular channel, would help determine the similarity of the channels in other 

systems. However, based on the number of recording formulations investigated for this 

study, adoption of reported formulations may not result in compatibility. 

4.4.3.4 Channel blockers 

Channels can also be characterized by their sensitivity to specific agents. One such 

chemical, TEA+ has been identified as a K+ ion channel blocker. It can block channels 

when applied externally as well as internally (Hille, 1984). Another blocker, barium 

(Ba2+), blocks K+ channels when applied externally (Hurst et al., 1995; Armstrong et al.. 

1982). In order to monitor the effects of these blockers on channel activity. an applied 

voltage of +80 m V was used since it always evoked discernible channel openings in E. 

aulicae pro top lasts. The concentrations of the blockers used in the solutions, 5 mM of 

Ba2+ and 10 mM of TEA+ , have been used in Sapro/egnia studies (Lew et al., 1990). 

Since the E. au/icae protoplasts remain attached to pipettes when they are removed for 

replacement, recordings from a cell before and after application of a blocker were not 
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possible. All of the recordings using blockers had high levels of baseline drift in the first 

1-2 seconds of recording. This made use ofthe Fetchan event detection system unsuitable 

for use. Manual baseline adjustments in the non-linear drifting regions were difficult to 

control and believed to result in inaccurate data. Therefore, numerical summation of the 

effects of blockers was not possible. This left visual assessment of channel activity as the 

only means of determining the effect of the blockers on channel activity. Use ofBa2+ and 

TEA+ caused major reductions in the activity. This consistent, marked, reduction suggests 

that the major depolarization-gated channel activity is involved inK+ transport. 

The effects of Ba2+ and TEA+ on channel activity are consistent with those found 

by Lew et al. (1990) on K+ channels. When these two blockers were used in identifying 

channels in the algal cells no activity was noted. Depolarization-activated channels of S. 

cerevisiae have been blocked by using Ba2+ and TEA+ (Gustin et al., 1986). 

With the identification of the protoplast channels as K+, based on blocking agents, 

further confirmation was required. Although a large selection of pharmacological agents 

have been identified as K+ channel blockers, their behaviour may vary with different 

systems (Swandulla and Chow, 1992). Therefore, another approach for corrfmnation of 

channel identity was sought. 

4.4.3.5 Effect of elevated fC+ levels on conductance 

Increasing extracellular K+ concentration has been associated with increasing 

inward K+ current (V onbeckerath et al., 1996) resulting in higher conductance levels. 

The amplitude of the current is affected by the ion gradient. Since membrane 

depolarization of E. aulicae protoplasts show outward ion movement, use of higher levels 
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of extracellular K+ should diminish the current amplitude if the channels are indeed K+. 

This would result in a lowered conductance level with higher K+ concentration in the 

extracellular solutions. The data collected support the K+ classification of the channel. 

Higher levels of external K+ caused a drastic reduction in channel conductance. With 5 

mM K+ the conductance was 31 pS. The I-V slope was reduced to 10.6 pS and -20.1 pS 

with K+ concentrations of60 m.M and 140 mM respectively. This indicates a sensitivity 

to K+, and, serves as further evidence of the identification of the major£. aulicae 

channels asK+. However, the results at higher K+ levels are based on one recording at 

each voltage. Further data collection with recording solutions of 60 and 140 mM K+ is 

required to confirm the preliminary results obtained. 

4.4.4 Suggested roles of identified channels 

Outward-rectifying, depolarization-activated K+ channels. similar to those 

identified in E. aulicae have been found in the plasma membrane of the yeast S. 

cerevisiae (Gustin et al., 1986; Berti et al., 1993). Suggested roles for the existence of 

these channels are maintenance of membrane potential, osmoregulation and charge 

balancing during transport. 

The role of voltage-dependent channels in the maintenance of membrane potential 

has been suggested by Gustin et al. (1986). Fungi have an A TP-H+ pump in their plasma 

membrane (Griffin, 1994 ). It is believed that this pump, in addition to ion channel 

openings, functions in the regulation of cell membrane potential. 

In order for E. aulicae protoplasts to survive osmoticum ranging from 0 to 550 

mOsm (Chapter 2) a transport mechanism must be involved. K+ channels, classified as 
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stretch-activated, have been associated with regulating cell volume (Sarkadi and Parker, 

1991 ). Osmotic stress in yeast caused by the addition ofNaCl to the medium causes a 

significant drop in the cytoplasmic K+ level, an increase in Na+ levels and an increase in 

glycerol production (Sunder et al., 1996). The total cationic level in the cytoplasm of the 

yeast was not significantly affected by the extracellular addition ofNaCl. This suggests 

that the cytoplasmic charge remained unchanged, and, that the expulsion ofK+ was 

involved in charge balancing to compensate for intake ofNa+. Regulatory volume 

decrease (RVD) in kidney cells is also associated with cellular K+ loss (Roy and 

Banderali, 1994). Membrane hyperpolarization followed by depolarization occurs during 

R VD in these cells. If a similar change in membrane potential occurs in E. aulicae during 

osmotic stress, the depolarization may activate the K+ channels present. 

4.5 Summary 

Outward-rectifying, depolarization-activated K+ channels have been identified in 

E. au/icae protoplasts. The current-voltage relationship of these channels shows a 

conductance of 30.1 pS during 'cell-attached' patch clamp recording using a pipette 

solution of 5 mM K+. Channel characterization was based on the effects of channel 

blockers. Activity was sharply reduced with the addition of K+ -specific channel blockers, 

Ba2+ and TEA+. Membrane conductance was sensitive to extracellularly-applied elevated 

levels of K+. Suggested roles for these channels include maintenance of membrane 

potential, charge balancing and osmotic regulation. 
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Figs. 4.1-4.3: Single channel recordings in cell attached configuration during a 5 second 

ramp from hyperpolarizing i 00 m V to depolarizing I 00 m V. The figures are from 

recordings from the same cell over a period of 45 seconds. Fig. 4.1 shows activity 

associated with the negative voltages, i.e., hyperpolarization sensitive. 
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Fig. 4.2 : Single channel recording in cell attached configuration showing ramp voltage 

activity in the episode following Fig. 4.1. Very little activity is present over the-

100 mV to +100 mV range. 
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Fig. 4.3 : Single channel recording in cell attached configuration showing ramp voltage 

recording of the episode following Figs. 4.1 and 4.2. Channel activity at the 

positive voltages is evident .. 
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Figs. 4.4: Single channel recordings in cell attached configuration Hyperpolarization

activated currents begin during episode 2 and carry over through to the middle of 

episode 8. Activity in episode I and beyond episode 8 is not easily discernible 

from background noise. 
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Fig. 4.5: Single channel recordings in cell attached configuration with membrane 

hyperpolarization resulting in sporadic activity. This series of episodes shows 

limited activity in the first and fourth episode with no discernible activity by 

episode 7. The unlevel baseline in episode 1 0 makes the identification of channel 

openings difficult. 
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Fig. 4.6: Single channel recordings in cell attached configuration showing evidence of 

depolarized voltage-activated channels in E. au/icae protoplasts. Outward current 

is discernible in voltages ranging from +60 to + 1 00 m V. 
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Fig. 4. 7a: Single channel recording in cell attached configuration during membrane 

depolarization. Multiple current channel activity is evident in voltage-activated 

channel openings. This trace, resulting from membrane depolarization at +I 00 

m V, shows amplitude values of some of the channel openings. 
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Fig. 4. 7b: Current amplitude histogram of all I 0 episodes form which Fig. 4. 7a is one. 

Histogram was generated using pClamp pStat program from Fetchan Demohist 

idealized events list of single channel recordings from a membrane depolarization 

at+IOO mV. 
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Fig. 4.8: Current amplitude histogram generated by pClamp pStat program from Fetchan 

Demohist idealized events list of single channel recordings from a membrane 

depolarized cell. The solid line represents a pStat generated Gaussian equation tit 

to the data. (A residuals plot for the line of fit and data is given in Fig. 4.9.) 

128 



18i8 Euents 
183 Bins 
5 rtldiu 

Y1=1~.Z4 
vt=i.lm 
f1=1.28 

40 

25 

15 
Level 1 uplt 
Histograa 

5 

8 2.1 i .Z 6.3 8.i 
Alp litude (JJ') 

129 



Fig. 4.9: The residuals plot of the theoretical Gaussian fit and the actual data shown in 

Fig. 4.8. The absence of a regular banding pattern about the x axis suggests a poor 

fit. 
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Fig. 4.10: Current amplitude histogram generated by pClamp pStat program from Fetchan 

Demohist idealized events list of single channel recordings from a membrane 

depolarized cell. Data used to generate this histogram were used to calculate the 

arithmetic mean using the pStat software program (See Table 4.4.) 
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Fig. 4.11: Single channel recording in cell attached configuration during membrane 

depolarization. Representative recordings at +60, +80 and +100 mV. 
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Fig. 4.12: Amplitude histograms of the recordings represented in Fig. 4.11 and their mean 

amplitude values. The current amplitude values were determined using pClamp's 

F etc han Demohist program and validation of channel openings by visual 

inspection. The bin size is 0.1 pA. The weighted mean formula (Eqn. 4.1) was 

used in calculating the mean values. 
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Fig. 4.13: Current-voltage relationship of E. aulicae protoplasts with a conductance of 31 

pS. Each point is the mean of 3 to 6 recordings. The error bars indicate the 

standard deviation. Linear regression was used to determine the straight line fit. 
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Fig. 4.14: Single channel recordings in cell attached configuration during membrane 

depolarization at +80 m V with no blockers present. The 5 traces are from different 

cells. They are from the sth episode of a 10 episode run and are representative of 

the activity present. 
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Fig. 4.15: Single channel recording in cell attached configuration during membrane 

depolarization. Representative channel activity in +80 m V with 5 mM Ba2+ 

present in the pipette solution. Each trace is from a different cell. 
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Fig. 4.16: Single channel recordings in cell attached configuration during membrane 

depolarization. Representative channel activity in +80 m V with l 0 mM TEA+ 

present in the pipette solution. The two recordings are from different cells. 
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Fig.4.17: The effect of K+ concentration on the current-amplitude relationship. The 

conductance is 31 pS with 5 mM K+, 10.6 pS with 60 mM K+ and -20.1 pS with 

140 mM K+. Each value in the 60 and 140 mM graphs represent data from one 

recording. The 5 mM data points are the mean of 3 to 6 recordings. The K+ levels 

stated were present in both bath and pipette solution. 
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ChapterS 

Conclusions and Future Research 

5.1 Summary and Discussion of Findings 

The effects on Entomophaga species of changes in the physical parameters teste~ 

pH and osmolality, showed broad range tolerance. E. maimaiga showed no significant 

difference in growth in 350 mOsm medium ranging in pH from 5.8 to 7.1. At a pH level 

of 5.5 growth was adversely affected. No difference in growth was found in pH 6.2 media 

ranging in osmolality from 250 to 400 mOsm. Further investigation of osmotic tolerance 

showed that E. maimaiga and E. aulicae protoplasts are capable of surviving one hour 

treatments in solutions ranging in osmolality from 0 to 550 mOsm. 

This study into the effects of pH and osmolality was undertaken to identify media 

parameters suitable for E. maimaiga protoplast growth. The results suggest that a medium 

with an osmolality of 350 mOsm and a pH range from 5.8 to 7.1 is acceptable for growth. 

Also, a medium of pH 6.2 and an osmolality range of250 to 400 mOsm is acceptable. 

The medium developed for mass fermentation of£. aulicae (Nolan. 1993) has a pH of 

6.2 and an osmolality of 349 mOsm. Based on these two physical parameters, the Nolan 

medium should sustain£. maimaiga protoplast growth. Early studies with the Nolan 

formulation support this (Murrin and Houston, unpublished results); E.maimaiga 

protoplasts did grow and produce stable hyphal bodies. However, the lag phase of E. 

maimaiga growth was several days. Further adjustments in the medium formulation may 

be required to reduce the lag period. A reduction in production time would be beneficial 

for industrial mass production of hypha! bodies. Knowledge of the pH and osmotic 
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tolerance of the protoplasts, documented in this thesis, may be of assistance when 

modifying the fennenter formula. 

The ability of both E. aulicae and £. maimaiga pro top lasts to survive solutions 

ranging from distilled water to an osmolality of 550 mOsm suggests that these cells are 

very capable of regulating water uptake. The mechanism by which this occurs in these 

wall-free protoplasts is unclear and warrants further investigation. Since osmoregulation 

involves ion transport, one way to investigate the mechanics of protoplast osmotolerance 

is by using the patch clamp technique. 

The approach taken to identify parameters for £. aulicae protoplast patch 

clamping was to incorporate near-physiological conditions and attain gigaseal 

membrane/pipette resistance. The developed protocol involves the following conditions: 

a) 'cell-attached' recording configuration; b) a pipette that bas been heat polished, 

silicone-coated and has a fmal size that imparts 20 Megan of resistance; c) a pipette 

solution consisting of 140 mM NaCl, 5 mM KCl, 2 rnM CaCI2, 2.4 rru\4 MgCl2•6H20, 

10 mM MES, 3.8 mM glucose, 2.2 mM fructose, 29.8 mM sucrose and a final pH of 6.2; 

d) a bath solution consisting of 140 mM NaCI, 5 mM KCI, 1 mM CaCI2, 1.2 mM 

MgCI2•6H20, 10 mM MES, 3.8 mM glucose, 2.2 mM fructose, 36 mM sucrose and a 

final pH of 6.2; e) patch clamp recordings taken 30 to 90 minutes after the cells are 

introduced to the bath solution. Channel activity recorded under these conditions had low 

levels of noise, was reproducible and showed no evidence of channel run-down. 

The suggested method for data analysis of the E. aulicae protoplast multiple 

current amplitude channel recordings is composed of three parts. It uses a combination of 

commercially available computer programs, visual validation by the investigator and 
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implementation of a mathematical computation. Channel openings are detected with the 

pCLAMP Fetchan program. If the resultant current amplitudes do not reflect values 

discernible by visual inspectio~ the Fetchan parameters are adjusted and the program re

initiated. Mean amplitude values are determined by calculating their weighted mean using 

an established formula (Sakal and Rohlf, 1995). 

The identification of voltage-gated K+ channels in E. aulicae protoplasts was 

based on the use of two K+ channel blockers, TEA+ and Ba2+. Their presence caused 

major reductions in channel activity. Further evidence of the K+ classification of these 

channels is based on the effect of elevated K+ levels on membrane conductance. With 5 

mM K+ the conductance was 31 pS. This value changed to 10.6 and -20.1 pS with K+ 

levels of60 and 140 mM respectively. 

The role of these voltage-activated channels in £ . aulicae protoplasts is unclear. 

They may be involved in the maintenance of membrane potential (Gustin et al., 1986). 

They could also be involved in osmotic regulation by the fungus. Swelling-activated K+ 

channels have been closely associated with calcium-activated channels (Sarkadi and 

Parker, 1991 ). The latter have been found in the oomycete Saprolegnia (Garrill et al .. 

l992a and l992b ). Stretch-activated K+ channels have been identified with cell volume 

regulation (Sarkadi and Parker, 1991 ). Membrane depolarization and K+ eftlux occurs 

during regulatory volume decrease in kidney cells (Roy and Banderali, 1994). The K+ 

channels found in£. aulicae may also be involved in charge balance. Cells exposed to 

high levels ofNaCllower their K+ content while Na+ uptake occurs (Sunder et al. , 1996). 

Since Entomophaga protoplasts are capable of surviving osmolalities ranging 

from 0 to 550 mOsm a mechanism for ion transport must exist. Further investigation is 
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required to determine the role of the identified channels. 

5.2 Future Research 

The conductance values of the 60 mM and 140 mM K+ solutions are based on a 

small sample size. In order to confirm the effects of elevated K+ levels, future work 

should involve the repetition of these experiments and a re-calculation of the conductance 

values. 

The cytoskeleton has been shown to play a direct role in ion channel activity. The 

use of cytochalasin D (CD), an inhibitor of actin polymerization, affects open channel 

characteristics of a sodium ion channel in mammalian heart cells (Undrovinas et al .• 

1995). 'Inside-out' patch clamp recordings have been shown to affect ion channel 

behaviour as well. Mechanical disruption of the cytoskeleton during patch excision and/or 

lack of cytoskeletal cytoplasmic requirements may account for this (Undrovinas et al .. 

1995). Some ion channels are not affected by patch excision suggesting that they are 

unaffected by cytoskeletal-channel interactions (Duszyk et al., 1995). 

In order to further characterize the K+ channels of E. au/icae. the role of 

the cytoskeleton should be investigated. Patch excision experiments are expected to be 

difficult to attain with the protoplasts due to their inability to firmly adhere to the bottom 

of a recording dish. However, cell attached recording, identified as the appropriate 

recording configuration for£. aulicae protoplasts (see Chapter 3), can be used for 

investigating the effect of actin on channel activity. Delivery of CD to the cytoplasm is 

attainable by dissolving it in dimethyl sulfoxide (DMSO) and adding it to the pipette and 

bath recording solutions. The information gained would help in determining the role the 
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cytoskeleton plays in the behaviour of the ion channels found in£. au/icae. 

With the protocols developed for E. au/icae protoplast patch clamping and data 

analysis. the question of osmoregulation can be addressed. K+ transport has been shown 

to be affected when changes in cell volume occur (Delpire and Gullans, 1994; Sarkadi and 

Parker, 1991 ). Researchers interested in fungal tip growth have investigated stretch

activated channels (Lew et al., 1992; Levina et al., 1994 and 1995). This requires 

monitoring the degree of negative pressure delivered in the pipette to cause stretching of 

the membrane. Although this approach is useful, it is restricted to investigating only 

increases in cell volume. It would not be useful in cell shrinkage studies. E. au/icae 

protoplasts are capable of surviving solutions having an osmolality level of at least 550 

mOsm. Based on other cell systems (Hoffinann, 1992}, the potential exists that protoplast 

cell shrinkage will occur at some level of osmolality. Therefore, experimentation 

accommodating cell volume decrease is of interest. [t is proposed that the effect of 

osmolality on ion channel activity be investigated by adjusting the osmolality of the 

pipette solutions. It is suggested that the formulation of the bath solution, having an 

osmolality of 349 mOsm, remain the same as identified in section 5.1. This would allow 

the investigator to record the effect of different osmolalities on channel activity 

immediately after a patch of membrane is exposed to the pipette-delivered test osmolality 

solution. 

Information on the effect of osmolality on cell volume would be useful in 

investigating the mechanism of protoplast osmoregulation. The volume of spherical cells 

can easily be determined using a microscope with digital video imaging equipment and 

software (Delpire and Gullans, 1994 ). The radius of the cell can be determined and the 
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volume calculated using the equation V = 413 p ,3 where Vis volume and r is radius. 

However since. under normal physiological conditions. E. au/icae protoplasts are spindle

shaped cells with tapered extensions accurate volume measurements using the above

mentioned technique is not possible (Lamb and Murrin, unpublished results). Volumes of 

irregular-shaped cells can be determined by flow cytometry. The resistance cells impart 

when passing through an orifice is proportional to their volume. The compatibility of£. 

aulicae protoplasts to volume measurements using this type of equipment needs to be 

investigated. If cell volumes can be detennined. then the effects of osmolality on 

protoplast cell volume should be determined by measuring their volume in solutions of 

different osmolalities. Cells subjected to low osmolalities swell and then decrease their 

volume (Hoffinann. 1992). It would be of interest to monitor protoplast volume changes 

over time to document their behaviour at different osmolalities. 

The osmotic tolerance tests of E. maimaiga and E. aulicae used cell morphology 

to assess the effects of osmolality (Chapter 2). At low osmolalities all of the cells were 

round. This indicates microtubule depolymerization. Documentation of the cytoskeletal 

changes in protoplasts due to changes in osmolalities would supply further information on 

protoplast osmoregulation. This could be attained by employing fluorescent microscopy 

techniques using actin and microtubule-specific fluorescent probes. 

The effects of osmolality on ion channel behaviour, cell volume and the 

cytoskeleton would aid in determining the mechanisms used in E. aulicae protoplast 

osmoregulation. The approaches outlined above are suggested for future research in these 

areas. 
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Acquisition 

Ramp5S -100 to +lOOmV 
Data Acquisition Parameters 

1 Number of trials to perform (-1 for continuous) 
Number of runs/trial (runs are averaged) 
10 Number of episodes/run (if no conditioning pulses) 
0 Perform interepisode data write: O·No, 1·Yes 
1 Starting episode number (normally 1) 
4 Number of 512-sample segments/episode (1..4) 
1 Number of channels to sample (1 . .4) 
0 Trigger mode: O·External, 2·Space bar, 3·Ext 
1 0 Time between start of episodes ( s) (0 for max. rate) 
2500 First clock interval (samples 1-1024) (3 Of..J.s) 

0 Second clock interval (samples 1 025-2048)(0 to use 1st clock) 
0 Delay between scope trigger and episode start (ms) 

Subtraction 
0 Number of PIN sub-pulses: O·None, -N·Add, +N·Subtract 
0 ADC channel number 
0 Subpulse holding amplitude (m V) 
0 Settling time after change of holding amplitude (ms) 
0 Time interval between sub-pulses (ms) 

Waveform on analog output channel #0 
0 Holding amplitude (m V) 
1 A Epoch type: 1·Step, 2·Ramp 
-1 00* Amplitude initial value (m V) 
0 Amplitude increment (m V) 
50 Duration initial value (samples) 
0 Duration increment (samples) 
2 B Epoch type: 1·Step, 2·Ramp 
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100* Amplitude initial value (mV) 
0 Amplitude increment (m V) 
1500 Duration initial value (samples) 
0 Duration increment (samples) 
1 C Epoch type: 1·Step, 2·Ramp 
0 Amplitude initial value (mV) 
0 Amplitude increment (mV) 
0 Duration initial value (samples) 
0 Duration increment (samples) 
1 D Epoch type: 1·Step, 2·Ramp 
0 Amplitude initial value (m V) 
0 Amplitude increment (mV) 
0 Duration initial value (samples) 
0 Duration increment (samples) 
0 [nter-episode amplitude: O·Holding, l·Last epoch amplitude 

T riggger outputs 
-10 Duration and polarity of pulse on trigger channel #1 (samples) 
1 00 Sample number at which to start pulse 
-20 Duration and polarity of pulse on trigger channel #2 (samples) 
150 Sample number at which to start pulse 
1 First episode at which trigger channels # 1 and #2 fire 
12 Last episode at which trigger channels # 1 and #2 fire 

Conditioning train 
0 Number of pulses in train (0 for none) 
0 Pre-conditioning pulse duration (ms) 
0 Pre-conditioning pulse amplitude (mV) 
0 Conditioning pulse duration (ms) 
0 Conditioning pulse amplitude (m V) 
0 Post-conditioning train duration (ms) 
0 Post-conditioning train amplitude (rn V) 

Display data 
1 ADC ch.#l5: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#l4: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#l3: amplification factor (not 0) 
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0 
1 
0 
0 

0 
0 
0 
1 

pA 
mV 
mV 
mV 
mV 

0 
0 
0 
0 
0 
0 

-50 
-0.1 
10 
10 
3 
1 
100000 

display offset: fraction of full screen 
ADC ch.#12: amplification factor (not 0) 

display offset: fraction of full screen 
Segment number to display (0 .. 4) (0 for all) 

Skip factor: plot every Nth point (1..4) 
Display averaged data:O·After each episode,N·After each N runs 
Autoerase: O·No, 1·Yes 
Graph Style: O·Points. 1·Lines 

Units of measure 
ADC ch. #15 
ADC ch. #14 
ADC ch. #13 
ADC ch. #12 
DAC ch. #0 (command) 

Peak detection 
Search mode: O·None, l·A. 2·8, 3·C, 4·D, 5·Ail, 6·Use sample# 
Optional sample number to measure, negative for negative peaks 
Channel number to search 
Number of samples averaged in search (1-20) (0 for default 5) 
Baseline: 0· Average first 24 samples, 1 ·Average interval A 
Display: O·Screen, l·File & screen 

Hardware configuration 
DAC ch. #0: gain from DAC to cell (m V @ cell/ V @ DAC) 

ADC ch. #15: gain from cell to ADC (V@ ADC/ pA@ cell) 
ADC range, ± V 
DAC range, ±V 
Autosample Axopatch1 :O·Manual, 1· Yes,2· Yes(inverted),3·Disabled 

Gain multiplier 
Filter cutoff frequency 

• values given for a -100 to +1OOm V ramp. 
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Singles 
Data Acquisition Parameters 

Acquisition 
1 Number of trials to perform ( -1 for continuous) l 
Number of runs/trial (runs are averaged) 
10 Number of episodes/run (if no conditioning pulses) 
0 Perform interepisode data write: O·No, l ·Yes 
I Starting episode number (normally 1) 
4 Number of 512-sample segments/episode ( 1..4) 
1 Number of channels to sample (1..4) 
0 Trigger mode: O·Extemal, 2·Space bar, 3·Ext 
1 0 Time between start of episodes ( s) (0 for max. rate) 
2500 First clock interval (samples 1-1024) (l O~s) 

0 Second clock interval (samples 1025-2048)(0 to use 1st clock) 
0 Delay between scope trigger and episode start (ms) 

Subtraction 
0 Number of PIN sub-pulses: O·None, -N·Add, +N·Subtract 
0 ADC channel number 
0 Subpulse holding amplitude (m V) 
0 Settling time after change of holding amplitude (ms) 
0 Time interval between sub-pulses (ms) 

Waveform on analog output channel #0 
0 Holding amplitude (m V) 

A Epoch type: l·Step, 2·Ramp 
80** Amplitude initial value (mV) 
0 Amplitude increment (mV) 
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2000 Duration initial value (samples) 
0 Duration increment (samples) 
1 B Epoch type: 1·Step, 2·Ramp 
0 Amplitude initial value (mV) 
0 Amplitude increment (mV) 
0 Duration initial value (samples) 
0 Duration increment (samples) 
l C Epoch type: 1·Step, 2·Ramp 
0 Amplitude initial value (mV) 
0 Amplitude increment ( m V) 
0 Duration initial value (samples) 
0 Duration increment (samples) 
1 D Epoch type: 1·Step, 2·Ramp 
0 Amplitude initial value (m V) 
0 Amplitude increment (m V) 
0 Duration initial value (samples) 
0 Duration increment (samples) 
0 Inter-episode amplitude: O·Holding, l·Last epoch amplitude 

Triggger outputs 
~ l 0 Duration and polarity of pulse on trigger channel # 1 (samples) 
1 00 Sample number at which to start pulse 
~20 Duration and polarity of pulse on trigger channel #2 (samples) 
150 Sample number at which to start pulse 
1 First episode at which trigger channels #1 and #2 fire 
12 Last episode at which trigger channels # 1 and #2 fire 

Conditioning train 
0 Number of pulses in train (0 for none) 
0 Pre-conditioning pulse duration (ms) 
0 Pre-conditioning pulse amplitude (m V) 
0 Conditioning pulse duration (ms) 
0 Conditioning pulse amplitude (m V) 
0 Post-conditioning train duration (ms) 
0 Post~conditioning train amplitude (m V) 

Display data 
1 ADC ch.#IS: amplification factor (not 0) 
0 display offset: fraction of full screen 
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1 
0 
1 
0 
1 
0 
0 

0 
0 
0 
0 

pA 
mV 
mV 
mV 
mV 

0 
0 
0 
0 
0 
0 

-50 
-0.1 
10 
10 
3 
1 
100000 

ADC ch.#14: amplification factor (not 0) 
display offset: fraction of full screen 

ADC ch.#13: amplification factor (not 0) 
display offset: fraction of full screen 

ADC ch.#12: amplification factor (not 0) 
display offset: fraction of full screen 

Segment number to display (0 . .4) (0 for all) 

Skip factor: plot every Nth point (1..4) 
Display averaged data:O·After each episode,N·After each N runs 
Autoerase: O·No, 1·Yes 
Graph Style: O·Points, 1·Lines 

Units of measure 
ADC ch. #15 
ADC ch. #14 
ADC ch. #13 
ADC ch. #12 
DAC ch. #0 (command) 

Peak detection 
Search mode: O·None, 1·A, 2·B, 3·C, 4·D, 5·All, 6·Use sample# 
Optional sample number to measure, negative for negative peaks 
Channel number to search 
Number of samples averaged in search (1-20) (0 for default 5) 
Baseline: O·Average first 24 samples, 1·Average interval A 
Display: O·Screen, 1·File & screen 

Hardware configuration 
DAC ch. #0: gain from DAC to cell (m V @ cell/ V @ DAC) 

ADC ch. #15: gain from cell to ADC (V@ ADCI pA@ cell) 
ADC range, ± V 
DAC range, ±V 
Autosample Axopatch 1 :0· Manual, 1· Y es,2 · Y es(inverted),3 ·Disabled 

Gain multiplier 
Filter cutoff frequency 

* * Value changed to reflect desired voltage; example given for +80m V 
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Set-Up 
Data Acquisition Parameters 

Acquisition 
-1 Number oftrials to perform (-1 for continuous) 
1 Number of runs/trial (runs are averaged) 
1 Number of episodes/run (if no conditioning pulses) 
0 Perform interepisode data write: O·No, l·Yes 
1 Starting episode number (normally 1) 
2 Number of 512-sample segments/episode (1 .. 4) 
1 Number of channels to sample (1..4) 
0 Trigger mode: O·Extemal, 2·Space bar, 3·Ext 
1 Time between start of episodes (s) (0 for max. rate) 
20 First clock interval (samples 1-1 024) e 0J.1S) 
0 Second clock interval (samples 1025-2048)(0 to use 1st clock) 
0 Delay between scope trigger and episode start (ms) 

Subtraction 
0 Number of PIN sub-pulses: O·None, -N·Add, +N·Subtract 
0 ADC channel number 
0 Subpulse holding amplitude (m V) 
0 Settling time after change of holding amplitude (ms) 
0 Time interval between sub-pulses (ms) 

Waveform on analog output channel #0 
0 Holding amplitude (m V) 
1 A Epoch type: l·Step, 2·Ramp 
0 Amplitude initial value (m V) 
0 Amplitude increment (m V) 
250 Duration initial value (samples) 
0 Duration increment (samples) 
1 B Epoch type: l·Step, 2·Ramp 
10 Amplitude initial value (m V) 
0 Amplitude increment (m V) 
500 Duration initial value (samples) 
0 Duration increment (samples) 
1 C Epoch type: l·Step, 2·Ramp 
0 Amplitude initial value (m V) 
0 Amplitude increment (m V) 
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200 Duration initial value (samples) 
0 Duration increment (samples) 
1 D Epoch type: l·Step, 2·Ramp 
0 Amplitude initial value (m V) 
0 Amplitude increment (mV) 
50 Duration initial value (samples) 
0 Duration increment (samples) 
0 Inter-episode amplitude: 0· Holding, 1 ·Last epoch amplitude 

Triggger outputs 
0 Duration and polarity of pulse on trigger channel #1 (samples) 
1 00 Sample number at which to start pulse 
0 Duration and polarity of pulse on trigger channel #2 (samples) 
150 Sample number at which to start pulse 
1 First episode at which trigger channels #1 and #2 fire 
12 Last episode at which trigger channels # 1 and #2 fire 

Conditioning train 
0 Number of pulses in train (0 for none) 
0 Pre-conditioning pulse duration (ms) 
0 Pre-conditioning pulse amplitude (mV) 
0 Conditioning pulse duration (ms) 
0 Conditioning pulse amplitude (m V) 
0 Post-conditioning train duration (ms) 
0 Post-conditioning train amplitude (m V) 

Display data 
1 ADC ch.#15: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#14: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#13: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#12: amplification factor (not 0) 
0 display offset: fraction of full screen 
0 Segment number to display (0 .. 4) (0 for all) 
1 Skip factor: plot every Nth point (1..4) 
0 Display averaged data:O _After each episode,N _After each N runs 
0 Autoerase: O·No, 1·Yes 
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l Graph Style: O·Points. !·Lines 

Units of measure 
pA ADC ch. #15 
mV ADC ch. #14 
mV ADC ch. #13 
mV ADC ch. #12 
m V DAC ch. #0 (command) 

Peak detection 
0 Search mode: O·None, 1·A, 2·8, 3·C, 4·0, 5·All, 6·Use sample# 
0 Optional sample number to measure, negative for negative peaks 
0 Channel number to search 
0 Number of samples averaged in search (1-20) (0 for default 5) 
0 Baseline: 0· Average first 24 samples, 1 ·Average interval A 
0 Display: O·Screen, l·File & screen 

Hardware configuration 
-50 DAC ch. #0: gain from DAC to cell (m V @ cell/ V @ DAC) 
.001 ADC ch. #15: gain from cell to ADC (V@ ADCI pA@ cell) 
10 ADC range, ± V 
10 DAC range, ±V 
0 Autosample Axopatch 1 :0· Manual, 1 · Yes,2 · Y es(inverted),3 ·Disabled 
1 Gain multiplier 
100000 Filter cutoff frequency 
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KlOOMSD 
Data Acquisition Parameters 

Acquisition 
1 Number of trials to perform (-1 for continuous) 
1 Number of runs/trial (runs are averaged) 
13 Number of episodes/run (if no conditioning pulses) 
0 Perform interepisode data write: O·No, l·Yes 
1 Starting episode number (normally 1) 
2 Number of512-sample segments/episode (1..4) 
1 Number of channels to sample ( 1 .. 4) 
0 Trigger mode: O·Extemal~ 2·Space bar, 3·Ext 
10 Time between start of episodes ( s) (0 for max. rate) 
200 First clock interval (samples l-1024) (l OflS) 
0 Second clock interval (samples 1025-2048)(0 to use 1st 

clock) 
0 Delay between scope trigger and episode start (ms) 

Subtraction 
0 Number of PIN sub-pulses: O·None. -N·Add, +N·Subtract 
15 ADC channel number 
-80 Subpulse holding amplitude (m V) 
10 Settling time after change of holding amplitude (ms) 
l 0 Time interval between sub-pulses ( ms) 

Waveform on analog output channel #0 
-80 Holding amplitude (m V) 
l A Epoch type: l·Step, 2·Ramp 
-80 Amplitude initial value (mV) 
0 Amplitude increment (mV) 
250 Duration initial value (samples) 
0 Duration increment (samples) 
I B Epoch type: l·Step, 2·Ramp 
-70 Amplitude initial value (m V) 
10 Amplitude increment (mV) 
500 Duration initial value (samples) 
0 Duration increment (samples) 
I C Epoch type: l·Step, 2·Ramp 
-80 Amplitude initial value (m V) 
0 Amplitude increment (mV) 
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200 Duration initial value (samples) 
0 Duration increment (samples) 
1 D Epoch type: l·Step, 2·Ramp 
-80 Amplitude initial value (mV) 
0 Amplitude incremc!nt (m V) 
50 Duration initial value (samples) 
0 Duration increment (samples) 
-80 Inter-episode amplitude: O·Holding, l·Last epoch amplitude 

T riggger outputs 
1000 Duration and polarity of pulse on trigger channel #l (samples) 
l Sample number at which to start pulse 
0 Duration and polarity of pulse on trigger channel #2 (samples) 
0 Sample number at which to start pulse 
1 First episode at which trigger channels #1 and #2 fire 
13 Last episode at which trigger channels #I and #2 fire 

Conditioning train 
0 Number of pulses in train (0 for none) 
0 Pre-conditioning pulse duration (ms) 
0 Pre-conditioning pulse amplitude (mV) 
0 Conditioning pulse duration (ms) 
0 Conditioning pulse amplirude (m V) 
0 Post-conditioning train duration (ms) 
0 Post-conditioning train amplitude (m V) 

Display data 
l ADC ch.#IS: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#l4: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#l3: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#12: amplification factor (not 0) 
0 display offset: fraction of full screen 
0 Segment number to display (0 . .4) (0 for all) 
l Skip factor: plot every Nth point (1..4) 
0 Display averaged data:O _After each episode,N _After each N runs 
0 Autoerase: O·No, l·Yes 
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Graph Style: O·Points. l·Lines 

Units of measure 
ADC ch. #15 
ADC ch. #14 
ADC ch. #13 
ADC ch. #12 
DAC ch. #0 (command) 

Peak detection 
Search mode: O·None, l·A. 2·8, 3·C, 4·0, 5·Ail, 6·Use sample# 
Optional sample number to measure, negative for negative peaks 
Channel number to search 
Number of samples averaged in search ( 1-20) (0 for default 5) 
Baseline: 0· Average first 24 samples, 1 ·Average interval A 
Display: O·Screen, l ·File & screen 

Hardwareconfi~tion 
DAC ch. #0: gain from DAC to cell (m V @ cell/ V @ DAC) 

ADC ch. # 15: gain from cell to ADC (V @ ADC/ pA @ cell) 
ADC ch. #14: gain from cell to ADC (V@ ADC/ pA@ cell) 
ADC ch. #13: gain from cell to ADC (V@ ADC/ pA@ cell) 
ADC ch. # 12: gain from cell to ADC (V @ ADC/ pA @ cell) 

ADC range, ± V 
DAC range, ±V 
Autosample Axopatch 1 :0· Manual, 1· Y es,2 · Y es(inverted),3 ·Disabled 

Gain multiplier 
Filter cutoff frequency 
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KlOOMSH 
Data Acquisition Parameters 

Acquisition 
1 Number of trials to perform (-1 for continuous) 
1 Number of runs/trial (runs are averaged) 
10 Number of episodes/run (if no conditioning pulses) 
0 Perform interepisode data write: O·No, 1· Yes 
1 Starting episode number (normally 1) 
2 Number of512-sample segments/episode (1 . .4) 
1 Number of channels to sample (1 . .4) 
0 Trigger mode: O·Extemal, 2·Space bar, 3·Ext 
10 Time between start of episodes ( s) (0 for max. rate) 
200 First clock interval (samples 1-1024) e 0J.1S) 
0 Second clock interval (samples 1025-2048)(0 to use 1st 

clock) 
0 Delay between scope trigger and episode start (ms) 

Subtraction 
0 Number of PIN sub-pulses: O·None, -N·Add, +N·Subtract 
15 ADC channel number 
-80 Subpulse holding amplitude (m V) 
10 Settling time after change of holding amplitude (ms) 
10 Time interval between sub-pulses (ms) 

Waveform on analog output channel #0 
-60 Holding amplitude (m V) 
1 A Epoch type: l·Step, 2·Ramp 
-60 Amplitude initial value (m V) 
0 Amplitude increment (mV) 
250 Duration initial value (samples) 
0 Duration increment (samples) 
1 B Epoch type: l·Step, 2·Ramp 
-70 Amplitude initial value (m V) 
-10 Amplitude increment (mV) 
500 Duration initial value (samples) 
0 Duration increment (samples) 
1 C Epoch type: 1·Step, 2·Ramp 
-60 Amplitude initial value (m V) 
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0 Amplitude increment (mV) 
200 Duration initial value (samples) 
0 Duration increment (samples) 
I D Epoch type: l·Step, 2·Ramp 
-60 Amplitude initial value (mV) 
0 Amplitude increment (mV) 
50 Duration initial value (samples) 
0 Duration increment (samples) 
-60 [nter-episode amplitude: O·Holding, !·Last epoch amplitude 

Triggger outputs 
1000 Duration and polarity of pulse on trigger channel #1 (samples) 
1 Sample number at which to start pulse 
1000 Duration and polarity of pulse on trigger channel #2 (samples) 
1 Sample number at which to start pulse 
1 First episode at which trigger channels # 1 and #2 fire 
13 Last episode at which trigger channels # 1 and #2 fire 

Conditioning train 
0 Number of pulses in train (0 for none) 
0 Pre-conditioning pulse duration (ms) 
0 Pre-conditioning pulse amplitude (m V) 
0 Conditioning pulse duration (ms) 
0 Conditioning pulse amplitude (mV) 
0 Post-conditioning train duration (ms) 
0 Post-conditioning train amplitude (m V) 

Display data 
1 ADC ch.#l5: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#14: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#13: amplification factor (not 0) 
0 display offset: fraction of full screen 
1 ADC ch.#l2: amplification factor (not 0) 
0 display offset: fraction of full screen 
0 Segment number to display (0 .. 4) (0 for all) 
1 Skip factor: plot every Nth point (1..4) 
0 Display averaged data:O_After each episode,N_After each N runs 
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Autoerase: O·No, l·Yes 
Graph Style: O·Points, !-Lines 

Units of measure 
ADC ch. #15 
ADC ch. #14 
ADC ch. #13 
ADC ch. #12 
DAC ch. #0 (command) 

Peak detection 
Search mode: O·None, l·A, 2·8, 3·C, 4·D, S·All, 6·Use sample# 
Optional sample number to measure, negative for negative peaks 
Channel number to search 
Number of samples averaged in search ( 1-20) (0 for default 5) 
Baseline: O·Average first 24 samples, !·Average interval A 
Display: O·Screen., l·File & screen 

Hardware configuration 
DAC ch. #0: gain from DAC to cell (m V @cell/ V @ DAC) 
ADC ch. # 15: gain from cell to ADC (V @ ADC/ pA @ cell) 
ADC ch. #14: gain from cell to ADC (V@ ADC/ pA@ cell) 
ADC ch. #13: gain from cell to ADC (V@ ADCI pA@ cell) 
ADC ch. #12: gain from cell to ADC (V@ ADCI pA@ cell) 

ADC range, ± V 
DAC range, ± V 
Autosample Axopatch 1 :0· Manual, I· Y es.2· Yes( inverted),3 ·Disabled 
Gain multiplier 
Filter cutoff frequency 
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Appendix2 

Data Analysis Parameters 
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Demohist 
Data Analysis Parameters 

Analysis Specification 
2 Mode: O·Browse, l·Sums, 2·Events, 3·Latency, 4·Ampl Hist. 

5·Pulse Avg 
0 Begin analysis at this time (ms) or episode (Fetchex or Clampex) 
0 Digital Gaussian filter cutoff frquency (Hz); O·No filter 
1 Initial interaction level: O·Continuous, l·Single step 
0 ADC channel number to analyze (if more than one step) 

Subtraction Options 
0 Factor to multiply sum file before subtraction; O·No subtraction 
0 Number of points to use for baseline correction; O·No correction 

List-of-Events and First Latency Analysis 
0 Ignore Level changes briefer than or equal to this duration (/ s ) 
0 Update Levels with running avg: O·No, l·Baseline, 2·All 
0 Percentage contribution of new levels to running averages ( 1- 1 00%) 

First Latency Analysis 
0 Period after stimulus to ignor if s ) 
0 Latency start: O·A Epoch. l ·B, 2·C, 3·0, 4·Trigl, 5·Trig2 

Pulse Averaging Analysis 
0 Length of pulse average in ms 
0 Percentage of pulse length to retain before trigger 

Display Specification 
1 Y axis: Amount of data to read for Autoscale (ms); O·None 
4.8 Display amplification 
5.7 Offset (percent of unity-gain full scale); O·None 
1 Drawing style: O·Points, l ·Lines 
51.2 Length of display trace (ms) 
4 Number of display windows (1,2,4,8,16) 
0 Erase whole screen when screen full: O·No, l·Yes 
0 Seconds to pause at end of each screen: O·No pause 
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Hardcopy Specification 
1 Plot superimposed idealized transitions: 0· No. 1 ·Yes 
1 Plot markers for time gaps: O·No, 1· Yes 
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