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Abltraci

I n order to investigate the molecular mechanism of mesoderm inductioo by FGF

in Xenopw Laevis, I have utilized the polymerase chaio reaction (peR)-based dif

ferential display methodology (Liang and Pardee, 1992) to identity a novel transcript

whose expression level increased in Xenopw emhI)'O explants during mesoderm in

duction by fibroblast growth factor (FGF). The peR product was used to clone a

2.3--kb eDNA representing this transcript, which I have named erl. The erl eDNA

contains a single open reading frame (ORY) predicted to encode a protein of 493

araino acid residues. Northero blot analysis revealed a single 2.8-kb mRNA that was

observed predominantly during the initial cleavage and blastula stages of Xenopw

development, with little or no detected mRNA during subsequent development. In

vitro translation of erl using a rabbit reticulocyte lysate system produced a protein

with an apparent molecular mass of 14kDa. A database homology search revealed

that the predicted er1 amino acid sequence contains three regions of similarity to

the rat metastasis-associated gene mtal. FGF is known to play an important role

in both mesoderm induction and gastrulation movement dUring amphibian develop-

ment, elucidation of the function of this mtal-related FGF response gene may lead

to a better understanding of the early development of Xenopu.! Laevis.
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Chapter 1

Introduction

1.1 The Xenopus laeuiB System

Xenopw embryorii are popuJu material for developmental biological stlldies

because of their technical advantages:

1. XtnOPW egg;s are large, making micro-operative procedures such as microin·

jectiOD and microdissection relatively easy.

2. Xenopw embryos may be obtained in large numbers whieb, togeth« with lheir

large size, enable ~ough material to be extracted for biochemical analysis.

3. Their fertiliution can be carried out m mtro; thus, huge numbers of syn·

chronously developing embryos can be obt&iDed, which are available for exper.

imentation at aU development stages, from egg to tadpole.
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4. Their dewlopment is rapid-the body plan is established and tisliue-sp«i6c

gene activation occurs within twenty-four hours.

5. Explants cut from ucly embryos can continue to develop if incubated in simple

salt solutions. Thus, it is possible to test certain molecules for their effects on

differentiation by adding them into the culture medium.

6. The Xenopw oocyte and embryo have been sbown to be a good in vivo transl..

tion system which can translate injected mRNAs faithfully. Thus, by injecting

mRNAs, we can investigate the function of some genes whose products may

play an important role in regulating developmental events.

7. Xenopw embryos do not grow during deftlopment, which means that inert cell

lineage labels introduced by the experimenter do oot become diluted during

de\-elopment.

1.2 Early DevelopDlent in Xenopus lae";"

Xenopu5 oocytes are formed from a dividing stem cell population called~

oia (Wylie d aL, 1985). After oogenesis and maturatioo, they become fertilizable

eggs. These eggs ~ highly poJari2ed with a strongly pigmented animal hal! and

nearly unpigmented vegetal half. After fertilization and before first cleavage, Xeno·

pw embryos undergo cortical rotation, which initiates the dorsal-velItral axis. During

cleavage stages, the embryos undergo a series of rapid and synchronous cleavage divi·

sion, which leads the embryos to develop from one large zygotic cell to a hollow ball .

After the twelfth division, the cell division rate slows down, and zygotic transcription
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starts. This stage is referred to as the mid-blastula trusition or MDT (Newport and

Kirschner, 1982). The next phase or development is &D extensive cellular mo\'eIDeDt

and ceUular interaction proct5l!ii ealIed gastrulation. During gastrulation, the embryo

is reorganized from a hollow ball to a sphere with three distinct germ la)-ers - «to

denn, mESOderm, and endoderm - each of which (orms different tissues and organs

at later stages.

1.3 Mesoderm Induction and Mesoderm Inducing

Factors (MIF)

Before the 64-ceU stage, the Xeno~Il" embryo can be considered to consist of only

two cell types-pr06pective ectoderm in the animal hemisphere and prospective en·

dodenn in the vegetal hemisphere (Jones and Woodland, 1986). At the 128-«11 sta,;e,

the blastocoel begins to appear and separates animal pole cells (also called animal

cap) from vegetal hemisphere ceUs. When the animal cap is cut from a mid·b1.astula

stage embryo and is culturt!d in isolation in vitro, it will develop only into epKtermis.

HOYt-ever, when cultW1!d together with wgetal tissue, it will develop into a variety of

mesodermal tissues, as well as epidermis (Nieuwkoop, 1969) ( Figure 1.1 (B». One

interpretation of this result is that mesoderm formation in Xenopu.s results from an

inductive interaction, which is referred to as mesoderm induction-vegetal cdls emit

signals and induce overlying animal cells to develop into mesoderm. These signals

cannot penetrate the blastocoel and reach the "animal cap" region. Thus, altbough

both "animal cap" ceUs &lid equatorial region ceUs are capable of responding to the
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signals, only the latt6 can receive the sigDais in uivo, and as a result, they will

give rise to mesoderm; the -animal cap" ceUs do not fllC:Ieive the signaJs in vivo, aDd

therefore give rise to epidermis (Smith, 1989 k 1993; Dawid d al., 1992&) (Fipre 1.1

(A».

~
~~I M ~-«~

..I<

v o~_~nn
A: animal pole:. prospec:live ectoderm ectoderm
M:marginal ronco prospectivc mc:sodcnn V
V: VC(letal pole:. prospec:t.ivc cndodcnn

(A) (B)

Figure 1.1: Mesoderm InductioD in vno (A) and in oitro (8). (A): SigDais

released from the vegetal pole induce the overlying marpaJ zone ceUs to develop iDto

mesoderm; the sigDaIs CaD not reach the animal cap eeDs., therefore, the animal pole

oeUs win develop into ectoderm; the vegetal pole cells will develop iDto endoderm.

Tbe arrows represent the iDduciDg sigoals. (B): When the animal cap is cut from

the embryo and cultured in a salt solution in vitro, it will develop into ectodenn

only, bowever, if it is cultured together with the vegetal pole, it will develop iDto

mesodenn as well as ectoderm.
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~~
~ ~

VV:venualvctctaJ

DV:dorsaIvcgetal

VM: ventral mesoderm

OM: dorsal mesoderm

Figure 1.2: Two types of mesoderm are Induced by vegetal tiSllues Dorsal

vegetal cells induce a small equatorial region to form dorsal mesodenn, and the

ventral vegetal cells induce a large equatorial region to fonn ventral mesoderm. The

arrows represent the signals released from the vegetal cells.

Two tyPeS of mesoderm are induced in the equatorial region during blastula

stage - dorsal mesoderm and ventral mesodenn (Dale and Slack, 1987a) (Figure 1.2).

The "dorsal vegetal cwter", also calJed. "Nieuwkoop center", in the dorsal vegetal

quadrant, induces • small equatorial region (50 - 90") to fonn "dorsal mesoderm

characterized by notochord and muscle. This "don;a) mesoderm- is also called the

"organizer". The rest ohhe vegetal ceUs (also referred to as ~ntral vegetal ceUs")

induce a large equatorial region (270 - 300") to fonn "ventral mesoderm- character·

ized by mesenchyme, mesothelium and blood.

Those signals which are emitted from the vegetal cells and ha.ve the mesoderm

induction capability are termed mesoderm induction factors (MIFs). During the past
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ten years, research has been concentrated on identifying the nature of the signals

emitted from Yegtltal tissues. One important discovery is that some growth factors

ca:I mimic the vegetal tissue's function to induce mesoderm. These growth factors

belong to either FGF family (Slack et aL, 1987; Paterno et aL, 1989), or TGF-,I1

superfamily (Smith, 1987; Van den Eijnden-Van Raai j, A.J.M. et aL, 1990).

Within the TGF-,8 family, ac:tivin is the most potent mesoderm induci.Dg agent.

Activin induces both dorsal and ventral mesoderm, the former at a higher concen

tration, and the latter at a lower concentration. (Cooke, 1989; Green et al., 1992).

FGFs induce different types of mesoderm in a concentration dependent manner too,

but the resulting mesoderm types are different from those induced by activin. At

low concentration, bFGF induces "ventral mesoderm"; as concentration increases, it

induces more and more muscle, but rarely notochord or organizer (Paterno et ai.,

1989).

Ample evidence suggests that MIFs can induce mesoderm both individually and

synergistically. bFGF's capacity to induce muscle actin expression can be increased

by TGF-'ol (Kimelman and Kirchner, 1987). On the other hand, low concentrations

of bFGF can lower the concentration of activin required for muscle induction (Green

et aL, 1992). BMP-4 is a member of TGF-,8 family. Unlike activin, BMP-4 is not

capable of inducing dorsal mesoderm and it is a weak ventral mesoderm inducer

(Smith, 1993). Animal caps treated with a combination of BMP-4 and activin result

in the formation of ventral mesoderm (Dale et al., 1992; Jones et al, 1992). Over

expression of BMP-4 in the embryo enhances the fonnation of ventral mesodenn,

and overexpression of a dominant-negative BMP-4 receptor that inhibits BMP-4 ac-
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tivity in ventral blastomeres of Xenopw embryos leads to the formation of dorsal

mesoderm on the prospective ventral side (Sutuki et aL, 1994).

1.4 MIFs and Gastrulation

Besides mesoderm induction, some MIFs have other functions in normal de

velopment. H animal caps are elq)06E(1 to some MIFs, they will change their shape,

a process involving elongation and constriction. In addition, dispersed animal cap

cells treated with some MlFs are capable or spreading and migrating on fibronectin,

whereas uninduced cells are not (Howard and Smith, 1993). These movements re

semble the events of gastrulation ( Keller and Danilchik, 1988). Hence, some MIFs

may playa role in gastrulation.

1.5 MIFs and Antero-posterior Axis Specification

Several studies have implicated FGFs aDd activins in antero-posterior specifi

cation. If animal caps are treated with FGF or activin and subsequently implanted

into early blastulae, activin treated caps tend to induce heads, whereas FGF treated

caps tend to induce tails (Run i Altaba and Melton, 1989a). Xhox·3 is an homeobox

geDt~ expressed in the posterior mesoderm. It can be induced by both FOF and

a.ctivin, but induced by FOF to a higher degree (Ruiz i Albata and Melton, 1989b).

XIHboxl, a homeobox gene normally expressed in the aDterior trunk region, is preC.

erentiaJly activated by activin (Cho and De Robertis, 1990). On the other hand,
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XIHb0x6, a homeobox gene normaUy expressed in the mid and biDd-trunk region, is

preferentially activated by FGF (Cho and De Robertis, 1990). These data suggested

that FGF is the ventral-posteror mesoderm inducer and activin is the dorsal·anterior

inducer. Thus, these two types of MlFs have distinct functions in specification of

mesoderm.

1.6 The Fibroblast Growth Factor Family and their

Function in Xenopus Embryos

Up until now, we have sufficient evidence to prove th&t memhers of FGF family

and TGF-,8 superfamily can induce mesoderm in explants. However, whether they

are involved in mesoderm induction dUring normal development is not yet clear.

Though mesoderm tissues are derived from the equatorial region, it is very difficult

to use cells from this region to study mesoderm induction, since they may already

been induced before we cut them from the embryos. Thus, we use animal caps, which

do not form mesoderm during normal development, to study mesoderm induction,

keeping in mind that cells in the animal caps ma.y not be exactly the same as the

cells at the equatorial region. Furthermore, though these MIFs can mimic vegetal

tissue's function to induce animal caps to form mesoderm, they may not be the

signals produced by the vegetal tissue. Instead, MIFs may be the downstream genes

to those vegetal signals (Isaacs et aL, 1994). One approach to address these questions

is to study the molecular mechanisms of mesoderm induction. My specific interest

is to study the molecular mechanism of mesoderm induction by FGF.
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1.6.1 The FGF Family Members

Fibroblast growth factor (FCF) was originally identified from extracts of pi.

tuitary and brain by its ability to stimulate the growtb of BALB/C 3T3 fibroblasts

(Annelin, 1913; G<5podarowicz, 1974a). To date, D.iDe FGF family members have

been identified. The proteins are related by their ability to bind to heparin with hi&h
affinity, and share ~5% homology at the amino acid level.

bFGF (FGF-l) was first identified by its ability to cause the proliferation

(Gospodarowicz, 1974a) and phenotypic:: transfonnation of 3T3 cells (Gospodarow.

icz and Moran, 1974b). aFGF (FGF.2) 110'88 first identified by its ability to cause

proliferation and delayed differentiation of myoblasts u well as to stimulate endothe

lial cell proliferation (Gospodarowicz d aJ.,1975i Lemmon et aI., 1982; Maciaget aI.,

1979). The two share 00% homology and interact with the same receptor (Gospo-.

darowicz d aL, 1986). Int-2 (FOF·3) is a prolo-oooogene (Dicitscn and Peters,

1987) which was oripnally identified by virtue of its frequent proximity to integrated

proviral DNA in ca:cinomu induced by mouse mammary tumor virus (M:.'\1TV)

(Moore et aL, 1986). I.:FGF (h&t/b3; FGF-4) is a human oncogene that was is0

late<! from Kaposi's Sarcoma by its ability to transfonn NlH 3T3 cells (Delli Bovi

and Basilico, 1987&). Its protein is capable of stimulating cell proliferation (Delli

&vi et aL, 1981b). FGF·5 is a human ooc::ogene with transforming polelltial. It was

detected by the transfer of DNAs from human tumour cell lines into NIH 3T3 cells

(Zban et at., 1987). FGF·6 wu isolated by screening a mouse Co6mid library under

low stringency conditions with a human kFGF probe (Maries et aL, 1989). FGF·6

appears to be more closely related to kFGF than to any otber FGF family members.
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Keratinocyte growth factor (KGF or FGF-?) is a human mitogen that is specific for

epithelial cells. It is important in the normal mesenchymal stimulation of epithelial

cell growth (Finch et 41., 1989). Androgen - induced growth factor (AlGF, FGF

8) was isolated from an androgen dependent mouse mammary carcinoma cell line

(SC-3). It is believed that androgen-dependent growth of SC-3 cells are mediated by

AlGF through an autocrine mechanism (Tanaka dol., 1992). Glia-activating factor

(GAF, FCF-9) was purified from the culture supernatant ofa human gliomaceU line.

rt is one of the three members of the FGF family which lack typical signal sequence

at the N-tenninus. However, unlike bFGF and oFGF, which are not secreted from

the cell in a conventional manner, GAF is secreted from the cell through a unique

secretion mechanism (Miyamoto et aI., 1993). XeFGF is a newly identified FGF in

Xenopus which shares 70% homology to mammalian "FCF and FGF-6 (Isaacs et

aL, 1992). In the FGF family, aFGF, bFGF, int-2, kFGF and XeFGF are capable of

inducing animal caps, to fonn mesoderm in vitro (Slack et aI., 1987; Paterno et 01.,

1989; Isaacs et aL, 1992).

1.6.2 Temporal and Spatial Expression of FGFs in Xenopua

laevu

Endogenous MIFs have to be expressed maternally since ample evidence sug

gests that mesoderm. induction occurs before the zygotic transcription begins. In

addition, MIFs should be preferentially located in the vegetal region. It has been

shown tbat bFGF protein is present in both unfertilized eggs and blastula- stage

embry05 at a concentration about 7ng/ml, which is sufficient to induce mesodenn
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(Slack and Isaacs, 1989). bFGF mRNA is also found to be preseut in both oocyte

and later stage embryos (Kimelman et aL, 1988). In addition, results from immuno

cytochemical staining shows that bFGF is predominantly located in the marginal

and vegetal regions during cleavage and blastula stages (Shiurba et aI., 1991). Tbis

evidence combined with bFGF's activity in me>oderm induction in vitro implicates

bFGF as an endogenous mesoderm inducer. However, antibodies against Xmopw

bFGF could not inhibit mesoderm induction in transfilter experiments (Slade, 1991).

(Transfilter experiments are similar to "combination" experiments except that the

animal cap is separated from vegetal tissue with a 0.1 #lm Ducleopore filter. MIFs can

pass through the filter and induce mesoderm in vitro.) Furthermore, overexpressiOD

of bFGF in Xenopw embrytllS shows little mesoderm inducing activity (ThomJ)60n

and Slack, 1992). These results together with the fact that bFGF Jacks a signal

sequence makes it unclear whether bFGF acts as an endogenous mesoderm inducer

or not.

Like bFGF, XeFGF mRNA is also expressed both maternally and zygotically,

but it contains a signal sequence. However, its maternal expres6ion does not show a

preferential vegetal location. On the otber hand, its zygotic expression is located near

the dorsal lip in the early gastrula and then predominantly located in the posterior

region during the formation of the antero-posterior axis (Isaacs et 41., 1992).
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1.6.3 Inhibitors of FGFs Inhibit Mesoderm Formation in

vivo

Overexpression of inhibitors of endogenous MlFs should be able to inhibit

mesoderm fonnation in Xenopus embryos effectively. Therefore, to examine whether

FGFs' inhibitors such as heparin and suramin inhibit mesodenn formation may in

directly elucidate FGFs' role in mesoderm induction in vivo.

Addition of heparin to bFGF inhibits bFGF's mesodenn inducing activity in

vitro (Slack et al., 1987) and tbe presence of either heparin or suramin inhibits meso

denn formation in trans61ter experiments (Slack, 1989). In addition, microinjection

of either suramin or heparin into the blastocoel cavity of Xenopus embryOli affects

gastrulation (Gerhart et aI., 1989 , 1991; Mitrani, 1989) and mesoderm formation

(Cardellini et aL, 1994).

1.6.4 FGF Mediated Signal Transduction and Mesoderm In

duction

FGF mediated signal transduction is triggered by the binding of FOFs to the

extracellular domain of their specific transmembrane FOF receptors (FGFR). This

activates the FGFRs througb dimerization followed by autophosphorylatioD of the

tyrosine residues of the FeFRs (see review in Heldin, 1995). The phosphorylated

FGFR fonns a signalling complex by binding a Dumber of intracellular substrates

which results in activation of several signalling pathways. Ultimately, the FGF signal

will be transmitted to the nucleus and lead to activation of response genes (&ee review
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in Pawson, 1995).
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Therefore, FGF mediated signal transduction can be controlled by modifying

1) the expression or function of FGFRs in the cell surface (cell membrane), 2) intra

cellular signalling (cell cytoplasm), 3) the transcription of the response genes (cell

nucleus).

FGFR and Mesoderm Induction

There exists two distinct FGFR families-high-affinity FGF receptors with

tyrosine kinase activity, and low-affinity FGF receptors which have been identified

as heparin sulfate proteoglycan (HSPG). It is believed that the binding of FGFs to

their high-affinity tyrosine kinase receptors requires the function of low-affinity FGF

receptors (see review in Robinson, 1991).

The high-affinity FGF receptor family contains four structurally related FGF

receptors-FGFR-l, FGFR-2, FGFR-3 and FGFR-4. They all have an extracellular

region containing three immunoglobin (Ig).like domains, one transmembrane region,

one intracellular region containing highly conserved tyrosine kinase domains that are

split by a 14 amino acid insertion, and a C-terminal tail.

Isofonns of FGFR-l, FGFR-2 and FGFR-3 are generated by the alternative

splicing of their mRNA transcripts. The significance of this alternative splicing is

not completely known. However, there is evidence that alternative splicing is impor

tant in regulating both the receptor-ligand-binding affinity and FGFR intracellular

signalling (see review in Friesel and Maciag, 1995).
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FGF receptors are present in Xenopus embryos during mesoderm induction

stages. They are present in the animal cap region, marginal zone, and vegetal re

gion. Their density is the highest in the marginal zone, which is destined to become

mesoderm (Gillespie et aI., 1989). Xenopus FGFR-I mRNA is expressed throughout

early development and its expression can be regulated by FGF or activin (Musci et

aI., 1990; Friesel and Dawid, 1991). An isoform of FGFR-I, which results from al

ternative splicing and I.ac:ks the protein kinase C phosphorylation site, has also been

identified (Gillespie et aI, 1995).

When animal caps from blastula stage embryos are treated with FGF in vitro,

FGFRs on the animal cap cell surfaces are phosphorylated at their tyrosine residues.

Thus, mesoderm induction by FGF is initiated by the activation of FGFRs through

autoph06phorylation at their tyrosine residues (Gillespie et aI ., 1992).

The presence of FGFRs in Xenopu.s embryos dUring mesoderm induction and

the activation of FGFR during FGF-induced mesodenn differentiation suggest that

FGFRs are involved in mesoderm differentiation in vivo. In addition, direct evidence

for FGFR involvement in mesoderm induction comes &om the expression of a dom

inant negative mutant of the FOFR in Xenopw embryos. This dominant negative

mutant of FGFR, which contains both extraceUular and transmembrane domains

but lacks the iotrac:ellular tyrosine kinase domain, can effectively inhibit endogenous

FGFR function by forming non·functional heterodimers with endogenous FGFRs

(Amaya et at., 1991). Embryos expressing this dominant negative mutant of the

FGFR show specific defects in gastrulation and in posterior mesoderm development;
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on the other hand, animal caps from these embryos cannot be induced to form meso

denn by FGF (Amaya et aL, 1991). In addition, microinjectioD of dominant negative

mutant FGFR mRNA into embryos not only inhibits musc:le differentiation, which

can be induced by FGF in vitro, but also notochord differentiation, which is not

nonnally induced by FGF in vitro. This suggests tbat FGF signalling are involved

in both ventral and dorsal mesoderm induction (Amaya et aL, 1993).

FGF Intracellular Signalling aad Mesoderm Inductioa

Autoph06phorylation of FGFRs OD tbeir tyrosine residues results in the binding

of Src-Homology domain 2 (SH'l)-containing proteins to FGFRs and the fonnation

of "FGFR signalling complexesn. Some of these 5Hreontaining proteins are sub

sequently ph05phorylated on t}'f06ine residues which serves to modify their activity.

Alternatively, binding of 5Hr <:ontaining proteins to phosphorylated FGFRs serves

to recruit these proteins to the plasma membrane. One signalling pathway involves

recruitment of Grb-2 and SOS complex to the FGFR complex (Figure 1.3). Grb-2

is an adaptor molecule and it is complexed witb the guanine nucleotide exchange

factor 50S in the cytoplasm via its 5H) domain. SOS subsequently activates Ras

by catalY2ing the exchange of bound GOP for GTP. Once Has is activated, it in tum

activates the Ser·Tbr kinase Raf.l, which activates MAPK kinase (MEK). MEK

subsequently activates MAP kin86e (MAPK), which activates transcription factors

in the nucleus and these factors then directly activate the elCpre56ion of genes in the

nucleus.
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Figure 1.3: Geoeral intracellular slgnalliq cucade FGFRs are activated

through dimerization and autopbosphorylatioll on tyrosine residues. These ph(lll.

phorylated tyrosine residua; subsequently bind to tbe SH2 domains of various pro

teins to form FGFR complexes. The SH2 proteins bemme pbofipborylated on their

tyrosine residues and recruit Gr~2 and SOS to the complexa;. SOS subsequently

activates RAS by catalyzing the exchange of bound GOP for GTP. &etivated RAS

activates RM-I, wbich in turn activates MEK. Activated MEK activates MAPK.

which activates transcription factors in the nucleus and these facton;; activate the

gene expression. lUTOWS in the figure indicate tbe direction of activation.
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It has bee:o found that phospholipase C--y (PLC-y) (Burgess d til, 1990) and a

non-receptor tyrosine kinae oncogene $rc (Zhao d ot, 1994) directly a550ciate with

FGFR-l and are phosphorylated upon association with FGFR·l. Phosphorylation

of PLC--y leads to the ph05phatidyl inositol bispbosphate hydrolysis and generation

of inositol I, 4, ~trisph06pbate (II\) and diaylycerol (DAG) which in tum activates

protein kinase C (PKC). An adaptor protein, She, is also phosphorylated in response

to activation of FGFR-l. It may directly &&&ociate with FGFR-l (KliDt d at, 199.5)

or indirectly associate with FGFR·l through Src (Vainikka d aL, 1994; Wang et aI.,

1994). Grb-2 does not bind to FGFR-l directly, but does indirectly through She, or

through a 89-kDa component (Klint et at, 199.5).

It bas been shown that during mesoderm induction in Xenopw embryos, PLC

'Y is associated with FGFR·l. Other intracellular SH,....c:.ontaining subl!itrates such

as nck, GAP, Grb-2 are also involved. in the rGFR sipalling complexes (Ryan and

Gillespie, 1994).

Experimental results from several groUpri demonstrated that some of the intra-.

cellular substrates, which are coupled to the FGFR signalling complex, playa crucial

role in mesoderm induction in uivo. Microinjection of a domin&.llt inhibitory mutant

IUs into Xenopw embryos results in the b1ocka8e of the capacity of animal cap6

to respond to FGF, activin, and endogenous inducing signals from vegetal tissues

(Whitem&.ll &.lid Melton, 1992). Microinjection of a dominant negative Raf-l rou·

tant into Xenopw embryos hlocks animal capri' ability to respood to FGF, but does

not block the response to activin. FUrthennore, whole embryos injected with this
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dominant negative Raf·1 mutant exhibits severe postmor mesodennaJ deficiencies

(MacNicol d eL, 1993). It has &Iso been found that OW7'eXJ)ressioo or MAPK ki

nase (MEK) or MAP kinase (MAPK) induces ventral mesode:nn, and OYeraJ)reIlIion

of MAP kinase pbollipbatase (MKP-l), which is capable of in&Ctivatins endogenous

MAP kinase, bloc.b mesoderm induction by either FGF or activin, and causes p0s.

terior mesodermal ddiciencies in intact embJ}'OS (Umbbauer d aL, 1995; L&800ne

dol.,I995).

Although PLC--y associates with FGFR-l, and is tyrosine phosphorylated by

FGFR-l in response to FGF(Ryan and Gillespie,l994) ,tyrosine phosphorylation of

PLC-; is not required for mesoderm induction in Xenopw (Mustin et aI., 1994). Since

tyrosine phosphorylation of PLC-7 is thought to enhance ita enzymatic activity (Kim

d aL, 1991), and therefore lead to an increase in PKC activation, it is likely that

PKC is not required for mesoderm induction. This idea is consistent with results

from experiments .nth the pborbol ester TPA, an activator of PKC, which showed

that TPA does DOt ioduce ml!SOdenn in animal capl5 but in fact, inhibits mesoderm

induction by FGF, suggesting that PKC may playa negative feedback regulatory

role in mesoderm induction (Gillespie d ol., 1992).

FGF-induced Early RespolllSe Genes and Mnoderm Induction

When tbe signal is finally transmitted into the oucleus, some genes an! activated

immediately and these genes are referred to as "early response genes". After the

early response genes an! transcribed, their mRNAs are transported to the cytoplum

from the nucleus and their proteins are subsequently synthesized in the cytoplasm.
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Some of these proteins are traaslocated into the nucleus and function as transcription

factors to activate the expres&ioa of other t;mes; the latter are refernd to as "delayed

response genes". Hence, induction of "early response r;enes" ts not dependent upon

protein synthesis, wberus induction of the "delayed response genes" is.

During the put few yean, several early mesodermal rspoDSe genes have been

identified. Some of them can be induced both by FGF and activin, aod others ca.n be

only induced by activiD. Mix.1 was the first early respoD&e gene to be identified. It

can be induced by activin, even in the presence of protein synthesis inhibitor CHX,

but cannot be induced by either FGF or TFG•.iJ.J. Ie can be induced, bowever, by a

combination ofTGF•.B2 and FGF.

Mix.1 mRNA encodes a homeodoma.i.n,collta.in.i.Dg protein. Since homeobox

proteins in general act as transcription factors, Mix.l may play an important reg

ulatory role in mesoderm formation (Ro6a, 1989). Goo&ecoid is another homeobox

gene which ca.n be induced by activin, but not by FGF (Coo et aL, 1991). Goosec·

oid is expressed 00 the dorsal side of the embryo before the dorsal lip is formed,

and microinjection of goosec:oid mRNA into the wntral side of the embryos mi.rnks

the properties of Spemann's organizer and prodUUl seoooduy axes (De Robertis et

aL, 1992). Induction of gooeeooid by activiD is not inhibited by CHX either, but ts

stimulated by CHX. It ts believed that this is because the addition of CHX inhibits

the synthesis of some proteins which may inhibit the expression of gOO5eCOid. Xbra

is a mesodennal early response gene which CaD be induced both by activiD, FGF,

and vegetal tissue cells. It is expressed throughout the marginal zone of the embryo,
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which is destined to become mesoderm (Smith d aL, 1991). Surprisingly, it has been

found that during blla5tula stages, DOt oaly caD XeFGF induce Xbra, but Xbra caD

induce the e:xpJ"eS5ion of Xl!f'GF and XeFGF is ftlquired to maintain the expression

of Xbra during gastrula staps (Isaacs et aL, 1994). This sugge;ts tbat FGF is DOt

only involved in mesoderm induction, but may also be important for gastrulation.

Xoot is an homeobax: geDe which is expressed predominantly in the organi2:ing" region

during gastrula stages. It C&II be induced by both activin and FGF, and induction is

not inhibited by the protein synthesis inhibitor, CHX. Furthennore, expression of a

dominant negative FGF receptor mutant eliminates Xnot expression. This suggests

that FGF is not only involved in ventral mesodenn fonoation, but also involved in

dOiSai mesoderm fonoatiOD (Von Dassow et oJ., 1993).

Recently, results from several research groups have shown that mesoderm in·

duction by &Cuvin requires FGF (Cornell and Kimelman, 1994; L&Bonne and Whit·

man, 1994). Expression of dominant negative FGF mutant inhibits the capacity of

activin to induce Xbra., Xnot, Mix.I, but does DOt affect aetivin's capacity to induce

goosecoid (LaBoone aDd Whitman, 1994).

In summary, f'GFlI haYe been imp~cated in a number of developmental pnr

cesses, including mesodenn induction, gastrulation and aot~posterioraxis fonoa

tion in Xenopw laevi.l and my interest is to inwstipte the molecular basis of FGF

action. FGF mediated intracellular signal transductioo leads to traos<:ription of early

response genes. The product of such genes in tum replate the expression of delayed

response genes and ultimately the cell's fate. Hence, the identification of genes which
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are indue:ed immediately by FOFs is an important step in the elucidation o( FeF

action. During the past few yean, only a (eW' FeF early response genes have been

identified and these are DOt sufficient to explain the molecular mechanism of FOF's

function. Therefore, it is important to ideotUy additional FOF response genes in

Xeraopw embyos.

1.7 Differential Display RT-peR

To isolate genes which are indue:ed by FOF, two kinds o( cloning strategies

may be selected. The first is an expression cloning strategy which relies 00 a rune:

tiooal assay. The advantap o( this method is that the isolated genes usually have

interesting funetioDS. For instance, two Xenopu genes-Doggin and siamois, which

can induce the secood axis (ormation, were isolated this way (Smith and Harland,

1992; Lama.ire d 01, 1995). H this method is u.sed to isolate FGF response genes,

a plasmid eDNA library from mRNAs o( FGF-treated animal caps has to be. ron-

strueted. The library is partitioned and mRNAs from each fractioo are synthesized

in vitro, foUawed by mittOinjectioD and animal e&p5 assay. Next, tbe active fractions

are partitioned further followM by further microinjection and animal activity assay.

This process will be repeated until tbe single active cJooe is isolated. (For detailed

procedure, see Smith and Harland, 1991). The disadvantage of this method fOT the

FOF-response gene cloning is that one needs a large amount of mRNA from the

manually ohtained animal caps.
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A second k:i.Dd of cloninS strategy is differential screeniDS ba&ed 011 the distinc

tioo of mRNAs from difl'erent SOUl'OlB. For instance, FGF ean divert the deveJopmeot

of animal caps from ectoderm. to mesoderm. Therefore, the mRNAs from untreated

an.imal caps and FGF·treated animal caps caD be dU5ified into three groups: the

first group of mRNAs are exprtMed at the same level in the FGF-treated animal

caps and in the untreated animal caps; the second group of mRNAs are ~resaed

at a higher level in the FGF·treated anima.! caps than in the untreated animal caps,

so these genes are induced by Far; the third group of mRNAs are ~ressed at a

lower level in the FGF-treated animal caps than in the untreated animal caps, 50

these genes are repressed by FGr. Tbe principle of differential screening is to try to

isolate the latter two groups of mRNAs from the first group of mRNAs.

One of tbe IOO6t popular dilI'erential screeninS method is the substractive hy

bridization technique. For instance, Mix.l, 1i'hich ean be induced by activin, ....

isolated this way. To use this method to isolate FGF-response genes requires COD

struction of two cDNA libraries from Far·induced and untreated animal caps, re

spectively. Brie8y this method involves isolation oimRNAs from FGF·treated anim&I

caps and untreated animal caps, folloM!d by eDNA synthesis and hybridization. (For

detail proudure, see Maniatis d aL, 1982). UDhybridized cDNAs are sub&equently

labeled and used to probe the above two eDNA libraries. The advantage of this

method is that larse or fulllenKt-h cDNAs c:.an be cloned, however, I didn't cboo5e

to use this method because it requires & large &mount of mRNA{about 5Oug) from

animal caps, which have to be obtained manually.
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Differential display is a more ftCeDt tecfmjque deomoped by Lian« and Pardee

as a method to Kleotify differentially expres:&ed genes UlinS the advantages of the

polymerase chain reaction (PeR) (Liang and Pardee, 1992). This method is actu

ally a modified RI'-PCR method. Instead of using oligodT or random primers as

is normal for RI'-PCR.., it uses an anchored oligo-dT primer, o'-TII MN-3' to carry

out the reverse transcription. "M" could be either A, C, G;"N" could be either A,

C, G, T. Thus, mRNA are divided into twelve groups which ta.D. be reveISe tran

saibed to cONAs by primer o'·T - 11AA, o'-T - HAC, o'-T - HAG, o'·TIlAT,

5'-TlICA, 5'-Tu Ce, o,-TuCe, 5'.TlICT, o'-TuGA, S'.THGC, o'-TuGG, 5'TIlGT,

respectively. Reverse transcription is followed by 31)S-dATP labeled PCR using the

same S'-TuMN primer and a HI·mer primer whieb is randomly selected (Liang and

Pardee, 1992). The amplified PCR fragments are then separated by electrophore

sis on a DNA sequencing gel. Difl'erentially expressed mRNAs can be identified by

comparing eDNA bands from differe:nt mRNA sources (Figure 1.4). Then the differ

entially expressed bands can be cut from the gel, and tbe cONAs can be eluted and

cloned directly.

The differential display method bas sewraJ advantages over the subtractive hy

bridization method: 1). Small &mOUnts of RNA (about 2~g total RNA per reaction)

are required, which is particularly beneficial for our study, ..here RNAs are to be

extracted from manually dissected animal caps. 2).It is very easy. It is based on

two of the most widely used molecular biological techniques: RT-PCR and DNA

sequencing gel electrophoresis. 3). It takes only 2-3 days to obtain the differentially

expressed bands and anotber 2-3 days to clOne these bands. Differential display bas
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Figure 1.4: Principle of the difl'erentiaJ display method mRNAs are reverse

transcribed with anchored primer TIiMN, M, N could be A,C, G, or T. cDNA

fragments are amplified by peR using primers TuMH, which hybridizes to the polyA

tail of the mRNAs and either API or AP';i primer, which randomly hybridizes to the

first strand cDNAs, The MS-labeUed PCR fragments are separated on a sequencing

gel, and the diJferentiaUy expressed mRNAs can be identified by compariDg cDNA

bands from diJferent mRNA sources.
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a few disadvaotq:es, for example, using this method, shorter cDNAs(usually~

300 bp) are cloned with hi&ber risk of error caused by poor proof-reading ability of

thermostable DNA polymerase during PeR

Given these advantages and disadvaotage6 of the different cloning strategies,

I cb06e the differential display method to identify FGF-response genes bec&WIe of

technical efficiency. This thesis describes cloning and characterization of one such

FGF-response gene.
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Materials and Methods

2.1 Materials

Xenopw .l4t:tJU ftre purchased from Na&CO (WiscoDSOD, USA). XbFGF used

for induction ....as expres&ed and purified from recombi.Dant eDNA according to Kimel·

man et al, 1988, then stored in -2O"C. The stage 8 Xenopw (lambda ZAPll) eDNA

library used for cloniog the eDNA was constructed in this lab by Gang Chen (Gill~

spie d cU., 1995). Primers used for cloning and PeR were synthesized by either

OligN Etc. Inc. or" GSD generol ~ynthuu and tnogruutiu. and their sequences are

listed in Table 2.1. Culture mediums used for- raise the embyos and explants are

listed in Table 2.2.

26
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Table 2.1: Sequences of oligonucleotide primers used in cloning, sequencing and RI'

peR

.~ pri.....-:

." primer:

DOP

pri"",,",

prim,.,.,

primer.

prim_

primer.

prim..-:

primft",

,~, prim....:

,~,

primer:

primer.

po,
primer:

primft"p&il'l'

T, prim,.,.,

T, prim,.,.,

SPo primt1':

S'- CTG ATe CAT G -3'

S·· CTG CTC TCA G -3'

S'_ CCG Act' CGA GNN' r."''''' ~AT GTG 0-3'

S'· TCC OTT ACA CCA GOA TGT AO-3'

S'· GGe TOA AAT TCC AGT TOG TA-3'

S' ·CTA CAT CCT GGT GTA ACG GA-3'

S' ·TAC CM CTG GAA TTT CAG CC-3'

S'· GAT GTA eGA GM GTA ATe CG-3'

S'· GGC CCA TGT GCA ATA ACT GC-3'

S'_ CAC 1TI' CTC TrI' CM GGT GC-3'

S'_ CTT TCA MG OCT ACA AAG AG-3'

S'· CTT CAG GGT iTA TTA MT TA.;I'

S'· AM TGT CAC TAT CM CTA-3'

5'· CGG CAe GAG AGC TOA CAT GC .3'

5'· GCA TCA GCT GCA GAT CAA 00-3'

5'· GTT TAA GAA AGG GCA OTT CG-3'

S'- TAT GGA AGO ACT TGT TIG AGA ·3'

S'_ GAG MT TCG TCG ACA TCG ATT TT'T TTT TTT TrI' TT-3'

5'· GAG AAT TCG TCG ACA TCG AT.;I'

Up: 5'· CAG A'IT GOT GCT GGA TAT GC-3'

Doom: S'· ACT GeC TrG ATG Act' CCl' AG ·3'

5'· ATT AAC CCT CAC TAA AG-3'

5'· AAT Ace ACT CAC TAT AG-3'

5'· AT TTA GGT GAC ACT ATA ·3'
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Table 2.2: Culture Mediums for Embryos and Explants

28

SAM/20

SAM/2

P.... I£. IO"SA.\f Mit CO<lWIIS 65, H.CI, 1.$, KCI, 2.4, C.(HOsh .4HaO, 2.:>, M,SO.· 'THaO, 2m! O-SM

EDTA, pua.o ud tOllonlIM uq>es, pIl1-S.

2.2 Methods

2.2.1 Embryos, Animal Caps and XbFGF Induction

Eggs were obtained from female Xenopus Iaew injected 14 hours previously

with 750 lU. human chorionic gonadotrophin. Embryos were obtained by artifi

cially fertilizing these eggs, using testes of a sacrificed male Xenopus laevit. Fertil

ized embryos were chemically dejellied using 2.5% L-cysteine hydrochloride (pH7.8

8.1), washed and transferred to petri dishes containing NA..\i/20 culture medium.

They were raised at room temperature (22DC). Embryos were staged according to

Nieuwkoop staging tables (Nieuwkoop and Faber, 1967). Xenopw animal caps were

obtained by microsurgery. When the embryos reached stage 8 (about 5 hours af

ter fertilization at room temperature), they were transferred to petri dishes coated

with 1.5% agar and containing NAM culture medium. The vitelline membrane was

removed using forceps and animal caps were cut from the embryos with a tung

sten needle. They were transferred to petri dishes containing either NA.Itd/2 culture

medium, or XbFGF medium l
. Animal caps were cultured at room temperature for

l100ng/ml XbFGF in NAM/2cuJture mediUIJI.
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half an hour prior to RNA extraction.

29

2.2.2 Extraction of Total RNA From Whole Embryos and

Animal Caps

Extraction of Total RNA From Whole Embryos

Total RNA from the whole embryot; was extracted as described (Sambrook et

al., 1989). 12 Xenopus embryos at the same developmental stage were transferred

to a l.Sml eppendorf tube containing 300#,1 extraction buR'er (3M LiCI, 6M Urea,

10mM NaOAc, pH7.S, 0.1% 50s and O.S% 2-mercaptoethanol), These embryos were

homogenized on ice by pipetting up and down at least IS times, then the tube was

covered and left on ice in cold room (4°C) overnight. The next day, the tube was

centrifuged at 4°C, 12,OOOrpm for 30 minutes. After centrifugation, a thick lipid

layer was removed and the supernatant was discarded carefully. Then 240p! DEPC

water solution containing 0.3M NaOAc, pH7.S and O.S% 50s was added to the

eppendorf tube and the pellet was loosened by pipetting up and down. This was

followed by addition of an equal volume of Phenol/CblorofonnflAA. The aqueous

phase was transferred to a new l.Sm.l eppendorf tube and kept on ice, and the

interpbase and organic layers were re--extracted with an equal volume of DEPC water

solution containing 0.3M NaOAc, pH7.5 and O.S% 50s. The aqueous phases were

pooled, and re-extracted with an equal volume of Phenol/Chlorofonn. Total RNA

was precipitated with 2.5 times the volume of ethanol at _20°C overnight, collected

by centrifugation, washed with cold 70% ethanol, and dried under vacuum. The

entire RNA sample was then used for Northern analysis.
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Extraction of Thta.I RNA From AnIma.I Caps
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Total RNA from animal caps were extracted as described in (Reynolds d aL,

1996). Five animal caps cultured either in control medium or XbFGF medium were

transferred to a l.5ml eppendorf tube containing 200~ NETS solution (O.IM NaCI,

100mM EDTA, pH8.0, lOmM Tris, pH7.5 and 0.2% 50S). The embry05 were ho

mogenized by pipetting up and down, followed by extractioll with aD equal volume

of 25:24:1 PhenoljChloroformjiso--amylalcohol. The aqueous phase was removed to

a new 1.5ml eppendorf tube and the interphase and organic phases were re-extracted

with equal volume of NETS solution. The two aqueous phases were then pooled to

tbe same tube and precipitated with 2.5 times the volume of ethanol and k vol

ume of 3M NaOAc, pH5.2 at -20"C overnight. The next day, the pellet was spun

down, washed with cold 70% ethanol and dried under vacuum. The pellet was then

dissolved in 50pl DNase buffer (4OmM Tns, pHS.O, lOmM NaCI, 6mM MgCl2 and

lOmM CaCI2 .), and digested with 3pl RQ RNase--free DNase at 3rC for 20 minutes.

Tben 250pl OEPC H20 was added and followed by extraction with an equal volume

of 25:24:1 Phenol/Chlorofonn/iso--amylalcohol. The RNA was precipitated with 2.5

times the volume of ethanol and to volume of 3M NaOAc, pH5.2 at -20~C overnight.

The next day, the total RNA was spun down and washed with cold 70% ethanol and

dried under vacuum. The entire sample was used for synthesis of first strand eDNA.
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2.2.3 Identification of FGF Early Response Genes by the

Differential Display Method

Differential display RT·PCR was carried out according to Liang and Pardee

(1992).

Reverse Transcription or mRNA from FGF-treated or Control Animal

Cap,

Vacuum dried total RNA from 5 FGF·treated or 5 control animal caps was dis

solved in 17~l DEPC-H~O, followed by addition or2pl5'-TII AG (lOOngfjJ1) primer.

This RNA-primer mixture was then heated at 70°C for 10 minutes and quickly chilled

on ice for about 5 minutes. This was followed by addition or8~15xfirststrand buffer,

2~110mM each dNTPs, 4~llOOmM DTr, l~l RNAguard, 6~1 DEPC-H~O and 2~1

MMLV-reverse transcriptase. The reverse transcription reaction was tben carried

out at 3rc for 1 bour. This reverse transcription product mixture (RT-mix) was

used directly for tbe peR reaction.

Amplification of the DNA Fragments By peR Method

PCR reactions were carried out as 40 cycles of 94°C (or 30 seconds, 40°C (or

2 minutes, and 72"C for 30 seconds; I cycle of 72"C for 5 minutES. Each reaction

contained 2~1 lOxPCR buffer, 1.6~1 2.5~M each dNTPs, 1.2~1 25mM MgCl~, 2~1

2~M API primer or AP2 primer, 2jJ1lOpM TIIAC primer, 2pl RT.mix, 8j.J1 dH~O,

lId a_Ms-dATP and 0.2pl Ampli Taq. The PCR reaction products were separated

by electrophoresis on 8 DNA sequencing gel.
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Electrophoresis or The AmpliBed eDNA Fragmenu OD a DNA sequencing

Gel

3.5~1 of each PCR reaction product and 2J.llloading buffer (0.25% bromophenol

blue, 0.75% xylene cyano] and 30% glycerol in dH20) were mixed, then denatured at

so"e for 2 minutes, followed by loading onto a 6% DNA sequencing gel (in a lOOml

final volume containing 48g Urea, 6% 19;1 acrylamide/bis acrylamide and lxTBE.

looml sequencing gel was polymerized with 40pl TEMED and 500~110%ammonium

persulfate.). lOObp ladder was used as marker.

Electrophoresis was carried out for about 4 bours at 55W constant power until

the xylene dye migrated to the bottom. The gel was then transferred to 3MM paper,

dried at sooC for 2 hours, and exposed overnight to a X-ray film (Kodak X-Aft).

ReampUBcation or cONA Probes

Differentially expressed eDNA bands were selected, numbered, and cut from the

gel. Each gel slice along with 3MM paper was put in a screw capped tube containing

100IJI dH20, and soaked for about 30 minutes at room temperature. The tube was

then boiled for 20 minutes, and spun for 2 minutes to pellet the gel and paper debris.

The supernatant was then transferred to a new 1.5~1 eppendorf tube. The eDNA

fragment was precipitated at _20°C overnight by adding 10,.,1 3M NaOAc, pH5.2,

2.5~1 20mgfml glycogen and 4501'1 95% ethanol. The next day, the DNA pellet was

centrifuged at 4°C, 12,OOOrpm for 15 minutes, washed with cold 85% ethanol and

dried under vacuum. The pellet was then dissolved with 10#1 dH~, and 4pl ofthis

sample was used for reamplification.



CHAPTER 2. MATERIALS AND METHODS 33

Reamplification was carried out by peR using the same conditions as described

above except that <Dit used 250~M dNTPs instead of 251'M dNTPsj ~no isotope

was usedj Q>the last extension at noe was for 12 minutes instead of 5 minutes. The

size and concentration of peR products were checked by agarose-ge1 electrophoresis

(agarose-gel contains 1.2% aga.ro&e and 1xTBE.). 1kb DNA ladder was used as a

marker and electrophoresis was carried out for about 30 minutes in lxTBE at l00V.

The peR product was then used for cloning the eDNA fragment.

2.2.4 Cloning of eDNA Fragments

One of the differentially expressed fragment numbered as IVB+ was cloned by

using a TA cloning kit (Invitrogen).

I. Ligation

The first step of cloning was to ligate the IVB+ cDNA fragment into the

specifically designed peRno II vector (Figure 3.3). The ligation mixture contained 11'1

lOxiigation buffer, 2~125Dg/~1 pCR-II vector, 5~1 (about lOng) freshly reamplified

peR product and 2~1 T. ligase. The ligation reaction was carried out at 14°C (or

about 24 hours.

II. Transformation

The second step of cloning was to transform the vector-fragment ligation into

competent E.Coli. Transformation was carried out according to the instructions

included with the TA cloning kit. In short, the ligation reaction was spun down and
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put on ice. One vial containing 50pl of frozen one shotI'll competent cells was thawed

on ice, followed by adding 2pl 0.5M ,8-mercaptoethanol and IOpl of the ligation

reaction to the vial. This vial was then incubated on ice for 30 minutes, followed by

heat shock for 45 seconds in a 42°C water bath. The vial was incubated on ice for

2 minutes and 450pl 37'"C SOC medium was added to the vial, followed by shaking

at 37"C, 225rpm for 1 hour. JOOJl1 from this vial was plated on a X-Gal LB plate

containing 9Opg/ml ampicillin. The plate was then incubated at 37"C for about 12

bours to allow for growth of the transf'ormants.

Ill. Analysis of 'I'l'ansformants

10 white transformants were numbered and analyzed by PCR using Tr and

SP, primers. The PCR reaction was carried out using 1 cycle of 94°C for 4 minutes

and 30 cycles of 94°C for 50 seconds, 57"C for 50 seconds, 72°C for 50 seconds. Each

reaction mixture contained 0.6pllOmM dNTPs, 3pllOxPCR buffer, 0.6JL1100ng/pl

Tr primer, O.6pl lOOng/Jl1 SPa primer, 1.8pl 25mM MgCh, O.4pl AmpliTaq, 21pl

dH20 and a small amount of transformant. The concentration and size of the PCR

products were then analyzed by agarose.gel electrophoresis as described on page 32.

2.2.5 Confirmation of Differential Expression by DOP-PCR

Southern Blotting

J.DOP-PCR

Degenerate Oligonucleotide Primers (OOP)-PCR was performed according to

tbe manufacturer's instructions (Boehringer). Total RNA from 5 FGF-treated or
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control animal caps were extracted. The first strand cDNAs were synthesized using

random primtmi or oligodT primtmi. The DOP PCR reaction was carried out as 1

cycle of 95°C forS minutes; 5 cycles of 94°C for 1 minute, 3O"C for 1.5 minutes, 72"C

for 3 minutes, ramp 4.3; 35 cycles of 94°C for 1 minute, 62°C for 1 minute, noc

for 2 minutes, time inc 14 seconds; 1 cycle of 720C for 7 minutes. Each reaction

mixture contains 4~ lOxPCR bufl'er, 2.4J..d 25m.\of MgCt'l, 3.2pl250~MdNTPs, 4~1

l00ng/~1 DOP-primers, 4JJl RI'-mix, OAj..d AmpliTaq and 22j.J1 dH'lO.

II. ELectrophoresis

3OJ.d of each OOP-PCR product was mixed with 3~1 lOxloading buffer and

loaded onto a 15 x 15cm l.2% agarose gel.

Electrophoresis was carried out in lxTBE buffer for about 2 hours at 120V.

III. Denaturation

Mer electrophoresis, the whole gel was carefully transferred to a plastic box

containing 500mJ O.25M HCI solution. The plastic box was then shaken gently for

about 15 minutes at room temperature. The O.25M HCI solution was decanted, 250ml

O.5M NaOH plus l.5M NaCI was added and the gel was shaken gently for 45 minutes

at room temperature. The NaOH-NaCI solution was removed and substituted with

50OmI1M Tris, pH7.6 plus l.5M NaCl and the gel was shaken gently for 45 minutes

at room temperature.
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Figure 2.1; Transfer of DNAs or RNAs to & Nylon Membrane

IV. Transfer of DNA F'ragulents to. NyloD MeIDbrane

36

Southern transfer was carried out as shown in Figure 2.1 for about 16 hows.

20 xsse was used as the transfer buffer. DNA fragments were transferred to Hybond......

N transfer membr&De (Amersbam). After Southern transfer, the blot was quickly

rinsed with 6xSSe solution and air dried at room temperature for about 15 min·

utes. Finally, the blot is put between two pieces of 3MM paper and baked at sOGe

for 2 hours in a vacuum oven.

v. Prebybridization

Before prehybridization, the blot was put into a plastic box containing 6xSSe

solution. Alter the blot was completely wet, it was put into a plastic bag with

12ml hybridization solution ( 100mI hybridization solution contains Ig milk powder,
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200~1 O.aM EDTA, 6.9g NaH2 P04 and 7g SDS. The final pH is 7.2.). The bubbles

were removed and the plastic bag was sealed and put into a 65°C water bath to

prehybridize for about 4 hours with constant shaking.

VI. Making the Hybridization Probe

100ng of the PCR product of cloDe N B+ from step 2.2.4(1lI) was used as a

probe template. 32P-labeled probe was made by incorporatioDof 32P-dATP according

to the instructions included with the RaDdom Labeling Kit (GIBCO). Briefly, aJlI

of the PCR product of cloDe IVB+ (about lO00g) was transferred to a l.amJ screw

cap tube containing 15JlI dH20, foUowed by boiling for a minutes, then the tube

was immediately put on ice for 5 minutes. Next, 2~J lOOmM dCTP, 2Jll l00mM

dGTP, 2JlI lOOmM dTTP, 15JlI random primer mix, 5Jll a_32P-dATP, 2JL1 dH20

and 2JlI KJenow fragment were added. The reaction was then carried out at room

temperature for about 2 hours. After the reaction was complete, the 32p-dATP

incorporated probe was denatured by boiling for 5 minutes, just before use. Histone

H4 probe was also prepared using the same method.

VII. Hybridization

After 4 hours prehybridization, the hybridization buJrer was removed and sub

stituted with another 12mJ fresh hybridization buffer. The denatured probe was then

added to the plastic bag and the bubbles were removed, the plastic bag was sealed

and put back into the 65°C water bath for hybridization overnight.
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VIII. Washing
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Washing was carried out at low stringency (2xSSC. 1% SOS for 30 minutes

at room temperature.) and at high stringency (O.lxSSC. 0.1% SOS 65°C for 40

minutes.). Then the blot was expcx;ed overnight to a X-ray film (Kodak X-AR) at

-70°C with an intensifying screen.

2.2.6 Large Scale Plasmid Extraction

A small amount of clone IVB+ was transferred into a one litre sterile flask c:on-

taining 500mJ LB medium (IL LB medium contains 109 bact~tryptone, 5g bac:t~

yeast extract and 109 NaCl, the final pH is 7.0.) witb 7O#lg/m1 ampicillin. The

bacteria were grown by shaking the flask at 37"C, 225rpm for about 20 hours. The

bacteria were then transfened into two 250ml plastic: bottles to spin down the bac:t~

ria at 4°C, 500rpm for 10 minutes. The supernatant was discarded and the peUet was

homogenized witb 9ml/bottle of Solution I (5OmM glucose, 25mM Tris·Cl, pHS.O,

and 10mM EDTA, pH 8.0.), foUowed by addition of 17.5ml/bottle freshly prepared

Solution II (O.2M NaGH and 1% 50S.). The bottles were left at room temperature

for 10 minutes, 12.75m1 cold Solution III (per lOOml Solution III contains 60mJ 5M

Potassium acetate, 1l.5ml glacial acetic: acid, and 28.5ml dH'lO, fina.! pH4.8.) was

added into each bottle and shaken by hand then put on ic:e for 10 minutes. Next,

the bottles were centrifuged at 4°C, 7500rpm for 15 minutes. The supernatants were

filtered into one fresh 250ml plastic: bottle through four layers of cheese doth. An

equal volume of isopropanol was added to the filtrate and left at room temperature

for about 2 bours to precipitate the DNA. After centrifugation at room temperature,
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10,OOOrpm for about 20 minutes, the pellet was wubed witb 70% ethanol, tr&D&

ferred to a corex glam tube, dried under vacuum, and resuspended in 4m1 TE buffer

(I00rnM Tris, ImM EDTA.), pH 8.0. Then, 4m1 cok15M LiCI was added to the corex

tube and the tube was put on K:e for 5 minutes, followed by centrifugation at 4"C,

10,OOOrpm Cor 10 minutes. The supernatant was subsequently transferred to a ~b

corex tube and 8m1 isopropanol was added to the same tube. Ahu precipitation

at room temperature Cor about 30 minutes, tbe isopropanol mixture was centrifuged

at room temperature, 10,OOOrpm for 10 minutes. Tbe supernatant was discarded

and tbe pellet washed with 70% etbanol, dried under vacuum, tben transferred to a

Urnl eppendorftube, and resuspended with 500pl TE, pH8.0 buffer. After incubat~

ing at room temperature for 30 minutes, 5OOp11.6M NaCI plus 13% PEG was added.

The precipitated plaamid was centrifuged at 4-C, 12,OOOrpm for 15 minutes. The

plasmid pellet was resuspended with 4OOp) TE, pH8.0 buffer and extracted witb an

equal volume 23:24:1 Pbenol:Chlorofonn:iso-amylalcobol, twice. The plasmid DNA

was precipitated at room temperature fur 10 minutes by adding 2.5 times tbe vol·

urne of ethanol and fi volume of 3M NaOAc, pH5.2. The peUet was collected by

centrifugation at 4-C, 12,OOOrpm, washed witb 70% ethanol and vacuum dried.

The plasmid DNA pellet was resuspended in lOOp) TE, pH8.0 buffu and ana

'''''''' by,

1. UV absorption

2. Restriction enzyme digestions

3. Sequencing
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For UV absorption analysis, IJ.d plasmid IVB+ was transferred to a quartz

cuvette containing 600pl TE buffer. The UV 280nm and 260nm absorption values

'i\~re mealiured with a DU@-64spectrophotometer. The concentration of the plasmid

was then calculated according to the fonnula:

plasmidconcentraHon = 50pgjml x OlJwJ x 600.

For restriction enzyme analysis, restriction enzyme digestion reaction was car

ried out at 37"C for 2 hours. The reaction mixture contained Ipl lOxreaction3

buffer, 3pl plalimid IVB+ I 4J.11 dH~O and 2pl EcoRl. The digest was analyzed by

agarose gel electrophoresis.

2.2.7 Sequencing Analysis of the Cloned eDNA Fragment

The sequencing reaction was carried out according to the instructions of the

Sequenase.... sequencing kit (Amer"ham).

I. Denaturation

Denaturation was carried out at 37"C for 30 minutes. The reaction mixture

contained IJ.lI plasmid IVB+ (about 4pg), 17Jd dH,O and 2pl denaturing solu

tion (500pl denaturation solutioD contains IOOpl ION NaOH and 2pl O.3M EDTA,

pHS.O.). The denatured plasmid was precipitated at -woe for about 15 minutes

by adding 22pl 3M NaOAc, pH5.2 and 60pl 95% ethanol. The denatured plasmid

was then pelleted by centrifugation at 4°C, 12,OOOrpm for 15 minutes, followed by

walihing with cold 70% ethanol and vacuum drying.
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n. Annealing
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The vacuum dried denatured plasmid was resuspended in 14pl dH20. 7J,l1 was

used for annealing. Each annealing mixture contained 7J,l1 resuspended denatur1!d

plasmid, 2J,l1 5xsequencing reaction buffer, IJd lOngJll1 T1 primer or IJ,l1 lOng/J,l1 SP6

primer. Annealing of the primer to the plasmid DNA was carried out by heating

the reaction mixture at 65"C for 2 minutes, fonowed by slowly cooling to room

temperature. This cooling step takes about 45 minutes. Then, the cooled tubes are

put on ice for about 5 minutes.

III. Labeling

The labeling reaction mixture contained 1OJ,l1 of the above annealing mixture,

IJ,l1 O.IM OTT, 2pl diluted labeling mix} IJ,l1 a_358-dATP, 1.705J,l1 enzyme dilution

buffer and O.2SJ,l1 Sequenase.J Labeling involved two steps: firstly, the above labeling

mixture was incubated at room temperature for 5 minutes; secondly, 2.o5J,lJ each of

ddATP, ddCTP, ddGTP, ddTTP were added into 1.5ml eppendorf tubes labeled

with A, C, G, T, respectively, incubated at 37"C for 3 minutes, and followed by

addition of 3.o5J,l1 of the above labeling mixture to each tube. The tubes -were then

incubated at 37"C for 5 minutes. Reactions were terminated by adding 4J,l1 stop

solution to each tube.

Zper fi",1 diluted Labelill.g mix CODtaiq til! 1abel.iDt; mix plus 411! dH,O.
3T, DNA polymer_.
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IV. Electrophoresis
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2.5pl of each reaction from step m wa6 denattlnld at ao-C for 3 minutes, then

loaded onto a 6% DNA sequencing gel in the order of A. C. G, T. Electrophoresis

1II-'aS carried out at 55W CODStant power tor 2 to'" bours according to the region ot the

sequence want to be read. Then, the gel wa6 lind with 10% Metbanol/10% glacial

acetic acid, dried and exposed to x-ray 6lm O\vnigbt.

2.2.8 Analysis of the Sequence of the Cloned cDNA Frag

ment IVB+

Nucleic acid sequence databases were searched tor sequences homologous to

the cloned cDNA fragment IVB+ using the BLASTX program from tbe Notional.

Center lor Biotechrwlogy In/ortn4lWn (Bethesda, MD) using the BLAST network

service. We named our DO'VeI gene erl (early respollSe '1).

2.2.9 Cloning and sequencing the 5'-end of erl

Cloning of a lkb DNA Fragment

I. peR From a XenoptU Stqe 8 eDNA Library

Two primers, mta, and mt&2, whic::b are specific to erl were designed. PCR

reactions were carried out as 1 cycle of 94°C for 3 minutes, 35 cycles of 94°C for 50

seconds, sooe for 50 seconds and 12°C for 1.5 minutes, followed by 1 cycle of 72"C
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for 12 minutes. Each PeR reaction bu&r mixtun CODtaiDed 0.6#110mM dNTP, 3pl

lOx PCR reaction bufrer, 0.6~ lOOn&!pi mt&l primer oc mta.a pl'ime:r, 0.61'1 lOODsipi

T;s primer, 1.8~ 25mM MgCl-), 10~ stage 8 cDNAa (2D&I#1), OAp]. AmpliTaq and

13,.I dH,D.

D. Puri.6catioll of PCR Products

1. Pretreatment of NA45 cellulose membrane

NA45 was cut into small rect&llgles. They were pretreated by washing with

lOmM EDTA, pH8.0 for 10 minutes, foUawed. by washing with 0.5M NaOH for

5 minutes, and finally with sterile water several times and stored in dH10 at

2. Electropbof'!6is

25pl of each PeR reaction was loaded onto a 1.2% apro&e gel. E~ropboce

sis was carried out in lxTBE buffer, 90V for about 45 minutes. The largelSt

PCR product amplified with T;s aDd mta) primers ... &elected. A slit was cut

just behind the lkb band &Dd a piece of NA45 memhn.De was inserted into

the slit. The agaroM! gel was then put back into the e'ectrophoresis bed in

the opposite direction. Electrophoresis ... then canied out under the same

conditions for 7 minutes. Thus, the lkh DNA fragment was transferred onto

the NA45 membrane.

3. Elution and Precipitation of the lkb DNA f'ra8ment
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The NA45 membrane was washed with 600,.,1 rinse solution (0.15M NaCl,

O.lmM EDTA, pH8.0, and 20mM 'IJis, pH8.0.) three times and put into a

1.5m1 eppendorf tube containing 700,.,1 Elution solution(l.OM NaCI, O.lmM

EDTA, pH8.0 and 2Om.1\1 Tris, pH8.0.). The tube was then incubated at 68°C

for 20 minutes. Thus, the lkb DNA fragment was eluted from the membrane.

The Ikb DNA fragment was precipitated at -moe overnight by adding 700,..11

isopropanol. The next day, the pellet was collected by centrifugation at 4°C,

12,OOOrpm for 15 minutes, followed by washing with cold 85% ethanol and

vacuum drying. The dried pellet was dissolved in 10pi dH20. 2,.,1 of this was

used for examining the size and concentration by agarose-gel electrophoresis.

III. CloniDg of the Gel PurUled lkb DNA Fragment

5,.,1 of the gel purified lkb DNA fragment was used for Ligation into the pCR.....U

vector (Figure 3.3). The ligation and transfonnation methods are the same as de

scribed in section 2.2.4 on page 33. Ten white transfonnants were selected and

analyzed by peR with either SP, and T r or mtal and mta2 primer pairs. Clone 3

and 7 were selected for plasmid extraction and sequencing with primers mta" mt&2,

MT2 and T J .

2.2.10 Cloning and sequencing the 3'-end of erl

Total RNA was extracted from 4 stage 8 embryOl5. First strand cDNA was

obtained by reverse transcription as described in section 2.2.3 on page 31 except

that 2pl 25Ongfl.li POI primer was used instead of 2,.,1 l00nghd 5'.TllAC primer.
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The PeR reaction was carried out as follows; 6ntly, a PeR reaction mixture

was added into. 0.510'1 eppendorf tube. The mixture contained L5,.dlOxPCR ~

action buHer, O.3,.dlOm:.\i dNTP, O.3,.d25OngJJiI PO, primer, 0.3pI100ngJ,.d MTU

primer, O.9Ji125mM MgCl" 2p1lU-mix, and 9.5pl dH,o. The tube was tben capped

and put into the PCR reaction block; secondly, the PCR reaction was initiated at

95
Q
C for 5 minutes, foUowed by 72"C for 50 seconds. While maintaining the 72'"C

temperature, 0.2Ji1 AmpliTaq and 3Op11:rC mineral oil was added into the mixture;

thirdly, the PCR reaction was continued as 1 cycle of $SQC for 5 minute, 1Z'C for

40 seconds; 40 cycles of 95QC for 40 seconds, 55QC for 1 minute and 72"C for 3 min·

utes; 1 cycle of 72"C for 12 minutell. PCR products were analyzed by agarose-gel

electrophoresis. The largest hand was selected, gel purified, and cloned. Clone" was

selected for plasmid extraction and sequencing.

2.2.11 Cloning the 2.3kb fragment of erl

A 2.3kb fragment was cloned by PeR from the stage 8 eDNA library using ul

specific primers. The PeR reaction was carried out &Ii 1 cycle of 94QC for 5 minutes;

35 cycles of 94QC for 50 seconds, 64QC for 50 seconds, 72QC for 2 minutes; 1 cycle

of 7'l!'C for 12 minutes. The ruction mixture contained 0.610'1 10m:.\{ dNTPs, 3#11

lOxTaq reaction buffer, 0.6pl lOOng/pI mta9 primer, 0.6Jlll00ngJ#l1 mtal0 priJner,

1.8#11 25mM MgCl2, 13,.d dH20, 10#11 stage 8 eDNA library and 0.4pl AmpliTaq.

A 2.3kb peR product was obtained and cloned &5 described in section 2.2.4

on page 33; clone 19 was selected, followed by plasmid extraction and sequencing.
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2.2.12 Analysis of Gene Expression by Northern Hybridiza-

tion

Northern hybridization was performed as described in Sambrook d oL, 1989.

I. Preparation of the DenaturiD& Aguose Gel

2.16g of molecular biology grade aga.rose was added into a Bask containing

127ml of DEPC-dH20, and heated until all the agarose gel was dissolved. The

agarose gel was then cooled to 60"C in a 60°C water bath, followed by addition

of 36.8rol 37% fonnaldehyde and 18ml of lOxMOPS (O.2M MOPS, pH7.0, O.05M

NaOAc and O.OIM EDTA.) in a fume hood. The Buk wall covered and re-heated in a

60°C water bath to remove any bubbles. Next, the gel was poured into a 15cmxl5an

tray using a IS well comb. The gel was then cooled to room temperature for about

4S minutes.

u. Electrophoresis

Total RNA extracted from 12 whole embryos ..... dissolved in Spl DEPC-dH,o,

follo..-OO by addition of ISIlI denaturing sample bufl'er(ISml denaturing sample buffer

contained 2m] 10xMOPS, 3ml 37% formaldehyde and 10 ml deionized formamide.).

The total RNA samples were then denatured at 7S-C for 5 minutes, and quicldy

put on ice fOl" 5 miDutes. Next, 2pl of lOx~l-loadingbuffer (0.25% bromophenol

blue, 0.25% xylene cyanol and 30% glycerol in dH,D.) was added into each sample.

The samples were subsequently loaded onto the denaturing gel. Electrophoresis was

carried out at IxMOPS buffer, goV for about 6 bours.
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UI. Ttansf'er o(Deaaturecl RNA from the DeaaturiDc-sel to a Nylon Mem-

brane

After electrophoresis, the gel was transf~ to a plastic box, washed with

DEPC-H20 3 times &Dd~ in 20xSSC buffer (lL 20xSSC contained 175.3g

NaCl and 88.2g No3Citrate, final pH7.D.) for about 45 minutes. The Gene Scrftn""

hybridization transfer membrane was moistened with OPEC-H20 and soaked with

20xSSC for 5 minutes befo~ use. Two pieces of 3MM paper were treated with

2xS5C for about 2 minutes before use. Nortbern transfer was carried out as shown

in Figure 2.1 for about 20 boul1i at room temperature. After northern transfer, the

membrane was rinsed with 6xSSC for 1 minute, followed by air drying for about 15

minutes. The RNA ladder lane was cut from the blot and stained with a solution

containing O.5M Sodium Acd:ate, pH5.2, and 0.04% methylene blue. The rest of tbe

blot was then put bctwten two pieces of 3MM paper and baked at 80'"C for 2 hours

in a vacuum oven.

Prehybridisatioa.

The blot was moisteDed with 8 xSSC and put into a plastic bag contaiD.illg 12ml

hybridization buffer ( 12m1 hybridization buffer contains 9m1 Gene Screen bu1l'er,

3ml 20% 50s and 3OO1d IOmgfml gONA. 375m! Gene Screen buffer contains 50g

dextran sulphate, l66mJ 1M sodium phosphate solution, pU7.0 and lOOmJ SOmM

EDTA. Sodium phosphate solution contains 0.8M No2 HPO. and 0.4M NoH2 PO•.

ssONA needs to be boiled for S minutes before use.). The bubbles "ftre removed,

the plastic bag sealed and prebybridization was carried out at 65°C for 4 bours.
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V. PreparatioD of the Nortbenl HybridisatioD Probe

..
The Northern hyhridization probe was prepared with the random primer labtl

ing method as described in section 2.2.5 on page 37. The 2.3kh DNA fragment was

cut from the plasmid with &00 and ¢-purified as described on page 43. l00ngof

the 2.3kb DNA fragment was used as a template for random primer labeling. TIe

probe was then denatured by heating to l000C for 5 minutes before use. Histone H4

probe was also prepared using the same method and used ati a loading control.

VI. Hybridization

After 4 bours of prebybridization, the blot was taken out of the plastic bag IUld

put into another plastic bag with 12ml fresh hybridization buffer and the denatund

probe. The bubbles were removed and the bag sealed. Hybridi2ation was carried out

at 65°C for about 20 boun.

VII. Wasbiq

The blot was washed with 2xSSC, 2% 50s at room temperature for 30 minuts,

followed by 0.1 xSSC, 0.1% 50S at 65°C for 40 minutes.

VITI. Autoradiocrapby

The blot was e:xpo&«I for 3 days to X.ray film (Kodak X-AR) at -7O"C with

an intensifying screen.



CHAPTER 2. MATERIALS AND METHODS 4.

2.2.13 Analysis of Gene Expression by Quantitative RT-PCR

Quantitative IU·PCR method W&6 carried out as described in Niebrs d fJI..,

,....
Total RNA, extract«! by the "SDS'" metbod from eitber fiw control animal

caps or five FGF-treated animaJ.caps, W&6 used for reverse transcription using random

primers as described on page 31. The PeR reaction for erl was carried out as 1 cycle

of 94D C for 5 minutes, 28 cycles of 94D C for 50 seconds, src for 50 seconds, and

12DC for 50 seconds; 1 cycle of 12DC for 12 minutes. Each peR reaction mixture for

erl contained O.61l11OmM dNTPs, 3pllOxTaq buffer, O.6pllOOng/pJ MTU primer,

O.6pI100ng/pl mtal primer, 1.8pl25mM MgCI" 21l11U.mix, O.31l1 AmpliTaq, O.llli

Q-3'JP-dATP and 2llli of dH,O.

EF-lo was used as an input control. Amplification of EF-lo was carried out as

1 cycle of 94°C for 5 minutes, 28 cycles of 94°C for 50 seconds, MOC for 50 seconds,

and 72"'C for 50 seconds; 1 cycle of 12"C for 12 minutes. The PCR mixture contained

O.31l11OmM dNTPs, l.SpJIOxPeR reaction buffer, O.91l1 25mM MgCl" 3111 3Jl.\i:

EF-Ia primer pairs mix, 7pl dH~, O.21l1 AmpliTaq, O.lj.d a.3'lP-dATP, and 2111

RT-mix. 2pJ of each PCR product was mixed with 21'1 loadinK buffer and Joaded

into a 6% DNA sequencing gl!I. Electrophoresis was carried out at lxTBE, 60W for

about 4 hours. The gel WIUi then fixed, transferred to 3MM paper, dried at SOOC

for 2 hours. Autoradiography was carried out by exposing the gel to a pre-ftashed4

4Tbepre-fI.ub.ilaf:oltbeX.ray6.1miacanied.outbyaqwdtapolweoftbefilmtoa~UIII

ligbtlillllb.
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Kodak X-LS film at -1O"'C with an intensifying scretD.

2.2.14 In vitro coupled transcription-translation

50

In vitro transeriptiOD-translatioD wu carried out using the TlII"r'" coupled

Reticulocyte Lysate system. The reaction mixture CODtained 25pl TlII""T rabbit retic

ulocyte lysate, 2pl Tllo""T reaction buffer, Ipl ImM amino acid mixture minus me

thionine, 1pl RNAguard, Ipl T, RNA polymerase, 4pl 35~metbionine,2pg plasmid

19 DNA (see section 2.2.11) and nuclease-free H20 to final volume 5Opl. The reac

tion mixture was incubated at JODC for 90 minutes. The translation products were

analysed by SO~polyacrylamidegel electrophoresis.

2.2.15 SnS-polyacrylamide gel electrophoresis

5J,d of above translatioll products and 10pl of 1.5 xSSB (3 partS 2x SS1J5+1

part dH20) were mixed and denatured by boiling for 5 minutes, followed by loading

onto aB% S~polyacryl&midegel'. Electrophoresis wu carried out for about 1.5hr..

in lxelectrophoresis buffer (1£ lxeleclropbore&is buffer contains 69 Tris base, 28.89

glycine and 0.99 50S.) at 30mA constant cunent until tbe front blue d~migrated to

the bottom. The gel was then &xed for 10 minutes with 45% metbooal/10% glacial

acetic acid, deswned for 10 minutes with 20% methonal/6% glacial acetic acid, and

soaked (or 30 minutes with Amplih (Amersbam). The gel was then transferred to

1 2)( SSB: SmlItAdciD& pi bu&r (UM Tria, pBU), 5ml2lm 50s, Uml,8-merc:ap\Oetbaaol,

5ml pycerol. 5ml rUf20 and • few crysWs of bromopbatol blue.
12.64ml 30% aayLamick, 2.5ml 71IIlI1izlI~ buffer (1.5M Tria, pBS.o), lOOpllm1; SDS, 4.66mI

dH20, 661'110% al11Ioonhun penu.lfatI!, aDd 4pl TEMED.
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3MM paper, dried and exposed overnight to a Kodak X-LS film.

51



Chapter 3

Results

3.1 Identification of Differentially Expressed eDNA

Fragments by Differential Display

To identify potential FGF response genes, I used the differential display method

as outlined in section 1.7. eDNA frqments were amplified from five individual5:!ts of

FGF-treated and untreated animal caps. Only tbolse cDNAs that woere diffel'entiaUy

expressed in all five sets were ch06eD for further analysis. This way I could minimize

the number of false po5jtives aDd false oeptiws. For this amplificatioo, I used the

primer T11AC. which hybridizes to the polyA tail oftbe mRNAs, and either primer

API or AP2 which raodom.Iy hybridizes to tbe first strand cDNAs (Liang and Pardee,

1992). peR products from the five sets were separated on a sequencing gel.

With tbe primer pair, TuAC and APi> about 60 eDNA fragments caDging in

size from lOObp to 700bp were amplified. With tbe other primer pair, TliAC and
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AP" about 70 cDNA fragments in the same size ranp were obtained. (Figure 3.1).

A5 can be seen in Fil. 3.1, the pattern of the amplified fragments differed marltedly

from those amplified with dilI'erent primer pairs. A total of eleven dilI'erentially

expressed bands were idmtified and one of the fragmeJlts., desigoated IV, was coosi5

tently expressed at a higher level in all five experimental groups ( Fi.gure 3.2) and,

tberefore, was chosen for further analysis.

Band IVB+ was recovered from the gel for cloning. The TA cloning kit was

used to cloDe tbe IVB+ fragmeJlt. The linearized vector supplied in this kit, pCR'"

II vector, is specifically df!l!iigned for cloning PeR products. The principle is tbat Taq

polymerase bas a nontemplate-dependent activity which adds a single deoxyadenl>

sine (dA) to the 3'-end or peR products. The pCR.... II wctor hu 3' deoxythymidine

(dT) residues which allows PeR fragments to ligate efficiently into the vector (FiS

ure 3.3). In addition, the pCR'" n vector contains T1 and SP. promoters and primu

sites, which can be used for in t1ivo or in vitro transcription of sense and antisense

RNA as well as DNA sequencing.
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Figure 3.1: DifferentLal display of FGF treated (+) and control (-) animal

caps Five individual sets of explants (5 per sample) from Rage 8 Xenopus blastulae

were treated for 30 miD in the presence (+) orab&ence (.) of lOOng/ml XbFGF. Total

RNA was extracted and reverse traDscribed with primer TIIAC. folJc:nftd by PeR

amplificatioD with primer pair TllACand APlt or primer pair TIIAC and AI',. The

PCR products were separated c.:l a sequencing gel. The five sets are labeled A, a, C.

0, E, respectively, at the top of the lanes. API or AE\. located on the top of every

two lanes indicate that those bands were amplified from either TIIAC and API or

TIIAC and AP:z, respectively. DNA molecular size markers are shown on the left.

and brackets indicate the region that is enlarged in Figure 3.2.
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Figure 3.2: A dilFerentially exprf!SSed band IV is shown in all Bve experi

mental groups This figure is enlarged from the bracketed region of Figure 3.1. The

five replicates are labeled A, B, C, 0, E. DNA molecular size markers are shown on

the left. +: indicates the FGF treated samples; - indicates the control samples. API

indicates that the bands below were amplified from primer pair TuAC and API.

Unlabeled lanes are peR products amplified from primer pair TIlAC and AP:l. Po

sitions of bands IV are indicated with arrow heads. It is clearly shown that the

expression levels of the rv eDNA are higher in the FGF-treated samples than in the

control samples in all five individual sets.
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Figure 3.3: The map of the peR™ II vector The sequence of the multiple

cloning site is shown with the peR product inserted by TA cloning (Invitrogen).

peR products usually have a single deoxyadenosine (dA) in the 3'-end because of

Taq polymerase's nontemplate-dependent activity, and the PCRTN II vector contains

3'dT residues. Arrows indicate the start oftranscription for Sp6 and T7, respectively.
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3.2 Verification of Differential Expression by DOP

PeR-Southern Analysis

Before determining the identity of the cloned cDNA fragment IV, I verified

the differential expression between the FGF-treated and the nontreated animal caps.

This is because difl'erentially displayed bands do not always indicate differential ex

pression of the corresponding cDNAs; instead, the difference may be due to technical

discrepancies or experimental errors. Northern hybridization is usually used to verify

differential expression with the differentially displayed eDNA fragments as probes.

However, I encountered a detection problem in using Northern hybridization for ver

ification. First of all, these probes &re short (usually 200-500bp) and this decreases

the sensitivity of Northern hybridization. Secondly, total RNAs were extracted from

manually dissected animal caps and it was difficult

to obtain the amount oftotai RNAs required for Northern hybridization.(usually

2Opg=at least 50 animal caps.) This combined with the fact that mRNA encoding

regulatory proteins are usually p!'ftient as low ahundance mRNAs meant that it was

not practical to screen tbe differentially expressed cDNA fragments by Northern hy

bridizatio:m. In order to get around these difficulties, I have developed a new method

to screen the differentially expressed cDNA fragments. The strategy of this method

is to reverse transcribe the mRNAs using random primers or an oligodT primer,

followed by non-specific amplification of all first strand cONAs by PCR using a

commercially available degenerate oligonucleotide primer {OOP) (Boehringer). The

amplified cDNAs are then used to cany out Southern hybridization. This method

is referred to as "DOP-PCR-Southern" method. In our case, only five animal caps
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were required for each sample.
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DOP-PCR-Southern analysis showed that the expression level of IVIJ+ was

higher in FGF-treated animal caps than in control animal caps (Figure 3.4). Histone

H4 was used as a loading control. This gave me confidence that IVB+ expression is

regulated by FGF and I proceeded with the analysis of this gene.

3.3 Sequencing of the IVB+ sequence

The next step was to sequence the IVB+ cDNA to determine the identity of this

clone. The 535bp nucleotide sequence of IVB+ is shown in Figure 3.5. Unexpectedly,

both ends of the IVB+ fragment were 8anked hy the API primer sequence. Thus,

the IVB+ fragment is a PCR product amplified by primer pair API",AP I instead of

TuAC",APl, and it is not located at the end of the full-length cDNA. A search of

the database for similarity to known sequences revealed that this cDNA represented

a novel Xenopus gene, which I have named erl (~arly response I).

3.4 Cloning and sequencing of the full length erl

cDNA

For further analysis of erl, I set out to obtain a full-length erl eDNA. This

can be done using either of two methods: The first would involve screening a cDNA

library and the second would involve PCR to amplify it from a cDNA Iibray. I chose

the latter method because of the ease and speed with which peR cloning can be
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Figure 3.4: DOP-PeR-Southern analysis ofexpression levels of erl in FGF

treated and control animal caps Explants (5 per sample) from stage 8 XenopUIJ

blastulae were treated for 30 min in the presence (+, lane 3, 4) or absence (-, lane

1,2) of 1000g/ml XbFGF. Total RNA was extracted and reverse transcribed with

either oligodT (lanel,3) or random primer (lane 2, 4), foUowed by DOP-PCR. PeR

products were separated on a 1.5% agarose gel, transferred to a nylon membrane,

followed by Southern bybridization analysis using 32P-Iabeled IVB+ CDNA as probe.

Then the blot was stripped and reprohed with 32P_labeJed Histone H4 eDNA. It is

clearly shown that the expression levels of IV eDNA were bigher in the FGF-treated

samples than in the control samples.
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APl-------->
1 CTGATCCATG 'ITCCJ.GGC'I'G A.U.'ITCCAGT TGGTATITGC UATACACAG

51 A.U.CAGAGAJ. J.GTJ.TJ.TGAJ. .u.TGATGJ.TC J.GCI'CCTCTC GJ.J.1CCJ.GJ.J.

101 TATG1.uTGG .uCJ..UCAGT .uTAGAcnc 'IT.uATGAGG CATCCACJ.J.C

151 CACTTGTCAJ. CAGJ.GAGGGC TAGATGC'TAT TCCfG.uGCA teCCACA1J.J.

201 AGGAC.uTGA GCACGCCCTA TATGUCATC 1A.U.ATCCAJ. 1TTl'GACACA

251 GAJ.GAGGCAT TGACAAGACf J.J.GATTrAJ.T GTCJ..UGCCG CCAGAGAAGA

301 ACTI'TCCGTI TCGACTGAAG J.J.CJ.J.TGTAG AllTTITGAG CllGGTCTAA

351 UGC'n'ATCG c.uAGATITC CJ.CT1CATTC AGGCTAACAA GCTJ.J.CCACA

401 AGGTCfGTTG GAGJ.J.TGTGT CGCATl'CTAC TACATGTCGA J.J...UATCAGA

451 ACGTTATCAC 'ITCTTTGCCC .uClJ.J.CACG ATTTGGAAAA .uGllGTATA

501 ATCfACATCC TGGTGTAACG GATl'ACATCC ATCAG
<---------APl

60

Figure 3.5: Nucleotide sequence of the IVB+ peR product The nucleotide

sequence numbers of IVB+ cDNA are shown on the left. The first ten nucleotides

are coincide with the API primer sequence, and the last ten nucleotides are comple

mentary to the API primer sequence. Thus, the IV eDNA was amplified from primer

pair API and API, but not primer pair TIIAC and API'
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performed. In order to clone the full length ~r1 eDNA, I designed an experiment

which consists of the following three steps; The first step is to clone the 5'-end of the

~r1 eDNA, the second step is to clone the 3'-end oCthe er1 cDNA, and the third step

is to clone the entire length of the ~rl eDNA. The strategy for cloning the 5'-end

eDNA fragment of ~r1 was to peR ampliCy it from a Xenopw stage 8 >. ZapIl cDNA

library. In this cDNA library, all the cONAl; are oriented with their 5'-ends close to

the T3 promoter and 3'-ends clO6e to the T1 promoter. The 5'-end was cloned by

using T3 primer and an erl specific primer to carry out peR (Figure 3.6).

The 3'-end of erl was cloned using the 3'-RACE method. The strategy is ex

plained by Frohman (Frohmao, 1990) (Figure 3.7). In short, first strand cDNAs were

synthesized by reverse transcription using a 35-mer primer POl! which is composed

of 15 oligodT and 20-mer adaptor. The 3'-end of the specific gene is ampli6ed from

above the RI' product by peR using a specific gene primer and the 2o-mer adaptor

primer. l

Mtal and mt~ primers were designed according to the known erlsequence (

Figure 3.8A). No PCR product was obtained with primer pair T 3 and mt32, but

a lkb eDNA fragment was obtained with primer pair mtal and T 3 (Figure 3.8B),

thus, the orientation of the eDNA fragment was detennined. It was subsequently

cloned into the pCR"" II vector, and sequenced. The lkb cDNA fragment contains

a 508bp overlap with N B+ and contains additional sequence at the 5'-end of the

erl eDNA (Figure 3.8B). Among the three reading frames, there is one completely

IPO,primer.
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!peR

j'

62

gene specific primer

Figure 3.6: Strategy for cloning the 5'<o4!nd of erl from stage 8 )" ZapIJ

eDNA Ubrary The vector has two promoters: T;) and T1 . All the cDNAs iII the

library are orientated with their 5'-end close to the T;s promoter and 3'-end close to

the T1 promoter. 5'-end of erl was cloned by PeR with the T;s primer and an erl

specific primer.
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j synlhesizetbertrststrandcDNA
by reverse lraD5CriptioD using POI primer

mRNA5'~AAAAAAAAAAAAAAA

IltSl sttand eDNA 3 111111111111111

IPeR reaction with P02 primer
and a aeoe spocific primer

genes~llCprimerS=-===- S·

63

__ So

I20__

(1'02)

P02primer

Figure 3.1: Strategy for cloning of the 3'-end of erl First strand cDNAs were

synthesized with the 35-mer primer POI, which is composed of 15 oligodT and a

20-mer adaptor PCh. Thus, all the 3'-end of the cDNAs have the 20-mer adaptor

P02 . The 3'-end or er1 was cloned by peR with the primer pair P02 and the gene

specific primer.
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Figure 3.8: cDNA map of erJ (A): Open rectangle represents the sequence of

IVB+. The positions of primer mtol and mtll2 are indicated. (B): A lkb cDNA

was cloned by PCR with primer pair T3 and matl. The open rectangle represents

the overlap of the lkb eDNA with IV IJ+ eDNA. The lkb eDNA contains additional

sequences at the 5'-end represented by a horizontal rectangle. (C): An additional

500bp eDNA was cloned by peR with primer pair T3 and OH2 . It contains 122bp

overlap with the lkb eDNA (horizontaIlined rectangle), and additional sequences at

the 5'-end (shaded rectangle). (D): A 1.6kb eDNA was cloned by PCR with primer

pair MTU and P~. It contains overlaps with the previous clones and additional

sequences at the 3'-end (vertical lined rectangle). (E): A 2.3kb eDNA was cloned by

peR with primer pair mt~ and mto1o.
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open reading frame (ORF). Since an entire ORF usually fonaws a 5'-untranslated

region which usually has stop codons in all three reading frames, it was likely that

the entire ORF had, at this point, not been cloned. Thus, the next step is to clone

more of the 5'-end sequence of erl in order to obtain the entire ORr.

A primer CH" which is complementary to the 5'-eDd sequence of the lkb

cDNA, was designed to clone more of the 5'-end erl. An additional 500bp cDNA

fragment was obtained by peR using the T3......cH, primer pair (Figure 3.8C). It was

cloned into the pCRno II vector and sequenced. As expected, it contained 122bp

overlap with the lkb DNA fragment. In addition, several 5'-end stop eodons were

found in all tbree frames, confirming that the translated 5'-end had beeo cloned. The

3'-end of erl was cloned using the 3'-RACE method with a erl gene specific primer

MTU and a po, primer (Figure 3.80). A 1.6.kb fragment was obtained, cloned and

sequenced. As expected, it contains 644bp overlap with the lkb fragment, and 528bp

overlap with the IVB+ fragment. The first in frame stop codon TAA was found at

the 3'-end of erl.

Several 5'-end and 3'-end stop oodons were found in all three frames, strongly

suggesting the entire coding region of erl was cloned. Primers mtag and mtolO' rep.

resenting the 5' and 3' ends of the cloned erl sequence respectively, were designed to

clone the entire cDNA from the stage 8 Xenopw eDNA library by PCR(Figure 3.8E).

A 2.3 kb cDNA fragment was cloned.

Sequence analysis revealed that among the six possible reading frames, the

2.3kb cDNA contained a 1479bp single open reading frame (frame+2) (Figure 3.9),
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1000;iiiiI;2 2

I I

-1 -1

:~ :~

figure 3.9: Open reading frBIne map of er1 The nucleotide numbers are shown

in the top and the bottom.The stop codons are indicated with complete vertical

lines. The metbionines are indicated with the incomplete vertica11ines. The reading

frames are shown on the left and right. It is shown that there are six possible reading

frames, and only the frame +2 contains a large open reading frame.
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bracketed by a 232bp $'·untranslated region, aDd a 629bp 3'·untransl&ted region. The

ATG initiator codon is predicted to be at nucleotidell 233--235, U this site is po5itiooed

within a Kozak COQRDIUS sequence for the start of translation (Kozak,I986), with a

purine in the -3 position aDd a G in the +4 position. The single open reading frame

is predicted to encode a proteiD of 493 amino acids, beginning at nucleotide 233 and

ending with an in·fr&me TAA stop codon at position 1112 (Figure 3.10).

A computer--&.ided searcl1 for motifs within the predicted &m.ioo acid sequence

using MOTIFS and PSORr software programs revealed that the erJ protein: CD does

not contain an N·tenninal signal sequence for transfer into the endoplasmic reticu·

lum, Q) does not contain a hydropbobic domain characteristic of transmembrane pro-

teins, Q) contains a putative nuclear loca1.ization signa1(NLS)KKSERYDFFAQQTRFGKKK

(Figuer 3.11), which conforms to the consensus sequence for a bipartite NLS (Rob-

bins et aL,I991). This sugg15ts that the erJ protein is not secreted nor is it a

transmembrane protein but instead may be localized to the nucleus. Additional ex·

amination of the sequeooe revealed the presence of a cluster of acidic boxes located in

the N·terminal region of the protein (Figure 3.11), a feature chancteristic of acidic

activation domains present in a number of transcription factors, such as GCN4 and

VP16. In addition, there is a proIine-.rich sequeoce near the C-tmninal regia of erJ

which corresponds to the PXXP motif found in aU high aflinity S~mainbiDding

ligands (Cohen et aL, 1995) (Figure 3.11), suggesting that this protein may also be

involved in signal transduction.
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Figure 3.10: Nucleotide and predicted amino acid aequence of erl Tbe
nucleotide sequence numbers of erl eDNA are 5bowm on the right and tbe amino
~~~:~~r:~~~t~~~~:::u~~ein are &bown OD the left. The TAA
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1 MAEPSLRTASPGGSAASQ..JL!

21 ~PSADMLYIEFDDEQTLE

41 E E E M LEG E Y • F T S E I ElL E R

61 ESE M P IDE L L R L Y G Y G STY P

81 LPGEEDEEDMDIDCISGCSG

101 ElK D E A I K D SSG QED E T Q S S

1211DDPTPSFTCRDYREYIRPB,

141 R C K Y F 0 T • H E lEE ESE D D E D

161 Y V P SED W K K ElM Y G S " F Q A. E

181 I P V G I C K Y RET E K V Y E I D D Q

201 L LV. P E Y V " E E R V I D FL. E A

221 S R. R T C E ERG L D A I PEG S H I K

241 D. E Q A. LYE H V K C • F D TEE A L

261 R R. L R F I V K A. A. R EEL S V V TEE

281 ECalFEQGLKAYGKDFILIQ

301 A I K V aT a S Y G E C VA F Y Y" wOO
321 IK S E R Y D F F A Q Q T R F G KKK IY I

341 L H P G V T D Y }I( D R L L DES E SAT

361 S S R A. PSPPP T T S • S. T S Q S E

381 KED eTA S •• T Q • G V S Y • G P C

401 A. I T A Y K D E A K Q G V H L • G P T I

421 S S S D P S S • E T D T • G Y IRE. Y

441 TDDSRFSBTSGKTDTIPDDT

461 • E R P I K R Q It M D S P G K EST G S

481 SEFSQEYFSBGEY.
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Figure 3.11: Potential functional domaillS of erl The amino acid sequence

numbers of the predicted erl protein are shOWIl on the left. Four stretches of pre

domina.ntly acidic residues are underlined, the proline-rich region is in boldface and

the putative nuclear localization signal (NLS) is enclosed in framebox.
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3.5 Amino acid comparison between full-length

erl and known proteins

Amino acid sequence comparison betw!:en erl and known proteins~

that erl contains three regions of similarity to the product of the rat meta6tasis

associated gene, nltal (Figure 3.12), a gene that WM isolated by diHerential eDNA

libruy screening and whose expnssion was associated .nth a metastatic phenotype

(Toh, et aI., 1994).

3.6 Northern analysis of the temporal expression

of erl in the whole embryos

Northern hybridization analysis was subsequently carried out to study the tem

poral expression of erJ at different developmental stages. An mRNA of approxi

mately 2.8kb was detected predominantly during cleavage I.Ild blastula stages, with

a slight increase at blastula stage, and little or DO mRNA present during subsequent

stages of development (Figure 3.13), as determined by densitometric analysis and

nonnaJization to histone mRNA.

3.7 Quantitative RT-peR analysis of erl

QUlUItitative FIT-peR (Niehrs, d rd, 1994) was eanied out to further v@rifythe

differential expression of erl between FGF-treated and nonnaJ animal c&p6. EF-l0

was used as the loading control. Densitometric analysis revealed that the expression
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Figure 3.12: Amino acid comparison or XftWJI''U erl to the rat 7rlta.1 A:
Schematic illustratins alipmeot of the predicted Kenopw erl protein sequeoce with
the rat mtal. The N-tennini were aligned and a gap (line) was introduced in the
Xenopw proteiD in order to align the regions of similarity (hatched) identified by
the BLAST program. White bcms indicate unique regions. B: Alignment of the
predicted er1 amino acid sequence with the mt41 amino acid sequence in the regions
of similarity iUustrated in A. The amino acid &equence numbers of the erl protein
are sbown on the top. The amino acid sequence numbers of the rat mtal protein
are shown on the bottom. Identities are indicated by tbe one--Ietter amino acid
code, conservative changes are indicated by plus sign (+) and dashes (-) indicate
non-conservative changes. The percentages of the similarity are shown on the right.
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Figure 3.13: Northern analysis 01 the temporal expression or erl in the

whole embryoa Total RNAs wue extracted &om the foUowing developmental

stages: stage 2 (z..cell stale; lane I), stage 6 (6ok:el1 stage; lane2), stage 7 (early

blastula; lane 3), stageS (mid.blastula.; 1ane4), sta,ge12(mid-pl!itula; lane5}, stage 17

(neurula; lane6), sl&ge 22 (tailbud; lane 7), stqe 30 (laoe 8), and stage 41 (tadpole;

lane 9), and loaded onto & 1.2% denaturing gel for eJectropbom;is, folknved by tranr

fer oftbe RNAs to the oylon membrane. The blot was probed with saP-labeled erJ

eDNA, then stripped and reprobed with saP-labled Histone H4 eDNA..
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level of erl in the FGF-treated (half aD hour) animal ca.- is three to four fold higher

than in the normal animal caps (Figure 3.14). This d&ta confirmed that erl level

was increased by treatment with FGF.

3.8 Coupled in vitro transcription/translation anaI-

ysis of erl

Using a coupled transcription-translation rabbit reticulolysate system, I demon

strated that eT1 can be translated in vitro. A single major translation product of

apparent molecular mass of 74kDa was obtained (Figure 3.15). FGFR's translation

product was used as a control. FGFR is a prmously cloned and characterized gene

in this laboratory and its in vitro transJation protein product is known to be 9OkOa.
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Figure 3.14: FGF-Itlmulated increase in steady-state leve1lll of erl Explanu

(5 per sample) from st&ge 8 XenopU.t bl&Stulae~ treated Cor 30 min in the presence

(+; lane 2, 4) orab&eoce (~; Jane I, 3) oC1OOogJmlXbFGF. Total RNA was extracted

and AT-PCR analysis was performed by using trl sene speci6c primer pain; mta,

and mtOoz (lane 1, 2) 01' EF-l0 gene.speci6c primer pairs (lane 3,4). PCR products

were separated on a 6% polyacrylamide urea gel and visualized by autoradiography.

Steady~state levels of erl ~re I!$timated by densitometry and oonnalization to EF

1.
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FGFR-t
(90kDa) +-erl

(74kDa)

75

Figure 3.15: Coupled in vitro transcription/translation analysis of er1

FGFR protein (lane 1) or erl protein (lane2) were synthesized in vitro using the

TNrtm coupled reticulocyte lysate system with the incorporation ar 35S-methionine.

Protein products were analyzed by 80S-PAGE, and visualized by autoradiography.

The synthesized protein bands are indicated by arrows, and molecular size of the

proteins are in brackets.



Chapter 4

Discussion

4.1 erl is a novel, potential FGF response gene

FGF has previously been demonstrated to be able to induce animal caps, which

normally form ectodenn, to form mesoderm. In this thesis I have used the PCR

based differential display method to isolate cDNAs representing novel genes inducible

by FGF in animal caps from Xenopw embryos in order to gain insight into the role of

FGP during mesodenn induction. A 532bp differentiall)" expressed eDNA fragment

was isolated and used to done a 2.3kb eDNA from a Xe1!OPW blastula library (

Gillespie, et aI., 1995), which I have named erl. The erl eDNA contains a single

open reading frame (ORF) predicted to encode a protein of 493 amino acids. The

estimated size of this protein is about 54kDa.

DOP-PeR-Southern and quantitative RT-peR analysis revealed that erl lev

els ranged from three to four fold higher in FGF-treated sample. These data confinn

76
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that erl levels were increased by treatment with FGF. The amino acid sequence of

erl was found to be UDJ'eported in XenOJIlU by database homology search, demon

strating that erl is & novel XenOJlU6 FGF-response gene.

Using a coupled transcription-translation rabbit reticulolysate system, [demon

strate that er1 can be translated in vitro. A single major translation product of ap

parent molecular mass of 74 kOa was obtained, which is greater than the estimated

size. This discrepancy could be due to the abnormal migration on 50S-PAGE, as bas

been observed in other proteins. Aberrant mobility on 50S-PAGE is usually linked

to conformation resulting from distinct features in the primary structure (Armstrong

and Roman, 1992; Traub, d aL, 1993). In this C&Se, aberrant electrophoretic mo

bility may be the function of er1's high content of acidic residues which account for

111 of the 493 residues.

A database search for homology revealed that erl contains three regions of sim

ilarity to the product of the rat metastasis-associated gene, mtal (Toh d aL, 1994),

a gene that was isolated by screeDing a differential cONA library. Subsequently, the

human and C. elegam homologues have been isolated. I The expression level of mtal

is 4-fold higher in the highly met~taticrat mammary adenocarcinoma cell lines com

pared to non·metastatic cell lines (Toh d aL, 1994). In addition, examination oftbe

expression of the mtal gene in human hreast cancer cell lines demonstrated that the

expression level of this gene is directly related to metastatic potential: the ratio of

IThe fulilengtb bumao and C. .... mlal .:DNA. have not been publi&beJ yet; I obtained

the sequenca from the Genbank.
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mtal mRNA among non-metastic, invasive, and metastic cell lines is 1:2:4 (Tob et

aL, 1995). Within regions of similarity, erJ shares 45%, 50%, and 63% similarity at

the amino acid level, respectively, with three regions of the rat mtal, Although the

overall percent similarity between erl and rat nltal was only 13%. Therefore, it is

not clear whether erl represents the Xenopus homologue of mtal. More likely, erl

is a related member of a family of proteins, or simply a protein containing some of

the same functional domains.

Those three regions of similarity are interesting since highly conserved regions

may represent functional domains of the proteins. FGF mediated signal transduction

has previously been demonstrated to inftuence cellular migration (KLimbt et aL,

1992) and tumor cell metastasis (Egan et aI., 1995). For instance, cell migration

is required during the fonnation of the tracheal system in Drosophila. Mutants of

the breathleslJ gene - a Drosophila FGF receptor homologue, result in tracheal cells

failing to migrate (KLimbt et aI., 1992). In addition, Nlli3T3 cells transfonned by

Ras or Raf, whose activation is necessary for FGF-mediated signal transduction, are

capable of fonning metastatic tumor cells (Egan et aL, 1995).

FGF signalling is also important in gastroJation movements since microinjec

tion of a dominant negative mutant of FGFR into 4-ce1l stage Xenopus embryos

causes them to have gastrulation movement defects (Amaya, et aI., 1991). The molec

ular mechanisms for FGF signalling in tracheal cell migration, tumor cell metastasis,

or gastrulation movements are not clear. Identification of erJ, whose expression level

is inducible by FGF, and which shares some similarity with a metastasis-associated
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protein, may offer an important clue to the above mec::hanisms. Clearly there is still

much work to be done to investigate erl's role in the above processes.

Computer-assisted analysis of the deduced amino acid sequence predicts that

the N-terminal region of erl includes several. highly acidic stretches, characteristic

of acidic transactivation domains, and that erl also contains a potential nuclear

localization sigDal (NLS). FGF sigDals ultimately are transmitted to the nucleus,

resulting in transcription of a selected group of immediate-early genes. The protein

products of these genes are synthesized in the cytoplasm, and many of these proteins

are translocated into the nucleus to function as transcription factors involved in

activating the expression of other genes. The presence of the putative NLS and

acidic transactivation domains in the predicted erl protein suggests a potential role

as a transcription factor. A proline-rich stretch was also found at the C-term.inal end

which corresponds to consensus sequence for the SHrbinding motif (Cohen et GI.,

1995). Growth factor receptor (GFR) complexes, such as the FGFRcomplex, EGFR

complex, PDGFR complex etc., are formed by recruiting additional proteins to the

GFRs, mediated in part by 5H3 domains (see review in Pawson and Schlessinger,

1995). The presence of the putative 5H)- binding motif in the predicted torI protein

suggests a direct involvement of erl in some signal transduction pathways.

4.2 Temporal expression of erl

Northern analysis of the temporal pattern of erl during embryonic develop

ment revealed a single erl mRNA. The estimated 2.8-kb size of the message was
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slightly larger than that of the cDNA clone. There are two possible explanations

for tbis discrepancy. Either erl mRNA has a fairly long poly A-tail (greater than

JOObp), or some sequence at the 5'-end of the untranslated region is missing. It

may be useful to detennine whether I am missing some of the 5'-sequence by car

rying out primer extension. However, for further experimentation on the function

of tbis gene, I have all the sequence I need, namely the entire coding region. erl

transcripts were detected predominantly during cleavage and blastula stages, with

a slight increase at blastula stage, and little or no mRNA present during subse

quent stages of development. The presence of erl mRNA in embryos prior to tbe

start of zygotic transcription, which occurs at mid-blastula transition ( Newport and

Kirschner, 1982), indicates that erl is a maternal message. The expression level of

erl was highest during blastula stage, coinciding with mesodenn induction in vivo.

4.3 Future investigation of erl

4.3.1 Is erl a immediately-early response gene to FGF?

The expression level of erl in the cytoplasm was increased 30 min after ad

dition of FGF, suggesting a transcriptional activation of the gene within 10 min

(Rosa, 1989). This demonstrated that the increase in erl occurs early during the

cellular response to FGF. The possibility that erl is a FGF early response gene will

be investigated further. By definition, the expression of early response genes are not

dependent upon protein synthesis, and so are Dot inhibited by the protein synthesis

inhibitor cyclohexmide. Therefore, whether erl is an early response gene will be de-
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tennined by comparing the induction levels of ~rl when the animal caps are induced

by FGF in the presence and ab&ence of cycloheximide.

4.3.2 Is erl expression necessary for mesoderm induction?

Northern results revealed that ~rJ was expressed during mesodenn induction

and gastrulation stages, with the highest expression level during the blastula stage,

suggesting a possible relationship between erl expression and mesodenn induction.

Besides temporal expression, spatial expression also usually coincides with a gene's

endogenous function. For instance, &iamoi8, a Xrnopw homeobox gene, is expressed

in the marginal zone and vegetal pole, but not in the animal pole (Lamaire et oJ.,

1995). F\1rthennore, iD situ hybridizatiion results revealed that it is mainly expressed

in the dorsal-vegetal ceUs of the stage 10 Xenopw embryos. These comspond with

its endogenous function-to be able to induce a complete secondary axis (Lemaire et

oL,I995). Therefore, it is helpful to study erl's spatial expression pattern, namely,

to compare erl 's mRNA level among animal pole, marginal zone, and vegetal pole;

and to detect erJ 's spatial expression by perfonning in situ hybridization.

A.1imal caps can be induced to fonn mesoderm by both FGF and activin as well

as by endogenous signals emitted from the vegetal poles. Some previously identified

mesodermal genes, such as Xbra, can be induced by all three types of inducers (Smith

et oL,I991). To date, genes iDduced by both FGF and aetivin, such as Xnot (Von

Dassow et aI., 1993), or solely induced by activin ,such as goo&ecoid (De Robertis et

aLl, have been identified. However, no genes have been identified that are induced

by FGF alone. Further experinJents will be carried out to investigate whether erJ
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can be induced by activin or the vegetal pole cells. The results may help us to

understand more about the relationship among the three types of inducers.

4.3.3 Prospective investigation of erl '8 endogenous function

mRNAs can be translated faithfully in vivo by microinjecting them into 2-ceU or

4-cell Xenopus embl)'06. Some genes' functions have been identified by microinject

ing their mRNAs into the Xmopus embryos at 2-ce1l or 4-<:elI stages. For instance,

microinjection of goo$t!a)id mRNA into two ventral blastomeres of 4-ee1l embryos

results in the fonnation of the secondary axis, which mimics the properties of Spe

mann's organizer (De Robertis d aL, 1992). This indicates that goo8ecoid may play

an important role in organizer activity. Therefore, erl 's endogenous function can be

studied by this method.

When embryos are injected with bFGF or kFGF at the 2-<:ell stage, followed by

cutting the animal caps at blastula stage, the animal caps undergo elongation, and

cardiac actin is activated, even when the animal caps are only cultured in salt solu

tion (Thompson and Slack, 1992). Mesoderm induction is cODcentration-dependent.

Recently, it bas been shown that over expression of Xbra, a FGF response gene, in

the animal pole causes mesoderm formation, with different types of mesoderm being

fonned in response to different concentration of Xbra (O'Reilly et aI., 1995). Thus,

it will be helpful to determine whether animal caps from erl mRNA injected em

bry06 undergo morphological changes and gene activation, as well as concentration

dependent mesodennal cell differentiation.
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Blocking FGF intracellular signal transduction should effectively inhibit the

expression of FGF response genes. For instance, microinjec::tion of dominant Deg&tive

mutant of FGFR (XFD) inhibits the Xbra expression (Schulte-Merker and Smith,

1995). Therefore, we will investigate whether the same happens to erI when XFO

mRNA is injec::ted into Xenopw embryos. Isaacs and his colleagues have shown that

gastrnlation movements on the dorsal side of the embryO& are more dependent on

FGF than the ventral side of the embryos (Isaacs et aL,l994). This result seems

to be contradictory to the traditional view that FGF induces ventral mesodenn,

and activin induces dorsal mesodenn. Injection of erl into the equatorial region

of the two ventral blastomeres or to the two dorsal blastomeres of the embryos at

4-cell stage will help to determ.i.Ile erl's function in dorsal and ventral mesoderm

differentiation.

As mentioned earlier, the predicted erl protein contains several putative func

tional domains. fUnctional domains usually play very important roles in genes'

function. Microinjection of the mRNA tra.n.scribed from the constructed cDNAs,

whose functional domains are deleted, into the Xenopw embryos usually results in

nonnal development disruption. For instance, a mutant cDNA of Xbra was 0011

structed by replacement of the transcriptional activation domains, located at the

C-tenninal regions of Xbra, with the repressor domain of the Drosophila engrailed

protein (Schulte-merker and Smith,1995). Microinjection of mRNA transcribed from

this chimeric cDNA generated Xenopw embryos with posterior mesodenn and axis

development defects. Thus, for further investigation of erl's endogenous function,

It will be important to construct a series of functional domain deleted erl cDNAs,
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inject their RNAs to the 2 or 4-ceU stages and study the development of these em

b""".

In summary, I have cloned a eDNA encodiog a novel Xenopus FOF response

gene with the RT·PCR based ditrerentiaJ. display method. This is the first time

that this method has been used to clone mesodennal response gene. Our results

demonstrate that the differential display is a powerful strategy to isolate genes which

are inducible by FOr or other inducen.
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