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ABSTRACT

In this study, alkalization of chitosan before crosslinking was applied in to enhance the

adsorption capacity of the modified chitosan. Competitive adsorption of Ag (I) and Cu (II)

from bimetallic solutions was studied using the newly synthesized tripolyphosphate

crosslinked chitosan beads. Results indicated that alkalization before crosslinking helps

to protect free-amine groups from crosslinking and hence increases the uptake capacity

and selectively of the synthesized beads towards Ag (I). The maximum uptakes of Ag (I)

and Cu (II) were 82.9 and 15.5 mg/g respectively at room temperature with an initial

concentration of each metal being 2.0 mmol/L and the sorbent dosage of 1.0 g L-1.

Langmuir isotherm and pseudo-second order kinetic model provide better descriptions of

adsorption isotherm and kinetics of metal ions on sorbent surfaces. Analyses from FT-IR

and XPS confirmed that free amine, hydroxyl and P3O105- groups are involved in metal

binding with amine and hydroxyl groups more selective to Ag (I).

Then, continuous adsorption with the newly synthesized chitosan beads was simulated

using the lumped kinetic model. According to the parameters obtained in the batch

adsorption, the overall mass-transfer coefficient (Kf), and axial dispersion coefficient (DL)

were determined using the empirical correlations. The value of Kf for Ag (I) is in the

range of 5.028×10-5 s-1 to 8.389×10-5 s-1, the value of Kf for Cu (II) was in the range of

8.000×10-5 s-1 to 1.283×10-4 s-1; The range of axial dispersion coefficient for Ag (I) and

Cu (II) were both varying from 1.806×10-4 cm2/s to 1.778×10-4 cm2/s. Results from the

breakthrough and elution profiles indicated that decreasing the flow rate, sample
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concentration and injection time, or increasing the bed length could enhance the

separation of the two metal ions. Besides, it was found that concentration overload by

increasing the sample concentration is more effective to improve the separation of two

metal ions in fixed-bed column than volume overload by increasing the injection time.

In conclusion, the newly synthesized chitosan-based biosorbents showed great selective

adsorption for Ag (I) in bimetallic solutions, and the simulation studies provided good

potential in industrial applications to recover precious metal ions from water or

wastewater.
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Chapter 1 Introduction

1.1 Background

Due to the rapid industrialization the global metal demand is ever increasing, but the

reserves of high-grade ores are diminishing. It is therefore important to explore the

alternative sources of industrial metals. Concurrently, the rapid industrialization generates

a variety of industrial wastes, which usually contain toxic heavy metals. Metal

accumulation in the environment as a result of mining and metallurgical activities is

arising as a matter of serious concern. The recovery and/or removal of metal ions from

hydrometallurgical waste solutions prior to their release to the environment are essential

in preserving the ecosystem as well as from an economical perspective.

Silver is one of the most essential elements in nearly every industry, such as ethylene

oxide industry, photo voltaic industry, batteries, water purification, and even in medical.

In 2010, it was reported that the industrial demand of silver was 13.8 million kg and

forecasted to be 18.8 million kg in 2015 ("The Future of Silver Industrial Demand ",

2011). Silver can be obtained from three sources: (1) silver ores, (2) by-products of other

metal ores, (3) wastewater from photographic processing industry. Although there are

some silver-bearing ores on the earth, none of them contains silver as its major

component. In the province of Newfoundland and Labrador (NL), silver has been found

to be distributed with relatively low contents in massive base metal sulfide ores. It has

been reported there would be up to 1600 g silver, 50 g gold and a few amount of other

precious metals present per 1000 kg of copper ore in NL (Yao, 2014). After floatation of
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a typical silver-bearing ore, the concentrate probably contains 1.7% silver, 10-15% lead,

and 10-15% copper (Hoffmann, 2015). Green and cost-effective methods are required to

recover the relative low content of silver from flotation concentrates.

Currently, three methods are extensively used to extract or recover silver ions from

aqueous solution: chemical precipitation, electrolytic refining and biosorption. Chemical

precipitation is the oldest technique which consumes many chemicals and produces solid

waste with metallic compounds. Electrolytic refining is widely applied for silver

extraction or recovery industry. Generally, a direct electrical current flows through

silver-bearing solution between two electrodes, and then the silver ions are reduced on

the cathode (Hosseini et al., 2005). However, the low concentration of silver in the

leaching elution increase the operation cost of conventional methods. Biosorption,

especially with the dead biomass, is well-known to have good removal and recovery

abilities in the diluted solution with lower operation cost. Recovery of silver through

biosorption is beneficial from both environmental and process-economic perspectives.

However, selecting proper biomass from the huge biomass pool is the key when applying

biosorption, because various biomass materials have distinct affinities for certain metals.

The well-known biomass capable of binding silver is fungi, yeast, chitosan, and some

resins (Das, 2010). Chitin and chitosan, extracted from shrimp and crab shells, have

emerged as promising biosorbents because of their high affinity to metals and large

quantities in the world, especially in NL. Particularly, chitosan is a more flexible and

soluble polymer than chitin, which is more popular in different applications as solutions,

gels, or film and fibers (Rinaudo, 2006). The presence of amino groups makes chitosan an
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efficient metal scavenger, capable of retaining metal ions from wastewater (Kyzas et al.,

2009; Machado et al., 2009; Monier, 2012; Ngah & Fatinathan, 2010; Vijayaraghavan et

al., 2011; Zhang et al., 2015). Nevertheless, the poor stability of chitosan in aqueous

acidic media limits its application as a biosorbent, because many industrial effluents tend

to be acidic. Chemical modifications of chitosan are thereby essential to improve its

chemical stability, mechanical strength and adsorption capacity in acidic media.

Although numerous researches dedicated to the sorption of metal ions by modified

chitosan, most of them focus on the evaluation of sorption performances and only a few

of them aim at gaining a better understanding of sorption mechanisms. Moreover, the

majority of studies in the biosorption area focused on the sorption of monometallic

system; insufficient research has been carried out for the competitive adsorption from

bimetallic or multi-metallic environment. It was also noted that comprehensive modeling

and simulation of the fixed bed adsorption of metal ions in the biosorption area were

seldom reported. Compared with the stirred-tank biosorption process, the dynamic

column process is preferred because it is more productive, easily to be recycled and

produces less secondary waste. Mathematical modeling of fixed bed biosorption is an

efficient alternative to experimental investigation for a good prediction on the

selective/competitive uptake of metal ions under different operating conditions.

1.2 Objective and scope of study

Based on the importance of the silver recovery in the future and the lack of related

research of eco-friendly biosorption process in the area, the objectives of this study are to
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a) synthesize the crosslinked chitosan beads to selectively adsorb silver in ionic form

from bimetallic solution; b) identify the competitive biosorption mechanism of silver and

copper on biosorbents c) determine the competitive adsorption isotherm and kinetic

parameters for the uptake of silver and copper ions on the prepared chitosan beads; d) use

a proper mathematical model to simulate the fixed bed adsorption of silver and copper

ions under various conditions.

The scope of the study is as follows:

a)Biosorbent preparation

Chitosan was chosen as the raw biomass to prepare biosorbents for silver and copper

uptake and TPP was chosen as the crosslinking agent. Design of experiments (DOE)

was applied to screen the proper crosslinked chitosan beads with high silver uptake

capacity and selectivity in binary solution.

b)Biosorption equilibrium and kinetic studies

Through the isotherm study, the biosorption equilibrium of silver and copper can be

quantified. Kinetic studies can give information of the mechanism of biosorption and

the rate-controlling steps.

c)Identification of biosorption mechanism

Metal adsorption through biosorption is complex and various with different

biosorbents and metals. Thus, potential implementation strategies should be involved

to support the results of sorption equilibrium and kinetic studies, such as FTIR, XPS,
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and XRD, which are essential to identify the interaction between metals and

bisorbents.

d)Simulation of fixed bed adsorption of silver and copper ions

Linear driving force model was selected for the simulation of fixed bed adsorption of

silver and copper ions by the newly synthesized chitosan beads. Empirical

correlations were used to estimate two important model parameters, axial dispersion

coefficient and lumped mass transfer coefficient. The effects of flow rate, bed length,

sample concentration and injection time on the breakthrough and elution of silver and

copper ions from the column were studies.

1.3 Thesis Outline

This thesis includes five chapters. Chapter 1 is the introduction that consists of the

background, scope of research and the objectives of this study. Chapter 2 mainly reviews

the most relevant research on the biosorption of silver. Chapter 3 presents the synthesis of

the crosslinked chitosan biosorbent, the isotherm, kinetic and desorption studies of silver

and copper ions on the newly synthesized sorbent, as well as the potential sorption

mechanism. Chapter 4 shows the modeling and simulation of fixed bed adsorption of

silver and copper ions on the synthesized various operation conditions based on the

isotherm and kinetic parameters obtained through batch experiments. The major

conclusions from this study and recommendations for future works are summarized in

Chapter 5.
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Chapter 2 Literature Review

2.1 Importance of metal recovery in industry

Along with the advancement of industry, more metals, especially precious metals, have

been used in different areas, resulting in a noticeable increase in the volume of aqueous

wastewater produced with metal ions. The direct deposal of wastewater is not only

damaging to the environment, but also a waste of resources. Heavy metals are barely

degraded in soil or water by microorganisms and have serious effects on living creatures

(Lenart-Boroń & Boroń, 2014); most precious metals are scarce and non-renewable on

the earth but irreplaceable in industry. At present, conventional methods, for the removal

of metals and industrial cycling techniques have been combined to deal with those types

of wastewater, such as chemical precipitation, membrane and ion exchange (Peter, 1995).

However, due to the low concentration of metal ions in wastewater, the cost of operation

is higher than the profit from the recycled metals and the secondary pollution, e.g. sludge

cannot be avoided. Therefore, an alternative method is needed with efficient recovery of

metals from wastewater to develop a win-win situation between the environment and

industry. Recently, biosorption has been proposed and is regarded as a promising method

to remove and recycle metal ions in the wastewater on account of its inexpensive

resources and high efficiency in concentrating metals from even very dilute aqueous

solutions (Fu & Wang, 2011).
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2.2 Biosorption and biosorbents

2.2.1 Available raw materials

Current research in this area focuses on a number of solid materials for biosorption, and

microorganisms are one of the most popular materials. Generally, all types of

microorganism have good uptakes towards all types of metal ions. For example, the

capacity of Pseudomonas putida (a type of bacteria) for Cu(II) is 96.9 mg/g (Uslu &

Tanyol, 2006); one gram of Cladosporium cladosporioides (a type of fungi) can adsorb

81mg Au(III) (Pethkar et al., 2001); and the capacity of Fucus vesiculosus (a type of

algae) for Au(III) is 69 mg/g (Mata et al., 2009). Although living biomass has high

capacities for metal ions, non-living biomass is preferred because of its low cost, simple

operating environment, etc.

Besides, other biomass was also reported (Park et al., 2010) to have good performance

the in biosorption of metals, such as industrial (activated sludge, food/beverage wastes)

wastes, agricultural (rice straws, wheat bran) wastes, natural residues (tree barks) and

other biomaterials (Chitosan-driven materials, cellulose-driven materials). When referring

to the activated sludge, which has two existing forms, the maximum biosorption

capacities of aerobic activated sludge for Cu2+, Mn2+, Zn2+, and Fe3+ are 65.79, 44.84,

64.94, and 75.76 mg/g, respectively, while the capacities of anaerobic activated sludge

are 59.88, 49.02, and 62.50, respectively (Wu et al., 2012). Wheat bran has been studied

in the biosorption of Cd(II), Pb(II), Cr(III), Cr(VI), Cu(II), etc. and the capacities of

wheat bran are different in each case corresponding to the variation in the structures of



8

wheat bran (Farooq et al., 2010). Marin and Ayele (Marin & Ayele, 2003) found that the

preference of spruce sawdust for metal ions are Zn < Ni < Cd < Cu < Pb due to the

different cations of the sawdust in the biosorption process. It is reported that

chitosan-based materials have outstanding sorption for toxic metals (Hg), precious metals

(Pd, Pt) and metal anions (Mo and V) and can be modified to have selectivity for the

target metals (Wang & Chen, 2014).

Though research on the biosorption has been done for years and many raw materials were

applied, exploring better biosorbents with lower cost and higher efficiency is needed to

deal with more complicated situations arising with the development of industry. Chitosan,

having around 70-90% deacetylation of chitin, is one of the cheapest and most abundant

biopolymers in the world (Wlnterowd, 1995). It is mainly sourced from crab and shrimp

shells, and some are extracted from fungal biomass, insect cuticle or squid pen (Eric

Guibal, 2004). Although chitin can be used as biosorbent whose cost is lower than

chitosan, the capacity of chitosan is five or six times greater than that of chitin due to its

free amino and hydroxyl groups (Bailey et al., 1999). Moreover, chitosan is well-known

for its unique properties, such as biodegradability, hydrophilicity, non-toxicity, and

adsorption capacity (Ngah et al., 2011). Therefore, an increasing number of researchers

began to study the application of chitosan in biosorption.

2.2.2 Chitosan based biosorbents

Among a variety of raw materials, chitosan has attracted special attention by researchers

because of two major merits: its low cost, which is related to it being the second most
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abundant polysaccharide in the world after cellulose (Peter, 1995); and its outstanding

adsorption behavior, especially for metal ions.

Chitosan is the N-deacetylated form of chitin, which is normally hydrophobic in aqueous

systems at near neutral or higher pH (Kumar, 2000). It has two functional groups in its

structure: amine groups and hydroxyl groups, whose components, N and O, are the key

atoms for adsorption. It has been proven that the binding capacity of chitosan is more

than 1 mmol metal/g, which is larger than that of other materials (Masri et al., 1974). In

recent years, chitosan has been investigated mainly on the biosorption of

biomacromolecules (e.g., dye, peptide, enzyme, protein), heavy metals, and precious

metals (Kumar, 2000). As for biomacromolecules, it is reported that, due to its unique

polycationic structure, chitosan has outstanding behaviour for adsorbing many classes of

dyes, including disperse, acid, reactive, sulfur and direct dyes (Crini & Badot, 2008). For

example, the capacity of chitosan for acid dyes can reach 600-900 mg/g (Wong et al.,

2004); the mechanism of this adsorption is mainly the attraction between anionic

sulphonate groups of dissolved dye molecules and the protonated amino groups and the

alkyl groups. Another major biosorption of biomacromolecules is drug delivery (e.g.,

insulin, antitumor, ocular) because the chitosan matrix formation can swell gradually in

an acid solution and has a mucoadhesive cationic nature (Kumar, 2000). In addition,

chitosan nanoparticles are widely applied in gene delivery due to the positively charged

amine groups (Duceppe & Tabrizian, 2010). In the adsorption of metal ions, heavy metals

have been widely studied: cadmium (Cd), mercury (Hg), copper (Cu), nickel (Ni), zinc

(Zn), lead (Pb), manganese (Mn) and iron (Fe). For instance, Cd is extremely toxic to
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humans and the ecosystem, even in low concentration; it was found that, with the same

amount of activated carbon and chitosan, the adsorption capacities of Cd are almost the

same, but activated carbon is much more expensive (Hydari et al., 2012). Besides, Cu(II)

is mostly common in wastewater and its removal has been studied for years. Chitosan

beads showed excellent adsorption capacity for Cu (80.71 mg/g); this value is slightly

lower than that of chitosan flakes, in which the capacity of Cu is 100 mg/g (Ngah et al.,

2002). The capacity of Cu is much better than that of algae and bacterium whose

capacities are between 30-48 mg/g (Zhou et al., 2009). Because of the promising

performance of chitosan in adsorbing heavy metals, some researchers started to study the

application of chitosan in recovering precious metal ions in the aqueous system. The

known factors affecting adsorption are pH, temperature, some chelating ions, and other

metal ions. Based on the research (Laus et al., 2010), Cd(II), Cu(II) and Pb(II) have the

optimum pH values for adsorption at 7.0, 6.0, and 5.5, respectively. However, the

optimum adsorption condition of different precious metals varies according to valence,

atomic radius and ionization energy. For example, with the increase in pH, the adsorption

capacity of chitosan gel for Au ions remained constant until pH was greater than six; for

Pt, the adsorption decreased when pH > 4 (Fujiwara et al., 2007).

Although chitosan is a promising biosorbent with unique merits, it still has some

drawbacks that affect its application in industry. Chitosan is a semi-crystalline polymer

because its insolubility will be changed when immersing it into organic or mineral acids,

such as acetic acid and hydrochloric acid (Fujiwara et al., 2007). The amino groups on

the molecular backbone are one of the most important adsorption sites, but they can also
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be protonated under acidic conditions and increase the solubility of chitosan (Li et al.,

2008). Generally, most wastewater is slightly acidic so it is important to make chitosan

insoluble. Therefore, modifications are made on either primary amino groups or

secondary hydroxyl groups of chitosan before utilizing it. Crosslinking has been widely

used, which involves introducing new molecules to react with amine groups to reduce

potential protonated sites; this reaction also decreases the adsorption capacity of chitosan.

For example, the capacity of chitosan for Fe(III) is 47 mg/g, but that of

epichlorohydrin-crosslinked chitosan (EPI-chitosan) is only 34 mg/g; moreover, the

capacity of glutaraldehyde-crosslinked chitosan (GLA-chitosan) beads for Fe(III) is just

1/3 of that of chitosan beads (Suc & Ly, 2013). Furthermore, it was found that, compared

with chitosan found in nature, GLA-chitosan has lower adsorption ability than

EPI-chitosan because of the different crosslinking process (Baroni et al., 2008). The

adsorption capacity varies when changing the molar ratio of the crosslinking agent and

chitosan (Baroni et al., 2008); therefore, though crosslinking would reduce the potential

binding sites on the chitosan, optimal modifications can strengthen the mechanism and

insolubility as well as to retain excellent adsorption performance.

Grafting new functional groups to form chitosan derivatives or complexes has been

studied to improve the capacity of cross-linked chitosan. Three heteroatoms are most

commonly introduced: nitrogen from an amino acid or N-carboxymethyl; phosphorus

from orthophosphoric acid or methanesulphonic acid; and sulphur from carbon disulphide

or thiourea (Varma et al., 2004). More specialized structures, such as crown ethers or

EDTA can also be grafted on the chitosan. For instance, chitosan complexes containing
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montmorillonite, have been developed to adsorb dye in the wastewater, which has 53

mg/g capacity of Congo red (Wang & Wang, 2007). It was also reported that

N-alkylation of chitosan with cellobiose has better adsorption performance of Pb(II) than

natural chitosan, because it introduced other binding sites (though the reaction consumed

some amine groups on the chitosan) (Pestov et al., 2008). Magnetic composite, a special

component like Fe3O4, could also increase the biosorption capacity of chitosan (Chen et

al., 2012; Zhou et al., 2010). Moreover, it was reported that grafting an S atom to

chitosan usually increases the sorption capacity and selectivity of ‘‘soft’’ metal ions (such

as Ag and Pt) (Wang & Chen, 2014). Arrascue et al. (2003) found that chitosan grafting

of sulfur compounds increased the capacity of Au(III), which is larger than 2 mmol/g

with GLA crosslinking. Interestingly, different chitosan derivatives or complexes

selectively adsorb specific types of organic compounds or metal ions (Wang & Wang,

2007), which benefits the recovery process in industry. For instance, it was found that

GLA-chitosan has a higher capacity of Au(III) (565 mg/g) than that of Pd(II) (180 mg/g),

indicating that this adsorbent can selectively adsorb Au(III) from at least binary solutions

(Mack et al., 2007). Imprinting technology is developed to enhance the selectivity of

chitosan and was recently proved to be effective. It was found that the imprinted chitosan

beads have much higher adsorption capacity and selectivity for hemoglobin than the

non-imprinted ones (Guo et al., 2004). An enhancement by 20% in the removal capacity

of Ag(I) was also developed in the Ag-imprinted chitosan membrane when comparing

that of the non-imprinted one (Shawky, 2009).
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Another problem of chitosan in adsorption is its slow adsorption kinetics, which is mainly

caused by the mass transfer of biosorbates from the bulk of the liquid phase to the

adsorption sites inside the particles. Porosity measurements have verified the fact that

chitosan is formed by a single-phase homogeneous gel matrix rather than a two-phase

heterogeneous one (Guibal, 2004). Therefore to improve the diffusion property, physical

modifications are applied to form different porous polymers, such as nanoparticles, beads,

membranes, sponges, and fibers. Meanwhile, these modifications on chitosan structures

can also enhance the permeability, selectivity and durability of biosorbents (Wang &

Chen, 2014). Cross-linked chitosan beads are studied to replace chitosan flakes because

of its expansion of the polymer network, improved mass transfer properties, and

enhanced hydrodynamic properties (Guibal, 2004). Fixed-bed columns are usually filled

with chitosan beads due to the easy recycling of the beads after adsorption. Chitosan

fibers have been considered for the recovery of dyes and amino acids; hollow fibers are

mainly applied for the continuous adsorption of target metals and their desorption

Guibal, 2004).

In general, chemical modifications are the most influential factors for in the adsorption

capacity of chitosan; however, most of the chemicals used are more or less toxic, such as

glutaraldehyde and thiourea, which weaken the advantage of biosorption.

Tripolyphosphate (TPP) is known for its environmental-friendly properties and low cost,

leading to the studies and development in wide-spread applications. There are two

crosslinking processes between chitosan and TPP: coacervation and ionic-crosslinking.

The former is cured in pH values higher than 7 and fewer P3O105- can react with amine
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groups, while the latter is cured in pH values lower than 7 and P3O105- was attracted with

protonated amine groups (Mi et al., 1999). However decreasing the solubility of chitosan,

TPP also introduces -OH (one possible binding site) to chitosan biosorbent. In the past

few years, TPP has been mainly used in the synthesis of chitosan biosorbent for drug

delivery because of its simple preparation, non-toxicity and undesirable effects. In

addition, due to the electrostatic interaction between chitosan and TPP, the particle size

can be controlled by altering the chitosan: TPP ratio, pH and the molar mass can be

changed, making it a promising drug delivery agent (Morris et al., 2011). Shu & Zhu

(2002) developed TPP-crosslinked chitosan beads with good mechanical strength which

need approximately ten times higher force to break the beads than that of

sulfate-crosslinked chitosan or citrate-crosslinked chitosan beads. Recently, the unique

merits of TPP-crosslinked chitosan have caught scientists’ attention and led to studies on

its adsorption of organics (dye and protein) and metals. S. Reyna G. applied

TPP-crosslinked chitosan into the adsorption of red dye and the results showed nearly a

98% removal ratio (Sanchez-Duarte et al., 2012). Similarly, Z. Tang found that the

TPP-crosslinked chitosan has a fast adsorption rate of neutral lipase and almost 98%

removal ratio as well (Tang et al., 2007). In addition, there is some research on the

adsorption of metal ions through TPP-crosslinked chitosan, such as the uptake of copper

ions by TPP crosslinked magnetic chitosan (Lee et al., 2001), or adsorption of Ag(I) and

Au(III) by TPP crosslinked magnetic chitosan (Donia et al., 2014); but they are not

applied into industry.
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Though numerous chitosan-based biosorbents are being developed and the number is

increasing, the materials to modify the chitosan are limited; thus, the process of synthesis

is the key which leads to the various types of biosorbents. To identify the characteristics

of different chitosan biosorbents, analytical techniques are needed during the biosprption

research. Brunauer–Emmett–Teller (BET) is a method to test the specific surface area of

a material, but it does not work effectively when applied to the measurement of chitosan

biosorbents. The scanning electron microscope (SEM) is widely used to measure the

surface morphology of chitosan biosorbents by scanning analytes with a focused beam of

electrons. It shows visible images of surface structures of specimen to supplement its

adsorption mechanism through various analytical modes. Whereas the resolution of the

SEM is not high enough to show individual atoms, the transmission electron microscope

(TEM), measuring the inner morphology, can supplement the limitations of SEM. TEM

transmits a beam of electrons through an ultra-thin specimen, which makes them interact

with the specimen when it passes through ("Transmission electron microscopy,"). In

addition, the determination of active sites on the biosorbents is important to measure the

potential capacity and possible binding process; and those functional sites on chitosan are

majorly determined by the degree of deacetylation (DD) and the degree of substitution

(DS). Potentiometric titration is widely used to estimate DD and DS, which is similar to

direct titration of a redox reaction (Kong, 2012). Besides, nuclear magnetic resonance

(NMR) is applied to identify the degree of N-acetylation (DA), which reflects chemical

structures, properties and structure–properties relationships of biosorbents (Kasaai, 2010).

To analyse the specific functional groups, Fourier transform infrared spectroscopy (FTIR)
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is the most widely used technique to obtain an infrared spectrum of absorption and it can

simultaneously collect spectral data in a wide spectral range ("Fourier transform infrared

spectroscopy,"). Based on the peaks of different spectral ranges, functional groups on the

sorbents can be characterised. Further, the bonds between biosorbents and sorbates can as

well be identified through the shifts of characteristic peaks. In order to study the strength

of the bonds and the states of involved atoms, energy dispersive X-ray spectroscopy

(EDS), X-ray diffraction (XRD) analysis and X-ray photoelectron spectroscopy (XPS)

are applied the biosorption research. EDS is an analytical technique based on the

principle that each element has its own atomic structure with a unique se t of peaks on the

X-ray emission spectrum ("X-ray spectroscopy "). It is usually used to supplement the

analysis of SEM for elemental analysis or chemical characterization of specimen. XRD is

good at analysing the crystallographic structure and chemical composition of metal

bounded on the biosorbent, using X-ray, neutron, or electron diffraction on powder

samples ("X-ray diffraction,"); particularly when reduced metals are produced during the

biosorption process. XPS is a surface-sensitive quantitative spectroscopic technique that

measures oxidation state of metal bounded on the biosorbents and its ligand effects

("X-ray photoelectron spectroscopy,"). According to the survey spectra and high

resolution spectra, different binding sites can be assigned by the calculated binding

energy. With the application of a least-squares peak analysis software, XPSPEAK, the

shifts of peaks of binding sites and the element atomic percentages will be integrated and

calculated; then the state of metal in the bond can be tracked in the existing database

(Amaral et al., 2005). Additionally, because the diffusion is a controlling process in the
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uptake by chitosan-based biosorbents, specifically the ionic crosslinked chitosan beads;

thus the swelling ratio is introduced to test the swelling characteristics of biosorbents.

This test is carried out in dissolution media at different pH values, in which the

biosorbents are immersed for a certain time; and then the change in weights of

biosorbents is measured.

The performance of biosorbents is directly reflected by its capacity and removal ratio,

and supplemented by its equilibrium isotherms and uptake kinetics. There are three

commonly used methods to determine the concentrations before and after adsorption:

atomic absorption spectroscopy (AAS), inductively coupled plasma (ICP) and

UV-Visible spectroscopy. In analytical chemistry, AAS can be used for measuring the

concentration of a particular element without the effect from other existing elements in

the sample ("Atomic absorption spectroscopy,"). Moreover, the continuous source AAS

is widely-spread in the measurement of continuous adsorption, such as the column test.

ICP has wide applications where a high-density plasma is needed ("Inductively coupled

plasma,"); optical emission spectrometry (OES) is one of its applications which is an

atomic emission spectroscopy for the detection of trace metals; mass spectrometry (MS)

is a mass spectrometry for detecting metals and several non-metals at low concentrations.

UV-Vis spectroscopy is mainly used for the quantitative determination of organic

compounds and biological macromolecules, sometimes for the qualitative determination

of metal ions; and its continuous spectrum can be used for the continuous adsorption as

well. Equilibrium studies, measuring the sorption capacity, are commonly known as

adsorption isotherms; these plot the concentrations of the adsobate in the solid phase
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versus that in the liquid phase, so that the most fitted appropriate correlation for this

equilibrium curve can be established (Wang & Chen, 2014). According to various

experimental data in different biosorption systems, increasing equilibrium isotherm

equations are created, including Langmuir, Freundlich, BET, Toth, Temkin,

Redlich-Peterson, Sips, Frumkin, Harkins-Jura, Halsey, Henderson and

Dubinin-Radushkevich isotherms (Wang & Chen, 2014). In fact, those existing isotherms

are only empirical equations with thermodynamic assumptions and restrictions, which

cannot 100% fit any equilibrium curve; and researchers will find more equilibrium

equations based on the new biosorption systems. However, a mathematical equilibrium

isotherm is essential for obtaining reliable prediction of adsorption parameters to

quantitatively compare the performance of different biosorbents in varied experimental

conditions (Crini & Badot, 2008). An ideal biosorbent for recovery should not only have

a large capacity but also a fast adsorption rate. Thus, adsorption kinetics are studied to

explain the adsorption rate and also to provide information on the affecting factors (Crini

& Badot, 2008); it plots the concentrations of the adsobate in the liquid phase versus time

or the uptake capacity versus time, so that the most fitted appropriate correlation for this

kinetic curve can be established. The pseudo-first-order equation, the

pseudo-second-order equation and intraparticle diffusion models are most commonly

used in biosorption. Though biosorption kinetics studies are not developed because of the

difficult simulation of complex sorption processes, it is indispensable when studying the

adsorption mechanism, the surface properties and affinity of the biosorbent as well as the

equilibrium isotherm.
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2.3 Adsorption mechanism

The interaction between biosorbents and biosorbates depends on the biosorbates, their

chemistry, their chemical and physical nature, the pH of the solution, and other

components in the system (Wang & Chen, 2014). In general, the affecting factors can be

divided into two types: physical and chemical factors. There are four main categories of

physical ones: the physical nature of the material, source and synthesis, process

conditions, and physical properties of the biosorbents (Gerente et al., 2007). For example,

the value of pH will affect the competition on the binding sites between metal ions and

protons (Gerente et al., 2007). The parameters that affect chemical adsorption are solution

pH, biosorbate selectivity, and biosorbent structure. For instance, the degree of

deacetylation of chitosan influences the density of amine groups on the surface of

chitosan and therefore the capacity for metal ions (Gerente et al., 2007). Because of those

parameters influencing the adsorption performance, the mechanism is composed of three

categories: physical adsoprtion, chemical adsorption and chemical reaction. However,

among numerous papers dedicated to the removal of organic components by chitosan,

most of them focus on the adsorption performances and its industrial application, but not

the understanding of adsorption mechanisms (Crini & Badot, 2008). On the contrary,

several hypotheses of the adsorption structure between chitosan and metal ions has been

proposed.
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2.3.1 Physical adsorption

Physical adsorption is a process in which the electronic structure of the atom is seldom

changed ("Physical adsorption,"), including van der Waals forces, hydrophobic and

electrostatic interactions, and ion exchange between the sorbate and the sorbent surface

(Matsusaki et al., 2008). Van der Waals forces is not electronic attraction, but the

repulsive forces between molecules or atoms; hydrophobic interaction is the adsorption

between the non-polar sites of the sorbent and hydrophobic molecules in the polar solvent,

clustering or forming micelles, such as alkanes and fats in the wastewater; electrostatic

interaction is the attraction between electrically charged particles, the major physical

adsorption involved in chitosan-based biosorption. In general, its mechanism may be

included in the sorption of metal complexes because the interaction occurs between the

free metal anions (metal ions with ligands) and pronated amine groups (Guibal, 2004).

For instance, it was reported that electronic attraction is the dominant type when the

polyaminated chitosan beads adsorbed Cu-EDTA chelate anions (Juang & Ju, 1997).

Ion exchange is the exchange between both positively or negatively charged

ion-containing solution and resins (functionalized porous or gel polymer). In acidic

media, due to the cationic behavior of chitosan, the protonation of amine groups adsorb

metal anions by ion exchange, not chelation. It was found that the ion-exchange is

process-controlling in the adsorption only at low Pb(II) ion concentrations (Ngah &

Fatinathan, 2010). In general, in most cases, the chelation is the most common

mechanism of chitosan adsorption.
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In chemistry, complexation is a coordination complex or metal complex containing a

central atom or ion, and the binding molecular or ion are regarded as ligands

("Coordination complex,"). Chelation, one type of complexation, which is the interaction

between the functional groups on the chitosan and adsorbates; and it always involves

more than one coordinating bond between functional sites and one metal ion or organic

compound. Pearson’s definition of chelation is the theory of the hard and soft acids and

bases (HSB) (Pearson, 1963), and the affinity and stability of chelating ligands for

adsorbates differs according to the various experimental conditions (pH, adsorbate

concentration, adsorbate and ligand ratio), physical state of the chitosan (powder, bead, or

membrane), and DA, which confirms that the chelation process was easier when the

chitosan has a large DA (Rhazi et al., 2002). The amino group is the key site on the

chitosan with free electron pairs which can form coordinating bonds with metal ions.

Two adsorption models have been widely accepted (Guibal, 2004): the “bridge model”

and the”pendant model”. In the “bridge model”, the interaction normally occurrs between

different chains, involving metal ions and several amine groups; but inversely, as to the

“pendant model”, the metal ion is only bonded with an amine group in a chitosan chain

(Guibal, 2004). Nevertheless, the variation of chitosan-based biosorbents and different

adsorption systems lead to more complicated mechanisms of chelation. It was reported

that two chelation models exist in the same system when changing the pH of adsorption:

([Cu(–NH2)]2+, 2OH−, H2O) is more stable for pH between 5 and 5.8, and ([Cu(–NH2)2]2+,

2OH−) is more stable at pH larger than 5.8 (Vold et al., 2003).
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2.3.2 Chemical reduction

Because of the amino and hydroxyl groups on the backbone of chitosan, the metal ions

can be reduced during the adsorption process in some certain conditions (Dambies et al.,

2001). In addition, some crosslinking agents or grafted components can also introduce

reducing ends on the chitosan-based biosorbents. It was found that GLA-crosslinked

chitosan beads could partly reduce Cr(VI), Mo(V) and Cu(II) to Cr(III), Mo(VI) and Cu(I)

(Dambies et al., 2001). The reason may be the residues on glutaraldehyde - aldehyde

groups, which do not react with amino groups, reduce the metal ions (E Guibal et al.,

1999). However, some research indicates that not chitosan itself, but the products of its

hydrolysis are the main reducing agents in H[AuCl4]/chitosan solutions causes the fast

Au(III) reduction to Au(0) particles (Pestov et al., 2015). Besides, the reducing ability of

chitosan is often applied into the formation of metal nanoparticle-chitosan (NPs-chitosan)

by exposure of chitosan to a solution containing metal salts under thermal treatment, such

as AgNPs, AuNPs (Wei et al., 2010). The metal nanoparticles that are formed strongly

bound to chitosan, which encouraged us to investigate their catalytic performance.

Currently XPS, XRD, 13C and 1H NMR analysis (Dambies et al., 2001; Pestov et al.,

2015) are common techniques to detect the reduced metals; whereas the redox is hard to

comprehensively be verified because those detecting methods can also cause the chemical

reation to some degree (Warren, 1969; Watts, 1994).
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2.4 Column test and mathematic modeling

The batch test is commonly used to obtain isotherm and kinetics parameters of

biosorbents, but it is not enough to confirm their application in the industry. The

performance in fixed-bed systems has attracted more attention by scientists to test the

possibility of industrial application recently. Moreover, the biosorbents in the column can

separate different kinds of adsorbates in the aqueous system based on its various affinities

and the regeneration by some chemicals. There are two major continuous biosorption

reactors: the down-flow bed reactor and the up-flow bed reactor; though the former one is

more energy-effective due to its gravitational forces, the latter one is applied more

extensively because it is easier to be controlled and has higher operation yield (Park et al.,

2010).

2.4.1 Breakthrough curve and elution curve

The breakthrough curve is mostly observed in continuous biosorption because it can not

only give column information, such as the number of theoretical plates, the capacity or

separation factors (Weber Jr & Liu, 1980); but also represent feasibility and economics of

the sorption phenomena. Besides, the breakthrough curve can also reflect the conditions

of the column which means that: (a) there are short circuits in the column if the elution

has residues once inputting the solution; (b) the mass transfer is too slow if the

breakthrough is significantly spread. Generally, for the same column, the shape of the

breakthrough curve is determined by the flow rate and solute concentration; with

increasing flow rate and solute concentration, the breakpoint and adsorption capacity are
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decreased because of the insufficient contact time (Sankararamakrishnan et al., 2008). A

breakthrough curve is usually expressed in terms of the initial adsorbate concentration in

the elution as a function of flow time (t) or volume of effluent for a given bed height

(Sankararamakrishnan et al., 2008). In spite of the adsorption capacity, the regeneration

of biosorbents is also a significant characteristic; because it is efficient to be applied into

columns, thereby reducing the cost of operation. Thus several papers studied the

selectivity of elution conditions, such as the type of desorption agents, pH, ion strength,

size of chitosan, etc. HCl, HNO3, H2SO4, Thiorea, and EDTA are common desorption

agents. For example, EDTA is found effective in desorbing metal ions as it has strong

chelating affinity to them (Jeon & Park, 2005); H2SO4 and Thiorea are typically better for

the desorption of precious metals because of S atoms (Lin & Lien, 2013); and HNO3 and

HCl are mostly used in the desorption because they are much cheaper and their

desorption abilities are not bad in certain conditions (Kang et al., 2004; Kavaklı et al.,

2006). An elution curve is usually expressed in terms of the adsorbate concentration in

the elution as a function of flow time (t) or volume of effluent for a given bed height.

Because of the different affinities of desorption agents to the adsorbates, different

components in the solution can be separated and recovered through the column. There are

also some papers working on the optimization of elution conditions to maximize the

efficiency of the adsorbents in the column; such as changing the concentration of

desorption agent or the pH of the eluent (Tang et al., 2007). In addition, combining the

breakthrough curve and elution curve, the real performance of the column can be

explained clearly and provide precise information in the industrial application.
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2.4.2 Mathematical model

The mathematical model here is a description of the mass transfer in the

adsorption-desorption continuous system (fixed-bed or column) using mathematical

concepts and language, predicting the breakthrough and elution curves. Compared to the

experiment, mathematical modeling needs no experimental equipment and chemicals but

gives accurate predictions of breakthrough and elution curves based on the isotherm and

kinetics parameters. Currently, many mathematical models, reported for liquid-solid

adsorption, have been simplified based on different rate-controlling steps like axial

dispersion and sorption equilibrium.

Originally, the fixed-bed or column is assumed to be uni-dimensional and only have two

independent variables, the time t and the column length z. To study the band profile of the

components in the column, the differential mass balance is introduced. Guiochon et al.

(2006) provided the general differential mass balance in the bulk mobile phase and

deduced the solution of the mass transfer (Equation 2.1) according to several fundamental

assumptions: a) the column is radically homogeneous with constant axial dispersion; b)

the mobile phase is hardly compressed and the sample components keep stable in both

phases; c) the solvent or the weak solvent is not adsorbed in the isotherm; d) the thermal

effects and the influence of the heat of adsorption on the band profile are neglected

(Guiochon et al., 2006).

The derivation: 2
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where F is the phase ratio, Vs/Vm, equal to (1-ε)/-ε. The first two terms on the left-hand

side represent the accumulation in the mobile and stationary phases, respectively; the

third term is the convection; the term on the right-hand side represents diffusion.

Because of the different properties of the chromatography, the mass transfer kinetics is

different. When the mass transfer between two phases is fast, the concentration of the

component in the stationary phase Cs,i can be represented by qi, and the stationary phase

concentration in equilibrium with Cs,i is:

),...,,...,,( 21, niiiis CCCCfqC  (2.2)

and when the mass transfer kinetics is slow, such as in the liquid-solid chromatography

and ion-exchange chromatography, the Cs,i can be represented as:
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2.4.2.1 General rate model

Currently, the most precise model to describe the mass conservation and transport in the

basic stage of the model is the general rate model, considering all the possible

contributions to the mass transfer kinetics, which is widely used when the impact of

particle size distribution cannot be neglected. This model includes two parts:

(a) the bulk model can be written as follows:
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where DL is the axial dispersion coefficient, and the term tq  is the rate of adsorption

averaged over the particle. For a spherical particle, the equation is:

pppf RRrCCktq )(  (2.5)

where kf is the external mass transfer coefficient and Cp is the concentration of the solute

within the pores inside the particle (Guiochon et al., 2006).

(b) The particle model can be divided into micro-pore control (rc << 1 mm) and

macro-pore control (rc = 1 - 5 mm) according to the size of adsorbents. For the

micro-pore control model, the equation can be written as follows (Guiochon et al., 2006):
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where Dc is the diffusion coefficient of the solute into the particle and q is the stationary

phase concentration. For the macro-pore control model, the equation can be written as

follows (Guiochon et al., 2006):
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where εp is the internal porosity of the particle, Dp is the diffusion coefficient of the solute

in the particle pores, and Cs is the concentration of the solute adsorbed by the stationary

phase. When assuming the kinetics of adsorption-desorption is infinitely fast, Cs can be

related to the linear adsorption isotherm equation:
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where Cp* is concentration of solute in equilibrium, which is commonly obtained through

the Langmuir isotherm or Freundlich isotherm.

It is proved that the predictions of general rate model were very consistent with the

experimental data, such as the analysis of Solanesol adsorption on macro-porous Resins

(Du et al., 2008), the adsorption of Pb2+ in a fixed bed of ETS-10 adsorbent (Lv et al.,

2008). However, the problem of using this model is to make a detailed analysis of the

significance of all the contributions, and then obtaining all the four parameters through

experiments, which require numerous experiments and sufficient facilities.

2.4.2.2 Lumped kinetic model

Simpler models, such as the various lumped kinetic models, were developed by generally

sacrificing accuracy in describing the suspended-particle batch adsorption process (Rowe

et al., 1999). It is formed based on a kinetic equation, lumping all the slow kinetics in a

single rate coefficient; so the mass balance equation is then written:
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and when the kinetics of adsorption-desorption is slower than the other steps of the

column process, the kinetic equation can be presented as:

sdas CkCktC  (2.10);
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while if the slowest step is the mass transfer kinetics, the kinetic equation is:

)( *
f CCKtCs  (2.11).

Though some steps are simplified in the lumped kinetic models, good agreement was

found between the experimental and calculated data in the column with slow kinetics and

the diffusion coefficient mostly equaled the axial dispersion (Bak et al., 2007;

Pérez-Martínez et al., 2015).

2.4.2.3 Equilibrium-Dispersive model

When the mass transfer kinetics is fast but not infinitely fast, it can be assumed that the

mobile and the stationary phases are constantly in equilibrium. Thus, the

equilibrium-dispersive model was created; the mass balance equation for component i is

as follows:
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where Da,i is the apparent dispersion coefficient which lumped the axial dispersion,

non-equilibrium effects and finite kinetics of adsorption-desorption.

This model is usually applied into HPLC columns with high efficiency because of the

assumptions of simplified process (Quiñones et al., 2000). Therefore in the lab-scale

experiments this model is difficult to get good agreement between model and experiment.



30

2.4.2.4 Ideal model

When there is no axial dispersion and the two phases are constantly at equilibrium, which

means the column efficiency is infinite; then the mass transfer equation can be simplified

as the ideal model:
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This simplest model focuses on the the effects of the nonlinear thermodynamics of

phase-solid equilibrium, which are in good agreement with the experiment for large

samples, highly efficient columns and small dispersive effects of the column efficiency

(Guiochon et al., 2006). The application of this model is scarce in the literature because

of its strict assumptions.

2.4.3 Mass transfer effect on column test

Mass transfer is the movement of mass, like phase, fraction or component, from one point

to another. It is extensively applied in many chemical engineering processes, such as

absorption, evaporation, adsorption, drying, precipitation, membrane filtration, and

distillation ("Mass transfer,"). Specifically, in the column, the mass transfer includes (i)

radial diffusion from the center of the flow stream to the surface of biosorbents; (ii) film

diffusion from the mobile phase into the stationary phase (inside of biosorbents); (iii)

diffusion from the stagnant mobile phase into the biosorpbents pores. Moreover, in the

general sense, the mass transfer can also contain adsorption-desorption, ion-exchange,

and complexation (Guiochon et al., 2006) . The most important coefficients are bulk
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diffusion coefficients, axial dispersion coefficients, external film mass transfer resistance,

intrapartical pore diffusion coefficients and viscosity of flow stream. The values of those

parameters are affected by temperature, pressure, viscosity, concentration, molecular

diffusion and the size of biosorbents; and these values result in different column

performance. It is reported that with different flow rate, the film diffusion coefficient and

axial dispersion coefficient vary, leading to different breakthrough curves for the

adsorption of copper ions (Ko et al., 2001).



32

Chapter 3 Competitive Adsorption of Ag(I) and Cu(II) on Chitosan
Beads Cross-linked with Sodium Tripolyphosphate

3.1 Introduction

These years, biosorption has been considered as a promising technology for the removal

of heavy metals or the recovery of precious metals because of its low cost and high

capacity (Park et al., 2013). Chitason, produced from chitin, is one of the popular

biosorbents that has been widely studied in the removal of different heavy metals from

aqueous solution (Guibal, 2004; Li et al., 2008). Amine groups, however, as one of major

biosorption sites on chitosan, could lead to its solubility in acid solution (Kumar et al.,

1999), limiting the application in real situations. Therefore, chemical modifications have

been studied to increase its stability in acid solution and improve its metal sorption

performance. Crosslinking is a common modification to strengthen the mechanical

structure and decrease the solubility by consuming or grafting the primary amino group

and hydroxyl group. Besides, crosslinked beads can be used in the column commercially

without causing clogging and high pressure like powder (Miretzky & Cirelli, 2009).

Four common cross-linkers, i.e., glutaraldehyde, ethylene glycol diglycidyl ether (EGDE),

tripolyphosphate (TPP) and epichlorohydrin (EPI) have been applied to immobolize

chitosan powder. Therefore, because of the non-toxicity and low-cost, TPP is a promising

crosslinking agent for the chitosan beads, as well as due its simpler synthesis process

(Sureshkumar et al., 2010). It is reported that the ionic reaction of chitosan-TPP is

significantly influenced by the pH of the TPP solution and the chitosan solution (Mi et al.,
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1999). In the acid aqueous solution, the interaction between TPP and chitosan is

controlled by ion-crosslinking; with the increase of pH, more OH- will compete with

P3O105- and coagulate with chitosan, preserving more free –NH3+ (Mi et al., 2003).

However, there are few studies about the adsorption of metals with TPP crosslinked

chitosan beads, such as the improvement of sorption performance and mechanism.

Except for the enhancement of metal adsorption, the understanding of adsorption

mechanism is also important to study because it can help to further improve the property

of chitosan beads effectively. Based on the available functional groups on chitosan, four

possible adsorption mechanisms can be applied: electrostatic attraction/ion exchange with

protonated amino groups, chelation/coordination on amino groups in a pendant fashion or

in combination with vicinal hydroxyl groups (Donia et al., 2007; Guzman et al., 2003).

Electrostatic attraction and ion exchange both occur at the low pH of 2-4 and react with

protonated amine groups on chitosan (Guibal, 2004). While for the former one, -NH3+

usually interact with free metal anions which can be regarded as metal complexes which

will be discussed later. For the latter one, the mechanism probably is the exchange of H+

on the protonated amine groups with metal cations, and is hardly dependent on the pH.

Chelation and coordination both form a complex with ions in the solution and functional

groups on chitosan; the difference is that the chelation focuses on metal ion complexes

and the coordination explains the metallic atoms. Thus in the adsorption of chitosan, the

mechanism of coordination is seldom mentioned; and it is proved that chelation plays an

important role (Guibal et al., 2006). These years, many studies have been done about the
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adsorption mechanism of copper ions and two models are accepted by the majority: (i)

the pendant model, which is the coordination of Cu2+ with one amine group or

C3-hydroxyl group and certain amount of water molecule or –OH-. (ii) the bridge model,

which is the coordination of Cu2+ with one amine group and C3-hydroxyl group, and then

bonded with certain amount of water molecule or –OH- (Lü et al., 2008). Besides, fewer

studies about the adsorption of silver were reported, especially the adsorption mechanism.

But –NH2 on the chitosan is reported to be involved in the Ag+ adsorption via ion

exchange (acidic solution) or chelation (neutral or basic solution) (Donia et al., 2007).

Some research mentioned about the reduction of silver ions during the adsorption process,

but the detailed mechanism was not confirmed (Kumar et al., 2013).

Although adsorption of cross-linked chitosan on metal ions has been widely studied,

rarely has research studied the separation of metal ions in binary solution; especially

when the two metal ions were in the same group in the periodic table due to their similar

properties. Thus it is meaningful to study the competitive adsorption of copper and silver

ions because silver ions exist in the wastewater of copper mining and the amount is

valuable if it is recovered. Besides, TPP-crosslinked beads are environment-friendly and

cost-effective with simple synthesis steps.
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3.2 Materials and Methods

3.2.1 Materials and chemicals

Chitosan and sodium tripolyphosphate (TPP) were purchased from Fisher (Canada).

Weight-average molecular weight (Mw) and deacetylation degree are 100,000 – 300,000

g/mol and 90%, respectively. Copper nitrate, silver nitrate standard solution (100 mM)

and acetic acid was provided by Fisher Scientific. All other materials were of reagent

grade purity. Deionized (DI) water was used throughout the study.

3.2.2 Preparation of cross-linked chitosan beads

Chitosan solution was prepared by dissolving 4.00 g chitosan powder into 100 ml of 4%

(v/v) acetic acid. The TPP solution was prepared by dissolving 5.00 g TPP powder in 100

mL of water. To synthesis TPP-chitosan bead (TCB) with the conventional method, the

chitosan solution was dropped into TPP solution (pH = 8.6) directly using a syringe, with

a needle of 1.5 mm; which coagulated the chitosan gel to spherical uniform chitosan gel

beads and thereby cross-linked for certain time. To synthesis TPP-alkalization chitosan

bead (TCAC) with the novel method, the chitosan solution was dropped into 250 ml of

0.50 M NaOH to get wet chitosan beads firstly and the beads were alkalized for 24h; after

that the alkalized chitosan beads were immersed in TPP solution (pH = 8.6) for

cross-linking for 1 h. The formation of cross-linked TPP-beads by the interaction between

phosphate groups of tripolyphosphate and amino group of chitosan is schematically

represented in Scheme 1. The beads were separated by filtration, washed four times with
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deionised water and air dried before use in adsorption experiments. Dried beads were

spherical and slightly yellowish in color (Figure 3.1).

Scheme 1. Alkalization and cross-linking of chitosan with sodium tripolyphosphate
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Figure 3.1 Dried TCAC

3.2.3 Swelling rate test

The swelling characteristics of TPP beads were determined by immersing dried test beads

to swell at 25°C in HNO3 (pH = 2), H2O (pH = 6) and NaOH (pH = 10) for 24 h; thereby

beads were removed from the swelling medium and were blotted with a piece of paper

towel to absorb excess water on surface. The swelling ratio of test beads was calculated

from the following expression:

ddssw WWWE /)(  (3.1)

where Esw is the percent swelling of beads in the equilibrium, Ws is the weight of swollen

test beads and Wd is the weight of the dried test beads.
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3.2.4 Batch sorption tests

Stock solutions of certain concentration of Ag(I) and Cu (II) ions were prepared using

analytical-reagent grade silver(I) nitrate solutions and copper(II) nitrate solutions,

respectively. The initial pH of the adsorption of Ag(I) and Cu(II) ions onto TPP beads

was kept original (pH = 5.0).

Adsorption equilibrium study was conducted using 0.10 g of TPP beads at room

temperature. The experimental solutions contain a measured concentration (0.2 mM – 2.0

mM) of copper and silver ions and the adsorbent, which was equilibrated in a 500 mL

Erlenmeyer flask at 150 rpm using an Innova® 43 console incubator shaker. After 48 h of

equilibration, 20–100 μL of the solution was withdrawn from the experimental mixture,

and copper and silver concentrations were estimated using ICP-OES. The amount of

copper and silver ions adsorbed onto the TPP bead at time t, was calculated by:

W
Vcc

q ti
i

)( ,0 
 (3.2)

where qi (mg/g) is the quantity of copper and silver ions adsorbed on TPP bead, c0,i is the

initial concentration (mg/L) of copper and silver ions used in the experiment, ct is the

measured concentration (mg/L) of copper and silver ions presented in the liquid phase

after equilibration time t; V is the volume of the solution (L); W is the mass of the TPP

beads (g).

The batch kinetic studies were carried out using 0.3 g adsorbent in 300 mL solution of 1.0

mM of Ag(I) and Cu(II) ions. The adsorption time was varied from 0 to 1600 min.
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Adsorption kinetics experiments were performed by the batch method, where

approximately 0.3 g of beads were suspended in a 300 mL of Ag(I) and Cu(II) solution of

1 mM at 150 rpm using an Innova® 43 console incubator shaker; The temperature was

300 K for times varying from 0 to 48 h. The concentrations of the residual cation (mg/L)

in collected samples was tested by ICP-OES.

Desorption studies were conducted using 0.10 g TCAC loaded with 100 ml of 1mM Ag(I)

and Cu(II) ions solution under the optimum conditions. The TCAC were agitated with 50

mL EDTA, Na2S2O3 or H2SO4 solution of various concentrations for certain time; the pH

was adjusted by an accumet™ AB15 Basic and BioBasic™ pH/mV/°C Meter using 1M

NaOH and 1M H2SO4. The final concentration of metal ions in the aqueous phase was

determined by Atomic absorption spectrometer, and the initial and final pH was tested by

an accumet™ AB15 Basic and BioBasic™ pH/mV/°C Meter. The ratio of copper and

silver ions desorbed onto the TPP bead at time t, was calculated by:

%100% , 
Wq
Vc

Des
i

ie

(3.3)

where Des% is the desorption ratio of copper and silver ions desorbed by agents, qi (mg/g)

is the quantity of copper and silver ions adsorbed on TPP bead, ce,i is the measured

concentration (mg/L) of copper and silver ions in the liquid after equilibrium, V (L) is the

volume of the solution and W is the mass of the TPP beads (g).
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3.2.5 ICP-OES

The concentrations of Ag (I) and Cu (II) ions in the solutions were measured by

PerkinElmer® Optima™ 5300DV Inductively Coupled Plasma Optical Emission

Spectrometer (ICP-OES) equipped with WinLab 32 for ICP v.4.0.0.0305 software.

Sample solutions were diluted 20 times with 2% HNO3 solution for the simultaneous

measurement of all analytes. Standard solutions containing 0.0, 0.01, 0.1, 1.0, and 10.0

mg/L Ag (I) and Cu (II) in 2% HNO3 were used to get the calibration curves. Yttrium (10

mg/L) was used as an internal standard to account for any difference between the sample

matrix and calibration standards. Check standard solutions were prepared from

PlasmaCal standards. Analysis on Ag was conducted at wavelengths of 338.290 nm,

328.068 nm and 243.774 nm, analysis on Cu was performed at wavelengths of 327.393

nm, 324.755 nm and 224.698 nm. Reported values were the mean of three consecutive

replicate measurements and were corrected for dilution.

3.2.6 ATR–FTIR

The infrared spectra were recorded with a Bruker Alpha FTIR Spectrometer, using the

Single Bounce Diamond ATR accessory. The beads were dried at room temperature in a

fuming hood for 24 h. The spectra were obtained with the average of 24 scans, at a 4 cm−1

spectral resolution. Peak identification was obtained from the correspondent

second-derivative spectra in the range between 4000 and 400 cm−1.
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3.2.7 XPS

X-ray photoelectron Spectra were performed on a ULTRA spectrometer (Kratos

Analytical) at the Alberta Centre for Surface Engineering and Science (ACSES),

University of Alberta. The base pressure in the analytical chamber was lower than 5 x

10-8 Pa. Monochromatic Al Kα X-ray radiation was used as the excitation source (1486.6

eV), and operated at 144 W. Survey spectra were collected for binding energy spanning

from 0 to 1100 eV with a pass energy of 80 eV with a step of 0.4 eV. High resolution

spectra for the C 1s, O 1s, N 1s, Ag 3d and Cu 2p regions were obtained, using a pass

energy of 40 eV with a step of 0.1 eV. The resolution for the instrument is 0.55 eV for Ag

3d. Due to their insulating nature, chitosan beads surfaces were charged, resulting in a

shift toward higher binding energy. Thus, the binding energies of the photoelectron peaks

were calibrated, assigning a binding energy of 284.8 eV to the C-C of C 1s peak, present

as a carbon surface contaminant. The deconvolution of the high resolution spectra was

made using XPSPEAK version 4.1, utilizing the Gaussian/Lorenzian sum function.

3.2.8 XRD

Powder X-ray diffraction studies were carried out using a Rigaku Ultima-IV XRD with

Cu source, set up via Bragg-brentano configuration and a graphite monochromator. The

scan range was 5.0000 – 100.0000 deg., the scan speed was 1.000 deg./min, and the scan

axis was 2 theta//theta.
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3.3 Results and Discussion

3.3.1 Sorbent screening and characterization

According to the research study of Mi and co-workers (Mi et al., 1999), protonated amino

group on chitosan reacted more easily with P3O105- at low pH of TPP solution. In another

word, gel beads prepared in acidic TPP solution have a higher degree of ionic

crosslinking. Therefore, in this study, pH 8.6 of TPP solution was selected to control the

degree of crosslinking of chitosan. Table 3.1 summarizes the performances of TCAC and

TCC beads prepared under different conditions for the adsorption of Ag (I) and Cu (II)

from monometallic and bimetallic solutions. Results indicate that alkalization before

crosslinking helps to obtain chitosan gel beads with higher total uptake capacity, and

TCAC beads provided much more binding sites for Ag (I) than TCC beads. It is clearly

that beads with lower degree of crosslinking (TCAC) are favorable to Ag (I) binding,

whereas beads with higher degree of crosslinking (TCC) tend to bind more Cu (II). This

reveals the adsorption of Ag (I) and Cu (II) take place at different sorption sites and

amine group on chitosan is more selective to Ag (I).

As illustrated in Table 3.1, concentration of STPP solution does not have significant

influence on the sorbent performance. Therefore, TCAC beads prepared by crosslinking

with 5.0% (w/v) STPP solution were selected for the remaining isotherm and kinetic

studies.

Through the FTIR spectra of chitosan powder, TPP-crosslinked chitosan beads with or

without alkalization, shown in Fig. 3.2, several peaks, characteristic for chitosan and
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sodium tripolyphospahte are observed in the spectrum to explain the reason of the

difference. The intense band around 3628 cm-1 should be assigned to free –OH, indicating

that the hydroxyl group (from sodium tripolyphospahte solution) was introduced in the

synthesis process. Amine functional groups show characteristic peaks 1650 cm-1 and

1576 cm-1, and are assigned to –NH deformation vibration. The shift of amine groups on

chitosan beads indicate the reaction between tripolyphospahte and amine groups. The

intense band around 3273 cm-1 should be assigned to the stretching vibration of NH3+;

and due to the alkalization, the intermolecular hydrogen-bonded O-H gives a broad peak

at 3550-3230 cm-1, which overlaps peak of –NH3+. Sharp peaks at 1212 cm-1 and 1127

cm-1 are caused by P-O-H vibration of HO-P=O groups; similarly, the peak at 1150 cm-1

should be assigned to associated C-N stretching, respectively. Further, the strong intense

band around 1068 cm-1 should be assigned to the alcohol C-O stretching vibration of

–CH2-OH groups.

Therefore, similar with other’s results (Mi et al., 1999), the crosslinking mechanism with

alkalization could be coacervation (Figure 3.3a) and that without alkalization could be a

combination of coacervation and ionic-crosslinking (Figure 3.3a & 3.3b). When chitosan

beads were dropped into sodium hydroxide for alkalization, the OH- ions reacted with

protonated amino group of chitosan on the surface of the beads. After the formation of a

gelled outer layer with OH- ions, P3O105- was more difficult to diffuse into the beads,

preserving more free –NH3+. However, when the chitosan beads were dropped in TPP

solution directly, the P3O105- and OH- ions in the solution would compete to react with the

amino groups, leading to less free amino groups inside the beads and higher density of
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TPP-crosslinking. Thus, although the TPP can provide available functional groups for

adsorption, it consumes the existing ones as well. In total, there is an optimal density of

TPP-crosslinking to maximize the adsorption ability of beads. In this study, the optimal

synthesis condition should include alkalization.

Table 3.1 Adsorption studies* of two types of TPP-crosslinked chitosan beads from
monometallic and bimetallic solutions

No. Alkalization Crosslinking
time (h)

Conc. of
TPP (%)

Conc. of
chitosan (%)

Capacity (mg/g)
Ag (I) Cu (II)

1 NO 1 5 4 8.25 ˗
2 NO 1 5 4 ˗ 16.50
3 YES 1 5 4 28.30 ˗
4 YES 1 5 4 ˗ 8.90
5 NO 1 5 4 5.80 7.15
6 NO 1 10 4 6.65 7.94
7 Yes 1 5 4 31.54 3.89
8 Yes 1 10 4 32.28 4.84

* Batch sorption tests were carried out at T=25°C for 24.0 h.
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Figure 3.2 ATR-IR of chitosan powder, TPP-crosslinked chitosan beads with and without
alkalization before crosslinking
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Figure 3.3 crosslinking mechanism of TPP chitosan beads: coacervation (a);
ionic-crosslinking (b)

3.3.2 Swelling properties

A convenient proof of crosslinking is the swelling behavior of the TPP beads in various

pH values of aqueous media. The swelling ability of two types of chitosan beads was

evaluated in dissolution media of pH 2, 6, 10. Table 3.2 shows the equilibrium swelling

behavior of two kinds of TPP beads synthesized from different crosslinking densities of

TPP to chitosan (cured with or without alkalization). It was indicated that swelling ability

(a) (b)
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of the TPP beads was quite different according to different pH values of the dissolution

medium. In pH 2 media, the chitosan beads prepared by curing with or without

alkalization displayed different swelling characteristics due to the variation of

ionic-crosslinking density of the beads. In pH 2 of dissolution media, the chitosan gel

beads prepared by curing with alkalization (TCAC) swelled quickly and gradually

dissolved within 12 h, whereas chitosan gel beads prepared by curing without alkalization

(TCB) did swell largely but were not dissolved in this media (Table 3.2). In this pH, the

swelling of chitosan-TPP beads was mainly attributed to the scission of ionic-crosslinked

chain. With the increase of pH of dissolution medium, the ionic-crosslinked chain of TPP

beads didn’t dissociate and the swelling percentages were getting smaller, so the swelling

of chitosan-TPP beads in this medium would be mainly attributed to the hydration or

ionization of unbound -NH2 sites in chitosan. However, the swelling percentages of

TCAC were still higher than 100% which means alkalization before crosslinking

preserves free amine groups from being bonded.

Table 3.2 Swelling percentage of two types of TPP beads in different pH

Bead Type Esw

pH = 2 pH = 6 pH = 10
TCB 0.65 0.27 0.24

TCAC / 1.35 1.26
‘/ ‘: beads were dissolved after swelling.

3.3.3 Adsorption isotherm

The relation between the adsorbed amount and the equilibrium concentration in the

aqueous phase is very important in optimizing the sorption process and understanding the
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sorption behavior. For investigating the effect of Ag(I) and Cu(II) concentrations on the

adsorption of TCAC, experiments were conducted with certain volume of solutions

having initial concentrations varying from 0.2 mM to 2.0 mM and a fixed mass of 0.1 g

of adsorbent. The Langmuir and Freundlich equations (LeVan & Vermeulen, 1981) were

used in this study to describe the equilibrium of Ag(I) and Cu(II) ions adsorption onto

TCAC.

The non-linear form of Langmuir isotherm is expressed as:

e

es
e bc

cbqq



1

(3.4)

where ce is the equilibrium concentration of remaining metal ions in the solution

(mg/L); qe is the amount of metal ions adsorbed per mass unit of adsorbent at equilibrium

(mg/g); qs is the maximum amount of metal ions adsorbed per mass unit of adsorbent

(mg/g) and b, the Langmuir constant related to the affinity of binding sites (L/mg), is a

measure of the energy of adsorption.

The Freundlich isotherm expresses adsorption on multilayer and energetically

heterogeneous surfaces. It is an empirical equation suitable for high and

middle-concentration range. The non-linear Freundlich isotherm is given as:

n
eFe ckq /1 (3.5)

where kF and n are Freundlich constants indicating adsorption capacity (mg/g) and

intensity, respectively.
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Fig. 3.4 shows the plot based on Langmuir and Freundlich isotherm models; the

calculated values of Langmuir and Freundlich parameters are given in Table 3.3.

Based on the correlation coefficients, TCAC has a good fit to Langmuir model both for

the adsorption of both Ag(I) and Cu(II). From Fig. 3.4, it is clear that the saturation of

Ag(I) on the TCAC can be increased with the increase of the concentration; and in Table

3.3, it can be observed that the maximum capacity of TCAC for Ag(I) is promising, more

than 1 mmol/g; but regarding to the equilibrium time, the adsorption rate is the major

barrier because of the slow mass transfer rate. Freundlich parameter, n indicates the

favourability of the adsorption. It is shown that n values more than 1, suggesting that the

adsorption intensity is favorable at high concentration. For the adsorption of Cu(II), the

maximum capacity of TCAC for Cu(II) is 13.9 mg/g, which is much lower than that for

Ag(I). Because of the low capacity, the experiment data observed for the isotherm has

higher errors, leading to lower R2. While compared with the Freundlich isotherm, the

Langmuir isotherm fits better and describes the real situation well.

Table 3.3 Isotherm parameters of the adsorption of Ag(I) and Cu(II) on TCAC at T=25°C

Metal
Langmuir Freundlich
b
L mg-1

qs

mg g-1 R2 KF n R2

Ag(I) 0.008 167.98 0.98 3.57 1.51 0.96

Cu(II) 0.41 14.37 0.90 5.56 4.57 0.85
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Figure 3.4 Non-linear Langmuir and Freundlich isotherm for the adsorption of Ag(I) and
Cu(II) ions onto TCAC in a binary metal solution

3.3.4 Adsorption kinetics

To understand the effect of contacting time on Ag(I) and Cu(II) adsorption onto TCAC,

experiments were conducted with 300 mL of solution having 1 mM Ag(I) and Cu(II) ions

and 100 mg of adsorbent. 3 mL of the sample was analyzed at various intervals to

estimate the concentration of dissolved Ag(I) and Cu(II) as a function of equilibration

time.

Several adsorption kinetic models have been applied to understand the adsorption kinetics

and the rate limiting step during adsorption process. Some of the rate determining steps

includes diffusion control, chemical reactions and particle diffusion (Ngah et al., 2002).
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The first-order rate equation (Yuh-Shan, 2004), widely used to describe the adsorption of

pollutants from wastewater, can be presented as follows:

)(1 te
t

q qqk
d
d

t 

(3.6)

where qe and qt (mg/g) are the amounts of Ag(I) or Cu(II) ions adsorbed onto TCAC at

equilibrium and at time t, respectively, and k1 (h−1) is the rate constant of pseudo-first

order kinetic model. Integrating Eq. (3.6) with boundary conditions of qt =0 at t=0 and

qt= qt at t=t gives

))exp(1( 1tkqq et  (3.7)

The non-linear relationship of q against t was used to determine the k1 and correlation

coefficient, R. The non-linear form of the first-order model for the sorption of Ag(I) and

Cu(II) onto chitosan are given in Fig. 3.5a. The first-order model did not adequately

describe the sorption result of Ag(I) ion onto TCAC; the correlation coefficients (R2)

between the predicted and the experimental values for the entire data set of Ag(I) and

Cu(II) are 0.96 and 0.98, respectively (Table 3.4). First of all, a disadvantage of this

model for Ag adsorption is that it does not fit well the experimental data for the whole

range of contact time and the plots are only linear over the first 30 min, approximately.

Moreover, according to the situation in this experiment, there are two possible

explanations: since after 48 h, the adsorption of both metal ions still did not reach

equilibrium, leading to the lack of data to fit an accurate kinetic model; it may be caused
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by complicated combinations, which tends to become immeasurably slow. For copper,

however, the first-order model fits not bad, indicating that the adsorption of Cu(II) is fast

and simple.

The second-order rate equation (Ho, 2006), mainly applied in the chemical adsorption

with sharing or exchange of electrons between functional groups and metal ions, can be

presented as follows:

2
2 )( tep

t

q qqk
d
d

t  (3.8)

where qe and qt (mg/g) are the amounts of Ag(I) or Cu(II) ions adsorbed onto TCAC at

equilibrium and at time t, respectively, and kp2 (g mg-1 h−1) is the rate constant of

second-order kinetic model. Integrating Eq. (3.8) with boundary conditions of qt =0 at t=0

and qt= qt at t=t, yields,

tqkqq epet
2

2

111
 (3.9)

The straight-line plots of log 1/ qt against 1/t were used to determine the kp2 and

correlation coefficient, R. The linearized form of the second-order model for the sorption

of Ag(I) and Cu(II) onto chitosan are given in Fig. 3.5b. The second-order model did well

describe the sorption results of Ag(I) ions as well as Cu(II) ions onto TCAC; the

correlation coefficients (R2) between the predicted and the experimental values for the

entire data set are both 0.98 (Table 3.4). For adsorption of Ag(I), the second-order model

fits better than the first-order model which indicates more than one adsorption
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mechanism involve in the adsorption of Ag(I); for adsorption of Cu(II), second-order

model fits as well as the first-order model, indicating that the biosorption of TCAC for

Cu(II) as solid surfaces are homogeneous.

Because the previous adsorption rate models cannot describe the definite mechanism, and

mass transfer in sphere would be a crucial factor in adsorption process in such size (dp = 1

mm after swelling) of TCAC. The simplified intraparticle diffusion equation (Ngah &

Fatinathan, 2010), proposed by Weber-Morris Model, can be presented as follows:

2/1tkq mt  (3.10)

The straight-line plots of log qt against t1/2 were used to determine the km and correlation

coefficient, R2. The linearized form of the intraparticle diffusion model for the sorption of

Ag(I) and Cu(II) onto chitosan are given in Fig. 3.5c. The intraparticle diffusion model

did well to describe the sorption results of Ag(I) ions, but not Cu(II) ions onto TCAC; the

correlation coefficients (R2) between the predicted and the experimental values for the

entire data set are 0.97 and 0.88, respectively (Table 3.4). For adsorption of Ag(I), the

intraparticle diffusion model fits not bad which indicates mass transfer cannot be ignored

in the adsorption of Ag(I) and it is probably the reason why the equilibrium time is longer

than usual; moreover, the slope is not equal to zero, indicating that the intraparticle

diffusion is not the sole rate-limiting step. For adsorption of Cu(II), intraparticle diffusion

model fits well after certain time of adsorption, suggesting adsorption of copper ions was

controlled by other factors in the initial time.
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These years, some research started to apply gas adsorption model into aqueous-solid

situation to explain the adsorption on the surface, which is affected by the concentration.

Elovich’s equation (Chien & Clayton, 1980), which can describe the adsorption occurred

on the heterogeneous surface is presented as follows:

q

t

q e
d
d

t   (3.11)

where qt (mg/g) are the amounts of Ag(I) or Cu(II) ions adsorbed onto TCAC at

equilibrium and at time t, respectively, and α and β is the initial adsorption rate and the

desorption constant, respectively. Integrating Eq. (3.11) with boundary conditions yields,

tqt ln)/1()ln()/1(   (3.12)

The straight-line plots of log qt against lnt were used to determine α, β and correlation

coefficient, r. The linearized form of the Elovich’s equation for the sorption of Ag(I) and

Cu(II) onto chitosan are given in Fig. 3.5d. The Elovich’s equation did both well describe

the sorption results of Ag(I) and Cu(II) ions onto TCAC; the correlation coefficients (R2)

between the predicted and the experimental values for the entire data set are 0.97 and

0.98 (Table 3.4), respectively. For adsorption of Ag(I), the Elovich’s equation fits the

experimental data as well as the intraparticle equation, suggesting that there might be two

different adsorption mechanisms in the adsorption of silver. For adsorption of Cu(II), the

theoretical curve of Elovich’s equation model pass through nearly all the experimental

data points, indicating the sorption of Cu(II) ions onto TCAC occurs on the surface of

TCAC predominantly.
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Table 3.4 Kinetic parameters for Ag(I) and Cu(II) adsorption on TCAC

Kinetic Equation
Rate Parameters

Ag(I) Cu(II)
Pseudo-first order

k1 h-1 0.1535 0.319
qe mg g-1 42.77 7.35
R2 0.96 0.98

Pseudo-second order
k2 g mg-1 h-1 0.0038 0.0458
qe mg g-1 49.57 8.22
R2 0.98 0.98

Intraparticle diffusion
km g mg-1 h-0.5 7.07 1.24
R2 0.97 0.88

Elovich
α mg g-1 h-1 34.98 6.66
β g mg-1 (lnh)-1 0.12 0.63
R2 0.97 0.98
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Figure 3.5 Comparison of different kinetic models (a. First-order, b. Second-order, c.
Intrapartical diffution (ID), d. Elovich’s equation(EE)) for the sorption of Ag(I) and Cu(II)

ions onto TCAC

3.3.5 Sorption Mechanism

3.3.5.1 FTIR

To further study the mechanism of the adsorption on TCAC, Fourier transform infrared

spectroscopy (FTIR) of the TPP-crosslinked chitosan beads, before and after adsorption,

are shown in Fig. 3.6; several peaks, characteristic for chitosan and sodium

tripolyphospahte are observed in the spectrum.
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After adsorption, the intensity of the adsorption bands was changed and shifted to lower

or higher wavenumbers. The big shift of peak at 3628 cm-1 in Fig. 3.6 indicates that the

hydroxyl and amine groups are involved in the adsorption of both copper and silver ions.

The large shift of the peak at 1068 cm-1, to 1058cm-1 in Cu2+ adsorption and 1056 cm-1 in

Ag+ adsorption respectively, is probably caused by the coordination between C-O with

metal ions. The shift of spectrum at peak 3273 cm-1 indicate that at least either of these

two functional groups of N-H+ and O-H is involved in the adsorption of copper ions and

silver ions. Moreover, the –NH2 groups (1650 cm-1) become available for absorbing

cooper ions and silver ions which leads to the shift to higher wavenumber (1652 cm-1)

and lower wavenumber (1647 cm-1), respectively. Furthermore, the adsorption of binary

metal ions has the similar change of this peak as that of single silver ions, which indicates

that the adsorption of silver ions is dominant. The sharp peaks(1127 cm-1 and 1212 cm-1),

assigned to P-O-H vibration, are disappeared after adsorption, which reflects the

interaction between Cu2+ (Ag+) and -O-P=O. Therefore, the P-O stretching vibration has

the similar affinity of Ag+ and Cu2+.
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Figure 3.6 ATR-IR of TCAC before and after adsorption in AgNO3 and Cu(NO3)2

Solution

3.3.5.2 XPS

XPS spectra have widely been used to identify the existence of a particular element and

to distinguish the different forms of the same element in a material. The studied material

could be characterized by recording the photoemission bands C 1s, N 1s, O 1s and P 2s,

2p.

Fig. 3.7 shows the total spectrum for TCAC and its appropriate curve-fit before and after

adsorption. It can be found that silver and copper ions were adsorbed on the beads. Two
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observed peaks of Cu 2p3/2 and Cu 2p1/2, at 933.3 eV and 953.3 eV were assigned to

Cu(II), probably coordinating with –OH or forming complexes with –O- and H2O (Huang

et al., 2012), which is in agreement with the results of FTIR. Two observed peaks of Ag

3d3/2 and Ag 3d5/2, at 374.6 eV and 368.6 eV can be assigned to the combination of Ag(I)

and Ag(0) according to the database (Moulder et al., 1992). For Ag(I), it may be

ion-exchanged with the functional groups on TCAC or form a complex. For the presence

of the reduced silver, it could either be attributed to the interaction with chitosan, like

–NH2, or could also be a result from the specific experimental conditions that have to be

applied in XPS analysis, of high and endured vacuum (Vieira et al., 2011). Another

obvious change is the disappearance of P after adsorption, indicating P was involved in

the adsorption. Besides, the observed peaks, at 190.5 eV and 133.3 eV, can be assigned to

Na5P3O10. Thus, there are two possible reasons to explain the disappearance of P around

that range of binding energy: (i) most of P3O105- was involved in the adsorption and it’s a

chemical process; (ii) due to adsorption of silver and copper on the beads, the proportion

of P became smaller and it was hard to detect them.

Fig. 3.8a shows the N 1s spectrum for TCAC and its appropriate curve-fit before and

after adsorption. The slightly shift (+ 2eV) was observed and referenced to the N 1s peak

at 399.3 eV which was assigned to –NH2 (amine) as the basic structural unit of chitosan

(Boufi et al., 2013). This higher B.E. peak observed indicates that some N atoms existed

in a more oxidized state on the beads’ surfaces due to metal ion adsorption. This

phenomenon can be attributed to two possible adsorptions: (i) the formation of -NH2Rn+

complexes, in which a lone pair of electrons in the nitrogen atom was donated to the
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shared bond between the N and Rn+, reducing the electron cloud density of the nitrogen

atom; (ii) the reduction of metal ion occurred when the nitrogen atom donated the

electrons. Due to the alkalization, the amount of protonated amine (–NH3+) was

extremely small. Besides, the peak (401.4 eV) corresponding to protonated amine was

shifted to lower binding energy after adsorption, suggesting there may be a chemical

adsorption process on protonated amine.

Fig. 3.8b shows the O 1s spectrum for TCAC and its appropriate curve-fit before and

after adsorption. Two peaks were found to fit the spectrum. The peaks at 530.8 eV and

532.7 eV are assigned to oxygen in the oxygen in P3O105- and C-OH in chitosan chain

(Huang et al., 2012). The decrease in the intensity of O 1s (532.7 eV) after adsorption

indicates that the copper or silver physical adsorption can take place on C-OH; besides,

the peak at 530.8 eV shifted to higher B.E. on the O 1s spectrum after adsorption,

suggesting the decrease of electron density of oxygen. In this case, oxygen acts as the

electron donor when binding with metal ions.

Fig. 3.8c shows the P 2p spectra of TCAC and the fitted curves. P 2p peak at 133.1 eV

which is assigned to P3O105- group (Moulder et al., 1992), shifted to 133.5 eV after

adsorption. Peak shift at 133.1 eV to higher BE proves the involvement of P3O105- group

in metal binding. In addition, the low signals of the intensity, especially after adsorption,

indicated that the crosslinking density of TCAC beads is low. The reason for the dramatic

decrease of the intensity of P 2p peak after adsorption could be the increase of Ag (I) and

Cu (II) on sorbent surfaces, reducing the proportion of P on the bead surfaces.
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Fig. 3.8d presents the TCAC’s XP spectrum of Ag 3d core regions and its corresponding

curve-fit. Two peaks of Ag 3d3/2 and Ag 3d5/2, at 374.6 eV and 368.6 eV were observed.

Based on the database (Moulder et al., 1992), these two peaks can be assigned to the

combination of Ag(I) and Ag(0). For Ag(I), it may be ion-exchanged with the functional

groups on TCAC or form a complex. For the presence of the reduced silver, it could

either be attributed to the interaction with chitosan, like –NH2, or could also be a result

from the specific experimental conditions that have to be applied in XPS analysis of high

and endured vacuum (Vieira et al., 2011).

Cu 2p1/2 and Cu 2p3/2 can also be observed from the XPS spectrum of TCAC after

sorption shown in Fig. 3.8e. Cu 2p1/2 peak at 953.3 eV and Cu 2p3/2 peak at 933.3 eV are

corresponding to an oxidation state (Cu2+) of copper (Vieira et al., 2011), suggesting the

binding of Cu (II) with oxygen in the -O-P=O group.



62

Figure 3.7 XPS spectra of TCAC before and after silver and copper sorption
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Figure 3.8 Fitted high-resolution photoemission spectra of N 1s (a), O 1s (b), P 2p (c), Ag
3d (d), and Cu 2p (e) before and after metal uptake for TCAC beads

3.3.5.3 XRD

Fig. 3.9 shows the XRD patterns of TCAC before and after Ag(I) and Cu(II) adsorption.

In both situations, TCAC exhibited a broad peak at 2θ = 20.3º due to the amorphous state

of the chitosan. In the pattern of TCAC after adsorprtion, a spread diffraction peak was

appeared between a 2θ angle of 38º and 40º, corresponding to metallic silver, which was

agreement with the results of XPS that the existence of Ag(0). Moreover, the insignificant

peak of Ag(0) is probably caused by the small amount of reduced Ag(I). Besides, no Cu(0)

was detected, with the assumption that the noisy background did not hide the peak of



65

metallic copper, two possible results could be concluded; (i) there was no reduction

occurred on Cu(II), the adsorption of copper was completion or ion exchange; (ii) Cu(II)

was reduced to Cu(I). According to the results of XPS, it is probably that only silver ion

had the reduction during the adsorption.

Figure 3.9. XRD patterns of TCAC beads before and after metal uptake

According to the results of desorption, the adsorption of sliver ion is sensitive with pH

which indicates that ion exchange or electrostatic attraction is involved in the adsorption

process. Due to slightly acidic environment of binary solution, some free –NH2 are

protonated again and selectively adsorb precious metal ions from transition metals, which

is in agreement with the results of FTIR; because precious metal ions usually exist as
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metal anions in acidic solution (Mack et al., 2007). From the results of XPS and

ATR-FTIR, it was found that the phosphorus of P3O105- was not directly involved into

adsorption, but the binding site of P3O105- did change after adsorbing Cu(II) or Ag(I). One

possible binding site could be introduced by TPP: O=P-O-, like its congeners, as it can

form molecular geometry of complexes with metal ions and functional groups on TCAC

(Shinde et al., 2013). The possible binding process is shown in Fig. 3.9. It is similar with

“pendant or bridge model” which is generally accepted as the adsorption of copper ions

bonded to one or more nitrogen and oxygen atoms (Skorik et al., 2005). The physical

adsorption of silver and copper ions on the beads may be considered to consist of two

processes: (i) the binding of metal ions to the active adsorption sites on the surfaces of the

beads (boundary diffusion), and (ii) the transport of metal ions from the surfaces of the

beads to the inside of beads (intraparticular diffusion). In the initial stage, the surfaces of

the beads were relatively free and the silver and copper ions competitively attached to the

available sites on the beads’ surfaces. Hence, the adsorption rate may be dominated by

the concentration of metal ions. In the later stage of adsorption, as most of the adsorption

sites on the beads’ surfaces were occupied, the metal ions had to find available adsorption

sites inside the beads; from then on, intraparticle diffusion started to control the

adsorption and slowed down the adsorption rate. Based on the results of kinetics, the

Elovich’s equation could fit adsorption isotherm of both silver and copper ions, indicating

that initially, the competitive abilities of those two metal ions are similar; while the

intraparticle diffusion equation fitted the adsorption of silver ion better, suggesting the

silver ion has better competitiveness inside the beads. It could as well be proved through
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the results of isotherm. In the lower concentration, the maximum adsorption capacities of

these two ions were similar; but with the increase of concentration, the capacity of silver

ion grew faster and the difference became larger. XPS and FTIR analyses clearly

revealed that the oxygen (hydroxyl groups) and phosphate (phosphorous groups) atoms

were the main binding site for copper ions to form surface complexes as well as silver ion;

because the TPP crosslinking here was like a coating process and most phosphate atoms

were on the surface of beads. However, pronated amine groups in chitosan were the main

binding sites for Ag(I) which was inside the beads and had the affinity to silver anions.

Moreover, from the comparison of adsorption capacities of TCB and TCAC, it was found

that freer –NH2 had larger effect on the adsorption of silver ions.
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Figure 3.9 The possible binding structure of O=P-O- on TCAC with metal ions

3.3.6 Desorption of metal ions

To apply TCAC into column and real industrial plants, the desorption process is

important. Various factors are involved in the efficiency of desorption agents and

desorption rate, which are heavily depend on the adsorption mechanism. In general,

adsorbed metal ions can be desorbed by proper acid and some chelating agent. Chitosan

was reported to have good solubility in most acid, except sulfuric acid (Eric Guibal,

2004), thus H2SO4 was chosen in this study; but after several pre-experiments, it was

found that pH=3 is the lowest condition that TCAC can tolerate. Besides, EDTA is
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known as a very strong chelating agent for many metals (widely used in the adsorption of

copper), which was thought to replace the amine group or the hydroxyl group to

coordinate with metal ions (Dawson, 1969). As shown in Table 3.5, pH after desorption

was increased but not significant with the increase of desorption ratio, indicating that ion

exchange was involved in the adsorption while not dominant. With the same

concentration of Na2S2O3, the introduction of EDTA increased the desorption rate of

copper largely and the desorption efficiency of silver slightly; which the influence on

silver probably due to the lower initial pH because the single EDTA can hardly desorb

silver from biosorbents. Na2S2O3 can desorb both silver and copper but with different

desorption rate, which EDTA can only desorb copper and the desoporption rate is fast.

That is in agreement with different adsorption mechanisms for these two metals proposed

before. Interestingly, both Na2S2O3 and H2SO4 are efficient for desorbing silver, which is

probably caused by the complex adsorption mechanism for silver ions and needs to be

studied further.
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Table 3.5 Desorption study of Ag(I) and Cu(II) on TCAC

Final pH Ag(I)
desorption ratio

Cu(II)
desorption ratio

Desorption
time

Desorption
agent

2.5 h 8 h 24 h 2.5 h 8 h 24 h 2.5 h 8 h 24 h

0.1 M Na2S2O3

pH = 6.1 7.8 7.8 7.8 96% 96% 96% 58% 77% 95%

0.1 M Na2S2O3 &
75 ppm EDTA

pH =5.3
7.8 7.8 7.8 100% 100% 100% 80% 88% 98%

0.01 M EDTA &
0.1 M H2SO4

pH = 3
3.4 3.5 3.76 53% 72% 96% 97% 97% 97%

0.01 M EDTA
pH = 4.7 5.6 5.8 6.1 8% 8% 8% 99% 99% 99%

3.4 Conclusion

TPP-crosslinked beads can be used as an effective adsorbent for silver ion recovery from

binary solutions with copper ions. The crosslinking agent (TPP) can not only improve the

chemical stability of the chitosan beads in slightly acid solutions, but also provide

effective functional groups for adsorption. Besides, alkalization (-NH3+ was neutralized to

prevent from reacting with crosslinker TPP) before crosslinking lowered the crosslinking

density as well as the reaction time, leading to higher adsorption capacity, especially for

silver ions. The Langmuir isotherm model can describe the adsorption isotherm of silver

ions in TCAC very well, but due to the low capacity, the isotherm data of Cu(II)

adsorption cannot be fitted well with either Langmuir or Freundlich isotherm. Initially, on
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the surface of beads, the adsorption rate may be dominated by the concentration of metal

ions. After that, the metal ions competitively diffuse into the beads for further adsorption

which is much slower than the surface adsorption. Most of the cooper ions were adsorbed

on the surface of beads with oxygen (hydroxyl groups) and phosphate (phosphorous

groups) atoms; while silver ions were absorbed not only on the surface, but also inside

the beads with nitrogen atoms. Moreover, a reduction of silver ions probably occurred

because of some reducing ends of monomers and polysaccharides on chitosan, such as

–NH2.
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Chapter 4 Simulation of the Fixed Bed Adsorption of Ag (I) and Cu (II)

onto TCAC sorbents

4.1 Introduction

The majority of biosorption studies in heavy metal removal or precious metal recovery

were investigated in the stirred-tank batch mode (Goel et al., 2005), for the measurement

of sorbent capacity, adsorption isotherm and kinetic parameters. For industrial application

of biosorption as a low-cost metal removal alternative to conventional processes such as

ion exchange, precipitation etc., fixed-bed adsorption is preferable because of its ability

to process large quantities of feed under cyclic-batch operating mode (Aksu & Gönen,

2004; Naja & Volesky, 2006). In addition, the fixed-bed adsorption column can

effectively separate different components from fluid and easily be regenerated, which

meets the need of industrial utilization (Izatt et al., 2010; Naja & Volesky, 2006).

Based on the two different ways sample solutions fed to the column, the performance of a

fixed-bed column is usually evaluated through the concept of the breakthrough curve and

elution peaks (Han et al., 2009; Lee & Chen, 2001). In fixed-bed adsorption, if the feed

concentration is a step function, breakthrough curves of the sample solutes are obtained.

However, a pulse of feed solution leads to the attainment of elution profiles of solutes.

Usually, breakthrough curves are dependent on many factors, such as the flow rate,

sample concentration and pH of effluent, particle size of biosorbents, etc. The time of the

breakthrough point and the shape of the breakthrough have been found to highly related

to the sample concentration and the flow rate (Aksu & Gönen, 2004). Elution, in a
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biosorption experiment, is the process of extracting the adsorbate from the biosorbent by

washing with a solvent (also called eluent) ("Elution,"). Because the loading samples are

in a small volume, the elution profiles are more complex and sensitive to the affecting

factors, such as flow rate, sample concentration, injection time than the breakthrough

curves (Lee & Chen, 2001).

Mathematical modeling is a very efficient approach to predict the dynamic performance

of fixed-bed adsorption processes. Since no equipment and chemicals are involved,

numerical simulation is becoming increasingly important for good prediction of column

adsorption and for more detailed information of process scale-up.

In the fixed bed biosorption process, the fluid-solid interaction is quite complex. Four

basic mass transfer steps are widely accepted to describe the behavior of biosorption

process (Nakhli et al., 2014): (a) liquid phase mass transfer; (b) film diffusion; (c)

intraparticle diffusion; (d) the adsorption-desorption reaction. In mass transfer modeling,

the intrinsic sorption reaction is assumed to be fast and single-resistance models or

dual-resistance model of the diffusion processes (steps 2 and 3) are considered as rate

limiting. In surface reaction modeling (SRM), mass transfer is assumed to be fast, and the

sorption reaction (step 4) becomes the rate-limiting step (Chatterjee & Schiewer, 2014).

For passive biosorption process, chemical reactions usually do not take place; hence the

mass transfer model is more accurate. So far, several mass transfer mathematical models

have been developed for the fixed bed adsorption of gas (Mulgundmath et al., 2012),

proteins (Yun et al., 2009), organic chemicals (Sansalone & Ma, 2010), and metal ions

(Escudero et al., 2013; Lim & Aris, 2014) by various types of the adsorbents, such as
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organic wastes, active carbon, inorganic compound, etc. However, research on the fixed

bed adsorption of metal ions by chitosan gel beads is scarce (Guibal et al., 1999; Osifo et

al., 2009; Sankararamakrishnan et al., 2008). Chitosan and chitosan derivatives are very

promising biosorents, demonstrating high capacity and good selectivity towards transition

metals; it is therefore important and valuable to study the on-column separation of metal

ions by chitosan based sorbents and the mass transfer characteristics of metal ions in the

fixed bed column.

Following the batch mode sorption of Ag (I) and Cu (II) on TCAC beads presented in

Chapter 3, this chapter mainly aims to examine the performance of the TCAC beads for

the separation of Ag (I) and Cu (II) ions from aqueous solutions in a fixed-bed column.

Linear driving force model was applied to simulate the breakthrough curves and elution

profiles of Ag (I) and Cu (II) from the fixed-bed column. The effects of flow rate, bed

length, sample concentration and injection time on column performance and the

separation of the two metal ions were evaluated.

4.2 Mathematical Model

In physical biosorption processes, the transfer of metal ions from the liquid phase to the

solid phase includes four steps (Heeter & Liapis, 1998): (1) convective mass transfer

along with the flow, (2) film diffusion (transfer from the bulk of the liquid phase to the

external surface of the sorbent), (3) intraparticle diffusion (intrapaticle mass transfer for
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pore diffusion and intraparticle convection), and (4) interaction between the adsorbates

and active sites on the sorbent.

The general mass balance of each adsorbate (metal ion in biosorption) can be described

by: Input + Generation = Output + Accumulation + Consumption. Since no chemical

reactions are involved, the mass balance equation is simplified into: Input = Output +

Accumulation.

To derive a proper mass balance of the column biosorption process, some assumptions

are made below (Guiochon et al., 2006):

1.The input flow is radially homogeneous and the column is isothermal;

2.The phase velocity is constant along the column and independent of the pressure;

3.The axial dispersion coefficient is a lumped parameter resulting from all the

mechanisms;

4.The convention exists when the weak solvent (deioned water) is not adsorbed;

5.The thermal effects and influence of the heat of adsorption can be neglected.

In this study, the lumped kinetic model was chosen to analyze the performance of the

continuous biosorption of Ag(I) and Cu (II) by TCAC beads . Although the general rate

model is the most accurate one, the complex parameters are not easy to obtain correctly,

which weaken its advantages; the ideal model is not suitable on account of its strict

assumptions. Lumped kinetic model is a simplified equation but it also considers the

adsorption on the film and solid; besides, it is frequently used in others’ research (Bak et

al., 2007; Kaczmarski et al., 2001; Pérez-Martínez et al., 2015).
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Then the differential mass balance equation for metal ion i is presented as follows when

assuming u and DL,i are constant:
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The following initial and boundary conditions are considered:

I.C.: t < 0, 0 ≤ z ≤ L, Ci = 0, qi = 0 (4.2a)
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where Ci (mM) is the concentration of metal ion i in the bulk liquid, Ci0 (mM) is the

concentration of metal ion i in the feed, qi (mM) is amount of metal ions adsorbed by

TCAC beads; u (m/s) is the interstitial velocity, z is the coordinate along the length of the

column, t (h) is the time, ε is the porosity of bed, DL, i (cm2/s) is the axial dispersion

coefficient, and L (cm) is the length of the fixed bed.

Using the linear driving force model, the mass balance of metal ion i on solid phase can

be described as (Guiochon et al., 2006):

)( *
iif

i qqK
t
q





(4.3),



77

where q*I (mg/g) is the amount of metal ion i adsorbed on the stationary phase in

equilibrium with the mobile phase concentration Ci, and Kf (s-1) is the lumped mass

transfer coefficient.

For the Langmuir isotherm, we have:

i

i
i bC

Cqq
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Finally the partial differential equation (Eq. (4.1)) is solved numerically by conversion to

the ordinary differential equations (ODEs) using the second order finite difference

scheme (Table 4.1). The resulting initial value problems of ODEs were solved using the

stiff solver ode15s in MATLAB R2012a.

Table 4.1 Transformation from PDE to ODE

PDE ODE
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4.3 Methodology to determine model parameters

4.3.1 Column parameters

Based on the results of swelling rate test presented in Chapter 3, the parameters of TCAC

beads and the column parameters are summarized in Table 4.2.
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Table 4.2 Physical parameters of TCAB beads and fixed-bed columns

Average beads diameter, dp (cm) 0.10

Packed-bed density, ρ (g/cm3) 0.55

Porosity of bed, ε 0.57

Cross-sectional area of column (cm2) 0.785

4.3.2 Empirical correlations of axial dispersion coefficient (DL)

In the past few decades, axial dispersion in packed bed reactors has been measured and

discussed in both gas-liquid and liquid-solid systems (Yu et al., 1999). In the chemical

engineering area, when considering if the radial contribution is important to the

adsorption process, axial dispersion is usually measured as one-dimensional (Yu et al.,

1999). In general, the axial dispersion includes two components: mechanical dispersion

and molecular dispersion; the correlation equation is:

mmechL DDD  (4.5),

where Dmech (cm2/s) is the mechanical dispersion, Dm (cm2/s) is the molecular diffusion,

and τ is the porous medium tortuosity. Because the value of Dmech is directly related to the

interstitial velocity, scientists proposed an empirical correlation with Peclet number of

molecular diffusion (Ped) to evaluate the dominance part in DL.
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where u (cm/s) is the interstitial velocity, η is the fluid’s absolute viscosity, ρf is the

fluid’s density g/L.

It is found that when Ped is lower than 0.4, the molecular dispersion is dominant; for a

fixed-bed column, it typically varies from 0.1 to 0.5. When Ped is between 0.4 and 5, both

of the mechanical and molecular dispersion affect DL; when Ped is larger than 5, the value

of DL is mostly dependent on the interstitial velocity. Bear provided an empirical

equation for axial dispersion when Ped > 5 (Yu et al., 1999):

m
ddmL PeDD )( (4.7),

where αd and m are empirical constants related to Ped. For the value of Ped greater than 5

but smaller than 10, the value of αd is suggested to be 0.5 and m values between 1 and 1.2;

for the value of Ped is greater than 10, the proper values of αd and m are about 1.8 and

1.0, respectively, which means DL is totally independent on molecular diffusion.

Other empirical equations reported from open literature, summarized in Table 4.3 were

also used to estimate the DL values. .

Table 4.3 Empirical axial dispersion correlations

Adsorbent Adsorbate Correlation Source

ETS-10 Pb2+ pmL udDD 83.044.0 
(4.8)

Suzuli and Smith
(Lv et al., 2008)

Activated carbon Pb2+, Cu2+,
Cr3+, Co2+

)Re011.02.0(
2

48.0
bpL r

L
D
uL


(4.9)

Chung and Wen
equation (Sulaymon

et al., 2009)

Mineralized peat Cu2+
8269.13110.3 uDL 

(4.10)

Marta, etc.
(Izquierdo et al.,

2010)
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4.3.3 Determination of the overall mass transfer coefficient (Kf)

To simplify the calculation, all the mass transfer coefficients in the column are usually

lumped into an overall coefficient in the linear driving force model, which is easy to

estimate through experiments. Normally, this overall mass transfer coefficient can be

estimated based on the three mass transfer steps taking place in the column, i.e., mass

transfer in bulk fluid, in macro-pores or in micro-pores of porous solids. Therefore, the

entire mass transfer resistance in the fixed bed adsorption column consists of the

resistances arising from the thin fluid film on the fluid-solid interface, resistances in

macro-pores and micro-pores. Thus the relationship between Kf and its three main

components is as follows:
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where K is equal to qmax/ci0, kf (cm/s) is the external mass transfer coefficient, εp is the

percentage of macro-pore on the beads, rp (cm) is the radius of the chitosan gel beads, Dp

(cm2/s) can is the molecular diffusion coefficient of metal ions in macro-pores, rc (cm) is

the radius of the pore in the particle, Dc (cm2/s) is the diffusion coefficient in micro-pores,

which can be estimated through kinetic studies in Chapter 3 by the following equation

(Qiu et al., 2009):
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Based on the preparation condition, either macro-pore (> 50 nm) or micro-pores (< 2nm)

can be obtained for the chitosan gel beads. Due to the limitation of experimental facility,

the real pore size and distribution of the prepared chitosan gel beads cannot be measured

in this study. However, the preparation method of the chitosan beads in this study is very

similar to the one reported by Mi and co-workers (2002) (Mi et al., 2002). The pore size

of chitosan beads in their study is 1.37 μm. Therefore, we assume that the TPP

crosslinked chitosan beads prepared in this study also have the uniform macro-pore

structure, and the overall mass transfer coefficient Kf can be calculated by:

pp

p

f

p

f D
Kr

k
Kr

K 153
1 2
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where εp of the TPP crosslinked gel beads is estimated to be 80.75% based on the same

research work by Mi and co-workers (Mi et al., 2002).

To determine the overall mass transfer coefficient Kf, the film transfer coefficient kf is

prerequisite. The film transfer coefficient is dependent on the liquid properties, flow rate

and the physical properties of biosorbents, the relationship between kf and Sherwood

number (Sh) was proposed by Seader & Henley (2006) as:
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Several empirical correlations (Lv et al., 2008) was summarized in Table 4.4 to estimate

Sh and subsequently the film transfer coefficient, kf.
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Table 4.4 Empirical correlations for Sherwood number (Sh) and its applied ranges

Correlation Validity
4/13/1Re4.5 ScSh  (4.15) 0.04 < Re <30

4/13/1Re09.1 ScSh
b

 (4.16) 0.0016 < Re <55

4/134.066.0 Re4.2 ScSh  (4.17) 0.04 < Re <52

4.4 Results and Discussion

4.4.1 Model parameters

In this study, the two model parameters, DL and Kf were determined using empirical

correlations and additive mass transfer resistance in a fixed-bed column, respectively.

The flow rate (Q) for both elution and breakthrough of the metal ions is in the range of

0.006 L/h to 0.06 L/h.

4.4.1.1 Axial dispersion coefficient (DL)

Results of DL calculated from different correlations are listed in Table 4.5. DL values

calculated from Eq. (4.8) for Ag (I) and Cu (II) are quite different from those obtained by

the other three correlation equations. DL values calculated from Eqs. (4.7), (4.9) & (4.10))

are much lower than those from Eq. (4.8), particularly at lower flow rate. Therefore,

in-depth analysis of these four correlation equations is essential to determine the proper

DL values for Ag (I) and Cu (II). Correlation Eq. (4.7) was originally used in the gas

adsorption, the results of DL of metal ions in aqueous liquid calculated by this correlation

may deviate from the real values (Yu et al., 1999). Eq. (4.9) is applicable for fluids with
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flow rate larger than 1 L/h and 10-3 < Re < 103, which might not be suitable (Sulaymon et

al., 2009). Eq. (4.10) was derived from the experimental measurements in a narrow range

of flow rate (around 0.6 ml/min), which may cause large errors when applied in a system

with fluid flow rate different from the reported value (Izquierdo et al., 2010). Eq. (4.8)

incorporates the contributions of both molecular diffusion and fluid convection to axial

dispersion and hence is widely used to estimate DL in various systems (Lv et al., 2008).

As a result, DL calculated from Eq. (4.8) was more appropriate to the dynamic adsorption

of Ag (I) and Cu (II) on TCAC beads with the selected flow rate range.

Table 4.5 DL (cm2/s) values for Ag+ and Cu2+ calculated from various correlations

Ag+ Cu2+

Q = 0.006 L/h

Eq. 4.7 3.890×10-6 3.890×10-6

Eq. 4.8 1.833×10-4 1.806×10-4

Eq. 4.9 6.110×10-6 6.110×10-6

Eq. 4.10 1.250×10-5 1.250×10-5

Q = 0.06 L/h

Eq. 4.7 3.889×10-5 3.889×10-5

Eq. 4.8 1.778×10-3 1.778×10-3

Eq. 4.9 5.833×10-5 5.833×10-5

Eq. 4.10 8.333×10-4 8.333×10-4

4.4.1.2 The overall mass transfer coefficient (Kf)

The flow rate of elution and breakthrough varying from 0.006 L/h to 0.06 L/h, leads to

the Re between 0.024 and 0.238. Therefore, in this study, the correlations ofEqs. (4.15) &

(4.17) can be applied to determine the value of kf if Q > 0.012 L/h, and correlation (4.15)
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can be applied to estimate kf over the entire range of flow rate. When using the Eq.

(4.14-4.17), the approximate ranges of kf are shown in Table 4.6. Considering the Re

values under the selected flow rate range in this study, Eq. (4.16) provides the most

applicable film coefficients of Ag (I) and Cu (II) in the bulk liquid. The external mass

transfer coefficient for Ag+ is in the range of 4.428×10-4 cm/s to 9.464×10-4 cm/s; the

external mass transfer coefficient for Cu2+ varies from 2.364×10-4 cm/s to 5.053×10-4

cm/s.

Table 4.6 The values of kf (cm/s) for Ag+ and Cu2+ calculated from various correlations

Ag+ Cu2+

Q = 0.006 L/h

Eq. 4.15 / 6.593×10-4

Eq. 4.16 4.428×10-4 2.364×10-4

Eq. 4.17 / 3.372×10-4

Q = 0.06 L/h

Eq. 4.15 / 1.420×10-3

Eq. 4.16 9.464×10-4 5.053×10-4

Eq. 4.17 / 4.356×10-4

Based on the preparation method of the TCAC beads in this study, the Kf was determined

through macro-pore mass transfer model. Therefore, the macro-pore mass transfer

coefficient for Ag+ is in the range of 5.028×10-5 s-1 to 8.389×10-5 s-1, the macro-pore mass

transfer coefficient for Cu2+ is in the range of 8.000×10-5 s-1 to 1.283×10-4 s-1.
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4.4.2 Elution and breakthrough of Ag(I) and Cu (II) from the fixed-bed column

4.4.2.1 Effect of flow rate

In this study, four levels of elution flow rate - 0.006 L/h, 0.018 L/h, 0.03 L/h, 0.06 L/h

were used to study the effect of flow rate on elution and breakthrough of Ag (I) and Cu

(II) ions from the 4.5 cm long column packed and chitosan beads of 1.0 mm in diameter.

Fig. 4.1 shows the predicted breakthrough curves for Ag+ and Cu2+ obtained under

different flow rates in terms of Ce (outlet concentration) versus time. It is obvious that the

breakthrough of Cu2+ is earlier than that of Ag (I) because the maximum biosorption

capacity of beads for copper ions is much lower than that for silver ions, leading to the

shorter time of saturation. In addition, the fast mass transfer rate of Cu (II) indicated by

its higher Kf value, particularly at higher flow rate, makes the breakthrough curve of Cu

(II) steeper than that of Ag (I). Clearly the breakthrough point appeared earlier under the

higher flow rate. At higher flow rate, the mass transfer of metal ions in the column tends

to increase as illustrated in Table 4.5, therefore, the amount of adsorbed metal ions on the

TCAC beads per unit bed height increases with an increase in flow rate, leading to faster

column saturation. From the mass transfer correlations, it is observed that the influence of

flow rate on the film diffusion is much greater than that on the intraparticle diffusion

(Sulaymon et al., 2009), and might change the controlling step in the biosorption process

of the column. The mass transfer Biot number (Bim) is a common method to measure the

relationship between the flow rate and the sensitivities of external and internal mass

transfer, which is defined as:
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cD
rk

Bi pf
m  (4.18)

where Dc is the diffusion coefficient in the pore model.

Table 4.7 shows that the Biot number decreased with the increase of the flow rate at L =

4.5 cm, indicating that the film diffusion resistance is more sensitive to the biosorption

process of the column under the higher velocity. Moreover, the breakthrough points of

Ag+ and Cu2+ under the same flow rate are closer with the increase of the flow rate,

indicating that the film diffusion resistance is the dominating factor when the flow rate is

high. Furthermore, the Bim of Cu2+ is always smaller than the Bim of Ag+, suggesting that

copper ions are more difficult to transfer in the solid particles compared with silver ions,

and the adsorption of Cu2+ is almost on the surface of the beads. These results are

consistent with the discussions in Chapter 3.
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Figure 4.1 Predicted breakthrough curves for adsorption of Ag (I) and Cu (II) in the
column under different flow rates

Table 4.7 The values of mass transfer Biot number (Bim) at different flow rates

Flow rate (L/h) Metal ions Bim

0.006
Ag+ 0.240

Cu2+ 0.130

0.018
Ag+ 0.120

Cu2+ 0.064

0.03
Ag+ 0.085

Cu2+ 0.046

0.06
Ag+ 0.053

Cu2+ 0.029
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The influence of flow rate on simulated elution profiles of Ag(I) and Cu (II) from the

fixed-bed column is illustrated in Fig. 4.2. The sample concentration is 10 mM for each

metal ion and injection time is 0.05 h. It is clear that with the increase of flow rate, the

elution time is shorter and the peak is higher and sharper. However, the separation of

these two metal ions becomes difficult at higher elution flow rate due to the shorter

residence time of metal ions in the column, which makes the metal ions incapable of

reaching all the available sorption sites due to the slow mass transfer in the porous solids.

Hence, both metal ions elute quickly from the column and separation of the metal ions

cannot be attained. Whereas, at lower elution flow rate (Q=0.006 L/h), complete

separation of Ag (I) from Cu (II) can be obtained. And the elution order of the two metals

is different with the breakthrough order due to the smaller amount of metals ions injected

into the column. At lower column loading of metal ions, most of the sorption sites on

outer-surface of the beads were occupied by Cu (II), and very less amount of Ag (I) ions

can reach the sorption sites in the inner layer of the beads due to the slow mass transfer in

the solid particles. Therefore, unlike breakthrough curves, this time Ag (I) eluted earlier

than Cu (II) at lower column loading.



89

Figure 4.2 Predicted elution peaks for adsorption of Ag (I) and Cu (II) in the column
under different flow rates

4.4.2.2 Effect of bed length

The effect of the bed length on the breakthrough and elution of Ag (I) and Cu (II) was

determined by four levels – 4.5, 6.5, 8.5, and 10.5 cm of bed length. Fig. 4.3 shows the

predicted breakthrough curves for Ag+ and Cu2+ obtained for different bed lengths at Q =

0.018 L/h and sample concentration of 1.0 mM. It is obvious that metal ions take the

shortest time to break through the column when bed length is 4.5 cm. With the increase

of bed length, longer time is needed for the metal ions to exit from the column. It is also

noted that the shapes and slopes breakthrough curves of Ag (I) and Cu (II) with different
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bed lengths are almost the same, which stems from the same axial dispersion and mass

transfer coefficient.

Peclet number (Pe), a dimensionless group number defined as the ratio of the axial

convection rate to the axial dispersion rate (Sulaymon et al., 2009), is usually used to

demonstrate the different magnitudes of mass transfer by convection and diffusion as:

LD
uLP e (4.19)

Table 4.8 illustrates Pe at constant flow rate with different bed lengths. It is found that Pe

increased with the increase of the bed length, indicating that the effect of the axial

dispersion in the biosorption process is smaller with the increase of the bed length. This

observation is in agreement with the results obtained by Sulaymon and co-workers

(Sulaymon et al., 2009). However, the Pe values for Ag+ and Cu2+ are very close,

suggesting that the properties of metal ions have little influence on convection and axial

dispersion.
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Figure 4.3 Predicted breakthrough curves for adsorption of Ag (I) and Cu (II) in the
column under different bed lengths

Table 4.8 Pe values at different bed lengths

Bed length (cm) Metal ions Pe

4.5 cm
Ag+ 0.53

Cu2+ 0.54

6.5 cm
Ag+ 0.77

Cu2+ 0.78

8.5 cm
Ag+ 1.00

Cu2+ 1.02

10.5 cm
Ag+ 1.24

Cu2+ 1.26
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The effect of column length (with constant sample concentration and injection time) on

the elution profiles of Ag (I) and Cu (II) is presented in Fig. 4.4. By increasing the

column length from 4.5 to 8.5 cm, the time which is required for Ag (I) and Cu (II) to

elute from the column increases, and the elution profiles of Ag (I) and Cu (II) became

more spread and shorter. This is due to the increase in number of binding sites owing to

the increase in surface area of the TCAC sorbent. The metal ions had sufficient time to

diffuse through the solid particles, leading to the lower concentration in the eluent, but

better separation of the two metal ions.

Figure 4.4 Predicted elution curves for adsorption of Ag (I) and Cu (II) in the column
under different bed lengths



93

4.4.2.3 Effect of sample concentration and injection time (t)

For preparative chromatographic separation, column overload through either volume

overload or concentration overload is widely applied to separate, with an acceptable

resolution, the amount of adsorbates (metal ions in this case) as much as possible. In this

study, the effects of concentration overload and volume overload on the elution

separation of Ag (I) and Cu (II) from TCAC packed column was investigated. The effect

of concentration overloading was studied by keeping the injection time (0.05 h), flow rate

(0.006 L/h and 0.06 L/h) and the bed height (4.5 cm) constant and varying the sample

concentrations of the feed fluids. The influence of volume overload was performed by

making the sample concentration of metal ions (1.0 mM), flow rate (0.006 L/h) and the

bed height (4.5 cm) constant and varying the injection time.

Figs. 4.5 and 4.6 demonstrate the effect of sample concentrations on the elution profiles

of Ag (I) and Cu (II). It is observed that at lower flow rate (0.006 L/h) increasing the inlet

metal ion concentration from 1.0 mM to 10.0 mM has very minor effect on the elution

time of the two metal ions, and thus the separation of the metal ions was not significantly

affected. The attainment of the complete separation indicate that inlet concentration of

metal ions can be further increased because the column was not overloaded due to the

relative smaller sample loading in the column (sample loading = flow rate × injection

time × sample concentration). However, at higher flow rate (0.06 L/h), the separation of

Ag (I) and Cu (II) can’t be obtained for two reasons. First, the slow mass transfer and the

short residence time of metals ions make both metal ions elute quickly from the column.

Second, the column was heavily overloaded due to the higher injection amount of metal
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ions which lead to longer tails for both Ag (I) and Cu (II), therefore complete separation

of the metal ions was difficult to achieve.

Figure 4.5 Predicted elution curves for adsorption of Ag (I) and Cu (II) in the column
with different initial concentration
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Figure 4.6 Predicted elution curves for adsorption of Ag (I) and Cu (II) in the column
with different initial concentration

The effect of injection time on the elution profiles of Ag (I) and Cu (II) is illustrated in

Fig. 4.7. As more metal ions were injected in the column when longer injection time was

used, relatively longer tails were obtained for Ag (I) and Cu (II), which decreased the

separation of metal ions slightly.
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Figure 4.7 Predicted elution curves for adsorption of Ag (I) and Cu (II) in the column
with different injection time

A more useful and valuable study is to compare the effects of sample concentration and

injection time on the separation of metal ions at fixed sample loading, which is the

product of injection concentration and injection volume. Fig. 4.8 showed the calculated

elution peaks for Ag (I) and Cu (II) obtained at the same sample loading but with

different combinations of sample concentration and injection time at the same flow rate

(Q = 0.006 L/h). It is found that the elution peaks of metal ions are sharper at higher

sample concentration and the short injection time, while the elution peaks are more

spread when lower sample concentration and longer injection time are used. Moreover,

compared with the results of Fig.4.5 and Fig. 4.7, the sample concentration plays a more

important role in the separation of the two metal ions. Based on the above analyses, we
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conclude high injection concentration and low injection volume is recommended for

chromatographic separation.

Figure 4.8 Predicted elution curves for adsorption of Ag (I) and Cu (II) in the column
with the same injection amount of metal ions

4.5 Conclusion

The lumped kinetic model has been used to describe and predict breakthrough and elution

curves for the continuous adsorption of silver and copper ions on TCAC beads. Two

important model parameters, namely the overall mass-transfer coefficient (Kf), and the

axial dispersion coefficient (DL) have been determined using the empirical correlations.

Both macro-pore and micro-pore models were used to calculate the overall mass transfer
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coefficient (Kf) in the fixed bed column and the former one was found to be more suitable.

The range of macro-pore mass transfer coefficient for Ag+ is in the range of 5.028×10-5

s-1 to 8.389×10-5 s-1, and the macro-pore mass transfer coefficient for Cu2+ is in the range

of 8.000×10-5 s-1 to 1.283×10-4 s-1; The range of axial dispersion coefficient for Ag+ and

Cu2+ are very close, varying from 1.806×10-4 cm2/s to 1.778×10-4 cm2/s.

The effects of flow rate, bed length, sample concentration and injection time on the

breakthrough and elution of Ag (I) and Cu (II) from the column were investigated.

Simulation results indicated that at lower flow rate, longer bed length, lower sample

concentration and shorter injection time, the separation of the two metal ions is better.

Particularly, when the total loading amount of metal ions are the same, the combination

of higher sample concentration and shorter injection time helps to get sharper elution

curves and better separation of silver and copper ions. This suggests that concentration

overload by increasing the sample concentration is more effective to improve the

separation of the two metal ions in fixed-bed columns than volume overload by

increasing the injection time.
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Chapter 5 Conclusions and Recommendations

5.1 Conclusions

A low-cost and environment-friendly biosorbent, i.e., sodium tripolyphosphate

crosslinked alkalized chitosan (TCAC) beads was prepared in this study and used to

selectively adsorb Ag (I) ions from the bimetallic solution (containing equal molar

concentration of Ag(I) and Cu (II)) through either batch mode and dynamic fixed-bed

column separation. A mathematical model was applied to simulate the breakthrough and

elution of metal ions from the fixed-bed adsorption column in order to provide practical

information for industrial utilization of TCAC beads in wastewater treatment.

Different preparation conditions were used to synthesize TCAC beads and results indicate

that alkalization of chitosan before crosslinking is an efficient approach to control the

degree of crosslinking of chitosan, and low degree of crosslinking is beneficial to the

selective uptake of Ag (I) from aqueous solution containing the same mole concentration

of Ag (I) and Cu (II). According to the results of ATR-FTIR and XPS analysis for

sorbents before and after metal uptake, silver ions were found to be primarily adsorbed by

the amine group in the inner layer of the TCAC beads; whereas copper ions were mainly

adsorbed on the outer layer of the beads through phosphorous groups.. The results of

desorption process are also in agreement with the mechanism of adsorbing copper and

silver ions.
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Considering the accuracy and the operability, the lumped kinetic model has been selected

to describe and predict breakthrough and elution curves for the continuous biosorption of

silver and copper ions on TCAC; the macro-pore model was chosen to simulate the mass

transfer in the stationary phase. The external mass-transfer coefficient (Kf) and axial

dispersion coefficient (DL) are two important parameters affecting the performance of the

column under different conditions which have been optimally calculated by proper

empirical correlations. The range of macro-pore mass transfer coefficient for Ag+ is

5.028×10-5 s-1 to 8.389×10-5 s-1, and the macro-pore mass transfer coefficient for Cu2+ is

in the range of 8.000×10-5 s-1 to 1.283×10-5 s-1; The ranges of axial dispersion coefficient

for Ag+ and Cu2+ are almost the same, which is in the range of 1.806×10-4 cm2/s to

1.778×10-4 cm2/s. Four factors are considered when studying the performance of the

column under different conditions: flow rate, bed length, initial loading concentration and

loading time. The results of breakthrough and elution curves demonstrated that smaller

flow rate and longer bed length could extend the appearance time of the breakthrough

points and enhance the separation of silver and copper ions in the column. Moreover,

smaller initial loading concentrations or shorter loading times can also improve the

separation effect. Furthermore, with the same total loading amount of metal ions,

decreasing the loading concentration is more effective to improve the separation of two

metal ions than shortening the loading time.
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5.2 Recommendation

This research work is a meaningful attempt to syntheses chitosan-based biosorbents with

enhanced adsorption capacity and good selectivity of silver ions, and to study the

separation effects in the continuous system. The alkalization process is applied to reduce

the consumption of amine groups (the disadvantage of utilization of TPP in the

adsorption area) in crosslinking processes, providing another environmental and effective

crosslinker in treating metal ions in the aqueous system.

In addition, with the analysis of ATP-FTIR, XPS, XRD, the selective adsorption

mechanism of copper and silver ions is explained clearly which is beneficial for further

improvement. There is an interest to examine to competitive adsorption performance in a

ternary or multi components system and for other metal ions. For example, the selectivity

separation of gold ions from copper, zinc, or lead ions could be investigated in the future.

However, according to the results of isotherm and kinetics in the Chapter 3, the mass

transfer of metal ions in the newly synthesized TCAC beads was slow which is also

widely reported in others’ research. Therefore, further modification is needed to enhance

the mass tranasfer in the chitosan beads, such as increasing the porosity using templates.

Considering the promising capacity and low cost of chitosan, it is valuable to do more

research to overcome the barrier of chitosan for the practical usage in the future.
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