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Abstract 

  This study will present an interpretation of the mass spectrometry gas-phase 

fragmentation patterns of the extracted Lipid A that is obtained from the native LPS 

extracts isolated from the marine Gram-negative bacteria Aeromonas Salmonicida (SJ-

112). It is known that the surface antigen lipopolysaccarides (LPS) SJ-112 infect various 

fish species (Atlantic salmon and cod) which are cultivated in aquaculture ventures. The 

exact molecular structure of the Lipid A has not yet been precisely established.  

 

This thesis will present the mass spectrometric fingerprint identification and 

structural elucidation of the Lipid A from A. Salmonicida, which are carried out by using 

mass spectrometry techniques namely, electrospray ionization tandem mass spectrometry 

(ESI-MS/MS) using an FT-ICR instrument and matrix assisted laser desorption ionization 

tandem mass spectrometry (MALDI-MS/MS) using a TOF/TOF instrument. 

 

The concomitant uses of high-energy (CID-MS/MS) and low-energy collision 

induced dissociation (CID-MS/MS) analysis were also used to elucidate the MS/MS 

fingerprints of this complex biomolecule and can be effectively used for any quantitative 

or qualitative studies. 
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1 

Chapter 1 : Introduction 
 

1.1 History of mass spectrometry 

 

In its earlier forms mainly at the beginning of the 20
th

 century, the basic use of 

mass spectrometry was to probe some fundamental aspects of both atomic as well as 

molecular structure and for determining the atomic weights of elements along with the 

discovery of some stable isotops.
1 

          The birth of mass spectrometry is generally attributed to the physicist J.J. Thomson 

along with his discovery of the electron with the help of an electric field built inside a 

cathode ray tube. His success eventually led him towards development of a crude ‘mass 

spectrograph’ for measuring the atomic weights of elements. At the onset of World War 

II, various other applied benefits of mass spectrometry were observed. It was mainly used 

in the Manhattan project for purifying as well as   assessing the enrichment of potential 

fissionable isotopes of uranium. Nier in this regard constructed a device on the basis of a 

mass spectrometer for the detection of leaks produced in the gas centrifuges for enriching 

235
U.

1, 2
 

         This type of an instrument was mainly needed for the detection of the uranium 

hexafluoride which was utilized in the purification processes and was extremely 

corrosive. Since the demands for having higher-octane fuel for improving the 

performance of the fighter aircraft increased, mass spectrometers were also used for 

monitoring of the petroleum processing in order to increase the fuel quality. These needs 



 

2 

 

eventually drove towards a better development of a molecular ionization as well as 

fragmentation process to create different methods of producing more reproducible along 

with better diagnostic mass spectra.
1, 2

 

         In 1886, Eugen Goldstein experimented with positively charged gas particle streams 

that traveled away from the anode through channels towards the cathode, opposite to the 

direction of negatively charged rays.
3 

In 1899, Wilhelm Wien created a device with 

parallel electric and magnetic fields that separated the positive rays according to their 

charge-to-mass ratios. J.J. Thomson who was credited for the discovery of the electron 

and the “plum pudding” model of atoms, later improved on the work of Wien by reducing 

the pressure to create the mass spectrograph.
4 

 Modern techniques in mass spectrometry can be traced to Arthur Jeffrey Dempster, who 

in 1918 established the basic design of mass spectrometers that is still used to this day.
5
 

In 1919, Francis William Aston, a student of J.J. Thomson, built the first functional mass 

spectrometer and was able to detect isotopes of chlorine, bromine and krypton.
6
 As 

computing and construction techniques expanded and developed, in the 20th century the 

resolving power of the mass spectrometer grew exponentially.  Mass spectrometers were 

also coupled to other separation devices, such as gas chromatographs, which improve the 

ability to separate mixtures of molecules molecules prior to fragmentation. Refinements 

continued in the sampling preparation and ionization techniques thereafter. The Nobel 

Prize in Physics was awarded to Hans Dehmelt and Wolfgang Paul for the development 

of the ion trap technique in the 1950s and 1960s.
7
 In 2002, the Nobel Prize in Chemistry 
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was awarded to John Bennett Fenn for the development of electrospray ionization (ESI) 

and Koichi Tanaka for the development of soft laser desorption (SLD).
8
 ESI and SLD 

allowed for the ionization of large biological macromolecules, such as proteins and are 

used extensively today. 

 

1.2 Mass spectrometry 

  

Mass spectrometry is an analytical methodology for determining the molecular 

mass of a chemical or biological molecule. Due to its minimal sample requirements and 

fast and accurate results, it is an ideal tool in most analytical chemistry and molecular 

biology labs.  The principles behind mass spectrometry are to determine the masses of 

molecules and their fragments, which can be achieved when they are ionized, thus they 

can be separated based on their mass to charge ratio (m/z).  This has important 

implications in identifying compounds of interests, and for characterizing or discovering 

new molecules.  

     There is a myriad of mass spectrometers available, based on the different types 

of configurations and the ionization source. Mass spectrometers have: The ionization 

source, the analyzer and the detector (Figure 1.1). Within the ionization source, 

molecules undergo ionization under low pressure and are heated to a specific 

temperature. It is within the ionization source where molecules undergo fragmentation 

and are ionized.  These ions are then passed into the analyzer; the ions are separated 

according to their mass-to-charge ratio (m/z).  Finally, the detector collects the ions, 
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quantifies their intensities and amplifies their signals for subsequent analysis. The process 

is conducted under low-pressure to minimize collision between ions and carrier gas 

molecules. It is at the detector, where the datum is processed and a mass spectrum is 

generated, which specifies the variation of ion current observed according to the ratio 

(m/z).  Every molecule produces a characteristic spectrum or “fingerprint”.  

The ionization source, the analyzer and detectors can be arranged in various 

configurations to create different mass spectrometers. The specific type of ionization 

source and analyzer will depend on the chemical and physical properties of the sample 

and on the quality of data desired (sensitivity, resolution and mass range). 

 

 

Figure 1.1: Main processes of measuring with a mass system. 
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1.3 Ionization techniques 

1.3.1 Hard or direct ionization technique 

 

      Electron impact ionization (EI) and chemical ionization (CI) techniques are 

called “hard” since they use the internal energy of the analyte to cause fragmentation. A 

molecule “M” is bombarded by energetic electron beams under vacuum to produce the 

following reaction: 

 

 

 

In comparison, the chemical ionization method (CI), ions are formed indirectly 

through an intermediary reactive gas.  While being considered a “softer” method than EI, 

this is still a hard ionization technique. The protonation of ions occurs in two stages;  

             The first step is the electron impact ionization of the intermediary reactive gas 

such as methane and the second is the protonation of the molecule M by reactive gas: 

 

 

 

 

 

EI and CI are often chosen with compounds having small molecular masses 

because they can also be linked to a gas chromatography (GC) instrument whereby the 

sample can be first introduced in its gas phase.
9 

 

M + e
-

M 
+.

 + 2e
-

CH4 + e
-
           CH4

+
  + 2e

-

CH4 + CH4

+
CH5

+
  + CH3

M + CH5

+
CH4 + [M + H]

+
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1.3.2 Soft or indirect ionization techniques 

 

During “soft” ionization, a minimum amount of internal energy is given to the 

analyte to generate fragments. There are numerous soft ionization techniques: Fast atom 

bombardment (FAB),
 10, 11 

liquid secondary mass spectrometry (LSIMS),
 12

 matrix 

assisted laser desorption ionization (MALDI) 
13, 14

 and electrospray ionization (ESI),
 15

 to 

name a few. ESI and MALDI play important roles in numerous fields such as; 

biotechnology, molecular biology (biological and chemical) namely the comprehensive 

study of all internal, and/or secreted proteins from an individual species. The Nobel Prize 

in Chemistry (2002) was awarded to John Fenn for ESI and Koichi Tanaka for 

MALDI.
16,17 

Fast atom bombardment (FAB) ionization, matrix-assisted laser desorption 

ionization (MALDI) and electrospray ionization (ESI) allow for single-stage direct MS 

analysis, and the characterization of complex biological molecules.  

In addition to single-stage mass spectrometry, tandem mass spectrometry uses 

collision-induced dissociation, or CID-MS/MS. This is an important analytical method 

for the structural characterization of biomolecules, namely for the sequencing of peptides 

and the identification of a parent protein. Ions are fragmented in a tandem mass 

spectrometer by collisions with neutral gas molecules using either low or high energies; 

depends on tandem mass spectrometer used: Quadrupole ion trap (QIT-MS/MS), 

Quadrupole-Quadrupole-Quadrupole (QQQ-MS/MS), Quadrupole-Hexapole-Quadrupole 

(QhQ-MS/MS), Quadrupole orthogonal time-of-flight (QqToF-MS/MS), Fourier 
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transform ion cyclotrone resonance (FT-ICR-MS/MS) and MALDI-Tof-Tof-MS/MS. 
18-

24
  

13.2.1 MALDI 

         MALDI is a soft ionization technique that is useful for the analysis of large 

biomolecules. This methodology is compatible with biomolecules in tissues because of its 

high sensitivity, high tolerance for salts and other contaminants, and a wide mass range 

with little fragmentation. For example, the structural characterization of vitellogenin 

protein and a fish biomarker have been done using MALDI in tandem.
25,26

 

          MALDI was first introduced in the year 1988 by Hillenkamp along with Karas 

and since then, it has become a useful analytical tool mainly for peptides, proteins, and 

many other biomolecules such as oligonucleotides, carbohydrates, lipids and natural 

products.
27

 Some of the basic advantages includes its efficient along with a directed 

energy transfer during the overall process of matrix-assisted laser-induced desorption 

which provides high yields of the ion of the intact analyte. In addition, it also allows for 

highly accurate measurements of analytes as well as sub-picomole sensitivities.
28

 

     MALDI mass spectrometer is often combined with other analytical instruments 

or separation techniques. For example, the analysis of rough-type lipopolysaccharides 

combined with thin-layer chromatography and MALDI mass spectrometry, another 

example for the detection of affinity of purified cross-linked peptides by MALDI-TOF 

MS combined with chemical crosslinking of proteins.
29,30

 MALDI is an important tool for 

the study of DNA,
31

 glycoconjugates,
32

 and lipids.
33

 



 

8 

 

            In MALDI, the matrix and sample mixture are placed on a stainless steel plate, 

and after evaporation of the solvent, the matrix will then co-crystallize with the analyte. 

The laser commonly used is the nitrogen laser (337 nm). Common matrices used are; 2,5-

dihydroxybenzoic acid (DHB),
34

 sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid 

(CHCA) and 2,4,6-trihydroxyacetophenone (THAP) which is used for proteins and 

peptides. 
35-38

The sample is dissolved in an appropriate matrix that has a strong 

absorption at the wavelength of the laser used. As such, the absorbed laser energy can 

lead to ionization of the analytes. The resulting ions are then desorbed by proton-transfer 

between the photoexcited matrix and the analyte (Figure 1.2).  During laser irradiation 

(hν), the molecules of the matrix (MH) are excited according the following equation:  

MH + hν → [MH]* 

 

The energy is transferred to the analyte which is ejected into the gas phase. The 

ionization process seems to be occurring in gas phase according to two different 

phenomena; 1) A proton-transfer mechanism resulting from an acid/base reaction; 2) A 

proton-transfer when the matrix ions collide with the target molecule (analyte) in the gas 

phase.
38 

Hence, the matrix plays a critical role by absorbing the laser light energy and 

eventually causing the indirect vaporization of the analyte. The matrix also acts as a 

proton donor as well as an acceptor and serves to ionize analyte both in the positive and 

in the negative ionization modes, respectively. 
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1.3.2.2 MALDI and Proteomics 

 

              Traditional characterizing techniques for proteins involved using gel 

electrophoresis, and Western Blotting. MALDI MS has emerged as a revolutionary tool 

in molecular biology due to its superior sensitivity, precision, accuracy, and throughput. 

The use of tandem mass spectrometry, where peptide fragments can be further 

fragmented via collision induced dissociation to its composite amino acids.  

This allows for high throughput sequencing and structural/ functional analysis of 

classes of proteins versus the one protein at a time approach.
39

 In terms of beneficial 

applications, entire signaling pathways or more importantly, aberrant ones in cancer cell 

lines can be determined, potentially leading to novel therapeutic options.
40 

Other clinical 

applications include studying neuropsychiatric disorders where mouse lines have been 

developed to mimic cerebral spinal fluid (CSF).
40

 Diseases such as Alzheimer’s have 

protein structural abnormalities and thus understanding these protein structures and 

function can give an overall insight to the progression of this disease.
41
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Figure 1.2: MALDI Ionization Process 

 

 

 

Figure 1.3: The chemical structures of four commonly used matrices in MALDI-MS 

analysis. 
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1.3.2.3 Electrospray ionization 

 

   ESI is a soft ionization method used for determining the molecular masses of 

peptides, and many other biological macromolecules. Electrospray is basically a method 

in which a liquid is dispersed into smaller charged droplets after applying a high potential 

electric charge between the liquid present in a thin capillary as well as in the counter 

electrode.
42 

The charging of the main analytes usually takes place in their liquid phase, 

but the ions are subsequening transferred into the gas phase. The charging of these 

analytes can mainly occur in different ways: the analytes might already be charged in the 

solution, with the help of adduct formation, gas-phase ionisation as well as 

electrochemical ionisation.
42

 

      The first recorded description of electrospray was basically a short description of 

a minor experiment specifically with the static electricity. In the year 1745, the German 

scientist G. M. Bose wrote about his own observations and around the same time another 

scientist named L’abbé J carried out his experimentations.
42

  

         The foremost purpose of this particular technique is to evaluate the various polar 

as well as the non-polar compounds, thereby dissolving the sample in a solvent which is 

polar organic (be it either basic or acidic in nature), and instilling it through a capillary 

into the resource (maintaining the appropriate atmospheric pressure). It is to be made sure 

that the application of 2-6 kV is necessary at the brim of the tube or capillary so that it 

can produce charged droplets. 
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 There are two mechanisms that describe how the droplets are produced, see 

(Figure 1.4).
24 

The first mechanism of ESI ion formation is called the ion evaporation 

method and is believed to favour ions with relatively low m/z values. Under this 

condition, the droplets break down and their size is continuously being diminished while 

moving inside the source. Eventually, the repulsive forces among the ions on the surface 

of the shrinking droplets become very high. As a result of the surface tension of the 

solvent from these forces, ions will desorb into the gas-phase.  The second theory is the 

charge residue model, which is predicted to be dominant in the case of ions with very 

high m/z.  The evaporation of the solvent is continuous and is accompanied by droplet 

fragmentation so that a single ion (probably multiply charged) is formed at the end of this 

process.
25

 

This specific technique also involves the migration of the ions with the help of an 

electric field, which is eventually dried by the application of nitrogen gas. By using this 

technique, an emphasis is also laid on the fact that in order to generate ions in the specific 

gas phase, a gas nebulizer is provided to conduct the electrospray process.
 43
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Figure 1.4: Schematic representation of the formation of ions during electrospray 

ionization. 

   

 

Mass analyzers 

The mass analyzer is basically the main component of the mass spectrometer and it 

takes the ionized masses and eventually separates them on the basis of their charge to 

mass ratios. After this, the outputs are produced from the detector where they are 

efficiently detected and later converted in the form of a digital output. In this part of this 

introduction the various types of mass analyzers will be described in more detail:   
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1.3.2.4 Quadrupole Analyzer 

 

Being a type of mass analyzer, the quadrupole analyzer makes use of an electric 

field in order to separate gas phase ions. Consisting of four parallel poles or rods, the 

quadrupole analyser is designed in such a way that opposite voltage polarity is applied to 

the adjacent poles. It is ensured that the voltage that is applied to each pole or rod is 

formed from the totaling of a constant DC voltage (U) along with a changing radio 

frequency.
44

 It is the electric force that is generated from the ions which leads to the 

oscillation of ions in the area that lies in between the four poles. However, it is also to 

ensure that the measurement of the orbit’s radius remains constant. 

             The purpose of using the Quadrupole Analyzer is its effectiveness in attaining 

good quality reproducibility along with providing comparatively low and small cost 

systems. The movement of the ions is directly proportional to that of the Quadrupole’s 

voltage, the ion’s mass, and radio frequency. Ions are found to continue to move around 

the area that exists between the rods. However, there is no notable change in the length of 

the rods until the ions form a steady velocity being created when the ions tend to enter the 

quadrupole. The ions, however, travel through a probable voltage, before getting an entry 

into the analyser. The probability and the potential of the voltage is determined and 

formed by a ring electrode so that it provides a steady amount of velocity to the ions, with 

the help of which they can form a slant structure in relation to the Quadrupole centre.
45, 46 



 

15 

 

 

 

Figure 1.5: Schematic representation of a quadrupole mass analyzer showing the 

oscillation of ions to reach the detector. 

 

 

1.3.2.5 FT-ICR 

 

 The massive interest mainly in the Fourier-transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS) has increased since its successful introduction in 1974 by 

Comisarow and Marshall.
 47

 This technique basically consists of three core components 

including a superconductive magnet along with an ultrahigh vacuum, as well as an 

analyzer cell (ICR) (Figure 1.6). The core of FT-ICR-MS is the cell analyzer which 

measures the mass-to-charge (m/z) ratio of the ion mainly on the basis of its frequency. In 

addition to this, the ICR cell is also made up of three opposite pairs of plates which form 

various shapes such as cubic, orthorhombic, cylindrical, etc.), and are hence named as 

either trapping plate (having one pair), an excitation or the detection plates (having 2 

pairs) that are parallel to the surrounding magnetic field.
47
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Figure 1.6: Schematic diagram illustrating ion cyclotron resonance (ICR) analyzer. 

 

 

After the ions are generated in the ionization source, they eventually pass into the 

ICR cell. After this, they undergo some harmonic oscillations mainly in the electric field 

existing between the trapping plates for creation of a trapping motion. Due to the strength 

of the magnetic field, the ions eventually undergo a comparatively stable cyclic motion, 

specifically in a plane which lies perpendicular to the surrounding magnetic field, in 

order to obtain a cyclotron motion through the force, called as a “Lorentz force”. 

Cyclotron motion is typically represented by ωc which is the cyclotron frequency since 

each ion rotates with a specific frequency. All three motions usually lead towards a 

complex and complicated ion movement mainly in the analyzer cell (Figure 1.7).
48
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The ions basically undergo two different forces present in the cell and these can 

be expressed as:
 

      Centripetal force   F = qB/m                                      (1) 

      Centrifugal force   F = mʋ
2
/r 

Ions could also be stabilized on the trajectory whenever the balances of two forces occur: 

       qʋB = mʋ
2
/r   or   qB = mʋ/r                                         (2) 

here, q denotes ion charge, m is mass of the ion and B is the magnetic strength of the 

field. 

Ions usually complete a circular trajectory which can be represented by 2πr having a 

frequency ʋ: 

      ʋ = ω/2πr                                                                        (3) 

Hence, the angular velocity ω becomes equal to: 

       ωc =  2πʋ = ʋ/r = qB/m                                                   (4) 

Since ωc is directly proportional to the m/q, the smaller the mass–to-charge ratio is, the 

greater would be the cyclotron frequency.
48,49 
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Figure 1.7: Ion motions within an ICR cell. 

 

Because ions have inherent kinetic energy while moving in the ICR cell, they get 

more excited mainly under the magnetic field and also even at room temperature. Ions, 

however are not detectable on various detection plates since they get excited even at the 

room temperature. Under such conditions, ions become statistically distributed in the 

entire cell due to their varied velocities provided by the different energies for the ions 

having similar m/q ratios. Hence, these ions should be excited mainly as “ion packets” for 

a much larger radius for obtaining of a measurable signal via supplying relative 

sinusoidal voltage to all of the excitation plates. This is basically a simplified explanation 

of how the ions could be generated in the existing ICR cell.
50
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1.3.2.6 Tandem mass spectrometry 

 

Tandem mass spectrometry is a very powerful technique which involves multiple 

steps instead of a single step involved in traditional mass spectrometry, which allows the 

ions or fragments to be carefully analyzed, and also provided much useful structural 

information. The core components are shown in Figure 1.8. Ions, or their fragments being 

produced in the softer ionization source, generally first pass to the mass analyzer for 

ensuring that the ions having specific m/z are chosen. Such ions, which are known as the 

precursor ions, are basically processed under strong gas collision and also by a highly 

intense laser beam for production of ions known as the product ions. Such ions are 

subsequenting analyzed in the next (second) mass analyzer and are carefully detected 

with the help of an ion detector.
51-53 
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Figure 1.8: Schematic diagram of the main components of tandem mass spectrometry 

(MS/MS). 

 

Different types of spectra can also be identified with the help of different MS/MS 

experiments, as shown in Figure 1.9. In this regard, the product ion scanning is 

considered as one of the four major scanning experiments which could be successfully 

performed. The product ion can be isolated in the second mass analyzer. Subsequenting, 

it could be analyzed in the very first mass analyzer for obtaining the precursor ion. In 

addition, the precursor ion could also help in scanning and this could possibly be 

obtained by simply isolating it mainly in the very first step which is followed by 

fragmentation which are then further scanned in the second mass analyzer. Furthermore, 

a natural loss scan might be obtained in the first mass analyzer mainly for all the masses, 
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and also in the second mass analyzer. The second mass analyzer however, should be 

present at a set offset from the initial first one in order to make sure that this doesn’t 

occur in the time tandem instruments. This type of scan is usually more beneficial for the 

closely related compounds, which more often result in similar product ions. Lastly, both 

of these mass analyzers can also be measured simultaneously as a set of already selected 

analyte masses that give either a selected ion monitoring scan (SIM) and/or multiple 

reaction monitoring (MRM) scans, which measures the transitions of a m/z protonated 

molecule → m/z product ions.
54

 

   In addition, ion decomposition can also be obtained in the tandem mass 

spectrometry with the help of four major mechanisms involving (a) collisions of the ions 

with the gas which can be either helium, nitrogen, or argon; (b) strong interactions that 

take place between ions mainly with the electrons; (c) interactions of the ions with the 

persistent photons simply by using infrared multiphoton dissociation (IRMPD) and (d) 

lastly, interactions between the ions and the surrounding surfaces. 
55-58 
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Figure 1.9: Block diagram of scan modes of MS/MS. 

 

1.3.2.7 FT-ICR-MS 

 

  The MS/MS experiment performed in the FT-ICR is basically analogous to the 

Quadrupole ion trap (QIT) experiment; but is more limited, mainly in terms of obtaining 

product ion spectra. Generally speaking, FT-ICR is aimed in scanning various functions 

for the MS/MS operation which are quite similar to the ones used in a QIT. Firstly, a 

quench pulse is carefully applied for ejecting a residual ion in the preceding experiment. 

After this, an ionization pulse must be applied. Followed by this, the precursor ion is then 

isolated mainly with a resonant excitation signal consisting of different frequencies, 

except for the single one which is directly related to a precursor ion.
 59

 After careful mass 

selection, a collision gas is applied into the entire ICR cell, causing the trapped ions to 

collide actively and to obtain a much bigger orbit.  
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  The CID products are basically mass analyzed as usual and by this, it means 

excitation of all the products to various orbits of large radii as well as detection of their 

entire image current. The FT-ICR is known to have some unique distinction which in 

addition to the SORI-CID, both fast as well as slow ion-activation procedures could be 

performed.
 60,61

 In addition, interactions of the ions mainly with electrons can also be 

used for electron capture dissociation (ECD), as well as electron transfer dissociation 

(ETD).  

 ECD, is generally employed in Fourier transform ion cyclotron resonance mass 

spectrometers (FT-ICR) because of the need of having several milliseconds interactions 

to occur between both the ions, along with the electron, and also because of the fact that 

the efficiency of ECD is highest for lower-energy electrons (around <1 eV) which are 

quite difficult to provide mainly in quadrupole ion traps having strong RF potentials 

affecting the movement of the electrons in the trap. In addition, the stabilization of every 

captured electron is much faster than the electron emission that is typically present on the 

time-scale of 10
–14

s, hence bond dissociation usually occurs at a faster rate when 

compared to the frequency of a typical bond vibration.
 62, 63

 

  On the other hand, electron transfer dissociation (ETD)
 
is solely based on the ion-

ion reactions which occurred in a quadrupole ion trap mainly between an electron-rich 

species. In both these ECD and ETD, the concluding result is successful acquisition of 

the electron having a charge-state reduction of both the ion as well as the subsequent 

fragmentation. In both of these two methods, the overall chance of a direct bond cleavage 
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occurrence can only be observed with none, and in some cases,  minimal energy 

redistribution, along with randomization away from the major reacting site. Because of 

this, a stronger backbone of N-Cα peptide bonds is cleaved which form c and z-ions that 

are complementary to both b and y ions which are normally produced in the lower-energy 

CID. In addition to this, the interactions between ions and photons mainly with the help 

of infrared multiphoton dissociation (IRMPD) as well as ion spectroscopy can also be 

applied to all the trapped ions in either the ion trap or in the FT-ICR analyzers.
 64-66 

1.3.2.8 Hybrid quadrupole orthogonal time-of-flight mass spectrometry (Q-ToF) 

 

     The Q-ToF instrument was initially described in the year1996 mainly as a means 

to combine the scanning abilities of both the quadrupole as well as the ToF analyzer’s 

resolving power.
67

 It can also provide some informative, simple, high-quality and one-

stage MS as well as tandem MS/MS spectra. A diagrammatic representation is shown in 

Figure 1.10 for the Q-Star instrument which was carefully manufactured by Applied 

Biosystems. The figure shows a mass spectrometer composed of three different 

quadrupoles directly linked to a ToF analyzer that is aligned geometrically in the 

orthogonal configuration mainly with respect to existing quadrupoles; thus, the name was 

formulated as Q-ToF orthogonal mass spectrometry. In addition to this, the very first 

along with the third quadrupoles are always operating in the rf-only mode. 
68

  

A second quadrupole as the main analyzer, rather than the ToF, is used just for 

tuning of the instrument, since this ToF is more effective and more efficient for this 

specific purpose. Because of the critical role of the second along with the third 



 

25 

 

quadrupoles mainly during MS/MS analysis, both these instruments are typically referred 

to as QqToF mass spectrometers. The first “Q” usually refers to the mass-resolving 

quadrupole while the second “q” clearly indicates the collision cell. 

One of the biggest advantages of QqToF instrumentation noted up till now is its 

capability to be interfaced with ESI or MALDI needing little manipulation of the entire 

configuration. The main association of MALDI is known to have more importance 

mainly because of the fact that conventional MALDI-ToF fails in performing MS/MS 

experiments. Hence, due to the existing limitation of quadrupole mainly in terms of its 

mass range, there exists; however, some difficulties specifically in the orthogonal 

injection of much larger and singly charged ions in the ToF. Despite this, other common 

advantages of QqToF instruments basically include the ease of its operation, high mass 

accuracy as well as high resolution, and also up to an 100-fold increase in its overall 

sensitivity, when compared to that of the triple quadrupole.
69

 QqQ instruments 

nevertheless are still being favored mainly for both quantitative studies and also for the 

precursor ion scans involving the “parent” ion of a certain fragment which could be 

identified. 
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Figure 1.10: Schematic representation of the QSTAR hybrid Qq-TOF. It is also 

representative of a Hybrid quadrupole orthogonal time-of-flight mass spectrometer 

(Courtesy from Applied Biosystems). 

 

 

1.3.2.9 Time of flight (TOF) analyzer  

 

A TOF analyzer was basically first described by Stephens in 1946 and it is 

considered as the simplest form of mass analyzer.
70

 At the ending of the 20
th

 century, 

both Brown as well as Lennon focused and also managed to redevelop this technique.
71

 

The ions which were formed in the source were mainly accelerated on the basis of their 

voltage Vs and also travelled through the analyzer (d) for reaching the detector without 

using any other acceleration source or process. In addition, whenever the ion leaves the 
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main source mainly with a mass m along with a total charge q = Ze, it would ultimately 

have an additional kinetic energy (Ec). As a result, the ions would reach to the detector. 

The correlation mainly between both the mass/charge ratio as well as the time of flight 

can be expressed as: Ec = 1/2mv
2 

= qVs.  The equation could also be reduced to a much 

simpler from; (tf): m/z = K tf
2
 and here K represent the calibration factor. Hence, the 

calibration factor existing between both t and m/z is mainly a function of all of the 

prevailing experimental conditions. The biggest advantage of this analyzer is its 

capability of analyzing a high mass range of different molecules; but the major drawback 

associated with is its lower resolution. In order to overcome this major drawback, an 

electrostatic ion mirror is introduced (ion mirror reflectron) which increases both the 

resolution power and hence, accuracy in measurement of the mass (Figure 1.11).
72
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Figure 1.11: Schematic representation of the reflecting time of flight (TOF) analyzer by 

considering two ions with different masses (mA > mB), formed at the same time and 

having the same charge and the same kinetic energy. The ion which has the lower mas 

 

Analyzers like TOF are more preferable than quadrupole and are also mostly 

adopted for pulsed ionization procedures such as MALDI. In addition, the laser shot 

would determine the initiating time mainly for the time measurement, specifically during 

which the ions can reach to the detector. It is not suitable nevertheless to combine both 

ESI along with TOF. In the Figure 1.12, the ions are initially injected with the help of 

continued, as well as pulsed ionization. Followed by this, the ions continuously arrive in 

the major source mainly within the Y axis. They are, after this accelerated and also 
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pulsed mainly with the help of a pusher present within the Z axis that would eventually 

accelerate the ions in order reach similar levels of energy and to give the measurement of 

TOF.
73

  

 

Figure 1.12: Schematic representation of the orthogonal injection system of the reflecting 

TOF mass spectrometer according to Verentchikov.et al.73 
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1.4 Scope of the thesis 

 

In this work, tandem mass spectrometry was used to investigate the Gram negative 

bacteria by analyzing Lipid A. A brief introduction into the mass spectrometry has been 

presented within this chapter. In chapter 2, a detailed discussion about bacterial 

membranes and lipopolysaccharides will be given. In Chapter 3, the experimental system 

and apparatus such as the lipopolysaccharide purification, the lipopolysaccharide 

hydrolysis, and mass spectrometers will be described. In Chapter 4 and 5, the 

experimental results will be shown followed by a detailed discussion of each result. 

Finally, in chapter 6, we will summarize the work presented herein and provide 

concluding remarks about the findings of this work.  
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Chapter 2 : Bacterial membranes and 

lipopolysaccharides 
 

2.1 Background 

Hans C. J. Gram is the Danish bacteriologist who became famous for inventing a 

staining methodology that could be used to differentiate bacterial microorganisms and 

categorize them under two main categories.
74

 The methodology acquired its name from 

its inventor, and this was through classifying bacteria as either Gram-positive, that is 

forming a violet color, and Gram-negative which forms a red color. The staining 

properties of different bacteria are different mainly as a result of the structure and how 

the surface membrane is composed. All bacteria contain cells wall that protect the inner 

environment from the outside, and makes it secure to transport substances from the inside 

to the outside surroundings, and from the outside back to the interior of the cell. 

2.2 Gram positive bacteria 

Gram positive bacteria are comprised of an internal phospholipid bilayer, 

peptidoglycans, polysaccharides and proteins in its cell wall.
75

   These types of bacteria 

produce a violet color after gram staining due to the capacity of the multilayered 

peptidoglycan to maintain the crystal violet stain after decolourization with the solvent 

has taken place, furthermore the layer is of a thicker texture with these bacteria than is the 

case in gram negative bacteria. Peptidoglycan, or murein, which is a natural polymer, 

comprises of sugars and amino acids and is an essential component of the bacterial 

envelope. It is important for the membrane’s mechanical integrity.
76

 If its formation is 
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hindered by the antimicrobial agent, for instance, penicillin, then cell growth is 

inhibited.
77, 78

 The bacterial membrane is also comprised of polysaccharides, which either 

appear in connection to peptidoglycans, or can appear separately within the membrane. 

The ones that appear in connection to peptidoglycans can be classified under two 

categories, which include namely teichuronic acids and teichoic acids.
79,80

 Lipoteichoic 

acids and lipoglycans are other examples of polysaccharides.
75, 81

 These carbohydrates 

are structurally diverse, with numerous functions, which include attaching to proteins and 

metals, and supplying phosphate moieties.
82

 

Most research, qualitative and quantitative, on these biological glycoconjugates 

employ mass spectrometry. One example is ESI-MS/MS which was linked with high-

performance anion-exchange liquid chromatography in a study that involved neutral and 

acidic sugars that were isolated from certain bacteria, such as bacilli, grown in locations 

that were phosphate-restricted.
83

 The researchers were able to use this system effectively 

to confirm the structure and conduct selective quantification of the carbohydrates. In the 

same way, MALDI-TOF was used in a recent study to assess the influence that acyl 

chains have on the role of lipoteichoic acid, and validate the deacylation process of 

pneumococcal lipoteichoic acid.
84

 Even though mass spectrometry has been successfully 

used to study polysugars isolated from gram positive bacteria, it is more valued when 

studying the molecular structure of lipopolysaccarides that are linked to gram negative 

bacterial membranes.  
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2.3 Gram negative bacteria 

 

 Gram negative and gram positive are differentiated by the inner and outer portions 

that are found in the former, along with a coat of lipopolysaccharides (LPSs), which is 

the outermost component of gram negative bacterial membranes. The inner and outer 

membranes are made up of phospholipids, which are largely glycerolphospholipids and 

proteins. There is the peptidoglycan layer found inside the gelatinous material, which is 

referred to as periplasm and divides the two layers. The peptidoglycan layer is not 

capable of maintaining gram staining, and actually the gram procedure tends to dissolve 

the external membrane and in part destroy the peptidoglycans and does not retain the 

initial dye color.
85

 The external leaflet of the outer membrane is mostly made up of the 

amphiphilic LPS moieties. These have a lipid portion (Lipid A) inserted inside the 

membrane environment. Figure 2.1 shows how the gram positive and negative envelope 

structures are built up. 
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Figure 2.1:A graphic representation of gram positive and gram negative bacterial 

membranes. The scheme highlights the main differences between the two groups. LPS 

can only be found on the gram negative groups of bacteria, comprising also the internal 

and external membranes.
45

 

 

2.4 Lipopolysaccharides: 

 

Lipopolysaccharides (LPSs) refer to the amphiphillic macromolecule parts found in 

the outer leaflet of gram-negative bacteria’s external membranes. They are regarded as 

the virulence aspect of the human and animal disease-causing bacteria. LPS are usually 

made up of two parts, which include a polysaccharide and Lipid A. The polysaccharide 

portion comprises of O-antigen (O-chain) and the core oligosaccharides. These are 

attached to the membrane through the Lipid A.  The oligosaccharide antigen has a 
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covalent association with the core oligosaccharide, which is then associated covalently 

with the Lipid A. LPS causes endotoxic shock, and is also responsible for their pyrogenic 

activity of gram negative bacteria. Moreover, LPSs are also capable of triggering and 

complimenting macrophages.
 86, 87

 

On the other hand, LPS contains endotoxic properties that are contained majorly 

within the Lipid A portion. Hence, the major attributes of Lipid A are to present immense 

toxic properties. Its structure is liable for the biological activities of endotoxins that play 

a role in the diverse cells of the immune system. 
88

 

2.4.1 The O-specific chain 

 

            The O-specific chain has replicating oligosaccharides of 50 units, with diverse 

structure and composition among several genera and bacterial serotypes. In addition, the 

oligosaccharide units comprise of up to eight sugar residues that arise in smooth LPS 

types, rather than the rough types of LPS without this practicality.
 89

 The rough LPS have 

units of the O-antigen associated with the core oligosaccharide. This is then linked to the 

glycosylate in Lipid A. The O-antigen is responsible for the divergence in the structure of 

Lipid A for diverse types of bacteria. The O-chains are the basis for differentiating the 

various bacteria types, and are therefore used to determine the special aspects of each 

bacteria serotype. With regard to the pathogenic factor of gram-negative bacteria, the O-

chain is the host, and the infection is what protects the central integrity from its 

environment. This feature is caused by various glycoside links, substitution of sugars and 
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the genetic ability to give the O-chain its distinctive structure that contains linear or 

branched connections.
 90

 

The O-chains contribute to the O-antigenic properties that create the links 

between species-specific antibodies. They are also important for the protection of several 

antibiotics which is evident in the relative sensitivity of the rough strains as opposed to 

the smooth types of bacteria.  The O-chains of LPSs such as Actinobacillus pleuropneu 

moniae along with other types of LPS are some of the contributors of linkage to 

mammalian tissues, hence facilitating infection. The major linkage in lung tissues is the 

LPS of A. pleuropneumoniae. Certain O-chains are able to stick to a mineral surface, for 

instance the Shewanella algae LPS, which was the first bacterial polysaccharide that was 

discovered comprising of a malic acid residue.
91 

2.4.2 The core oligosaccharide: 

 

Core oligosaccharides fall under two categories, which include; the outer core, 

comprising of hexoses (largely glucose), galactose, and N-acetyl-D-glucosamine, and the 

inner oligosaccharide core that is comprised of precise residues attributes of LPS, 

including L-glycero-D-manno-heptose (LD-Hep) and 3-deoxy-D-manno-octulosonic acid 

(Kdo) that is connected to the O-6` position of lipid A through an α-ketosidic association. 

Kdo is a distinctive and definite 8-carbon sugar that can be found in the LPS of various 

Gram-negative bacteria. 
92

 

Kdo is comparable to the sugars in the LPS component, since it is capable of 

substitution with reactive groups, for instance phosphate, or phosphoethanolamine. The 



 

37 

 

LPS internal core also contains L-glycero-D-manno-heptose (Hep), a distinctive 7-carbon 

sugar. There are, however, some bacteria that do not have any Hep residues.  

Three species of the genus proteus (vulgaris, penneri, and mirabilis), have been 

found to have the internal core of most of the strains containing Kdo-I with its residue 

substituted at C-8 position by 4-amino-4-deoxy-β-L-arabinose. This is a portion of the 

core that is similar to those of other species, while the outer cores tend to be significantly 

different. Some of their remarkable components include a Kdo with a link to Hep, and the 

α–amino group of L-lysine and 2-glycylamino-2-deoxy-D-glucose. There is also GalNAc 

glycosidically in its open-chain form with a link to a cyclic acetal GaIN.
 93 

2.4.3 Lipid A: 

 

Lipid A is a hydrophobic link of lipopolysaccharide (LPS), a glucosamine 

disaccharide that contains around seven acyl chains. Its structure has a bisphophorylated 

β-(1→6)-with a link to a D-glucosamine disaccharide backbone. Esters and amides are 

the linking backbone elements with fatty acids that are positioned at O-3 and O-3′ for the 

esters and then N-2 and N-2′ for the amide. This occurs in the hydroxylated type of these 

unusual fatty acids, having a 3-OH group. This then esterifies through other residues of 

fatty acids.
94, 95 

Recognizing the numerous species of Lipid A is determined by the 

amount and length of fatty acids presenting the Lipid A. A Lipid A is the Lipid A fraction 

is inherently heterogeneous, and this is as a result of the diverse levels of phosphorylation 

and acylation, the type of acyl residues and the way they are dispensed. As a result, the 
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structure of lipid A changes, and the changes contribute to the pathogenesis of various 

diseases. 
96

   

Even though Lipid A fatty acids typically are comprised of 10-16 carbon atoms, 

there is evidence of other abnormal chains. For instance, a 20-carbon chain that is found 

in certain isolates, which are linked to the lipid A isolate of Chlamydia. How long the 

fatty acids are determines how toxic Lipid A is. The most toxic types include   those that 

have C12, C12 (OH), C1 4, and CH (OH).
97

 Fatty acids that are unsaturated are hard to 

detect, and where they exist, they tend to combine with the saturated ones.
98, 99

 Some of 

the LPS intrinsic extracts, such as lipid A are complex combinations of glycoforms, with 

a structural relationship. This exists due to the existence of a number of biosynthetic 

pathways and degradation that occurs throughout the isolation process.  Through mass 

spectrometry, these mixtures can be studied and the precise molecular structure of every 

element demonstrated.
100

 This can differ, based on the factors that affect growth, for 

example, temperature.
101

 Furthermore, these multifaceted biological glyco-mixtures are 

potential candidates for qualitative and quantitative analysis via capillary electrophoresis 

coupled with mass spectrometry (CE-MS).
102

 Apart from the fatty acids, the existence of 

phosphate and occasional  pyrophosphate group substitutions, existence is usually at 

locations of C-l of the reducing glucosamine residue, along with the C-4' of the non-

reducing end.
103

 Substitution can subsequently take place between these phosphate 

groups and phosphoryl-ethanolamine, ethanolamine, or at times neutralized by means of 

an additional substituent, for instance arabinosamine.
104, 105

 The studies of Lipid A 

structure, whereby spectrometry is applied, play a significant role, especially when 
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analyzing biological activity. An example of this is that lipid A is usually regarded as a 

po-inflammatory agent. On the other hand, effective assessment has shown that certain 

synthetic analogues are antagonistic aspects against Esherchia Coli Lipid A.
106

  

2.5 Mass spectrometric analysis of carbohydrates 

 

Mass spectrometry analysis of carbohydrates makes it possible to gather structural 

information regarding their components for purposes of structural and post-translational 

adjustment. The polymeric chains of carbohydrates are comprised of sugar units 

connected through glycosidic linkages by analogy with peptide bonds formed by amide 

linkages in proteins.
107

 MS and MS/MS analysis have indicated that besides the breaking 

of glycoside bonds there are also a possibilities for inner-sugar cleavages to take place, 

which create analytical fragment ions. This absenting created an opportunity for studies 

on the structures of carbohydrate chains.
 108

 

  Domon and Costello were the first to illustrate the CID analysis of the protonated 

molecules of complex glycoconjugates. They proposed a systematic nomenclature for 

carbohydrate fragmentation of complex glycoproteins when carrying out FAB-MS/MS 

analysis.
109

 

When the reducing end is Glc (glucose) and the non-reducing unit is Gal 

(galactose), potential fragmentations are demonstrated through the simple disaccharide 

lactose as shown in Figure 2.2. This figure shows units that result from the indicated 

cleavages. Ions formed from the non-reducing end are named D A, B, and C. A is 

connected to inner sugar fragments. The fragments that branch from the reducing end are 
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named Z, Y, and X. X relates to the inner-sugar fragments. Similarly, A, B, C, Z, Y, and 

X letters may also be classified depending on the precise location of the sugar residue. 

Purposely, the non-reducing end begins with the number 1 where there are A, B, and C 

ions, while, the reducing end begin from 1 for the Z and Y ions. Nevertheless, the Y0 ion 

is usually given the number 0 in case it is the reducing end group’s aglycone. 

 

Figure 2.2: Likely paths of fragmentation for the period of CID-MS/MS of a 

glycoconjugate consequent to lactose as described in the Domon & Costello 

Nomenclature. 
109
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Chapter 3 : Materials and Methods 
 

3.1 Lipopolysaccharides: 

  3.1.1 Bacterial culture: 

 

T.P.T Evelyn (Department of Fisheries and Oceans, Nanaimo, British Columbia, 

Canada) provided a rough mutant strain of the Aeromonas Salmonicida  bacteria, isolated 

from the Sockeye salmon. It was then given the numeric code description (Strain SJ-112, 

rough mutant, of the collection of the Northwest Atlantic Fisheries Centre, St. John’s, 

NL, Canada). Between the stationary and late phase, the organisms were cultured within 

Trypticase Soy Broth, glucose was not added (Baltimore Biological Laboratories Inc.). 

The culture grew at 25°C for 20 hours. Aeration was set at 20-1/min in an MF-128S 

fermenter. The bacteria were killed by adding formalin at a 0.3% aqueous concentration. 

The process was conducted under room temperature with agitation for 16 hours. The 

centrifuge was set at 20,000 rpm to collect cells. A Sorvall SS-34 rotor was used for the 

centrifugation. Sodium chloride aqueous (0.15 M) was used to wash the cells which were 

finally stored at temperatures of -50° after being lyophilized. The cells stored at -50°C 

until the time they would be needed.  

3.1.2 Lipopolysaccharide purification 

 

The hot-phenol technique was used for the extraction of LPS.
 101

 After extraction, 

the lipopolysaccharides were freeze-dried. Ten grams of the stored cells were suspended 

in 175 ml deionized water. The mixture was then heated up to 70° C.
101

 An additional 
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175 of aqueous 90% phenol was also added. The mixture was then stirred continuously 

for 20 mins at the same temperature. Ice was used to cool the mixture after the 20 

minutes. The mixture was then centrifuged a second time using the Sorvall SS-34 rotor. 

This time the centrifuge is set at 3500 rpm. Aspiration was used to isolate the aqueous 

layer. The process was repeated two more times. The layers were then combined and 

water was used to dialyze in order to get rid of any phenol traces.  Evaporation was used 

to reduce the volume of water in the mixture.  Finally, the mixture was set on the 

centrifuge for three hours at a speed of 39,000 rpm. This process led to the suspension of 

the lipopolysaccharide pellet in water. The process of centrifuging the mixture was 

repeated two more times, as a result the lipopolysaccharide were lyophilized. Affi-prep 

beads (Bio-Rad Laboratories, Richmond, CA, USA) were then used for purification of 

the LPS isolates. Phosphate-buffered saline (15 ml) at 7.4 pH was used to suspend 15mg 

of LPS. Polymyxin beads were then mixed with the LPS solution. The beads were 

washed using sodium hydroxide first and afterwards also washed in distilled water. The 

LPS mixture was incubated for a whole night. The orbital shaker was set at 1500 rpm in 

order to agitate the mixture during the incubation duration.  

The LPS mixture was then centrifuged for 10 minutes at 2500 rpm before the 

collection of the supernatant. Aqueous solution of sodium hydroxide (15 ml and 5 ml, 0.1 

M) was used to wash the beads. After combining the supernatants, water was used to 

dialyse the LPS. Finally, the LPS was lyophilized. 
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3.1.3 Lipopolysaccharide hydrolysis 

 

Aqueous 1% acetic acid at a temperature of 100°C was used to hydrolyze 100 mg of 

LPS for duration of 90 minutes. The mixture was then centrifuged for 30 minutes at 3000 

rpm. This centrifugation process resulted in Lipid A precipitation. The aqueous media 

contained the polysaccharide. Water was used to wash Lipid A after removal. 

Chromatography (using Sephadex G-50) was used to recover the main oligosaccharide 

from the supernatant. Differential refraction (Water Associates) was used to visualize the 

fractions.  

3.2 Mass spectrometric analysis of lipid A 

     3.2.1 Electrospray quadrupole fourier transform ion cyclotron mass   

spectrometry 

 

An Apex Qe 7.0 Bruker Fourier Transform Ion Cyclotron Mass Spectrometer (FT-

ICR-MS) was used to perform the mass spectrometry. The FT-ICR MS contains four 

segments. These include the ICR cell, ion transfer optics, a quadrupole region, and the 

gas phase ion phase. Electrospray ionization is used to initially generate gas phase ions 

from the solution. Afterwards, the ion are pushed through a quadrupole filter into a 

collision cell. Minimizing the flow of Ar gas and introducing a solvent past the separation 

of the cell and solvent reservoir produces the solvated ions.  

Methanol and chloroform in ratio of 1:1 with 0.1% TMA/ Milli-Q water was used 

to dilute Lipid A. The mixture was then underivatized in the negative ion mode. The 

conditions that were used are: 8.00 l/min dry gas, 40 volt skimmer, 1.7 volt quadrupole, 
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scan beginning at m/z 500 then stopping at m/z 2000, the accumulation time was 200000 

µs.  

3.2.2 Electrospray quadrupole-hexapole-quadrupole mass spectrometry 

 

A Micromass Quattro II mass spectrometer was used to record the ESI mass 

spectrum. The device had a mega flow source that had the ability to analyze ions at m/z 

4000. A Compaq PII personal computer (266 MHz, with Windows NT 4, service pack 3) 

was installed with the MASSLYNX 3.2.0 Mass Spectrometry Data System application. 

The software application was important in acquiring and processing data. The ESI source 

temperature as set at a steady 75°C. The capillary of the ESI was operating at 3.0 kV. 

During this operation, the high power lens was operating at 0.40. A 25 volt cone voltage 

was used to record the ESI-MS.  

3.2.3 Matrix-assisted laser/desorption ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS) 

 

The α-cyano-4-hydroxycinnamic acid matrix that was employed had a 1:2:2 water, 

acetonitrile, methanol concentration of 5 mg/ml. The ratio of the mixture was 1:2:2. The 

concentration of the Lipid A that was used was 2 mg/ml in a mixture of methanol and 

chloroform. The volume ratio of the mixture was 1:1. The sample that was prepared 

contained the same volumes of a solution of α-cyano-4-hydroxycinnamic acid and a 

solution of Lipid A. After the two solutions had been mixed, 1 µl was used for spotting 

the MALDI plate. After the spot had crystalized and dried it was loaded into a MALDI-

MS instrument.  
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It was possible to isolate Lipid A mass spectra from the bacterium in the negative 

ion mode. This experiment used a MALDI-TOF/TOF-MS spectrometer (MALDI 4800, 

Applied Bioscience).  The mass of the data that was acquired ranged between 600 and 

2000 m/z.  A 337 nm nitrogen laser had been used in the MALDI-TOF/TOF-MS 

equipment. The spectra were observed as 600 different laser shots. The accelerating 

voltage had been set at 25 kV. The guide wire that was used for focusing had a 

comparative potential of 0.18%. The intensity of the laser that was used in the experiment 

was 4200. The mass accuracy of the instrument was quite high at 5 ppm. The resolution 

was between 15000 and 25000 (FWHM).  The ratio of signal (minimum) to noise had 

been set at 35.  

The same instrument was used in conducting the collision dissociation MS (CID-

MS/MS).  A collision cell with high CID was employed in inducing the scans of product 

ion of the masses that had been selected. A TOF analyzer was used to analyze the product 

ions that resulted. Air was used as the collision gas in achieving analyses of mass 

spectrometry. The collision energy was set at 1 KV. The potential corresponds to the 

difference of the floating cell potential (7KV) and the accelerating voltage of 8KV.  
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3.2.4 The MALDI-TOF/TOF-MS spectrometer of partial de-acylation of ester-

linked to the acyl group of lipid A 

By using sodium methoxide in methanol, it was possible to partially liberate the 

ester fatty acid from the bacterium Lipid A. Dry ice was then used for neutralization.      

Afterwards a MALDI-TOF/TOF-MS spectrometer was used to analyze the sample that 

was collected. The conditions were as in the previous experiment.  The same instrument 

was used to conduct collision dissociation at high energy (CID-MS/MS). A collision cell 

at high CID was used to induce the scans of product ions of the masses that had been 

selected.  

      High-energy collision dissociation MS/MS (CID-MS/MS) experiments were 

conducted using the same instrument. Product ion scans of selected masses were induced 

by a high CID collision cell. A TOF analyzer was used to analyze the product ions that 

resulted. Nitrogen was used as the collision gas. The collision energy was set at 1 KV. 

The potential corresponds to the difference of the floating cell potential (7 KV) and the 

accelerating voltage of 8 KV. The pressure of nitrogen gas (collision gas) was increased 

in order to enhance sodium ion dissociation. 
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Chapter 4 : Lipid A Analysis Using FTICR-MS and 

Low Energy SORI-CID-FTICR-MS
n
 

 

4.1  Background: 

 

In recent times, LPS has elicited interest in diverse research. Since LPS forms an 

essential component of the outer membranes of Gram negative bacteria cells. Research 

has already determined that derivatives of LPS carry significant potential for the 

development of bacterial vaccines.
110, 111 

     It has been established that Lipid A can become an adjuvant for the treatment of 

immune illnesses,
112-114

 and has also been recommended as a possible anticancer 

agent.
115-117

 In order for Lipid A to be used for therapeutic purposes however, its exact 

structure has first to be determined. Different analytical methods such as nuclear 

magnetic resonance spectroscopy, X-ray diffraction and Fourier transform spectroscopy, 

have been important in determining the chemical composition of moieties of Lipid A.
118-

122 
Early mass spectrometry techniques were also applied to establish the chemical 

structure of extracts of Lipid A.
123-125

 Recently, ESI-MS and MALDI-MS have also been 

applied for the same purpose.
126-128

 
 

          Extracts of Lipid A are composed of mixtures that have different Lipid A 

constituents. The mixtures of major and minor component are due to the incomplete 

biosynthesis of Lipid A. The differences in the mixture are with regard to the lengths of 
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the fatty acid chains and the substitution and saturation of the phosphate groups by 

glycosyl groups and ethalomine groups.
127, 129, 130 

          Today, both FT-ICR and MALDI-TOF-TOF mass spectrometries are applied in 

differentiating and elucidating the structure of the major components of Lipid A from A. 

salmonicida bacterium. The analyses have also been important in illustrating the 

fragmentation patterns of the Lipid A. In the future, the data can be important to 

researchers needing to determine the structures of other lipid As, and in conducting 

studies on the formulations of the compound. . 

The majority of the Gram-negative bacteria can synthesize lipid A in order to 

synthesize extra cellular monolayer characteristic of the outer membrane (OM) (Figure 

4.1). As well, the Lipid A biosynthetic pathway occurs from either a constitutive 

(conserved) or from some variable (modification) components. The constitutive backbone 

of lipid A is mainly synthesized from various intracellular enzymes present virtually in 

every Gram-negative bacteria and are not highly subjected to regulation. On the other 

hand, the backbone of variable lipid A is mainly synthesized from various extra-

cytoplasmic enzymes that may vary from one organism to another.
133

  

    The advanced biochemical modifications specifically in case of lipid A are 

basically formed with several enzymes located in the outer membrane, or even on the 

periplasmic surface of the inner membranes.
134

 Furthermore, these enzymes can also be 

induced because of some changes taking place in the various bacterial growth conditions, 
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namely pH changes, divalent cation concentrations as well as presence of some anti-

microbial peptides. 

 

 

Figure 4.1: Schematic structure of the E. coli K-12 cell envelop.
134
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4.1.1  Biosynthesis of Lipid A:  

 

There are around nine enzymes associated with the constitutive Lipid A 

pathway.
149

 In addition to this, only a single-copy of the genes that encode these enzymes 

are present, which are mainly conserved in almost every Gram-negative bacteria such as 

E. coli. Despite this, for a simple organism such as Sphingomonas, it has been shown the 

organism was basically formed during the biosynthesis of specific bioactive sphingolipids 

rather than Lipid A.
135-137

 In addition to this, 2,3-diacylglucosamine 1-phosphate (labeled 

a LpX) mainly facilitates the overall systematic determination of this highly constitutive 

pathway associated with lipid A biosynthesis. 

        In this regard, Figure 4.2 mainly represents the entire constitutive pathway for the 

biosynthesis of Lipid A mainly in which LpxA, C as well as D are basically the soluble 

proteins, and in addition to this, both LpxB along with LpxH are mainly the peripheral 

membrane proteins whose chemically structures are not reported yet.
138 

      The first step in the entire Lipid A biosynthesis mainly occurs after the fatty 

acylation by the thioester R-3-hydroxymyristoyl acyl carrier protein (denoted by ACP), 

which is catalyzed through LpxA, occurs on the specific uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc), (Figure 4.2).
123

 The E. coli LpxA basically functions 

as a highly precise β-hydrocarbon scaffold connecting the C14 hydroxyacyl to the 

hydroxyl groups of the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). This 

acylation has been shown to be faster by two order magnitude even when compared to 
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C12 to C16 chains. Furthermore, the equilibrium constant (0.01 units) mainly for the 

UDP-GlcNAc acylation by LpxA mechanism is unfavorable. 
139, 140

    

      Additionally, it was shown that LpxC is mainly a Zn
2+ 

-dependent enzyme greatly 

conserved for almost every Gram-negative bacteria.
141 

It also possesses no sequence 

similarity when compared to either deacetylases or amidases and can efficiently play an 

important role as the target for a wide range of antibiotics. Even more recently, LpxC was 

revealed to slow down and to tightly bind inhibitors having lower nM affinity (known 

also as N-aroyl-L-threonine hydroxamates).  

The next step in the Lipid A biosynthesis occurs when the second important R-

hydroxymyristate chain is next added up monoacylated uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc) through LpxD for formation of UDP-2,3-diacyl-

GlcN. 

       Furthermore, the integral membrane proteins including LpxK, LdtA, LpxL, as 

well as LpxM actively catalyze five steps which take place at the end of constitutive 

pathway. It was shown that only a single segment of membrane-spanning appears for 

every protein mainly at its N-terminus. When considering the active sites then, these were 

presumed for facing the inner membrane’s cytoplasmic surface. After this, LpxK mainly 

phosphorylates the 4′-position for the formation of intermediate Lipid A, labeled as IVA, 

which can then serve as the endotoxin antagonist specifically in different human cells; 

whereas, endotoxin is mainly an agonist in mice.
142
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          This overall variable pharmacology of Lipid A was identified due to the 

existence of Lipid A receptor specifically of the mammalian innate immune system that 

was called as the TLR4 or MD2 complex.
143

 One should also note that the much labile 

nucleotide CMP-Kdo that is derived from arabinose 5-phosphate was also Kdo donor.
144

  

          At the end, Lipid A biosynthesis mainly involves the addition of another 

secondary laurate as well as myristate chains mainly by LpxL along with LpxM 

displaying specific sequence similarity to one another and are greatly linked to the 

lysophosphatidic acid acyltransferases.
145 
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Figure 4.2: The constitutive pathway of Kdo2-lipid A biosynthesis in E. coli 
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Figure  4.2, continued: The constitutive pathway of Kdo2-lipid A biosynthesis in E. coli 
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Figure  4.2, continued: The constitutive pathway of Kdo2-lipid A biosynthesis in E. coli 
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4.1.2 The enzymatic pathway modification of E. coli and Salmonella Lipid A 

biosynthesis E. coli and Salmonell: 

It has been shown that Lipid As in case of both E. coli K-12 along with S. 

typhimurium can further be modified with the help of some enzymes such as 

phosphoethanolamine, palmitate as well as L-Ara4N, and an example of these structures 

is illustrated in Figure 4.3.
146

 S. typhimurium contains two selective deacylases along 

with a dioxygenase and these can further modify enzymes that are regulated specifically 

in the presence of changes taking place in their overall growth conditions.
147 

The attachment of the L-Ara4N with the help of enzyme ArnT can be further 

induced in response to inactivation y the PmrA transcription factor because of exposure 

of bacterial cells to either mild acidic or to the constitutive mutations occurring in pmrA. 

Furthermore, the biosynthesis along with the mechanism of attaching it to the Lipid A has 

been determined.
135

 The first step in this biosynthesis is principally the oxidative 

decarboxylation specifically of UDP-glucuronic acid done by C-terminal domain specific 

to ArnA for formation of the UDP-4-ketopentose. After this step, some considerable 

quantities of UDP-L-Ara4N was obtained after when UDP-4-ketopentose was actively 

transaminated with the help of ArnB and followed by this, it was mainly formed by 

systematic formylation of the N-terminal domain for formation of ArnA.  ArnA along 

with ArnB are basically the soluble proteins and in addition to this, their associated 

structures are mainly identified by using X-ray studies.
148
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Figure 4.3: Covalent modifications of Kdo2-lipid A in E. coli K-12 and Salamonella. 

 

It is extremely important to note and understand that these Lipid A extracts are 

typically formed as a specific micro-heterogeneous mixture that is further composed of a 

significant Lipid A component as well as other minor products. Thus, this heterogeneity 

can typically result from either complete or incomplete Lipid A biosynthesis and is 
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known to differ mainly in the overall composition of length of fatty acid, saturation as 

well as substitution of the phosphate with the help of ethanolamine as well as various 

glycosyl groups.
97 

      In this specific chapter, MALDI- ionization in a TOF/TOF tandem mass 

spectrometer is used for differentiating as well as elucidating the molecular structure of 

the major constituents of the native isolated Lipid As from Aeromonas salmonicida SJ-

112.  

      Furthermore, CID-MS/MS analysis revealed the major routes of gas-phase 

fragmentation of different constituents associated with incomplete biosynthesis of Lipid 

A mixture. The structural identification data about this biological compound could be 

used for further evaluation of Lipid A and also for performing different quantitative 

studies 

4.2 ESI-FTICR-MS Analysis 

 

ESI-FT-ICRMS (negative ion mode) obtained for Lipid A of Aeromonas salmonicida 

SJ-112 displayed an incomplete biosynthesis as illustrated by the multiple molecular ions 

shown in Figure 4.5. The ESI-FTICR-MS showed inter alia seven different deprotonated 

molecules having related structures of the Lipid A. The fragment ions were tentatively 

assigned as the following: LipA1 at m/z 1768.2056, lipA2 at m/z 1744.2209, LipA3 at m/z 

1688.2356; and four most abundant ions LipA4 at m/z 1586.0259, LipidA5r at m/z 

1506.0586, Lipid A6 at m/z 1359.8266 and Lipid A7at m/z 1279.8676. 
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        As a result, the lower intensity fragment ion LipA1 at m/z 1768.1491 was 

assigned to the deprotonated molecules of the biphosphorylated Lipid A moiety bearing a 

phosphate group on each sugar and containing two units of the  branched l4:0(3-(R)-O-

12:0) fatty acid and 2 units of (R)-14:(3-OH) fatty acid. At this point of time, the exact 

positions of these fatty acids on O-3, O-3′, N-2, N-2′ are not known. 

The monophosphorylated Lipid A was also observed as major ions at m/z 

1744.2209 for lipA2 and at m/z 1688.2365 for LipA3 both carrying four (R)-14:0 (3-OH) 

(primary fatty acid)  located on the N-2, O-3, N-2′, and O-3′ positions of the Lipid A 

disaccharide. However, for the fragment ions at m/z 1744.2209; it contained an extra 16:0 

branched fatty acid at l4:0(3-(R)-O-12:0) and one 12:0 branched fatty acid at l4:0(3-(R)-

O-12:0).. 

         For the deprotonated molecule of LipA1 at m/z 1768.1491, we proposed that the 

N-2′ was acylated with one branched l4:0(3-(R)-O-12:0) fatty acid at from N-2′ position 

and another branched l4:0(3-(R)-O-12:0) fatty acid at the N-2 position.  

For the deprotonated molecule LipA3 at m/z 1688.2209, we suggested that the 

two branched l4:0(3-(R)-O-12:0) fatty acids were located on the N-2′ and N-2 positions. 

When this tentative structure is compared to the fragment ion at m/z 1768.1491, it 

suggests that LipA1 has lost its HPO3 at the reducing or the non-reducing sugar group to 

form LipA3.  
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    On the other hand for the deprotonated molecule LipA2, it was proposed that the 

fragment ion at m/z 1744.2209 contained two branched l4:0(3-(R)-O-12:0) fatty acid at 

the N-2′ and at the N-2 positions, (Figure 4.5). 

    In addition, two most abundant ions at m/z 1586.0259 LipA4 and at m/z 

1359.8266 LipA6 were tentatively  attributed to the biphosphorylated lipid A forms for 

the deprotonated molecule LipA4  m/z 1586.0259 carrying four (R)-14:0(OH) (primary 

fatty acid) on the N-2, O-3, N-2′  and O-3′ positions of the lipid A disaccharide, and one 

branched l4:0(3-(R)-O-12:0 at N-2′. Furthermore, the deprotonated molecule at m/z 

1359.8266 for LipA6 was attributed to contain the biphosphorylated lipid A carrying 

three (R)-14:0(OH) fatty acid located on either the N-2, O-3 and N-2′ positions of the 

lipid A disaccharide; one branched l4:0(3-(R)-O-12:0) fatty acid  located on N-2′ 

position, (Figure 4.5). It should be noted that the mass difference of 228 Da between the 

fragment ions at m/z 1586.0259 for LipA4 and at m/z 1359.8266 for LipA6 indicated the 

elimination of a C14-acid at the O-3 position from the ions at m/z 1586.0259 LipA4.  

    Moreover, two most abundant fragment ions at m/z 1506.0586 and m/z 

1279.8676 were assigned to LipA5 and to LipA7 respectively.  These ions were 

tentatively  attributed to the mono-phosphorylated pentaacylated forms for the 

deprotonated molecule LipA5  at m/z 1506.0586 carrying four (R)-14:0(OH) (primary 

fatty acid) on either of the N-2, O-3, N-2′  and O-3′ positions of the lipid A disaccharide, 

one branched l4:0(3-(R)-O-12:0 fatty acid at position of at N-2 position at m/z 1506.0511. 

The deprotonated molecule LipA7 at m/z 1279.8676 was attributed to the mono-
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phosphorylated tetraacylated forms carrying three (R)-14:0 (OH) (primary fatty acid) on 

either the N-2, O-3 and N-2′ positions of the lipid A disaccharide; one branched l4:0(3-

(R)-O-12:0) fatty acid on position at N-2′ position, (Figure 4.5).  It should be noted that 

the mass difference of 228 Da between the ions LipA5 at m/z 1506.0511 and the ions 

LipA7 at m/z 1279.8676 indicated the elimination of a C14-acid at the O-3′ position from 

the ions at m/z 1506.0511 for LipA5. 

 

Figure 4.4: Negative ion FT-ICR-MS of the heterogeneous mixture of native lipid As 

extracted from Aeromonas salmonicida SJ-112. 
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The proposed structures of the biphosphorylated, monophosphorylated Lipid A and its 

distinctive fragment ions observed in the FT-ICRMS are illustrated in Figure 4.4.  

It should be noted, that at this stage of this study, the positions of the esterified 

fatty acids were tentatively assigned and that there were many other possible structures 

for this Lipid A.  

The theoretical structure shown in Figure 4.5 corresponds to a biphosphorylated 

Lipid A with a theoretical [M-H]
 -
 at m/z 1586.0586 LipA4 and at m/z 1359.8266 LipA6 

respectively and a monophosphorylated Lipid A with a theoretical [M-H]
 -

 at m/z 

1506.0586 LipA5 and at m/z 1279.8676 LipA7 respectively.  

      The fragment ions at lower m/z values and their intensities were tentatively 

assigned as different mono-phosphorylated species containing one D-GlcN devoid of 

14:0 acid and 14:0(3-OH) acid m/z 892.5934, 14:0(3-OH) acid and 12:0(OH) ketene m/z 

708.2501. These lower fragment ions of lower m/z value ions are explained by the partial 

degradation of Lipid A during work-up and acid liability of some acylchains and 

phosphate group at O-1 position during the acid hydrolysis. 
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Figure 4.5: The seven proposed structures of the native Lipid A extract from Aeromonas 

salmonicida SJ-112. 
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Figure  4.5, continued: The seven proposed structures of the native Lipid A extract from 

Aeromonas salmonicida SJ-112. 
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Figure  4.5, continued: The seven proposed structures of the native Lipid A extract from 

Aeromonas salmonicida SJ-112. 

 

   It is important to note that some of these low value m/z ions can be also explained 

by their gas-phase fragmentation in the conventional ESI-MS scan. Accordingly, it was 

noted that the glycosidic bond cleavages could be induced by the conventional ESI-MS 
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cone fragmentation, hence providing useful structural information and sugar sequencing 

of complex carbohydrates. In the ESI-MS medium m/z values, a distinctive ion, at m/z 

892.5975 was observed and it was assigned as the [C-H]
-
 ion, which is shown in Figure 

4.6. This fragment ion represents the non-reducing GlcN residue formed during the 

biosynthesis of the complete Lipid A.
131 

   The assignment of the ions observed in the simple one-stage high-resolution MS 

analysis is based on the exact molecular masses only, and additional evidence is required 

to validate these assignments. Therefore, without further confirmation, it would be 

impossible to suggest various constitutional isomer structures for this Lipid A mixture. 

For example, all the proposed ion structures shown in Figure 4.4 could also be correct if, 

instead, the fatty acid acylation on the disaccharide backbone were reversed. 

For this reason, the use of tandem mass spectrometry permitted the identification 

of the diagnostic product ions and also confirmed the proposed molecular structures. 

Indeed, the structures shown in Figure 4.4 were confirmed with a detailed MS/MS 

analysis of selected molecular anions, as described in the following sections. As a result, 

the different proposed structures of the deprotonated molecules attributed to LipA1 to 

LipA7, which were obtained in the conventional single stage MS, have now been 

tentatively confirmed. 
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Figure 4.6: Schematic representation of the one of the possible common structures of 

Lipid A and the diagnostic ion of [C-H]- observed in the FT-ICR-MS spectrum. 

 

4.3 CID- FT-ICR-MS/MS analysis of the heterogeneous mixture of lipid As 

 

The distribution of the fatty acids was determined for the Lipid A isolated from 

Aeromonas salmonicida SJ-112 by multiple-stage ESI-MS
2
 CID. The detected product 

ions were interpreted according to the rules described previously in the ESI-CID-MS
2
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studies of Lipid A.
132

 ESI-MS
2
 of the precursor ions at m/z 1768.8732 for LipA1 (Figure 

4.7), m/z 1744.2209 for LipA2 (Figure 4.9), m/z 1688.2356 for LipA3  (Figure 4.11), m/z 

1586.0586 for LipA4 (Figure 4.13), m/z 1506.0511 for LipA5 (Figure 4.15), m/z 

1359.8266 for LipA6 (Figure 4.17), and m/z 1279.8676 for LipA7 (Figure 4.19) were 

performed to determine the distribution of fatty acids on the disaccharide Lipid A 

backbone.  Moreover, to determine the exact location of the phosphate group at m/z 

892.5778 (Figure 4.21) similar CID-MS
2
 experiments were performed.   

 

4.3.1 MS/MS of the precursor ions at m/z 1768.8732 isolated from LipA1 

 

The location of the fatty acid acyl group distributions was determined by 

performing by MS/MS of the ion at m/z 1768.8732 for LipA1 observed in the ESI-MS of 

Lipid A preparations from Aeromonas salmonicida SJ-112 (Figure 4.7). On the basis of 

the chemical structure proposed for this Lipid A constituents and after MS/MS analysis, 

this ion was assigned to the biphosphorylated, hexa-acylated Lipid A form, containing 

two GlcN residues, two P groups, four (R)-14:0(3-OH) groups on the N-2, O-3, N-2′, and 

O-3′ positions, and two 12:0 fatty acids on the l4:0(3-(R)-O-12:0) at the N-2 and N-2′ 

position.  

       The most abundant product ion at m/z 1243.34909 was formed by the by the 

consecutive elimination of the C14 (3OH) acid from the C-3′ of the non-reducing GLcN′ 

residue (244 Da), the loss of C12:0 Ketene (200 Da) from the branched l4:0(3-(R)-O-
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14:0) present on the N-2 position and elimination of HPO3 (80 Da) from the reducing 

GlcN residue of the precursor ion at m/z 1768.8732. 

           The product ion at m/z 1035.74947was formed by the consecutive losses of two 

molecules of 14:0 fatty acid (-488 Da) of the C-3 and C-3′ positions of both GlcN 

residues, followed by elimination of a C12:0 acid from l4:0(3-(R)-O-14:0) branched fatty 

acid from the N-2 position and elimination of HPO3 of the reducing GlcN, sugar group of 

the precursor ion at m/z 1768.8732.  

        It is interesting to note that the 
0,4

X1 product ion was identified at m/z 708.6617. 

This product ion results from the X-cleavage at the 0.4 positions of the cyclic pyranose 

ring of the reducing GlcN residue, followed by the elimination of the 14:0 fatty acid from 

the C-3 position. This product ion is diagnostic for the presence of the branched l4:0(3-

(R)-O-14:0) present on the N-2′ position of the non-reducing GlcN residue, containing a 

phosphate group on the C-4′ position (Figures 4.8).  
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Figure 4.7: Negative ion CID MS/MS of the singly charged biphosphorylated lipid A [M-

H]- ion A at m/z 1768.8732. 
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Figure 4.8: The proposed fragmentation pathway of the selected precursor ion at m/z 

1768.2056 
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4.3.2 MS/MS of the precursor ions at m/z 1744.2209 isolated from LipA2 

 

The CID analysis of the precursor ion at m/z 1744.2209 for LipA2 gave the 

product ions at m/z 1488.0378, 1243.8355, and 1035.6495 (Figure 4.9). It should be 

noticed that the product ions at m/z 1243.8355 and at m/z 1035.6495 m/z were also 

observed in the MS/MS of the precursor ion at m/z 1768.8732 for LipiA1. In contrast, the 

product ion at m/z 1488.0378 was formed only by the precursor ion at m/z 1744.2209 

LipA2 and it indicates the elimination of a 16:0 ketene (-256 Da), present from either the 

reducing end or non-reducing end from the N-2 and N-2′positions of the disaccharide 

backbone of the Lipid A (Figures 4.10). The presence of this unique precursor at m/z 

1744.2209 indicated the presence of a C16:0 fatty acid present on the branched fatty acid 

l4:0(3-(R)-O-16:0) present on C-N2 and confirmed the presence of an aberrant 

incomplete biosynthesis of Lipid A.  
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Figure 4.9: Negative ion CID MS/MS of the singly charged monophosphorylated lipid A 

[M-H]- ion A at m/z 1744.2209. 
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Figure 4.10: The proposed fragmentation pathway of the selected precursor ion at m/z 

1744.2209. 
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4.3.3 MS/MS of the precursor ions at m/z 1688.2302 isolated from LipA3 

 

Furthermore, the CID analysis of the precursor ion at m/z 1688.2302 for LipA3 

gave product ions at m/z 1488.0378, 1444.5755, 1243.8355, 1035.6495, and at m/z 

708.6815 (Figure 4.11). These product ions, except for m/z 1444.5755, were also 

observed in the MS2 of the precursor ion at m/z 1768.8732 for LipiA1 and at 1744.2209 

for LipA2. For the product ion at m/z 1444.5755, the mass difference between the ions at 

m/z 1688.2302 for LipA3 and at m/z 1444.5755 (-244 Da), indicates the elimination of 

14:0 fatty acid from the l4:0(3-(R)-O-14:0) from the O-3 or O-3` position (Figures 4.12). 

It is very important to note that the product ion at m/z 708.6815 gave an excellent support 

to our proposed structure at the precursor ion at m/z 1768.8732 LipiA1 and at 1688.2302 

LipA3. 
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Figure 4.11: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid 

A [M-H]- ion A at m/z 1688.2302. 
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Figure 4.12: The proposed fragmentation pathway of the selected precursor ion at m/z 1688.2302 
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4.3.4 MS/MS of the precursor ion at m/z 1586.0259 isolated from LipA4  

 

To determine the possible structures of the most abundant ions shown in the ESI-

MS, the precursor ion at m/z 1586.0259 for LipA4 was subjected to a MS
2
 experiment, 

and as shown in Figure 4.13; it gave the product ions at m/z 1488.0742, 1341.8129, and 

1243.8798 (Figure 4.13). The product ions at m/z 1488.0742 indicated the elimination of 

H2PO4 from the non-reducing sugar group and from m/z 1586.0259 the precursor ion. 

The product ions at m/z 1341.8129 indicated the loss of a 14:0 fatty acid from the l4:0(3-

(R)-O-14:0) from the O-3′ position from the precursor ion at m/z 1586.0259. Also, the 

elimination of a 14:0 fatty acid from the l4:0(3-(R)-O-14:0) at the O-3′ position, and a 

H2PO4 from the non-reducing sugar group was appeared as a product ion at m/z 

1243.8798 (Figures 4.14). 
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Figure 4.13: Negative ion CID MS/MS of the singly charged biphosphorylated Lipid A 

[M-H]- ion A at m/z 1586.0259. 
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Figure 4.14: The proposed fragmentation pathway of the selected precursor ion at m/z 

1586.0259. 
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4.3.5 MS/MS of  the precursor ion at m/z 1506.0586 isolated from LipA5 

 

The CID analysis of the second most abundant precursor ion at m/z 1506.0586 for 

LipA5 (Figure 4.15) gave the product ions at m/z 1261.8542, 1305.9065, and 1035.6546 

(Figure 4.16). The m/z 1261.8542 product ion indicated elimination of the 14:0(3-OH) 

acid from the O-3′ position (-244 Da difference) from the precursor ion at m/z 1506.0586. 

This elimination could in fact occur from either at the O-3 and O-3′ positions located 

respectively in the reducing end, or non-reducing end of the lipid A disaccharide 

backbone. The mass difference (-200 Da) between the ions at m/z 1506.0586 for LipA5 

and at m/z 1305.9065, indicated the elimination of a 12:0(OH) acid. Also, the elimination 

of a 14:0 fatty acid from the l4:0(3-(R)-O-14:0) at the O-3′ position, a 14:0 ketene from 

the O-3 position acid appeared in the product ion at m/z 1035.6546 (Figure 4.16). 
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Figure 4.15: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid 

A at m/z 1506.0586. 
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Figure 4.16: The proposed fragmentation pathway of the selected precursor ion at m/z 

1506.0586. 



 

84 

 

4.3.6 MS/MS of the precursor ion at m/z 1359.8266 isolated from LipA6 

 

          The CID analysis of the third most abundant precursor ion at m/z 1359.8266 for 

LipA6 (Figure 4.17) gave the product ions at m/z 1261.6628, 1115.9844, 1017.6426, 

1035.6735, 919.7743, and 817.8521. The product ion of m/z 1261.6628 indicated the 

elimination of the H2PO4 from the non-reducing sugar group (-98 Da differences) from 

the precursor ion at m/z 1359.8266 LipA6. The mass difference (-244 Da) between the 

ions at m/z 1359.8266 LipA6 and 1115.9844, indicated the elimination of 14:0(3-OH) 

acid from the O-3′ position. Also, the elimination of a 14:0 fatty acid from the l4:0(3-(R)-

O-14:0) at the O-3′ position, a H2PO4 from the non-reducing sugar group appeared in the 

product ion at m/z 1017.6426. For the product ion at m/z 1035.6735, the elimination of 

14:0 ketene from the O-3′ position from the precursor ion at m/z 1035.6735 was 

observed. The loss of H2PO4 from the reducing sugar group from the precursor ion at m/z 

1017.6426 to give the precursor ion at m/z 919.7743 was also observed. The product ion 

of m/z 817.8521 showed the elimination of a 12:0 acid from the branched fatty acid at the 

N-2 position from the precursor ion at m/z 1017.6426 (Figure 4.18). As a result of this 

elimination, m/z 1359.8266 for LipA6 was assigned to the biphosphorylated, tetra-

acylated lipid A form containing two phosphate group, three 14:0(3-OH) located at the 

N-2, O-3, N-2′ positions, and one 12:0 fatty acid located on the l4:0(3-(R)-O-12:0) group 

at the N-2′ position 

 



 

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Negative ion CID MS/MS of the singly charged biphosphorylated Lipid 

A at m/z 1359.8266 
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Figure 4.18: The proposed fragmentation pathway of the selected precursor ion at m/z 

1359.8266 
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4.3.7 MS/MS of the abundant precursor ion at m/z 1279.867 isolated from LipA7 

 

               The CID analysis of the fort most abundant precursor ion at m/z 1279.8676 for 

LipA7 (Figure 4.19) showed product ions at m/z 1079.7355, 1053.7893, 1035.6529, 

1017.6329, and 835.5964. The product ion of m/z 1079.7355 indicated elimination of the 

12:0 fatty acid at the l4:0(3-(R)-O-12:0) group from the N-2′ position (-200 Da). The 

mass difference between the ions at m/z 1279.8676 for LipA7 and at m/z 1053.7893 (-226 

Da), indicated the elimination of a 14:0 ketene from the N-2′ position from the precursor 

ion at m/z 1279.8676. The product ion at m/z 1035.6529, indicated the elimination of a 

14:0 fatty acid from the l4:0(3-(R)-O-14:0) at the O-3 position from the precursor ion at 

1279.8676. The loss of water from the product ion at m/z 1035.6529 gave the product ion 

at m/z 1017.6329. In addition, the elimination of a 14:0 fatty acid from the l4:0(3-(R)-O-

14:0) at the O-3 position, a 14:0 ketene from the branched fatty acid at the N-2′ position 

from the precursor ion at m/z 1279.8676 was appeared in the product ion at m/z 835.5964 

(Figure 4.20). As a result of this elimination, 1279.8676 for LipA7 was assigned to the 

monophosphorylated, tetra-acylated lipid A form containing one phosphate group, three 

14:0(3-OH) located at the N-2, O-3, and N-2′ positions, one a 12:0 located on the l4:0(3-

(R)-O-12:0) group at the N-2′ position. 
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Figure 4.19: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid 

A at m/z 1279.8676. 
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Figure 4.20: The proposed fragmentation pathway of the selected precursor ion at m/z 

1279.8676. 
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To confirm the presence of the phosphate group position, the precursor ion at m/z 

892.5778 was isolated and subjected to a CID analysis (Figure 4.21). The most abundant 

product ion at m/z 648.3460 was formed by loss of the 14:0 fatty acid on the l4:0(3-(R)-

O-14:0) group at the O-3′ position (-244 Da) of the disaccharide backbone of Lipid A. 

The suggested structure of the product ion at m/z 648.3460 appears to indicate that the 

position of the phosphate group could exist at either the C-1 position on the reducing end 

sugar, or on the O-4′ of the non-reducing end sugar of the disaccharide backbone. The 

backbone is presumably acylated with the 14:0 fatty acid located at the branched fatty 

acid of N-2′ and a 12:0 fatty acid from the l4:0(3-(R)-O-12:0) group at the N-2′ position 

exited at either the reducing end or non-reducing end as shown in Figure 4.22.  

       Moreover, this CID of the precursor ions at m/z 448.1395 indicated the elimination of 

the 12:0 Acid (-200 Da) located at the l4:0(3-(R)-O-12:0) from N-2′ position.  

4.3.8 CID analysis of the [C-H]
 -
 and [Y-H]

 -
 ions 

 

As mentioned earlier, one diagnostic ion which is formed during the biosynthesis 

of the complete Lipid A was assigned as the [C-H]
-
 ion at m/z 892.5932 which was 

observed in the conventional FT-ICR-MS scan (Figure 4.21). Ideally this ion would be 

produced by the glycosidic cleavages of the β-D-(l→6) of the D-GlcN disaccharide 

during MS/MS of the complete lipid A.  To confirm the proposed structure of this ion, 

MS/MS were acquired. The product ion scan of the selected [C-H]
-
 ion at m/z 892.5778 

inicated a the loss of a l4:0 fatty acid chain from the C-3′ to yield the product ion 

assigned as [C-(C14:0) (3-OH) acid-H]
-
 observed at m/z 648.3460 which can further 



 

91 

 

fragment by losing a 12:0 acid fragment located at the l4:0(3-(R)-O-12:0) at the N-2′ 

position to afford the product ion observed at m/z 448.1395. This latter loss probably 

takes place from the labile O- linked fatty acid rather than the more stable amid N-linked 

one (Figures 4.22). 

      It is well-accepted that during CID analysis of the Lipid A moiety, the elimination 

of the fatty acid derivatives occurred mainly from the O- linked fatty acid esters. 

Therefore, it was projected that the major ion observed at m/z 648.3745 would be 

associated with the loss of the 14:0(3-OH) acid from the O-3' position, rather than a loss 

of 12:0 acid the l4:0(3-(R)-O-12:0) group at the N-2′ position from the product ion 

observed at m/z 448.1395, it should be noted that it is very possible that these two 

processes occur simultaneously, as mentioned earlier. These product ions confirmed the 

proposed structure of Lipid A structures bearing two secondary ions and one phosphate 

group at the non-reducing end of the lipid A backbone.  
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Figure 4.21: Negative ion CID MS/MS of the singly charged monophosphorylated lipid 

A [C-H]- ion A at m/z 892.5778. 
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Figure 4.22: The proposed fragmentation pathway of the selected precursor ion at m/z 

892.5778. 
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     4.3.9 Summary 

 

    The chemical structure of Lipid A extract, isolated by mild acid hydrolysis from 

Aeromonas Salmonicida lipopolysaccharide, was investigated using electrospray 

ionization FTICR hybrid tandem in time mass spectrometry low collision-energy (CID), 

and illustrated a great degree of microheterogeneity. The chemical structure of the main 

constituent of this heterogeneous mixture was identified as a D-(l→6) linked 

glucosamine disaccharide substituted by two phosphates groups, being bound to the non-

reducing end at position O-4' of the D-glucosamine disaccharide and being bound to the  

reducing end at position O-4  of the D-glucosamine disaccharide  

      The location of the fatty acids linked to the disaccharide backbone was 

established by identifying diagnostic ions in the conventional FT-ICR-MS scan. Low-

energy collision (CID) tandem mass spectrometry analysis of the selected precursor 

diagnostic ions confirmed, unambiguously, their proposed molecular structures. It was 

established that a 14:0(3-(R)-O-12:0) acid residue was at the position O-3' linked to the 

non-reducing end of the D-GlcN residue with 3-hydroxy myristic (R)-14:0(3-OH) acid 

chains at the N-2' position, and also that a 14:0(3-(R)-O-12:0) acid residue was at the O-3 

position linked to the reducing end of the D-GlcN residue with 3-hydroxy myristic (R)-

14:0(3-OH) acid chains at the N-2 of the reducing end.  

     The MS and MS/MS data obtained allowed the determination of the complex 

molecular structure of Lipid A. In addition, the fragmentation patterns were clearly 

illustrated and established for this biologically-active compound. 
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Chapter 5 : Analysis of Lipid A Using MALDI-TOF-

MS and High Energy CID-TOF/TOF-MS/MS 
 

5.1  MALDI-TOF-MS analysis of the heterogeneous mixture of lipid As 

 

       MALDI-TOF-MS for the lipid A obtained from Aeromonas salmonicida SJ-112 

were measured in the reflector mode with the TOF/TOF instrument and high laser 

power. It was again noticed that MALDI-MS showed similar spectra to those 

measured with the FT-ICR-MS instruments. This mainly displayed highly incomplete 

biosynthesis that mainly revealed multiple molecular ions as shown in Figure 5.1. 

Furthermore, the MALDI-TOF-MS revealed six unique deprotonated molecules inter 

alia that had similar structures to those of Lipid A at around m/z of 1768.2 for LipA1, 

and m/z 1688.0 for LipA2; and among these, four highly abundant ions at m/z 1585.6 

for LipA3, at m/z 1505.7 for LipA4, at m/z 1359.5 for LipA5, and lastly, at m/z 

1279.5 for LipA6. 

      Hence, the lower intensity ion mainly at m/z 1768.2 for LipA1 was further 

assigned to these already mentioned deprotonated fragments associated with the 

biphosphorylated Lipid A moiety that bears a phosphate group at each of the sugars.  

 In the case of the deprotonated fragments of the LipA1 at m/z 1768.2, it was 

postulated that most probably N-2′ was specifically acylated with a fatty acid. For 

most of the deprotonated molecules such as LipA2 at around m/z 1688.2209 for 

LipA2, it was also proposed that the two 12:0 fatty acids specifically at position of 
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l4:0(3-(R)-O-12:0) could be located at both N-2′ as well as N-2 positions with one 

group of sugar at the non-reducing end (Figure 5.2). 

   In addition, two of the most abundant ions at around m/z 1585.7 for LipA3 and at 

m/z 1359.5 LipA5 were tentatively assigned to the biphosphorylated Lipid A forms 

for the deprotonated molecule LipA4  m/z 1585.7 carrying four (R)-14:0(OH) 

(primary fatty acid) possibly on the N-2, O-3, N-2′  and O-3′ positions of the Lipid A 

disaccharide, one 12:0 branched fatty acid at position of l4:0(3-(R)-O-12:0 at N-2′ 

position at around m/z 1585.7.  Similarly, the deprotonated molecule at around m/z 

1359.5 LipA5 was also tentatively attributed to the biphosphorylated Lipid A forms 

carrying three (R)-14:0 (OH) (primary fatty acid) which most probably were located 

on the N-2, O-3 and N-2′ positions of the Lipid A disaccharide; one 12:0 branched 

fatty acid on position l4:0(3-(R)-O-12:0) at the N-2′ position, (Figure 5.2). It should 

be noted that the mass difference of 228 Da between the ions at m/z 1585.6 LipA3 

and the ions at m/z 1359.8266 for LipA5 could indicate the elimination of a C14-acid 

at the O-3 position.  

    In addition to this, two of the most abundant ions at around m/z 1505.7 LipA4 

along with at m/z 1279.5 for LipA6 were attributed tentatively to the mono-

phosphorylated and penta-acylated different forms specifically for the deprotonated 

molecule LipA5 at around m/z 1505.7 that carries four (R)-14:0(OH) groups 

specifically on the N-2 as well as O-3, N-2′ and also at O-3′ of Lipid A disaccharide. 

In addition to this, the deprotonated molecule at m/z 1279.5 for LipA6 that is 
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attributed to the mono-phosphorylated tetra-acylated various forms carries around 

three (R)-14:0 (OH) groups on N-2, O-3 and N-2′ positions in the overall structure of 

Lipid A disaccharide (Figure 5.2).  It must also be noted that the overall mass 

difference of around 228 Da mainly between the ions at m/z 1505.7 for LipA5 along 

with the ions at m/z 1279.5 for LipA6 can possibly indicate the extent of elimination 

mainly of the C14-acid at around the O-3′ position. 

 

Figure 5.1: Negative ion MALDI-TOF-MS of the heterogeneous mixture of native Lipid 

As extracted from Aeromonas salmonicida SJ-112. 
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The already proposed structures mainly of biphosphorylated as well as 

monophosphorylated Lipid A, along with its distinctive ions that were observed with the 

help of MALDI-TOF-MS, are diagrammatically illustrated in Figure 5.2. It must also be 

noted however, that at this specific stage of this entire study, the certain positions of fatty 

acids esterified were assigned tentatively and furthermore, there are many different 

possible structures that can be illustrated for this Lipid A. Hence, the postulated Lipid A 

extract structure that is shown in Figure 5.2 directly corresponds to a highly 

biphosphorylated lipid A having a postulated [M-H]
 –

 at m/z 1585.6 for LipA3 as well as 

at m/z 1359.5 for LipA5 respectively. 

        Moreover, the ions present at lower m/z values, as well as their intensities were 

assigned to different species of mono-phosphorylated that consisted of one D-GlcN that 

was devoid of a 14:0 acid as well as a 14:0(3-OH) fatty acid at m/z 892.4. Such lower m/z 

values of ions could be potentially explained with the help of a partial degradation 

specifically of Lipid A, during both the work-up as well as acid liability of most of the 

acyl chains as well as phosphate groups present at the O-1 position in the process of 

phenol extraction. Nevertheless, this is not the case. The presence of the single acylated 

glucosamine residues and underacylated Lipid As represent the incomplete biosynthesis, 

it is important to understand that the Gram negative  bacteria used for  this rationale, was 

infected by a phage (virus) and that the phage disrupted the biosynthesis of the LPS. 

Needless to say, the LPS extracted from conventional Gram negative bacteria by the 

phenol:water method of Westphal and Jann affords upon hydrolysis of  LPS a unique sort 

of Lipid A. 
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Figure 5.2: The six proposed structures of the native Lipid A extract from Aeromonas salmonicida 

SJ-112. 
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Figure  5.2, continued: The six proposed structures of the native Lipid A extract from 

Aeromonas salmonicida SJ-112. 
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Figure  5.2, continued: The six proposed structures of the native Lipid A extract from 

Aeromonas salmonicida SJ-112. 

 

It is important to note also that such lower values of m/z ions can be further 

explained by the nature of gas-phase fragmentation that can specifically in the traditional 

ESI-MS scan. On the basis of this, it was also noted that the prevalent glycosidic bond 
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cleavages can be further induced by the traditional ESI-MS cone fragmentation, thus, 

providing some useful structural information as well as sugar sequencing of some of the 

complex carbohydrates. Furthermore, in case of the medium m/z values from the 

MALDI-TOF-MS, a highly distinctive ion, at around m/z 892.4 was mainly observed and 

furthermore, it was also assigned the as [C-H]
- 
ion, as shown in Figure 5.3. This major 

fragment ion significantly represented the GlcN residue that is mainly non-reducing and 

is also formed during the process of biosynthesis Lipid A.
131 

         The assignment of those ions that were observed in the MS analysis which has 

much simpler one-stage high-resolution was basically based only on their molecular 

masses, but additional evidence is typically required for validating such assignments. 

Hence, without having further confirmation, it would be impossible to suggest different 

constitutional as well as isomer structures for this Lipid A mixture. For example, all the 

proposed ion structures shown in Figure 5.2 could also be correct if instead, the fatty acid 

acylation on the disaccharide backbone were reversed. 

    For this specific reason, employing tandem mass spectrometry greatly permitted 

the much needed identification of both the diagnostic ions product and additionally 

confirmed the initially proposed molecular structure. Thus, the structures that are shown 

in Figure 5.2 were mainly confirmed with the help of detailed MS/MS analysis of some 

of the selected molecular anions that are described in the up-coming sections. 

Consequently, some of the different proposed structures of the deprotonated molecules 
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that are attributed to LipA1 and eventually to LipA6, were obtained in the major 

conventional single stage, and has also been confirmed tentatively. 

 

 

Figure 5.3: Schematic representation of the one of the common structure of Lipid A and 

the diagnostic ion of [C-H]- observed in the MALDI-TOF-TOF-MS spectrum. 

 

 

 



 

104 

 

5.2 MALDI-CID-TOF/TOF-MS/MS analysis: 

 

          The overall distribution of the fatty acids for the initially discussed Lipid A that     

was isolated from the bacterial species Aeromonas salmonicida SJ-112 was determined 

with the help of high-energy collision disocation CID-TOF/TOF/-MS/MS. All the 

detected product ions were then interpreted on the basis of those rules that were described 

previously in Chapter 4 for the ESI-CID-MS
n 

analysis of lipid A.
138

 The high-energy 

CID-TOF/TOF-MS/MS of the precursor ions at m/z 1768.2 for LipA1 (Figure 5.4), m/z 

1688.0 for LipA2 (Figure 5.6), m/z 1585.6 for LipA3 (Figure 5.8), m/z 1505.7 for LipA4 

(Figure 5.10), m/z 1359.5 for LipA5 (Figure 5.12), and m/z 1279.5 LipA6 (Figure 5.14) 

were performed for the determination of the distribution of the fatty acids on the Lipid A 

disaccharide backbone.  Moreover, determining the precise location of the phosphate 

group mainly at m/z 892.4 was shown in Figure 5.6 and additionally, similar CID-MS
2
 

experiments are also performed.   

5.2.1  MS/MS of the precursor ions at m/z 1768.2 isolated from LipA1 

 

       The location of the fatty acid acyl group distributions for LipA1 was performed 

with the help of MS/MS of the ion at m/z 1768.2 LipA1 observed in the MALDI-TOF-

MS of Lipid A preparations from Aeromonas salmonicida SJ-112 (Figure 5.4). 

According to the proposed chemical structure for Lipid A constituents as well as after the 

MS/MS analysis, this specific ion was mainly assigned to the biphosphoylated along with 

the hexaacylated Lipid A form that consisted of two GlcN residues having two P groups 

at C-1 and C-4′ of the GLcN disachharide backbone, as well as four (R)-14:0(3-OH) 
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mainly on the N-2 along with O-3, N-2′, and on the O-3′ positions, and also two 12:0 

fatty acids present on the l4:0(3-(R)-O-12:0) fatty acid mainly at both the N-2 and N-2′ 

positions.  

     In this regard, most of the abundant product ions at m/z 1488.2806 were basically 

formed from the precursor ion obtained at around m/z 1768.2 LipA1 and further indicated 

the eventually elimination of the 12:0 acid (-200 Da) from the branched fatty acid at the 

N-2 position, and the elimination of HPO3 specifically from the reducing end (around -80 

Da differences). The product ion at m/z 1244.0620 was formed by the consecutive 

elimination of the C14(3OH) acid  from the C-3′ of the non-reducing GLcN′residue (244 

Da), the loss of C12:0 acid (200 Da) from the branched l4:0(3-(R)-O-14:0) present on the 

N-2 position, and elimination of HPO3 (80 Da) from the reducing GlcN residue of the 

precursor ion at m/z 1768.2. 

   The product ion at m/z 1017.5594 was formed by the consecutive losses of two 

molecules of the 14:0 fatty acids (-488 Da)  of the C-3 and C-3′ position of both GlcN 

residues, followed by elimination of a C12:0 ketene from l4:0(3-(R)-O-14:0) branched 

fatty acid from the N-2 position and elimination of HPO3 of the reducing GlcN, sugar 

group of the precursor ion at m/z 1768.8732 (Figure 5.5).  
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Figure 5.4: Negative ion CID MS/MS of the singly charged biphosphorylated lipid A [M-

H]- ion A at m/z 1768.2. 
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Figure 5.5: The proposed fragmentation pathway of the selected precursor ion at m/z 

1768.2. 
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5.2.2 MS/MS of the precursor ions at m/z 1688.0 isolated from LipA2 

 

The CID analysis of the precursor ion at m/z 1688.0 of LipA2 gave the product 

ions at m/z 1488.1086, and 1261.9907 as shown in Figure 5.6. It was observed that the 

main product ion at m/z 1488.1086, indicated the eventual elimination of the 12:0 acid (-

200 Da) from the branched fatty acid at the N-2 position. The product ion of m/z 

1261.9907 clearly indicated the eventual elimination of 14:0(3-OH) ketene from O-3′ 

position (of around -226 Da difference) specifically from the precursor ion at m/z 

1488.1086 as shown in Figure 5.7.  Furthermore, these eliminations can in fact take place 

at N-2, at N-2′ and even at O-3 and O-3′ positions that is located respectively in the 

reducing end, or at the non-reducing end of the previously described disaccharide 

backbone of Lipid A. 
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Figure 5.6: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid A 

[M-H]
-
 ion A at m/z 1688.2302 
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Figure 5.7: The proposed fragmentation pathway of the selected precursor ion at m/z 

1688.0. 

 

 



 

111 

 

5.2.3 MS/MS of the abundant precursor ion at m/z 1585.6 LipA3  

 

       The precursor ion mainly at m/z 1585.6 of LipA3 was subjected to a MS
2
 

experiment, and is illustrated in Figure 5.8. The resulting product ions at m/z 1487.9103, 

1341.7245, and 1243.7837 are shown in Figure 5.8. The main product ion at m/z 

1487.9103 indicated the elimination of the H2PO4 from reducing sugar group and from 

the precursor ion of m/z 1585.6. The product ion at m/z 1341.7245 clearly showed the 

loss of a 14:0 fatty acid (of around -244 Da differences) from the l4:0(3-(R)-O-14:0) 

group from the O-3′ position from the precursor ion at m/z 1585.6. Also, the elimination 

of a 14:0 fatty acid from the l4:0(3-(R)-O-14:0) at the O-3′ position, and a H2PO4 from 

the reducing sugar group appeared in the product ion at m/z 1243.7837 (Figures 5.9). 
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Figure 5.8: Negative ion CID MS/MS of the singly charged biphosphorylated Lipid A 

[M-H]
-
 ion A at m/z 1585.6. 
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Figure 5.9: The proposed fragmentation pathway of the selected precursor ion at m/z 

1585.6. 
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5.2.4 MS/MS of the abundant precursor ions at m/z 1505.7 isolated from LipA4 

 

The CID analysis specifically of the second most highly abundant precursor ion at 

m/z 1505.7 of LipA4 shown in Figure 5.10 eventually afforded the product ions at m/z 

1261.8335, 1243.8828, and 1017.5594, as shown in Figure 5.10. The main product ion of 

m/z 1261.8335 clearly indicated the eventual elimination of the 14:0(3-OH) acid from the 

O-3′ position (of around -244 Da differences) specifically from the precursor ion at m/z 

1505.7. Furthermore, this elimination can in fact take place at the O-3 and even at the O-

3′ positions that is located respectively in the reducing end, or in the non-reducing end of 

the previously described disaccharide backbone of lipid A. Moreover, from the product 

ions at m/z 1261.8335, the elimination of H2O can occur to give the product ions at m/z 

1243.8828. In addition to this, the eventual elimination of the 14:0(3-OH) acid at the 

exact O-3 position, appeared in the final product ion at around m/z 1017.5594 (Figure 

5.11). 
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Figure 5.10: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid A at m/z 

1505.7. 
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Figure 5.11: The proposed fragmentation pathway of the selected precursor ion at m/z 

1506.0586. 
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5.2.5 MS/MS of the abundant precursor ion at m/z 1359.5 isolated from LipA5 

 

         The MS/MS CID analysis of the third abundant precursor ion mainly at m/z 1359.5 

for LipA5 is shown in Figure 5.12, giving the product ions at m/z 1261.6610, 1115.4828, 

and 1017.4634. The product ion obtained from m/z 1261.6610 principally indicated the 

eventual elimination of H2PO4 specifically from reducing sugar group (around -98 Da 

differences) specifically from the precursor ion at m/z 1359.8266 LipA5. In addition to 

this, the mass difference (-244 Da) existing between the ions at m/z 1359.5 for LipA5 as 

well as at m/z 1115.4828 mainly indicated the eventual elimination of the 14:0(3-OH) 

acid mainly from the O-3 position. Furthermore, the elimination of H2PO4 from the 

reducing sugar group (-98 Da differences) specifically from the precursor ion at m/z 

1115.4828 or the elimination of 14:0(3-OH) acid from the O-3 position (-244 Da 

difference) from the precursor ion at m/z 1261.6610, appeared in the final product ion at 

m/z 1017.4634, as shown in Figure 5.13. 
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Figure 5.12: Negative ion CID MS/MS of the singly charged biphosphorylated lipid A at m/z 

1359.5. 
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Figure 5.13: The proposed fragmentation pathway of the selected precursor ion at m/z 

1359.5. 
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     5.2.6 MS/MS of the abundant precursor ion at m/z 1279.5 isolated from LipA6 

 

            The CID analysis of the fourth most highly abundant precursor ion at m/z 1279.5 

of LipA7 is shown in Figure 5.14 and gave the product ions at m/z 1079.4796, 1053.5066, 

1035.4777, and 1017.5615. The obtained product ion from the m/z 1079.7355 ion 

typically was formed by the eventual elimination of the 12:0 fatty acid specifically at 

l4:0(3-(R)-O-12:0) group from the N-2′ position (of around -200 Da). The existing mass 

difference specifically between the ions at m/z 1279.5 of LipA7 and 1053.5066 is -226 Da 

and it indicated the elimination of a 14:0 ketene obtained from the O-3 position of the 

precursor ion. The most abundant product ion at m/z 1035.4777 was formed by 

elimination of a 14:0 fatty acid from the l4:0(3-(R)-O-14:0) group at the O-3 position 

from the ion at m/z 1279.5.  

Also, the loss of water from the product ion at m/z 1035.6529 gave the product 

ion at m/z 1017.5615 (Figure 5.15). As a result of this elimination, this latter ion was 

assigned to the monophosphorylated, tetra-acylated Lipid A form containing one 

phosphate group, three 14:0(3-OH) group located at the N-2, O-3, N-2′ positions, and one 

12:0 fatty acid located on the l4:0(3-(R)-O-12:0) group at the N-2′ position. 
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Figure 5.14: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid A at 

m/z 1279.5. 
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Figure 5.15: The proposed fragmentation pathway of the selected precursor ion at m/z 

1279.5. 
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To confirm the phosphate group presence on that position, the precursor ion at m/z 

892.4 was initially isolated and was later on subjected to a CID analysis as shown Figure 

5.16. The most abundant product ion obtained at m/z 648.3460 was formed by a 

significant loss of the 14:0 fatty acid mainly on the l4:0(3-(R)-O-14:0) group located at 

the O-3′ position (-244 Da) on Lipid A disaccharide backbone. Furthermore, the structure 

that was suggested for the product ion at m/z 648.3460 typically showed that the precise 

position of the phosphate group can also exist in either the C-1 position on the reducing 

sugar end or on the subsequent O-4′ or the non-reducing sugar, which is acylated  at N-2′, 

with the 14:0 group situated at the fatty acid branch at N-2′ as well as a 12:0 fatty acid 

obtained from the l4:0(3-(R)-O-12:0) group located on the N-2′ position of the reducing 

sugar end or of the non-reducing end (Figure 5.20). Furthermore, the CID analysis of the 

precursor ions at m/z 666.3688 clearly indicated elimination of the C14:0 (3-OH) ketene 

(-226 Da) from the product ions at m/z 892.4. 

5.3 CID analysis of the [C-H]
 -
 and [Y-H]

 –
 ions 

 

      As previously stated, one of the diagnostic ions, formed during the complete 

biosynthesis of Lipid A was assigned as the [C-H]
-
 ion at m/z 892.4 and it was later also 

observed in some of the traditional MALDI-TOF-MS reflect scanning analysis (as shown 

in Figure 5.16). This obtained ion can simply be produced by glycosidic cleavages 

mainly of the β-D-(l→6) in the D-GlcN disaccharide specifically during the MS/MS 

analysis of the complete Lipid A.  To confirm the proposed structure of this obtained ion, 

MS/MS was conducted. Hence, the product ion scan of the ion [C-H]
-
 at m/z 892.4 clearly 
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showed the eventual loss of a l4:0 acid chain from position C-3′ to yield the product ion 

at  m/z 648.2242, assigned as the [C-(C14:0) (3-OH) acid-H] ion. Also, the elimination of 

C14:0 (3-OH) ketene located at position C-3′, affored the product ion at m/z 666.3688. 

This latter elimination is assumed to take place from the O- linked fatty acid located at 

position C-3′ instead of the stable N-linked one located at position N-2′ as shown in 

Figure 5.17.  

 

Figure 5.16: Negative ion CID MS/MS of the singly charged monophosphorylated Lipid 

A [C-H]- ion A at m/z 892.5778. 
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Figure 5.17: The proposed fragmentation pathway of the selected precursor ion at m/z 

892.4. 
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5.4 Summary 

 

       The overall chemical structure mainly of Lipid A, when isolated after mild acid 

hydrolysis from the lipopolysaccharide fraction of the bacterial species Aeromonas 

salmonicida SJ-112 was elucidated using MALDI-TOF-TOF-MS hybrid tandem mass 

spectrometry with high-energy collision (CID) analysis. The data clearly illustrated a 

higher degree of microheterogeneity. In addition to this, the overall chemical structure for 

the major constituent of this specific heterogeneous mixture was later on in the study 

identified as being a D-(l→6) linked glucosamine disaccharide that was substituted by 

additional two phosphates groups that bonded to the main non-reducing end at C-4' 

postion and also to the reducing end at C-1 of the D-glucosamine disaccharide. 

        The precise location specifically of the fatty acids that were linked to the 

disaccharide backbone was initially elucidated by careful identification of the diagnostic 

ions with the help of a MALDI-TOF/TOF-MS scan. Furthermore, high-energy collision 

(CID) mass spectrometry analysis specifically of already selected (diagnostic) precursor 

ions unambiguously confirmed their molecular structures. Moreover, it was also later on 

in the study established that the main 14:0(3-(R)-O-12:0) acid residue of it was on the O-

3' position linked to the associated non-reducing sugar end of the D-GlcN residue having 

3-hydroxymyristic (R)-14:0(3-OH) acid chains located at N-2', and additionally the 

14:0(3-(R)-O-12:0) acidic residue was on the O-3 linkages to the main reducing end of 

the D-GlcN residue. 
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        Lastly, the MS as well as the MS/MS data that were obtained, further allowed 

determination of Lipid A’s complicated molecular structure.  
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Chapter 6 Conclusions 

6.1 General Conclusion 

 

The Lipid A extract of Aeromonas Salmonicida SJ-112 is not only composed of a 

single Lipid A entity but is a heterogeneous mixture of many structurally-related 

components produced by the incomplete biosynthesis of the Lipid.  

Due to the complex nature of Lipid A, ESI-Mass spectrometry was used to tentatively 

propose the particular molecular structures within a biologically active extract. Tandem 

mass spectrometry using FT-ICR-MS
2
 instruments were used to analyze the complex 

Lipid A mixture that is composed of various structurally related components, without the 

need for any tedious separation techniques. Similar structural results were obtained when 

the same heterogeneous mixture of structurally-related components was analyzed by 

MALDI-TOF-MS and high-energy CID-TOF/TOF-MS/MS. 

      It was shown that the major component of the Lipid A mixture contained two 

phosphate groups on both the reducing end (C-4) and non-reducing end (C-4') of the 

disaccharide Lipid A backbone. Additionally, several structures were identified 

containing both D-GlcN units of the β-D-(1→6) disaccharides in which the O- and N- 

substituted with various fatty acids which were identified as 12:0 (3-OH), 14 (3-OH) and 

16 (3-OH).  

The distributions of these fatty acids on the individual Lipid A molecules were 

established by thoroughly analyzing the structures of the characteristic product ions 
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obtained in the FT-ICR-MS
2
. In addition, the presence of the incomplete monosaccharide 

biosynthetic precursors were also established by revealing the structures of the [Y-H]
-
 

and [C-H]
-
 derived product ions. Similar reasoning was applied for the case of the high-

energy MALDI-TOF/TOF-MS/MS analyses. The presence of the diagnostic product [C-

H]
-
 ion once more allowed to distinguish part of the monosaccharide biosynthetic 

precursor of the Lipid A backbone. 

      Moreover, product ions originating from inner sugar fragmentations were 

observed in the SORI-CID and CID-TOF/TOF-MSMS analysis. Furthermore, MS/MS 

analysis of the [Y]
-
 and [C]

-
 ions clearly confirmed the presence of two 14:0(3-OH) fatty 

acids on the reducing end group, and two 14:0(3-OH) on the non-reducing end group of 

the disaccharide. These were similarly evident by the generation of product ions that were 

associated with distinctive losses of these fatty chains, either as neutral ketene, or as a 

free fatty acid.  

Lastly, mass spectrometric studies are now playing a leading role in the 

elucidation of lipopolysaccharide (LPS) structures through the characterization of 

antigenic polysaccharides, core oligosaccharides and lipid A components including LPS 

genetic modifications. The conventional MS and MS/MS analyses together with CID 

fragmentations can provide additional structural information complementary to the earlier 

analytical experiments. Thus, contributing to an integrated strategy for the simultaneous 

characterization and correct sequencing of the Lipid A moiety of this phage infected LPS. 
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