
A numerical study of penetrative turbulence in convective
boundary layers

by

c⃝ Mohammad Alamgir Hossain
B. Sc.(Hons), M. Sc.

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
Master of Science.

Department of Mathematics and Statistics
Memorial University of Newfoundland

May 2015

ST. JOHN’S NEWFOUNDLAND



Abstract

A weighted residual collocation method is investigated to study penetrative turbulence in

the atmospheric boundary layer (ABL). In designing such a numerical model for the ABL,

one needs to minimize or avoid artificial energy dissipation at the resolved scale, and pa-

rameterize the effect of unresolved turbulent mixing to account for the subgrid scale en-

ergy dissipation. In this research, the standard mesoscale filtering of conservation laws

(mass, momentum, and energy) has been adopted based on the assumption that the char-

acteristic scale of circulation is much less than the density scale hight of the atmosphere.

Such mesoscale equations have been filtered with a Deslauriers-Dubuc (DD) interpolating

wavelet system along with a Smagorinsky type eddy viscosity model. The time integra-

tion is performed by projecting the solution onto a Krylov subspace, and by solving the

system with the GMRES (generalized minimal residual) algorithm. The numerical model

is verified with the analytical solution of two-dimensional advection-diffusion phenomena,

and with two benchmark simulations such as dry thermal rising in the neutrally stratified

environment and stationary solutions of urban heat island circulation. The generation of

internal waves by a turbulent buoyant element impinging upon the interface between the

boundary layer and free atmosphere is characterized. Finally, penetrative turbulence due

to differentially heated earth’s surface is investigated for a wide range of surface heat flux

variations, 25 ≤ H0 ≤ 930 W m−2. Results indicate that the downscale energy cascade

is associated with the onset of temporal oscillations in mesoscale circulation, although a

fraction of kinetic energy is transferred by internal waves.
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Chapter 1

Introduction

1.1 Motivation and overall objective

This thesis investigates the problem of how a turbulent flow in the lower atmosphere

penetrates into an overlying stably stratified environment (Deardorff et al., 1968; Lane,

2008). This phenomenon is a characteristic of the daytime boundary layer (i.e. the convec-

tive boundary layer), and the study of such a penetrative convection or penetrative turbu-

lence (Stull, 1976) is important for numerical weather prediction and the study of climate

change. Generally speaking, the earth’s atmosphere contains a stratified fluid, where the

lowest region in contact with the surface, known as the atmospheric boundary layer (ABL),

is mainly characterized by turbulence. The ABL turbulence is primarily induced by surface

heating and wind shear, and is influenced by the diurnal cycle. In the daytime, turbulence

is driven by convective destabilization (convective boundary layer), but in the night-time,

wind shear is a primary mechanism to trigger turbulence (Blumen et al., 2001). The free

troposphere above the ABL is usually stably stratified (Gurvich & Kukharets, 2008). The

effect of ABL turbulence may penetrate into the free troposphere through the entrainment

of air from the overlying stably stratified region. This process transports momentum and

1



CHAPTER 1. INTRODUCTION 2

energy from the mixed region to the free troposphere, which affects boundary layer clouds

(crucial for global climate change) (Lauer et al., 2012) and may trigger clear air turbulence

in the free troposphere (crucial for aviation safety) (Golding, 2002).

The interaction between turbulence and stratification is still poorly understood (Hol-

ford & Linden, 1999), although significant work has been done by several authors, for

example, Waite & Bartello (2004), Lindborg (2006) etc. The researchers conjecture that

knowledge of classical turbulence is insufficient to explain many aspects of the strati-

fied turbulence (Fernando & Hunt, 1996). Atmospheric turbulence is often quasi-two-

dimensional (Danilov & Gurarie, 2000) and supports an inverse energy cascade theory (Tung

& Orlando, 2003). According to Lily’s hypothesis (Lilly, 1983) of the pancake structure of

stratified turbulence, the kinetic energy of, for example, a thunderstorm would cascade to

a synoptic scale. However, the emergence of layering through a zigzag instability through

the experimental results of Billant & Chomaz (2000) suggests the need for further investi-

gation. For example, is turbulence in the atmosphere two-dimensional due to the presence

of the inverse energy cascade, or three-dimensional due to the presence of vortex stretch-

ing? Indeed, it is not clear exactly how the onset of vertical motions in the atmosphere

would destroy the quasi-two-dimensionality of turbulence and would stop the upscale en-

ergy transfer, although numerical modelling indicates a 3D regime when the vertical length

scale exceeds approximately half of the forcing scale (Xia et al., 2011).

In the atmosphere, stratification is caused by heating or cooling at the surface. If there

are no major sources of wind shear, the classical theory of stratified turbulence suggests the

suppression of mechanical turbulence by stable stratification. However, measurements of

turbulence in the night-time atmospheric boundary layer appear to be episodes of turbulent

“bursts” - a phenomenon that is called global intermittency (Mahrt, 1999; Ansorge & Mel-

lado, 2014). The study of penetrative turbulence may help to explain global intermittency.

Such an intermittency imposes challenges of numerical weather prediction (NWP); e.g. it
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turns boundary layer mixing to be too difficult to be parameterized. A full understanding

of intermittent turbulence from observation and flux measurements is also difficult because

of the lack of accurate measurement technology. Hence, turbulence remains an unresolved

problem, and the very complex features of stratified turbulence in the atmosphere have yet

to be elucidated.

1.2 Aim and scope of the thesis

This thesis presents a novel computational model for investigating penetrative turbulence

associated with differential heating in the ABL. I have published the numerical develop-

ment in an article co-authored with J. Alam, R. Walsh, and A. Rose (see, Chapter 3). This

thesis continues to extend the method presented in that article (e.g. Alam et al. (2014)), and

aims to simulate a nonhydrostatic ABL phenomena in the presence of penetrative convec-

tion, stratified turbulence, and internal waves. It is worth mentioning that the numerical

modeling of turbulence remains a challenging endeavor. For example, most nonhydro-

static numerical models, such as the WRF model (Skamarock et al., 2005), use higher

order upwind-biased explicit numerical schemes for which the artificial dissipation may

be minimized with higher order discretization. Such upwind-biased higher order methods

overshoot the dissipative scales, particularly when the effect of turbulence is filtered in-

directly with such a method at the scale of boundary layer eddies (see the discussion in

Wyngaard, 2004). In contrast, the present research studies a multiscale wavelet decom-

position for filtering large eddies, where the advection terms are discretized without any

artificial dissipation – thanks to the DD wavelets (Deslauriers & Dubuc, 1989) and the

Krylov subspace.

As a short-term research, a validation of the proposed numerical model for simulating

the penetrative turbulent convection in the ABL has been covered in this thesis. First, the
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upward penetration of an isolated buoyant element into the surrounding atmosphere has

been investigated because there exists a number of references simulating this case when

the atmosphere is neutral and dry, and thus, it helps to understand the present numerical

development. In addition, such a penetrative convection in the stable environment helps

to understand the transfer of kinetic energy by internal waves (Lane, 2008). Second, more

realistic than the first case, an idealized convective boundary layer has been simulated,

where turbulent convective air mixes in a large horizontal area due to the differential surface

heating; this convective mixed layer is capped with an inversion layer below the stably

stratified atmosphere. Similar phenomena was investigated by Zhang et al. (2014) using

the WRF-LES model. A long-term object of this test case aims to model how surface

heating initiates temporal oscillations in mesoscale circulations through the mechanisms of

downscale energy cascade as well as energy transfer by internal waves.

The rest of this chapter covers a literature review with introductory descriptions, and

concludes with an outline for the rest of the thesis.

1.3 Review of related materials

1.3.1 Nonhydrostatic atmospheric model

Nonhydrostatic effects are important to simulate small-scale atmospheric flows such as

eddies in the atmospheric boundary layer (ABL) having length scales of order a few kilo-

meters or less, for example, to capture important numerical weather prediction (NWP)

phenomena such as tornadoes, thunderstorms, hurricanes etc. Nonhydrostatic models were

initially developed as a research tool for small-scale meteorological phenomena such as

nonlinear mountain waves. Because of the development of computational fluid dynamics

and the evolution of computer technology today, several nonhydrostatic models have been
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developed and are applied to numerical simulations and operational NWP such as the UK

Met Office (UKMO), Deutscher Wetterdienst (DWD) of Germany, the Japan Meteorologi-

cal Agency (JMA), the National Center for Environmental Prediction (NCEP) of the USA,

etc. The Weather Research and Forecasting (WRF) model, for example, is currently in

operational use at NCEP and other centers.

There are several models used to evaluate computationally nonhydrostatic effects in

the atmosphere. Defant (1951) utilized to analyze the magnitude of nonhydrostatic effects

in a linear model for local thermally-induced circulations. To investigate the adequacy

of the hydrostatic assumption for sea breeze circulations over a flat surface along with

nonlinear analog, Martin & Pielke (1983) used the Defant model. Bryan & Fritsch (2002)

presented a benchmark solution for testing the accuracy, efficiency, and efficacy of the

moist nonhydrostatic numerical model.

Based on the conservation of mass, nonhydrostatic models can be classified in three

ways: anelastic model, quasi compressible model and fully compressible model (see, Saito

et al., 2007). The anelastic model was invented by Ogura & Phillips (1962) in order to filter

sound waves without assuming hydrostatic balance. The Boussinesq equations are a sim-

plified version of the anelastic equations which are valid only for relatively shallow motion.

Pseudo-incompressible approximation is an improvement on the anelastic continuity equa-

tion proposed by Durran (1989). In this approximation, the effect of the thermal expansion

of air is incorporated by assuming that the perturbation pressure is negligible to the refer-

ence pressure. The quasi-compressible model predicts the pressure from divergence and

considers the compressibility of air. A typical example of the quasi-compressible model is

the Regional Atmospheric Modeling System (RAMS) proposed by Pielke et al. (1992). In

the fully compressible model, the compressible conservation of mass is used, and Tapp &

White (1976) designed the first non-hydrostatic compressible model for mesoscale studies.

In this thesis, a quasi-compressible model is incorporated for a dry atmosphere, which
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is similar to Bryan & Fritsch (2002) for a dry atmosphere.

1.3.2 Turbulence in the atmospheric boundary layer

The atmosphere consists of several atmospheric layers. Near the earth’s surface around

1 km of the atmospheric layer is the atmospheric boundary layer or planetary boundary

layer (PBL). The pioneering work of boundary layer was done by Prandtl (1905) which is

now known as the “boundary layer theory”. The airflow within the boundary layer consists

of mean wind, waves and turbulence. Turbulence is a type of fluid flow in which the fluid

undergoes irregular fluctuations or mixing. Because of the shear in the mean wind and the

temperature stratification, turbulence occurs in the atmospheric boundary layer. Turbulence

can be depicted as consisting of irregular swirls of motions called eddies. The upper layer

of the boundary layer in the atmosphere, which is usually non-turbulent, is often called free

atmosphere. The troposphere and the structure of the planetary boundary layer are shown

in figure 1.1. These pictures are incorporated from Stull (1988).

The PBL can be separated into four component layers; the surface layer, the mixed

layer, the stable (Nocturnal) layer and the residual layer, which is shown in figure 1.1(right).

The surface layer is closest to the earth where eddy fluxes are relatively constant. In this

sub-layer, wind speed becomes zero in the earth’s surface and the vertical profile of the

wind is logarithmic. The mixed layer is created during the surface heating by the sun. Due

to this surface heating, convective motion is created which leads to significant turbulent

mixing in this sub-layer. Above the mixed layer is the stable layer which resists the upward

movement of air parcel from the mixed layer. However, this mixed layer extinguishes when

the solar heating dies out. After sunset, convective motion sharply decreases and a stable

layer is formed near the surface layer, which is also called the nocturnal boundary layer and

the remaining part of the mixed layer is called the residual layer. The approximate height
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Figure 1.1: A boundary layer (blue) near the surface and the free atmosphere (picture on

the left). Structure of the boundary layer in time (picture on the right) (adapted from Stull,

1988).

of the residual layer is the height of the mixed layer during the daytime.

The stability of the atmosphere can be defined as a basis of the vertical gradient of

potential temperature (θ). If ∂θ
∂z

is positive, negative or zero then the atmosphere is stable,

unstable or neutral respectively (see Kundu et al., 2012, p. 20).

1.3.3 Representative models to study penetrative turbulence

Two atmospheric phenomena have been chosen to study the penetrative turbulence for two

forms which are described in §1.2. Thermal rising in the atmosphere is considered as a

relatively isolated buoyant element and the urban heat island circulation is considered as a

turbulent convection in a large horizontal area.

1.3.3.1 Thermal rising in the atmosphere

The evolution of dry thermals in a stratified atmosphere has been investigated to study the

development of a nonhydrostatic atmospheric model. As the earth is heated by the sun, ther-

mals rise upward from the surface. A thermal cools as it rises, losing some of its buoyancy.

A deep stable layer restricts the continued vertical growth of a thermal. This dry convection
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Figure 1.2: Thermal rising in the atmosphere (adapted from Atkins, 2006).

can also generate internal waves that can transport momentum and energy from the source

to the region of large distances. A cartoon of a thermal rising is presented in Figure 1.2.

Numerical simulation of a rising thermal in the atmosphere is investigated by the references

of Carpenter et al. (1990), Tripoli (1992), Wicker & Skamarock (1998), Bryan & Fritsch

(2002), Lane (2008), Alam (2011), etc. The early progress, focused primarily on flows in

neutral environments, is made using analytic models (e.g., Morton et al., 1956), laboratory

experiments (e.g., Deardorff et al., 1968) and numerical simulations (e.g., Ogura, 1962).

1.3.3.2 Urban Heat Island Circulation

The population of the planet Earth is increasing exponentially. Along with the increasing

population, technology is also developing rapidly. Population pressure has direct and in-

direct effects on the environment. One such effect is urbanization. Urban areas consist of

many high rise buildings, roads, houses, industries and other infrastructures and often lack

of green areas. As a result, an urban area is significantly warmer than its surrounding rural

areas due to human activities. The heat that is absorbed during the day is re-emitted after
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Figure 1.3: Urban Heat Island Profile (adapted from C3Headlines, 2012).

sunset which creates high-temperature differences between urban and rural areas. This ur-

ban area is called an urban heat island (UHI). Heat islands in cities usually have a mean

temperature that is 8 to 10 degrees higher than the surrounding rural areas. A cartoon of the

urban heat island profile is shown in Figure 1.3. This differential heating of the earth’s sur-

face gives rise to atmospheric circulations over a wide range of spatial and temporal scales.

In this circulation, the lower atmospheric boundary layer faces turbulence mixing. Be-

cause of its importance in environmental problems, theoretical models (e.g. Nino & Mori,

2005; Ueda, 1983), laboratory experiments (e.g. Kimura, 1975; Lu et al., 1997a,b), and

numerical simulations (e.g. Baik et al., 2001; Delage & Taylor, 1970; Dubois & Touzani,

2009; Richiardone & Brusasca, 1989a; Zhang et al., 2014), were considered. Furthermore,

numerous observational studies also have been conducted (e.g. Moeng, 1984).

A simple expression to predict the diurnal evolution of the urban-rural temperature dif-

ference is proposed by Richiardone & Brusasca (1989b). Using a nonlinear model (ARPS)

and a two-layer linear analytical model, the effects of atmospheric boundary-layer stability

on urban heat island-induced circulation are numerically and theoretically investigated by
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Baik et al. (2007). In Dubois & Touzani (2009), a numerical study of heat island flows

for stationary solutions at Rayleigh number, Ra ≤ 105 is presented. In their simulation,

despite the increase in computational resources, their proposed direct numerical simulation

on finer grids remain unreachable. To remove this difficulty, Dubois & Touzani (2009)

proposed to apply a thermal sponge layer in the vicinity of the vertical boundaries. Tur-

bulent heat fluxes in urban areas are investigated by Grimmond & Oke (2002). Zhang

et al. (2014) used the large-eddy simulation mode of the WRF model for simulating UHI

circulation. They also applied the background wind along with UHI circulation.

1.4 Outline

The thesis is organised as follows. In Chapter 2 the governing equations and a subgrid

scale methodology for parameterizing the effect of turbulence are presented. In Chapter 3

the numerical methodology is described, and a two-dimensional heat equation and a two-

dimensional advection-diffusion equation are examined with this methodology. In Chapter

4 numerical simulations of the penetrative turbulence due to an isolated buoyant element

are presented for the neutral and stable environment of the dry atmosphere. In Chapter 5

numerical simulations of another form of penetrative turbulence due to the differentially

heated large horizontal area are presented. In this Chapter, UHI circulation is considered

as a representative model of heterogeneous surface heating. Finally, conclusions are drawn

and perspectives for future works on these simulations are discussed in Chapter 6.



Chapter 2

Mathematical model

This chapter presents the dynamical core, as well as a subgrid scale methodology for pa-

rameterizing the effect of turbulence. An important contribution of this thesis includes a

novel approach of filtering mesoscale dynamics based on the Deslauriers-Dubac wavelet.

It may be useful to study a large eddy simulation type methodology before presenting the

wavelet method of Chapter 3.

2.1 Atmospheric scales

Let us begin with the wide range of atmospheric scales. Based on the atmospheric kinetic

energy spectrum, three categories of atmospheric motions are suggested: (a) synoptic or

large scale, (b) mesoscale, and (c) microscale (see, Lin, 2007). The mesoscale appears

as the scale on which energy is transferred from large scale to microscale and vice versa.

As demonstrated in Figure 2.1, mesoscale dynamics span a horizontal scale approximately

from 2 km to 200 km. From a dynamical perspective, mesoscale concerns processes with

time scales ranging from the buoyancy oscillation (2π/N , where N =
√

g
θ0
β is the buoy-

ancy frequency, β is the vertical gradient of synoptic-scale potential temperature and θ0 is a

11
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Figure 2.1: The spatial and temporal scales of various weather phenomena (adapted from

Torn, 2014).

reference temperature) to a pendulum day (2π/f , where f is the Coriolis parameter). Typ-

ical atmospheric values of these frequencies are: N ∼ 10−2 s−1 (see Kundu et al., 2012,

p. 625) and f ∼ 10−4 s−1 (see Kundu et al., 2012, p. 630). For example, sea breezes

occur on a time scale of about 1 day and spatial scales of 10 to 100 km. Other examples of
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mesoscale phenomena are mountain waves, inertia-gravity waves, heat island circulation,

thunderstorms, density currents, squall lines, fronts etc. Further details of atmospheric

scales are discussed by Ligda (1951), Pielke (2002) and Orlanski (1975).

2.2 Governing equations for mesoscale models

The following first principle conservation laws are filtered at mesoscale, where the motion

is expressed with three components of wind velocity u = (u, v, w), temperature (T ), pres-

sure (p), and density (ρ). The set of a fully compressible fluid system can be written as,

(Batchelor, 1967; Kundu et al., 2012; Lin, 2007; Pielke, 2002)

conservation of mass
∂ρ

∂t
+∇.ρu = 0, (2.1)

conservation of momentum

∂u

∂t
+ u.∇u = −1

ρ
∇p− gk − 2Ω× u, (2.2)

conservation of energy
∂θ

∂t
+ u.∇θ = Sθ, (2.3)

and the equation of state

p = ρRT. (2.4)

Here, Ω is the angular velocity of the earth’s rotation, Sθ is a source or a sink of θ, k is

a unit vector in the vertical direction, and R is the gas constant for dry air. The potential

temperature is defined by

θ = T (p0/p)
R/Cp , (2.5)

where cp is the specific heat at constant pressure, and p0 is the reference pressure (usually

1000 hPa). Note that I have considered a dry atmosphere and the long term goal is to

prepare a complete model including moisture.
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2.3 Mesoscale perturbation of prognostic quantities

In order to represent the atmosphere accurately, equations (2.1) - (2.3) must be evaluated

to spatial scales on the order of about 1 cm and to temporal scales of 1 second or so.

Mesoscale circulations have horizontal extent on the order of 10 km to 100 km or more

and the vertical extent up to the order of 10 km. So, equations (2.1) - (2.3) need to solve at

1018−1020 locations in order to capture a mesoscale phenomena accurately (see, chapter 4,

Pielke, 2002). Unfortunately, there is no existing computing system which can support this

huge computation. In this circumstance, we need to integrate the conservation equations

for specified spatial and temporal scales based on the range of our available computing

support as well as an acceptable time constraint.

The first step is to consider a space-time average (see, chap 4, Pielke, 2002), such that

ūi =
1

∆t∆V

∫ t+∆t

t

∫ V+∆V

V

ui dV dt (2.6)

is the resolve part of

ui = ūi + u′′i ,

where the unresolved part is a subgrid scale quantity u′′i . Applying the definition (2.6) on

the product of velocity components, uiuj , we obtain

uiuj = (ūi + u′′i )(ūj + u′′j ) = ūiūj + ūiu′′j + u′′i ūj + u′′i u
′′
j . (2.7)

If the operation (2.7) is chosen as

uiuj = ūiūj + u′′i u
′′
j

then this decomposition is often called Reynolds decomposition, and u′′i u′′j is called Reynold

stress (see, chap 4, Pielke (2002)). The space-time average (2.6) can be considered as an

ensemble average in the grid volume ∆V at time interval ∆t where the velocity vector in
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a given turbulent flow is considered m realizations, say u(n)i (x, t), where x ∈ ∆V and

t ∈ [0, ∆t] , then the ensemble average of {u(n)i (x, t)} would be, ūi = 1
m

m∑
n=1

u
(n)
i (x, t).

In mesoscale modelling (Pielke, 2002), when the mean quantity ūi contains a synoptic

scale contribution, we can write

ui = ui0 + u′i + u′′i .

Here, synoptic scale component ui0 corresponds to a layer-wise structure at scales much

larger than that of the mesoscale representative elementary volume and u′i is the mesoscale

perturbation from ui0.

2.4 A treatment for the pressure field

In the dynamical system (2.1 - 2.4), the absence of a prognostic equation for pressure

(p) introduces a major computational challenge. The method adopted in this section is

similar to what is used in the regional atmospheric modelling system (RAMS) which is a

comprehensive non-hydrostatic model (see, Pielke et al., 1992). Define the exner function

π =
T

θ
,

which is the same as

π =

(
p

p0

)R/Cp

.

We get
1

ρ

∂p

∂xi
= θ

∂π

∂xi
. (2.8)

Applying the concept of Reynolds decomposition in (2.8) with π = π̄+π′′ and θ = θ̄+ θ′′,

we obtain
1

ρ

∂p

∂xi
= θ̄

∂π̄

∂xi
+ θ′′

∂π′′

∂xi
, (2.9)
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where the second term on the right hand side of eq. (2.9) is usually neglected (see, pp. 53,

Pielke, 2002). Then, for π̄ = π0 + π′ and θ̄ = θ0 + θ′, the following two assumptions are

common. First,

θ0

(
1 +

θ′

θ0

)
≈ θ0,

and second, the synoptic-scale pressure field is hydrostatic, i.e. ∂p0
∂z

= −ρ0g. Then

θ0
∂π0
∂z

= −g.

Thus
1

ρ

∂p

∂xi
+ gδi3 = θ0

∂π′

∂xi
+ θ0

(
∂π0
∂x

δi1 +
∂π0
∂y

δi2

)
− θ′

θ0
gδi3. (2.10)

In other words, the mesoscale perturbation θ′ is dominated with respect to a characteristic

scale of gravity wave. In this approach, for a dry atmospheric condition we can show that,

∂π′

∂t
+

∂

∂xj
(ujπ

′) = 0 (2.11)

which can be replaced for the equations (2.1) and (2.4). The use of eq. (2.11) eliminates

the costly part of solving an elliptic equation.

2.5 Conservation of Momentum

In this section, the mean state in a turbulent flow are derived from the equation of motion

(2.2). The contribution of turbulent fluctuations appears in equation (2.2) as a correlation

of velocity-component fluctuations.

First, apply the decomposition ρ = ρ̄+ρ′′ and ui = ūi+u
′′
i in the mesoscale momentum

equation (2.2) which are defined in the definition (2.6). Second, using the definition of

eq. (2.6) with the properties of Renolds average: ui + uj = ui + uj , u′i = 0, ui = ui,

∂ui

∂t
= ∂ūi

∂t
, ∂ui

∂x
= ∂ūi

∂x
eq. (2.2) becomes

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −1

ρ

∂p

∂x
+

1

ρ̄

∂

∂xj
ρ̄u′′i u

′′
j − gδi3 − 2ϵijkΩjūk. (2.12)
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Apply the equation (2.10) and ρ̄ = ρ0 + ρ′ where |ρ′|/ρ0 ≪ 1 in (2.12) becomes

∂ūi
∂t

+ ūj
∂ūi
∂xj

= −θ0
∂π′

∂xi
− θ0

(
∂π0
∂x

δi1 +
∂π0
∂y

δi2

)
− 1

ρ0

∂

∂xj
ρ0u′′i u

′′
j +

θ′

θ0
gδi3 − 2ϵijkΩjūk.

(2.13)

The remaining subgrid-scale correlation term, u′′i u′′j , represents the contribution of turbulent

fluctuations and is called the turbulent velocity flux which is denoted by τij . Specifically,

the terms u′′w′′, v′′w′′ are the vertical turbulent fluxes of horizontal momentum, and u′′v′′

is the meridional turbulent flux of zonal momentum.

2.6 Conservation of Energy

The same way, we can apply the decomposition, θ = θ̄ + θ′′ in energy eq. (2.3)

∂

∂t
(θ̄ + θ′′) +

∂

∂xj
(ūj + u′′j )(θ̄ + θ′′) = Sθ. (2.14)

Applying the averaging (2.6) to the eq. (2.14)

∂θ̄

∂t
+ ūj

∂θ̄

∂xj
= S̄θ −

1

ρ0

∂

∂xj
ρ0u′′j θ

′′. (2.15)

The terms u′′j θ′′ are the turbulent heat fluxes which can be denoted as τθj . Again apply the

decomposition, θ̄ = θ0 + θ̄(z) + θ′, eq. (2.15) becomes

∂θ′

∂t
+ ūj

∂θ′

∂xj
+ ui

∂θ̄

∂xi
δi3 = S̄θ −

1

ρ0

∂

∂xj
ρ0u′′j θ

′′, (2.16)

where the term involving turbulent heat fluxes, u′′j θ′′, on the right hand side of (2.16) must

be parameterized.

2.7 Subgrid-scale turbulence modelling

Turbulent stresses that appear in eq. (2.13) and (2.16) can be modelled in the following

ways:
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2.7.1 Basic concept for turbulence modelling

The turbulent stress, τij , may be modeled following the phenomena of how the viscous

stress would play a first principle role in the atmospheric boundary layer (Kundu et al.,

2012). As a result, the simplest resonable assumption is that the turbulent stress is propor-

tional to the symmetric mean strain rate tensor (see Lilly, 1966),

τij = −KM

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (2.17)

where KM is called the eddy viscosity coefficient, variable in space and time.

2.7.2 Large eddy simulation (LES)

LES is a popular approach for simulating turbulent flows in which the eddy viscosity coef-

ficient (KM ) can be approximated in a way that small eddies are modeled using a subgrid-

scale (SGS) model, and large eddies are solved explicitly. The model of Smagorinsky

(1963) is a popular eddy viscosity approach in which turbulent stresses are defined as (see,

Alam & Islam, 2015):

τLES
ij = −KMSij, (2.18)

where τLES
ij = τij − (1/3)τkkδij and Sij is the filtered strain rate tensor defined as

Sij(x, y, z, t) =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
.

The assumption proposed by Smagorinsky (1963) for KM is:

KM = 2(Cs∆)2 (2SijSij)
1
2 , (2.19)

where Cs is a dimensionless constant which is often called the Smagorinsky constant, and

the filtered scale is defined by ∆ = (∆x ∆y ∆z)1/3, where ∆x, ∆y and ∆z are the length

of x, y and z direction, respectively, of the filtered cell. A typical value of Cs is 0.18 (e.g.
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Deardorff, 1970; Senocak et al., 2007). Using dimensional arguments Deardorff (1970)

derived that

KM = C4/3
s ϵ̄1/3 ∆4/3, (2.20)

where ϵ̄ is the rate of dissipation of turbulent energy within a local grid volume.

2.7.3 Mesoscale approach

The subgrid scale momentum flux terms can be parameterized as (See, Chap. 5 Pielke,

2002)

∂τij
∂xj

=
∂

∂xj

(
−KM

∂ūi
∂xj

)
,

∂τθj
∂xj

=
∂

∂xj

(
−KH

∂θ̄

∂xj

)
,

where KM is called the exchange coefficient of momentum or simply eddy viscosity, and

KH is called the exchange coefficient or eddy diffusivity of heat. This approach of the

parameterization of momentum and heat is called K-theory.

2.7.4 Is LES appropriate for mesoscale turbulence?

Let the scale of averaging in (2.6) be ∆, and that of the boundary layer eddies be LE .

A necessary assumption is that the scale ∆ needs to be much smaller than the scale of

the phenomenon to be simulated. For a mesoscale phenomena (e.g. Lx ∼ 200km, ∆ ∼

10 km), if the numerical grid satisfies this assumption then the numerical method works as

an implicit filter for the mesoscale dynamics. In order to take (2.6) as an averaging process

for LES, the action of (2.6) has to be like a low pass filter, so that a significant factor of

the boundary layer eddies are resolved. This point would be more clear by considering the

following discussion presented in Wyngaard (2004):
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When LE << ∆, eq. (2.7) can be written as uiuj = ūiūj + u′′i u
′′
j by applying the

Reynolds assumptions u′′i = 0 then u′′i ūj = u′′i ūj = 0 and ūiūj = ūiūj . In this case,

mesoscale modeling is appropriate and the turbulent stresses are defined as

τmeso
ij = u′′i u

′′
j . (2.21)

Thus boundary layer eddies are entirely parameterized.

When LE >> ∆, Large Eddy Simulation (LES) is appropriate where

τLES
ij = uiuj − ūiūj, (2.22)

such that τLES
ij = τmeso

ij + Lij + Cij , the Leondard tensor Lij = ūiūj − ūiūj and the Clark

tensor Cij = u′′i ūj + ūiu′′j . Hence, the LES approach may not be applicable for turbulence

modelling at mesoscale although most cloud resolving mesoscale models adopt the LES

method.

In order to capture micro scale phenomena in mesoscale (e.g. turbulence), an appropri-

ate filtering technique is essential. In this thesis, mesoscale equations are filtered using the

Deslauriers-Dubac wavelet (see, Chapter 3), and the eddy viscosity is estimated based on

equation (2.20).

2.8 Governing equations

The governing equations for a stratified flow in a dry atmosphere at mesoscale are given

by the equations (2.11), (2.13) and (2.16). These equations can be written in the following

form, where the prime (′) and over bar (−) from dependent variables have been dropped for

simplicity,

∂π

∂t
+ uj

∂π

∂xj
= −π∂ui

∂xi
, (2.23)
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∂ui
∂t

+ uj
∂ui
∂xj

= −θ0
∂π

∂xi
− θ0

(
∂π0
∂x

δi1 +
∂π0
∂y

δi2

)
+
∂τij
∂xj

+
θ

θ0
gδi3 − 2ϵijkΩjuk, (2.24)

∂θ

∂t
+ uj

∂θ

∂xj
+ wβ =

∂τθj
∂xj

, (2.25)

where β = ∂θ̄/∂z. From section 2.7 and the eddy motion in the atmosphere proposed by

Taylor (1915) subgrid scale stress term in eq. (2.24) can be parametrized as

∂τij
∂xj

= KMh

(
∂2ui
∂x2

+
∂2ui
∂y2

)
+KMv

∂2ui
∂z2

, (2.26)

and
∂τθj
∂xj

= KH
∂2θ

∂x2j
, (2.27)

where KMh
and KMv are horizontal and vertical eddy viscosity, respectively, for momen-

tum, and KMv is much smaller than KMh
. These eddy viscosities are much larger than

molecular viscosities; typically suggested values are KMv ∼ 10 m2 s−1 and KMh
∼ 105

m2 s−1 for the lower atmosphere (see, Kundu et al., 2012).

2.9 Linearization of model equations and mesoscale waves

In the atmosphere, when an air parcel is displaced from its original position then it may

return to its original position because of a restoring force. This movement of air parcels

may generate atmospheric waves. We can observe mainly the following three types of

waves: (a) sound or acoustic waves, (b) mesoscale waves and (c) planetary waves (see,

Lin, 2007). For these three types of waves, the restoring forces are compression force,

buoyancy force and Coriolis force, respectively. Mesoscale waves can be generated any

one of the following sources: orography, surface heating or cooling, moist convection,

density current etc. In mesoscale, when the environment is stable everywhere then gravity
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waves can be generated due to a heat source, and it propagates upward and downwards

which is also called vertically propagating waves. In a stably stratified environment when

the buoyancy frequency is N , the oscillation period of the air parcel is T = 2π
N

.

Considering two-dimensional ( ∂
∂y

= 0), nonrotating, adiabatic, boussinesq flow with

uniform stratification then the temperature equation (2.25) can be linearized as

∂θ

∂t
+ u0

∂θ

∂x
+
N2θ0
g

w = 0 (2.28)

and equations (2.23)-(2.25) can be linearized and combined as a single equation which is a

simplified form of the Taylor-Goldstein equation is as follows:(
∂

∂t
+ u0

∂

∂x

)2(
∂2w

∂x2
+
∂2w

∂x2

)
+N2∂

2w

∂x2
= 0. (2.29)

Assuming

θ(x, z, t) = θ̃(z)ei(kx−ωt),

w(x, z, t) = w̃(z)ei(kx−ωt),

where ω is wave frequency, k = 2π
Lx

is the horizontal wave number and Lx is the horizontal

length scale. Substitute these into (2.28) and (2.29), respectively, then (2.28) becomes

−iωθ̃ + iu0kθ̃ +
N2θ0
g

w̃ = 0,

which implies

buoyancy, b

(
=
gθ̃

θ0

)
= i

N2

Ω
w̃,

and (2.29) becomes
∂2w̃

∂z2
+

(
N2

Ω2
− 1

)
k2w̃ = 0, (2.30)

where Ω = ω − ku0, is the intrinsic (Doppler-shifted) frequency of the wave. Equation

(2.30) has the following two solutions:

w̃ = c1e
ik
√

N2/Ω2−1 z + c2e
−ik

√
N2/Ω2−1 z, for N2/Ω2 > 1, (2.31)
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w̃ = c3e
k
√

1−N2/Ω2 z + c4e
−k
√

1−N2/Ω2 z, for N2/Ω2 < 1. (2.32)

Equation (2.31) is sinusoidal so it represents vertically propagating waves and eq. (2.32)

represents evanescent waves.

If the stratification of the fluid is uniform and the disturbance is sinusoidal in the vertical

i.e. w̃(z) = w0e
imz where m = 2π

Lz
is vertical wave number and Lz is the vertical length

scale then from eq. (2.30) we can obtain the dispersion relation for internal gravity waves

which can be written as

ω = N cosα, (2.33)

where α = tan−1(m/k) is the angle between the phase velocity vector and the horizontal

direction. Moreover, the wave frequency lies in f < ω < N , and this relation indicates that

the maximum possible frequency of internal waves in a stratified fluid is N .

2.10 Summary

In this chapter, a filtered mathematical model has been explained briefly for investigating

nonhydrostatic mesoscale phenomena due to penetrative turbulence in a dry atmosphere.

Moreover, subgrid scale parameterization of turbulence stress terms, based on Smagorinsky

type large eddy simulation methodology, has been presented in this chapter and linearized

model equations have been described to analyse the mesoscale waves in the free atmo-

spheric.

In the next chapter, numerical methodology is described, and a two-dimensional heat

equation and a two-dimensional advection-diffusion equation are examined with this method-

ology.



Chapter 3

Numerical methodology

A weighted residual collocation method based on a diadic mesh refinement technique has

been developed through this research. A detailed description of this method is presented in

a joint article (Alam et al., 2014), which is published in the international journal of numer-

ical methods in fluids. This chapter summarizes the method, presents some primary results

which are not discussed in the published article, and explains the benefits of this method

for simulating non-hydrostatic mesoscale circulations. Moreover, this thesis continues to

extend the method presented in that article (Alam et al., 2014) for simulating a nonhydro-

static ABL phenomena in the presence of penetrative convection, stratified turbulence, and

internal waves. The simulated results of this extended method are presented in Chapter

4 and 5. This numerical methodology is based on a wavelet basis, a set {φk(x)} of in-

terpolating scaling functions, the principle of multiresolution approximation (see, pp 267,

Mallat, 2009), and the subdivision scheme that was developed by Deslauriers & Dubuc

(1989) (hereinafter, DD subdivision). Each two dimensional scaling function, φk(x), is

an extension of the one dimensional uniformly continuous fundamental function φk(x)

(Deslauriers & Dubuc, 1989). The extension is achieved by applying the DD subdivision

on a two-dimensional mesh (see Deslauriers et al., 1991). In Alam et al. (2014), a method

24
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for approximating the partial derivatives was developed. The model equations, which are

presented in §2.8, are discretized by considering a trial solution that is a linear combina-

tion of the set of basis functions {φk(x)} (see Finlayson, 1972). Theoretical details of the

method of weighted residual with respect to a trial solution is given by Finlayson (1972).

In this thesis, a fully implicit second order time integration scheme is studied, where the

simultaneous dependence of mass, momentum, and energy conservation laws in the spatial

domain is approximated through an iterative process. As a result, a large system of cou-

pled nonlinear equations is solved by the Newton-Krylov method (Alam, 2011; Kelly et al.,

2009). Alam (2011) and Alam & Islam (2015) verified the efficiency of the Newton-Krylov

method for simulating the dynamics of a dry atmosphere. In this chapter, heat equation and

Burger’s equations are solved on a two-dimensional mesh because exact solutions of these

equations can be obtained.

3.1 Wavelets

The distinguishing feature about wavelets is that they are localized in space and scale with a

zero average, which allows local variations of the problem to be analyzed at various levels

of resolution. Wavelet basis are composed of two kinds of functions: scaling functions

(φ) and wavelet functions (ψ). The spaces generated by scaling and wavelet functions

are complementary and both are based on the same mother function. In the following

expressions, known as the two-scale relation,

φ(x) =

p−1∑
k=0

ckφ(2x− k), (3.1a)

ψ(x) =

p−1∑
k=0

(−1)kcp−1−kφ(2x− k), (3.1b)

where ck are the scaling function filter coefficients, and p is the Daubechies wavelet order

(Mallat, 1989). In general, there are no analytical expressions for scaling functions and
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wavelet functions, which can be obtained using iterative or recursive procedures like eq.

(3.1). The translation and dilation of φ(x) can construct a basis {φk(x)} which may use

as trial functions to approximate the solution of partial differential equation (PDE). Mallat

(1989) showed that a function u(x) can be approximated on such a basis {φk(x)}.

3.2 The collocation method

Collocation methods are special cases of weighted residual methods (Finlayson, 1972)

which have an important application for simulating Navier-Stokes equations (e.g. Subich

et al., 2013; Ranjan & Pantano, 2013). To briefly present the method of weighted residual,

using the DD subdivision scheme, consider the PDE for u(x, t)

∂u

∂t
−∇2u = f such that x ∈ Ω ⊆ R2, t > 0,

which is subject to

u(x, 0) = U0(x) for x ∈ Ω and

u(x, t) = U1(x, t) x ∈ ∂Ω, t ≥ 0.

Assume a trial solution of the form

us(x, t) =
N−1∑
k=0

ck(t)φk(x), (3.2)

where s is the level of resolution. As the number N increases in successive approximations

(e.g., Finlayson, 1972), the residual,

R(x, t) = u(x, t)−
N−1∑
k=0

ck(t)φk(x),

for a fixed t becomes smaller, and finally, vanishes for N → ∞; i.e. the exact solution is

recovered at N → ∞. This estimate is equivalent to the multiresolution approximation of
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Mallat (1989) where {φk(x)} developed through a multiresolution subdivision. Now, for a

choice of the dual basis φ̃k(x), the weighted integral of the residual,

⟨R(x, t), φ̃k(x)⟩ =
∫
Ω

R(x, t)φ̃k(x)dx,

and that for the PDE, ⟨
∂us

∂t
−∇2us − f, φ̃k(x)

⟩
, (3.3)

are both set equal to zero. The trial solution us(x, t) can be chosen from the following

nested approximation spaces

ν0 ⊆ ... ⊆ νs−1 ⊆ νs ⊆ νs+1.... and ∪∞
s=0 ν

s = L2(Ω̄)

where each νs has a basis {φk(x)} and contains functions which may not oscillate fre-

quency larger than 2s−1. The collection of approximation spaces {νs} is called a multires-

olution approximation space (Sweldens, 1998). A dual multiresolution approximation is a

collection of spaces {ν̃s} with a basis {φ̃k(x)}, where ⟨φk(x), φ̃j(x)⟩ = δk,j . The trial

function us(x, t) defined by (3.2) is called the multiresolution projection of u(x, t) onto

the space νs, where N is the dimension of νs and ck(t) = ⟨u(x, t), φ̃(x)⟩.

Note that the superscript s can be dropped for simplicity, and one may use un to rep-

resent the numerical solution at n-th time step. The dual basis {φ̃k(x)} can be chosen

in several ways. Once the choice is made, and a time discretization is chosen, eq. (3.3)

becomes a set of N coupled algebraic equations, which can be expressed conveniently

L(un+1) = f(un). (3.4)

In this present work, we have taken φ̃k(x) = δ(x− xk), for which the residual (3.3)

vanishes on a finite number (N ) of collocation points. Following is a brief description of

the DD subdivision method, which develops {φk(x)}.
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Dyadic mesh: A one-dimensional mesh is a set of nodes on a real line, which can be

defined as a dyadic subdivision,

Gs = {xsk ∈ R : xsk = k2−s, k ∈ Z}, s ∈ Z≥0

which is shown in Figure 3.1a, where xsk are the nodes and s is the level of resolution. In

this case, xs−1
k = xs2k and

G0 ⊆ ... ⊆ Gs−1 ⊆ Gs ⊆ Gs+1... and lim
s→∞

Gs = Ω.

Such a mesh, Gs, is associated with the function space νs. Similarly, a nested sequence of

dyadic mesh can be constructed in two-dimensional space where the set of nodes can be

written as,

Gs = {(xsk, ysl ) ∈ R2 : xsk = k2−s and ysl = l2−s and k, l ∈ Z}, s ∈ Z≥0

which is shown in Figure 3.1b. The number of nodes in Gs is N . Let G0 be a two dimen-

sional mesh with nx × ny nodes. In this mesh, the number of nodes N = [(nx − 1)2s +

1]× [(ny − 1)2s + 1].

A brief outline of the construction of the basis φk(x) is given in the following section,

more details of which is also given in Alam et al. (2014).

3.3 Interpolating scaling function

Let c0k (= ck(0)) be the original sample values. Now we can create a sequence of sample

values recursively using interpolating polynomials. We use 2p samples and build a polyno-

mial of degree 2p− 1. For linear interpolation, define a refined sequence of sample values

recursively as

cs+1
2k = csk, cs+1

2k+1 = (csk + csk+1)/2
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(a) One dimensional diadic mesh (b) Two dimensional diadic mesh

Figure 3.1: Diadic mesh in one and two dimensional domain.

and place the csk at locations xsk = k2−s. Similarly, we can define the cubic polynomial p(x)

which interpolates four neighbouring values in which two from left and two from right

csk−1 = p(xsk−1), csk = p(xsk),

csk+1 = p(xsk+1), csk+2 = p(xsk+2).

Then the new samples for next refine level are:

cs+1
2k = csk and cs+1

2k+1 = p(xs+1
2k+1).

In Figure 3.2, on the left a diagram shows the filling in of “in between“ samples by linear

interpolation between neighboring samples. On the right, the same idea is applied to higher

order interpolation using two neighbors to either side and the unique cubic polynomial

which interpolates these. This process is repeated an infinitum to define the limit function.

This was described by Sweldens & Schröder (1996) in details.

For one dimensional mesh points which is shown in Figure (3.1a), set c0k = 0, k ̸= 0

and c00 = 1. Now, run the interpolating subdivision to infinity. Then the resulting function

is φ(x) is called the scaling function. The iterative process from s = 0 to s = 5 are shown
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Figure 3.2: Examples of interpolating subdivision (adapted from Sweldens & Schröder,

1996).

in Figure 3.3a to 3.3f. Similarly, we can construct the scaling functions for two or higher

dimensions.

If the scaling functionφ(x) is built on a two-dimensional mesh, then its one-dimensional

restriction is exactly the fundamental function φ(x) of Deslauriers & Dubuc (1989), which

has the following properties (see Alam et al., 2014).

• φ(x) is an interpolating polynomial, which vanishes outside of [x−2p+1, x2p−1], where

p is an integer. Moreover, φ(x0) = 1 and φ(x) has exactly 4p−2 zeros in the interval

[x−2p+1, x2p−1].

• φ(x) is symmetric about x = x0; i.e. φ(x) is an even function.

• φ(x) is uniformly continuous for all p on any finite interval, and is differentiable for

p > 1. Moreover, φ(x) has at least two continuous derivatives for p = 3.

• φ(x) is translated to construct a basis {φk(x)} that satisfies φk(xj) = δkj and repro-

duces polynomials up to degree 2p− 1.
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(a) iteration s = 0 (b) iteration s = 1

(c) iteration s = 2 (d) iteration, s = 3

(e) iteration, s = 4 (f) iteration, s = 5

Figure 3.3: A one-dimensional scaling function, φ(x), generated with a cubic interpolation

process. We see that the interpolation tends to a unique function.
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• For the even function

f(x) =

⎧⎪⎨⎪⎩ 1 for x = xk

0 for x > xk+2p−1 andx < xk−2p+1

having 4p− 2 zeros within its support [xk−2p+1, xk+2p−1], we have

f(x) =

4p−2∑
k=−4p+2

ckφk(x).

This property is also known as the two scale relation because f(x) is defined on Gs

and φk(x) is defined on Gs+1.

3.4 Differentiation

In this section, we study the weighted residual collocation method for the numerical dif-

ferentiation of the trial solution (3.2) on the basis of the scaling function. In a collocation

method, one aims to compute ∂
∂x
us(x, t) (e.g. for fixed y) at all nodes xk such that

⟨ ∂
∂x
us(x, t), δ(x− xk)⟩ = 0

on a mesh Gs. This is done by using some properties of φk(x), and the trial solution (3.2);

i.e. (for simplicity the superscript s is dropped)

∂

∂x
u(x, t) =

N−1∑
k=0

ck(t)φ
′
k(x). (3.5)

Since φk(x) (for fixed y) is an even function with respect to x = xk, and φk(x) has

exactly 4p − 2 zeros within its support [xk−2p+1, xk+2p−1], the following statements are

true. (i) The 1st derivative φ′
k(x) is an odd function, (ii) it vanishes at xk, i.e. φ′

k(xk) = 0,

(iii) φ′
k(x) takes nonzero values on at most 4p − 2 zeros of φk(x) in (xk−2p+1, xk+2p−1),

and φ′
k(x) vanishes for all other x /∈ (xk−2p+1, xk+2p−1) (see, Deslauriers & Dubuc, 1989).
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Using these properties, combining ⟨ ∂
∂x
u(x, t), φ̃(x)⟩ with eq (3.5) results into

∂

∂x
u(xk, t) =

j=k+2p−1∑
j=k−2p+1

cj(t)φ
′
k(xj) (3.6)

To evaluate the right side of (3.6), let us obtain the nodal value of φk(x) for x ∈ [xk−2p+1 ,

xk+2p−1] from the interpolating process, without knowing the actual mathematical form of

φk(x), using the barycentric formula

φk(x) =
wk(x)∑k+2p−1

i=k−2p+1wi(x)

at xj for j = k− 2p+1, ..., k+2p− 1 (see Berrut & Trefethen, 2004). The weights wk(x)

are associated with 2p+ 1 nodes, and are extended from the iterative interpolation process

that derives φ(x). In order to employ weighted residual collocation method, the weights

wk(x) and ζ(x) are defined as,

1

wk(x)
= (x− xk)

∏
j ̸=k

(xk − xj)

and

ζ(x) =
∑
l

wl(x)(x− xj)

and assume the weighted inner product

⟨[φk(x)ζ(x)]
′, φ̃k(x)⟩ = 0.

Then the first derivative of scaling function can be computed as (see Alam et al., 2014)

φ′
k(xj) =

⎧⎪⎨⎪⎩
wk(x)

wj(x)(xk−xj)
for k ̸= j

−
∑

k ̸=j φ
′
k(xj) for k = j.

It is clear that, knowing the ingredients, wk’s, of the iterative interpolation, we are able to

compute derivatives of φk(x) exactly on all nodes. Similarly, for the second derivative,

∂2

∂x2
u(x, t) =

N−1∑
k=0

ck(t)φ
′′
k(x), (3.7)
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at xj for j = k − 2p+ 1, ..., k + 2p− 1, we get

∂2

∂x2
u(xj, t) =

j=k+2p−1∑
j=k−2p+1

ck(t)φ
′′
k(xj). (3.8)

The second derivative of scaling function can be computed by using the following expres-

sion (see Alam et al., 2014)

φ′′
k(xj) =

⎧⎪⎨⎪⎩ −2φ′
k(xj)

[∑
i ̸=k φ

′
k(xi)− 1

xj−xk

]
for k ̸= j

−
∑

k ̸=j φ
′′
k(xj) for k = j.

3.5 Numerical examples

In this section, we examine the proposed spatial discretization methodology with two exam-

ples, a two dimensional heat equation and a two dimensional advection-diffusion equation,

where a Krylov method has been used to solve the discrete system. More specifically, we

have employed the restarted generalized minimal residual (GMRES) algorithm. We exam-

ine numerical accuracy of these examples where the solution can be derived analytically.

3.5.1 Two dimensional heat equation

Consider a thin rectangular plate made of some thermally conductive material. Let u(x, y, t)

be the temperature of the plate at position (x, y) and time t. For a fixed t, the height of the

surface z = u(x, y, t) gives the temperature of the plate at time t and position (x, y). Un-

der ideal assumptions (e.g. uniform density, uniform specific heat, perfect insulation, no

internal heat source etc.) u satisfies the following two dimensional heat equation

ut = (κux)x + (κuy)y + ψ (3.9)

for 0 < x < a and 0 < y < b, where κ(x, y) > 0 is a diffusion or heat conduction

coefficient that may vary with x and y, and ψ(x, y, t) is an external heat source. The
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-

6

a x(0, 0)

y

b

Ω∂Ω ∂Ω

∂Ω

∂Ω

Figure 3.4: Rectangular plate [0, a]× [0, b].

solution u(x, y, t) generally will vary with time as well as space. We also need initial

condition u(x, y, 0) in Ω and boundary conditions on the boundaries ∂Ω. Domain of this

model is shown in Figure (3.4). For constant κ > 0, eq. (3.9) can be written as,

ut = κ(uxx + uyy) + ψ (3.10)

Consider a case without external heat source i.e. ψ(x, y) = 0. Then the discretized equa-

tion, L(un+1) = f(un), such that

−κ∇2un+1 +
2

∆t
un+1 = κ∇2un +

2

∆t
un (3.11)

has been obtained by discretizing (3.10) in time with a Trapezoidal method. The discretized

system (3.11) is solved by using cubic interpolation and the level of resolution, s = 5. So

the number of grid points are (2s+1+1)× (2s+1+1) i.e., 65×65. In this example, choose

the initial condition,

u(x, y, 0) = e−
(x−x0)

2+(y−y0)
2

σ

then the exact solution of the heat equation is

u(x, y, t) =
1

1 + 4tκ/σ
e−

(x−x0)
2+(y−y0)

2

σ+4tκ .
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(a) time, t = 0 (b) time, t = 0.1

(c) time, t = 0.5 (d) time, t = 1.0

Figure 3.5: Heat diffusion of eq. (3.10) at κ = 0.01.
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(a) u(x, 0.5) along the line y = 0.5 (b) u(0.5, y) along the line x = 0.5

Figure 3.6: Temperature along the center line of eq. (3.10) at t = 0.1.

Consider the domain [0, 1] × [0, 1], (x0, y0) = (0.5, 0.5), σ = 0.01 and ∆t = 0.001. In

Figure (3.5), numerical solutions are calculated at four different times: (a) t=0; (b) t=0.1;

(c) t=0.5; (d) t=1.0, using heat diffusion constant κ = 0.01 where the temperature decreases

with time. Numerical solution and the exact solution, along the center line at t = 0.1 and

κ = 0.01, 0.02, 0.05 and 0.1, are shown in Figure 3.6. The maximum error at t = 0.1 and

κ = 0.01, 0.02, 0.05 and 0.1 are 0.000531, 0.000799, 0.001223 and 0.001329, respectively.

This example analyzed with a time step, ∆t, between 10−3 and 5 × 10−1, where for each

∆t, the resolution varies between 33 × 33 and 257 × 257. The maximum absolute errors

for these various simulations for ∆t = 0.1 and κ = 10−2 are shown in Table 3.1.

3.5.2 A dynamical core for simulating two-dimensional flows

In this section, we solve the following two-dimensional advection-diffusion equation:

∂u

∂t
+ u.∇u = ν∇2u (3.12)

where u = [u, v]T . This non-linear advection-diffusion equation is often called two-

dimensional Burger’s equation because of its similarity with the Burger’s equation. Many
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∆t 33× 33 65× 65 129× 129 257× 257

0.5 2.57× 10−2 2.83× 10−2 2.89× 10−2 2.91× 10−2

10−1 1.07× 10−3 7.4× 10−5 4.12× 10−4 3.9× 10−4

10−2 1.42× 10−3 3.88× 10−4 9.3× 10−5 4.0× 10−6

10−3 1.59× 10−3 3.93× 10−4 9.8× 10−5 8.0× 10−6

Table 3.1: Maximum absolute errors for different resolution and different ∆t at t = 1.0,

κ = 10−2.

authors consider (3.12) as a proof of concept for their numerical scheme. Kannan & Wang

(2012) and Liao (2010) used the Hopf-Cole transformation to eliminate the nonlinear term

and as a result, solved a diffusion equation in order to obtain the solution of (3.12). Xie

et al. (2010) studied a compact finite difference scheme for Burger’s equation. Zhu et al.

(2010) examined the adomian decomposition method for solving Equation (3.12). Thus, a

number of reference studies are available, showing that on the avenue of solving (3.12), the

search for the best method of solving 3.12 remains active.

The time discretized nonlinear system of equations, L(un+1) = f , such that

−ν∇2un+1 + un+1.∇un+1 +
2

∆t
un+1 = ν∇2un − un.∇un +

2

∆t
un (3.13)

has been obtained by discretizing (3.12) in time with a Trapezoidal method. Evaluat-

ing the inner product ⟨L(un+1) − f, φ̃(x − xk)⟩ = 0, a simultaneous nonlinear system

L(un+1(xk)) = f(xk) of 2N algebraic equations is obtained. The discrete nonlinear sys-

tem L(u) = f , for simplicity, has been solved with the Newton’s method (see Ortega &

Rheinboldt, 1970),

un+1 = un +∆u

such that J (un)∆u = f − L(un)

where one needs to compute the Jacobian matrix J (un) at each iteration n. Clearly on a
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mesh of N nodes, the computation of the product J (un)∆u between the Jacobian matrix

J (un) and the error vector ∆u requires O(N 2) operations. Therefore for large scale CFD

applications, the implicit treatment of the the advection term is too expensive. To reduce

this computational complexity as an O(N ), we have considered the Frechet derivative,

lim
η∆u→0

∥L(un + η∆u)− L(un)− J (un)∆u∥
∥η∆u∥

which leads to the following approximation

J (un)∆u ≈ L(un + η∆u)− L(un)

η

and as a result, J (un)∆u can be approximated with O(N ) operations, where η is a small

number. Numerical experiments of this thesis suggested that η ≤ 10−4 is sufficient. Knoll

& Keyes (2004) have been reviewed this approach of solving nonlinear system of equations

for multiphysics problems, in the area of CFD, it is a not commonly adopted technique. A

representative example is presented below.

Using the same initial and boundary conditions as that of the reference solution (e.g.

problem 1) presented by Zhu et al. (2010), eq. (3.12) has been solved in the domain [0, 1]×

[0, 1], where the exact solutions are given by

u(x, y, t) = 3
4
− 1

4(1+e(−t−4x+4y)/(32ν))

v(x, y, t) = 3
4
+ 1

4(1+e(−t−4x+4y)/(32ν))
.

⎫⎪⎬⎪⎭ (3.14)

We have analyzed this example with a time step, ∆t, between 10−1 and 10−4, where for

each ∆t, the resolution varies between 33×33 and 129×129. Thus, we have 12.8×10−3 ≤

CFL ≤ 12.8. With CFL = 12.8, ∆t = 10−1, and ν = 1.25× 10−2, the maximum absolute

error is 5.05× 10−4. In comparison, Zhu et al. (2010) reported a maximum absolute error

7.5 × 10−4 with ∆t = 10−4 and ν = 1.25 × 10−2. This comparison, with a ∆t that is 103

times larger than what was used by Zhu et al. (2010), indicates that the present collocation
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(a) u(x, y, t) (b) u(x, y, t) (magnified view)

(c) v(x, y, t) (d) v(x, y, t) (magnified view)

Figure 3.7: A numerical illustration of approximation solutions of (a) (b) u(x, y, t), (c) (d)

v(x, y, t) at ν = 10−3 and t = 0.5. (b) and (d) are the magnified view of u(x, y, 0.5) and

v(x, y, 0.5), respectively, for a portion of the whole domain to visualize the sharp change

region of the solution.
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Figure 3.8: Numerical solution of (3.12) (a) u(x, 0.5), (b) u(0.5, y), (c) v(x, 0.5), and (d)

v(0.5, y) at ν = 10−3 and t = 0.5.

method is able to refine the mesh at CFL = 12.8 without reducing the time step. For this

high CFL, the error bound is equivalent to that of the scheme of Zhu et al. (2010). This

explains the performance of the method presented by Alam et al. (2014) for the nonlinear

advection-diffusion problem. This example puts some hint on the benefits of the proposed

method.

We have also analysed the different values of ν. When 0 < ν ≪ 1, there is a sharp

change in the solution and the numerical solution become more challenging. Numerical so-

lutions of u(x, y) and v(x, y) at t = 0.5 with ∆t = 10−3 and ν = 10−3 are shown in Figure

3.7a, 3.7b and Figure 3.7c, 3.7d, respectively. In Figure 3.8, we compare numerical solu-

tion with the exact solution (e.g., Zhu et al., 2010). The plots include u(x, 0.5), u(0.5, y),
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v(x, 0.5) and v(0.5, y) at t = 0.5 with ∆t = 10−3 and ν = 10−3. The excellent agreement

between the exact and the numerical solutions with no visible oscillation encourages the

methodology to the field of Computational Fluid Dynamics.

3.6 Summary

In this chapter, a weighted residual collocation method based on a diadic mesh refinement

technique has been developed. A detailed description of this method is presented in Alam

et al. (2014). A fully implicit numerical scheme has been implemented for time integration.

This fully implicit discrete system is solved by projecting the solution onto a Krylov sub-

space. The computational complexity of this Jacobian-free Krylov method is O(N ) where

N is the number of grid-points. The excellent agreement of exact solution and numerical

solution in Figure 3.6 and 3.8 is an evidence that the presented method is able to simulate a

flow without artificial dissipation. This numerical method supports non-dissipative advec-

tion scheme which is an advantage of this method for simulating non-hydrostatic mesoscale

circulations and which also supports a large CFL number.

In the following two chapters, this multi-scale numerical model is extended for simulat-

ing a nonhydrostatic ABL phenomena in the presence of penetrative convection, stratified

turbulence, and internal waves.



Chapter 4

Penetrative convection for an isolated

buoyant element

This chapter presents a form of penetrative convection in a dry atmosphere, where a rela-

tively isolated buoyant element penetrates into an overlying stably stratified layer of fluid.

To investigate this phenomenon, a thermal bubble is placed in the lower level of the at-

mosphere in the absence of air flow. The design of the dry thermal simulation is analo-

gous to the simulation used by Tripoli (1992), Wicker & Skamarock (1998) and Bryan &

Fritsch (2002). To describe the evolution of thermals, neutral and stable environments are

considered in the dry atmosphere. During the evolution of a thermal, it interacts with its

environment which involves entrainment and detrainment. Moreover, this dry convection

generates internal waves that can transport momentum and energy to regions far from heat

sources. Simulations for the neutrally stable environment agree with the results of Tripoli

(1992), Wicker & Skamarock (1998) and Bryan & Fritsch (2002) and are verified by en-

ergy conservation, which are also shown in (Alam et al., 2014) as well as in this chapter.

In addition, the generation of internal waves by penetrative convection is explained for a

uniformly stable environment.

43
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4.1 Scaling analysis and parameterization

Equations (2.23) - (2.25) have been solved by considering a two-dimensional flow along

with the following parameterization:

∂τij
∂xj

= KM
∂2ui
∂x2j

, and
∂τθj
∂xj

= KH
∂2θ

∂x2j
,

where KM is the eddy viscosity coefficient and KH is the eddy diffusivity of heat.

Length scale, (H), is considered as the size of the element that penetrates the environ-

ment, and U is the velocity scale. The time derivative and the nonlinear advection of ui

may be estimated as
∂ui
∂t
, uj

∂ui
∂xj

∼ U2

H
.

The Coriolis force ∼ fU is neglected in comparison to the nonlinear advection terms,

which are of order U2

H
.

The temperature scale ∆θ is considered as

∆θ ∼ HH0

κ
,

where H0 = κ∂θ
∂z
|z=0 is the initial heat flux on the surface. The time derivative and the

nonlinear term of the potential temperature can be estimated as

∂θ

∂t
, uj

∂θ

∂xj
∼ ∆θ U

H
.

Reynolds number, Re can be defined as

uj
∂ui

∂xj

∂τij
∂xj

∼ Re =
UH

KM

, and
uj

∂θ
∂xj

∂τθj
∂xj

∼ UH

KH

= RePr,

where Prandtl number, Pr = KM/KH .

A list of all dimensional variables and constants, and non-dimensional parameters are

presented in Table 4.1 and 4.2, respectively.
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Symbol Name of variables and constants unit

θ perturbation of potential temperature K

θ0 a reference temperature K

β vertical gradient of synoptic-scale potential

temperature

Km−1

α thermal expansion coefficient K−1

g acceleration due to gravity ms−2

N =
√

g
θ0
β buoyancy frequency s−1

KM eddy viscosity coefficient m2s−1

KH eddy diffusivity of heat m2s−1

b = g θ
θ0

buoyancy for the dry atmosphere ms−2

H0 = κ∂θ
∂z
|surface surface heat flux Wm−2

κ thermal conductivity of air Wm−1K−1

Table 4.1: List of dimensional variables and constants.

Name of parameters Definition

Turbulent Prandtl number, Pr KM

KH

Reynolds number, Re UH
KM

Rayleigh number, Ra (Favre-Marinet & Tardu, 2013) gαH0

KMKHκ
H4

Bulk Richardson number for stratified, Rib N2H2

U2

Bulk Richardson number for neutral, Rib g∆θ
θ0U2

Froude number, Fr U
HN

Table 4.2: List of non-dimensional parameters.
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4.2 Problem description

This section presents the design of numerical experiments for penetrative convection in the

atmosphere for relatively isolated buoyant elements. The simulation is two dimensional,

with a domain of horizontal length 20 km and vertical length 10 km, which is the average

height of the troposphere. The interior of the domain is denoted by Ω and the boundaries

of the domain are denoted by ∂Ω. The boundary conditions are Dirichlet type on the

ground and Neumann type for all other boundaries. A schematic view of a thermal rising

is presented in Figure 4.1. The initial environment is calm i.e. initial velocity is zero

everywhere and the constant potential temperature is 300 K. The vertical variation of the

actual and the potential temperature for the neutral environment are shown in Figure 4.1(a).

A warm perturbation temperature θ is placed at the center of the domain, which is specified

by

θ(x, z, 0) = exp(−((x− xc)
2 + (z − zc)

2)/ξ)

where, xc = 0 km, zc = 2 km and ξ = 1. That is, the maximum buoyancy is placed at the

center of the thermal, which decreases exponentially to 0 outside the edge of the thermal.

This warm perturbation creates a stable region on the lower half of the warm place and

an unstable region on the upper half of the warm place, which is shown in Figure 4.1(b).

The interaction of buoyancy force and gravity force in the warm region is presented in

Figure 4.1(c). The buoyancy force is larger than the gravity force, and as a result warm

air parcels move up which causes penetrative turbulence. The expected air flow for this

thermal perturbation is presented in Figure 4.1(d).

As demonstrated schematically in Figure 4.1, the buoyant element is expected to initiate

a counter clockwise circulation near the left half of the element. Similarly, at the right

half plane, it initiates clockwise circulation. This is because whenever a moving fluid

enters a quiescent region of the same fluid a shear is created between two regions, and
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T̄ ( z )

θ̄( z )

T 0 = θ0 = 300 K

θ(0, z ,0)

T 0 = θ0 = 300 K

N = 0 N = 0

gravity

buoyancy

b = 0b = 0 b =
g Δθ
θ0

∂θ
∂ z

< 0

∂θ
∂ z

> 0

(a) (b)

(c) (d)

x x

(unstable)

(stable)

zz

Figure 4.1: (a) vertical variation of the actual and potential temperature, (b) introduce a

perturbation for potential temperature, (c) effect of buoyancy and gravity and (d) expected

circulation.

this causes turbulence and mixing. Since the motion in this case is primarily vertical, to

first order ∂u
∂z

∼ 0, ∂w
∂x

> 0 on the left and ∂w
∂x

< 0 on the right. So spanwise vorticity,

ω ∼ ∂w
∂x

− ∂u
∂z

> 0 on the left and ω ∼ ∂w
∂x

− ∂u
∂z

< 0 on the right. These cyclonic and

anticyclonic circulations are primarily agents to initiate heat, mass and momentum transfer,

causing turbulence mixing.
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4.3 Results

4.3.1 Reference model

A simulation presented by Bryan & Fritsch (2002), Wicker & Skamarock (1998) and Car-

penter et al. (1990) is considered as a reference model. The initial temperature perturba-

tion of the present model is a Gaussian function; however, a square of a cosine function is

used in the reference model. The governing equations of the reference model presented by

Bryan & Fritsch (2002) are similar to the equations (2.23-2.25) for the dry atmosphere. The

boundary conditions of the reference model are implemented by constructing three artificial

zones beyond the physical boundaries of the domain. However, the boundary conditions

of the present model do not require these artificial zones due to the novel discretization

process which is described in Chapter 3.

4.3.2 Case design of numerical experiments

Two cases of thermal evolution are considered. In the first case, a neutrally stratified en-

vironment is considered which is similar to the dry warm thermal simulation presented by

Bryan & Fritsch (2002), and in the second case, a stable environment is considered which

is similar to the model of dry thermals in a stable environment presented by Lane (2008).

The first case deals with the vertical motion of a buoyant element, where the lapse rate

of temperature is 100 C/km for neutral stratification. This is an idealization of the atmo-

sphere, and the main purpose is to verify the present numerical model. Such idealization

helps to compare the present result with the reference model presented in section 4.3.1.

If the eddy viscosity is the limiting factor, then the convective velocity w can be esti-

mated by comparing

KM
∂2w

∂z2
∼ gθ

θ0
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Figure 4.2: The initial vertical variation of the potential temperature in stable atmosphere.

which implies

w ∼ g∆θH2

θ0KM

.

To examine the flow dependence of eddy viscosities, two sub-cases, Case I and Case II,

are designed based on different eddy viscosities. For these different eddy viscosities, I

will examine whether the present model is able to resolve the flow or not. In case I, the

turbulent Prandtl number Pr = 0.71 is fixed and four eddy viscosities such as KM =

10, 5 , 2.5 and 1.0 m2s−1 for θ0 = 300 K are considered. For case II, three eddy viscosities,

such as, KM = 10, 5 and 2.5 m2s−1 for KH = 5 m2s−1, θ0 = 300 K are considered. The

corresponding values of KH , Re, and Ra are presented in Table 4.4. The simulations have

been done by using the number of grid points N = 129×129, 257×257 and 513×513 and

∆t is between 0.01 to 0.5. The minimum grid sizes corresponding to KM for Pr = 0.71

are presented in Table 4.3. The number of grid points N = 513× 513 i.e. 39 m horizontal

grid spacing and 19.5 m vertical grid spacing are used for the presented results.

In the second case, a stable environment is considered instead of a neutral environment.

The initial vertical variation of the potential temperature in a stable atmosphere is shown in

Figure 4.2. The aim of this case is to observe the internal waves due to penetrative convec-
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KM (m2s−1) Resolution

10 257× 257

5 257× 257

2.5 513× 513

1.0 513× 513

Table 4.3: Minimum grid size corresponding to KM for Pr = 0.71.

tion. The wave frequency of the internal wave is correlated with buoyancy frequency. To

study this case, six different buoyancy frequencies are considered, and the other parameters

are fixed. The representative parameters in this case are listed in Table 4.5. In this case, the

number of grid points N = 257× 257 are used.

4.3.3 Penetrative turbulent convection in a neutral environment

This section deals with penetrative convection in a neutral environment, i.e. the atmo-

sphere consists of air parcels all having the same internal energy. The temperature de-

creases vertically at the adiabatic lapse rate, and the stratification parameter vanishes,

N = 0. At initial stage, the thermal plume begins to rise. After a certain period of

time, two ‘rotors’ develop on the sides of the thermal and the perturb temperature de-

creases as a function of time. The results of two cases are considered here. Potential

temperature perturbation (θ) for θ0 = 300 K, KM = 10 m2s−1 and KH = 14.1 m2s−1

at t = 0, 400, 600, 800, 1000 and 1200 s are shown in Figure 4.3. The thermal rises

and expands over time, which is similar to the results of dry thermal rising presented in

Wicker & Skamarock (1998) and Bryan & Fritsch (2002). In Bryan & Fritsch (2002),

θmin = −0.144409K and θmax = 2.07178K at θ0 = 300 K for dry thermal simula-

tion. These extreme values are closer to the present case for KM = 1.0 m2s−1 and
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KM (m2s−1) KH (m2s−1) Re Ra Pr

Case I

10 14.1 2.5× 103 4.44× 106 0.71

5 7.04 5.0× 103 1.78× 107 0.71

2.5 3.52 1.0× 104 7.1× 107 0.71

1.0 1.41 2.5× 104 4.44× 108 0.71

Case II

10 5 2.5× 103 4.44× 106 0.5

5 5 5.0× 103 1.78× 107 1.0

2.5 5 1.0× 104 7.1× 107 2.0

Table 4.4: Representative parameters for the simulations of a neutral environment case

whereRe is Reynolds number,Ra is Rayleigh number, Pr is Prandtl number andRib = 0.1

is the bulk Richardson number.

Rib Fr N (s−1)

1.0 1.0 2.5× 10−2

0.25 2.0 1.25× 10−2

0.2 2.24 1.12× 10−2

0.16 2.5 1.0× 10−2

0.1 3.16 7.9× 10−3

0.05 4.47 5.6× 10−3

(a) Rib, Fr and N

Name of parameters values

KM 10 m2s−1

KH 14.1 m2s−1

Reynolds number, Re 2.5× 103

Rayleigh number, Ra 4.44× 106

Prandtl number, Pr 0.71

(b) Other parameters

Table 4.5: Representative parameters for the simulations of the stable environment case.
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KM 10 m2s−1 5 m2s−1 2.5 m2s−1 1.0 m2s−1 B & F

θmin(K) -0.000632 -0.003814 -0.009359 -0.133971 -0.144409

θmax(K) 1.408749 1.629635 1.843659 2.138108 2.07178

umin(ms−1) -9.511412 -10.058257 -10.636190 -11.667357 -

umax(ms−1) 9.512040 10.059020 10.637147 11.668235 -

wmin(ms−1) -6.360285 -6.527770 -6.596165 -6.627753 -8.58069

wmax(ms−1) 15.352078 15.599483 15.833058 16.018170 14.5396

ωmin(s
−1) -0.065906 -0.095523 -0.137061 -0.188188 -

ωmax(s
−1) 0.065906 0.095523 0.137049 0.188187 -

Table 4.6: Extreme values of dry thermal simulation for Pr = 0.71, θ0 = 300 K at t =

1000 s. Extreme values are compared with that from Bryan & Fritsch (2002) (B & F).

KH = 1.41 m2s−1. Temperature perturbations for KM = 10 m2s−1, KM = 5 m2s−1

and KM = 2.5 m2s−1 are presented in Figure 4.4. Magnitude of temperature perturbation

increases as eddy viscosity decreases as well as the magnitude of the extreme values of

perturb temperature increases a little when eddy viscosity decreases for a fixed time. The

movement of the ‘rotors’ is slightly faster when the eddy viscosity KM becomes smaller.

When KM decreases, the bubble slightly moves up, and for KM = 10, 5, 2.5 m2s−1 at

t = 1000 s it reaches about 8.04, 8.08, 8.15 km, respectively.

In case II, three different eddy viscosities such as KM = 10, 5 and 2.5 m2s−1 for fixed

KH = 5 m2s−1, θ0 = 300 K are considered. The temperature perturbation profile for Case

II is similar to Case I. The corresponding values of KH , Re, and Ra are presented in the

Case II section in Table 4.4. In this case, the change in temperature perturbation is not

significant as in Case I.
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(e) t = 1000 s
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(f) t = 1200 s

Figure 4.3: Perturbation of potential temperature (θ) for θ0 = 300 K, KM = 10 m2s−1 and

KH = 14.1 m2s−1 at (a) t = 0 s, (b) t = 400 s, (c) t = 600 s, (d) t = 800 s, (e) t = 1000 s

and (f) t = 1200 s is contoured.
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Figure 4.4: Perturbation of potential temperature (θ) for θ0 = 300 K, Pr = 0.71, (a)

KM = 10 m2s−1, KH = 14.1 m2s−1; (b) KM = 5 m2s−1, KH = 7.04 m2s−1 and (c)

KM = 2.5 m2s−1, KH = 3.52 m2s−1 at 1000 s is contoured.
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KM 10 m2s−1 5 m2s−1 2.5 m2s−1

θmin(K) -0.0061 -0.0062 -0.0063

θmax(K) 1.7138 1.7268 1.7371

umin(ms−1) -9.7735 -10.1486 -10.4817

umax(ms−1) 9.7744 10.1494 10.4824

wmin(ms−1) -6.5080 -6.5204 -6.5481

wmax(ms−1) 15.4442 15.6334 15.8046

ωmin(s
−1) -0.0849 -0.1053 -0.1271

ωmax(s
−1) 0.0849 0.1053 0.1271

Table 4.7: Extreme values of dry thermal simulation for fixed KH = 5 m2s−1, θ0 = 300 K

at t = 1000 s.

4.3.4 Entrainment in a neutral environment

The mixing of air which causes this thermal rising is determined by the velocity induced

by the turbulent vorticities and is called entrainment. Horizontal velocity and vertical ve-

locity are presented in Figure 4.5 based on the representative parameters for Case I in Table

4.4. Red, blue and yellow colors represent positive, negative and zero, respectively, from

Figure 4.5 to onwards for a contour plot. Velocity profiles are symmetric about x = 0.

The extreme values of horizontal velocity, vertical velocity and temperature perturbation

for different eddy viscosities are shown in Table 4.6. For comparison, maximum and mini-

mum values of vertical velocity and temperature perturbation from Bryan & Fritsch (2002)

for dry simulation are also presented in Table 4.6. The magnitude of velocity compo-

nents slightly increases as eddy viscosity decreases. In this table, the vertical velocities

for KM = 10, 5, 2.5, 1 m2s−1 are 15.352078, 15.599483, 15.833058 and 16.018170 ms−1,

respectively. When the thermal rises it pulls surrounding fluid. It is a frictional effect and
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hence is associated with vorticity. The vertical velocity has no significant change; however,

the eddy viscosity changes by about a factor of 2. The vorticity, ω = ∂w/∂x − ∂u/∂z, of

the eddy viscosities, KM = 10, 5, 1 m2s−1, are shown in Figure 4.7. In this figure, the blue

color represents clockwise rotation and the red color represents the counter-clockwise rota-

tion. The vorticity and velocity profiles for Case II are similar to the profiles of Case I. The

extreme values for Case II are presented in Table 4.7. The changes in velocities and vortic-

ities for different eddy viscosities are also not remarkable like in Case I. Hence, it can be

concluded that in a situation where turbulence penetrates upward, the main characteristics

of the flow do not depend on eddy viscosities.

In order to provide further insight into the quality of this simulation, the stream lines at

t = 400, 600, 800, 1000, 1200 s for KM = 10 m2s−1 are presented in Figure 4.6. These

contour plots exhibit the vertical migration of two counter rotating patterns, where the left

vortex is counter clockwise, and the right vortex is clockwise.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Horizontal velocity (u) ms−1 for (a) KM = 10 m2s−1, (c) KM = 5 m2s−1 and

(e) KM = 2.5 m2s−1 and vertical velocity (w) ms−1 for (b) KM = 10 m2s−1, (d) KM =

5 m2s−1 and (f) KM = 2.5 m2s−1 at Pr = 0.71, θ0 = 300 K and 1000 s. Unless otherwise

stated red, blue and yellow colors represent positive, negative and zero, respectively.
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Figure 4.6: Streamlines for the dry thermal rising for θ0 = 300 K, KM = 10 m2s−1,

Pr = 0.71 at t = 400, 600, 800, 1000, 1200 s.
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(a)

(b)

(c)

Figure 4.7: Spanwise vorticity (ω) s−1 for θ0 = 300 K, Pr = 0.71, (a) KM = 10 m2s−1,

(b) KM = 5 m2s−1 and (c) KM = 1 m2s−1 at 1000 s.
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4.3.5 Stable environment

This section deals with the dynamics of a thermal rising in a stable environment. When

a warm air parcel is placed in a stable environment it rises adiabatically and it expands

and releases temperature. When a parcel reaches its maximum level of expansion, where

the temperature of this air parcel is lower than the surrounding air, it descends towards its

original level but it overshoots this level due to the momentum gained, and continues to

its warmest level adiabatically. Again it overshoots upward. This process continues until

the temperature of the warm air parcel and the surrounding air becomes the same. Linear

theory suggests that (see Lin, 2007, p. 187)

2π

N
>
L

U

for the evanescent flow regime. When 2π
N
>> L

U
the buoyancy force become extremely

weaker, and in this case

w(x, z) = W (x)e−k|z|.

On the other hand,
2π

N
<
L

U

for the vertical propagating wave regime. For the considered length scale L ∼ 1 km,

velocity scale U ∼ 10 ms−1 and the values of N presented in Table 4.5a implies 2π
N
> L

U

which represents the evanescent flow regime.

The profiles of the vertical velocity at x = 0, (a) t = 600 s, (b) t = 800 s, (c) t =

1000 s and (d) t = 1200 s in a stratified environment are shown in Figure 4.8a, 4.8b,

4.8c and 4.8d, respectively. Figure 4.8 shows w(0, z) is about the same and vanishes for

N = 7.9 × 10−3 s−1 and N = 5.6 × 10−3 s−1 for which 2π
N

increases. Similarly, the

profiles of the potential temperature at the same position and time are shown in Figure

4.9. The amplitude of the disturbance of vertical velocity and the perturbation of potential
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temperature decreases with time. The amplitude of the disturbance of vertical velocity is

larger for larger N . However, the amplitude of the perturbation of potential temperature is

larger for smaller N .

The diameter of the initial perturbed potential temperature is 4 km and the maximum

perturbed potential temperature is placed at the position (0 km, 2 km). In Figure 4.8 and

4.9, the maximum perturbation of vertical velocity and potential temperature appear around

2 km vertical height. In contrast to neutral case where warm air rises up adiabatically, warm

air in the stable environment is overshoot. Figure 4.8 and 4.9 indicate this overshooting

place is around 5 km from the surface.

4.3.6 Internal wave excitation in a stratified environment

In this section, the internal mesoscale waves due to penetrative convection are investigated

in a stably stratified environment. Due to this penetration, the vertical velocity is evolved.

For U ∼ 10 ms−1 and N ∼ 1.0 × 10−2 s−1 implies the vertical wavelength, Lz = 2πU
N

∼

6.25 km. The evolution of vertical velocity at x = 0, z = 6.25 km in the stable case

where N = 2.5 × 10−2, 1.25 × 10−2, 1.12 × 10−2, 1.0 × 10−2, 7.9 × 10−3, 5.6 × 10−3

are shown in Figure 4.10. For each N , the corresponding bulk Richardson numbers Rib are

presented in Table 4.5a. The amplitude of the waves decreases asN decreases. For the large

value of N , waves are damping oscillatory, and the damping factor is reduced while the

value of N decreases. The waves for the fixed horizontal position x = 0 and the different

vertical positions z = 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 8.75 km are presented in Figure 4.11.

To compare the amplitude of the waves, the waves in different vertical positions are shown

in same frame, which are depicted in Figure 4.11a, 4.11c, and 4.11e and Figure 4.11b,

4.11d, and 4.11f show the waves in different vertical positions. In the lower height, waves

are damping oscillatory, and the damping factor reduces with an increase of height. The
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N (s−1) ω/N α

2.5× 10−2 0.999 2.560

1.25× 10−2 0.997 4.440

1.12× 10−2 0.985 9.940

1.0× 10−2 0.977 12.30

7.9× 10−3 0.962 15.80

5.6× 10−3 0.929 21.70

Table 4.8: ω/N at z = 6.25 km.

thermal dynamics and detrainment to reduce the amplitude and horizontal gradient of the

potential temperature, thereby reducing the amplitude of the internal waves. Therefore, the

thermal behaves like a damped oscillator, which is also suggested by Morton et al. (1956).

At Rib = 1.0, waves at a small height become extinct after a certain period of time;

however, the waves of upper vertical heights are propagating. In a critical bulk Richard-

son number, Rib = 0.25 or a Richardson number lower than the critical number, say

Rib = 0.16, the waves do not behave like this. In this case, the waves do not die out and they

can propagate in the upper layers in the atmosphere. In Figure 4.10, wave frequency(ω) is

computed and the ratios of wave frequency and buoyancy frequency (ω/N ) at z = 6.25 km

are shown in Table 4.8. The frequency ω is marginally less than that of the environment.

The angle (α) between the phase velocity vector and the horizontal direction are also pre-

sented in Table 4.8. This angle is computed by using the dispersion relation which is stated

in eq. (2.33). In this table, the wave frequency lies in ω < N , and the maximum possible

frequency of internal waves in a stratified fluid is N . The angle (α) increases as buoyancy

frequency decreases. For a given stratification, waves with constant ω < N propagate at a

fixed angle to the horizontal axis.
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Figure 4.8: Profiles of the vertical velocity at x = 0, (a) t = 600 s, (b)t = 800 s, (c)

t = 1000 s and (d) t = 1200 s for KM = 10 m2s−1, KH = 14.1 m2s−1 in a stratified

environment.
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Figure 4.9: Profiles of the potential temperature at x = 0, (a) t = 600 s, (b)t = 800 s,

(c) t = 1000 s and (d) t = 1200 s for KM = 10 m2s−1, KH = 14.1 m2s−1 in a stratified

environment.
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(b) N = 1.25× 10−2 s−1
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(c) N = 1.12× 10−2 s−1
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(d) N = 1.0× 10−2 s−1
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(e) N = 7.9× 10−3 s−1
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(f) N = 5.6× 10−3 s−1

Figure 4.10: Evolution of vertical velocity at x = 0, z = 6.25 km for the stable case

(a) N = 2.5 × 10−2 s−1, (b) N = 1.25 × 10−2 s−1, (c) N = 1.12 × 10−2 s−1, (d)

N = 1.0×10−2 s−1, (e)N = 7.9×10−3 s−1 and (f)N = 5.6×10−3 s−1. The corresponding

dispersion relation is evaluated in Table 4.8.
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(b) Rib = 1.0, N = 2.5× 10−2 s−1
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(d) Rib = 0.25, N = 1.25× 10−3 s−1
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(e) Rib = 0.16, N = 1.0× 10−2 s−1
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(f) Rib = 0.16, N = 1.0× 10−2 s−1

Figure 4.11: Evolution of vertical velocity at x = 0, z = 1.25, 2.5, 3.75, 5.0, 6.25, 7.5,

8.75 km for the stable environment and (a) (c) (e) shows the amplitude of the waves and

(b) (d) (f) shows the waves in different vertical positions.
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4.3.7 Energy balance

The following energy balance laws of the kinetic and potential energies

Ek =
1

2

∫
Ω

(u2 + w2)dV, and Ep =

∫
Ω

(zmax − z)θdV

satisfy
dEk

dt
=

∫
Ω

wθdV −KMϵ , ϵ =

∫
Ω

|∆u|2 + |∆w|2dV

and
dEp

dt
= −

∫
Ω

wθdV +KH
θmax − θmin

zmax − zmin

,

respectively (see, Winters & Young, 2009). These energy equations quantify the rate of

production of Ep, the conversion from Ep to Ek, and the rate of kinetic energy dissipation,

ϵ, thereby making a steady state energy balance.

An objective of this energy balance experiment is to verify whether the present method

demonstrates conservation of energy, which is one important aspect of efficient numerical

approaches for atmospheric modelling. The normalized energy plot in Figure 4.12 provides

a more quantitative measure on the accuracy of the simulation. The time evolution of Ep,

Ek and total energy, E = Ep+Ek have been reported in Figure 4.12. Clearly, the potential

energy, Ep, decreases with time as a result of the potential energy conversion into kinetic

energy, Ek, as well as the total energy, E remains approximately constant; moreover, this

is an advantage of this model that there is so little dissipation in this model. In Figure 4.12,

it is also clear that the conversion rate increases when eddy viscosity, KM , decreases as

well as potential energy and kinetic energy are the same for KM = 10, 5 and 1 m2s−1 at

t = 1007, 986 and 936 s, respectively. The result of the energy conservation in Figure

4.12 has an excellent agreement with the corresponding result reported by Carpenter et al.

(1990).

The energy curves in the case of a stable environment are shown in Figure 4.13. In this
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case, the normalized energy curves are presented. In each curve kinetic energy initially

increases and reaches its peak. At the same time, the potential energy decreases, and it is

converted to the kinetic energy. The total energy is also shown in Figure 4.13. This initial

situation is similar to the neutral environment where the warm bubble moves up without

any barrier. In the stable case, however, the warm bubble at first starts to rise, and after a

few risings, the upper strong stable layer resists its rising, and it starts to penetrate the upper

stable environment. Due to this penetration, internal waves are generated which transfer

energy to the free atmosphere. The energy curves presented in Figure 4.13 are correlated

with internal waves, which is an indication of energy transfer due to internal waves.

4.4 Summary

In this chapter, penetrative convection has been investigated for the neutrally stratified en-

vironment and stably stratified environment. The neutral case shows chaotic mixing at

smaller eddy viscosities; however, the main characteristics of the flow do not depend on

eddy viscosities. The chaotic mixing of this case is a representative of turbulent mixing.

In the stable case, stability kills turbulence and the internal waves appear in the stable at-

mosphere. Waves die out when the bulk Richardson number Rib is larger than the critical

value Rib = 0.25, and when Rib is less than the critical value, waves can propagate in

the upper layers in the atmosphere. In both cases, energy is conserved and in the stable

environment energy is transferred to the upper layer of the atmosphere due to the internal

waves.

In the next chapter, the same numerical model is implemented to investigate the pene-

tration of turbulence for a large horizontal area due to the differential heating of the earth’s

surface.
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Figure 4.12: Energy balance, showing that total energy (E) is conserved, where potential

energy (Ep) is converted to kinetic energy (Ek) for θ0 = 300 K, (a) KM = 10 m2s−1, (b)

KM = 5 m2s−1 and (c) KM = 1 m2s−1. Black dotted line represents E = 1.
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Figure 4.13: Energy curves for the stable environment where (a) N = 2.5 × 10−2 s−1,

(b) N = 1.25 × 10−2 s−1, (c) N = 1.12 × 10−2 s−1, (d) N = 1.0 × 10−2 s−1, (e)

N = 7.9× 10−3 s−1 and (f) N = 5.6× 10−3 s−1.



Chapter 5

Penetrative turbulence for a

differentially heated horizontal area

This chapter presents a form of the penetrative turbulence in a dry atmosphere, where a

turbulent convective air covers a large horizontal area due to the differential heating and

gradually incorporates a stable layer above it. This phenomenon is usually observed during

the daytime when the sun heats the earth’s surface. This surface heating leads to a convec-

tive motion, which also leads to significant turbulence that mixes the air within the above

stable layer for large surface heat flux. Due to this penetration, internal waves are generated

above the mixed layer in the atmosphere. To investigate this phenomenon, an urban heat

island (UHI) circulation is considered as a model for this form of penetrative turbulence in

the atmosphere. The design of this simulation is analogous to the simulation used by Nino

& Mori (2005), Dubois & Touzani (2009) and Zhang et al. (2014).
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Figure 5.1: Schematic representation of potential temperature profiles in an unstable atmo-

spheric boundary layer. The thick black horizontal line represents the urban heated area.

5.1 Model description

A stably stratified atmosphere is considered in which average potential temperature θ̄ in-

creases linearly with height i.e θ̄ = θ0 + βz, where θ0 is the potential temperature at the

surface and β is a constant vertical gradient of the potential temperature. The heating of

the surface owing to the sun in the morning generates a heat flux toward the air. The noc-

turnal stable boundary layer tends to diminish due to this surface heat flux as well as above

airflow. Finally, a mixed layer (h) is produced due to turbulence by means of high intensity

heat flux and mixed air flow which is shown in Fig. 5.1.

The domain of the present simulation is considered [−Lx

2
, Lx

2
]× [0, Lz] and the domain

of the heated region is considered [−l, l] which is shown in Figure 5.1. Consider the heat

island region [−l, l] in which the surface temperature is ∆θ higher than the surrounding ru-

ral region. Considering the ground surface is flat and the influence of the terrain is ignored,

the flow is uniform along the width, and the Coriolis force is negligible. The boundary
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conditions at the surface, z = 0, are: u = w = 0. The potential temperature perturbation θ

over the ground area (z = 0) is defined by

θ(x, t) = a

(
tanh

(
bx+ 1

ξ

)
− tanh

(
bx− 1

ξ

))
,

where a = 0.5, b = 1 and ξ = 0.01 are constants. At x = ±Lx/2, ∂θ
∂x

= 0 and at z = Lz,

∂θ
∂z

= 0.

Two types of boundary conditions are considered for velocity components in other faces

of the simulation domain. For Type I, there is no mass flux across the simulation domain

(u.n̂ = 0), and the shear stress vanishes in all other faces except the earth’s surface i.e. at

x = ±Lx/2, u = 0 and ∂w
∂x

= 0 and at z = Lz, w = 0 and ∂u
∂z

= 0. For Type II, open

boundary conditions have been chosen over all other faces at x = ±Lx/2, ∂u
∂x

= 0 and

∂w
∂x

= 0 and at z = Lz, ∂w
∂z

= 0 and ∂u
∂z

= 0. The boundary conditions of both cases are

shown in Figure 5.2 and 5.3. In Dubois & Touzani (2009), a local damping technique is

applied at the vertical boundaries; however, the present model can handle the simulation

without any artificially imposed layer along the boundaries.

This phenomenon can be modeled by combining only three external parameters: 1) the

characteristic diameter of the city: [−l km, l km], 2) the thermal stratification, characterized

by its buoyancy frequency: N =
(

gβ
θ0

)1/2
(s−1), and 3) the difference in surface heat flux

between the city and the rural areas: H0 (Wm−2).

The simulation domain is considered as 100 km in the horizontal direction, 2 km in

the vertical direction and 10 km or 20 km for the heated region. The heated region is

considered 10 km for numerical verification with Dubois & Touzani (2009), and 20 km for

all other simulations.
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Figure 5.2: Type I boundary conditions.
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Figure 5.3: Type II boundary conditions.

5.2 Results and Discussion

5.2.1 Dependence of flow characteristics for lower surface heat flux

This section deals with the steady flow of urban heat island circulation for lower surface

heat flux, and the comparison with the stationary solutions presented in Dubois & Touzani

(2009). They considered no-slip boundary conditions, a large elongated domain and a ther-

mal sponge layer added at the vertical boundaries. In the present model, Type I boundary

conditions are used for this comparison which can handle this model without any extra arti-

ficial settings near the vertical boundaries. For this comparison, length of the heated region

is considered as 10 km at the center of the domain.

The flow regime is highly dependent on surface heat flux. For the surface heat flux

H0 ≤ 115.74 Wm−2 in the heated region, the flow is fully developed within 2 h, and after
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that the flow regime becomes steady. To observe the flow regimes, different surface heat

fluxes are chosen as a factor of 2 which are analogous with the Rayleigh number as a factor

of 10. The steady flow for H0 = 28.93, 57.87 and 115.74 Wm−2 is compared with the

stationary solutions of Dubois & Touzani (2009) for Rayleigh number Ra ≤ 105.

From Figure 5.4 to 5.6, the profiles of horizontal velocity, vertical velocity and tem-

perature variation are presented which agree with Dubois & Touzani (2009) (D & T), and

these comparison results are presented in nondimensional form. For each figure, a solid

line, dashed line and dashed-dotted line represent the profiles for H0 = 28.93, 57.87 and

115.74 Wm−2, respectively. The temperature perturbation, vertical velocity and horizontal

velocity decay rapidly with respect to the elevation z, as shown in Figures 5.4a, 5.5a and

5.6a, respectively. The vertical propagation of perturbations is controlled by the vertical

stratification. In the horizontal direction, the vertical velocity vanishes rapidly outside the

heated region, which is observed in Figure 5.5b. The temperature perturbation and horizon-

tal velocity have similar behaviour along the horizontal direction and are shown in Figures

5.4b and 5.6b. In Figure 5.4a and 5.5a, it is clear that the mixed layer height appears

between z = 1.2 to 1.5 km, and this height is reduced when surface heat flux becomes

larger.

For the purpose of comparison, the nondimensionalized extreme values of the stationary

solutions such as horizontal velocity u, vertical velocity w, the temperature variation θ, the

vorticity ω = ∂w/∂x − ∂u/∂z and the Nusselt number Nu of both Dubois & Touzani

(2009) method (D & T method) and the present method are shown in Table 5.1. The

magnitude of the extreme values of u, w, ω and Nu are increased as a function of surface

heat flux. The Nusselt number is defined by

Nu = − 1

Lx

∫ Lx/2

−Lx/2

∂θ

∂z
(x, z = 0) dx

The value of this number measures the intensity of heat transfer and it increases with the
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Figure 5.4: Profiles of the temperature variation θ at (a) x = 0 km, (b) z = 0.5 km for

stationary solution.

surface heat flux.

In §4.3.4, convective velocity (w) was not influenced by eddy viscosity as well as the

Rayleigh number because there was no differential heating in the surface so that the surface

heat flux was constant all over the surface. However, in Table 5.1 the intensity of the vertical

velocity increases significantly as a linear relationship, and it is clear that the surface heat

flux is a limiting factor to accelerate convective velocity (w).

For better illustration, contour plots of horizontal velocity, vertical velocity, temper-

ature perturbation and vorticity are shown in Figure 5.7 and 5.8 for H0 = 28.93, 57.87

and 115.74 Wm−2. Contour plots of temperature perturbation and vorticity have a good

agreement with Dubois & Touzani (2009). Finally, the agreement between the present

simulations and the simulations presented by Dubois & Touzani (2009) is excellent.
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Figure 5.5: Profiles of the vertical velocity at (a) x = 0km (b) z = 0.5 km for stationary

solution.
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Figure 5.6: Profiles of the horizontal velocity at (a) x = 2.5 km, (b) z = 0.1 km for

stationary solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Contour plots of Horizontal velocity (left) and vertical velocity (right) for (a),

(b) H0 = 28.93 Wm−2, (c), (d) H0 = 57.87 Wm−2 and (e), (f) H0 = 115.74 Wm−2 for

stationary solution.



CHAPTER 5. PENETRATIVE TURBULENCE FOR A DIFFERENTIALLY HEATED HORIZONTAL AREA79

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Contour plots of potential temperature perturbation (left) and vorticity (right)

for (a) H0 = 28.93 Wm−2, (b) H0 = 57.87 Wm−2 and (c) H0 = 115.74 Wm−2 for

stationary solution.
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H0 28.93 Wm−2 57.87 Wm−2 115.74 Wm−2

Present D & T Present D & T Present D & T

θmin -0.023537 -0.024823 -0.064457 -0.071289 -0.167264 -0.166316

θmax 1.0 1.0 1.0 1.0 1.0 1.0

umin -0.118739 - -0.176090 - -0.179622 -

umax 0.118872 0.118887 0.176103 0.174844 0.179622 0.179054

wmin -0.030134 -0.030470 -0.037337 -0.039291 -0.085519 -0.079265

wmax 0.122229 0.125594 0.227591 0.228250 0.329467 0.322483

ωmin -1.958676 - -3.659784 - -5.345363 -

ωmax 1.957423 2.06900 3.659917 3.951325 5.345340 5.921375

Nu 0.147744 0.148605 0.326211 0.295132 0.689294 0.643594

Table 5.1: Comparison of extreme values with Dubois & Touzani (2009) (D & T) method.

5.2.2 Experimental investigation for penetrative convection

This section is designed in such a way that the flow regime of the present numerical simu-

lations agrees with the experimental results presented by Kimura (1975) that found the nice

circulation patterns of the urban heat island in the laboratory and numerical experiments.

Kimura (1975) observed from experiments that heat island circulation has two types of

flow regimes. When the differential heating is weak, the centre of the circulation is located

at the edges of the heat island and the up-draft prevails all over the heat island; this type

of circulation is called type E (Fig. 5.9a). On the other hand, when the differential heating

is strong, a strong narrow up-draft is concentrated above the centre of the island, which is

called type C (Fig. 5.9c).

In this present numerical experiment, the heat island region is [−10 km, 10km], and

the flow regime as well as location of the centre of the circulation depends on the initial
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Figure 5.9: (Left) Two types of flow regimes found in a laboratory experiment on the UHI

circulation (Kimura, 1975). (a) Type E is obtained for low differential heating, (c) Type

C is obtained for strong differential heating. (Right) Numerically experimented results (b)

H0 = 28.93 Wm−2, β = 1 K/km (d) H0 = 115.74 Wm−2, β = 10 K/km. The thick

black horizontal line represents the heat island.
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surface heat flux. When the surface heat flux increases, the center of the circulation moves

toward the center of the island. For heat flux, 28.93 Wm−2 ≤ H0 ≤ 115.74 Wm−2 the

solution is stationary. The simulations of stationary solutions are described in §5.2.1. For

a fixed initial heat flux, the heat intensity of the heat island depends on a constant vertical

potential temperature gradient. Similar numerical results are shown in Figure 5.9b and

5.9d. In Fig. 5.9b, initial surface heat flux 28.93 Wm−2, a constant vertical potential

temperature gradient β = 1 K/km and in Fig. 5.9d, initial surface heat flux 115.74 Wm−2,

β = 10 K/km, so the center of the circulation of Fig.5.9d is close to the center of the

island, and a strong updraft is observed. However, in Fig. 5.9b the center of the circulation

is far away from the center of the island and the up-draft prevails due to weak heating.

Finally, there is an excellent agreement between the present simulations and the exper-

imental results presented by Kimura (1975).

5.2.3 Dependence of flow patterns of boundary conditions

In this section, the flow patterns are observed for two types of boundary conditions which

are described in §5.1. To analyze the results of both types of boundary conditions, surface

heat flux H0 = 115.74 Wm−2 with a constant vertical gradient of potential temperature

β = 10 K/km is considered, and the presented results are taken at time t = 6.5 h when the

flow is fully generated.

The horizontal velocity profile for both types of boundary conditions is similar to the

heated region and the surrounding region. However, near the vertical boundaries horizontal

velocity becomes zero for Type I boundary condition. Moreover, in the case of the Type II

boundary condition, inward and outward flow exist in the boundary though it is far away

from the heated region since Type II is open boundary. The horizontal velocity profiles

for Type I and Type II boundary conditions are shown in Figure 5.10a and Figure 5.10b,
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respectively. The maximum inward horizontal velocities for Type I and Type II are 5.52

ms−1 and 5.86 ms−1, respectively. Since for the Type II boundary condition, the flow

can cross the vertical boundaries, so in Type II the magnitude of the horizontal velocity is

slightly larger than in Type I.

Vertical velocity is almost identical in both types of boundary conditions and the vertical

velocity is concentrated in the heated region. The maximum downward velocities for Type

I and Type II are 0.26 ms−1 and 0.27 ms−1, and the maximum upward velocities are 0.84

ms−1 and 0.96 ms−1, respectively. In order to observe the flow pattern more clearly, the

stream lines of both types are shown in Figure 5.10g and 5.10h. Since Type II is open

boundary conditions, air parcel can move in or move out through the boundaries except

the earth’s surface; however, for Type I flow is restricted by the boundaries. Due to these

two types of flow pattern, temperature perturbation profiles are different near the vertical

boundaries, which are shown in Figure 5.10e and 5.10f.

5.2.4 Dependence of flow patterns on surface heat flux (H0)

In order to study how a heat island circulation is affected by varying surface heat flux,

simulations have been conducted for 28.93 Wm−2 ≤ H0 ≤ 925.92 Wm−2. For H0 =

28.93, 57.87 and 115.74 Wm−2 flow patterns are discussed in §5.2.1 along with the com-

parison of Dubois & Touzani (2009). Figure 5.7 and 5.8 shows the horizontal velocity,

vertical velocity, potential temperature perturbation and vorticity field for smaller surface

heat flux. Flow characteristics for larger surface heat flux are analyzed in this section.

Figures 5.11, 5.12 and 5.13 show horizontal velocity, vertical velocity and the potential

temperature perturbation, respectively, for larger surface heat flux, H0 = 231.48, 462.96

and 925.92 Wm−2 at t = 6.5 h and β = 10 K/km. For H0 ≤ 115.74 Wm−2, the flow

pattern is steady and symmetric about the center of the heat island. For larger surface heat
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Figure 5.10: (a), (c), (e) and (g) for Type I and (b), (d), (f) and (h) for Type II boundary

conditions which are described in §5.1 at t = 6.5 h .
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flux (H0 ≥ 231.48 Wm−2) the flow pattern is not steady and symmetric. Urban heat island

circulation is a horizontally dominated circulation. Horizontal velocity is symmetric along

the center of the heat island for 28.93 ≤ H0 ≤ 231.48Wm−2. ForH0 ≥ 462.96Wm−2 the

symmetry of the horizontal velocity is broken and turbulent flow is visible in heat island

and its vicinity. For 28.93 ≤ H0 ≤ 231.48Wm−2, vertical velocity is concentrated only on

the heat island region (Fig. 5.7(right) and 5.12a). On the other hand, for larger surface heat

flux, H0 ≥ 231.48 Wm−2 vertical velocity appears throughout the urban and rural region

(Fig. 5.12b and 5.12c). The thermal plume cannot develop in a stratified medium. In Figure

5.8(left) and 5.13, the length of the developed thermal plume decreases as surface heat

flux increases and a thermal sink characterized by the negative temperature perturbation is

observed for the effect of vertical stratification.

The large UHI heat intensity causes stronger convergence and divergence wind over

the urban area and both the horizontal and vertical wind speeds with the UHI intensity.

The outward wind speed is much higher than the inward wind speed in the convective

boundary layer and the vertically upward wind speed is higher than the downward wind

speed. The maximum outward wind speeds for H0 = 231.48, 462.96 and 925.92 W m−2

are 5.19, 6.78 and 8.21 m s−1, respectively, whereas the maximum inward wind speeds

are 3.37, 4.43 and 5.36 m s−1, respectively. Similarly, the maximum upward wind speeds

for H0 = 231.48, 462.96 and 925.92 W m−2 are 1.08, 1.16 and 1.31 m s−1, respectively,

whereas the maximum downward wind speeds are 0.49, 0.73 and 0.85 m s−1, respectively.

The required minimum grid size corresponding surface heat flux of these simulations

are shown in Table 5.2. From this Table it is observed that a large grid size is required for

the simulation of a large surface heat flux.
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(a) H0 = 231.48 Wm−2

(b) H0 = 462.96 Wm−2

(c) H0 = 925.92 Wm−2

Figure 5.11: Horizontal velocity for (a) H0 = 231.48 Wm−2, (b) H0 = 462.96 Wm−2 and

(c) H0 = 925.92 Wm−2 at t = 6.5 h, β = 10 K/km using Type II boundary conditions.
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(a) H0 = 231.48 Wm−2

(b) H0 = 462.96 Wm−2

(c) H0 = 925.92 Wm−2

Figure 5.12: Vertical velocity for (a) H0 = 231.48 Wm−2, (b) H0 = 462.96 Wm−2 and (c)

H0 = 925.92 Wm−2 at t = 6.5 h, β = 10 K/km using Type II boundary conditions.
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(a) H0 = 231.48 Wm−2

(b) H0 = 462.96 Wm−2

(c) H0 = 925.92 Wm−2

Figure 5.13: Temperature perturbation for (a) H0 = 231.48 Wm−2, (b) H0 =

462.96 Wm−2 and (c) H0 = 925.92 Wm−2 at t = 6.5 h, β = 10 K/km using Type II

boundary conditions.
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H0 (Wm−2) Minimum grid size

28.93 65× 33

57.87 65× 65

115.74 129× 65

231.48 257× 129

462.96 513× 257

925.92 1025× 513

Table 5.2: Minimum grid size corresponding to the surface heat flux for β = 10 K/km.

5.2.5 Coherent turbulent structure

In this section, vorticity is depicted to analyze the coherent structure of turbulent flow.

Figure 5.14 shows how coherent vorticities decrease in size and increase in number while

surface heat flux increases. This changes shows that the flow is laminar for 28.93 Wm−2 ≤

H0 ≤ 115.74Wm−2, laminar-turbulent transition for 231.48Wm−2 ≤ H0 ≤ 462.96Wm−2,

and fully turbulent for H0 = 925.92 Wm−2. In Figure 5.15, the vorticity field shows eddy

turnover time at (a) t = 0.5 h, (b) t = 1 h, (c) t = 1.5 h, (d) t = 2 h, (e) t = 2.5 h

and (f) t = 3 h where H0 = 925.92 Wm−2, β = 10 K/km. Figures 5.15a and 5.15b

shows the initial turbulent eddies are created in the urban-rural interface, and they turn-

over in this interface. After a time eddies are created in the whole urban area (Fig. 5.15c

- 5.15d) and the turbulent mixing spreaded near the rural areas (Fig. 5.15e - 5.15f). The

turbulent mixing also depends on the thermal stratification which is characterized by a

constant vertical temperature gradient β. The vorticity for β = 10, 2 and 1 K/km at

t = 6.5 h, H0 = 925.92 Wm−2 are shown in Figure 5.16. These figures show the coherent

vorticities decrease in size and increase in number while β increases.
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(a) H0 = 28.93 Wm−2 (b) H0 = 57.87 Wm−2

(c) H0 = 115.74 Wm−2 (d) H0 = 231.48 Wm−2

(e) H0 = 462.96 Wm−2 (f) H0 = 925.92 Wm−2

Figure 5.14: The vorticity field at t = 6.5 h for β = 10 K/km and (a) H0 = 28.93 Wm−2,

(b) H0 = 57.87 Wm−2, (c) H0 = 115.74 Wm−2, (d) H0 = 231.48 Wm−2, (e) H0 =

462.96 Wm−2, (f) H0 = 925.92 Wm−2.
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(a) t = 0.5 h (b) t = 1 h

(c) t = 1.5 h (d) t = 2 h

(e) t = 2.5 h (f) t = 3 h

Figure 5.15: The vorticity field for H0 = 925.92 Wm−2, β = 10 K/km at (a) t = 0.5 h,

(b) t = 1 h, (c) t = 1.5 h, (d) t = 2 h, (e) t = 2.5 h and (f) t = 3 h.
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(a) β = 10 K/km (b) β = 2 K/km

(c) β = 1 K/km

Figure 5.16: The vorticity for (a) β = 10 K/km, (b) β = 2 K/km and (c) β = 1 K/km at

t = 6.5 h, H0 = 925.92 Wm−2.
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5.2.6 Profiles of potential temperature

Vertical profiles of potential temperature are an important characteristic to understand the

mixed layer height of the atmospheric boundary layer (ABL). Due to the turbulent mixing,

perturbed potential temperature fluctuates in the ABL. At first, the fluctuations of the poten-

tial temperature are observed using a time series. In Figure 5.17, the temperature time series

from the center of the heat island at four different heights, z = 0.0625, 0.125, 0.25 and 0.5 km

are presented. For comparison, the results of two different initial heat flux,H0 = 462.96Wm−2

[Fig. 5.17 (left)] and H0 = 925.92 Wm−2 [Fig. 5.17 (right)] are shown. For each

position, the temperature perturbation of H0 = 925.92 Wm−2 is more fluctuated than

H0 = 462.96 Wm−2. Fluctuations also depend on the height. Fluctuations of the lower

height are larger than the upper height.

The profile of the mean temperature perturbation Θ(z) are calculated from the time

series θi(z) by

Θ(z) =
1

N

N∑
i=1

θi(z).

The temperature can be further characterized by calculating the profile σ(z) of the standard

deviation. The dimension of these quantities is kelvin and are defined as

σ(z) =

(
1

N

N∑
i=1

(θi(z)−Θ(z))2
)1/2

.

For H0 = 462.96 Wm−2 and H0 = 925.92 Wm−2, the standard deviations of the heights

z = 0.0625, 0.125, 0.25 and 0.5 km are 1.645, 1.295, 0.923 and 0.811 K, and 1.595, 1.485,

1.050 and 0.633 K, respectively. The total potential temperature for both H0 = 462.96

Wm−2 and H0 = 925.92 Wm−2 are shown in Figure 5.18. The mixed layer height for

H0 = 462.96 Wm−2 and H0 = 925.92 Wm−2 are about 0.8 km and 0.7 km, respectively,

and the inversion layer appears about 0.8 − 1.0 km and 0.7 − 0.8 km, respectively. The

mixed layer height decreases as surface heat flux increases.
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Figure 5.17: Temperature time series from the center of the heat island at four different

heights (z) for H0 = 462.96 Wm−2 (left) and H0 = 925.92 Wm−2 (right).
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Figure 5.18: Average potential temperature along the center of the heat island for (a) H0 =

462.96 Wm−2 and (b) H0 = 925.92 Wm−2 at t ∈ [3 h, 6.5 h].

5.2.7 Internal wave generation

In this section, the internal waves due to penetrative convection are investigated in the sta-

ble atmosphere which is overlying the mixed layer during the daytime. Vertical velocity

is fluctuated inside the mixed layer and this fluctuation penetrates the upper stable atmo-

sphere which creates internal waves in the stable atmosphere. In Figure 5.19a and 5.19c,

the evolution of vertical velocity at different heights of the center of the heat island is pre-

sented for H0 = 462.96 Wm−2 and H0 = 925.92 Wm−2, respectively. Vertical velocity

is fluctuated inside the mixed layer and penetrates the upper stable layer, which creates

internal waves in the free atmosphere. A better illustration of the internal waves generated

by penetrative convection is shown in Figure 5.19b and 5.19d for H0 = 462.96 Wm−2 and

H0 = 925.92 Wm−2, respectively.
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0 2 4 6

0

0.5

1

1.5

2

time, t (h)

h
e
i
g
h
t
 
(
k
m
)

(c) H0 = 925.92 Wm−2

0 2 4 6
−0.1

−0.05

0

0.05

0.1

time, t (h)

w
 (

m
s

−
1
)

(d) H0 = 925.92 Wm−2, z = 1.5 km

Figure 5.19: Generation of internal waves. (Left) Evolution of vertical velocity at different

heights along the center of the heat island. (Right) Internal wave at height z = 1.5 km

where (a) (b) H0 = 462.96 Wm−2 and (c) (d) H0 = 925.92 Wm−2.
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5.2.8 Energy balance

The normalized energy curves are presented in this section. Energy curves of the case

of surface heat fluxes, H0 = 28.93, 57.87, 115.74, 231.48, 462.96 and 925.92 Wm−2 are

shown in Figure 5.20. In each curve, kinetic energy initially increases to peak and carry

vertically away from the mixed layer by the internal waves. Since the earth’s surface is

continuously being heated during the daytime, the system gains energy as well. As a

result, potential energy also increases upto a certain time and it reaches a peak, and in

time it is converted to the kinetic energy. The normalized kinetic and potential energy

curves of H0 = 28.93, 57.87, 115.74, 231.48, 462.96, and 925.92 Wm−2 are first intersect

at 2.13, 2.97, 3.36, 4.82, 5.66, 5.97 h, respectively. The total energy curve is also shown

in Figure 5.20. After around two hours, the heat island circulation is fully generated then

the total energy is balanced for H0 ≤ 231.48 Wm−2. For the larger surface heat flux

462.96 Wm−2, the conversion of potential energy is higher than the case of small surface

heat flux after reaching the peak.

5.3 Summary

Penetrative turbulence has been investigated for a differentially heated large horizontal area

for 28.93 Wm−2 ≤ H0 ≤ 925.92 Wm−2 . Flow regimes are strongly dependent on the

difference of surface heat flux between the city and the rural surroundings. Analyzing

the coherent vorticities, it can be concluded that the flow is laminar for 28.93 Wm−2 ≤

H0 ≤ 115.74 Wm−2, laminar-turbulent transition for H0 = 231.48 − 462.96 Wm−2, and

fully turbulent for H0 = 925.92 Wm−2. Flow regimes are also strongly dependent on

the thermal stratification. The flow becomes more turbulent for a large constant vertical

potential temperature gradient. Flow regimes have been simulated without any artificial
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Figure 5.20: Energy curves for (a) H0 = 28.93 Wm−2, (b) H0 = 57.87 Wm−2, (c) H0 =

115.74 Wm−2, (d) H0 = 231.48 Wm−2, (e) H0 = 462.96 Wm−2 and (f) 925.92 Wm−2 at

β = 10 K/km and t ∈ [0, 10 h].
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treatment at the boundaries, and two types of boundary conditions and their effects have

been described. For the turbulent mixing, a time series of potential temperature has been

investigated and the vertical profiles of potential temperature have been depicted in which

mixed layer heights appear at that place where the flow is turbulent. Due to the penetration

of turbulence in the stable layer, internal waves appear in the stable atmosphere which

transfer energy from ABL to the free atmosphere.

In the next chapter, the present research is summarized, and the future research direc-

tions are described, where this present work can be extended and implemented.



Chapter 6

Concluding remarks and future work

In this final chapter, the results of this thesis are reviewed and an outline is given for some

future directions that can extend the ideas presented in this thesis.

6.1 Conclusion

The main conclusions can be divided into two parts: the development of a numerical and

mathematical model, and the investigation of penetrative turbulence with this model.

A novel approach to filtering mesoscale dynamics based on Deslauriers-Dubac wavelet

is studied in this thesis. A novel numerical methodology is developed to investigate nonhy-

drostatic mesoscale atmospheric phenomena where partial derivatives have been discretized

with a weighted residual collocation method that is based on the interpolating scaling func-

tions and wavelets, and a fully implicit time integration scheme has been studied. The nu-

merical model has been validated through the solution of the advection-diffusion equation,

which exhibits no visible oscillation. We have published this computational methodology

for two-dimensional fluid flow (see, Alam et al., 2014). In the present model, atmospheric

phenomena have been investigated without using any artificial treatment near the bound-

100
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aries. All numerical simulations support large CFL numbers.

In Chapter 4 and 5, the developed numerical model for investigating nonhydrostatic at-

mospheric phenomena has been implemented to investigate penetrative turbulence, which

is validated through benchmark simulations. This atmospheric phenomenon has been in-

vestigated in two ways. In Chapter 4, penetrative turbulence has been investigated for a

relatively isolated buoyant element, and in Chapter 5, it has been investigated for a dif-

ferentially heated large horizontal area. In Chapter 4, it has been observed that the con-

vective velocity of the flow does not depend on eddy viscosity. However, in Chapter 5

it has been observed that the convective velocity of the flow depends on the difference

of surface heat flux between the urban and the rural areas. It has been concluded that

the flow is stationary, laminar, symmetric, and no turbulent effect is visible for low sur-

face heat flux (28.93 Wm−2 ≤ H0 ≤ 115.74 Wm−2), laminar-turbulent transition for

H0 = 231.48 − 462.96 Wm−2, and for large surface heat flux (H0 = 925.92 Wm−2), air-

flow shows vertical turbulent mixing in the UHI region and then spreads in the rural areas.

This turbulent flow has been observed from the coherent structure of vorticities, and mixed

layer height has been observed in the turbulent region. On the other hand, thermal bubble

rising in a neutrally stratified atmosphere exhibits chaotic mixing which is a representa-

tive of turbulent mixing. Furthermore, the thermal bubble placed in the stable atmosphere

cannot exhibit turbulence due to the stability of the atmosphere, which kills turbulence.

Another important investigation in this study is the conservation of energy. Excellent

energy conservation has been observed with the simulation of a penetrative convection

flow for a neutrally stratified environment. Energy conservation has also been observed

for a stably stratified environment and the energy curves are correlated with internal waves

in which a portion of the kinetic energy has been transferred to the upper layer of the

atmosphere due to internal waves.

Finally, the generation of internal waves has been investigated for the stable atmo-
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sphere, which appears to be due to the penetrative convection for both forms of penetrative

turbulence. A warm thermal perturbation in the stable atmosphere overshoots the air parcel

in the atmosphere, which generates internal waves and, according to linear theory, those

waves are characterized by evanescent wave. These waves are damping oscillatory and the

damping factor depends on the buoyancy frequency. These internal waves die out when the

bulk Richardson number Rib is larger than the critical value Rib = 0.25, and when Rib is

less than the critical value, waves can propagate in the upper layers in the atmosphere.

Note that I have compromised the three-dimensional simulation with a two-dimensional

one due to the high computational cost of 3D simulations. The development of 3D code is in

progress, with parallel programming. Moreover, the presented two dimensional simulations

have excellent agreement with benchmark simulations in which energy containing large

eddies is captured.

6.2 Future research directions

This thesis provides potential feedback on constructing fast multiresolution algorithms for

simulating nonhydrostatic mesoscale flows in a dry atmosphere.The next extension of this

present work is to extend the discretization methodology to three-dimensional fluid flows as

well as to extend it for moist atmospheric flow in any complex terrain and large scale atmo-

spheric circulation. However, an advanced data structure, a parallel computing algorithm

and a multilevel solution methodology are needed for three-dimensional simulations.
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