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Abstract

This work describes the synthesis and some properties of a new class of

cyclic naphthol which are gous to the better-known
and i 1es. These new are of interest for their
potential ies. The i , their derivatives and

homologues, which are the subjects of this thesis, offer some potential advantages
over the calixarenes and resorcinarenes. For example, the presence of the fused

second aromatic ring in each naphthalene group (the “upper” rim) can allow for the

of many functionali i which could enhance potential

receptor abilities. F , fixed ions of most calixr are
dissymmetric and have potential applications as chiral hosts, or chiral ligands.

The prototype calixnaphthalenes 8, 10 and 11 were synthesized by the direct

of 1-naphthol and under basic conditions. A limited
mechanistic study indicates that formation of these compounds occurs via a
“pseudocalixnaphthalene” pathway. VT 'H NMR analyses show that 8, 10 and 11

are cor i flexible at above -60 °C. However, the

corresponding tetrabenzoates 8a, 10a and 11a, and tetraacetates 8b, 10b and
11b exist preferentiaily in the “partial cone” and “1,3-alternate” conformations at
-50 °C. The coalescence temperatures of these esters are in the temperature

range -10to 0 °C. Simple molecular modeling calculations indicate that these same
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two conformations are also the two lowest-energy conformations.

A water-soluble calix{4]naphthalene (20) was synthesized from 1,8-
naphthalene sultone (6) under basic conditions. Under acidic conditions, 6 formed
only oxycalix{4]naphthalene (30) and linear oligomeric compounds 28 and 29.

Synthesis of calixnaphthalene 35 was effected by a self-condensation
reaction of 2-hydroxy-3-hydroxymethyinaphthalene (36) under TFA catalysis.
Calixnaphthalene 35 is promising as a supramolecular building block as it shows

a coalescence temperature of -20 °C, and exists in a “cone” conformation.

Dil ix{4Jnaphtt 46 was ized from 3-hydroxy-2-naphthoic
acid (7a) via a convergent synthetic procedure. VT 'H NMR studies suggest that
in CDCl, solution the preferred conformation of 46 at -60 °C is “1,2-alternate”. X-ray
diffraction of 46 shows that it exists as a “1,2-alternate” or centrosymmetric

conformation in the solid state.

The calix[ 62 and dit i rthalene 70 were both
synthesized from the p 2,3-dihy ynap (7b) by g
syntheses. Both 62 and 70 have rigid ions at ambient

Finally, a novel tethered cali: 95 which a
“cone”  cor ion was  syr i is of other

calixnaphthalenes from 1,5- and 1,3-dihydroxynaphthalene and synthesis of a

functionali i i were not
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Chapter 1.

Introduction

1.1.  Introduction.

For over 150 years, organic chemists have been predominantly
concerned with the nature of the covalent bond in organic molecules. However,
it has long been known that non-covalent bonding is extremely important,
especially in biological systems. The fascinating properties of enzymes,
antibodies, membranes and their receptors, carriers, and channels, depend
upon the controlled and efficient use of weak intermolecular interactions.

and material port, high catalytic activity, fast

conductance of electrical impulses from the brain to nerve terminals, and

1 all rely on the i ion of and

assemblies held together by noncovalent bonding."

Many organic chemists have been inspired by studying biochemical
phenomena. Much effort is devoted to the design and synthesis of chemical
systems capable ¢f performing specific functions such as enzyme mimics. For
example, Breslow's group? has shown that cyclodextrin derivatives can catalyze
the hydrolysis of certain esters. Sanders® has found that macrocyclic

porphyrins can enhance the rate and stereoselectivity of some Diels-Alder
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reactions. As a final example, Cram has designed a partial transacylase mimic
from spherand compounds.*

Organic chemists also try to create novel organic compounds, which will

have wide applications in industry. Typical examples include: (1) efficient

homogenous solution @) and sensors having

unprecedented sensitivities; (3) i i 4) ic devices for

informaation and energy storage and transfer; (5) polymers and mesophases with
unusual electro-optical properties; and (6) tools for the mapping of the human

genome and for investigating the origin of protein folding.' The understanding,

exploration and utilization of 1a involving lent bond
interactions constitute a new area of chemistry known as supramolecular

chemistry.

The cc 1es of istry are the discovery of crown
ethers by Peterson,” and their elaboration to spherands by Cram,® and to
cryptands by Lehn.” Other supramolecular compounds involving clefts,
cyclophanes, and cyclodextrins are being currently investigated by many
11

research groups.

In the 1970s, Gutsche' reinvestigated the condensation of para-

phenols with He obtained cycli , hexa-, and
octamers, which were named “calix{n]arenes” as typified by structure 1. Inthe

term calix{njarene, “calix" describes the cup-like shape or conformation of this



8%
macrocyclic array, “arene” indicates the presence of aryl components, and the
numeral "n” indicates the number of aromatic units.

Another class of cyclic tet made from inol and de

have been developed by Hogberg' and Cram." These cyclic tetramers as
depicted by stucture 2, are named as calix{4]resorcinarenes, although they do

not have the same shape with calixarene 1.

R

Ry=tent-Huy R1=CHj, Ph.
Ro=H Ro=]
1 2
1.2, is of Cali and

1.2.1. Synthesis of Calixarenes.

The origin of the reaction which forms calixarenes can be traced back to
von Baeyer's discovery of phenol-formaldehyde condensation. In 1872, Baeyer
published a paper '® describing this condensation reaction. In 1902, Leo
Baekeland filed for a patent '® describing the preparation, based on Baeyer's

discovery, of a material he called “Bakelite”. The structure of Bakelite remained
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essentially unknown until the 1940s when  Zinke realized that in the Bakelite
process, phenol reacts at both of the ortho- and para-positions to form highly
cross-linked polymers in which each phenolic residue is attached to three other
phenolic residues. " Zinke therefore carried out a reaction of a para-substituted
phenol with formaldehyde under base conditions and obtained a more tractable
product to which he assigned a cyclic tetrameric structure, 1.

The significance of Zinke's compound was not realized until Gutsche
proposed to use it as a biomimic.' In order to obtain synthetically useful
methods, Gutsche modified the original reaction procedures. Depending on the
amount of base catalyst, reaction time and temperature, the cyclic tetra-, hexa-
or octamer can be obtained thiough the direct condensation of p-tent-butylphenol
with formaldehyde in a one-pot syntheses. Calix{n]arenes with an odd number
of p-tert-butylphenol units (n=5 or 7) have also been prepared but the yields are

distinctly lower. The higher members of the family, where n=9-16, have been

isolated by high f liquid phy (HPLC).”
Scheme 1.1.
[
HCHO
NaOH CH,
Xylenes
OH )
1
R= tortbulyl
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Calixarenes bearing different substituents in the para-positions cannot be
obtained by one-pot procedures. The first such compounds were prepared ina
stepwise convergent manner,"™ as depicted in Scheme 1.2. Starting with an

Scheme 1.2.

ol ol o

2-bromo-4-alkylphenol, a sequence of alternating hydroxymethylation and
condensation steps led to a linear oligomer with a hydroxymethyl group at one
end. After dehalogenation (deprotection of the 2-position at the other end),
cyclization could be achieved under high dilution conditions.

The fragment condensation procedure (Scheme 1.3.) is simple and more

flexible with respect to the possible substituents on the aromatic rings.



Scheme 1.3.

OH OH OH OH OH
¢l
sacacRgeation
+ —_—
Ry R 3 R4
Suchap was inthe is of various [4]arenes,

where the yields in the cyclization step may reach 30-35%.'

Bridged calix[4]arenes in which two opposite phenolic units are linked
by an aliphatic chain have analogously been synthesized by reaction of
bisbromomethylated phenols with suitable diphenols such as o,w-(4)-hydroxy-
phenyialkanes (Scheme 1.4).

‘Scheme 1.4.

OH oH OH

VI
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In addition to acid- or b induced conc ion of phenol
with formaldehyde, Chasar has found that some phenols react with
paraformaldehyde upon heating for 12 h at 175 °C to form cyclic tetramers
(Scheme 1.5)."

Scheme 1.5.

OH R

O (CHO)n
—_—
0 1759C

'OH
R= tert-butyl
Resorcinols are more reactive than p-alkyl phenols. Acid-catalysed

condensation at temperatures ranging from ambient to that of boiling ethanol

with

y other than which, due to its high reactivity,
probably also substitutes in the C-2 position leads to cyclic tetramers known as
calix[4]resorcinarenes in good to excellent yields." In contrast to phenol-derived

calix[4]arenes, larger cyclic oligomers are rarely observed (Scheme 1.6).



Scheme 1.6.

H OH
°\©/ fCHO Ho. OH
RS oo T
EtOH, HCI CHR

Realkyl or aryl

n=4

1.2.2. Synthesis of homocalixarenes.

To alter the cavity size and the conformations of the macrocycle, the
methylene bridge can be replaced with longer carbon chains. Several routes as
shown below lead to ethylene-bridged macrocyclic aromatic compounds, also
known as [2,]eyclophanes.

1.2.2a. t Elimit

The [2,2]paracyclophane can be obtained through a 1,6-Hofmann
elimination procedure. A quaternary ammonium hydroxide is cleaved through

Scheme 1.7.

N* (CH3)Br HN* (CHyOH

- == O

CHy CHy
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pyrolysis to produce a polyene intermediate, which cyclizes to give

[2,2Jparacyclophanes via an apparent [6+6] process.?

1.2.2.b. Miiller-R6 i Cycli .
Using a modified Wurtz reaction, cr Milller-Réscheisen cyclization
procedure, Jenny et al.?' were able to obtain higher oligomeric [2,Jcyclophanes

from 1,3-bis(bi with sodium (TPE) in THF

at -80 °C, as depicted in Scheme 1.8.

Q Na, TPE
—_

BiICHy’ CHyr  -80°C

Scheme 1.8.

n=2-10

1.2.2.c. Wittig Reaction Procedure.

A one-pot Wittig reaction procedure (Scheme 1.9) was reported to
produce a cyclic tetiamer with a double bond bridge, which was hydrogenated to
give an a/thomocalixarene.?®

1.2.2.d. Dithi i i Pr

A general synthetic route to [2.2]cy! uses dithia[3.

as key i i . Suchi It can be subjected directly to

photochemical sulphur extrusion,?® or be oxir:2d to sulphone compounds
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Scheme 1.9.

CHO CHLP Tyl Q
@ " ¢ Bou O
e O
HO CHP" Pyl X Q

which are pyrolyzed to the same [2.2]cyclophane.?* From the dithia-[3.3]-
cyclophane intermediate, a second choice involves carrying out a Wittig
rearrangement followed by Raney-Ni reduction.?® A third choice involves a
Stevens rearrangement followed by Raney Ni reduction.?® Scheme 1.10 outlines

these procedures.

Scheme 1.10.
SMo
cHbe FsH ¥ 1. (MO CHIBF)
KOH 2. NaH
* o
BoH 1 BuLi
2.Mel
CHalir CHaSH S

0] hv | EO)P

S0,
Heal Rancy Ni/H2
—_—
or v
505 or Pd /iy



A

1.2.2.e. Samarium(ll) lodid i F ion F

Selt-coupling reaction of 1,3-bi: )l ne in the of
five equivalents of Sml, in THF gave [2;Jmetacyclophane in 10% yield.”

Scheme 1.11.

g
Qo= OO O

For longer carbon chain-bridged cyclophanes, the coupling reaction of a
dianion with a dihalide is a common approach. This method however suffers

from low yields. For example, a meta cyclophane was obtained in only 1% yield

by the reaction of the dianion of 2,6-dimethylanisole with the o, w-di ide.?

Scheme 1.12.

J

+ 0 BCHEE  —
e B,
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It should be pointed out that simple calixarenes have had only a few
applications in supramolecular chemistry to date. However, a major advantage
of these calixarenes is that they are easily amenable to chemical modification.
Chemical modification can occur at either the lower rim, which contains the
phenolic hydroxyl groups or the upper rim, which is the aromatic nucleus.

The lower rim is easily derivatized to ethers or esters. Reihoudt®®
modified the fower rim by a polyethylene oxide bridge to form 1,2- and 1,3-
calix[4]-bis-crowns, double calix[4]arenes and double calixcrowns. Reinhoudt®

joined the hydroxy group by another aromatic tether to form calixspherands.

Shinkai *' used a lower rim functionalization app toi chirality by

treating p-sulph i 1es with (S)-1-bi 2
The upperrim can be modified by electrophilic substitution. Shinkai®
introduced a sulphonic acid group at the upper rim to afford water-soluble

Bohmer * bridged cali by i ing an aliphatic

tether at the upper rim. Cram > modified both the lower and upper rim of

to produce cavi and

14. C i P of ¢
The conformationally mobile nature of calixarenes and the ability of

chemists to capture and “freeze”, or conformationally lock the system into one or
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another of them, are particularly fascinating aspects of calixarene chemistry.

Shaping the basket plays a potentially vital role in the design of calixarenes as

enzyme mimics, for host-guest it depend on ity in shape |
as well as functionality.

X-ray crystallography has shown that p-tert-butylcalix[4]arene exists in the
“calix" or "cone" conformation in the crystalline state as Gutsche predicted.® In
solution, three other conformations exist besides the cone conformation. These
are named “partial cone”, “1,2-alternate” and "1,3-alternate” and are shown in

Figure 1.1.

Fig.1.1. Four Possible C: if of p-tert- ix[4larene:

OR

or or OR

Partial Cone

1,2-Alternate 1,3-Alternate
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The four are il ible at ambient

Evidence for the dependence of the rate of the interconversion among the four
possible sterecisomers on the nature of the solvent has been found. Gutsche *
showed that in nonpolar solvents such as toluene, chioroform and carbon
disulphide, the barrier for interconversion is higher than that in polar solvents.

For example, the i ion barriers of p-tert-butylcalix[4]) is 14.7 kcal/mol in

chloroform, while it is 11.8 kcal/mol in pyridine. Pochini ¥ found that a

calixarene derivative stays in the “cone” conformation at room temperature in

but it is i ly flexible in methanol-d,. The solvent
dependence of interconversion barriers is attributed to the disruption

of the intramolecular hydrogen bonding that is a major force for maintaining the

in the “cone” cor

Since the pathway for cor i i ion in cali involves the

rotation of the aryl groups in a direction that brings the hydroxy groups throvgh

the annulus of the macrocyclic ring, replacing the hydroxy groups with larger

moieties could fix the c¢ ion. The most ient way to curtail the
ion is to convert cali to their ethers or esters.
Rizzoli*® found the of p-tert- ix[4] is fixed in the “partial

cone” conformation while McKervey * found that most of the ether derivatives of
p-tert-butylcalixarene are fixed in cone conformations. Shinkai “° found that the

metal cation present in the base strongly affects the conformational distribution
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dodecy yde, i de or
ferrocenecarboxaldehyde.*? In some cases, especially after short reaction times,
the ctt or cctisomer has been isolated (while the tct and tttisomers have been
observed only in small amounts). One driving force for the formation of the cyclic
tetramer and of the ccc isomer *? is the possibility of intramolecular hydrogen
bonding between the resorcinol units. Therefore, the synthesis also works with

2-alkylresorcinols, but not with hydrogen-bond acceptors such as COOR or NO,

in the C-2 position.

Fig.1.2. Four Possi i of Calix[4] i (2.




15. Ci ion Properties of Cali;

Undoubtedly the most interesting property of calixarenes is their ability
to function as molecular baskets and bind ionic and neutral guests in supramo-
lecular arrays. Like crown ethers, calixarenes are excellent receptors and
carriers for metal cations. Calixarenes possessing ether or amide functions
have as high as 10,000 to 1 selectivity for Na* over K*.* A dicarboxylic acid
calixcrown synthesized by Ungaro*® shows selectivity of complexation with
divalent cations such as calcium. These selectivities in complexation abilities
have practical applicaticns (see Section 1.6).

Derivatized calixarenes are also anion receptors. An upper rim
functionalised calixarene with a transition metal designed by Beer *¢ can bind

halide, nitrate, hydrosulphate and dicarboxylate anion species.

Cali can also form with neutral The

inclusion and expression of a neutral guest in the molecular cavity of the p-tert-
butyl tetramer, were foreseen by Gutsche.'® Similar inclusion complexes have
been found with benzene, xylene, anisole and pyridine.'™ By X-ray diffraction,
Atwood *” has demonstrated an example of inclusion complexation of water by a

P ix[4) . A water ies the distorted conical

cavity with its two hydrogen atoms directed toward the two nearest juxtaposed
benzene rings. Structures of this type may provide important clues about how

water molecules interact with aromatic moieties in biological systems. The p-tert-



butyl hexamer forms p with and and although the

Pp-tert-butyl octamer also forms a crystalline complex with chloroform, it is much
less stable than the complex that is formed with the hexamer. One example of
an inclusion complex with complete C,, symmetry is the 1:1 clathrate of a
calix[4]arene tetracarbonate and acetonitrile. The inclusion of neutral organic
guests in p-tert-butylcalixarene in solution in the form of 1:1 complexes is found
with water as solvent. Shinkai*® has interpreted electronic spectral changes in

Phenol Blue in water ining a p- in terms of specific

complex formation within the cavity of the latter with the hydroxy groups

stabilizing the charge-separated excited state of the guest. Cram* found

can “imprison” The prisoner can be
chemically modified by using light waves and small reagents which are capable
of passing through the holes in the cage when it remains within the walls of its
highly secure molecular “prison”. More importantly, once the “prisoner” was
secured, it could be transformed within the inner phase into some compounds
previously unobtainable because of their high reactivity. Since the transformed
prisoner had no cell mates and few visitors were allowed in or out, it could exist
in solitary confinement having nothing to react with, and therefore be completely
stable. Cram was thus able to produce underivatized cyclobutadiene, to oxidize
hydroquinone to quinone and reduce quinone to hydroguinone, and to

selectively alkylate phenol derivatives.



1.6. ( ications of C

Due to their unusual geometries, their high melting points, their high
thermal and chemical stabilities, their low solubilities in many solvents and their
low toxicity, calixarenes are capable of many actual and potential industrial

Most of the ications of calixarenes are related to their

complexational properties with ionic and neutral molecules. Izatt * utilized
calixarenes to recover cesium ion from an agueous solution of a mixture of ions
found in a solution of nuclear waste materials. Shinkai has at least six patents to
describe the extraction of UO,? from seawater.'*'® Calixarenes can form

kinetically stable complexes for diagnostic or other medical applications.®' lon-

and io itive field-effect i for Na*, K*, and Cs*
have been described, and the incorporation of soft donor groups (containing S
and/or N functions) has led also to sensors for heavy- and transition metals (Ag*,
Cu?, Cd*, Hg*, Pb®).% The ability of calixarenes to form complexes with
neutral molecules has been used by Perrin and Vicens * to separate isomeric
xylenes by using p-tert-butylcalix[8]arene as a stationary phase in gas-solid
chromatography. Calixarenes can also remove chloroform from drinking
water.'® Water-soluble calixarenes have been used by Gutsche * in solid-liquid

extractions of aromatic guests. Most recently Atwood % and Shinkai %

independently reported that cali; could separate Cgy- and Cyy-

Calixarenes have many potential applications for optical, electronic and
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ic sensors. F inol-based cali: show strong and specific
interactions via hydrogen bonding with certain sugars. These interactions may

lead to specific sensors.”” Calixarenes may! open possibilities to various

chre i ic* and “light-swi ionop! % New liquid

crystalline materials have been obtained from tungsten-capped calix[4]arenes.®!
The p-nitro derivatives of calixarene ethers show nonlinear optical properties
useful for frequency doubling of laser light.* They may be ordered within
polymer material by strong electric fields or by the Langmuir-Blodgett method.*
The latter technique has also been used to produce “perforated” monolayers

leading to with ilities defined at the level.®

Calixarene derivatives are also potential enzyme mimics. Gutsche has designed
an aldolase and a heme mimic'?*from calixarenes. Shinkai®® found that the p-
alkylcalixarene salt 4 could catalyze the base hydrolysis of p-nitropheny!

dodecanoate (Scheme 1.13).

1.7.  Calix[n]naphthalenes.

Most prior to the of the work il in this
thesis were confined to benzene rings only. In 1939, Poh ®® reported a cyclic

tetramer formed by condensation of formaldehyde with 4,5-dihydroxy-2,7-



Scheme 1.13.
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ic acid pic acid). The evi which they

used to support their assignment however is ambiguous. In an earlier report,
Georghiou® concluded instead from similar evidence that linear oligomers
and/or polymers were formed.

The properties and ications of cali are i by the size

of their cavities and the number of hydroxy groups. The width of a benzene ring

is 6.8 A, but that of a naphthalene ring is 8.4 A. It is expected that the cavity of

of the cali bearing e rings would be
deeper. Naphthalene rings can bear several hydroxy groups or other functional

groups, which would also enhance the receptor ability of the cavity. In addition,



the B ring in naphthol has four free positi i to be ionalised. As

stated before, one of the main reasons for the ever increasing interest in

calixarenes is their ability to act as enzyme mimics. A main feature of enzymes

is their chirality. L it or para- i i are achiral.
However, due to the inherent dissymmetry of naphthols such as 1-naphthol
(5),1,8-naphthalene sultone (6), and 3-hydroxy-2-naphthoic acid (7a), the

corresponding calixnaphthalenes would be chiral.

oS OO O

7b: R=OH

This thesis describes the research undertaken toward the synthesis of the

lix[4]napl 1es and ix[4]naphthalenes from 1-naphthol (5), 1,8-

naphthalene sultone (6), 3-hydroxy-2-naphthoic acid (7a), and 2,3-dihydroxy-

naphthalene (7b). This thesis also ibes the results of i igations of their

conformational properties through variable temperature (VT) 'HNMR

and simple Preliminary results

of some complexation studies will also be presented.
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Chaptar 2.

Calix[4]naphthalenes Derived from 1-Naphthol

2.1. Introduction.
1-Naphthol is similar to phenol in its chemical properties, but shows

greater reactivity. For example, it is convertible into ethers merely by heating

with an alcohol and ic acid, and the trar ion
into a naphthylamine on heating with ammonia and bisulphite. Thus, it more
closely resembles resorcinol rather than phenol in many reactions.”* This
great reactivity is connected with the special properties of the 1,2-bond of the
naphthalene nucleus, which is shorter than any other bond in benzene.

The complexity of the reaction of 1-naphthol with formaldehyde is well-
known.*® It has been assumed that cross-linked polymers are formed since
reaction can occur at both C-2 and C-4, the positions that are respectively ortho
and para to the hydroxy group. In 1907, Breslauer and Pictet ™ reported
obtaining an amorphous product having empirical formula C,3H,60, from the
reaction of 1-naphthol with formaldehyde in the presence of potassium
carbonate. Abel”' reported obtaining a “brown, brittle, alkali-soluble resin" on
heating 1-naphthol with formaldehyde in 50% acetic acid containing a small

quantity of hydrochloric acid.
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It was rationalized that due to its great reactivity, the condensation of
1-naphthol with formaldehyde under acidic conditions is so fast that it forms a
polymer. Under basic conditions, the condensation is not so fast. However, 1-
naphthol is sensitive to oxygen especially in aqueous basic media leading to
products that are quinone-like.

‘When we reinvestigated the base-induced reaction of 1-naphthol with
formaldehyde in DMF, we isolated and identified three isomeric tetrameric
compounds which were termed "calix[4]naphthalenes” by analogy with the
calix[4]arenes and calix{4]resorcinarenes. However, unlike the calix[4]arenes
derived from p-substituted phenols and resorcinol respectively, several different
structural isomers can theoretically exist for the calix[4Jnaphthalenes.
Additionally, the conformations that are possible for some of these isomers are

more i due to the di y of the rings.

2.2 is of ( {(

When a solution containing purified 1-naphthol, formaldehyde and
potassium carbonate was heated in DMF under reflux for 35 h, a crude product
was obtained which thin-layer chromatography (TLC) indicated to be a complex
mixture. The 'H NMR spectrum of this crude product however had surprisingly

clearly-defined features (Figure 2.1). In particular, the signals in the 3 4.0-4.8



Fig. 2.1. ‘H NMR Spectrum of the Crude Product from the

with F in CD,COCD;.
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ppm region resemble those usually seen for the methylene bridge protons of the
various isomers of calixarene derivatives.

The limited solubility of the crude product in the usual organic solvents

prohibited purification by chrc i i However,
crystallization of the crude reaction mixture afforded three crystalline products.
Mass spectra indicated that these products were isomeric tetramers, each
having a molecular ion peak at m/z = 624.

If only the A ring of 1-naphthol is considered, four isomers for cyclic
tetramers which can be formed from the condensation of 1-naphthol with
formaldehyde are possible, assuming a conformationally flexible structure.
These are depicted as 8-11. Using symmetry considerations alone, 8 would be
expected to have eleven, 9 would have twelve and 10 would have twenty-three
'*C NMR resonance signals. Isomer 11, the least symmetrical of the isomers,
could be expected to show forty-four carbon signals.

The initial substance to precipitate from the crude reaction mixture

consists of at least two compounds as ined by TLC. Crystallization from

acetone yielded a homogeneous product whose °C NMR (DMSO-d,) spectrum
shows eleven signals consisting of five quaternary aromatic carbon signals, five

methine arcmatic carbon signals, and a single aliphatic methylene carbon signal.
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10 R=H M R=H
10a R= Bz 1la R=Bz
10b R=Ac b Re=Ac

The 'H NMR spectrum of 8 (Figure 2.2) includes a relatively high-field
aromatic signal which is a four-proton singlet at & 6.62 ppm due to the four
intra-annular naphthalene protons (H-41, H-42, H-43 and H-44). The methylene
protons (on C-10, C-20, C-30 and C-40) appear as an eight-proton singlet at &

4.29 ppm. This data together with the HETCOR, NOED spectra and MS data is
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consistent for structure 8 which C, sy y. The relatively
higher-field aromatic signal in this and the other isomers can be accounted for
by examination of molecular models which reveal that the intra-annular

protons can be situated in the shielding region of the naphthalene ring. That the
methylene protons appear as a singlet at ambient temperature indicates that the
compound has a flexible structure and that the positions of these methylene
protons are rapidly interchanging.

The second compound obtained from the crude reaction product was
crystallized from ethyl acetate. This compound was the same substance that
initially co-crystallized with 8. The '>C NMR (DMSO-d,) spectrum of this pure
product reveals only twenty-one clearly defined signals of the expected twenty-
three. However, the APT-'"C NMR spectrum shows that there are ten quaternary
aromatic carbon signals, ten methine aromatic carbon signals and three aliphatic
methylene carbon signals. A pair of quaternary carbon signals and a pair of
aromatic methine signals clearly overlap. In addition, the height of one of the
aliphatic methylene carbon signals is double that of each of the other two.

The 'HNMR spectrum of 10 (Figure 2.3) shows the higher-field aromatic
signals as two (two-proton) singlets of equal intensity at & 6.83 and 6.72 ppm for
the intra-annular protons. The methylene protons appear as three singlets, at &
4.40, 4.29 and 4.08 ppm with relative intensities in the ratio of 1:2:1. In addition

to this data, the HETCOR, NOED spectra and MS data are consistent for
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structure 10 which has a plane of symmetry through the C-20 and C-40
methylene groups which are perpendicular to the macrocyclic ring. This isomer
is also conformationally flexible at ambient temperature.

The third isomer was recrystallized from diethyl ether. Its "C NMR
(DMSO0-d,) spectrum shows forty-two clearly resolved signals of the expected
forty four , with some obvious overlapping in the group of signals centered at &
124.5 ppm. The APT-"C NMR spectrum clearly indicates twenty quaternary
aromatic carbon signals, twenty methine aromatic carbon signals, of which the
same group of signals centered at & 124.5 ppm was not clearly resolved, and
four aliphatic methylene carbon signals.

The H NMR spectrum of 11 (Figure 2.4) shows four relatively high-field

aromalic (one-proton) singlets of equal intensities, at & 6.80, 6.70, 6.66 and 6.64

ppm for the four inti lar protons. The protons appear as four
two-proton singlets of equal intensities, at & 4.45, 4.32, 4.21 and 4.09 ppm.
This data together with the HETCOR, NOED spectra and MS data were also
consistent for structure 11 which does not possess any symmetry. This isomer
is also conformationally flexible at ambient temperature. When the 'H NMR
spectra of these three isomers are superimposed, they are obviously the major
components of the crude reaction product which has methylene bridges. The
ratio of the three isomers 8:10:11 in the crude reaction product estimated from

of the ints | ic signals in the range & 6.5-6.9 ppm

g
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is approximately 1.0:2.2:3.0. The total isolated yield of the three isomers was

only 25%, with the ratios of the isolated isomers being 1.0:1 We have
been unable to isolate, nor is there any evidence from the 'H NMR spectra for
any significant amount of the fourth potential isomer, 9.

The yield of calix[4]naphthalenes is low (ca. 25-30%). The dark brown
residue which presumably consists of different sized linear oligomers and
oxidation products was not separated and characterized.

In basic solution open to the air and at high temperature, 1-naphthol
undergoes many changes due to oxidation by molecular oxygen to form
quinone-like products and biphenols.” Scheme 2.1 shows some possible
oxidations o 1-naphthol by molecular oxygen under basic conditions.

Attempts have made to optimize the formation of calix{4]naphthalenes by
changing temperature, reaction time, base catalysts and solvents.

2.2.1. Effect of Reaction Temperature and Time.

The effects of reaction temperature and time on the product yields are
summarized in Table 2.1. When the reaction was carried out 20.5 °C in DMF in
the presence of potassium carbonate, the starting material remains unchanged.
At 60-70°C, the starting material disappeared after stirring for 100 h, but only a

small amount of products was seen by TLC. When refluxed, the starting
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material disappeared in 20 h and a small amount of products was detected by
TLC. When refluxed for 30 h, a total isolated yield of 25% for the three products
was obtained. Longer reaction times did not improve the yields markedly.

Table 2.1. Effect of Temperature and Time on Formation of 8, 10and 11.

Temperature (°C) | Time (h) Results
205 100 No reaction (TLC).
Starting material disappeared, and a
60-70 100
small amount of products formed (TLC).
Starting material disappeared, and a
® small amount of products formed (TLC).
90-100 30 Yield 25% (isolated)
35 Yield 31% (isolated)
40 Yield 27% (i

2.2.2. Effect of Base.

The effect of bases on the formation of calix{4]naphthalenes was
investigated. Table 2.2 shows the results when the reactions were carried out
under N, in refluxing DMF for 30 h using various bases under identical
conditions. It seems that the larger alkaline cation (Cs*>K*'>Na') appears to give

better yields. It was also found that a soft cc ion favours the f ion of

calix|4Jnaphthalenes ( CO,2>0OH’). A possible reason could be the higher
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solubility of Cs,CO, over other bases, in DMF.

Table 2.2. Effect of Base on Formation of 8, 10, and 11.

Base | NaOH | Na,CO, | KOH | K,CO, | Cs,CO,
Yield(%) | trace | 5 |10 | 25 | 35

2.2.3. Effect of Reaction Media.

The condensation of 1-naphthol with formaldehyde in DMF gave calix{4]-
naphthalenes 8, 10 and 11. However, if this condensation was carried out in
aqueous, or 1:1 DMF/H,0, very dark brown resinous products were obtained.
This result shows that the aqueous solvent facilitates the oxidation of 1-
naphthol by molecular oxygen (see Scheme 2.1).

2.24. Effect of Inert Atmosphere.

Two parallel experiments were conducted. In one, N, was bubbled into
the reaction solution, and in the other, no N, was bubbled. It was found that the
yield of the desired products under the former conditions is 10% higher than
under the latter conditions. This supports the hypothesis suggested that the
oxidation of 1-naphthol or its derivatives is a major side reaction (see Scheme
241).

2.3. Mechanism of the Formation of Calix[4]naphthalenes.
Gutsche "2has proposed two mechanisms for the formation of calixarenes.

One is the “pseudoxalixarene” pathway, in which a linear tetramer is the
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precursor of calixarenes. The other is the “hemicalixarene” pathway, in which
calixarenes are formed from the coupling of two dimers.

A mechanism for the formation of calix[4Jnaphthalenes 8, 10, and 11 as
shown in Scheme 2.2 has been propased.” In this mechanism, the first step is
initiated by the formation of a naphthoxide ion which effects a nucleophilic
addition to the highly reactive carbonyl group of formaldehyde. The alkylation
can occur at either the ortho or para position to the hydroxy group. Since the 4-
position has a pert-relationship with the 5-position of B ring in 1-naphthol, it is
sterically hindered. Furthermore, hydrogen bonding could exist between the
naphthalene hydroxy and the hydroxymethyl group which would stabilize the
transition state leading to the ortho product 12. The reaction proceeds further to
form an ortho-naphthoguinone methide 13, which reacts with another phenolate
ion in a Michael-like process to form dinaphthyimethyl compounds or longer
linear oligomers. The condensation of ortho-quinone methide intermediate 13
can occur at either the ortho or para position of a second 1-naphthol to give 14
or 15, respectively. Itis likely that if 14 is indeed formed during the reaction it
would be labile to oxidation under the reaction conditions which were
employed.™The dimer 15 could in turn condense with a third 1-naphthol to give
16 or 16a. The trinaphthyl adduct 16 can couple with another methide, 13,

at either of the two reactive sites to give 17 and 18, respectively. Intermediate



-38-

Scheme 2.2.
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17 is the penuitimate precursor of 11 and intermediate 18 is the penultimate
precursor of 8. The trimer intermediate 16a, could react with methide 13 to
produce 19, the penultimate precursor of 10. None of the steps envisioned in
Scheme 2.1 would lead to the formation of the C,, symmetrical tetramer 9, which
is consistent with the observed results. From the experimental data above, we
concluded that the ortho-quinone methide 13 is a key intermediate. Chaulk ™
obtained a spiro compound derived from a 4-bromo derivative of 13 under

similar conditio: , which supports our conclusion. Product analysis suggests

that the ion of cali 1alenes follows the “ps ixnaphthalene'

pathway, rather than the “hemicalixnaphthalene” pathway.

24.C i Studies on Calix[: and Their D

All three calix[4]Jnaphthalenes are conformationally flexible at ambient
temperatures, as evidenced by the sharp signals for all of the methylene bridge
and intra-annular protons (Fig. 2.2, Fig. 2.3, and Fig. 2.4). Conformational

rigidity of 8, 10 and 11 was not seen even at -50 °C.

A pathway for the { inversion in cali should
involve the rotation of the naphthyl groups in a direction that brings the hydroxy
groups sequentially through the annulus of the macrocyclic ring. Therefore,

replacing these groups with farger moieties should serve to fix the conformation.
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One of the most convenient methods is to convert calixnaphthalenes to their
corresponding es'trs. In addition, since the solubilities of 8, 10 and 11 in
common organic solvents is very low, it was expected that these esters would
have greater solubilities. The tetrabenzoylations of 8, 10 and 11 were carried out
with benzoyl chioride and sodium hydride in anhydrous THF to give 8a, 10a and
11a. Stirring at room temperature for 10 h was required for completion of
reaction. This reaction time is longer than that usually required for benzoylations
of phenols or naphthols. Acetylations of 8, 10 and 11 were carried out in acetic
anhydride under refluxing conditions which are more vigourous than those
usually required for acetylations of phenols or naphthols. The resulting

and of the calixr were readily soluble

in di and , which facili the study of their

conformational properties.

Dynamic NMR spectroscopy has become an immensely important tool for

the study of cc i properties of organic in solution. This
technique can provide information relating to the type of conformation, the
nature and relative ratio of different conformers, and the energetics of

transformations between the

In this study,

can be used to indicate the rigidity of a conformer.™

By analogy with the calix{4]; , calix{4] can adopi four

maijor types of conformations: “cone”, “partial cone”, “1,2-alternate” and “1,3-
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alternate” (see Fig.1.1, p13). The anticipated characteristics of the 'H NMR
signals of these conformers are shown in Table 2.3.

Referring to the generic structure 1 (Fig.1.1, p13), if 8 is conformationally

flexible, the intra-annular protons and methylene bridge protons would both

appear as singlets. If 8 is fixed in a “cone” ion, the four int
protons have the same chemical environments and would appear as a singlet.
Although the four methylene bridges are identical, each pair of geminal protons
are diastereotopic, forming an AB quartet. In the “partial cone” conformation,
four intra-annular protons are non-equivalent, consequently they would appear
as four singlets. The geminal methylene bridge protons also appear as four AB
quartets. In the “1,2-alternate” conformation, there are two types of intra-
annular protons and they would therefore appear as two singlets. There are two
types of methyiene bridges and they would appear as two AB quartets. Finally,
in the “1,3-alternate” conformation, four intra-annular protons are identical and
they would appear as a singlet. The four methylene bridges also are identical
and they would appear as a singlet.

1f10is flexible, the int lar protons would appear

as two singlets, whereas the methylene bridge proton would appear as three

In the “cone” conformation, the intra-

singlets having an integration ratio 1:.
annular proton would remain as two singlets, but the methylene bridge protons

would appear as three AB quartets due to the coupling of the geminal protons.
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Table 2.3. CI istics of 'H NMR of C of 8,10, and 11.

Intra-annular
Methyiene Protons

Characteristics Frotons

8 10 1 8 10 11

s s s |s|als|al| s |q
flexible 1(br) | 2(br) | 4on) | 1 3 4

cone . 2 4 1 3 4
partial cone(sy) 4 4 4 i 4 4
partial cone(dissy) 4 4 4 4
1,3-alternate 1 4 4 1 2(1 4
1,2-alternate(sy) 2 4 2|2 4
1,2 issy) ! 4 | a 2 3 4

There are two kinds of “partial cone” conformations, a “symmetric” one in
which two adjacent hydroxyl groups are on the same side, and a "dissymmetric”
one in which two adjacent hydroxy groups are on different sides. In both of
them, the four intra-annular protons become different and they would appear as
four singlets. The four methylene bridges also become different and the
methylene bridge protons would appear as four AB quartets. Although the two
“partial cone” conformers have the same 'H NMR characteristics, they have

different potential energies, which will be discussed later. Similarly, there are

two kinds of “1,3: " i a'sy ic” and a “dissy ic".
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The former has two types of intra-annular protons which would appear as two

singlets. The methylene bridge protons would appear as two singlets and two

AB quartets. Finally, the di ic “1,2: " cor ion has four
different intra-annular protons, which would appear as four singlets. It also has
three different types of methylene bridges, which would appear as three AB

quartets.

f11is i ly flexible, the inti lar protons would appear

as four distinct singlets, whereas the methylene bridge protons would appear as

four distinct singlets. In any of the fixed conformations, “cone”, “partial cone”, “1,

3 , or “1,2-alternate”, the ints lar protons would appear as four
singlets, and the methylene bridge protons would appear as four distinct AB
quartets.

Figure 2.5 shows the 'H NMR (CD,Cl,) spectra of tetrabenzoate 8a taken
at: (a) 20 °C; (b) 0 °C; (c) -20 °C; and (d) -50 °C. The signals of methylene bridge
protons are very broad, and those of the intra-annular protons are so broad that
they can be hardly seen at room temperature (Fig.2.5a). This indicates that 8a

fast i ion at room , but that the rate of its

conformational inversion is much slower than that of the corresponding

8, which is i flexible at -50 °C.

The low temperature 'H NMR spectra shown ini Fig. 2.5 reveal much
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Fig. 2.5. VT 'H NMR Spectra of 8a in CD,Cl,.
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information about the ions of 8a. Asthe ire is to

0 °C, the 'H NMR signals become flatter. Below 0 °C, complex sharper signals

appear. Therefore, 0 °C was assi as the of 8a.”®

At -50 °C, cor i freezing is indi by the p of well-defined

signals in the & 4.0-5.0 ppm and & 5.8-8.4 ppm ranges. In order to interpret the
spectrum at -50°C, a COSY experiment was conducted. The COSY spectrum
shown in Fig.2.6 of 8a confirmed that the singlets at  7.14, 7.08, 5.86 and 5.83
ppm (see Fig.2.2) are due to the intra-annular protons on C-41 to C-44. A
conformer which would result in the intra-annular protons being observed as four
singlets is a “partial cone” conformer. This is analogous to “partial cone”
conformers observed in the calix{4]arenes.’*'® This is confirmed by the COSY
spectrum shown in Fig.2.6, which shows four AB systems due to the methylene
geminal protons. However, at least one other conformer is present as evidenced
by the large unresolved signal centred at 5 4.26 ppm and the corresponding

aromatic intra-annular proton signal which appears as a singlet at 5 6.45 ppm.

to the 'HNMR istics of of 8 and
hence of 8a, shown in Table 2.3, the other conformer which demonstrates a
singlet signal at 5 4.26 ppm, and a singlet at 6 6.45 ppm could be “cone”, or

“1,3 i i lculations reveal that the “1, 3-alternate”

conformer has lower potential energy than the “cone” conformer (see Table 2.4).

It suggested that it is the “1,3-alternate” that coexists with the “partial cone”



Fig. 2.6. HH COSY Spectrum of Methylene in 8a at -50°C in CD,Cl,.
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conformer.

Figure 2.7 shows the 'H NMR (chloroform-d) spectra of 10a taken at: (a)
50 °C; (b) 20 °C; (c ) 0 °C; (d ) -20 °C; and (e) -50 °C. The signals of the intra-
annular protons and methylene bridge protons in the 'H NMR spectrum of
tetrabenzoates 10a at +20 °C are broad. As the temperature rises to +50°C, the
signals become sharper. When the temperature was decreased, the signals

became more complex, and reveal a coalescence temperature at about 0 °C. At

-50 °C, i freezing is app: by the p of well-defined

Table 2.4. Potential Energies (kcal/mol) of 8a,

and 10a Calculated by Alchemy lli®.”

8a 10a

cone 32.22 32.25

partial cone (sy) 36.01
27.44

partial cone (dissy) 35.20

1,3-alternate 22.92 33.89

1,2-alternate (sy) 37.99
28.28

1,2-alternate (dissy) 39.57

signals in the & 4.0-5.0 ppm and 6 5.8-8.4 ppm ranges. The COSY spectrum of
10a at -50 °C (Fig.2.8) is considerably more complex than that of 8a. At least

eighteen pairs of doublets and up to four singlets can be discerned in the



Fig. 2.7. VT 'H NMR Spectra of 10a in CDCl,.
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Fig. 2.8. HH COSY Spectrum of Methylene in 10a at -50 °C in CDCI,.
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methylene proton region. At least six signals (singlets) due to the intra-annular
protons can also be discerned, albeit with difficulty. As with 8a, the “partial
cone” conformer could account for eight pairs of doublets; a “1,2-alternate”
(dissymmetric) conformer could account for an additional six pairs of doublets;
and a “1,2-alternate” (symmetric) conformer could account for an additional four

pairs of doublets and two singlets. Low temperature 'H NMR reveals that 10a

several although the modelling
suggest that the “cone” and the “1,3 " are the two |t ay
conformers.

The VT 'H NMR spectra of 11a are shown in Fig. 2.9. Since each
conformer of 11a has four AB systems, the spectra were too complex to be
meaningfully assigned.

The VT 'H NMR spectra of tetraacetates 8b, 10b and 11b are shown in
Fig. 2.10, Fig. 2.1 and Fig. 2.12 respectively. They have the same features
with regard to the intra-annular protons and methylene protons and are a little
simpler due to the absence of the benzoate aromatic signals. Compared with the
spectra of the corresponding tetrabenzoaics 8a, 10a and 11a, tetraacatates
8b,10b and 11b have sharper signals at the same temperature, and have lower

coalescence temperatures (-10 °C).
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Fig. 2.11. VT 'H NMR Spectra of 10bin CDC,. ,
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Fig. 2.12. VT 'H NMR Spectra of 11bin CDCl,.
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25 Summary.

Three cyclic tetramers 8, 10 and 11 were successfully synthesized from
the condensation of 1-naphthol with formaldehyde in DMF under basic
conditions. These are a new class of macrocyclic naphthalene compounds,
which are potential supramolecular building blocks. By analogy with the

calix[n]arenes and calix[n]resorcinarenes, these cyclic tetramers were named

“calix[4 1es”. A limited istic i ion based on product
analysis suggests that the formation of calix[4Jnaphthalenes 8, 10 and 11 follows
the "pseudocalixnaphthalene” pathway, rather than the "hemicalixnaphthalene”
pathway. The well-resolved 'H NMR signals observed for both the naphthalene
protons and the methylene bridge protons of the three calix{4]naphthalenes 8,
10 and 11 indicate that there is rapid conformational interconversion in these

at ambient However, their corresponding

tetrabenzoates 8a, 10a and 11a and tetraacetates 8b, 10b and 11b are frozen
preferentially in the "partial cone” and “1,3-alternate” conformations at -50 °C.
The coalescence temperatures of these acetates and benzoates are in the range
of -10°Ct0 0°C. Molecular modelling calculations suggest that the “partial
cone” and “1,3-alternate” are the two lowest-energy conformations, which is

consistent with the results obtained from VT 'H NMR experiments.



2.6. Experimental.
General Methods. All reaction were performed under N, unless otherwise

indicated . Organic solutions were concentrated using a rotary evaporator.

Flash column was perf ing to the procedure of

Still™ using MERCK silica gel 230-400 mesh. Preparative thin layer
chromatography (PLC) plates were made from Aldrich silica gel (TLC standard
grade, 2-25 p) with 14% calcium sulphate. Thin-layer chromatography was
performed on precoated silica gel 60 Fs, plates (Merck, Darmstadt, FRG).
Materials. Chemical reagents and solvents whose synthesis are not
described were purchased from Aldrich or Fluka and were used as received with
the following exceptions. Dry dichloromethane was obtained by distillation of
ACS grade dichloromethane from calcium hydride. Dry chloroform was obtained
from ACS grade chloroform by washing with concentrated sulphuric acid (95%)

and water { drying over anhy calcium chloride for 24 h and

distilling. Dry N,N-dimethylformamide (DAF) was obtained from by drying ACS
grade DMF over calcium sulphate over 72 h and fractional distillation under
reduced pressure. Dry diethyl ether, tetrahydrofuran (THF), and p-dioxane were
obtained from the ACS grade solvents by drying with KOH for 48 h and distilling
from purple sodium benzophenone ketyl under N,.

Instrumentation.  Melting points (mp) were determined on a Fisher-Johns

apparatus and are uncorrected. Infrared (IR) spectra were recorded on a
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Mattson Polaris FT i Data are p! d as follows: of

absorption (cm™), intensity (s=strong, m=medium, w=weak, br=broad), and
assignment (when appropriate). Low resolution and high resolution (HRMS)
mass spectral (MS) data were obtained using a V.G. Micromass 7070HS

instrument. MS data are presented as follows: m/z, intensity, and assignment

(when ap i Fast atom (FAB) MS were obtained with a

Kratos MS50TC spi at the Dept. of Cl istry, U. N. B., Fredericton,
N.B. using the following operating conditions: Vacc = 4,000 volts; FAB gun set at
7.0-7.5 Kv, using Xenon as the FAB gas; resvlution = 1500; accelerating voltage
= 6 Kv. 'H NMR spectra were recorded with a GE GN-300NB spectrometer at

300.117 MHz and chemical shifts are relative to internal TMS. Data are

p d as follows: ical shift, iplicity (s=singlet, d=doubl\

dd=double doublet, t=triplet, g=quartet, m=multiplet), coupling constant (J, Hz),
integration, and assignment (H#). The assigments are based on HH COSY, CH
Hetcor, and NOED. "°C NMR spectra were recorded at 75 MHz and were
obtained from zero-filled 16K data tables to which a 1-2 Hz exponential line-
broadening function had been applied. Chemical shifts for *C NMR spectra are
relative to the respective solvents (5 77.0 for CDCl,; & 53.8 for CD,Cl,). The
assigments are based on CH Hetcor and APT. Proton nuclear Overhauser effect
differences (NOED) spectra were obtained from zero-filled 32K data tables to

which a 1-2 Hz exponential line-broadening function had been applied. A set of
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four "dummy” scans was employed to equilibrate the spins prior to data
acquisition. No relaxation delay was applied between successive scans of a
given frequency. Data collection for the X-ray structure was made on a Rigaku

AFC6S diffractometer at 298K. Additional details were given in Appendix 1.

Calix[4]naphthalenes (8), (10) and (11).

10 R=H "o
10a R=BZ e ReBr
106 Rk ih ReAc

To a solution of 1-naphthol (distilled under reduced pressure or
recrystallized from hexane, 1.44 g, 10 mmol) in DMF(10 mL) were added
aqueous formalin solution (37% formaldehyde, 0.70 mL, 8.6 mmol) and aqueous
potassium carbonate (10%, 1.0 mL, 0.72 mmol). The blue solution was refluxed
under N, for 35 h and then cooled to room temperature. When the reaction
mixture was poured into a mixture of ice (50 g) and 5% hydrochloric acid (10
mL), a brown precipitate formed. The precipitate was filtered and washed with

deionized water until the washings were neutral to pH paper and then dried
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under vacuum. The dried crude product was crystallized from acetone. The first
precipitate obtained from the solution is compound 8 ( 0.15g, 10%) as a
colourless powder. The mother liquor from the filtration was evaporated and the
residue was dissolved in hot ethyl acetate. When the solution was cooled to

room compound 10 il as a colourless powder (0.25 g,

16%). The mother liquor from the ethyl acetate recrystallization was evaporated
to dryness. The residue was reciystallized from diethyl ether to give 11 as a light
yellow powder (79 mg, 5%). Compound 8: mp>300°C (with decomposition); IR
(KBr, cm): 3404 (s, br, OH), 1680(s}, 1665 (w), 1600 (s), 1502 (m), 1400 (s); 'H
NMR (DMSO-d,): 5 4.29 (s, 8H, H-10, H-20, H-30, H-40), 6.62 (s, 4H, H-41, H-
42, H-43, H-44),7.53 (m, 8H, H-5, H-6, H-15, H-16, H-25, H-26, H-35, H-36),
8.02 (m, 4H, H-4, H-14, H-24, H-34), 8.19 (m, 4H, H-7, H-17, H-27, H-37); "C
NMR ( DMSO-d,): 5 31.9 (t, C-10, C-20, C-30, C-40), 119.9 (s, C-1,C-11,C-21,
C-31), 1226 (d, C-4, C-14, C-24, C-34), 123.8 (d, C-7, C-17, C-27, C-37), 124.5
(C-5, C-15, C-25, C-35), 125.2 (C-6, C-16, C-26, C-36), 125.8 (C-3, C-13, C-23,
C-33), 128.0 (C-8, C-18, C-28, C-38), 128.6 (C-41, C-42, C-43, C-44), 131.5(C-
9, C-19, C-29, C-39), 147.9 (C-2, C-12, C-22, C-32); MS (m/z), Intensity (%): 624
(M, 52), 622 (56), 620 (32), 468 (13), 467 (22), 466 (17), 465 (18), 464 (13),
449 (28), 448 (22), 447 (18), 435 (4), 312 (100), 311 (70), 310 (88), 297 (66),
281 (38), 268 (12), 265 (20), 253 (12), 252 (23), 239 (20), 158 (73), 144 (100).

Compound 10: mp >300 °C (with decomposition), IR (KBr, cm™'): 3404 (s, br,
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OH), 1690 (w), 1665 (), 1600 (w), 1500 (s), 1404 (s); 'R NMR (DMSO0-d,): &
4.08 (s, 1H, H-20), 4.29 (s, 2H, H-10, H-30), 4.40 (s, 2H, H-40), 6.72 (s, 2H, H-
41, H-44), 6.83 (s, 2H, H-42, H-43), 7.40 (m, 8H, H-5, H-6, H-15, H-16, H-24, H-
25, H-34, H-35), 7.78 (d, 2H, H-7, H-33), 8.08 (m, 2H, H-17, H-23), 8.18 (m, 2H,
H-14, H-26), 8.31 (d, 2H, H-4, H-36); NOED (%): ‘H-40/ H-41 (H-44) (0.99), H-
20/ H-42 (H-43) (0.98), H-30 (H-10) /H-41 (H-44) (1.05), H-40/ H-41(H-44)
(0.99); °C NMR (DMSO-d,): & 31.6 (t, C-10, C-30), 33.6 (t, C-20), 36.7 {t, C-40),
120.3 (s, C-1,C-39), 120.9 (s, C-11, C-29), 122.2 (d, C-14, C-26), 122.8 (d, C-4,
C-36), 123.7 (d, C-7,C-33), 123.9 (d, C-17, C-23), 1246, 1248 (d, C-5,C-6, C-
34, C-35), 125.3, 125.4 (d, C-15, C-16, C-24, C-25), 125.9 (s, C-13, C-17), 1276
(s, C-3, C-37), 127.7 (5, C-18, C-22), 128.5 (d, C-41, C-44), 128.7 (s, C-8, C-32),
129.4 (d, C-42, C-43), 131.2 5, C-19, C-21), 131.4 (5, C-9, C-31), 1473 (s, C-
12, C-28),147.8 (s, C-2, C-26); MS (mi2), Intensity (%): 624 (M', 18), 606 (4),
480 (3), 468 (3), 313(7), 312 (10), 311 (3), 282 (10), 281 (16), 144 (100).
Compound 11: mp>300°C (with decomposition); IR (Kbr, cm™), 3404 (s, br, OH),
1695 (m), 1668 (w), 1602 (m), 1500 (s), 1402 (s); 'H NMR (DMSO-d,): 5 4.09 (s,
1H, H-40), 4.21 (s, 1H, H-20), 4.32 (s, 1H, H-10), 4.45 (s, 1H, H-30), 6.64 (s, 1H,
H-41), 6.66(s, 1H, H-44), 6.70 (s, 1H, H-43), 6.80 (s, 1H, H-42), 7.40 (m, 8H, H-

5, H-6, H-15, H-16, H-25, H-26, H-34, H-35), 7.79 (d, 1H, H-33), 7.97 (d, 1H, H-

* The 'H NMR signal of the protons indi in type was
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17),7.98 (4, 1H, H-27), 8.08 (d, 1H, H-7), 8.18-8.22 (m, 4H, H-4, H-14, H-24, H-
36); NOED (%): H-30/ H-44 (0.60), H-30 / H-43 (1.0), H-30/H-33 (1.83), H-30 /
H-27 (0.61), H-10/ H-41 (0.85), H-10/ H-7 (4.12), H-20 / H-43 (0.90), H-20 / H42 .
(0.85), H-20/ H-17 (0.84), H-40 / H-41(0.67); "°C NMR (DMSO-0j):  30.0 (1, C-
30),31.6 (t, C-10), 31.7 (t, C-20), 332 (t, C-40), 1202, 120.4 (s, C-1, C-39),
1206, 1209 (s, C-11, C-21), 122.3, 122.4, 122.5, 122.8 (d, C-4, C-14, C-24, C-
36), 123.5 (d, C-27), 123.6 (d, C-17), 123.8 (d, C-7), 124.0 (d, C-33), 124.3,
124.4, 1245(x3), 125.1, 125.2, 125.4 (d, C-5, C-6, G-15, C-16, C-25, C-26, C-
34,C-35), 125.5, 125.6, 125.7, 125.8 (s, C-3, C-13,C-23, C-37), 127.5, 1277,
127.9, 1282 (s, C-8, C-18, C-28, C-38), 126.1 (d, C-44), 128.7 (d, C-42),
129.1(d, C-43), 129.4 (d, C-41), 131.1, 131.3, 131.4,131.5 (s, C-9, C-19, C-29,
C-39), 147.6, 147.7, 147.9, 148.0 (s, C-2, C-12, C-22, C-38); MS (m/2), Intensity
(%): 625 (M'+1, 19), 624 (', 39), 623 (8), 622 (12), 606 (13), 480 (10), 468
(14), 313 (12), 312(32), 311 (19), 310 (17), 297 (23), 295 (11), 282 (10), 281

(20), 268 (4), 265 (9), 252 (10), 171 (10), 160 (15), 144 (100).

Tetra-O-benzoylcalix[4]naphthalenes (8a), (10a) and (11a).

To asolution of 8 (0.312 g, 0.5 mmol) in THF (50 mL) containing DMF (5
mL) was added NaH (50% oil dispersion, 0.29 g, 6.2 mmol). The solution was
stirred under N, for 30 min at room temperature. Benzoy! chloride (0.42 g, 3.0

mmol) was added dropwise to the stirred solution. The reactici -ixture was
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stirred for an additional 6 h at room temperature. The reaction mixture was
poured into a mixture of ice (100 g) and 5% hydrochloric acid (50 mL). A yellow

formed. The ipitate was filtered and washed with water until the

washings were neutral to pH paper. After vacuum drying, the crude product was

twice from dichlor e to afford 8a (0.21 g, 44%) as a
light yellow powder. Calix{4]naphthalenes 10 and 11 were converted to the
corresponding tetrabenzoates 10a and 11a with 40% and 36% yields
respectively by using the same procedure. Tetrabenzoate 8a: mp 300-310 °C
(with decomposition); IR (nujol, cm™): 1729 (s, carbonyl), 1650 (w), 1504 (s),
1402 (s); '"H NMR (CDCl,) at 50 °C : 6 4.29 (s, br, 8H, methylene), 6.63 (s, br,

4H, intra-annular), 6,96-8.11 (m, 36H, other aromatic); *°C NMR (CDCl,) at 50

°C: 33.0 (1 y ), 107.9-134.2 ( ic), 165.4 ; MS (FAB+,
NOBA as a matrix, m/2), intensity (%): 1041 ( M*+1, 2.5), 1040 (M*, 1.3), 936
(1.4), 935 (1.7), 919 (0.3), 831 (0.5), 482 (0.5), 460 (1.7). Tetrabenzoate 10a:
mp 324-334°C (with decomposition); IR (nujol, cm): 1737 (s, carbonyl), 1600
(w), 1500 (s), 1404 (m); 'H NMR (CDCl,) at 50 °C: 8 4.10, 4.35, 4.63 (s, br, 8H,
methylene), 6.60, 6.85 (sx2, br, 4H, intra-annular), 7.21-8.19 (m, 36H, other
aromatic); °C NMR (CDCl,) at 50 °C: 34.70, 32.80, 30.40 (methylene), 121.3-

143.4 ic), 164.6, 164.9

yl); MS, (FAB+ ,NOBA as a matrix, m/z),
Intensity (%):1062 ((M-1+Na)*, 5.5), 1040 (M*, 10.0), 936 (3.6 ), 935 (6.5 ), 918

(1.5), 830 (2.1), 459 (1.2). Tetrabenzoate 11a: mp 215-225 °C (with
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decomposition), IR (nujol, cm™ ):1737(s, carbonyl), 1680 (w), 1604 (w), 1502 (s),
1400 (s); '"H NMR (CDCl,) at 50 °C: 3.99, 4.30, 4.40, 4.63 (sx4, br, 8H,
methylene), 6.53, 6.60, 6.78, 6.93 (sx4, br, 4H, intra-annular), 7.47, 7.97 (mx2,
36H, other aromatic); °C NMR (CDCl,) at 50 °C: 29.6, 30.8, 23.1, 35.0
(methylene), 121.5-144.9 (aromatic), 164.5, 164.6, 164.8, 164.9 (carbonyl); MS
(FAB+, NOBA as a matrix, m/z), Intensity (%): 1060 ((M+Na)*, 5), 1038 (M'-2,
14) , 957 (5), 949 (1), 935 (12), 934 (17), 917 (2), 829 (6), 813 (2), 724 (2), 707

().

Tetra-O-acetylcalix[4]Jnaphthalenes (8b), (10b) and (11b).

Into acetic anhydride (8 mL) containing acetic acid (2 mL) and
concentrated sulphuric acid (0.5 mL) was added 8 (100 mg, 0.17 mmol). The
suspension was refluxed for 10 h. After cooling to room temperature, the solution
was poured into a mixture of ice (20 g) and 5% hydrochloric acid (20 mL). After
30 min, a white precipitaie formed. After filtration, the precipitate was washed
with water until the washings were neutral to pH paper. The crude product was

dried under vacuum and then purified by flash chromatography using

as eluent. Ci 8b was obtained as a white powder
(63.5 mg, 50%). Calix[4]naphthalene 10, and 11 were converted to the
corresponding tetraacetates 10b and 11b in 52% and 48% yields respectively by

using the same procedure as the above. Tetraacetate 8b: mp 310-320 °C; IR
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(nujol, cm™"):1749 (s, carbonyl), 1700 (w), 1502 (s), 1404 (s); 'HNMR (CDCl, ) at
50°C: 6 2.40 (s, 12H, COCH,), 4.24 (s, br, 8H, methylene), 6.45 (s, br, 4H, intra-

annular), 7.26-7.92 (m, 16 H, other aromatic); °C NMR (CDCl,): 20.6 (COCHj),

32.6 121.8-143.6 ic), 169.5 MS ( FAB+ NOBA
as a matrix, m/z), Intensity (%): 815 ((M+Na)*, 1), 792 (M*, 1), 749 (1), 707 (1),
665 (1), 481 (1), 459 (2). Tetraacetate 10b: mp 324-334 °C; IR (nujol, cm™):
1762 (s, carbonyl), 1600 (w), 1550 (w), 1502 (s), 1400 (s); 'H NMR (CDCl,) at 50
°C: 2.45, 2.38 (sx2, br, 12H, COCH;), 3.88, 4.61, 4.25 (sx3, br, 8H, methylene),
6.52 (s, br), 6.66 (d, br, 4H, intra-annular), 7.33-7.80 (m, 16H, aromatic); °C
NMR (CDCl,) at 50 °C: 20.7 (COCH,), 34.7, 32.8, 30.7 (methylene), 121-4-143.6
(aromatic); MS (FAB+, NOBA as a matrix, m/z), Intensity (%): 815 ((M+Na)', 2),
813 (8), 792 (M*, 9), 771 (2), 765 (2), 749 (19), 732 (1), 723 (2), 708 (11), 690
(1), 665 (8), 648 (2). Tetraacetate 11b: mp 290-300 °C; IR (nujol, cm™'):1756 (s,
carbonyl), 1600 (m), 1550 (m), 1500 (s), 1404 (s); 'H NMR (CDCl,) at 50 °C:
2.22,2.32, 2.40, 2.42 (sx4, br, 12H, COCHj,), 3.85, 4.18, 4.26, 4.63 (sx4, br, 8H,
methylene), 6.37, 6.42, 6.60, 6.69 (sx4, br, 4H, intra-annular), 7.36-7.88 (m,
16H, other aromatic); >C NMR (CDClI,) at 50 °C: 20.7, 20.5 (COCH,), 34.7, 32.8,

30.7 121.5-143.8 ( ic), 169.9, 169.2 MS (FAB+,

NOBA as a matrix, m/z), Intensity (%): 815 ((M+Na)*, 2), 793 (M'+1, 3), 750 (5),

707 (3), 665 (3), 622 (1).
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Chapter 3.

Calix[4]naphthalenes Derived from 1,8-Naphthalene Sultone

3.1, Introduction.
One of Gutsche's original motivations for studying calixarene chemistry
was to try to develop enzyme mimics. The design and synthesis of hosts for

suitable enzyme mimics are strong driving forces for the further development of

hemistry.” Most biological p s take place in an aqueous
medium. However, the simple calixarenes are insoluble in water and therefore,

they cannot be used to mimic the binding of by enzymes,

and receptors, nor to mimic the transport of ions across biological membranes

mediated by ionophores as natural carriers. Much effort has been spent to

enhance the water- ilities of cali The first wat lubl
was prepared by Ungaro ™ by treating p-tert-butylcalix[4]arene with NaH and

tert-butyl-a-bromoacetate in THF, to give a tetraester. Saponification followed by

of the the 1ding tetraacid whose
solubility in water is ca.10™® M. Shinkai ** has synthesized some calixarenes
which are much more water-soluble by first removing the tert-butyl group of the
p-tert-butylcalixarenes with ACl, via a retro Friedel-Crafts reaction and then

carrying out sulphonation with an excess of concentrated sulphuric acid. The
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ding para- i ulphor ix[4); was formed. This

water-soluble calixarene can form solution state complexes with metal cations,
organic cations and neutral molecules.

Calixnaphthalenes, like calixarenes, are insoluble in water. Their poor
water-solubilities limit their potential applications. When each of
calix[4]naphthalenes 8, 10, and 11 was treated with concentrated sulphuric acid,
avery dark tar was obtained from which no desired product could be detected.
This presumably is due to the easy oxidation of calix{4Jnaphthalenes under
these conditions, although the reaction was not investigated any further
Instead, the commercially available sulphony! group-containing
hydroxynaphthalene, 1,8-naphthalene sultone (6) was used as a starting

compound.

Sultone 6 is an internal ester of the corresponding hydroxy sulphonic
acid. Since the five-membered sultone ring is fused at the peri positions of the
naphthalene ring, it is strained and, as a result, 6 has some unique chemical

properties.
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In contrast to the behaviour of aliphatic sulphonic esters which result in
carbon-sulphur bond fission products on nucleophilic substitution, the reaction of
nucleophiles with 1,8-naphthalene sultone involves nucleophilic attack at the

sulphur atom with the sulphur-oxygen bond fission. 1,8-Naphthalene sultone

readily g il ituti i The itution usually

occurs at the 4-position (the para position with respect to the sultone ring oxygen

atom). Scheme 3.1 il somer ilic and phili ions of

1,8-naphthalene sultone.

Scheme 3.1.
H  SOH
& \ 0 aon Oe
/ 6a
TN o o
o 2N
—$0,
IA/“C"" 6 N\H,‘
OO " e
CH,CI
3.2, is of p
3.2.1. Sy is of perf i under Basic
Conditions.

Commercially available 1,8-naphthalene sultone (6) is a 50:50 aqueous

dark brown paste. Attempts to remove the the water by drying under vacuum at
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116 °C (refluxing toluene) resulted in sublimation to give pure 6 as colourless

fine crystals. The ial product was therefore purified by
to afford pure 6 prior to use.

When 6 was treated with ium carbonate, the cc p

sulphonate dianion 6b, was presumably formed in sitv. Condensation of 6b with
formaldehyde gave, after acidification, the cyclic tetrameric product 20 in 15%
yield as shown in Scheme 3.2.

Scheme 3.2,

0— 50,
formalin,
KGO (ag), DMF
Surello
reflux for 40 h
15%

6

The 'H NMR spectrum (Fig. 3.1) of 20 shows two sharp singlets at 5 4.44

and 4.00 ppm which d to the two it y bridges.

The sharpness of these and all the other signals in the 'H NMR spectrum

that there is conf i flexibility at ambient temperature. Its * C

NMR spectrum reveals only twelve signals, which is consistent with the C,,

symmetry of structure 20.
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Further characterization of 20 was carried by using electrospray mass
spectrometry (ESMS). In the positive ion mode, an aqueous solution of 20 did
not electrospray. In the negative ion mode the mass spectrum shown in Fig. 3.2
was obtained.

Peaks corresponding to the ions due to the deprotonated molecule [M-
2HJ?, [M-3H]* and [M-4H]* at m/z=471.5, 313.7 and 235.3 respectively, were
obtained. The peaks at 537.3, 358.0, and 321.0 correspond to the pseudo
molecular ions [M+6Na-8HJ*, [M+6Na-9HJ*, and [M+Na-4H]* respectively. The
strong peak at m/z=287.4 is due to the ion [M-3H-SO,H]* which corresponds to
the loss of a sulphonate group from the [M-3HJ* ion. This assignment can be
confirmed as derived from the parent ion at m/z=313.7 by low-energy MS/MS.
The MS/MS spectrum (Fig. 3.2) of the parent ion at m/z=313.7 also shows
fragments at m/z=235.3 and 229.7. The former fragment corresponds to the [M-
4H]* ion which is formed from the m/z=313.86 ion by loss of a proton. The
fragment at 229.7 corresponds to the [M-4H-H,0]".

Like the calixnaphthalenes derived from 1-naphthol, there are three

theoretically possible isorneric peri-sulphonatocalix]: besides 20,
namely, 21, 22 and 23. However, only 20 was obtained. A prcposed

mechanism of formation of 20 is shown in Scheme 3.3.
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n 2
= Ko
Lol Ri= SOait Ri= SO

In the sulphonate dianion (6b), the 4-position is much more electron-rich
than the 2-position.”” The condensation of 6b with formaldehyde occurs at the
4-position with great preference to give the a,y-dienone 24. This intermediate
24 can react with another molecule of sulphonate dianion 6b to form a para-para
dimer 25. Following the hemicalixnaphthalene pathway, dimer 25 will lead only
to 20, the observed C,, compound.

322, is of Derivatized p

under Basic Ci

The isolated yield of 20 is low, because of the ditfucuty of seperation due
to its great polarity. It was hypothesized that conversion of 6 to a sulphone by a
Grignard reaction could avoid this problem.

When 6 was treated with ethylmagnesium bromide, however an unexpec-

ted product was obtained. The structure was elucidated by 'H and '°C NMR.
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as 26. This indicates that the methylene group attached to the sulphonyl group is
acidic enough to form a carbanion which can couple with another molecule of 6
(Scheme 3.4).

By using a literature p ** phenyl (1-hydroxy-8 iphone

(27) was obtained when 8 was treated with phenylmagnesium bromide.
However, when the condensation of 26, or 27, with formaldehyde under basic
conditions was attempted, no defined product was observed in the 'H NMR
spectra of the crude products. Presumably, the bulky sulphonate ester group

prevents 26 or 27 from cyclizing to form calixnaphthalenes.
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3.23. is of perf- i under Acidic
Conditions.
When 6 was refluxed with inthe p of 3% sulpl

acid in glacial acetic acid for 2 h, a dimer 28, and a trimer 29 were formed. When
the reaction time was prolonged to six days, an oxy-peri-sulphonatocalix-
naphthalene, 30, was obtained (Scheme 3.5).

In the '"H NMR spectrum of 30, two singlets appear at 5 3.90 and 5.24
ppm respectively. The former was assigned to the methylene protons (H-13 and
H-33), which is confirmed by HETCOR (& 30.46 ppm for C-13 and C-33 in its

®C NMR The latter was assi to the

y ylene protons (H-3,
H-23), which was confirmed by HETCOR (5 57.19 ppm in its™°C NMR spectrum).

Its FAB MS did not show a molecular ion (M*), but a weak M** peak (1%) was
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evident. Under strong acidic conditions the dimer 28 can hydrolyse to 28a, which

undergoes O-alkylation to give 25a. Self ion of 25a 30
(Scheme 3.6).
Scheme 3.5.
50,40
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s0,—0 50,—0
0,0 50,—0
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28 28 25
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3.2.4.C i is of p

calixnaphthalene (20).

As described in the previous section, the dimer 28 could be obtained
easily. Functionalization at the 2- and 2'-positions could be potentially effected
by bromomethylation or formylation to form 31 or 32 respectively. The coupling
reaction

of 31 with 28 would give a cyclic tetramer 20 as outlined in Scheme 3.7.

50,0

$0,~0

Scheme 3.7.

E] 31 »

50,-0

CHO

"CHO
50,0
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When the sultone 6, sultone dimer 28 or sultone trimer 29 were treated

with in the p of HBr, only 4 yl-1,8-
naphthalene sultone (34) was obtained in each case (Scheme 3.8). Thus, for 6,
substitution of a naphthalene ring by a bromomethy! cation only occurred at the

4-position. For 28 and 29, retro-Friedel-Crafts reactions must have occurred.

Attempts to ionalise the 2- and 2" it of 28 by with o, -
dichloromethyl methyl ether in the presence of TiCl, resulted in no reaction, and

only the starting material was recovered.

Scheme 3.8.
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At this stage, attempts were made to hydrolyse the sultone dimer 28 to its
corresponding free hydroxy sulphonic acid, 25b. it was anticipated that the
electron-donating ability of the free hydroxy group would enhance the reactivity
of the 2-position in the condensation reaction with formaldehyde. When the
dimeric sulphonic acid 25 was treated with paraformaldehyde in the presence of
HBr and ZnBr, in acetic acid, a dark brown crude product was obtained
(Scheme 3.9). The 'H NMR spectrum of this crude product showed that it was a

mixture of many oligomers or polymers. Reverse-phase preparative thin layer

(PLC) ion was but we were unable to obtain

any desired product as revealed by 'H NMR.

Scheme 3.9.
50;=0 SO3H OH
1.KOH
EOH
teflux (CHLOM
& — > many oligomers
2.HCl (ag) i HBr, ZnBr
$0,—0 S03H OH
28 25b

3.3. Complexation studies.

Water-soluble calixarene hosts can form complexes with neutral aromatic

g
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guests in aqueous solution. Shinkai * has investigated the complexation

of the p- i with a variety of guest molecules.

The ion of was evil by the ent 1t of ilities of

aromatic guests in water. Quantification of the aromatic guests was achieved by

it ! v
We i the effect of perr ix{4]naphthalene (20) on the
solubility of in water by ing the
of r i The results as summarized in

Table 3.1 show that the solubility of naphthalene guests in water was

Table 3.1. of F ission (at A=340 nm)
of Aqt inthe of 20.
Entry 1 2 3 4 5
C joq X 10°M 2.0402 | 1.0201 [ 0.5101 | 0.2267 0.0000
Intensity 0 0 0 0 200
not enhanced, but was { C inthe p of 20. Thus, the

complexation of 20 with a naphthalene guest does not appear to be formed,
whereas a possible “salting out” effect occurred.

In order to form a complex with neutral guests, the macromolecular host
should be conformationally rigid, and have defined hydrophilic and hydrophobic

parts. The failure of 20 to act a host can be ascribed to the fact that 20 is
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conformationally flexible and, in addition, its hydrophilic parts, namely the
hydroxy and sulphonic acid groups, are separated by the hydrophobic

naphthalene rings.

3.4. Summary.
The condensation reaction of 1,8-naphthalene sultone (6) with
formaldehyde under basic ccnditions gave peri-sulphonatocalix[4]naphthalene

(20). A limited mechanistic analysis shows that the formation of peri-sulphonato-

calix[4]r e (20) follows the fcali; " pathway, but does

not follow the "pseudocalixnaphthalene” pathway. Under acidic conditions, the

condensation reaction of 1,8-napl sultone (6) with gave

y-peri-sulp ix[4Jnaphihalene (30), linear dimer 28 and trimer 29 in
good yields.
When 1,8-naphthalene sultone (6) was treated with two equivalents of

chloride, the bridged dimer 26 was obtained.

Complexation studies showed that the peri-sulphonatocalix{4]-
naphthalene (20) did not enhance the solubility of naphthalene in water, and

therefore did not act as an anticipated “host”.
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quadrunole.

HO,8  OH OH  SOaH

To a solution of freshly sublimed 1,8-naphthalene sultone (6) (2.06 g, 10
mmol) in DMF(10 mL) under N, were added formalin (aqueous 37%
formaldehyde solution, 0.70 mL, 8.6 mmol) and Cs,CO, (2.0 g, 6.13 mmol) in
water (3mL). The reaction mixture was refluxed for 52 h, and then cooled to
room temperature. After pouring into 5% hydrochloric acid (30 mL), the reaction
mixture was left in a refrigerator for two days. A white precipitate formed which
was filtered and washed with deionized water until the washings were neutral to
pH paper, and then dried under vacuum. The crude product was crystallized
from 95% ethanol to afford 20 as a white powder (0.42 g, 15%). mp 256-
275 °C (with decomposition); 'H NMR (DMSO-d,): 4.00 (s, 4H, H-12, H-32), 4.44
(s, 4H, H-2, H-22) 6.63 (s, 4H, H-41, H-42, H-43, H-44), 7.27 (m, 4H, H-8, H-18,

H-28, H-38), 7.94 (d, J=9, 4H, H-9, H-19, H-29, H-39), 8.06 (d, J=9, 4H, H-7, H-
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17, H-27, H-37); °C NMR (DMSO-dp): 29.2 (C-2), 3.5 (C-12), 121.4 (C-10),
124.2 (C-44), 124.8 (C-3), 126.2 (C-7), 127.0 (C-11), 127.8 (C-8), 130.8 (C-6).
133,6 (C-9), 142.6 (C-10), 150.4 (C-5); MS (ESMS), Intensity (%): 537.3
(IM+6Na-8HJ?, 15), 471.5 (IM-4H]*, 15), 356.0 ([M+6Na-9HJ”, 63), 321.0
(IM+Na-4H[, 13), 313.7 (IM-4H]*, 65), 287.4 (IM-3H-SO,HJ* 51), 235.3 (M-

4H]*, 100), 229.7 ([M-4H-H,0]*, 72).

Phenyl (1-hydroxyl-8-naphthyl) sulphone (27).

PSS  on

To dry diethyl ether (25 mL) were added magnesium turnings (2.4 g,

100 mmol) and one third of the amount of (23.4mL,
100 mmol) in diethyl ether (25 mL). After stirring for 5 min, the solution became
cloudy and exothermic with resulting reflux of the solvent. The rest of the
bromobenzene was added dropwise. The solution was maintained at gentle
boiling for an additional hour after the addition of the bromobenzene was
completed. A benzene solution (50 mL) of 6 (2.50 g, 12.14 mmol) was added to
the Grignard reagent solution. The reaction mixture was refluxed for 4 h, and

after cooling to room temperature, 5% hydrochloric acid (50 mL) was added to
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the solution. After stirring for 15 min, the aqueous and organic layers were
separated. The aqueous layer was extracted with benzene. The benzene
extracts (20 mL x2) were combined and dried over anhydrous magnesium
sulphate. After filtering and evaporating the solvent, the residue obtained was
crystallized from benzene. Sulphone 27 was obtained as colourless ncedies
(2.05 g, 59%): lit. mp 140 °C,* mp 134.5-135.0 °C; 'H NMR (CDCl,): 7.19 (d,
J=7.3, 1H, H-2), 7.51 (m, 6H, pheny), and H-4), 7.81 (m, 1H, H-6), 7.84 (m, 1H,
H-3), 8.13 (q, Jss=8.4, Js;=1.2, TH, H-5), 8.58 (q, J;6=7.5, J;s=1.2, 1H, H-7); °C
NMR (DMSO-d,): 112.2, 119.4, 120.0, 124.6, 125.4, 127.9, 130.7, 131.7, 135.2,
136.2, 144.7, 152.4; MS (m/z), Intensity (%): 285 (M*+1, 18), 284 (M, 100), 219

(18), 218 (14), 206 (27), 189 (6), 142 (38).

7', 1-Bis-(1-hydroxI-8-nap (28).
|z

—FH—SO; OH
sles

To a solution of 6 (2.0 g, 10 mmol) in dry benzene (50 mL) was added

ethylmagnesium bromide (3.0 M ether solution, 8 mL) over 30 min. The reaction
mixture was refluxed for 4 h. After cooling to room temperature, 5% hydro-

chloric acid (50 mL) was added to the solution. After stirring for 15 min, the
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aqueous and organic layers were separated. The aqueous layer was extracted
with benzene (20 mL x2). The benzene extracts were combined and dried over
anhydrous magnesium sulphate. Fitration and evaporation of the solvent gave a
residue, which was crystallized from benzene. The product 26 was obtained as
colourless needles (0.95 g, 44%): mp 197-198°C; IR (KBr, cm™): 3300 (s, br,
OH), 1510 (m), 1496 (s), 1400 (s), 1353 (s) 1250, 1120; 'H NMR (CDCl,): 2.11
(d, J=7.2, 3H, H-12), 6.54 (m, 1H, H-11), 6.89 (m, 2H, H-4, H-4'), 7.31 (m, 6H, H-
2, H-2', H-3, H-3', H-6, H-6'), 7.81 (d, J=8.4, 2H, H-5, H-5'), 8.07 (d, J=7.5, 2H,
H-7, H-7'); ®C NMR (CD,COCD,): 149.5 (C-8, C-8'), 136.9 (C-7, C-7'), 135.8 (C-
1, C-1'), 133.0 (C-5, C-5'), 131.0 (C-10, C-10'), 128.3 (C-9, C-9'), 127.9 (C-6, C-
6, 123.4 (C-3, C-3'), 122.8 (C-4, C-4'), 118.4 (C-2, C-2), 78.4 (C-11), 8.3 (C-
12); MS (m/2), Intensity (%): 443 (M*+1, 15), 442 (M", 55), 236 (7), 234 (6), 191

(22), 190 (100), 174 (21), 171 (12), 162 (20), 144 (36).

Bis-(1,8-sultonyl-4-naphthyl)methane (28) and 2,4-di-(1',8sultonyl-4™

naphthylmethyl)-1,8-naphthalene sultone (29).
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To a solution of 6 (206 mg, 1.30 mmol) and paraformaldehyde (120 mg,
4.0 mmol) in glacial acetic acid (10 mL) was carefully added concentrated
sulphuric acid (0.3 mL). The clear solution was refluxed for 2.5 h. After cooling
to room temperature, the reaction solution was poured onto crushed ice (10 g).
A white precipitate formed which was filtered, washed with water until the
washings were neutral to pH paper and dried under vacuum. A crude product
was obtained (202 mgj}, which was purified by preparative thin layer
chromatography (PLC) using 50% dichloromethane / petroleum ether (30-60 °C)
as eluent. The dimer 28 (148.1 mg, 54%) and the trimer 29 (21.4 mg, 8%) were
obtained as white powders. Dimer 28: mp 296-298 °C; 'H NMR (DMSO-d,
/ CDCl, (4:1)): 4.95 (s, 2H, H-11), 7.26 (d, J=7.8, 2H, H-2, H-2), 7.36 (d, J=7.8,
2H, H-3, H-8), 7.96 (m, 2H, H-6, H-6'), 8.41 (d, J=8.6, 2H, H-7, H-7"), 8.49 (d,
J=8.4, 2H, H-5, H-5'); °C NMR (DMSO0-d, / CDCl,): 32.4 (C-11), 106.5, 121.0,
121.7, 127.9, 129.5 (x2), 129.8, 130.5, 131.2, 145.0 (aromatic). MS (m/2),
Intensity (%): 425 (M*+1, 25), 424 (M*, 100), 360 (M*-SO,, 16), 296 (M*-2S0,,
24), 268 (26), 267 (12), 240 (24), 239 (81), 238 (12), 237 (20), 120 (66), 118
(14). Trimer 29: mp>300 °C (with decomposition); 'H NMR (DMSO-d,) 4.58, 4.87
(s, 4H, H-11, H-11, 7.07 (s, 1H, H-8), 7.24 (d, J=9), 7.26 (d, J=6), 7.36 (d, J=6),
7.48 (d, J=9) (4H, H-2', H-3', H-2", H-3"), 7.73, 7.82, 7.97 (mx3, 3H, H-6, H-6', H-
6"), 8.24 (d, J=9), 8.35 (d, J=9), 8.39 (d, J=9), 8.41 (d, J=9), 8.49 (d, J=9), 8.52

(d, J=9) (BH, H-5, H-7, H-8", H-7", H-5", H-7"); ®C NMR (DMSO-dy): 29.9, 32.3
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(C-11, C-11"), 106.5, 106.6, 106.7, 106.8, 121.9, 122.0, 122.4, 129.3, 129.5,
129.8, 129.9, 130.1, 130.8, 131.0 (d, C-3, C-5, C-6, C-7, C-2', C-3', C-5', C-6', C-
7', C-2", C-3", C-5", C-6", C-7"), 118.9, 120.7, 120.8, 121.1, 127.7 (x2), 128.7,
129.4, 129.7, 130.5, 131.2, 131.7, 132.1, 142.2, 144.8, 144.9 (s, C-1, C-2, C-4,
C-8, C-9, C-10, C-1', C-4', C-8', C-9', C-10', C-1", C-4", C-8", C-9", C-10"); MS
(m/z), Intensity (%): 642 (M*, 18), 424 (11), 363 (8), 239 (34), 237 (15), 226 (7),

213 (8), 203 (7), 187 (4), 182 (5), 155 (9), 127 (15), 119 (11).

Oxa-calix[4Jnaphthalene sultone (30).

To a solution of 6 (7.9 g, 50 mmol) and paraformaldehyde (4.8 g, 160
mmol) in glacial acetic acid (200 mL) was carefully added concentrated sulphuric
acid (6.0 mL). The clear solution was refluxed for 6 days. After cooling to room
temperature, the reaction solution was poured onto crushed ice (200 g). The
white precipitate was filtered, washed with water until the washing were neutral

to pH paper, and dried under vacuum. A crude product was obtained (202 mg),
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which was purified by column chr (CC) using dit 1ane as

eluent. Evaporation of the solvent left a residue, which was purified by CC using
70% dichloromethane / petroleum ether (30-60 °C) as eluent. Calixnaphthalene
30 was obtained as a white solid (1.81 g, 14%): mp 265-270 °C (with
decomposition); 'H NMR (CDCI,/DMSO-d,): 4.84 (s, 4H, H-13, H-33), 5.24 (s,
4H, H-3, H-23), 7.05 (d, J=7.8, 2H, H-41, H-44), 7.21 (d, J=7.8, 2H, H-42, H-45),
7.32 (s, 2H, H-43, H-46), 7.79-7.89 (m, 4H, H-9, H-17, H-29, H-37), 8.06 (m, 4H,
H-8, H-18, H-28, H-38), 8.14 (d, J=8.4, 8.24 (d, J=8.1, 4H, H-10, H-16, H-30, H-
36); °C NMR (DMSO-d,): 30.5 (C-13, C-33), 57.2 (C-3, C-23), 104.6, 104.7,
120.1, 120.5, 127.2, 127.3, 127.6, 127.7, 127.9 (d, C-8, C-9, C-10, C-16, C-17,
C-18, C-28, C-29, C-30, C-36, C-37, C-38, C-41, C-42, C-43, C-44, C-45, C-46),
113.3, 118.9, 119.0, 125.7, 125.8, 125.9, 128.2, 129.4, 129.7, 140.7, 143.0 (s,
C-1, C-4, C-5, G-6, C-7, C-11, C-12, C-14, C-15, C-16, C-19, C-20, C-21, C-24,
C-25, C-26, C-27, C-31, C-32, C-34, C-35, C-39, C-40); MS (FAB+, NOBA as a

matrix, m/z), Intensity (%): 517 (M2, C,4Hy016S, Nay, 1), 494 (2.2), 436 (4), 395

(7), 367 (6).
of the 2-position of bis-(1,8-sultonyl-4-naphthy

methane (28 ).

A. Bromomethylation of 28. To a solution of the sultone dimer 28 (800 mg,

1.88 mmol) and paraformaldehyde (400 mg, 13.3 mmol) in glacial acetic acid (50
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mL) were added 30%HBr in glacial acetic acid (50 mL) and anhydrous ZnBr,
(700 mg, 3.14 mmol). The reaction mixture was heated to 90-100 °C and
maintained at that temperature for one week. After cooling to room temperature,
the reaction solution was poured onto crushed ice (20 g). The white precipitate
was filtered, washed with water until the washings were neutral to pH paper, and

dried under vacuum. TLC revealed at least five spots. The crude product was

P by CC with di 1ane as eluent. The major fraction was re-
chromatographed with 30% ethy! acetate / hexanes as eluent. A cream coloured
crystalline product was obtained (103 mg, 9%), whose structure was assigned to

be 4-bromomethyl-1,8-naphthalene sultone (34): lit. mp 145-146 °C,* mp 143-

0— 30,

145 °C; 'H NMR (CDC): 4.92 (s, 2H, H-11), 7.10 (d, J=7.8, 1H, H-2), 7.69 (d,
J=7.8, 1H, H-3), 7.95 (q, Jg,=7.2, Jps=8.1,1H, H-6), 8.06 (d, J=7.2, 1H, H-7), 8.42
(d, J=8.1, 1H, H-5); °C NMR (CDCl,): 2.1 (C-11), 1062, 121.2, 128.8, 129.2,
1305 (C-2,C-3, C-5,C-6, C-7), 122.1, 128.6, 129.4, 144.8, 147.4 (C-1, C-4,
C-8, C-9, C-10); MS (m/2), Intensity (%): 300 (M, 4), 298 (M", 4), 219 (100), 155
(35).
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B. Formylation of 28. To a solution of ihe sultone dimer 28 (100 mg, 0.24
mmol) in dry dichloromethane (5 mL) cooled to 0-5 °C in a salt-ice bath were
added TiCl, (0.10 mL, 0.90 mmol) and o,a-dichloromethyl methy! ether (0.10
mL, 1.10 mmol). After removing the ice bath, the reaction mixture was warmed
to room temperature and stirred for 3 h. When the crude reaction mixture was
checked by TLC, the starting material remained unchanged with no evidence of

product formation.

Bis-(1-hydi 8- 4 (25b).

Xy P

The sultone dimer 28 ( 500 mg, 1.18 mmol) was dissolved in a mixture of
absolute ethanol (40 mL) and water (20 mL) containing KOH (530 mg, 9.4
mmol). After refluxing for 2 h under N,, the starting material disappeared as
evidenced by TLC. The solvent was evaporated under vacuum and the residue
was suspended in hot water (80-90 °C, 6 mL), filtered, and dried under vacuum.
Compound 25b was obtained (510 mg, 94%) as a redish solid: mp>300 °C (with
decomposition); 'H NMR (D,0): 4.42 (s, 2H, H-11), £ 92 (m, 4H, H-2, H-3, H-2,
H-3), 7.34 (m, 2H, H-6, H-6'), 7.98 (d, J=8.4, 2H, H-7, H-7"), 8.23 (d, J=7.5, 2H,
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H-5, H-5'); °C NMR (D,0): 35.6 (C-11), 114.7, 124.4, 127.0, 128.9, 129.3, 129.5

(x2), 134.2, 136.6, 149.3 (aromatic).

Complexation Studies.
A series of aqueous peri-sulfonatocalixarene (20) solutions of different

1S were (215.0 mg) was suspended in each

solution of 20 (10.00 mL) in capped test tubes and sonicated for 1 h at room

Residual undi 1e solid was removed by
centrifugation followed by filtration. The i ities of issions of
the aqueous naphthal lutions were on a Varian SF-

330 Spectrofluorometer at 340 nm with excitation at 285 nm.” The results are

summarized in Table 3.1.
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Chapter 4.

Calix[4]naphthalenes Derived from 3-Hydroxy-2-Naphthoic Acid

4.1.  Introduction.

Intra-annutar hydroxy groups which are in close prox.mity to one another
in calixarenes play a very importai t role in supramolecular chemistry. They
form intramolecular hydrogen bonds, which hold the conformation of calixarenes
in the “cone” and serve as a “cap” for the cavity of calixarenes so that stable
inclusion complexes with guests can be formed.

As described in Chapter 3, peri-sulphonatocalix[4]naphthalene (20) did
not form an inclusion complex with neutral guests possibly because of the
absence of intra-annular hydroxy groups. Since calixnaphthalenes 8, 10 and 11
do not have intra-annular hydroxy groups, they are not expected to form
inclusion complexes.

The calix{4]naphthalene 35, which would meet this basic requirement for

was desi A y is of 35 gives 2-hydroxy-3-

hydroxymethylnaphthalene (36), which can be prepared from commercially

ilable 3-hydroxy-2 ic acid (7a). The ponding

of 36 to 35 is a self ley



Scheme 4.1.
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4.2. Synthesis of Calixnaphthalenes.
4.2.1. Self-Condensation of 36 under Basic Conditions.

Lithium aluminum hydride (LAH) reduction of 3-hydroxy-2-naphthoic acid

(7a) in dry THF 2-hydroxy-3-hy 1aphthalene (36) in 61%
yield (Scheme 4.2) in addition to several by-products. Chaulk has identified
these by-products as 3-methyl-2-hydroxynaphthalene (37) and 2-formyl-3-
hydroxynaphthalene (38).”

Benzyl alcohol-type compounds have be~n suggested as intermediates
for the formation of calixarenes in Gutsche's procedure.™ However, when the

self-condensation of 36 was carried out under the conditions similar to those of
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Scheme 4.2
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Gutsche, a light brown powder was isolated from the dark brown reaction mixture
in 22% yield (Scheme 4.3). Its 'H NMR spectrum showed a singlet (equivalent
to two protons) at 6 4.60 ppm in the normal methylene proton region and a
doublet (equivalent to two protons) at § 5.07 ppm. When D,0O was added to the
sample solution in CDCl,, this doublet became a singlet, allowing it to be
assigned as a hydroxymethyl group. Its °C NMR spectrum shows two
secondary carbon signals at 3 25.01, and 62.00 ppm, which confirmed the
existence of the methylene and hydroxymethyl groups. In its mass spectrum,
m/2=312 is the molecular ion peak (100%). Based on this evidence, the
structure of this compound was assigned as 39, a pyran ring-containing bis-

nap A ism for the f ion of 39 is in Scheme 4.3.

Under strongly basic and high conditions, corr 36 was likely
converted to naphthaquinone methide 40. An apprent hetero [4+2] cycloaddition

of the hetero diene 40, with the dieneophile 36 gives compound 39.
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Scheme 4.3.
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4.2.2. Self-Condensation of 36 under Acidic Conditions.

Conditions similar to those of Hégberg' were used in the synthesis of
calix[4]resorcinarenes by self-condensation of 36. Treatment with hydrochioric
acid in ethanol afforded only 2-hydroxy-3-naphthylmethyi ethyl ether (41) in
good yield (Scheme 4.4).

When 36 was treated with 5% TFA in chloroform by stirring for 14 h at
room temperature, trifluoroacetate 41a was isolated in 37% yield. When 36 was
refluxed in dry chloroform in the presence of 5% TFA, a purple solution was

formed. After workup, the crude product was subjected to flash column
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1y with di as eluent and subjected to PLC with 50%

dichloromethane / petroleum ether (30-60 °C) as eluent to give a product as
colourless fine crystals in 15% yield (Scheme 4.4). The mass spectrum shows a
molecular ion peak at m/z=624. Its '"H NMR spectrum revealed a singlet
methylene signal, and its ®C NMR spectrum icvealed eleven carbon signals.

All data are i with the calix[4 35, which has also

been reported by Andreetti et al.™

Scheme 4.4.
JE=T
relux. 68%
CHOH CHOCHCHs
4
5% TFA, Teflux
SBTH \QYL\
14 1

37%)

: : :cu,m)u:,
4la

»
R=H

Compound 35 is conformationally flexible at room temperature, as
evidenced by a methylene singlet at & 4.57 ppm. As the temperature was
decreased, this signal became broader with coalescence temperature of ca.

-10°C. Cooling to -40 °C gave an AB quartet (Fic.4.1), suggesting a
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Fig. 4.1. VT 'H NMR Spectra of 35 in CDCl,.
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rigid conformation.

Similarly to calix{4Jnaphthalenes 8, 10 and 11, as discussed in Chapter 2,
tetramer 35 can adopt “cone”, “partial cone”, “1,3-alternate” and “1,2-alternate”
conformations. The singlet 'H NMR signal of the methylene bridge indicates a
symmetrical conformation. The unusually high chemical shift at 5 10.95 ppm and
the low IR absorption at 3135 cm™ for the hydroxy groups are consistent with the
existence of intramolecular hydrogen bonding. This indicates that 35 most likely
exists in a “cone” conformation.

The by-products of self-condensation of 36 under acidic conditions were
unidentified oligomers or polymers, whose formation is due to the great reactivity
of 36. In order to control the reactivity of 36, methylation of naphthoic acid 7a
was considered. The reaction sequence outlined in Scheme 4.5 was employed
to produce 43. However, when 43 was reacted under similar conditions used to
form 35, the 'H NMR of the crude product obtained was very broad and poorly
resolved. After crystallizing three times from acetonitrile, the 'H NMR signals
were still found to be very broad. These broad 'H NMR signals could be a
result of slow int2rconversion of conformations (see Chapter 2). However, when
the sample solution in DMF-d, was heated to 100 °C, its 'H NMR signals did not
become any sharper. Thus, it appears as though many oligomers form in the
self-condensation product, as verified by TLC. No evidence for the presence of

any well-defined cyclic oligomer was formed.
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Examination of molecular models revealed a strong steric repulsive
methoxy group interaction with one another, which may inhibit the formation of a
cyclic tetramer. Another reason for failure to form a cyclic tetramer could be the
absence of hydrogen bonding in the penultimate precursor of 43a, such
hydrogen bonding being presumed to be a strong driving force to form

calixarenes.'

4.3. is of Dil i 46.

2-Hydroxy-3-hydroxymethyinaphthalene (36) is an ideal building block for

since cali 1es derived from it will have

intra-annular hydroxy groups which, as discussed previously, appear to be
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necessary for host-guest chemistry.

In order to alter the cavity size and the conformation of macrocyclic
compounds derived from 7a, tae methylene bridge can be replaced with a longer
carbon chain, e.g. to form dihomocalix[4]naphthalene (46), in which two
methylene bridges are substituted by two ethylene bridges. Due to the large
size, a sulphur atom is often used as a temporary template to facilitate
cyclization in the synthesis of strained carbocycles® and this procedure was
adopted in the synthesis of 46. The complete approach for the synthesis of 46

is illustrated in Scheme 4.6.

Condensation of 3-hydroxy-2-r ic acid 7a with f de

in glacial acetic acid containing 5% concentrated sulphuric acid gave dimer 47 in

a i yield. This is also ially available under the

trivial name of pamoic acid. Starting from 47, sequential methylation, reduction

and ination gave bis-(2-methoxy-3. 4-naphthy!)methane (49).

Reaction of 49 with thiourea formed a bisisothiouronium salt, which was

4

q hydroly to produce bis-(2-methoxy-3 ly
naphthyl)}-methane (50). The coupling reaction of 49 and 50 under basic and
high dilution conditions gave dithiadihomocalix[4]naphthalene (51).

The sulphur extrusion reaction is a key step in this synthetic approach.
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Scheme 4.6.
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Among many sulphur ion approaches available,* the direct pt

reaction is one of the most attractive, as it has the fewest number of steps and

occurs under neutral conditions. Thus, 46 was produced in 22% yield when 51

was subj to photochemical irradiation for 18 h in the p of the
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sulphur scavenger trimethyl phosphite in a Pyrex® tube placed in a Rayonet®
photochemical reactor fitted with RPR 3500 A lamps. Trimethy! phosphite reacts
with the dithia compound to form an intermediate with an S-P bond. This

d ah lytic fission to give a carbon diradical, whose

recombination gives the product with C-C bond formation. The reaction is
facilitated if the sulphur compound is tethered.”

Scheme 4.7.

\g _PlOCH) \e . !
S ghoc— (| — |

Trimethyl phosphite also serves as a reaction medium to form a

1 of 51. Asadi solid, the resulting carbon diradical

is relatively immobile,” which thus favours cyclization over linear polymerization.

A Wittig-rea sulphur i failed to give any

desired product, forming a dark brown residue instead. It is possible that the

e i by n-butyllithium undergoes a tautomerisation

and methylation instead of a Wittig rearrangement (Scheme 4.8).
Ambient temperature *H NMR spectrum of 51 (Figure 4.2) suggests that it

is conformationally flexible since all signals are sharp and well-defined. The
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Scheme 4.8.
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VT 'H NMR spectra (Figure 4.2) show the signals due to the sulphide methylene

bridges at 5 3.86 ppm with a at approxil -40°C.

The signals due to the para-para methylene bridge at & 4.68 ppm are, however
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Fig. 4.2. 'H NMR Spectra of 51 in CDCI,.
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Fig. 4.3. VT 'H NMR Spectra of 46 in CDCl,.
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not split even at -55 °C. The methoxy signal at 6 3.29 ppm separates into three
broad signals at 5 4.00, 3.38 and 2.85 ppm in a 1:1:2 ratio. The lower-field
signals at & 2.85 ppm suggest a conformer in which two methoxy groups are
shielded by the two opposing naphthalene rings.

The ambient temperature 'H NMR spectrum of 46 (Figure 4.3) indicates

similar i flexibility. However, the of the
signal due to the ethylene bridges at 8 3.06 ppm is at approximately -20 °C.
Unlike 51, the position of the signal for the methoxy groups does not change,
even on cooling to -60 °C. The para-para methylene bridge at 6 4.68 ppm does
not split. The methoxy groups appear as a broad singlet at & 2.91 ppm, which

thatthe of 51 is sy ic, “cone”, “1,2 , and/or

“1,3-alternate”. The unusual upfield chemical shift suggests shielding by the
naphthalene rings, which excludes the possibility of the “cone”.

The single crystal X-ray diffraction structure of 46 is depicted in Figure
4.4. Inthe sclid state, the structure of 46 contains a center of symmetry as its
only symmetry element and has a “1,2-alternate” type of orientation of the
naphthalene rings. Fig.4.4 also shows that one pair of symmetry-related
methoxy groups (C-47 and C-49) is situated closer (3.52 A) to its opposite
symmetry-related naphthalene planes than the other pair (6.26 A). This

supports the arg! p abeve ¢ ing the unusual upfield

chemical shifts observed for the methoxy groups in the 'H NMR spectrum of 46.
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Fig. 4.4. ORTEP Diagram of the Molecular Structure of 46.

(The numbering system is not the same as the one in experimental.)
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4.4. Summary.

Self- ion of 2-hydroxy-3-hy cy y (36) under
TFA-catalysis in chloroform affords a cyclic tetramer 35 in 14.5% yield. VT 'H
NMR studies showed that the coalescence temperature of 35 was -1C °C and it
existed in a "cone” conformation at -60 °C. Self-condensation of 36 under basic

conditions gave a pyran ring-containing compound 40 through an apparent [4+2]

cycloaddition, but did not give a corresponding calixnaphthalene.

Self-condensation of 2-methoxy-3-hy y y (45) under
acidic conditions gave linear oligomers, but did not produce a calixnaphthalene-
type product.

Starting from 3-hydroxy-2-naphthoic acid (7a), a convergent synthetic

p afforded a dih ix[4] 46, which is the first example

of this class of compounds. VT 'H NMR studies showed that at -60 °C the
preferred conformation of 46 was a “1,2-alternate” or “1,3-alternate” in solution.
X-ray crystallography showed that it prefers a “1,2-alternate” or centrosymme-

tric, box-like conformation in the solid state.



4.5. Experimental.
For general experimental conditions and instrumentation employed, see
Chapter 2.

Methyl 3-methoxy-2-naphthoate (44).

To a solution of 3-hydroxy-2-naphthoic acid (7a) (1.88 g, 10 mmol) in
dichloromethane (50 mL) and water (38 mL) under vigorous stirring, were added
Adogen® 464 (0.5-1.0 mL) all at once and then dimethyl sulphate (6.48 mL, 60
mmol) dropwise over 15 min. The reaction mixture was stirred at room
temperature for 10 h. The two layers were separated, and the aqueous layer
was extracted with two 20 mL potions of dichloromethane. The combined
dichloromethane extracts were dried over MgSO, and filtered. The solvent was
removed and the residue was diluted with water (10 mL) and then extracted with
ether (50 mL). The organic layer was washed with 2.0 M aqueous ammonia
solution (20 mL) to remove the excess dimethyl suiphate, and then washed with
aqueous saturated sodium chioride solution until the washings were neut:al to
pH paper. After drying over anhydrous MgSO, and filtering, the solvent was
evaporated. Compound 44 was obtained as a colourless solid (2.05 g, 95%) by

flash column chromatography using 40% ethyl acetate / hexanes as eluent: mp
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80-82 "C; 'H NMR (CDCl, ): 3.96 (s, 3H, OCHj,), 4.00 (s, 3H, CO,CH,), 7.21 (s,
1H, H-4), 7.37, 7.52 (m, 2H, H-6, H-7), 7.74 (d, J=8.4, 1H, H-5 or H-8), 7.82 (d,
J=7.8, 1H, H-5 or H-8), 8.31 (s, 1H, H-1); '*C NMR (CDCL,): 52.0 (OCH,), 55.7
(CO,CH,), 106.5, 121.5, 124.2, 126.2, 128.2, 128.4, 132.5, 135.9 (C-1, C-2, C-
4-C-10), 155.5 (C-3), 166.5 (CO,CH,); MS (m/2), Intensity (%): 216 (M*, 100),

185 (83), 183 (31), 155 (23), 142 (18), 128 (13), 27 (53), 115 (12), 114 (25).

2-Hydroxy-3-hydroxymethylinaphthalene (36).

Pow:

©©:am

LAH (10 g, 263 mmol) was suspended in dry THF (100 mL). 3-Hydroxy-2-

naphthoic acid (7a) (10 g, 53.2 mmol) in THF (50 mL) was added over a period
of 1 h to the vigorously stirred reaction mixture which was cooled in a Dry ce-
acetone bath. When the addition was completed, the cooling bath was removed,
and the reaction mixture was refluxed for 10 h. After cooling to room
temperature, water was carefully added to the reaction mixture to destroy the
excess LAH. The reaction mixture was diiuted with ether (50 mL) and then
added to 5% sulphuric acid (50 mL). The two layers were separated and the
aqueous layer was extracted with ether (50 mL x2). The combined organic

extracts were dried over MgSO,, filtered and the solvent was evaporated. The
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crude product was recrystallised twice from ethyl acetate / hexanes. A cream
coloured crystalline product 36 was obtained (5.60 g, 61%): lit. mp 190-191 °C,*
mp 191-193 °C; 'H NMR (CD,COCD,): 4.51 (t, J=5.7, 1H, H-12), 4.88 (d, J=5.7,
1H, H-11), 7.19 (s, 1H, H-1), 7.27 (m, 1H, H-6 or H-7), 7.35 (m, 1H, H-6 or H-7),
7.66 (d. J=7.8, 1H, H-5 or H-8), 7.77 (d, J=7.8, 1H, H-5 or H-8), 7.83 (s, 1H, H-
4), 8.79 (s, 1H, H-13); °C NMR (CD,COCD,): 61.7 (C-11), 109.7, 123.9, 126.5,
126.7, 126.9, 128.4, 129.5, 131.7, 135.1, 155.6 (aromatic); MS (m/z), Intensity

(%): 174 (M*, 33), 156 (43), 128 (100), 127 (15), 115 (11), 64 (13).

2-Methoxy-3-hy 0y e (45).

LAH (151 mg, 3.97 mmol) was suspended in dry THF (1.5 mL).
Compound 44 (261 mg, 1.29 mmol) in THF (2 mL) was added over a period of 1
h to the vigorously stirred reaction mixture, which was cooled in a Dry Ice-
acetone bath. When the addition was completed, the cooling bath was removed,
and the reaction mixture was refluxed for 4 h. After cooling to room temperature,
water was carefully added to the reaction mixture to destroy the excess LAH.
The reaction mixture was diluted with ether (10 mL) and then added to 5%

sulphuric acid (10 mL). The two layers were separated and the aqueous layers
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were extracted with ether (10 mL x2). The combined organic extracts were dried
over MgSO,, filtered and the solvent was evaporated. The crude product was
recrystallised twice from ethyl acetate / hexanes. A colourless crystalline
product, 45, was obtained (218 mg, 90%): lit. mp 71-72°C,*” mp 70-71 °C; IR
(Nujol, cm™), 3602 (s, br, OH), 1650 (s), 1640, 1550, 1500 (s); 'H NMR (CDCl,):
2.39 (t, J=6, 1H, H-12), 3.98 (s, 3H, OCH3), 4.83 (d, J=6, 2H, H-11), 7.13 (s, 1H,
H-1), 7.35 (m, 1H, H-6 or H-7), 7.4 (m, 1H, H-6 or H-7), 7.73-7.78 (m, 3H, H-4,
H-5, H-8); °C NMR (CDCl,): 55.4 (OCHj), 62.5 (C-11), 105.2, 123.9, 126.3,
126.4, 127.5, 127.6, 128.6, 130.5, 134.1, 155.9 (aromatic carbons); MS (m/z),
Intensity (%): 188 (M, 100), 172 (10), 159 (52), 155 (13), 144 (22), 128 (23),

127 (36), 115 (30).

1 jl-10H-9: (39).

Y

To a solution of 36 (1.0 g, 5.75 mmoal) in xylenes (60 mL) under N, was
added NaOH (8 mg, 0.2 mmol) in water (5 mL). Upon heating, the colourless
emulsion turned a cream colour. The reaction mixture was refluxed for one

week. After cooling to room temperature, the solvent was removed under
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vacuum. The dark brown residue was extracted with chloroform (250 mL) for 6 h

using a Soxhlet i Atter ing the solvent, the residue

was purified by PLC using 40% ethyl acetate / hexanes as solvent. The pyran
compound 39 was obtained as a colourless powder (401 mg, 22%): mp 140-142
°C; 'H NMR (CD,Cl,): 4.58 (s, 2H, H-11), 5.04 (s, 2H, H-12), 7.41-7.96 (m, 11H,
aromatic); °C NMR (CD,Cl,): 24.9 (C-11), 61.9 (C-12), 121.0, 122.0, 124.5,
124.6, 126.2, 126.4, 126.7, 126.9, 127.2, 128.2, 128.5, 128.8, 129.1, 129.7,
130.5, 133.3, 145.2(x2) (aromatic); MS (m/2), Intensity (%): 312 (M', 100), 311

(M*-1, 79), 294 (16), 282 (22), 281 (89), 265 (12).

2-Hydroxy-3-napi q (41a)

LA
s Q) D
Y Saoacr,

H
To a solution of 36 in chloroform (8 mL) was added TFA (0.4 mL). The
reaction mixture was stirred for 14 h at room temperature. The reaction mixture
was washed with water until the washings were neutral to pH paper. After drying
with MgSQ,, filtering, and evaporating the solvent, the crude product was
purified by PLC using dichloromethane as eluent. Compound 41a was obtained
as a light brown solid (56 mg, 37%): mp 113-115 °C; 'H NMR (CDCl,): 5.58 (s,

2H, H-11), 7.16 (s,1H, H-1), 7.36 (m, 1H, H-6, H-7), 7.46 (m, 1H, H-6 or H-7),
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7.66 (d, J=8.1, 1H, H-5 or H-8), 7.78 (d, J=7.8, 1H, H-5 or H-8), 7.83 (s, 1H, H-
4).

Calix[4]naphthalene 35.

To a solution of 36 (200 mg, 1.15 mmol) in chloroform (15 mL) was added
trifluoroacetic acid (TFA, 0.75 mL). After refluxing for 48 h, the reaction mixture
was transferred to a separatory funnel and washed with water until the washings
were neutral to pH paper. After drying over MgSO, and filtering, the solvent was
evaporated. The crude product was purified by flash column chromatography
using dichloromethane as eluent followed by re-chromatography with PLC using
50% dichloromethane / peroleum ether (30-60 °C) as eluent.
Calix[4]naphthalene 35 was obtained as a colourless product (26 mg, 15%):
mp>250°C (with decomposition); IR (Nujol, cm™): 3135 (s, br, OH); 'H NMR
(CDCly): 4.47 (s, 8H, H-11, H-11', H-11", H-11"), 7.23 (m, 4H, H-7, H-7', H-7", H-
7"), 7.50 (m, 4H, H-8, H-8', H-8", H-8"), 7.60 (d, J=7.8, 4H, H-6, H-6', H-6", H-

6"), 7.85 (s, 4H, H-4, H-4', H-4", H-4"), 8.38 (d, J=8.7, 4H, H-5, H-5', H-5", H-
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5"), 10.95 (s, 4H, OH); “C NMR (CDCl,): 25.7 (C-11), 119.7, 122.8, 123.5,
126.2, 128.7, 129.2, 129.8, 131.6, 147.9 (aromatic); MS (m/z), Intensity (%): 625
(M*+1,46), 624 (M*, 100), 606 (17), 467 (10), 449 (12), 311(22), 265 (11), 252
(14), 169 (34), 157 (50).

2-Hydroxy-3-naphthylmethyl ethy! ether (41).

To a solution of 36 (100 mg, 0.53 mmol) in 95% ethanol (20 mL) was
added concentrated hydrochloric acid (5 mL). The reaction mixture was stirred
at room temperature for 10 h, during which no change was observed on
checking by TLC. The reaction mixture was then heated to 70-75°C and kept at
that temperature for 3 h. After cooling to room temperature, the reaction mixture
was poured onto crushed ice (25 g). A purple precipitate formed. After filtering,
the precipitate was washed with water until the washings were neutral to pH
paper and then dried under vacuum. The crude product was extracted with 50
mL of ether. After evaporating the solvent, the crude product was purified by
PLC with dichloromethane as eluent to afford 41 as a colourless solid (395 mg,

68%): mp 80-82 °C; 'H NMR (CDC,):1.29 (1, J=6.9, 3H, H-13), 4.86 (s, 2H, H-
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11), 7.25 (s, TH, H-1), 7.30 (m, 1H, H-6 or H-7), 7.40 (m, 1H, H-6 or H-7), 7.53
(s, 1H, H-4), 7.64 (, J=6.9, 2H, H-12), 7.68-7.72 (m, 2H, H-5, H-8), 7.78 (s, OH);
C NMR (CDCLy): 15.1 (q, C-13), 66.2 (t, C-12), 72.3 (t, C-11), 110.0 (d, C-1),
123.6, 126.3 (x2), 127.4, 127.5 (d, C-4, C-5, C-6, C-7, C-8), 124.9, 128.2, 134.7,
154.2 (s, C-2, C-3, C-9, C-10); MS (m/2), Intensity (%): 202 (M*, 26), 157 (15),

156 (59), 129 (12), 128 (100), 127 (11), 115 (6).

of cali from 2-methoxy-3-hydroxy-

methylnaphthalene (45).

To a solution of 45 (100 mg, 0.53 mmol) in dry chloroform (10 mL) was
added TFA (0.5 mL). After refluxing for 48 h, the reaction mixture was
transferred to a separatory funnel and washed with water until the washings
were neutral. After drying over MgSO, and filtering, the solvent was evaporated.
The crude product was crystallized from ethanol to give a purple powder (67
mg). The 'H NMR of the crude product showed that it consists of many

oligomers, and it was not further purified and characterized.

4,4"Bis-(methyl 3-methoxy-2-naphthy (485).

0.0y
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A solution of 3-hydroxy-2-naphthoic acid (7a) (2.0 g, 10.6 mmol) and
paraformaldehyde (0.43 g, 14.2 mmol HCHO) in glacial acetic acid (20 mL)
containing concentrated sulphuric acid (0.1 mL) was refluxed for 10 h. After

cooling to room a light yellow ipif formed, whici) was filtered

and washed with aqueous saturated NaCl solution (5 mL x2). The product was
dried under vacuum to give 3.9 g (95%) of bis(3-hydroxy-2-naphthoyl)methane
(47) as a light yellow powder, mp>300°C (with decomposition). This was used
directly in the following step without further purification.

To a solution 47 (3.9 g) in CH,Cl, (15 mL) was added water (30 mL),
Adogen®464 (0.5 mL), and aqueous 10% NaOH (10 mL). To the vigorously
stirred mixture at room temperature was added dimethy! sulphate (6.5 mL, 68.8
mmol) dropwise over a period of 15 min at room temperature. The mixture was
stirred at room temperature for 10 h. After separation of the two layers, the
aqueous layer was extracted with CH,Cl, (20 mL x2). The solvent was removed
on a rotary evaporator and the residue was mixed with water (10 mL) and diethy!
ether (50 mL). The ether extracts were separated and washed with aqueous
2.0 M NH,OH (10 mL x2) in order to remove the excess dimethy! sulphate. The
ether extracts were washed with aqueous saturated NaCl (60 mL x2) and then
was dried over anhydrous MgSQ,, filtered and evaporated on a rotary
evaporator. After drying under vacuum, the crude product was flash

chromatographed using 40% ethy! acetate / hexanes &s eluent to give 48a (4.1
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0, 92%) as a cream coloured solid: lit. mp 133 °C,** mp 113-115 °C; 'H NMR

(CDCl,): 3.81 (s, 6H, H-12, H-12'), 3.99 (s, 6H, H-13, H-13'), 5.01 (s, 2H, H-11,

H-11'), 7.30-7.43 (m, 4H, H-6, H-6', H-7, H-7'), 7.76 (q, J5,=8.1, J5,=0.8, 2H, H-

8, H-8'), 8.17 (q, J56=8.1, J5,=0.8, 2H, H-5, H-5'), 8.26 (s, 2H, H-1, H-1'); NOED

(%): * H-5/H-11 (3.65), H-11/ H-5 (20.97), H-8/ H-1 (14.81); '°C NMR (CDCl,):

226 (t, C-11, C-11), 52.3 (s, C-13, C-13'), 62.7 (g, C-12, C-12), 123.7(s, C-4, C-

4'), 124.7 (d, C-8, C-8"), 125.2 (d, C-7, C-7'), 128.3 (d, C-6, C-6') 129.3 (d, C-5,

C-5'), 129.8 (s, C-2, C-2'), 130.0 (s, C-9, C-9), 132.3 (d, C-1, C-1"), 135.2 (s, C-

10, C-10'), 153.6 (s, C-3, C-3), 166.8 (s, C-14, C-14'); MS (m/2), intensity (%):

444 (100, M*), 412 (81), 397 (76), 381 (8), 353 (56), 337 (43), 324 (50), 280

(20); HRMS: M" 44,1578, calcd for CyyH,,0, 4441573,

yl-1-nap hane (48).

" 2

HOCH,  OCHCHQ  CHOH

* The 'H NMR signal of the protons indi in type was i
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To a suspension of LAH (0.64 g 16.8 mmol) in anhydrous THF (30 mL)
under Ar at -78 °C, was added dropwise a solution of 48a (4.9 g, 11 mmol) in
THF (40 mL) over 30 min. After the addition was complete, the cooling bath was
removed and the reaction mixture was allowed to warm to room temperature.

The mixture was stirred for an additi 4hat room and was

worked up by adding water dropwise until the excess LAH was decomposed,
followed by the addition of 10% su!phuric acid (40 mL). The organic layer was
separated, washed with aqueous 5% NaHCO, solution, followed by saturated
NaCl (20 mL x2). After drying over anhydrous MgSO, and filtering, the solvent
was removed to afford, after vacuum drying, crude 48 (4.3 g, 67% yield). The
crude product was sufficiently pure by TLC to be used for the subsequent step
without further purification. For characterization, the crude reaction product (50
mg) was purified by PLC using 30% ethyl acetate / hexanes as eluent. Isolation
of the major band afforded colourless crystalline 48 (42 mg): mp 89-90 °C; 'H
NMR (CDCl,): 2.38 (br, 2H, OH), 3.86 (s, 6H, H-12, H-12'), 4.93 (two overlapping
singlets, 4H, H-11, H-11', H-13, H-13"), 7.25-7.28 (m, 4H, H-6, H-6', H-7, H-7"),
7.66-7.68 (m, 2H, H-5, H-5'), 7.69 (s, 2H, H-4, H-4'), 8.10-8.13 (m, 2H, H-8, H-
8; °C NMR (CDCl,): 22.7 (t, C-11, C-11'), 61.5 (g, C-12, C-12), 62.2 (¢, C-13,
C-13'), 124.4(d, C-8, C-8"), 124.8 (d, C-6, C-6"), 126.0 (d, C-7, C-7), 127.1 (d, C-
4,C-4'), 128.3 (d, C-5, C-5'), 126.6 (s, C-1, C-1'), 131.1(s, C-3, C-3'), 133.1(s, C-

10, C-10'), 153.8 (s, C-9, C-9'), 166.6 (s, C-2, C-2'); MS (m/2), Intensity (%): 388
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(M*, 32), 352 (18), 339 (13), 337 (28), 325 (11), 323 (13), 321 (19), 309 (24) 265

(19), 252 (21), 42 (100); HRMS: M* 388.1667, calcd for CsH,,O,: 388.1673.

To a solution of 48 (0.50 g, 1.3 mmol) in CH,Cl, (30 mL) was added PBr,
(0.40 mL, 4.1 mmol) dropwise over 30 min. The reaction solution was stirred at
room temperature for 4 h. The reaction was worked up by diluting the mixture
with an additional 20 mL-portion of dichloromethane, and washing with water (30
mL x3). After drying over MgSO, and filtering, the solvent was evaporated to
afford, after flash chromatography with 30% ethyl acetate / hexanes as eluent,
49 (0.49 g, 74%) as a colourless powder: mp 191-193 °C; 'H NMR (CDCl,): 4.05
(s, BH, H-12, H-12), 4.80 (s, 4H, H-13, H-13'), 4.95 (s, 2H, H-11, H-11'), 7.22-
7.29 (m, 4H, H-6, H-6', H-7, H-7"), 7.63 (m, 2H, H-5, H-5'), 7.75 (s, 2H, H-4, H-
4,811 (m, 2H, H-8, H-8'); NOED(%): H-8 / H-11 (4.55), H-8 /H-7 (2.73), H-11/
H-8 (18.14); °C NMR (CDCl,): 23.0 (t, C-11, C-11), 29.4 (t, C-13, C-13), 62.9
(q, C-12, C-12), 124.5 (d, C-8, C-8'), 124.8, 126.5 (d, C-6, C-6', C-7, C-7"),
128.1(d, C-5, C-5'), 129.1(s, C-1, C-1'), 130.4 (d, C-4, C-4), 130.5 (s, C-3, C-3),
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130.9 (s, C-10. C-10), 133.7 (s, C-9, C-9), 153.6 (s, C-2, C-2); MS (m/2),
Intensity (%): 514 ( M*, 70), 512 ( M*, 35), 435 (20), 433 (18), 412 (7), 308 (18),
265 (61), 263 (63), 155 (100); HRMS: M*511.9994, caled for C,sH,0,Br,

511.9986.

Bis-(2 3 4 (50).

A solution of 49 (2.0 g, 3.9 mmol) and thiourea (0.59 g, 7.8 mmol) in THF
(100 mL) was refluxed for 4 h under N,. The solvent was evaporated on a rotary
evaporator and the residue was dissolved in aqueous 1% NaOH (250 mL). The
mixture was refluxed for 4 h, cooled to room tempera*re and neutralized with
aqueous 3 M HCI. The resulting white precipitate was filtered and dried under
vacuum. Flash chromatography of the crude product using 20% ethyl acetate /
hexane as eluent afforded 50 (1.4 g, 85%) as colourless crystals: mp 134-135
°C; 'H NMR (CDCl,): 3.95 (s, 6H, H-12, H-12'), 3.96 (s, 4H, H-13, H-13'), 3.99 (s,
2H, SH, exchangeable with D,0), 4.95 (s, 2H, H-11, H-11), 7.21-7.26 (m, 4H, H-

6, H-6', H-7, H-7"), 7.60-7.63 (m, 2H, H-5, H-5'), 7.64 (s, 2H, H-4, H-4'), 8.12-
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49, 8.12:8.15 (m, 2H, H-8, H-8); NOED (%): H-8/ H-12 (4.29), H-8 / H-7 (3.87),
H-11/H-8 (16.81), H-11/ H-12 (1.94)- *C NMR (CDCL): 23.0 (t, C-11, C-11Y),
24.7 (t, C-13, G-13"), 62.7 (q, C-12, C-12), 124.7 (d, C-5, C-5'), 124.8 (d, C-6, C-
6), 125.9 (d, C-7, C-7), 127.8, 127.9 (d, C-4, C-8, C-8), 129.0 (s, C-1, C-1),
131.1 (s, C-3,C-3"), 132.9 (s, C-10, C-107), 133.8 (s, C-9, C-9), 153.6 (s, C-2, C-
2); MS (m/2), Intensity (%): 420 (M",100), 355 (20), 352 (22), 309 (16), 308 (14),
265 (12), 217 (24), 185 (180) 171 (61); HRMS: M" 420.1235, calcd for

CasHO,S, 420.1218.

45,46,47,48-Tetramethoxy-3,25-dithia[3.1.3. 1]naphthalenophane (51).

Into a solution of KOH (230 mg) in 95% ethanol (120 mL) under
vigorous stirring was added dropwise a solution 50 (300 mg, 0.71 mmol) and 49
(370 mg, 0.72 mmol) in benzene (50 mL) over 10 h. The reaction mixture was
stirred ar room temperature for 12 h and then neutralized with concentrated
sulphuric acid until the pH was 5-6. Removal of the solvent on a rotary

evaporator afforded a residue, which was dissolved in dichloromethane (200 mL)
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and washed with water (100 mL) to remove inorganic salts. The aqueous
washings were re-extracted with dichloromethane (50 mL x2). The combined
organic extracts were dried over anhydrous MgSO,. Filtration and evaporation of
the solvent to dryness left a solid product. Crystallization from chloroform /
hexanes gave 51 (342 mg, 62%) as colourless fine needles: mp>300 °C (with
decomposition); 'H NMR (CDCl,): 3.29 (s, 12H, OCH,), 3.86 (s, 8H, H-2, H-4, H-
24, H-26), 4.81 (s, 4H, H-14, H-36), 7.26-7.36 (m, 8H, H-9, H-10, H-18, H-19, H-
31, H-32, H-40, H-41), 7.71 (s, 4H, H-6, H-22, H-28, H-44), 7.72-7.75 (m, 4H, H-
8, H-20, H-30, H-42), 7.93-7.96 (m, 4H, H-11, H-17, H-33, H-39); NOED (%): H-
11/H-146.60), H-11 / H-10 (6.01), H-14 / H-11(21.55), H-14/ OCH, (1.18 ); °C
NMR (CDCl,): 24.1(t, C-14, C-36), 32.1(t, C-2, C-4, C-24, C-26), 61.7 (g, OCH3),
123.9 (d, C-11, C-17, C-33, C-39), 124.4 (d, C-9, C-19, C-31, C-41), 125.9 (d, C-
10, C-18, C-32, C-40), 128.4 (d, C-6, C-22, C-26, C-44), 128.9 (s, C-13, C-15, C-
35, C-37), 129.1 (d, C-8, C-20, C-30, C-42), 130.9 (s, C-1, C-5, C-23, C-27),
131.3 (s, C-7, C-21, C-29, C-43), 132.9 (s, C-12, C-16, C-34, C-38), 1555 (s, C-
45, C-46. C-47, C-48); MS (FAB+, NOBA as a matrix, m/z), Intensity (%) :794

((M +Nay', 3) 772 (M, 1).



Dihomocalix[4]Jnaphthalene (46).

A solution of 51 (200 mg, 0.26 mmol) in trimethyl phosphite (10 mL) in a
Pyrex ®tube was fitted with a reflux condenser and placed in a Rayonet® photo-
chemical reactor fitted with RPR 3500 A lamps. The solution was maintained
under argon and was stirred vigorously while irradiating for 18 h. The solvent
was removed by vacuum distiliation and the residue was crystallized from
dichloromethane / hexanes to give 46 (41 mg, 22%) as colourless fine crystals:
mp 163-165 °C; 'H NMR (CDCl,): 2.91 (br, s, 12H, OCHj), 3.06 (br, s, 8H, H-2,
H-3, H-23, H-24), 4.68 (s, 4H, H-13, H-4), 7.26-7.28 (m, 8H, H-8, H-9, H-17, H-
18, H-29, H-30, H-38, H-39), 7.52 (s, 4H, H-5, H-21, H-26, H-42), 7.63-7.65 (m,
4H, H-7, H-19, H-28, H-40), 7.97-7.98 (m, 4H, H-10, H-186, H-31, H-37); NOED
(%): H-10/ H-13 (8.29), H-10 / H-9 (4.33), H-7 / H-8 (3.01), H-5 / H-7 (4.56), H-5
/H-3 (3.42), H-13/ OCH, (2.35), H-13 / H-10 (23.43), CH,0, H-3 / H-5 (2.64),
CH,0, H-3/H-13 (2.70); “C NMR (CDCl,): 23.7 (t, C-13, C-34), 30.2 (t, C-2, C-
3, C-23, C-24), 60.3 (9, OCH,), 1235 (d, C-10, C-16, C-31, C-37), 123.6 (d, C-8,
C-18, C-29, C-39), 124.7(d, C-9, C-17, C-30, C-38), 127.5 (d, C-5, C-21, C-26,
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C-7,C-19, C-28, C-40), 128.3 (s, C-12, C-14, C-33, C-35), 130.7 (s, C-1,C-4, C-
22, C-25), 1322 (s, C-6, C-20, C-27, C-41), 134.7 (s, C-11, C-15, C-32, C-36),
156.2 (s, C-43, C-44, C-45, C-46); MS (m/2), Intensity (%): 709 (M'+1, 100), 677
(6), 537 (8), 354 (25), 308 (11), 265 (9), 185 (18); HRMS: M* 708.3130, calcd for

CsoHuOs: 708.3240.

X-ray Data for 46.

Crystal data for 46: CgoH,O,, triclinic, space group P1 (#2), a=10.343 (3)
A, b=11.240 (6) A, c=8.992 (4) A, a=96.15 (4)°, B= 110.13 (3)°, y= 10446 °,
Z=1, D y= 1.267 g/cm’®, crystal size = 0.400 x 0.200 x 0.400 mm. Intensity data
were measured at 299 K on a Rigaku AFC6S diffractometer with MoKa (A=
0.71069 A) to 28,,,,(deg) = 50.2°; 3304 unique reflections converged to a final A
= 0.042, for 2392 reflections with 1>2.000(l); R,=0.038, G.0.F. =2.54.

Additional details of the structure solution are given in Appendix I.

Attempted sulphur extrusion of 51 via Wittig Rearrangement.

To a solution of 51 (100 mg, 0.13 mmol) in dry THF(10 mL) cooled to
-10 °C with an ice-NaCl bath was added n-butyllithium (0.2 mL, 1.6 M in hexane,
3.2 mmol) at such a rate that the light blue color was maintained. After the
addition was completed, the reaction mixture was stirred until the temperature

reached to ambient temperature. Methy! iodide (0.45 mL, 7.25 mmol) was added
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to quench the reaction. After ether (10 mL) was added, the reaction mixture was
washed with aqueous saturated NaCl solution until the washings were neutral to
pH paper. After drying over MgSO, and filtering, the solvent was evaporated to
afford a dark brown residue. TLC of the crude product revealed at least five

spots, which were not further separated and characterized.
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Chapter 5.

Calix[4]naphthalenes Derived from 2,3-Dihydroxynaphthalene

5.1. Introduction.

The choice to use 2,3-dihydroxynaphthalene as a building block for
calixnaphthalenes was based on the following considerations: (1) the electron-
donating effect of the two hydroxy groups should make electrophilic substitution
at the C-1 and C-4 positions facile; (2) the number of possible isomers is limited;
(8) the cyclic tetramer will possess eight intra-annular oxygen atoms as potential
complexation sites; and (4) the intramolecular hydrogen bonding effect should

hold cyclic ol in a “cone”

Dreiding molecular models suggest that the structure of a calix[4)-
naphthalene derived from 2,3-dihydroxynaphthalene would be very rigid. This
conformational rigidity is required for supramolecular applications. On the other
hand, the same rigidity could also create difficulties in effecting the final
cyclization step in the synthesis. The molecular rigidity and the size of the cavity
of the macrocyclic compounds could be altered by replacing the methylene
bridges with longer carbon chains. Hence, the homocalixnaphthalenes were also

selected as synthetic targets.
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5.2 is of Calix from 2,3-Dihy

5.2.1. C ion of 2,3-Dihy with Yy

The ion of 2,3-dihydr with de under
basic conditions was studied first. A dark resinous product was obtained by
using either Gutsche's procedure, *? or the conditions which were employed for

the synthesis of calix[4]naphthalenes from 1-naphthol as described in Chapter 2.

It became apparent that under basic i 2,3-dihy e is
very easily oxidized to quinone-like products (Scheme 5.1).

Scheme5.1.

formalin

OH
OCE _NaOH. xylency, yiized Product
o O K.CO;, DMF

When 2,3-dihydroxynaphthalene was treated with formaldehyde under
acidic conditions, a brown precipitate formed after the reaction mixture was
stirred at room temperature for 4 hours. After workup, the crude product was
extracted with acetone and the extract was fractionated by flash column
chromatography to afford a small portion of dimer, bis-(2,3-dihydroxy-1-
naphthyl)methane (52), in 17% yield. The rest of the crude product is sparingly
soluble in common organic solvents and is believed to be a mixture of longer
oligomers or polymers (see Scheme 5.2). Attempted separation of these

oligomers or polymers however were unsuccessful. It was anticipated that it
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Scheme 5.2,
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pyridine
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53 (R=Ac),Is %

54 (R=Ac), 7 %

would be easier to separate the mixture of the corresponding acetates. Thus,
the crude product was reacted with acetic anhydride and pyridine as a catalyst.
Both dimer 53 and trimer 54 were isolated low yields (15% and 7% respectively).
No other products from the crude product were separated or characterized.

When 2,3-dihydroxynaphthalene was treated with acetaldehyde in
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ethanol in the presence of sulphuric acid at room temperature, followed by
acetylation with acetic anhydride and pyridine, dimer 55 was obtained in 16%
yield.

Scheme 5.3.

\ OH
x A0
CH,CHO, H50, 2
ridine
OH EtOH Yy

55 (R=A¢)

Two factors may have prevented product formation in good yield from the
condensation of 2,3-dihydroxynaphthalene with aldehydes. One is the great
reactivity of the dihydroxy compounds, which could lead to undefined longer
linear oligomers or polymers, instead of smaller cyclic oligomers. Another factor
could have been the great polarity of the oligomers from 2,3-dihydroxynaph-
thalene and its corresponding acetates, which would create difficulty in the
fractionation of the crude product. Therefore, protection of the diol as the diether
was considered to be necessary, both to reduce the reactivity and polarity of the
anticipated products.

52.2. ion of 2,3-Dihy

One of the most convenient methods for protection of the hydroxy groups

in 2,3-dihy ynaphthalene is methyiation with dimethyl sulphate under basic
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conditions. Since this reaction is heterogeneous, vigorous stirring and the
presence of Adogen®464 as a phase transfer catalyst (PTC) is required to effect
efficient synthesis. Another method of protecting of the ortho dihydroxy groups

Scheme 5.4,

OO & OO,

OH Adogcn464
20% 56

is methylenation with dichloro- or dibromomethane. Bashall and Collins ® have
shown that high yields of methylenated catechols may be obtained by using a
phase transfer catalyst under refluxing conditions. This process required the use
of strong base and the method of slow addition (three hours or more) of the
reactants under a nitrogen atmosphere. Clark * reported a methylenation
method for catechol and 2,3-dihydroxynaphthalene. The reaction of a catechol

with a dihalogenomethane in DMF in the presence of an excess of KF or CsF

provides a high yield of the corresponding y I ina
relatively short time period.

The methoxylation method is easily handled. However, subsequent
deprotection requires relatively harsh conditions.® In addition, the methoxy

group is bulky, which could cause p! for the yclization steps.

This effect has already been noted in Chapter 4. Emphasis was therefore
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placed on the methylenation approach.

When 2,3-dihydroxynaphthalene was treated with dichloromethane in
the presence of large excess of anhydrous CsF in dry DMF, a colourless
crystalline product 57 was obtained in 91% yield (Scheme 5.5).

Scheme 5.5.
OH
Lo
CsF, DMF o
a 91 %
57

In order to reduce cost, expensive CsF was recycled by recrystallization

twice from water (ca. 50%). The yield of product was not decreased when

recycled CsF was used for meth ion of 2,3-dihy walene.
5.2.3. Synthesis of Cyclic Ethers 79, 80, 81 and 83.
Cyclic ethers are classical supramolecular compounds. The synthesis of

these compound suffered from low yield.* The methodology for the

methy ion of 2,3-dil e in the of CsF in DMF was

to the sy is of yclic ethers. When these conditions were
employed, the six-membered ring compound 79 formed in the highest yield
(84%). In going from the seven-membered ring compound 80, to the twelve-
membered ring compound 81, the yield was not significantly decreased (from

49% to 48%). For 1,1'-bis-naphthol (82), which was prepared by oxidative
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coupling in the presence of FeCl,* the corresponding seven-membered cyclic

ether, 83, is produced in 52% yield. Since bis-naphthol plays a very important

role in asy ic catalytic hy ion, 2 there is interest in any of its
derivatives that could be used as chiral ligands with Lewis acids.

Scheme 5.6.
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In this synthetic method, the dissociation of the protons from the hydroxy
groups in 2,3-dihydroxynaphthalene was assisted by fluoride anion, which can

ydrogen bond with acidic protons of naphthol. Under these conditions, 2,3

ydroxy 1e is stable to oxil resulting in good observed yields of

products.
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Prevention of intermolecular reactions is a challenge in the synthesis of
macrocyclic polyethers. One of the methods to overcome this is to utilize the
“template effect”.®® The large, soft cesium cation acts as a template onto which
presumably the oxyanion and the halomethy! can interact to enhance the
chances of intramolecular cyclization (see Figure 5.1). DMF is the reaction

solvent of choice since CsF is has a high solubility in it.

Fig.5.1. Template Effect of Cs* in Ether Formation.

ay

5.2.4. of Calix[: 62.

Retrosynthetic analysis of calix{4Jnaphthalene 62 gives the following
possible starting materials (Scheme 5.7): 1-bromomethyl-2,3-

yl i phthalene (58) (App 1 “a");1,4-bis-(| yl)-2,3-

ylenedi (59) (Approach “b"); and bis-(1 2,3-

y ioxyl-4-naphthy (60} (Approach '¢’).



Scheme 5.7.
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5.24.a. Self-C ion of 1 2,3 y
naphthalene (58).
In App “a”, the ponding ical ion is the self-
condensation-cyclization of 1-| yl-2,3 y

(58). Synthesis of 58 could be achieved by treatment of 57 with

paraformaldehyde and HBr in glacial acetic acid (Scheme 5.8). There are two
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forms of anhydrous hydrogen bromide that are commercially available, namely,
as a 30% solution in glacial acetic acid and, as compressed gaseous HBr. The
former reagent was found to be more convenient and cheaper and it also gave a
higher yield (58%, in contrast to 41%).

Scheme 5.8.

Oy -2 Q0D

Self-condensation of 58 in the presence of ZnBr,, TiCl,, or FeCl,,
however, resulted in the formation of dark brown resins, which were insoluble in
common organic solvents (Scheme 5.9).

Scheme 5.9.

CHaBr

O ZnborFeCl
TS
o oTiCk

E]

A variation of Approach “a” is the self-condensation-cyclization of 1-

2,3 i (64), which was prepared by

formylation of 57, followed by NaBH, reduction (Scheme 5.10). Reaction of 57

with a,a-dichloromethyl methyl ether in the presence of TiCl, in dry
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5.2.4.b. Coupling ion of 1,4-Bis-(| 2,3
dioxynaphthalene (59) with 57.

In retroanalytical Approach “b", 1,4-bis-(bromomethyl)-2,3-
methylenedioxy-naphthalene (59) is coupled with 57. Synthesis of 59 was
effected by bromo-methylation with paraformaldehyde and HBr. However, the
attempted coupling reaction of 57 and 59 in the presence of TiCl, also afforded a
dark brown resin which was insoluble in common organic solvents and could not

be further characterized (Scheme 5.12).

Scheme 5.12.
CllyBr
0, 0, TiCl
> . T
0 o7 cHCly
reflux
57 CH,Br
50
524.c. ( g is of Cali 62.

Synthesis of calix{4]naphthalene 62 using the convergent Approach “c"
shown in Scheme 5.13 was attempted. The key step is the synthesis of dimer
61, for which three different procedures were evaluated.

In the first route shown in Scheme 5.14, compound 57 was reacted with



-138-

5.2.4.b. Coupling ion of 1,4-Bis-( 2,3
dioxynaphthalene (59) with 57.
In retroanalytical Approach “b”", 1,4-bis-(bromomethyl)-2,3-

methylenedioxy-naphthalene (59) is coupled with 57. Synthesis of 59 was

effected by b ylation with parafe: yde and HBr. However, the
attempted coupling reaction of 57 and 59 in the presence of TiCl, also afforded a
dark brown resin which was insoluble in common organic solvents and could not
be further characterized (Scheme 5.12).

Scheme 5.12.

0,
~: Y Q T e
o om

reflux
CH,Br
59
5.2.4.c. C is of Cali: 62.
Synthesis of calix{4 62 using the convergent Approach “c”

shown in Scheme 5.13 was attempted. The key step is the synthesis of dimer
61, for which three different procedures were evaluated.

In the first route shown in Scheme 5.14, compound 57 was reacted with
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Scheme 5.14.
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In the third route to dimer 61, the bromo group was used as a blocking

group by taking of the high ct ivity of bromination. The

brominated compound 66 was easily synthesized in 56% yield by treatment of 57

with bromi i complex. C ion of 66 with p. in 3%

sulphuric acid / glacial acetic acid gave the dimer 67 in 83% yield. Removal of
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the bromo group in 1,1™-bis-bromo dimer 67 was effected by using LAH reduction
in THF with sonication at 30-40 °C. The desired dimer 81 was obtained in 64%

yield (see Scheme 5.16).

Brzldmxane > (CHOI 0,
Q) e I
00
Hr

Scheme 5.16.

64%
67
S
o
61
With dimer 61 in hand, bis-(1 2,3 i 4

naphthyl)methane (60) was prepared in 71% yield by reacting 61 with para-
formaldehyde in the presence of HBr in glacial acetic acid (Scheme 5.13). The
coupling reaction of 60 with 61 in p-dioxane using TiCl, as a catalyst gave a
small amount (4%) of the cyclic tetramer 62.

In spite of the low yield, cyclic tetramer 62, a novel calix{4Jnaphthalene,

gave pl ing i ion. Its'H NMR sp shows the methylene bridge
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as an AB quartet centred at & 4.19 ppm, which indicates that it is conformation-
ally rigid, even at room temperature. The signal due to the methylenedioxy
groups appears at & 5.36 ppm, due to strong shielding by the naphthalene rings.
The 'H NMR spectrum reveals two multiplets centred at & 3.66 and 3.98 ppm,
most likely due to p-dioxane, the reaction solvent. Since “free” p-dioxane
demonstrates a singlet at & 3.53 ppm, the chemical shifts of the included p-
dioxane suggests that it is situated within the deshielding field of the
naphthalene ring. The dioxane could not be removed under high vacuum (1 mm
Hg) and heating with refluxing toluene. The MS (FAB+) confirmed the presence
of p-dioxane, showing a peak of the complex of 62 plus p-dioxane (m/z= 932).
This evidence is strongly suggestive that the dioxane molecule complexes with
calix[4]naphthalene 62. Attempts to obtain suitable crystals of 62 for X-ray

diffraction studies failed.

5.3. is of Dih

Since dihomocalix{4]naphthalenes from 3-hydroxy-2-naphthoic acid (36),

were successfully synthesized by using the dithia intermediated approach,

similar was employed to ize dit ithalene 70
from 2,3-dihydroxynaphthalene. Scheme 5.16 outlines the approach used to

synthesize 70.
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The bis-bromomethyl compound 60 was treated with thiourea to form a
urea salt, which was subsequently hydrolysed to produce the corresponding bis-

(- 2 3-meth oxy-4 (68) in 69% yield.

-2, y

The coupling reaction of 60 and 68 under basic and high dilution conditions

gave the dithiacali 1e 69. Sulphur ion of 69 was effected by
photolysis to produce the dihomocalixnaphthalene 70, in 11% yield from 60 and

68.

Its 'H NMR sp: shows the y lioxyl groups as four singlets

at 5 5.99, 6.05, 6.09, and 6.17 ppm. The two methylene bridges appear as four
doublets centred at 5 3.02, 3.30, 3.36 and 3.39 ppm. The ethylene bridges
appear as eight sets of multiplets centred at 5 1.25, 3.60,1.25, 4.11, 1.63, 2.23,
4.16, and 4.61 ppm. These 'H NMR data indicate that 70 is conformationally
fixed or rigid at ambient temperature.

Examination of Dreiding models revealed four possible conformations for
70: “cone”, “partial cone”, “1,2-alternate”, and “1,3-alternate”. The “cone”, “1,3-

and“1,2 ions have C, sy y so that the four

methylenedioxy groups would be equivalent, and therefore only one singlet is

in the 'H NMR spt . The dit ical “partial cone"

is to show four vl lioxy groups as four discrete singlets. This

was indeed observed in the 'H NMR and , the
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Scheme 5.17.
cHBr CHSH
o, n>
©. 1. SC(NHz)2 o
2. NaOH
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CHar CH,SH
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KOH
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of di ix[4]napl 70 is a “partial cone”.

A similar pi using 1,4-bis 59ledtoa
dithiacyclonaphthalenophane 71, in 31% yield. Under high dilution conditions,
compound 59 also reacted with the solvent (ethanol) to give a diethyl ether 72 in

37% yield.
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The 'H NMR spectrum of 71 shows the methylene bridge as a pair of
doublets centred at & 3.88 and 4.63 ppm. The methylenedioxy group appears as
two singlets at 5 5.67 and 6.19 ppm, confirming the conformational rigidity of 71.

NOED experit ts were to blish the confs ion in solution

state. When one of the methylendioxy proton signals was irradiated, the other is
enhanced strongly and vice versa (33% and 26%). This indicates that the two
singlets are due to geminal methylenedioxy groups. However, the signals of
methylene bridges are not enhanced at all. At this stage, the conformation of 71

is determined although the “anti” conformation in a unfunctionalised

dithia[3.3](1,4, is inant one.®
Scheme 5.18.
H,Br HySH
o_  1.SC(NHz) & 59
) Ton )
o/ 2.NaOH 0" EIOH, high dilution
CHyBr CHySH
5 )
5 CH,OB
o, o,
< . b
o o
H,08
7 7

Two approaches can be used to achieve high dilution conditions. Use of

farge volumes of solvent, as was used in the syntheses of dihomocalix{4]-
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naphthalene 70, and thiacyclonaphthalenophane 71, or use of heterogeneous
conditions, are possible® (Scheme 5.18a). However, when compound 59 was
reacted under heterogenous conditions with sodium sulphide dispersed onto

silica, a ploymer was formed rather than cyclonaphthaleneophane 71.

R
=50
B

59

Scheme 5.18a.

5.4. Dilithiation of 2,3

Regioselectivity is a major problem in conventional electrophilic

of aromatic comp Snieckus ** has developed a

“directed ortho metallation” (DoM) process to enhance the regioselectivity of the

pl of aromatic In DoM reactions, the
substrates should possess a “Directing Metallation Group” (DMG) which usually
contains an oxygen or nitrog, 2n atom. A methoxy group can serve as such a

DMG group. Shirley * reported that the ion of 1- can

be selectively generated at C-2 or C-8 by choosing different lithium reagents.

Sundberg ¥ reported that the ianion of 1, 2- can be

generated at the C-3 and C-6 positions by use of an excess of n-butyllithium.



-147-
Eustache * reported a coupling reaction of phenylmagnesium bromide with allyl
bromide. McMurry * and Shih '™ reported coupling reactions of phenyllithium
with allyl bromide.
In order to test the possibility that coupling reactions of carbanions with
suitable electrophiles would be a method to synthesize calixnaphthalenes, the

reactions shown in Scheme 5.19 were investigated. The generation of the 1,4-

of 2,3 was first effected by treatment of 56
with 4 equivalents of n-butyllithium and TMEDA in dry diethyl ether. The
reaction mixture was stirred at room temperature for one hour, followed by
refluxing for another hour. Trimethylsilyl chloride or methyl iodide as good
electrophiles, were added to trap the carbodianion species and quench the

reactions. After workup, the crude product was purified by flash column

to afford 1,4-bis-(trimethylsily)-2,3-di sthalene (77)
in 55% yield. Due to the ortho-methoxy group, the C-1 and C-4 protons are
very weakly acidic, requiring a stronger base to remove them. TMEDA can

increase the basicity of n-butyllithium by complex formation.

Three factors can affect the lithiation of naphthalene 56: (1) steric
hindrance of the protons being removed; (2) electron density at the carbon to
which the proton is attached and (3) the DoM effect. Since the protons on C-1
and C-4 of 56 are in the peri positions they are sterically hindered and due to

the presence of the ortho-methoxy group, the H-1, and H-4 will be less acidic.
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Scheme 5.19.
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Both factors (1) and (2) make lithiation at the C-1 and C-4 positions unfavour-
able. On the other hand, the DoM effect of the methoxy group favours lithiation
in the C-1 and C-4 positions. The results reported herein show that the DoM
effect is dominant, and can overcome factors (1) and (2).

Alternatively, carbanions can be generated via metal-halogen exchange.
With this in mind, 1,4-dibromo-2,3-dimethoxynaphthalene (74) was prepared by
bromination of 56 in chloroform. " After 4-6 hours of stirring at room
temperature, 74 was obtained in good yield. The conditions used for the metal-
exchange reaction were very mild (-78 °C) and did not require TMEDA. The
yield obtained (75%) is higher than that resulting from direct lithiation (55%), as
determined by the amount of the product obtained when 75 was quenched with
trimethylsilyl chloride. When the reaction was quenched with an excess of

methyl iodide, 1,4-dimethyl-2,3 i (76) was i in

72% yield.

The coupling reaction of 1,4-bis: 2,3

(78) with 1,4-dilithia-2,3-methoxynaphthalene (75) was carried out in the same
flask used for the lithiation reaction, by adding 78 to 75. However, only brown
resins which were insoluble in common organic solvents and could not be
characterized were obtained. It was concluded that the coupling reaction

batween 78 and 75 tormed polymeric products.
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5.5. is of
Hégberg  reported a synthesis of [2,]cyclophane in 22% yield via a one-

pot Wittig reaction procedure. This report suggested that it should be feasible to

synthesize an analogous allt i ithalene via a Wittig pi

Since it was not possible to introduce formyl groups in the 1-, and 4-

1,4-bi 2,3

positions of 57 by Lewis acid:

methylenedioxynaphthalene (59) was instead considered as a starting material.

Compound 59 was to the ponding h yl pound 84
in the presence of calcium carbonate. Oxidation by PCC-molecular sieve
converted hydroxy groups to the corresponding formyl groups. With 85 in hand,
we turned our attention toward the efficient preparation of bis-phosphonium salt,
86, the precursor of the required bis-ylide. Scheme 5.20 outlines this approach.
Since the monophosphonium salt was insoluble in THF, ether, or benzene, the
formation of bis-phosphonium salt 86 could not be achieved when the reaction
was conducted in these solvents. When the reaction was carried out in dry
DMF, bis-phosphonium salt 86 was obtained in 95% yield. The Wittig reaction
of 85 and 86 was carried out in dry DMF at -40 °C with very slow addition of
lithium ethoxide over 16 h. After workup, TLC nalysis showed that the crude
highly fluorescent product consists of many components. Two major products

were isolated in 9.1% and 14% yields. The former is assigned as 1,4-dimethyl-



=151

Scheme 5.20.
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2,3-methylenedioxynaphthalene (87) and the latter as the linear trimer 88 with

cis double bonds J=6 Hz. No cyclic oligomer was isolated. The methyl groups in

87 and in 88 appear to be formed by the hydrolysis of bis-phosphon-

ium alts during the aqueous workup, as shown in Scheme 5.21.
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Scheme 5.21.
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5.6. Summary.
yde under

Condensation of 2,3-dihydroxynaphthalene with

acidic conditions gave linear oligomers or polymers, but did not produce any

The TiCl, coupling reaction of bis-(1-bromomethyl-
23 y ioxy-4-napl (60) with bis-(2,3-methylenedioxy-1-
naphtt (61) gave calix[4]nap! lene 62 in 4% yield. The
mobility of 62 i even at ambient temperature.
Starting from 2,3-dihy thalene, a o heti
afforded dih ix[4 70, which was also fixed in a
“partial cone” conft ion at ambient . Condensation of 1,4-bis-
2,3 ylenedi (73) with 1,4-bis-(b

methyl)-2,3-methylenedioxynaphthalene (59) gave a cyclic dimer (71).

The Wittig reaction of 1,4-diformyl-2,3-methylenedioxynaphthalene (85)
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with 1,4-bi )-2,3- y i (59) gave linear

The anticij i was not isolated
from the reaction mixture.
Cyclic naphthalene ethers 79, 80, 81, and 83 were synthesized in the
presence of CsF. In these reactions, the hydrogen-bonding effect of fluoride ion

and the template effect of the cesium cation play key roles.

5.7. Experimental.

For General exp ital itions and i { see
Chapter 2.
C ion of 2,3-dihydroxynap with under basic
conditions.

To a solution of 2,3-dihydroxynaphthalene (0.80 g, 5.0 mmal) in xylenes
(10 mL) were added formalin (37% formaldehyde, 0.5 mL, 6.2 mmol) and 10%
aqueous KOH (0.2 ml,, 1.45 mmol). After refluxing for 10 h, a dark brown
solution which revealed at least six spots on TLC with 50% acetone / hexanes as
eluent was obtained. This crude product was not further purified or
characterized.

C ion of 2,3-dih, with under acidic

ynap




conditions.

R=H

To a solution of 2,3-dihydroxynaphthalene (1.60 g, 10 mmol) in a
mixture of 95% ethano! (4 mL) and water (4 mL) were added formalin (37%
formaldehyde, 0.70 mL, 8.6 mmol) and concentrated hydrochloric acid (1 mL)
under N,. The milky emulsion was stirred at room temperature for 40 h, and then
the reaction mixture was poured onto crushed ice (50 g). The white precipitate
was filtered, washed with water until the washings were neutral to pH paper, and
dried under vacuum. The crude product was purified by flash column
chromatography with 50% acetone / hexanes as eluent. The dimer 52 was
obtained as a colourless powder (0.28 g, 17%): mp 204-207 °C; IR (nujol, cm™),
3261 (br, OH), 1697 (w), 1607 (m), 1519 (m), 1460 (s). 1409 (s), 1377 (s); 'H
NMR (CD,COCD): 4.91 (s, 2H, H-11), 7.08 (m, 4H, H-6, H-6', H-7, H-7), 7.12 (s,
2H, H-1, H-1), 7.49 (m, 2H, H-8, H-8"), 8.25 (m, 2H, H-5, H-5'); "CNMR
(CD4COCD,): 22.2 (t, C-11), 108.7, 123.6, 123.7, 124.8, 127.2 (d, C-1, C-5-C-8,
C-1', C-5-C-8), 120.7, 129.8, 130.4, 144.4, 146.0 (s, C-2-C-4, C-9, C-10, C-2"-

C-4', C-9, C-10%; MS (m/2), Intensity (%): 332 (M*, 2), 172 (5), 162 (1), 160
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(100).
Acetylation of crude condensation product from the reaction of 2,3-

with de.

53
R=Ac W
ReAc

A crude condensation product was obtained (1.33 g), starting from 2,3-
dihydroxynaphthalene (1.60 g, 10 mmol). It was dissolved in acetic anhydride
(50 mL) and pyridine (0.5 mL) and was refluxed for 4 h. After cooling to room
temperature, the reaction mixture was poured onto crushed ice (50 g). The
resulting white precipitate was filtered, washed with water until the washings
were neutral to pH paper, and dried under vacuum. The crude product was
column chromatographed using 60% ethyl acetate / hexanes as eluent. Dimer
53 (375 mg, 15% from 2,3-dihydroxynaphthalene) and trimer 54 (167 mg, 7%
from 2,3-dihydroxynaphthalene) were obtained. Dimer 53: mp 202-205 °C; IR
(KBr, cm™): 1771 (s, CH,CO0), 1665 (w), 1550 (m), 1445 (s), 1440 (s); 'H NMR
(CDCly): 1.89, 2.26 (sx2, COCH,), 4.74 (s, 2H, H-11, 7.43-7.49 (m, 4H, H-6, H-7,
H-6', H-7'), 7.63 (s, 2H, H-1, H-1"), 7.79-7.82, 8.04-8.07 (m, 4H, H-5, H-5', H-8,

H-8); °C NMR (CDCl,): 19.9, 20.8 (COCHj), 24.6 (C-11), 120.0, 124.0, 126.2,
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126.6, 128.6 (C-1, C-5-C-8, C-1', C-5'-C-8'); MS (m/2), Intensity (%): 500 (M*,
15), 458 (19), 416 (22), 398 (34), 374 (14), 356 (20), 313 (30), 215 (12), 160
(94), 43 (100). Trimer 54: mp 235-240 °C; IR (KBr, cm™): 1794, (s, carbonyl),
1642 (m), 1550 (w), 1500 (s), 1445 (s); *HNMR (CDCl,): 1.91, 1.94, 2.28 (sx3,
18H, -COCH,), 4.69 (s, 4H, H-11, H-11'), 7.33-7.36 (m, 2H, H-14, H-14'), 7.42-
7.47 (m, 4K, H-6, H-7, H-6, H-7"), 7.61 (s, 2H, H-1, H-1'), 7.76-7.80 (m, 2H, H-
15, H-15'), 8.00-8.06 (m, 4H, H-5, H-8, H-5, H-8'); °C NMR (CDCI,): 20.0, 20.8
(x2) (-COCH,), 120.0, 124.1, 124.9, 126.1, 126.6, 128.5 (d, C-1, C-5-C-8, C-14,
C-15), 124.0, 127.8, 128.9, 130.0, 131.0, 131.7, 139.8, 140.7(s, C-2, C-3, C-4,
C-9, C-10, C-12, C-13, C-16), 168.0, 168.2, 168.4 (-COCH,); MS (m/2), Intensity

(%): 654 (M'-AcOH, 7), 313 (10), 202 (11), 173 (18), 160 (32), 43 (100).

C ion of 2,3-dihydroxy with and

product.

tylation of the crude

55
R=Ac

2, 3-Dihydroxynaphthalene (1.60 g, 10 mmol) was dissolved in aqueous

10% sulphuric acid (25 mL), and heated t0 95-100 °C. A mixture of aqueous
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10% acetaldehyde (4.5 mL) and aqueous 10% sulphuric acid (5 mL) was slowly
added into the 2,3-dihydroxynaphthalene solution over § h. After an induction
time of 5-10 min, the reaction mixture became cloudy. The reaction mixture was
stirred for three days at 95-100 °C. After cooling to room temperature, a brown
precipitate formed, which was filtered, washed with aqueous saturated sodium
chloride and dried under vacuum, to afford a dark crude product (1.30 g).

A portion of this crude condensation product (400 mg, equivalent to 3.1
mmol of 2,3-dihydroxynaphthalene) was dissolved in acetic anhydride (10 mL)
and three drops of pyridine were added. The reaction mixture was refluxed for
2.5 h. After cooling to room temperature, the reaction mixture was poured onto
crushed ice (10g). The white precipitate was filtered, washed with water until
the washings are neutral to pH paper, and dried under vacuum. The crude
product was column chromatographed with 60% ethyl acetate / hexanes as
eluent. Dimer 55 was obtained (120 mg, 16% from 2,3-dihydroxynaphthalene)
as a colourless solid: mp 205-207 °C; 'H NMR (CDCl,): 1.64 (d, J=6.9, 3H, H-
12), 2.35 (s, 3H, H-14), 2.46 (s, 6H, H-13, H-15), 5.45 (q, J=6.9, 1H, H-11), 7.48,
7.60 (mx2, 4H, H-6, H-7, H-8', H-7"), 7.55 (s, 2H, H-1, H-1'), 7.82 (d, J=8.1, 2H,
H-5, H-5' or H-8, H-8'), 8.20 (d, J=8.4, 2H, H-5, H-5" or H-8, H-8)); °C NMR
(CDCly): 20.7 (C-11), 20.8, 23.4,26.9 (C-12, C-13, C-14), 119.5,120.6, 120.9,
122.1,125.1, 126.4, 126.6, 127.4, 128.6, 129.1, 130.4, 131.5, 138.5, 141.3

(aromatic), 168.6 (CH,COO); MS (m/2), Intensity (%): 472 (M, 1), 456 (20), 415
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(8), 414 (31), 398 (7.6), 397 (8), 396 (6), 372 (37), 355 (19), 328 (12), 313 (100),

284 (11), 239 (10), 213 (22), 197 (27), 186 (58).

2.3-Dimethoxynaphthalene (56).

To a solution of 2,3-dihydroxynaphthalene (8.0 g, 50 mmol) in aqueous
7% NaOH (60 mL, 175 mmol) was added dimethyl sulphate (9.4 mL) over 1 h.
The solution was stirred at 70-80 °C for 4 h. After the crude reaction mixture was
cooled to room temperature, a pale brown precipitate formed. The precipitate
was filtered and washed with aqueous 10% NaOH (100 mL) followed by water
until the washings were neutral to pH paper. Dimethoxynaphthalene 56 was
obtained (7.5 g, B0%) as a colourless fine powder: lit. mp 115-116 °C, " mp 114-
115 °C; 'H NMR (CDCl,): 4.00 (s, 6H, OCH,), 7.12 (s, 2H, H-1, H-4), 7.34 (m,

2H, H-6,H-7), 7.69 (m, 2H, H-5, H-8).

2,3-Methylenedioxynaphthalene (57).
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This compound was prepared according to a literature procedure.*® CsF
was recycled by recrystallization twice from water and drying at 200 °C for 24 h
before re-use (ca. 50%). Product 57 was obtained (91%) as colourless fine
needles: lit. mp 96-97 °C, mp 96-98 °C; IR (KBr, cm™): 1515 (m), 1464 (s), 1450
(m), 1216 (-OCH,0-); 'H NMR (CDCL,): 6.03 (s, 2H, H-11), 7.12 (s, 2H, H-1, H-
4), 7.31 (m, 2H, H-6, H-7), 7.66 (m, 2H, H-5, H-8); '°C NMR (CDCl,): 100.9 (C-
11), 103.8 (C-1, C-4), 124.3 (C-6, C-7), 127.0 (C-5, C-8), 130.4 (C-9, C-10),
147.5 (C-2, C-3); MS (m/z), Intensity (%): 173 (M*+1, 11), 172 (M*, 100), 115

(12), 114 (35), 87 (5), 86 (18);

1-Br 2,3 y i (58).

1nCH,Br

MethodA.  To a solution of 57 (2.0 g, 11.6 mmol) and paraformaldehyde (350
mg, 11.7 mmol) in glacial acetic acid (50 mL) was added dropwise 33% HBr in
glacial acetic acid (20 mL). The reaction mixture was stirred at room
temperature for 15 h, and was then poured onto crushed ice (70 g). The white
precipitate was filtered, washed with water until the washings were neutral to pH

paper and dried under vacuum. The crude product was purified by flash column
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chromatography using 20% ethyl acetate / hexanes as eluent. The bromomethyl
compound 58 was obtained (1.78 g, 58%) as a cream-coloured powder: mp 130-
132 °C; "H NMR (CDCIy): 4.89 (s, 2H, H-12), 6.09 (s, 2H, H-11), 7.09 (s, 1H, H-
4),7.37, 7.46 (m, 2H, H-6, H-7), 7.66 (d, J=6.9, 1H, H-5 or H-8), 7.90 (d, J=8.4,
1H, H-5 or H-8); °C NMR (CDCl,): 23.8 (C-12), 101.5 (C-11), 105.0, 122.5,
124.7, 124.9, 127.8 (C-4, C-5, C-6, C-7, C-8), 110.7, 125.3, 130.8, 146.3, 146.7
(C-1, C-2, C-3, C-9, C-10); MS (m/2), Intensity (%): 266 (M", 9), 264 (M*, 7), 186
(11), 185 (100), 127 (30).

Method B.  Into a solution of 57 (2.0 g, 11.6 mmol) and paraformaldehyde
(350 mg, 11.7 mmol) in glacial acetic acid (50 mL) HBr gas was bubbled for 20
min. The reaction mixture was stirred at room temperature for 16 h, and was
then poured onto crushed ice (70 g). The white precipitate was filtered, washed
with water until the washings were neutral to pH paper, and dried under vacuum.
The crude product was purified by flash column chromatography with 20% ethyl
acetate / hexanes as eluent. Compound 58 was obtained (1.30 g, 41%) as a

cream-coloured powder.

Self- ion of 1-b 2,3 i (58).
To a solution of 58 (500 mg, 1.89 mmol) in dry chioroform (20 mL) was
added anhydrous FeCl, (400 mg, 2.45 mmol). The reaction mixture turned dark

brown. This dark solution was refluxed under N, for 3d. A dark brown
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precipitate was obtained after workup, which was insoluble in common organic

solvents and was not turther characterized.

N-Methylformanilide (MFA) (88a).

o
CHO

This compound was prepared accordii. , ‘o a literature procedure.'®
Compound 88a (94%) was obtained as a colourless liquid: lit. bp. 114-121 °C/8
mm Hg, bp. 90-93 °C /1 mm Hg; IR (KBr, cm™), 1678 (s, CHO), 1600 (s), 1500
(s); 'HNMR (CDCly): 3.31 (s, 3H, H-7), 7.15-7.18 (m, 2H, H-2, H-6), 7.23-7.29

(m, 1H, H-4), 7.34-7.44 (m, 2H, H-3, H-5 ), 8.47 (s, CHO).

1-Formyl-2,3-methylenedioxynaphthalene (63).

Via a Vilsmeier reaction procedure. To a solution of 57 (200 mg, 1.16 mmol)

and 88a (0.25 mL, 1.18 mmol) cooled to 0 °C was added phosphorus
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oxychloride (POCl,, 0.16 mL, 1.73 mmol). The reaction mixture was heated to
95-100 °C and kept at that temperature for 6 h. After cooling to room
temperature, aqueous saturated sodium acetate solution was added until a pH
6-7 was attained. The resulting precipitate was filtered and purified by fi-sh
column chromatography using 30% ethyl acetate / hexanes as eluent. A
colourless crystalline product 63 was obtained (96 mg, 42%): mp 126-127°C; IR
(nujol, cm™'): 1681 (s, CHO), 1636 (m), 1614 (m), 1510 (m), 1495 (s); 'H NMR
(CDCly): 6.20 (s, 2H, H-11), 7.31 (s, 1H, H-4), 7.41, 7.50 (m, 2H, H-6, H-7 ), 7.67
(m, 1H, H-5), 9.07 (d, J=7.8, 1H, H-8), 10.6 (s, CHO); °C NMR (CDCl,): 102.6
(C-11), 110.5, 111.1, 124.8, 125.6, 127.0, 127.5 (aromatic), 187.8 (CHO); MS
(m/z), Intensity (%): 201 (M'+1, 55), 200 (M, 100), 199 (M1, 75), 173 (16), 172
(61), 171 (69), 170 (28), 169 (29), 157 (16), 142 (48).

Via a Lewis acid catalyzed reaction procedure. To a solution of 57 (0.46

g, 2.67 mmol) in dry dichloromethane (2 mL) cooled to 0 °C were sequentially
added TiCl, (0.45 mL, 8 mmol) and «,a-dichloromethy| methyl ether (0.38 g,
4.20 mmol). After stirring at room temperature for 2 h, water (1 mL) was added
to quench the reaction. Dichloromethane (5 mL) was added to increase the
volume of the organic layer, which was then separated from the aqueous layer,
and washed with water until the washings were neutral to pH paper. After drying
over MgSQ, and filtering, the solvent was evaporated. The crude product was

subjected to flash column chromatography with 30% ethyl acetate / hexanes as
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eluent. Compound 63 was obtained as colourless crystals (376 mg, 70%).

1+ 23 i (64

To a solution of 63 (260 mg, 1.3 mmol) in methanol (30 mL) was added
NaBH, in small portions at such a rate that the reaction flask was not hot. The
reaction mixture was stirred at room temperature for 23 h and the methanol was
evaporated under vacuum. The residue was extracted with ether (30 mL) and the
organic layer was washed with two 10 mL-portions of water. After drying over

MgSO, and filtering, the solvent was evaporated. The crude product was

to column chr using 60% ethyl acetate / hexanes as
eluent. Hydroxymethy! compound 64 was obtained as a white powder (216 mg,
82%): mp 129-131 °C; IR (KBr, cm™): 3607(s, b, OH), 1600 (w}, 1500 (w), 1450
(m), 1400 (s); 'H NMR (CDCly): 5.10 (d, 2H, H-12), .07 (s, 2H, H-11), 7.11(s,
1H, H-4), 7.32-7.45 (m, 2H, H-6, H-7), 7.69 (d, 1H, H-5), 8.02 (d, 1H, H-8); “C
NMR (CDCly): 56.2 (C-12), 101.0 (C-11), 104.2, 122.9, 124.3, 124.7, 127.2,
127.5, 128.7, 130.7, 145.8 (aromatic); MS (m/z), Intensity (%): 202 (M', 100),

185 (47), 173 (38), 144 (40), 127 (37), 115 (66).
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Self- ion of 1 2,3-meth i (64).

To a solution of 64 (50 mg, 0.24 mmol) in dry chloroform (3 mL) was
added TFA (0.50 mL) in CHCl, (2 mL) over 20 min. The reaction mixture turned
dark purple. After refluxing for 2 d, a dark purple precipitate was formed (35
mg), which was insoiuble in common organic solvents and was not further

characterized.

1,4-Bi 2.3 z (59).

To a solution of 57 (0.34 g, 2.0 mmol) and paraformaldehyde (130 mg,
4.3 mmol) in glacial acetic acid (10 mL) was added dropwise 21% HBr in glacial
acetic acid (8 mL). The reaction mixture was heated to 60-70 °C over 30 min
and kept at that temperature for an additional 2 h. After cooling to room
temperature, the reaction mixture was poured cnto crushed ice (20 g). The
resulting white precipitate was filtered, washed with water until the washings
were neutral to pH paper, and dried under vacuum. The crude product was
purified by column chromatography using 20% ethyl acetate / hexanes as eluent.

Compound 59 was obtained (0.62 g, 87%) as a colourless powder: mp 202-204
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°C; IR (KBr, cm™): 1514 (m), 1452 (s), 1400 (s), 1300 (s), 1215 (s. -OCH;0-); 'H
NMR (CDCl,): 4.87 (s, 4H, CH,Br), 6.18 (s, 2H, -OCH,0-), 7.53 (m, 2H, H-6, H-
7), 7.96 (m, 2H, H-5, H-8); *C NMR (CDCl,): 23.3 (C-12, C-13), 102.1(C-11),

111.8, 123.3, 125.3, 128.4, 143.0 (C-1-C-10); MS (m/z), Intensity (%): 358 ( M*,
12), 280 (8.2), 279 (56), 278 (8.3), 277 (59), 199 (18), 198 (100), 185 (14), 169

(7.7), 142 (8.5), 141 (26), 139 (30), 115 (9.5).

Attempted coupling reaction of 59 and 57.

To a solution of 59 (1.79 g, 5 mmol) and 57 (0.86 g, 5.0 mmol) in dry p-
dioxane (250 mL) was added TiCl, (2.0 mL, 10 mmol). A dark brown solution
was produced. The reaction mixture was refluxed for 1 week. After evaporating
the solvent under vacuum, a dark brown residue which was insoluble in organic

solvents was obtained, and was not further characterized.

1,4-Bi 2,3-di (78).

To a solution of 56 (0.47 g, 2.5 mmol) and paraformaldehyde (0.16 g, 5.3

mmol) in glacial acetic acid (10 mL) was added 21% HBr in glacial acetic acid (8
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mL). After stirring at room temperature for 5 h, the reaction mixture was poured
into cold water (50 mL). The resulting precipitate was filtered, dried under
vacuum, and purified by flash column chromatography with 30% ethyl acetate /
hexanes as eluent. Compound 78 was obtained (0.63 g, 77%) as a colourless
powder: mp 182-183 °C; 'H NMR (CDCl,): 4.05 (s, 6H, H-13, H-14), 5.04 (s, 4H,
H-11, H-12), 7.59 (m, 2H, H-6, H-7), 8.07 (m, 2H, H-5, H-8); *C NMR (CDCl,):
23.9 (C-11, C-12), 60.9 (C-13, C-14), 124.1, 126.2 (C-5-C-8), 127.3, 129.2 (C-1,

C-4, C-9, C-10), 150.5 (C-2, C-3).

Bis-(2,3: ioxy-1 (61) and 1,4-di(2,3"-

hj i phthy! -methyl)-2,3 i 65.

Method A.  To a solution of 57 (3.38 g, 19.6 mmol) and paraformaldehyde
(295 mg, 9.8 mmol) in glacial acetic acid (180 mL) was carefully added
concentrated sulphuric acid (3.4 mL). The reaction mixture was stirred at room
temperature for 54 h. The reaction mixture was poured onto crushed ice (150 g).

The resulting white precipitate was filtered, washed with water until the washings
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were neutral to pH paper, and dried under vacuum. The crude product was

purified by column using 50% e / p

ether (30 -60 °C) as eluent. Dimer 61(1.22 g, 35%), trimer 65 (636 mg, 18%)
and starting material 57 (507 mg, 15%) were obtained. Dimer 61: mp 146-149
°C; 'H NMR (CDCL,): 4.64 (s, 2H, H-11), 6.06 (s, 4H, H-12, H-12"), 7.02 (s, 2H,
H-1, H-1'), 7.24-7.27 (m, 4H, H-6, H-7, H-6', H-7'), 7.59-7.62, 8.01-B.04 (mx2,
4H, H-5, H-8, H-5', H-8'); °C NMR (CDCl,): 23.1 (C-11), 100.7 (C-12, C-12),
103.0 (C-1, C-1"), 123.4, 124.0, 124.2, 127.6 (C-5-C-8, C-5'-C-8'), 123.7, 123.8,
125.9, 130.9 (C-2, C-3, C-9, C-10, C-2', C-3', C-9', C-10"); MS (m/2), Intensity
(%): 857 (M*+1, 23), 356 (M", 100), 355 (15), 297 (4.8), 268 (4), 240 (6), 239
(18), 186 (11), 185 (86), 149 (5), 134 (15), 127 (10), 119 (45); HRMS: M
356.1058, cald for CagH,4O,: 356.1048. Trimer 58: mp 263-265°C; 'H NMR
(CDCl,): 4.61 (4H, H-16, H-16'), 6.00 (4H, H-17, H-17"), 6.1 (2H, H-18), 7.00
(2H, H-1, H-1'), 7.17-7.26 (m, 6H, H-6, H-7, H-13, H-6', H-7', H-13'), 7.58-7.61
(m, 2H, H-8, H-8"), 7.97-8.04 ( m, 4H, H-5, H-14, H-5', H-14'); °C NMR (CDCl,):
23.1 (C-16, C-16'), 100.4 (C-18), 100.6 (C-17, C-17"), 102.9 (C-1, C-1'), 123.4,
123.7, 123.8, 123.9, 124.0, 124.1 (C-5-C-8, C-13, C-14, C-5'-C-8', C-13', C-14'),
112.3, 113.7, 129.8, 130.3, 130.9, 144.9, 145,7, 146.5 ( C-2, C-3, C-4, C-9, C-
10, C-11, C-12, C-15, C-2, C-3', C-4', C-9', C-10', C-11', C-12', C-15'); MS (m/2),
Intensity (%): 541 (31), 540 (M*, 83), 369 (2), 355 (3), 337 (2), 325 (1), 310 (1),

297 (2), 270 (5), 252 (3), 237 (1), 199 (1), 196 (2), 186 (14), 185 (100).
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Method B.  To a refluxing solution of 57 (2.0 g, 11.62 mmol) in chlorobenzene
(45 mL) was added dropwise a solution of 58 (1.50 g, 5.68 mmol) in
chlorobenzene (15 mL) over 2 h. The reaction mixture was refluxed for 12.5 h.

The solvent was removed by vacuum distillation. The residue was column

red with dichlor as eluent. The major fraction was

further puritied by flash column using 50% di ane /
petroleum ether (30-60°C) as eluent. Dimer 61 (1.10 g, 54%), and starting

material 57 (516 mg, 26%) were obtained.

1,4-Dibromo-2,3-dimethoxynaphthalene (74).

These two were ing to a li

procedure. ™" Compound 74 (81%) and 1,4,6-tribromo-2,3-
methylenedioxynaphthalene (74a)(11%) were obtained as colourless fine
crystals. Dibromo compound 74: lit. mp 76-78 °C, mp 180-181°C; 'H NMR
(CDCl,): 4.01 (s, 6H, -OCH,), 7.57 (m, 2H, H-6, H-7), 8.24 (m, 2H, H-5, H-8); °C
NMR (CDCl,): 61.1 (OCH,), 116.1 (C-1, C-4), 127.1, 127.2 (C-5-C-8), 130.1 (C-
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9, C-10), 150.4 (C-3, C-3); MS (m/2), Intensity (%): 348 (M'+2, 50), 347 (M'+1,
13), 346 (M, 100), 344 (M"-2, 51), 301 (9), 250 (8), 222 (16), 115 (27).
Tribromo compound 74a: lit. mp 190 °C, mp 190-192 °C; 'H NMR (CDCl,): 4.06
(s, 6H, OCHj), 7.46 (m, 3H, H-5, H-7, H-8), °C NMR (CDCl,): 56.1 (OCH),
106.4, 120.6, 128.2, 128.6, 151.0 (aromatic); MS (m/z), Intensity (%): 426 (M'+2,

20), 424 (M*, 21), 348 (50), 346 (100), 302 (27), 288 (11), 250 (14), 126 (13).

1-B1 2,3 i (66).

To a solution of 57 (1.0 g, 5.81 mmol) in chloroform (10 mL) was added a
solution of bromine / dioxane complex (1.43 y, 5.81 mmol) in chloroform (5 mL)
over 30 min. After stirring for 14 h at room temperature, the reaction mixture was
washed with water until the washings were neutral to pH paper. After the organic
layer was separated, dried over MgSO,, and filtered, the solvent was
evaporated. The crude product was crystallized twice from aqueous ethanol.
Compound 66 was obtained as colourless needles (813 mg, 56%): mp 84-85°C;
'H NMR (CDCl,): 6.09 (s, 2H, H-11), 7.05 (s, 1H, H-4), 7.33-7.46 (m, 2H, H-6, H-

7), 7.63 (d, J=7.5, 1H, H-5 or H-8), 8.01 (d, J=8.1, 1H, H-5 or H-8); “C NMR
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(CDCL,): 101.3 (C-11), 108.5 (C-4), 125.1, 125.3, 125.4, 127.3 (C-5-C-8), 125.8,
126.3, 128.4, 128.6, 131.0 (C-1, C-2, C-3, C-9, C-10); MS (m/2), Intensity (%):

252 (M*, 98), 250 (M*, 100), 194 (12), 192 (12), 115 (31), 113 (56).

Bis-(1-b 2,3- ioxy-4-nap (67).

To a solution of 66 (594 mg, 2.38 mmol) and paraformaldehyde (85.8 mg,
2.86 mmol) in glacial acetic acid (20 mL) was slowly added concentrated
sulphuric acid (0.4 mL). The reaction mixture was heated to 60-70°C and kept
at that temperature for 3.5 h. After cooling to room temperature, the reaction
mixture was poured onto crushed ice (20 g). The white precipitate was filtered,
washed with water until the washings were neutral to pH paper and dried under
vacuum. The crude product was recrystallized from ethyl acetate / hexanes.
Dimer 67 was obtained (510 mg, 82%) as a colourless powder: mp 167-170°C;
'H NMR (CDCLy): 4.59 (s, 2H, H-11), 6.14 (s, 4H, H-12, H-12'), 7.29-7.44 (m, 4H,
H-6, H-7, H-6', H-7'), 7.98, 8.05 (d, 4H, H-5, H-8, H-5', H-8'); *C NMR (CDCl,):

30.0 (C-11), 101.1 (C-12, C-12'), 123.5, 125.2, 125.4, 126.0 (C-5-C-8, C-5'-C-8)),
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112.7, 123.9, 124.7,125.8, 129.0, 130.3 (C-1-C-4, C-9, C-10, C1'-C-4', C-9', C-
10'); MS (m/2), Intensity (%): 516 (M*, 34), 515 (18), 512 (35), 266 (15), 264

(13), 263 (100).

Bis-(2,3- i 1 (61) via ination of 67.

A fiask fitted with a and ining a ion of LAH (300
mg, 7.89 mmol) in dry THF (15 mL) under N, was set up in a sonicator. A
solution of 67 (917 mg, 1.79 mmol) in THF (15 mL) was added over 20 min. The
reaction mixture was sonicated for 20 h at 35-40°C. The reaction was quenched
by adding water dropwise. Diethyl ether (30 mL) and 5% sulphuric acid (20 mL)
were added. The aqueous layer was washed with two 20 mL-portions of ether.
The combined organic extracts were dried over MgSO,, and filtered, and the
solvent was evaporated. The crude product was purified by flash column
chromatography using 30% ethyl acetate / hexanes as eluent to afford 61 as a
colourless powder (408 mg, 64%), whose properties were identical to those
described above.

Bis-(1 23 ioxv-1-naphth (60).
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To a solution of 61 (579 mg, 1.63 mmol) and paraformaldehyde (147 mg,
4.89 mmol) in dichloromethane (60 mL) was added a solution of 30% HBr in
glacial acetic acid (4 mL). The reaction mixture was stirred at room temperature
for 10 h and then washed with water until the washings were neutral to pH
paper. After drying over anhydrous MgSO, and filtering, the solvent was
evaporated. The crude product was purified by column chromatography using
30% ethyl acetate / hexanes as eluent. A colourless powder was obtained (629
mg, 71%): mp 250-252 °C; 'H NMR (DMSO-d,/ CDCl,): 4.59 (s, 2H, H-11), 4.92
(s, 4H, H-13, H-13), 6.26 (s, 4H, H-12, H-12)), 7.31-7.43 (m, 4H, H-6, H-7, H-6,
H-7'), 7.87-8.07 (m, 4H, H-5, H-8, H-5', H-8"); *C NMR (DMSO-d,;/ CDCl,): 23.9
(C-11), 24.0 (C-13, C-13)), 78.1 (C-12, C-12)), 101.1, 109.1, 113.8, 122.3, 122.7,
123.3, 124.2, 124.3, 127.8, 129.3, 144.6 (aromatic); MS (m/z), Intensity (%): 540
(M, 3), 463 (11), 461 (11), 384 (3), 279 (21), 277 (22), 265 (2.7), 252 (3), 198
(27), 141 (6), 132 (5), 126 (6), B0 (100); HRMS: M* 539.9684, calcd for
CysH,40,Br,: 539.9684.

Calix[4]naphthalene 62.
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To a solution of 60 (1.79 g, 3.31 mmol) and 61 (0.86 g, 5 mmol) in dry
p-dioxane (250 mL) under N, was slowly added TiCl, (2.0 mL, 10 mmol). A dark
brown solution was produced. The reaction mixture was refluxed for 1 week.
After evaporating the solvent, the dark brown residue was extracted with

chloroform (200 mL) using a Soxhlet extraction apparatus. The crude product

was purified twice by flash column ct using di and

50% di 1e / hexanes sequentially as eluents. Calix{4]nap

62 was obtained (111 mg, 4%) as a light brown solid: mp>300 °C (with
decomposition); 'H NMR (CDCL): 3.29 (m, 4H, H-11,", H-11',, H-11", H-11"),
4.18 (m, 4H, H-11,", H-11, H-11",, H-11",), 3.66 (m, 8H,” H,(dioxane)), 3.98 (m,
8H,** H,(dioxane)), 3.88 (m, 4H, H-12,, H-12',, H-12",, H-12",), 4.41 (m, 4H, H-
12,, H-12',, H-12",, H-12",), 7.38 (m, 8H, H-6, H-7, H-6', H-7', H-6", H-7", H-6",
H-7"), 7.70 (m, 8H, H-5, H-8, H-5', H-8', H-5", H-8", H-5", H-8"); '°C NMR
(CDC,): 27.3 (C-11, C-11', C-11", C-11"), 59.5, 69.7, 66.3, 68.7 (C-dioxane),
99.9(C-12, C-12, C-12", C-12"), 109.6, 122.2, 124.2, 129.2, 160.8 (aromatic);
MS (FAB+, m/z), Intensity (%): 932 (M*+2H+2 dioxane+H,0, 0.2), 826
(M*+2H+dioxane, 0.2), 752 (0.2), 697 (0.2), 606 (0.3), 540 (0.5), 458 (0.5), 431

(0.6), 408 (0.5), 352 (0.5), 340 (1.0), 325 (0.8), 318 (1.3), 309 (1.1), 207 (1.1),

* “H," is perpendicular to the naphthalene ring; "H,” is parallel with the
naphthalene ring.

** The integration is not accurate.
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290 (1.0), 283 (7.3), 273 (1.1).

Bis-(1 yl-2,3- ioxy-4 (68).

To a solution of 60 (798 mg, 1.48 mmol) in THF (50 mL) was added
thiourea (249 mg, 3.3 mmol). The reaction mixture was refluxed for 10 h. After
cooling to room temperature, the solvent was evaporated and the residue was
dissolved in water (60 mL) containing aqueous 10% NaOH (6 mL). The reaction
mixture was refluxed under N, for 12 h. After cooling to room temperature,
concentrated sulphuric acid was carefully added until the pH of the reaction
mixture was 5-6. A white precipitate formed, which was filtered, washed with
water and dried under vacuum. The crude product (580 mg) was
chromatographed using 40% ethyl acetate / hexanes as eluent. Compound 68
was obtained as pale crystals (456 mg, 69%): mp 217-220 °C; 'H NMR (CDCl,):
2.02 (t, J=7.2, 2H, SH), 4.20 (d, J=7.2, 4H, H-13, H-13), 4.73 (s, 2H, H-11), 6.19
(s, 4H, H-12, H-12'), 7.36-7.55 (m, 4H, H-6, H-7, H-6', H-7"), 7.96 (d, J=8.4, 2H,
H-5, H-5' or H-8, H-8), 8.19 (d, J=8.1, 2H, H-5, H-8 or H-5', H-8'); °C NMR
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(CDCl,): 18.9 (C-13), 23.1 (C-11), 100.9 (C-12, C-12), 113.1, 121.2, 122.9,
124.2, 124.3, 124.4, 124.6, 128.3, 145.0 (aromatic); MS (m/z), Intensity (%): 448
(M*, 62), 434 (3), 415 (24), 401 (5), 381 (4), 369 (11), 265 (5), 239 (4), 231

(100), 215 (3), 207 (4), 198 (23), 191 (51).

Dihomocalix[4Jnaphthalene 70.

A solution of 68 (448 mg, 1.0 mmol) and 60 (540 mg, 1.0 mmol) in
benzene (200 mL) was very slowly added into a Erlenrmeyer flask containing
95% ethanol(500 mL) and KOH (280 mg, 4.8 mmol) in water (5 mL). The
addition of the benzene solution took 10-15 h. The reaction mixture was
vigorously stirred for 72 h after the addition was completed. Concentrated
sulphuric acid was carefully added to the reaction mixture until the pH value of
the reaction mixture reached 5-6. After evaporating the solvent, the residue
was extracted with dichloromethane (300 mL). The organic layer was washed

with water until the washings were neutral to pH paper, dried over MgSOQ,,
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filtered and the solvent was evaporated. The residue was chromatographed
using 80% dichloromethane / petroleum ether (30-60 °C) as eluent. The mgjor
fraction was recrystallized from chloroform / hexanes. A colourless crude
product was obtained (356 mg, mp>300 °C with decomposition), which was not
further purified or characterized due to low solubility in common organic solvents
and presumed to be the cyclic sulphur-bridged tetramer. 1t was used in the
subsequent step.

The cyclic sulphur-bridged tetramer (100 mg) was suspended in trimethy!

phosphite (5 mL). The ion was irradiated with an ultraviolet lamp (RPR
3500 A) for 69 h (for detailed conditions see Chapter 4). After the solvent was
removed by vacuum distillation, the residue was purified by PLC using 40% ethy!
acetate / hexanes as eluents. Dhomocalixnaphthalene 70 was obtained as
colourless fine crystals (22 mg, 11% from 60, and 68): mp 295-300 °C; 'H NMR
(CDCl,): 1.25 (m, 2H, H-2,,”™ H-21,), 1.64 (m, 1H, H-3,), 2.32 (m, 1H, H-3,"),
3.00 (d, 1H, H-12,), 3.29 (d, 1H, H-12,), 3.39 (d, 1H, H-31,), 3.60 (m, 1H, H-2,),
411 (m, 1H, H-21,), 4.18 (m, 1H, H-22,), 4.22 (d, 1H, H-31,), 4.60 (m, 1H, H-
22,), 6.00, 6.07, 6.09, 6.17 (sx4, 8H, H-47-H-50), 7.18-8.01 (not resolved, 16H,
aromatic); '°C NMR (CDCly): 21.2, 22.0, 24.9 (C-2, C-3, C-12, C-21, C-22, C-31),

99.6, 100.1, 100.4, 100.7 (C-48, C-49, C-50), 122.5, 122.7, 123.3, 123.5, 123.7,

See the previous footnote in page 173 of this chapter.
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123.9, 127.1, 124.2, 124.3, 129.4, 130.2, 144.9 (aromatic); MS (FAB+, m/z),

Intensity (%): 763 (M*-1, 4), 329 (3), 307 (11), 289 (11).

1,4-Bi 2,3 i (73).

To a solution of 59 (500 mg, 1.40 mmol) in THF (50 mL) was added
thiourea (234 mg, 3.07 mmol). The reaction mixture was refluxed for 10 h. After
cooling to room temperature, the solvent was evaporated and the residue was
dissolved in water (50 mL) containing aqueous 10% NaOH (5 mL). The reaction
mixture was refluxed under N, for 12 h. After cooling to room temperature,
concentrated sulphuric acid was carefully added until the pH of the reaction
mixture reached 6-7. After the solvent was evaporated, the residue was
extracted with dichloromethane (50x3 mL). The combined dichloromethane
extracts were dried over MgSO,, filtered and the solvent was evaporated, the
residue was chromatographed with 40% ethyl acetate / hexanes as eluent.
Compound 73 was obtained as a cream-coloured powder (300 mg, 81%): mp
150-152 °C; IR (KBr, cm™): 3530 (s, br, SH), 1550 (m), 1450 (s), 1400 (m); 'H

NMR (CDCl,): 1.94 (t, J=7.2, 2H, SH), 4.09 (d, 4H, J=7.2, H-11, H-13), 6.13 (s,
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(5. 2H, H-12)), 7.47 (m, 2H, H-6, H-7), 7.90 (m, 2H, H-5, H-8); °C NMR (CDCI,):
18.8 (C-11, C-13), 101.4 (C-12), 123.2, 124.7 (C-5-C-8), 113.8, 128.4, 144.2 (C-
1-C-4), C-9, C-10); MS (m/2), Intensity (%): 264 (M", 100), 231 (78), 198 (20),

185 (41), 157 (12), 139 (11), 127 (10), 115 (11).

Dithia[3.3](1,4) cyclonaphthaleneophane (71).

" uon
CH,—OCH;CH,

SO,
7

A solution of 59 (243 mg, 0.68 mmol) and 73 (177 mg, 0.67 mmol) in
benzene (100 mL) was very slowly added into a Erlenrmeyer flask containing
95% ethanol (250 mL) and KOH (182 mg, 3.3 mmol) in water (3 mL) under N,.
The addition of the benzene solution took 10-15 h. The reaction mixture was
vigorously stirred for another 72 h after the addition was completed.
Concentrated sulphuric acid was carefully added until the pH of the reaction
mixture reached 5-6. After evaporating the solvent, the residue was extracted
with dichloromethane (100 mL x2). The dichloromethane extracts were washed
with water until the washings were neutral to pH paper. After drying over MgSO,

and filtering, the solvent was evaporated. The residue was chromatographed
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using 50% dichloromethane / petroleum ether (30-60 °C) as eluent. The major
fraction was re-chromatographed using 30% ethyl acetate / hexanes as eluent.
The cyclic dimer 71 was obtained (72 mg, 31%) as colourless needles. In
addition, 1,4-diethoxymethyi-2,3-methylenedioxynaphthalene (72) (65 mg, 37%)
was also obtained as colourless fine crystals. Compound 71: mp 280 °C (with
decomposition); 'H NMR (CDCl,): 3.88 (d, J=15, 4H, H-11,, H-12,, H-11',, H-
12'), 4.63 (d, 4H, J=15, H-114, H-12,, H-11',, H-12), 5.67 (s, 2H, H-13,, H-13"),
6.19 (s, 2H, H-13,, H-13',), 6.94 (m, 4H, H-8, H-7, H-6', H-7'), 7.74 (m, 4H, H-5,
H-8, H-5', H-8'); NOED (%): H-13,, H-13',/ H-13,, H-13, (33), H-13,, H-13',/ H-
13,, H-13', (26), H-6, H-7, H-6', H-7'/ H-5, H-8, H-5', H-8' (7.5), H-5, H-8, H-5',
H-8'/ H-11,, H-12,, H-11',, H-12, (6.9); °C NMR (CDCl,): 27.7 (C-11, C-11', C-
12, C-12'), 100.1 (C-13, C-13'), 108.9, 123.1, 124.1, 128.6, 143.9 (aromatic); MS
(m/z), Intensity (%): 462 (11), 461(23), 460(M", 88), 229 (100), 199 (85).
Compound 72: mp 87-88 °C; 'H NMR (CDCl,): 1.23 (t, J=6.9, 6H, H-13, H-14),
3.59 (q, J=6.9, 4H, H-12, H-15), 4.88 (s, 4H, H-11, H-16), 6.06 (s, 2H, H-17),
7.41 (m, 2H, H-6, H-7), 8.02 (m, 2H, H-5, H-8); °C NMR (CDCl,): 15.2 (C-13, C-
14), 63.1 (C-12, C-15), 65.5 (C-11, C-16), 101.0 (C-17), 111.6, 124.0, 124.6,
130.0, 147.0 (C-1-C-10); MS (m/2), Intensity (%): 288 ( M*, 100), 243 (39), 198
(41), 185 (37).

is of Dil i 70viaa Na,S
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procedure.

To a solution of Na,S. 9H,0 (1.60 g, 10.9 mmol) in water (10 mL) was
added basic Al,O, (Alumina Fluka, Type 5016 A, 1.70 g). After vigorous stirring
for 10 min and evaporating the solvent, the residue was dried under vacuum to
give an alumina-supported sodium sulphide reagent (3.96 g, 2.75 mmol / g).

To a solution of 59 (1.0 g, 2.8 mmol) in dichloromethane (90 mL) and 95%
ethanol (10 mL) was added freshly prepared alumina-supported sodium sulphide
reagent (2.75 mmol/ g, 2.04 g, 5.62 mmol). The reaction mixture was stirred at

room i for5d. Di (50 mL) was added to the reaction

mixture and the sodium sulphide reagent was filtered off. The filtrate was
washed with waier until the washings were neutral to pH paper. The organic
layer was dried over MgSO, and filtered. After evaporating the solvent, the
residue was dried under vacuum. A yellowish crude product was obtained (588

mg), which could not be re-dissolved in common organic solvents and was not

turther characterized.
1,4-Bis-( lsilyl)-2,3-dl (77)
™S
QS
| h
AN 0GH,
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Method A.  To a solution of 56 (376 mg, 2 mmol) in dry diethyl ether (10 mL)
under argon added dropwise TMEDA (1.6 mL, 10 mmol) and n-butyllithium (2.0
M in hexane, 5.0 mL, 10 mmol). This reaction mixture was stirred for 1 h at room
temperature, and then heated to refluxing and kept refluxing for another 1 h. The
reaction mixture was cooled to room temperature. Trimethylsilyl chloride (5.0
mL) was added through a syringe into the reaction mixture solution and the
resulting mixture was stirred for 15 min. A mixture of ice (10 g) and aqueous
saturated NH,Cl (20 mL) was added, and the mixture was stirred for 15 min.
After separating the aqueous layer, the ether layer was washed with water until
the washings were neutral to pH paper. The ether extracts were dried with
MgSO, and filtered. After the solvent was evaporated, the residue was purified
by flash column chromatography using 30% ethyl acetate / hexanes as eluent.
The product 77 was obtained (0.37 g, 55%) as a light brown solid: mp 79-82°C;
'H NMR (CDCI,): 0.52 (s, 18H, -SiMey), 3.83 (s, 6H, OCHj), 7.36 (m, 2H, H-6, H-
7),8.12 (m, 2H, H-5, H-8); MS (m/2), Intensity (%): 332 (M*, 100), 287 (25), 260
(12), 188 (39).
Method B.  n-Butyllithium (0.5 M in hexane, 4 mL) was added dropwise to a
solution of 1,4-dibromo-2,3-dimethoxynaphthalene (74) (173 mg, 0.50 mmol) in
dry diethyl ether (5 mL) cooled to -78 °C under Ar. This reaction mixture was
stirred for 3 h at-78 °C. Into this reaction mixture was added by a syringe

trimethylsilyl chloride (2 mL). The reaction mixture was stirred for 15 min at



-182-
room temperature. A mixture of ice (3 g) and aqueous saturated NH,CI (5 mL)
was added, and the mixture was stirred for 15 min. The ether layer was
separated, washed with water until the washings were neutral to pH paper,
dried over MgSO, and filtered. After the ether was evaporated, the residue was
purified by flash column chromatography using 20% ethyl acetate / hexanes as

eluent to afford 77 (125 mg, 75%).

1,4-Dimethyl-2,3-dimethoxynaphthalene (76).

To a solution of 74 (173 mg, 0.50 mmol) in dry diethyl ether (5 mL) cooled

0 -78 °C was added under argon dropwise n-butyllithium (0.5 M in hexane, 4
mL). This reaction mixture was stirred for 3 h at -78 °C. Methyl iodide (1 mL)
was added, and the mixture was stirred for 15 min at room temperature. A
mixture of ice (3 g) and aqueous saturated NH,Cl (5 mL) was added, and the
mixture was stirred for 15 min. The ether layer was separated, washed with
water until the washings were neutral to pH paper, dried over MgSO, and
filtered. After the ether was evaporated, the residue was purified by flash

column chromatography using 20% ethyl acetate / hexanes as eluent to afford
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76 (77.8 mg, 72%) as a light brown oil: 'H NMR (CDCl,): 2.57 (s, 6H, H-11, H-
12), 3.88 (s, 6H, H-13, H-14), 7.44 (m, 2H, H-6, H-7), 7.91 (m, H-5, H-8); °C
NMR (CDCl,): 11.0 (C-11, C-12), 60.8 (C-13, C-14), 124.3, 124.6 (C-5-C-8),
126.6, 127.8, 130.6 (C-1, C-2, C-3, C-4, C-9, C-10); MS (m/2), intensity (%): 216

(M*, 100), 205 (22), 201 (27), 173 (47), 158 (34), 141 (21), 115 (20).

Attempted coupling reaction of 1,4-dilithio-2,3-dir (75) with

1,4-bi 2,3 (78).

To a solution of 74 (346 mg, 1.0 mmol) in dry diethyl ether (10 mL)
cooled to -78°C was added under Ar dropwise n-butyllithium (2.0 M in hexane, 2
mL). The reaction mixture was stirred for 3 h at -78 °C. Bis-bromomethy!
compound 78 (372 mg, 1.0 mmol) was added, and the reaction mixture was
stirred for a further 12 h at -78 °C, during which a suspension formed. The ether
was evaporated and the residue was washed with aqueous saturated NH,CI
solution followed by water, and dried under vacuum. A brown solid product
{mp>250 °C) was obtained (509 mg), which was insoluble in common organic

solvents and not further characterized.

Synthesis of cyclic naphthalene ethers 79, 80, 81 and 83.
General procedure:

Into a three-necked 500 mL flask fitted with a condenser and calcium
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chloride drying tube, were added dry DMF, 2,3-dihydroxynaphthalene and
anhydrous CsF. Under vigorous stirring, the dibromo- or ditosy! reagents were
added via a dropping funnel over 30 min. The reaction mixture was heated to
reflux and kept at reflux for 2-3 h. After cooling to room temperature, CsF was
removed by filtration and recovered by recrystallisation twice from water. The
mother liquor was diluted with water and extracted with diethyl ether. After drying
over MgSO,, filtering and evaporating the ether, the crude product was purified
by column chromatography using 40% ethyl acetate / hexane as eluent to afford

79, 80, 81 or 82.

Cyclic ether 79 was obtained in 84% yield: mp 78.0-79.5 °C; IR (Kbr,
cm): 1600 (m), 1505 (s), 1495 (s), 1445 (s), 1400 (s), 1292.0(s, -OCH,-); 'H
NMR (CDCLy): 4.34 (s, 4H, H-11, H-12), 7.25 (s, 2H, H-1, H-4), 7.29 (m, 2H, H-6,
H-7), 7.64 (m, H-5, H-8); ®C NMR (CDCl,): 64.4 (C-11, C-12), 112.5 (C-1, C-4),
124.1, 126.3 (C-5-C-8), 129.4 (C-9, C-10), 143.9 (C-2, C-3); MS (m/z), Intensity
(%): 186 (M*, 100), 171 (35), 130 (17); HRMS: M* 186.0661, calcd for
Cy2H100,:186.0680.
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Cyclic ether 80 was obtained in 49% yield: mp 122-124 °C; IR (KBr, cm™"):
1600 (m), 1502 (s), 1497 (s), 1495 (s), 1445 (s), 1400 (s), 1292 (s, -OCH,-); 'H
NMR (CDCl,): 2.25 (m, 2H, H-12), 4.28 (t, J=5.7, 4H, H-11, H-13), 7.35 (m, 2H,
H-6, H-7), 7.41 (s, 2H, H-1, H-4), 7.69 (m, 2H, H-5, H-8); °C NMR (CDCl,):
31.9(C-12), 70.9 (C-11, C-13), 117.7, 124.9, 126.6, 130.5, 180.3 (aromatic); MS
(m/2), Intensity (%): 200 (M*, 100), 171 (52), 159 (10), 131 (14); HRMS: M*

200.0825, calcd for CyyH,,0,: 200.0837.

81

Cyclic polyether 81 was obtained in 48% yield: mp 102-103.5°C; IR (KBr,
om™): 1610 (w), 1600 (w), 1503 (s), 1498 (), 1490 (s), 1400 (m), 1250 (s, -
OCH,-); 'H NMR (CDCl,): 3.84 (s, 4H, H-13, H-14), 3.94 (m, 4H, H-12, H-15),
4.27 (m, 4H, H-11, H-16), 7.30 (s, 2H, H-1, H-4), 7.35 (m, 2H, H-6, H-7), 7.69 (m,
2H, H-5, H-8); °C NMR (CDCL,): 69.8, 71.3, 71.7 ( C-11-C-16), 124.5, 126.5,
130.1, 150.6 (aromatic); MS (m/2), Intensity (%): 274 (M*, 66), 186 (M*-
dioxane,100), 171 (57), 160 (16), 130 (12); HRMS: M* 274.1205, calcd for
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CyoHieOy 274.1204.

Cyclic ether 83 was obtained in 52% yield: mp 178-179 °C; IR (nujol,

cm): 1204 (s), 1225 (s, -OCH,0-); 'H NMR (CDCl,): 5.67 (s, 2H, H-11), 7.26 (m,
2H, H-7, H-7'), 7.40 (m, 2H, H-6, H-6'), 7.45 (d, J=8.7, 2H, H-3, H-3), 7.51 (d,
2H, H-4, H-4"), 7.90 (d, J=8.1, 2H, H-8, H-8"), 7.94 (d, J=8.7, 2H, H-5, H-5'); "*C
NMR (CDCl,): 103.1 (C-11), 120.9, 124.9, 126.0, 126.8, 128.3, 130.3 (C-3-C-8,
C-2-C-8), 131.7 (x 2), 132.1, 151.2 (C-1, C-2, C-9, C-10, C-1, C-2, C-9', C-10');
MS (m/z), Intensity (%): 298 (M*, 100), 270 (49), 269 (71), 268 (15), 253 (14),
252 (13), 241 (13), 240 (11), 239 (33), 237 (16), 134 (21), 120 (62), 118 (21);

HRMS: M* 298.0989, calcd for C,,H,,0: 298.0993.

(#)-1,1"Bis-2-naphthol (82).
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1,1*Bis-2-naphthol was prepared according to a literatur: procedure ** in
61.3% yield as almost colourless crystals: lit. mp 218 °C, mp 216-217 °C; 'H
NMR (CDCl,): 5.05 (s, 2H, exchangeable with D,O, OH), 7.16 (d, J=8.4, 2H, H-3,
H-3'), 7.30 (m, 4H, H-6, H-6', H-7, H-7'), 7.40 (d, J=8.4, 2H, H-4, H-4'), 7.90 (d,

J=7.8, 2H, H-8, H-8'), 7.99 (d, J=9.0, 2H, H-5, H-5').

1,4-bie 2,3 P (84).

Bi 2,3 i (59) (100 mg, 0.28
mmol) was dissolved in aqueous 50% p-dioxane (40 mL) and CaC0Q, (2.8 g, 2.8
mmol) was added to the solution. The reaction mixture was refluxed for 10 h.
After cooling to room temperature, the unreacted CaCO, was filtered off. The
filtrate was evaporated to dryness and the residue was crystallized from 95%
ethanol. Bis-hydroxymethyl compound 84 was obtained as a colouriess powder
(59.8 mg, 92%): mp 219-221 °C; IR (KBr, cm™"): 3356 (s, br, OH), 1671 (w), 1638
(w), 1443 (s); 'H NMR (CDCL): 5.09 (s, 4H, H-12, H-13), 6.07 (s, 2H, H-11), 7.39
(m, H-6, H-7), 8.14 (m, H-5, H-8); °C NMR (CDCl,): 56.3 (C-12, C-13), 101.2 (C-

11), 123.7, 128.0 (C-5-C-8); MS (m/2), Intensity (%): 232 (M*, 100), 215 (14),
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201 (28), 185 (42), 173 (29), 156 (22), 145 (8), 128 (31), 115 (29).

1,4-Diformyl-2,3-methylenedioxynaphthalene (85).

To a vigorously-stirred suspention of PCC (0.4 g, 1.86 mmol) and
molecular sieves (Type 3 A, 0.6 g) in dichloromethane (6 mL) was added 84
(100 mg, 0.43 mmol). After stirring at room temperature for 1 h, the
dichloromethane solution was decanted, and filtered through a pad of florisil®.
After evaporating the solvent, the residue was chromatographed using 30% ethy!
acetate / hexanes as eluent. The product 85 was obtained as yellow needles
(67.7 mg, 70%): mp 186-187 °C; IR (KBr, cm™ ): 1675(s, CHO), 1600 (m), 1505
(m), 1495 (s); *H NMR (DMF-d,) at 100 °C: 6.57 (s, 2H, H-11), 7.58 (m, H-6, H-
7), 9.00 (m, H-5, H-8), 10.7 (s, 2H, CHO); MS (m/z), Intensity (%): 228 (M*, 100),
200 (43), 184 (11), 170 (17), 142 (5.9), 114 (35); HRMS: M’ 228.0422, calcd for

CyaHq0,: 228.0422.



1,4-Bis-phosphonium salt 86.

To a solution of 59 (200 mg, 0.56 mmol) in dry DMF (2 mL) was added
triphenyl phosphine (Ph,P) (323 mg, 1.23 mmol). The reaction mixture was
refluxed for 4 h. After cooling to room temperature, the reaction mixture was
cooled to 0 °C 30 min. A white precipitate formed, which was filtered and
washed with DMF (2 mL), followed by diethyl ether (10 mL). The precipitate was
dried under vacuum to afford 86 as a colourless powder (377 mg, 76%): mp 296-
298 °C; 'H NMR (DMSO-d,): 5.26 (s, 2H, H-11), 5.34 (d, J=14, H-12, H-13), 6.84
(m, 2H, H-6, H-7), 7.42 (m, 2H, H-5, H-8), 7.56-7.94 (m, 30H, aromatic).

Wittig reaction of 85 and 86.

In dry DMF (10 mL) under argon were dissolved 85 (200 mg, 0.888

mmol) and 86 (783 mg, 0.89 mmol). The reaction flask was cooled down to
-42 °C with a dry ice-acetonitrile bath. A mixture of lithium ethoxide (0.4 M in
ethanol, 5 mL, 2.0 mmol) and DMF (5 mL) was added over 12 h. After the
addition was completed, the reaction mixture was stirred for 30 min. After
warming to room temperature, water (10 mL) was added, and the reaction
mixture was extracted with three 50 mL-portions of diethyl ether. The ether

extracts showed a strong yellow fluorescence. The combined ether extracts
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were washed with water, dried over MgSQ,, filtered, and the ether was

evaporated. The yellow residue was purified through flash column

using 80% di 1ane / hexanes as eluent. 1,4-Dimethyl
compound 87 (16 mg, 9%) and the conjugated trimer 88 (74 mg, 14%) were

obtained.

Compound 87 was obtained as colourless needles: mp 87-89 °C; 'H NMR
(CDCl,): 2.48 (s, 6H, H-12, H-1.  5.01 (s, 2H, H-11), 7.39 (m, 2H, H-6, H-7),
7.82 (m, H-5, H-8); °C NMR (CDCI,): 10.8 (C-12, C-13), 100.2 (C-11), 108.9,
123.4, 123.7, 130.4, 144.6 (aromatic); MS (m/z), Intensity (%): 200 (M, 100),
199 (16), 169 (5), 142 (15), 141 (23), 129 (4), 115 (15). Trimer 88 was a yellow
powder: mp >300 °C; 'H NMR (CDCl,): 2.56 (s, 6H, H-12, H-12)), 6.23 (s, 4H, H-
11, H-11'), 6.40 (s, 2H, H-25), 7.26 (H-13, H-13' or H-14, H-14', overlap with
CHCl,), 7.45-7.50 (m, 6H, H-6, H-7, H-20, H-21, H-6', H-7'), 7.85-7.88 (m, 2H, H-

19, H-22), 8.10 (d, J=6, 2H, H-13, H-13' or H-14, H-14'), 8.19-8.23 (m, 4H, H-5,
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H-8, H-5', H-8'); MS (m/z), Intensity (%): 592 (M*, 38), 590 (11), 198 (36), 141
(7), 138 (4), 119 (5), 115 (3), 105 (4), 97 (4), 87 (10), 85 (70), 84 (8), 83 (100);

HAMS: M* 592.1847, calcd for CyoHp04: 592.1884.
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Chapter 6.

Other Cali Functionalized

Cali and Calixsp d:

6.1, is of Other (

Among compounds which can be considered to be analogues of 1-

naphthol are 1,5-, and 1,3-dihy Cali ithalenes derived
from these two compounds would have more hydroxy groups to serve as

complexation biding sites, and to be ionali The other

available dihydroxynaphthalene, 2,7-dihy e is an of 2-
naphthol. Although the condensation reaction of 2-naphthol with formaldehyde
affords only a single product, bis(2-hydroxy-1-naphthylmethane (89), '™ '* It
was likely that 2,7-dihydroxynaphthalene would be more reactive than 2-
naphthol due to the extra hydroxy group, and that condensation with
formaldehyde would go further, to produce linear or cyclic oligomers.

The ibility that the 1 i could be formed

from these three 1alenes was i i and the results are

described in this chapter.
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OH HQ

Y
oW

6.1.1. Ci ion of 1,5- or 1,3-Dihy y with
Formaldehyde.
When the ion of 1,5-, 1,3-dihy y 1e or the benzyl-
90 with was carried out under acidic

conditions, polymeric products were obtained (Scheme 6.1).

oH oH
HCHO
LU Hei

QCH;Ph
9%

Scheme 6.1.

HCHO,
H Hol

HCHO
HGT ~ Polymer
OH

When the conditions which were employed for the formation of

calix[{4]naphthalenes from 1-naphthol in Chapter 2 were applied to the
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condensation of 1,5- or 1,3-dihy

y with yde, a dark

brown powder was obtained. The condensation of benzyl-protected naphthalene

90 with formaldehyde also did not afford any defined products (Scheme 6.2).

Scheme 6.2.
OH OH
PHCHCl
NaH >
2%

OH OCHPh
HCH( 90
K;CO5 DM!
\ HCHO
OH

K2CO3
OMF
HCHO, DMF _ Oxidized Product
=
y KeCOs (ot identified)
Both 1,5- and 1,3-dihydroxynapl are elect ich aromatic

compounds. Therefore, they are highly reactive towards electrophiles, with the
result that their condensation with formaldehyde under acidic conditions

produces polymeric products. Under basic conditicns, they are very labile to

idation by oxygen and form quil lik

6.1.2. C of 2,7-Di with

Formaldehyde.
When 2,7-dihydroxynaphthalene was treated with formaldehyde eithar in
the presence of acid or base, a dimer 91 i5 obtained (Scheme 6.3). Since the

two reactive positions, C-1, and C-8, are peri, steric hindrance presumably
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prevented the second condensation reaction from occurring at the C-8 or C-8' of

91. This d that in 2,7-dihy y only positions C-1 and C-8

are chemically reactive, as confirmed by the fact that only 91 was formed, under

a variety of conditions.

Scheme 6.3.
OH HQ
Ho, oH HCHO, Hel
sog==
e G O
DMF, 59 %
OHHO
o1
6.2 of { i Cali
As iously indicated, cali i 1es are another major class of
Ci with cali derived from phenols, few derivatized

calixresorcinarenes have been reported. The condensation of aldehydes with

2,6-dihy (92) was investi to try to form the
corresponding calixresorcinarene 93.

When 92 was treated with yde, or

in the presence of hydrochloric acid in ethanol solution, a white precipitate was
formed. The 'H NMR spectrum of the crude product indicated it to be a complex

mixture with no clearly defined products. Several recrystallizations from
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acetonitrile / water did not afford any defined product.

Scheme 6.4.
! R
HO, OH
H OH

Aldshyds ><

HCl, Eto! CH,
92

R=-COCH

n=4 "

Examination of Dreiding models suggested strong steric repulsion
between the aceto groups, which could limit formation of any cyclic oligomer.
Another factor could be that strong hydrogen bonding between the aceto and
hydroxy groups could be formed, which could diminish any intramolecular
hydrogen bonding between the meta hydroxy groups. Such intramolecular
hydrogen bonding is suggested to be a driving force to form calixresorcin-

arenes.®

6.3. Calixspherands.

Among the calixarene derivatives that have been reported,
calixspherands are some of the most important. One of the most extensively
studied calixspherands is 4. Reinhoudt * found that in its free ligand state,
calixspherand 94 is fixed in a cone conformation while its complexes with

sodium, potassium, or rubidium cation are in “partial-cone” conformations. The
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complexes with Na' and K* at room temperature in chloroform saturated with
water have decomplexation half-life times of 37 and 2.2 years respectively. Due
to the large size of Rb* which fo-ces the methoxy groups of the calixspherand to
rotate away from the cavity, the complex of 94 with Rb* has a decomplexation
half-life time of 2.8 hours. This low stability of the Rb* complex does not meet the

for the i ilization of rubidium for organ imaging purposes. In

order to achieve such biomedical applications of the rubidium complex, much
effort has been spent on trying to increase the stability of the rubidium comp-

lexes, with kinetic stabilities on a human-time scale as a final goal.

R=H

Ry=r-Cliy
Ry=Ar
%

Since the naphthalene ring is larger than benzene, a calixspherand
having naphthalene tethers might be more rigid, and, therefore, its complexes

with alkaline cations would be more stable.
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6.3.1. Synthesis of Calixspherands.

Cali; made from p-tert-butylcalix[4) (1) and napl
tethers derived from 49, 59, and 60 were studied. Calixarene 1 was prepared
according to Gustche's procedure.’ The preparation of 49 was described in
Chapter 4, and those of 59, and 60 were described Chapter 5. The major

synthetic task was to effect the coupling of 1 with 49, 59, or 60.

— FeBr HBr
o
oo > b
00y CHBr
o
i 9 °>
® CHr
6

When calixarene 1 was reacted with 49 in the presence of sodium hydride
and 18-crown-, calixspherand 95 was obtained in good yield (Scheme 6.5).
However, the coupling reaction of 1 with 59, or 60 failed to yield any
corresponding calixspherand.

The for the is of cali is the regi ivity of

O-alkylation. The second alkylation can be at the adjacent or at the opposite

hydroxy groups leading to the lower rim 1,2- or 1,3-dialkylated calixarenes; or
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Scheme 6.5.

B
49

CHin  NaH,
16-crown-8
%

R= H
Ry= tert-CaHg i

intermolecularly to give bridged di-calixarenes. Examination of Dreiding models
suggested that the lower rim 1,3-dialkylated product of calixarene with 49 is
relatively flexible, but that the 1,2-dialkylated product is very rigid. As a result,

the former would be expected to be favoured over the latter. The high yield of

Vversus ir products without requiring high dilution
conditions is possibly due to the template effect of a sodium cation. The ligand
sites of the naphthalene tether 49 and the calixarene 1 can fold together around
Na'. Reinhout found that when the larger K* was used, only a small amount of
calixspherand was obtained as K* is too large to act as a good template ion.®

Examination of Dreiding molecutar models revealed that the structures of
calixspherands derived from 1 and 59 or 60 are very rigid. This could be the

reason that calixspherands from 1 and 56, or 60 were not obtained.
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Fig. 6.2. NOED Spectra of 95 in CDCl,.

R b nit AN
35 30
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Fig. 6.1. HH COSY Spectrum of 95 in CDC,.

+ A I
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6.3.2. Conformation of Calixspherand 95.
Examination of Dreiding models also revealed that in the "cone”

conformation of 95, one of two geminal protons in all the methylene and

hylene bridges is { i to the adjacent
rings, which we call the pseride - ial proton (H,); the other which we call the

pseudo ial proton (H,) is i parallel to the adjacent aromatic

rings.

The 300 MHz COSY spectrum of 85 is shown in Fig. 6.1. There are five
pairs of doublets due to the four methylene bridges (A, B, C, and D) of
calixarene, and one of the oxymethylene bridges (F). There are wo sets of AB
quartets, one of which is due {0 the methylene bridge (E) of the bisnaphthalene
methane, and the other due to the other oxymethylene bridge (G). These

signals indicate that the cali 95is i fixed in solution

even at ambient temperature. Further studies on the conformation of 95 were
conducted by NOED experiments (Fig. 6.2). Inthe NOED spectra, there are four
discrete signals (5 0.70, 1.12, 1.27, and 1.39 ppm) due to the tert-butyl groups.
Irradiation of any of these tert-butyl signals did not enhance any of the signals
due to the methylene bridges and the methoxy protons. This confirms that the

calixspherand is in a “cone” conft ion. In this rigid ion, the

oxymethylene groups are different: (a) oxymethylene group G appears as an AB
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Table 6.1. Assignments of the 'H NMR Spectrum of Calixspherand 95.

H 0.696(s) | 1.12(s) | 127(s) | 1.89(s)
eibuy "G 31.3(q) | 31.7(q" | 32.0(q)
H.(A) H,(A) | Ha(B) -H, (B)
" 254(d, (399(d, | 820(d, [ 4.08(d,
J=14.1) | J=14.1) | J=13.8) | J=138)
PGHL Y 2874 (t) 3214 (1)
H. (C) H,(C) | H.(D) He (D)
" 333(d, |4.48(d, | 354 (d, | 4.14(d,
J=12.6) | J=126) | J=13.6) | J=136)
© 323 () 347 (1)
H,d (E) Hy(E)
Naph-CH,-Naph | 'H 4.99 (q, 16.6)
C 24.96 (t)
H, (F) H(F) | H.(G) H, (G)
OCH, | A _(.‘,’)' 510 f;‘,- 4.59(q, J=8.4)
“c 75.7 (t) 745 (t)
(H) )
OCH, H 3.21(s) 3.09 (s)
*c 63.4(q) 62.5 (q)

quartet centred at 5 4.59 ppm, which indicates that the pseudo equatorial

protons are less deshielded by the naphthalene ring and the pseudo axial

protons are less shielded by the naphthaiene ring; (b) oxymethylene group F
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appears as a pair of doublets (AX) with one centred at & 4.44 and the other at
5.76 ppm. This indicates that the pseudo equatorial protons are more deshielded
by the naphthalene ring, and that the pseudo axial ones are more shielded by
the naphthalene ring. Therefore, the conformation does not appear as a perfect

“cone”. These assignments are summarized in Table 6.1.

6.4. Summary.

Ci ion of 1,5- or 1,3-dihy ynaphthalene with

under basic conditions gave oxidized products such as quinones, and under

acidic conditions gave linear oli C of with 2,7-

dihydroxynaphthalene under either basic or acidic conditions gave the dimer 91.

C ion of 2,6-dihy with y such as

and ber yde under acidic itions gave polymers, but did

not give cyclic the anticipated calixresorcinarene.
The naphthalene-tethered calixspherand 95 was synthesized in 77% yield

without requiring high dilution ti The ion was assi tobe

a"cone" by using 2D NMR (COSY, NOED and HETCOR) experiments.
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6.5. Experimental.

For general experi itions and i ion employed see

Chapter 2.

1-Hydroxy-5-naphthyl benzyl ether (90).

"
OCHPh

OH

To a solution of 1,5-dihydroxynaphthalene (800 mg, 5 mmol) in dry DMF
(20 mL) was added potassium carbonate (0.69 g, 5 mmol). After heating to 85-
90°C, benzyl chloride (0.60 mL, 4.3 mmol) was added over 20 min. The reaction
mixture was stirred for 5 h at 85-80 °C. After cooling to room temperature, the
reaction mixture was poured into a mixture of crushed ice (20 g) and concen-
trated hydrochloric acid (20 mL). A dark brown precipitate formed. After
fittering, washing with water until the washings were neutral to pH paper, and
drying under vacuum, a crude product was obtained (1.2 g), which, after
purification by PLC, afforded the product 90 (770 mg, 60%) as a light brown
solid: MP 164-166 °C; IR (KBr, cm™): 3509 (s, OH), 1620 (s), 1516 (s), 1414 (s),

1271 (s); "H NMR (CD,COCDy): 5.30 (s, 2H, H-11), 6.95 (Q, Jg;=7.5, Jos=0.9,
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1H, H-6), 7.05 (q, J53=7.8, J;.=0.3, 1H, H-2), 7.26-7.47 (m, 5H, phenyl-H), 7.59-
7.62 (m, 2H, H-4, H-8), 7.78-7.85 (m, 2H, H-3, H-7), 9.04 (s, 1H, OH); MS (m/2),

Intensity (%): 250 (M, 7), 159 (5), 131 (12), 103 (8), 102 (5), 91 (100).

Ct ion of 1,5-dif 1-hydroxy-5-naphthyl benzyl ether

(90) or 1,3-dil V with

Under acidic conditions.  To a solution of 1,5-dihydroxynaphthalene (1.6 g, 10
mmo!) and formalin (aqueous 37% formaldehyde solution, 0.7 mL, 8.6 mmol) in
95% ethanol (18 mL) and water (4 mL) was added concentrated hydrochloric
acid (1 mL). After refluxing for 1 h, a dark blue solution formed. After cooling to
room temperature, the precipitate was filtered, washed with aqueous 1M NaOH
solution (6 mL), followed by water until the washings were neutral to pH paper.
A brown powder was obtained, which was only sparingly soluble in common
organic solvents, and was not further characterized.

When the reaction of 1-hydroxy-5-naphthyl benzyl ether (90) or 1,3-

dihy with was carried out under the same
conditions as described above, similar polymeric products were obtained, and
were not further characterized.

Under basic conditions.  To a solution of 1,5-dihydroxynaphthalene (1.60 g,
10 mmol) in DMF (15 mL) were added formalin (aqueous 37% formaldehyde

solution, 0.70 mL, 8.6 mmof) and aqueous 10% K,CO, solution (1 mL, 0.72
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mmol). The reaction mixture was refluxed for 40 h. After cooling to room
temperature, the reaction mixture was poured into aqueous 5% hydrochloric acid
(20 mL). A dark brown precipitate formed, which was filtered, washed with water
until the washings were neutral to pH paper, and dried under vacuum to afford
quantitative brown powder. The 'H NMR spectrum of the crude product showed
it to be a mixture of many products, which were not further fractionated or
characterized.

When the reaction of 1-hydroxy-5-naphthyl benzyl ether (80) or 1,3-

with was carried out under the same

conditions as described above, similar polymeric products were obtained, which

were r:ot further purified or characterized.

Bis(2,7-dihydroxy-1-naphthyl)methane (91).

Under basic conditions. ~ To a solution of 2,7-dihydroxynaphthalene (1.60 g, 10
mmol) in DMF (10 mL) were added formalin (aqueous 37% formaldehyde

solution, 0.70 mL, 8.6 mmol) and aqueous 10% potassium carbonate solution
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(1.0 mL, 0.72 mmol). The blue solution was refluxed under N, for 30 h and then
cooled to room temperature. When the reaction mixture was poured into a
mixture of ice (50 g) and aqueous 5% hydrochloric acid (10 mL), a brown
precipitate formed, which was filtered, washed with water until the washings
were neutral to pH paper, and dried under vacuum. The crude product was
purified by flash chromatography using 40% ethyl acetate / hexanes as eluent o
afford 91 (0.64 g, 59%) as a colourless powder: MP 255-256 °C; IR (nujol, cm™),
3319 (s, br, OH), 1629 (m), 1518 (m), 1500 (), 1377 (m), 1216 (s); 'H NMR
(CD,COCD,): 4.67 (s, 2H, H-11), 6.82 (q, Jg5=8.7, Jss=2.1, 2H, H-6, H-6"), 7.00
(d, J=8.7, 2H, H-3, H-8'), 7.51 (d, J=8.7, 2H, H-5, H-5'), 7.55 (d, J=8.7, 2H, H-4,
H-4'), 7.62 (d, J=2.4, 2H, H-8, H-8"); *°C NMR (CD,COCD,) 21.9 (C-11), 107.2,
115.5, 115.8, 128.4, 130.6 (C-3-C-6, C-8, C-3'-C-6', C-8'), 118.0, 125.0, 136.7,
153.2, 156.2 (C-1, C-2, C-7, C-9, C-10, C-1', C-2', C-7', C-9, C-10"); MS (m/2),
intensity (%): 332 (M*, 3), 313 (3), 172 (28), 160 (100), 144 (20).

Under acidic conditions. ~ To a solution of 2,7-dihydroxynaphthalene (1.60 g,
10 mmol) in a mixture of absolute ethanol (4 mL) and water (4 mL) were added
formalin (agueous 37% formaldehyde solution, 0.70 mL, 8.6 mmol) and
concentrated hydrochloric acid (1 mL) under N,. The milky emulsion was heated
to 50°C and kept at that temperature for 1 h. The reaction mixture was then
poured onto ice (50 g). The white precipitate was filtered, washed with water

until the washings were neutral to pH paper, and dried under vacuum. The
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crude product was purified by flash chromatography using 40% ethyl acetate /

hexanes as eluent to afford compound 21 as a white powder (1.34 g, 81%).

C ion of 2,6-dihy (92) with

Crude 2,6-dil y (92) was ingtoa

literature procedure.'™ The crude product showed two spots on TLC. Flash
column chromatography was carried out using 30% ethy! acetate / hexanes as
eluent to purify it.

To a solution of purified 92 (0.79 g, 5 mmol) in 95% ethanol (10 mL) was
added aqueous 10% acetaldehyde solution (2.2 mL). During refluxing for 12 h, a
white precipitate formed. After cooling to room temperature, the precipitate was
filtered, washed with water until the washings were neutral to pH paper, and
dried under vacuum to afford a crude product (1.45 g). The 'H NMR spectrum of
this crude product showed poorly resolved signals. The crude product was
crystallized three times from acetonitrile / water to give a colourless fine powder
whose 'H NMR signals were still very broad, and were not resolved.

When formaldehyde or benzaldehyde were used instead of acetaldehyde

in the same molar ratio, similar it products were obtained, which were

not further characterized.
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p-tert-Butylcalixarene (1).

p-tert- i was ing to Gutsche's

in 42% yield. MP >300 °C (with decomposition); IR (Nujol, cm™): 3135 (s, br,
OH), 1665 (w), 1600 (w), 1550 (w); 'H NMR (CDCI,): 5 1.21 (s, 36H, C(CH,),),
3.52 (d, 4H, (CH,),), 4.28 (d, 4H, (CH,),), 7.05 (s, 8H, aromatic), 10.3 (s, 4H,
OH); °C NMR (CDCl,): 31.4 (CH,), 32.6 (CH,), 34.0 (C(CH,),), 125.9, 127.6,

144.3, 146.6 (aromatic).
Calixspherand 95.

A 0 )

i
5% g e g 1t g e
oCH;  ocH, ¢

A mixture of 1 (389 mg, 0.6 mmol), NaH (50% oil-dispersion, 144 mg, 3
mmol), and 18-crown-6 (5 mg) in dry THF(140 mL) was stirred at room
temperature for 30 min and heated to reflux. A solution of bisbromomethyl
compound 49 in dry THF(30 mL) was added into the above refluxing solution
over 3.5 h. Refluxing for another 3 h was followed by the addition of water (5 mL)
to quench the reaction. After evaporating the solvent under vacuum, the residue

was redissolved in dichloromethane (100 mL) and washed with water until the
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washings were neutral to pH paper. Further purification was carried out through
PLC with 50% dichloromethane / petroleum ether (30-60 °C) as eluent.
Calixspherand 95 was obtained as cream-coloured crystals (452 mg, 77%): MP
230-235 °C; 'H NMR (CDCl,): 0.70, 1.12, 1.27, 1.39 (sx4, 36H, C(CH,),), 3.32,
3.09 (sx2, 6H, OCH;), 2.54, 3.20, 3.33, 3.54, 3.99, 4.08, 4.14, 4.48 (dx8, 8H, Ph-
CH,-Ph), 4.99 (g, 2H, Naph-CH,-Naph), 4.44, 5.76 (dx2, 2H, OCH,), 4.59 (g, 2H,
OCH,), 6.41, 6.47, 6.80, 6.88, 6.89, 6.95, 7.07, 7.15, 7.24, 7.41, 7.44, 7.53, 7.55,
7.57, 7.60, 7.63, 7.66, 7.76, 7.92, 7.95, B.40, 8.44, 8.47 (aromatic); °C NMR
(CDCl,): 31.28, 31.68, 32.02 (q, C(CH,),), 28.74, 32.14, 32.33, 34.68 (t, Ph-CH,-
Ph), 25.0 (t, Naph-CH,-Naph), 63.4, 62.5 (q, OCH,), 74.5, 75.7 (t, OCH,), 123.3,
124.0, 124.7, 125.0, 125.6, 125.7, 125.8, 126.1, 126.5, 126.6, 126.7, 128.0,
128.7, 129.0, 129.4, 129.6, 129.8, 130.8, 131.1, 131.3, 131.4, 131.5, 133.0,
133.1, 134.4, 134.7, 138.1, 141.1, 143.2, 144.6, 147.1, 147.5, 149.6, 150.4,
152.2, 154.6, 156.1 (aromatic); MS (FAB+, NOBA as a matrix, m/z), Intensity
(%): 1024 ((M +1+Na)*, 7), 1023 ((M+Na)*, 9), 1000 (M*, 9), 999 (7), 968 (10),

967 (8).
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Appendix Il

'H NMR Spectra of Compounds.
(In Order of Compound Number)
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