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ABSTRACT 

Biodispersants are detergent-like products made by dissolving biosurfactants in 

solvents. Biosurfactants, comparing with their chemical counterparts, have advantages 

of lower eco-toxicity, as well as higher biodegradability and stability. Biodispersants 

have the great potential to be applied as the reagent for offshore oil spill response. 

However, relevant topics were rarely reported in literature due to the extremely 

limited biodispersants available and the high cost of biosurfactant production.  

This study thus tried to fill the research gap through enhancing the producting of 

biosurfactants so as to decrease the cost and generating biodispersant products for oil 

spill response. The biosurfactants were produced by Rhodococcus erythropolis sp. 

SB-1A, a strain isolated from the North Atlantic Ocean. Effects of culturing 

conditions including the carbon source, the nitrogen source, pH and salinity were 

investigated through the One-factor-at-a-time (OFAT) experiments. Surface tension 

and the reciprocal of critical micelle concentration (CMC-1) of the cell-free culture 

were monitored periodically. A kinetics model was established to represent the time 

course of biosurfactant production. Under the determined culturing conditions (3.5 v/v% 

N-hexadecane, 0.7 g/L NH4NO3, pH 7 and 26 g/L NaCl), the surface tension of 

culture mediums was reduced by 40 dynes/cm with a CMC-1 of 11.9 after 40 hours of 

cultivation. The produced biosurfactants were further characterized. Results indicated 

that the total carbohydrate content in 1 g of biosurfactants was 8.4 mg in term of D-

glucose, and the total lipid content in 1 g of biosurfactants was 11.6 mg in term of 

Palmitic acid. 
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Multiple solvents were selected to mixed with the biosurfactants, respectively, to 

obtain the biodispersants. The solvents were screened based on their toxicity and the 

effectiveness of relevant dispersants generated. The final formula of the biodispersant 

was determined as 16.7%/ 83.3% (biosurfactants/ PEG 400). The biodispersant-based 

dispersion was further examined using a motor oil sample and a crude oil sample. The 

performance was compared with the commercial chemical dispersant Corexit 9527. 

Results showed that compared with Corexit 9527, the biodispersant could achieve a 

compatible dispersant effectiveness (DE) when treating the motor oil and a higher DE 

for treating the crude oil. Through the biodegradation test, 45% of the biodispersed 

crude oil was biodegraded by the biodispersant assisted dispersion after 28 days of 

dispersion treatment without spiking any oil-degrading bacteria. The toxicity of the 

biodispersed oil was reduced by 50%  after 28 days. The research outputs provided an 

evidence for applying biodispersants as a promising alternative reagent for offshore 

oil spill response. 

II 
 



 

ACKNOWLEDGEMENTS 

First of all I would like to thank my supervisors, Drs. Bing Chen and Baiyu Zhang for 

providing me the opportunity to study such an interesting research topic in the 

Northern Region Persistent Organic Pollution Control (NRPOP) Lab at Memorial 

University. I appreciate their consistent guidance, support and valuable suggestions 

throughout my study. They are also like friends and parents as they taught me a lot 

inside and outside of research. 

I gratefully acknowledge the Faculty of Engineering and Applied Science, the 

Memorial University, the Petroleum Research Newfoundland and Labrador (PRNL), 

and the Development Corporation of Newfoundland and Labrador (RDC) for 

financial support. 

Additional gratitude goes to the members of my research group, especially Qinghong 

Cai, Zhiwen Zhu, Yinchen Ma, Pu Li, Liang Jing, Jisi Zheng, Bo Liu and Kedong 

Zhang for their help and suggestions during my study. Thanks also go to Hongjing 

Wu, Zelin Li, He Zhang, Xiao Zheng, Weiyun Lin and Yujiao Wang for their 

friendship. 

Finally, I would like to thank my parents and my wife for their love and support as 

always.  

 

III 
 



 

TABLE OF CONTENT 

ABSTRACT ............................................................................................................. I 

ACKNOWLEDGEMENTS ................................................................................. III 

LIST OF TABLES............................................................................................. VIII 

LIST OF FIGURES .............................................................................................. IX 

LIST OF ABBREVIATIONS AND SYMBOLS ................................................. XI 

CHAPTER 1 INTRODUCTION ........................................................................... 1 

1.1 Background .............................................................................................. .......2 

1.2 Objective......................................................................................................... 4 

1.3 Thesis structure ............................................................................................... 5 

CHAPTER 2 LITERATURE REVIEW ................................................................ 6 

2.1 Dispersants...................................................................................................... 7 

2.1.1 Chemical surfactants ................................................................................ 7 

2.1.2 Chemical dispersants .............................................................................. 10 

2.1.3 Toxicity of chemical dispersants and/or dispersed oil ............................. 15 

2.1.4 Biodegradation of chemically dispersed oil ............................................. 17 

2.2 Biosurfactant-based biodispersants ................................................................ 18 

2.2.1 Biosurfactants ......................................................................................... 18 

2.2.2 Biodispersants ........................................................................................ 21 

2.2.3 Toxicity of biodispersants and/or dispersed oil ....................................... 21 

2.2.4 Biodegradation of dispersed oil .............................................................. 23 

IV 
 



 

2.3 Production of biodispersants ......................................................................... 24 

2.3.1 Biosurfactant producers.......................................................................... 24 

2.3.2 Factors affecting biosurfactant production ............................................. 27 

2.3.3 Kinetics of biosurfactant production ....................................................... 30 

2.3.4 Characterization of Biosurfactants ......................................................... 32 

2.3.5Generation of biodispersants ................................................................... 36 

2.4 Applications of dispersants in offshore oil spills ............................................ 38 

2.4.1 Worldwide .............................................................................................. 38 

2.4.2 Northern regions .................................................................................... 40 

2.5 Summary....................................................................................................... 41 

CHAPTER 3 BIOSURFACTANT PRODUCTION BY RHODOCOCCUS 

ERYTHROPOLIS SP. SB-1A ISOLATED FROM THE NORTH ATLANTIC 

OCEAN ................................................................................................................. 43 

3.1 Background ................................................................................................... 44 

3.2 Methodology ................................................................................................. 45 

3.2.1 The biosurfactant producer and culture nutrients ................................... 45 

3.2.2 Investigation of factors affecting biosurfactant production ...................... 46 

3.2.3 Isolation of the biosurfactants ................................................................. 47 

3.2.4 Characterization of surface active properties of the biosurfactants ......... 47 

3.2.5 Study of kinetics of biosurfactant production........................................... 48 

3.2.6 Quality Assurance and Quality Control (QA/QC) ................................... 49 

3.3 Results and discussion ................................................................................... 50 

V 
 



 

3.3.1 Effects of the carbon source .................................................................... 50 

3.3.2 Effects of salinity .................................................................................... 51 

3.3.3 Effects of pH ........................................................................................... 53 

3.3.4 Effects of the nitrogen source .................................................................. 54 

3.3.5. Kinetics of biosurfactant production ...................................................... 55 

3.4 Summary....................................................................................................... 69 

CHAPTER 4 BIODISPERSANT GENERATION AND PERFORMANCE 

EVALUATION ..................................................................................................... 70 

4.1 Background ................................................................................................... 71 

4.2 Methodology ................................................................................................. 73 

4.2.1 Biosurfactant production, isolation and purification ............................... 73 

4.2.2 Characterization of structural properties of the biosurfactants ............... 74 

4.2.3 Screening of solvents .............................................................................. 75 

4.2.4 Determination of biodispersant formulation ............................................ 76 

4.2.5 Baffled Flask Test (BFT) ......................................................................... 76 

4.2.6 Biodegradation test ................................................................................. 79 

4.2.7 Toxicity test ............................................................................................ 80 

4.2.8 Quality Assurance and Quality Control (QA/QC) ................................... 80 

4.3 Results and discussion ................................................................................... 81 

4.3.1 Isolation and purification of biosurfactants ............................................. 81 

4.3.2 Biosurfactant characterization ................................................................ 82 

4.3.3 Screening of solvents .............................................................................. 83 

VI 
 



 

4.3.4 Determination of biodispersant formulation ............................................ 86 

4.3.5 Comparison of the DER between Corexit and biodispersant using crude oil 

and motor oil ................................................................................................... 89 

4.3.6 Biodegradation test ................................................................................. 90 

4.3.7 Toxicity test ............................................................................................ 92 

4.4 Summary....................................................................................................... 94 

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS ........................ 95 

5.1 Conclusions .................................................................................................. 96 

5.2 Scientific achievements ................................................................................. 98 

5.3 Recommendations for future work ................................................................ 98 

REFERENCE ..................................................................................................... 100 

APPENDIX ......................................................................................................... 121 

  

VII 
 



 

LIST OF TABLES 
 

Table 1. Classification of surfactants ........................................................................ 9 

Table 2. CMC values of example chemically synthetic surfactants and biosurfactants

 ............................................................................................................................... 12 

Table 3. Classification of some example biosurfactants .......................................... 20 

Table 4. List of approved chemical dispersants in Canada and United States (Fingas, 

2010). ..................................................................................................................... 39 

Table 5. Experimental design of four factors studied in biosurfactant production. ... 47 

Table 6. Results obtained by regression of biosurfactant production for Rhodococcus 

erythropolis under four levels of the carbon source, salinity, pH and the nitrogen 

source. ...................................................................... Error! Bookmark not defined. 

Table 7. Physicochemical characteristics of oil samples .......................................... 77 

Table 8. Characteristics and DERs of solvents ........................................................ 85 

Table 9. Comparison of 5-min and 15-min EC 50 (%) of ND-WAF and BD-DWAF 

by Microtox® ......................................................................................................... 93 

 
 
 
 
 
 
 
 
 
 
 
 
 

VIII 
 



 

LIST OF FIGURES 
 

Figure 1. Effect of the carbon source on surface tension reduction. ......................... 51 

Figure 2. Effect of salinity on surface tension reduction .......................................... 52 

Figure 3. Effect of pH on surface tension reduction ................................................ 54 

Figure 4. Effect of the nitrogen source on surface tension reduction..........................55 

Figure 5. CMC-1 of the biosurfactants. .................................................................... 56 

Figure 6. Effects of the carbon source on time course of CMC-1............................60 

Figure 7. Effect of salinity on time course of CMC-1 .................................................63 

Figure 8. Effect of pH on time course of CMC-1........................................................66 

Figure 9. Effect of the nitrogen source on time course of CMC-1...........................68 

Figure 10. Biosurfactants generated by R. erythropolis sp. SB-1A...........................82 

Figure 11. CMC determination of the biosurfactants.................................................83 

Figure 12. Baffled Flask Test Apparatus.................................................................87 

Figure 13. Comparison of the dispersability of light crude oil by natural dispersion 

(ND), Corexit 9500(C9500), Corexit 9527(C9527) and PEG400 

biodispersants(B)..........................................................................................................88

Figure 14. Comparison of the dispersability of light crude oil by natural 

dispersion(ND), Corexit9500(C9500), Corexit 9527 (C9527) and Propylene glycol 

biodispersants(B)..........................................................................................................88 

Figure 15. Comparison of the dispersability of light crude oil and motor oil by natural 

dispersion(ND), Corexit 9527 (C9527) and finalized biodispersants(B)..................89 

Figure 16. Comparison of the biodegradation of natural dispersed oil, Biodispersant 

IX 
 



 

dispersed oil and Corexit 9527 dispersed oil...............................................................91 

Figure 17. Preparation of WAF and DWAF................................................................93 

X 
 



 

 LIST OF ABBREVIATIONS AND SYMBOLS 

 
 

BFT baffled flask test 

C9500 Corexit 9500 

C9527 Corexit 9527 

CLP cyclic lipopeptides 

CMC critical micelle concentration 

CMC-1 the reciprocal of critical micelle concentration 

CMD critical micelle dilution 

CMT critical micelle temperature 

DCM Dichloromethane 

DE dispersion effectiveness 

DER dispersion effectiveness ratio 

DMSO Dimethyl sulfoxide 

DOR dispersant to oil ratio 

DWAF dispersed oil water-accommodated fraction 

EC50% median effective concentration 

EI 24 emulsification index 24 

GC/MS gas chromatography coupled with mass spectroscopy 

XI 
 



 

HLB hydrophilic-lipophilic balance 

HPLC-MS High pressure liquid chromatography and mass spectroscopy 

IFP Institut Français du Petrole 

IR Infrared 

MNS Mackay-Nadeau-Steel-man 

MTBE methyl tertiary-butyl ether 

ND natural dispersion 

NMR Nuclear magnetic resonance 

OFAT one-factor-at-a-time 

PAHs polycyclic aromatic hydrocarbons 

PEG 400 Polyethylene glycol 400 

QA/QC Quality Assurance and Quality Control 

SFT swirling flask test 

Solketal DL-12-isopropylidene glycerol 

TLC Thin layer chromatography 

TPH total petroleum hydrocarbons 

WAF water-accommodated fraction 

W/O water-in-oil 

WSL Warren Spring Laboratory 

XII 
 



 

 

CHAPTER 1  

INTRODUCTION 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 



 

1.1 Background  

 

Oil spills have gain the global concern due to their impacts on marine environment 

along with the large economic loss. After the Exxon Valdez oil spill in 1989, more 

than 36,000 seabirds died immediately and most of the rescued 1,800 living oiled 

seabirds eventually died after they were brought to rehabilitation centers (Piatt and 

Ford, 1996). The negative effects of oil spills on benthic organisms were 

demonstrated based on the research of the multiple ecological processes and 

ecosystem functions that these organisms support (Mendelssohn et al., 2012). Human 

health can also be affected by the consumption of oiled seafood. It was revealed that 

marine food such as mussels contaminated with polycyclic aromatic hydrocarbons 

(PAHs) coming from oil spills can cause genotoxic damage in consumers (Lemiere et 

al., 2005). The total economic loss due to an oil spill event can be broken down into 

the socioeconomic loss, cleanup cost, environmental damage, research cost, and other 

costs (Liu and Wirtz, 2006). 

The offshore oil and gas industry in Newfoundland and Labrador (NL) is booming. 

NL produces more than 300,000 barrels of crude oil per day, representing about 12 

percent of Canada's total crude oil production. Consequently, promising oil spill 

alternatives are required. Several response techniques including physical/mechanical 

and chemical counter-measurements have been developed to help the offshore oil and 

gas industry reduce the impacts on marine systems, local communities and fisheries, 

and human health. Booms are mechanical devices used to contain an oil spill and 

prevent it from spreading to a particular area, to divert it to another area where it can 

be recovered or treated, or to concentrate the oil so that it can be recovered, burned, or 
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otherwise treated (Fingas, 2010). Sometimes solidifiers were used in combination 

with the booms to recover oil from smaller areas on a rapid basis to prevent the spread 

of slicks, to recover thin sheens, and to protect areas and wildlife (Dahl et al., 1996). 

Skimmers are mechanical devices composed by disks, belts, drums, and brushes 

designed to remove oil from the water surface in conjunction with booms without 

changing its properties so it can be reprocessed and reused (Hammoud, 2006; Schulze, 

1998; Schwartz, 1979). In situ burning is a thermal mean of oil spill remediation that 

can be proceeded with minimal specialized equipment with higher rates of oil removal 

efficiency (Dave and Ghaly, 2011). Nevertheless, the applicability and effectiveness 

of current mechanical countermeasures can be affected by strong currents and wind in 

regions such as the North Atlantic Oceans (Chen et al., 2011; Dave and Ghaly, 2011; 

Jing et al., 2012). 

The global awareness of dispersants was raised after the Deepwater Horizon oil spill 

as being a promising alternative response technique regardless of severe weather 

(Walker et al., 2003). They are usually applied by spraying the water or by underwater 

injection (Sittig, 1974). An oil slick can be broken down into smaller droplets and 

transferred into the water column where it undergoes rapid dilution and can be easily 

degraded (Lessard and DeMarco, 2000). They also allow for rapid treatment, slow 

down the formation of oil-water emulsions, and make the oil less likely to stick to 

surfaces (including animals) (Nomack, 2010). Nevertheless, there are rising concerns 

about environmental harm due to the toxicity and non-biodegradability of some 

chemical dispersants and dispersed oil. Hence, novel, environmental friendly and 

cost-effective biosurfactants and associated biodispersants are being considered as the 

alternatives to adequately address the safety and environmental concerns (Muthusamy 

et al., 2008). Despite the various advantages and diverse potential applications of 
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biosurfactants that have been reported, difficulties exist in their applications on a 

commercial level due to the low yields and thus the high cost in the production 

process (Mukherjee et al., 2008). Moreover, biosurfactant-based oil dispersion has  

rarely been studied. 

1.2 Objective  

The core value of this research was to fill the gap through enhancing the production of 

biosurfactants so as to decrease the cost and generating biodispersant products for oil 

spill response. The produced biodispersants should have favorable dispersion 

effectiveness (DE) and evironmental friendly characteristics. 

It entails the following tasks: 

(1) To study important factors in biosurfactant production by a biosurfactant producer 

isolated from North Atlantic and to enhance the productivity based on selected 

conditions; 

(2) To generate biosurfactant products and isolate them from the culturing media; 

(3) To study the surface activity and structural characteristics of the biosurfactants; 

(4) To investigate the formulation of the biodispersants by testing candidate solvents 

and selecting the favorable biosurfactants/solvent ratio; 

(5) To evaluate the generated biodispersant product by testing its DE using a motor oil 

sample and a light crude oil sample, and compared it with commercial chemical 

dispersants; and 
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(6) To assess the effect of the biodispersant product on crude oil biodegradation and 

the toxicity of the water‐accommodated fraction of biodispersed crude oil. 

 
 
1.3 Thesis structure  

 

The thesis consists of five chapters and a list of references. Chapter 2 describes the 

background of oil spills, as well as chemical dispersants and biodispersants including 

their physicochemical properties, mechanisms of action, and their applications. It also 

presents reviews of previous research findings in the potential of biosurfactants for oil 

spill response including effective biosufactant producers, characterization, and 

applications. Chapter 3 describes the cost-effective production of biosurfactants by 

Rhodococcus erythropolis sp. SB-1A isolated from the North Atlantic ocean and 

relevant  kinetics study. Chapter 4 indicates the generation of biodispersant and the 

evaluation of its performance as the oil spill response alternative. Chapter 5 

summarizes the finds and significance of this study, and presents recommendations 

for future work. 
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CHAPTER 2  
 

LITERATURE REVIEW 
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2.1 Dispersants 
 

Dispersants are detergent-like products made of surfactants dissolved in one or more 

solvents. As important oil spill response reagents, they have been used to reduce the 

impact of oil spills on shorelines and habitats. An ideal dispersion is generally 

designed with a chemical affinity for both oil and water. By spraying onto oil slicks or 

by underwater injecting, the surfactants diffuse to the oil/water interface, and the 

interfacial tension can be reduced, which leads to oil dispersion into the water column 

at very low concentrations (Lessard and DeMarco, 2000). The oil dispersion can 

enhance the degradation of the oil by microorganisms in natural waters (Swannell and 

Daniel, 1999).  

2.1.1 Chemical surfactants  
 

Surfactants are a unique class of chemical compounds with both hydrophobic groups 

(or tails) and hydrophilic groups (or heads) (Schramm et al., 2003). As surface-active 

compounds, effective surfactants can reduce the surface tension between the water 

and air from 72 to 30 mN/m and the interfacial tension between the water and n-

hexadecane from 40 to 1 mN/m (Schramm, 2000). Some surfactants are named 

micelle-forming molecules as the surface or interfacial tension will stop decreasing 

when the concentration of surfactants reaches the critical micelle concentration (CMC) 

(Schramm, 2000).  

The applications of surfactants are diversified due to their remarkable ability to 

influence the properties of surfaces and interfaces (Schramm et al., 2003).  Surfactants 

are usually applied in the detergent industry based on their surface wettability. 

Surfactants that can rapidly diffuse and adsorb at appropriate interfaces are considered 
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as good wetting agents. For example, the surface active fatty acid salt is usually used 

in the soap production (Schramm, 2001). In the cosmetics industry, surfactants such 

as alkyl polyglyosides were used for improving the stability of micro-emulsions by 

increasing the temperature ranges to reduce skin irritation and to create the 

formulation of O/W (Schueller and Romanowski, 1998). In the food production and 

processing industry, surfactants can be added as food coating modifiers. For instance, 

surfactants such as sorbitan monostearate and polysorbate 60 were used to stabilize 

and blend the fat and the cocoa butter in chocolate coating (Dziezak, 1988). 

Surfactants such as xanthan and carboxymethyl cellulose were good for enhancing 

smoothness, reducing ice, lactose crystal and melting in the processing of popsicle 

(Goff, 1997). Surfactants also have a big application value in the petroleum industry 

from oil-in-water emulsification, differential sticking prevention, shale-swelling 

inhibitors, to foaming/ defoaming addition (Quintero, 2002). Surfactants are 

potentially useful surface-active agents for  fuel additives and lubricants, 

pharmaceuticals, adhesives, paints, agrochemicals, and environmental remediation 

techniques (Schramm et al., 2003).  

According to the chemical structure of surfactants, chemical surfactants can be 

classified as the low molecular mass surfactants and polymeric surfactants. The 

classification has been indicated in Table 1 (Denkov et al., 2009). 
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Table 1. Classification of chemical surfactants 

 

Types Example compounds Molecular formula 

Low molecular mass surfactants 

 
Nonionic  

 

 
Alkylpolyoxyethylenes 

 
 
Spans 

 

 

 

Ionic Sodium dodecyl sulfate, SDS 
 

Cetylpyridinium chloride, CPC 

 

 

Amphoteric alkylcarboxylates, Lipids 

 
Betaines 

 

 

Polymeric surfactants 

 

Synthetic 

 

Polyvinyl alcohol, PV 

 

Modified polysacharides 
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2.1.2 Chemical dispersants 

(1) Advantages of Chemical Dispersants 

Compared with other oil spill response alternatives, dispersants have unique 

advantages. Dispersants can be applied in harsh weather conditions (e.g., rough seas, 

strong winds and currents) where the use of mechanical containment and recovery 

techniques such as booms and skimmers is limited. Dispersant treatment can be 

rapidly applied to large oil spills such as the Deepwater Horizon oil spill. This can be 

accomplished by large aircraft. Dispersants application also might enhance the natural 

biodegradation process by increasing the surface area of oil available to bacteria. 

Dispersed oil is unlikely to stick to sediment, wildlife, shorelines, and vessels due to 

the presence of the surfactants on the surface of the droplets (Lessard and DeMarco, 

2000). 

(2) Structural Properties  

One critical parameter that affects the performance of the chemical dispersants is the 

hydrophile-lipophile balance (HLB), which can be used to characterize the tendency 

of the surfactant to preferentially dissolve in either the oil phase (low HLB) or the 

aqueous phase (high HLB). HLB can be calculated based on theoretical equations 

measuring the balance between the length of the water-soluble portion of the 

surfactant and the oil-soluble portion of the surfactant. Generally, water-in-oil (W/O) 

emulsions can be created under an HLB between 1 and 8, and oil-in-water (O/W) 

emulsions exist under an HLB between 12 and 20 (Fingas, 2010; Porter and Porter, 

1991). This is due to the fact that the dominant group of the surfactant molecules will 

tend to orient in the outer phase to form a droplet of either oil or water. (Porter and 

Porter, 1991). Consequently, the components of commercial chemical dispersants are 
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usually comprised of two or more surfactants with different HLBs with an overall 

HLB in the range of 9 to 11 (Clayton et al., 1993). Due to such HLB property, 

dispersants may avoid the formation of emulsions (mousse) and enhance the time 

window for response (Lessard and DeMarco, 2000). 

Another important parameter for the dispersion is CMC. Above this threshold level, 

micelles can be created as surfactant molecules aggregate because of the chemical 

interactions between the polar head groups and the non-polar tail groups including 

hydrophobic, Van der Waals' force, and hydrogen bonding (Soberón-Chávez and 

Maier, 2011). 

CMC varies with the structure of surfactants, pH, ionic strength, temperature, and the 

polarity of the solvent. CMC values of some chemically synthetic surfactants and 

biosurfactants are listed in Table 2 (Desai and Banat, 1997; Nantes et al., 2011). 
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Table 2. CMC values of example chemically synthetic surfactants and biosurfactants 

 

Chemically 
synthetic 

surfactants 

CMC 
(μM) Ref. Biosurfactans CMC 

(μM) Ref. 

Triton X-100 240 

Nantes 
et al., 
2011 

Rhamnolipids 5 

Desai and 
Banat, 1997 

Brij 35 60 Trehalolipids 12 

Tween 80 12 Peptide-lipid 16 

Arachidonic acid 60 Surfactin 91.5 

DTAO 32 Carbohydrate-
protein-lipid 10 

Mean 80.8  Mean 26.9  

S.D. 91.3  S.D. 36.3  

 

(3) Factors Affecting the Effectiveness of Chemical Dispersants 

As a prior consideration for selecting a dispersant, the effectiveness is influenced by 

many factors including oil composition, sea energy, temperature, salinity of the water, 

oil weathering, type of dispersant, and the applied amount (Fingas, 2010). It is widely 

recognized that oil composition affects the dispersant effectiveness and the time 

window for response. Heavy oils are more resistant to be dispersed since their high 

viscosity keeps themselves from being penetrated, which is a necessary condition to 

produce dispersed oil droplets (Kaku et al., 2006). Heavy oils are also more likely to 

form emulsion (mousse). Wax and asphaltenes have been found to be stabilizing 

agents for water-in-crude oil emulsions. La Rosa crude oil was found to be more 
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likely to form a more stable, higher water content emulsion than other oils such as 

Murban crude oil because of wax  and asphaltenes (Bridie et al., 1980).  However, if 

the oil is too light, the formed oil droplets have to be very small to overcome 

buoyancy. This means that the dispersion of oil by a dispersant is dependent on the 

type of dispersant/oil pair (Kaku et al., 2006). 

Dispersion of oil droplets can be increased by turbulence due to the mixing energy 

from waves, especially breaking waves (Delvigne, 1993). In a calm sea stage, the 

dispersant cannot penetrate the oil and gathers in small pools within the slick. During 

the comparison study of two common dispersion effectiveness tests in the laboratory, 

the Swirling Flask test (SFT) and the Baffled Flask test (BFT), BFT was found to 

have smaller oil droplets than SFT. It was noted that BFT have more uniformly 

distributed mixing and energy dissipation rates as measured by a hot wire anemometer. 

Thus, BFT is more preferable for a dispersant test in the laboratory due to its superior 

turbulence in the flask (Kaku et al., 2006). 

The salinity can also impact the dispersant effectiveness, which have been shown in 

some studies. An overall increase in dispersion with increasing salinity was observed 

in the Labofina-rotating flask test to determine the effect of salinity on dispersant 

effectiveness under low temperatures and high-energy conditions (Byford et al., 1983). 

By using the swirling flask test, three types of crude oil were shown to be increasingly 

dispersed with an increase in salinity from 0 to 45 psu (Clayton et al., 1993; Fingas, 

1991). From experimental studies, it was demonstrated that higher salinity may 

prevent the migration of surfactants into the water phase due to the salting-out effect 

of surfactants from the saline medium, which can decrease the solubility of 

13 
 



 

dispersants in water and generate more available surfactants to interact and mix with 

the oil (Mackay et al., 1984). 

There are regional concerns that dispersants may not be effective on oil spills in cold 

water. It is widely recognized that low temperatures can decrease the dispersion 

effectiveness because the viscosity of the spilled oil and dispersant is increased 

inhibiting the dispersion, which has been proven in several studies (Belore et al., 

2009). Cold dispersant ineffective in cold oil-water system was used in warm oil-

water systems and the results were better than that of warm dispersant (Cox and 

Schultz, 1981). The interfacial tensions in dispersant-oil-sea water systems were 

higher than that in cold-water, which indicated that dispersants might be less effective 

in cold conditions by Mackay. However, he also noted that the influence of 

temperature on dispersion effectiveness might be very complex due to dispersant-oil 

mixing and interfacial tension modification processes as well as oil viscosity issues 

(Mackay and Hossain, 1982). Furthermore, higher oil viscosities in cold waters may 

prevent the re-coalescence of dispersed oil droplets and increase the density, which 

may facilitate dispersion (Byford et al., 1983). 

The weathering of crude oil is a complicated process affected by other factors such as 

oil composition, natural dispersion, emulsification, photo-oxidation and evaporation. 

Many experiments have tried to simulate the real process of oil weathering and to 

acquire valuable information on the time- window of the usage of dispersants from 

small-scale to pilot-scale levels. However, it is difficult to consider all the factors in 

one experiment simultaneously. The weathering processes was simulated in small-

scale study by evaporation and water-in-oil (W/O) emulsification after three days. By 

using Institut Français du Petrole (IFP), Mackay-Nadeau-Steel-man (MNS) and 
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Warren Spring Laboratory (WSL) tests, it was concluded that emulsion breaking 

played an important role in chemical dispersion (Lewis et al., 1995). Two dispersants, 

Corexit 9500 and Dasic Slickgone NS, were tested in field studies on the weathered 

crude oils and heavy fuel oils to investigate to what extent the dispersants can break 

and disperse the high viscosity emulsions formed by oil that has weathered on the sea 

surface for several days and to what extent heavy fuel oils can be chemically 

dispersed (Lewis et al., 1998). It was concluded that that the window of opportunity 

for dispersant use is wider than previously considered, but emulsions with lower water 

contents are more resistant to the effect of dispersants by surface sampling, sub-

surface oil concentration monitoring and airborne remote sensing (Lewis et al., 1998). 

2.1.3 Toxicity of chemical dispersants and/or dispersed oil 
 

The negative effects of chemical dispersants on marine life and the environment 

raised increasing concern among scientists and environmentalists, especially after the 

Deepwater Horizon oil spill. The toxicity of chemical dispersants and chemically 

dispersed oil on different marine species in various ecosystems has been studied based 

on  impact of both acute and chronic toxicity (Gulec and Holdway, 1997; Fucik et al., 

1994; Burridge and Shir, 1995; Baca et al., 1996; Kirby et al., 2007). 

The toxicity of oil and the dispersant Corexit 9527 was studied using the amphipod, 

Allorchestes compressa. The acute 96-hour LC50 for A. compressa exposed to 

Corexit 9527, dispersed crude oil and the water-accommodated fraction of Bass Strait 

crude oil was 3 mg/L, 16.2 mg/L and 311,000 mg/L respectively. The EC50 for 

sublethal effects after exposure for 30 minutes was 50.2 mg/L, 65.4 mg/L and 190,000 

mg/L (Gulec and Holdway, 1997). The toxicity of Corexit 9527 and dispersed oil to 
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some species from the Gulf of Mexico, including shrimp (both Penaeus aztecus and 

Penaeus setiferus), the blue crab (Callinectes sapidus), eastern oyster (Crassostrea 

virginica), inland silverside larvae (Menidia beryllina) , silverside embryos (Menidia 

beryllina), Atlantic menhaden (Brevoortia tyrannus), the Spot (Leiostomus xanthurus), 

and red drum (Sciaenops ocellatus). The results indicated that dispersant plus oil had 

a higher LC50 than dispersant or oil alone for most species, while  such dispersed oil 

also displayed a lower LC50 for the blue crab (Callinectes sapidus) and Atlantic 

menhaden (Brevoortia tyrannus) (Fucik et al., 1994). The toxicity of different Corexit 

products including Corexit 7664, Corexit 8667, Corexit 9500, and Corexit 9527 were 

compared based on the 48-hour EC50 for marine algae. It was noted that the most 

significant effect on the germination was the dispersant/oil combinations, of which the 

EC50 was 4,000 mL/L for Corexit 7664, 2,500 mL/L for Corexit 8667, 20 mL/L for 

Corexit 9500, and 200 mL/L for Corexit 9527 (Burridge and Shir, 1995). The chronic 

toxicity of oil and dispersed oil on three tropical ecosystems (i.e., sea grass beds, 

mangrove forests, and coral reefs) was studied individually on the Caribbean coast of 

Panama. The experiment demonstrated that the influence of dispersed oil on the 

abundance, and growth of the dominant flora and fauna in each habitat was obvious 

with two years but disappeared over ten years. By contrast, the single oil had severer 

effects especially on the survival of mangroves and associated fauna even after ten 

years (Baca et al., 1996). It was noteworthy that the toxicity may be enhanced by UV 

illumination. Chemically dispersed Kuwait crude oil showed a toxicity effect at 25% 

and 5% dilutions under the room and UV conditions, respectively. A comparison 

study of the non-observed effect concentrations demonstrated that UV illumination 

reduced the concentration of the toxicity of dispersed Kuwait crude by approximately 

10 fold. Such study demonstrated that the use of chemical dispersants on oil increased 
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the toxicity of the water-accommodated fraction (WAF) and augmented the 

magnitude of the UV-mediated toxicity (Kirby et al., 2007). 

2.1.4 Biodegradation of chemically dispersed oil 
 

It is important to expand the scientific understanding of the fate of dispersed oil along 

with chemical dispersants in combination with the study of long-term environmental 

impacts. Biodegradation is the crucial process that consumes oil and dispersants by 

microbial degradation. Many studies were conducted to investigate if the chemical 

dispersants have potential to enhance bioavailability, and hence, the biodegradation of 

oil. 

Nevertheless, the results indicated that biodegradation is a very complex process to be 

simulated. Inhibition of dispersion was pointed out by some scholars yet some 

observed no effects with the addition of chemical dispersants (Fingas, 2010). The 

effects of the initial oil concentration and the Corexit 9500 dispersant on the 

bioremediation of petroleum hydrocarbons were investigated with a series of ex-situ 

seawater samples. The results showed that the presence of dispersant enhanced crude 

oil biodegradation and bioremediation were not effective when oil concentrations 

were higher than 2,000 mg/L (Zahed et al., 2010). The rate of biodegradation may be 

influenced by temperature. The biodegradation of oil after BFT dispersion by Corexit 

9500 with 3.5% artificial seawater was tested at 20 °C and 5 °C. In the study, oil 

compositional analysis was performed by gas chromatography/mass spectrometry 

(GC/MS) to evaluate the biodegradability. The results indicated that dispersed oil was 

biodegraded more rapidly at 20 °C than the counterpart result at 5 °C, which was in 

line with the hypothesis that the ultimate fate of dispersed oil in the sea is rapid loss 
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by biodegradation (Venosa and Holder, 2007). However, most studies only 

demonstrated the effective biodegradation of chain hydrocarbons, while successful 

biodegradation of PAHs (Polycyclic Aromatic Hydrocarbons) was rarely reported 

based on previous studies. It was found that microbial mineralization favored 

particular components of crude oil in the order of 2-methyl-naphthalene > dodecane > 

phenanthrene > hexadecane > pyrene, but the rate was not affected by the addition of 

nutrients or sediment. When provided as carbon sources, the gross mineralization 

favored Corexit 9500, followed by fresh oil, weathered oil, and dispersed oil. Adding 

the dispersant inhibited the mineralization of hexadecane and phenanthrene but did 

not affect dodecane and 2-methyl-naphthalene mineralization (Lindstrom and 

Braddock, 2002). Furthermore, some studies also noted that observed results may 

have been confounded by the biodegradation of the readily biodegradable dispersants 

(Fingas, 2010). 

2.2 Biosurfactant-based biodispersants 
 

2.2.1 Biosurfactants 
 

Biosurfactants are being considered as possible replacements of chemical surfactants 

as a result of current demand for industries (Banat et al., 2010). Such surface-active 

biomolecules produced by microorganisms, are superior alternatives for chemical 

surfactants due to their unique properties (Geys et al., 2014; Mukherjee et al., 2006). 

Biosurfactants are environmentally friendly since they can also be readily 

biodegraded and less damaging to the environment than the more recalcitrant 

chemical surfactants. Their excellent toleration under extreme conditions such as high 
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temperatures and high salt concentrations makes them attractive components for many 

industrial products (Banat et al., 2010). 

Biosurfactants can be produced by bio-producers such as bacteria, yeast and fungi, 

and the products have a wide range of structures. Some example biosurfactants are 

listed and classified in Table 3. These compounds have similar suface properties 

displayed by chemically synthesized surfactants (Desai and Banat, 1997).  

Biosurfactants also displayed unique biological functions such as antibiotic, 

antifungal, insecticidal, antiviral, immunomodulator, and anti-tumoral activities. They 

had shown a potential of special applications including the biological control of pests 

in medicine and pharmaceutics, cancer treatment (Saini et al., 2008), and wound 

healing (Piljac et al., 2007; Stipcevic et al., 2006). 
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Table 3. Classification of example biosurfactants 

Head group Biosurfactants Molecular formula Microorganism Reference 

 

Glycolipids 

 

Trehalolipids  

 

 

 

 

Rhodococcus 
sp., 
Arthrobacter 
sp., R. 
erythropolis, 

N. erythropolis 

 

(Lang and 
Philp, 
1998) 

 Rhamnolipids  

 

Pseudomonas 
sp., P. 
aeruginosa  

(Reiling et 
al., 1986) 

Sophorolipids  

 

C. batistae, T. 
bombicola, C. 
lypolytica, 

(Van 
Bogaert et 
al., 2007) 

Lipopeptides Surfactin 

 

Bacillus 
subtilis, 
Bacillus 
pumilus A  

(Seydlová 
and 
Svobodov
á, 2008) 

Viscosin  

 

 
 

Pseudomonas 
fluorescens, P. 
libanensis  

(Laycock 
et al., 
1991) 

Polymeric Emulsan  

 

Acinetobacter 
calcoaceticus  

(Rosenber
g and 
Ron, 
1999) 

Siderophore Flavolipids  

 

Flavobacterium (Bodour 
et al., 
2004) 
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2.2.2 Biodispersants 
 

Despite the large amount of studies on chemical dispersants, there is very little 

research focusing on the use of biosurfactants in dispersant tests, given the fact that 

they have the great potential, particularly for enhancing oil biodegradation and 

solubilisation (Mulligan, 2005). The bottleneck exists that operating biosurfactant 

production is an expensive matter. Some experiments regarding biodispersant test 

were conducted in the laboratory using only commercial purified Rhamnolipids. The 

feasibility of Rhamnolipids for dispersing oil slicks was tested at 25 °C and a salinity 

of 35 ppt (Holakoo, 2001). The enhancement of DE by adding solvents such as 

ethanol and octanol was demonstrated in a comparison study. It was found that 

dispersion efficiency decreased at lower temperatures and lower salinity but altering 

the formulation could increase efficiencies (Holakoo, 2001). A low concentration of 

Rhamnolipids (1 g/L) was able to convert an emulsified oil back into an O/W solution 

then disperses the oil to undetectable levels (Nakata and Ishigami, 1999). The 

dispersion ability of a spray-dried sterilized culture broth of Gordonia sp. strain JE-

1058 was tested as a dispersant without any solvent in the BFT. It showed a strong 

potential to be applied as an oil spill dispersant and stimulated the degradation of 

weathered crude oil (ANS 521) by the activity of the indigenous marine bacteria at 

sea or even contaminated sea sand (Saeki et al., 2009). 

2.2.3 Toxicity of biodispersants and/or dispersed oil 
 

Environmental toxicity events due to biosurfactants have been rarely reported, 

particularly when based on the results of standard toxicity tests and chronic effects on 

marine species. More research is needed to investigate whether biodispersants have 
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less environmental effects than that of chemical dispersants by studying the responses 

of various marine species. Acute and chronic toxicities of three hemical dispersants 

and surfactants (TRITON-X100, COREXIT 9500 and PES61) and three 

biosurfactants (BIOEM, PES51 and EMULSAN) were investigated for the estuarine 

epibenthic invertebrate, Mysidopsis bahia and the inland silverside, Menidia beryllina. 

After the standard 4–7 day static and static-renewal tests, the three biosurfactants and 

PES61 generally had higher LC50 values than TRITON-X100 and COREXIT 9500 

based on the survival, growth and fecundity of M. bahia and M. beryllina (Edwards et 

al., 2003). It was found that Rhamnolipids had a lower toxicity than the counterpart 

chemical surfactants for marine flagellates microalgae by IC50 test (Elucidation et al., 

1987). Higher initial EC50 values for the Glycolipids produced by Rhodococcus 

species H13-A indicated that they exhibited lesser aqueous toxicity as compared to 

Tween-80. When evaluating the toxicity per mass of PAH basis, the result showed 

that the Tween-80 system was approximately 50% more toxic than the biosurfactant 

system (Kanga et al., 1997). 
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2.2.4 Biodegradation of dispersed oil 
 

It was previously concluded that the rate of hydrocarbon biodegradation can be 

promoted by biosurfactants in the ways of either increasing solubilisation and 

dispersion of the hydrocarbons or  changing the affinity between microbial cells and 

hydrocarbons by inducing increases in cell surface hydrophobicity (Zhang and Miller, 

1992, 1994). The biodegradability of a Brent crude oil with Corexit 9500 was 

compared to that with a commercial biosurfactant product JBR 425. Such 

biosurfactant product is Rhamnolipid-generated as a metabolic by-product of 

Pseuomonas aeruginosa. The GC/MS total petroleum hydrocarbons (TPHs) and 

microbial counts after the 35-day experiment in 250-mL flasks showed that the 

biodispersant and biological agent mixed was the most bio-available followed by JBR 

425,  oil only, and finally Corexit 9500 only. The results indicated that the use of the 

Rhamnolipid biosurfactants promoted biodegradation whereas Corexit 9500 

suppressed biodegradation (Dagnew, 2004). In a biosurfactant-based remediation 

agent test, the spray-dried sterilized culture broth of Gordonia sp. strain JE-1058 

displayed a strong potential to be applied as an oil spill dispersant and stimulated the 

degradation of weathered crude oil (ANS 521) by the activity of the indigenous 

marine bacteria at sea or even contaminated sea sand (Saeki et al., 2009). 

Although effective PAH biodegradation enhanced by biosurfactants was not reported 

in literature, the PAH solubility can be significantly enhanced using biosurfactant 

aqueous solutions. The enhancement of the solubility of naphthalene and its methyl-

substituted derivatives by Glycolipids produced by Rhodococcus species H13-A and 

Tween-80 (polyoxyethylene sorbitan monooleate) was studied (Kanga et al., 1997). 

The two-ring aromatics showed a substantial increase in their apparent solubilities in 
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the presence of both surfactants, and Glycolipids showed significantly greater 

enhancement than Tween-80. Highly substituted derivatives had greater solubility 

than lesser substituted compounds (Kanga et al., 1997).  

2.3 Production of biodispersants 
 

2.3.1 Biosurfactant producers 
 

Biosurfactant producers were isolated from a variety of environments including sea 

water, soil, marine sediments, oil fields (Yakimov et al., 1998) and some were from 

harsh environment (Cameotra and Makkar, 1998). Some genera such as Pseudomonas 

have multiple species which can generate different kinds of surfactants. For instance, 

P. aeruginosa produces Rhamnolipids, but P. fluorescens produces cyclic 

lipopeptides (CLP), which are similar to surfactin and other CLPs can also be 

produced by Bacillus (Raaijmakers et al., 2006). Major groups of biosurfactants 

discovered by far including the rhamnolipids, surfactin and trehalose lipids are 

presented in this section. 

 (1) Rhamnolipids: 

Rhamnolipids are glycosides which consist of a glycon part and an aglycon part 

linked to each other via an O-glycosidic structure. Based on the glycon part, 

rhamnolipids can be divided into one or two rhamnose moieties (Edwards and 

Hayashi, 1965). Despite in some rare homologs, rhamnolipids can be acylated with a 

long chain alkenoic acid, the 2-hydroxyl structure of the distal rhamnose group 

remains generally free (Yamaguchi et al., 1976). Rhamnolipids are mainly generated 

by Pseudomonas species, among which the primary producing species is P. 
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aeruginosa. Nevertheless, many other Pseudomonas species have been reported to be 

the producers of rhamnolipids (Gunther IV et al., 2006; Gunther et al., 2005; Onbasli 

and Aslim, 2009). Some rhamnolipids producers such as Acinetobacter calcoaceticus 

are not in the family of Pseudomonadacae (Rooney et al., 2009). Other producers 

such as Pseudoxanthomonas sp are not even in the same order as P. aeruginosa 

(Vasileva-Tonkova et al., 2006). 

(2) Surfactin: 

Products in the family of surfactin mainly consist of about 20 different lipopeptides 

(Jacques, 2011) except for esperin. These lipopeptides share some common structural 

properties (Thomas and Ito, 1969). The first surfactin was found as an exocellular 

compound with an exceptional biosurfactant activity isolated from the supernatant of 

a Bacillus subtilis culture in 1968 (Kakinuma et al., 1968). A surfactin-like compound 

was isolated from Bacillus pumilus cultural supernatants and was called pumilacidin 

(Morikawa et al., 1992). Ever since iturins was discovered, the great potential of 

lipopeptide biosynthesis in this genus was recognized and more lipopeptides produced 

by different strains of Bacillus spp. have been found (Jacques, 2011). Nowadays, the 

great potential benefits of surfactin have been realized, especially in healthcare areas 

such as being the inhibitor of fibrin clot formation, antibacterial agents, anti-tumour 

agents and hypocholesterolemic agents. 

(3) Trehalolipid: 

Trehalolipid is a non-reducing disaccharide in which the two glucose units are linked 

in an a,a-1,1-glycosidic structure, which is the basic component of the cell wall 

Glycolipids in Mycobacteria and Corynebacteria (Franzetti et al., 2010). Different 
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types of trehalose containing Glycolipids are known to be produced by several 

microorganisms belonging to the mycolates group, such as Mycobacterium, 

Rhodococcus, Arthrobacter, Nocardia and Gordonia, among which different 

structures have been elucidated particularly in Rhodococcus genus. For instance, the 

characterisation of the organic extract of Rhodococcus erythropolis DSM43215 

revealed the production of trehalose-6-monocorynomycolates, trehalose- 6,60-

diacylates (e.g. 3-oxo-2-alkyl alkanoic acid), and trehalose-6-acylates (e.g. 3-oxo-2-

alkyl alkanoic acid) (Kretschmer et al., 1982). Within Rhodococcus, trehalose lipids 

were subsequently isolated from R. erythropolis by Ristau and Wagner (Ristau and 

Wagner, 1983). The Glycolipid synthesised by Rhodococcus strain H13-A is a non-

ionic trehalose lipid, consisting of one major and ten minor components (Singer and 

Finnerty, 1990). Flocculating properties were found caused by Glycolipids of R. 

erythropolis S-1, and the carbohydrate is acylated with C10–C22 saturated and 

unsaturated fatty acids, C35–C40 mycolic acids, hexanedioic, dodecanedioic acids, 

10-methyl hexadecanoic, and 10-methyl octadecanoic acids (Kurane et al., 1995).  
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2.3.2 Factors affecting biosurfactant production 
 

Although the biosurfactant products have displayed valuable potential, given the fact 

that such biotechnology fermentation is a complex, expensive and low-yield process, 

different factors that may enhance the production are still being increasingly studied. 

To conquer the bottleneck associated with biosurfactant production, two basic 

strategies were developed to make the process more cost-effective: the use of 

inexpensive waste substrates in the formulation of fermentation media to reduce the 

initial raw material costs involved in the process, and the development of successfully 

optimized bioprocess, including the optimization of the culture conditions, cost-

effective purification and recovery methods (Saharan et al., 2011). To enhance the 

biosurfactant production, the important factors affecting the process were summarized 

in below. 

(1) The carbon source 

Biosurfactant producers can utilize a variety of soluble and insoluble organic 

compounds as the source of carbon and energy for their growth. Among the soluble 

organic carbon sources, glucose was the mostly used substrate followed by saccharose 

and fructose. Efficient insoluble organic carbon sources include glucose, glycerol and 

hexadecane (Akpa et al., 2001). In rhamnolipids production by Pseudomonas 

aeruginosa, water soluble carbon sources including glycerol, glucose mannitol and 

ethanol were widely used (Robert et al., 1989). The 6% glucose was used as the sole 

carbon source and 1400-1500 mg/L Rhamnolipids were produced. It was noted that 

the inhibition effect of the carbon source was observed when glycerol was used as a 

carbon source as the Rhamnolipids level decreased sharply when glycerol 
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concentration was over 2%, and Rhamnolipids production approximated to 0 when 

glycerol concentration was about 6-7% (Monteiro et al., 2007). The 3.9 g/L 

Rhamnolipids product was obtained during the cultivation of  P. aeruginosa 

DAPUPE614 on glycerol and ammonium nitrate within 216 hours (Gunther et al., 

2005). 

Compared with soluble organic carbon sources, insoluble organic hydrocarbons were 

deemed as more favorable biosurfactant inducers. Different types of vegetable oil 

have been reported to produce Rhamnolipids (Desai and Banat, 1997). The 

Rhamnolipids production with a range of 3.0 g/L was achieved using 10% olive oil. 

When using at 6% sunflower and grape seed oil, 2 g/L Rhamnolipids were produced.  

Different types of fuel were also proven to be excellent carbon sources. The 1.3 and 

2.1 g/L Rhamnolipids were produced using 6% and 5% diesel and kerosene oil as 

carbon sources, respectively (Desai and Banat, 1997). Alkanes is another type of 

popular carbon sources in previous studies (Vasileva-Tonkova et al., 2006). Many 

types of hydrocarbons including n-Hexane, n-Heptane, n-Hexadecane, Kerosene, 

Benzene, Toluene, Xylene, n-Paraffins, and Mineral oils were investigated to produce 

biosurfactants with excellent surface activity and emulsifying activity (Vasileva-

Tonkova et al., 2006). 

(2) Nitrogen source 

During the fermentation process, nitrogen sources are required for most 

microorganisms to synthesize proteins, nucleic acids and other cellular components. 

Nevertheless, it is crucial to acquire the appropriate dose of nitrogen source as 

inhibition effect was observed when the nitrogen was overdosed in many 
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biosurfactant studies. The production of ustilipids and ustilagic acid using U. maydis 

was more effective under conditions of nitrogen starvation and could reach a rate of 

up to 23 g/L (Hewald et al., 2005). The occurrence of inhibition may also be due to 

the types of nitrogen sources. The production of Rhamnolipids was inhibited by the 

presence of NH4+, glutamine, asparagine, and arginine as nitrogen sources, but was 

promoted by NO3, glutamate, and aspartate (Köhler et al., 2000; Ramana and Karanth, 

1989; Van Alst et al., 2007). Several reports have displayed that NO3 may be the best 

nitrogen source for Rhamnolipids production (Arino et al., 1996; Manresa et al., 

1991). High levels of NH4+ or glutamine reduced the production of Rhamnolipids 

which was correlated with a lower glutamine synthase activity (Mulligan and Gibbs, 

1989). The mechanisms for the preference of different nitrogen sources by 

microorganisms and the inhibition biosurfactant production processes still remained 

unknown. 

(3) Salinity and pH  

Salinity and pH are two important interactive environmental factors, and  their effects 

on biosurfactant production were usually studied together. They were found not only 

to affect the structure but also the property and production rate of biosurfactants. 

Although there are many exceptions, the optimum pH for the growth of most 

producers ranges from 5 to 8 (Munro, 1970). The morphology of biosurfactants has 

been proven to be significantly affected by changes in pH, which in turn could affect 

the properties of biosurfactants such as the degree of solubility enhancement. It was 

demonstrated that the effect of a Rhamnolipids biosurfactant on the surface tension 

and dispersion of phenanthrene was a function of pH (Shin et al., 2004). Similar 
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results were found in a study in association with naphthalene (Vipulanandan and Ren, 

2000). Studies also demonstrated that the morphology of Rhamnolipids biosurfactants 

was a function of pH (Champion et al., 1995; Ishigami et al., 1987). With the 

increasing pH the morphology of Rhamnolipids biosurfactants changed from lamellar 

to vesicular, ultimately micellar (Shin et al., 2008). Metabolism is pH sensitive 

because pH is the important factor that affects the chemical reactions of the living 

cells. It was observed that there was a maximum production of biosurfactants at pH 

range from 6 to 6.8 and the production rate was decreased sharply when pH increased 

above 7 (Guerra-Santos et al., 1986).  

Similar as pH, the ionic strength or salinity of the medium could also influence the 

property of biosurfactants. It has been found that the presence of electrolytes could 

render a decrease in the CMC and therefore increase the solubility of hydrocarbons by  

Rhamnolipids (Wang et al., 2007). The micelle formation could be affected by the 

formation of complex compounds between ions and biosurfactants (Ochoa-Loza et al., 

2001). Consequently, it is important to adjust the pH and the salinity to improve the 

performances of biosurfactant systems. 

2.3.3 Kinetics of biosurfactant production 
 

Kinetic data are needed to develop basic understanding of fermentation processes by 

microorganism and to obtain a rational design of continuous and efficient 

fermentation processes (Luedeking and Piret, 1959). Studies on the biosurfactant 

production kinetics and the conditional requirements of rhodococci acquired worthy 

information on microbial metabolism that allowed the conditional parameters to be 

adjusted to meet the production target of biotechnology (Pacheco et al., 2010). The 
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kinetics of surfactin production by Bacillus subtilis LAMI005 revealed that the best 

medium contained clarified cashew apple juice and distilled water and 1.0 g/L of 

(NH4), which decreased the surface tension of water to 30 dyne/cm with a critical 

micelle concentration (CMC) of 63.0 mg/L and a kerosene emulsification index 24 

(EI24) of 67% (Freitas de Oliveira et al., 2013). Rhamnolipids production by 

Pseudomonas aeruginosa O-2-2 was drastically enhanced from 28.8 g/L to 70.56 g/L 

in a pH stage-controlled fed-batch fermentation at 500 rpm and 30 °C based on a 

kinetics model through studying the cell growth, product synthesis, and substrate 

consumption (Zhu et al., 2012).
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2.3.4 Characterization of Biosurfactants  

Given the fact the biosurfactant products from the fermentation process are generally 

complex bio-polymeric compounds. A combination of analytical methods were 

essential to isolate, purify, and characterize various structures of biosurfactants (Banat, 

1993). The analytical methods are generally classified into two groups to identify both 

the biosurfactant surface activity and structure properties. 

(1) Characterization of biosurfactant surface active properties 

Surface tension: As a physical property of any liquid, the surface tension of a cell free 

culture can be reduced due to the existence of surfactants by adsorbing at the liquid-

gas interface. The surface tension can be determined with a surface tensiometer (e.g., 

DuNouy Tensiometer, Interfacial, CSC Scientific).  

The reciprocal of critical micelle concentration (CMC-1): The CMC-1 is defined as the 

dilution factor of the cell free culture upon reaching the critical micelle concentration 

(CMC) (Sheppard and Mulligan, 1987). The CMC is the point at which the surface 

tension abruptly increases and can be determined by measuring the surface tension of 

a cell free culture at various dilutions. It is considered as an indirect measurement of 

surfactant concentration (Mulligan et al., 2001).  

(2) Characterization of biosurfactant structure properties 

Protein content: The protein content can be quantified by a colorimetric method using 

the protein reagent including Coomassie Brilliant Blue G, ethanol , and phosphoric 

acid. Color intensity could be measured at 595 nm by a spectrophotometer based on 
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the developed calibration curve with different concentrations of a mix of Bovine 

serum albumin stock solutions and protein reagents. Protein content in a biosurfactant 

can be quantified using this assay (Bradford, 1976). 

Total lipids: The total lipid can be quantified by a colorimetric method by applying a 

semi-micro method (Pande et al., 1963). A solution with 2.0% potassium dichromate 

(w/v) in 98% (w/v) sulfuric acid (Lipid reagent) was prepared and 2 g potassium 

dichromate was dissolved in 100 ml 98% sulfuric acid at room temperature. Color 

intensity was measured as absorbance at 595 nm by a spectrophotometer against a 

calibration curve with different concentrations of the mix of Palmitic acid stock 

solutions and petroleum ether. The test tube was heated in a boiling water bath for 15 

minutes. The test tube was then cooled in running water and added with 4.5 ml water.  

Absorbance at 595 was measured with the solution generated in column 1 (reagent 

blank) as blank. The 0.1  g biosurfactants was weighted and dissolved in 1 ml water. 

Then 0.1 ml the above solution was transferred into the test tube and mixed with 3 ml 

2% potassium dichromate in 98% sulfuric acid. The test tube was heated in a boiling 

water bath for 15 minutes and cooled in running water. Then 4.5 ml water was added 

followed by mixing and re-cooling. The absorbance at 590 nm was measured with the 

solution generated in column 1 (reagent blank) as blank (Pande et al., 1963). 

Total carbohydrate: The total carbohydrate can be quantified by a colorimetric method 

using the phenol solution in the presence of concentrated sulfuric acid (Dubois et al., 

1956). The 80% phenol solution was firstly prepared by adding 2 g of water to 8 g of 

phenol. Standard curve was generated by mixing different amounts of glucose, stock 

solutions, water, phenol, and concentrated sulfuric acid. After mixing, all the tubes 
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were settled for 10 minutes, and shaked for 15 minutes at 30oC. Tthe absorbance at 

490 was measured with the solution generated in column 1 (reagent blank) as blank. 

The sample could be analyzed by the following steps: the 0.01 g biosurfactants was 

dissolved into 100 ml water. 2 ml the above solution was taken into a test tube, and 

mixed with 50 µl 80% phenol. 5 ml concentrated sulfuric acid was added and settled 

for 10 minutes. Then the tube was shaked for 15 minutes at 30oC. The absorbance was 

measured at 490nm with the solution generated in column 1 (reagent blank) as blank 

(Dubois et al., 1956).  

Thin layer chromatography (TLC) analysis: TLC is one of the most commonly used 

technique to characterize biosurfactants. The principle lies in that the solutes compete 

with the solvent for the surface sites of the adsorbent. Different compounds were 

distributed on the surface of the adsorbents and the distribution coefficient was used 

to quantify the process. Carrying over or cross contamination of samples and sorbent 

regeneration procedures could be avoided by the separation of each sample on fresh 

layers. A solvent system can be selected based on different types of biosurfactants. 

Generally single solvent systems could meet the requirement for mobilization of 

different functional groups which could be sequentially identified with different 

developing reagents (Makkar and Cameotra, 1997). 

High pressure liquid chromatography and mass spectroscopy (HPLC-MS) analysis: 

HPLC-MS could be used generally for the separation of biosurfactants and the 

analysis of the molecular mass of each fraction. Biosurfactants were treated with 

trifluoroacetic acid and further centrifuged for the removal of solid particles. The 

sample solution was carried by the mobile phase and migrated over the solid 

stationary phase. Components were migrated at different speeds due to noncovalent 
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interactions of the compounds with the column and were then separated. The detector 

emited a response due to the elution of the sample and subsequently signaled a peak 

on the chromatogram (Aguilar, 2004). The separated products were detected and the 

fractions collected for individual peaks were used to analyze the structure of each 

moiety (Siegmund and Wagner, 1991). 

Gas chromatography mass spectroscopy (GC-MS) analysis: GC-MS is the most 

sensitive method for the identification and quantification of Glycolipids biosurfactants. 

The compounds require a complex pre-treatment before GC-MS analysis. Firstly, they 

needs a hydrolytic cleavage between the carbohydrate or peptide/protein part of the 

biosurfactants and the lipid portions. Secondly, the fatty acid chains are derived to 

fatty acid methyl esters or to trimethylsilyl derivatives (Yakimov et al., 1995). The 

esterification step by diazomethane is important for the detection of compounds using 

GC-MS (Peng et al., 2007). FA methyl esters can be recovered with Hexane, and then 

concentrated under nitrogen blowing for GC-MS analysis. 

Infrared (IR) spectroscopy analysis: IR is being increasingly used to analyze the 

functional groups and structural elucidation of biosurfactants. Surfactin, Lichenysin 

and Rhamnolipids have been characterized by the IR technique (Das et al., 2008). 

Alkyl, carbonyl, ester compounds of biosurfactants could be detected clearly when 

100 scans were used in 0.23 mm KBr liquid cell (Tuleva et al., 2002). Translucent 

pellets was obtained from 10 mg freeze-dried crude biosurfactants by adding 

potassium bromide (100 mg) and pressure with 7500 kg for 30 seconds in association 

with IR spectrum (Thavasi et al., 2007). The principle lies in the measurement of the 

absorption of different IR frequencies of a sample positioned in the path of an IR 

beam. 
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Nuclear magnetic resonance (NMR) analysis: The exact location of functional groups, 

the position of linkages within the carbohydrate, and lipid molecules and structural 

isomers can be obtained by NMR analysis. The biosurfactants should be hydrolysed 

(HCl), and then FA extraction is carried out with solvents such as acetic acid, acetone, 

benzene, chloroform, dimethyl sulfoxide, methanol pyridine, and water. The principle 

of NMR is based on transitions in atoms with a magnetic moment when an external 

magnetic field is applied by energy dependent on the magnetic-field strength and 

magnetogyric ratio. The response is the absorbance of radio frequency radiation by a 

nucleus in a strong magnetic field. The nuclear spin could realign or flip in the higher-

energy direction under the radiation absorption (Satpute et al., 2010). 

2.3.5 Generation of biodispersants 
 

Despite the large amount of research on chemical dispersants, the generation of 

biosurfactants based biodispersants and their applications have rarely been reported. 

Biodispersants have the potential to be used as the oil spill response alternatives since 

they are less toxic and more persistent than chemically synthetic ones, particularly for 

enhancing oil biodegradation and solubilization. The extremely limited commercial 

biodispersant products have increased the difficulty of the applications. 

Some experiments were conducted to investigate the dispersion ability of 

biosurfactants (Saeki et al., 2009; Chakrabarty, 1985; Shafeeq et al., 1989; Chhatre et 

al., 1996; Holakoo, 2001; Lang et al., 1987; Song et al., 2013). Solvents were added 

into biosurfactants in some studies. JE1058BS displayed a strong potential to be 

applied as an oil spill dispersant even in the absence of a solvent for the 

bioremediation of oil spills at sea or on shorelines (Saeki et al., 2009). Oil dispersion 
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and biodegradation were highly enhanced by the addition of an emulsifier produced 

by Pseudomonas aeruginosa SB30 (Chakrabarty, 1985). 70% of the Gulf and 

Bombay High Crude oil was successfully degraded by the biosurfactants produced by 

P. aeruginosa S8 during the biodegradation of a hydrocarbon mixture (Shafeeq et al., 

1989). Rhamnolipids biosurfactants produced by four bacterial isolates enhanced 

biodegradation through the emulsification of the crude oil (Chhatre et al., 1996). The 

feasibility of biosurfactants for dispersing oil slicks at 25°C and a salinity of 35 ppt 

was verified by using a solution of 2% Rhamnolipids diluted in saline water at a 

dispersant to oil ratio (DOR) of 1:2, and immediately dispersed 65% of a crude oil. 

Meanwhile, the effectiveness was promoted to 82% by the addition of 60% ethanol 

and 32% octanol with 8% Rhamnolipids applied at a DOR of 1:8 improved dispersion 

(Holakoo, 2001). Comparison of the dispersion behaviour to the control revealed that 

the Rhamnolipids when mixting with solvents had excellent potential as non-toxic oil 

dispersing agents (Lang et al., 1987).  A type of mousse oil was successfully de-

emulsified by a low concentrations of Rhamnolipids (1 g/L) and bio-remediated to 

undetectable levels (Nakata and Ishigami, 1999). One of the recent studies tried to 

develop more efficient and less toxic biodispersants by using Rhamnolipids and 

sophorolipid biosurfactants, and a low toxic solvent (Ethylene glycol butyl ether). Via 

a series of optimization experiments for dispersant generation, the two dispersants 

were obtained and showed a high dispersion effectiveness for treating heavy crude oil 

at the dispersant-to-oil ratio below 1:25 and the temperature above 5˚C in a wide 

range of salinity and pH values with low effects on two kinds of fish (Danio rerio and 

Microgobius gulosus) (Song et al., 2013).  
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2.4 Applications of dispersants in offshore oil spills 
 

2.4.1 Worldwide 
 

Given the increasing concern about various negative effects of chemical dispersants 

on marine environments, the permission of dispersant applications around the world 

has been declining steadily. By far the dispersants are permitted in Canada, United 

States, Great Britain, France, Norway, Italy, Spain, South Africa, Nigeria, Singapore, 

Malaysia, Indonesia, Japan, countries in Arabian Gulf, India, and Australia (Chapman 

et al., 2007; Fingas, 2010). In Canada and the United States, any commercial 

dispersant has to pass the standard procedures for testing toxicity and effectiveness 

before they get the permission. Current approved commercial chemical dispersants in 

Canada and United States are listed in Table 4. 

The largest dispersant usage in recorded oil spill history is the application of Coerxit 

9500 and 9527 in the Deepwater Horizon oil spill in 2010, the largest marine oil spill 

in Gulf of Mexico. Around 1.8 million gallons of dispersants was used in the Gulf, 

among which approximately 42% of this dispersant was applied at the point where oil 

was escaping the wellhead (Ramseur, 2010). 
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Table 4. List of approved chemical dispersants in Canada and United States (Fingas, 
2010). 

Product Manufacturer Canada United States 

 

Corexit 9500 

 

Exxon, Houston 

 

✓ 

 

✓ 

Corexit 9527 Exxon, Houston ✓ ✓ 

Enersperse xx BP, Britain (old 
stocks) 

✓  

Biodispers USA, Newport, NH  ✓ 

Dispersit SPC1000 Polychem, Chestnut 
Ridge, NY 

 ✓ 

Finasol OSR 62 Total Fluides, 
France 

 ✓ 

JD (109, 2000) Globemark, 
Houston, TX 

 ✓ 

Mare Clean (20, 

200, 505) 

Taiho, Japan  ✓ 

NEOS AB-300 Neos, Japan  ✓ 

Nokomis (3-AA, 

3-F4) 

Mar-Len, Hayward, 
CA 

 ✓ 

Saf-Ron Gold Sus. Env. Tech., 
Mesa, AZ  

 ✓ 

Sea Brat #4 Alabaster, Pasadena, 
TX 

 ✓ 

ZI-400 Studio City, CA  ✓ 
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2.4.2 Northern regions 
 

In northern regions such as North Atlantic, oil spill response is facing special 

challenges due to the prevailing harsh environments (e.g., low temperature, strong 

winds, rough seas, low visibility, and sea-ice (Chen et al., 2011). Containment and 

recovery response techniques have severe limitations in its applicability, particularly 

during winter months. Yet the use of dispersants shows a strong potential as an 

alternative response technique in northern regions where the weather may not limit 

the effectiveness and the sea-state may enhance the oil dispersion (Chen et al., 2011). 

Therefore, novel, environmental friendly and cost-effective dispersants and 

technologies are much desired to adequately address the associated safety and 

environmental concerns. 

According to the record, some dispersant usage cases occurred in northern regions. In 

Canada, there was no limitation in dispersant usage in the late 1970s and early 1980s, 

but nearly all stockpiles and equipment have now been sold (Fingas, 2010). It was 

recorded that dispersants were last used in Canada in about 1984 (Etkin, 1998) and 

that 12 ton Corexit was used to disperse 5000 ton Bunker C in 1970 while the 

dispersion was ineffective (Fingas, 1989). In 1979 in Denmark, 400 ton heavy fuel oil 

was reported to be dispersed to some extent by using an unknown dispersant. In 1979 

in Ireland, Saudi Arabian crude was successfully dispersed by BP 1100 WD (Fingas, 

2010). 
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2.5 Summary 
 

This chapter started with a literature review on chemical surfactants. Some basic 

physiochemical properties including surface-active reduction, emulsification, and 

CMC were introduced. The wide applications of chemical surfactants to food industry, 

as well as oil recovery and environmental remediation were stated. They can be 

classified based on their structure properties. Subsequently, the review extended to the 

chemical dispersants and their working principle. Their potential was concluded based 

on the statement of various advantages compared with other oil spill response 

techniques. Different factors affecting dispersant effectiveness were also 

demonstrated. Facing the controversial usage of chemical dispersants, section 2.2.3 

concluded their disadvantages and a research and development (R&D) direction of 

dispersants based on a review of their toxicity and biodegradation efficiency.  

Section 2.2.4 began with a background on biosurfactants including their 

physiochemical properties, classification, and demonstrated their special advantages 

compared with chemical dispersants. The feasibility of biosurfactants for oil spill 

response was supported by a review of current experimental studies using 

biosurfactants such as Rhamnolipids. The last part concluded that biosurfactants had 

less negative effects on environments than that of chemical surfactants by studying 

the responses of various marine species. In the section 2.3, the production of 

biosurfactant based biodispersants was stated. The section started with the 

introduction of some biosurfactant producers including Rhamnolipids, surfactin and 

trehalose lipids. The significant production factors including the carbon source, the 

nitrogen source, pH and salinity were then discussed to investigate the necessity of 

production optimization. A review of kinetics studies were followed to develop a 
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basic understanding of fermentation processes followed by the introduction of 

common characterization methods including colorimetric chemical analysis, as well 

as the TLC, HPLC-MS,GCMS, IR, and NMR analysis. The section ended with the 

potential and the knowledge gap in the development of biodispersants. Finally, the 

chapter reviewed the current applications of dispersants around the world especially in 

the northern regions, and discussed the challenge and need of novel biodispersants. 
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CHAPTER 3  

BIOSURFACTANT PRODUCTION BY RHODOCOCCUS 
ERYTHROPOLIS SP. SB-1A ISOLATED FROM THE 

NORTH ATLANTIC OCEAN 
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3.1 Background 
 

Biosurfactants, surface-active biomolecules produced by microorganisms, are a 

superior alternative over chemical surfactants due to their unique properties such as 

lower eco-toxicity, higher biodegradability, and greater stability (Geys et al., 2014; 

Mukherjee et al., 2006). In the past few decades, biosurfactants have shown great 

potential in environmental bioremediation, specifically, in the desorption, 

solubilisation, and biodegradation of hydrophobic organic contaminants in the 

environments (Ivshina et al., 1998; Kanga et al.,1997; Kuyukina et al., 2005). 

Many members of the genus Rhodococcus are known to be effective biosurfactant 

producers. Rhodococcus species can naturally persist and grow in various temperate 

or extreme environments especially in hydrocarbon-contaminated soils and waters 

(Kuyukina and Ivshina, 2010). Biosurfactants are considered as a by-product 

promoting the biodegradation of hydrocarbons by enhancing the adherence of genus 

Rhodococcus to hydrophobic phases (Neu, 1996), by providing easy access to enter  

microbial cells, by reducing the interfacial tension between the phases (Fiechter, 

1992), and by increasing the microbial attack based on hydrocarbon 

dispersion(Finnerty, 1994). 

Different trehalose containing Glycolipids are known to be produced throughout 

Rhodococcus genus including R. erythropolis, “R. longus,” R. opacus, and R. ruber 

(Franzetti et al., 2010). Among Rhodococci R. erythropolis was reported to have 

unique bioconversion and biodegradation abilities due to its diversified  enzyme 

system (De Carvalho and Da Fonseca, 2005). R. erythropolis can also generate 

Mycolate-containing Glycolipids in term of bioflocculants working on a variety of 
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suspended solids (Kurane et al., 1994; Kurane et al.,1995; Kurane and Tomizuka, 

1992). 

It has been intensively investigated that important culturing conditions affecting the 

biosurfactant production rate include the carbon source, the nitrogen source, pH, and 

salinity (Bicca et al., 1999). However, few studies have performed a systematic 

analysis of all these parameters in biosufactant production by Rhodococcus. Thus, it is 

desired to acquire worthy information on the conditional requirements of rhodococci 

to meet the target of biotechnology (Pacheco et al., 2010). In addition, only limited 

studies have been performed so far on the kinetic study of biosurfactant production by 

Rhodococcus. This chapter tried to fill the research gap through producing 

biosurfactant by Rhodococcus and investigate the appropriate culturing conditions and 

relevant kinetic of the process. The effects of the carbon source, the nitrogen source, 

pH, and salinity on the biosurfactant production by a Rhodococcus erythropolis strain 

isolated from the North Atlantic Ocean were explored. A kinetic model was then used 

to analyze the data. The biosurfactants were finally produced under the selected 

culturing conditions. The research outputs could help to increase the production rate 

and thus reduce the cost for biosurfactant production. 

3.2 Methodology 
 

 3.2.1 Biosurfactant producer and culture nutrients 
 

R. erythropolis  sp. SB-1A isolated from a water sample collected from the North 

Atlantic Ocean was selected during the study (Cai et al., 2014). The bacterium was 

maintained in NBS mineral salt medium plates. The composition per litre of the NBS 
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plate contained: Nutrient Broth Broth, 25 g; Agar, 15 g; and NaCl, 22 g (Zhou et al., 

2005). 

The bacterium was cultivated in a revised Atlas oil agar medium (Atlas, 2004). The 

mineral composition consisted of per litre: MgSO4.7H2O: 0.2 g; FeCl3: 0.05 g ; and 

CaCl2.2H2O: 0.05 g. Glucose was added in a concentration of 1g/L as an organic 

carbon source to stimulate the cell growth in the early phase. All chemicals were 

analytical grade reagents unless specified. 

3.2.2 Investigation of factors affecting biosurfactant production 
 

In order to evaluate effects of the organic carbon source, salinity, pH, and the nitrogen 

source on the biosurfactant production, one-factor-at-a-time (OFAT) experiments 

were performed as shown in Table 5. The range of each factor was determined in 

preliminary experiments using revised Atlas oil agar medium. The 15 ml sterile 

cultures were inoculated with 1.5% volume aliquot of a preculture grown for 48 hours, 

and incubated at 30°C, 200 rpm in a rotary shaker for 96 hours in 125 ml flasks. 
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Table 5. Experimental design of four factors studied in biosurfactant production. 

 

No. Factors Levels 

1 n-Hexadecane (v/v%) 
(carbon source) 

0.5 2.0 3.5 5.0 

2 Salinity (g/L) 13 26 39 52 

3 NH4NO3 (g/L) 
(nitrogen source) 

0.4 0.7 1.0 1.3 

4 pH (KH2PO4/ K2HPO4) 6 7 8 9 

 

3.2.3 Isolation of biosurfactants 
 

The cell free broth supernatant was extracted using isometric methyl tertiary-butyl 

ether (MTBE) at 25 °C on a rotary shaker at 250 rpm for 24 hours (Kuyukina et al., 

2001). The upper organic phase was separated from the aqueous phase. Solvent was 

then removed by rotary evaporation at 45 °C under reduced pressure. The crude 

biosurfactants were stored at 4 °C in the fridge. 

3.2.4 Characterization of biosurfactants 
 

To measure the surface tension reduction, flasks were sacrificed periodically to collect 

culture samples followed by the 10,000 rpm centrifugation for 15 minutes to remove 

the cells. A 10 ml of the cell free broth supernatant was used for surface tension 

measurements. The surface tension was determined by a surface tensiometer 

(DuNouyTensiometer, Interfacial, CSC Scientific) at 25 °C.  
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For evaluation of biosurfactant content in the cell free broth, the CMC-1 was measured. 

The CMC was determined by measuring the surface tension of the supernatant at 

various dilutions (Mulligan et al., 2001). As the broth consists of both aqueous and 

organic phases, each dilution was conducted with sonification to ensure homogeneity. 

Before each measurement, the treated solution was allowed to stand for 10 minutes to 

achieve equilibrium.  

3.2.5 Kinetics study of biosurfactant production 
 

Experimental data of biosurfactant production were fitted into the modeling software 

by OriginLab 9.0 (OriginLab Corporation, Northampton, MA, USA), by nonlinear 

regression using the least-squares method. The model was ever evaluated for the 

analysis of lactic acid production (Mercier et al., 1992) and subsequently used for the 

fermentation study of Lactobacillus strains (Rodrigues et al., 2006). The relationship 

between relative biosurfactant concentration and time can be stated using Eq. (1).             

         

r
max

dP PP P(1 )
dt P

= −                                                    (1) 

where t is time (h), P is relative biosurfactant concentration in term of CMC-1, Pmax is 

the maximum relative concentration of biosurfactants in term of CMC-1, and Pr is the 

ratio between the initial volumetric rate of product formation rp  and the initial relative 

product concentration P0 in term of CMC-1. The Eq. (1) can be further used to deduce 

the Eq. (2). 
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                                                                   (2) 

The model parameters P0 , Pmax and Pr can be calculated based on the series of 

experimental data. 

3.2.6 Quality Assurance and Quality Control (QA/QC) 
 

The Rhodococcus strain was cultured on a NBS mineral salt medium plate regularly 

and incubated for 48 hours for purity check. Surface tension was measured in 

triplicates during the determination of surface tension reduction and CMC-1. When 

testing CMC-1, each dilution was conducted with sonification to ensure homogeneity 

as the culture consists of both aqueous and organic layers, and each treated solution 

was allowed to stand for 10 minutes to achieve equilibrium before measurement.

P tr0 max
P trmax 0 0

P P eP
P P P e

=
− +
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3.3 Results and discussion 

To enhance the biosurfactant production rate, factors including carbon source, salinity, 

pH and nitrogen source were analyzed based on the results of both surface tension 

reduction and the kinetic modeling of biosurfactant production. 

 

3.3.1 Effects of the carbon source 

 

The use of n-hexadecane as the carbon source in biosurfactant production has been 

widely recognized as an effective biosurfactant inducer. In the pre-testing of this study, 

n-hexadecane was used as the sole carbon source, and the cell growth was found to be 

very slow. Glucose was then added as a supplemental carbon source and significantly 

stimulated the cell growth in the early phase. Therefore, glucose (1g/L) was used 

along with n-hexadecane. It has been found that due to the production and 

accumulation of biosurfactants during the growth of biosurfactant producers, the 

surface tension decreased between the logarithm phase and stationary phases (Toledo 

et al., 2008). In Fig. 1, surface tension declined after 12 hours in all the four levels of 

n-hexadecane and remained stable after 60 hours.  The surface tension in the system 

using lower levels (0.5% and 2%) of n-hexadecane was reduced by 40 dynes/cm, 

while that of using higher levels (3.5% and 5%) of n-hexadecane was reduced by 35 

dynes/cm. This indicated that redundant n-hexadecane can inhibit the biosurfactant 

production by reducing the interaction between air and the culture.  
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Figure 1. Effects of the carbon source on surface tension reduction. Medium (g/L): 
KH2PO4, 3.4; K2HPO4, 4.4; MgSO4•7H2O, 0.2; FeCl3, 0.05; CaCl2.2H2O, 0.05; glucose, 1; 
NaCl, 26; NH4NO3, 1; pH= 6.5. 

 

3.3.2 Effects of salinity 
 

Salinity is one of the critical factors for controlling the production of biosurfactants 

especially for those producers isolated from salty environments. Biosurfactants 

produced by Bacillus mycoides isolated from an Iranian oil field was enhanced with a 

high salinity, while low salinity had negative effect on biosurfactant production and 

cell growth (Najafi et al., 2010). Till now, effects of salinity on the biosurfactant 

production by Rhodococcus have been seldom studied. In this study NaCl was used 

and its concentration was set from 13 to 52 g/L given that the biosurfactant producer 

was from a marine environment.  The surface tension was reduced by 35 dynes/cm 

rapidly in 40 hours in a system with lower salinity (13g/L and 26 g/L); By contrast, 
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the surface tension was ultimately reduced by 30 dynes/cm in a system with a relative 

high salinity (39 g/L) after 70 hours of production. The biosurfactant production was 

significantly inhibited in a system with the salinity of 52 g/L, where the surface 

tension was reduced by 30 dynes/cm after 100 hours, and the stable phase was not 

observed. The study indicated that the biosurfactant production by this Rhodococcus 

isolate achieved the best performance in the system with a salinity of 26 g/L (NaCl), 

which is equivalent to the 35 ppt seawater salinity.  

 

Figure 2. Effects of salinity on surface tension reduction. Medium (g/L):KH2PO4, 3.4; 
K2HPO4, 4.4; MgSO4•7H2O, 0.2; FeCl3, 0.05; CaCl2.2H2O, 0.05; glucose, 1; n-
Hexadecane, 3.5 v/v%; NH4NO3, 1; pH= 6.5. 
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3.3.3 Effects of pH 
 

pH is an important parameter that may need periodical monitoring and adjustion in the 

biosurfactant production process. The effect of pH on biosurfactant production varied 

among different biosurfactant producers but only limited studies investigated the 

effect of pH using Rhodococcus species. The surface tension of the biosurfactants 

produced by Pseudomonas aeruginosa from an oil-contaminated soil was stable at a 

large range of pH between 2 and 10 (Saikia et al., 2012). In this study, pH was 

controlled by a Potassium Phosphate buffer along with (10%) NaOH or (10%) HCl 

solutions. The results indicated that there were no significant when between pH 

changed from 6 to 8. Systems with all levels of pH had shown the reduction of surface 

tension. The highest surface tension reduction was achieved when pH was 7. The bad 

performance on surface tension reduction in the system with pH 5 indicated that the 

production favored a non-acid condition. Similar findings were reported in 

Rhamnolipids production by Pseudomonas aeruginosa (Abdel-Mawgoud et al., 2009).  
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Figure 3. Effects of pH on surface tension reduction. Medium (g/L):MgSO4•7H2O, 0.2; 
FeCl3, 0.05; CaCl2.2H2O, 0.05; glucose, 1; n-Hexadecane, 3.5 v/v%; NH4NO3, 1; NaCl, 26. 

 

3.3.4 Effects of the nitrogen source 
 

NH4NO3 has been recognized as an effective inorganic nitrogen source for 

biosurfactant production by Pseudomonas aeruginosa (Cha et al., 2008) and 

Rhodococcus erythropolis (Gogotov and Khodakov, 2008). The production of 

biosurfactants by some biosurfactant producers has been reported to yield high 

product only under limited concentrations of the nitrogen source (Chayabutra et al., 

2001; Patel and Desai, 1997). In this study, the effect of NH4NO3 at low 

concentrations on surface tension reduction was investigated, and the results were 

shown in Fig. 4. The surface tension declined quickly under the concentration of 0.7 

g/L and 1.0 g/L NH4NO3. Nonetheless, no significant differences were observed using 

NH4NO3 with the concentration between 0.4 and 1.3 g/L. 
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Figure 4. Effects of the nitrogen source on surface tension reduction. Medium (g/L): 
MgSO4•7H2O, 0.2; FeCl3, 0.05; CaCl2.2H2O, 0.05; glucose, 1; n-Hexadecane, 3.5 v/v%; 
NaCl, 26; pH= 7. 

 

3.3.5. Kinetics of biosurfactant production 
 

In this study, CMC-1 was used and determined by measuring the surface tension at 

varying dilutions of the cell free culture. The dilution at which the surface tension 

abruptly increased was the factor by which the biosurfactant concentration exceeded 

the CMC. Fig. 5 indicated that when CMC was reached, the surface tension sharply 

increased from 30 to 45 dynes/cm with the further decrease of biosurfactant 

concentration in the solution. Consequently, the CMC-1 was defined as the dilution 

factor by which surface tension was higher than 30 dynes/cm.  

55 
 



 

 

Figure 5. CMC-1 of the biosurfactants. 

 

Once the CMC-1 values were obtained, the effects of the carbon source on time course 

of CMC-1 was investigated and presented in Fig. 6. The biosurfactant concentration 

increased with time, and finally reached the stationary phase. 

The influence of the different factors on biosurfactant production was represented by 

the experimental data and used for the kinetic study. Through using the Eq. (2), the 

Pmax of each production scenario was calculated and presented in Table 6. It was 

found that the rate of biosurfactants produced under higher concentrations (3.5 or 5 

v/v%) of n-hexadecane was significantly higher with a 
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Table 6. Results obtained by regression of biosurfactant production for Rhodococcus erythropolis under four levels of the carbon source, salinity, pH 
and the nitrogen source. 

 

 n-Hexadecane (v/v%) NaCl ( g/L) pH NH4NO3 (g/L) 

 0.5 2 3.5 5 13 26 39 52 5 6 7 8 0.4 0.7 1.0 1.3 

P0 0.89 0.51 0.04 0.24 0.11 0.63 0.27 0.77 - 0.21 0.02 0.19 0.01 0.01 0.37 0.02 

Pmax 7.33 7.64 11.51 11.81 4.80 16.24 7.32 2.33 - 11.01 11.27 10.11 11.91 11.27 11.60 11.56 

Pr (10-2) 0.42 3.64 9.58 6.17 15.34 3.78 4.48 0.71 - 7.70 13.10 9.01 40.40 32.24 16.60 33.66 

R2 0.65 0.81 0.77 0.85 0.59 0.88 0.69 0.44 - 0.90 0.88 0.80 0.89 0.92 0.81 0.91 

F-value 411.54 43.76 25.11 45.57 27.50 58.38 22.51 88.54 - 87.62 68.27 39.33 144.11 251.57 72.62 133.41 
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Pmax equal to 11.51 or 11.81 than that under lower concentrations with Pmax 7.33 or 

7.64. Similar production rate has been achieved when n-hexadecane concentration 

increased from3.5 v/v% to 5 v/v% (Pmax changed from 11.51 to 11.81). To decrease 

the usage of raw material thus decrease the production cost, and to maintain a relative 

high production rate, n-hexadecane concentration of 3.5 v/v% was finally selected.  
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(c) 

 

(d) 

Figure 6. Effects of the carbon source on time course of CMC-1 using (a) 0.5 v/v% n-
Hexadecane; (b) 2 v/v% n-Hexadecane; (c) 3.5 v/v% n-Hexadecane; (d) 5 v/v% n-
Hexadecane. (pH 6.5, NaCl 26g/L, NH4NO3 1g/L, MgSO4.7H2O 0.2 g/L, FeCl3 0.05 g/L, 
CaCl2.2H2O 0.05 g/L and glucose 1g/L) 
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Effect of salinity on biosurfactant production has been further investigated using the 

kinetic model and the results were presented in Fig.7. CMC-1 increased with time for 

all scenarios. Inhibition of higher salinity displayed that it may affect microbial 

processes and reduce n-hexadecane biodegradation activity. The highest production 

rate was achieved when NaCl concentration was 26g/L (Pmax=16.24). Meanwhile, the 

fitting of data for the fermentation at 26g/L NaCl achieved a favorable R2 of 0.88. 

Therefore, 26g/L NaCl was selected for further biosurfactant production. 
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(c) 

 

(d) 

Figure 7. Effects of salinity on time course of CMC-1 using (a) 13g/L NaCl; (b) 26g/L 
NaCl; (c) 39g/L NaCl; (d) 52g/L NaCl. (pH 6.5, n-hexadecane 3.5 v/v%, NH4NO3 1g/L, 
MgSO4.7H2O 0.2 g/L, FeCl3 0.05 g/L, CaCl2.2H2O 0.05 g/L and glucose 1g/L)  
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Effect of pH on CMC-1 was presented in Fig. 8. No CMC-1 was observed during the 

fermentation at pH 5. However, similar production rate was observed at pH 6, 7 and 8 

with a Pmax of 11.01, 9.67 and 10.11 respectively. It was noted that the data fitting for 

all three pH levels was reasonable (R2 higher than 0.8). Considering both the 

production rate and surface tension reduction in Fig. 3, pH 7 was selected for further 

biosurfactant production. When pH is 7, the exponential phase and stationary phase of 

the predicted curve was obvious with a turning points (Fig. 7 (b)). Furthermore, the 

duration of each phase was shortened as an exponential phase started between 20 and 

40 hours, and a stationary phase was observed after 60 hours.  
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(c) 

Figure 8. Effects of pH on time course of CMC-1 using (a) pH6; (b) pH7; (c) pH8 (n-
hexadecane 3.5 v/v%, NaCl 26g/L, NH4NO3 1g/L, MgSO4.7H2O 0.2 g/L, FeCl3 0.05 g/L, 
CaCl2.2H2O 0.05 g/L and glucose 1g/L) 

The effect of NH4NO3 on the CMC-1 was presented in Fig. 9. The limiting effect of 

nitrogen was not obvious within the NH4NO3 concentration range between 0.4 and 1.3 

g/L. Similar predicted curve was achieved for each level with a Pmax between 11 and 

12. What was remarkable was that the Pr was much higher than previous runs. The 

exponential phase started within 20 hours, and the stationary phase was achieved 

before 30 hours. Considering the production rate and surface tension reduction (Fig. 

4), NH4NO3 with a concentration of 0.7g/L was selected for further biosurfactant 

production. Final cultural conditions were 3.5 v/v% n-hexadecane, 0.7g/L NH4NO3, 

pH 7 and 26g/L NaCl. 
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(c) 

 

(d) 

Figure 9. Effects of the nitrogen source on time course of CMC-1 using (a) 0.4g/L 
NH4NO3; (b) 0.7g/L NH4NO3; (c) 1g/L NH4NO3; (d) 1.3g/L NH4NO3 (pH 6.5, n-
hexadecane 3.5 v/v%, NaCl 26g/L, MgSO4.7H2O 0.2 g/L, FeCl3 0.05 g/L, CaCl2.2H2O 
0.05 g/L and glucose 1g/L
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3.4 Summary 
 

The dynamics of biosurfactant production by marine biosurfactant producers isolated 

from the North Atlantic Ocean was studied for the first time and presented in this 

chapter. A non-growth associated kinetics model was applied for tracking the 

biosurfactant production process with fermentation time. This study used both the 

biosurfactant capability of surface tension reduction and the production rate of 

biosurfactants by CMC-1 to determine the appropriate culturing conditions. Based on 

the experimental results, the carbon source (3.5 v/v%), salinity (26g/L NaCl), pH (7), 

and the nitrogen source (0.7g/L NH4NO3) were selected as the culturing conditons for 

future biosurfactant production. The surface tension of the culture was reduced by 40 

dynes/cm with a CMC-1 of 11.9. Based on the experimentally optimized levels of, the 

surface tension of the culture can be reduced. The duration before reaching stationary 

phase was shortened to 30 hours.  
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CHAPTER 4  

 

BIODISPERSANT GENERATION AND  

PERFORMANCE EVALUATION 
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4.1 Background 
 

The escalating offshore oil spills are serious accidents caused by vessel collisions, 

exploration of offshore oil and gas development, and operational discharges of vessels 

(Doerffer, 1992). They have long-term negative impacts on the environment, ecology, 

communities, and socio-economic activities in offshore regions. Oil spill response 

techniques are being developed according to the stricter environmental laws to 

alleviate their impacts on the marine environment (Etkin, 2001). However, the 

applicability and effectiveness of mechanical countermeasures (e.g., controlled 

burning, skimming, and vacuum/centrifuge) are limited by variable and cold weather 

conditions in harsh environment such as the North Atlantic Ocean (Chen et al., 2011; 

Dave and Ghaly, 2011; Jing et al., 2012).  

Chemical dispersants are less costly than the physical methods. Furthermore, they can 

be used on rough seas for rapid treatments where there are high winds (Holakoo, 

2001). Nevertheless, there are raising concerns about the toxicity and non-

biodegradability of  chemical dispersants and dispersed oil, especially after the 

Deepwater Horizon oil spill (Walker et al., 2003).  

Biosurfactant based biodispersants are considered as an environmental friendly 

alternative to chemical ones as some studies have demonstrated the potential of 

biosurfactants, (Mulligan, 2005). However, studies on the application of 

biosurfactants in oil spill response were rarely reported and one crucial bottleneck is 

that there are extremely limited biodispersant  products available in the market 

(Mukherjee et al., 2008). 
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In this study, biodispersant products were generated by using selected low-toxic 

solvents and biosurfactants produced using the Rhodococcus strain isolated from the 

North Atlantic Ocean. The formulation of biodispersants was determined by 

evaluating the dispersion effectiveness (DE) of a light crude oil sample using the BFT. 

The DE of this light crude oil sample and another motor oil sample (Pennzoil® 10W-

30) was further evaluated and compared with the commercial chemical dispersant 

Corexit 9527. The acute toxicity of the water-accommodated fraction (WAF) of the 

biodispersed oils and their biodegradation were tested to assess the environmental 

impact of the selected biodispersant product. 
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4.2 Methodology 
 

4.2.1 Biosurfactant production, isolation and purification 
 

The biosurfactant-producer R. erythropolis  sp. SB-1A isolated from in the North 

Atlantic Ocean  was cultivated in revised Atlas oil agar medium based on previous 

study in chapter 3 (Atlas, 2004). The selected medium composition consisted of per 

litre: glucose: 1 g; MgSO4.7H2O: 0.2 g; FeCl3: 0.05 g; CaCl2.2H2O: 0.05 g; n-

Hexadecane: 3.5%, v/v; NaCl: 26 g; NH4NO3: 0.7 g and pH 7.0. All chemicals used 

were analytical grade reagents unless specified. The strain was streaked on NBS 

mineral salt medium plates regularly (with the composition per litre as following : 

Nutrient Broth Broth, 25 g; Agar, 15 g; NaCl, 22 g) and incubated for 48 hours for 

purity check and storage (Zhou et al., 2005).  

The biosurfactant production by R. erythropolis sp. SB-1A was carried out in shake 

flasks holding 700 ml medium per flask. Sterile cultures were inoculated with 1.5% 

volume aliquot of the inoculums, and incubated for 120 hours at 30°C, 200 rpm in a 

rotary shaker. 

After incubation, the whole culture was extracted using MTBE at 25 °C by magnetic 

stirring for 24 hours (Kuyukina et al., 2001). After settling for 10 minutes, the upper 

organic layer and the middle emulsion layer were extracted. MTBE was then removed 

by rotary evaporation at 45 °C. The remnant n-Hexadecane in the extracted solution 

was rinsed out using petroleum ether in a separating funnel. The extracted 

biosurfactants were stored at 4 °C in the fridge. 
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4.2.2 Characterization of structural properties of the biosurfactants 
 

The concentration of Glycolipid in the biosurfactant product was estimated by a 

phenol sulfuric acid method to quantify the total carbohydrate (Dubois et al., 1956). 

The calibration standard curve was firstly generated by mixing 50 µL 80% phenol 

solution and 5 mL concentrated sulfuric acid with 2 mL D-glucose stock at various 

concentrations in 20 mL tubes. After settling for 10 minutes, all the tubes were shaked 

for 15 min at 30oC. A 0.01 g biosurfactant solution was added into 100 ml water. A 2 

mL of dilution was operated using the same procedure as that used for the calibration 

standard. The absorbances of the calibration standard points and the sample was 

measured at 490 nm by a spectrophotometer. The total carbohydrate in the sample 

solution was expressed in terms of D-glucose (g/ 100mL). 

The total lipids in the biosurfactant product was quantified by a colorimetric method 

using Palmitic acid as the calibration standard (Pande et al., 1963). The 2.0% 

potassium dichromate (w/v) in sulfuric acid (Lipid reagent) was prepared. The 0.1 g 

Palmitic acid was dissolved in 10 mL petroleum ether. To prepare the calibration 

curve, petroleum ether in Palmitic acid stock solutions of different concentrations was 

firstly dried by air-blowing in 20 mL tubes, and then 3 mL of 2.0% potassium 

dichromate solution was added to each tube. After heating in a water bath for 15 

minutes, the tubes were cooled using running water. Another 4.5 mL water was then 

added to each tube. Color intensity was measured at 595 nm by a spectrophotometer 

once the calibration curve was developed successfully. 0.1 g biosurfactant solution 

was dried through air-blowing in a tube and operated using the same procedure as that 

was applied to treat the calibration standard. The total lipids in the sample solution 

was expressed in terms of Palmitic acid (g/ 100mL). 

74 
 



 

The CMC of the biosurfactant product was determined. The surface tension of 10 mL 

diluted biosurfactant solution at various concentrations was determined in triplicate 

with a surface tensiometer (DuNouyTensiometer, Interfacial, CSC Scientific) at 25°C. 

The CMC was determined by plotting the surface tension versus the concentration of 

biosurfactants in the solution. The CMC point was defined as the intersection of the 

two best-fit lines for ≤1,000mg/L and ≥5,000 mg/L of biosurfactants (Carpena et al., 

2002). 

4.2.3 Screening of solvents  
 

Dimethyl sulfoxide (DMSO), 2-(2-Butoxyethoxy) ethanol, Polyethylene glycol 400 

(PEG 400), Propylene glycol, Ethyl lactate, and DL-12-isopropylidene glycerol 

(Solketal) were considered as candidate solvents due to their favorable characteristics 

(e.g., low toxicity, high water-solubility, high biodegradability, high stability, and low 

volatility) based on literature review. The biosurfactant product was mixed with each 

solvent at the ratio of 50% to generate series biodispersant products. BFT was used to 

determine the DE of each biodispersant when treating a crude oil sample at 200rpm 

and 25 ºC. Two candidate solvents were obtained by considering both toxicity (ORL-

RAT LD50 (mg/kg)) and the DE of biodispersants. 
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4.2.4 Determination of biodispersant formulation 
 

The biosurfactant solution was mixed with each of the two candidate solvents at seven 

different concentrations: 3.3%, 10%, 16.7%, 33.3%, 50%, 66.7%, and 83.3%, 

respectively. For each concentration level, the performance of generated bidispersant 

was evaluated by its DE when treating crude oil sample. BFT was used to determine 

the effectiveness of biodispersants in triplicate (Chandrasekar et al., 2003; Venosa et 

al., 2002).  

4.2.5 BFT  
 

To evaluate the DE, BFT was conducted using a crude oil sample and a motor oil 

sample (Pennzoil® 10W-30). The physicochemical characteristics of these two types 

of oil are listed in Table 7. 
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Table 7. Physicochemical characteristics of oil samples 

 

Type Supplier Specific density@ 25°C API gravity@ 

60ºF kinematic viscosity @20 °C 

 

Pennzoil® 10W-30 

 

Pennzoil-Quaker State 

Canada.Inc 

 

0.85g/mL 

      

33.21° 

                                   

                                  17.0 mm2/s 

Crude oil Canada 0.86g/mL      

31.29° 
                                  208.3 mm2/s 
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Hexane was used instead of DCM during the BFT test due to the fact that DCM can 

dissolve biodispersants. Standard calibration curves were generated using a 

spectrophotometer at 340, 370 and 400 nm. Four types of samples were used, control 

sample with no dispersant, oil treated by biodispersants, and oil treated by Corexit 

9500 and 9527 for method calibration. In the BFT procedure, 100 ml 25°C 

synthesized seawater at a concentration (salinity) of 35 ppt created by mixing distilled 

water with Instant Ocean® synthetic sea salt was added into a modified 150 mL glass 

baffled trypsinizing flask with a screw cap at the top and a teflon stopcock near the 

bottom (Song et al., 2013). The 100 µL crude oil/motor oil was then spiked onto the 

surface of the synthetic seawater. Finally, 3 mL of each crude biodispersant 

(approximate 8.4 mg total carbohydrate content in 1 g crude biosurfactant product) or 

4 µL Corexit 9527/9500 was  added onto the oil layer. The flask was shaked for 10 

minutes at 200 rpm and allowed to remain stationary for another 10 minutes. After 

discarding the first 2 mL sample from the stopcock, 30 mL sample was collected and 

extracted with 20 mL Hexane. The absorbance of the sample extracts and the standard 

solutions were measured at 340, 370 and 400 nm by a spectrophotometer. To calculate 

the DE, the area under the absorbance curve for the standards and experimental 

samples between 340 and 400 nm was calculated using Eq. (3): 

                                  (3) 

In order to compare the DEs of different dispersants, the final results were displayed 

in term of the dispersion effectiveness ratio (DER) between chemical dispersants and 

biodispersants: 

 

340 370 370 40030(Abs Abs ) 30(Abs Abs )Area
2 2
+ +

= +
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                                                (4)                                                                                      

where the total oil dispersed is the mass of oil×100 ml/30 ml; 

the mass of oil (g) is the concentration of oil×VHexane;  

VHexane is the volume of Hexane-extract of the water sample (0.020 L); 

the concentration of oil (g/L) is the area determined by Eq.(3) divided by the slope of 

the calibration curve (Chandrasekar et al., 2006).  

4.2.6 Biodegradation test 
 

The biodegradation test was investigated in flasks under simulated marine conditions 

in dark condition. Synthesized seawater was created by mixting distilled water with 

Instant Ocean® Synthetic Sea Salt to reach a concentration (salinity) of 35 ppt. No 

microbial inoculum was added to the seawater prior to testing. The flasks filled with 

40 mL seawater and 100 µL crude oil were used as blank samples. The control flasks 

with biodispersant inside were loaded with 0.5 mL biodispersants 

(biosurfactants/solvent ratio of 5:1) to generate the biodispersed oil samples. All the 

flasks were shaken in an orbital shaker at 100 rpm and 25°C. After 0, 7, 14, and 28 

days of incubation, flasks were sacrificed and Total Petroleum Hydrocarbons (TPH) 

analysis was conducted by a spectrophotometer (Tellez et al., 2005). Microbial 

growth in each flask was determined by a spectrophotometer at 600 nm. Cultures with 

an OD (600 nm) greater than 0.2 were deemed as the positive growth (Bej et al., 2000; 

Margesin et al., 2003). 

Totaloildispersed(dispersantA)DER
Totaloildispersed(dispersan

0
tB)

10 %×=
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4.2.7 Toxicity test 
 

Blank and biodispersed oil samples were prepared using the same procedure as that 

stated in 4.2.6. The solution of oil WAF or dispersed oil water-accommodated fraction 

(DWAF) in flasks were prepared through magnetic stirring (Couillard et al., 2005). 

The speed of the magnetic stirrer was adjusted to form a vortex of 20–25% of the 

water depth. For biodispersed samples, the vortex was kept for 18 hours followed by a 

6-hour settling period. For blank samples without biodispersants, a 24-hour mixing 

period was used without settling period. The WAF/DWAF in each flask was collected 

for toxicity test using a Microtox® Model 500 (M500) analyzer according to the 

manufacturer’s standard protocols (Yassine et al., 2012). The pH of each sample was 

adjusted between 6 and 8 with (10%) NaOH or (10%) HCl. The data were analyzed 

by MicrotoxOmni® 4.1 software. Color correction was conducted if there was 

red/brown color in the samples by reading the absorbance of the samples at 490 nm 

and the data were re-analyzed by MicrotoxOmni®4.1. The 5- and 15- min EC50s were 

obtained.  

4.2.8 Quality Assurance and Quality Control (QA/QC) 
 

The correlation coefficient of each standard calibration curve for total lipid and total 

carbohydrate analysis and BFT was greater than 0.99 and the repeatability of these 

calibration curves was confirmed. During the characterization of biosurfactants, the 

biosurfactant product was rinsed before each test to eliminate the noice from the 

medium. Each treatment of BFT was performed in triplicates. In toxicity and 

biodegradation tests, 50% of the samples were analyzed in duplicates. The relative 

percent difference values should be within 20% and re-evaluated immediately if a 
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value was larger than 20%. The pre-treatment of WAF/DWAF samples included color 

correction and pH adjustion if necessary. The bacterial reagent was sealed and stored 

frozen at –20°C before use. Micortox test was performed following the protocol, and 

the data were analyzed using MicrotoxOmni® 4.1 software. 

4.3 Results and discussion 
 

4.3.1 Isolation and purification of biosurfactant 
 

In previous studies, it was demonstrated that Rhodococci produced both cell-bound 

and extracellular trehalose containing Glycolipids (Ciapina et al., 2006; Lang and 

Philp, 1998). Based on the results, in this study the culturing media was extracted 

using MTBE without eliminating bacterial cells by centrifugation. When extraction 

was completed, a stable emulsion layer existed between the top solvent layer and 

lower water layer. This may be due to the fact that the cell-bound Glycolipids cannot 

be entirely extracted by MTBE (Kuyukina et al., 2001). Both emulsion layer and 

solvent layer were collected and concentrated by rotary evaporation. The biosurfactant 

was produced at a rate of 57.2 ml per litre of culture on average.  The morphology of 

the crude product was shown in Fig. 10.  
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Figure 10. Biosurfactant generated by R. erythropolis sp. SB-1A 

 

4.3.2 Biosurfactant characterization 
 

Biochemical composition of the biosurfactant revealed that the total carbohydrate 

content was 8.4 mg in term of D-glucose and the total lipid content was 11.6 mg in 

term of Palmitic acid in 1g product. 

The surface activity can be represented by CMC, surface tension reduction, and CMC-

1. It can demonstrate surfactant functions including emulsification, solubilization, and 

foaming (Yin et al., 2009). In this study it the surface activity of the biosurfactant was 

evaluated. Its CMC was approximately 1,500 mg/L as determined in Fig. 11. 
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Figure 11. CMC determination of the biosurfactants 

 

4.3.3 Screening of solvents 
 

Dispersants consist of surfactants and solvents. The surfactants can reduce the 

interfacial tension and enhance the dispersion of oil droplets. The solvents are applied 

to carry surfactant and to promote the solubility of oil. Consequently, the solvents for 

dispersant should be miscible with both water and oil. In this study, six types of 

solvents were considered and evaluated for biodispersant generation based on the 

DER, toxicity, volatility and viscosity. As shown in Table 8, the DER of 2-(2-

Butoxyethoxy) ethanol-based biodispersant was 2.39 fold greater than that of the 

Solketal-based biodispersant. Nonetheless, it was the most toxic solvent with a LD50 

of 5660 (mg/kg). PEG 400-based biodispersant had a DER 1.83 times that of the 

Solketal-based biodispersant and the lowest toxicity of 30200 (mg/kg). No significant 

difference was observed among DMSO, Ethyl lactate, and Propylene glycol on their 

DERs but Propylene glycol was significantly less toxic than the other two with a 
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LD50 of  20000 (mg/kg). Consequently, PEG 400 and Propylene glycol were selected 

as candidate solvents for generating biodispersants and performance evaluation tests. 

 

84 
 



 

Table 8. Characteristics and DERs of solvents 

 

Type DER* 

Toxicity 

ORL-RAT LD50 
(mg/kg) 

Volatility 

(boiling point °C) 

Kinematic viscosity 

(mm2/s @ 20 °C) 

Dimethyl sulfoxide 
(DMSO) 1.30 14500 189 1.80 

2-(2-Butoxyethoxy) ethanol 2.39 5660 231 6.28 

Polyethylene glycol 400 
(PEG 400) 1.83 30200 200 106.48 

Propylene glycol 1.16 20000 188 38.85 

Ethyl lactate 1.25 8200 155 2.50 

DL-12-isopropylidene 
glycerol (Solketal) 1.00 7000 188 10.35 

* DER indicates the ratio between the DE of each solvent and the DE of Solketal. 
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4.3.4 Determination of biodispersant formulation 
 

In this study, the crude biosurfactant product was mixed with the two selected 

solvents with multiple ratios to generate biodispersants. The BFT was selected to 

evaluate the DE of each type of biodispersant to determine the final biodispersant 

formula. As a bench-scale dispersion test, BFT has been proven to provide more 

energy to allow the dispersant to react adequately than Swirling Flask Test (SFT). 

Therefore, dispersed oil droplets in BFT can better reach into the deeper water column 

by the energy of wave (Kaku et al., 2005). Based on the CMC test, the minimum 

effective concentration of biosurfactants in biodispersants was approximately 1,500 

mg/L. Correspondingly the minimal biosurfactant concentration in biodispersants was 

3.3%, and seven concentrations (3.3%, 10%, 16.7%, 33.3%, 50%, 66.7%, 83.3%) 

were selected for screening.  
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Figure 12. Baffled Flask Test Apparatus 

 

The dispersability of crude oil through using natural dispersion, Corexit dispersants 

(i.e., 9500 and 9527) and lab-generated biodispersants at 200rpm, 25 ºC was tested. 

The results were presented in Fig. 13 and 14. The DER of natural dispersion on crude 

oil was not obvious. Corexit 9500 reached 76% DER of Corexit 9527. When using 

PEG 400 as the solvent to generate biodispersants, the highest DER of 1.48 was 

reached with the biosurfactant concentration of 16.7% in the biodispersant (Fig.13), 

and no further obvious increase was observed with concentrations higher than 16.7%. 

When using Propylene glycol as the solvent (Fig.14) the DER of Propylene glycol 

biodispersant remained stable between 0.64 and 0.83 as the concentrations increased. 

The reproducibility of Corexit dispersion was better than that of Biodispersants with 

smaller error bars as shown in Fig. 13 and 14. The main reason is that unpurified 

crude biosurfactants were applied, leading to heterogeneous in the biodispersant 
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products. Overall, PEG 400 obtained better performance than Propylene glycol. 

Therefore, PEG 400 was selected for biodispersant generation. 

Figure 13. Comparison of the dispersability of light crude oil by natural dispersion (ND), 
Corexit 9500 (C 9500), Corexit 9527 (C 9527) and PEG 400 biodispersants (B). The 
error bars represent ±1 standard deviation unit. DER denominator stands for DE of C 
9527. 

 

 

Figure 14. Comparison of the dispersability of light crude oil by natural dispersion (ND), 
Corexit9500 (C9500), Corexit 9527 (C9527) and Propylene glycol biodispersants (B). 
The error bars represent ±1 standard deviation unit. DER denominator stands for DE of 
C9527. 
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4.3.5 Comparison of the DER between Corexit and biodispersant using crude oil 
and motor oil 
 

After the formulation of biodispersant, 16.7% crude biosurfactant was mixed with 

83.3% PEG400 to generate biodispersant. By using two types of oil, the dispersion 

performance of both Corexit 9257 and biodispersant was evaluated shown in Fig.15. 

The results indicated that motor oil with a DER of 0.28 was more easily dispersed 

than crude oil under natural dispersion. The DER of the biodispersant was close to 

that of Corexit 9527 when using motor oil. A DER of 1.48 was achieved when using 

the crude oil. The two kinds of oil have similar dispersibility regardless of their 

viscosity difference. The results illustrated the possibility of applying this lab-

generated crude biodispersant for real oil spill response. 

 

Figure 15. Comparison of the dispersability of light crude oil (crude) and motor oil 
(motor) by natural dispersion (ND), Corexit 9527 (C 9527) and biodispersants (B). The 
error bars represent ±1 standard deviation unit. DER denominator stands for DE of C 
9527. 
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4.3.6 Biodegradation test 
 

Biodegradation is a crucial process that consumes oil by microbial degradation but it 

is a very complex process to be simulated. Past chemical dispersant studies have 

displayed enhanced biodegradation with the addition of chemical dispersants yet some 

observed the inhibition of dispersion (Fingas, 2010; Zahed et al., 2010). For the 

biodegradation of biodispersed oil, the studies have been rarely reported. In this study, 

biodegradation test was conducted to evaluate the performance of the lab-generated 

biodispersant product using crude oil. The biodegradation (TPH) and microbial 

growth (OD 600nm) results of both biodispersed oil samples and naturally dispersed 

oil samples were presented in Fig.16. For the biodegradation in flasks with 

biodispersant, the biodegradation started significantly after 7 days, and the OD 600 

nm increased simultaneously. Approximate 45% of the crude oil was biodegraded by 

biodispersant -assisted dispersion after 28 days with the same tendency as OD 600 nm. 

The lack of final stable phase in the results revealed the limitation of flask study 

without spiked oil-degrading bacteria and suggested a extended period longer than 28 

days in further studies. Overall, the biodispersed oil can be obviously biodegraded 

compared with naturally dispersed oil.   
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Figure 16. Comparison of the biodegradation of natural dispersed oil, biodispersant 
dispersed oil. The error bars represent ±1 standard deviation unit. 
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4.3.7 Toxicity test 
 

The toxicity of Corexit was not allowed to be studied as required by the agreement 

with the supplier. The acute toxicity of the PEG 400 biodispersant was evaluated by 

Microtox® and compared with that of Corexit 9527 in literature. The 15min EC50 

concentration was 43.60 g/L, which was significantly less toxic than that of Corexit 

9527 with a 15min EC50 concentration of 4.9-12.8 mg/L according to literature 

(George-Ares and Clark, 2000; George-Ares et al., 1999). It was revealed that DWAF 

was more toxic than that of WAF or dispersants themselves (Cohen and Nugegoda, 

2000; Gulec and Holdway, 2000). DWAF contained higher concentration of water 

soluble components (mainly Low-molecular-weight hydrocarbons) from light crude 

oil. In Table 9, both 5-min EC50 (%) and 15-min EC50 (%) of ND-WAF increased 

after 7 days and remained stable in the following days. The concentration of dispersed 

oil in those flasks estimated by BFT test remained 0.01 mg/mL. For biodispersant 

dispersion (BD) DWAF, the increasing tendency was observed in both 5-min EC50 

(%) and 15-min EC50 (%) through 28 days which reached approximately half of 

initial EC50% after 28 days. Consequently, the toxicity of biodispersed oil samples 

was obviously reduced compared with that of naturally dispersed oil samples. 
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Table 9.* Comparison of 5-min and 15-min EC 50(%) of ND-WAF and BD-DWAF by 
Microtox® 

Days 
ND  

Dispersed 
oil 

(mg/mL) 

BD  
Dispersed 

oil 
(mg/mL) EC50-5 

min (%) 
EC50-15 
min (%) 

EC50-5 
min (%) 

EC50-15 
min (%) 

0 21.40 26.58 0.01 8.20 11.94 0.60 

7 24.13 30.40 0.01 12.44 16.78 0.57 

14 26.59 32.05 0.01 11.46 16.90 0.56 

28 25.09 31.54 0.01 14.06 22.11 0.34 

* The Microtox® results didn't stand for the toxicity of the whole experimental system 
and indicated that of undersurface environment. 

 

 
 

Figure 17. Preparation of WAF and DWAF 
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4.4 Summary 
 

In this chapter, a biosurfactant-producer R. erythropolis sp. SB-1A isolated in the 

North Atlantic Ocean was cultivated to produce a biosurfactant. The biochemical 

composition of the crude biosurfactant product was determined. The product was then 

mixed with solvents to generate biodispersants. Six types of solvents were considered 

and two of them were finally selected based on the DER, toxicity, volatility and 

viscosity. The formulated biodispersant displayed compatible DE on a stubborn light 

crude oil sample by mixing solvents in the laboratory compared with Corexit 

dispersants. After the determination of the biodispersant formulation, it can 

effectively disperse another motor oil sample under cold/weathering conditions. 

During the biodegradation test, 45% of the crude oil was biodegraded by 

biodispersant assisted dispersion after 28 days without spiking oil-degrading bacteria. 

The toxicity was found to be reduced by half after 28 days using Microtox®. 
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95 
 



 

5.1 Conclusions 
 

This research tackled the development of biosurfactants produced by Rhodococcus 

erythropolis, a strain isolated from the North Atlantic Ocean, as well as the generation 

and performance evaluation of relevant biosurfactant-based biodispersants. 

The effects of the carbon source, the nitrogen source, pH and salinity on biosurfactant 

production were investigated. A non-growth associated kinetic model was applied and 

validated for biosurfactant production with a favorable significance level and R2
 of 

0.92 under experimentally defined conditions. By periodically monitoring the surface 

tension and CMC-1 of the culture during the production and integrating the results 

with the outputs of the kinetic model, the appropriate values of the carbon source (3.5 

v/v%), salinity (26g/L NaCl), pH (7) and the nitrogen source (0.7g/L NH4NO3) for 

further production were obtained. The surface tension of the culture can be reduced by 

40 dynes/cm with a CMC-1 of 11.9. Results also indicated that the exponential phase 

started within 20 hours, and the stationary phase could be achieved before 30 hours as 

displayed in the kinetic curve.  

The biochemical compositions of the crude biosurfactant were detected. The total 

carbohydrate content in 1 g of the biosurfactant was 8.4 mg in term of D-glucose, and 

the total lipid content in 1 g of the biosurfactant was 11.6 mg in term of Palmitic acid. 

 

Biodispersants were generated subsequently through mixing the crude biosurfactant 

and solvents. Dimethyl sulfoxide (DMSO), 2-(2-Butoxyethoxy) ethanol, PEG 400, 

Propylene glycol, Ethyl lactate, and Solketal were considered as solvents and screened 
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based on their toxicity and the effectiveness of relevant dispersants generated. The 

final formula of the biodispersant was determined as 16.7%/ 83.3% (biosurfactants/ 

PEG 400). 

The biodispersant-based dispersion was examined using a motor oil and a crude oil. 

Its performance was compared with the commercial chemical dispersant Corexit 9527. 

Results showed that compared with Corexit 9527, the biodispersant could achieve a 

compatible dispersant effectiveness (DE) when treating two types of oil.  

Finally, the environmental impact of the biodispersant product was assessed by 

analyzing oil biodegradation using a spectrophotometer and by analyzing the acute 

toxicity of the WAF of oil dosing solutions with/without biodispersants using 

Microtox®. During the biodegradation test, 45% of the crude oil was biodegraded by 

biodispersant assisted dispersion after 28 days without spiking oil-degrading bacteria. 

The toxicity was found to be reduced by half  after 28 days. 
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5.2 Scientific achievements 
 

(1) This study, for the first time, combined the kinetic study with system optimization 

for biosurfactant production by Rhodococcus. Multiple variables including the carbon 

source, the nitrogen source, pH and salinity were considered in kinetic analysis during 

biosurfactant production. 

 (2) This study, for the first time, used a biosurfactant producer isolated from the 

North Atlantic Ocean to generate biosurfactant-based biodispersants. The products 

were proven to be capable of dispersing light crude oil and motor oil with a 

compatible and performance than the Corexit dispersants.  

(3) This study, for the first time, demonstrated the effectiveness of the crude (un-

purified) biodispersants on oil spill dispersion, which would greatly decrease the cost 

in large scale field applications.
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5.3 Recommendations for future work 

(1) Design of experiments (DOE) can be applied to investigate the biosurfactant 

production process based on the results of OFAT experiments in this study to further 

improve the system performance and the production efficiency. Biomass and substrate 

consumption should also be monitored in a kinetic study to evaluate the effects of 

microorganisms and other nutrients on biosurfactant production. 

(2) Purification procedures (e.g., freeze-drying and cell isolation) should be conducted 

following current isolation operations to further purify the crude biosurfactant product 

and improve the dispersion performance of related biodispersant products. 

(3) Biosurfactant structures should be further identified with advanced characterization 

methods including TLC, HPLC-MS, GCMS, IR and NMR to analyze how the 

functional groups of biosurfactants could affect the effectiveness of oil dispersion.  

(4) Pilot-scale (e.g., wave tank) examination should be conducted to evaluate the 

effectiveness of biodispersants. The performance evaluation should also be extended to 

the examination in harsh environments with complicated conditions (e.g., using 

weathered oils, with rough waves, under low temperatures). 

(5) Oil biodegradation could be monitored to track the compositional change of both 

saturated and aromatic hydrocarbons. 

(6) The toxicity of dispersed oils can be further analyzed using different marine 

species to obtain information about their effects on the environments at a short- and 

long-terms. 
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