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Abstract

Using dispersion corrected density functional theory (DFT) methods, we study the in-

teraction between oligo(phyenylene ethynylene)s (OPEs) having different end groups:

aldehyde (ALD) and dithiafulvene (DTF) (abbreviated as OPE-ALD and OPE-DTF

respectively) with single-wall carbon nanotube (SWCNT). We investigate the struc-

ture and electronic properties of isolated OPEs and OPE/SWCNT molecular combi-

nations. This research is important for developing of more effective linear conjugated

oligomer-based dispersants for SWCNTs. In particular, we focus on understanding of

the role of the end groups in the dispersion of nanotubes. We consider a number of

dispersion corrected DFT methods: B97D, wB97XD, and CAM-B3LYP and employ

the 6-31G* basis set in all of our calculations. We obtain geometries, dipole moments,

binding energies, and intermolecular distances for the oligomer and nanotube combi-

nations. The comparison of results obtained using different DFT approximations is

also made. Our results show that OPE-DTF interact more strongly with the nanotube

than OPE-ALD.
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Chapter 1

Introduction

1.1 Carbon nanotubes (CNTs)

Allotropes are different forms of the same compound that have different chemical

structures. Some common examples of allotropes are phosphorus ("white" or "yellow",

"red", and "black/ purple"), oxygen (O2 and O3) and others. The allotropes of carbon

include: diamond (carbon atoms that are bonded together in a tetrahedral lattice ar-

rangement), graphite (carbon atoms that are bonded together in sheets of a hexagonal

lattice), graphene (single sheet of graphite), fullerenes (carbon atoms that are bonded

together in spherical, or ellipsoidal formations), and carbon nanotubes (CNTs) [1].

Carbon atoms have the ability to form different configurations (corresponding to

different electronic states), and hence, to create various polymorphs [2]. The four

(two s and two p) valence electrons experience a weaker attraction force than the

two inner (s) electrons, causing the valence electrons to mix and reduce their energy

by creating a hybrid orbital called sp hybridization. The two most common types

of hybridization of carbons are those of the sp2 and sp3 hybrid orbitals. CNTs are

1



composed of sp2 carbons. These sp2 hybrid orbitals lie in plane forming ("double")

bonds that are stronger than the ("single") bonds due to sp3 hybrid orbitals, say in

diamond, and give the nanotubes their unique strength [3].

Prior to the discovery of CNTs, in 1985 a group of researchers led by Richard

Smalley made an interesting discovery of another carbon-based material [4]. Using

the technique of laser evaporation of graphite, they produced a stable carbon com-

pound that had the shape of a soccer ball which they called buckminsterfullerene

(C60) or just fullerene for short. The buckminsterfullerene molecule is a net of 12

pentagons and 20 hexagons folded into a sphere (also called buckyball). Today we

define fullerenes as spherically shaped molecules of various sizes (not just C60) com-

posed entirely of carbons [5]. Other fullerene shaped like "buds" are called carbon

buckytubes. Typically, a carbon buckytube has a similar structure to a fullerene, but

instead of forming a sphere, the atoms form a cylindrical tube that may be capped

off at each end by a half of a fullerene molecule [6] (sometime these elongated capped

buckytubes are referred to as nanotubes).

The term of "carbon nanotubes" was "invented" by Sumio Iijima in 1991 [7] (how-

ever, they were observed prior to his invention). CNTs are cylindrical carbon molecules

which have the appearance of rolled graphene. Nanotubes are open ended whereas

fullerenes are closed structures. They are characterized by high aspect ratios. Typi-

cally, CNTs are a few nanometers in diameters and have a very broad range of elec-

tronic, thermal, and structural properties. In recent years, significant progress in the

research and applications of CNTs has been achieved. They have been used in organic

solar cells [8], biosensors [9], and conductive textiles [10]. In the year of 2000, Luzzi

and Smith reported the first production method for carbon peapods [11] (which are
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defined as fullerenes trapped inside a carbon nanotube). Since their discovery, CNTs

have become enormously popular and, because of their unusual properties, they have

started an explosive growth of research and development in the field of nanotechnol-

ogy and nanomaterials.

CNTs can be classified into two major groups: single-walled carbon nanotubes

(SWCNTs) that contain one graphene sheet that is rolled up to form a cylinder, and

multi-walled carbon nanotubes (MWCNTs), that can be thought of as several sheets of

graphene stacked on top of each other [12,13]. In this research, we focus on SWCNTs

as illustrated in Fig. 1.1. SWCNTs are very useful in the fundamental investigations

of the structure/property relationships of CNTs since they do not include the inter-

actions between concentric tubes in MWCNTs which tend to further complicate the

study of their properties.

The structures of SWCNTs can be described by their chirality or helicity, which

is defined by the following equation:

Ch = na1 +ma2 (1.1)

where the Ch is chiral vector, (n, m) are the numbers of steps along the ziz-zag bonds of

the hexagonal lattice, and a1 and a2 are unit vectors (for example see diagram below).

The zigzag nanotubes are semiconductors. For symmetry reasons the chirality vector

classifies completely all the carbon nanotubes. θ is the chiral angle between Ch and

a1 and it is given by

tan θ =
√

3m/(2n+m). (1.2)
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When m=0 and θ=0◦, the tube formed is a zigzag tube with Ch=na1. The prepara-

tion of SWCNTs with specific diameters and lengths is very challenging [14].

Some groups have been engaged in synthesizing structurally uniform SWCNTs.

For example, in 2013, Itami and co-workers reported the total synthesis of SWCNT

by using nanorings such as cyclic polypheneylenes as templates [15]. As stated above,

SWCNTs have been proposed as promising materials for a variety of applications,

including molecular electronics and polymer reinforcement[16]. However, pristine

SWCNTs have many drawbacks in terms of processing and device fabrication. To

address some of the difficulties of pristine CNTs, researchers have developed a num-

ber of methods that improve the functionality of CNTs. These can be classified into

two categories: covalent and noncovalent methods [17].

Covalent functionalization involves the surface modification of carbon nanotubes.
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It can be associated with a change of hybridization from sp2 to sp3. These function-

alization methods are available both in solution and in the gas phase. On the other

hand, the noncovalent functionalization typically preserves the sp2 hybridization of

the carbon atoms. CNTs are functionalized noncovalently by aromatic compounds,

surfactants, oligomers and polymers. Noncovalent functionalization presents a partic-

ularly useful approach because it not only, provides a direct solution to the problems

of insolubility and poor processability of as-produced SWNTs, but it also provides

easy ways for sorting specific types of SWCNTs out of as-produced SWCNT mix-

tures. In general, functionalization methods tend to improve the dispersion of CNTs.

As stated above, one possible way of dispersal CNTs is to use organic conjugated

oligomers such as oligo(phenylene ethynylene) (OPE) [18].

Figure 1.1: Single-walled carbon nanotube (SWCNT) with (6,5): (a) side view and
(b) top view.
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1.2 Organic Conjugated Oligomers

Organic conjugated oligomers and polymers have attracted considerable interest in

recent years due to their optical and electronic properties that have led to their appli-

cations in photovoltaic cells, light-emitting diodes (LED), and electrochromic devices

[19].

Conjugated polymers are π-conjugated organic materials exhibiting high electri-

cal conductivity when doped, as well as other optoelectronic properties. They are

characterized by flexibility, a wide spectral range, and are easily patterned. These

characteristics make them competitive in comparison with their inorganic counter-

parts [20]. Electrical conductivity of conjugated polymers was first demonstrated in

polyacetylene (PA) whose conductivity was increased after several orders of magnitude

after oxidation with iodine [21], reaching a value of 10−5 S. These types of polymers

are, today, called conducting polymers. This unique conducting property of organic

conjugated polymers opened a door to a new area in materials science.

In the 1990’s, it was discovered that organic conjugated polymers, in addition to

having conducting properties, can also display electroluminescence [22]. This optical

property has become one of the most important landmarks in the history of polymer

science. Improved performance of these materials is continually being sought. This

effort requires better knowledge of their optoelectronic properties such as band gaps,

band widths and energy levels and of their transport properties such as charge mobil-

ity and energy transfer [23]. Improved processability and lowered operating voltages
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are also being sought [24]. π-Conjugated polymers also show promising application

potential [25]. Today, they have been extensively investigated and very successfully

applied in many devices such as light emitting diodes, solar cells, field effect transis-

tors and others [26]. Smaller conjugated oligomers also show interesting properties.

The well defined monodispersed π-conjugated oligomers have been shown to be good

alternatives to their relatively large polymers. Progress has been made on the study

of well-defined conjugated oligomers, and there have been many research articles and

reviews devoted to related topics [27]. The word "oligomer" is generally used to refer to

the compound that carries relatively fewer repeating units than a polymer structure,

or in a simple way, oligomer can considered as the intermediate structure between a

small molecule and a polymer. Oligomers are easy to prepare and their purification

requires less effort. All oligomer molecules have an identical number of repeat units

in the backbone which is the reason for their monodispersity [28].

Recently, conjugated oligomers have attracted considerable attention due to their

potential applications in the area of nanoelectronics [29], where they are used to pro-

duce semiconducting molecular wires or rods. These oligomers can be generalized into

X-, Y-, Z-, and H-shaped assemblages that are referred to as X-mers, Y-mers, Z-mers,

and H-mers [30]. As an example, in 2008, Zhao and co-workers prepared a series of

H-shaped π-conjugated co-oligomers based on linear OPEs and oligo(phenylene viny-

lene)s (OPVs). They studied the molecular properties of these H-shape oligomers and

linear shaped oligomers [31] (examples of which are given in Scheme. 1.1).

The focus of this work is the class of fully conjugated molecules such as OPEs with

different end-groups: aldehyde (ALD) and dithiafulvenyl (DTF) (see Scheme 1.1).

Significant experimental and computational efforts have been devoted to studying
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the electronic properties of conjugated oligomers [32]. These properties can lead to

unexpected results in CNT-oligomer or CNT-polymer composites. For example, CNT-

polymer composite displays higher electrical conductivity than CNT alone [33]. The

CNTs possess one of the highest thermal conductivities known [34] which helps their

use in composites. However, their high aspect ratio and flexibility [35] along with

the strong van der Waals forces between them cause CNTs to be severely entangled

in close packing upon synthesis [36], which in turn degrades their processability and

performance. Significant research efforts have been devoted to ameliorate this through

the dispersion of CNTs in a polymer or oligomer matrices.

Scheme 1.1: Chemical structures of ALD- and DTF-ended OPEs.
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1.3 Dispersion of carbon nanotubes

Dispersion is a process in which particles are dispersed in a continuous phase of a

different composition (for example see reference [37]). In recent years, there is a great

interest in polymer composites containing carbon nanotubes because they display a

novel combination of electrical, optical and mechanical properties [36]. In this work

we are primarily interested in the understanding dispersion of CNTs with conjugated

oligomers to prevent their entanglement [37].

The dispersion of CNTs is affected by at least two competitive interactions: van

der Waals forces among nanotubes, and the interactions between CNTs and disper-

sive medium. There are several different methods for dispersing CNTs [38]. They

can be broadly classified as mechanical and chemical ones. Mechanical dispersion in

conjunction with the surface active agents reduces the van der Waals forces between

CNTs. Oligomers can interact with CNTs by noncovalent interactions to result in

their dispersion in solvents [39]. A recent study has shown that for the dispersion of

SWCNT in a solvent, dispersing agents (dispersants) are required to have sufficient

binding forces toward SWCNTs so as to break apart their heavily entangled bundles.

They discovered that relatively short phyenylene ethynylene and phyenylene viny-

lene oligomers when endcapped with dithiafulvenyl (DTF) groups, exhibited strong

supramolecular interactions with SWCNTs [40-41].

1.4 Current Research

The motivation of this thesis is to understand the (noncovalent) dispersion of single-

walled carbon nanotubes (SWCNTs) with the dithiafulvene (DTF)-ended and alde-

hyde (ALD)-ended organic oligomers such as oligo(phenylene ethynylene)s. The main
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objective of this work is to study the interaction of these oligomers with SWCNTs.

We have employed dispersion corrected density functional theory (DFT) for all cal-

culations. To study there interactions, we use the following approximation: B97D,

CAM-B3LYP, and wB97XD. In these DFT methods the dispersion correction ac-

counts for the weak van der Waals type of intermolecular interactions.

The outline of thesis is: Chapter 2 summarizes briefly the density functional theory

(DFT), starting with molecular orbital theory and Hartree-Fock (HF) methods. The

basic concepts of dispersion corrected, long-range corrected, and long-range corrected

with dispersion corrections DFT are reviewed. Chapter 3 gives a summary of the

computational details. Chapter 4 discusses the results of molecular structures of the

OPEs with different end groups such as ALD and DTF and then describes the effect

of side chain lengths on the oligomer structures in vacum. Chapter 5 discusses the

results obtained from computations involving the OPE-DTF oligomers with SWCNT,

and OPE-ALD oligomers with SWCNT. The effect of dispersion on oligomers in the

presence of SWCNTs will be analyzed. Chapter 6 summarizes the conclusions of this

thesis.
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Chapter 2

Theoretical Approach

In this chapter, we summarize the theoretical approaches used in this thesis. First, we

briefly review molecular orbital (MO) theory in order to introduce the basic quantum

mechanical concepts. Then, density functional theory (DFT) will be discussed. DFT

is a very successful approach used to calculate, amongst other theories, the (ground

state) properties of 2N -electrons systems from first principles.

2.1 Molecular Orbital Theory

MO theory is primarily used to study the electronic structure and properties of molec-

ular systems. MO theory was developed to solve the non-relativistic Schrodinger equa-

tion for a system of 2N -electrons in the presence ofM nuclei [42]. The non-relativistic

Schrodinger equation is given by

Ĥψ = Eψ (2.1)

or

Ĥψ(r, R) = Eψ(r, R) (2.2)
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where Ĥ is the molecular Hamiltonian operator, ψ is the total wave function, r and

R stand for are the electronic and nuclear coordinates respectively, and E is the total

energy of the system [43]. The non-relativistic Hamiltonian for atoms (2N electrons)

is given by

Ĥ = −1
2

(
h2

4π2me

) 2N∑
j=1
∇2
j −

(
e2

4πε0

) 2N∑
j=1

Z

~rj
+
(
e2

4πε0

) 2N∑
i=1

2N∑
j>i

1
| ~ri − ~rj |

(2.3)

where ε0 is the permittivity of free space, h is the Planck’s constant, e is the electron’s

charge, me denotes electron’s mass and Z is the atomic number [44]. For molecules

(2N electrons, M nuclei), Ĥ is given by

Ĥ = Ĥe + ĤN = T̂e + V̂N−e + V̂e−e + T̂N + V̂NN (2.4)

or

Ĥ =
[
− 1

2

(
h2

4π2me

) 2N∑
j=1
∇2
j −

(
e2

4πε0

) 2N∑
j=1

M∑
A=1

ZA
| ~rj − ~rA |

+
(
e2

4πε0

) 2N∑
i=1

2N∑
j>i

1
| ~ri − ~rj |

−1
2

(
h2

4π2

)
M∑
A=1

1
MA

∇2
A +

(
e2

4πε0

)
M∑
A=1

M∑
B>A

ZAZB

| ~RA − ~RB |

]
(2.5)

where the first and fourth terms are the kinetic energy operators due to electrons and

nuclei respectively, and the other three terms are the potential energy operators due

to the nucleus-electron attraction, the electron-electron repulsion and the nucleus-

nucleus repulsion respectively [45]. In addition to the constants as defined above, we

note that MA stands for mass of the nuclei, and | ~RA − ~RB | denotes the relative

nuclear distance between the Ath and Bth nucleus, | ~ri − ~rj | and | ~ri − ~RA | are the

relative distances between between ith and jth electron, and ith electron and Ath

nucleus respectively. We choose units such that, h/2π = h̄ = 1(a.u.), e2

4πε0 = 1 (a.u.)
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and µ = memN

me+mN
≈ me = 1 (a.u.). Then the simplified Hamiltonian in Eq.(2.5) can be

written as

Ĥ =
[
− 1

2

2N∑
j=1
∇2
j −

2N∑
j=1

M∑
A=1

ZA
| ~rj − ~rA |

+
2N∑
i

2N∑
j>i

1
| ~ri − ~rj |

]

+
[
− 1

2

M∑
A=1

1
M ′

A

∇2
A +

M∑
A=1

∑
B>A

ZAZB

| ~RA − ~RB |

]
(2.6)

where M ′
A = MA

me
.

Born-Oppenheimer (BO) approximation is the first of several approximations used

to obtain the solution of the Schrodinger equation for the motion of electrons. In the

BO approximation, due to the larger mass of a nucleus compared to an electron’s, we

can consider the electrons to be moving in the field of fixed nuclei [46]. This means

that, in Eq.(2.6) ∇2
A term can be neglected (rotation and vibration of nuclei can be

treated separately) and VNN to be taken as a constant

VNN =
M∑
A

∑
B>A

ZAZB

| ~RA − ~RB |
= constant. (2.7)

Therefore, the total energy of the system with fixed nuclei can be written as

ET = Eelec(R) + VNN = E(R). (2.8)

This is a good approximation with few exceptions [47]. In BO approximation, we

have,

ĤΨ(r, R) = ETΨ(r, R) (2.9)

where

Ĥ = Ĥe + V̂NN(R). (2.10)
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It is usual to use the method of separation of variables to solve the above Schrodinger

equation (Eq. (2.6)), that is,

Ψ(r, R) = ψelecR (r)ψnucl(R) (2.11)

where ψelecR (r) is an electronic wavefunction with fixed nuclei located at R which stands

for their nuclear coordinates, and ψnucl(R) is the nuclear wavefunction determined in

some average electron cloud potential field [48].

Then, Eq. (2.9) can be written as

(Ĥe + V̂NN)ψelecR (r)ψnucl(R) = ETψ
elec
R (r)ψnucl(R), (2.12)

where Ĥe is referred to as the electronic Hamiltonian. Therefore, in BO approximation

(for fixed R), we can divide by ψnucl(R) and obtain

[Ĥe + VNN(R)]ψelecR = E(R)ψelecR (r) (2.13)

where ET = E(R) (see Eq. (2.8)). Or since VNN gives rise to a constant in BO

approximation, we can write the simplified electronic Schrodinger equation as given

by

Ĥeψ
elec
R = Eelec(R)ψelecR (r). (2.14)

It is noted that if we want to study the motion of nuclei [49], we can re-introduce

nuclear-kinetic energy (T̂N) term into the Schodinger equation (Eq. (2.13))

[T̂N + Ĥe + V̂NN(R)]ψelecR (r)ψnucl(R) = ETψ
elec
R (r)ψnucl(R). (2.15)
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And assuming that

T̂Nψ
elec
R (r)ψnucl(R) ∼= ψelecR (r)T̂Nψnucl(R) (2.16)

we can rewrite Eq. (2.15) as

ψelecR (r)[T̂N + E(R)]ψnucl(R) = Etotalψ
elec
R (r)ψnucl(R). (2.17)

Then, cancelling ψelecR (r) on both side leads to the nuclear Schrodinger equation,

[T̂N + E(R)]ψnucl(R) = Etotalψ
nucl(R) (2.18)

where E(R) is the potential energy for the motion of the nuclei and Etotal is the total

energy of the system that includes nuclear (including kinetic energy of nuclei) and

electronic contributions.

In this thesis, our focus is on solving the electronic Schrodinger equation Eq.

(2.14) with Ĥ given as

Ĥ ≡ Ĥe = −1
2

2N∑
j=1
∇2
j −

2N∑
j=1

M∑
A=1

ZA
| ~rj − ~rA |

+
2N∑
i

2N∑
j>i

1
| ~ri − ~rj |

. (2.19)

Because electrons are indistinguishable, the 2N electron wavefunction, ψelecR (r1, r2, ......, r2N)

must be antisymmetric with the interchange of electrons’ space coordinates, that is ,

ψelecR (r1, ...., ri, ...., rj, ...., rN)→ −ψelecR (r1, ...., rj, ...., ri, ...., rN) (in other words, ψelecR (r1, r2, ......, r2N)

must satisfy the Pauli exclusion principle). Therefore, for the 2N -electrons with

N occupied single electron MOs (also called spin-orbitals), ψelecR (r1, r2, ...., r2N)(=

ψelecR (1, 2...., 2N)) can be written in a form of a Slater determinant as follows
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ψelecR (1, 2, ...., 2N) = 1√
(2N)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1α(1) ψ1β(1) ..... ψNα(1) ψNβ(1)

ψ1α(2) ψ1β(2) ..... ψNα(2) ψNβ(2)

ψ1α(2N) ψ1β(2N) ..... ψNα(2N) ψNβ(2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ |ψ1ψ̄1....ψN ψ̄N〉. (2.20)

where ψi is the orbital part of MO, i.e. ψi(~rj) where i stand for single-electron

quantum numbers and α or β is the spin part of the MO. For the 2N electrons-

single determinant, the electronic energy is obtained as the expectation value of the

Hamiltonian [50],

Eelec = 〈ψelecR (1, 2, ....., 2N)|He|ψelecR (1, 2, ....., 2N)〉 (2.21)

where ψelecR is normalized and given as in Eq. (2.20). In an expanded form (where we

integrated over spin) the total electronic energy is given by,

Eelec = 2
N∑
j=1

Hψ
jj +

N∑
i

N∑
j

(2Jψij −K
ψ
ij) (2.22)

where the one-electron integrals are given by

Hψ
ij = 〈ψi(~r1) | −1

2∇
2
1 −

∑M
A

ZA

~r1A
| ψj(~r1)〉 = 〈ψi(~r1) | h̄(~r1) | ψj(~r1)〉,

the Coulomb intergrals are given by

Jψij = 〈ψi(~r1)ψj(~r2) | 1
~rij
| ψi(~r1)ψj(~r2)〉

and the exchange integrals are given by

Kψ
ij = 〈ψi(~r1)ψj(~r2) | 1

~rij
| ψj(~r1)ψi(~r2)〉.

Eq.(2.22) can be solved for the lowest (ground) state energy of the molecular
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system using the variational principle [51]

∂E

∂ψi
= ∂〈ψ | He | ψ〉

∂ψi
= 0. (2.23)

This leads to the single-electron Hartree-Fock equations,

f̂ψi = εiψi i = 1, 2, ...., N (2.24)

where f̂ is Hartree-Fock operator and is defined as,

f̂ = ĥ+
N∑
j

(2Ĵj − K̂j). (2.25)

In Eq. (2.25) ĥ(~r1) is the single electron energy operator given by

ĥ(~r1) = −1
2∇

2
1 −

M∑
A

ZA
~r1A

, (2.26)

the Coulomb operator is given by

Ĵi(~r1)ψj(~r1) = 〈ψi(~r2) | 1
~r12
| ψi(~r2)〉ψj(~r1), (2.27)

and the exchange operator is given by,

K̂i(~r1)ψj(~r1) = 〈ψi(~r2) | 1
~r12
| ψj(~r2)〉ψi(~r1). (2.28)

We expand the single electron MOs in terms of basis functions ϕµ,

ψi =
K∑
µ=1

ϕµCµi (2.29)
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where Cµi are the molecular orbital expansion coefficients. Therefore, the total elec-

tronic wave function can now be written in the matrix form as

(ψ1ψ2....ψK) = (ϕ1ϕ2.....ϕK)



C11 C12 · · · C1K

C21 C22 · · · C2K

... ... . . . ...

CK1 CK2 · · · CKK


. (2.30)

Substituting Eq. (2.29) into the Hartree-Fock equations (Eq. (2.24)), we obtain

f̂
K∑
µ

ϕµCµi = εi
K∑
µ

ϕµCµi. (2.31)

Then, multiplying both side by ϕµ and integrating gives the so called Roothaan’s

equations which can be written in a matrix form as follows:

F χC = εSχCε (2.32)

where ε is a diagonal (eigenvalue) matrix, Sχ is the overlap matrix, F χ is Fock matrix,

and C is MO coefficient (eigenvector) matrix [52].

Hartree-Fock is not an exact theory since the total electronic wave function is

approximated by Slater determinant as given in Eq. (2.20). Hence, HF is an ap-

proximation to the solution of 2N -electron Schrodinger equation. The result of this

wave function approximation is that HF theory can only account in part for electron-

electron interactions. HF approximation neglects the correlation energy. Correlation

energy is defined as the difference between the exact total energy and the total HF
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energy of the given molecular system. Correlation energy can be included with the

use of density functional theory. The main variable in DFT is the electron density

ρ = Ψ ∗ Ψ rather than the electronic wave function Ψ. DFT is discussed below [53,

54, 55].

2.2 Density Functional Theory (Ground State)

Density functional theory is an alternative to ab initio (orbital based) methods for

solving the (electronic) Schrodinger equation Eq. (2.1) with the Hamiltonian as given

by Eq. (2.19) (in this work we consider the non-relativistic and time-independent

solution to Eq. (2.1)). When it was first formulated DFT was thought of as a theory

of an atomic or molecular electronic ground state of a system consisting of N -electrons

moving in the presence of the nuclear (often called the external) potential. For this

(historical) reason we switch to N -electrons (that is the total number of electrons is

taken as N instead of 2N -electrons) in this section [56]. In contrast to the ab initio

theories, in the DFT, the energy is taken as a functional of the electron density, ρ(~r),

[57]

E = E[ρ]. (2.33)

Historically, Thomas and Fermi [58] were the first (around 1930) to introduce the

total energy of the system as a functional of density. That is, for a uniform electron

gas in a solid, they obtained the expression of the total kinetic energy as a functional
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of local electron density ρ as given by [59]

Ts[ρ] = 3
10(3π2)2/3

∫
d3~rρ5/3(~r), (2.34)

and approximated the exact exchange energy for the interacting N -particle system by

Ex[ρ] = −3
4( 3
π

)1/3
∫
ρ4/3(~r)d3r. (2.35)

Thomas and Fermi used the density based energy functionals to calculate ground state

energy of metals. However, given the fact that most systems of interest do not have

uniform density, Thomas-Fermi theory was of limited applicability. It was not until

the 1960’s when a more useful density based theory was proposed by Hohenberg and

Kohn [60, 61] for the N -electron systems.

2.2.1 Hohenberg-Kohn Theorems

In 1964, Pierre Hohenberg and Walter Kohn formulated the foundations of the DFT

[60, 61],which are based on two fundamental theorems. The first Hohenberg-Kohn

theorem is an existence theorem that states that ground state electron density ρ

of a system uniquely determines (to within a constant) the external potential v(~r)

and the Hamiltonian of the N system. Since the N -electron Hamiltonian determines

the ground state and all the other properties of the system, the above theorem says

that the electron density determines all the ground state properties of the system.

Therefore, the total energy of the system can be written as a density functional as

E[ρ] =
∫
ρ(~r)v(~r)d3r + F [ρ] (2.36)
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with

F [ρ] = T [ρ] + Vee[ρ] (2.37)

where F [ρ] is the universal functional of the electron density, ρ, that includes the

kinetic energy functional of N electrons (T [ρ]) and the potential energy functional

due to the electron-electron interactions (Vee[ρ]). The form of this functional (F [ρ])

is not known. The expression
∫
ρ(~r)v(~r)d3r is the potential energy functional due to

electron-nucleus interactions [62].

The second Hohenberg-Kohn theorem uses the energy variational principle to state

that a given trial electron density ρ gives higher energy than the true ground state

energy that is for

ρ(~r) ≥ 0 (2.38)

with the constraint that

∫
ρ(~r)d3r = N (2.39)

Eo ≤ Ev[ρ] (2.40)

where the E(ρ) is the energy of the system in the external potential v and E0 is the

exact ground state energy [63]. Given the above constraint, the following variational

equation,

δE[ρ]
δρ(~r) − µ = 0 (2.41)
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where µ is the Lagrange multiplier and it is identified to be the chemical potential

of the system [64], which must be solved in order determine the ground state density

and all the other properties (including the total energy) of an N -electron system.

The above discussion reviews the foundation of the DFT but the suggested so-

lution (i.e. the variational method) is not a very practical one, since as indicated

above, the functional form of the universal energy functional F [ρ] is not known. An

alternative method was suggested by Kohn and Sham [65]. Their method is discussed

below.

2.2.2 The Kohn-Sham Equations

In 1965, Kohn-Sham proposed a practical way of solving the above variational equa-

tion [65] (see Eq. (2.41)). In their method they introduce a fictitious system of

N -non-interacting electrons with the external poterntial vs(~r) that produces the (ac-

tual) ρ(~r) as described above. In this approach, the ground state kinetic energy (Ts)

is expressed as [66],

Ts[ρ] =
N∑
i

〈ψi|−
1
2∇

2|ψi〉 (2.42)

where the ψi’s are the single particle orbitals for non-interacting N -electron system

(oftern referred to as the s-system) and the electrons density is given by

ρ(~r) =
∑
i

|ψi(~r)|2. (2.43)

The ground state energy for the interacting N -electron system then becomes,

E = Ts +
∫
d3r v(~r) ρ(~r) + J [ρ] + Exc[ρ] (2.44)

22



where J [ρ] is the functional that contains the contribution due to Coulomb electron-

electron interactions and Exc is the exchange-correlation functional given by,

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (2.45)

where T [ρ] is the kinetic energy determined from the orbitals ψi (Ts = −1/2∑occ
i 〈ψi |

∇2 | ψi〉) that are the solutions to Eq. (2.46).

The variational method is again applied to Eq.(2.44) and the resultant equations

are the so called Kohn-Sham equations [67]. That is, the electrons satisfy the one-

particle Schrodinger equations given as

[−1
2∇

2 + veff (~r)]ψi = εiψi, i = 1, ....N (2.46)

which are similar to the usual single particle Schodinger equations, except that the

effective potential veff (~r) is given by

vs = veff (~r) = Vc + vxc(~r) = v(~r) +
∫ ρ(~r ′)
| ~r − ~r ′ |

d~r ′ + δExc
δρ(~r) . (2.47)

The expression for veff (~r) includes an additional exchange-correlation potential vxc

(the Vc is the usual term that includes the potential due to nuclei (v(~r)) and the

Coulomb potential due to ρ). vxc is the functional derivative of the exchange-correlation

energy functional with respect to the density,

vxc(~r) = δExc[ρ]
δρ

. (2.48)
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As stated above, this set of nonlinear equation is called Kohn-Sham equations.

These equations have a similar structure to the HF equations but with the non-local

(HF) exchange potential replaced by the local exchange-correlation potential vxc and

orbitals are now single electron. It should be noted that Exc contains an element of the

kinetic energy and is not just the sum of the exchange and correlation energy as they

are understood in HF and correlated wavefunction theories [68]. Today Kohn-Sham

formulation of the DFT has become one of the the most popular electronic structure

theories that is employed to obtain the ground state properties (including the energy)

of a given N -electron system [69].

2.2.3 Exchange-Correlation Functionals

The exact form of the exchange-correlation energy functional is not known. Approxi-

mations for Exc must be used in computations. The simplest Exc functional is the local

density approximation (LDA) [70]. The basis of all approximate exchange-correlation

functionals is the LDA, which has the following form

ELDA
xc [ρ] =

∫
ρ(~r)εxc(ρ(~r))d3r. (2.49)

Here, εxc(ρ(~r)) is the exchange-correlation energy of a homogeneous electron gas with

density ρ(~r). If the spin up and spin down electron densities are not equal (i.e. ρ↑

6= ρ↓) then local LDA is generalized to include spin dependance and LDA becomes

LSDA where S stands for spin. The exchange-correlation energy functional is typically
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splitted into exchange and correlation energy contributions,

Exc[ρ] = Ex[ρ] + Ec[ρ]. (2.50)

Many approximations have been proposed for Exc[ρ] [71]. In this work, we used

one of the most popular hybrid functionals, which includes a mixture of Hartree-

Fock exchange with DFT exchange-correlation, it is called the B3LYP method and is

defined by

EB3LY P
xc = (1− a)ELSDA

x + aEexact
x + b∆EB88

x + (1− c)ELSDA
c + cELY P

c (2.51)

where, the a, b and c parameters are determined by fitting to experimental data

and depend on the chosen forms for EGGA
x and EGGA

c , with values a ∼ 0.2, b ∼ 0.7

and c ∼ 0.8 [72]. Also, the ELSDA
x is the LSDA non-gradient corrected exchange

functionals, Eexact
x is the exact HF exchange energy, EB88

x is the Becke88 exchange

functional (it was proposed by A. D. Becke as a correction to the LSDA exchange

energy), ELSDA
c is the LSDA for local correlation (due to VWN is the Vosko, Wilk

and Nusair functional introduced in 1980) [73]) , and ELY P
c is the LYP correlation

functional (due to Lee, Yang and Parr) [74].

2.3 Dispersion Corrected DFT

In other molecular cases, we used the empirically dispersion corrected DFT approach

B97D [75, 76] (B97D was obtained from the nonhybrid generalized gradient B97).

The B97D was proposed and developed by Grimme. In the B97D functional, power

expansion series coefficients of the original functional (B97) description were opti-
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mized by Grimme to restrict the density functional description to the shorter electron

correlation ranges, while the medium to long-range descriptions were handled by the

semiempirical correction term [77].

DFT/B97D approach has been proven accurate for descripetions of non-covalent

interactions between organic molecules [77]. These inter-molecular interactions are

type of forces acting between atoms and molecules due to the instantaneous dipole-

induced dipole forces, also referred to as van der Waals or dispersion. From semiem-

pirical treatment of non-bonded interactions we can obtain the dispersion correction,

and the total energy is given by

Etotal = EDFT + Edisp (2.52)

Edisp ∝ CR−6 (2.53)

where EDFT is the usual self-consistent Kohn-Sham energy as obtained from the cho-

sen DFT approximation and Edisp is an empirical dispersion correction (see section

1.4 for the definition of dispersion).

2.4 Long-Range Corrected DFT

As we explained above the hybrid functional B3LYP is very successful in obtaining

electronic properties of molecular systems. However, it is unsuccessful in a number

of important applications [78] such as determining the polarizability of long chains.

For this reason, Yanai combines the features of hybrid exchange-correlation func-

tional such as B3LYP with the long range corrected functionals, and proposed a new
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Coulomb attenuated hybrid exchange-correlation functional (CAM-B3LYP) [78].

Yanai has replaced the Becke parameter α by two parameters α and β for mixing

Becke’s 1988 exchange and HF exchange, with µ describing the conversion from one

to the other. According to his prescription he divides the one over the interelectronic

distance 1
r12

as follows

1
r12

= 1− [α + β(erf(µr12))]
r12

+ α + β(erf(µr12))
r12

(2.54)

where the first part corresponds to the short range and the second part to the long

range and 0 ≤ α + β ≤ 1, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and erf is an error function. In

CAM-B3LYP approximation the Exc is given by

EB3
x = (1− α)ESlater

x + αEHF
x + cB88∆EB88

x (2.55)

where α = 0.19, α+ β = 0.65 and µ = 0.33 [79]. The CAM-B3LYP method improves

long range interaction and gives better description of molecules with long bonds and

reaction barriers.

2.5 Long-Range Corrected DFT with Dispersion

Corrections

A new functional (wB97XD) results from the re-optimizing of a recently proposed

long-range corrected (LC) hybrid density functional, with empirical dispersion correc-

tions [79]. Chai [80, 81] introduced an empirical dispersion correction to the wB97X, to

provide the missing pieces of the long-range vdW interactions and following Grimme’s
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work [82, 83], he denoted the new functional as wB97XD. The following equation rep-

resents the total energy,

EDFT−D = EKS−DFT + Edisp (2.56)

where wB97X approximation is used for EKS−DFT and the dispersion correction is

given by

Edisp = −
Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdamp(Rij). (2.57)

Cij
6 is the dispersion coefficient for atom pair ij, Nat is the number of atoms in the

system, and Rij is an interatomic distance. The parameters in the wB97X-D are

determined self-consistently by a least squares fitting procedure, and the optimized

value of w= 0.2 Bohr−1.

The performance of w-D type of functionals was tested by comparing with the

results obtained with three well-established DFT-D functionals (B97D, B3LYP-D,

and BLYP-D) and with LC hybrid functionals (wB97X and wB97) for atomization

energies, equilibrium geometries, reaction energies, non-covalent interaction energies,

and a charge transfer excited states [84]. The optimized functional such as wB97XD

is shown to be significantly superior for non-bonded interactions and very similar in

performance for bonded interactions.
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Chapter 3

Computational Details

The electronic structure calculations, to compute the energies, and geometry optimiza-

tions of the molecules in vacuo, were performed with the Gaussian 09 [85] package

available on the computer cluster (Placentia) at the Atlantic Computational Excel-

lence Network (ACEnet) and the computer cluster (Grex) in the Western Canadian

Research Grid (Westgrid) facilities. The CPU (Central Processing Unit) in our group

at ACE-net uses four processors and the requirement of the RAM (Random Access

Memory) is of the order of 5 GB per job for each CPU. Also, the ACEnet machines

have extra space for parallel jobs with large scratch files on queue called "no-quota

scratch" (nqs). Jobs submitted to Westgrid take about a month for each calculation

to be completed on 6 CPUs and the requirement of the memory is of the order of 6

GB for each job.

All calculations were performed using density functional theory (DFT). We used

four DFT approximations, B3LYP, B97D, CAM-B3LYP, and wB97XD, which were

discussed in Chapter 2. First we used the popular hybrid functional B3LYP to obtain

the optimized structure of isolated oligomers. Then we continued our calculations us-
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ing the dispersion corrected DFT’s (B97D, wB97XD) because of the demonstrated im-

portance of the non-covalent dispersion forces when treating interactions of oligomers

with nanotubes. Long range corrected DFT/CAM-B3LYP was also used for compar-

ison purposes.

6-31G(d) basis set (called the polarized split-valence double zeta basis set) was

used in all our calculations. It comprises a linear combination of six Gaussian prim-

itives for the inner-shell functions, and combinations 3 and 1 represent the valence

orbitals, 2s, 2s′, 2p(3), and 2p′(3). Number 3 in the basis set indicates the number

of Gaussian primitives used to construct the 2s and 2p(3) basis functions. Number

1 gives the number of Gaussian primitives used to construct the 2s′ and 2p′(3) basis

functions. d means d-type polarization functions (function of higher angular momen-

tum than the occupied atomic orbitals) and is added to each non-hydrogen atom in

the molecule. The criteria of the self consistent force (SCF) convergence are as follows:

the maximum component of the force is below the cutoff value 0.00045 N; the root

mean square of the force (RMS) is below 0.0003 N; the calculated displacement for the

next step should be below the cutoff value 0.0018 Å; and the root mean square of the

displacement for the next step is below 0.0012 Å [86]. These criteria for convergence

were set by Gaussian [85] and are considered sufficient for obtaining energy minima.

VMD, a molecular visualization program for displaying, animating and analyzing

large molecular systems using 3-D graphics and built-in scripting was used to generate

the input file for SWCNTs with (6,5) [87]. In addition, we used ACD/ChemSketch

(Freeware) to sketch the OPE-ALD and OPE-DTF conjugated oligomers schemes [88].

All single molecular system (isolated oligomer and nanotubes) calculations were
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fully geometry optimized. For the combinations of nanotube and oligomer, we used

"opt=modredundant". This allowed us to explicitly freeze (F) the variables in the

nanotube atoms during the optimization while keeping the oligomers geometry pa-

rameters active.

GaussView 5.0.8 was used as a visualization tool for generating the input files, dis-

playing the output file geometries and analyzing Gaussian data files [89]. GaussView

can be used to determine the bond lengths (R), bond angles (A), dihedral angles (D)

(as labelled in Scheme 1.1), and other properties such as dipole moment. The dipole

moment (which is defined as the sum of the products of the charge and the distance

between the two charges) provides information about the charge polarization in the

polymer since dipole moment becomes nonvanishing when there is a separation of

charge. They can occur between two ions in an ionic bond or between atoms in a

covalent bond; they arise from differences in electronegativity. If the difference in

electronegativity is large, then the dipole moment is also large. The distance between

the charge separation is also a deciding factor in the size of the dipole moment. The

polarity of the molecule can be estimated from its dipole moment. We determined the

effect of the dispersion on the dipole moment of the isolated oligomer by calculating

dipole moment difference.

∆µ =
√

(µx − µ′x)2 + (µy − µ′y)2 + µz − µ′z)2 (3.1)

where, for example, µx, µy, and µz are the dipole moment components of the oligomer

in gas phase, and µ′x, µ′y, and µ′z are the dipole moment components of the oligomer

interacting with nanotube. They were obtained by subtracting nanotubes dipole mo-

ment components from the respective dipole moment components of the oligomer
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nanotube combination. We also computed the difference between the total magni-

tudes of their dipole moments, ∆µTotal, defined as:

∆µTotal = |~µTotal|−|~µ′Total|. (3.2)

In addition, for the gas phase oligomers, we obtained the highest occupied (HOMO)

and the lowest unoccupied (LUMO) molecular orbital eigenvalues and their differences

(∆εH−L=εLUMO-εHOMO).

Wolfram Mathematica version 9.0 [90] was used to calculate the average inter-

molecular distance between OPE and SWCNT. Using two sets of data that represent

the x, y, and z coordinates of SWCNT and OPE, we determined the location of the

centre coordinates of SWCNT and OPE and obtained the total distance (dtotal) by

subtracting them (see Fig. 3.1). Next, we determine the radius of SWCNT (see

Fig. 3.2). Finally, we subtracted the radius of SWCNT from the total distance and

obtained intermolecular distance (∆d) as follow

∆d = dtotal − r. (3.3)
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Figure 3.1: Typical example of the distance between the centre of SWCNT (red) and
the centre of the oligomer (green) using Mathematica.

33



Figure 3.2: Typical example of the radius of SWCNT using Mathematica.
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Chapter 4

Structure and Electronic

Properties of Isolated

Oligo(phenylene ethynylene)s

In this chapter, we apply DFT methods to obtain the geometrical and electronic

structure of the oligo(phenylene ethynylene) (OPE), with different end groups, alde-

hyde (ALD) and dithiafulvene (DTF), in the gas phase. In particular, B3LYP, B97D,

wB97XD, and CAM-B3LYP-DFT approximations (with 6-31G(d) basis set) are used

to investigate the structure and electronic properties of OPE-ALD and OPE-DTF in

the gas phase. We also include the results of MM calculations (using UFF). Since

the electronic properties are closely related to the geometries of the systems, we first

discuss the geometrical parameters, such as bond lengths (R), bond angles (A), and

dihedral angles (D), of OPE-ALD and OPE-DTF.
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4.1 Comparison of DFT Methods

4.1.1 Geometry of OPEs

OPE molecules belong to a class of fully conjugated molecules. The benzenes and

alkynes in the OPE molecule contain delocalized states in the form of π-bonds, which

are beneficial for electron transport. This particular type of molecules has recently

attracted much attention because of the high electron conductivity of the phenylene

ethynylene backbone [91]. We have optimized ALD/DTF-end-capped OPE conju-

gated oligomers in a linear-shaped molecular structure (Figs. 4.1 and 4.5 without

side chains, and in Figs. 4.3 and 4.7 with side chains). In the initial structure of the

DFT computation, all bonds are set to be equal along the backbone. The geometry

optimization (which minimizes the energy) modifies the molecular bonds in such a

way that the output structure has alternating shorter and longer bonds along the

backbone. The chemical structure and labelling of atoms of OPEs are depicted in

Scheme 4.1. In this section, we compare the optimized structure of OPE obtained

using B3LYP with those obtained using other DFT approximations and MM (UFF).

The complete details regarding the structure are given in the Appendix.

Fig. 4.1 shows the typical optimized geometric structure of OPE-ALD. As ex-

pected, the phenylene ethynylene unit (-C6H4-C≡C-C6H4-C≡C-C6H4-) forms a nearly

straight line. Fig. 4.2 shows the differences between the B3LYP bond lengths, bond

angles and dihedral angles and other DFT methods and MM (UFF) for OPE-ALD

(without side chains). In Fig 4.2, chart (a) the differences in bond lengths are shown.

As we can see, all DFT methods are very similar (differences are less than 0.01 Å)

except for UFF which shows larger differences. Fig 4.2 chart (a) also shows that

B97D gives bond lengths that are longer than those for B3LYP while wB97XD and
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CAM-B3LYP give bond lengths that are shorter than those for B3LYP. This pattern

of large differences for the MM (UFF) and the small differences for the DFT methods

can also be seen in bond angle chart (b). In fact, it is not shown in the Fig. 4.2

(b) but for MM (UFF), the bond angles differences for (6-7-8), (7-8-9), (12-13-14),

and(13-14-15) bond angles, are of the order of 55◦ (for bond angles (1-2-3), (5-6-7),

(8-9-10), (11-12-13), (14-15-16), and (18-19-20), the differences are of the order of 3◦).

Bond angles differ by less than 0.5◦ in most cases for DFT methods. Fig. 4.2. (c)

shows the difference in dihedral angles (torsional angle). We see that the dihedral

angles differences are largest for the four central dihedral angles (6-7-8-9), (7-8-9-10),

(11-12-13-14), and (12-13-14-15). The differences are less than 20◦ in these four cases.

It should be noted that the OPE-ALD structure as obtained using MM (UFF) is not

linear, instead it has the trans geometry (also has wrong middle C-C bonds which are

double instead of triple, see Fig. A.1 in the Appendix).
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Scheme 4.1: Chemical structures of ALD- and DTF-ended OPEs with the atoms
labelled.

	  
Figure 4.1: Representative optimized structure of OPE-ALD (without side chains)
in gas phase obtained using DFT/B97D (similar results were obtained with B3LYP,
wB97XD, and CAM-B3LYP with 6-31G* basis set).
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Figure 4.2: Comparison of B3LYP structure with other DFT approximations and
molecular mechanics (UFF) results for OPE-ALD (without side chains). The labelling
of atoms is shown in Scheme. 4.1. This figure shows differences between (a) bond
lengths, (b) bond angles, and (c) dihedral angles as obtained with a given DFT or
UFF approximation relative to B3LYP corresponding results.
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Fig. 4.3 shows the typical (DTF) optimized structure of OPE-ALD with side

chains. Fig. 4.4, chart (a) shows that MM (UFF) gives the largest deviations from

B3LYP bond lengths (could be as large as 0.04 Å). B97D, wB97XD and CAM-B3LYP

show similar differences of the order of 0.01 Å. As before B97D gives bond lengths

that are longer and wB97XD and CAM-B3LYP give bond lengths that are shorter

than those for B3LYP. B97D has the smallest difference. In Fig. 4.4 (b), we can

see that MM (UFF) also has the largest differences. As for OPE-ALD without side

chains, the four angles (6-7-8), (7-8-9), (12-13-14), and (13-14-15) display differences

of the order of 55◦ which is consistent with the trans structures of OPE-ALD obtained

using MM (UFF). For the DFT methods, B97D gives the largest differences (of the

order of 1.5◦ for ((6-7-8) and (13-14-15) bond angles). In Fig. 4.4, chart (c), the

result show that the structures of OPE-ALD obtained using wB97XD becomes more

nonplanar than those obtained using the other DFT methods.

Fig. 4.5 shows the typical optimized geometric structure of OPE-DTF without

side chains. For bond lengths and bond angles (see Figs. 4.6 (a) and (b)), we observe

similar trends in their differences to what we obtained for OPE-ALD (see discussion

above). For the dihedral angles (Fig 4.6 (c)), the biggest differences again have been

observed in the ethynylene part of OPE-DTF (similar to OPE-ALD).
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Figure 4.3: Representative optimized structure of OPE-ALD (with side chains) in
gas phase obtained using DFT/B97D (similar results were obtained with B3LYP,
wB97XD and CAM-B3LYP with 6-31G* basis set).
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Figure 4.4: Comparison of B3LYP structure with other DFT approximations and
molecular mechanics (UFF) results for OPE-ALD (with side chains). The labelling
of atoms is shown in Scheme. 4.1. This figure shows difference between (a) bond
lengths, (b) bond angles and (c) dihedral angles as obtained with a given DFT or
UFF approximation relative to B3LYP corresponding results.
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Figure 4.5: Representative optimized structure of OPE-DTF (without side chains)
in gas phase obtained using DFT/B97D (similar results were obtained with B3LYP,
wB97XD, and CAM-B3LYP with 6-31G* basis set).
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Figure 4.6: Comparison of B3LYP structure with other DFT approximations and
molecular mechanics (UFF) results for OPE-DTF (without side chains). The labelling
of atoms is shown in Scheme 4.1. This figure shows difference between (a) bond
lengths, (b) bond angles and (c) dihedral angles as obtained with a given DFT or
UFF approximation relative to B3LYP corresponding results.
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The typical optimized structure of OPE-DTF (with side chains) in the gas phase

is shown in Fig. 4.7. Similar comments, regarding bond lengths, bond angles, and

dihedral angles, can made for OPE-DTF with side chains as for the previous OPEs

discussed above (see Fig. 4.8).

Figure 4.7: Representative optimized structure of OPE-DTF (with side chains) in
gas phase obtained using DFT/B97D (similar results were obtained with B3LYP,
wB97XD, and CAM-B3LYP with 6-31G* basis set).

47



48



Figure 4.8: Comparison of B3LYP structure with other DFT approximations and
molecular mechanics (UFF) results for OPE-DTF (with side chains). The labelling
of atoms is shown in Scheme 4.1. This figure shows difference between (a) bond
lengths, (b) bond angles and (c) dihedral angles as obtained with a given DFT or
UFF approximation relative to B3LYP corresponding results.
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4.1.2 Eigenvalues and Dipole Moments

The magnitude and direction of dipole moment give the information about the charge

polarizations in the oligomer. The dipole moment is defined as the sum of the products

of the charge and the distance between the two charges. Typical example of the x, y,

and z axes used in the determination of the dipole moment direction is shown in Fig.

4.9 for a given oligomer without side chains. The three components of dipole moments

are aligned along the backbone (x), perpendicular (y) and out of the oligomer plane

(z) directions. Tables 4.1 shows that, in the case of OPE-ALD (without side chains),

the magnitude and components of dipole moments are almost equal to zero for all

DFT methods. The magnitude and components of dipole moments for OPE-ALD

with side chains (see Table 4.2) are also nearly equal to zero but their components

are determined relative to coordinate system as shown in Fig. 4.10.

Table 4.3 shows that in the case of OPE-DTF without side chains the dipole mo-

ments are all close to 1 Debye and the largest components points out of the oligomer

plane. For OPE-DTF with side chains the results for dipole moment as given in Table

4.4 show that the dipole moments increase to approximately 5 Debye in all DFT cases

and the largest components still point out of the oligomer plane (the components are

determined relative to coordinate system as shown in Fig. 4.11).

We present the results of the HOMO (εHOMO) and LUMO (εLUMO) eigenval-

ues and their differences (HOMO-LUMO gaps ∆εH−L) calculated using four differ-

ent DFT methods: B3LYP, B97D, wB97XD, and CAM-B3LYP in Tables 4.1 - 4.4.

DFT/B3LYP is known is give relatively accurate values for ∆εH−L for molecular sys-

tems [92]. Relative to the B3LYP HOMO-LUMO gaps, the B97D values are smaller

by approximately 1 eV in all cases OPE-ALD and OPE-DTF with and without side

50



chains (see Tables 4.1-4.4). wB97XD and CAM-B3LYP give values that are consider-

ably larger than B3LYP (wB97XD is larger approximately by 3.5 eV and CAM-B3LYP

is larger approximately by 2.5 eV, see Tables 4.1-4.4). The reason why wB97XD and

CAM-B3LYP give such large ∆εH−L’s is because in these DTF approximations the

HOMO is lowered (by less than 2 eV) and the LUMO is raised (by more than 1 eV)

relative to B3LYP values.

Table 4.1: The dipole moment components (µx, µy, µz), total magnitude (µ) (in
Debye), and HOMO and LUMO eigenvalues and their difference (∆εH−L = εLUMO-
εHOMO) (all in eV) for OPE-ALD (without side chains) determined using B97D,
wB97XD, CAM-B3LYP, and B3LYP with 6-31G* basis set.
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Figure 4.9: Typical example of the x, y, and z axes used in the determination of the
dipole moment direction in Table 4.1.

Table 4.2: The dipole moment components (µx, µy, µz), total magnitude (µ) (in
Debye), and HOMO and LUMO eigenvalues and their difference (∆εH−L = εLUMO-
εHOMO) (all in eV) for OPE-ALD (with side chains) determined using B97D, wB97XD,
CAM-B3LYP, and B3LYP with 6-31G* basis set.
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Figure 4.10: Typical example of the x, y, and z axes used in the determination of the
dipole moment direction of OPE-ALD (with side chains) in Table 4.2.

Table 4.3: The dipole moment components (µx, µy, µz), total magnitude (µ)
(in Debye), and HOMO and LUMO eigenvalues and their difference (∆εH−L =
εLUMO-εHOMO) (all in eV) for OPE-DTF (without side chain) determined using
B97D,wB97XD, CAM-B3LYP, and B3LYP with 6-31G* basis set.

53



Table 4.4: The dipole moment components (µx, µy, µz), total magnitude (µ) (in
Debye), and HOMO and LUMO eigenvalues and their difference (∆εH−L = εLUMO-
εHOMO) (all in eV) for OPE-DTF (with side chains) determined using B97D,wB97XD,
CAM-B3LYP, and B3LYP with 6-31G* basis set.

Figure 4.11: Typical example of the x, y, and z axes used in the determination of the
dipole moment direction of OPE-DTF (with side chains) in Table 4.4.
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4.2 The Effect of End Groups

4.2.1 Geometry of OPEs

In this section, we investigate the effect of the end-group on the backbone structure

of OPE, using again B3LYP, B97D, wB97XD, and CAM-B3LYP DFT methods. We

compared the backbone structure (which starts with atom 2 and ends with atom 19

for OPE-ALD and starts with atom 3 and ends with atom 20 for OPE-DTF in Scheme

4.1) of OPE-ALD with OPE-DTF. Figs. 4.12 and 4.13 show the differences between

their bond lengths, bond angles, and dihedral angles.

In Fig. 4.12 (a) we present the comparison of bond lengths of OPE-ALD with

those of OPE-DTF without side chains. Only the end bonds, (2-3) and (3-4) in OPE-

ALD and (3-4) and (5-6) in OPE-DTF, show differences of the order of 0.02 Å for all

DFT methods. Similarly for bond angles, the biggest difference are observed at the

ends of the oligomer backbones (the differences are in the range 2-5◦). In contrast,

for the dihedral angles, the biggest differences are observed for the central angles ((5-

6-7-8), (6-7-8-9), (7-8-9-10) and (11-12-13-14), (12-13-14-15), (13-14-15-16)) located

between the phenyl rings. This leads to OPE-DTF becoming somewhat twisted rel-

ative to OPE-ALD planar structure (see Fig. 4.14). Fig. 4.13 shows similar trends

for bond length, bond angle, and dihedral angle differences between OPE-ALD and

OPE-DTF with side chains.

In summary, the end groups have, as expected, affected the end bonds and angles

in the oligomer backbones. However, in some cases, the end groups can also have an

effect on the central parts of the backbone. In particular, DTF causes the backbone

to become nonplanar.
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Figure 4.12: Comparison of OPE-ALD with OPE-DTF (without side chains) struc-
tures using different DFT approximations as indicated in the figure. In this figure
the atoms are labelled according to OPE-ALD numbering (top graph) in Scheme 4.1.
This figure shows the difference between (a) bond lengths, (b) bond angles and (c)
dihedral angles of oligomers with two different end groups.
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Figure 4.13: Comparison of OPE-ALD with OPE-DTF (with side chains) structures
using different DFT approximations as indicated in the figure. In this figure the atoms
are labelled according to OPE-ALD numbering (top graph) in Scheme 4.1. This figure
shows the difference between (a) bond lengths, (b) bond angles and (c) dihedral angles
of oligomers with two different end groups.
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Figure 4.14: Top view of OPE-ALD and OPE-DTF (B97D method) displaying the
twist in the backbone of OPE-DTF relative to planar OPE-ALD structure.

4.2.2 Eigenvalues and Dipole Moments

The dipole moments and eigenvalues for OPE-ALD and OPE-DTF are given in Tables

4.1-4.4. These tables show that DTF oligomers are more polarized (have larger dipole

moments) and have smaller HOMO-LUMO gaps than ALD oligomers.

4.2.3 Nanotube

The work in this thesis requires that we also optimize the structure of (zigzag) nan-

otubes using the various DFT approximations (B97D, wB97XD, CAM-B3LYP). In

Fig. 4.15 fully geometry optimized structure of (6,5) SWCNT in gas phase is dis-

played.
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Figure 4.15: Representative optimized structure of SWCNT obtained using
DFT/B97D (similar results were obtained with wB97XD and CAM-B3LYP with 6-
31G* basis set).

4.3 Conclusions

Different DFT methods give similar structures for OPE-ALD and OPE-DTF back-

bones. Similarly, for the same oligomer with and without side chains there is a little

difference in its backbone structure. Different end groups also do not affect the struc-

ture of backbones significantly but DTF end group makes the chain backbone non-

planar. OPE-DTF has larger dipole moments than OPE-ALD. The HOMO-LUMO

band gaps for OPE-DTF are smaller than those OPE-ALD by less than 0.5 eV for

oligomers without side chains but are nearly the same for oligomers with side chains.
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Chapter 5

Structure and Electronic

Properties of OPE and SWCNT

Molecular Combinations

In this chapter, DFT methods are used to explore the interaction between SWCNT

and OPE where the OPE can have ALD or DTF as its end group. As described

in Chapter 3, the combinations were partially geometry optimized (geometries of

oligomers were fully relaxed while the geometry of the nanotube was kept fixed).

5.1 Dispersion Effect on the Geometries and Dipole

Moments of OPEs

5.1.1 Geometry of (Interacting) OPEs

In this section, we investigate the effect that the intermolecular interactions between

SWCNT and OPE have on the structure of OPEs relative to their gas phase geometry.
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This comparison is carried out by looking at differences in bond lengths, bond angles,

and dihedral angles between the isolated and the interacting OPEs (see Figs. 5.1-5.4).

Figs. 5.1 and 5.2 show that the differences in bond lengths (in most cases less

than 0.002 Å along the backbone) and bond angles (in most cases less than 2◦) for

oligomers without side chains are very small. The differences in the dihedral angles

are more pronounced especially for the central dihedral angles along the ethynylene

bonds. The reason for these dihedral angle differences is that in the presence of nan-

otubes the oligomers tend to wrap themselves around the nanotube (see Figs. 5.6 (b)

and 5.7 (b) as examples) to become more planar.

Figs. 5.3 and 5.4 show that the differences in bond lengths and bond angles are

larger for oligomer with side chains. The largest differences are observed along the

central part of the oligomers and the reason for this is similar to that for oligomer

without side chains. That is, oligomers with side chains tend to wrap themselves

around nanotubes even more than the oligomers without side chains (see for example,

Fig. 5.8 (b) 5.11 (b)). This results in greater distortion of the oligomers’ backbones

(which is shown in Figs. 5.3 (c) and 5.4 (c)). It should be noted that because of

the presence of side chains, the differences in dihedral angle are somewhat smaller

than those obtained for oligomers without side chains. This is because side chains

contribute to intermolecular interaction with nanotubes and hence lessen the need for

the oligomer backbone to distort.
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Figure 5.1: Dispersion effect of OPE-ALD (without side chains) obtained using
DFT/B97D, /wB97XD, and /CAM-B3LYP with 6-31G* basis set. This figure shows
differences between (a) bond lengths, (b) bond angles, and (c) dihedral angles ob-
tained by subtracting the corresponding isolated oligomer values from the interacting
oligomer results for a given DFT method as indicated on the figure.
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Figure 5.2: Dispersion effect of OPE-DTF (without side chains) obtained using
DFT/B97D, /wB97XD, and /CAM-B3LYP with 6-31G* basis set. This figure shows
differences between (a) bond lengths, (b) bond angles, and (c) dihedral angles ob-
tained by subtracting the corresponding isolated oligomer values from the interacting
oligomer results for a given DFT method as indicated on the figure.
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Figure 5.3: Dispersion effect of OPE-ALD (with side chains) obtained using
DFT/B97D, /wB97XD, and /CAM-B3LYP with 6-31G* basis set. This figure shows
differences between (a) bond lengths, (b) bond angles, and (c) dihedral angles ob-
tained by subtracting the corresponding isolated oligomer values from the interacting
oligomer results for a given DFT method as indicated on the figure.
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Figure 5.4: Dispersion effect of OPE-DTF (with side chains) obtained using
DFT/B97D, /wB97XD, and /CAM-B3LYP with 6-31G* basis set. This figure shows
differences between (a) bond lengths, (b) bond angles, and (c) dihedral angles ob-
tained by subtracting the corresponding isolated oligomer values from the interacting
oligomer results for a given DFT method as indicated on the figure.
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5.1.2 Dipole Moments of the (Interacting) OPEs

For the interacting oligomers we determined the dipole moment components of the

oligomers by subtracting the dipole moment components of the nanotube from the

dipole moment components of the combination of oligomer and nanotube (see Table

in Appendix B). In Fig. 5.5, the dipole moment differences, ∆µ’s, between dipole

moments of isolated and interacting oligomers, (where ∆µ is given by Eq. (3.1)) are

shown for OPEs without and with side chains. For oligomers without side chains, the

interacting OPE-DTF shows somewhat larger changes in dipole moments relative to

its gas phase values. This difference in dipole moments is amplified significantly in

OPE-DTF with side chains (see Fig. 5.5 (b)). There are no significant changes in

dipole moments corresponding to isolated and interacting oligomers for OPE-ALDs

without and with side chains. Three DFT methods display similar trends (see Fig.

5.5).
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Figure 5.5: Dipole moment differences, ∆µ’s, between dipole moments of isolated
and interacting oligomers, (where ∆µ is given by Eq. (3.1)) are shown for OPEs (a)
without side chains and (b) with side chains.
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5.2 Comparison of DFT Methods

Figs. 5.6 and 5.7 display OPE-ALD and OPE-DTF without side chains interacting

with (6,5) SWCNT. Only representative results for DFT/B97D are shown because

very similar results were obtained with DFT/wB97XD and /CAM-B3LYP. The main

observation from Figs. 5.6 and 5.7 is that the oligomers wrap slightly around and

stretch along the nanotube. Therefore, for oligomer without side chains there are

small differences between DFT methods.

For oligomers with side chains, DFT methods give somewhat different results

which are shown in Figs. 5.8-5.13. The main difference between the methods is that

for DFT/B97D and /wB97XD the side chains strongly wrap around the nanotubes

for both ALD and DTF ended oligomers. In the case of DFT/wB97XD the oligomer

backbone are also positioned at an angle relative to the nanotubes (see Figs. 5.10 (c)

and 5.13 (c)) instead of being parallel to them. However, in the case of DFT/CAM-

B3LYP, the side chains stretch away from the nanotube (see Figs. 5.9 (b) and 5.12

(b)).
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Figure 5.6: Representative optimized structure of OPE-ALD (without side chains)
obtained using DFT/B97D (similar results were obtained with wB97XD and CAM-
B3LYP with 6-31G* basis set). This figure shows (a) the side view, (b) top view, and
(c) top view along chain (with oligomer highlighted) of the oligomer interacting with
a single (6,5) nanotube (which is optimized using the same DFT method as the one
used for the oligomer).
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Figure 5.7: Representative optimized structure of OPE-DTF (without side chains)
obtained using DFT/B97D (similar results were obtained with wB97XD and CAM-
B3LYP with 6-31G* basis set). This figure shows (a) the side view, (b) top view, and
(c) top view along chain (with oligomer highlighted) of the oligomer interacting with
a single (6,5) nanotube (which is optimized using the same DFT method as the one
used for the oligomer).
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Figure 5.8: Representative optimized structure of OPE-ALD (with side chains) ob-
tained using DFT/B97D (a) the side view, (b) top view, and (c) top view along chain
(with oligomer highlighted) of the oligomer wrapped around a single (6,5) nanotube
(which is optimized using the same DFT method as the one used for the oligomer).
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Figure 5.9: Representative optimized structure of OPE-ALD (with side chains) ob-
tained using DFT/CAM-B3LYP (a) the side view, (b) top view, and (c) top view
along chain (with oligomer highlighted) of the oligomer interacting with a single (6,5)
nanotube (which is optimized using the same DFT method as the one used for the
oligomer).
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Figure 5.10: Representative optimized structure of OPE-ALD (with side chains) ob-
tained using DFT/wB97XD (a) the side view, (b) top view, and (c) top view along
chain (with oligomer highlighted) of the oligomer wrapped around a single (6,5) nan-
otube (which is optimized using the same DFT method as the one used for the
oligomer).
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Figure 5.11: Representative optimized structure of OPE-DTF (with side chains) ob-
tained using DFT/B97D (a) the side view, (b) top view, and (c) top view along chain
(with oligomer highlighted) of the oligomer wrapped around a single (6,5) nanotube
(which is optimized using the same DFT method as the one used for the oligomer).
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Figure 5.12: Representative optimized structure of OPE-DTF (with side chains) ob-
tained using DFT/CAM-B3LYP (a) the side view, (b) top view, and (c) top view
along chain (with oligomer highlighted) of the oligomer wrapped around a single (6,5)
nanotube (which is optimized using the same DFT method as the one used for the
oligomer). 77



Figure 5.13: Representative optimized structure of OPE-DTF (with side chains) ob-
tained using DFT/wB97XD (a) the side view, (b) top view, and (c) top view along
chain (with oligomer highlighted) of the oligomer wrapped around a single (6,5) nan-
otube (which is optimized using the same DFT method as the one used for the
oligomer).
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The above discussion regarding the different DFT methods is qualitative (i.e.

results are displayed in figures). In order to quantify the differences between methods

we compute standard deviations for oligomers with and without side chains for each

method. For a set of data (e.g. r1, r2, ...., rN) the standard deviations is defined as

σ =

√√√√ 1
(N − 1)

N∑
i=1

(ri − r̄)2. (5.1)

where r̄ is the mean value of the data. The magnitude of ∑ gives indication of the

spread of the values in the given data set if two data sets have similar ∑’s that is

indicative that these two data sets are similar.

Fig. 5.14 shows the standard deviation of bond lengths, bond angles, and dihe-

dral angles for different methods: B97D, wB97XD, and CAM-B3LYP. The standard

deviation is a measure of dispersion of a set of data from its mean, which is calcu-

lated as the square root of variance (see Eq. 5.1). A low standard deviation indicates

that the data points tend to be very close to the mean of the set, the high standard

deviation indicates that the data points are spread out over a wider range of values.

Fig. 5.14 (a) shows the standard deviation of bond lengths as a function of ALD

without side chains, ALD with side chains, DTF without side chains, and DTF with

side chains. In all cases B97D shows the smallest dispersion of data for bond lengths.

The results for bond lengths also show that the maximum deviation is 0.074 Å for

long rang corrected CAM-B3LYP and long range corrected with dispersion correc-

tions wB97XD for OPE-ALD without side chains. Bond angle deviations are shown

in Fig. 5.14 (b). The largest bond angle deviation (26.5◦) is obtain for CAM-B3LYP

for all oligomers with and without side chains. wB97XD give similar results as those

obtained for CAM-B3LYP except for OPE-DTF with side chains. In nearly all cases
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wB97XD gives the smallest standard deviations for bond angles. Chart (c) in Fig.

5.14 shows that the dihedral angles deviations are very similar for all three methods.

5.3 Dipole Moment Differences due to Side Chains

and End Groups

In this section, we investigate the effect of the side chains and end groups on the dipole

moments, µ, of the oligomer and nanotube combinations. That is, in these electronic

dipole moment studies, we use the results of DFT/B97D, /wB97XD, /CAM-B3LYP

calculations of oligomers interacting with SWCNT (see Chapter 3 for details) and

compute the corresponding dipole moment differences. The approximate sketch of x,

y, and z axes used in the determination of the dipole moment components is shown

in Fig. 5.15 for a given oligomer and SWCNT combination. Typically, the three

components of dipole moments have the following directions: one (x) is aligned along

the length of the SWCNT, the other (y) is perpendicular to the nanotube and points

toward the oligomers, and the final one (z) is perpendicular to the other two directions.

5.3.1 Side Chain Effect

First, we look at the effect of side chains on the oligomers and the SWCNT system.

Fig. 5.16 shows the difference between dipole moment components of oligomer and

SWCNT combinations without side chains and with side chains for OPE-ALD and

OPE-DTF. For OPE-ALD for the three DFT methods, there is very little difference

(of the order of 1 Debye) between dipole moment components for system with and

without side chains. For OPE-DTF, the y component of the dipole moment of the

combination is most effected by the presence of side chains. The biggest y component
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Figure 5.14: Standard deviation (see Eq. 5.1) of OPE-ALD and OPE-DTF with and
without side chains interacting with SWCNT obtained using DFT/B97D, /CAM-
B3LYP, and /wB97XD. This figure shows standard deviations for (a) bond lengths,
(b) bond angles, and (c) dihedral angles.
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difference (of the order of 7 Debye) is observed for B97D for OPE-DTF.

In addition to dipole moment components differences we also plotted the total

dipole moment differences, ∆µ and ∆µTotal, obtained in two ways (see Chapter 3,

Eqs. (3.1) and (3.2)). Once again, ∆µ and ∆µTotal for combinations containing OPE-

ALD are very small, less than 2 Debye, indicating the dipole moment is not affected

by the side chains in the OPE-ALD and SWCNT combination. ∆µ and ∆µTotal are

larger for OPE-DTF and SWCNT combination especially for B97D. From the dipole

moment component analysis it is clear that the large values for ∆µ and ∆µTotal are

due to the side chains affecting the interaction between the oligomer and nanotube

along the y direction in the OPE-DTF and nanotube system.

Figure 5.15: The x, y, and z axes used in the determination of the dipole moment
direction.
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Figure 5.16: The difference between components of the dipole moments of (a) OPE-
ALD (without side chains) and (with side chains), (b) OPE-DTF (without side
chains) and (with side chains) as obtained using the three approaches: DFT/B97D,
/wB97XD, and /CAM-B3LYP.
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Figure 5.17: The difference between the dipole moments, ∆µTotal and ∆µ, of system
containing (a) OPE-ALD (without side chains) and (with side chains), (b) OPE-DTF
(without side chains) and (with side chains) obtained using the three approaches:
DFT/B97D, /wB97XD, and /CAM-B3LYP.
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5.3.2 End Group Effect

We also look at the affect of the end groups on the dipole moments of oligomer and

nanotube combinations. In Fig. 5.18 the difference between components of dipole

moments of two oligomers with DTF and ALD end groups is shown. In almost all

cases, the systems with DTF end group have larger dipole moment components. The

biggest differences is in the y component of the combination with side chains for B97D.

Fig. 5.19 where, ∆µ and ∆µTotal are plotted, shows once again that in all cases the

combinations with DTF ended oligomers have higher dipole moments.
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Figure 5.18: The difference between components of dipole moments of two oligomers
with DTF and ALD end groups as obtained using the three approaches: DFT/B97D,
/wB97XD, and /CAM-B3LYP.
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Figure 5.19: The difference between the dipole moments, ∆µTotal and ∆µ, of sys-
tem containing (a)OPE-DTF and OPE-ALD (without side chains), (b) OPE-DTF
and OPE-ALD (with side chains) obtained using the three approaches: DFT/B97D,
/wB97XD, and /CAM-B3LYP.
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5.4 Binding Energies and Intermolecular Distances

In this section, we carry out further quantitative analysis of the oligomer nanotube in-

teraction. We calculated the binding energy between the SWCNTs and each oligomer,

Eb, using the following relation,

Eb = Etotal − (ESWCNT + EOligomer), (5.2)

where Etotal, ESWCNT , and EOligomer are the configuration energies of the SWCNTs

bound with oligomer, of the isolated SWCNT, and of the isolated oligomer, respec-

tively. Fig. 5.20 and Table 5.1 show that in all cases the binding energy between

SWCNT and OPE-DTF is larger than between SWCNT and OPE-ALD. This is true

for oligomer with and without side chains. The binding energy for CAM-B3LYP is

much smaller (less than 1 eV) than for the two other methods which give binding

energies of 2 or more eV. For B97D and wB97XD the side chains increase the bind-

ing energies by a factor of two. This can be correlated with the fact that for B97D

and wB97XD calculations the side chains wrap around the nanotube and hence in-

crease the binding energies of these system. Table 5.1 also shows that binding energy

are inversely proportional to the intermolecular distance between nanotube and the

oligomer.
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Figure 5.20: Binding energy of SWCNT and OPE (a) without side chains and (b)
with side chains obtained using DFT/B97D, /wB97XD, and /CAM-B3LYP.
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Table 5.1: Comparison of binding energy (Eb), intermolecular distance (∆d) between
SWCNT and oligomers.

 
(a) (Without side chains) 

ALD   

 Eb(eV) ∆d(A°) 
B97D 1.65 3.17 

CAM-B3LYP 0.177 3.75 
wB97XD 1.683 3.28 

 
 
(b) (Without side chains) 

DTF     

  Eb(eV) ∆d(A°) 
B97D 2.302 3.12 

CAM-B3LYP 0.238 3.68 

wB97XD 2.272 3.34 
 
(c) (With side chains) 

ALD     

  Eb(eV) ∆d(A°) 

B97D 3.145 3.2 

CAM-B3LYP 0.231 3.42 

wB97XD 3.288 3.02 
 
(d) (With side chains) 

DTF     

  Eb(eV) ∆d(A°) 

B97D 5.657 3.22 

CAM-B3LYP 0.367 3.65 

wB97XD 4.755 3.38 
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5.5 Conclusions

We make the following conclusions for Chapter 5. Comparison of isolated versus

interacting geometry of OPEs shows that the largest changes occurs in the dihedral

angles involving central bonds due to oligomers wrapping around the nanotubes. For

OPE-DTF with and without side chains there are significant changes in dipole moment

when OPE-DTF interacts with nanotube. The dipole moment of OPE-ALD with and

without side chains is not affected by the presence of the nanotube. In other words,

OPE-DTF is more polarizable by the nanotube than OPE-ALD. Comparison of DFT

methods give similar results for oligomers without side chains. For oligomer with side

chains there are differences between the DFT methods. The results of B97D and

wB97XD calculations display side chains wrapping around the nanotube but CAM-

B3LYP has side chains pointing away from the nanotube. These result indicate that

there is less intermolecular interaction between oligomer and nanotube in the CAM-

B3LYP calculations primarily because in the CAM-B3LYP approximation the side

chains do not wrap around the nanotube. The analysis of binding energies show that

OPE-DTF interacts more strongly with the nanotube in comparison to OPE-ALD

(this is true for all DFT methods). CAM-B3LYP method gives the lowest binding

energies and the largest intermolecular distance in comparison to B97D and wB97XD

methods.
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Chapter 6

Summary and Conclusions

In this chapter, we summarize the major results of this work. Our calculations were

primarily carried out with the use of the dispersion corrected DFT methods (B97D,

wB97XD, and CAM-B3LYP). The geometry parameters and electronic properties of

isolated OPEs and OPE/nanotube combinations as obtained from DFT computations

are discussed in chapters 4 and 5. The main conclusions are:

• OPE-ALD and OPE-DTF backbones have a similar structures as obtained us-

ing different DFT methods;

• The end groups (ALD and DTF) have an effect on the terminal bonds and

angles in the oligomers and in OPE-DTF, DTF makes the oligomer somewhat

nonplanar;

• For all DFT methods, OPE-DTFs have larger dipole moments than OPE-ALDs;
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• The intermolecular interaction between SWCNT and OPE show that the largest

changes occur in the dihedral angles involving central bonds along the backbone

of the oligomer;

• B97D and wB97XD methods show that OPEs wrap around the SWCNT when

side chains are present. CAM-B3LYP does not show this wrapping of side chains

around the nanotube;

• The dipole moments of SWCNT and OPE-DTF combinations have higher dipole

moments than combinations with OPE-ALD with and without side chains;

• The binding energies of OPE-DTF/nanotube are larger than the binding en-

ergies of OPE-ALD/nanotube. This correlates with intermolecular distances

(OPE-DTF are closer to the nanotube than OPE-ALD).

The overall conclusion of this thesis is that OPE-DTFs interact more strongly

with the nanotubes than OPE-ALDs especially when side chains are present. Finally,

we comment on which DFT approximation is the most appropriate for these types of

non-covalently bonded molecular system calculations. Our results suggest that B97D

overestimates the intermolecular interactions (the side chains wrap too much around

SWCNT) while CAM-B3LYP tends to underestimate the intermolecular interactions

(the side chains interact weakly with SWCNT). It seams that wB97XD gives the

most accurate results since it does not appear to overestimate or to underestimate

intermolecular interactions. The future work could test other dispersion corrected

DFT methods (see reference [93]) to study the interaction between oligomers and

nanotubes. We could also investigate other oligomers interacting with SWCNTs (see

for example [37]) and compare these (future) calculations with our results.
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Appendix A

Geometry of Gas Phase OPEs

Figure A.1: Representative optimized structure of OPE-ALD (without side chains)
in gas phase obtained using MM (UFF).
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Table A.1: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-ALD (without side chains) the labelling of
atoms is shown in Scheme 4.1.

 

 
B97D 

 

 
wB97XD 

 
CAM-B3LYP 

 
B3LYP  

 
UFF 

R      

(1-2) 1.225 1.210 1.210 1.216 1.221 
(2-3) 1.482 1.481 1.477 1.478 1.478 
(3-4) 1.410 1.396 1.396 1.402 1.402 
(4-5) 1.395 1.387 1.382 1.388 1.398 
(5-6) 1.421 1.403 1.405 1.411 1.403 
(6-7) 1.419 1.428 1.426 1.421 1.399 
(7-8) 1.228 1.210 1.208 1.217 1.254 
(8-9) 1.418 1.428 1.426 1.421 1.396 

(9-10) 1.421 1.403 1.402 1.411 1.488 
(10-11) 1.392 1.385 1.383 1.386 1.394 
(11-12) 1.421 1.403 1.402 1.411 1.398 
(12-13) 1.418 1.428 1.426 1.421 1.396 
(13-14) 1.228 1.210 1.208 1.217 1.254 
(14-15) 1.419 1.428 1.426 1.421 1.399 
(15-16) 1.424 1.405 1.402 1.414 1.411 
(16-17) 1.391 1.384 1.385 1.385 1.398  
(17-18) 1.413 1.398 1.394 1.404 1.404 
(18-19) 1.482 1.481 1.477 1.478 1.477 
(19-20) 1.225 1.210 1.210 1.216 1.221 

A      

(1-2-3) 124.9 124.4 124.3 124.6 121.1 
(2-3-4) 119.7 119.9 120.1 120.1 119.6 
(3-4-5) 120.6 120.4 120.1 120.5 120.5 
(4-5-6) 120.0 119.9 120.3 120.1 120.6 
(5-6-7) 120.5 120.2 120.2 120.4 118.2 
(6-7-8) 179.6 179.9 179.8 179.8 124.1 
(7-8-9) 179.9 179.8 179.9 179.9 123.5 

(8-9-10) 120.6 120.4 120.5 120.6 122.5 
(9-10-11) 120.6 120.4 120.5 120.7 120.4 

(10-11-12) 120.6 120.4 120.5 120.7 120.8 
(11-12-13) 120.6 120.3 120.5 120.6 118.5 
(12-13-14) 179.9 179.8 179.9 179.9 123.5 
(13-14-15) 179.6 179.9 179.8 179.8 124.1 
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Table A.2: Contiune.

(14-15-16) 120.3 120.2 120.3 120.4 122.8 
(15-16-17) 120.3 120.2 120.0 120.4 120.4 
(16-17-18) 120.3 120.1 120.4 120.3 120.4 
(17-18-19) 120.7 120.1 120.1 120.4 121.2 
(18-19-20) 124.9 124.4 124.3 124.6 121.1 

D      

(1-2-3-4) -179.9 -179.9 -180.0 -179.9 -179.8 
(2-3-4-5) -179.9 -179.9 -180.0 -179.9 179.9 
(3-4-5-6) -0.001 0.0017 0.000 0.0009 0.025 
(4-5-6-7) -179.9 179.9 180.0 -179.9 -179.8 
(5-6-7-8) -179.0 -173.2 -179.0 -178.9 -179.9 
(6-7-8-9) 151.7 -5.040 0.000 16.75 -179.8 

(7-8-9-10) 27.31 178.4 179.9 162.2 0.245 
(8-9-10-11) 179.9 -179.9 -180.0 179.9 179.8 

(9-10-11-12) 0.003 0.000 0.000 0.000 0.087 
(10-11-12-13) 179.9 179.9 -180.0 179.9 179.8 
(11-12-13-14) 150.4 0.405 -0.121 17.95 -179.8 
(12-13-14-15) -149.4 1.948 0.125 -16.94 179.9 
(13-14-15-16) -0.958 -2.401 -0.004 -1.054 0.044 
(14-15-16-17) -179.9 -179.9 -180.0 -179.9 -179.9 
(15-16-17-18) -0.001 0.000 0.00 0.0007 0.020 
(16-17-18-19) -179.9 -179.9 -180.0 -179.9 179.9 
(17-18-19-20) -0.0006 -0.006 0.000 0.000 0.084 
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Table A.3: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-ALD (with side chains) the labelling of atoms
is shown in Scheme 4.1.

 
  

B97D 
 

wB97XD 
 

CAM-B3LYP 
 

B3LYP 
 

UFF 

R      

(1-2) 1.225 1.210 1.210 1.227 1.221 
(2-3) 1.480 1.479 1.476 1.477 1.477 
(3-4) 1.411 1.396 1.394 1.402 1.402 
(4-5) 1.394 1.386 1.384 1.388 1.397 
(5-6) 1.422 1.403 1.402 1.411 1.411 
(6-7) 1.416 1.426 1.425 1.419 1.399 
(7-8) 1.228 1.210 1.208 1.217 1.255 
(8-9) 1.414 1.424 1.423 1.417 1.405 
(9-10) 1.431 1.409 1.407 1.418 1.407 

(10-11) 1.398 1.390 1.387 1.392 1.414 
(11-12) 1.417 1.400 1.400 1.409 1.403 
(12-13) 1.414 1.424 1.423 1.417 1.406 
(13-14) 1.228 1.210 1.208 1.217 1.254 
(14-15) 1.416 1.426 1.425 1.419 1.398 
(15-16) 1.424 1.406 1.405 1.414 1.411 
(16-17) 1.391 1.383 1.381 1.385 1.398 
(17-18) 1.413 1.398 1.396 1.405 1.404 
(18-19) 1.480 1.479 1.476 1.477 1.478 
(19-20) 1.225 1.210 1.210 1.217 1.221 

 
A 

     

(1-2-3) 125.1 124.5 124.4 124.7 121.1 
(2-3-4) 119.7 119.9 120.1 120.1 119.5 
(3-4-5) 120.6 120.4 120.4 120.6 120.5 
(4-5-6) 120.0 119.9 120.0 120.1 120.4 
(5-6-7) 119.7 119.7 120.1 120.3 122.8 
(6-7-8) 177.7 178.0 178.9 179.3 123.9 
(7-8-9) 178.5 179.2 178.9 178.7 124.9 
(8-9-10) 120.1 119.7 120.3 120.6 118.3 
(9-10-11) 119.4 119.1 119.2 119.2 118.8 
(10-11-12) 121.3 120.9 121.2 121.4 121.6 
(11-12-13) 120.5 120.3 119.9 119.9 116.1 
(12-13-14) 178.5 179.2 178.9 178.7 125.5 
(13-14-15) 177.7 178.0 178.9 179.3 124.3 
(14-15-16) 121.1 120.7 120.5 120.5 122.9 
(15-16-17) 120.3 120.2 120.3 120.4 120.3 
(16-17-18) 120.3 120.1 120.2 120.3 120.4 
(17-18-19) 120.7 120.3 120.1 120.4 121.2 
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Table A.4: Contiune.

(18-19-20) 125.1 124.5 124.4 124.8 121.1 
D      

(1-2-3-4) -179.9 179.8 179.9 179.9 -179.9 

(2-3-4-5) 179.9 -179.8 -179.9 -179.9 179.8 
(3-4-5-6) 0.001 -0.047 0.004 0.007 0.023 
(4-5-6-7) -179.8 179.6 179.8 179.8 -179.8 
(5-6-7-8) 6.016 -16.34 -8.445 -15.73 0.146 

(6-7-8-9) 9.865 -56.59 -159.4 -152.0 179.9 
(7-8-9-10) -15.3 66.7 167.5 167.6 -179.6 

(8-9-10-11) 179.3 -179.0 -179.6 -179.5 179.8 

(9-10-11-12) 0.198 -0.258 -0.101 -0.145 -0.065 
(10-11-12-13) 179.3 -179.0 -179.6 -179.5 -179.9 
(11-12-13-14) -164.0 112.8 12.27 12.17 -179.5 
(12-13-14-15) -9.954 56.57 159.2 151.8 -179.8 
(13-14-15-16) 173.7 -163.5 -171.3 -163.9 0.384 
(14-15-16-17) -179.7 179.5 179.8 179.8 179.7 
(15-16-17-18) -0.027 0.064 0.005 0.008 0.065 

(16-17-18-19) 179.9 -179.9 -179.9 -179.9 -179.9 
(17-18-19-20) -0.030 0.099 -0.028 -0.014 0.115 
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Table A.5: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-DTF (without side chains) the labelling of
atoms is shown in Scheme 4.1.

 
  

B97D 
 

wB97XD 
 

CAM-B3LYP 
 

B3LYP 
 

UFF 
R      

(1-2) 1.795 1.779 1.779 1.789 1.794 
(2-3) 1.368 1.347 1.346 1.357 1.345 
(3-4) 1.454 1.464 1.459 1.455 1.480 
(4-5) 1.424 1.405 1.404 1.415 1.401 
(5-6) 1.390 1.384 1.381 1.384 1.398 
(6-7) 1.422 1.403 1.402 1.411 1.411 
(7-8) 1.417 1.427 1.426 1.420 1.399 
(8-9) 1.229 1.211 1.209 1.218 1.255 
(9-10) 1.417 1.427 1.426 1.420 1.399 
(10-11) 1.422 1.403 1.402 1.412 1.402 
(11-12) 1.392 1.385 1.383 1.386 1.398 
(12-13) 1.422 1.403 1.402 1.411 1.411 
(13-14) 1.417 1.427 1.426 1.420 1.399 
(14-15) 1.229 1.211 1.209 1.218 1.255 
(15-16) 1.417 1.427 1.426 1.420 1.399 
(16-17) 1.420 1.401 1.399 1.409 1.403 
(17-18) 1.393 1.386 1.385 1.388 1.398 
(18-19) 1.421 1.403 1.403 1.412 1.404 
(19-20) 1.454 1.464 1.459 1.455 1.477 
(20-21) 1.368 1.347 1.346 1.357 1.395 
(21-22) 1.788 1.775 1.775 1.782 1.798 

A      
(1-2-3) 120.1 120.6 120.2 120.1 119.1 
(2-3-4) 131.3 128.9 130.3 131.3 124.5 
(3-4-5) 117.4 118.2 117.7 117.5 119.1 
(4-5-6) 122.0 121.5 121.7 121.9 120.5 
(5-6-7) 120.6 120.4 120.4 120.6 120.4 
(6-7-8) 121.1 120.8 120.8 121.0 122.8 
(7-8-9) 179.9 179.5 179.8 179.9 124.0 
(8-9-10) 179.9 179.6 179.9 179.9 124.1 
(9-10-11) 120.8 120.5 120.6 120.8 118.1 
(10-11-12) 120.8 120.5 120.6 120.8 120.6 
(11-12-13) 120.8 120.5 120.6 120.8 120.4 
(12-13-14) 120.8 120.4 120.6 120.8 122.8 
(13-14-15) 179.9 179.6 179.9 179.9 124.1 
(14-15-16) 179.9 179.5 179.8 179.8 124.1 
(15-16-17) 120.9 120.5 120.8 121.0 118.2 
(16-17-18) 121.2 120.8 120.9 121.2 120.6 
(17-18-19) 121.4 121.1 121.1 121.3 120.4 
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Table A.6: Continue.

(18-19-20) 125.7 124.1 124.8 125.6 121.5 
(19-20-21) 131.3 128.9 130.3 131.5 124.5 
(20-21-22) 127.5 126.5 127.0 127.4 123.0 

D      

(1-2-3-4) -179.2 -179.5 -179.6 -179.6 -179.9 
(2-3-4-5) -168.4 -154.8 -162.9 -171.3 -133.0 
(3-4-5-6) 179.3 179.1 179.4 179.5 -178.4 
(4-5-6-7) 0.46 0.539 0.467 0.339 1.049 
(5-6-7-8) -179.8 -179.5 -179.8 -179.9 179.9 
(6-7-8-9) 108.3 138.7 59.69 12.76 0.662 
(7-8-9-10) 51.67 -20.55 65.03 -168.3 -179.7 
(8-9-10-11) -159.7 123.5 -127.8 156.5 -179.9 
(9-10-11-12) 179.9 179.6 179,9 -179.9 -179.4 
(10-11-12-13) -0.002 -0.044 -0.032 0.014 0.002 
(11-12-13-14) -179.9 -179.6 -179.9 179.9 179.4 
(12-13-14-15) 21.83 55.89 52.17 -110.9 -0.011 
(13-14-15-16) 55.14 -20.38 64.97 -55.07 -179.8 
(14-15-16-17) -77.26 -41.53 -120.7 166.7 179.6 
(15-16-17-18) 179.7 179.5 179.7 179.9 -179.7 
(16-17-18-19) -0.191 -0.529 -0.308 -0.076 -1.009 
(17-18-19-20) -179.5 -179.2 -179.5 -179.8 178.1 
(18-19-20-21) 12.24 26.16 17.88 6.90 47.28 
(19-20-21-22) 2.302 2.271 1.701 1.05 5.668 
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Table A.7: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-DTF (with side chains) the labelling of atoms
is shown in Scheme 4.1.

  
B97D 

 
wB97XD 

 
CAM-B3LYP 

 
B3LYP    

 
UFF 

R      

(1-2) 1.787 1.775 1.774 1.788 1.774 
(2-3) 1.367 1.346 1.344 1.356 1.345 
(3-4) 1.454 1.463 1.460 1.455 1.481 
(4-5) 1.423 1.405 1.404 1.414 1.401 
(5-6) 1.390 1.383 1.381 1.384 1.397 
(6-7) 1.422 1.404 1.402 1.411 1.411 
(7-8) 1.416 1.426 1.425 1.419 1.399 
(8-9) 1.228 1.210 1.209 1.218 1.254 
(9-10) 1.414 1.424 1.423 1.417 1.400 
(10-11) 1.429 1.408 1.407 1.418 1.407 
(11-12) 1.398 1.390 1.387 1.391 1.401 
(12-13) 1.418 1.400 1.400 1.409 1.410 
(13-14) 1.414 1.424 1.423 1.417 1.401 
(14-15) 1.228 1.210 1.209 1.217 1.255 
(15-16) 1.416 1.427 1.425 1.419 1.398 
(16-17) 1.419 1.400 1.399 1.409 1.401 
(17-18) 1.393 1.387 1.385 1.388 1.396 
(18-19) 1.421 1.402 1.402 1.411 1.404 
(19-20) 1.454 1.463 1.460 1.456 1.479 
(20-21) 1.367 1.345 1.344 1.355 1.396 
(21-22) 1.783 1.771 1.772 1.778 1.796 

 
A 

     

(1-2-3) 120.7 120.7 120.8 120.1 119.3 
(2-3-4) 130.7 129.5 129.6 131.6 124.9 
(3-4-5) 117.6 117.9 117.9 117.4 118.9 
(4-5-6) 121.9 121.5 121.6 122.0 120.5 
(5-6-7) 120.5 120.3 120.4 120.6 120.3 
(6-7-8) 120.7 120.1 120.3 120.7 122.7 
(7-8-9) 178.7 177.8 178.3 178.5 123.6 
(8-9-10) 179.4 179.1 179.4 179.1 124.7 

(9-10-11) 120.8 119.8 120.3 120.6 118.4 
(10-11-12) 119.5 119.3 119.3 119.4 120.1 
(11-12-13) 121.5 120.9 121.2 121.4 120.8 
(12-13-14) 120.7 120.5 120.0 120.1 122.2 
(13-14-15) 178.6 179.0 178.5 178.6 124.0 
(14-15-16) 177.4 177.5 179.1 179.2 124.3 
(15-16-17) 121.8 121.3 120.9 121.1 118.0 
(16-17-18) 121.1 120.6 120.9 121.1 120.5 
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Table A.8: Continue.

 
 

 

(17-18-19) 121.4 121.0 121.1 121.3 120.5 
(18-19-20) 125.6 124.0 124.6 125.2 121.5 
(19-20-21) 131.2 128.6 130.0 130.9 124.8 
(20-21-22) 128.1 126.9 127.3 127.8 122.6 

 
D 

     

(1-2-3-4) -177.3 -178.4 -176.9 -179.8 -178.5 
(2-3-4-5) -164.8 -158.6 -158.8 -177.5 -137.4 
(3-4-5-6) 177.8 179.7 179.1 -179.5 -176.3 
(4-5-6-7) 0.325 0.359 0.504 0.062 0.865 
(5-6-7-8) -179.0 179.4 179.9 179.4 178.0 
(6-7-8-9) 29.37 -16.67 -0.485 -15.02 0.150 

(7-8-9-10) 88.37 -49.69 -177.4 -142.4 -178.9 
(8-9-10-11) -125.1 56.72 174.1 155.2 177.9 

(9-10-11-12) 179.4 -179.0 -179.8 -179.5 -178.5 
(10-11-12-13) -0.035 -0.228 -0.0004 -0.174 1.112 
(11-12-13-14) -179.6 -179.3 179.6 179.8 177.6 
(12-13-14-15) 173.9 151.6 -11.93 -5.320 -2.862 
(13-14-15-16) 0.153 22.55 -149.9 179.4 179.8 
(14-15-16-17) -176.1 -168.1 160.2 176.5 176.6 
(15-16-17-18) 179.7 179.3 -179.7 -179.8 -178.6 
(16-17-18-19) -0.416 -0.485 -0.388 -0.615 -1.978 
(17-18-19-20) -178.7 -178.5 -179.7 -178.9 177.4 
(18-19-20-21) 12.15 27.45 19.019 12.56 41.67 
(19-20-21-22) 1.329 1.542 1.912 1.675 11.12 
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Appendix B

Geometry of (Interacting) OPEs
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Table B.1: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-ALD (without side chains) interacting with
SWCNT the labelling of atoms is shown in Scheme 4.1.

  
B97D 

 

 
wB97XD 

 
CAM-B3LYP 

R    

(1-2) 1.225 1.211 1.210 
(2-3) 1.482 1.481 1.477 
(3-4) 1.410 1.394 1.396 
(4-5) 1.394 1.387 1.381 
(5-6) 1.421 1.401 1.405 
(6-7) 1.420 1.428 1.426 
(7-8) 1.228 1.210 1.209 
(8-9) 1.420 1.427 1.426 
(9-10) 1.420 1.402 1.401 

(10-11) 1.392 1.384 1.383 
(11-12) 1.420 1.403 1.401 
(12-13) 1.420 1.428 1.426 
(13-14) 1.228 1.211 1.209 
(14-15) 1.420 1.428 1.426 
(15-16) 1.423 1.406 1.401 
(16-17) 1.392 1.383 1.385 
(17-18) 1.412 1.397 1.393 
(18-19) 1.481 1.481 1.477 
(19-20) 1.225 1.211 1.210 

A    

(1-2-3) 125.0 124.4 124.3 
(2-3-4) 119.8 119.8 120.1 
(3-4-5) 120.6 120.4 120.1 
(4-5-6) 120.1 119.9 120.2 
(5-6-7) 120.5 119.9 120.2 
(6-7-8) 179.9 178.2 179.4 
(7-8-9) 179.6 178.8 179.7 
(8-9-10) 120.7 120.2 120.5 
(9-10-11) 120.7 120.4 120.5 
(10-11-12) 120.7 120.4 120.5 
(11-12-13) 120.7 119.9 120.5 
(12-13-14) 179.6 178.3 179.7 
(13-14-15) 179.9 178.5 179.6 
(14-15-16) 120.4 119.9 120.2 
(15-16-17) 120.4 120.2 120.0 
(16-17-18) 120.3 120.1 120.3 
(17-18-19) 120.7 120.2 120.0 
(18-19-20) 125.0 124.4 124.3 
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Table B.2: Contiune.

        
D 

   

(1-2-3-4) 179.8 -179.0 -1.746 
(2-3-4-5) 179.0 178.8 178.5 
(3-4-5-6)  0.047  -0.094 -0.110 
(4-5-6-7) -179.5 -178.4 -178.8 
(5-6-7-8) 158.0 66.42 76.55 
(6-7-8-9) 143.3 -2.304 12.46 
(7-8-9-10) 62.06 -79.55 -87.78 
(8-9-10-11) -179.9 179.4 179.7 
(9-10-11-12) 0.161 -0.182 0.048 

(10-11-12-13) 179.7 179.9 -179.7 
(11-12-13-14) -108.0 3.918 102.2 
(12-13-14-15) 100.3 23.97 -18.26 
(13-14-15-16) 11.69 -31.85 -81.13 
(14-15-16-17) 179.4 178.6 179.3 
(15-16-17-18) 0.063 0.148 0.012 
(16-17-18-19) -179.1 -178.5 -179.1 
(17-18-19-20) -1.335 -0.709 179.6 
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Table B.3: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-ALD (with side chains) interacting with
SWCNT the labelling of atoms is shown in Scheme 4.1.

 

  
B97D 

 
wB97XD 

 
CAM-B3LYP 

R    

(1-2) 1.226 1.211 1.211 
(2-3) 1.479 1.480 1.476 
(3-4) 1.411 1.397 1.394 
(4-5) 1.393 1.385 1.384 
(5-6) 1.422 1.404 1.402 
(6-7) 1.417 1.428 1.425 
(7-8) 1.228 1.211 1.208 
(8-9) 1.416 1.426 1.423 

(9-10) 1.430 1.401 1.407 
(10-11) 1.398 1.388 1.388 
(11-12) 1.416 1.410 1.400 
(12-13) 1.416 1.424 1.423 
(13-14) 1.228 1.211 1.208 
(14-15) 1.417 1.427 1.425 
(15-16) 1.423 1.404 1.404 
(16-17) 1.391 1.387 1.382 
(17-18) 1.412 1.395 1.396 
(18-19) 1.479 1.480 1.476 
(19-20) 1.226 1.211 1.211 

 
A 

   

(1-2-3) 125.1 124.5 124.4 
(2-3-4) 119.8 120.4 120.0 
(3-4-5) 120.7 120.3 120.4 
(4-5-6) 120.1 120.1 120.0 
(5-6-7) 120.1 121.5 120.1 
(6-7-8) 178.5 175.1 178.3 
(7-8-9) 179.1 174.7 179.2 
(8-9-10) 120.4 121.8 120.2 
(9-10-11) 119.6 120.5 119.2 
(10-11-12) 121.4 119.6 121.1 
(11-12-13) 120.7 118.3 120.1 
(12-13-14) 178.8 175.1 179.1 
(13-14-15) 178.5 174.7 178.1 
(14-15-16) 120.9 118.7 120.7 
(15-16-17) 120.4 120.1 120.2 
(16-17-18) 120.4 120.3 120.1 
(17-18-19) 120.7 119.8 120.1 
(18-19-20) 125.1 124.5 124.4 
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Table B.4: Contiune.

 
 

 
D 

   

(1-2-3-4) -179.4 -0.651 177.0 
(2-3-4-5) 178.8 -178.7 -178.1 

(3-4-5-6) 0.173 0.332 -0.289 

(4-5-6-7) -179.4 177.6 178.6 
(5-6-7-8) 2.968 -148.6 -47.21 
(6-7-8-9) -12.62 18.24 -118.2 

(7-8-9-10) 14.38 151.7 145.3 
(8-9-10-11) -178.1 -177.0 -179.7 
(9-10-11-12) -2.814 1.008 0.618 
(10-11-12-13) -179.1 176.8 178.7 

(11-12-13-14) -164.1 -11.68 -64.24 
(12-13-14-15) -14.15 14.83 -76.42 
(13-14-15-16) -177.6 10.94 141.29 

(14-15-16-17) 179.2 -178.4 -178.3 
(15-16-17-18) 0.092 0.106 -0.203 
(16-17-18-19) -178.9 178.2 178.4 
(17-18-19-20) -0.730 -179.4 -1.572 
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Table B.5: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-DTF (without side chains) interacting with
SWCNT the labelling of atoms is shown in Scheme 4.1.

  
B97D 

 
wB97XD 

 
CAM-B3LYP 

 
R 

   

(1-2) 1.792 1.777 1.779 
(2-3) 1.370 1.347 1.347 
(3-4) 1.451 1.462 1.458 
(4-5) 1.424 1.405 1.406 
(5-6) 1.389 1.384 1.380 
(6-7) 1.421 1.402 1.402 
(7-8) 1.417 1.428 1.426 
(8-9) 1.229 1.211 1.209 
(9-10) 1.417 1.429 1.426 
(10-11) 1.421 1.401 1.402 
(11-12) 1.392 1.387 1.383 
(12-13) 1.421 1.401 1.402 
(13-14) 1.417 1.429 1.426 
(14-15) 1.229 1.212 1.209 
(15-16) 1.417 1.428 1.426 
(16-17) 1.419 1.400 1.399 
(17-18) 1.393 1.388 1.385 
(18-19) 1.421 1.404 1.403 
(19-20) 1.451 1.460 1.458 
(20-21) 1.370 1.349 1.347 
(21-22) 1.782 1.769 1.771 

A    

(1-2-3) 119.8 120.3 119.9 
(2-3-4) 132.0 129.5 131.1 
(3-4-5) 117.0 118.0 117.2 
(4-5-6) 122.1 121.6 121.8 
(5-6-7) 120.6 120.3 120.4 
(6-7-8) 120.8 121.2 120.7 
(7-8-9) 178.7 178.2 179.3 
(8-9-10) 179.5 177.6 179.6 
(9-10-11) 120.8 121.4 120.5 
(10-11-12) 120.8 120.6 120.6 
(11-12-13) 120.8 120.5 120.6 
(12-13-14) 120.9 121.8 120.7 
(13-14-15) 179.5 176.4 179.7 
(14-15-16) 178.8 176.0 179.4 
(15-16-17) 121.3 122.1 121.0 
(16-17-18) 121.2 120.9 121.0 

119



Table B.6: Continue.

(17-18-19) 121.4 121.2 121.1 
(18-19-20) 126.1 126.0 125.5 
(19-20-21) 132.0 131.6 131.1 
(20-21-22) 127.7 127.5 127.3 

 
D 

   

(1-2-3-4) -178.1 -177.7 -179.6 
(2-3-4-5) -179.4 -159.0 -171.1 
(3-4-5-6) -178.8 -179.6 -179.8 
(4-5-6-7) -0.264 0.628 0.178 
(5-6-7-8) 179.8 178.8 179.4 
(6-7-8-9) 20.91 -158.4 -39.87 
(7-8-9-10) 41.61 -19.70 -15.93 
(8-9-10-11) -70.03 -179.9 49.24 
(9-10-11-12) 179.7 -179.8 -179.7 
(10-11-12-13) -0.153 0.050 -0.015 
(11-12-13-14) -179.6 -179.9 179.8 
(12-13-14-15) 113.2 173.0 -131.3 
(13-14-15-16) 40.09 5.350 -20.41 
(14-15-16-17) -160.4 177.7 143.6 
(15-16-17-18) -179.5 -178.9 -179.4 
(16-17-18-19) -0.205 -0.276 -0.287 
(17-18-19-20) 179.0 178.9 179.8 
(18-19-20-21) 0.225 4.278 9.322 
(19-20-21-22) 2.417 2.285 1.296 
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Table B.7: Selected bond lengths (R) (in A◦), bond angles (A) (in degrees), and
dihedral angles (D) (in degrees) of OPE-DTF (with side chains) interacting with
SWCNT the labelling of atoms is shown in Scheme 4.1.

  
B97D 

 
wB97XD 

 
CAM-B3LYP 

R    

(1-2) 1.774 1.772 1.776 
(2-3) 1.367 1.348 1.346 
(3-4) 1.451 1.461 1.459 
(4-5) 1.419 1.406 1.405 
(5-6) 1.394 1.382 1.380 
(6-7) 1.417 1.403 1.402 
(7-8) 1.415 1.426 1.425 
(8-9) 1.228 1.211 1.209 

(9-10) 1.413 1.424 1.423 
(10-11) 1.414 1.407 1.407 
(11-12) 1.396 1.391 1.388 
(12-13) 1.430 1.402 1.400 
(13-14) 1.413 1.425 1.423 
(14-15) 1.228 1.211 1.209 
(15-16) 1.414 1.427 1.425 
(16-17) 1.421 1.401 1.400 
(17-18) 1.389 1.385 1.385 
(18-19) 1.422 1.403 1.403 
(19-20) 1.453 1.462 1.459 
(20-21) 1.367 1.347 1.346 
(21-22) 1.786 1.769 1.770 

 
A 

   

(1-2-3) 128.4 120.1 120.0 
(2-3-4) 130.5 131.7 131.3 
(3-4-5) 125.3 117.2 117.2 
(4-5-6) 121.3 121.8 121.9 
(5-6-7) 120.8 120.3 120.4 
(6-7-8) 123.1 120.2 120.3 
(7-8-9) 172.7 175.6 178.0 
(8-9-10) 172.8 175.1 178.8 
(9-10-11) 122.6 121.1 120.4 
(10-11-12) 121.0 118.8 119.3 
(11-12-13) 120.0 121.4 121.2 
(12-13-14) 118.7 118.3 120.0 
(13-14-15) 173.6 172.6 178.4 
(14-15-16) 175.2 175.3 178.7 
(15-16-17) 119.5 119.5 121.1 
(16-17-18) 120.5 120.9 121.1 
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Table B.8: Continue.

(17-18-19) 121.8 121.1 121.1 
(18-19-20) 117.6 124.1 125.5 
(19-20-21) 130.3 128.8 131.2 
(20-21-22) 120.2 126.7 127.7 

  
 D 

   

(1-2-3-4) -2.447 -179.9 -179.3 
(2-3-4-5) -18.41 -171.1 -173.4 
(3-4-5-6) -179.0 -177.3 179.9 
(4-5-6-7) -0.253 0.684 0.265 
(5-6-7-8) 177.7 175.0 179.1 
(6-7-8-9) -166.6 -57.12 -21.6 

(7-8-9-10) -23.37 -48.49 -103.0 
(8-9-10-11) -179.8 128.2 139.2 
(9-10-11-12) -179.2 -177.7 179.8 
(10-11-12-13) -1.048 5.360 1.431 
(11-12-13-14) 179.7 173.6 178.7 
(12-13-14-15) -7.193 -24.27 -24.02 
(13-14-15-16) -20.29 2.432 -111.3 
(14-15-16-17) 14.33 42.62 148.5 
(15-16-17-18) -178.6 -176.7 -179.3 
(16-17-18-19) -1.522 -0.426 0.009 
(17-18-19-20) -179.4 179.6 179.7 
(18-19-20-21) 165.4 20.59 5.844 
(19-20-21-22) -176.8 2.171 0.671 
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Table B.9: Dipole moments of ALD.

Dipole moment of ALD- WITHOUT SIDE CHAIN - B97D 
 

 
 
 

  µc µn µ'   µo ∆µ 

X -0.0166 -0.0037 -0.0129   0 0.731980642 

Y 0.7 0.0283 0.6717   0   

Z -0.148 0.1426 -0.2906   0   

Total 0.7158 0.1454 0.5704   0.0001   
	  
	  
	  
	  

Dipole moment of ALD-WITHOUT SIDE CHAIN - CAM-B3LYP 
 
  µc µn µ'   µo ∆µ 

X -0.2484 0.0001 -0.2485   0 0.991509365 

Y 0.9044 0.0003 0.9041   0   

Z -0.2115 0.1109 -0.3224   0   

Total 0.9615 0.1109 0.8506   0   
	  
	  

Dipole moment for ALD-WITHOUT SIDE CHAIN - wB97XD 
 

 
  µc µn µ'   µo ∆µ 

X 0.0161 0.0003 0.0158   0.0001 0.300512246 

Y 0.5997 0.0027 0.597   -0.0001   

Z -0.0767 0.0926 -0.1693   -0.0009   

Total 0.6048 0.0926 0.5122   0.0009   
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Dipole moment of ALD-WITH SIDE CHAIN -B97D 
 

  
  µc µn µ'   µo ∆µ 

X -0.0374 -0.0037 -0.0337 
 

0.0004 1.259299817 

Y 1.2864 0.0283 1.2581 
 

0   

Z 0.1 0.1426 -0.0426 
 

0.0005   

Total 1.2908 0.1454 1.1454 
 

0.0006   
	  

Dipole moment for ALD-WITH SIDE CHAIN- CAM-B3LYP 
 

 
  µc µn µ'   µo ∆µ 

X -0.0071 0.0001 -0.0072 
 

0 1.927305269 

Y 1.7627 0.0003 1.7624 
 

0   

Z 0.8919 0.1109 0.781 
 

0.001   

Total 
 

1.9755 0.1109 1.8646 
 

0.001   
	  
	  

Dipole moment for ALD-WITH SIDE CHAIN-wB97XD 
 

 
  µc µn µ'   µo ∆µ 

X -0.1196 0.0003 -0.1199 
 

-0.0001 0.39416319 

Y 0.3682 0.0027 0.3655 
 

-0.0002 
 

Z 0.009 0.0926 -0.0836 
 

0.0017 
 

Total 0.3872 0.0926 0.2946 
 

0.0018 
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Table B.10: Dipole moments of DTF.

Dipole moment of DTF- WITHOUT SIDE CHAIN - B97D 
 

   
  µc µn µ'   µo ∆µ 

X 0.0143 -0.0037 0.018   -0.0003 2.526820029 

Y 2.4107 0.0283 2.3824   -0.0005   

Z 0.0748 0.1426 -0.0678   0.7726   

Total 2.4119 0.1454 2.2665   0.7726   
	  
	  

Dipole moment of DTF - WITHOUT SIDE CHAIN - CAM-B3LYP. 
 

  
  µc µn µ'   µo ∆µ 

X 0.0376 0.0001 0.0375 
 

0.0001 1.314843656 

Y 0.9836 0.0003 0.9833 
 

0.0001 
 

Z 0.1371 0.1109 0.0262 
 

0.8984 
 

Total 0.9938 0.1109 0.8829 
 

0.8984 
 	  

	  
	  
	  

Dipole moment of DTF - WITHOUT SIDE CHAIN - 
wB97XD. 

   
  µc µn µ'   µo ∆µ 

X 0.7059 0.0003 0.7056 
 

0.0001 1.699118198 

Y 1.0754 0.0027 1.0727 
 

0.0005 
 

Z 0.2924 0.0926 0.1998 
 

1.3132 
 

Total 1.3192 0.0926 1.2266 
 

1.3132 
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Dipole moment of DTF-WITH SIDE CHAIN-B97D 
 

   
  µc µn µ'   µo ∆µ 

X 1.223 -0.0037 1.2267   3.0085 6.850948656 

Y -4.8999 0.0283 -4.9282   1.0983   

Z 2.0708 0.1426 1.9282   4.6562   

Total 5.4583 0.1454 5.3129   5.6514   
	  
	  
	  

Dipole moment of DTF-WITH SIDE CHAIN-CAM-
B3LYP 

   
  µc µn µ'   µo ∆µ 

X 0.1018 0.0001 0.1017   1.8694 4.439269126 

Y 1.499 0.0003 1.4987   2.3545   

Z -0.3332 0.1109 -0.4441   3.5371   

Total 1.539 0.1109 1.4281   4.6421   
	  
	  

Dipole moment of DTF-WITH SIDE CHAIN-
wB97XD 

   
  µc µn µ'   µo ∆µ 

X -0.0031 0.0003 -0.0034   1.772 5.721104649 

Y 2.6821 0.0027 2.6794   -0.1716   

Z 0.6288 0.0926 0.5362   5.1677   

Total 2.7548 0.0926 2.6622   5.4658   
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