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ABSTRACT 

Insular Newfoundland woodland caribou (Rangifer tarandus) have experienced 

tremendous population declines since the early 2000s, attributable to density-dependent 

processes mediated largely by predation. Given the diversity of island predators (black 

bears, coyotes, lynx and bald eagles), caribou are thought to perceive and react to the 

different predators in a manner that accordingly minimizes the probability of death and 

maximizes benefits of fitness-enhancing activities. The presence of predators requires 

prey species to divert energy resources from foraging and feeding behaviours to vigilance 

and predator avoidance behaviours. This study was designed to identify and describe 

caribou behavioural responses to predator encounters. Experimental approach trials 

(n=137) were employed in the calving region of the Middle Ridge caribou herd (central 

Newfoundland) in order to simulate different predator visual cues and to elicit 

corresponding caribou flight responses. Approach trials encompassed the time period 

when calf mortality by predation is highest. The flight initiation distance of caribou (the 

distance between approacher and caribou at the moment of initial flight) was found to 

differ in accordance with the colour of clothing (tan or black) but not the movement mode 

(walk or crawl) employed by human experimenters. Flight initiation distance was greater 

in response to black approaches and was greatest during the two week calving period 

from late May to mid June. There was little evidence that vegetation resources influenced 

the decision to remain or flee; however this finding may reflect the calving range fidelity 

of caribou to areas of consistent forage quality. This study yields important findings 

concerning variation in predator avoidance behaviour of caribou in response to historical 
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(i.e., black bear, Ursus americanus) and novel (i.e., coyote, Canis latrans) predators. 

Differential behavioural responses to predators are particularly important to understand as 

rapidly growing anthropogenic landscape development and use is leading to increased 

predator encounters. 
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1 General introduction 

1.1 Background of caribou antipredator behaviour in Newfoundland 

In Canada, most caribou (Rangifer tarundus) populations are in decline and many 

are at record low numbers (EC 2011, Festa-Bianchet et al. 2011). The need to understand 

the mechanisms contributing to wide-spread changes in caribou persistence becomes 

particularly poignant considering that the majority of caribou and reindeer (Rangifer 

tarandus) populations studied globally are reported to be in decline (Vors and Boyce 

2009). Although many caribou populations fluctuate on multi-decadal timescales, 

reflecting changing vegetation availability and predation pressure, recent abundance 

changes are further attributed to a combination of pressures from increased human 

activities and climate change (Festa-Bianchet et al. 2011). These additional pressures 

raise concerns over whether caribou populations will be able to recover from current 

declines.   

The lethal effects of predation are well-recognized factors in caribou population 

changes (Bergerud and Elliot 1986, Seip 1991, Hayes et al. 2003, Wittmer et al. 2005).  

However, predators also alter the fitness of prey through non-lethal effects by 

displacement of prey from their preferred habitats, and activities. To maximize 

reproductive fitness, prey must make trade-off decisions between energy allocation 

towards predation evasion and acquiring adequate resources. Antipredator behaviours 

enhance fitness of prey when they allow prey to avoid death and do not greatly interfere 

with other energetically favourable activities (Lima and Steury 2005). Likewise, foraging 

and rest activities enhance fitness when predation does not result. The optimal point at 
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which to shift from foraging and rest behaviours to antipredator behaviours (Cooper and 

Frederick 2007) depends on a suite of biological factors, including breeding status, habitat 

and predator lethality (i.e., the probability of being killed on contact). Predator-prey 

interactions are dynamic and predators can stimulate phenotypic changes in prey life 

history traits, altering prey development, morphology, physiology and behaviour (Preisser 

et al. 2005, Blumstein 2006). These trait changes can have stronger effects on population 

fitness than direct mortality effects (Preisser et al. 2005) and may also have ‘spillover’ 

effects on other members of the ecological community (Peacor and Werner 1997, Preisser 

et al. 2005, Sih et al. 2010). The far-reaching consequences of non-lethal predator-prey 

interactions clearly merit consideration in ecosystem conservation research and 

management efforts. 

On insular Newfoundland, caribou have declined island-wide by 66% since the 

early 2000s, mediated largely by unprecedented calf mortality rates (Weir et al. 2014). 

Predation is the primary proximate cause of calf mortality in Newfoundland where 

caribou face a diverse spectrum of predators including black bears (Ursus americanus), 

bald eagles (Haliaeetus leucocephalus), lynx (Lynx canadensis) and most recently, coyote 

(Canis latrans). In the last 30 years, Newfoundland caribou have also exhibited decreases 

in body size, antler size and birth weight suggesting limited access to food resources 

mediated by density-dependent and climate change effects (Mahoney et al. 2011, 

Trinidade et al. 2011, Weir et al. 2014). These physical changes may also be augmented 

by predator-induced costs of heightened vigilance and flight, diverting time from foraging 

and imposing high energetic costs on these caribou herds.  
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Predators induce energetically significant behavioural changes in prey; energy 

needs are compounded for individuals that are energetically invested in breeding, 

gestation, lactation, or other demanding conditions. Calving season marks a period of 

high energetic stress for caribou cows as parturient cows need to find sufficient forage to 

recover depleted body mass following the winter season, to sustain lactation, and to 

maintain antipredator behaviours necessary to protect vulnerable offspring (Taillon et al. 

2012). Caribou calves are most susceptible to predation mortality during the first 6 weeks 

after birth (Bergerud 1971, Lewis et al. 2014, Weir et al. 2014). Trade-offs between 

antipredator behaviour and resource acquisition may be markedly apparent during this 

critical period, particularly in parturient females.  

1.2 Scale of behaviour 

Individuals alter their behaviour to dampen the effects of fitness-diminishing 

pressures such as predation, for example, by spatially and temporally segregating 

themselves from ranges occupied by predators. In caribou, large scale spatial segregation 

from predators occurs when some herds migrate annually over hundreds of kilometers, or 

on a medium scale (1 to 100km) when caribou choose habitats different than predators or 

alternate prey species, thereby reducing their chance of encounter with predators 

(Bergerud and Page 1987, Seip 1991, James et al. 2004, Briand et al. 2009). On a fine 

scale (less than1km), prey respond to risk or disturbance in a trade-off fashion, deciding 

either to continue ongoing activities, or actively increase the distance between themselves 

and the perceived threat (Lima and Dill 1990, Frid and Dill 2002, Corcoran 2013). The 

way in which non-lethal predator interactions influence the energy allocation of prey, via 
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resource use and shifts in activities, is a concept referred to as ‘the ecology of fear’ 

(Brown et al. 1999, Kotler and Brown 2007). Since the 1980s, with the surge of advances 

in technologically mediated research methods, disturbance studies have largely shifted 

focus from local scale aspects to regional scale aspects of behaviour (Vistnes and 

Nellemann 2008). In fact, comprehensive understanding of ecosystem components, such 

as caribou antipredator behaviour, requires observational and experimental techniques at 

multiple scales in order to understand the consequences of disturbance (Syms and Jones 

1999). This study focuses on the fine scale behavioural responses of caribou to predation 

risk and considers the findings within context of broader disturbance trends. 

1.3 The economic hypothesis and optimal flight theory   

The economic hypothesis predicts that animals adjust their antipredator flight 

reactions in a manner that maximizes benefits and minimizes costs (Ydenberg and Dill 

1986, Figure 1.1). The moment of flight should be optimized to economize energetic 

costs associated with fleeing and abandoning fitness-enhancing opportunities, but also to 

reduce the possibility of death or fitness-diminishing injuries (i.e., optimal flight theory, 

Cooper and Frederick 2007).  



5 
 

 

While many flight theory models consider all predator encounters to be lethal at 

contact (i.e., when distance = 0 between predator and prey), some predator-prey 

interactions, in fact, result in an escape or non-lethal injury (Cooper and Frederick 2007). 

The degree of threat varies with unique combinations of predator and prey species as well 

as predator and prey individuals (Cooper and Frederick 2010). Prey in multi-predator 

communities should detect and respond to distinct predators accordingly; prey with 

appropriate responses for one predator, but not others, may be at a selective disadvantage 

(Blumstein 2006). It is worth noting that actual risk may differ from a prey animal’s 

Figure 1.1 Hypothetical reaction distances of prey under the influence of a predator. 

The dotted line represents the optimal reaction distance where prey maximize benefits 

in relation to costs of both fleeing and remaining (adapted from Ydenberg and Dill 

1986). 
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perception of risk and may result in early or delayed flight (Sih et al. 2010). Less-than-

optimal flight may occur, for example, in encounters with novel or unfamiliar predators. 

A number of interacting factors contribute to the overall perceived risk of a threat 

and the optimal distance at which an animal will flee from a predator (Blumstein and 

Bouskila 1996, Frid and Dill 2002, Stankowich and Blumstein 2005). Factors may 

include: the structure of the environment (e.g., habitat features, distance to safety, food 

availabilty), social factors (e.g., group size, presence of vulnerable group members), the 

distribution and abundance of predators, predator features (e.g., behaviour, appearance, 

intent), and individual factors (e.g., experience with predators, satiation, body condition). 

Furthermore, these factors can vary with season, and in consequence, can underlie 

seasonal variation in antipredatory responses (Stankowich 2008). To provide examples, 

groups that are more vulnerable to predation (e.g., groups containing calves) may require 

more time to coordinate escape responses and, therefore, should initiate a flight response 

sooner (or a greater distance away) from the threat. On the other hand, groups which 

benefit from remaining at a site longer (e.g., due to high quality of forage or energetic 

stress) are expected to initiate flight at a shorter distance from the threat.  These shifts in 

behaviour, in the face of conflicting objectives, represent trade-off decision making and 

serve to maximize fitness (Dill 1987). Due to numerous possible interactions between 

factors and the relative strengths of individual factors, prediction of optimal flight 

distances can be complex. There is little consensus in the literature regarding which 

variables are most important in predicting ungulate life histories (Weladji et al. 2002), but 
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a few variables, such as calf presence, habitat, season, and group size, do appear 

recurrently in the literature as influencers of ungulate antipredator responses.  

Little is known about the perceived risk of specific predators to caribou in 

Newfoundland as no prior studies have addressed this topic directly. The current 

mammalian predator guild of Newfoundland caribou lacks wolves (Canis lupus), the 

primary predator of most caribou populations elsewhere, but consists of black bears, lynx 

and coyotes. Black bears and lynx, like caribou, are indigenous to the island of 

Newfoundland, but coyotes have only expanded their range to the island within the last 

30 years (Blake 2006). In the absence of wolves, it is uncertain how important bear, lynx 

and coyote have been in shaping the antipredator behaviours of Newfoundland caribou. 

Further, the manner in which caribou perceive newcomer coyotes is unknown – perhaps 

as high-risk canid threats, akin to their wolf predecessors, or rather as unfamiliar, baffling 

but benign creatures, or somewhere between these two extremes.   

It is expected that caribou modify their antipredator responses as influenced by the 

cues of different predators. Caribou groups should react earlier to cues perceived as more 

threatening. Vulnerable caribou groups (e.g., those with young calves) should react most 

quickly to threatening cues and stronger antipredator responses should be apparent during 

the calving period when vulnerable calves are most abundant (Stankowich 2008).  

Furthermore, caribou antipredator responses may in part be mediated by environmental 

constraints, particularly forage and habitat quality (Tyler 1991, Lima 1998, Frid and Dill 

2002 and references cited within), which affect the costs of remaining at or fleeing from a 

site.  
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1.4 Overview of study 

The economic hypothesis is used in this study as a framework to formulate 

predictions and to streamline analyses (Ydenberg and Dill 1986, Frid and Dill 2002). The 

primary objectives of this study are to: 

1) determine whether caribou adjust their antipredator behaviours in response to visual 

cues representative of different predators; 

2) determine if the strength of caribou antipredator responses changes throughout the 

calving season; and 

3) establish whether aspects of vegetation and habitat are related to caribou antipredator 

responses. 

Wild caribou herds were approached by a human researcher to elicit antipredatory 

reactions.  Each approach simulated different predator cues by varying the colour of the 

aproacher clothing (black or tan) and the movement of the approach (walking or 

crawling). The distance between caribou and researcher at the first sign of overt alert 

behaviour (alert distance), immediately before flight (flight initiation distance), the 

distance interval between the alert and flight distances (assessment interval distance), as 

well as the distance caribou moved away from their original location were measured and 

used to evaluate the perceived risk of threat (see Chapter 2). Differences in alert, flight, 

assessment and distance moved measures allow inference of a prey’s perceived risk of an 

encounter. These responses are relatively simple measures to obtain through systematic 

approaches. Flight initiation distance, in particular, is widely used to quantify perceived 
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risk in many species and habitats (Tarlow and Blumstein 2007). Alert distance (AD), 

flight initiation distance (FID), distance moved (DM) and assessment interval distance 

(AID) were used as response variables to test the following predictions:  caribou groups 

will have longer AD, longer FID, longer DM and shorter AID when: 1) encountering 

stimuli which more closely approximate local lethal predators, 2) groups are comprised of 

vulnerable group members such as calves and energetically stressed individuals, and 3) 

immediate forage quality and availability is low. It should be noted that the interpretation 

of overt alert behaviours in ungulates is a contentious topic in itself – it may be the 

distance at which caribou first become aware of an approaching threat or first signal 

awareness of an approaching threat. For the purposes of this study, I do not attempt to 

tease apart these finer points since, in either case, overt alert behaviour indicates 

awareness of the approacher. 

While it is useful to understand behavioural responses to isolated factors of 

interest, realistically, ecological systems are complex, dynamic, and rarely involve a 

single predator. An intricate network of individual and interacting ecological factors and 

processes are likely responsible for caribou flight responses, with some factors being 

more influential than others. To account for the stochastic nature of ecosystems, this 

study uses information theoretic analyses to allow consideration of numerous ecological, 

social and geographical variables in conjunction with the experimental variables (i.e., 

simulated predator cues) of interest. Hence, the above predictions are assessed via 

traditional hypothesis testing (e.g., 2-way ANOVA) and are also considered 

simultaneously within predetermined, biologically-relevant, multiple regression models. 

The complete model sets, relevant hypotheses and model selection process are described 
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in Chapter 2 (section 2.2.4). Models cannot fully describe all of the ecological processes 

influencing caribou flight responses; however, some models may highlight important 

influential factors of Newfoundland caribou antipredator responses to be considered in 

future research and management.  

Field research was carried out in the interior of central Newfoundland on the 

Middle Ridge (MR) caribou calving grounds. The region is characterized by areas of vast, 

open-habitat, bog and fen complexes, interspersed with tracts of dense forest. Data 

collection occurred in open areas where lakes, ponds, bogs, fens and low ridges are 

common (Figures 1.2, 1.3). Research was conducted in the late spring and early summer 

of 2011 (May 19 - July 18), just prior to the initiation of calving until the caribou 

dispersed across their late summer range. Newfoundland caribou are seasonal migrants, 

moving relatively short distances between seasonal ranges. During the late spring and 

early summer, caribou spend significant time aggregated in open calving territory, with 

calving usually occurring within 10 days in late May and early June (Soulliere 2008). The 

majority of calf mortality (over 80%) occurs within 12 weeks of calving (Trinidade et al. 

2011). Summer is a period of high predation vulnerability for calves and, due to caribou 

social nature and parental investment, a period during which antipredatory responses in 

caribou should be most evident. 
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Figure 1.2 Aerial view of habitat features at the Middle Ridge study site. Note the 

extensive, relatively flat and open bog habitat interspersed with small ponds and forested 

areas. 
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Figure 1.3 Photograph showing habitat features of the Middle Ridge calving study site. 

Note the open, hummocked landscape and mixed plant composition of shrubs, 

graminoids, mosses and lichens. 

 

This study examines behavioural responses of Newfoundland caribou in context of 

non-lethal predator-prey interactions (a component rarely addressed in comprehensive 

predator-prey studies) in a multi-predator ecological community. Experimental 

approaches are used to elicit responses to various simulated predator stimuli, and 

responses are measured and considered in context of relevant environmental factors. 

Research questions, predictions and project design were guided by various existing 

hypotheses and ideas pertaining to predator-prey interactions (i.e., Economic hypothesis: 

Ydenberg and Dill 1986, Risk-disturbance hypothesis: Frid and Dill 2002, Optimal flight 

theory: Cooper and Frederick 2007, and Ecology of fear: Brown et al. 1999).  
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2 Effects of predator cues in predator avoidance behaviour 

2.1 Introduction 

In order to understand variation in caribou antipredator behaviours, there must be 

an understanding of the processes and factors influencing predator assessment and 

antipredator responses. In this section I discuss Newfoundland predators, predator 

features, and environmental variables as factors influencing caribou perception of 

predation risk. In addition, experimental and statistical methods are described. 

2.1.1 Caribou predators in Newfoundland 

Native predators of caribou in Newfoundland are black bears (Ursus americanus), 

lynx (Lynx canadensis) and bald eagles (Haliaeetus leucocephalus) (Trinidade et al. 

2011).  Eastern coyotes (Canis latrans thamnos) represent a novel predation impact since 

their arrival on the island in the mid-1980s and establishment in the mid-1990s, 

concurrent with the beginning of drastic caribou population declines (Parker 1995, 

Soulliere 2008, Mahoney et al. 2011). Extensive collaring and monitoring of caribou 

herds in Newfoundland from 1979 to 1997 and 2003 to 2012 showed that the annual 

survival of older age-cohorts remained relatively high and constant during this period; the 

annual survival of calves, however, declined remarkably (Lewis and Mahoney 2014, Weir 

et al. 2014). The average 6-month survival of calves between 2003 and 2012 was 35% 

(n=959) with the majority of calf deaths occuring within the first weeks and months after 

birth (Lewis and Mahoney 2014). Ninety percent of calf mortalities between 2003 and 

2012 were attributed to predation and examination of calf remains determined that 35% 

of predator related deaths were due to coyotes, 34% to bears, 20.9% to ‘unknown’ 
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predators, 5.5% to lynx and 4.6% to eagles (Lewis and Mahoney 2014, Weir et al. 2014). 

Each of the predators identified in the calf mortality study have unique features, such as 

colour and hunting mode, which may identify them to caribou. Bald eagles are aerial 

predators, lynx are ambush predators, and bears and coyotes can be ambush, coursing or 

stalking predators (Pierce et al. 2000, Soulliere 2008).  

Newfoundland caribou populations offer a unique opportunity to quantify caribou-

predator risk assessment in herds that, since the extirpation of wolves (Canis lupus) in the 

1920s (Maunder 1982), have not experienced canid-type predators until the relatively 

recent arrival of the coyote.  Throughout most of North American and Eurasian caribou 

range, the primary documented predator is the wolf (Seip 1991, Ripple and Beschta 

2012a). With a long shared evolutionary history, wolves have had a major role in shaping 

the antipredator strategies of caribou (Seip 1991).  In some regions of Canada, wolf 

predation is implicated as the limiting factor to woodland caribou survival (McLoughlin 

et al. 2003). However in other regions, predators other than wolves have important 

impacts, such as black bears (Newfoundland: Trinidade et al. 2011), grizzly bears (central 

Canadian Arctic: Gau et al. 2002), lynx (Alaska: Stephenson et al. 1991), coyotes 

(Gaspésie: Crete and Desrosiers 1995, Boisjoly et al. 2010) and wolverine (Alaska: 

Dalerun et al. 2009). The additive effects of multiple predator species may severely limit 

caribou populations, and evolutionary relationships with multiple predators may 

regionally shape caribou behaviours. 

Both bears and coyotes occupy habitat niches, often early successional habitat in 

areas disturbed by anthropogenic activities (e.g. forest cuts, roads, cultivated lands), 

which do not coincide or minimally coincide with caribou habitat niches (Boisjoly et al. 
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2010, Bastille-Rousseau et al. 2011). However, spillover predation into adjacent caribou 

territory or individual specialist predators may contribute to substantial predation or 

interactions with caribou.  

Black bears are large omnivores, most typically characterized by uniform black 

fur and a brown muzzle (Powell et al. 1997). In Newfoundland, black bears are 

significantly larger than those on the mainland, averaging 222 and 395lbs (101 and 

179kg) for females and males, respectively (Mahoney et al. 2001). Black bears are 

considered solitary animals throughout the year, except during the breeding season in 

summer months (Powell et al. 1997) although new technologies are revealing bears, 

including Newfoundland black bears, to be more social than previously thought (Rayl 

2015 personal communication). Black bears give birth in January with cubs leaving the 

den in mid-spring (Powell et al. 1997). The diet of bears is highly variable and shifts 

seasonally with availability of vegetation, ants, fish and mammals (Powell et al. 1997). 

One study shows that black bears preferentially choose areas of high vegetation 

abundance over areas of high caribou neonate encounter probability, likely taking 

advantage of neonates opportunistically during movements between vegetation patches 

(Bastille-Rousseau et al. 2011). Recent studies of black bear movements in 

Newfoundland, however, show that some individuals migrate to caribou calving areas 

prior to caribou parturition suggesting deliberate selection for regions of high calf 

densities and implicating some bears as potential caribou calf specialists (Rayl 2012). 

Black bears may be more deliberate neonate predators than other active predators since 

their annual interval for prey acquisition is limited by hibernation (Garneau et al. 2008). 

Scat analyses of bears in Newfoundland in the summer of 2009 have shown grass, ants, 
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wood and moose to be the most frequently encountered food items, while the occurrence 

of caribou in scat was relatively low in relation to other food items (Zieminski 

unpublished data). 

Eastern coyotes are medium-sized omnivores, tawny-grey in colour, with white or 

light-grey throat and belly, black-tipped hairs covering the back and bushy tail, and 

reddish-yellow long legs, paws and muzzle (Parker 1995). Eastern coyotes, larger than 

their counterparts in southern and western ranges of the continent, typically range in 

weight from 25-40lbs (11-18kg) (Parker 1995). Evidence suggests that eastern coyotes 

are the result of coyote-wolf breeding events during the twentieth century as coyotes 

expanded their range northeastwards (Mastro 2011, Benson et al. 2012).  Eastern coyotes 

may be part of social packs ranging from 2-8 coyotes, but are more characteristically 

known to be solitary or paired opportunistic scavengers (Parker 1995). Breeding coyote 

pairs may be monogamous for many years and establish natal dens late in the winter 

season. In the spring, litters of 4-6 pups are common (Parker 1995, Mastro 2011). The 

food habits of coyotes typically consist of foods which are most readily available in a 

given environment, such as small mammals, ungulates, fruit and other vegetation (Parker 

1995). When actively hunting ungulates, coyotes are typically coursing hunters (Pierce et 

al. 2000).  

Since their arrival in western Newfoundland during the mid-1980s, the eastern 

coyote has successfully expanded its range across the entire insular portion of the 

province, likely due to lack of predators, large litter size, and its adaptive nature. The first 

reported sighting of the coyote was during the spring of 1985 when “wolf-like” dogs were 

seen on the ice near the Port au Port Peninsula (Blake 2006). Their presence was 
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confirmed in 1987 when a road-kill pup near Deer Lake was determined to be that of a 

coyote (Blake 2006), although evidence found at caribou calf kill sites may indicate 

coyote presence as early as the late 1970s (Mahoney 2012 personal communication). Scat 

analyses in Newfoundland have shown snowshoe hare, moose and caribou to be the most 

frequently encountered food items in coyote scats, and the relative prominence of each 

fluctuates with season, with caribou occurring in scat most frequently in winter 

(Zieminski unpublished data 2013, McGrath et al. 2009). 

2.1.2 Predator recognition 

2.1.2.1 Predator cues 

In order to reduce the occurrence of predation, prey animals must be able to 

distinguish predators as a source of threat and be able to adapt predator avoidance 

strategies to corresponding levels of threat. Caribou may have specific responses to 

particular predators (e.g., bear, coyote) or to particular aspects of predators (e.g., hunting 

approach, colour) (Walther 1969, Bergerud 1971, Soulliere 2008). Predator avoidance or 

escape mechanisms effective against accustomed predators may be maladaptive against 

unfamiliar predators (Bergerud 1971).  Prey use predator cues to recognize threats and 

these cues may be general or specific to each predator (Sih et al. 2010). General cues are 

cues which may pertain to numerous predators, such as a size threshold or a novel 

presence, while specific cues are unique to one predator, such as a chemical odor or 

unique patterning (Sih et al. 2010).  

Prey respond most effectively to the cues of their predators where there exists an 

established co-evolutionary relationship (Blumstein et al. 2009, Sih et al. 2010), even 
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where predators have been absent for many generations (e.g., elk respond to reintroduced 

wolves in Yellowstone National Park; Ripple and Beschta 2012b).  Prey that lack an 

evolutionary link with their predators may exhibit weak or inappropriate antipredator 

strategies. Non-native predators tend to be more successful where prey rely on predator-

specific cues and lack recognition of general cues that designate the newcomer predator 

as a threat (Sih et al. 2010). General predator cues allow prey to respond to a wider range 

of predators, but may have severe energetic consequences if potential threats are 

numerous and require frequent response.  

2.1.2.2 Prey detection of predators 

Animals acquire information about predation risk through one or multiple sensory 

modes (Lima and Steury 2005). The choice of which stimulus type to test in an 

experimental antipredator study is not straightforward since careful consideration must be 

given to the physiological ability of an animal to detect the cue and to the information 

derived from the cue (Blumstein and Bousklia 1996). Lizards, for example, may rely 

heavily on chemoreception for detecting predators (Labra and Niemeyer 2004), while 

some avian species differentiate their predators by listening to vocalizations (Adams et al. 

2006).  Some aquatic animals can use chemical cues to determine not only predator 

presence, but also the type, size and diet of the predator (Lima and Steury 2005). The 

challenge of understanding predator detection and assessment becomes more complex 

when the same cues elicit different responses (Blumstein and Bouskila 1996). For 

example, Ramp et al. (2005) found predator scent to incite one macropodid species to 
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engage in predator investigation behaviour, while the same scent elicited aversive 

responses in a sympatric macropodid species.  

It is unlikely that caribou rely exclusively on one sensory mode to detect 

predators, but some cues may be more provocative than others, especially in varied 

contexts. Reindeer herd management, for example, is based largely on the antipredatory 

responses of ungulates -- auditory signals, visual signals, and less often scent markers, are 

used by managers to control herds (Baskin 1974). Variations of whistles and shouts are 

used to calm or move animals, while visual techniques of shape and motion are used to 

achieve threatening stimuli to direct herds (Baskin 1974). Bergerud (1974) documented 

that alert and flight responses of female caribou in Newfoundland were motivated by a 

combination of sight, scent and sound stimuli, but that females were particularly sensitive 

to stimuli during calving season and were observed to consistently flee at long distances 

based only on sight stimuli.  

Auditory cues may provide information about predator presence, distance, 

direction, identity, number and intent (e.g., kudu, Tragelaphus strepsiceros, modify 

vigilance levels in response to the hunting sounds of African wild dogs; van der Meer et 

al. 2012). The hearing capacity of reindeer is similar to other ungulates and ranges from 

70 Hz to 38 kHz at a sound pressure of 60 Pa, making the frequency range ideal for 

detecting the vocalizations of conspecifics at long distances (Flydal et al. 2001), enabling 

Rangifer to acquire information about predators. 

Olfactory cues may provide information about past predator presence and perhaps 

information about age, condition, and diet, but not precise information about the current 

location of a predator (Blumstein and Bouskila 1996). Scent markers, as indicators of 
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predation risk, may also be difficult to interpret in a context where scent could deter other 

predators from the area, reducing overall risk to prey. Most accumulated knowledge of 

Rangifer olfactory capacity is limited to anecdotal observations by hunters, herders, 

hikers and researchers and it is believed that scent alone can trigger flight responses 

(Reimers and Colman 2006). Although it is assumed that scent detection can be 

minimized by approaching caribou groups using a head or cross wind, reindeer in Norway 

showed no differences in responses whether approached upwind or downwind (Reimers 

et al. 2006).  

Visual cues provide the most reliable information of predator presence, including 

information about predator distance, direction, condition, number and behaviour (e.g., 

intent, speed of approach or retreat, activity). Because visual cues provide rich 

information about the probability of predation, visual recognition of predators relative to 

olfactory and auditory recognition is more likely to be experience-independent and 

therefore evolutionarily retained in the absence of predators (Blumstein et al. 2002). 

Vision is the sensory mechanism that usually provides the greatest awareness of stimuli 

far from the viewer’s location, and is thus, often the most effective means of detection of 

predators by prey (Cronin 2005).  Ungulates rely on visual acuity to detect predators, 

particularly in open habitats (Mitchell and Skinner 2003), where visual detection of 

predators may be more reliable than olfactory or auditory cues (Sarno et al. 2008). In 

open habitats, caribou likely gain in their ability to detect threats since sight is not 

obstructed by dense vegetation and terrain features (Reimers et al. 2006). Prey visual 

systems tend to sample broad spatial fields allowing detection of predators from many 

directions (Cronin 2005). In caribou, laterally placed eyes increase omnidirectionality of 
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detection, even while the head is down during grazing (Reimers and Colman 2006). In 

many open terrain ungulates, visual acuity is best in line with the horizon, areas where 

predators are likely to appear (Cronin 2005). Colour vision is not thought to play a large 

role in detection of predators, since spectral properties of scenes, not objects, are 

important in the evolution of general visual abilities (Cronin 2005). However, reindeer are 

known to see near ultraviolet light range and this may influence the manner in which they 

perceive predators by allowing caribou to see enhanced contrasts of certain colours in 

their environment (Hogg et al. 2011). Urine, food and predator fur may all appear more 

highly contrasted against certain environmental surroundings.  

 

2.1.3 Humans as simulated predator models 

Similar to prior risk-assessment type studies (Aastrup 2000, Matson et al. 2005), 

human approaches are used in this study to assess reaction behaviours of ungulates. 

Ungulates pay attention to human approach behaviours (Stankowich 2008) and are 

expected to perceive human disturbances as predation threats (Webster 1997, Frid and 

Dill 2002).  Risk-assessment type responses have been observed in a number of species 

when exposed to non-lethal disturbance stimuli (Frid and Dill 2002). The economic 

hypothesis may therefore explain avoidance of non-lethal human activity, suggesting that 

when disturbed, an animal should follow the same economic principles used by prey 

encountering predators (Frid and Dill 2002).  The distances at which white-tailed deer and 

mule deer demonstrate predator alertness are similar whether approached by humans or 

coyotes (Lingle and Wilson 2001). Ungulates demonstrate perception of variable risk to 
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different approaches by adjusting their flight initiation distance (Stankowich 2008). 

Humans on foot, specifically, are far more provocative to ungulates than other types of 

anthropogenic disturbances (i.e., vehicles, aircraft and noises; Stankowich 2008). 

Although human approaches limit the extent to which study results can be generalized to 

other predators, human approaches are a practical and controllable means to elicit 

antipredatory responses in the absence of reliable predation events (Soulliere 2008).  

2.1.4 Selection of experimental cues 

For this study,  visual cues were used to simulate predator presence since the 

modality of vision is a highly evolved and specialized sensory mode for detecting 

multiple predators (Cronin 2005), and visual cues also provide awareness of predator 

presence and predation risk with the most certainty. The active presence of a persistent 

and dynamic visual cue may also heighten risk responses of prey, making them more 

easily identifiable and measurable for observers.  

Black clothing was used in this study to mimic the appearance of a black bear, 

while tan clothing was chosen to approximate coyote appearance, the two top predators of 

caribou in the region. It is important to note that although the term colour is used 

throughout this paper for ease of discussion, black is not a true colour since black objects 

absorb all the colours of the visible spectrum and reflect none of them to the eyes (Adams 

2014 personal communication). Caribou, therefore, do not distinguish colour differences 

between black and tan objects, but rather differences in luminance, contrast and/or 

spectral properties. 
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Crawling approaches are more similar to a coyote stalking approach and a bear 

ambush attack, since the approacher is more often visually obscured by vegetation and 

terrain features. Walking approaches may simulate the occasional upright posture of black 

bears, but more relevantly, are likely more detectable due to the approacher appearing 

taller and larger.  Bergerud (1971) found that he could elicit aggressive behaviour from 

female caribou with calves in Newfoundland when he approached them by crawling as 

opposed to walking, suggesting that Newfoundland caribou can distinguish between 

different approach types and assign different levels of risk.  

Colour-movement combinations which resemble highly threatening predators 

should elicit stronger antipredator responses.  The walking-tan combination should be 

perceived as a novel stimulus to prey animals of the region, since insular Newfoundland 

lacks naturally-occurring, upright and tan-coloured predators. Caribou have no 

evolutionary history or extensive experience with an upright, tan predator (with the 

exception of encounters with humans in other seasons) and, therefore, were expected to 

demonstrate delayed recognition, delayed assessment, delayed flight or even investigatory 

behaviour in response to the novel stimulus.  An alternate prediction was for caribou to 

respond solely to the cue most important to caribou for predator recognition - either 

colour or movement mode.   

Caribou were approached directly because a more direct approach is thought to 

elicit a greater flight response since it may convey intent to capture the focal animal (Frid 

and Dill 2002, Frid 2003). Anecdotal observations suggest caribou respond less reactively 

when approached at an angle of less than 95 degrees, and in the direction of the group’s 

movement (Mahoney 2011 personal communication), presumably because prey 
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perception of risk decreases when a predator appears to be on a trajectory that bypasses 

the target prey (Stankowich and Blumstein 2005). 

2.1.5 Environmental effects on antipredator responses 

In addition to the features of predators and prey themselves, environmental 

variables influence the responsiveness of prey to predator encounters. For example, 

consider topography and forage. Variation in topography can create micro-niches of 

varied snow-melt and consequently varied vegetation phenology, or can serve as ‘escape 

terrain’, terrain on which predators may have difficulty following (e.g., deep snow, thick 

vegetation or rugged and rocky ground; Gustine et al. 2006). Access to high quality 

forage is important to ungulates for tissue growth and replenishment of body reserves 

following winter (Finstad 2008). A high quality diet is particularly important to parturient 

and lactating females (Cebrian et al. 2008). At northern latitudes, spring and summer 

conditions permit short and intense pulses of plant growth which represent a period of 

nutritionally valuable resources for caribou. This attractive and time-limited resource 

availability may shift caribou behaviour more strongly towards time investment in 

resource acquisition with a higher tolerance for predation risk. Flight initiation distance 

(FID) and fleeing probability increase when prey are at a site that is relatively poor in 

resources (e.g., little food), because the benefits of clinging to a poor resource patch are 

less likely to outweigh the risk of remaining there (see data on waterstriders, Gerris 

remiges, in Ydenberg and Dill 1986).  

With an assortment of native and novel predators, each with a suite of 

distinguishing features, Newfoundland caribou likely perceive threat variably in each 
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unique predator encounter and by using a variety of sensory modalities. This study uses 

experimental human approaches to assess caribou risk assessment of black bear-like and 

coyote-like visual cues. Caribou responses are considered in context of biologically 

relevant environmental variables. 

2.2 Methods 

2.2.1 Study area and subjects 

Field studies were conducted in the northern portion of the Middle Ridge (MR) 

calving grounds (located approximately 48°12’N, 55°22’W), where terrain is categorized 

as a Central Newfoundland Forest Ecoregion (Damman 1983). The entire MR study area 

occupies 13,369 km
2
 and includes the provincial Bay du Nord Wilderness Area and the 

provincial Middle Ridge Wildlife Reserve, which cover 22% and 4.5% of the total study 

area, respectively. Data collection occurred in open areas where lakes, ponds, bogs, fens 

and low ridges are common. Forested regions consist largely of balsam fir (Abies 

balsamea) with dense moss understory (Hylocomium splendens and/or Pleurozium 

schreberi), or in drier areas dwarf shrub heath, black spruce (Picea mariana), some white 

birch (Betula papyrifera) and pure trembling aspen (Populus tremuloides).  Some areas 

are composed of raised bogs where unique compositions of Sphagnum flavicomans, S. 

imbricatum, Carex exilis, Aster nemoralis and Myrica gale occur (Damman 1983). Plant 

communities of these regions consist largely of ericaceous dwarf shrubs, mainly sheep 

laurel (Kalmia angustifolia), Labrador tea (Rhododendron groenlandicum), blueberry 

(Vaccinium angustifolium/boreale/myrtilloides), leather leaf (Chamaedaphne calyculata) 

and crowberry (Empetrum nigrum), with patches of stunted larch (Larix sp.), black spruce 
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and balsam fir. Cladonia spp. lichens and Sphagnum spp. mosses are common (Trinidade 

et al. 2011). Some regions of the study area have moderate tracts of old burned forest. 

The mean elevation for the MR region is 200 m.a.s.l., with late spring and early summer 

(May-July) mean temperatures of 11.6ºC, and mean precipitation of 81.2 mm (based on 

climate data obtained from Environment Canada for all years on record for Gander 

International meteorological station from 1937-2011). The 2011 season of study, was 

slightly cooler and markedly wetter than overall means for the region at temperatures of 

10.8 ºC and mean precipitation of 143.3mm; 87.7% of experimental trials occurred during 

overcast or fog conditions. 

During the course of the field season, numerous bald eagles were sighted in early 

June, and eight bears were observed on seven occasions throughout the field season. No 

lynx or coyotes were observed directly, although coyotes were heard in one instance and 

scat and tracks of both coyotes and lynx were encountered. In addition to natural 

predators, the Middle Ridge herd is subject to hunting pressure outside of the study field 

season. Human presence was typically absent in the study area during the calving season 

but caribou may have experience with humans (e.g., hunters, hikers, photographers, 

vehicle traffic) and domestic animals (including dogs) during other seasons. In some parts 

of the calving range there is all-terrain vehicle (ATV) access, although no ATVs were 

observed or heard over the course of the study. Occasional low-flying planes and 

helicopters were heard and seen. One highway with moderate traffic on the western edge 

of the study area was a source of noise in some parts of the calving range. Concurrent 

with this study, experimental trials were being carried out in the southern portion of the 

MR study area with the purpose of diverting caribou predators to artificial food sources in 
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order to reduce neonate predation (Lewis et al. 2014). The two study regions are 

separated by approximately 50 km, and therefore, are not thought to bear significant 

influence on each other. There is no indication from telemetry data of bear movement 

between MR North and MR South areas (Soulliere 2014 personal communication).  

Field sites were accessed by helicopter or by vehicle and then on foot from ATV 

trails. Three remote campsites were used during the course of the field study. Locations 

for remote camps were chosen based on their proximity to high densities of caribou (as 

assessed aerially on the day of helicopter drop-off). A cabin was used when caribou were 

aggregated within driving and/or walking access.  

Calves were first observed by researchers on May 27
th

 of the study year. Calves 

were identified by their small size and females were distinguished from immature males 

by dark vulva patches, presence of udder, or association with a calf. The population size 

of this herd is estimated at close to 10,500 animals (Lewis et al. 2014). Since caribou 

spend significant time in groups during late spring and early summer and any individual 

caribou within a group may detect and respond to predation threat, alerting other 

members of the group, the sampling units of interest were social groups (one or more 

adult caribou obviously in a social aggregation, within at least 75m of each other; 

Soulliere 2008) of the Middle Ridge herd.  

2.2.2 Experimental trials 

Caribou groups were found on foot each day by walking from a base camp or 

from a helicopter drop-off point. A typical approach event began by locating a group 
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ideally a distance of 200-500m away, but never closer than 125m in order to ensure that 

the duration of approach was adequate to allow for perception of and response to the 

stimulus. Other flight response studies suggest that Rangifer do not behaviourly respond 

to human approachers farther than 450m away (Nieminen 2013). Once located, groups 

had to meet the following requirements in order to be considered appropriate for an 

approach trial: 1) First, caribou must have had an unrestricted view of the approacher, and 

vice versa, for a minimum of half the duration of the approach. In trials where vegetation 

and terrain properties obstructed visual contact for more than an estimated 50% of the 

approach duration, or if the approacher was not able to detect alert and flight responses, 

the trial was abandoned. Some tolerance for interrupted visual contact was allowed since 

there was always a second observer to verify caribou responses and because actual 

predators, especially stalking predators, are likely to remain out of visual detection range 

of caribou for even greater durations. 2) Groups could not have been demonstrating alert 

responses (e.g., erect posture oriented toward approacher, tail signaling; see Figure 2.2) at 

any time previous to the beginning of approach. If there was a choice of groups to 

approach, researchers chose groups which were an ideal distance away, downwind, and 

from which researchers were offered some visual cover at their trial start position.  

Upon selection of a suitable group, video recordings were made for 5 minutes 

prior to the start of the approach from the start position to document pre-disturbance 

behaviour. During this time, groups were scanned by two observers using binoculars and 

the following parameters were recorded:  date,  group size, group composition (sex and 

age class of individuals), number of vigilant caribou in group (number of caribou in group 
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with head erect above shoulder level, Soulliere 2008), habitat type (sparse forest, dense 

forest, forest regrowth, barren, bog/fen), topography (description of terrain between 

approacher and caribou group: flat, moderate, steep), gain (difference in height between 

approacher and caribou during approach: positive, no change, negative, or combination), 

ambient temperature (°C), cloud cover (mostly clear, partly overcast, mostly overcast and 

fog), wind direction (N, NE, E, SE, etc.), wind speed (rating of 0 to 10 on the Beaufort 

scale), estimated average distance between adult caribou within group (m), estimated 

average distance between cow and calf pairs (m), group activity (at rest, active, rest and 

active, travel), estimated distance to dense vegetative cover (more than 1.5 m in height), 

and insect harassment (number of Culcidae, Simuliidae and Tabanidae flies 

instantaneously counted on the observer’s forearms or apparatus, recorded to a maximum 

of 10). The maximum insect harassment score was also assigned when Oestridae fly (i.e., 

ectoparasitic warble and bot flies) presence was obvious by caribou behaviour (e.g., head 

drooping and head shaking; Morschel and Klein 1997). Variables are described in more 

detail in sections 2.2.4 and 2.2.5. 

The approach used in a given trial was one of four pre-assigned approach types 

chosen by block randomization. The approach types were either walking or crawling, 

further characterized by black or tan clothing (Figure 2.1). Clothing worn during 

approaches were a black or tan coloured cotton or fleece sweatshirt with the hood 

covering the head, black or tan rain pants, black or tan gardening or winter gloves, and a 

bug net covering the face of the approacher.  The face was covered with bug netting to 

avoid potentially influencing caribou perception of risk due to eye contact or other facial 

features (Burger and Gochfeld 1993).  
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Figure 2.1 Four experimental approach types: walk-black (B), crawl-black (C), walk-tan 

(E) and crawl-tan (F), used to approach and provoke predation-risk responses in caribou 

groups. A and D show black bear and coyote,  top predators of the Middle Ridge study 

region, for visual comparison. 

 

Groups were approached directly, continuously and at a constant pace, with the 

approach aimed towards the geometric centre of the group (Soulliere 2008). Approach 

speeds varied somewhat between trials due to terrain ruggedness. Walking speed was 

typically near 0.85m/sec, while crawling speed was closer to 0.45m/sec. For the duration 

of the approach, the approacher continuously scanned group members to note changes in 

behaviour. Immediately upon detecting the first alert response (Figure 2.2) from any 
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group member, the approacher discretely dropped a distance marker and continued to 

advance towards the group without pause (Figure 2.3).  

 

Figure 2.2 Alert behaviours of caribou observed during the 2011 season of study:  (A) 

gaze directed towards observer, (B) erect tail, (C) sniffing,  (D) alert pose (individual 

indicated by an arrow) characterized by a stiff posture with spread hind legs. In all 

photographs caribou have erect ears - also a notable alert behaviour.  
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Figure 2.3 Diagram of distance measurements recorded during approach trials: A to 0 is 

the beginning distance, B to 0 is the alert distance, C to 0 is the flight initiation distance, 0 

to D is the distance moved, and B to C is the assessment interval distance. 0 represents 

the geometric centre of the target caribou group prior to provocation.   

 

Upon detection of the first flight response (Figure 2.4), another flag was dropped and 

the advance continued until the approacher arrived at the centre of the original location of 

the caribou group (Figure 2.3). A range finder (Bushnell Elite 1500) was used to measure 

the distances from the original location of the group to the alert and flight distance 

markers, and to the beginning distance of the approach (Figure 2.3). The distance moved 

by caribou until stopping was visually estimated. 
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Figure 2.4 Flight behaviour of caribou following provocation by a human approacher: (A) 

unsynchronized group flight with individuals moving in different directions (the calf in 

the photograph may be searching for its mother), (B) a calf-at-heel of fleeing mother, (C) 

a male with head elevated during flight, possibly for enhanced sensory monitoring of 

approacher, (D) a group of adult females in synchronized flight, moving together in one 

direction. A female in the group centre is performing an excitation leap, a behaviour 

thought to deposit a warning scent from the interdigital glands onto the ground (Müller-

Schwarze et al. 1979, Naughton 2012).  
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Four response distances (Table 2.1, Figure 2.3) were recorded for each approach trial. 

Terminology and definitions used to describe wildlife response distances vary between 

studies (e.g., ‘flight distance,’ ‘flight initiation distance,’ ‘approach distance,’ ‘reaction 

distance,’ ‘escape distance,’ and ‘flush distance’). To avoid confusion, response distance 

terms used in this paper follow terminology used in the ungulate flight response meta-

analysis paper by Stankowich (2008), as originally defined by Taylor and Knight (2003). 

The only exception is the relatively recently described ‘assessment interval distance’ 

term, which is used as defined by Cooper and Blumstein (2014) (undefined in Reimers et 

al. 2006; referred to as ‘flight lag’in Soulliere 2008; and substituted by similar measures 

such as ‘assessment time’ in Stankowich and Coss 2006, and ‘probability of assessment’ 

in Reimers et al. 2009). 
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Table 2.1 Definitions and implications of caribou response measures. 

Response  Definition Implication 

 

Alert 

distance 

(AD) 

 

The distance (m) between the 

approacher and caribou group 

when the first animal shows alert 

behaviours in response to the 

approach stimulus.  

 

 

The distance at which caribou either 

become aware of an approaching threat 

or signal awareness of an approaching 

threat. 

Flight 

initiation 

distance 

(FID) 

The distance (m) between the 

approacher and caribou group 

when the first animal flees in 

response to the approach 

stimulus.  

  

The distance at which caribou perceive 

the threat of an approacher to outweigh 

the benefits associated with their 

current resource use or activity. 
 

Assessment 

interval 

distance 

(AID) 

The difference (m) between alert 

distance and flight initiation 

distance.  

During this interval, caribou monitor 

approaching predators and possibly 

assess risk by weighing the trade-offs 

between fleeing and remaining as per 

FID economic model scenarios of 

(Cooper and Blumstein 2014).  
 

Distance 

moved 

(DM) 

Distance (m) fled by disturbed 

caribou from the initial site until 

coming to a stop. This measure 

was visually approximated. 

The distance moved may correspond to 

the degree of perceived threat of the 

approacher. 
 

 

Measures of distance are predominantly used, instead of measures of time, due to 

variability in approach velocities and to enhance the comparability of this study’s findings 

in the contexts of both the optimal flight theory (Cooper and Frederick 2007, Cooper 

2009) and similar wildlife response studies. AID is the only dependent variable 

additionally analyzed in terms of time since it is the only measure of an interval of 

behavior. Because AID occurs relatively infrequently in the flight theory literature, 

describing it in terms of both distance and time may help better define its role in flight 

theory. Occurrences of post-flight return behaviour (known as “curiousity return 
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behaviour” in earlier studies, e.g., Aastrup 2000) were also recorded and were considered 

to occur when caribou, following flight, returned some distance towards the approacher 

while remaining alert to the approacher’s presence, in some cases circling the approacher 

and sniffing the air (Aastrup 2000).Video recordings were made for the duration of the 

approach, and when possible, for any post-disturbance behaviour and post-flight return 

behaviour. Videos were used to measure the duration of approaches, verify observations 

and for additional behavioural analyses of vigilance (Worthman 2014).  

After any successful or unsuccessful approach of a caribou group, a new course 

was set away from the group, opposite the group’s direction of travel in order to avoid 

repeat encounters with the same caribou later in the day. Due to the highly mobile nature 

of caribou, the large population in the study region, and flux nature of social 

aggregations, the risks of pseudo-replication and habituation were considered to be low.  

Observations and approach trials were conducted over 60 days (May 20 – July 18, 

2011) with up to 6 successful attempts in a day.  Trials occurred as early as 0910h and as 

late as 1836h (median 1300h). 

2.2.3  Vegetation surveys 

In order to assess the quality and abundance of forage, vegetation plots were 

surveyed in areas where caribou were observed prior to approach trials. Four 1m² plots 

were laid out 15m from the estimated centre of the geometric distribution of the target 

caribou group prior to disturbance, in each of the cardinal directions (Figure 2.5). This 

resulted in a square site measuring 21.2m
2

. The percent foliage cover of major plant 

groups were visually estimated within each 1m² plot. Foliage cover was defined as the 
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percentage of the sample plot occupied by the vertical projection of foliage and branches 

(Walker and Hopkins 1990). For example, shrubby or herbaceous cover would include 

the area of the shadow cast by plant leaves and stems if the sun were directly overhead. 

Moss and lichen cover estimates were essentially percent ground cover estimates since 

these groups lack vertical growth. This means that total cover of a plot could surpass 100 

percent since there was overlap of plant groups at various heights. Estimations were fit 

into cover classes with assigned ranges (e.g., A<2%, B=2-5%, C=6-10%, etc.). Cover and 

height estimations were recorded following consensus by two observers. The species 

present at each site were also recorded, as well as the number and height of trees. Plants 

were deemed caribou foods if they had previously been found in caribou scat or rumen 

samples in Newfoundland using available data from between 1987 and 1997 

(Newfoundland and Labrador Department of Environment and Conservation unpublished 

data, Appendix I).  All of the major plant groups recorded included species known to be 

consumed by caribou. Average cover of plant groups at each site were later calculated 

using the formula: 

Average % cover group A = [ 
𝑡𝑜𝑡𝑎𝑙 % 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 𝐴 𝑖𝑛 𝑎𝑙𝑙 𝑝𝑙𝑜𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑜𝑡𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
 ]  
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Figure 2.5 Photograph of a 1m² sampling quadrant at a vegetation site. 

 

2.2.4 Statistical analysis  

Descriptive statistics were used to summarize the group characteristics of 

approached caribou groups. Analysis of variance between-subjects, was used to determine 

whether the experimental treatments of approacher colour (black, tan) and movement 

(walk, crawl) significantly influenced AD, FID, and AID, and also to assess differences in 

the response variables as a function of season. ANOVAs were followed by Tukey Honest 

Significance Difference tests where applicable. The occurrence of post-flight returns in 

relation to colour and approach movement was tested using χ
2
 analyses. Generalized 

linear model (GLM) analyses were used to further examine the effects of the 
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experimental treatments on caribou antipredator responses in context of relevant 

environmental variables. DM was not analyzed beyond descriptive statistics because it 

was a visually estimated measure and deemed lower in quality relative to other response 

data. GLM model selection was accomplished with the Akaike Information Criterion, 

adjusted for small sample sizes (AICc) described below. Throughout the GLM analyses, I 

distinguish between a prioiri and post hoc hypotheses. I do this to emphasize hypotheses 

developed prior to data collection, guided by the economic hypothesis (i.e., a prioiri 

hypotheses), but to still allow for consideration of other potentially important factors (i.e., 

post hoc hypotheses). 

2.2.4.1 Data screening 

Seven approach trials were removed from the data set because they violated the 

minimum cut-off of 125 m for the beginning distance of approach, reducing the overall 

sample size to N=130. Reported sample sizes vary between analyses according to the 

maximum available data for the given analysis (i.e., some variables were missing or 

uninterpretable for certain trials). Remaining outlying data points were retained in the 

analysis since they may represent extreme, but true, ranges of measured variables. A 

negative binomial error structure was designated for assessment interval data, while a 

Gaussian (normal) distribution was retained for all other data (O’Hara and Kotze 2010).  

 Many measured vegetation characteristics (e.g., height, cover, number of caribou 

foods present, number of species present) were highly interrelated according to principal 

components analyses (PCA). Vegetation variables were reduced to five characteristics 

(average ericaceous shrub cover, graminoid cover, lichen cover, moss cover, and number 
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of caribou food species) with the largest loadings in PCA and accounting for a wide range 

of variability.  

2.2.4.2 Modeling of antipredator responses  

Generalized linear models using R (version 2.12.2 (2011-02-25)) were used to 

evaluate variables as predictors of AD, FID, and AID. This procedure identifies factors that 

contribute to variation in dependent variables by providing parameter estimates, t-values and 

significance levels. In addition to experimental variables, group, habitat, ecological and 

geographical variables were used in the modeling of antipredator responses and are 

summarized in Table 2.2.  

Table 2.2 Explanatory variables used in predator encounter response analyses. Variables 

indicated by a star (*) are literature-supported factors in Rangifer tarandus flight 

initiation distance. 

Category Variable 

(type) 

Abbr. Description or definition 

Experimental 

(predator cue 

simulation) 

Approach 

movement 

(nominal) 

 

approach Crawling or walking 

 

Colour 

(nominal) 

 

colour Black or tan 

 

Group  *Group size 

(continuous) 

 

grp.size Number of caribou in social aggregation of 

more than one caribou (including calves). 

 

*Calf presence 

(binomial) 

calf.p.a Presence or absence of calf caribou 

 

 

Number 

vigilant 

(continuous) 

 

num.vig 

 

Number of caribou in a group displaying 

vigilant behaviour prior to the approach 

event (including calves). 

 

Habitat *Habitat type 

(nominal) 

habitat Sparse forest, barren or bog/fen. 

 

 

Plant group gram.cov Visually estimated horizontal ground cover 
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cover 

(continuous) 

lich.cov 

ericS.cov 

moss.cov 

 

for each of graminoid, lichen, ericaceous 

shrub and moss plant groups (%). 

 

Number of 

foods 

(continuous) 

 

foods Number of caribou food species surveyed at 

a site. 

 

Ecological Insect 

harassment 

(nominal) 

insect.h Number of biting insects counted 

instantaneously to a maximum of 10. 

Maximum score assigned when oestrid flies 

present. 

 

Date 

(continuous) 

 

JD Julian date 

 

*Season 

(nominal) 

n/a pre-calving: week 0 (May 20 – May 26)  

calving: weeks 1- 2 (May 27-June 9)  

post-calving I: weeks 3-4 (June 10-June 23)  

post-calving II: weeks 5-6 (June 24-July 7)   

post-calving III: weeks 7-8 (July 8- July 18) 

 

Wind speed 

(nominal) 

 

wind.spd Classification of 1-12 based on the Beaufort 

scale. 

 

Geographical Topography 

(nominal) 

topog General description of landscape between 

the approacher and target caribou group: 

Flat, moderate, or steep.  

 

Gain (nominal) 

 

gain 

 

Difference in height between approacher 

and caribou during approach (+, 0, -, 

combination). 

 

2.2.4.3 Model set construction  

Burnham and Anderson (2002) strongly advocate for a well-developed set of a 

priori candidate models based on substantial, prior information about the system being 

studied in order to reduce model selection uncertainty. Variable selection and model 

construction were done with flight initiation distance as the response variable in mind 

since the primary objectives of this study were derived from optimal flight theory and 
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because there is much more literature pertaining to flight. These same models were 

applied to AD and AID due to their relationship with FID and because each dependent 

variable evaluates different aspects of caribou response to an approacher (Table 2.1). 

Two candidate model sets, resulting in 22 GLM models, were constructed; 13 

models addressed a priori hypotheses (i.e., hypotheses developed prior to data collection, 

guided by the economic hypothesis) and 9 models explored post hoc objectives (i.e., 

additional hypotheses arising during data collection and analysis). A priori models test 

hypotheses pertaining to predator effects and vegetation effects; post hoc models test the 

influence of various abiotic factors, social group characteristics and relevant interactions 

(Table 2.3). As a first step in creating the a priori candidate model set, the ‘base model’ 

was built using four empirically-established influencers of caribou antipredator 

behaviour: season, calf presence, habitat and group size (see Table 2.3, Model 1). 

Subsequent models built upon the base model variables with different combinations of the 

experimental variables and vegetation variables. Models were compared to the base 

model and against each other to determine improvement. The global model (Table 2.3, 

Model 13) combines all variables and was used to assess error distributions.   
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Table 2.3 Summary of hypotheses tested by each model of the a priori and post hoc GLM 

candidate sets. Model sets were used with each of the following three antipredator 

response variables: AD, FID, and AID.  

Model A priori hypothesis 

1 Season, habitat, calf presence and group size influence antipredator responses of 

caribou. This is the base model.  

2 Colour and approach movement influence antipredator responses of caribou 

above the base model. This is the predator effects model. 

3 Lichen cover influences antipredator responses of caribou above the base model. 

4 Moss cover influences antipredator responses of caribou above the base model. 

5 Ericaceous shrub cover influences antipredator responses of caribou above the 

base model. 

6 Graminoid cover influences antipredator responses of caribou above the base 

model. 

7 The number of caribou foods present influences antipredator responses of 

caribou above the predator effects model. 

8 Lichen cover influences antipredator responses of caribou above the predator 

effects model. 

9 

 

Moss cover influences antipredator responses of caribou above the predator 

effects model. 

10 Ericaceous shrub cover influences antipredator responses of caribou above the 

predator effects model. 

11 Graminoid cover influences antipredator responses of caribou above the predator 

effects model. 

12 The interaction of approach movement and colour influences antipredator 

responses of caribou above the base model. 

13 All vegetation and predator effects variables account for antipredator responses 

of caribou. 

Model Post hoc hypothesis 

14 The number of caribou vigilant in a group influences antipredator responses of 

caribou above the predator effects model. 

15 The interaction between the number of caribou vigilant and group size influences 

antipredator responses of caribou above the predator effects model. 
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16 The interaction between the number of caribou vigilant and season influences 

antipredator responses of caribou above the predator effects model. 

17 The interaction between the number of caribou vigilant and habitat influences 

antipredator responses of caribou above the predator effects model. 

18 The interaction between the number of caribou vigilant and calf presence 

influences antipredator responses of caribou above the predator effects model. 

19 Insect activity influences antipredator responses of caribou above the predator 

effects model. 

20 Topography influences antipredator responses of caribou above the predator 

effects model. 

21 Gain influences antipredator responses of caribou above the predator effects 

model. 

22 
Wind speed influences antipredator responses of caribou above the predator 

effects model. 

 

2.2.4.4 Model selection 

Multiple antipredator response models were evaluated using the Akaike 

Information Criterion (AIC) adjusted for small sample sizes (AICc) and AIC weights (ωi; 

Burnham and Anderson 2002). The AIC, as part of the information-theoretic approach, 

differs from traditional model selection based on significance tests. The AIC approach is 

similar to an optimization scheme that evaluates model terms to minimize model bias 

while maximizing model precision (Gunn et al. 2004). Within each candidate set, the 

models with the lowest AICc values were selected as the most parsimonious and models 

within 2 units of the minimum AICc were interpreted as having strong support (Burnham 

and Anderson 2002). Akaike weights were calculated to gauge the relative contributions 

of models in predicting caribou antipredator responses. Note that the degree of 

significance of model parameters and the AIC criteria do not directly evaluate how well 
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models predict caribou antipredator response, rather they assess models relative to one 

another within a candidate set.  

2.2.5 Overview of variables predicting flight initiation distance 

The selection of which environmental variables to measure and to what detail is 

difficult since there is little consensus in the literature regarding which variables are most 

influential in predicting ungulate life histories (Weladji et al. 2002). While many 

variables potentially predict caribou behaviours, few variables are well-established in the 

literature as prominent factors in antipredator responses specifically in context of human 

approachers on foot. Among the few empirically-supported factors (i.e., calf presence, 

habitat, season, group size), even fewer are consistent in the direction of their reported 

effect (Table 2.4). Variables measured in this study were carefully considered for their 

biological relevance in the context of behavioural response to threat and more 

specifically, within the framework of the economic hypothesis (Ydenberg and Dill 1986). 
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Table 2.4 Supporting literature for the effect of group size, calf presence, season and 

habitat on flight initiation responses of Rangifer when approached by a human on foot. 

(*) indicates studies analyzed in the meta-analysis of ungulate flight responses to human 

disturbance by Stankowich 2008. 

Variable FID (m) Study 

Group size Small >large  Reimers et al. (2006)*  

 Soulliere (2008)  

Large >small Aastrup (2000)* 

 No difference Colman et al. (2001)*  

Calf presence Female groups w/calves > w/o calves Nieminen (2013) 

 Groups w/calves <w/o calves Baskin and Scogland (2000) 

  Soulliere (2008) 

Season Peri-calving>early summer Soulliere (2008) 

 Early summer > late summer Aastrup (2000)* 

 Summer>all other seasons  Reimers et al. (2006)*  

  Nieminen (2013) 

Habitat No effect   Reimers et al. (2006)*  

 

2.2.5.1 Experimental variables: Colour and movement mode 

Colour and movement mode are the experimental variables in this study, 

representing predator cues of interest.  Since beginning this study in 2011, to my 

knowledge one study has been published demonstrating predator appearance to influence 

FID of ungulates (cf. Reimers and Efstetol 2012). Stankowich and Coss (2007) found 

black-tailed deer showed variability in alarm responses (e.g., foot-stomping and snorting) 

to a range of predator and conspecific models, suggesting that ungulate flight responses 

may be influenced by predator appearance.   

There is no direct support for predator movements (e.g., crawling, stalking, 

ambling etc.) affecting FID of ungulates; however, there is evidence to suggest that 

ungulate responses differ in relation to different anthropogenic approach stimuli. 

Stankowich (2008) concluded that humans on foot were more provocative to ungulates 

http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S0006320708002334
http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S0006320708002334
http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S0006320708002334
http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S0006320708002334
http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S0006320708002334
http://www.sciencedirect.com.qe2a-proxy.mun.ca/science/article/pii/S0006320708002334
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than most vehicles and anthropogenic noises, and Reimers et al. (2003) found that wild 

reindeer showed stronger responses towards skiers compared to snowmobiles. Approach 

velocity was found to be positively correlated with response distances; i.e., higher speeds 

invoked greater flight responses (Reimers et al. 2003, Stankowich 2008). It is reasonable 

to conjecture that the diverse movement styles of predators, encompassing differences in 

predator shape, visibility and approach velocity, may trigger variation in ungulate flight 

responses.  

2.2.5.2 Base effects variables: Group size, calf presence, season and habitat 

In a comprehensive review of flight responses in ungulates, Stankowich (2008) 

found group size, calf presence, season and habitat, among other factors, to affect FID of 

ungulates. These four variables were considered most often in ungulate flight response 

studies and were therefore included in all models as ‘base effects’ to reduce overall model 

variability. 

Group size. Stankowich (2008) found a weak but overall tendancy for larger, 

rather than smaller, ungulate groups to show longer flight responses to human 

approachers. Consistent with this finding, Aastrup (2000) found caribou in groups to have 

longer FID or flight thresholds than individuals. In other words, caribou in groups were 

shown to take flight earlier, when approachers were still relatively far away. In contrast, 

Reimers et al. (2006) and Soulliere (2008) found reindeer in southern Norway and 

caribou in Newfoundland, respectively, to have longer FID in smaller groups than in 

larger groups. Colman et al. (2001) found no differences in flight responses of different 

sized groups of Svalbard reindeer. The overall effect of group size on flight responses in 
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Rangifer remains inconclusive, but there is sufficient support to merit further 

consideration of the variable. 

Calf presence. The presence of calves is considered to be the most important 

factor influencing group vulnerability during the summer and is therefore considered in 

all models. Stankowich (2008) showed that in four of five studies involving caribou or 

reindeer, groups with calves reacted to various types of anthropogenic disturbance by 

increasing their FID (aircraft: Klein 1974, Calef et al. 1976, Miller and Gunn 1979; 

human: Bergerud 1974; as cited by Stankowich 2008). Nieminen (2013) also reported 

that groups with calves significantly increased their FID during the summer when 

approached by humans on foot. On the other hand, Soulliere (2008) and Baskin and 

Skogland (2000) showed caribou groups with calves reduced FID in response to human 

approaches. Similarly, Mahoney et al. (2001) (also analyzed by Stankowich 2008) 

showed that snowmobile approaches in Newfoundland produced similar findings. There 

is obvious variability in the direction of flight response in the presence of calves, but 

none-the-less, there is a clear influence.   

Season. Caribou and reindeer are reported to increase FID responses to 

disturbance in early summer, midsummer, calving and winter seasons in the ungulate 

flight response meta-analyses by Stankowich (2008). In response to human approachers, 

Reimers et al. (2006) showed Norway reindeer flight distances were greatest in July, and 

Aastrup (2000) specified that Greenland reindeer were most sensitive during the calving 

period. There are difficulties in ascertaining seasonal trends between studies due to 

differences in seasonal conditions between geographic and temporal localities, and thus 

differences in season definitions (e.g., calving or rutting season may vary in onset and 
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length between Rangifer populations).  During the spring and summer months, group 

composition, group size, calf presence and calf vulnerability change markedly, and these 

changes are largely shaped by the event of calving. In this study, Julian date was used in 

GLM analyses to capture broad seasonal trends in context of other predictor variables and 

for ease of comparison to other studies. After ascertaining the influence of Julian date on 

antipredator responses, season was redefined and analyzed as five categorical periods in 

order to more precisely interpret differences in FID in reflection of changes in caribou 

group dynamics over the course of the Newfoundland spring-summer calving season (see 

variable ‘season’ in Table 2.2) and in relation to date of the first observed calves of the 

study year (May 27
th

). 

Habitat. Stankowich (2008) found weak and heterogenous effects of habitat on 

the flight responses of ungulates; flight responses were greater in open habitats than in 

closed, wooded habitats. However, no effect was found for the influence of habitat on 

flight responses of Rangifer in the only study to consider approach by humans (Reimers 

et al. 2006). The four other approach studies involving Rangifer in the Stankowich (2008) 

meta-analysis involved vehicle or aircraft disturbance and reported an array of response 

outcomes in variably defined habitats (grass > grass with scrub, aircraft: Calef et al. 1976; 

closed > open terrain, aircraft: Miller and Gunn 1979; open > closed terrain, vehicle: 

Horejsi 1981, Tyler 1991; no effect, vehicle: Mahoney et al. 2001; as cited by Stankowich 

2008). There is lack of strong evidence for habitat effects on caribou flight response 

likely due to differing definitions of habitat between studies. Despite this discordance, I 

feel habitat is crucial to consider since caribou use habitat at many scales across many 

seasons. Therefore, even a broadly defined habitat classification tailored to the region of 
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study, may encompass important resource or topographical components which may 

otherwise be unaccounted for.  

2.2.5.3 Other variables in a priori analyses: Vegetation characteristics 

Vegetation plays a role in habitat structure, but also as an energy resource, 

influencing the flight probability of herbivores. Ydenberg and Dill (1986) demonstrated 

that prey weigh the benefits of clinging to a resource patch against the risk of remaining.  

Tyler (1991) found that feeding Svalbard reindeer were less likely to flee from a 

snowmobile approach than reindeer that were lying down and not feeding (lying reindeer 

may also feel more vulnerable).  Aastrup (2000), Reimers et al. (2006) and Stankowich 

(2008) found no direct effect of vegetation on FID of Rangifer, but Stankowich (2008) 

did find evidence for an effect of habitat structure. Based on the theoretical assertion of 

Ydenberg and Dill (1986) for the influence of resource patches on flight behaviour, local 

vegetation characteristics were investigated in more detail.  

2.2.5.4 Variables in post-hoc analyses: Vigilance, wind speed, topography and 

insect harassment  

 A number of variables are known to play a strong role in caribou antipredator 

behaviour (e.g., vigilance, insect harassment), but have no demonstrated effects on FID. 

Conversely, other variables (e.g., wind speed, topography) have been shown to influence 

FID but their mechanism for influencing antipredator behaviour is less clear. These two 

sorts of variables were explored in post-hoc analyses.  

Vigilance. Vigilance is operationally defined and measured as time spent with the 

head raised about shoulder level (Childress and Lung 2003), in the act of being alert or 

aware of ones’ surroundings (Roberts 1996, Treves 2000), and plays a major role in the 
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detection of predators (Hopewell et al. 2005). Vigilance increases fitness by decreasing 

the risk of mortality (Lima 1998, Watson et al. 2007). When the head of an animal is 

raised, the visual, olfactory and auditory organs are raised concurrently, increasing the 

range of the environment that can be observed (Lima and Bednekoff 1999a, Cresswell et 

al. 2003). Although head-up posture may serve additional functions, such as scanning for 

conspecifics (Lung and Childress 2007) and handling food items (Illius and Fitzgibbon 

1994), there is evidence that  more vigilant individuals detect predators more quickly 

(Lima and Bednekoff 1999a).  Head-up posture may comprise only a portion of an 

individual’s vigilance, but is useful in that it is easily identifiable by observers and 

because overt vigilance might be partly motivated by the need to verify a stimulus 

detected while the head was down. Aastrup (2000) interpreted longer flight distance 

responses of Greenland caribou groups as an indication of higher vigilance levels, but 

made no direct measurement of vigilance prior to caribou-observer encounters. Reimers 

et al. (2009) found variation in vigilance levels and flight responses between reindeer 

groups in Norway, but found no evidence to support a relationship between vigilance and 

flight responses. Soulliere (2008), likewise, found no direct relationship between 

vigilance and FID but showed that maternal caribou in Newfoundland showed lower 

levels of vigilance and were the first to run and ran farthest when disturbed. Since none of 

these papers confirm a link between vigilance and flight responses, vigilance was left out 

of primary analyses. However, because vigilance plays a clear role in antipredator 

behaviour, vigilance was considered in post-hoc analyses.  

Wind Speed. Reimers et al. (2006) found reindeer to have reduced FID when 

wind speed was greater. Wind speed was therefore considered in post hoc analyses. 
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Topography. Topographical variability may affect the ability of caribou to 

visually detect an approaching threat, and may influence the level of vigilance and 

antipredatory responses. Aastrup (2000) found no effect of topography on the flight 

responses of Greenland caribou. Reimers et al. (2009), on the other hand, found reindeer 

FID was greater in rugged than in level terrain. Reimers et al. (2011) similarily found that 

reindeer were alerted to approachers at a farther distance on rugged terrain than on level 

terrain and conjectured that reindeer may perceive level terrain as more secure. 

Topography and gain were thus considered in post-hoc analyses.  

Insect harassment. Insect harassment is widely documented as influencing 

caribou behaviours and contributing to energetic and physiological costs (Toupin et al. 

1996, Hagemoen and Reimers 2002, Colman et al., 2003, Bergerud et al. 2008, Hughes et 

al. 2009, Witter et al. 2012, Cuyler et al. 2012). During the summer season, insect activity 

can contribute to reduced Rangifer body condition through direct costs of blood loss and 

immune response, but also through indirect costs of altered activity budgets (Morschel 

and Klein 1997, Hagemoen and Reimers 2002, Colman et al. 2003, Hughes et al. 2009, 

Witter et al. 2012). On the island of Newfoundland, a number of ecto-parasites, namely 

oestrid flies (warble flies ‘Hypoderma tarandi’ and nose bot flies ‘Cephenemyia trompe’), 

are recognized as factors in the summer movement behaviour and energy use of caribou 

(Colman et al. 2003, Hagemoen and Reimers 2002, Witter et al. 2012). The presence of 

only a few adult oestrid flies can provoke intense avoidance behaviours in Rangifer, 

including bursts of running and increased vigilance, disrupting foraging opportunities and 

increasing energy output (Hagemoen and Reimers 2002, Colman et al., 2003, Bergerud et 

al. 2008, Hughes et al. 2009, Witter et al. 2012, Cuyler et al. 2012). In high numbers, 
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black flies (Sulidae), deer flies (Tabinidae) and mosquitoes (Culicidae) can also motivate 

insect avoidance behaviour in caribou (Morschel and Klein 1997, Hagemoen and Reimers 

2002, Witter et al. 2012). Insect harassment and forage quality are reported to be 

important drivers of Rangifer summer-range ecology (Skarin et al. 2008) often forcing 

caribou to choose between areas of low quality forage and areas of intense insect activity 

(Witter et al. 2012). To my knowledge, there is no literature demonstrating an effect of 

insect harassment directly on FID during encounters with predators, but it is not 

unreasonable to conjecture that if insect harassment can influence behaviours of caribou 

such as habitat choice (Toupin et al. 1996, Skarin et al. 2008, Skarin et al. 2010), and 

tolerance to disturbance (Pollard et al. 1996, Skarin et al. 2004), then insect harassment 

may affect antipredator behaviour of caribou. Insect harassment is also an additive 

energetic stress and, therefore, may influence the economic decisions of caribou. 

Throughout the course of the field study, summer temperatures in Newfoundland were 

uncharacteristically cool resulting in low levels of insect activity (Thomas and Kiliaan 

1990, Weladji et al. 2003, Witter et al. 2012) and infrequent incidences of observed insect 

harassment -- oestrids were observed in less than 5% of trials (6/130). Therefore, any 

influence of oestrids or other insects on caribou behaviour is likely statistically 

undetectable in this study period and hence was not considered in primary analyses. 

However, because a vast volume of literature indicates insect harassment as a significant 

factor in caribou health and summer ecology, the influence of insects was explored in 

post-hoc analyses. 

2.2.5.5 Variables not used in caribou antipredator behaviour models  



56 
 

Distance to refugia. In studies on perceived risk in animals, the distance of prey 

from their refugia has a large and significant effect on flight initiation distance; animals 

farther from their refugia tend to flee at greater distances (Stankowich and Blumstein 

2005). Refugium in this sense is a place of increased protection or safety specifically 

from predation. Increased cover and crypsis of prey animals increases the perception of 

not being seen by predators (Stankowich and Blumstein 2005). Columbian black-tailed 

deer (Odocoileus hemionus columbianus), for example, tend to flee uphill and into taller 

vegetation, using these landscape features as refuge from danger (Stankowich and Coss 

2006).  

Woodland caribou tend to select large areas of open bog/fen type habitat and it is 

thought they do so to spatially segregate themselves from alternative prey species such as 

moose (Alces alces; James et al. 2004). Wolves and coyotes tend to occupy habitats 

concurrent with moose habitat (James et al. 2004, Boisjoly et al. 2010). Briand et al. 

(2009) found that caribou do not select for dense shrub cover during calving season, and 

in fact, avoid regenerated shrub areas throughout the year, suggesting that caribou 

distance themselves from alternate prey habitat, and in consequence, predator habitat. 

Within an open habitat, caribou may be better able to scan for approaching predators. 

Futhermore, James et al. (2004) observed that caribou groups with calves during late 

winter calf surveys were on average approximately half a kilometre further from moose 

and wolf-preferred habitats than were groups without calves, although this difference was 

not significant. This observation may illustrate a tendancy for caribou groups comprised 

of more vulnerable group members to distance themselves from areas of perceived 
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danger. Therefore, it makes sense to consider open tracts of bog/fen habitat as refugia for 

caribou groups from predator occupied habitats. 

As a precaution, the relationship of caribou groups to nearest cover (any group of 

trees and shrubs at least 1.5m tall) was considered in this study, but no correlation was 

found between nearest cover and FID (r=-0.038, df = 120, p = 0.681). Caribou fled into 

cover following only 6% of approaches (n=113) and in several instances fled partway 

towards the observer before fleeing away, even with available nearby cover. Presumably 

caribou rely on their speed and agility to move quickly away from perceived danger and 

may prefer to remain in open areas where quicker and unobstructed retreat is possible. 

There is no literature-supported evidence that FID of caribou is influenced by distance to 

cover and therefore this factor was not analyzed. 

Alert distance and beginning distance.  It is widely acknowledged that FID 

increases with increasing AD and BD (Blumstein 2003, Reimers et al. 2006, Soulliere 

2008, Nieminen 2013, Cooper and Blumstein 2014). A number of disturbance studies 

have used BD, AD, or similar measures (e.g., encounter distance, sight distance) as 

covariates in predicting FID (Stankowich and Coss 2006, Reimers et al. 2006, Nieminen 

2013). The relationship between AD, BD and FID is variable and unclear, particularly 

across taxonomic groups, and may in some cases be an artifact (Blumstein 2010, Dumont 

et al. 2012, Cooper and Blumstein 2014). The relationship between AD, BD and FID is 

acknowledged in this study; BD is moderately correlated with AD (r=0.42 df=123, 

p<0.001), FID (r=0.22, df=125, p=0.01) and AID (r=0.34, df=122, p<0.001), while AD is 

correlated with FID (r=0.81, df=122, p<0.001) and AID (r=0.46, df=122, p<0.001). 

However, because the primary objective of my study is to identify factors which caribou 
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associate with predation risk, I chose not to use AD and BD as predictors of FID. Rather, 

I chose to assess AD, FID and AID as response variables since each variable reflects a 

different aspect of caribou antipredator behaviour. 

Temperature. Temperature was not included in the analyses since it is known to 

correlate with season and insect activity and could behave as a confounding variable 

(Skarin et al. 2010).  

Weather. Few scans were collected in unusual weather conditions or those that 

hindered my ability to maintain visual contact (e.g., severe rain, dense fog, high winds) 

with target caribou groups. The data collected do not yield enough variation in weather 

conditions to maintain sufficient statistical power, so weather variables were not 

considered.  

Wind direction. Similarly, in an attempt to remain undetected by caribou until the 

beginning of an approach, caribou were predominantly approached from downwind or 

crosswind directions, resulting in low variation in wind direction data. Neither Reimers et 

al. (2006), nor Aastrup (2000) found an effect of the position of the observer with respect 

to wind direction (i.e., upwind, downwind or crosswind) on FID of reindeer and caribou.  

Distance between neighbours, distance between calf and cow, and activity. 

The average distance between calf and cow, and the average distance between individual 

caribou and their nearest neighbour and group activity were recorded as possible novel 

indicators of group vulnerability. Computer simulations have shown nearest neighbour 

distance and group density to be good predictors of predation risk at relatively short 

attack distances (Hirsch and Morrell 2011). However, in this study data for these 
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variables were unfortunately too sparsely recorded to make analysis meaningful. Both 

variables likely change during the course of the calving season, both with group size and 

group type and are, therefore, likely represented by other variables in the analyses.  

2.3  Results 

2.3.1 Summary of group characteristics 

Throughout the late spring and early summer of 2011 (May 19 - July 18), 130 

caribou groups were approached in the Middle Ridge caribou calving region.  Group sizes 

of approached caribou ranged from 1 to 195 with a median of 9 animals (25% and 75% 

quartiles = 3 and 19 animals, respectively). Group sizes increased with later seasons 

(F(4,125)= 3.46, p=0.01); the largest groups were encountered during post-calving periods 

II and III (late June through July). Females were present in 96% of observed groups, and 

in 67% of all groups they were accompanied by calves. Calves were first observed on 

May 27
th

 of the study year. Males occurred in 31% of groups and were seen mostly in late 

June and early July in small numbers. On average, group compositions were largely 

female (72%), while calves, adults of unknown sex, males and yearlings made up the 

remaining group proportions (15%, 6%, 6%, and 1%, respectively). 

2.3.2 Behavioural responses to predator effects 

2.3.2.1 Summary of experimental approaches 

Caribou groups, on average, became alert of approachers at a mean distance of 

135.5 m (n=125, SD= 66.3 m), assessed approachers over a mean distance of 32.3 m 

(n=125, SD= 39.2 m), initiated flight on average at 103.1 m (n=127, SD= 60.7 m), and 
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moved away from their original location a mean distance of 16.4 m (n=118, SD= 25.7 m; 

Figure 2.6, Table 2.5).  The mean duration of approaches until alert was 222 seconds 

(n=89, SD= 163.5 seconds, Figure 2.6) and until flight was 279 seconds (n=92, SD=180.7 

seconds, Figure 2.6). The beginning distances (BD) of approaches did not vary with 

season, group size, approach colour or approach movement (Table 2.5), indicating that 

BD was appropriately controlled and did not influence caribou responses. A significantly 

higher proportion of caribou were observed in a head-down, feeding position before the 

start of an approach trial relative to immediately before flight (Worthman 2014), 

suggesting that a significant proportion of caribou in a group may have switched from 

feeding to predator monitoring as they were approached.  During flight, most caribou 

groups (81% of 110 groups) moved away from the approacher together in one direction. 

The frequency of group splitting or scattering was similar in response to all treatments: 

21% of black approaches, 18% of tan approaches, 19% of walking approaches and 20% 

of crawling approaches. Flight was followed by post-flight returns in 31% of trials which 

is comparable to results of Aastrup (2000), who saw curiousity behaviour in nearly 34% 

of encounters during calving, and Soulliere (2008), who observed returns in 26% of trials.  

Most post-flight returns (55%) occurred from late June through July (during the season 

designated as post-calving II) between 5 and 6 weeks after the onset of calving (χ
2
= 10.2, 

df = 4, p = 0.04). Post-flight returns did not vary with approach movement or colour.  
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2.3.2.2 Approach colour  movement 

 

2.3.2.3 Approach colour and movement 

Black approaches elicited significantly longer AD (F(1,123) =6.8, p=0.01) responses 

than tan approaches (Figure 2.7, Table 2.5). In other words, caribou showed earlier alert 

behaviour in response to black approaches than tan approaches. There was no significant 

main effect of approach movement on AD and no significant interaction of colour and 

movement for AD. 

FID was affected by the experimental variables in the same way as AD. Black 

approaches elicited significantly longer mean FID (F(1,125) =23.7, p<0.001) responses than 

tan approaches (Figure 2.7, Table 2.5) and there was no significant effect of approach 

movement or of an interaction between colour and movement. 

Figure 2.6 Summary of variable means during approaches of caribou groups by a 

human: beginning distance (A to 0), alert distance (B to 0), flight initiation distance (C 

to 0), assessment interval distance (B to C), assessment interval duration (B to C), 

duration of approach until alert (A to B), duration of approach until flight (A to C) and 

run distance (0 to D). 
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AID was significantly longer for tan approaches (F(1,123) = 4.4,  p=0.04, Figure 2.7, 

Table 2.5) than black approaches. Caribou groups overall spent 1.6 times longer, in terms 

of distance, assessing tan approaches before flight. AID was significantly longer for walk 

approaches in terms of distance (F(1,123) =6.39, p=0.01, Figure 2.7, Table 2.5) and 

significantly shorter in terms of assessment interval time (F(1,90) =4.9,  p=0.03, Table 2.6) 

than crawl approaches. Due to differences in velocity of approach, caribou predictably 

spent longer distances assessing walk approaches; approaches by walking cover greater 

distances in relatively shorter time than crawling, allowing caribou to assess a walk 

approach over a longer distance but for shorter time duration. It is inconclusive whether 

the speed or the shape of the approach was more dominant in effect on assessment 

interval. There was no significant interaction of colour and movement for AID. 

The mean distance moved away by caribou was not different between black or tan 

approaches. However, caribou moved out of my sight following 5.4% of black 

approaches but not following tan approaches.  

Although not statistically significant, there was a higher tendency for post-flight 

returns to occur following walk-tan approaches than other approach types. Perhaps not 

coincidentally, walk-tan approaches yielded the longest mean AID (50.4 m, Table 2.5) 

and the shortest mean FID (69.1 m, Table 2.5). Together, these findings may suggest a 

weak effect of a walk tan approach on caribou antipredator responses. 
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Figure 2.7 Mean beginning distance (BD), alert distance (AD), flight initiation distance 

(FID) and assessment interval distance (AID) in response to human approachers dressed 

in black or tan clothing (top panel), crawling or walking (center panel) and colour-

movement combinations (bottom panel). (*) indicates a significant difference (p>0.05). 

Standard error bars (1 x SE) are shown. 
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Table 2.5 Mean beginning distances, alert distances, flight initiation distances and 

assessment interval distances (in meters) of Newfoundland caribou when approached by a 

human in the summer of 2011. 

Measure Condition Treatment n mean SE Range 

Beginning 

distance 

All All 129 265.5 9.1 127-800 

Colour Tan 65 263.2 12.2 127-550 

Black 64 267.8 13.8 130-800 

Movement Walk 63 276.6 13.4 128-550 

Crawl 66 255.0 12.6 127-800 

Colour x 

movement 

Walk-tan 32 281.3 21.1 128-550 

Crawl-tan 33 245.7 12.3 127-451 

Walk-black 31 271.7 16.5 130-458 

Crawl-black 33 264.2 22.1 151-800 

Alert 

distance 

All All 125 135.5 5.9 20-416 

Colour Tan 63 120.5 8.8 20-416 

Black 62 150.8 7.5 51-297 

Movement Walk 60 126.3 7.8 20-297 

Crawl 65 144.0 8.7 40-416 

Colour x 

movement 

Walk-tan 30 121.1 13.7 20-416 

Crawl-tan 32 121.8 11.8 36-305 

Walk-black 30 160.1 9.7 77-285 

Crawl-black 32 142.1 11.2 51-297 

Flight 

initiation 

distance  

All All 127 103.1 5.4 20-305 

Colour Tan 63 78.8 6.6 20-305 

Black 64 127.1 7.4 44-297 

Movement Walk 62 100.2 7.1 20-237 

Crawl 65 105.9 8.1 25-305 

Colour x 

movement 

Walk-tan 31 69.1 7.1 20-177 

Crawl-tan 32 88.2 11.0 25-305 

Walk-black 31 131.4 9.4 44-237 

Crawl-black 33 123.1 11.4 45-297 

Assessment 

interval 

distance 

All All 125 32.3 3.5 0-290 

Colour Tan 63 39.5 6.0 0-290 

Black 62 25.0 3.3 0-127 

Movement Walk 60 41.3 6.1 0-290 

Crawl 65 24.0 3.4 0-103 

Colour x 

movement 

Walk-tan 30 50.4 11.1 0-290 

Crawl-tan 33 29.5 5.2 0-93 

Walk-black 30 32.3 5.0 2-127 

Crawl-black 32 18.3 4.2 0-103 
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Table 2.6 Mean assessment interval times (in seconds) of Newfoundland caribou groups 

when approached by a human wearing black or tan clothing and either walking or 

crawling in the summer of 2011.  

Measure Condition Treatment n mean SE Range Sum 

Assessment 

Interval Time  

All All 89 60.9 9.2 0-626 5421 

Colour Tan 41 76.0 17.1 0-626 3114 

Black 48 48.1 8.7 5-345 2307 

Movement Walk 44 43.0 4.9 0-131 1890 

Crawl 45 78.5 17.3 4-622 3531 

 

2.3.3 Behavioural responses in context of environmental variables 

2.3.3.1 Antipredator model trends 

General and generalized linear models with the lowest AICc values, and within 2 

units of the lowest AICc values, were selected as the best predictive models of AD, FID 

and AID (Tables 2.7, 2.9 and 2.11, respectively). Overall, models which include the 

predator effect variables (i.e., approach colour and approach movement) have lower AICc 

values and explain variability of AD, FID and AID better than those models which do not 

include the predator effect variables. None of the best ranked models include an 

interaction between approach and colour.  

2.3.3.2 Alert distance models 

AD responses are best explained by a model containing the base variables (i.e., 

habitat, group size, calf presence, Julian date), graminoid cover, colour and approach 

movement (Tables 2.7 and 2.8).  AD was significantly reduced in bog/fen habitats, in 

response to tan approaches, and with increasing Julian date. Greater graminoid cover and 

the presence of calves significantly increased AD. Contrary to expectation, group size 

was not a significant factor in predicting AD. 
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Table 2.7 AICc alert distance (AD) model selection results (n=122). The base model (1) 

contains only empirically-supported predictor variables. Predator effect models (11, 2, 10, 

12, 8, 7, 9, 13) contain the experimental variables - colour and approach. Vegetation 

effect models (11, 10, 8, 7, 9, 6, 5, 3, 4, 13) contain plant group cover or food number 

variables. The global model (13) contains all predictor variables. Models with lowest 

AICc rankings are in bold. 

No. Model variables K Loglik AICc Δi ωi 

11 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

gram.cov 

10 -668.35 1358.68 0 0.41 

2 habitat+grp.size+calf.p.a+JD+approach+colour 9 -670.57 1360.75 2.08 0.15 

10 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

ericS.cov 

10 -669.71 1361.41 2.73 0.11 

12 habitat+grp.size+calf.p.a+JD+approach:colour 10 -670.05 1362.09 3.41 0.08 

8  habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

lich.cov 

10 -670.26 1362.49 3.82 0.06 

7 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ foods 10 -670.4 1362.77 4.1 0.05 

9 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

moss.cov 

10 -670.57 1363.12 4.44 0.04 

6 habitat+ grp.size+ calf.p.a+ JD+ gram.cov 8 -673.02 1363.31 4.64 0.04 

1 habitat+ grp.size+ calf.p.a+ JD 7 -674.71 1364.4 5.72 0.02 

5 habitat+ grp.size+ calf.p.a+ JD+ ericS.cov 8 -674.17 1365.61 6.93 0.01 

3 habitat+ grp.size+ calf.p.a+ JD+ lich.cov 8 -674.38 1366.04 7.37 0.01 

4 habitat+ grp.size+ calf.p.a+ JD+ moss.cov 8 -674.7 1366.68 8.01 0.01 

13  habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

approach:colour + gram.cov+ ericS.cov+ lich.cov+ 

moss.cov+ foods 

14 -668.1 1368.12 9.44 0.00 
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Table 2.8  Summary of the general linear model (model 11, R
2
=0.24) for predicting alert 

distances (AD) of caribou groups disturbed by an approaching person in Middle Ridge, 

Newfoundland in May-July of 2011.  The reference mean estimate (405.92) is the mean 

of the observations barren habitat, colour black, calves absent, approach crawl, and 

subsequent estimates are differences from this reference mean. (*) indicates p-values of 

0.05 or less. 

Response Parameter Estimate  SE t P  

AD Intercept 405.92    72.37   5.61      1.46e-07 * 

 bog/fen -41.59     18.86   -2.21  0.029 * 

 sparse forest 29.57     31.25    0.95  0.346 

 grp.size 0.1      0.19    0.53  0.594 

 calf.p.a1 32.74     13.04    2.51  0.013 * 

 JD -1.58      0.45   -3.49  0.001 * 

 approachW 15.84     10.99    1.44  0.152 

 colourT   -29.43     11.22   -2.62  0.01 * 

 gram.cov                1.17      0.57    2.05  0.043 * 

 

 

2.3.3.3 Flight initiation distance models 

FID responses are best explained by a model containing the base variables (i.e., 

habitat, group size, calf presence, Julian date), graminoid cover, colour and approach 

movement (Tables 2.9 and 2.10).  FID was significantly reduced in bog/fen habitats, in 

response to tan approaches, and with increasing Julian date. Greater graminoid cover and 

the presence of calves significantly increased FID. Contrary to expectation, group size 

was not a significant factor in predicting FID. 
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Table 2.9 AICc flight initiation distance (FID) model selection results (n=124). The base 

model (1) contains only empirically-supported predictor variables. Predator effect models 

(11, 2, 12, 10, 7, 8, 9, 13) contain the experimental variables - colour and approach. 

Vegetation effect models (11, 10, 7, 8,9,13, 6, 5, 3, 4) contain plant group cover or food 

number variables. The global model (13) contains all predictor variables. Models with 

lowest AICc rankings are in bold. 

No. Model variables K Loglik AICc Δi ωi 

11 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

gram.cov 

10 -656.11 1334.17 0 0.61 

2 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour 9 -658.95 1337.48 3.31 0.12 

12 habitat+ grp.size+ calf.p.a+ JD+ approach:colour 10 -657.91 1337.77 3.6 0.1 

10 habitat+ grp.size + calf.p.a+ JD+ approach+ colour + 

ericS.cov 

10 -658.58 1339.11 4.94 0.05 

7 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

foods 

10 -658.75 1339.44 5.27 0.04 

8  habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

lich.cov 

10 -658.88 1339.71 5.54 0.04 

9 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

moss.cov 

10 -658.95 1339.84 5.67 0.04 

13  habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

approach:colour + gram.cov+ ericS.cov+ lich.cov+ 

moss.cov+ foods 

14 -655.79 1343.43 9.26 0.01 

6 habitat+ grp.size+ calf.p.a+ JD+ gram.cov 8 -668 1352.36 18.19 0.00 

1 habitat+ grp.size+ calf.p.a+ JD 7 -669.7 1354.36 20.19 0.00 

5 habitat+ grp.size+ calf.p.a+ JD+ ericS.cov 8 -669.55 1356.36 22.19 0.00 

3 habitat+ grp.size+ calf.p.a+ JD+ lich.cov 8 -669.6 1356.46 22.29 0.00 

4 habitat+ grp.size+ calf.p.a+ JD+ moss.cov 8 -669.69 1356.63 22.46 0.00 
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Table 2.10 Summary of the general linear model (model 11, R
2
=0.38) for predicting flight 

initiation distances (FID) of caribou groups disturbed by an approaching person in Middle 

Ridge, Newfoundland in May- July of 2011.  The reference mean estimate (333.94) is the 

mean of the observations barren habitat, colour black, calves absent, approach crawl, and 

subsequent estimates are differences from this reference mean. (*) indicates p-values of 

0.05 or less. 

Response Parameter Estimate  SE t P  

FID Intercept 333.94     58.45    5.71  8.85e-08 * 

 bog/fen -50.28     15.26  -3.3   0.001 * 

 sparse forest 31.64     25.69    1.23   0.221 

 grp.size -0.17      0.16   -1.08   0.282 

 calf.p.a1 27.87     10.71    2.6   0.011 * 

 JD -1.17      0.37   -3.18   0.002 * 

 approachW 0.62      9.04    0.07   0.946 

 colourT   -44.4      9.2   -4.83  4.31e-06 * 

 gram.cov                1.09     0.47    2.32   0.022 * 

 

2.3.3.4 Assessment interval distance models 

Variability in AID was most influenced by a model containing the base variables 

(habitat, group size, calf presence, Julian date), number of foods, colour, and approach 

movement (Table 2.11 and 2.12). Increased group size, walk approach, and tan colour 

significantly increased AID.  An increased number of food species significantly decreased 

AID.  
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Table 2.11 AICc assessment interval distance (AID) generalized linear model selection 

results (n=122). The base model (1) contains only empirically-supported predictor 

variables. Predator effect models (7, 10, 2, 12, 8, 9, 11,13) contain the experimental 

variables - colour and approach. Vegetation effect models (7, 10, 8, 9, 11, 13, 5, 3, 6, 4) 

contain plant group cover or food number variables. The global model (13) contains all 

predictor variables. Models with lowest AICc rankings are in bold. 

No. Model variables K Loglik AICc Δi ωi 

7 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

foods 

9 -534.54 1088.68 0 0.63 

10 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

ericS.cov 

9 -536.02 1091.65 2.97 0.14 

2 habitat+grp.size+calf.p.a+JD+approach+colour 8 -537.69 1092.66 3.98 0.09 

12 habitat+grp.size+calf.p.a+JD+approach:colour 9 -537.21 1094.03 5.35 0.04 

8  habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

lich.cov 

9 -537.6 1094.8 6.12 0.03 

9 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

moss.cov 

9 -537.61 1094.83 6.15 0.03 

11 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

gram.cov 

9 -537.61 1094.83 6.15 0.03 

13 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

approach:colour + gram.cov+ ericS.cov+ lich.cov+ 

moss.cov+ foods 

14 -533.24 1098.41 9.73 0.00 

1 habitat+ grp.size+ calf.p.a+ JD 6 -545.81 1104.35 15.67 0.00 

5 habitat+ grp.size+ calf.p.a+ JD+ ericS.cov 7 -545.15 1105.28 16.6 0.00 

3 habitat+ grp.size+ calf.p.a+ JD+ lich.cov 7 -545.71 1106.41 17.73 0.00 

6 habitat+ grp.size+ calf.p.a+ JD+ gram.cov 7 -545.8 1106.59 17.91 0.00 

4 habitat+ grp.size+ calf.p.a+ JD+ moss.cov 7 -545.81 1106.6 17.92 0.00 
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Table 2.12 Summary of the generalized linear model (model 7, R
2
=0.17) for predicting 

assessment interval distance (AID) of caribou groups disturbed by an approaching person 

in Middle Ridge, Newfoundland in May- July of 2011.  The reference mean estimate 

(4.38) is the mean of the observations barren habitat, colour black, calves absent, 

approach crawl, and subsequent estimates are differences from the reference mean 

(intercept). (*) indicates p-values of 0.05 or less. 

Response Parameter Estimate SE t P  

AID Intercept 4.38   1.27   3.45  0.001 * 

 bog/fen 0.15    0.3    0.5  0.615 

 sparse forest -0.32    0.55   -0.59  0.559 

 grp.size 0.01    0.00    2.8  0.006 * 

 calf.p.a1 0.11    0.23    0.47  0.638 

 JD -0.01   0.01   -0.95 0.342 

 approachW 0.67    0.19    3.52  0.001 * 

 colourT   0.54    0.2    2.74  0.007 * 

 foods                -0.08    0.04   -2.34  0.021 *   

 

2.3.3.5 Season 

Since GLM analyses showed Julian date to significantly influence AD and FID 

(Tables 2.8 and 2.10, respectively), the data sampling period was divided into five 

seasons to reflect changes in caribou group dynamics in relation to calving (Table 2.2). 

Season was a significant predictor of FID (F(4,122)=4.88, p=0.001) and AD 

(F(4,120)=3.53, p=0.009), but not AID. The longest FIDs occured during the calving and 

post-calving I seasons (Figure 2.8). Mean FID and AD were significantly longer during 

the calving season in comparison to post-calving seasons II and III (Figure 2.9).  
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Figure 2.8 Number of calves sighted and flight initiation distances for each group 

approached on each day of the sampling period. The peaks of the solid line in the upper 

panel represent the cumulative number of calves observed for each day. Dashed lines 

separate the seasons designated for this study. Solid lines in the lower panel enclose the 

greatest FID values and are extended to include 20% of the overall sampling period days.  
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Figure 2.9 Boxplots showing FID (A) and AD (B) during pre-calving, calving, post-

calving I, post-calving II and post-calving III seasons. Boxplot lengths represent 

interquartile ranges (IQR) and whiskers extend to the most extreme values within 1.5 

times the IQR. Bold lines represent medians and bold points represent means. Dissimilar 

letters indicate pair-wise significant differences between means (Tukey’s HSD, all 

significant differences are p<0.05). Bar widths are proportional to the square root of 

sample sizes. 
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2.3.3.6 Vegetation  

Aside from a relationship between AID and the number of food species present at 

a given site, GLM analyses did not indicate clear relationships between vegetation 

characteristics and antipredator responses. Caribou were always observed foraging prior 

to approach trials, suggesting that caribou foods were represented in all vegetation 

surveys, but also that surveys may have consistently been conducted in areas expressly 

selected by caribou for desirable foods. Ericaceous shrubs, mosses, lichen and graminoids 

were the most represented plant groups in sampled food plots.  Andromeda, 

Chamaedaphne, Kalmia, Rhododendron, Sphagnum and Cladonia species were present in 

more than 60 percent of the plots. The occurrence of food species in a plot ranged from 2 

to 17 species with a median of 9 (n=127).  Species of the functionally classified 

graminoid group (grasses, rushes and sedges) occurred in over 90 percent of plots and 

cover increased with Julian date (F(1,126)=31.6, p<0.0001, Figure 2.10). Cover of other 

functional plant groups did not change with Julian date. Moss cover was higher than other 

plant group covers in 68% (n=128) of site surveys.  
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Figure 2.10 Percent cover of graminoids, ericaceous shrubs, lichen and moss by Julian 

date with linear regressions.  
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Some generalizations about the relationships between lichen, moss, ericaceous 

shrub and graminoid vegetation groups can be made from PCA ordination (Figure 2.11). 

Where lichen loading is high, the moss loading is in nearly the opposite direction. 

Similarly, where graminoid loading is high, ericaceous shrubs loadings are in the opposite 

direction. The first principal component (PC1), capturing over 53% of variation, may 

describe relative habitat moisture (moisture increasing to the right of the plot) while the 

second principal component (PC2) may be descriptive of nutrient availability (nutrient 

availability increasing towards the bottom of the plot), though without more detailed 

information about specific species distributions the preceding interpretations are only 

speculative. 
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Figure 2.11 Biplot of two principal components for four vegetation characteristics: 

average lichen cover, average moss cover, average graminoid cover, average ericaceous 

shrub cover. Arrows represent loadings while points represent scores of plant groups. 

Colour groups represent the dominant plant group (highest percent cover) at each survey 

location, with 70% confidence ellipses.  

 

2.3.4 Post-hoc hypotheses 

Post hoc hypotheses differ from a prioiri hypotheses in that they were not guided 

by the economic hypothesis and that they arose as additional hypotheses during data 

collection and analysis. A number of novel and potentially important effects, which were 

not described by the top a priori models, were revealed in post hoc analyses.   

2.3.4.1 Alert distance 

Post-hoc hypotheses ranked by AICc showed that two models (models 22 and 11, 

Tables 2.13 and 2.14) best predict AD. These models include some significant variables 
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in common with a priori models: calf presence, Julian date, and colour. Unique to post 

hoc analyses is the finding that AD is predicted to decrease with increasing wind speed 

(Table 2.14).  

Table 2.13 Post-hoc AICc  alert distance (AD) model selection results (n=108). Model 

11_ph is the best selected model from a priori analyses (model 11 in Table 2.7).  Group 

effect models (18, 16, 14, 15, 17) contain predictor variables representing group 

characteristics. Topographic effect models (20, 21) contain descriptor variables of 

topography. Model 19 tests effect of insect harassment. Models with lowest AICc 

rankings are in bold. 

No. Model variables K Loglik AICc Δi ωi 

22 habitat+ grp.size+ calf.p.a+ JD+ approach+ 

colour+ wind.spd 

10 -592.86 1207.99 0 0.55 

11_ph  habitat+ grp.size+ calf.p.a+ JD+ approach+ 

colour+ gram.cov 

10 -593.84 1209.94 1.95 0.21 

18 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:calf.p.a 

11 -593.98 1212.71 4.73 0.05 

20 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

topog 

10 -595.23 1212.72 4.74 0.05 

16 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:JD 

10 -595.41 1213.09 5.11 0.04 

14  habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig 

10 -595.46 1213.18 5.19 0.04 

15 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:grp.size 

10 -595.47 1213.22 5.23 0.04 

17 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:habitat 

12 -594.78 1216.84 8.85 0.01 

21 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

gain 

13 -594.78 1219.43 11.44 0.00 

19 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

insect.h 

15 -592.31 1219.83 11.85 0.00 
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Table 2.14 Summary of the general linear models (Models 22, R
2
= 0.26 and 11_ph, 

R
2
=0.24) for predicting alert distances (AD) of caribou groups disturbed by an 

approaching person in Middle Ridge, Newfoundland in May- July of 2011.  The reference 

mean estimates (389.23 and 405.98) are the means of the observations barren habitat, 

colour black, approach crawl, and subsequent estimates are differences from the reference 

mean. (*) indicates p-values of 0.05 or less. 

Model Parameter Estimate  SE t P 

22(wind.spd) Intercept 389.23     75.68    5.14 1.37e-06 * 

bog/fen -16.01     20.14   -0.8   0.429 

 sparse forest 30.18     32.67    0.92   0.358 

 grp.size 0.23      0.24    0.97   0.333   

 calf.p.a1 29.89     14.48    2.06   0.042 * 

 JD -1.34      0.47   -2.85   0.005 * 

 approachW 14.54     11.99    1.21   0.228 

 colourT   -28.61     12.37   -2.31   0.023 * 

 wind.spd -6.69      3.01   -2.23   0.028 *   

11_ph (gram.cov) Intercept 405.98     78.38    5.18  1.17e-06 * 

bog/fen -33.25     21.93   -1.52    0.133 

 sparse forest 36.15     32.93    1.1    0.275 

 grp.size 0.22      0.24    0.92    0.359 

 calf.p.a1 32.78     14.59    2.25    0.027 * 

 JD -1.63      0.49   -3.31    0.001 * 

 approachW 18.54     12.12    1.53    0.129 

 colourT   -28.96     12.48   -2.32    0.022 * 

 gram.cov                1.05      0.6    1.76    0.082  

 

2.3.4.2 Flight initiation distance 

Post-hoc hypotheses ranked by AICc showed that two models (models 22 and 11, 

Tables 2.15 and 2.16) best predicted both FID. These models include some significant 

variables in common with a priori models: habitat, Julian date, colour and graminoid 

cover. Unique to post hoc analyses is the finding that FID is predicted to decrease with 

increasing wind speed (Table 2.16).  
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Table 2.15 Post-hoc AICc flight initiation distance (FID) model selection results (n=108). 

Model 11_ph is the best selected model from a priori analyses (model 11 in Table 2.9).  

Group effect models (14, 16, 15, 18, 17) contain predictor variables representing group 

characteristics. Topographic effect models (20, 21) contain descriptor variables of 

topography. Model 19 tests effects of insect harassment. Models with lowest AICc 

rankings are in bold. 

No. Model variables K Loglik AICc Δi ωi 

22 habitat+ grp.size+ calf.p.a+ JD+ approach+ 

colour+ wind.spd 10 -573.24 1168.75 0 0.58 

11_ph  habitat+ grp.size+ calf.p.a+ JD+ approach+ 

colour+ gram.cov 10 -574.05 1170.38 1.63 0.26 

20 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

topog 10 -575.54 1173.35 4.6 0.06 

14 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig 10 -576.3 1174.86 6.11 0.03 

16 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:JD 10 -576.36 1175 6.24 0.03 

15 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:grp.size 10 -576.42 1175.12 6.36 0.02 

21 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

gain 13 -572.65 1175.17 6.41 0.02 

18 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:calf.p.a 11 -576.15 1177.04 8.29 0.01 

19 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

insect.h 15 -571.91 1179.04 10.29 0.00 

17 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:habitat 12 -576.02 1179.33 10.58 0.00 
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Table 2.16 Summary of the general linear models (Model 22, R
2
= 0.36 and 11_ph, R

2
= 

0.35) for predicting flight initiation distances (FID) and  of caribou groups disturbed by 

an approaching person in Middle Ridge, Newfoundland in May- July of 2011.  The 

reference mean estimates (302.87 and 321.22) are the means of the observations barren 

habitat, colour black, approach crawl, and subsequent estimates are differences from the 

reference mean. (*) indicates p-values of 0.05 or less. 

Model Parameter Estimate  SE t P  

22(wind.s

pd) 

Intercept 302.87     63.11    4.8  5.64e-06 * 

bog/fen -19.58     16.79   -1.17    0.247 

 sparse forest 36.08     27.24    1.32    0.189 

 grp.size -0.15      0.2  -0.77    0.444 

 calf.p.a1 20.47     12.07    1.7    0.093 

 JD -0.84      0.39   -2.15    0.034 * 

 approach -6.89     10   -0.69    0.493 

 colourT   -46.86     10.31   -4.54  1.57e-05 * 

 wind.spd                -6.2      2.51  -2.47    0.015 * 

11_ph 

(gram.cov) 

Intercept 321.22     65.26    4.92  3.42e-06 * 

bog/fen -36.77     18.26   -2.01   0.047 * 

 sparse forest 41.75     27.42    1.52   0.131 

 grp.size -0.16      0.2   -0.81   0.42 

 calf.p.a1 23.24     12.15    1.91   0.059 

 JD -1.13      0.41   -2.76   0.00683 * 

 approach -3.01 10.09   -0.3   0.766 

 colourT   -47.16     10.39   -4.54  1.59e-05 * 

 gram.cov                1.06      0.5    2.13   0.035 * 

 
 

2.3.4.3 Assessment interval distance 

The best AICc ranked model to predict AID includes topography as a factor 

(model 20, Tables 2.17 and 2.18). This model includes some significant variables in 

common with a priori models: group size, approach movement, and colour. Unique to 

post hoc analyses is the finding that AID is predicted to be longer when topography is 

moderate (Table 2.18)  
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Table 2.17 Post-hoc AIC assessment interval distance (AID) model selection results 

(n=108). Model 7_ph is the best selected model from a priori analyses (model 7 in Table 

2.10).  Group effect models (18, 16, 14, 15, 17) contain predictor variables representing 

group characteristics. Topographic effect models (20, 21) contain descriptor variables of 

topography. Model 19 tests effects of insect harassment. Models with lowest AICc 

rankings are in bold. 

No. Model variables K Loglik AICc Δi ωi 

20 habitat+ grp.size+ calf.p.a+ JD+ approach+ 

colour+ topog 

10 -536.73 1095.72 0 0.73 

21 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

gain 

13 -534.26 1098.39 2.67 0.19 

18 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:calf.p.a 

11 -538.66 1102.08 6.36 0.03 

7_ph habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

foods 

10 -540.76 1103.79 8.07 0.01 

16 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:JD 

10 -540.79 1103.85 8.13 0.01 

14 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig 

10 -540.86 1103.98 8.26 0.01 

15 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:grp.size 

10 -541.39 1105.05 9.33 0.01 

22 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

wind.spd 

10 -541.68 1105.63 9.91 0.01 

17 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

num.vig:habitat 

12 -540.12 1107.53 11.8 0.00 

19 habitat+ grp.size+ calf.p.a+ JD+ approach+ colour+ 

insect.h 

15 -540.42 1116.06 20.34 0.00 
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Table 2.18 Summary of the general linear model (model 20, R
2
= 0.26) for assessment 

interval distance (AID) and of caribou groups disturbed by an approaching person in 

Middle Ridge, Newfoundland in May- July of 2011.  The reference mean estimate (26.55) 

is the combined means of the observations barren habitat, colour black, approach crawl, 

and subsequent estimates are differences from the reference mean. (*) indicates p-values 

of 0.05 or less. 

Model Parameter Estimate  SE t P  

20 (topog) Intercept 26.55     48.59    0.55   0.586 

bog/fen 21.03     13.24    1.59   0.116 

 sparse forest -24.22     20.31   -1.19   0.236 

 grp.size 0.4      0.14    2.83   0.006 * 

 calf.p.a 8.33      8.6    0.97   0.335 

 JD -0.29      0.29  -1.01   0.313   

 approachW 23.04      7.13    3.23   0.002 * 

 colourT   21.91      7.45    2.94   0.004 * 

 topog                44.2     14.28    3.1   0.003* 

 

2.4 Discussion 

2.4.1 Antipredator responses to simulated predator approaches  

From an evolutionary view point, adaptive predator recognition and corresponding 

antipredator response is beneficial to reduce energetic costs related to flight, and the risk 

of predation.  In this study, I showed that caribou discriminated between and responded 

differently to distinct simulated predator approaches. Caribou responded strongly (i.e., 

increased alert distance, increased flight initiation distance and decreased assessment 

interval distance) to black approaches (bear model) compared to tan approaches (coyote 

model). The posture of the approacher (crawling or walking) did not influence caribou 

flight or alert responses, but walk approaches lengthened AID. Predator traits associated 

with greater risk appear to amplify the perception of risk, expressed as stronger 

antipredator responses (Stankowich and Blumstein 2005).  
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2.4.1.1 Colour 

Caribou became aware of and fled earlier from human approachers dressed in 

black compared to tan. These results are not surprising since black bears were the primary 

lethal predators of caribou in the Middle Ridge region at the time of field study (Weir et 

al. 2014). The AID is the distance interval during which caribou evaluate an approaching 

threat. Caribou assessed approachers dressed in black clothing over a shorter distance 

than approachers dressed in tan. Reimers et al. (2011) suggest that lower probability of 

assessment (and higher vigilance) occur in Rangifer herds that have more frequent 

interactions with lethal predators as in the case of wild reindeer in Edgeøya encountering 

polar bears. Work by Worthman (2014) indicates that caribou of the Middle Ridge herd 

were indeed more proportionally vigilant during black approaches and less vigilant during 

tan approaches. Prolonged assessment of tan approaches may suggest unfamiliarity with 

tan coloured threats, infrequent interactions with tan-coloured lethal predators or less 

perceptibility of tan approaches relative to the environment. 

 

2.4.1.2 Movement   

Animals pay attention to the behaviour of approachers, fleeing at greater distances 

when approacher behaviour is perceived as more threatening (Stankowich 2008). Crawl 

and walk approach movements did not influence caribou AD or FID, but caribou made 

longer assessments of walk approaches. It is unclear whether longer assessment was due 

to the shape, detectability or the velocity of the movement. Bergerud (1971) noted that on 

two occasions when he approached female caribou and calf pairs by crawling, he was met 

with aggressive behaviour from the cow, which suggests approach type-specific 
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behavioural responses. In general, humans on foot are more provocative than vehicles, 

and some motor-less, outdoor, recreational activities are more disruptive than others 

(Colman et al. 2012).  Rapidly or directly approaching humans are more provocative than 

slowly or indirectly approaching humans (Stankowich 2008). 

It is of interest to note, although not statistically significant, that tan-walk 

approaches elicited the longest AIDs, the shortest FIDs, and the most number of post-

flight returns. Together these outcomes suggest that caribou spent more time overall 

considering walk-tan approaches than other approaches. The walk-tan approach has the 

least semblance to any true caribou predators in the region so caribou may find an 

upright, tan creature unfamiliar and baffling, thus requiring prolonged assessment. 

Another possibility is that caribou perceive walk-tan encounters as unthreatening. A 

walking human approacher wearing tan-coloured clothing is approximately the correct 

height and colour of a caribou and could conceivably be mistaken at first glance for one 

of the hundreds of caribou of the region which form the fluid social aggregations common 

during the summer months. Baskin (1974) describes how reindeer herders attract reindeer 

by assuming a ‘reindeer’ configuration [a dark-coloured, horizontal shape, of reindeer 

size, with ‘antlers’ (raised hands) at the forward moving end] and by using a head-

bobbing motion - a behaviour used among caribou to attract one another.  

2.4.1.3 Cue detectability  

Since there were minimal olfactory or acoustic stimuli in this study (approaches 

occurred into head winds and the approacher only made walking-associated noises during 

approaches), threat recognition must have been associated with visual cues (i.e., 
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movement, colour and size) of the approaching stimuli. However, it is plausible that 

differing responses to different colour cues could be explained by differences in cue 

detectability. Personal assessment of footage and photographs depicting the two coloured 

approaches in various habitats of the Middle Ridge study region do not suggest one 

colour to contrast more strongly against environmental features than the other (Figure 

2.12). However, Rangifer have near ultraviolet vision and may uniquely perceive 

enhanced contrasts of certain colours in their environment (Hogg et al. 2011). Reimers et 

al. (2006) failed to support the prediction that flight distances would increase when 

human approachers dressed in dark clothing were seen against a high-contrast, snow-

covered background rather than a snow-free background. Furthermore, Reimers and 

Eftestol (2012) demonstrated that wild reindeer of insular Edgeøya (part of the 

Norwegian Svalbard archipelago in the Arctic Ocean) responded more strongly to 

humans dressed in white clothing than dark clothing. The Edgeøya study region is 

strikingly similar in habitat appearance to the Middle Ridge study area (Figure 2.12) and 

reversed findings between the present study and the Svalbard study suggest that Rangifer 

can detect both light coloured clothing and dark coloured equally. Wild Svalbard reindeer 

likely associated the colour white with their top lethal predators, polar bears, while 

Newfoundland caribou associated the colour black with black bears.  
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Figure 2.12 (A) A human approacher dressed in black in the Middle Ridge region of 

Newfoundland (this study), (B) a human approacher dressed in tan in the Middle Ridge 

region of Newfoundland (this study) and (C) A human approacher dressed in white in 

Edgeøya, Svalbard (Reimers and Eftestol 2012). 

 

2.4.1.4 Post-flight returns and assessment behaviours  

Following flight, caribou returned towards the approacher in approximately 30% 

of encounters, demonstrating apparent investigatory behaviours (i.e., sniffing the air, 
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circling the approacher, alert postures and direct gaze). Caribou in Greenland showed 

curiousity behaviour in approximately 70% of overall encounters, and were less likely to 

show curiosity during the calving season, after the hunting season, in groups with calves, 

and in certain localities (Aastrup 2000).  Similarly, the occurrence of post-flight returns 

during the peak calving period was lower for Newfoundland caribou in this study. Blehr 

(1997) describes possible energy-saving “confirmatory behaviours” in which caribou stop 

to look back at the approacher during flight or on some occasions fleeing a few metres in 

the direction of the approacher. All of the above behaviours may indicate that caribou 

have difficulty or need longer to recognize and assess novel approachers as threats or 

non-threats. 

2.4.2 Environmental factors influencing antipredator responses 

The economic hypothesis by Ydenberg and Dill (1986) predicts that antipredator 

flight responses are optimized to maximize prey fitness benefits and minimize prey 

fitness costs. Lower fleeing costs might arise when a resource patch is poor (i.e., less 

resources are lost by leaving), rich resources are evenly distributed and easy to locate 

elsewhere, or ecological conditions (e.g., terrain, vegetation structure, snow) are mild at 

the time of disturbance, thereby not increasing locomotion costs (Frid and Dill 2002). In 

this study, in addition to predator traits, some group, habitat, ecological and geographical 

factors were found to influence caribou antipredator responses.  

Overall, AD and FID shared the same significant predictors in all analyses, while 

AID was predicted by unique variables. This pattern suggests that the relative importance 
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of variables influencing antipredator responses may be dynamic and changes during the 

progression of a predator encounter. 

2.4.2.1 Group size   

AIDs were longer in larger groups, while AD and FID were not influenced by 

group size. Owing to a dilution effect, caribou may perceive less immediate threat in 

larger numbers and may therefore take more time to individually weigh the threat of 

disturbance against the cost of fleeing. Predator assessment is not an energetically costly 

antipredator behaviour relative to flight because some beneficial activities, such as 

foraging and rest, can occur simultaneously. Reduced vigilance and increased foraging 

are commonly reported benefits of increased group sizes (Lima and Dill 1990). Indeed, 

Worthman (2014), using video recordings from this study, found that larger group size 

was a marginally significant predictor of lower proportional vigilance during approaches. 

However, as approach trials progressed closer to flight, especially immediately before 

flight (i.e., during the assessment interval), a significant proportion of group members 

switched from a head-down position to a head-up position (Worthman 2014), likely 

representing shifts from foraging activities to predator monitoring activities. This shift in 

behaviour supports the idea that caribou are indeed assessing approaching predators 

during AID, and that caribou in larger groups may assess approachers longer due to a 

diluted sense of risk. 

2.4.2.2 Calf presence  

Caribou alert and flight initiation responses were greater when calves were present 

in the group. The longest ADs and FIDs occurred during the calving period. Past studies 

have similarly shown that caribou groups become alert sooner and run farther in response 
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to human approaches during the calving period (Aastrup 2000, Soulliere 2008 and 

references within). Summer calving season is the only factor consistent in predicting 

increased caribou FID throughout the literature (this study, Aastrup 2000, Reimers et al. 

2006, Souillere 2008, Nieminen 2013) while the other prominent environmental factors 

considered (i.e., group size, habitat, calf presence) vary in the direction of their reported 

effects (Table 2.4).   

Surprisingly, caribou groups containing calves showed lower proportional 

vigilance than those without (Worthman 2014), consistent with prior findings in insular 

Newfoundland caribou (Soulliere 2008). Similarly, groups with calves in Newfoundland 

have been shown to allow a closer approach than groups without calves before becoming 

alert (Mahoney et al. 2001, Soulliere 2008). These behaviours are unexpected since 

higher vigilance in groups with calves has been reported elsewhere (Alaska: Boving and 

Post 1997, Norway: Reimers et al. 2012) and in other ungulate species (Hunter and 

Skinner 1998). It  is generally accepted that predation, rather than food acquisition, is the 

limiting factor for caribou populations during the summer - calf morality by predation is 

very high relative to starvation and orphaning (Wittmer et al. 2006). However, the current 

findings suggest that cows in Newfoundland are motivated by nutrient acquisition at the 

expense of adequate antipredator behaviour, perhaps investing in future reproductive 

effort at the expense of current reproductive success (Clutton-Brock 1991, Soulliere 

2008).  

It is not clear how caribou cows adjust their behaviour with respect to offspring 

safety or if there is any adjustment or strategy used for the protection of young. I did not 

witness defensive behaviour by female caribou during my field observations, but 
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Bergerud (1971) was twice aggressively approached by a female with calf while 

crawling, and he once observed a female caribou charge a black bear. The summer 

months following calving may be an important period during which young acquire 

predator avoidance behaviours from watching their mothers and group members. Head-

bobbing or vocalization by a cow towards her calf may be interpreted as a communication 

to the calf to get up and follow (Souillere 2008). Cows which are more effective in 

enticing their calves to flee at the appropriate moment (i.e., the optimal flight threshold 

which maximizes benefits and minimizes costs) are more likely to ensure offspring 

survival and to transfer these successful behaviours via learning and inheritance. Caribou 

calves can keep up with running adults by ~3-4 days old (Antoon de Vos 1960), but likely 

tire more quickly than adults.  

Early in the calving season, I observed that young calves often did not flee with 

the adults of their group, but instead dropped and hid out-of-sight in the scant shrub 

cover. Observations of similar calf-hiding behaviour have previously been reported for 3-

4 week old woodland caribou in Newfoundland (Chubbs et al. 1993), less than 4 day old 

barren-ground caribou in the Northwest Territories (Antoon de vos 1960), less than 4-5 

day old Rocky Mountain elk (Rearden et al. 2011), neonate black-tailed deer (Bowyer et 

al. 1998), and neonate Thomson’s gazelles (Walther 1969). While calf-hiding behaviour 

is not uncommon in ungulates, it is of particular interest in Newfoundland woodland 

caribou since, contrary to many other ungulates, caribou cows select birth sites which do 

not offer dense cover from predators (Denno et al. 2005, Gustine et al. 2006). As open-

terrain, and highly social ungulates, Newfoundland caribou predominantly use the 

follower strategy where calves keep close to their mother soon after birth (Lent 1974, 
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Carl and Robbins 1988). Observations of calf-hiding behaviour in neonate Newfoundland 

caribou calves suggests that caribou may rely on strategies similar to ungulates elsewhere 

and raises the question of whether caribou cows select for certain micro-habitat 

characteristics at birth sites to help hide highly-vulnerable neonate offspring. Calf-hiding 

behaviour in Newfoundland caribou also suggests some plasticity in antipredator 

behaviour which may be beneficial in novel situations (e.g., encounters with unfamiliar 

predators, exploitation of new habitats). 

2.4.2.3 Habitat  

Habitat data demonstrate that alert and flight distances were reduced in open 

bog/fen habitats. Caribou may consider open habitat as relatively safe habitat where 

approaching predators can be easily monitored and flight can be delayed until necessary. 

Caribou can easily outdistance predators (Mahoney 2011 personal communication) and in 

ideal habitats caribou may need relatively short alert and flight distances for this tactic to 

be effective. 

High graminoid cover was an indicator of greater ADs and FIDs. This may 

implicate graminoids as a less preferable food type relative to lichen, mosses and 

ericaceous shrubs since it was exploited for shorter durations in face of predation risk. 

Alternatively, graminoids may be a relatively good quality food item that may have been 

evenly distributed across the calving region and therefore easy to acquire in nearby 

patches, reducing the cost of fleeing. The young, green parts of Carex spp. are more 

easily digested relative to most mosses, lichens and shrubs (Thomas et al. 1984), perhaps 

making Carex a preferred food type for caribou, especially during specific phenological 
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stages. In the summer of 2011 (May-July), Carex sedges were found in Newfoundland 

caribou scat more often than any other vegetation genus (Soulliere 2014 personal 

communication). High incidences of graminoids in scat could indicate proportionally high 

consumption of sedges, perhaps by virtue of selection for sedges and/or due to long 

periods spent in graminoid dominated habitats.  

 Caribou had shorter AIDs when more caribou food species were present. This is 

contrary to the expectation that caribou should have longer AIDs when the cost of leaving 

is high (i.e., incurring loss of benefits in a good resource patch). However, an abundance 

of food species does not necessarily translate into high food availability or quality. While 

a variety of food types (e.g., lichens, forbs, graminoids, willow leaves) are important 

spring and summer diet components of reindeer and caribou (Bergerud 1972, Lenart 

2002, Finstad 2008), comparatively small differences in plant components can influence 

the availability of a plant species as a digestible forage option (McEwan and Whitehead 

1970, White 1983, Thomas et al. 1984, Lundqvist 2003). The nutritional value, fiber 

content and digestibility of green vascular plants differ greatly between species and 

phenological stages of growth (Klein 1990, Van Soest 1994, Johnstone et al. 2002). 

Reindeer and caribou forage selectively across spatial and temporal scales and choose 

plants high in nutrients and low in secondary plant compounds (Lenart et al. 2002, 

Finstad 2008).  It is possible that caribou select for patches of only a few specific species 

within their peak periods of digestibility and nutritional value. If so, at sites where a high 

variety of forage species occur a significant proportion of those species may be relatively 

undigestible at any given time during the spring or summer, crowding out more desirable 

food species and creating little incentive for caribou to remain at the site.  
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In addition, there is evidence to suggest that Newfoundland caribou may be 

experiencing population density-related food limitation. In the 1980s, Newfoundland 

caribou population densities far exceeded reported densities for Rangifer populations 

elsewhere, including other predator-free regions (Slate Islands, Norway, and South 

Georgia; Seip 1991). Competition for food results in reduced forage intake rates and 

reduced diet quality as less nutritious food items are incorporated into the diet (White 

1983). Increased consumption of nutritionally-poor moss, less selectivity of ingested 

vegetation types, and increased tooth-wear, are indicators that Newfoundland caribou 

have been experiencing declines in the quality of their habitat since the 1980s (Ihl 2010, 

Soulliere 2014 personal communication, Weir et al. 2014). This might mean that overall 

preferred food availibilty is reduced across the calving range, increasing search times for 

adequate forage intake, thus making caribou less inclined to remain in any one resource 

patch. Control plots for vegetation measurements were unfortunately not done in this 

study due to time and resource constraints, but they would add considerable value to 

identifying variability in resource patch quality and heterogeneity.  

2.4.2.4 Topography  

Post-hoc findings show that moderate or ‘hilly’ topography was an indicator of 

increased assessment time.  Calving woodland caribou have been shown to select for 

topographical features which may minimize predation risk (e.g., to increase altitudinal 

separation from predators or to serve as a form of escape terrain) or increase access to 

desired forage types due to micro-site characteristics (Gustine et al. 2006). Moderate 

topography may therefore allow caribou a greater perception of safety, and/or access to 

highly desirable resources, prolonging the assessment of the risk to energy benefit ratio. 
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Alternatively, hilly topography may disrupt caribou lines of sight, reducing the certainty 

of visual evaluations. Caribou may therefore need additional assessment duration to 

evaluate the approacher during opportune sightings. 

2.4.2.5 Ecological factors 

Post-hoc findings indicate reduced FID and AD with increased wind speed. 

Reimers et al. (2006) similarly observed feral reindeer to have reduced flight distances 

with increased wind speeds. Greater winds likely reduce caribou olfactory and auditory 

capacity due to the array and omni-directionality of scent and sound cues. The ensuing 

confusion of senses may reduce the detectability of approachers, impeding 

communication within the group or cause a reluctance to flee (Reimers et al. 2006). 

2.4.3 Flight initiation responses in other studies  

The FID of caribou in Middle Ridge, Newfoundland rank low to mid-range on the 

spectrum of reported flight initiation distances of Rangifer under comparable conditions 

(i.e., approached by a human on foot; Appendix IV). The overall FID of Middle Ridge 

caribou (103.1 m, SD=60.69) is similar to that of Gaff Topsail caribou (93 m, SD=55.26, 

Soulliere 2008) suggesting that the Newfoundland herds may behave similarly in 

encounters with predators. In general, FIDs vary between and within global regions, as 

well as between and within Rangifer subspecies (Appendix IV). Within region, longer 

FIDs can broadly be explained by three factors: less frequent interactions with humans 

(e.g., semi-domestic reindeer vs. wild forest reindeer: Neiminen 2013), provocation by 

threatening stimuli (e.g., polar bear-coloured stimuli in Svalbard: Reimers and Eftestol 

2012; black bear-coloured stimuli in Newfoundland: this study), and increased hunting 
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pressure (e.g., Kangerlussuaq vs. Akia population in Greenland: Aastrup 2000; wild 

reindeer in Norway prior to 1992 vs. after 1992: Reimers et al. 2009).  

2.4.4 Assessment of predator risk 

Caribou vary in their assessments and behavioural responses to predator stimuli 

between populations, between individuals and even within individuals.  Given the array 

of possible influences on response it is important to understand the processes and factors 

influencing predator assessment in addition to the behavioural outcomes.  

2.4.4.1 Dynamic influences of variables on responses 

The AID occurs just prior to flight and it differs from AD and FID in that is an 

interval of time rather than a momentary reaction or decision. During AID, there is 

opportunity for information to be accumulated and evaluated. Acquired information can 

subsequently lead to decision making, observable as a change in behaviour (Blumstein 

and Bouskila 1996). Factors which lengthen AID are likely factors about which caribou 

need to gather more information.  AID was influenced by the number of food species 

present, group size, colour, and approach movement. These factors are relatively dynamic 

(e.g., group sizes are continuously in flux and food types vary from micro-site to micro-

site) or completely novel (e.g., the appearance of a moving, black stimulus). AD and FID, 

on the other hand, were mostly influenced by relatively constant factors: habitat, season, 

graminoid cover, calf presence and colour. Except for colour, caribou have information 

about these variables prior to a predator encounter. These constant factors may have to do 

with the detectability of the stimulus (e.g., the habitat is open or dense) or preconceived 

perceptions of vulnerabilty (e.g., females have offspring or not). The colour of the 



97 
 

approacher is perhaps a factor which first catches the attention of caribou, eliciting alert 

behaviours, and perhaps because FID is highly correlated with AD, colour is a 

pronounced predictor of FID as well.  

Furthermore, in this study, AD and FID consistently yielded the same results (i.e., 

both were longer in response to black approaches, calf presence and high graminoid 

cover) suggesting that evaluation of AD does not add practical information about caribou 

perceived risk above what can be determined from FID alone. However, AD may have 

applied value in indicating the onset of a metabolic stress response and may be useful in 

caribou management when delinating disturbance buffers. 

Many papers surprisingly give little notice to AID relative to FID, probably 

because FID has been the accepted, traditionally-used, simple measure. Some studies 

which do consider assessment (e.g., Reimers et al. 2006, Stankowich and Coss 2006, 

Reimers et al. 2009) are valuable in that they show variations in assessment  in relation to 

season,  predator behaviour , sex, and alert distance, though comparisons are difficult to 

make due to different quantifications of assessment (i.e., assessment probability, 

assessment time).  Though related, AID and FID convey different aspects of antipredator 

behaviour; AID is an information-gathering period, and in this study is shown to be 

influenced by dynamic variables, while FID is a momentary decision, influenced by 

relatively constant variables. Although the concept of assessment and resulting 

observable behaviours is complex (Blumstein and Bouskila 1996), AID and FID together, 

along with associated variables, are probably the best and most thorough indicators of 

perceived risk.  
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2.4.4.2 Multi-predator response, wolf absence and novel predators  

The multi-predator hypothesis (Blumstein 2006) predicts rapid loss of antipredator 

behaviour and breakdown of abilities to recognize predators when there is isolation from 

all predators. This process, where a source of selection important in the maintenance of a 

particular trait is weakened, is called relaxed selection (Lahti et al. 2009).  For example, 

reindeer and caribou from predator-free regions in Svalbard and West Greenland were 

about 3.5 times less vigilant to playbacks of wolf howls than those at control sites in 

Alaska (Berger 2007). Phenotype (i.e., behaviour) disintegration may not always occur 

(Coss 1999) and when prey are not isolated from all predators, antipredator traits are 

more likely to be retained (Blumstein 2006). Marmots in Colorado, for example, which 

have been free from wolf predation for more than 70 years (more than 35 generations), 

still respond to wolves in a non-naïve, fearful manner, possibly due to generalized 

responses maintained from interactions with coyotes (Blumstein et al. 2009). Under the 

multipredator hypothesis, antipredator behaviours are assumed to occur as suites of traits 

rather than independently assorting behaviours, ensuring resiliency in animal defensive 

systems (Blumstein et al. 2009). In other words, the extinction of a predator is not 

expected to create entirely predator-naïve prey populations, rather the prey population 

retains some defence against recolonizing predators. Moose that lost their ability to 

recognize wolf odour after 130 years of isolation were able to re-learn the danger of 

wolves, and re-establish increased levels of vigilance within one generation of exposure 

to wolf predation (Berger et al. 2001). Similarly, prey should not be entirely defenseless 

against novel predators due to retained antipredator traits. General cue similarities 

between native and non-native (or novel) predators may be sufficient to elicit effective 
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antipredator responses. For example, black-tailed deer in California showed no statistical 

differences in antipredator responses to puma models (native) vs. tiger models (non-

native) despite lack of historical experience with a vertically striped predator. This 

suggests that deer were able to generalize the familiar, threatening puma configuration 

with a uniform coat to the novel, striped coat cat (Stankowich and Coss 2007).  

In light of the shared evolutionary history between caribou and wolves in 

Newfoundland, it is unclear how a 60-70 year absence of wolves in Newfoundland may 

have influenced caribou antipredator responses to canids. Across the range of caribou, 

wolves are historically the top predators of caribou and are thought to have a major role in 

shaping antipredator strategies of caribou (Seip 1991). It seems plausible that a 60 year 

time period, which can be conservatively estimated as 10 generations for caribou 

(Thomas and Gray 2002), could be sufficient ontogenic isolation from canid predators to 

reduce canid-specific antipredator responses in caribou. If antipredator traits are at least in 

part acquired by parent to offspring information transfer, then the loss of traits may be 

amplified with each generation. Following the extirpation of wolves in Newfoundland, 

caribou interactions with bears and lynx may have been sufficient to maintain aspects of 

predator recognition and avoidance behaviour. Bergerud (1971) considered lynx 

predation to be a strong factor in caribou mortality in the absence of wolves, and it is 

possible that selective pressure on caribou may have favoured lynx evasion behaviours, 

leaving caribou behaviourally vulnerable to canid predators (Soulliere 2008).  However, 

an ambush style of attack, characteristic of lynx, reduces detection by prey until the 

moment of attack and death, effectively keeping prey inexperienced with lynx. Bears, on 

the other hand, as coursing predators, may allow caribou to have longer visual experience 
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and more opportunities for threat recognition. While lynx may have notably contributed 

to the mortality of caribou, they may have had comparatively little impact on caribou 

antipredator strategies relative to black bears.  

The responses of caribou in Newfoundland to simulated coyote cues may provide 

insight as to how evolutionarily established canid antipredator responses are maintained 

or altered in a short absence of canid-type predator cues. Longer assessment, shorter 

flight initiation distances and a trend towards more post-flight returns for tan approaches 

indicate that tan is a novel stimulus or is perceived as a less threatening cue, relative to 

black approaches. Perhaps coyote are indeed less successful in predation attempts than 

bears and therefore accurately perceived as less of a threat. Alternatively, caribou may 

require more time to evaluate the risk of coyote, given the relatively limited experience 

caribou have with the newly colonized predator. One way to interpret delayed flight in the 

face of coyote-like cues is that after prolonged predator assessment by individual group 

members, caribou ‘stick-around’ to increase group cohesion and reduce vulnerability to 

stalking and coursing predators. Social prey are expected to change within-group spacing 

and within-group spatial choice based on relative predator risk (Hirsch and Morrell 2011). 

Coyote attacks are most likely to escalate to kills if groups fail to stay together while 

fleeing (Lingle 2001). Aggregation behaviours of Newfoundland caribou are interpreted 

as predator avoidance behaviours (Mahoney and Schaefer 2002a) and such grouping 

behaviour is absent in historically predator-free regions such as Svalbard in Norway 

(Reimers et al. 2012). In the relatively few instances when caribou group scattering or 

splitting occurred during flight, it was equally likely to occur in response to a tan or black 

approacher suggesting that group cohesion may be a general antipredator strategy. It is 
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uncertain whether overall responses to coyote-like cues indicate maladaptive responses to 

a novel threat and contribute to mortality of caribou. Perhaps caribou responses towards 

coyote-like cues will change as coyote presence and coyote-related mortality becomes 

more prevalent throughout caribou ranges and these predators become a better recognized 

threat.  Mule deer of central Arizona, for example, have increased their use of areas with 

high vegetation cover in response to the introduction of coyotes to the region (O’Brien et 

al. 2010) and naive elk have been shown capable of increasing recruitment in part due to 

improved antipredatory behaviours towards black bears (Yarkovich et al. 2011). 

2.4.5 Implications of non-lethal predator interactions 

Predator management traditionally focuses on predators which impose high direct 

mortality on populations. However secondary predators and non-lethal encounters or 

disturbances can also contribute to population fitness costs, especially of vulnerable 

populations. Fitness is affected via additive mortality but also by means of frequent and 

provocative interactions with energetic and ecological consequences. 

Disturbances during calving period have been linked to declines in calving 

success (Harrington and Veitch 1992). According to Bradshaw et al. (1998), a 132 kg 

female woodland caribou uses 3.46-5.81 megajoules (MJ) as a result of a disturbance 

event (i.e., loud noise associated with petroleum exploration). Energy costs were 

calculated as a combination of the cost of movement (i.e., a 2.11 km increase in daily 

distance travelled due to disturbance, ~0.74 MJ/day; Bradshaw 1994), initial flight 

response (i.e., 15 minutes of trotting and galloping, ~1.16 MJ; Beortje 1985), and 

prolonged excitement (i.e., 10-25%  increase in metabolic rate, ~1.57-3.92 MJ; McEwan 
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1970, Fancy 1986). Caribou may lose 2.5% body mass (3.3kg for a 132kg female) if 

disturbed 20-34 times. Small shifts in body mass can greatly reduce parturition rates; 

regression-logistic curves for barren-ground caribou in northern Alaska projected a 17% 

decrease in parturition rates for a 6% decrease in body mass (Cameron and Ver Hoef 

1994). Experimental approaches of caribou by snowmobiles in Gros Morne National Park 

in Newfoundland were used to assess the energetic costs of repeated disturbances; results 

roughly translate into mortality occurring with 48 disturbances for calves, 86 for yearlings 

and 108 for adults (PC 2003). It is unknown whether disturbance due to predator 

encounters is comparable to disturbance due to petroleum exploration or snowmobile 

activities. However, the above estimates of energy costs in context of anthropogenic 

disturbance demonstrate how repeated non-lethal predator encounters could contribute to 

caribou fitness.  

Human activities and structures not only directly increase caribou energy 

expenditure, but can specifically increase predator-prey interactions by creating favorable 

habitats for predators such as bears and particularly coyotes (Boisjoly et al. 2010).  Thus 

human infringement on caribou habitats not only creates human disturbance and habitat 

modification, but may amplify caribou exposure to predation pressure. Although bears 

and coyotes are not obligate carnivores or caribou specialists, habitat niche overlap of 

these predator-prey species may create more opportunities for lethal and non-lethal 

interactions with caribou. In the Gaspésie Penninsula region of Quebec, where eastern 

coyotes are relatively new predators and where the caribou population is endangered, 

caribou are thought to be spillover prey of coyotes, with primary prey being moose and 



103 
 

snowshoe hares, found particularly in anthropogenically disturbed areas (Boisjoly et al. 

2010). 

Changes in prey and predator behaviours influence resource intake and life history 

of both prey and predators and also influence the life history of species of other trophic 

levels (Shmitz 2004). It is possible that newly colonized coyote are filling a role as apex 

predator and so it is important to consider the overall trophic and ecological implications 

of newcomer predators prior to making predator management decisions. In the absence of 

wolves, former apex predators of Newfoundland caribou and moose (Gosse et al. 2011), 

caribou have experienced density-dependent hardships such as low quality habitats (Weir 

et al. 2014). Similarly, high moose density related deforestation has been shown to be a 

problem for forest communities in Newfoundland (Gosse et al. 2011). A notable case 

study illustrating trophic cascade effects is the reintroduction of wolves into Yellowstone 

National Park, where reestablishment of an apex predator presence led to reduced elk 

browsing and increased vegetation recruitment, in turn restoring beaver and bison 

numbers (Ripple and Beschta 2012b). Wasser et al. (2011) endorse the application of 

alternative caribou conservation strategies in place of predator removal due to the high 

unpredictability and potential serious risks of trophic cascade effects. 

2.4.6 Future work and applications 

2.4.6.1 Evolutionary predator-prey relationships   

A particularly intriguing aspect of this study was the opportunity to quantify the 

perception of risk of caribou which have had experience with coyote, a recently arrived 

and moderately lethal predator. Results of this study will be most relevant in comparisons 
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with future, similar, simulated predator-Rangifer approach studies.  Northern Labrador 

would be an ideal region for subsequent replication of this study where, currently, 

competition with wolves is thought to be limiting the range expansion of coyotes. Due to 

the long and continued evolutionary relationship of wolves and caribou in Northern 

Labrador, flight responses to wolf-like cues should be strong, while responses to non-

native coyote-like cues should be weaker. Results of approach studies in Northern 

Labrador could provide reference for the responses observed in Newfoundland, providing 

additional insight into behaviour changes resulting from the recent major shifts in the 

predator guild. It will also be of interest to observe whether caribou responses to coyote-

like cues will intensify as coyote become a better-recognized threat to caribou throughout 

Newfoundland and Labrador. Future studies may also consider simulating specific 

predator encounter scenarios of interest, for example, multiple approachers in regions 

where predators are known to hunt in groups (e.g., hunting coyote groups or wolf packs). 

2.4.6.2 Local-scale behaviour studies in context of regional-scale disturbance  

Local-scale studies of Rangifer disturbance avoidance behaviour (including 

studies of antipredator behaviour, such as this one), are necessary to complement the 

recent growing literature addressing regional-scale behaviour of Rangifer. Large-scale 

spatial studies of Rangifer populations have been successful in associating landscape 

disturbances of wild fire, anthropogenic activity, and infrastructure (i.e., roads, railroads, 

pipelines, power lines, seismic lines, utility corridors, settlements, populated industrial 

areas, recreational resorts, croplands, reservoirs, cutblocks, logging operation, mining 

activity and industrial development) with variation in caribou recruitment and shifts in 
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range-use (Mahoney and Schaefer 2002b, Schaefer 2003, Vistnes and Nellemen 2007, EC 

2011). The focus on long-term, regional-scale effects has thus helped delineate buffer or 

set-back zones around potential anthropogenic disturbances and identify critical habitat of 

vulnerable populations (Tarlow and Blumstein 2007, EC 2011). However, the fact that 

reindeer and caribou are reported to reduce the use of areas within 5-10 km from 

infrastructure and human activity by 50-95% (Vistnes and Nellemen 2007) signals that 

not all disturbances have the same impact, and that herds and individuals vary in their 

responses to disturbance. In some situations, disturbances may be a single, specific source 

of stress and it may be possible to link changes in animal behaviour or population 

viability to the isolated disturbance. However in most situations, a landscape scale 

disturbance is comprised of many stressors, such as human presence, loud noises, and 

increased predator presence, and it may be difficult to isolate which particular factor is 

causing the observed changes (Tarlow and Blumstein 2007). One scenario is that caribou 

gradually distance themselves from unfamiliar disturbances with few consequences other 

than a shift in habitat; a very different scenario is that caribou are eventually dissuaded 

from an area due to frequent, energetically costly, and potentially lethal interactions with 

disturbances or disturbance-associated activity. Regional studies alone may underestimate 

the implications of the fine-scale processes and interactions resulting in range shifts and 

recruitment. Use of AD, FID and AID allows us to develop a detailed awareness of how 

caribou perceive various types of disturbance and this level of information is necessary, 

as part of our overall knowledge of caribou biology, to manage disturbance impacts on 

caribou.  

2.4.6.3 Conditioning of naïve animals 



106 
 

 Management of at-risk caribou populations could utilize predator models to 

condition herds to new risks. With growing concern surrounding the declining numbers of 

Rangifer globally (Vors and Boyce 2009), diverse and radical conservation approaches 

are being sought. Translocation of animals to augment existing vulnerable populations 

has received considerable consideration in the re-establishment and preservation of 

caribou, such as in western Alberta, where woodland caribou populations are predicted to 

be extirpated within 70 years (Decesare et al. 2011, Wasser et al. 2011). Translocation is 

generally deemed a less controversial conservation strategy relative to predator removal 

or prioritization of conservation efforts for only the most viable herds (Decesare et al. 

2011, Wasser et al. 2011). Previous translocation attempts of caribou have been limited in 

success at least in part due to predator-related mortality of translocated animals (Compton 

et al. 1995, Stronen et al. 2007). To improve the success of translocations, known 

mechanisms of antipredator response could be used to condition translocated naïve 

Rangifer to respond to predator cues when introduced to a new predator-rich area or even 

when faced with a novel predator in their current area (Griffin et al. 2001). Conditioning 

could consist of approach methods such as those used in this study, tailored to incorporate 

cues of specific predators. Although training effort may appear intensive or extreme, just 

a few conditioning trials may be sufficient in order to prevent habituation, and 

information transmission in social animals (such as caribou) is expected to facilitate 

spread of learned predator recognition (Griffin et al. 2001). This approach conditioning 

method may be a relatively low-cost enhancement to expensive and critical translocation 

projects. 
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2.4.6.4 Linking FID with population fitness 

FID is a widely used tool for quantifying response to risk due to its very high ease 

of use, both as a field measure and as a concept in theoretical optimal flight ecology. 

While FID is a good indicator of instantaneous disturbance, it lacks a clear link with 

individual fitness and population viability (Tarlow and Blumstein 2007). Flight could 

influence a population's viability if frequent predator encounters greatly cumulate 

energetic and/or psychological stress causing: separation from or abandonment of calves, 

deterrence from preferred habitats, reduced intake of quality forage, diminished body 

condition and reduced breeding success. FID would perhaps be most effective in 

association with multiple alternative indicators of disturbance. Tarlow and Blumstein 

(2007) outline several tools (i.e., breeding success, mate choice, fluctuating asymmetry, 

immunocompetence, glucocorticoids, and cardiac response) which in concert with FID 

would certainly strengthen conclusions about the effects of given disturbance types. 

Ideally, several methods should be used in unison to achieve a complete population 

fitness profile; however resource and time constraints make this an unrealistic practice for 

most studies.  Of the methods summarized by Tarlow and Blumstein (2007), indices of 

breeding success would be best for balancing short-term FID disturbance data with long-

term population viability information.  Measures of glucocorticoids, obtained from blood 

plasma, feces, or urine, would provide a relatively simple and non-invasive method for 

cross-validation of stress responses to disturbance. While other measures such as heart 

rate could provide more precise quantification of stress (e.g., heart rate could pinpoint the 

moment of alert or clarify differences in the perception of threat), logistically they may be 

very difficult to obtain with wild populations (however, see Espmark and Langvatn 1979 
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and Espmark and Langvatn 1985). The relationships between different stressor measures 

are not well known; further research may indicate some methods to be better than others 

as identifiers of stressors (Tarlow and Blumstein 2007), or may reveal strong associations 

between certain measures.  

2.4.6.5 Variable interactions for future consideration  

This study, like many others, demonstrates that FID of caribou is influenced by 

numerous ecological variables. Interactions between variables may mask or reduce the 

effect size of other factors depending on the conditions under which animals were tested 

(e.g., season, group size, insect harassment). Interactions between multiple factors likely 

explain a significant amount of observed heterogeneity across studies in the size and 

direction of the effects (Stankowich 2008). Stankowich (2008) proposes that specific 

interactions be considered in flight response studies. This study focused on the combined 

effects of predator colour and predator movement in context of other variables, but other 

interactions to examine more thoroughly in future studies include: group size x season, 

group size x habitat type, and presence of calves x distance to refuge (or regions of low 

predator occurrence or habitat type). 

In this study, I have found that caribou distinguish between different predator 

stimuli and assign different levels of risk to different types of predatory threat; these 

findings are supported for Rangifer tarandus elsewhere (Reimers and Eftesol 2012). 

Inexperience with novel predator stimuli may require extra assessment effort, 

characterized in this study as increased assessment interval distance. Antipredator 

responses to simulated predator approaches are farther influenced by numerous 
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environmental characteristics, namely season. Behavioural responses to non-lethal 

encounters or disturbances can contribute to an individual’s energetic costs with 

population fitness and ecological consequences. 
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3 General conclusions 

By examining the alert, flight and assessment responses of Newfoundland caribou 

groups to encounters with human approachers I have found that caribou distinguished 

between different predator stimuli and assigned different levels of risk to different types 

of predatory threat. Black bear-like approaches were most threatening and elicited 1.6 

times greater flight reactions than coyote-like approaches (i.e., black>light colours). In 

comparison, Svalbard reindeer exhibited 2.5 times greater reactions to polar bear-like 

approaches (white>dark colours: Reimers and Eftesol 2012). Further, caribou assessed tan 

approaches and walk approaches for longer distances and these cues are interpreted to be 

less familiar cues relative to black and crawl. With coyote being novel predators in 

Newfoundland, caribou may require extra assessment effort (characterized in this study as 

increased assessment interval distance) to evaluate and respond appropriately to 

encountered coyotes. However, caribou most likely have maintained suites of antipredator 

traits from evolutionary relationships with wolves and other predators (as per the multi-

predator hypothesis) and therefore appear to behave effectively (at least in some regards) 

to deter escalations during coyote encounters, by coordinating cohesive group flight.   

While most flight disturbance studies place little emphasis on assessment interval 

in relation to flight initiation distance, in this study I show that the two measures are 

influenced by different factors and are thus representative of different aspects of predator 

recognition and response. I suggest that assessment interval be used along with flight 

initiation distance in flight disturbance studies to more fully describe both the process of 

threat assessment (assessment interval) and the decision of assessment (flight).  
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The responses of caribou varied not only in relation to experimental encounter 

types but also with different group characteristics (i.e., presence of calves, group size), 

ecological factors (i.e., season), habitat (i.e., habitat type) and geographical factors (i.e., 

topography). It is important to identify ways in which responses vary between individuals 

(i.e., sex, age, reproductive stage, body condition) and populations (i.e., life history, 

exposure to predators) to improve the relevancy and application of disturbance responses. 

Also, many of these factors may interact with other factors and consequently alter 

observed disturbance reactivity. Disturbances can be particularly detrimental during 

certain critical periods of an animal’s life, or during seasons when animals are in poor 

condition or more vulnerable to injury. 

Antipredator behaviour measures can help managers understand caribou-predator 

interactions and regulate disturbance in ways that can enhance wildlife fitness. Since NL 

predators are all generalist predators, meaning they rely on a wide variety of food sources, 

the impacts of NL predators on caribou are not likely to lessen in the future (Trinidade et 

al. 2011). Within context of other factors, the influence of regional scale pressures such as 

novel predators and anthropogenic disturbances may be additive or even multiplicative. 

This study further contributes to our general knowledge of how animals evaluate predator 

risk and, more specifically, will fill a gap in our knowledge of caribou behaviour that is 

vital for the future planning of any caribou management strategy. 
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Appendix I: Plant species identified as caribou food from caribou scat samples 

in Newfoundland between 1987 and 1997. Data from Newfoundland and 

Labrador Department of Environment and Conservation (Sustainable 

Development and Strategic Science Division). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



II 
 

Plant 

group* 

Caribou foods Commonly encountered species 

Aquatics Nuphar  N. variegata (Yellow pondlily), N. odorata (Fragrant 

waterlily) 

Typha  T. latifolia (Common cattail) 

Arboreal 

Lichen 

Alectoria Not identified to species 

Bryoria Not identified to species 

Coniferous 

trees and 

shrubs 

Abies A. balsamea (Balsam fir) 

Juniperus J. communis (Common juniper), J. horizontalis (Trailing 

juniper) 

Picea P. mariana (Black spruce), P.glauca (White spruce) 

Pinus P. strobus (White pine) 

Deciduous 

trees and 

shrubs 

 

Betula B. papyrifera (White birch) 

Larix Larix laricina (Larch, Tamarack) 

Nemopanthus N.mucronata (Mountain holly) 

Populus P. tremuloides (Pure trembling aspen) 

Potentilla P. fruticosa (Shrubby cinquefoil) 

Rosa R. nitida (Northeastern rose), 

R. virginiana (Virginia rose) 

Rubus R. idaeus (Red raspberry), (Blackberries- not identified to 

species) 

Salix Not identified to species (Willows)  

Shepherdia S. canadensis (Soapberry) 

Spiraea S. latifolia (Meadowsweet) 

Viburnum V. cassinoides (Witherod) 

Ericaceous 

shrubs 

Andromeda A. glaucophylla (Bog rosemary) 

Arctostaphyl A. uva-ursi (Evergreen bearberry) 

Empetrum E. nigrum (Crowberry) 

Gaultheria G. procumbens (Wintergreen) 

Kalmia K. angustifolia (Sheep laurel), K. polifolia (Bog laurel)  

Loiseleuria L. procumbens (Alpine azalea) 

Myrica M. gale (Sweetgale) 

Rhododendron R. canadense (Rhodora), R. groenlandicum (Labrador tea) 

Vaccinium V. angustifolium (Low sweet blueberry), V. boreale 

(Northern dwarf blueberry), V. myrtilloides (Velvet leaf 

blueberry), V. vitis-idaea (Partridgeberry), V. macrocarpon 

(Large cranberry), V. oxycoccus (Small cranberry) 

Grasses Agropyron Grasses, rushes and sedges were functionally grouped 

together and not identified to species Agrostis 

Bromus 

Calamagrosti 



III 
 

Poa 

Danthonia 

Festuca 

Stipa/Oryopsis 

Rushes Juncus  Grasses, rushes and sedges were functionally grouped 

together and not identified to species 

 
Luzula 

Sedges Eleocharis Grasses, rushes and sedges were functionally grouped 

together and not identified to species Carex  

Eriophorum 

Kobresia  

Herbs Achillea A. millefolium (Yarrow) 

Angelica A. atropurpurea (Purplestem angelica) 

Artemisia A. vulgaris (Mugwort) 

Astralagus Not identified to species (Milk-vetch, Locoweeds) 

Trientalis T. borealis (Starflower) 

Cerastium Not identified to species (Mouse ear chickweeds) 

Coptis C. trifolia (Goldthread) 

Cornus C. canadensis (Bunchberry, Dogwood) 

Draba Not identified to species (Whitlow-grasses) 

Liliaceae(Famil

y) 

Clintonia borealis (Blue-bead lily) 

Oenothera Not identified to species (Evening primrose, Sundrops) 

Rubus  R. chamaemorus (Bakeapple, Cloudberry) 

Saxifraga Not identified to species (Saxifrages, Stone breakers) 

Maianthemum M. racemosum (Treacleberry) 

Solidago S. canadensis (Canada goldenrod) 

Stellaria Not identified to species (Stitchworts, chickweeds) 

Trifolium T. pretense (Red clover), T.repens (White clover) 

Mosses Sphagnum Not identified to species 

Fern allies Equisetum E. paulstre, E.variegatum (Horsetails) 

Ferns Lycopodium L. clavatum (Ground pine), L. dendroideum (Clubmoss) 

Terrestrial 

Lichens 

Cetraria Not identified to species 

Cladonia Not identified to species 

Parmelia Not identified to species 

Peltigera Not identified to species 

Commonly 

encountered 

non-caribou 

foods 

Alnus Not identified to species (Alders) 

Arethusa  A. bulbosa (Dragon’s mouth) 

Chamaedaphne C. calyculata (Leather leaf) 

Drosera D. rotundifolia (Sun dew) 



IV 
 

Hieracium H. aurantiaca (Orange hawkweed) 

Linnaea L. borealis (Twinflower) 

Menyanthes M. trifoliata (Buck bean, Bog bean) 

Oclemena O. nemoralis (Bog aster) 

Sarracenia S. purpurea (Pitcher plant) 

*Plant groups are functionally assigned (e.g., Cornus canadensis is grouped with herbs, 

due to its vertical structure, although the Cornus genus is generally considered a 

deciduous shrub). 
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Appendix II:  Data Recording Sheets 
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CARIBOU BEHAVIOUR DATA SHEET: SCAN 

Date (d/m/y):__________ 
Initials:_______________ 
Time:________________ 

UTM (at start) 
E:___________ 
N:___________ 

Event code 

Group composition Group distribution 
Dist. To cover:________ 
Cover:_____________ 
 
Other groups visible?  
 Y       N  
Av. dist. cow/calf:______ 
Av. dist. neighbour:____ 

Group movement 
Direction:________ 
Slope:   +    0    - 
Activity:      rest                     active  
                   rest + active         travel 
# vigilant:_________ 
Prop. vigilant:__________ 

# 
___         

 
UA 

Prop.  
___ 

___ FA(#wC__) ___(    ) 

___ MA ___ 

___ Yearlings ___ 

___ Calves ___ 

Tot. Indiv.____ 

Habitat type 
Sparse forest__(height__m) 
Dense forest__(height__m) 
Forest 
regrowth__(height__m) 
Barren___ 
Bog/Fen___ 
Road/Trail___      
Other______ 

Insects 
Mosq.        1   2   3   4   5+ 
Bl. F.           1   2   3   4   5+ 
Tabinids    1    2   3   4   5+ 
Nose B     absent  present      
Warble   absent   present      
 

Weather 
Temp:_________________ 
Wind dir: N   NE   E   SE   S   SW   W  NW 
Wind speed:  0  1  2  3  4  5  6  7  8  9  10 
Cloud cover:    MC      PO      MO      Fog 
Precip type:________________ 
Precip rate:    1       2       3       4       5  

Topography:    flat           moderate         steep                 Slope:     1     2     3     4      5             
 Exposure:    N  NE  E  SE  S  SW  W  NW                            Shape:       plain    lower    mid    upper    ridge                                           
Gain during approach:    +       0        -       +-       -+ 

Comments:_______________________________________________________________

________________________________________________________________________ 

CARIBOU BEHAVIOUR: APPROACH RESPONSES 

Approach type:              walk            crawl   Colour:                 black                    tan   

Video taken?           Y                       N Upwind        downwind/no wind              crosswind 

Distance at beginning of approach 
(m):______ 

Dir. of 
approach:_____________ 

Time:_______ 

Initial Alert Distance (m):_______________ FA(C_)     MA     UA     Y     C     U  Time:_______ 

Initial Flight Distance (m):______________ FA(C_)     MA     UA     Y     C     U Time:_______ 

Flight lag (m):________________________ Dir. of flight:___________ IA same as IF?    Y      N 

Run distance (m):  1st stop____2nd stop____ Last flight:        FA(C_)     MA     UA     Y     C     U 

Curiosity return?       Y         N       #/comp:_________________________________  Dis:__________ 

Overall initial response:      fright        aggression         curiosity        vigilance     other:___________ 



VII 
 

Type of flight: 
Splitting  
(#grps/comp:___________________) 
Scattered 
Move together 
Other:________ 

Direction of flight from approacher: 
 
Draw arrow from centre,  
approacher at bottom. 
 
Draw cover, ridges, wind dir. Etc. 

 

Date (d/m/y):___________ 
Initials: ________________ 
Time:__________________ 

Observed 
browsing or signs 
of recent 
browsing?   Y          
N      

UTM (at caribou) 
E:_________________ 
N:_________________ 

Event Code 

Plant group          c= % Cover                     h= Height (cm)          Comments 
(dom species 
etc.) 

Picture taken of 
N plot? __ N c N h S 

c 
S 
h 

E c E 
h 

W c W h 

Aquatics          A   > 1 
B   2-5 
C   6-10 
D  11-20 
E   21-30 
F   31-40 
G  41-50 
H  51-60 
I    61-70 
J   71-80 
K   81-90 
L   91-100 

Arb Lichen          

Conifer Tr          

ConiferShr          

Decid Tr           

Decid Shr          

Eric Shr          

Gram          

Herbs          

Mosses          

Fern+allies          

Ter Lichen          

#Trees on site: _________ Height of highest 
tree:________Diameter:_________ 

Nuphar (waterlily)   Ledum (Lab tea)  Brassicaceae(must., 
cabb.) 

 

Typha (cattail)  *Lonicera (honeysuckle)  Achillea (yarrow)   

Alectoria (tree lichen)  Loiseleuria (alpine azalea)  Angelica (angelica)  

Bryoria (tree lichen)  Myrica (bayberry, 
candleberry) 

 Artemisia (mugwort, 
sgebrsh) 

 

Abies (firs)            Rhododendron (azaleas)  Astralagus (milk-vetch)  

Pinus(pines)  Other Vaccinium   Borage (starflower)  

Picea (spruce)           * vitis-idaea (prtrdge 
brry) 

 Cerastium (muse ear 
chckwd) 

 

*Larix (larch, tamarack)             *macrocarpon (large  Coptis (goldthread)  

 



VIII 
 

cran) 

*Alnus             *oxycoccus (small cran)  Cornus (dogwood)  

Juniperus                                     *angusti./ boreale 
(blbrry) 

 Diapensia  

Betula (birch)                          Draba( whitlow-grasses)  

Populus (poplar, aspen)       Other Liliaceae   

Nemopanthus (mntn hlly)  Agropyron (crested wheat 
grass) 

        
Maianthemum/Smilacina 

 

Potentilla (cnqefil, b strwb)  Agrostis (bentgrass)  Oenothera( 
suncups/drops) 

 

Rosa (rose)  Bromus (brome grass)  Rubus   

Other Rubus ( blck/rspbrr)  Calamagrosti (reedgrass)  Saxifraga (sxifrages, 
stonebr.) 

 

Rubus chamae (bake apple)  Poa (meadow grass, 
bluegrass) 

 Solidago (goldenrod)  

Salix(willow)  Danthonia (oatgrass)  Stellaria (stchwrt, 
chckweed) 

 

Shepherdia (buffalo brry)  Stipa/Oryzopsis (needle grass)  Trifolium   

Spiraea (meadowsweet)  Festuca (fescue, tufted grass)  *Sarracenia (ptchr pl)  

Viburnum  Eriophorum 
(cottongrass/sedge) 

   

Andromeda (bog rsemary)  Carex (true sedges)  Sphagnum   

Arctostaphyl (bearberry)  Eleocharis 
(spikesedge/thrushes) 

 Lycopodium  

*Chamaedapne (lthrleaf)  Kobresia (bog sedge)  Equisetum   

*Linnaea (twinflwr)  Juncus (rushes)  Cetraria   

Empetrum (crowberry)  Luzula (wood-rush)  Cladonia   

Gaultheria (wintergreen)    Parmelia    

Kalmia (bog/mntn laurels)    Peltigera  

* indicates species not identified as caribou food 
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Appendix III:  Antipredator behaviour data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 
 

All distances are in meters. Blank values indicate no measure available. The number 999 indicates caribou 
moved out of sight of the observer. Letter abbreviations signify the following: CB= crawl black, CT= crawl 
tan, WT= walk tan, WB= walk black, F= females, M=males, C=calves and U= unknown. 

Disturbance Month Date 
Group 

Structure 
Group 

Size 
Beginning 
distance 

Alert 
Distance 

Flight 
Initiation 
Distance 

Distance 
moved 

CB 5 20 F 1 200 123 121 25 
WT 5 22 F 6 315 184 60 200 
CB 5 22 U 3 800  100 5 
CT 5 23 F 4 275 58 55 50 
CT 5 24 U 4 200 47 43 5 

WT 5 27 F 1 176 142 111 35 

WB 5 27 FC 5 312 77 44 20 
CB 5 28 F 3 244 145 130 5 
CT 5 28 M 1 214 115 55 2 

WT 5 28 M 1 211 84 80 13 
WT 5 30 FC 9 435 416 126  
WB 6 1 U 2 290 266 219 3 
CB 6 1 U 3 480 257 245 12 
CT 6 5 FC 27 217 191 153 2 
CB 6 5 F 2 255 68 65 5 

WT 6 5 FC 2 523 185 47  
WB 6 5 F 3 350 109 84 10 

CT 6 5 FC 9 135 120 86 5 
WT 6 5 F 1 135 50 40 20 
CB 6 6 FC 19 266 215 185 5 

WB 6 6 F 10 211 168 105 10 
CT 6 7 FC 17 381 305 305 70 

WT 6 7 FC 21 360 198 177 50 

CB 6 7 F 1 240 91 87 10 
WB 6 7 FC 7 137 131 129 20 
CT 6 8 FC 6 190 94 90 20 
CB 6 8 F 4 347 274 265 20 
CT 6 8 FC 13 279 162 81 60 

WB 6 9 FC 13 322 118 110 5 

WB 6 9 FC 4 289 220 211 999 
CB 6 9 FC 25 327 254 251 30 

WT 6 9 FC 4 160 114 106 30 
CT 6 10 FC 6 271 157 123 5 
CB 6 10 FC 33 274 160 158 5 

WB 6 10 FC 11 430 285 235 15 



XI 
 

CT 6 10 FC 31 288 253 231 10 
WT 6 10 FC 6 128 86 76 30 
CT 6 11 FC 6 210 133 128 10 

WB 6 11 FC 11 349  237 999 
CB 6 11 FC 39 394 297 297 100 

WB 6 12 F 2 246 142 129 10 
CT 6 12 FC 10     
CB 6 12 FC 3 311 203 203 999 

WT 6 13 F 5 394 223 63 5 
CT 6 13 FC 11 451 250 173 3 

WB 6 13 FC 17 361 173 161 5 

WT 6 16 FC 15 200 95 42 20 
CB 6 17 M 1 151 110 92 10 
CT 6 17 FC 5 185 152 60 50 

WB 6 18 F 1 211 140 132 20 
WT 6 18 F 1 306 73 59 50 
CB 6 18 FMC 9 314 74 65 20 
CT 6 19 FM 2 381 55 53 3 

WB 6 19 FM 9 245 151 97 1 
WT 6 19 F 2 246 172 134 5 
CB 6 19 M 1 175 85 70 2 
CB 6 20 FC 7 168 87 85 999 
CT 6 20 F 5 233 135 100 2 

WT 6 21 FMC 35 188 158 139 20 
WB 6 21 F 1 130 93 78 10 
WT 6 21 F 1 288   3 
CB 6 21 FC 16 432 126 116 999 
CT 6 21 FC 9 232 40 36 10 

WB 6 24 F 11 270 195 171 2 
CB 6 24 F 1 199 135 115 100 

WT 6 24 F 1 212 20 20 40 
WT 6 25 FC 11 550 67 53 5 
WB 6 25 FC 55 346 184 164 3 
CT 6 25 F 2 234 63 58 50 

WB 6 27 FMC 10 140 106 97 999 
CT 6 27 FC 15 293 213 120 5 
CB 6 27 FMC 12 184 131 121 3 

WB 6 28 FC 26 325 127 118 10 
CT 6 28 FMC 78 285 86 50 15 
CB 6 29 FMC 13 190 153 136 8 

WT 6 29 F 1 350 137 116 10 



XII 
 

CB 6 30 FMC 25 333 117 112 2 
WB 6 30 FMC 50 417 258 186 4 
WT 6 30 FMC 73 312 75 30 3 
CT 6 30 FMC 15 160 131 103 10 

WB 6 30 FMC 29 197 123 103  
WT 7 1 FMC 31 169 40 32 10 
CB 7 1 FC 22 264 140 128 3 
CT 7 1 FMC 9 260 159  3 
CT 7 1 FMC 33 209 70 40 5 
CT 7 1 F 1 188 87 74 3 

WB 7 2 FC 19 390 98 53 5 

WT 7 2 FC 26 457 150 72 5 
CB 7 2 FMC 33 190 122 58 5 
CT 7 3 F 1 255 150 140 8 

WB 7 3 M 2 230 218 212 10 
CB 7 3 FMC 175 237 194 91 3 
CT 7 4 F 4 183 58 37 3 

WT 7 4 FC 9 217 95 51 10 
WB 7 4 FC 13 235 162 106 10 
CT 7 4 F 2 272 58 58 8 
CB 7 4 F 1 169 147 141 8 

WB 7 5 FC 2 156 146 131 8 
WT 7 5 FM 5 321  21  

CT 7 6 FC 19 215 121 32 3 
CB 7 6 FC 7 199 51 45 4 

WT 7 6 FMC 195 370 98 44 3 
WB 7 6 FMC 9 200 87 62 3 
CB 7 6 FMC 33 222 67 49 67 

WT 7 7 FMC 13 219 127 71 20 
CT 7 7 FC 13 261 118 53 5 

WB 7 7 FC 20 217 163 123 10 
CB 7 7 FC 42 160 96 45 10 
CT 7 8 FC 9 287 61 39 10 

WT 7 8 FC 32 469 78 40 10 

WB 7 8 FMC 74 458 199 72 5 
WT 7 8 FMC 103 166 83 20 5 
CB 7 8 FMC 175 273 80 49 5 
CT 7 12 FC 16 127 62 55 10 

WB 7 12 FC 14 240 165 121 5 
CB 7 12 FC 7 151 97 97 25 
CT 7 12 FC 3 153 133 121 80 



XIII 
 

WT 7 12 FC 2 155 75 51 40 
WB 7 13 FC 16 370 206 136 10 
WT 7 13 FMC 15 396 102 62 5 
WT 7 13 FMC 28 159 108 101 4 
CB 7 13 FM 5 166 133 116 999 
CT 7 13 FMC 37 298 36 25 3 
CB 7 13 FMC 83 230 181 104 4 

WT 7 14 FMC 18 196 46 35 5 
WB 7 14 F 1 150 140 123 3 
CB 7 14 FC 3 175 133 120 10 

WT 7 14 FMC 11 220 153 64 5 

WB 7 18 FMC 8 198 153 123 5 
CT 7 18 FMC 19 287 83 45 10 
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Appendix IV:  Flight initiation distances in other studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XV 
 

Flight initiation distance means (or medians where italicized) for caribou and reindeer 

displaced by humans on foot. Standard deviation is included where available. Studies 

referenced in table: 1) this study, 2) Soulliere 2008, 3) Aastrup 2000, 4) Reimers et al. 

2009, 5) Reimers and Eftestol 2012, 6) Baskin and Skogland 2000, 7) Nieminen 2013, 8) 

Reimers et al. 2006. 

Subspecies Study region Comments FID (m)  

Caribou Gaff Topsails, 

Newfoundland
2 

Large predators, insular, food limitation, 

hunting, summer data (2004) 

93  ± 55.26 

 Middle Ridge, 

Newfoundland
1 

Large predators, insular, food limitation, 

hunting, summer data (2011), walking or 

crawling approaches 

103.1 ± 60.69  

   78.8 ± 52.39        

(tan cue) 

   127.1 ± 59.08 

(black cue) 

 Akia and Tasersuaq, 

Greenland
3 

No predation,  hunting, summer and fall 

data (1997-98)  

103.6  ±  76.26 

 Kangerlussuaq, 
Greenland

3 
No predation,  frequent summer hikers, 

hunting, summer and fall data (1997-98) 

129.5 ± 108.23 

Wild reindeer Norefjell–Reinsjøfjell, 

Norway
4 

High  recreational activity, no hunting, 

summer data (1992), walking or skiiing  
22 

 

  High recreational activity, hunting, winter, 

summer data (2002-2006),  walking or skiing 

approaches 

43 

 Spitsbergen, Svalbard
6 

Insular, no significant predation, hunting 150 (median) 

 Edgeøya, Svalbard
5 

Insular,  polar bears, no tourism, no 

hunting, summer data (2006) 

152.1 ± 90.9 

   92 ± 81.22   

(dark clothes, 

upright walking 

posture) 

   231± 43.36  

(white clothes, 

leaning amble 

posture) 

 Kuhmo and 

Suomenselka, Finland
7 

Large predators, excellent pastures, 

extensive road and agriculture development, 

no hunting, all seasons data (2010-12), 

approaches in dark clothes, and snowshoes 

192 ± 62.61 

 Dovre Mountains, 

Norway
6 

Significant predation, extremely intensive 

hunting 

409 (median)  

Feral 

reindeer 

Forolhogna, Norway
8
  Good recruitment, excellent pastures, low 

recreational activity, hunting, winter, 

summer and autumn data (1996) walking or 

skiing (in dark clothes) 

95-120 
(median)   

    



XVI 
 

 

 

Forelhogna Mountains, 

Norway 
6 

Significant predation, extremely intensive 

hunting 

178 (median) 

 Wrangel Island, 

Russia
6
   

Insular,  no significant predation, hunting 216 (median) 

Semi-

domestic 

reindeer 

Various herding 

cooperatives, Finland
7
  

Large predators, worn pastures, 

supplementary feeding, extensive road and 

agriculture development, all seasons data 

(2010-12) walking (in dark clothes, 

snowshoes) 

68 ± 28.28 

Domestic 

reindeer 

Bol’shezemal’skaya 

tundra, Russia
6
  

Frequent human interaction (with herders) 49 (median) 

 Chukotka, Russia
6
 Significant predation, frequent human 

interaction (with herders) 

60 (median) 

 Vaigach Island, Russia
6
 Infrequent human interaction 114 (median) 

 Lapland, Sweden
6
 Infrequent human interaction 147 (median) 


