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Abstract

In a 2009 paper, Fougéres, Nolan and Rootzen published an interesting relationship

betweeen the Gumbel and exponential stable distributions. The purpose of this re-

search is to explore this relationship and develop a related state space model that can

be used to predict and model time dependent processes with Gumbel marginals. Pa-

rameter estimation methods will be discussed, both under a simple AR(1) time series

with Gumbel marginals and in the context of our proposed state space model. Since

our model has a hidden component, we will then discuss filtering methods as well.

Gumbel distributed extreme value processes are often found within natural systems,

especially in the field of hydrology and in the study of pollution.
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Chapter 1

Introduction

The field of extreme value theory is becoming increasingly important as the world

deals with problems where large departures from the norm are becoming more fre-

quent, such as climate change, financial instability and engineering challenges. Often

it is the extreme high and low points that we are interested in, since it is the highest

waves that can sink a ship and the lowest troughs that can cause panic in the stock

market.

One distribution that often arises from extremes in climatology and hydrology

is the Gumbel distribution. In addition, we often may have situations with several

interacting Gumbel variables, some of which may be difficult to measure. For this

reason, we will seek to develop a state space model with Gumbel distributed marginals

for time series processes of extremes.

Previously, Nakajima et. al. proposed an AR(1) state space model with Gumbel

distributed variables and normal noise [33]. However, we will show in Section 2.8
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that in such a model, the assumption of normality is not compatible with extreme

value distributed marginals. Naveau and Poncet developed a state space model with

Fréchet distributed marginals [34], while Fougéres, Nolan and Rootzn [13] proposed a

model in which the observation equation has Gumbel distributed marginals and the

state equation marginals have an α-stable distribution.

The model introduced in this thesis is an extension of a theorem due to Fougeres,

Nolan and Rootzn [13] that illustrates the relationship between the Gumbel distribu-

tion and the distribution of the log of an α-stable random variable, which is called the

exponential-S (exp S) distribution. That is, the sum of a Gumbel random variable

and an exponential-S random variable with appropriately chosen parameters will also

be Gumbel. This allows us to define an additive noise process of a state space model

with Gumbel distributed marginals and determine the moments and other properties.

Part way through our research, we discovered that a PhD student of Naveau,

Gwladys Toulemonde, had independently proposed a similar model to our own in

her thesis with some minor differences [47]. However, her research focus was on the

dynamics of the model and paid little attention to parameter estimation and other

statistical features. In contrast, the present work will seek to determine the parameter

estimation methods that work best under a modest sample size restriction. In a 2013

paper, Toulemonde, Guillou and Naveau [48] proposed another similar model with

an application to air pollution data and performed analysis of filtering methods. The

models of Toulemonde are detailed in Sections 2.8.4 and 2.8.5.

This report begins with a review of basic concepts, methods and applications of

related extreme value theory, with special focus on the Gumbel distribution. We will



Introduction 3

then move on to a review of time series analysis and autoregressive models.

The concept of α-stable random variables and the exponential-S distribution will

be introduced, and the relationship between the exponential-S and Gumbel distribu-

tions will be discussed as well. From this relationship, our state space model can be

derived, so the next step is to introduce state space models and discuss examples of

such models in the existing literature.

Our state space model is comprised of both a state and observation equation (Xt

and Yt) that are defined as a mixture of Gumbel random variables and exponential-S

noise. We will discuss the derivation of our model and its properties.

In the estimation of model parameters, we seek to find a method of estimation

that works well under the constraint of small sample sizes. One important issue is

that we may not have a closed form of the distribution of the noise, or be able to

find an explicit expression for the joint distribution of the Xt or Yt series. First,

in the context of an AR(1) time series, we will discuss the estimation methods of

Yule-Walker and conditional least squares. Then we will estimate the parameters

in the observation equation using the method of moments and quasi-Fisher’s scoring

method. Finally we will discuss filtering methods that we might use to determine the

value of a hidden state variable from the observed variables.



Chapter 2

Literature review

2.1 Identifying extreme values

Extreme value theory is the study of the distributions of events whose values may

deviate far from the median. Our definition of extreme may depend on the context

of our application, but we are often interested in sample or time period maxima, or

perhaps values over a certain threshold.

Before we can use extreme events in the past to predict what we might see in the

future, we must first be able to recognize what makes an event extreme. There are

several general methods for identifying extreme events in a data set.

2.1.1 Peaks over threshold (POT) method

One solution is to choose a threshold u, and define any data points greater than

u as extreme events. In the early 1970s, Pickands showed that the magnitude of
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these events will follow a generalized Pareto distribution, while the timing will follow

a Poisson distribution [21] [20]). McNeil and Saladin (1998) extended this method

to a two-dimensional point process, to describe both the frequency and severity of

insurance lossses due to natural disasters [31]. More recently, Bengtsson and Nilsson

(2007) used a similar method to estimate return values for wind damage in Swedish

forests [4]. The POTmethod is often chosen over the block maxima method (discussed

in the next section), as we retain more data points and we can easily correct for

non-stationarity by employing a time dependent threshold. Unfortunately, extreme

events often appear in clusters, which would introduce dependence into our data

set. When using the POT method we must employ a declustering method to remove

dependent data points (see Section 2.5). Another downside to this method is that the

choice of threshold u can be very difficult and depends on the model and the context

of our data. An improper choice of threshold may introduce significant error into

prediction results. Scarrott and MacDonald (2012) discuss developments in threshold

estimation, including methods that account for the additional error resulting from

threshold estimation [41].

2.1.2 Block maxima method

Under the block maxima method we can separate our data into time blocks (years,

quarters, months etc.) and choose the highest value from each time block as an

extreme. The rationale is that as long as the time blocks are large enough (in the

context of our application) we can assume that our extremes are independent. Jenk-

inson (1955) was the first to show that this resulting series of extremes will follow
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one of the three generalized extreme value (GEV) distributions, Gumbel, Frèchet or

Weibull, each of which has the following general form [22].

G(z) = exp

(
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
)
.

This method would usually require the assumption of stationarity, but can be ex-

tended to non-stationary models (see for example Hanel [17], who models precipita-

tion extremes under a climate change scenerio). However, we must be very careful

with our conclusions in such a situation, especially when working with n-year return

values. One downfall of the block maxima method is that, since we only take one value

per block, we are throwing away much of the data and may require large datasets in

order to get enough data for analysis. We can extend the method to the r largest

maxima in each block, although we may have to employ decoupling methods (see

Section 2.5) to be able to assume independence of the r values (see Soukissian [44]).

2.2 Basic methods

After we have decided whether to use the POT or the block maxima method, we

will have an idea of the type of distribution that our identified extreme values will

follow. Later in the thesis, we will discuss methods of parameter estimation, but for

now we will discuss our motivation. That is, what we can discover once we know the

distribution of the extremes. The methods below are largely intuitive, and have been

outlined in a 2010 literature review by E. Vanem [49].
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2.2.1 n-Year return values

We define the n-year return value as the extreme value that we could expect to

see only once every n years. This value is often of interest to engineers who would

like to build a product that can withstand the elements for n years. For example,

if a ship is meant to last for 20 years, the builders would be interested to know the

largest wave that the ship might expect to withstand during that time period (the 20

year return value). This process can work in reverse as well, as we can start with an

extreme value and determine how often it might occur.

2.2.2 Initial distribution method

We are interested in finding the extreme value h with probability p. That is, hp such

that F (hp) = p, or P (h ≤ hp) = p. For an n-year return value, we would set p = 1
n
.

2.2.3 Quantile functions method

Let Q(p) = x if P (X ≤ x) = p. That is, x is the pth quantile of the data distribution.

Imagine that we would like to find an extreme value QT = x with return period T .

Since a return period of T years is equivalent to a 1
T
probability of occuring each year,

P (X > x) = 1
T
, P (X ≤ x) = 1− 1

T
and therefore QT = Q

(
1− 1

T

)
.

2.2.4 Mean number of upcrossings (MENU) method

We can use this method when we are interested in the return period n of a value of

size y. Let Yn be a random variable denoting the number of values in n years that
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exceed y in size. Our return period will be n such that E(Yn) = 1.

2.3 Generalized extreme value distribution

Early work in extreme value theory mostly focused on normally distributed data.

However, in a 1927 paper, M. Fréchet was the first to show that maxima taken from

data with different underlying distributions (which share certain properties) follow

the same asymptotic distribution [14]. R.A. Fisher and L.H.C. Tippet published an-

other paper the next year that extended the work of Fréchet, discovering two other

asymptotic distributions that would account for initial distributions with different

properties [12]. These distributions are now known as the three families of the gener-

alized extreme value theory distribution: the Fréchet, Gumbel and Weibull distribu-

tions. The generalized extreme value (GEV) distribution denoted GEV(µ, σ, ξ) has

cumulative distribution function (CDF)

F (x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
.

We can take the derivative with respect to x to get the probability density function

f(x) =
1

σ

[
1 + ξ

(
x− µ

σ

)]−(1/ξ)−1

exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}

where µ is a location parameter, σ > 0 is the scale and ξ is the shape. We require

that the term 1+ ξ
(
x−µ
σ

)
is non-negative, so that the ξth root will be a real number.
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Note that this distribution is useful for analyzing data maxima. If we are interested

in data minima (such as low rainfall) we can use a slightly altered form.

2.3.1 Families of GEV

The difference between the three families of the generalized extreme value distribution

lies in the parameter ξ, which describes the shape of the distribution. These families

differ in the behaviour of the tail and the value of x+, which is the smallest x value

such that P (X ≤ x) = 1. For an in-depth discussion of these three distributions, see

Coles (2001) [8].

Fréchet distribution

This was the first of the three GEV distributions to be discovered, occuring when

ξ > 0. The Fréchet distribution has a tail that decays polynomically, and the value

of x+ is infinite. Since we know that the fraction 1
ξ
exists, we can manipulate the

cumulative distribution function to become

F (x) = exp

⎧⎨⎩−

[
(x− (µ− σγ))

σ
ξ

]− 1
ξ

⎫⎬⎭ .

This can be re-parametrized to

F (x) = exp

{
−
[
(x−m)

s

]−γ}
,

where m is the minimum, s is a shape parameter and γ = 1
ξ
.
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Weibull distribution

The Weibull distribution occurs when ξ < 0 and x+ is finite. This means that we can

define an upper bound on maxima. The form of this distribution is closely related to

that of the Fréchet distribution.

Gumbel distribution

The Gumbel distribution arises in the case when ξ = 0. In this case, the density will

decay exponentially, and x+ will be infinite. To understand how the Gumbel CDF

is derived, we should recall that limn→∞
(
1− λ

n

)n
= exp(−λ). Therefore if we let

integer n = [−1
ξ
], when ξ → 0,

F (x) = exp

{
−
[
1− 1

n

(
x− µ

σ

)]n}
→ exp

{
− exp

(
−x− µ

σ

)}
.

We can then differentiate to get the pdf as well.

F (x) = exp

(
− exp

(
−x− µ

σ

))
(2.1)

f(x) =
1

σ
exp

(
−x− µ

σ

)
exp

(
− exp

(
−x− µ

σ

))
(2.2)

We have arrived at the density of a Gumbel distribution with location µ and scale σ,

which will be denoted G(µ, σ).
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2.4 The Gumbel distribution

Our discussion of theory will focus on the Gumbel distribution, since it is relevant to

our proposed model.

2.4.1 Moments of the Gumbel distribution

Moment generating function

We will first find the moment generating function for the G(0, 1) distribution, and

then generalize.

MX(t) = E(etX) =

∫ ∞

−∞
etxe−x exp(−e−x)dx

Let U = e−X , so that dU = −e−XdX and X = − log(U). After applying this

transformation, by the definition of the gamma function our integral becomes

∫
et(− log(u))e−udu =

∫
u−te−udu = Γ(1− t),

which is finite for all t < 1. Now, let Y ∼ G(µ, σ), so that Y = σX + µ.

MY (t) = E(etY ) = E(etσX+tµ) = etµE(etσX) = etµΓ(1− σt).

Recall that the gamma function is defined as Γ(x) =
∫∞
0
xt−1e−xdx, and Γ(n) =

(n− 1)! if n is a positive integer.
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Mean and variance

The mean and variance of the G(0, 1) distribution are known to be the following.

E(X) = γE (2.3)

Var(X) =
π2

6
(2.4)

where γE is the Euler-Mascheroni constant, and is approximately equal to 0.57722.

In this section we will show how these constants can be derived. Our first thought

might be to try taking the derivatives of the moment generating function at 0.

Theorem 2.4.1 For x > 0,

dn

dxn
Γ(x) =

∫ ∞

0

rx−1e−r(log(r))ndr.

A discussion and derivation of the theorem above can be found in Bashirov (2014) [3].

Now, since E(X) = M′
X(0) and E(X2) = M′′

X(0), for a G(0, 1) variable, we will have

d

dt
Γ(1− t) = −

∫ ∞

0

r−te−r(log(r))dr

d2

dt2
Γ(1− t) = −

∫ ∞

0

r−te−r(log(r))2dr.

These integrals may be difficult to solve, so perhaps it is better to use another method.

In fact, we can use the digamma and trigamma functions to calculate the mean

and variance in an alternate way (See Norman (1970) for a sketch of this proof [23]).
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A discussion of the definitions below is available in the CRC Concise Encyclopedia

of Mathematics [52].

Definition: The digamma function is defined as

ψ(x) =
d

dx
log Γ(x) =

Γ′(x)

Γ(x)
.

There is a result due to Gauss that can help us calculate the digamma function for

rational numbers.

Theorem 2.4.2 For rational numbers m
k
,

ψ
(m
k

)
= −γE − log(2k)− π

2
cot
(mπ
k

)
+ 2

⌊(k−1)/2⌋∑
n=1

cos

(
2πnm

k

)
log
(
sin
(nπ
k

))

Notice that ψ(1) = −γE. Now, in our case where we have Γ(1 − t), we can let

f(t) = 1− t, so that

ψ(f(t)) =
d

dt
log Γ(f(t)) =

Γ′(f(t))

Γ(f(t))
f ′(t).

When t = 0,

ψ(1) =
d

dt
log Γ(1) =

Γ′(1)

Γ(1)
(−1) = −Γ′(1).

Therefore we find that E(X) = M′
X(0) = Γ′(1) = −ψ(1) = γE. To calculate the

variance, we need to find the second derivative of the moment generating function.

Before we proceed we must first introduce the trigamma function.
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Definition: The trigamma function is defined as

ψ1(x) =
d2

dx2
log Γ(x) =

d2

dx2
ψ(x).

In our case with MX(t) = Γ(1− t),

ψ1(1− t) =
d

dt

(Γ′(1− t))(−1)

Γ(1− t)

=
Γ′′(1− t)Γ(1− t)− (Γ′(1− t))2

Γ(1− t)2
.

Now, consider the case in which t = 0.

ψ1(1) =
Γ′′(1)Γ(1)− (Γ′(1))2

Γ(1)2

= Γ′′(1)− (Γ′(1))2

= M′′
X(0)− (M′

X(0))
2

Therefore Var(X) = ψ1(1), which is known to be π2

6
. If we have a variable Y ∼

G(µ, σ), we can write Y = µ + σX, for some X ∼ G(0, 1). Therefore we can easily

derive the moments of a more general Gumbel variable.

E(Y ) = µ+ σγE (2.5)

Var(Y ) =
σ2π2

6
(2.6)
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2.4.2 Relationship between GEV and Gumbel distributions

Since the Gumbel distribution is just a special case of GEV, we are able to transform

from one to the other.

Theorem 2.4.3 If X ∼ G(0, 1), then Y = µ+ σ
(
eξX−1
ξ

)
∼ GEV(µ, σ, ξ).

Proof Since X ∼ G(0, 1), we know that P (X ≤ x) = exp(− exp(−x)).

P (Y ≤ y) = P

(
µ+ σ

(
eξX − 1

ξ

)
≤ y

)
= P

(
X ≤ 1

ξ
log

(
ξ

(
y − µ

σ

)
+ 1

))
= exp

(
− exp

(
−1

ξ
log

(
ξ

(
y − µ

σ

)
+ 1

)))
= exp

(
−
(
1 + ξ

(
y − µ

σ

))− 1
ξ

)

We end up with precisely the CDF of a GEV(µ, σ, ξ) distribution.

2.4.3 Relationship between exponential and Gumbel distri-

butions

Recall that the Gumbel distribution is a member of the generalized extreme value

distribution family, and therefore arises as a distrubtion of block maxima. In fact,

E.J. Gumbel was able to show that the Gumbel distribution is especially useful when

the underlying data is exponentially distributed [16]. The following results illustrate

the connections between these two distributions.
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Theorem 2.4.4 Let X1, X2 . . . Xn be independent, identically distributed exponential

random variables, and let Yn be the nth order statistic. The distribution of Yn− log(n)

will approach a Gumbel distribution as the sample size n approaches infinity.

Proof Let f(x) and F (x) be the density and cumulative distribution of Xk, k =

1, 2, . . . , n and recall that the distribution of the nth order statistic is P (Yn ≤ x) =

F (x)n, so that fYn(x) = n[1− F (x)]n−1f(x).

Under an Exp(1) distribution, f(x) = exp(−x) and F (x) = 1 − exp(−x), and

therefore P (Yn ≤ x) = (1− exp(−x))n.

P (Yn − log(n) ≤ x) = P (Yn ≤ x+ log(n))

= Fn(x+ log(n))

= (1− exp(−x− log(n)))n

=

(
1− exp(−x)

n

)n

Taking the limit, we conclude that

P (Yn − log(n) ≤ x) → exp(− exp(−x)) as n→ ∞, (2.7)

which leaves us with the cumulative distribution of a G(0, 1) random variable (see [42]

for a sketch of this proof).

Theorem 2.4.5 If X ∼ Exp(1) then − log(X) ∼ G(0, 1).

Proof Define Y = − log(X), and let FX(x) = exp(−x) and FY (y) = fX(exp(−y)) =
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exp(exp(−y)). This is just the density function of a G(0, 1) variable.

Additional exploration of the relationship between the Gumbel distribution and other

distributions can be found in a paper by Ojo (2001) [36].

2.4.4 Applications of the Gumbel distribution

As a member of the generalized extreme value distribution family, the Gumbel dis-

tribution can be used to model independent block maxima in certain situations. Due

to the relationship between the Gumbel and exponential distributions outlined in

Section 2.4.3, many of the applications involve exponential processes. One impor-

tant application is in hydrology: In 1973, Leese used the Gumbel distribution to

model annual maximum flooding [28]. Waylen and Woo extended this research to

show that when flooding results from different sources (such as rainfall and snow

melt), one must estimate the Gumbel distributions for each source separately and

then compound them [50].

Another application is in queuing theory. If we have a Poisson process, such as

the number of customers arriving at a store, the amount of time between occurrences

will be exponentially distributed [9]. Therefore the block maxima of this process can

be modelled using a Gumbel distribution (see Asmussen (1998) [2] for a discussion

of these methods). Nakajima et al. model extreme returns of daily stock data using

a Gumbel distribution [33]. Longin has shown that stock market data sets are more

closely modelled using a Fréchet distribution [29], but it is possible that the Gumbel

distribution may be useful for some kind of financial application.
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2.5 Decoupling methods

When using the peaks over threshold or r-largest maxima models, or when using one

of the GEV distributions, we normally require our data to be independent. However,

it is common in natural processes to find several extreme values clustered together.

In order to be able to use standard techniques developed under the assumption of

independence, we can use one of the following techniques, described in Soukissian

(2011), to account for clustering [44].

2.5.1 Standard storm length

The standard storm length method, developed by Tawn in 1988 [46], seeks to identify

dependent clusters of extreme values and extract the highest value from each as our

independent set of extremes. Define a “storm” as a period in which our variable of

interest is more active than usual and is producing dependent extremes. To avoid

including two dependent maxima, we may require a minimum time period, k, between

events. If we require r maxima, we can start with the highest value, H1, and remove

data within k/2 time periods. Then we can select the second highest value, H2, and

repeat until we have r data points. Under the POT method, we can perform a similar

process but we would stop once we reach a value Hi that drops below u, our chosen

threshold. One possible issue with this method is that the assumption that all storms

have the same length k is unreasonable. Our chosen value of k might be too small for

some storms, making the procedure ineffective in removing dependent values from our

data. Otherwise k could be too large, in which case we would lose data, increasing
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the variance of our estimates.

2.5.2 Runs declustering

The runs declustering method was proposed by Smith in 1989 [43]. This method has

an advantage over the standard storm length method, as it allows for varying storm

times. Assume that we have a process Ht, in which values that exceed a threshold

of u are considered extreme. We can choose a run-length k, and define a cluster to

begin with the first value Hi that exceeds u. The cluster ends only after we observe

k consecutive values less than u. We can then take the maximum value from each of

the clusters.

Although there is some improvement in the flexibility of this model, as previously

we may run into some difficulty with the selection of u and k.

2.5.3 Declustering algorithm (DeCa)

This algorithm was developed by Soukissian and Kalantzi (2009) in the context of

ocean waves, but has several other applications as well [45]. The idea behind the

declustering algorithm is similar to the runs declustering method, in that we think of

our process as a series of storms. The process is as follows:

• Define each storm to end when the underlying state is reduced below a certain

threshold u. In the context of waves, this would be the “sea state”.

• Perform noise reduction and filtering if necessary.



2.5 Decoupling methods 20

• Use the threshold to separate the data into independent storms.

• Take the maximum of each storm, to form a set of independent extremes.

This algorithm could be modified to fit other situations as well. For example, if we

were measuring snow depth, we might require the snow to melt down completely

between independent extremes (u = 0 cm).

2.5.4 Choice of parameters

In many of the methods above, we require a parameter such as a threshold u, run

length k or number of maxima r. We must be careful with our choices, as a value

that is too large or too small can cause us to exclude good data (independent max-

ima) or include dependent maxima. Since we are usually trying to model a physical

situation, we can often use common sense and scientific explanation to choose appro-

priate values. Another method would be to try several choices for our parameters

and check to see which produce stable estimates and low variance. Checking the fit

of our assumed underlying model (often generalized extreme value or the generalized

Pareto distribution) can also be helpful. When choosing a run-length k value, we can

look at the autocorrelation structure of the data, although we may need to remove

any trend and seasonality first.
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2.6 Time series processes

The natural alternative to declustering is to try to model the dependence of the ex-

treme process. For this reason, researchers have been interested in studying extremes

as time-dependent processes. Many of the extremes that we see in nature, such as

ocean waves, rainfall and temperature, arise from dependent time series. Up un-

til the mid 1970s the literature focused on independent extremes, often employing

declustering methods to transform data into this format. Early papers include Lead-

better (1986), who examines the properties of extremes in a stationary sequence where

declustering has not been performed and concludes that the limiting distribution of

the maxima will be unchanged [27]. To deal with this sort of data, new methods

that do not require independence will be necessary. Before we discuss these methods

we will first touch on the theory of time series processes. A time series is a data set

in which each observed value is associated with a point in time. In the analysis of

extreme data we are often interested in how a variable changes with time, usually so

that we can predict what we should expect in the future. A good discussion of time

series concepts is available in Brockwell and Davis [6].

2.6.1 Basic additive auto-correlated time series model

Let X be a process, and X1, . . . , XT be the observations at time t = 1, . . . , T . We

call this series of observations a time series, often denoted {Xt}.

Definition: In this work, we will say that a time series {Xt} stationary if

1. E|Xt|2 <∞ for all t = 0, 1, . . . .
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2. E(Xt) = µ is constant for all t.

3. Cov(Xt, Xt+h) = γ(h) for all t, h ∈ Z, where γ(h) is the lag-h autocovariance

function.

A time series that does not have these three qualities is said to be non-stationary.

In particular, a series with a mean that varies with time is said to have a trend.

2.6.2 Modelling trend

A discussion of how to model trend can be found in Brockwell and Davis [6]. Trend

in the context of extreme value theory has become an important issue due especially

to the threat of climate change.

Least squares estimation

Let m(t) be the function that represents our trend. A simple time series model with

trend could be written as follows.

Xt = m(t) + ϵt (2.8)

We can get an idea of what shape this function m might take (linear, exponential,

quadratic etc.) by observing a graph of the values. For example, if our trend is linear,

we may set m to be

m(t) = a0 + a1t.
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Our goal here will be to minimize

∑
t

(xt −m(t))2 (2.9)

with respect to the parameters of m, which are a0 and a1 in our linear case. The

benefit of this method is that we are not just removing the trend but also identifying

the trend. This may enable us to predict future values.

Smoothing by moving average

Random fluctuations in time series data may obscure the true trend. For this reason,

we may want to smooth the data using the moving average method. If we have a

time series X1, . . . , Xn, the k-point moving average at time t is given by

X̃t = 1
k

∑t+j
i=t−j Xi

where k is an odd integer and j = k−1
2
. In other words, we are taking an average of

the j values to either side of Xt.

Differencing

The method of differencing can be used in situations where it is not necessary to

develop a model for the trend, rather we would just like to remove trend from the

data. Let B be the backward shift operator, BXt = Xt−1 and BiXt = Xt−i. Also
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note that

Xt −Xt−1 = Xt −BXt = (1−B)Xt.

The idea behind differencing is that if we have a polynomial trend of degree j, we can

apply the operator (1−B)j to Xt to remove the trend. For example, if the data has

a linear trend, then we would set j = 1. Note that we can also use this method to

remove seasonality. If we have a seasonal cycle with period d, we can use the operator

(1−Bd)Xt to transform the data. If, for example, we are looking at monthly rainfall

data, we would say that d = 12. When we perform the transformation, we will obtain

Xt − Xt−12, which just means that we subtract the value from the same month in

the previous year. In the following subsection we will detail some other methods of

dealing with seasonality in our data.

2.6.3 Modelling seasonality

In many time series datasets, especially those involving natural processes, it is com-

mon to see a seasonal pattern emerge. For example, if we were looking at rainfall

data for a specific location, we might notice that there is a rainy season and a dry

season each year. A time series with seasonality may have the form

Xt = m(t) + s(t) + ϵt (2.10)

which is similar to Equation (2.8) with an additional seasonal component s(t).
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There are several ways to deal with seasonality in our data.

Removing data points

One simple method that we can use to avoid dealing with seasonality is to restrict

our data set to only the yearly maxima. In this way we are guaranteed to avoid

seasonality, however we lose a significant amount of data. Gilli and Kellezi (2006) use

this method to model financial risk, but have a data set that spans several decades [15].

Another option would be to include only the more active months of the year in the

data set, or model different seasons separately (see, for example Morton (1997) [32]).

We are generally interested in absolute extremes rather than relative extremes; a

rainfall during the dry season might be relatively extreme, but could still be less than

an average rainfall during the rainy season. This method is not always the best, as

we lose data, the remaining months might still have a slight seasonal pattern and we

ignore extremes that may occur at unusual times of the year.

Seasonal adjustment

We can estimate seasonality using a sine and cosine model, then subtract it away

from the data to remove its effect. The coefficients in the model below can easily be

estimated using the lm function in R.

yt = α0 + α1 sin

(
2πt

365

)
+ α2 cos

(
2πt

365

)
+ ϵt (2.11)
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A discussion of this method can be found in Brockwell and Davis [6]. Again, in

the context of extreme values, we may not want to remove seasonality because we

are usually interested in absolute extremes. After modelling seasonality, it may be

useful to set up a state space model, with our observed value of interest modelled as

a function of seasonality, noise and other factors.

Season-dependent parameters

Another method of dealing with seasonality is to use season-dependent parameters

in our model. For example, Rust et al. (2009) used this method to model monthly

maximums of daily precipitation across the United Kingdom [39]. This data set was

assumed to have a generalized extreme value distribution with seasonally dependent

parameters.

2.6.4 Autoregressive and moving average models

In time series analysis, we are often interested in how current observations can be

modelled in terms of the past. Assume that we have some stationary dataset {Xt},

and we would like to predict future values using our current information. In an

autoregressive or AR(p) model, the current observation Xt is described in terms of

the p previous obervations and a noise term Zt, where Zt ∼ IID(0, σ2) (independent

and identically distributed).

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + Zt (2.12)
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Conversely, in amoving average or MA(q) model, our latest observed value depends

on the previous noise terms and some mean µ.

Xt = µ+ Zt − θ1Zt−1 − · · · − θqZt−q (2.13)

In addition, we can have a model in which the observed value depends on a combi-

nation of past values and past noise. This is known as an autoregressive-moving

average or ARMA(p, q) model.

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + Zt − θ1Zt−1 − · · · − θqZt−q (2.14)

How might we know which model is the best for a dataset? Before we answer this,

we must first introduce a few concepts.

2.6.5 Autocorrelation function

Since our choice of model seems to depend on how strongly an observation is related

to those in the past, it makes sense that we would want to look at the correlation

between observations. Let γ(t, t+ h) = Cov(Xt, Xt+h). Since {Xt} is stationary this

function is independent of time, so we can say that

γ(h) = Cov(Xt, Xt+h) for all t. (2.15)

This means that the covariance will be the same for any two values of {Xt} that are

h time units apart. We can use this to calculate our autocorrelation function or
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ACF, ρ(h), by dividing by the variance, γ(0).

ρ(h) =
γ(h)

γ(0)
(2.16)

The behaviour of the ACF is as follows.

• In an AR(p) model, Xt has some correlation with all of the past observations.

For example, Xt−1 depends on Xt−p−1, so therefore Xt has correlation with

Xt−p−1. The correlation function should slowly tail off as we move away from

time t.

• In the MA(q) model, we should expectXt to only be correlated with the previous

q values through their dependence on Zt−1, . . . Zt−q. The plot of ρ(h) should

drop off abruptly after lag q.

2.6.6 Partial autocorrelation function

In the section above, we noticed that Xt was correlated with all of the previous obser-

vations through cross correlation. The partial autocorrelation function (PACF),

p(h), measures the correlation between Xt and Xt−h after disregarding the cross cor-

relation effect from the observations between the two.

p(h) = Corr(Xt, Xt−h|Xt−1, . . . , Xt−h+1) (2.17)

For the PACF function:
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• In an AR(p) model, Xt will only be correlated with Xt−1 . . . Xt−p since cross

correlation has been discarded. The plot of p(h) should drop off after lag p.

• In an MA(q) model, the plot of p(h) will decay slowly.

• In an ARMA(p, q) model, the ACF will decay exponentially after lag p− q, and

the PACF after lag q − p.

Generally if we have checked the ACF and PACF of our model and can’t identify a

clear cut-off in either, then it is best to use an ARMA model.

2.6.7 Choice of a model

We now have several guidelines to help us choose the correct model. However, some-

times irregularities in the data can make it difficult to see which p and q values we

should use. The Akaike information criterion (AIC) can help us choose from

several possible models.

AIC(k) = n log(σ̂2) + 2k (2.18)

Note that k is the number of parameters in the model. In choosing between several

models, the model with the lowest AIC is often the best choice, as we would like

to minimize both variance σ2 and number of parameters. In R, the arima function

automatically calculates the AIC when fitting an arma type model.
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2.6.8 Properties of the AR(1) model

Since it will be important to the model that we will later propose, we will end our

time series discussion with a short section on the AR(1) model and its properties.

This model has the general form

Xt = c+ ϕXt−1 + Zt, (2.19)

Where ϕ is a parameter, c is constant and Zt ∼ IID(0, σ2). Notice that this model

is an example of a Markov process, since Xt is only dependent on previous values

Xt−1, . . . , X0 through Xt−1. The AR(1) model is also an example of a random walk.

If Zt has a constant but non-zero mean, we can absorb the mean of the noise into the

constant c and continue as usual.

Mean, variance and covariance

Since we know that E(Zt) = 0, for any t′ < t it will hold that

E(Xt) = c+ ϕE(Xt−1)

= ϕt−t
′
E(Xt′) + c

t−1∑
i=t′

ϕi−t
′

= ϕt−t
′
E(Xt′) + c

(
1− ϕt−t

′

1− ϕ

)
. (2.20)

The mean here is not always constant. In fact, AR(1) data is non-stationary unless

E(Xt) =
c

(1−ϕ) , that is, unless the process started long ago in the past. We continue
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on to find that the variance is

Var(Xt) = ϕ2Var(Xt−1) + σ2

= ϕ2(t−t′)Var(Xt′) + σ2

t−1∑
i=t′

ϕ2(i−t′)

= ϕ2(t−t′)Var(Xt′) + σ2

(
1− ϕ2(t−t′)

1− ϕ2

)
. (2.21)

The variance of this process will only be constant if Var(Xt) = σ2

(1−ϕ2) . Finally, we

move on to the covariance. This calculation is simplified due to the fact that the noise

terms are independent of theXt series. Thus, notice that for any positive integer k < t

we can write Xt = c
(

1−ϕk
1−ϕ

)
+ ϕkXt−k +

∑k−1
i=0 ϕ

iZt−i. It follows that

Cov(Xt, Xt−k) = Cov(ϕkXt−k, Xt−k)

= ϕkVar(Xt−k). (2.22)

If the variance is constant, then the covariance will only depend on the lag distance

k between Xt and Xt−k.

Moment estimation

In the case where the mean and variance are constant and the covariance only de-

pends on the time distance, we can rearrange the equations for E(Xt), Var(Xt) and
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Cov(Xt, Xt−k) = γ(k) to obtain estimates for ϕ, c and σ2.

ϕ =
γ(1)

Var(Xt)
, (2.23)

c = E(Xt)(1− ϕ), (2.24)

σ2 = Var(Xt)(1− ϕ2). (2.25)

In the equations above, since the mean and variance are assumed to be constant we

can use the sample mean and covariance in place of E(Xt) and Var(Xt) respectively,

and the lag-1 sample autocovariance in place of γ(1).

2.7 The α-stable random variable

A random variable X is said to be stable (or have stable distribution) if a linear

combination of any two independent random variables that share the distribution of

X will also share the same distribution, although possibly with different parameters.

For example, the normal distribution is considered to be stable, and therefore the

sum of two normal random variables will also be normal. Let X be a stable random

variable whose Laplace transform is given by

E(e−tX) = e−t
α

. (2.26)

We denote the distribution of X by S(α), and write X ∼ S(α). We will say
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that X is α-stable. The standard normal distribution is an example of an α-stable

distribution with α = 2. In this project we will concentrate on positive random

variables whose α values are between 0 and 1. In Figure 2.1 we can see that as α

becomes closer to 1, the density of an α-stable random variable will become more

mound shaped.

Figure 2.1: Density plots for α-stable random variables at varying levels of α.

2.7.1 Characteristic function of an α-stable random variable

The characteristic function is useful because it always exists and it uniquely deter-

mines the distribution of our data. Although we may not know the closed form

of the distribution of an α-stable random variable X, we may be able to use the

characteristic function φX(t) to gain useful information.

φX(t) = E(exp(itX))
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We know by Equation (2.26) that E(exp(−uX)) = exp(−uα) when X is α-stable. If

we let u = −it, it follows that

φX(t) = E(exp(−itX)) = exp(−(−it)α) (2.27)

Consider a complex number, z = x + i ∗ y. In polar coordinates, z = reiθ, where

r = |z| and θ = arg(z). Using De Moivre’s formula we can find that

zα = rαeiθα

= rα(cos(θα) + i sin(θα)).

Now, when z = −it, r =
√
x2 + y2 =

√
(−t)2 = |t| and θ = arg(z) = −π

2
.

(−it)α = |t|αei
−π
2
α

= |t|α
(
cos

(
−π
2
α

)
+ i sin

(
−π
2
α

))
= |t|α

(
cos
(π
2
α
)
− i sin

(π
2
α
))

= |t|α cos
(π
2
α
)(

1− i tan
(π
2
α
))

.

We can use this to find the characteristic function of an α-stable random variable.

φX(t) = exp(−(−it)α) = exp
(
−|t|α cos

(π
2
α
)(

1− i tan
(π
2
α
)))

. (2.28)
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2.7.2 Four parameter stable random variable

There is a more general parametrization of stable random variables proposed by

Samorodnitsky (1994) [40] whose characteristic function is given by

φ(t;α, β, σ, µ) = exp(−σα|tα|(1− iβ tan(
π

2
α) sgn(t) + iµt)) (2.29)

where sgn(t) = 1 when t >= 0 and −1 when t < 0.

By comparison of Equations (2.28) and (2.29), we can see that under the Samorod-

nitsky parametrization for an α-stable random variable X, the parameter α will be

preserved, β = sgn(t), µ = 0 and σ = (cos(π
2
α))

1
α .

2.7.3 Exponential-S distribution

Let St ∼ S(α). The log of St follows an exponential stable (or exponential-S) distri-

bution, denoted by exp S(0, 1;α), where 0 < α < 1.

Theorem 2.7.1 Let S be a standard positive α-stable random variable (S ∼ S(α)) .

If M = µ+ σ log(S), then M ∼ exp S(µ, σ;α).

The exponential-S and Gumbel distributions have a special relationship. From Fougères

et al. [13],

Theorem 2.7.2 If we have independent G ∼ G(µ1, σ) and M ∼ exp S(µ2, σ;α), then

G+M ∼ G(µ1 + µ2,
σ

α
).
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Note that we require that the Gumbel and exponential-S variables must have the

same scale parameter. We can use these ideas to set up a state space model for use

with more general Gumbel data.

2.7.4 Gumbel AR(1) model

Theorem 2.7.3 For α ∈ (0, 1) define the stochastic process

Xt+1 = αXt + α logSt+1

where the St are independent and identially distributed, and St ∼ S(α) for all t in Z.

Then Xt =
∑∞

j=1 α
j logSt−j+1 and Xt ∼ G(0, 1) for all t.

Proof Suppose that Xt−1 ∼ G(0, 1), so that Xt|St is Gumbel.

P (Xt ≤ x) = E (P (αXt−1 + α logSt ≤ x|St))

= E

(
exp

(
− exp

(
−x− α log(St)

α

)))
= E

(
exp

(
− exp

(
−x
α

)
exp(log(St))

))
= E

(
exp

(
−St exp

(
−x
α

)))
= exp

(
− exp

(
−x
α

)α)
= exp (− exp(−x))

Note that we end up with the distribution of a G(0, 1) distribution. This result agrees

with Theorem 2.7.2.
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Now that we have reviewed the necessary background of time series estimation and

extreme value methods, we have an understanding of how we might model dependent

extremes. We can now move onto the type of model that we will be examining in this

thesis, the state space model.

2.8 State space models in extreme value theory

A state space model consists of two components - the state equation and the observa-

tion equation. It is useful for modelling processes in which an observed set of values

is directly influenced by an underlying and often hidden process. For example, the

fluctuation of a single stock is usually related to the behaviour of the entire market,

and the values of individual waves are dependent on the sea state. In such contexts

it is possible for extremes to result from high spikes in either the state or observed

processes, or the additive effect of moderate spikes in both.

One benefit of this type of model is that rather than removing trend or seasonality,

we can build those attributes into the state component so that our predictions take

that information into account. There have been several authors in the past decade

who have explored the use of state space models in an extreme value context. Early

work was undertaken by West et al. (1985) who developed a Bayesian model for

use in nonlinear, non-normal time series [53]. In 2001, Coles presented an approach

to the modelling of time-dependent parameters using the GEV(µt, σ, ξ) distribution,

expressing the mean µt as a deterministic function of time. However, the observations

were still assumed to be independent [8]. Huerta and Sansó (2007) explored a variation
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on Coles approach, replacing the independence assumption with an assumption of

conditional independence given µt. The mean µt would then be expressed as the

observation equation of a linear state space model dependent on an AR(1) state

vector θt [19]. We will now describe some of the more relevant models in greater

detail.

2.8.1 Nakajima state space model (2011)

It is common to model stock market indicators (including the Dow Jones industrial

average) with an AR(1) model. Nakajima et al. have proposed the following state

space model for use in financial applications, which has an AR(1) state equation [33].

Let y = {y1, . . . , yn} be a series of extreme values, and define

yt = µ+ ψ

(
exp(ξαt)− 1

ξ

)
+ ϵt,

αt+1 = ϕαt + ηt

Where ϵt ∼ N (0, σ2) and ηt is i.i.d. noise, ηt ∼ G(0, 1). In addition, µ, ψ and ξ are

parameters such that ψ > 0 and 1 + ξ (yt−µ)
ψ

> 0, and ϕ is a real number coefficient

in the state equation. The state variable αt is Gumbel distributed. Note that if

αt ∼ G(0, 1) then yt|ϵt ∼ GEV(µ+ ϵt, ψ, ξ).

It is also assumed that the first value, α1 is generated by a normal distribution

with mean and variance similar to the stationary distribution of αt. It is clear that

{αt} form an AR(1) process, but the authors have also extended their model to the

ARMA(p, q) case. There are some theoretical issues with this model, as the authors
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claim to be modelling a process with extreme value marginals. If α1 ∼ N (µ, σ2) and

ηt ∼ G(θ, β) with α1 independent of η1, what is the distribution of αt? Consider the

moment generating functions,

Mα1(r) = exp

(
µr +

1

2
σ2r2

)
Mηt(r) = Γ(1− βr) exp(θr).

Now, since αt+1 = ϕαt + ηt,

αt+1 = ϕtα1 +
t∑

j=1

ϕj−1ηt+1−j

Mαt+1(r) = E[exp(αt+1r)]

= E[exp(ϕtα1r +
t∑

j=1

ϕj−1ηt+1−j)]

= E[exp(ϕtα1r)
t∏

j=1

exp(ϕj−1ηt+1−jr)]

= exp(µϕtr +
1

2
σ2ϕ2tr2)

t∏
j=1

Γ(1− βϕj−1r) exp(θϕj−1r)

This argument shows that it cannot be claimed that the marginals of yt follow a GEV

distribution.
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2.8.2 Naveau-Poncet Fréchet model (2007)

Naveau and Poncet [34] proposed the following model

Yt = max{FtXt, ϵt}

Xt = max{GtXt−1, ηt}

where {ϵt} and {ηt} are two independent sequences of i.i.d. random variables with a

Fréchet distribution, while Ft and Gt are coefficient vectors with Ft > 0 and Gt > 0.

In this case {Yt} is a Fréchet stochastic process that represents the observations

with Fréchet marginals. However, under this model ϵt cannot be interpreted as a noise

process, so its nature as a source of variation is not quite clear. Although this model

could be useful in setting boundaries for extreme values, estimation of parameters

may be difficult. Prediction and filtering may be difficult for this model as well.

2.8.3 Fougères et al. model (2009)

Fougères, Nolan and Rootzén proposed a model that arises from the relationship

between the Gumbel and exponential-S distributions [13].

For t = 0, 1, 2, . . . , T

Yt = ψt logXt + ϵt

Xt = ϕtXt−1 + St

where {ϵt} is a sequence of i.i.d. G(µt, ψt) noise and {St} is a sequence of i.i.d. α-stable



2.8 State space models in extreme value theory 41

noise. Thus Yt is Gumbel and Xt follows an α-stable distribution, in fact,

Xt =
t∑
i=0

ct,iSi

with ct,t = 1 and ct,i =
∏t

k=i+1 ϕk.

The authors applied this model to an engineering analysis of corrosion depth in car

aluminum, using the method of maximum likelihood to estimate model parameters.

A similar model appears in Naveau and Poncet, 2007 [34].

2.8.4 Toulemonde model (2008)

Part way through our research, we came across an online presentation detailing a

model quite similar to our own. Further investigation brought us to the 2008 doctoral

thesis of Gwladys Toulemonde, a mathematical statistics student of P. Naveau at

L’Université Paris [47].

Autoregressive model for the Gumbel distribution

This model is similar to the model that will be presented in this thesis, in that it uses

the fact that under certain conditions, the sum of a Gumbel and an exp S random

variable has a Gumbel distribtuion. The difference lies in the state equation, which

is an α-stable random variable in this case.

Yt = µ+Xt + σ log(ϵt) (2.30)

ϵt = ρϵt−1 + St (2.31)
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Note that ϵt =
∑t

i=1 ρ
iSt−i, where {St} is a series of α-stable random variables.

By definition, a linear combination of α-stable random variables is also α-stable.

The author claims that Yt ∼ G(µ, σ) and Xt ∼ G(0, σ). Recall the following result

from Section 2.7.3 - If G and M are independent, with G ∼ G(µ1, σ) and M ∼

exp S(µ2, σ;α), then G+M ∼ G(µ1 + µ2,
σ
α
).

From this result, we can conclude that for Yt to be G(µ, σ), σ log(ϵt) is required

to follow an exp S(0, σ; 1) distribution. However, this is in contradiction with the

assumption that α ∈ (0, 1). We would actually need for σ log(ϵt) to follow an

exp S(0, σ;α) distribution, and therefore Yt would have a G(µ, σ
α
) distribution.

Parameter estimation

Since the distribution of Yt is assumed to be G(µ, σ
α
), the distribution is known and

the method of moments can be used to find parameter estimates. First recall that

the mean, variance and covariance of Yt are given by

E(Yt) = µ+
σ

α
γE

Var(Yt) =
π2

6

(σ
α

)2
Cov(Yt, Yt+h) = V ar(Yt)α

|h|
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If we let ψ = σ/α, then in this case we will have the estimators

ψ̂ =

√
6s2n
π2

µ̂ = Ȳn − γE

√
6s2n
π2

α̂ =
1

ns2

n∑
i=1

(Yi − Ȳn)(Yi+1 − Ȳn)

σ̂ = ψ̂α̂

where Ȳn and s2n are the sample mean and variance respectively, and γE is the Euler-

Mascheroni constant.

Estimator properties

In her thesis, Toulemonde states the following propositions, relating to the properties

of these estimators.

(i) The estimators for α, σ and µ defined above converge almost surely to the true

parameter values.

(ii) The vector
√
n

⎛⎜⎜⎜⎜⎝
µ̂− µ

σ̂ − σ

α̂− α

⎞⎟⎟⎟⎟⎠ is asymptotically normal with zero mean.

2.8.5 Toulemonde, Guillou and Naveau model (2013)

This model was published in a 2013 paper that we only became aware of recently, and

was applied to the problem of predicting levels of small particle air pollution [48].
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Yt = vt +HtZt + ηt,α2 (2.32)

Zt = α1Zt−1 + ϵt,α1 (2.33)

where Ht is a positive coefficient and the parameters α1 and α2 are between 0 and

1. The authors show that

Yt ∼ G
(
vt −

HtγEσ

α2

, Ht
σ

α2

)
Zt ∼ G(−γEσ, σ)

whenever ηt,α2 ∼ exp S(HtσγE(1/α2−1), Htσ;α2) and ϵt,α1 ∼ exp S(−σγE(1−α1), α1σ;α1).

This model is very similar to the model that we had developed in the course of

this thesis. However, this model also includes a time dependent coefficient Ht and

mean vt. In the paper, the authors assumed that parameters are known and therefore

did not discuss estimation methods.



Chapter 3

A State space model with Gumbel

marginals

Now that we have completed our literature review and discussion of similar models,

we will move on to the model that we shall propose in this thesis. This model depends

on the relationship between the Gumbel and exponential stable distributions detailed

in Theorem 2.7.2. The model in question is stated in the following theorem.

Theorem 3.0.1 Let Yt and Xt be stochastic processes in a state space model that can

be written as

Yt = µ+ ϕ(Xt + log(ϵt))

Xt = α(Xt−1 + log(St))
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where ϵt ∼ S(β) and St ∼ S(α). If X0 ∼ G(0, 1) then Xt ∼ G(0, 1) for all t ∈ Z and

Yt ∼ G(µ, ϕ
β
).

Notice thatXt ∼ G(0, 1) by Theorem 2.7.3 and log(ϵt) ∼ exp S(0, 1; β) by Theorem

2.7.1. We can then use Theorem 2.7.2 to show that Xt + log(ϵt) ∼ G(0, 1/β). This

tells us that Yt ∼ G(µ, ϕ
β
). The result here is that for any Gumbel response Yt, we

will be able to write it in terms of a G(0, 1) variable and exponential stable noise.

3.1 Moments of the state equation components

Since Xt ∼ G(0, 1), we already know the expectation and variance.

E(Xt) = γE (3.1)

Var(Xt) =
π2

6
(3.2)

Note that γE ≈ 0.5772, and is called the Euler-Mascheroni constant. Then for all

t ∈ Z and s ∈ N,

Cov(Xt+s, Xt) = Cov(αsXt +
s∑
j=1

αj log(St+s−j+1), Xt)

Cov(Xt+s, Xt) = αsV ar(Xt)

Cov(Xt+s, Xt) = αs
π2

6
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This result holds similarly for s < 0, so therefore for all s, t ∈ Z,

Cov(Xt+s, Xt) = α|s|π
2

6
(3.3)

We can use these facts to determine the moments of log(St).

E(Xt+1) = α(E(Xt) + E(log(St)))

αE(log(St)) = E(Xt+1)− αE(Xt)

E(log(St)) =
γE(1− α)

α
(3.4)

Similarly,

Var(Xt+1) = α2(Var(Xt) + Var(log(St)))

α2Var(log(St)) = Var(Xt+1)− α2Var(Xt)

Var(log(St)) =
(1− α2)

α2

π2

6
(3.5)

Note that Cov(log(Su), log(Sv)) = 0 when u ̸= v since the noise is independent.

3.2 Moments of the observation equation compo-

nents

Since we know that Yt ∼ G(µ, ϕ
β
), the mean and variance of Yt are
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E(Yt) = µ+ ϕ
γE
β

(3.6)

Var(Yt) =
ϕ2π2

6β2
. (3.7)

Now by Equation (3.3) we can find the covariance of the Yt process. For all

s, t ∈ Z,

Cov(Yt, Yt+s) = Cov(ϕXt + ϕ log(ϵt), ϕXt+s + ϕ log(ϵt+s))

= ϕ2Cov(Xt, Xt+s)

= ϕ2α|s|π
2

6
. (3.8)

Since we know the moments of Xt and Yt, we can use these to find the moments

of log(ϵt) as well.

E(Yt) = µ+ ϕ(E(Xt) + E(log(ϵt)))

ϕE(log(ϵt)) = E(Yt)− µ− ϕE(Xt)

= µ+
ϕγE
β

− µ− ϕγE

Then,

E(log(ϵt)) = γE
(1− β)

β
. (3.9)
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Var(Yt) = ϕ2Var(Xt) + ϕ2Var(log(ϵt))

ϕ2Var(log(ϵt)) = Var(Yt)− ϕ2Var(Xt)

=
ϕ2π2

6β2
− ϕ2π

2

6

(3.10)

Therefore,

Var(log(ϵt)) =
π2

6

(1− β2)

β2
(3.11)

These moments are similar in form to those of log(St), as we would expect. As

before, Cov(log(ϵu), log(ϵv)) = 0 when u ̸= v due to independence.

Finally we can use Equation (3.3) to calculate the covariance relationship between

Xt and Yt+s for s ≥ 0. For all s, t ∈ Z,

Cov(Xt, Yt+s) = Cov(Xt, µ+ ϕXt+s + ϕ log(ϵt+s))

= ϕCov(Xt, Xt+s)

= α|s|ϕ
π2

6
(3.12)
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3.3 Simulation of the state space model

We would like to simulate a data set that follows the model

Yt = ϕXt + ϕ log(ϵt)

Xt = αXt−1 + α log(St)

where ϵt ∼ S(β) and St ∼ S(α). We perform the simulation as follows.

1. Generate the St, following an α-stable distribution with parameter α. There

is an R package called stabledist that can generate such variables, we must

input the parameters of the Samorodnitsky parametrization that we discussed

in Section 2.7.2. Use each St to calculate the noise α log(St).

2. Generate X1 from a G(0, 1) distribution. The gumbelSim function in the fEx-

tremes R library is useful for this purpose.

3. We can then set up a sequential procedure to calculate each Xt+1 based on Xt

and an independent α log(St+1).

4. Values for Yt can be generated using the Xt values and noise ϕ log(ϵt), with the

α-stable variable ϵt generated in the same manner as St.



Chapter 4

Estimation of parameters

In this chapter we will discuss and compare several methods for estimating parameters

under a first order auto-regressive model, and apply several estimation methods to

the observed component of our model. It is important to keep in mind the nature of

the data we will be working with - extremes in datasets are often limited in number.

Our emphasis, therefore, is on finding an estimation procedure that can be used with

a relatively small sample size.

4.1 Estimation under a first order auto-regressive

model

We begin with a simple AR(1) time series model, which can be written

Xt = αXt−1 + Zt
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where Xt ∼ G(0, 1) and Zt = α log(St) ∼ expS(0, α;α).

It is usually a good idea to start out with the simplest estimation method, so we

will begin our discussion with the Yule-Walker estimators.

4.1.1 Yule Walker estimation

The Yule-Walker equations arose in the 1920s and 30s, appearing in the work of

economist George Udny Yule in 1926 and independently in the research of atmospheric

scientist Sir Gilbert Walker several years later in 1931 [5]. This method of estimation

has become one of the most common, as it is easy to understand and implement. A

discussion of this method can be found in the Brockwell and Davis text [6].

We can use the Yule-Walker equations to estimate α and σ2
Z , the variance of

the noise process Zt, where Zt ∼ IID(0, σ2
Z). For an AR(p) model written as Xt =

ψ1Xt−1 + · · ·+ ψpXt−p + Zt, we find that

Γpψ = γp (4.1)

and

σ2
Z = γ(0)− ψ′γp, (4.2)

where Γp = [γ(i− j)]i,j, a p × p matrix, γ(h) = Cov(Xt, Xt+h), ψ = [ψ1 . . . ψp]
′ is a

vector of coefficients and γp = [γ(1) . . . , γ(p)].
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In the AR(1) case these equations become simpler:

γ(0)α = γ(1) (4.3)

σ2
Z = γ(0)− αγ(1) (4.4)

Since the autocovariances γ(0) and γ(1) are unknown, we can substitute the sample

covariances γ̂(0) and γ̂(1), where

γ̂(j) =
1

n− j − 1

n−j∑
t=1

(Xt − X̄)(Xt+j − X̄).

In our Gumbel AR(1) equation the noise Zt does not have a zero mean, so we will

have to be extra careful. Let δt = Zt − C, where C = γE(1 − α), the mean of Zt.

Recall that the Yule-Walker equations are derived by multiplying the AR(p) equation

by Xt−1, . . . , Xt−p on both sides and taking the expectation. Therefore in our AR(1)

case, we can find the following result.
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Xt − αXt−1 − C = δt

Xt−1Xt − αXt−1Xt−1 −Xt−1C = Xt−1δt

E(Xt−1Xt)− E(αXt−1Xt−1)− E(Xt−1C) = E(Xt−1δt)

γ(1) + E(X)2 − α(γ(0) + E(X)2)− CE(X) = E(αX)E(δt)

γ(1)− αγ(0) + γ2E(1− α)− γ2E(1− α) = 0

γ(1)− αγ(0) = 0

In this derivation, we used the fact that Xt ∼ G(0, 1), so that E(X) is known to be

γE, the Euler-Mascheroni constant. Even though our noise process is not zero-mean,

we are left with the same Yule-Walker estimate,

α̂ =
γ̂(1)

γ̂(0)
. (4.5)

Note that by (4.5) and (4.4),

σ̂2
Z = γ̂(0)− γ̂(1)

γ̂(0)
γ̂(1)

therefore

σ̂2
Z =

γ̂(0)2 − γ̂(1)2

γ̂(0)
. (4.6)
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Results

How does this estimation method perform for different values of α? Figure 4.1 shows

estimates of α plotted against the true values of α, with 95% bootstrap confidence

intervals at different sample sizes. The width of the confidence intervals decreases as

α increases towards 1. The method seems to slightly underestimate α at lower sample

sizes, but generally works quite well. A table of mean values, confidence intervals and

mean squared error estimates is available in Appendix B.

Figure 4.1: Yule-Walker α estimates with 95% bootstrap confidence intervals (red
dotted lines). The blue line represents a perfect fit.
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Properties of Yule Walker estimators

To determine the properties of this estimator, we refer to a theorem described in

Brockwell and Davis [6].

Theorem 4.1.1 Let ψ̂ denote the Yule-Walker estimate of ψ. If {Xt} is an AR(p)

process and {Zn} ∼ IID(0, σ2), then

√
n(ψ̂ − ψ) → N(0, σ2Γ−1

p )

where Γp is the covariance matrix of {Xt}, [γ(i− j)]pi,j=1. It is also known that

σ̂2 p−→ σ2.

From this theorem, we conclude that
√
n(α̂− α) → N(0, σ2

Zγ(1)), thus,

Var(α̂) =
σ2
Zγ(1)

n
(4.7)

which goes to 0 as n→ ∞. The theorem also tells us that σ̂2
Z is a consistent estimator

of σ2
Z .

4.1.2 Conditional least squares estimation

The method of conditional least squares estimation, introduced by Kilmko and Nelson

in 1978 [26], is quite useful for situations in which our process is dependent but can

be broken into independent conditional variables.

Let X0, X1, . . . , XT be a stochastic process and θ be a vector of parameters that
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we would like to estimate. Let Ft be a sub-sigma field generated by any subset of

X0, X1, . . . , Xt−1. Our goal is to minimize the conditional sum of squares

Qn(θ) =
n−1∑
t=0

[Xt+1 − gt(θ)]
2 (4.8)

where gt(θ) = Eθ(Xt+1|Ft), which would be minimized by solving the least squares

equation,

∂Qn(θ)

∂θ
= 0.

Let X0 = [X0, . . . , XN−1]
′ and X1 = [X1, . . . , XN ]. In the case of a linear model

of the form gt(θ) = θX0 , we can obtain a closed form for θ̂,

θ̂ = (X′
0X0)

−1X′
0X1. (4.9)

Application to our AR(1) model

Consider the model Xt = αXt−1 + α log(St).

Since α log(St) ∼ expS(0, α;α), and E(log(St) = γE
(1−α)
α

, we find that
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Eα(Xt|Xt−1) = αXt−1 + γE(1− α).

Therefore we can write the conditional sum of squares as

Qn(θ) =
n−1∑
t=0

(Xt+1 − Eα(Xt+1|Xt))
2

=
n−1∑
t=0

(Xt+1 − αXt−1 − γE(1− α))2

=
n−1∑
t=0

((Xt+1 − γE)− α(Xt−1 − γE))
2 .

It follows from Equation (4.9) that the closed form of α̂ will be

α̂ = [(X0 − γE1)
′(X0 − γE1)]

−1
(X0 − γE1)

′(X1 − γE1). (4.10)

Results

As before we perform our simulation 500 times for various values of α and N (see

Figure 4.2). Conditional least squares estimates have a slight advantage over the Yule-

Walker estimates discussed in Section 4.1.1, which tend to suffer from downward bias

at low sample sizes. A table of mean values, confidence intervals and mean squared

error estimates is available in Appendix B.
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Figure 4.2: Conditional least squares α estimates with 95% bootstrap confidence
intervals (red dotted lines). The blue line represents a perfect fit.

Properties of conditional least squares estimates

Conditional least squares estimates are strongly consistent and unbiased. Klinko

and Nelson show that under certain conditions, these estimates are asymptotically

multivariate normal [26]. In fact, if α̂n is the least squares estimate of α at sample

size n,

n1/2(α̂n − α) → MVN(0p×1,V−1WV−1) as n→ ∞

whereV andW are matrices such that ifVn is the matrix of second partial derivatives



4.1 Estimation under a first order auto-regressive model 60

of Qn(α) then (2n)−1Vn → V and

1

2
n−1/2∂Qn(α)

∂α
→ MVN(0p×1,W) as n→ ∞.

4.1.3 Comparison of AR(1) model parameter estimators

We have illustrated two different methods for estimating the parameter α of our AR(1)

model - Yule-Walker estimation (YW) and conditional least squares (CLS). Both of

these methods perform well when n is large. However, in extreme value applications,

we are often limited to a relatively small sample size.

In Figure 4.3 we can see that for the smaller sample sizes, both the Yule-Walker

and conditional least squares estimates are biased slightly downward. However, the

conditional least squares estimates are closer to the true values. The mean squared

error (MSE) is similar between the two methods, although conditional least squares

performs slightly better (see Figure 4.4). Notice also that for both methods, the MSE

gets smaller as α gets closer to 1.

If there are several methods that are close in performance, it is advisable to use

the method that is the least computationally expensive. Table 4.1 includes program

run-times for the two estimation methods. The user time gives the CPU time spent

by the current R session, while the system time would include CPU time spent by

the operating system on behalf of the R session. For example, in our programs this

would include saving the results to CSV. Elapsed time is the true (real world) time

that has passed since the program started. Each program was run 500 times over

each of the 10 parameter values and 6 sample sizes. Yule-Walker was significantly
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Figure 4.3: Comparison of mean parameter estimates - AR(1) Model

faster than conditional least squares.

4.2 Estimation of parameters in the state space

model

For the purposes of our parameter estimation, we will assume that µ = 0 and that the

state equation is hidden, i.e. not observed. However, for several of these methods, we

assume that values from the state process X have been determined using a filtering

method (see Chapter 5 for an in-depth discussion).
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Figure 4.4: Comparison of mean squared errors of parameter estimates - AR(1) Model

Recall that our observation equation can be written

Yt = ϕ(Xt + log(ϵt)) (4.11)

where log(ϵt) ∼ exp S(0, 1; β), Xt ∼ G(0, 1) and Yt ∼ G(0, ϕ
β
). As with the state equa-

tion, we will test several parameter estimation methods starting with the simplest,

the method of moments.
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Table 4.1: Comparison of running time (seconds) - AR(1) model

Method Parameter User System Elapsed
Yule-Walker α 78.22 0.55 79.03

Conditional least squares α 262.38 1.74 279.24

4.2.1 Method of moments estimation

Method of Moments estimation is a simple parameter estimation method first pro-

posed by Karl Pearson in 1894. A discussion of this method is available in a 1970

paper by Robertson and Fryer, in which they also discuss the limitations and issues

that we may find with this method [38].

The method of moments estimators are derived by equating the first k sample

moments to the average of Y k
i where k is the number of parameters in our model.

E(Yt) =
T∑
i=1

yi

E(Y 2
t ) =

T∑
i=1

y2i

. . .

E(Y k
t ) =

T∑
i=1

yki

Recall that Yt ∼ G(0, ϕ/β), so these theoretical moments are known.
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E(Yt) =
ϕ

β
γE (4.12)

Var(Yt) =
π2

6

ϕ2

β2

=
π2

6γE
E(Yt) (4.13)

Notice that Var(Yt) is a function of E(Yt). This means that the system of those

two equations is not linearly independent and cannot be solved to find ϕ and β. We

will need to use the covariance structure (Yule-Walker method) to gain some extra

information about the parameters.

Cov(Yt, Yt+h) = ϕ2π
2

6
α|h| (4.14)

Cov(Yt, Yt+2)

Cov(Yt, Yt+1)
= α (4.15)

Now the moments can be rearranged to find the other parameter estimates.

ϕ̂ =

√
6 ˆCov(Yt, Yt+1)

π2α̂
(4.16)

β̂ =
ϕ̂γE
Ȳn

(4.17)
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Performance

For each of the simulations below, default values of α = 0.75, β = 0.6 and ϕ = 1

were used, varying one value as necessary. For each set of values, we looked at n

values of 50, 75, 100, 250, 500 and 1000, and ran the simulations for 500 trials. For

the estimation of ϕ and β it was assumed that α was known, to aid in comparison

with the methods that we will see in subsequent sections. Tables of mean values,

confidence intervals and mean squared error estimates are available in Appendix B.

Estimation of α

Estimates of α do not behave well until our sample size is quite large (see Figure

4.5). In the estimation of β and ϕ here, we will assume that α is known. However, in

practice it would be preferable to use a method that either does not depend on α or

is robust to inaccurate α estimates.

Estimation of β

The method of moments does not work well for the estimation of β when we have

small sample sizes. The confidence intervals are quite large and the method is not

robust to outliers. This estimation method tends to overestimate β values that are

close to 1, but the tendency is reduced as the sample size increases.

Note that although β can only be between 0 and 1, we did not restrict the values

so that we could see the true distribution of the estimates (see Figure 4.6).
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Figure 4.5: Method of moments estimates of α with 95% bootstrap confidence inter-
vals (red dashed lines). The blue line represents a perfect fit.

Estimation of ϕ

At low sample sizes, this method tended to underestimate ϕ slightly and had very

wide confidence intervals, especially as ϕ became larger (see Figure 4.7). However,

for ϕ we do not see the same wild variation at lower n values as we saw with our β

estimates.

Properties of the method of moments estimators

Generalized method of moments estimators are consistent due to the law of large

numbers, but may often be biased. Another issue that may occur is that parameter
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Figure 4.6: Method of moments estimates of β with 95% bootstrap confidence inter-
vals (red dashed lines). The blue line represents a perfect fit.

estimates may fall outside of the allowed range [38]. Method of moments estimates

are a special case of generalized method of moments estimates (GMM) which have

been shown to be asymptotically normal and efficient [30].

4.2.2 Quasi Fisher’s scoring method

Fisher’s Scoring method, developed by R.A. Fisher, is a method of refining param-

eter estimates. Usually this method would require a score function and information

matrix, which would require knowledge of the likelihood function and the probability

density function respectively. In a quasi-likelihood context, we can substitute the
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Figure 4.7: Method of moments estimates of ϕ with 95% bootstrap confidence inter-
vals (red dashed lines). The blue line represents a perfect fit.

quasi-likelihood function and use a similar method for parameter estimation. We will

refer to this method as quasi Fisher’s scoring (QFS).

Heyde (1997) [18] tells us that for any estimating equation G(Θ̂) = 0 for parame-

ters Θ, the scoring iterations will be

Θm+1 = Θm − (E(
•
G(Θm)))

−1G(Θm)

Note that whenG() is a standardized estimating function, −E(
•
G(Θ)) is the covariance

matrix. In the context of quasi Fisher’s scoring, G(Θ) will be the quasi-likelihood

score function and −E(
•
G(Θ)) is the quasi-information matrix.
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Following the method of Wedderburn [51] we first define the quasi-likelihood func-

tion to be

KΘ(yi) =

∫ µ yi − µ

V (µ)
dµ (4.18)

where µ is the mean function and V (µ) is the variance expressed as a function of the

mean. Since V (µ) = π2

6γ2E
µ2 (where γE is the Euler-Mascheroni constant), it follows

that

KΘ(yi) =
∫

yi−µ
C1µ2

dµ

= 1
C1

∫ (
yi
µ2

− 1
µ

)
dµ

= −1
C1

(
yi
µ
+ log(µ) + C0

)
(4.19)

where C1 =
π2

6γ2E
and C0 is an unknown constant. The quasi-likelihood score function

is given as

G(Θ̂) =
n∑
i=1

∂

∂Θ
KΘ(yi). (4.20)

The derivatives of K with respect to the parameters β and ϕ are

∂

∂ϕ
KΘ(yi) = ∂

∂ϕ
−1
C1

(
yiβ
ϕγE

+ log
(
ϕγE
β

)
+ C0

)
= −1

C1

(
−yiβ
ϕ2γE

+ 1
ϕ

)
(4.21)

∂

∂β
KΘ(yi) = −1

C1

(
yi
ϕγE

− 1
β

)
, (4.22)
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which leaves us with the result

G(Θ̂) =
n∑
i=1

⎡⎢⎣ ∂
∂ϕ
KΘ(yi)

∂
∂β
KΘ(yi)

⎤⎥⎦ =
n∑
i=1

⎡⎢⎣−1
C1
(−yiβ
ϕ2γE

+ 1
ϕ
)

−1
C1
( yi
ϕγE

− 1
β
)

⎤⎥⎦ (4.23)

with C1 =
π2

6γ2E
as before.

Now, we can move on to the quasi-information matrix, nIq(Θ). In general, for

Θ = [θ1, . . . , θN ]
′, the diagonal entries of Iq(Θ) will be given by

E

(
∂K
∂µ

)2

=
1

V (µ)
(4.24)

while the off-diagonal entry in row i and column j will be

E

(
∂K
∂θi

∂K
∂θj

)
=

1

V (µ)

∂µ

∂θi

∂µ

∂θj
(4.25)

When we apply these equations to our context with Θ = [β, ϕ]′, we find that since

µ = ϕ
β
γE,

∂µ

∂β
= −ϕγE

β2 (4.26)

∂µ

∂ϕ
= γE

β
(4.27)

so that

Iq(Θ) =
6β2

π2ϕ2

⎛⎜⎝ 1
−ϕγ2E
β3

−ϕγ2E
β3 1

⎞⎟⎠ . (4.28)
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We require the inverse of this matrix, which is

I−1
q (Θ) =

π2ϕ2

6β2

⎛⎝ 1

1− ϕ2γ4E
β6

⎞⎠
⎛⎜⎝ 1

ϕγ2E
β3

ϕγ2E
β3 1

⎞⎟⎠ . (4.29)

The parameter vector Θ = [β, ϕ]′ can therefore be estimated using the following

iteration equations:

Θm+1 = Θm +
I−1
q (Θm)

n

n∑
i=1

∂

∂Θm

KΘm(yi). (4.30)

where
∑n

i=1
∂
∂Θ

KΘ(yi) is the quasi-likelihood score function and nIq(Θ) is the quasi-

information matrix.

We have now defined all of the components and can proceed with the method as

follows.

1. Use the method of moments to get initial values for ϕ and β, which will be our

Θ0. Note that our esimation only depends on α through these initial values.

2. For m = 0, 1, 2, . . . , use Equation (4.30) to compute Θm+1.

3. We stop when we reach convergence, that is |Θm+1 − Θm| < ϵ for some pre-

chosen small ϵ > 0. In our simulations we used ϵ = 0.001.

Correction Factor

This optimization problem should be solved using more robust numerical methods,

but this would make its implementation impractical. As an ad-hoc alternative we can
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make sure that our parameter estimates of ϕ and β do not go outside their respective

bounds, (0,∞) and (0, 1) respectively, by multiplying by a correction factor. With

this method of quasi Fisher scoring it is often the case that the direction of the

parameter adjustment is correct but the magnitude may be too high.

Therefore we choose a random variable k ∼ U(1
3
, 1
2
) that will act as a correction to

keep the estimates within the proper bounds. We may need to multiply estimates by

k several times for estimates that are further out of bounds. In addition to making

our estimates more accurate, this will keep the program from producing errors due

to negatives being placed inside a log or square root function.

We must also make sure that our initial values (found using the method of mo-

ments) are within the proper bounds so that our program does not produce errors.

Estimation of β

Simulations were run 500 times, with default values of α = 0.75 and ϕ = 1, over

varying levels of β and n, assuming α is known and ϕ is unknown. This method

tends to underestimate higher values of β, but is overall an improvement upon the

method of moments, especially at low sample sizes (see Figure 4.8).

Estimation of ϕ

Simulations were run 500 times, with default values of α = 0.75 and β = 0.6, over

varying levels of ϕ and n amd assuming that α is known and β is unknown. As with

other methods, the quasi Fisher scoring estimates of ϕ have wide confidence intervals

when the sample size is low and for larger values of ϕ (see Figure 4.9). We also have
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Figure 4.8: Quasi Fisher’s scoring estimates of β with 95% bootstrap confidence
intervals (red dashed lines). The blue line represents a perfect fit.

a downward bias that becomes less evident as the sample size increases.

4.2.3 Comparison of state space model parameter estimators

We have now estimated the parameters of the observation equation with both the

method of moments and the quasi Fisher scoring method. Quasi Fisher scoring is the

recommended method of estimation for the parameter β, as the estimates are much

more stable than the method of moments estimators at low sample sizes (see Figure

4.10). Quasi fisher scoring also results in a lower mean squared error (see Figure

4.11). However, when N = 1000, we can see some irregularity in the QFS estimates
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Figure 4.9: Quasi Fisher’s scoring estimates of ϕ with 95% bootstrap confidence
intervals (red dashed lines). The blue line represents a perfect fit.

but not the MM estimates. This tells us that quasi Fisher scoring may not be as

robust to large extreme values as the method of moments.

Among the ϕ estimation methods, both methods tend to underestimate ϕ but the

method of moments method is closer to the true value (see Figure 4.12). The quasi

Fisher scoring method has a lower mean squared error however, and therefore may

be the better choice for parameter estimation (see Figure 4.13).

In Table 4.2, we can see the run times for the two estimation methods. Recall

that the user time gives the CPU time spent by the current R session, while the

system time would include CPU time spent by the operating system on behalf of the
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Figure 4.10: Comparison of mean parameter estimates of β - State space model

R session and elapsed time is the true (real world) time that has passed since the

program started. Each program was run 500 times over each of the 10 parameter

values and 6 sample sizes, varying either ϕ or β. The method of moments was the

fastest, followed by quasi Fisher scoring.

When we defined our model, we assumed that the {Xt} process was unknown.

Howeever, in some applications we may be intererested in using a filtering method to

predict each Xt value from Yt and the previously predicted value of Xt−1. In the next

chapter we will discuss such methods.



4.2 Estimation of parameters in the state space model 76

Figure 4.11: Comparison of MSE of β estimates - State space model

Table 4.2: Comparison of running time (seconds) - State space model

Method Parameter User System Elapsed
Method of Moments β 84.99 0.38 85.66
Quasi Fisher Scoring β 196.00 0.55 197.78
Method of Moments ϕ 82.89 0.27 83.45
Quasi Fisher Scoring ϕ 192.16 0.72 193.72



4.2 Estimation of parameters in the state space model 77

Figure 4.12: Comparison of mean parameter estimates of ϕ - State space model



4.2 Estimation of parameters in the state space model 78

Figure 4.13: Comparison of MSE of ϕ estimates - State space model



Chapter 5

Filtering and the SISR algorithm

5.1 Importance sampling

Imagine that we have a hidden processX with distribution f , and an observed dataset

Y . We are interested in the value of I(ht), an integral representing the expectation

of the function ht evaluated at x0:t, given the observed data.

I(ht) = Ef(x0:t|y1:t)(ht(x0:t)).

Since this integral is often too complicated to evaluate directly, we often must

turn to numerical methods. The most obvious choice would be to generate N vectors

{x(i)0:t}Ni=1 from the distribution of x0:t|y1:t. Then we can estimate I(ht) as

IN(ht) =
1

N

N∑
i=1

ht(x
(i)
0:t).
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Basically we have evaluated ht at each of our generated x particles, and taken

the average. One issue here is that sometimes the distribution of x0:t|y1:t is difficult

to determine or hard to sample from. For this reason we will require the concept of

importance sampling (see Doucet [11] for an in depth discussion). We can write

I(ht) as

I(ht) =

∫
ht(x0:t)f(x0:t|y1:t)dx0:t (5.1)

=

∫
ht(x0:t)w(x0:t)g(x0:t|y1:t)dx0:t∫

w(x0:t)g(x0:t|y1:t)dx0:t
. (5.2)

where w(x0:t) = f(x0:t|y1:t)
g(x0:t|y1:t) . We refer to g() as the importance distribution,

ideally a distribution that is somehow similar to f() but easier to sample. Our choice

of g() is somewhat arbitrary, but we require that g() include the support of f(). The

closer g() is to f(), the less likely it is that our method will break down.

5.2 Sequential importance sampling and resampling

algorithm

The importance sampling method described in the previous section has some areas

that can be improved upon, the first of which is the possibility that the method can

become very computationally expensive. Since we are working with an AR(1) model,

if we are sampling values at time t, we can simply retain the values from time t − 1
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instead of creating new samples each time. That way, we will end up with a set of

particles,

x
(j)
t = (x

(j)
t−1, x̃

(j)
t ).

One problem with this approach is that, as t increases, the sample weights may

become almost zero for some particle values. This means that these particles will

not be useful for estimation, so should be removed. The sequential importance

sampling and resampling algorithm (SISR) solves this problem by resampling

from {x(j)t }Nj=1 with replacement using the sample weights {W (j)
t } [10].

We begin by initializing the values x0 ∼ G(0, 1) and W0 = 1
N
. For each value t

from 1 to T , we perform the following steps.

Step 1: Sample from the importance distribution

Sample N values x̃t from g(xt|xt−1, yt), the importance distribution, and store the

particles {x(j)t−1, x̃
(j)
t }. Some possible options for g() include

• The unscented transformation.

• g(x
(j)
t |x(j)t−1) ∼ expS(αx(j)t−1, α;α).

• g(x
(j)
t |x(j)t−1) ∼ N (αxt−1 + γE(1− α), (1− α2)π

2

6
)

Exponential-S is the true distribution of xt|xt−1 so that is the option we will

choose. How can we generate this data? Recall that the state component of our

model is given by

Xt = αXt−1 + α log(St) , St ∼ S(α).
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In our notation, p(X = x) denotes the density of X evaluated at the point x. The

conditional density is given by

p(X
(j)
t = xt|X(j)

t−1 = xt−1) = p(α log(St) = xt − αxt−1)

=

⏐⏐⏐⏐exp( 1

α
xt − xt−1

)⏐⏐⏐⏐ p(St = exp

(
1

α
xt − xt−1

))

where the vertical brackets denote absolute value. We can generate the distribution of

St using the dstable function of the stabledist R package, and then calculate x
(j)
t using

S
(j)
t and x

(j)
t−1 Note that we have left off the effect of Yt. However, our choice of g()

should theoretically not affect our results if it is close enough to the true distribution

so we do not expect this to be an issue.

Step 2: Calculate weights

Generally the weights will have the form

W̃
(j)
t = W

(j)
t−1

p(x̃
(j)
t |x(j)t−1)p(yt|x̃

(j)
t )

g(xt|xt−1, yt)

However, since g(xt|xt−1, yt) = p(x̃
(j)
t |x(j)t−1) in our case, we will only need to cal-

culate p(yt|x̃(j)t ). Again we can use the dstable function and the distribution of ϵt to

calculate this result.

Yt = ϕXt + ϕ log(ϵt) , ϵt ∼ S(β)
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p(Y
(j)
t = yt|X̃(j)

t = xt) = p(ϕ log(ϵt) = yt − ϕxt)

=

⏐⏐⏐⏐exp(1

ϕ
yt − xt

)⏐⏐⏐⏐ p(ϵt = exp

(
1

ϕ
yt − xt.

))

Once the weights have been calculated, we should then proceeed to normalize the

weights.

W
(j)
t =

W̃
(j)
t∑N

j=1 W̃
(j)
t

Step 3: Compute a function of Xt

If h(Xt) is our function of interest, then we can calculate an estimator

ĥ(Xt) =
N∑
j=1

W
(j)
t ht(x̃

(j)
t ).

In our case, we are interested in the expectation and variance,

Ê(Xt) =
N∑
j=1

W
(j)
t x̃

(j)
t (5.3)

V̂ar(Xt) =
N∑
j=1

W
(j)
t (x̃

(j)
t − Ê(Xt))

2. (5.4)

Before moving on to the next step, we should resample N values with replacement

from {x̃(j)t } using the probabilities {W (j)
t }, and save these along with the correspond-

ing weights to use in the next round.
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5.2.1 Results

Figure 5.1 shows predicted values for Xt for selected values of α, β and ϕ, using a

fixed time series of T = 10, and 100 repetitions in which n = 1000 particles were

generated each time.

This method works quite well, unless β is low and X is relatively high (greater

than 1). The effectiveness of the bootstrap method is more sensitive to changes in β

than in the other two parameters.

Figure 5.1: SISR Estimates for X with 95% confidence intervals (red dashed lines) -
Bootstrap importance distribution. The blue line represents a perfect fit.
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5.3 Alternative weights

Previously, we used the bootstrap importance distribution because it is the simplest

to implement. However, it is possible that another distribution may give us better

results. We will discuss several alternatives.

5.3.1 Optimal importance distribution

The optimal importance distribution is given by

g() = p(X
(i)
k |X(i)

k−1, Yk) (5.5)

This is often used when our state space variable has only a finite number of discrete

states, and may also be used in cases where we can determine the distribution of

X
(i)
k |X(i)

k−1, Yk. In this case, the weights will simplify to W
(j)
t = W

(j)
t−1p(Yt|X

(j)
t−1).

W
(j)
t = W

(j)
t−1

p(X
(j)
t |X(j)

t−1)p(Yt|X
(j)
t )

P (X
(i)
t |X(i)

t−1, Yt)

= W
(j)
t−1

p(X
(j)
t−1, Yt)

p(Yt|X(j)
t−1)

p(X
(j)
t , X

(j)
t−1)p(Yt, X

(j)
t )

p(X
(j)
t , X

(j)
t−1, Yt)p(X

(j)
t )

= W
(j)
t−1p(Yt|X

(j)
t−1)

p(X
(j)
t−1|X

(j)
t )

p(X
(j)
t−1|X

(j)
t , Yt)

= W
(j)
t−1p(Yt|X

(j)
t−1) (5.6)
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Note that p(X
(j)
t−1|X

(j)
t ) = p(X

(j)
t−1|X

(j)
t , Yt) because X

(j)
t−1 only depends on Yt through

X
(j)
t .

What is the distribution of p(Yt|X(j)
t−1) for our model? Recall that our state and

observation equations are

Yt = ϕXt + ϕ log(ϵt)

Xt = αXt−1 + α log(St).

Rearranging these equations, we find that

Yt = ϕαXt−1 + αϕ log(St) + ϕ log(ϵt)

and therefore

p(yt|x(j)t−1) = p(αϕx
(j)
t−1 + αϕ log(St) + ϕ log(ϵt)|x(j)t−1). (5.7)

Since the terms on the right hand side are given, we can find this probability if

we know the distribution of α log(St) + log(ϵt). This distribution is a mixture of two

exponential stable distributed variables. It will be difficult to find probabilities from

this exact distribution, but we can determine its moments:
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E(yt|x(j)t−1) = αϕx
(j)
t−1 + ϕγE

(
1− α +

(1− β)

β

)
, (5.8)

Var(yt|x(j)t−1) = ϕ2π
2

6

(
1− α2 +

(1− β2)

β2

)
. (5.9)

5.3.2 Normal importance distribution

In the previous section, we found that we were unable to use the optimal importance

distribution in our case because we could not determine probabilities associated with

the mixture distribution of α log(St) + log(ϵt).

It is possible to approximate this distribution using a normal distribution with

the mean and variance found in Equations (5.8) and (5.9). In Figure 5.2 we can see

that the mixed distribution is mound shaped and slightly skewed right. Using the

normal distribution will result in a biased estimate.

5.3.3 Approximation using cumulants

The normal importance distribution was not a good choice due to the skewness of the

data. For this reason we will need to construct a distribution that more accurately

resembles p(yt|x(j)t−1).

We will use an approximation described in Abramowitz and Stegun (1964) [1].

Let X1, . . . , Xn be our random variables of interest with mean µ and variance σ2. An
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Figure 5.2: Distribution histogram of α log(St) + log(ϵt), as compared to a normal
distribution with the same mean and variance.

approximation for the distribution of X is given by

f(x) ∼ Z(x)−
[γ1
6
Z(3)(x)

]
+

[
γ2
24
Z(4)(x) +

γ21
72
Z(6)(x)

]
−
[
γ3
120

Z(5)(x) +
γ1γ2
144

Z(7)(x) +
γ31

1296
Z(9)(x)

]
+ . . .

(5.10)

where γr−2 = κr

κ
r/2
2

, Z(r)(x) is the rth derivative of the standard normal density and

κr is the rth cumulant of Y . These standard normal derivatives can be calculated in

R, and the cumulants of Yt|X(j)
t−1 are given by the following theorem (see Appendix
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A for derivation).

Theorem 5.3.1 The ith cumulant of Yt|X(j)
t−1 is equal to

κi(Yt|X(j)
t−1) = αϕx

(j)
t−1 + ϕi(1− αi)κi(X) + ϕi

(1− βi)

βi
κi(X) for i ≥ 1,

where κ1(X) = µ + σγE, κi(X) = (k − 1)!σkζ(k) for i > 1, ζk =
∑∞

n=1
1
nk and

γE ≈ 0.57721 is the Euler-Mascheroni constant.

Many of the pieces of this formula, such as the standard normal (Z) derivatives

and the cumulants of the G(0, 1) distribution only needed to be calculated once at the

beginning of the R program. This program will run more quickly than the bootstrap

program, since we do not need to use the computationally expensive dstable function.

Note that sometimes this method results in negative weights, which we set to 0

to prevent errors in the program.

Results of this program are available in Figure 5.3 and the table in Appendix

C. Notice that this method does not perform well for low values of α and β. To

understand why, we can plot the distribution of Yt|Xt−1 = 1 and overlay a plot of the

cumulant expansion with 4 terms (see Figure 5.4). When β is low, the distribution

of Yt|Xt−1 is not mound shaped, and is in fact quite uniform. Even if we were to

replicate the distribution precisely, the normalized weights would be close to 1
n
, and

therefore would be of limited use.



5.3 Alternative weights 90

Figure 5.3: SISR estimation with cumulant method weights for various parameter
values. The blue line represents a perfect fit and the red dashed lines visualize the
95% quantile confidence interval.

5.3.4 Saddlepoint approximation

The method of saddlepoint approximation is another method by which we can use

cumulants to approximate the density of a random variable. Saddlepoint approxima-

tion was introduced by Daniels in 1954, and is also known as the method of steepest

descent. We will follow the discussion and notation of Broda et al. (2012) [7].

Let X be a random variable, with density fX(x). In the previous section, we

tried to estimate fX(x) using an expansion about the normal distribution, but found

that the method tended to work well in the area of the mean and overestimate the

tails. The basic idea of saddlepoint approximation is that we will express fX(x) in
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Figure 5.4: Histogram of Yt|Xt−1 = 1 with cumulant based expansion to 4 terms

terms of a normal density where x is near the mean, taking advantage of the optimal

behaviour in that area.

Let Ts be a random variable with density

fTs(x; s) =
exp(xs)fX(x)

MX(s)

where MX(t) is the moment generating function of X. We say that Ts is exponen-

tially tilted, and note that E(Ts) = h′X(s) and Var(Ts) = h′′X(s), where hX(s) is the

cumulant generating function of X evaluated at s. Note that when s = 0, the mean
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and variance of Ts will be the same as for X.

Rearranging the equation, we can find an expression for fX(x) in terms of the

moment generating function of X and density of Ts,

fX(x) = exp(−xs)fTs(x; s)MX(s). (5.11)

Now, in order to fulfill our requirement that x is near the mean of the distribution,

we will set s = š such that E(Ts) = hX(š) = x. This value š is calld the saddle

point.

The first and second order approximations of the density of X will be

f̂(x) =
1√

2πh′′X(š)
exp(hX(š− xs)) (5.12)

and

f̂(x) =
1√

2πh′′X(š)
exp(hX(š)− xs)

(
1 +

γ4
8

− 5

24
γ23

)
(5.13)

where γi =
h
(i)
X (š)

(h′′X(š))i/2
.

In the context of our model, we will require the cumulant generating function of

Yt|Xt−1, hYt|Xt−1(t). It is difficult to get a closed form for this expression, but we

can use the cumulants to get an approximation using the definition of the cumulant
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generating function.

hYt|Xt−1(t) =
∞∑
n=1

κn
tn

n!
(5.14)

We can see from Figures 5.5 and 5.6 that the method of saddlepoint approximation

should be an improvement over the cumulant expansion method. The second order

approximation works quite a bit better for high values of α and β than the first order

approximation.

Figure 5.5: First order Saddle point approximation for various parameter values,
plotted against a histogram of generateed values

The resulting first and second order estimates can be found in Figures 5.7 and 5.8

respectively, with a table of values available in Appendix C. The saddlepoint method
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Figure 5.6: Second order Saddle point approximation for various parameter values,
plotted against a histogram of generateed values

is an improvement over the previous cumulant method. However, this still does not

work very well for low values of α and β. Even though the method does a better

job of approximating the distribution for such parameter values, the nearly-uniform

nature of the distribution will result in weights that are close to 1
n
. This means that

we do not gain much information from the weights.

If X has a uniform distribution, then the moment generating function is not very

well-behaved, and is in fact equal to 1 when t = 0. If we look at Figures 5.5 and 5.6,

we can see that the first order approximation actually works better than the second

order approximation when α or β is low. This is due to the almost-uniform nature of
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the distribution - the program is trying to approximate something that is not there.

If we compare Figures 5.7 and 5.8, we can see that the first order approximation

works slightly better for small values of α and β, but neither method works well. One

option would be to take a mixture of the two, as the first order approximation tends

to underestimate the peak of each distribution and the second order approximation

tends to overestimate. However, it is unlikely that even the mixture method would

work as well as the bootstrap method.

Figure 5.7: SISR estimation with first order saddle point weights for various parameter
values. The blue line represents a perfect fit and the red dashed lines visualize the
95% quantile confidence interval.
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Figure 5.8: SISR estimation with second order saddle point weights for various pa-
rameter values. The blue line represents a perfect fit and the red dashed lines visualize
the 95% quantile confidence interval.



Chapter 6

Applications and Concluding

Remarks

6.1 Applications

Since the Gumbel distribution is part of the Generalized Extreme Value (GEV) family,

it occurs naturally as the distribution of block maxima or minima of certain underlying

distributions. One example would be the exponential distribution, which is used to

model the time between Poisson events, or the distribution of daily and annual rainfall

and river discharge volumes.

Nakajima et. al. propose a state space model with an AR(1) Gumbel distributed

state step and a GEV observed step, which they use to model minimum daily stock

return prices from the Tokyo Stock Price Index (TOPIX) [33]. Although Longin [29]

has shown that the maxima and minima of stock prices can be best approximated



6.1 Applications 98

using a Fréchet distribution, there may be some industries in which a model similar

to ours might be useful.

In the field of hydrology, the Gumbel distribution is often used to model block

maxima of the previously mentioned exponential processes - daily rainfall totals and

river discharge volumes. Perhaps a model similar to ours could be used to predict

river discharge or flood levels from rainfall, although in winter those values would

also be dependent on snow melt. Such a mixture of Gumbel variables would be

better estimated by a GEV distribution (see [25] for a review of the methods used for

extremes in hydrology).

Inter-arrival times for climate events such as floods, droughts, heat and cold waves

are Gumbel (see, for example [24]). Therefore if we can identify these events as

dependent on another underlying Gumbel process, we may be able to use a state

space model for prediction. As of our knowledge, the model in current literature that

is the most similar to ours is that of Toulemonde et. al., which is used to estimate

concentrations of greenhouse gases [48].

6.1.1 Toulemonde, Guillou and Naveau 2013

This paper is an application of a state space model with Gumbel marginals to predic-

tion of air pollution levels [48]. Methane and nitrous oxide are two greenhouse gases

with correlated concentrations in the atmosphere. The maxima and minima of the

concentration of these gases are both Gumbel distributed. The model that they used

is as follows:
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Yt = vt +HtZt + ηt,α2

Zt = α1Zt−1 + ϵt,α1

where ηt,α2 ∼ exp S(α2,−HtσγE(
1

α2−1
), Htσ) and ϵt,α1 ∼ exp S(α1,−σγE(1−α1), α1σ)

and are independent of Yt and Zt respectively. The distributions of the state and ob-

served variables are Zt ∼ G(γEσ, σ) and Yt ∼ G(vt − HtγEσ
α2

, Ht
σ
α2
)

The authors assumed that parameters were known, so did not proceed with esti-

mation. Instead they focused on particle filtering, comparing four different filtering

methods, including the Kalman filter, bootstrap filter and two versions of an auxillery

particle filtering approach developed by Pitt and Shephard (1999) [37].

6.2 Conclusion

Throughout the course of this thesis, we have examined the properties of Gumbel and

Exponential-S random variables and the relationship between them, and proposed a

state space model that exploits this relationship.

Yt = ϕXt + ϕ log(ϵt)

Xt = αXt−1 + α log(St)
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where Yt ∼ G(0, ϕ
β
, Xt ∼ G(0, 1), log(ϵt) ∼ exp S(0, 1; β) and log(§t) ∼ exp S(0, 1;α).

The parameters α and β are between 0 and 1, and ϕ is a positive coefficient.

Although similar models have been published in the recent past by Toulemonde,

Guillou and Naveau (2013) and the PhD Thesis of Toulemonde (2008), we expand

upon the research by testing different methods for parameter estimation and variable

filtering [48] [47].

First we discussed how the methods of Yule-Walker and conditional least squares

could be used to estimate parameters in an AR(1) time series model with G(0,1)

marginals. The method of moments and quasi Fisher scoring were then used to

estimate the parameters in our proposed state space model. For each method, we

tested the performance of the estimators at varying sample sizes and true parameter

values, computing the mean estimate, the 95% quantile confidence interval and the

mean squared error. Quasi Fisher scoring tended to work very well for this type of

model.

In defining our model, the state component was assumed to be hidden. There

may be some applications where it would be useful to employ filtering methods to

determine the values of X1, X2, . . . , XT . The sequential importance sampling and re-

sampling (SISR) algorithm was chosen for this purpose, with a bootstrap importance

distribution and several different weighting methods. First the bootstrap weights were

tested, and then several methods of estimating the optimal weights using cumulant

expansions of the distribution (including the saddlepoint method). The bootstrap

method worked quite well in predicting the hidden values of Xt, although the method

breaks down when the parameter β is close to 0.
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In the future, it would be interesting to test out estimation methods for time-

dependent parameters. Gumbel distributed random variables are often encountered

in the context of natural processes, so with the threat of climate change it may be

increasingly necessary to include time dependence in our models. Another useful

direction would be to examine how we might use our model to predict future values

from current data.
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Appendix A

Cumulants of observations

conditional on the previous state

variable

We are interested in calculating the cumulants of Yt|Xt−1. Recall that the moment

generating function of the distribution of X is given by

MX(t) = E(exp(tX)).

If we take the log of this function, we end up with

hX(t) = log(E(exp(tX))),

which is referred to as the cumulant generating function. Cumulants follow these
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rules:

• If X and Y are independent random variables, then κi(X+Y ) = κi(X)+κi(Y )

• If c is a constant, then κi(cX) = ciκi(X) and κi(c+X) = c+ κi(X).

Therefore, if we want to find the cumulants of αϕx
(j)
t−1+αϕ log(St)+ϕ log(ϵt)|x

(j)
t−1,

we can start by calculating the cumulants of log(St) and log(ϵt). Note that x
(j)
t−1 will

be treated as a constant here.

We do not know the cumulant generating function of log(Si). If we try to calculate

this in the usual way, we will find that

hlog(Si)(t) = log(E(exp(t log(Si))))

= log(E(Sti )). (A.1)

Unfortunately, since Si is α-stable with α < 1, the second and higher moments of Si

will not exist, so E(Sti ) will not be defined (see Nolan (2009) [35]). If we try to obtain

the moment generating function we will run into the same problem as well. However,

there is a way of getting around this issue.

In our model, Xt = αXt−1 + α log(St), and we know that Xt−1 and log(St) are

independent. Therefore we can use our rules to determine that

κi(Xt) = αiκi(Xt−1) + αiκi(log(St))

κi(log(St)) =
(1− αi)

αi
κi(X) (A.2)
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We have set κi(Xt) = κi(Xt−1) = κi(X) because Xt and Xt−1 are identically

distributed and would therefore have the same moments and cumulants. So therefore,

if we can determine the cumulant generating function of a Gumbel random variable,

we can use that to find the cumulant generating function of log(St).

In Section 2.4.1 we found that the moment generating function of X ∼ G(µ, σ) is

given by MX(t) = exp(µt)Γ(1− σt), where Γ() is the gamma function. We can take

the log of this expression to find that the cumulant generating function of X is

hX(t) = log(exp(µt)Γ(1− σt))

= µt+ log(Γ(1− σt)). (A.3)

From this cumulant generating function, we can take the ith derivative and evaluate

at 0 to get the ith cumulant.

κi(X) =
∂i

∂ti
hX(0) (A.4)

Our next step is to find the derivative of hX(t). In Section 2.4.1, we derived the mean

and variance of the Gumbel distribution using the digamma and trigamma functions.

Since we will be looking at higher moments, we will need to use the more general

polygamma function, given by

φ(n)(Z) =
∂n

∂Zn
log Γ(Z) (A.5)
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h′X(t) = µ− σ
Γ′(1− σt)

Γ(1− σt)

= µ− σφ(1− σt) (A.6)

h
(2)
X (t) = σ2φ(1)(1− σt)

h
(3)
X (t) = −σ3φ(2)(1− σt)

. . .

h
(k)
X (t) = (−1)kσkφ(k−1)(1− σt). (A.7)

When t = 0, 1−σt = 1, so we are interested in calculating the first few derivatives of

φ evaluated at Z = 1. Fortunately, this has a known form (Abramowitz and Stegun

(1964) [1] ):

φ(n)(1) = (−1)n+1n!ζ(n+ 1) (A.8)

where ζ(n) =
∑∞

k=1
1
kn
, the Riemann zeta function, which converges for n > 1. These

values can be easily found using a short R program.

ζ(2) =
π2

6

ζ(3) ≈ 1.202

ζ(4) ≈ 1.0823

We are now ready to start putting all of these pieces together to find the cumulants
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of X ∼ G(µ, σ).

κ1(X) = h′X(0)

= µ− σφ(1)

= µ+ σγE (A.9)

where γE ≈ 0.57721 is the Euler-Mascheroni constant, which is known to be the value

of −φ(1). In general for i > 1, the cumulants of X are given by

κi(X) = h
(i)
X (0)

= (−1)kσkφ(k−1)(1)

= (−1)kσk(−1)k(k − 1)!ζ(k)

= (k − 1)!σkζ(k) (A.10)

For example, the 2nd, 3rd and 4th cumulants are:

κ2(X) = σ2π
2

6
,

κ3(X) = 2σ3ζ(2),

κ4(X) = 6σ4ζ(3).

κ1(X) and κ2(X) are equal to the mean and variance respectively of a Gumbel

distribution with parameters µ and σ, as we would expect.

For X0 ∼ G(0, 1), these cumulants will be
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κ1(X0) = γE

κ2(X0) =
π2

6
,

κ3(X0) = 2ζ(2),

κ4(X0) = 6ζ(3).

The cumulants of logSt will be

κi(log(St)) =
(1− αi)

αi
κi(X0)

so that the first four cumulants will be

κ1(log(St)) =
(1− α)

α
γE,

κ2(log(St)) =
(1− α2)

α2

π2

6
,

κ3(log(St)) = 2
(1− α3)

α3
ζ(2),

κ4(log(St)) = 6
(1− α4)

α4
ζ(3).

Notice that again, the first two cumulants match up to the mean and variance of

log(St) that we had previously calculated in Section 3.1. Since log(St) ∼ exp S(0, 1;α)

and log(ϵt) ∼ exp S(0, 1; β), it can be shown that
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κi(log(ϵt)) =
(1− βi)

βi
κi(X0).

Finally we find that the ith cumulant of Yt|X(j)
t−1 = αϕx

(j)
t−1+αϕ log(St)+ϕ log(ϵt)|x

(j)
t−1

will be

κi(Yt|X(j)
t−1) = αϕx

(j)
t−1 + ϕi(1− αi)κi(X0) + ϕi

(1− βi)

βi
κi(X0) for i ≥ 1,

where κ1(X0) = µ+ σγE, κi(X0) = (k − 1)!σkζ(k) for i > 1 and ζk =
∑∞

n=1
1
nk .



Appendix B

Tables of estimation results

The tables in this section include parameter estimation results under the first order

auto-regressive model and also the observed component of our state space model.

Each table includes the mean estimate over 500 samples, the 95% quantile bootstrap

confidence interval and the mean squared error for each of the methods, by sample

size N and true parameter value. Default values of α = 0.75, β = 0.6 and ϕ = 1

were used, with only one parameter varying at a time. When estimating β and ϕ, we

assumed that both were unknown but α was known.

Table B.1: Comparison of estimation methods - First order

auto-regressive model.

Yule-Walker Conditional least squares

N α Mean 95 % CI MSE Mean 95 % CI MSE

50 0.1 0.070 (-0.20, 0.33) 0.7929 0.097 (-0.18, 0.36) 0.7474

50 0.2 0.171 (-0.10, 0.43) 0.6251 0.196 (-0.06, 0.47) 0.5882

Continued on next page
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Table B.1 – continued from previous page

Yule-Walker Conditional least squares

N α Mean 95 % CI MSE Mean 95 % CI MSE

50 0.3 0.260 (0.00, 0.50) 0.4922 0.292 (0.02, 0.55) 0.4503

50 0.4 0.344 (0.10, 0.58) 0.3812 0.380 (0.15, 0.61) 0.3394

50 0.5 0.440 (0.21, 0.64) 0.2738 0.482 (0.24, 0.69) 0.2334

50 0.6 0.542 (0.29, 0.72) 0.1792 0.584 (0.34, 0.78) 0.1469

50 0.7 0.646 (0.43, 0.81) 0.1015 0.684 (0.46, 0.85) 0.0810

50 0.8 0.733 (0.53, 0.87) 0.0542 0.775 (0.58, 0.91) 0.0385

50 0.9 0.846 (0.67, 0.92) 0.0153 0.875 (0.70, 0.99) 0.0111

50 0.95 0.906 (0.77, 0.95) 0.0037 0.924 (0.79, 1.00) 0.0039

75 0.1 0.082 (-0.13, 0.31) 0.7646 0.099 (-0.12, 0.32) 0.7372

75 0.2 0.185 (-0.02, 0.41) 0.5981 0.202 (-0.01, 0.42) 0.5724

75 0.3 0.268 (0.03, 0.47) 0.4760 0.291 (0.07, 0.49) 0.4462

75 0.4 0.369 (0.14, 0.58) 0.3498 0.393 (0.17, 0.60) 0.3221

75 0.5 0.460 (0.25, 0.63) 0.2499 0.487 (0.28, 0.67) 0.2241

75 0.6 0.562 (0.36, 0.73) 0.1598 0.591 (0.38, 0.76) 0.1378

75 0.7 0.655 (0.49, 0.80) 0.0933 0.686 (0.51, 0.83) 0.0764

75 0.8 0.756 (0.61, 0.87) 0.0424 0.781 (0.62, 0.90) 0.0339

75 0.9 0.867 (0.75, 0.93) 0.0093 0.883 (0.76, 0.97) 0.0071

75 0.95 0.925 (0.84, 0.95) 0.0016 0.933 (0.84, 0.99) 0.0020

100 0.1 0.085 (-0.10, 0.26) 0.7567 0.096 (-0.09, 0.28) 0.7377

100 0.2 0.180 (0.01, 0.36) 0.6018 0.193 (0.02, 0.37) 0.5811

100 0.3 0.280 (0.10, 0.45) 0.4571 0.296 (0.11, 0.47) 0.4360

100 0.4 0.379 (0.20, 0.54) 0.3341 0.397 (0.22, 0.56) 0.3136

100 0.5 0.483 (0.31, 0.63) 0.2257 0.502 (0.32, 0.65) 0.2078

100 0.6 0.568 (0.39, 0.71) 0.1521 0.587 (0.42, 0.73) 0.1379

100 0.7 0.667 (0.53, 0.78) 0.0842 0.686 (0.54, 0.81) 0.0744

100 0.8 0.762 (0.64, 0.86) 0.0385 0.783 (0.65, 0.89) 0.0317

100 0.9 0.871 (0.75, 0.93) 0.0083 0.886 (0.77, 0.96) 0.0065

100 0.95 0.930 (0.86, 0.96) 0.0012 0.936 (0.85, 0.99) 0.0015

250 0.1 0.092 (-0.03, 0.22) 0.7398 0.097 (-0.02, 0.22) 0.7315

250 0.2 0.196 (0.07, 0.31) 0.5723 0.202 (0.07, 0.32) 0.5632

Continued on next page
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Table B.1 – continued from previous page

Yule-Walker Conditional least squares

N α Mean 95 % CI MSE Mean 95 % CI MSE

250 0.3 0.290 (0.17, 0.40) 0.4396 0.295 (0.18, 0.40) 0.4323

250 0.4 0.388 (0.28, 0.50) 0.3197 0.395 (0.28, 0.51) 0.3111

250 0.5 0.493 (0.38, 0.60) 0.2119 0.501 (0.39, 0.60) 0.2047

250 0.6 0.591 (0.50, 0.69) 0.1310 0.600 (0.51, 0.69) 0.1250

250 0.7 0.688 (0.60, 0.76) 0.0705 0.696 (0.60, 0.78) 0.0665

250 0.8 0.782 (0.71, 0.85) 0.0293 0.790 (0.71, 0.86) 0.0269

250 0.9 0.887 (0.83, 0.93) 0.0045 0.895 (0.83, 0.94) 0.0039

250 0.95 0.943 (0.90, 0.96) 0.0003 0.945 (0.90, 0.98) 0.0004

500 0.1 0.099 (0.01, 0.18) 0.7265 0.101 (0.01, 0.18) 0.7223

500 0.2 0.195 (0.11, 0.28) 0.5716 0.198 (0.12, 0.29) 0.5677

500 0.3 0.301 (0.22, 0.38) 0.4233 0.304 (0.22, 0.39) 0.4191

500 0.4 0.393 (0.31, 0.47) 0.3119 0.396 (0.31, 0.47) 0.3081

500 0.5 0.493 (0.42, 0.56) 0.2103 0.497 (0.42, 0.57) 0.2067

500 0.6 0.594 (0.52, 0.67) 0.1280 0.598 (0.52, 0.67) 0.1252

500 0.7 0.693 (0.63, 0.75) 0.0669 0.698 (0.63, 0.76) 0.0646

500 0.8 0.793 (0.74, 0.84) 0.0255 0.797 (0.74, 0.85) 0.0240

500 0.9 0.894 (0.86, 0.92) 0.0035 0.897 (0.85, 0.93) 0.0032

500 0.95 0.945 (0.92, 0.96) 0.0001 0.947 (0.91, 0.97) 0.0002

1000 0.1 0.097 (0.03, 0.16) 0.7281 0.098 (0.03, 0.16) 0.7261

1000 0.2 0.199 (0.14, 0.26) 0.5648 0.200 (0.14, 0.26) 0.5628

1000 0.3 0.296 (0.23, 0.35) 0.4287 0.297 (0.23, 0.35) 0.4267

1000 0.4 0.396 (0.34, 0.45) 0.3082 0.397 (0.35, 0.45) 0.3061

1000 0.5 0.498 (0.45, 0.55) 0.2053 0.500 (0.45, 0.56) 0.2036

1000 0.6 0.597 (0.55, 0.65) 0.1249 0.600 (0.55, 0.65) 0.1234

1000 0.7 0.696 (0.65, 0.74) 0.0649 0.699 (0.65, 0.74) 0.0636

1000 0.8 0.798 (0.76, 0.83) 0.0236 0.800 (0.76, 0.84) 0.0229

1000 0.9 0.896 (0.87, 0.92) 0.0031 0.898 (0.87, 0.92) 0.0029

1000 0.95 0.948 (0.93, 0.96) 0.0001 0.949 (0.93, 0.97) 0.0001
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Table B.2: Comparison of estimation methods - Observed

step, estimation of α.

Method of Moments

N α Mean 95 % CI MSE

50 0.1 0.578 (-10.40, 12.64) 178.96

50 0.2 -0.319 (-11.91, 11.08) 7640.4

50 0.3 -1.250 (-14.23, 7.45) 232.80

50 0.4 7.270 (-5.71, 9.36) 23605

50 0.5 0.132 (-5.15, 6.92) 103.95

50 0.6 0.531 (-4.80, 7.61) 29.673

50 0.7 0.280 (-6.30, 5.13) 21.075

50 0.8 7.835 (-3.58, 5.66) 23785

50 0.9 2.160 (-5.41, 7.02) 1351.6

50 0.95 1.148 (-6.48, 5.56) 578.44

75 0.1 0.199 (-9.29, 13.57) 120.49

75 0.2 -0.544 (-14.72, 12.25) 129.64

75 0.3 -1.158 (-13.84, 9.89) 533.17

75 0.4 0.485 (-6.26, 7.80) 27.186

75 0.5 0.777 (-3.81, 7.19) 26.836

75 0.6 1.142 (-2.65, 6.24) 108.91

75 0.7 1.139 (-2.52, 3.82) 133.33

75 0.8 0.713 (-1.10, 3.62) 58.022

75 0.9 0.815 (-1.64, 4.92) 10.311

75 0.95 0.982 (-3.05, 7.52) 55.782

100 0.1 40.609 (-15.01, 13.35) 788238

100 0.2 0.175 (-13.23, 15.17) 3450.1

100 0.3 -0.946 (-7.29, 7.19) 268.41

100 0.4 -0.186 (-8.77, 7.05) 171.19

100 0.5 0.636 (-2.72, 4.06) 11.3931

100 0.6 1.083 (-1.85, 3.13) 82.003

100 0.7 0.546 (-1.57, 2.82) 8.7567

Continued on next page
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Table B.2 – continued from previous page

Method of Moments

N α Mean 95 % CI MSE

100 0.8 0.741 (-0.60, 3.21) 10.707

100 0.9 0.855 (-1.29, 4.00) 8.1131

100 0.95 0.624 (-3.83, 4.88) 28.329

250 0.1 -1.355 (-20.44, 12.26) 247.65

250 0.2 -0.222 (-7.84, 6.16) 66.982

250 0.3 -2.028 (-2.99, 2.96) 2704.8

250 0.4 0.180 (-1.30, 2.01) 28.8659

250 0.5 0.498 (-0.46, 1.82) 0.9826

250 0.6 0.591 (-0.13, 1.59) 0.8956

250 0.7 0.748 (0.10, 1.47) 0.4128

250 0.8 0.836 (0.32, 1.51) 0.2511

250 0.9 0.932 (0.42, 1.74) 0.1309

250 0.95 1.049 (0.38, 2.32) 0.9913

500 0.1 -4.093 (-5.80, 7.85) 13119.4

500 0.2 0.129 (-3.71, 3.75) 33.511

500 0.3 0.221 (-1.05, 1.91) 6.1852

500 0.4 0.390 (-0.39, 1.36) 0.2348

500 0.5 0.492 (-0.08, 1.14) 0.1124

500 0.6 0.608 (0.15, 1.15) 0.0902

500 0.7 0.704 (0.33, 1.15) 0.0432

500 0.8 0.805 (0.47, 1.19) 0.0307

500 0.9 0.908 (0.62, 1.28) 0.0265

500 0.95 0.965 (0.66, 1.34) 0.0337

1000 0.1 1.148 (-4.81, 8.29) 633.51

1000 0.2 0.133 (-0.97, 1.38) 2.0203

1000 0.3 0.283 (-0.33, 0.97) 0.1127

1000 0.4 0.386 (-0.07, 0.86) 0.0526

1000 0.5 0.487 (0.15, 0.85) 0.0311

1000 0.6 0.588 (0.30, 0.88) 0.0206

1000 0.7 0.689 (0.45, 0.93) 0.0147

Continued on next page
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Table B.2 – continued from previous page

Method of Moments

N α Mean 95 % CI MSE

1000 0.8 0.789 (0.59, 1.00) 0.0110

1000 0.9 0.890 (0.69, 1.07) 0.0090

1000 0.95 0.940 (0.74, 1.13) 0.0095

Table B.3: Comparison of estimation methods - Observed

step, estimation of β.

Method of Moments Quasi Fisher Scoring

N β Mean 95 % CI MSE Mean 95 % CI MSE

50 0.1 0.181 (0.00, 0.83) 0.0799 0.169 (0.00, 0.67) 0.0524

50 0.2 0.224 (0.00, 0.91) 0.2132 0.198 (0.00, 0.69) 0.0568

50 0.3 0.203 (0.00, 0.95) 2.5294 0.279 (0.00, 0.92) 0.0747

50 0.4 0.354 (0.00, 1.35) 0.3783 0.375 (0.00, 1.09) 0.0907

50 0.5 0.552 (0.00, 2.11) 2.9838 0.476 (0.00, 1.20) 0.0938

50 0.6 3.305 (0.00, 2.58) 3324.9 0.570 (0.10, 1.18) 0.0927

50 0.7 0.760 (-1.74, 4.37) 11.038 0.652 (0.14, 1.23) 0.0943

50 0.8 1.817 (-5.14, 4.97) 1247.3 0.707 (0.20, 1.25) 0.096

50 0.9 0.527 (-8.34, 6.28) 19.991 0.747 (0.27, 1.26) 0.1098

50 0.95 3.655 (-6.23, 8.84) 2688.1 0.777 (0.29, 1.27) 0.1409

75 0.1 0.171 (0.00, 0.66) 0.049 0.171 (0.00, 0.64) 0.0473

75 0.2 0.214 (0.00, 0.70) 0.0717 0.210 (0.00, 0.69) 0.0509

75 0.3 0.320 (0.00, 0.85) 1.1725 0.281 (0.00, 0.85) 0.0679

75 0.4 0.336 (0.00, 1.11) 0.6179 0.373 (0.00, 1.02) 0.0755

75 0.5 0.437 (0.00, 1.52) 1.1415 0.481 (0.06, 1.15) 0.0791

75 0.6 0.632 (0.00, 2.29) 0.9646 0.586 (0.15, 1.20) 0.0803

75 0.7 0.789 (0.00, 3.67) 7.2381 0.677 (0.21, 1.23) 0.0769

75 0.8 1.544 (-0.78, 4.75) 93.774 0.754 (0.32, 1.24) 0.0714

Continued on next page
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Table B.3 – continued from previous page

Method of Moments Quasi Fisher Scoring

N β Mean 95 % CI MSE Mean 95 % CI MSE

75 0.9 6.478 (-6.83, 7.08) 12951 0.803 (0.35, 1.27) 0.0769

75 0.95 1.318 (-4.49, 7.17) 96.165 0.822 (0.37, 1.26) 0.0819

100 0.1 0.145 (0.00, 0.57) 0.0333 0.146 (0.00, 0.57) 0.0331

100 0.2 0.183 (0.00, 0.61) 0.0377 0.185 (0.00, 0.61) 0.0372

100 0.3 0.253 (0.00, 0.69) 0.048 0.258 (0.00, 0.69) 0.0452

100 0.4 0.353 (0.00, 0.84) 0.0581 0.364 (0.00, 0.84) 0.0492

100 0.5 0.479 (0.00, 1.04) 0.0757 0.480 (0.10, 0.97) 0.0543

100 0.6 0.639 (0.14, 1.47) 0.2002 0.596 (0.17, 1.11) 0.0594

100 0.7 0.906 (0.28, 2.15) 8.969 0.694 (0.30, 1.18) 0.0601

100 0.8 1.029 (0.34, 2.72) 6.6407 0.773 (0.35, 1.20) 0.0585

100 0.9 -0.251 (0.38, 4.21) 1401.8 0.833 (0.40, 1.25) 0.0601

100 0.95 1.891 (0.38, 5.91) 99.707 0.860 (0.41, 1.26) 0.0619

250 0.1 0.138 (0.00, 0.45) 0.0234 0.140 (0.00, 0.45) 0.0242

250 0.2 0.184 (0.00, 0.52) 0.0273 0.184 (0.00, 0.52) 0.027

250 0.3 0.264 (0.00, 0.61) 0.0316 0.263 (0.00, 0.61) 0.0324

250 0.4 0.372 (0.00, 0.74) 0.0288 0.374 (0.00, 0.74) 0.0273

250 0.5 0.488 (0.20, 0.85) 0.0257 0.488 (0.20, 0.85) 0.0245

250 0.6 0.602 (0.33, 1.05) 0.0307 0.598 (0.33, 0.98) 0.0256

250 0.7 0.720 (0.43, 1.23) 0.0472 0.703 (0.43, 1.07) 0.0282

250 0.8 0.847 (0.50, 1.52) 0.088 0.794 (0.50, 1.11) 0.0285

250 0.9 0.990 (0.56, 2.03) 0.2242 0.871 (0.56, 1.15) 0.0276

250 0.95 1.078 (0.59, 2.34) 0.5432 0.903 (0.59, 1.18) 0.0279

500 0.1 0.105 (0.00, 0.36) 0.015 0.102 (-0.03, 0.41) 0.0988

500 0.2 0.168 (0.00, 0.41) 0.0181 0.167 (0.00, 0.41) 0.0183

500 0.3 0.269 (0.00, 0.49) 0.0168 0.268 (0.00, 0.49) 0.0172

500 0.4 0.382 (0.14, 0.58) 0.0119 0.382 (0.14, 0.58) 0.0115

500 0.5 0.491 (0.31, 0.71) 0.0104 0.491 (0.31, 0.71) 0.0104

500 0.6 0.598 (0.42, 0.85) 0.0127 0.598 (0.42, 0.85) 0.0124

500 0.7 0.706 (0.50, 1.03) 0.0189 0.702 (0.50, 0.97) 0.0158

500 0.8 0.817 (0.56, 1.26) 0.0304 0.796 (0.56, 1.05) 0.0173

Continued on next page
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Table B.3 – continued from previous page

Method of Moments Quasi Fisher Scoring

N β Mean 95 % CI MSE Mean 95 % CI MSE

500 0.9 0.931 (0.63, 1.55) 0.0508 0.874 (0.63, 1.10) 0.0169

500 0.95 0.990 (0.66, 1.70) 0.0665 0.907 (0.66, 1.12) 0.0172

1000 0.1 0.106 (0.00, 0.30) 0.0109 0.244 (-0.25, 0.52) 9.5684

1000 0.2 0.182 (0.00, 0.35) 0.0119 0.100 (0.00, 0.36) 2.9406

1000 0.3 0.291 (0.10, 0.43) 0.0072 0.291 (0.10, 0.43) 0.0075

1000 0.4 0.397 (0.26, 0.53) 0.0047 0.397 (0.26, 0.53) 0.0047

1000 0.5 0.499 (0.37, 0.65) 0.0049 0.499 (0.37, 0.65) 0.0049

1000 0.6 0.601 (0.46, 0.79) 0.0065 0.601 (0.46, 0.79) 0.0065

1000 0.7 0.703 (0.54, 0.93) 0.0095 0.702 (0.54, 0.92) 0.009

1000 0.8 0.807 (0.60, 1.09) 0.0143 0.798 (0.60, 1.00) 0.0103

1000 0.9 0.913 (0.68, 1.28) 0.0217 0.880 (0.68, 1.06) 0.0099

1000 0.95 0.967 (0.71, 1.36) 0.0267 0.914 (0.71, 1.08) 0.0099

Table B.4: Comparison of estimation methods - Observed

step, estimation of ϕ.

Method of Moments Quasi Fisher Scoring

N ϕ Mean 95 % CI MSE Mean 95 % CI MSE

50 0.1 0.080 (0.00, 0.16) 0.2717 0.143 (0.01, 0.20) 0.0048

50 0.25 0.201 (0.00, 0.40) 0.17 0.218 (0.01, 0.37) 0.0071

50 0.5 0.402 (0.00, 0.79) 0.0822 0.391 (0.02, 0.76) 0.046

50 0.75 0.603 (0.00, 1.19) 0.0967 0.577 (0.01, 1.16) 0.1163

50 1 0.804 (0.00, 1.58) 0.2134 0.768 (0.01, 1.55) 0.2197

50 1.5 1.206 (0.00, 2.38) 0.7535 1.139 (0.00, 2.23) 0.5265

50 2 1.607 (0.00, 3.17) 1.7024 1.452 (0.00, 2.99) 1.0325

50 3 2.411 (0.00, 4.75) 4.8271 2.038 (0.00, 4.46) 2.7608

50 5 4.018 (0.00, 7.92) 15.983 3.871 (0.00, 7.47) 123.8

Continued on next page
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Table B.4 – continued from previous page

Method of Moments Quasi Fisher Scoring

N ϕ Mean 95 % CI MSE Mean 95 % CI MSE

50 10 8.037 (0.00, 15.84) 72.497 6.800 (0.00, 14.87) 30.349

75 0.1 0.087 (0.00, 0.16) 0.265 0.148 (0.05, 0.20) 0.0045

75 0.25 0.216 (0.00, 0.40) 0.1558 0.230 (0.08, 0.40) 0.0054

75 0.5 0.433 (0.00, 0.80) 0.0624 0.420 (0.15, 0.80) 0.0369

75 0.75 0.649 (0.00, 1.20) 0.0799 0.625 (0.20, 1.20) 0.0899

75 1 0.865 (0.00, 1.59) 0.2082 0.836 (0.20, 1.60) 0.1638

75 1.5 1.298 (0.00, 2.39) 0.7973 1.244 (0.11, 2.35) 0.3761

75 2 1.731 (0.00, 3.19) 1.8296 1.619 (0.01, 3.14) 0.7461

75 3 2.596 (0.00, 4.78) 5.2243 2.292 (0.00, 4.70) 2.0012

75 5 4.327 (0.00, 7.97) 17.333 3.810 (0.00, 7.84) 5.6705

75 10 8.654 (0.00, 15.94) 78.638 7.646 (0.00, 15.68) 22.444

100 0.1 0.090 (0.02, 0.15) 0.2611 0.152 (0.06, 0.20) 0.0044

100 0.25 0.225 (0.04, 0.37) 0.1468 0.237 (0.11, 0.37) 0.0035

100 0.5 0.450 (0.08, 0.74) 0.0473 0.443 (0.20, 0.74) 0.0245

100 0.75 0.675 (0.13, 1.10) 0.0615 0.664 (0.20, 1.10) 0.0592

100 1 0.900 (0.17, 1.47) 0.1894 0.887 (0.20, 1.47) 0.1086

100 1.5 1.350 (0.25, 2.21) 0.7864 1.337 (0.25, 2.21) 0.2533

100 2 1.800 (0.33, 2.94) 1.8383 1.687 (0.05, 2.95) 0.5348

100 3 2.701 (0.50, 4.41) 5.3065 2.493 (0.01, 4.41) 1.2537

100 5 4.501 (0.83, 7.36) 17.701 4.135 (0.12, 7.35) 3.6403

100 10 9.002 (1.67, 14.71) 80.526 8.293 (0.03, 14.71) 14.353

250 0.1 0.095 (0.06, 0.14) 0.2549 0.158 (0.10, 0.20) 0.0042

250 0.25 0.239 (0.15, 0.34) 0.133 0.243 (0.20, 0.33) 0.0017

250 0.5 0.477 (0.30, 0.68) 0.0249 0.474 (0.30, 0.67) 0.0102

250 0.75 0.716 (0.45, 1.02) 0.0358 0.712 (0.45, 1.00) 0.0235

250 1 0.955 (0.59, 1.36) 0.1655 0.951 (0.59, 1.35) 0.0419

250 1.5 1.432 (0.89, 2.03) 0.7816 1.430 (0.89, 2.04) 0.0958

250 2 1.910 (1.19, 2.71) 1.8733 1.865 (0.92, 2.66) 0.2046

250 3 2.864 (1.78, 4.07) 5.4836 2.775 (1.35, 3.99) 0.4937

250 5 4.774 (2.97, 6.78) 18.411 4.648 (2.43, 6.66) 1.2336

Continued on next page
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Table B.4 – continued from previous page

Method of Moments Quasi Fisher Scoring

N ϕ Mean 95 % CI MSE Mean 95 % CI MSE

250 10 9.548 (5.95, 13.56) 84.022 9.307 (4.94, 13.31) 4.8257

500 0.1 0.097 (0.07, 0.12) 0.2531 0.160 (0.11, 0.20) 0.0041

500 0.25 0.243 (0.18, 0.30) 0.1288 0.244 (0.20, 0.30) 0.0009

500 0.5 0.485 (0.36, 0.61) 0.0174 0.485 (0.36, 0.60) 0.0045

500 0.75 0.728 (0.54, 0.91) 0.026 0.727 (0.54, 0.91) 0.0101

500 1 0.971 (0.72, 1.21) 0.1544 0.970 (0.72, 1.21) 0.0179

500 1.5 1.456 (1.08, 1.82) 0.7709 1.456 (1.08, 1.82) 0.0403

500 2 1.941 (1.44, 2.43) 1.867 1.941 (1.44, 2.42) 0.0717

500 3 2.912 (2.16, 3.64) 5.4978 2.898 (2.07, 3.63) 0.1736

500 5 4.853 (3.60, 6.07) 18.514 4.831 (3.46, 6.05) 0.4741

500 10 9.706 (7.19, 12.15) 84.623 9.664 (6.91, 12.10) 1.889

1000 0.1 0.099 (0.08, 0.12) 0.2508 0.161 (0.12, 0.20) 0.0041

1000 0.25 0.248 (0.20, 0.29) 0.1243 0.248 (0.20, 0.29) 0.0005

1000 0.5 0.496 (0.41, 0.58) 0.0128 0.496 (0.41, 0.58) 0.0021

1000 0.75 0.744 (0.61, 0.88) 0.0254 0.744 (0.61, 0.88) 0.0046

1000 1 0.993 (0.81, 1.17) 0.1622 0.993 (0.81, 1.17) 0.0082

1000 1.5 1.489 (1.22, 1.75) 0.8083 1.489 (1.22, 1.75) 0.0185

1000 2 1.985 (1.63, 2.33) 1.951 1.985 (1.63, 2.33) 0.0329

1000 3 2.978 (2.44, 3.50) 5.7263 2.978 (2.44, 3.50) 0.074

1000 5 4.963 (4.07, 5.84) 19.236 4.963 (4.07, 5.84) 0.2054

1000 10 9.925 (8.15, 11.67) 87.776 9.925 (8.15, 11.67) 0.8217



Appendix C

Table of SISR filtering results

The following table contains filtering results from the four weighting methods de-

scribed in chapter 5:

• Bootstrap weights

• Cumulant estimation of optimal importance distribution

• First order saddlepoint weights

• Second order saddlepoint weights

For each method, we generated the same time series of length T = 10, and then

performed filtering over 1000 particles, 100 times. The mean and 95% quantile boot-

strap confidence intervals of the Xt predictions are included in this table.
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Table C.1: Comparison of SISR filtering weights

Bootstrap Cumulant 1st Order SP 2nd Order SP

X Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

α =0.75, β = 0.8, ϕ = 1

-0.86 -0.99 (-1.00, -0.97) -0.59 (-1.37, -0.23) -0.59 (-1.15, -0.32) 0.24 (0.13, 0.35)

-0.60 -0.64 (-0.67, -0.61) -0.91 (-1.39, 0.00) -0.65 (-0.89, -0.42) -0.36 (-0.56, -0.16)

-0.40 -0.68 (-0.71, -0.64) -0.17 (-1.66, 0.13) -0.02 (-0.16, 0.12) 0.51 (0.42, 0.62)

0.25 0.41 (0.36, 0.47) -0.16 (-0.89, 0.93) 0.26 (0.05, 0.47) 0.38 (0.15, 0.65)

0.58 0.65 (0.51, 0.79) -0.27 (-1.00, 0.86) 0.03 (-0.23, 0.33) 0.16 (-0.23, 0.63)

1.21 1.34 (1.16, 1.48) 0.52 (-0.39, 1.33) 0.72 (0.52, 0.95) 0.78 (0.52, 1.10)

1.49 1.62 (1.60, 1.65) 1.99 (1.67, 2.32) 1.68 (1.34, 2.03) 1.84 (1.51, 2.16)

2.27 2.61 (2.55, 2.66) 2.47 (1.99, 3.02) 2.14 (1.65, 2.69) 2.25 (1.75, 2.78)

2.67 3.04 (2.70, 3.42) 1.84 (0.79, 2.56) 1.60 (1.20, 2.10) 1.70 (1.17, 2.32)

3.16 3.89 (3.69, 4.04) 2.66 (1.75, 3.59) 2.28 (1.73, 3.01) 2.39 (1.81, 3.21)

α =0.4, β = 0.8, ϕ = 1

-1.13 -1.26 (-1.29, -1.23) 0.27 (0.16, 0.37) 0.30 (0.17, 0.44) 0.38 (0.27, 0.50)

-0.75 -0.95 (-0.98, -0.92) 0.39 (0.32, 0.48) 0.41 (0.28, 0.56) 0.46 (0.35, 0.55)

-0.08 -0.15 (-0.18, -0.11) 0.36 (0.26, 0.47) 0.32 (0.17, 0.45) 0.40 (0.29, 0.52)

0.66 0.65 (0.60, 0.69) 0.75 (0.62, 0.89) 0.62 (0.47, 0.78) 0.74 (0.63, 0.85)

0.78 0.63 (0.60, 0.67) 0.86 (0.72, 1.04) 0.76 (0.60, 0.94) 0.86 (0.69, 1.05)

1.21 1.57 (1.43, 1.70) 0.77 (0.66, 0.90) 0.60 (0.48, 0.75) 0.69 (0.53, 0.86)

1.55 1.68 (1.63, 1.75) 1.15 (0.89, 1.51) 1.04 (0.80, 1.42) 1.12 (0.77, 1.53)

1.60 1.89 (1.73, 2.04) 0.97 (0.85, 1.14) 0.79 (0.63, 0.99) 0.86 (0.70, 1.01)

3.01 3.40 (2.96, 3.91) 1.15 (0.92, 1.48) 1.07 (0.85, 1.34) 1.10 (0.82, 1.48)

4.07 3.94 (3.59, 4.32) 1.36 (1.02, 2.09) 1.26 (0.91, 1.75) 1.31 (0.94, 2.07)

α =0.75, β = 0.3, ϕ = 1

-0.86 -0.55 (-0.61, -0.51) -0.03 (-0.13, 0.05) -0.02 (-0.14, 0.12) 0.08 (-0.05, 0.21)

-0.60 -0.37 (-0.45, -0.29) 0.00 (-0.09, 0.10) -0.04 (-0.18, 0.11) 0.15 (0.00, 0.33)

-0.40 -0.12 (-0.16, -0.08) 0.28 (0.21, 0.35) 0.28 (0.19, 0.37) 0.34 (0.24, 0.45)

0.25 0.66 (0.53, 0.83) 0.57 (0.43, 0.71) 0.39 (0.19, 0.59) 0.86 (0.59, 1.17)

0.58 0.15 (0.04, 0.27) 0.29 (0.17, 0.42) 0.17 (-0.02, 0.34) 0.46 (0.24, 0.70)

1.21 1.34 (1.14, 1.53) 0.99 (0.81, 1.20) 0.73 (0.51, 0.99) 1.30 (0.99, 1.78)

Continued on next page
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Table C.1 – continued from previous page

Bootstrap Cumulant 1st Order SP 2nd Order SP

X Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

1.49 3.01 (2.55, 3.74) 2.42 (1.68, 3.54) 2.03 (1.41, 3.03) 2.18 (1.65, 2.87)

2.27 3.56 (2.84, 4.74) 2.64 (1.77, 4.06) 2.21 (1.44, 3.46) 2.28 (1.59, 3.39)

2.67 2.22 (1.91, 2.56) 1.74 (1.28, 2.20) 1.26 (0.87, 1.77) 1.68 (1.22, 2.34)

3.16 3.61 (2.82, 5.02) 2.45 (1.67, 3.78) 2.05 (1.34, 3.41) 2.15 (1.48, 3.90)

α =0.4, β = 0.3, ϕ = 1

-1.13 -0.52 (-0.57, -0.46) 0.40 (0.31, 0.48) 0.43 (0.33, 0.56) 0.46 (0.36, 0.57)

-0.75 -0.19 (-0.26, -0.15) 0.47 (0.39, 0.54) 0.49 (0.37, 0.60) 0.51 (0.38, 0.63)

-0.08 0.16 (0.08, 0.24) 0.49 (0.40, 0.58) 0.49 (0.38, 0.64) 0.55 (0.42, 0.66)

0.66 1.00 (0.91, 1.12) 0.64 (0.56, 0.75) 0.64 (0.54, 0.77) 0.69 (0.56, 0.85)

0.78 1.24 (1.02, 1.51) 0.71 (0.59, 0.84) 0.70 (0.54, 0.88) 0.79 (0.63, 1.07)

1.21 0.84 (0.72, 0.95) 0.60 (0.50, 0.71) 0.60 (0.50, 0.72) 0.66 (0.50, 0.80)

1.55 1.72 (1.34, 2.32) 0.75 (0.62, 0.90) 0.74 (0.56, 0.90) 0.82 (0.61, 1.11)

1.60 1.29 (1.14, 1.44) 0.72 (0.64, 0.82) 0.68 (0.53, 0.81) 0.73 (0.60, 0.90)

3.01 1.72 (1.53, 1.94) 0.80 (0.69, 0.93) 0.74 (0.60, 0.91) 0.77 (0.64, 0.92)

4.07 2.23 (1.82, 2.86) 0.80 (0.70, 0.95) 0.79 (0.61, 0.95) 0.83 (0.66, 1.05)

α =0.75, β = 0.8, ϕ = 2

-0.86 -0.99 (-1.01, -0.97) -0.39 (-0.46, -0.30) -0.64 (-0.87, -0.45) -0.37 (-1.22, 0.56)

-0.60 -0.64 (-0.68, -0.61) -0.22 (-0.29, -0.16) -0.66 (-0.85, -0.49) -0.40 (-0.77, -0.11)

-0.40 -0.68 (-0.71, -0.65) -0.02 (-0.08, 0.06) -0.11 (-0.24, 0.02) -0.39 (-0.73, 0.08)

0.25 0.42 (0.36, 0.47) 0.73 (0.59, 0.89) 0.19 (-0.02, 0.43) 0.34 (0.18, 0.55)

0.58 0.66 (0.54, 0.78) 0.72 (0.55, 0.91) -0.03 (-0.27, 0.24) 0.23 (-0.04, 0.52)

1.21 1.34 (1.19, 1.52) 1.27 (1.09, 1.41) 0.70 (0.48, 0.94) 0.79 (0.44, 1.25)

1.49 1.62 (1.60, 1.65) 1.99 (1.76, 2.21) 1.71 (1.42, 2.09) 1.85 (1.58, 2.15)

2.27 2.61 (2.54, 2.65) 2.63 (2.25, 3.06) 2.29 (1.82, 2.91) 2.45 (1.96, 3.06)

2.67 3.09 (2.67, 3.50) 2.10 (1.68, 2.53) 1.71 (1.13, 2.36) 1.82 (1.16, 2.69)

3.16 3.90 (3.58, 4.07) 3.03 (2.47, 3.62) 2.50 (1.79, 3.56) 2.67 (1.80, 3.67)

α =0.9, β = 0.9, ϕ = 1

-0.40 -0.43 (-0.44, -0.41) -0.43 (-0.87, 0.44) -0.53 (-0.65, -0.42) 0.64 (0.55, 0.76)

-0.39 -0.48 (-0.49, -0.47) -0.36 (-0.70, 0.46) -0.49 (-0.63, -0.36) 0.62 (0.52, 0.72)

-0.09 -0.34 (-0.36, -0.32) -0.61 (-1.01, 0.33) -0.09 (-0.17, 0.00) 0.81 (0.72, 0.92)

Continued on next page
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Table C.1 – continued from previous page

Bootstrap Cumulant 1st Order SP 2nd Order SP

X Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

0.03 0.04 (0.00, 0.06) -0.36 (-0.72, 0.80) 0.01 (-0.27, 0.41) 0.23 (0.08, 0.40)

0.22 0.27 (0.15, 0.38) -0.01 (-0.58, 1.09) -0.14 (-0.39, 0.16) 0.76 (0.68, 0.86)

0.58 0.63 (0.52, 0.73) 0.08 (-0.48, 0.96) 0.33 (0.03, 0.80) 0.27 (-0.03, 0.67)

1.20 1.31 (1.29, 1.33) 1.80 (1.40, 2.36) 1.46 (1.17, 1.75) 1.58 (1.26, 1.96)

1.54 1.79 (1.75, 1.82) 2.00 (1.53, 2.72) 1.67 (1.30, 2.11) 1.72 (1.27, 2.18)

1.55 1.89 (1.67, 2.10) 1.17 (0.25, 2.01) 1.07 (0.73, 1.42) 1.03 (0.43, 1.81)

1.81 2.41 (2.30, 2.49) 1.94 (1.02, 2.77) 1.64 (1.23, 2.14) 1.63 (1.13, 2.31)
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