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Abstract 

Streptomyces scabies is a Gram-positive soil bacterium that causes common scab 

disease, which is identified by the round corky lesions that form on the surface of root 

and tuber crops such as potatoes. Virulence factors that contribute to the plant pathogenic 

phenotype of S. scabies include the phytotoxic secondary metabolite thaxtomin A and the 

secreted necrogenic protein Nec1. In addition, S. scabies produces a family of secondary 

metabolites called the COR-like metabolites, which are structurally similar to the COR 

(coronatine) phytotoxin produced by the bacterial plant pathogen Pseudomonas syringae. 

The goal of this thesis research was to characterize the biosynthesis and function of the S. 

scabies COR-like metabolites. In the first research chapter, the role of three genes, 

scab79711, cfa8 and scab79691, in metabolite biosynthesis was elucidated by 

constructing gene deletion mutants in S. scabies and assessing the effect of each deletion 

on the production of the COR-like metabolites. In the second research chapter, the 

bioactivity of the COR-like metabolites was investigated by testing S. scabies culture 

supernatants or extracts containing the metabolites in various plant bioassays. In addition, 

the bioactivity of the primary COR-like metabolite, coronafacoyl-L-isoleucine, was tested 

alongside equimolar amounts of COR in order to compare the relative toxicity of the two 

metabolites. The results of this study provide important insight into the biosynthetic 

pathway responsible for COR-like metabolite production in S. scabies as well as the role 

of the metabolites in S. scabies plant pathogenicity. Future directions for this research 

were discussed.     
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CHAPTER 1: Introduction and Overview 

 

1.1 General features of Streptomyces 

Streptomyces spp. are Gram-positive filamentous Actinobacteria that are abundant 

in heterogeneous terrestrial soil environments and can also be found in aquatic marine 

environments (Garrity et al. 2007; Ward and Bora 2006). Members of this genus are 

primarily saprophytic and can decompose complex organic compounds like starch, 

lignocellulose and chitin in soil, and as such they play a critical role in carbon recycling 

in the environment (Strap and Crawford 2006). Streptomyces spp. have a single, large 

linear chromosome that is generally 8 – 10 Mb (Megabase) in size and has a high G+C 

content ( 70%). Many species also harbour large linear and/or circular plasmids 

(Ventura et al. 2007). The genomes of several Streptomyces spp. have been sequenced 

(http://strepdb.streptomyces.org.uk), and among the features shared by the different 

genomes are the abundance of genes involved in regulation, secretion, morphological 

differentiation and secondary metabolism (Zhou et al. 2012).  Furthermore, Streptomyces 

genomes are rich in gene duplication and lateral gene transfer events, which most likely 

have contributed to genomic diversification within the genus (Zhou et al. 2012).  It is 

thought that the flexible genetic strategy of the Streptomyces has allowed for a more 

complex life cycle and for the ability to adapt to complex and variable soil environments 

(Bentley et al. 2002; Chen et al. 2002; Hopwood and Kieser 1993). 

 

1.2 The Streptomyces life cycle 

http://strepdb.streptomyces.org.uk/
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A distinguishing characteristic of the Streptomyces is the ability to undergo 

morphological differentiation as part of their life cycle. At the beginning of the life cycle 

(Fig. 1.1), germination of a single spore takes place under favorable environmental 

conditions, and the resulting filamentous cells grow by apical extension and branching to 

form a network of hyphae called the substrate mycelium (Elliot et al. 2008; McCormick 

and Flärdh 2012). When facing nutrient limitation or environmental stress, the organism 

begins to form structures called aerial hyphae that grow away from the colony surface, 

and this process is fueled by nutrients released from the autolysis of the substrate 

mycelium (Elliot et al. 2008).  Intriguingly, the formation of aerial hyphae coincides with 

the production of secondary metabolites such as antibiotics, which may protect the lysing 

colony from invading foreign microorganisms (McCormick and Flärdh 2012). The 

developmental process then continues with the septation of the aerial hyphae and the 

formation of chains of unigenomic spores (Chater 1993), which accumulate a gray 

polyketide pigment that turns the aerial mycelium from white to gray (Davis and Chater 

1992; Kelemen et al. 1998). The mature spores are resistant to environmental stresses 

such as desiccation conditions, and also are responsible for the dispersal of the non-

mobile Streptomyces bacteria (McCormick and Flärdh 2012).  

 

1.3 Secondary metabolism in the genus Streptomyces 

The ability to produce a great number of secondary metabolites is the best known 

feature of the Streptomyces. Secondary metabolites are chemically diverse compounds 

that are usually small (MW<3000Da) and exhibit a wide range of biological activities 

(Berdy 2005). In contrast to primary metabolism, which is indispensable for microbial 
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growth, secondary metabolism is thought to have evolved to provide a selective 

advantage to the producing organism (Berdy 2005; O’Brien and Wright 2011). The roles 

proposed for Streptomyces secondary metabolites in nature include warfare agents for 

competing with other microorganisms in nutrient-poor environments, signalling 

molecules for intra- and inter-generic communication with other microorganisms, and 

regulators of symbiotic relationships between Streptomyces spp. and eukaryotic hosts 

such as plants and animals (Berdy 2005; O’Brien and Wright 2011). 

To date Streptomyces spp. produce ~8000 bioactive secondary metabolites that 

have been widely used in human and/or veterinary medicine as anti-bacterial, anti-fungal, 

anti-parasitic, anti-viral, anti-tumor, and immuno-suppressive compounds, and also in 

agriculture as herbicides, insecticides, and biofertilizers for promoting plant growth 

(Berdy 2005; Korn-Wendisch et al. 1992; Sadeghi et al. 2012). Streptomyces spp. use 

multimodular enzymatic assembly lines to generate important families of secondary 

metabolites including polyketides, nonribosomal peptides and hybrid PKS/NRPS 

(Polyketide synthase/Non-ribosome peptide synthetase)-derived compounds (Walsh 

2004; Wenzel and Müller 2005). Remarkably, the genes encoding secondary metabolite 

systhesis are mostly located at the unstable terminal region of the chromosome (Pang et 

al. 2004), where abundant transposable elements reside (Chen et al. 2002; Leblond et al. 

1996). This dynamic feature may be related to the spread of antibiotic resistance among 

microbes since resistance genes are usually found clustered together with the 

corresponding secondary metabolite biosynthetic genes (Chen et al. 2002; Mazel and 

Davies 1999).  
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1.4 Plant pathogenicity in the genus Streptomyces 

Over 580 species of Streptomyces have been identified so far (Garrity et al. 2007), 

of which only a very small number have the ability to infect living plant tissue and cause 

plant diseases (Bignell et al. 2010a). Three of the best studied plant-pathogenic species 

are Streptomyces scabies, Streptomyces acidiscabies and Streptomyces turgidiscabies 

(Loria et al. 2006), which cause scab disease of potato (Fig. 1.2). The main symptom 

associated with this disease is the formation of round-shaped corky-like lesions on the 

tuber surface. The lesions can be superficial, erumpent (raised) or they can extend deep 

into the tuber tissue (Dees and Wanner 2012). The oldest and most widely distributed 

pathogen, S. scabies, is ubiquitous in well-drained soils where root and tuber crops are 

typically grown, and it exhibits optimum growth at 30
◦
C and a pH of 5.2 - 7, conditions 

that are associated with increased scab severity in the field (Loria et al. 1997).  Studies 

have shown that S. scabies primarily penetrates the potato tuber at the immature lenticels, 

and rapid expansion of the tuber is required for pathogen infection and lesion expansion 

(Loria et al. 1997, 2006, 2008). As S. scabies is neither tissue nor host specific, it can also 

cause scab disease symptoms on other economically important root crops such as radish, 

carrot, beet and turnip (Dees and Wanner 2012).  It has been also reported that S. scabies 

causes “pod wart” on peanuts in South Africa (De Klerk et al. 1997). Even seedlings of 

model plants such as Arabidopsis thaliana and Nicotiana tabacum (tobacco) can be 

infected by S. scabies, though such infections result in root stunting, swelling, necrosis 

and seedling death rather than scab lesion formation (Loria et al. 2006). Potato scab 

disease is the most important disease caused by S. scabies and is a worldwide problem. In 

Canada, the disease was estimated to cause losses of $15.3-17.3 million dollars to potato 
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growers in 2002 (Hill and Lazarovits 2005). In the USA, potato scab has been rated 

among the top five diseases affecting production of seed potatoes (Slack 1991), and in 

Tasmania, Australia, the disease has been reported to cause losses of up to 4% of the total 

industry value (Wilson 2004). The scab lesions affect the quality and market value of 

potato crops, and there is also evidence that infection by scab-causing pathogens can 

decrease the total crop yield and increase the proportion of smaller tubers in the yield 

(Hiltunen et al. 2005).  

 

1.5 Control strategies for potato scab disease 

Traditional ways to manage scab disease include soil irrigation during tuber 

growth since high moisture levels have been shown to decrease the severity of disease 

symptoms (Lapwood and Hering 1970). However, this strategy often fails (Dees and 

Wanner 2012), most likely because high soil moisture levels need to be maintained for 

extended periods of time, and this is impractical for many growers (Loria et al. 1997).  

Furthermore, maintaining high soil moisture levels can also promote the development of 

other undesired potato diseases (Loria et al. 1997). Reduction of soil pH ( 5.2) is another 

strategy that has been commonly used since S. scabies does not grow well under acidic 

conditions. This strategy also has limited success since low pH soils are unfavorable for 

the growth of many crops (Loria et al. 1997), and emerging pathogenic species such as S. 

acidiscabies and S. turgidiscabies are able to tolerate lower pH conditions than S. scabies 

(Lambert and Loria 1989a; Lindholm et al. 1997). Other chemical control methods such 

as soil fumigation and foliar sprays are costly and are not environmentally friendly, and 
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they can affect tuber size and weight (Dees and Wanner 2012). Crop rotation generally 

produces inconsistent results, most likely because plant pathogenic Streptomyces spp. are 

able to survive in soils as saprophytes, and they can also infect many different types of 

crops (Loria et al. 2006). Biological control of scab disease is considered a promising 

alternative to the traditional methods. Microorganisms such as non-pathogenic 

Streptomyces spp., Pseudomonas spp., Bacillus spp. and different fungal species have 

been reported to inhibit pathogenic Streptomyces spp. under controlled conditions 

(Beauséjour et al. 2003; Liu et al. 1995; Lorang et al. 1995; St-Onge et al. 2011; Tagawa 

et al. 2010).   Also, the use of bacteriophages as biocontrol agents for scab disease has 

been studied (Goyer 2005; McKenna et al. 2001). However, more research needs to be 

done to determine the effectiveness of biological control in the field (Dees and Wanner 

2012). The use of disease-resistant potato cultivars is considered the most desirable and 

reliable strategy for controlling scab disease; however, the genetic and physiological 

mechanisms of resistance and susceptibility are poorly understood, and true scab-resistant 

varieties of potato have yet been found (Dees and Wanner 2012). Overall, the lack of 

understanding of both the pathogen and host resistance mechanisms has hindered the 

development of effective control strategies for scab disease.  

 

1.6 Virulence factors produced by scab-causing Streptomyces species 

The successful infection of a plant host is an intricate process that requires the 

pathogen to detect the presence of a susceptible host, to penetrate and grow within the 

host tissues, and to avoid the host defense mechanisms (Chisholm et al. 2006). Plant 

pathogenic Streptomyces species are distinguished from their non-pathogenic relatives in 
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the ability to produce virulence determinants that participate in one or more steps in the 

infection process. Modern genetic tools have provided the opportunity to further 

characterize a number of known or predicted virulence factors in order to better 

understand their role in Streptomyces plant pathogenicity.   

The primary virulence factor produced by S. scabies and other scab-causing 

pathogens is a family of phytotoxic secondary metabolites called the thaxtomins, of 

which thaxtomin A is the predominant member produced by these organisms (King and 

Calhoun 2009). Thaxtomin A is a nitrated 5, 2-diketopiperazine non-ribosomal peptide 

synthesized from L-phenylalanine and 4-nitro-L-tryptophan (Healy et al. 2000; Johnson et 

al. 2009; King and Calhoun 2009). Thaxtomin A primarily functions as a cellulose 

biosynthesis inhibitor. In A. thaliana, thaxtomin A has been shown to affect the 

expression of cell wall synthesis genes, it reduces the number of cellulose synthase 

complexes in the plant cell plasma membrane, and it causes ectopic lignification 

(Bischoff et al. 2009). Other physiological effects of thaxtomin A have been reported. For 

example in Arabidopsis, the influx of Ca
2+

 and efflux of H
+
 ions has been shown to be 

induced by thaxtomin A, thus eliciting an early defence response (Tegg et al. 2005; 

Errakhi et al. 2008; Bischoff et al. 2009).  

Another virulence determinant that has been described is the Nec1 protein, which 

is produced by many, though not all scab-causing Streptomyces species (Bukhalid et al. 

1998; Wanner 2006, 2009).  Nec1 is a secreted protein that causes necrosis of potato 

tuber tissue (Loria and Bukhalid 1997) and is required for the colonization of radish 

seedling roots (Joshi et al. 2007). However unlike thaxtomin A, it is not essential for the 

pathogenic phenotype of Streptomyces spp.  The nec1 gene has a much lower GC content 
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(54%) than the average GC content of a Streptomyces genome, which suggests that it was 

acquired by horizontal gene transfer from another organism (Loria and Bukhalid 1997). 

In S. turgidiscabies, nec1, along with the thaxtomin biosynthetic genes, is present on a 

large mobilizable PAI (Pathogenicity island), and the transfer of this island is believed to 

facilitate the spread of plant pathogenicity among Streptomyces spp. in the environment 

(Kers et al. 2005; Bukhalid et al. 1998).  Since there are no close homologues of Nec1 in 

database, and no characterized motifs are present in the protein sequence, the function of 

Nec1 remains elusive (Joshi et al. 2007).  

The S. scabies genome encodes other putative virulence factors that may 

contribute to the plant pathogenic phenotype of this organism (Bignell et al. 2010a). For 

example, the tomA gene encodes a tomatinase enzyme that hydrolyzes -tomatine, a 

phytoanticipin is an antimicrobial compound produced by tomato plants (Seikpe and 

Loria 2008).  tomA is conserved in S. scabies, S. turgidiscabies and S. acidiscabies and is 

located together with nec1 and the thaxtomin biosynthetic genes on the PAI in S. 

turgidiscabies (Kers et al. 2005; Wanner 2006, 2009).  Although a tomA deletion mutant 

of S. scabies was not affected in virulence, it is possible that tomA contributes to the 

ability of S. scabies to suppress plant defense responses during infection as reported for 

other tomatinase – producing plant pathogens (Bouarb et al. 2002; Ito et al. 2004).  

 

1.7 The S. scabies COR-like metabolites  

The focus of this thesis is a new virulence-associated locus that was discovered in 

the genome sequence of S. scabies 87-22 and is called CFA (Coronafacic acid)-like 
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biosynthetic gene cluster (Bignell et al. 2010b). The CFA-like biosynthetic gene cluster is 

composed of at least 15 genes, of which nine are homologous to genes from the CFA 

biosynthetic gene cluster found in the Gram-negative plant pathogenic bacterium 

Pseudomonas syringae (Fig. 1.3). In P. syringae, CFA (Fig. 1.4A) is a polyketide 

secondary metabolite that is linked to CMA (Coronamic acid) to form COR (Fig. 1.4B), 

which is a nonhost-specific phytotoxin that contributes to the plant pathogenic phenotype 

of the organism (Bender et al. 1999a, b). Although COR is the predominant coronafacoyl 

compound produced by P. syringae, other minor COR-like metabolites can also be made 

in which CFA is linked to amino acids such as L-Ile (Isoleucine) (Fig. 1.4c), L-allo-Ile 

(Fig. 1.4d), L-Val (Fig. 1.4e) and L-norVal (Norvaline) (Fig. 1.4f) (Bender et al. 1999a,b). 

It has been predicted that S. scabies also produces COR-like metabolites since the CFA-

like biosynthetic gene cluster contains all of the genes needed for CFA production 

whereas the CMA biosynthetic genes are absent (Bignell et al. 2010a, b, 2014). Recent 

studies conducted in the Bignell laboratory have confirmed that at least three different 

COR-like metabolites are produced by S. scabies, the predominant of which is CFA-L-Ile 

(Fyans et al. 2014). Promoter reporter studies using GFP (Green fluorescent protein) have 

shown that the S. scabies CFA-like biosynthetic cluster is expressed when the pathogen is 

colonizing the seedling roots of both N. tabacum and A. thaliana (Bignell et al. 2010a, b), 

and deletion of cfa6 from the gene cluster provided further evidence that the COR-like 

metabolites contribute to seedling root symptom development in N. tabacum (Bignell et 

al. 2010a, b). It is predicted that the metabolites may also be important for potato scab 

disease development; however, as other scab-causing Streptomyces spp. do not appear to 

produce the metabolites (Bignell et al. 2010b), it is likely that they are not required for the 
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disease to occur.  

 

1.8 Biosynthesis of COR and COR- like molecules in P. syringae 

The predicted COR biosynthetic pathway in P. syringae is demonstrated in Figure 

1.5. The biosynthesis of CFA is thought to begin with the decarboxylation of α-

ketoglutarate followed by the formation of succinic semialdehylde-CoA (Coenzyme A). 

This may involve either of the ligase-encoding genes cfl or cfa5 found within the CFA 

biosynthetic gene cluster, or it may involve other genes located outside of the cluster 

(Rangaswamy et al. 1998a, b). Succinic semialdehylde-CoA then may serve as the starter 

unit for type II polyketide synthesis involving Cfa1 (ACP: acyl carrier protein), Cfa3 

(KS) and Cfa2 (DH: dehydratase). Malonyl-CoA is predicted to serve as the extender unit 

that is linked to the –SH group of Cfa1, and chain elongation by Cfa3 may be followed by 

ring formation by Cfa4, a predicted cyclase, to produce the enzyme-bound intermediate 2-

carboxy-3-hydroxycyclopentanone (Rangaswamy et al. 1998b). Cfa2 may then catalyze 

the dehydration of 2-carboxy-3-hydroxycyclopentanone to produce enzyme-bound CPC 

(2-carboxy-2-cyclopentenone), which may in turn serve as a starter unit for type I 

polyketide synthesis by the modular PKS encoded by cfa6 and cfa7.  The CoA ester of 

CPC is predicted to be loaded onto Cfa6, which possesses a loading module AT0 

(Acyltransferase)-ACP0 and an extension module KS1 (Ketosynthase)-AT1-DH1-ER1 

(Enoylreductase)-KR1 (Ketoreductase)-ACP1. The Cfa6 extension module would allow 

for CPC to be extended by a butyrate unit followed by complete reduction of the -keto 

ester to give enzyme-bound CPE (2-[1-oxo-2-cyclopenten-2-ylmethyl] butanoic acid) 
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(Fig. 1.5). Then, CPE is predicted to be directly transferred to Cfa7, which possesses the 

second extension module (KS2-AT2-DH2-KR2-ACP2) that would allow for extension of 

CPE by malonate followed by reduction and dehydration of the -keto ester to give CFA. 

Cfa7 also possesses a TE domain that presumably allows for release of CFA from the 

PKS. Finally, the cfl gene encodes the coronafacate ligase that is predicted to link the free 

CFA to CMA via amide bond formation to produce COR (Fig. 1.5; Bender et al. 1993; 

Liyanage et al. 1995). CMA is an ethylcyclopropyl amino acid derived from L-Ile, and the 

genes involved in its biosynthesis (cmaABCDELT) form a cluster that is separate from the 

CFA biosynthetic gene cluster (Brooks et al. 2005; Mitchell et al. 1994; Rangaswamy et 

al. 1998). Though CMA is the preferred substrate for ligation to CFA, the Cfl enzyme is 

believed to be able to utilize other amino acid substrates in order to form the minor COR-

like molecules CFA-L-Ile, CFA-L-allo-Ile, CFA-L-Val, CFA-L-norVal (Fig. 1.4), CFA-L-

Ser and CFA-L-Thr (Mitchell et al. 1986; Mitchell and Ford 1998; Mitchell and Frey 

1986; Mitchell and Young 1985).  

It has previously been noted that the production of COR in P. syringae is 

regulated by temperature since maximum metabolite production occurred when the 

organism was cultured at 18C, while very little production occurred at 28-30C (Palmer 

and Bender 1993; Ullrich et al. 1995). A chromosomal locus controlling CFA and CMA 

production has been identified and consists of three genes, designated corP, corS and 

corR, encoding a modified two-component regulatory system. CorP and CorR show 

significant similarity to response regulatory proteins, and CorS is related to sensor 

histidine protein kinases (Ullrich et al. 1995). CorR contains a helix-turn-helix DNA 
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binding domain and has been shown to function as a positive activator of cfa and cma 

gene expression by binding to promoter regions within the CFA and CMA biosynthetic 

gene clusters (Penaloza-Vazquez and Bender 1998; Sreedharan et al. 2006; Wang et al. 

1999). The DNA binding activity of CorR is regulated by CorS, which has been shown to 

phosphorylate CorR in vitro (Rangaswamy and Bender 2000). Although CorP does not 

harbour any typical DNA binding motifs, it does contain a highly conserved phosphate 

receiving domain (Ullrich et al. 1995), and it has been proposed that CorP may function 

to modulate CorR and/or CorS activity (Smirnova et al. 2002). Furthermore, all three 

regulatory proteins are believed to be responsible for the thermoregulation of COR 

(Ullrich et al. 1995).   

 

1.9 Biosynthesis of the COR- like metabolites in S. scabies  

In S. scabies, the CFA-like biosynthetic gene cluster contains homologues of the 

cfa1-7 genes (Fig. 1.3), which as discussed in section 1.8, are thought to be involved in 

synthesis of the CFA backbone in P. syringae. In addition, a homologue of the cfl gene, 

which in P. syringae encodes the coronafacate ligase enzyme required for ligation of CFA 

to CMA or other amino acids, is also present in the CFA-like gene cluster (Fig. 1.3). 

Interestingly, the Cfa7 extension module in S. scabies has been predicted to contain an 

ER domain that is absent from the Cfa7 homologue in P. syringae (Bignell et al. 2010b).  

This domain was predicted to be active based on the presence of the conserved NADPH 

(Reduced Nicotinamide Adenine Dinucleotide Phosphate) binding motif 

[LXHX(G/A)XGGVG] that is characteristic of ER domains (Donadio and Katz 1992), 

and it was hypothesized that the C=C double bond that is present in the CFA backbone in 
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P. syringae would be reduced in the metabolite produced by S. scabies (Bignell et al. 

2010b). In addition, the S. scabies CFA-like biosynthetic gene cluster contains six genes 

that have no homologues in the P. syringae CFA biosynthetic gene cluster (Fig. 1.3), and 

four of these genes are predicted to encode enzymes that may play a role in metabolite 

biosynthesis. Together, these observations led to the proposal that S. scabies may produce 

novel COR-like metabolites (Bignell et al. 2010b). However, as mentioned in section 1.7, 

it is now known that the primary S. scabies COR-like metabolite is CFA-L-Ile (Fyans et 

al. 2014), a metabolite that is also produced by P. syringae in minor amounts.   

Recent research in the Bignell laboratory has demonstrated that at least two of the 

novel genes in the CFA-like gene cluster are involved COR-like metabolite biosynthesis 

in S. scabies. Deletion of scab79681 (oxr: encoding oxidoreductase) and scab79721 (sdr: 

encoding short chain dehydrogenase/reductase), which encode a predicted oxidoreductase 

and a short chain dehydrogenase, respectively, resulted in a significant decrease in 

production of CFA-L-Ile. Production in each mutant was restored by genetic 

complementation with the corresponding gene (Altowairish 2014). Based on these results, 

a hypothetical biosynthetic pathway for CFA-L-Ile biosynthesis was proposed in which 

production of CFA in S. scabies requires not only the cfa1-7 genes, but also the oxr and 

sdr genes (Altowairish 2014). In addition, it was proposed that CFA biosynthesis might 

also involve the scab79691 gene, which encodes a predicted CYP450 (Cytochrome P450) 

monooxygenase (Altowairish 2014; Bignell et al. 2010b) and is the focus of Chapter 2 in 

this thesis. scab79711 is another gene that is present in the S. scabies CFA-like gene 

cluster but not in the P. syringae CFA gene cluster (Fig. 1.3). Preliminary bioinformatics 

analysis of the gene product suggested that it may work together with the cfa8 gene 
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product to produce the ethylmalonyl-CoA extender unit that is required for CFA 

biosynthesis (Bignell et al. 2010b). Gene cfa8 is conserved in both S. scabies and P. 

syringae and encodes a predicted CCR (Crotonyl-CoA carboxylase/reductase) enzyme. A 

more thorough discussion of scab79711 and cfa8 is provided in Chapter 2. 

Gene scab79591/cfaR (Fig. 1.3) encodes a member of the PAS (Period circadian, 

aryl hydrocarbon receptor nuclear translocator and single-minded protein) - LuxR family 

of transcriptional regulators that are found only in actinomycetes (Bignell et al. 2014a). 

The C-terminal LuxR domain is thought to function as a DNA binding domain for 

transcription activation, while the N-terminal PAS motif may control the DNA binding 

activity of the protein in response to environmental stimuli (Hefti 2004; Taylor and 

Zhulin 1999; Subramoni 2009). RT-PCR (Reverse transcription polymerase chain 

reaction) analysis of scab79591/cfaR deletion and overexpression strains indicated that 

the expression of the CFA-like biosynthetic genes is positively activated by 

Scab79591/CfaR (Bignell et al. 2010b). Furthermore, scab79591/cfaR was shown to be 

co-transcribed with scab79581, which encodes a ThiF-family protein of unknown 

function (Bignell et al. 2010b).   

 

1.10 Biological activities of COR and COR-like molecules  

 COR has been shown to function as an important virulence determinant in 

different pathovars (pv) of P. syringae (Bender et al. 1999a, b). It allows the pathogen to 

penetrate and colonize the plant host, it facilitates the suppression of plant defense 

responses, and it contributes to disease symptom development (Xin and He 2013). As 

discussed in Chapter 3, the primary symptom induced by COR is leaf chlorosis on diverse 
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species of plants, although other biological effects have also been attributed to this 

phytotoxin (Durbin 1991; Ferguson and Mitchell 1985; Kenyon and Tuner, 1992; Bent et 

al. 1992; Zare et al. 2013; Lee et al. 2013). It has been shown that COR can function as a 

molecular mimic of the L-Ile conjugate of the plant defense and wound response signaling 

molecule JA (Jasmonic acid) (Katsir et al. 2008a, b; Melotto et al. 2008), and as such it 

plays an important role in allowing P. syringae to overcome plant defense responses 

during host colonization (Feys et al. 1994; Thilmony et al. 2006; Uppalapati et al. 2005; 

Zhao et al. 2003). There is the evidence that COR-like metabolites such as CFA-L-Val 

exhibit similar biological activities as COR, though they are not as toxic in their activity 

(Bender et al. 1999a; Mitchell 1991; Uppalapati et al. 2005). Work from the Bignell lab 

has shown that the S. scabies COR-like metabolites are able to induce potato tissue 

hypertrophy in a similar manner as COR (Altowairish 2014; Fyans et al. 2014). However, 

a thorough examination of other potential biological activities of the S. scabies COR-like 

metabolites, and in particular CFA-L-Ile, has not been performed.  

 

1.11 Thesis objectives 

This study has two main objectives and is divided into two separate chapters. The 

first objective was to characterize the role of three genes, scab79711, cfa8 and scab79691 

(Fig. 1.3), in the biosynthesis of the CFA-L-Ile COR-like metabolite produced by S. 

scabies. As discussed in Chapter 2, deletion mutants were constructed for each gene in S. 

scabies, and the effect of each mutation on CFA-L-Ile production was assessed using 

HPLC (High-performance liquid chromatography) and bioassays. The second objective of 

this study was to characterize the biological activities of the S. scabies COR-like 
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metabolites using different plant hosts. As described in Chapter 3, culture supernatants 

and extracts from COR-like metabolite producing and nonproducing strains of S. scabies 

were used in different plant bioassays in order to determine whether the metabolites 

exhibit the same biological activities described for COR. Furthermore, the relative 

toxicity of pure COR and CFA-L-Ile were compared in two different bioassays. Together, 

these chapters provide important insights into the biosynthesis and function of the 

virulence-associated COR-like metabolites, which are produced by the most important 

and widely-distributed scab-causing pathogen.  
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Figure 1.1: The life cycle of Streptomyces spp. Adapted from Elliot et al. (2008) and 

Flärdh and Buttner (2009). 
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Figure 1.2: Potato tuber showing the characteristic erumpent (raised) lesions that form as 

a result of infection by scab-causing Streptomyces spp. Image courtesy of J. Fyans. 
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Figure 1.3: Genetic organization of the CFA-like biosynthetic gene cluster from S. 

scabies and the CFA biosynthetic gene cluster from Pseudomonas syringae. White arrows 

indicate genes encoding homologous proteins in S. scabies 87-22 (A) and P. syringae pv 

tomato DC3000 (B).  Gray arrows indicate genes that are unique to the S. scabies cluster, 

and black arrows indicate genes that are unique to the P. syringae cluster. The S. scabies 

genes that are the focus of Chapter 2 are outlined with dash lines. 
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Figure 1.4: Structures of coronafacoyl compounds produced by P. syringae. A: core 

structure of the coronafacoyl compounds, B: structure of coronafacic acid (CFA), 

coronatine (COR), coronafacoyl-L-Ile, coronafacoyl-L-allo-Ile, coronafacoyl-L-Val and 

coronafacoyl-L-norVal. 
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Figure 1.5: The hypothetical biosynthetic pathway for COR production in P. syringae. 

The black solid box indicates the starting unit in the biosynthetic pathway, while black 

dash boxes indicate extender units. 
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CHAPTER 2: Characterizing the Role of scab79691, scab79711 and cfa8 in the 

Biosynthesis of the Streptomyces scabies COR-like Metabolites 

 

2.1 Introduction 

The CFA-like biosynthetic gene cluster from S. scabies 87-22 contains 

homologues of the cfl and cfa1-8 genes that are present in the CFA gene cluster from P. 

syringae (Fig. 1.3).  In P. syringae, the cfa1-7 and cfl genes are proposed to be directly 

involved in the biosynthesis of COR and COR-like molecules, while the cfa8 gene 

encodes a protein with significant similarity to CCR enzymes involved in ethylmalonyl-

CoA biosynthesis (Bender et al. 1999). CCR enzymes are well conserved in bacteria and 

are believed to act as both reductases and carboxylases (Erb et al. 2007). In primary 

metabolism, CCRs have been proposed to reduce crotonyl-CoA to butyryl-CoA (Fig. 

2.1), which serves as a starter unit for fatty acid biosynthesis (Wilson and Moore 2012).  

As carboxylases, CCR enzymes commence the reaction by taking the hydride from 

NADPH and then reducing crotonyl-CoA to ethylmalonyl-CoA in the presence of CO2 

(Fig. 2.1).  The resulting ethylmalonyl-CoA subsequently enters central metabolism or is 

passed to polyketide synthases involved in secondary metabolism (Erb et al. 2007; 

Wilson and Moore 2012). Although there are several pathways known for synthesizing 

ethylmalonyl-CoA (Fig. 2.1), CCR-dependent pathways seem to be the main supplier of 

this extender unit for polyketide synthesis (Wilson and Moore 2012). This was 

demonstrated in P. syringae as deletion of cfa8 resulted in complete loss of CFA and 

COR production (Rangaswamy et al. 1998). 

In S. scabies, the CFA-like biosynthetic gene cluster also contains six genes that 
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have no homologues in the P. syringae CFA gene cluster. Among these genes is 

scab79711, which was previously proposed to be involved in the biosynthesis of 

ethylmalonyl-CoA together with the cfa8 gene (Bignell et al. 2010). The product of the 

scab79711 gene shows similarity to 3-hydroxybutyryl-CoA dehydrogenases that catalyze 

the reduction of acetoacetyl-CoA to 3-hydroxybutyryl-CoA, a precursor of crotonyl-CoA 

(Fig. 2.1). Crotonyl-CoA, in turn, can be reduced to ethylmalonyl-CoA by the action of 

CCR (e.g. Cfa8) as described above. Genes that are homologous to scab79711 and cfa8 

can be found in other polyketide biosynthetic gene clusters, including those for 

concanamycin A, elaiophylin and indanomycin (Chan et al. 2009; Li et al. 2009). It is 

likely that such genes are required to ensure a sufficient supply of ethylmalonyl-CoA for 

polyketide biosynthesis during secondary metabolism. 

  Another unique gene within the CFA-like biosynthetic gene cluster, scab79691, 

was previously predicted to encode a putative CYP450 monooxygenase that may function 

in the oxidative modification of the COR-like metabolite backbone at or near the end of 

the biosynthetic pathway (Bignell et al. 2010). CYP450s belong to a superfamily of 

heme-containing proteins that are characterized by an absorption maximum wavelength 

of 450nm (O’Keefe and Harder 1991). They catalyze the monooxygenation of a broad 

range of substrates including cholesterol, lipids, steroid hormones, xenobiotics drugs and 

toxic chemicals among all five kingdoms of life (Hasemann et al. 1995). Bacterial 

CYP450 superfamilies have been intensively studied and are designated CYP101 to 

CYP184 (Nelson et al. 1996). For their monooxygenase activity, one atom from O2 is 

reduced to water while the other oxygen atom is inserted into the substrate typically as a 

hydroxyl group. NADPH and ferredoxin/ferredoxin reductase are usually the electron 
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donors needed to provide the reducing equivalents (Takemori et al. 1993). CYP450 

monooxygenases have been found to be highly abundant in the genus Streptomyces where 

some may be involved in detoxifying molecules from other living organism and decaying 

organic material in soil, and some are associated with the biosynthesis of secondary 

metabolites (Lamb et al. 2002). In polyketide biosynthetic pathways within Streptomyces 

spp., CYP450s are typically involved in the post-PKS tailoring of the metabolite during 

the later stages of the pathway (Zhao and Waterman 2007). In the case of antibiotic 

secondary metabolites, CYP450s often enhance the bioactivity of the molecule through 

the addition one or more hydroxyl groups (Lamb et al. 2006).   

In this study, the role of the cfa8, scab79711 and scab79691 genes in the COR-

like metabolite biosynthetic pathway was elucidated. Deletion mutants of S. scabies were 

constructed for each gene, and the effect of each mutation on CFA-L-Ile biosynthesis was 

assessed using HPLC and bioassays. The results show that scab79711 and cfa8 are 

dispensable for CFA-L-Ile biosynthesis in S. scabies, though cfa8 is required for optimum 

production of the metabolite. On the other hand, scab79691 was found to be essential for 

metabolite biosynthesis, and the implications of this finding are discussed.   

 

2.2 Materials and Methods 

 

2.2.1 Bacterial strains, culturing conditions and maintenance 

2.2.1.1 Escherichia coli strains 

E. coli strains used in this study are listed in Table 2.1. Strains were routinely 

grown at 37°C unless otherwise indicated.  Liquid cultures were grown with shaking (200 
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– 250 rpm: revolutions per minute) in 5 – 50 mL of Difco
TM

 LB (Luria-Bertani medium) 

Lennox broth (BP1427-2; Fisher Scientific, Waltham, MA), low salt LB broth (1% w/v 

tryptone; 0.5% w/v yeast extract; 0.25% w/v NaCl), SOB (Super optimal broth) 

(Sambrook and Russell 2001) or SOC (Super optimal broth with catabolite repression) 

medium (B9020S; New England Biolabs, Whitby, ON), while solid cultures were grown 

on LB Lennox (or low salt LB) medium containing 1.5% w/v agar (105791A; NEOGEN, 

Michigan, US). When necessary, the solid or liquid growth media were supplemented 

with ampicillin (100 µg/mL final concentration; 0339-25G; Amresco, Solon, OH), 

kanamycin (50 µg/mL final concentration; 420311; Calbiochem, San Diego, CA), 

hygromycin B (100 µg/mL final concentration; 400051; Calbiochem) or chloramphenicol 

(25 µg/mL final concentration; AC227920250; Acros Organic, New Jersey, USA). E. coli 

strains were maintained at 4C for short-term storage or at - 80C as glycerol stocks for 

long-term storage. Glycerol stocks were prepared by growing the strains overnight in 2 – 

5 mL of LB or low salt LB liquid medium (with or without antibiotics) and then pelleting 

the cells by centrifugation (13,000g) for 5 min. The resulting cell pellets were 

resuspended in 0.5 – 1 mL of 20% v/v glycerol and were frozen at - 80°C.  

 

2.2.1.2 Streptomyces scabies strains 

S. scabies strains used in this study are listed in Table 2.1. Strains were routinely 

grown at 28°C unless otherwise indicated. Liquid cultures were typically grown with 

shaking (200 rpm) in TSB (Trypticase Soy Broth) (DF0370173; BD Biosciences, 

Mississauga, ON) medium in 50 or 125 mL flasks with stainless steel springs. Plate 



40 

 

cultures were grown on SFMA (Soy flour mannitol agar) (Kieser et al. 2000), OBA (Oat 

bran agar) (Johnson et al. 2007) or Difco NA (Nutrient agar) (DF0003178, BD 

Biosciences) containing 1.5% w/v agar. When necessary, the growth media were 

supplemented with hygromycin B (50 µg/mL final concentration), apramycin (50 µg/mL 

final concentration), nalidixic acid (50 µg/mL final concentration; BP908-25; Thermo 

Fisher Scientific), kanamycin (50 µg/mL final concentration), or thiostrepton (25 µg/mL 

final concentration; T8902-1G; Sigma-Aldrich, Oakville, ON). S. scabies strains were 

maintained at 4C for short-term storage or at - 80°C as spore or mycelial stocks for long-

term storage. Spore stocks were prepared by scraping gray spores from a 7-10 day old 

OBA plate and then transferring the spores to a sterile 1.5 mL microcentrifuge tube 

containing 1 mL of 40% v/v glycerol. The contents were mixing thoroughly and the tubes 

were placed into the - 80°C freezer.  Mycelial stocks were prepared by inoculating spores 

into 25 mL of TSB and then growing for 48 – 72 hrs or until the culture was dense. Next, 

950 L of the TSB culture was transferred into sterile 1.5 mL microcentrifuge tubes 

containing 50 L of 100% v/v DMSO. After mixing the contents, the tubes were frozen at 

- 80°C. For production of the COR-like metabolites, a single DMSO stock tube for each 

strain was thawed on ice, inoculated into 9 mL of TSB, and incubated for 24 – 48 hrs 

until the culture was dense. Then, the seed culture was subcultured (1% v/v) into 5 or 50 

mL of SFMB (Soy flour mannitol broth) (Kieser et al. 2000) in 6-well tissue culture 

plates (353046; BD Falcon) or in 2  125 mL spring flasks, respectively, and were 

incubated for 7 days at 25 or 28°C with shaking (125 rpm for 6-well plates, 200 rpm for 

spring flasks). 
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2.2.2 DNA manipulations 

Standard molecular biology procedures were implemented for all DNA 

manipulations performed in this study (Sambrook and Russell 2001). Restriction 

digestions were performed using enzymes purchased from New England Biolabs 

according to the manufacturer’s instructions.  DNA was routinely analyzed by agarose gel 

electrophoresis using 1% w/v agarose gels in 1 TBE (Tris-Borate-EDTA) buffer, and the 

size of the DNA bands was estimated using 100bp (base pair) and 1kb DNA ladders 

(DM001-0500 and DM010-0500; FroggaBio Inc., Toronto, ON). The EZ-Vision In-Gel 

stain (N391-0.5ML; Amresco LLC, Solon, OH) or ethidium bromide was used for 

visualizing the DNA in the gel, and gel images were acquired using a GelDoc-It Imager 

(UVP, Upland, CA). Gel extraction of DNA was routinely performed using the Wizard 

SV Gel and PCR (Polymerase chain reaction) Clean-Up system (A9281; Promega 

Corporation, Madison, WI) as per the manufacturer’s directions. Quantification of DNA 

was performed using a P300 Nanophotometer (Implen Inc., Westlake Village, CA) 

according to the instrument instructions. Cloning of PCR products was performed using 

the pGEM-T Easy vector system (PR-A1360, Promega Corporation) as per the 

manufacturer’s protocol. Prior to cloning, the PCR products were modified using the A-

tailing procedure described in the pGEM-T Easy vector system protocol and using Taq 

DNA polymerase (M0273S, New England Biolabs). Cloning of other DNA fragments 

was performed using T4 DNA ligase (M0202S; New England Biolabs) as per the 

manufacturer’s instructions except that the reactions were incubated at room temperature 
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for 4hrs. A vector: insert ratio of 1: 3 was used for all ligation reactions, and reactions 

were routinely transformed into NEB (New England Biolabs) 5-alpha high efficiency 

competent E. coli cells (C2987H; New England Biolabs) as per the manufacturer’s 

directions. Plasmid and cosmid DNA was routinely isolated from overnight cultures of E. 

coli using the alkaline lysis with SDS (Sodium dodecyl sulfate) minipreparation method 

(Sambrook and Russell 2001). When highly pure DNA was required, the EZ-10 Spin 

Column Plasmid DNA kit (BS614-250Preps; Bio Basic Inc., Markham, ON) was used as 

described by the manufacturer. All cosmids and plasmids that were used or constructed in 

this study are listed in Table 2.1. Genomic DNA was prepared using the SpeedMill PLUS 

Beat Beater (MBI lab equipment, Montreal, CA) and the QIAamp DNA Mini Kit (51304; 

QIAGEN) or the One-Tube Bacterial Genomic DNA Extraction Kit (BS8413-100Preps; 

Bio Basic Inc.). Sequencing of DNA was performed by The Centre for Applied Genomics 

(Toronto, ON). Standard desalted oligonucleotide primers used for sequencing were 

purchased from Integrated DNA Technologies (Coralville, IA) and are listed in Table 2.2. 

 

2.2.3 PCR 

2.2.3.1 Generation of the hyg + oriT (Origin of transfer from RK2) extended resistance 

cassettes  

PCR was performed in order to generate the hyg + oriT extended resistance 

cassettes that were used for constructing the ∆scab79711, ∆cfa8, and ∆scab79691 mutant 

cosmids (Table 2.1) as part of the Redirect PCR targeting system (Gust et al. 2003a,b).  

Reactions (50µL) contained 50 – 100 ng of pIJ10700 plasmid template, 1 Taq reaction 
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buffer with KCl, 2 mM MgCl2, 200 µM dNTPs (Deoxyribonucleoside triphosphate), 50 

pmol each of the long (58-59 nt: nucleotide) forward and reverse primers, 5% v/v DMSO 

(Dimethylsulfoxide) and 2.5 U of Taq DNA polymerase (FEREP0402, Thermo Fisher 

Scientific, Waltham, MA).  The cycling conditions started with an initial denaturation 

step of 95°C for 2 min followed by 10 cycles of denaturation at 95°C for 45 sec, primers 

annealing at 50°C for 45 sec, and extension at 72°C for 90 sec. Then, an additional 15 

cycles was carried out with denaturation at 95°C for 45 sec, annealing at 55°C for 45 sec 

and extension at 72°C for 90 sec. At the end, a final extension step was performed at 

72°C for 5 min. The PCR reactions described in this section were performed in 0.2 mL 

thin walled PCR tubes (10011-776; VWR International, Mississauga, ON) using a 

Mastercycler Pro thermal cycler (Eppendorf Canada, Mississauga, ON). Following PCR, 

the extended resistance cassettes were analyzed by agarose gel electrophoresis and were 

gel-purified as described in section 2.2.2. 

 

2.2.3.2 Verification of constructed mutant cosmids and strains  

PCR reactions were also performed in order to verify the constructed mutant 

cosmids (1770/∆scab79711, 1770/∆cfa8 and 1770/∆scab79691) and the S. scabies mutant 

strains (∆scab79711, ∆cfa8 and ∆scab79691). Reactions were performed in 25 L 

volumes using cosmid or genomic DNA (2.5 L) as template and using gene-specific 

oligonucleotide primers (25 pmol each). Reactions were performed using the same 

enzyme and reaction conditions as described in section 2.2.3.1, and the cycling conditions 

consisted of an initial denaturation step at 95°C for 1 min followed by 30 cycles of 
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denaturation at 95°C for 30 sec, primer annealing at 60°C for 30 sec and extension at 

72°C for 1 min/kb. All reactions were performed using an Eppendorf Mastercycler Pro 

thermal cycler, and the resulting products were analyzed by agarose gel electrophoresis 

(section 2.2.2). 

 

2.2.3.3 Amplification of the scab79691 and cfa8 genes  

The scab79691 and cfa8 genes were PCR-amplified for subsequent cloning into 

the pGEM
®
-T Easy vector (Table 2.1).  Amplifications were conducted in 50 µL reaction 

volumes with 25-50 ng of Cosmid 1770 DNA as a template, 1 high GC buffer, 10mM 

dNTPs, 25 pmol of forward and reverse primer, 3% v/v DMSO, and 0.5U of Phusion 

DNA polymerase (M0530S, New England Biolabs). The cycling conditions consisted of 

an initial denaturation step at 98°C for 30 sec followed by 30 cycles of denaturation at 

98°C for 10 sec, primer annealing at 60°C and 72°C for scab79691 and cfa8, respectively, 

for 45 sec and extension at 72°C for 5 min. Then, a final extension step of 72°C for 5 min 

was followed. The PCR reactions described in this section were all performed using a 

C1000
TM 

Thermal Cycler (BIO-RAD, Mississauga, Ontario), and the resulting products 

were analyzed by agarose gel electrophoresis prior to cloning into pGEM
®
-T Easy. All 

oligonucleotide primers used for PCR are listed in Table 2.2.  

 

2.2.4 Construction of the S. scabies gene deletion mutants  

The Redirect PCR targeting system (Gust et al. 2003a,b) was used to construct 

mutant cosmids harbouring a deletion of the S. scabies scab79711, cfa8 and scab79691 

http://www.neb.ca/detail.php?id=M0530
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genes (Table 2.1). Each gene was replaced with an extended resistance cassette (which 

was PCR amplified as described in section 2.2.3.1) harbouring the hyg gene (conferring 

resistance to hygromycin B) and oriT, which allowed for conjugal transfer of the mutant 

cosmids into S. scabies from E. coli. Intergeneric conjugations were performed as 

described previously (Altowairish 2014), and S. scabies exoconjugants were selected 

using hygromycin B and nalidixic acid. To confirm that gene replacement had occurred in 

the resulting exconjugants due to a double-crossover event, the strains were cultured on 

NA containing kanamycin in order to identify those strains that were hygromycin 

resistant and kanamycin sensitive. A total of six hygromycin resistant and kanamycin 

sensitive isolates for each mutant were selected and numbered as ∆scab79711 N. 

5/10/11/12/14/18, ∆cfa8 N. 2/7/10/12/17/18 and ∆scab79691 N. 1/2/3/4/5/6. Each isolate 

was streaked for single colonies, and spores from a single colony were then spread over 

the surface of an entire OBA plate containing the appropriate antibiotics. Finally, spore 

and mycelial stocks of each isolate were prepared as described in section 2.2.1.2.  

 

2.2.5 Chemical extraction of the COR-like metabolites 

2.2.5.1 Small-scale extractions for HPLC analysis 

S. scabies SFMB cultures grown in 6 well plates (see section 2.2.1.2) were used 

for small-scale extraction of the COR-like metabolites. Samples (1.5 mL) of the SFMB 

cultures were centrifuged at 13,300 g for 5 min, and 1 mL of each culture supernatant was 

transferred into a clean 2 mL microcentrifuge tube (87003-298, VWR). The pH of the 

supernatants was adjusted to 10-11 with 1N NaOH, after which the supernatants were 
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extracted twice with 0.5 volumes of chloroform (319988-4L; Sigma Aldrich Canada Co., 

Oakville, ON) to remove non-acidic hydrophobic compounds. Next, the aqueous 

supernatants were adjusted to pH 1-2 with 1N HCl and were then extracted three times 

with 0.5 volumes of chloroform. The acidic organic extracts were pooled and dried down 

in a fume hood, and the resulting material was redissolved in 100 µL of 100% v/v HPLC-

grade methanol (34860-4L-R; Sigma Aldrich Canada Co., Oakville, ON). The samples 

were filtered using a 0.2 µm pore size syringe filter (28145-491; VWR) to remove any 

undissolved particulates prior to HPLC analysis.  

 

2.2.5.2 Large-scale extractions for potato bioassays 

S. scabies SFMB cultures grown in 2  125 mL flasks (section 2.2.1.2) were used 

for large-scale extraction of the COR-like metabolites. Culture supernatants were 

harvested by centrifugation (4000 rpm for 5 min) and were extracted as described in 

section 2.2.5.1 except that the dried extracts were redissolved in 200 µL of 100% v/v 

HPLC-grade methanol.  

 

2.2.6 HPLC analysis of COR-like metabolite production 

Filtered culture extracts were transferred to flat bottom glass inserts (5181-3377; 

Agilent Technologies Canada Inc., Mississauga, ON), which were then placed into 2 mL 

glass screw cap vials (5182-0716; Agilent Technologies Canada Inc.) and were sealed 

with a PTFE (Polytetrafluoroethylene)/silicone rubber septum (5182-0731; Agilent 

Technologies Canada Inc.). Samples (10 µL) of each culture extract were analyzed using 
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an Agilent 1260 Infinity Quaternary LC system with a Poroshell 120 EC-C18 column (4.6 

× 50 mm, 2.7 µm particle size; Agilent Technologies Inc.). The initial mobile phase 

concentration consisted of acetonitrile and water (30:70) with 0.1% v/v formic acid. After 

1.5 min, the concentration was increased linearly to 50:50 acetonitrile:water over a time 

period of 2.5 min, and this concentration was held for 1 min. Next, the mobile phase 

concentration was returned to the initial conditions (30:70 acetonitrile:water) in 1.5 min 

using a linear gradient, and this concentration was held for 2 min prior to injection of the 

next sample. The flow rate (1 mL/min), column temperature (40°C) and detection 

wavelength (230 nm) were kept constant throughout the analysis. A synthetic standard of 

CFA-L-Ile (provided by Carol Bender) was included to assist in the identification of the 

primary COR-like metabolite. All data were collected and analyzed using the 

ChemStation software (version B.04.03, Agilent Technologies Canada Inc.), and the 

Student’s t-test was used to identify significant differences in metabolite production in the 

mutants compared to the txtA/pLDRB51-1 strain.  

 

2.2.7 LC-MS (Liquid chromatography–mass spectrometry) analysis  

Culture extracts (10 L) were also analyzed by LC-MS using an Agilent 1100 

series HPLC system (Agilent Technologies Inc.) interfaced to a Waters G1946A single 

quadrupole mass spectrometer (Waters Corporation). Separation was achieved using the 

Agilent Technologies ZORBAX SB-C18 column (4.6 × 150 mm, 5 µm particle size) and 

flow rate and column temperature as described in 2.2.6 except that the solvent gradient 

system was modified. The initial mobile phase concentration consisted of acetonitrile and 
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water (30:70) with 0.1% v/v formic acid. After 4.5 min, the concentration was increased 

linearly to 50:50 acetonitrile: water over a time period of 12 min, and this concentration 

was held for 3 min. Next, the mobile phase concentration was returned to the initial 

conditions (30:70 acetonitrile: water) in 4.5 min using a linear gradient, and this 

concentration was held for 6 min prior to injection of the next sample. Detection was by 

ultraviolet radiation (230 nm) and by electrospray ionization MS in negative ion mode. 

 

2.2.8 Potato tuber slice bioassay 

This was performed as described previously (Bignell et al. 2010) with some 

modifications.  Potato tubers were peeled and the surface was sterilized by immersing in 

15% v/v bleach (Chlorox) for 10 min with occasional stirring. After rinsing twice with 

sterile HPLC - grade water, the tubers were cut into equivalent size pieces (approximately 

2.5 × 1.5 ×  1 cm) using a sterile knife, and the potato pieces were placed onto pre-wetted 

Whatman filter paper in sterile Petri dishes (4-6 potato pieces per dish). Next, one 6 

mm diameter sterile paper disk (2017-006; Whatman) was placed onto each potato piece, 

and 25 µL of filter-sterilized acidic culture extract was pipetted onto each disk. Pure COR 

(500 ng) (C8115-1MG; Sigma Aldrich Canada Co., Oakville, ON) was included as a 

positive control in this experiment while 100% v/v methanol was used as a negative 

control. The potato disks were incubated under high humidity for 5-7 days at ambient 

temperatures in the dark, and then they were assessed for the presence of tissue 

hypertrophy. 
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2.2.9 Complementation of the cfa8 and scab79691 mutants 

The basic strategy that was used is outlined in Figure 2.18. The target genes (cfa8 

and scab79691) were PCR-amplified as described in section 2.2.3.3 using primers 

containing engineered NdeI and XhoI restriction sites (Table 2.2).  After cloning the PCR 

products into pGEM-T EASY, the resulting clones were verified by digestion with 

EcoRI and by sequencing. Next, the pGEM clones were digested with NdeI and XhoI to 

release the cloned inserts, which were then gel-purified. The Streptomyces expression 

plasmid pMSAK13, which contains the strong constitutive Streptomyces promoter 

ermEp* and integrates into the chromosome at the BT1 site (Table 2.1), was digested 

with the same enzymes and was also gel-purified. Ligation reactions were set up using the 

digested plasmid and the cfa8 or scab79691 DNA fragments. Recombinant plasmids 

obtained were verified by PCR and sequencing, and a single positive clone was 

introduced into the corresponding S. scabies deletion mutant strain (cfa8 or 

scab79691) by conjugation with E. coli as described previously (Altowairish 2014). As 

a control, the pMSAK13 plasmid without cloned insert was also introduced into each 

strain. After this, all the resulting strains were tested for COR-like metabolite production 

using HPLC as described above. 

 

2.2.10 Bioinformatics analyses 

S. scabies DNA and protein sequences were obtained from the StrepDB website 

(http://strepdb.streptomyces.org.uk). Amino acid sequence alignments were performed 

using the Geneious 6.1.2 software. Predicted protein functions were assigned based on 

http://strepdb.streptomyces.org.uk/
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database similarity searches using the National Center for Biotechnology Information 

Protein BLAST (Basic Local Alignment Search Tool)  

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the StrepDB BLAST program. Protein 

domain analyses were performed using the Pfam (protein families) database 

(http://pfam.sanger.ac.uk/) (Finn et al. 2008).  Phylogenetic trees were constructed using 

maximum likelihood method of MEGA (Molecular Evolutionary Genetic Analysis) 

program version 5.10 (Tamura et al. 2011).  The significance of the branch order was 

tested using the bootstrapping method with 1000 repetitions. 

 

2.3 Results  

 

2.3.1 Bioinformatics analysis of Scab79711, Cfa8 and Scab79691 

2.3.1.1 Scab79711 and Cfa8 homologues in the database 

Protein BLAST analysis indicated that the most similar homologues of Scab79711 

and Cfa8 are IdmE and IdmF, respectively, from Streptomyces antibioticus (Table 2.3). 

IdmE is a predicted hydroxybutyryl-CoA (or hydroxyacyl-CoA) dehydrogenase and IdmF 

is a predicted CCR, and both are responsible for supplying a sufficient pool of the 

extender unit ethylmalony-CoA for indamycin biosynthesis (Li et al. 2009). Pfam 

analysis identified two 3-hydroxyacyl-CoA dehydrogenase NAD (Nicotinamide adenine 

dinucleotide) binding domains and two C-terminal 3-hydroxyacyl-CoA dehydrogenase 

domains in Scab79711 (Table 2.3).  This is consistent with the fact that the N-terminal 

domain of hydroxybutyryl-CoA dehydrogenases is usually responsible for the binding of 

NAD
+
 and the C-terminal domain is involved in binding acyl-CoA substrates (Barycki et 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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al. 1999; Kim et al. 2014).  Pfam analysis of Cfa8 suggested the presence of a conserved 

C-terminal NAD(P)H/NAD(P)
+
 binding domain that binds the electron donor NAD(P)H, 

and an N-terminal alcohol dehydrogenase GroES-like domain that is responsible for 

binding a zinc cofactor atom(s) (Table 2.3; Hedlund et al. 2010; Murzin 1996). CCR 

enzymes are members of the zinc-dependent alcohol dehydrogenase-like medium chain 

dehydrogenase/reductase family (Rosas et al. 2003), which prefer NADPH as the electron 

donor and usually require zinc atom(s) as the cofactor (Hedlund et al. 2010).  

Homologues of Scab79711 and Cfa8 were identified in several Streptomyces spp. 

including the plant pathogenic species S. turgidiscabies, S. acidiscabies and S. ipomoeae 

(Fig. 2.2 and 2.3). Based on the phylogenetic analysis performed, the Cfa8 protein from S. 

scabies 87-22 is more closely related to CCRs from other Streptomyces spp. than to Cfa8 

homologues from P. syringae pathovars (Fig. 2.3). 

 

2.3.1.2 Scab79691 homologues in the database 

Protein BLAST and phylogenetic analyses revealed that an unspecific 

monooxygenase from S. ipomoeae is the closest relative of Scab79691 (Table 2.3 and Fig. 

2.4). Several known or predicted CYP450 monooxygenases from other actinomycetes 

were also found to be similar to Scab79691 (Fig. 2.4). In addition, Scab79691 contains a 

cytochrome P450 domain according to Pfam analysis (Table 2.3). Thus, Scab79691 is 

predicted to serve as a monooxygenase in the biosynthesis of CFA-L-Ile. CYP450 

enzymes are known to catalyze a variety of different reactions including primary 

oxidation reactions, reductions and some non-redox P450 reactions (Guengerich and 

Munro 2013). Monooxygenation catalyzed by CYP450s requires the input of two protons 
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to insert one oxygen group into the substrate (De Mot and Parret 2002).  Alignment of the 

Scab79691 amino acid sequence with that of other known or predicted CYP450s 

indicated three conserved features: (1) the consensus sequence FXXGXXXCXG, which 

contains the invariant residue cysteine (C) and is found in the heme-binding loop adjacent 

to the L-helix; (2) an EXXR motif, which stabilizes the core structure by building up an 

extensive network of hydrogen bonds with other amino acids and is found in the K-helix 

on the proximal side of heme; (3) a P450 signature consensus sequence A/GGXD/ETT, 

which is involved in proton transfer and is found on the distal side of the heme group 

(Fig. 2.5; Werck-Reichhart and Feyereisen 2000).  This further supports the idea that 

Scab79691 functions as a CYP450 monooxygenase enzyme that catalyzes a 

hydroxylation reaction during COR-like metabolite biosynthesis. 

 

2.3.2 Construction of the S. scabies gene deletion mutants  

Using the Redirect PCR targeting system, Δscab79711, Δcfa8 and Δscab79691 

mutant cosmids were constructed, and each was verified by PCR (Fig. 2.6 – 2.8).  The 

mutant cosmids were then transferred into the S. scabies txtA/pRLDB51-1 strain by 

conjugation with E. coli.  Strain txtA/pRLDB51-1 was used to study the biosynthesis of 

the COR-like metabolites since it is able to produces high levels of the COR-like 

metabolites due to overexpression of the scab79591 regulatory gene, and it is also unable 

to produce the dominant virulence factor thaxtomin A (Bignell et al. 2010).  Exconjugants 

obtained from the conjugations were screened to confirm that they arose from a double 

crossover event, and spore and mycelial stocks were prepared for six scab79711 
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isolates, six cfa8 isolates and six scab79691 isolates. All mutant isolates were 

confirmed by PCR (Fig 2.9 – 2.11). 

 

2.3.3 The S. scabies deletion mutants differ in their ability to produce the CFA-L-Ile 

COR-like metabolite  

To analyze the production of the COR-like metabolites by the Δscab79711, cfa8 

and Δscab79691 mutants, the strains, together with the original txtA/pRLDB51-1 strain, 

were grown in SFMB, a medium which is known to support the production of the S. 

scabies COR-like metabolites (Fyans et al. 2014). The resulting culture supernatants were 

then extracted with chloroform under basic and acidic conditions, and the acidic organic 

extracts were assessed for the presence of the primary COR-like metabolite (CFA-L-Ile) 

using HPLC.  As shown in Fig. 2.12 and 2.13, the majority of the Δscab79711 isolates 

were not significantly different in production of CFA-L-Ile from the txtA/pRLDB51-1 

strain, indicating that scab79711 is not required for metabolite production. On the other 

hand, all of the cfa8 mutant isolates produced significantly less CFA-L-Ile as compared 

to the txtA/pRLDB51-1 strain, though all were still able to produce the metabolite (Fig. 

2.12 and 2.14). Quantitative analysis revealed that the Δcfa8 isolates produced 45-64% of 

the averaged metabolite level in the txtA/pRLDB51-1 cultures (Fig. 2.14). In contrast, 

the Δscab79691 isolates were all found to be abolished in CFA-L-Ile production (Fig. 

2.15; data not shown), and instead they accumulated a metabolite with a longer retention 

time. LC-MS analysis of the extracts from Δscab79691 N.2 and N.4 revealed that the 

accumulated metabolite has a mass of 307.2 (Fig. 2.16D).  It is also noteworthy that the 
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basic extracts from the Δscab79691 isolates were also analyzed by HPLC, and no 

accumulated metabolites were found in those extracts (data not shown). Thus, scab79691 

appears to be essential for COR-like metabolite biosynthesis, whereas cfa8 contributes to 

metabolite production but is not essential, and scab79711 is not required for metabolite 

biosynthesis. Furthermore, the accumulated metabolite in the Δscab79691 mutant extracts 

may represent an intermediate in the COR-like metabolite biosynthetic pathway.  

 

2.3.4 Culture extracts from the scab79691 mutant display reduced bioactivity on potato 

tuber tissue 

The bioactivity of the mutant culture extracts was also assessed using a potato 

tuber bioassay, which detects the tissue hypertrophy-inducing activity of COR and COR-

like molecules (Bignell et al. 2010; Bignell et al. 2014). As shown in Figure 2.17, the 

Δscab79691 mutant culture extract was found to induce only a very small amount of 

tissue hypertrophy, which is consistent with the inability of this mutant to produce CFA-

L-Ile. The fact that some hypertrophy was observed suggests that the accumulated 

metabolite in the culture extract (Fig. 2.15) may exhibit some of the same bioactivity as 

CFA-L-Ile. On the other hand, the Δscab79711 and Δcfa8 mutant extracts exhibited a 

similar level of hypertrophy - inducing activity as the ΔtxtA/pRLDB51-1 culture extract, a 

finding that is consistent with the HPLC results for these extracts. 

 

2.3.5 Genetic complementation of the Δcfa8 and Δscab79691 mutants  

Genetic complementation was next performed to confirm that the observed 
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decrease in CFA-L-Ile production in the Δcfa8 and Δscab79691 mutants is due to deletion 

of the corresponding gene. Given that there is only one promoter that drives expression of 

the entire CFA-like metabolite biosynthetic gene cluster and that this promoter is located 

upstream of cfa1 (Bignell et al. 2010), it was necessary to clone scab79691 and cfa8 into 

a plasmid that harbours a promoter that would allow for expression of the genes in the 

corresponding mutant. As such, the scab79691 and cfa8 coding sequences were PCR-

amplified and cloned into the pMSAK13 plasmid, which integrates into the BT1 phage 

site in Streptomyces chromosomes and harbours the ermEp* promoter, allowing for 

strong constitutive expression of the cloned genes (Table 2.1; Altowairish 2014). This 

particular promoter was chosen as it has been successfully used in complementation 

studies involving other COR-like metabolite biosynthetic mutants (Altowairish 2014). 

The complementation plasmids were each verified by restriction digestion using the same 

enzymes that were used for cloning (Fig. 2.19), after which they were introduced into the 

corresponding mutant by conjugation with E. coli. As a control, the pMSAK13 without 

any cloned insert was also introduced into each mutant.  

As shown in Figure 2.20, the ability of pMSAK13/scab79691 to restore CFA-L-Ile 

production in the Δscab79691 (isolate N.2) mutant was variable since two of the 

complementation strains did not produce CFA-L-Ile (Fig. 2.20D, E) while a third strain 

did produce a small amount of the metabolite (Fig. 2.20F). When complementation was 

attempted using a second Δscab79691 mutant strain (isolate N.4), the 

pMSAK13/scab79691 plasmid again failed to restore CFA-L-Ile production in the mutant 

(data not shown). Attempts to complement the Δcfa8 (isolate N.18) mutant were also 



56 

 

unsuccessful as introduction of the pMSAK13/cfa8 plasmid severely affected the growth 

of the complemented strain, and production of CFA-L-Ile was determined to be much 

lower in the complementation strain than in the original cfa8 mutant (data not shown).  

 

2.4 Discussion 

This study focused on the role of three genes in the biosynthesis of the CFA-L-Ile 

COR-like metabolite in S. scabies. One gene, cfa8, is conserved in the P. syringae CFA 

biosynthetic gene cluster and was previously proposed to encode a CCR enzyme involved 

in the biosynthesis of the ethylmalonyl-CoA extender unit (Bignell et al. 2010).  Mutation 

of cfa8 in P. syringae resulted in loss of CFA and COR production, indicating that the 

gene is required for COR biosynthesis in that organism (Rangaswamy et al. 1998). The 

other two genes, scab79711 and scab79691, are unique to S. scabies and were previously 

predicted to be involved in ethylmalonyl-CoA biosynthesis and tailoring of the COR-like 

metabolite backbone, respectively (Bignell et al. 2010).  It was predicted that all three 

genes may be required for COR-like metabolite biosynthesis in S. scabies, and therefore 

gene deletion mutants were constructed in order to test this hypothesis. 

 

2.4.1 scab79711 and cfa8 are dispensable for COR-like metabolite biosynthesis 

Previously, it was suggested that scab79711 encodes a 3-hydroxybutyryl-CoA 

dehydrogenase that functions to reduce acetoacetyl-CoA to 3-hydroxybutyryl-CoA, 

which is an intermediate in crotonyl-CoA biosynthesis (Fig. 2.1; Bignell et al. 2010). The 

bioinformatics analyses performed in this study support this idea as Scab79711 was 
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shown to display significant homology to other predicted 3-hydroxybutyryl-CoA 

dehydrogenases that are currently in the database (Table 2.3 and Fig. 2.2). Four functional 

domains that are responsible for catalyzing the reduction reaction are conserved in 

Scab79711 and in its closest homologue IdmE from S. antibioticus. Though it was 

predicted that scab79711 may be required for supplying a sufficient amount of 

ethylmalonyl-CoA for CFA and COR-like metabolite biosynthesis in S. scabies, deletion 

of the gene caused only a slight reduction of CFA-L-Ile production as determined by 

HPLC and bioassay, indicating that Scab79711 is dispensable for COR-like metabolite 

biosynthesis.  

Bioinformatics analysis revealed that Cfa8 is most similar to IdmF (Table 2.3), 

which is a predicted CCR enzyme encoded along with IdmE within the indamycin 

biosynthetic gene cluster in S. antibioticus (Li et al. 2009).  Cfa8 was found to contain 

predicted domains that are conserved in other CCR homologues and which bind NADPH 

and zinc (Murzin 1996; Hedlund et al. 2010). CCR enzymes are well conserved in 

Streptomyces spp. and catalyze both reduction and carboxylation reactions involved in 

ethylmalonyl-CoA biosynthesis (Fig. 2.1; Erb et al. 2007; Wilson and Moore 2012). 

Although the BLAST results indicated that Cfa8 is most similar to IdmF from S. 

antibioticus, the phylogenetic analysis revealed that Cfa8 may form a distinct CCR 

lineage as compared to IdmF and other Streptomyces homologues (Fig. 2.3). This is 

probably because the amino acids conserved in Cfa8 are more distinguishable than other 

Streptomyces homologues according to the protein alignment used for the tree. As with 

scab79711, it was predicted that Cfa8 is required to supply a sufficient amount of 

ethylmalonyl-CoA for CFA and COR-like metabolite biosynthesis in S. scabies. The 
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results of this study show that although deletion of cfa8 in S. scabies did significantly 

reduce the CFA-L-Ile production levels, production could still occur in the absence of the 

enzyme. This is in contrast to the P. syringae cfa8 mutant, which was abolished in CFA 

and COR biosynthesis (Rangaswamy et al. 1998). 

In Streptomyces tsukubaensis, which produces the macrolide secondary metabolite 

FK520, it has been shown that the total disruption of metabolite biosynthesis requires the 

deletion of two ccr homologues in the genome (Kosec et al. 2012). A search of the S. 

scabies 87-22 genome sequence revealed the presence of genes encoding three possible 

homologues of Scab79711 and one possible homologue of Cfa8 (Table 2.4).  Scab17601, 

a predicted oxidoreductase, was found to be most closely related to Scab79711, and the 

same domain properties were found in this protein as in Scab79711. The homologue of 

Cfa8, Scab17621, is encoded within the same vicinity of Scab17601 and is 88% identical 

to Cfa8 at the amino acid level (Table 2.4).  It is possible that the homologous proteins 

allow S. scabies to produce ethylmalonyl-CoA for CFA-L-Ile biosynthesis in the absence 

of Cfa8 or Scab79711, though Cfa8 is apparently needed for optimum metabolite 

biosynthesis.  

Alternatively, or in addition, it is possible that S. scabies can use alternative 

pathways for ethylmalonyl-CoA production that are independent of CCR and/or 3-

hydroxybutyryl-CoA activity.  For example, in P. syringae, there are no homologues of 

Scab79711 encoded within the genome, and it was previously suggested that 

ethylmalonyl-CoA production in this organism occurs via the conversion of acetoacetyl-

CoA to butyryl-CoA, a pathway that is dependent on CCR but not on 3-hydroxybutyryl-

CoA dehydrogenase (Fig. 2.1; Rangaswamy et al. 1998). In Streptomyces hygroscopicus 
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var. ascomyceticus, it has been reported that the storage compound polyhydroxybutyrate 

can be metabolized by polyhydroxybutyrate depolymerase to produce hydroxybutyryl-

CoA, which can then be converted to ethylmalony-CoA by the action of CCR (Wu et al. 

2000).  Further studies showed that this organism can also generate ethylmalonyl-CoA 

directly from butyryl-CoA through the β-oxidation pathway (Fig. 2.1; Wu et al. 2000). 

Whether such alternative pathways play a role in ethylmalonyl-CoA production in S. 

scabies is currently unknown and warrants further investigation. 

Attempts to complement the Δcfa8 mutant phenotype were not successful due to 

the fact that the mutant strains containing pMSAK13/cfa8 grew very poorly. This could 

be because the ermEp* promoter used for cfa8 expression is a strong, constitutive 

promoter, and perhaps the high level of cfa8 expression is toxic to the cells. The use of an 

alternative promoter for cfa8 expression might therefore be the answer for successful 

complementation of this mutant.  

 

2.4.2 scab79691 is required for COR-like metabolite biosynthesis 

Analysis of the scab79691 gene product revealed that it is most closely related to 

CYP450 monooxygenase enzymes from Streptomyces spp. and other actinomycetes 

(Table 2.3 and Fig. 2.4). The EXXR, FXXGXXXCXG and A/GGXD/ETT motifs that are 

characteristic of CYP450s were found to be well conserved in Scab79691 (Fig. 2.5), 

supporting the idea that Scab79691 is in fact a CYP450 enzyme. CYP450s are commonly 

associated with the biosynthesis of secondary metabolites in Streptomyces spp. For 

example, CYP450s are required for hydroxylation, epoxidation and/or carbonylation 

reactions involved in the biosynthesis of pharmaceutically important secondary 
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metabolites such as pladienolide B, oleandomycin, FD-891, filipin, albaflavenone and 

7,30,40-trihydroxyisoflavonein (Urlacher and Girhard 2012). In S. scabies and other 

thaxtomin A - producing species, two CYP450s, TxtC and TxtE, are required for 

hydroxylation and nitration of thaxtomin A, respectively (Barry et al. 2012). HPLC 

analysis of the culture extracts from the ∆scab79691 mutant isolates showed no 

detectable production of CFA-L-Ile, indicating that Scab79691 is essential for COR-like 

metabolite biosynthesis. Interestingly, a possible biosynthetic intermediate with a 

molecular weight of 307.2 was found to accumulate in the mutant culture extracts (Fig. 

2.15 and 2.16). Given that the culture extracts were shown to exhibit some hypertrophy-

inducing activity in the potato tuber bioassay (Fig. 2.17), it appears as though the putative 

intermediate displays some of the same bioactivity as CFA-L-Ile.  

The genetic complementation of the Δscab79691 mutant was also unsuccessful 

overall, although CFA-L-Ile production did occur at low levels in one of the mutant 

isolates containing pMSAK13/scab79691 (Fig. 2.20). Given that the pMSAK13 plasmid 

integrates into the S. scabies chromosome at a different location than the CFA-like 

biosynthetic gene cluster, it is possible that the expression of the cloned scab79691 gene 

is affected by the surrounding genetic context. Alternatively, there might be an unknown 

problem with the pMSAK13/scab79691 expression plasmid itself that does not allow for 

proper expression of the scab79691 gene. It also cannot be completely ruled out that the 

deletion of scab79691 has polar effects on the expression of downstream genes in the 

CFA-like biosynthetic gene cluster. Future work should therefore focus on ruling out any 

potential polar effects of the scab79691 gene deletion by testing for expression of the 

downstream genes or by making a marker-less deletion mutant. In addition, the 
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construction of a new scab79691 expression plasmid may also be useful in future 

complementation studies with this mutant. 

 

2.4.3 Proposed role of Scab79691 in COR-like metabolite biosynthesis 

 The results of this study as well as those from a previous study show that at least 

three of the novel genes within the S. scabies CFA-like biosynthetic gene cluster are 

necessary for normal production of the CFA-L-Ile COR-like metabolite. Altowairish 

(2014) demonstrated that deletion of the scab79681/oxr and scab79721/sdr genes leads to 

a drastic decrease in CFA-L-Ile production, and in the case of the scab79721/sdr mutant, 

three new metabolites are known to accumulate in the mutant culture extracts.  Based on 

these findings, a hypothetical biosynthetic pathway for production of CFA-L-Ile in S. 

scabies was proposed in which Scab79681/Oxr and Scab79721/Sdr are directly involved 

in the biosynthesis of the CFA moiety (Fig. 2.21). Scab79681/Oxr is a putative F420-

dependent oxidoreductase, and it has been proposed to be the enzyme that introduces the 

C=C double bond that is present in the CFA molecule (Fig. 2.21; Altowairish 2014).  

Scab79721/Sdr is a predicted short chain dehydrogenase/reductase, and this enzyme has 

been proposed to catalyze the formation of the carbonyl group on the CFA backbone by 

reduction of a hydroxyl group. Support for the role of Scab79721/Sdr comes from the fact 

that two of the accumulated metabolites in the mutant culture extract have a molecular 

mass that is the same as the mass of (e), which is the proposed Scab79721/Sdr substrate 

(c) linked to isoleucine (Fig. 2.21; Altowairish 2014).  Based on the results of the current 

study, it can now be said that the Scab79691 CYP450 is also directly involved in the 
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biosynthesis of the CFA moiety, and it may do so by serving as the enzyme that 

introduces the hydroxyl group that is subsequently reduced by Scab79721/Sdr (Fig. 2.21). 

The mass of the accumulated metabolite in the scab79691 mutant culture extract (307.2) 

is consistent with the predicted Scab79691substrate (b) linked to isoleucine, which agrees 

with the proposed role of Scab79691. The fact that (b) itself was not detected in the 

mutant culture extracts suggests that the Cfl enzyme is able to utilize CFA biosynthetic 

intermediates as substrates for ligation with isoleucine (Fig. 2.21), an idea that was also 

proposed based on the scab79721/sdr mutant results (Altowairish 2014).  

 The involvement of Scab79691, together with Scab79681/Oxr and 

Scab79721/Sdr, in the biosynthesis of the CFA moiety of the S. scabies COR-like 

metabolites is a novel finding. Similar enzymes have not previously been implicated in 

CFA biosynthesis in P. syringae, and a search of the P. syringae pv tomato DC3000 

genome sequence (http://pseudomonas-syringae.org/) revealed that there are no 

homologues of Scab79691 produced by this organism. It is possible that S. scabies uses a 

novel biosynthetic pathway to produce the same family of phytotoxins that is made by P. 

syringae. 
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Table 2.1: Bacterial strains, plasmids and cosmids used in this study. 

Strain  or 

plasmid/cosmid 

Genotype or comments Antibiotic 

resistance 

Source or 

reference 

Escherichia coli strains 

BW25113 Host for Redirect PCR 

targeting system  

N/A Gust et al. 

2003a,b 

DH5α General cloning host N/A Gibco-BRL 

ET12567 Non-methylating host (dam
-
 

dcm
-
 hsdS

-
) 

Cam
r 

(Chloramphenicol 

resistant), Tet
r
 

(Tetracycline 

resistant) 

MacNeil et al. 

1992 

 

NEB 5-alpha DH5α derivative; high 

efficiency competent cells 

used for transformation 

N/A New England 

Biolabs 

Streptomyces scabies strains 

ΔtxtA/ 

pRLDB51-1 

S. scabies strain containing 

a deletion of the txtA gene 

and carrying the scab79591 

overexpression plasmid 

pRLDB51-1 integrated at 

the C31 attB site  

Thio
r
, Apr

r 

(Apramycin 

resistant) 

Bignell et al. 

2010 

Δscab79711 ΔtxtA/pRLDB51-1 

derivative containing a 

deletion of the 

scab79711gene. 

Thio
r 

(Thiostrepton 

resistant), Apr
r
, 

Hyg
r 

(Hygromycin B 

resistant) 

This study 

Δcfa8 ΔtxtA/pRLDB51-1 

derivative containing a 

deletion of the cfa8 gene. 

Thio
r
, Apr

r
, Hyg

r
 This study 

Δscab79691 ΔtxtA/pRLDB51-1 

derivative containing a 

deletion of the scab79691 

gene. 

Thio
r
, Apr

r
, Hyg

r
 This study 

Plasmids or cosmids 

pIJ790 RED recombination 

plasmid; expresses the 

RED recombinase genes 

(gam, bet and exo) from the 

L-arabinose inducible 

pBAD promoter 

Cam
r
 Gust et al. 

2003a,b 

pUZ8002 Encodes the machinery for Kan
r 
(Kanamycin Kieser et al. 
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the conjugal transfer of 

DNA from E. coli into 

Streptomyces 

resistant) 2000 

Cosmid 1770 SuperCos1 derivative 

containing the S. scabies 

CFA-like gene cluster  

Apr
r
, Kan

r
 Bignell et al. 

2010 

1770/ 

scab79711 

Cosmid 1770 derivative in 

which the scab79711 gene 

was replaced with the 

[hygr+oriT] disruption 

cassette 

Amp
r 
(Ampicillin 

resistant), Kan
r
 

Hyg
r
 

This study 

1770/cfa8 Cosmid 1770 derivative in 

which the cfa8 gene was 

replaced with the 

[hygr+oriT] disruption 

cassette 

Amp
r
, Kan

r
 Hyg

r
 This study 

1770/ 

scab79691 

Cosmid 1770 derivative in 

which the scab79691 gene 

was replaced with the 

[hygr+oriT] disruption 

cassette 

Amp
r
, Kan

r
 Hyg

r
 This study 

pMSAK13 pIJ10257 derivative 

containing the neo gene and 

promoter sequence cloned 

into the EcoRV site; 

integrates into the ɸBT1 

attB site in Streptomyces 

chromosomes and carries 

the strong, constitutive 

promoter 

ermEp*  

Hyg
r
, Kan

r
 Altowairish  

2014 

pGEM
®
 - T 

Easy 

Cloning vector for PCR 

products 

Amp
r
 Promega 

pMSAK13/cfa8 pMSAK13 derivative 

containing the cfa8 gene 

cloned into the NdeI and 

XhoI sites 

Hyg
r
, Kan

r
 This study 

pMSAK13/ 

scab79691 

pMSAK13 derivative 

containing the scab79691 

gene cloned into the NdeI 

and XhoI sites 

Hyg
r
, Kan

r
 This study 
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Table 2.2: Oligonucleotide primers used in this study. 

Primer 

Name 
Sequence* (5′3′) Use 

YL1 ATGACACCGCACAAGCCCGTGGTCGGG

ATCGTCGGCCTCATTCCGGGGATCCGT

CGACC 

Redirect primer for 

scab79711 

mutant cosmid 

construction 

YL2 TCACTGCGATCTCAGTCCCTTCCGGTTC

TTGCGTCCCAATGTAGGCTGGAGCTGC

TTC 

Redirect primer for 

scab79711 

mutant cosmid 

construction 

YL4 TCATGACGAAGGTGTCCCCTTCTCCGG

CAGGGAAGCGGCTGTAGGCTGGAGCTG

CTTC 

Redirect primer for cfa8 

mutant cosmid 

construction 

YL5 CCGCGGGCGACCCGTCGGCGGCGCGGG

GAAACCCGATGAATTCCGGGGATCCGT

CGACC 

Redirect primer for cfa8 

mutant cosmid 

construction 

JS3 GTGGTGCTGGGCGCGGAGTTCGTGCGG

AATCCGCATGAGATTCCGGGGATCCGT

CGACC 

Redirect primer for 

scab79691 

mutant cosmid 

construction 

YL7 CGCTGTGCCGTCCGGACGGGCAGGGAC

CGCAGCCCGTGGTGTAGGCTGGAGCTG

CTTC 

Redirect primer for 

scab79691 

mutant cosmid 

construction 

YL12 GTGAGGCGTGGGAGGCCAAC PCR verification of 

scab79711 mutant 

cosmid and strain 

(junction 1) 

YL13 GCGTCAGCCGGGCAGGATAG PCR verification of 

scab79711 mutant 

cosmid and strain 

(junction 1) 

YL14 GACTTCGCCCGCGAACTGCT PCR verification of 

scab79711 mutant 

cosmid and strain 

(junction 2) 

YL15 TCCCCAGCTCCACCACGGAG PCR verification of 

scab79711 mutant 

cosmid and strain 

(junction 2) 

YL10 CCCCAGCATGCTCCACCACG PCR verification of cfa8 
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mutant 

cosmid and strain 

YL11 AGGCCGACGATCCCGACCA  PCR verification of cfa8 

mutant 

cosmid and strain 

YL8 GGGACAAGGAGTGCGGAGCC PCR verification of 

scab79691 mutant 

cosmid and strain 

YL9 CATCGGGTTTCCCCGCGCC PCR verification of 

scab79691 mutant 

cosmid and strain 

YL18 GCGCCATATGATGAGTTCCACAACGAG

TGA 

PCR amplification of 

scab79691 

for construction of 

complementation plasmid 

YL19 GCGCCTCGAGACGATGTCCTTCATCGG

GTT 

PCR amplification of 

scab79691 

for construction of 

complementation plasmid 

YL22 CCATGGTCAGGACGGTCATT Verification of scab79691 

complementation plasmid 

YL23 CGCGATGAACACGAACTCAC Verification of scab79691 

complementation plasmid 

YL20 GCGCCATATGATGACCGCGGGCGACC

CGTC 

PCR amplification of cfa8 

for construction of 

complementation plasmid 

YL21 GCGCCTCGAGAATCCGATCACCTCGTG

CCC 

PCR amplification of cfa8 

for construction of 

complementation plasmid 

YL24 GGGCGACAACATCCTCATCT Verification of cfa8 

complementation plasmid 

YL25 GGAGTACACCTTGGAGAGCG Verification of cfa8 

complementation plasmid 

ermEp* 

For 

GCGATGCTGTTGTGGGC Sequencing of pMSKA13 

clones 

* Non-homologous extensions are underlined, while engineered restriction sites are 

indicated in bold. N/A, not applicable. 
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Table 2.3: Closest homologue, predicted protein domains, and predicted function of the 

Scab79711, Cfa8 and Scab79691 proteins encoded in the S. scabies CFA-like gene 

cluster. 

Protein Closest homologue in 

database 

(% identity/ similarity) 

Domains present  

(E-value) 

Predicted Function 

Scab 

79711 

S. antibioticus 

Hydroxybutyryl-CoA 

dehydrogenase (69/78) 

3-hydroxyacyl-CoA 

dehydrogenase NAD 

binding domain (1.8e-

58); 3-hydroxyacyl-

CoA dehydrogenase 

NAD binding domain 

(9.7 e-23); 

3-hydroxyacyl-CoA 

dehydrogenase, C 

terminal domain (7.1e-

25); 

3-hydroxyacyl-CoA 

dehydrogenase, C 

terminal domain (1.3e-

24) 

Hydroxybutyryl-CoA 

dehydrogenase 

Cfa8  S. antibioticus  crotonyl-

CoA 

reductase/carboxylase 

(85/93)  

Zinc-binding 

dehydrogenase  family 

(3.7e-41); Alcohol 

dehydrogenase GroES-

like domain (6.6e-07) 

Crotonyl-CoA 

reductase/carboxylase  

Scab 

79691 

S. ipomoeae unspecific 

monooxygenase (70/81)  

Cytochrome P450 

domain (3.4e-22) 

CYP450 

monooxygenase 
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Table 2.4: Closest homologues of the Scab79711 and Cfa8 proteins encoded on the S. 

scabies 87-22 chromosome. 

Protein Predicted Function Homologues % Identity 
/Similarity 

E-

value 

Cfa8 Crotonyl-CoA 

carboxylase/reductase 
Scab17621 88/95 0.0 

Scab79711 Hydroxybutyryl-CoA 

dehydrogenase 
Scab17601 45/59 6e-158 

Scab74071 41/55 4e-57 

Scab28641 37/55 6e-52 
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Figure 2.1: Metabolic pathways leading to the formation of ethylmalonyl-CoA in 

bacteria (Chan et al. 2009). The extender unit is in the solid box, and starting metabolites 

that can lead to the extender unit are in dashed boxes. CCR, crotonyl-CoA 

carboxylase/reductase; BCC, butyryl-CoA carboxylase; PCC, propionyl-CoA 

carboxylase. 
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Figure 2.2: Phylogenetic relationships of hydroxybutyryl-CoA dehydrogenase 

homologues from Streptomyces spp. Bootstrap values are shown at the branch points. The 

scale bar indicates the number of amino acid substitutions per site. Accession numbers for 

each sequence are as follows: 3-hydroxybutyryl-CoA dehydrogenase Streptomyces 

zinciresistens (WP_007498531.1); 3-hydroxybutyryl-CoA dehydrogenase Streptomyces 

viridochromogenes (WP_003994089.1); 3-hydroxyacyl-CoA dehydrogenase 

Streptomyces turgidiscabies (WP_006377336.1); 3-hydroxybutyryl-CoA dehydrogenase 

Streptomyces hygroscopicus (WP_014675988.1); 3-hydroxybutyryl-CoA dehydrogenase 

Streptomyces acidiscabies (WP_010355092.1); prevent host death family protein 

Streptomyces ipomoeae (WP_009327483.1); Scab17601 Streptomyces scabies 87-22 

(WP_012999615.1); 3-hydroxybutyryl-CoA dehydrogenase Streptomyces peucetius 

(WP_031189204.1);  3-hydroxybutyryl-CoA dehydrogenase Streptomyces rimosus 

(KEF19360.1); Scab28641 Streptomyces scabies 87-22 (WP_013000643.1); Scab74071 

Streptomyces scabies 87-22 (WP_013004929.1); 3-hydroxybutyryl-CoA dehydrogenase 

http://www.ncbi.nlm.nih.gov/protein/494763123?report=genbank&log$=prottop&blast_rank=14&RID=WAM1TD4W016
http://www.ncbi.nlm.nih.gov/protein/490092166?report=genbank&log$=prottop&blast_rank=46&RID=WAM1TD4W016
http://www.ncbi.nlm.nih.gov/protein/498040936?report=genbank&log$=prottop&blast_rank=76&RID=WAM1TD4W016
http://www.ncbi.nlm.nih.gov/protein/496685940?report=genbank&log$=prottop&blast_rank=40&RID=WAM1TD4W016
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Streptomyces sp. NRRL B-1140 (AGZ94354.1); IdmE Streptomyces antibioticus 

(ACN69981.1); Scab79711 Streptomyces scabies 87-22 (WP_013005381.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/protein/557361792?report=genbank&log$=prottop&blast_rank=4&RID=WAM1TD4W016
http://www.ncbi.nlm.nih.gov/protein/502770397?report=genbank&log$=prottop&blast_rank=1&RID=WAM1TD4W016
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Figure 2.3 Phylogenetic relationships of CCR homologues in the database. Bootstrap 

values are shown at the branch points. The scale bar indicates the number of amino acid 

substitutions per site. Accession numbers for each sequence are as follows: Scab17621 

Streptomyces scabies 87-22 (WP_012999617.1); crotonyl CoA reductase Streptomyces 

bottropensis (WP_005482325.1); crotonyl CoA reductase Streptomyces collinus 

(WP_020943170.1); crotonyl CoA reductase Streptomyces coelicoflavus ZG0656 

(EHN79708.1); crotonyl CoA reductase Streptomyces gancidicus (EMF26267.1); 

crotonyl CoA reductase Streptomyces ipomoeae  (WP_009327493.1); crotonyl CoA 

reductase Streptomyces turgidiscabies (WP_006377331.1); NADPH quinone reductase S. 

acidiscabies (WP_010355090.1); Crotonyl CoA reductase Streptomyces afghaniensis 

(WP_020277510.1); IdmF Streptomyces antibioticus (ACN69982.1); crotonyl CoA 

reductase Streptomyces fradiae (CAA57474.2)  ;  NADPH quinone reductase 

Streptomyces rimosus (WP_030642327.1) ; Cfa8 Streptomyces scabies 87-22 

(WP_013005380.1); crotonyl CoA reductase Pseudomonas syringae pv. tomato str. 

http://www.ncbi.nlm.nih.gov/protein/502764633?report=genbank&log$=prottop&blast_rank=3&RID=WAWHFKHM013
http://www.ncbi.nlm.nih.gov/protein/371552462?report=genbank&log$=prottop&blast_rank=18&RID=WAWHFKHM013
http://www.ncbi.nlm.nih.gov/protein/496685950?report=genbank&log$=prottop&blast_rank=33&RID=WAWHFKHM013
http://www.ncbi.nlm.nih.gov/protein/498040934?report=genbank&log$=prottop&blast_rank=5&RID=WAWHFKHM013
http://www.ncbi.nlm.nih.gov/protein/224925927?report=genbank&log$=prottop&blast_rank=2&RID=WAWHFKHM013
http://www.ncbi.nlm.nih.gov/protein/502770396?report=genbank&log$=prottop&blast_rank=1&RID=WAWHFKHM013
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DC3000 (AAO58133.1); oxidoreductase Cfa8 Pseudomonas syringae pv. glycinea 

(AAC38656.1). 
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Figure 2.4: Phylogenetic relationships of CYP450 monooxygenase homologues in the 

database. Bootstrap values are shown at the branch points. The scale bar indicates the 

number of amino acid substitutions per site. Accession numbers for each sequence are as 

follows: cytochrome P450 Amycolatopsis thermoflava (WP_027934798.1); cytochrome 

P450 Amycolatopsis sp. ATCC 39116 (WP_020421854.1); cytochrome P450 

Saccharomonospora marina (WP_009152790.1); ; cytochrome P450 Actinokineospora 

sp. EG49 (EWC63042.10); cytochrome P450 Streptomyces lydicus (CBA11565.1); 

cytochrome P450 Lechevalieria aerocolonigenes (WP_030471252.1); cytochrome P450 

Pseudonocardia dioxanivorans (WP_013675876.1); cytochrome P450 Streptomyces 

rapamycinicus NRRL 5491 (WP_020870458.1); cytochrome P450 Streptomyces 

violaceusniger (WP_014058477.1); Scab79691 Streptomyces scabies 87-22 

(WP_013005379.1); unspecific monooxygenase Streptomyces ipomoeae 

(WP_009328794.1); cytochrome P450 enzyme CypA Kutzneria sp. 744 (EWM16617.1); 

cytochrome P450 Streptomyces albulus (WP_016577953.1); unspecific monooxygenase 

http://www.ncbi.nlm.nih.gov/protein/521090949?report=genbank&log$=prottop&blast_rank=5&RID=WCUMHNWW013
http://www.ncbi.nlm.nih.gov/protein/496443945?report=genbank&log$=prottop&blast_rank=12&RID=WCUMHNWW013
http://www.ncbi.nlm.nih.gov/protein/502770395?report=genbank&log$=prottop&blast_rank=1&RID=WCUMHNWW013
http://www.ncbi.nlm.nih.gov/protein/496687251?report=genbank&log$=prottop&blast_rank=2&RID=WCUMHNWW013
http://www.ncbi.nlm.nih.gov/protein/585094676?report=genbank&log$=prottop&blast_rank=7&RID=WCUMHNWW013
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Streptomyces turgidiscabies (WP_006383617.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/protein/493427949?report=genbank&log$=prottop&blast_rank=80&RID=WCUMHNWW013


81 

 

 



82 

 

Figure 2.5: Partial amino acid alignment of CYP450 monooxygenase homologues in the 

database. Black indicates 100% amino acid identity at a given position, while dark gray 

indicates 80-99% similarity, light gray indicates 60-79% similarity, and white indicates  

60% similarity.  The conserved A/GGXD/ETT, EXXR and FXXGXXXCXG motifs are 

highlighted by the black boxes. The invariant cysteine residue found in all CYP450s is 

shown with the asterisk. 
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Figure 2.6:  PCR verification of the Δscab79711 mutant cosmid DNA. (A) Strategy used 

to verify the mutant cosmid. Two pairs of primers (indicated by the arrows) were used to 

amplify the junctions of the [hyg + oriT] cassette that replaced the scab79711 gene. Only 

the Δscab79711 cosmid template was expected to result in the correct PCR products 

(~500 bp in size each). (B) Agarose gel electrophoresis of the PCR products obtained.  

Negative control reactions were conducted using cosmid 1770 DNA as template or using 

water in place of template DNA. The size (bp) of each product was estimated according 

to the 100bp ladder used. 
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Figure 2.7:  PCR verification of the Δcfa8 mutant cosmid DNA.  (A) Strategy used to 

verify the mutant cosmid. The primers used for amplification are indicated by the arrows.  

The expected product sizes using cosmid 1770 and the Δcfa8 cosmid as template are 

indicated. (B) Agarose gel electrophoresis of the resulting PCR products. Negative 

control reactions were conducted using water in place of template DNA. The size (kb) of 

each product was estimated according to the 1kb ladder used. 
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Figure 2.8:  PCR verification of the Δscab79691 mutant cosmid DNA. (A) Strategy used 

to verify the mutant cosmid. The primers used for amplification are indicated by the 

arrows. The expected product sizes using cosmid 1770 and the Δscab79691 cosmid as 

template are indicated. (B) Agarose gel electrophoresis of the PCR products obtained.  

Negative control reactions were conducted using water in place of template DNA. The 

size (kb) of each product was estimated according to the 1kb ladder used. 
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Figure 2.9:  PCR verification of the six S. scabies Δscab79711 mutant isolates. Genomic 

DNA was harvested from each isolate and was used as a template in the PCR reactions.  

The primers used and the expected product sizes are described in Fig. 2.6. Negative 

control reactions were conducted using genomic DNA from the S. scabies 

ΔtxtA/pRLDB51-1 strain. The size (bp) of each product was estimated according to the 

100bp marker ladder that was used. 
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Figure 2.10:  PCR verification of the six S. scabies Δcfa8 mutant isolates. Genomic DNA 

was harvested from each isolate and was used as a template in the PCR reactions. The 

primers used and the expected product sizes are described in Fig. 2.7. Genomic DNA 

from the S. scabies ΔtxtA/pRLDB51-1 strain was included as a control.  The size (kb) of 

each product was estimated according to the 1kb marker ladder that was used. 
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Figure 2.11:  PCR verification of the six S. scabies Δscab79691 mutant isolates.  

Genomic DNA was harvested from each isolate and was used as a template in the PCR 

reactions. The primers used and the expected product sizes are described in Fig. 2.8.  

Genomic DNA from the S. scabies ΔtxtA/pRLDB51-1 strain was included as a control.  

The size (kb) of each product was estimated according to the 1kb marker ladder used. 
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Figure 2.12: HPLC analysis of acidic culture extract from the S. scabies 

ΔtxtA/pRLDB51-1 strain and the Δscab79711 (isolate N.2) and Δcfa8 (isolate N.18) 

mutants. * Indicates the peak corresponding to the primary COR-like metabolite (CFA-L-

Ile) produced by S. scabies. The HPLC chromatogram of an authentic CFA-L-Ile standard 

(where ● indicates the CFA-L-Ile peak) is also shown. 
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Figure 2.13: Relative production levels of the CFA-L-Ile COR-like metabolite in the 

ΔtxtA/pRLDB51-1 strain and the Δscab79711 mutant isolates.  The bars indicate the 

mean production level from triplicate cultures of each strain, and error bars indicate the 

standard deviation from the mean.  Mutant production levels that were determined to be 

significantly different (* p  0.05) from that of the txtA/pRLDB51-1 strain are indicated. 
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Figure 2.14:  Relative production levels of the CFA-L-Ile COR-like metabolite in the 

ΔtxtA/pRLDB51-1 strain and the Δcfa8 mutant isolates. The bars indicate the mean 

production level from triplicate cultures of each strain, and error bars indicate the 

standard deviation from the mean. Mutant production levels that were determined to be 

significantly different (* p  0.05; ** p  0.01) from that of the txtA/pRLDB51-1 strain 

are indicate. 
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Figure 2.15: HPLC analysis of the acidic culture extracts from the S. scabies 

ΔtxtA/pRLDB51-1 strain and the Δscab79691 mutant (isolate N.2 and N.4). The peak 

representing the CFA-L-Ile is indicated with (*), while the putative intermediate 

accumulating in the Δscab79691 mutant cultures (isolate N.2 and N.4) is indicates with 

().  The molecular mass (in Da) of CFA-L-Ile and of the accumulated metabolite, as 

determined by LC-MS, is indicated.  
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Figure 2.16: LC-MS analysis of the S. scabies the txtA/pRLDB51-1 and Δscab79691 

(isolate N.2) strains. Total ion current chromatograms were obtained for the 

txtA/pRLDB51-1 (A) and Δscab79691 (C) strains, with (*) indicating the CFA-L-Ile 

peak in the txtA/pRLDB51-1 extract and () indicating the accumulated metabolite in 

the Δscab79691 mutant extract.  The extracted-ion chromatogram for the CFA-L-Ile peak 

(B) and the accumulated metabolite peak (D) are also shown along with the 

corresponding m/z in negative ion mode M-H
-
. 
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Figure 2.17: Bioactivity of the S. scabies Δscab79711 (isolate N.2), Δcfa8 (isolate N.18) 

and Δscab79691 (isolate N.2) organic acidic culture extracts on potato tuber tissue. Pure 

authentic COR and extract from the txtA/pRLDB51-1 strain served as positive controls, 

whereas methanol and extract from a COR-like metabolite deficient strain txtA/cfa6 

were included as negative controls. 
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Figure 2.18: Strategy for genetic complementation of the S. scabies scab79691 and 

cfa8 deletion mutants.  The scab79691 and cfa8 gene were first cloned into the pGEM-T 

EASY vector. After sequencing, the clones were digested with NdeI and XhoI to release 

the inserts. Plasmid pMSAK13 was digested with the same enzymes and was ligated 

separately with each gene insert. Positive clones (pMSAK13/scab79691, 

pMSAK13/cfa8), along with the empty pMSAK13 vector, were subsequently introduced 

into the corresponding S. scabies mutant strain by conjugation with E. coli, and the 

resulting exconjugants were analyzed for COR-like metabolite production.  The black box 

indicates the strong, constitutive promoter ermEp* in the pMSAK13 vector. 
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Figure 2.19: Verification of gene scab79691 and cfa8 complementation plasmids by 

restriction digestion. Plasmids pMSAK13/scab79691 (A), pMSAK13/cfa8 (B), 

pMSAK13 (C) were digested with NdeI and XhoI to release the cloned inserts, and the 

resulting products were analyzed by agarose gel electrophoresis. The expected size of 

scab79691 insert is 1270bp and the cfa8 insert is 1513bp. The bands (bp) of the 1kb 

marker are indicated in the first line. 
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Figure 2.20: HPLC analysis of the acidic culture extracts from the S. scabies 

ΔtxtA/pRLDB51-1 strain (A), Δscab79691 mutant (isolate N.2) strains (B), 

complemented Δscab79691 N.2 pMSAK13/scab79691 strains (D-F)  and its negative 

control Δscab79691 N.2 pMSAK13 strain (C). The peak representing CFA-L-Ile is 

indicated with (*), while the putative intermediate (Fig. 2.15-16) accumulating from the 

Δscab79691 mutant (N.2), the negative controls (Δscab79691 N.2 pMSAK13) and some 

complemented strain (Δscab79691 N.2 pMSAK13/scab79691) cultures are indicates with 

(). 
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Figure 2.21: Proposed biosynthetic pathway for the CFA-L-Ile COR-like metabolite in S. 

scabies.   
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CHAPTER 3: Characterizing the biological activity of the Streptomyces scabies 

COR-like metabolites 

 

3.1 Introduction 

COR is a non-host-specific polyketide phytotoxin produced by at least five 

pathovars of the hemibiotrophic pathogen P. syringae, including atropurpurea, glycinea, 

maculicola, morsprunorum, and tomato. Though not essential for P. syringae 

pathogenicity, COR plays several important roles during the host infection process (Xin 

and He 2013). Infection by P. syringae begins with the pathogen colonizing and 

penetrating the plant surface. This process is facilitated by COR, which inhibits the 

closure of stomata (Lee et al. 2013). Stomata are tiny pores found in the epidermis of 

terrestrial plants, and the closure of such pores in response to PAMPs (Pathogen-

associated molecular pattern) is considered an important innate defense mechanism 

against foliar pathogens (Melotto et al. 2006). It has been shown that COR-deficient 

mutants of P. syringae inoculated on the surface of wild-type Arabidopsis thaliana leaves 

are considerably reduced in their ability to cause infection, whereas such mutants can 

readily infect A. thaliana mutants that are deficient in stomatal closure (Melotto et al. 

2006; Zeng et al. 2011; Zeng and He 2010), thereby illustrating the importance of COR in 

overcoming stomatal defenses. After successful invasion, COR also facilitates bacterial 

multiplication and persistence within the plant intercellular spaces by overcoming the 

apoplastic defenses (Zeng et al. 2011).  Furthermore, COR contributes to disease 

symptom development by P. syringae. The primary symptom caused by COR is leaf 

chlorosis (yellowing), which can be observed in a variety of different plant species 
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(Bender et al. 1999a, b). Intense chlorosis in response to COR develops in soybean and 

tobacco leaf tissues, and less intense chlorosis forms in potato, tomato, pepper, cabbage 

and corn leaf tissues (Gnanamanickam et al. 1982; Uppalapati et al. 2005, 2007; Wangdi 

et al., 2010). The chlorosis symptom has been attributed to the ability of COR to induce 

the expression of chlorophyllase, which breaks down chlorophyll (Tsuchiya et al. 1999). 

In Arabidopsis and tomato, COR induces the production of anthocyanins, which result in 

the formation of a purple colour in the plant tissue (Feys et al., 1994; Uppalapati et al. 

2005). Other symptoms attributed to COR include root stunting in Arabidopsis and 

tomato (Feys et al., 1994; Uppalapati et al. 2005), hypertrophy of potato tuber tissue 

(Völksch et al. 1989), ethylene emission (Ferguson and Mitchell 1985; Kenyon and 

Tuner, 1992) and tendril coiling in Bryonia dioica (Blechert et al. 1999). Furthermore, 

COR application to tomato leaves results in epidermal cell wall thickening, shrunken and 

more intensely stained chloroplasts, and deposition of proteinase inhibitor particles in 

plant cell vacuoles (Palmer and Bender 1995; Uppalapati et al. 2005). 

It was previously noted by many that COR is structurally and functionally similar to 

the plant hormone JA, and in particular, the bioactive derivative JA-Ile (Fig. 3.1). JA is a 

plant growth regulator derived from the octadecanoid signaling pathway and is involved 

in controlling defense responses to biological stresses (Feys et al. 1994; Sembdner and 

Parthier 1993; Wasternack and Parthier 1997). When JA-Ile levels are low, JA-responsive 

genes are repressed by JAZ (Jasmonate zim domain) repressor proteins. In response to 

biological stresses, JA-Ile accumulates and binds to the COI1 F-box protein, which 

determines the target specificity of the SCF (Skp1-Cullin1-F-box)
COI1 

E3 ubiquitin ligase. 

Binding of JA-Ile to COI1 promotes the formation of a SCF
COI1

JA-IleJAZ ternary 
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complex and the subsequent ubiquitination and degradation of the JAZ proteins, leading 

to activation of JA-responsive gene expression (Katsir et al. 2008a, b). As a molecular 

mimic of JA-Ile, COR can also bind with high affinity to COI1 and promote the 

degradation of JAZ proteins and the activation of JA-responsive genes (Katsir et al. 

2008a, b; Melotto et al. 2008). This, in turn, leads to suppression of SA (Salicylic acid)-

dependent signalling pathways, which are critical for defense against P. syringae 

infection (Zhao et al. 2003; Brooks et al. 2005; Cui et al. 2005; Laurie-Berry et al. 2006). 

Remarkably, COR is more effective than JA-Ile in promoting SCF
COI1 

-JAZ interaction in 

vitro, although COR and JA-Ile are recognized by the same receptor (Katsir et al. 2008a). 

There is also evidence that COR suppresses plant defense responses to PAMPs by callose 

deposition inhibition in an SA signaling-independent manner (Geng et al. 2012). 

S. scabies was recently shown to produce the COR-like metabolite CFA-L-Ile as a 

major product as well as other minor related metabolites, including CFA-D-Val (Fyans et 

al. 2014). CFA-L-Ile and other coronafacoyl-amino acid conjugates are produced in minor 

amounts by P. syringae (Bender et al. 1999a), and production of such molecules has also 

been reported for the plant pathogen Xanthomonas capmpestris pv phormiicola (Mitchell 

and Frey 1986; Mitchell 1985). The COR-like molecules produced by P. syringae and X. 

capmpestris are known to exhibit chlorosis-inducing activity (Bender et al. 1999a; 

Mitchell and Ford 1998), and like COR, the CFA-L-Val produced by P. syringae can 

cause changes in chloroplast ultrastructure, cell wall thickening, and accumulation of 

proteinase inhibitors, though it is not as toxic as COR (Uppalapati et al. 2005). Given that 

S. scabies culture extracts containing CFA-L-Ile and other minor COR-like metabolites 

are able to induce potato tuber tissue hypertrophy in a similar manner as COR (Fig. 2.17; 
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Altowairish 2014; Bignell et al. 2014), it is likely that the metabolites exhibit some or all 

of the other biological effects attributed to COR, though this has not been demonstrated. 

As such, the objective of this study was to further investigate the biological activity of the 

S. scabies COR-like metabolites using different plant bioassays.  

 

3.2 Materials and methods 

3.2.1 Bacterial strains, culturing conditions and maintenance 

The S. scabies COR-like metabolite overproducing strain txtA/pRLDB51-1 and 

the non-producing strains txtA/cfa6 and cfl (Table 2.1; Altowairish 2014) were used 

in this study. Strains were maintained as spore and mycelial stocks at -80C as described 

in section 2.2.1.2. Growth of the strains for COR-like metabolite production was as 

described in section 2.2.1.2 except that the TSB seed cultures were sub-cultured into 25 

ml of SFMB.   

 

3.2.2 Chemical extraction of the COR-like metabolites 

SFMB culture supernatants were extracted using chloroform as described 

previously (section 2.2.5.1). Extraction of uninoculated SFMB medium was also 

performed for use as a negative control in subsequent experiments. The resulting acidic 

extracts were redissolved in 2 mL of 100% v/v of HPLC-grade MeOH (Methanol).   

  

3.2.3 Plant bioassays 

3.2.3.1 Leaf infiltration bioassay using culture supernatants 
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SFMB culture supernatants were filter-sterilized using a syringe filter (0.2 m pore 

size; VWR International), and 50 L of each was infiltrated into leaves of 6-7 weeks old 

Nicotiana benthamiana plants.  The infiltration was conducted by making a small incision 

on the upper side of a leaf using a syringe needle, and then placing the tip of a syringe 

(without a needle) containing culture supernatant against the leaf surface at the point of 

the incision. Next, the supernatant was injected while pressure was simultaneously 

applied to the underside of the leaf. This, in turn, allowed the supernatant to enter the 

intercellular space within the leaf in the vicinity of the point of injection. Each 

supernatant sample was infiltrated into the same leaf, and the infiltration was repeated on 

three leaves of the same plant and on three different plants for a total of 9 infiltrations per 

sample. Supernatant from an uninoculated SFMB culture served as the negative control 

while 3 nmol of COR (C8115; Sigma Aldrich Canada, Oakville, ON) served as the 

positive control. The plants were kept at room temperature (~22±2°C) under a 16 hour 

photoperiod for 7 days, after which the leaves were removed and photographed. The 

bioassay was performed three times.  

 

3.2.3.2 Radish seedling bioassay using culture supernatants or organic culture extracts  

 Radish seeds (cv Cherry Belle; Heritage Harvest Seed, Carman, MB) were surface 

sterilized by treating with 40 mL of 70% v/v ethanol for 5 minutes with gentle agitation 

followed by 40 mL of 1% v/v sodium hypochlorite (Chlorox) with 0.1% v/v polysorbate 

20 (ICN10316890, MP Biomedicals) for 10 minutes with gentle agitation.  Next, the 

seeds were rinsed 8-10 times with sterile distilled water (40 mL).  The surface sterilized 
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radish seeds were placed into a deep Petri dish (89107-632, VWR International) 

containing Whatman #4 filter paper (90 mm) that had been wetted using 2 mL of sterile 

water containing nystatin (N6261-25MU; Sigma Aldrich Canada) at 50 g/mL final 

concentration. The dish was wrapped with Parafilm and was incubated for ~24 hours at 

room temperature (~22±2°C) in the dark in order to allow seed germination to occur. 

Filter-sterilized SFMB culture supernatants (5 mL) or organic culture extracts (0.5 

mL of undiluted or 10-fold diluted extract) were pipetted into triplicate wells in 6-well 

tissue culture plates (BD Falcon). When organic extracts were used, the plates were left 

open in a biosafety cabinet to allow the solvent to evaporate completely, after which 5 mL 

of sterile water was added to the each well. Then, germinated seeds with a uniform 

hypocotyl and root length were selected, and four seeds were transferred to each well.  

Negative control wells contained either water, uninoculated SFMB medium, or extract 

from an uninoculated SFMB culture, while positive control wells containing 30 nmol of 

COR in water. The plates were wrapped with Parafilm and were incubated with gentle 

shaking (125 rpm) at room temperature (222C) for 4 days under a 16 hour 

photoperiod, after which the total length of each plant (root + shoot) was measured. The 

maximum and minimum measured seedling length in each treatment was omitted, and the 

remaining values were used to calculate the average seedling length per treatment. 

Statistically significant differences in seedling length were determined using the Student’s 

t-test (tails: 2, type: 2) in Microsoft Excel. The bioassay was performed twice using 

supernatants and three times using organic extracts. 
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3.2.3.3 Radish seedling bioassay using pure CFA-L-Ile  

 Radish seedlings were surface sterilized and germinated as described in section 

3.2.3.2. CFA-L-Ile, purified from S. scabies culture supernatant and dissolved in DMSO 

(provided by Dr. J. Fyans, Memorial University), was pipetted into triplicate wells in a 6-

well tissue culture plate. Similarly, pure COR dissolved in 100% MeOH was pipetted into 

triplicate wells. Three different amounts of each metabolite (90, 9 and 0.9 nmol dissolved 

in 30 L of solvent) were transferred to triplicate wells, and control wells contained 30 

L of the corresponding solvent (MeOH or DMSO), after which 5 ml of sterile water was 

added to the each well. Then, germinated seeds with uniform hypocotyl and root length 

were selected and transferred to the wells (4 plants per well). Incubation and processing 

of the plants was as described in section 3.2.3.2. 

 

3.2.3.4 Analysis of anthocyanin production in radish seedlings  

Anthocyanins were extracted and quantified from radish seedlings obtained in the 

bioassays described in sections 3.2.3.1 and 3.2.3.2.  The method used is similar to the one 

described by Uppalapati et al. (2005) with some modifications. Three seedlings were 

placed into a tube containing 1 mL of a solution of 3M HCl:H2O:MeOH (1:3:16 by 

volume).  The tubes were agitated and then incubated at 4°C in the dark overnight.  Next, 

the anthocyanin extracts (200 L) were transferred to wells in a 96-well plate, and the 

absorbance at 530 and 653 nm (A530 and A653) was measured in each well using a 

microplate Synergy H1 Hybrid Reader (BIOTEK, Winooski, Vermont, USA). Extracts 

were prepared using all 12 seedlings from each treatment resulting in three extracts per 
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treatment, and every extract was analyzed three times by the microplate reader. The 

anthocyanin levels were determined in each extract using the formula A530 – 0.24A653 and 

were normalized using seedling wet weight. The average and standard deviation of the 

normalized anthocyanin levels for each treatment were determined, and the Student’s t 

test (tails: 2, type: 2) in Excel was used to identify statistically significant differences 

between the treatments and the control. The bioassay was performed twice in total.   

 

3.2.3.5 Potato tuber slice bioassay using pure CFA-L-Ile 

This was performed as described previously in section 2.2.8 with some 

modifications mentioned below. Purified CFA-L-Ile (8, 16 and 32 nmol) dissolved in 

DMSO, and COR (8, 16 and 32 nmol) dissolved in MeOH, were applied to sterile paper 

disks on potato tuber slices. After 24 hours incubation, 25 µL of sterile water was added 

onto each disk, and the tuber slices were incubated for a further 4-6 days. Control slices 

were treated with MeOH or DMSO. Following incubation, the tuber slices were dissected 

and imaged. The bioassay was performed twice in total.   

 

3.3 Results 

 

3.3.1 The S. scabies COR-like metabolites are associated with necrosis of N. benthamiana 

leaf tissue 

The induction of chlorosis in a variety of plant hosts is the primary disease 

symptom attributed to COR during P. syringae infections (Bender et al. 1999a, b). To 

determine whether the COR-like metabolites produced by S. scabies can also cause 
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chlorosis, a leaf infiltration bioassay was performed using N. benthamiana plants. N. 

benthamiana was chosen for this assay since COR is known to induce chlorosis in this 

plant (Uppalapati et al. 2011). Furthermore, the large, broad leaves of this plant make it a 

suitable host for infiltration assays. The assay was performed using filter-sterilized SFMB 

culture supernatants of a S. scabies COR-like metabolite overproducer (txtA/pRLDB51-

1) and of two COR-like metabolite non-producing strains (txtA/cfa6 and cfl).  

Supernatants, rather than organic culture extracts, were used in the assay in order to avoid 

any toxic effects due to the infiltration of organic solvents.  

As shown in Figure 3.2, the N. benthamiana leaf tissue infiltrated with the 

txtA/pRLDB51-1 culture supernatant did not show any obvious chlorosis, but instead it 

consistently showed brown, water-soaked necrosis. Leaf tissue infiltrated with the 

txtA/cfa6 and cfl culture supernatants also showed water-soaked necrosis surrounded 

by mild chlorosis in some instances; however, the effect of these supernatants was 

variable among the different replicates and was consistently less severe than the 

txtA/pRLDB51-1 culture supernatant (Fig. 3.2B, C). Although infiltration with 3 nmol 

of COR did cause slight chlorosis in some replicates, the results were quite variable and 

in many cases, there was no apparent chlorosis induced by the COR as expected (Fig. 

3.2D). It is likely that the concentration of COR used in this assay is not enough to induce 

chlorosis as 20 nmol of COR was reported to cause 5-10 mm chlorotic zone on tomato 

leaves (Uppalapati et al. 2005). 

 

3.3.2 The S. scabies COR-like metabolites can cause stunting of radish seedlings 
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A radish seedling bioassay was next performed in order to determine whether the 

S. scabies COR-like metabolites can cause seedling stunting as previously described for 

COR (Feys et al. 1994; Uppalapati et al. 2005). The assay was performed using SFMB 

culture supernatants of the txtA/pRLDB51-1, txtA/cfa6 and cfl strains as well as two 

different concentrations (undiluted and 10-fold diluted) of acidic organic extracts 

prepared from the culture supernatants. The results using supernatants (data not shown) 

and culture extracts (Figs. 3.3 and 3.4) were consistent and showed that the S. scabies 

COR-like metabolites can indeed cause stunting of the radish seedlings. Treatment with 

the txtA/pRLDB51-1 culture extract caused significant stunting as compared to the 

mock (water) treated plants, with the undiluted extract being comparable to the COR 

treatment (Figs. 3.3 and 3.4). Although significant stunting was also observed with the 

undiluted txtA/cfa6 and cfl extracts, the effect was not as severe as with the undiluted 

txtA/pRLDB51-1 culture extract (Figs. 3.3 and 3.4).   

The stunting activity of the primary S. scabies COR-like metabolite, CFA-L-Ile, 

was also investigated in order to directly compare the bioactivity of this metabolite to that 

of COR. Equimolar amounts of each metabolite (90, 9 and 0.9 nmol) were used in the 

radish seedling bioassay, and as shown in Fig. 3.5, the growth of seedlings treated with all 

three concentrations of COR showed a statistically significant reduction when compared 

to the solvent (methanol) control plants, whereas only seedlings treated with 90 nmol of 

CFA-L-Ile showed a statistically significant reduction in growth when compared to the 

solvent (DMSO) control. Furthermore, the treatment with 90 nmol of CFA-L-Ile did not 

cause the same amount of seedling stunting as observed with any of the COR treatments 
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(Fig. 3.5). The results therefore demonstrate that CFA-L-Ile can cause stunting of radish 

seedlings at nanomolar concentrations; however it is less toxic than COR in its 

bioactivity. 

  

3.3.3 Analysis of anthocyanin production in response to the COR-like metabolites 

Next, the ability of the COR-like metabolites to induce anthocyanin production 

was investigated in a radish seedling bioassay. Figure 3.6 shows that treatment with filter-

sterilized supernatant from cultures of the txtA/pRLDB51-1 strain resulted in a 

significantly higher level of anthocyanins in radish seedlings compared to treatment with 

the txtA/cfa6 and cfl supernatants as well as treatment with uninoculated SFMB 

supernatant.  It should be pointed out, however, that there was a high degree of variation 

in the results from one experiment to the next, and it was very difficult to consistently 

demonstrate a positive association between the presence of the COR-like metabolites and 

an increase in anthocyanin production. The assay was also performed using culture 

extracts (data not shown) as well as pure CFA-L-Ile (Fig. 3.7), and again, there was no 

consistent correlation between anthocyanin production and the presence of the COR-like 

metabolites. Treatment with 90 nmol of the pure CFA-L-Ile did cause an increase in 

anthocyanin production as compared to the solvent (DMSO) control, although the results 

were not deemed to be statistically significant. Though treatment with 0.9 nmol of COR 

did cause a significant increase in anthocyanin production compared to the solvent 

(MeOH) control (Fig. 3.7), it is noteworthy that the effect of COR on anthocyanin 

production was also found to be highly variable from one experiment to the next in this 
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bioassay.   

 

3.3.4 The S. scabies CFA-L-Ile COR-like metabolite causes hypertrophy of potato tuber 

tissue  

Results from this thesis (see Fig. 2.17) as well as from other studies in our lab 

(Altowairish 2014; Bignell et al. 2014) have demonstrated that S. scabies culture extracts 

containing the COR-like metabolites can induce hypertrophy of potato tuber tissue, an 

effect that has been described for COR (Völksch et al. 1989). To further study the 

hypertrophy-inducing activity of the CFA-L-Ile primary COR-like metabolite as 

compared to COR, a potato tuber slice bioassay was performed using equimolar amounts 

of COR and CFA-L-Ile. Figure 3.8 shows that treatment with 16 nmol of COR and CFA-

L-Ile led to the formation of hypertrophic outgrowths on the potato tissue; however, the 

amount of hypertrophy observed was much less with the CFA-L-Ile treatment than with 

the COR treatment. Similar results were observed using higher and lower (8 and 32 nmol) 

amounts of each metabolite (data not shown).  Therefore, though CFA-L-Ile exhibits the 

same effect as COR on potato tuber tissue, it is not as toxic as COR in its bioactivity. 

 

3.4 Discussion 

The COR phytotoxin from P. syringae is known to cause a variety of different 

effects against different plant hosts, including tissue hypertrophy, seedling stunting, 

anthocyanin production and chlorosis (Bender et al. 1999a,b).  The aim of this study was 

to better characterize the bioactivity of the S. scabies COR-like metabolites in order to 

determine whether the metabolites exhibit some or all of the same bioactivities described 
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for COR and whether the primary metabolite, CFA-L-Ile, exhibits the same level of 

toxicity as COR. Previous studies showed that COR can cause stunting of tomato and 

Arabidopsis seedlings (Feys et al., 1994; Uppalapati et al. 2005), and results from the 

current study indicate that the S. scabies COR-like metabolites exhibit the similar effect 

against radish seedlings. Treatment of radish plants with culture extracts containing the 

COR-like metabolites caused comparable stunting as the COR control (Fig. 3.3 and 3.4). 

However in this study, bioassays using equimolar amounts of COR and CFA-L-Ile 

showed that the ability of CFA-L-Ile to cause seedling stunting is less than that of COR 

(Fig. 3.5). Similar results were observed in the potato tuber slice bioassay where an 

equimolar amount of CFA-L-Ile caused reduced tuber tissue hypertrophy compared to 

COR (Fig. 3.8). The finding that CFA-L-Ile is not as toxic as COR is in agreement with 

previous reports which showed that COR is the most toxic coronafacoyl compound 

produced by P. syringae (Shiraishi et al. 1979; Uppalapati et al. 2005). The fact that the S. 

scabies culture extracts containing the COR-like metabolites showed similar seedling 

stunting and tissue hypertrophy – inducing activity as COR in the radish (Fig. 3.3 and 3.4) 

and potato tuber (Fig. 2.17; Altowairish 2014; Bignell et al. 2014) bioassays, respectively, 

may be due to the presence of very high amounts of CFA-L-Ile in the extracts, or perhaps 

the other minor COR-like metabolites in the extracts are also required for optimal 

bioactivity against plant tissues.  

This study also addressed whether or not the S. scabies COR-like metabolites are 

able to cause the production of anthocyanins, an effect that has been observed in tomato 

and Arabidopsis plants in response to COR (Feys et al., 1994; Uppalapati et al. 2005).  

Anthocyanins are natural pigments produced by plants as a hallmark of stress induced by 
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pathogens, herbivores and UV light (Shan et al. 2009). Although results obtained in this 

study suggest that anthocyanin production does occur in response to the COR-like 

metabolites in radish seedlings (Fig. 3.6 and 3.7), the results from replicate experiments 

were too inconsistent to conclusively say this. It is worth pointing out, though, that 

inconsistent results were also observed in the bioassays with the COR control, suggesting 

that the assay used was not ideal for testing this bioactivity. Red skin radish (Raphanus 

savitus L. var. “Cherry Belle”) used in the bioassay contains a high level of anthocyanins 

naturally (Papetti et al. 2014), and this may be the reason why there was no obvious and 

reproducible increase in anthocyanins in response to COR and CFA-L-Ile. Therefore, to 

study the effect of the COR-like metabolites on anthocyanin production, tomato and 

Arabidopsis plants, which are both naturally low in anthocyanins, could be used so that 

any changes can be more readily observed. 

The primary symptom induced by COR is chlorosis, the severity of which varies 

depending on the plant host (Gnanamanickam et al. 1982; Uppalapati et al. 2005, 2007; 

Wangdi et al., 2010). Chlorosis-inducing activity has also been reported for other 

coronafacoyl compounds (Mitchell 1985), and it was anticipated that a similar effect 

would be observed in response to the S. scabies COR-like metabolites. However, in N. 

benthaminana infiltration bioassays performed in this study, no chlorosis was observed in 

response to culture supernatants containing the COR-like metabolites, and instead the 

liquid- infiltrated tissue became water-soaked and necrotic (Fig. 3.2), an effect that is 

reminiscence of the hypersensitive response in plants (Heath 2000).  A similar effect 

could also be observed in tissues infiltrated with culture supernatants lacking the COR-

like metabolites, though the severity of tissue damage was always less than that observed 
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when the COR-like metabolites were present (Fig. 3.2).  It is likely that the observed 

tissue damage is in response to other known or predicted virulence factors such as TomA 

and Nec1 that are likely present within the supernatants, and that the COR-like 

metabolites enhance the severity of the tissue damage that is caused by these other 

virulence factors.  The chlorosis-inducing activity of the S. scabies COR-like metabolites, 

therefore, will require further investigation, most likely by testing aqueous solutions of 

the pure metabolites rather than complex culture supernatants.  

COR is known to function as a molecular mimic of bioactive JA derivatives such 

as JA-Ile, thereby stimulating JA-mediated signaling pathways in the plant host (Katsir et 

al. 2008a, b).  JA/ET-mediated signaling pathways play a critical role in controlling host 

defense responses to necrotrophic pathogens, which kill host tissue early during infection 

in order to obtain nutrients from the dead or dying host cells (Glazebrook 2005). In 

contrast, SA-mediated signaling pathways are generally regarded as being important for 

inducing defense responses to biotrophic pathogens, which feed on living plant tissue 

without causing host cell death (Glazebrook 2005). SA- and JA/ET-mediated signaling 

pathways exhibit antagonistic crosstalk such that activation of SA-mediated pathways 

leads to suppression of JA/ET-mediated pathways, and vice versa (Derksen et al. 2013). 

Previous reports have provided convincing evidence that SA-mediated defense response 

pathways are important for defense against P. syringae (Brooks et al. 2005; Laurie-Berry 

et al. 2006), and it has been proposed that COR is produced by P. syringae in order to 

take advantage of the antagonistic interactions between JA/ET- and SA- mediated 

signaling pathways in order to suppress the defense responses that are relevant to P. 

syringae (Xin and He 2013). As P. syringae is considered a hemibiotrophic pathogen 
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since it exhibits a biotrophic phase during the early stages of infection and a necrotrophic 

phase during the later stages (Xin and He 2013), it is likely that production of COR is 

critical for overcoming host defenses early during the infection process.  

The structural and phenotypic similarities shared by COR and the S. scabies COR-

like metabolites suggest that the COR-like metabolites may also have a role in 

suppressing SA-mediated defense pathways during pathogen infection. Whether SA-

mediated signaling pathways play an important role in host defense against S. scabies 

infection, however, is currently unknown, and warrants further investigation. It also 

cannot be ruled out that the COR-like metabolites have additional roles during pathogen 

infection, and therefore further investigations into the function of the metabolites during 

host-pathogen interactions is needed.  
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Figure 3.1: Structure of the COR phytotoxin (A) and the plant signalling molecule JA-Ile 

(B).  
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Figure 3.2:  Infiltration bioassay showing the effect of the S. scabies COR-like 

metabolites on leaf plant tissue.  Leaves of 6-7 week old Nicotiana benthamiana plants 

were infiltrated with filter-sterilized culture supernatant of the COR-like metabolite 

overproduction strain (A: txtA/pRLDB51-1) and of the COR-like metabolite non- 

producing strains (B: txtA/cfa6 and C: cfl).  Infiltration with 3 nmol of pure COR (D) 

was performed as a positive control while infiltration with supernatant from an 

uninoculated SFMB culture (E) was used as a negative control. The circled regions on the 

leaf represent the area of liquid infiltration for each treatment. 
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Figure 3.3: Radish seedling bioassay showing the effect of the S. scabies COR-like 

metabolites on seedling size.  Seedlings were mock treated with water (J) or were treated 

with organic extract from SFMB cultures of S. scabies txtA/pRLDB51-1 (A: undiluted; 

B: 10 fold diluted), txtA/cfa6 (C: undiluted; D: 10-fold diluted) and cfl (E: undiluted; 

F: 10-fold diluted). Treatment with extract from an uninoculated SFMB culture (G: 

undiluted; H: 10-fold diluted) served as an additional negative control, while treatment 

with 30 nmol of pure COR (I) served as a positive control. White bar indicates 1 cm. 
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Figure 3.4:  Quantification of radish seedling stunting by the S. scabies COR-like 

metabolites. The mean root and shoot length for 10 radish seedlings per treatment is 

shown, and the error bars represent the standard deviation from the mean.  Seedlings were 

mock treated with water (H2O) or were treated with organic extract from SFMB cultures 

of S. scabies txtA/pRLDB51-1 (undiluted and 10 fold diluted), txtA/cfa6 (undiluted 

and 10-fold diluted) and cfl (undiluted and 10-fold diluted). Treatment with extract from 

an uninoculated SFMB culture (undiluted and 10-fold diluted) served as an additional 

negative control, while treatment with 30 nmol of pure COR served as a positive control. 

Treatments that produced a statistically significant result compared to the mock (H2O) 

treatment are indicated by * (p  0.001) or ** (p   0.01). 
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Figure 3.5: Radish seedling bioassay showing the effect of different amounts (0.9, 9 and 

90 nmol) of pure COR (dissolved in MeOH) and CFA-L-Ile (dissolved in DMSO) on 

seeding root and shoot length.  The mean root and shoot length for 10 radish seedlings per 

treatment is shown, and the error bars represent the standard deviation from the mean. 

Treatments that produced a statistically significant result compared to the relevant solvent 

control treatments (MeOH and DMSO) are indicated by * (p  0.001).  
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Figure 3.6:  Effect of culture supernatant of the COR-like metabolite overproduction 

strain (txtA/pRLDB51-1) on radish anthocyanin production. Pure COR (30 nmol) was 

used as a positive control while treatment with supernatant from COR-like metabolite 

non-producing strains (txtA/cfa6 and cfl) and an uninoculated SFMB culture were 

used as negative controls. Treatments that produced a statistically significant result 

compared to the mock (SFMB culture supernatant) treatment are indicated by ** (p   

0.05). 
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Figure 3.7: Effect of CFA-L-Ile on radish anthocyanin production. Radish seedlings 

treated with different amounts (0.9, 9 and 90 nmol) of pure COR (dissolved in MeOH) 

and CFA-L-Ile (dissolved in DMSO). MeOH and DMSO were used as a negative control 

for the COR and CFA-L-Ile treatments, respectively. The Student’s t-test indicated a 

significant difference between the treatment with 0.9 nmol of COR and the corresponding 

negative control treatment (p  0.05). 
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Figure 3.8: Potato tuber slice bioassay showing the induction of tissue hypertrophy by 

equimolar amounts (16 nmol) of COR (dissolved in MeOH) and CFA-L-Ile (dissolved in 

DMSO).  Treatment with the metabolite solvents served as negative controls.   
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CHAPTER 4: Concluding Remarks 

 

4.1 Summary and future directions 

The research described in this thesis provides valuable insights into the 

biosynthesis and function of the COR-like metabolites, which are important for the plant 

pathogenic phenotype of S. scabies. In Chapter 2, it was demonstrated that the cfa8 gene, 

which encodes a predicted CCR, is required for optimal production of CFA-L-Ile, and this 

is likely because it is important for providing a sufficient supply of ethylmalonyl-CoA for 

CFA biosynthesis. It was also shown that the scab79691 gene, which encodes a predicted 

CYP450, is essential for CFA-L-Ile production, and it was proposed that this enzyme may 

participate directly in CFA biosynthesis by the introduction of a hydroxyl group. This 

result is of particular significance since a homologue of the Scab79691 protein does not 

exist in P. syringae, and it suggests that P. syringae and S. scabies may use different 

biosynthetic pathways to produce the same family of phytotoxins. In Chapter 3, it was 

revealed that CFA-L-Ile from S. scabies displays some of the same toxic effects as COR 

against different plant hosts, though COR is more toxic in its bioactivity. This suggests 

that the S. scabies COR-like metabolites may have a similar role as COR in manipulating 

plant defense responses during infection, thereby allowing the pathogen to colonize and 

grow within the plant host. 

A number of questions stemming from this research remain and can serve as the 

basis for future studies into the S. scabies COR-like metabolites. For example, the identity 

of the putative intermediate accumulating in the scab79691 mutant remains to be 
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determined, and such information is critical for validating the proposed role of Scab79691 

in the biosynthetic pathway for production of CFA-L-Ile. The proposed function of 

Scab79691 can also be validated by in vitro characterization of the enzyme activity 

following protein overexpression and purification. In addition, the genetic 

complementation of both the cfa8 and scab79691 mutants warrants further 

investigation since this will confirm that the observed phenotype of the mutants is due to 

the deletion of the target gene. The role of CFA-L-Ile in inducing anthocyanin production 

and chlorosis also should be further investigated to determine whether this metabolite 

shares all of the same bioactivities as COR. Given that COR promotes the formation of 

COI1-JAZ complexes and the ubiquination and degradation of JAZ proteins in order to 

upregulate JA-responsive genes (Katsir et al. 2008a, b), it would be interesting to 

determine whether CFA-L-Ile has a similar function. This could be accomplished using 

plant gene expression studies in order to identify the defense pathway(s) that is activated 

in response to CFA-L-Ile, as well as in vitro protein interaction studies to examine the 

effect of CFA-L-Ile on the formation of COI1-JAZ complexes (Katsir et al. 2008b). Of 

particular interest would be a comparison of the relative activities of COR, CFA-L-Ile and 

JA-Ile in promoting  the formation of COI1-JAZ complexes since it has been reported 

that COR is 1000 times more active than JA-Ile in this activity (Katsir et al. 2008b).  

Knowledge of the biosynthesis and bioactivity of the S. scabies COR-like 

metabolites contributes to the basic understanding of how S. scabies is able to infect a 

plant host and cause disease. The ultimate goal of research on plant pathogenic 

Streptomyces spp. is to use the knowledge gained towards the development of control 
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strategies that are more reliable and effective for scab disease management in agricultural 

settings.  In addition, such knowledge could have broader applications to the study of 

other host-pathogen systems in agriculture and in human or animal health.  
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