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ABSTRACT 

Steel catenary risers (SCR) are widely used in deepwater oil and gas production. Due to 

environmental loading the riser may be subject to six degrees of motion; however, in the 

touchdown zone (TDZ), the vertical penetration into the seabed and uplift are two of the 

main components. The riser-seabed-water interaction near the touchdown zone is one of 

the main concerns in fatigue life design of SCR. During upward displacement, suction 

develops under the riser and a trench might be formed when it separates from the seabed 

near the touchdown point (TDP). In subsequent downward movement, the riser penetrates 

through this trench to the seabed. Therefore, modeling of suction and trench formation is 

very important. In most of the existing models these factors are incorporated using 

empirical relationships. It is also recognized that the available finite element (FE) 

modeling techniques for this large deformation problem are computationally very 

expensive, although the penetration resistance can be simulated. 

In the present study, numerical modeling of riser-seabed-water interaction at the TDZ is 

conducted using ANSYS CFX software to evaluate the response of the riser during its 

penetration and uplift. A new model for undrained shear strength of soft clay is proposed 

that is applicable to a wide range of shear strain rates. The models for the effects of strain 

rate and strength degradation on undrained shear strength are incorporated properly in 

ANSYS CFX and simulations are performed for one penetration-uplift cycle. The CFX 

model developed in this study using the subdomain approach is computationally very 

efficient. It is found that the suction under the riser is the main source of uplift resistance 

for shallow embedments. The parametric study shows that the maximum uplift resistance 

and depth of trench depend on uplift velocity and undrained shear strength of clay.  
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Chapter 1 

Introduction 

1.1 General 

As hydrocarbon resources on land are drying up due to increasing demand of energy 

worldwide and therefore offshore oil and gas became the alternative sources to meet the 

higher energy demand.  Meanwhile, many shallow waters offshore oil and gas fields have 

been already used or ready to be immediate use. As a result, deep and ultra-deep water oil 

and gas exploration have been expanded in the recent years. While in shallow water fixed 

platform could be used, in deepwater floating production system (FPS) is only the 

economic choice. Risers are used for transportation of hydrocarbon products from the 

sub-sea wellheads, templates or pipelines to fixed or floating offshore platforms. One of 

the most widely used risers in deepwater is the Steel Catenary Risers (SCR). The SCR is 

a steel pipe suspended almost vertically from the FPS, curving in a catenary shape, and 

becomes almost horizontal near the seabed. The point at which SCR first touches the 

seabed is known as touchdown point (TDP) (Fig. 1.1). Due to environmental loading such 

as wind, current and wave might cause six degrees of motion of the FPS (heave, surge, 

sway, yaw, roll and pitch), which induce a complex motion of the riser at the TDP (Hu, 

2010). The riser experiences high stresses and greatest fatigue damages at the TDP due to 

repeated loading from the motion of the FPS. The fatigue life of the riser is significantly 

influenced by riser-seabed-water interaction in the touchdown zone (TDZ) as shown in 

Fig. 1.1. 
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Figure 1.1: Typical SCR configuration (after Hu 2010) 

 

In the current design, seabed is modeled as a rigid surface or using a set of springs 

connected to the riser (Fig. 1.2a). The load displacement behaviour of the spring has been 

defined using a set of empirical equations which has been proposed from the trend of 

two-dimensional experimental (Fig. 1.2b) results. However, experimental results show 

that the load displacement response under repeated loading in the touchdown zone is not 

so simple rather it is significantly influenced by various factors such as suction, trench 

formation, shear strength degradation and water flow. Numerical modeling could be used 

for better insights into the mechanisms. A number of numerical modeling techniques have 

been developed in the past to simulate penetration behaviour. However, for uplift 

behaviour empirical models are used. 
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Figure 1.2:Current design approach: (a) riser-spring model at touchdown zone, (b) 

typical 2-D experiment for spring behaviour (modified from Hodder and Byrne 

2010) 

1.2 Objectives of this thesis 

The purpose of this study is to examine the mechanisms involved in vertical penetration 

and uplifting of a section of riser in soft clay seabed. The main objective of this study is 

to develop a computationally efficient numerical modeling technique that can: 

 investigate the soil failure mechanisms during penetration (loading) and 

uplift(unloading); 

Initial depth of 

penetration 

Cyclic loading 

(penetration-uplift 

Seabed clay 
(b) 

(a) 
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 identify the parameters affecting the penetration and uplift resistance; 

 evaluate the trench formation after departure of the riser from seabed; 

 quantify water effects on penetration and uplift response; 

 quantify the suction under the riser during uplift; 

 quantify the role of suction behind the riser at intermediate embedment; 

 investigate the effects of strain rate and strength degradation due to remoulding on 

uplift resistance. 

1.3 Organization of the thesis 

The thesis is organized in the following way. 

Chapter1 contains the introductory information including the scope, objective and major 

contribution of this study. 

Chapter2 covers the literature review. Critical review of previous studies primarily on 

penetration and uplift behaviour of a section of riser is presented in this chapter, which is 

the focus of the present study. 

Chapter 3 presents the numerical simulation of penetration behaviour of a section of riser 

using ANSYS CFX. The development of CFX models, their performance and comparison 

with available model test results are presented in this chapter. 

Chapter 4 describes mainly the uplift behaviour. The increase in undrained shear strength 

with strain rate is discussed. Based on comprehensive CFX modeling, the role of suction 

on uplift resistance and trench formation mechanisms are examined. A parametric study 

is also presented in this chapter to show the effects of soil parameters on uplift behaviour. 
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Chapter 5 provides the summary and conclusions of the present study. Some limitations 

and recommendations for further study are also presented in this chapter. 

1.4 Major contributions 

Large deformation finite element (LDFE) modeling has been used in previous studies to 

simulate the penetration behaviour; however, it is computationally very expensive. 

Moreover, LDFE cannot simulate the suction and role of water in riser-seabed-water 

interaction properly. Therefore, an alternative numerical modeling technique based on 

computational fluid dynamics approach is considered in the present study. Numerical 

analyses are carried out using the ANSYS CFX 13 software. CFX does not have any 

direct option to define the undrained shear strength of soft clay; therefore, a technique has 

been proposed to implement the undrained shear strength of soft clay in CFX.  During 

penetration and uplift, the soil around the riser might experience higher strain rates than 

that of typical geotechnical engineering problems. Therefore, a new model for undrained 

shear strength is proposed that is valid for a wide range of strain rates. In addition, a 

simplified model is proposed for degradation of shear strength due to remoulding 

(softening). The soil model, combining both strain rate and softening, is properly 

implemented in CFX and analysis is performed for uniform and linearly increasing initial 

undrained shear strength profiles of the seabed. 
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Chapter 2 

Literature Review 

2.1Introduction 

In deepwater oil and gas projects, steel catenary risers (SCR)are widely used that 

connects seabed systems to the floating production systems (FPS) which are generally 

subjected to various types of motion (surge, sway, heave, yaw, roll and pitch) due to 

environmental loadings such as wind, wave and current (Hu, 2010).  During its lifetime, a 

SCR experiences many different types of cyclic loadings due to small to high waves, long 

period storms and slow drift motions. The fatigue life of SCR is one of the critical 

components of the design. The fatigue life of the riser near the touchdown point depends 

on riser-seabed-water interaction in the touchdown zone. The soil near the mudline in 

deepwater is generally soft clay (Thethi and Moros 2001). As the displacement rate 

during penetration and uplift of the riser in the touchdown zone is sufficiently high, the 

undrained shear strength governs the response in most of the cases. In structural design 

and fatigue life calculations, the load-displacement response of soil around the riser needs 

to be defined. In the current design practice, the seabed is simply characterized as 

linear/nonlinear springs or rigid surfaces. However, the seabed response to the load from 

the riser is way more complex than simple spring model. 

The aim of the present study is to model numerically the riser-seabed-water interaction 

which could be used to develop improved load-displacement curves during penetration 

and uplift. Although a complex six degrees of motion is possible, only the vertical 
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penetration and uplift behaviour is modeled in this study. Based on the focus on the 

present study, the literature review presented in this chapter is organized in the following 

ways. First, the penetration behaviour is presented in the Section 2.2. As the penetration 

of other cylindrical objects (e.g. surface laid pipelines and T-bar) is similar to the 

penetration of riser, previous studies on penetration of these objects are also discussed in 

this section in addition to the studies on riser penetration. In the second part of the 

literature review (Section 2.3) the uplift behaviour is discussed. As the risers are 

subjected to many cycles of penetration and uplift, the mathematical models in the form 

of P-y (load-deflection) curves proposed in the past are discussed in the Section 2.3. For 

other issues related to the design of riser including an overview of FPS motion, its effects 

to the touchdown zone, current design practice and limitations could be found in previous 

studies (e.g. Bridge 2005; Bai and Bai 2005, Hu 2010). 

2.2Penetration of pipeline/riser into seabed 

With increase in demand of deepwater oil and gas development, considerable research 

works have been dedicated to understand the mechanisms involved in penetration of riser 

or surface laid pipelines into the seabed. Mainly three different techniques have been used 

in the past for modeling vertical penetration of surface laid pipeline/riser into the clay 

seabed: (i) theoretical modelling, (ii) physical modeling and (iii) numerical modeling.   

2.2.1 Theoretical modeling 

Assuming the pipeline as an infinitely long strip footing, some early researchers (e.g. 

Small et al., 1971) calculated penetration resistance using simple model similar to 
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Terzaghi’s bearing capacity equation for shallow foundations in undrained condition 

(Terzaghi 1943). 

fucu DsNq γ          (2.1) 

Where qu is the ultimate bearing capacity, Nc is the bearing capacity factor, su is the 

undrained shear strength of soil, ʹ is the submerged unit weight of soil and Df is the depth 

of the foundation below seabed. The value of Nc is 5.14 for undrained loading condition.  

It is also recognized that, unlike the bottom of the strip footing, pipe surface is curved and 

therefore the shape of the failure surfaces could be different from those of the shallow 

foundations as shown in Fig. 2.1. Based on plasticity solution or upper and lower bound 

solutions, different values of Nc have been proposed for smooth and rough pipeline soil 

interface conditions. 

Small et al. (1971) and Bostrom et al. (1998) assumed that a surface laid offshore pipe 

starts to sink if its submerged weight exceeds the bearing capacity of soil. Based on this 

assumption, Small et al. (1971) extended the concept of bearing capacity of shallow 

foundation to circular pipe section embedded into the seabed as the following equation:  

BsNQ ucu            (2.2)  

Where, Qu is the ultimate bearing load, B is the bearing width (Figs. 2.1b & c). They also 

proposed a model for the formation of soil wedge underneath the pipe and soil failure 

mechanism as shown in Fig 2.1. Depending upon depth of embedment two possible 

scenarios was identified: CASE 1 for shallow embedments (i.e. the centre of the pipeline 

is at or above the mudline, Fig. 2.1b) and CASE 2 for deep embedment (i.e. the centre of 
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the pipeline is below the mudline, Fig. 2.1c). In both cases the failure pattern is very 

similar to the failure of soil under a shallow foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Failure modes: (a) strip footing (b) shallow embedded offshore pipeline, 

(c) deep embedded offshore pipeline (Small et al. 1971) 

Figure 2.2 shows the normalized penetration resistance with depth of embedment, in 

which the upper and lower lines represent the values based on general and local shear 

failure modes. As shown in Fig. 2.2that the maximum vertical resistance is mobilized at 

Df=4D, where Df is the depth of the centre of the pipe from mudline and D is the diameter 

of the pipe. It is to be noted here that berms will be formed in both sides of the pipe when 

(a) 

(b) (c) 
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it is pushed in the seabed. However, Small et al. (1971) did not consider the effects of 

berm on penetration resistance. Moreover, their solution is valid only for uniform 

undrained shear strength profiles. However, Davis and Booker (1973) showed that 

conventional slip surface failure overestimate the bearing capacity when undrained shear 

strength increases with depth. Moreover, pipe roughness also has a significant influence 

on vertical resistance. 

 

Figure 2.2: Penetration resistance with depth of embedment (Small et al. 1971) 

Based on the failure mechanism developed by Randolph and Houlsby (1984), Murff et al. 

(1989) developed upper and lower bound plasticity solutions for partially embedded 

pipelines in cohesive soil for both smooth and rough pipeline-soil interface conditions. 

Two sets of analyses were conducted. In the first set the effects of berm were neglected 

while in the second set these were considered. The later gives higher penetration 

Q
u
/s

u
D
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resistance. For example, at pipe embedment of 0.2D, the penetration resistance increased 

by 10-15% when the effects of berm were considered. The maximum depth of 

embedment of their study was 0.5D. Aubeny et al. (2005) extended the upper bound 

solution of Randolph and Houslby (1984) for embedments greater than 0.5D and the 

analyses were performed for both uniform and varying undrained shear strength profiles.  

Dunlap et al. (1990) derived an empirical equation from experimental results to estimate 

penetration resistance for monotonic loading. 

 

7822.1

7822.0
/

01573.0















n
u Dvs

F

D
w        (2.3) 

Where  w is the embedment of pipe invert in inch, Dis the diameter of the pipe in inch, F 

is the applied force in lbs, su is the undrained shear strength in lbs/ft
2
, v is the penetration 

speed in inch/s, and n is a dimensionless constant. 

Similarly, Verley and Lund (1995) proposed an empirical equation by fitting all the 

experimental results available in the literature to estimate penetration resistance through 

dimensionless analysis. However, Cathie et al. (2005) showed a wide variation among the 

proposed models available in the literature at that time and also between experimental 

results (Fig. 2.3). 
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Figure 2.3: Comparison between various models (Cathie et al., 2005) 

2.2.2 Physical modeling 

Small- to large-scale experiments were conducted in the past for modeling vertical 

penetration of offshore pipelines. Dutta (2012) provided a brief summary of these 

experiments (Table 2.1).Except for only one (SINTEF 1986b), most of these experiments 

were conducted on soft clay seabed. 

Cheuk et al. (2007) showed the performance of tow empirical models (Verley and Lund 

1995; and Murff et al. 1989) by comparing their large-scale tests results in kaolin (JIP) 

and West African (WA) clays as shown in Fig. 2.4. 
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Table 2.1: Summary of small- to large-scale test for vertical penetration (after Dutta 

2012). 

References Summary 

Lyons, C.G.(1973) D =0.41m; su=2 kPa 

SINTEF (1986a) (for PIPESTAB) D =1.0(0.5) m; su=1 kPa 

SINTEF (1986b) (for PIPESTAB) D =1.0 (0.5) m; su=70 kPa 

SINTEF (1987) (for AGA) D =1.0(0.5) m ;su=1.4 kPa 

Morris et al. (1988) D =0.15 m; su=1 kPa 

Dunlap et al. (1990) D =0.15 m; su=1.4 kPa 

Brennodden (1991) D =0.5m; su=1-2 kPa 

TAMU (1992) (for AGA) D =0.324m ;Su=1-8 kPa 

*D=Pipe diameter, su = Soil undrained shear strength 

 

In addition to 1g laboratory tests, centrifuge tests were also conducted to understand the 

mechanisms involved in vertical penetration. Dingle et al. (2008) conducted centrifuge 

tests using a 0.8 m diameter pipe section in prototype scale. The pipe was pushed into the 

clay seabed having linearly increasing undrained shear strength profile to 0.45D.  The 

comparison presented in Figure 2.5 shows that the empirical model proposed by Murff et 

al. (2007) underestimates the penetration resistance. FE results in Fig. 2.5 show that 

interface behaviour significantly influences the penetration resistance. In this case, 

centrifuge test gives higher penetration resistance than that of empirical model and FE 
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analyses which might be due to increase in undrained shear strength with strain rate and 

berm effects. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Comparison between mathematical model and large scale test results 

(Cheuk et al. 2007) 

 

Recognizing the fact that a section of riser might penetrate several diameters into the 

seabed, Hu (2010) conducted a number of centrifuge tests for deeper pipe penetration (up 

to three pipe diameters). Tests were conducted in a soft clay seabed with linearly 

increasing undrained shear strength profile. The main focus of his study was to model 

cyclic vertical penetration and uplift response of steel catenary riser at the touchdown 

zone.  

w/D 
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Figure 2.5: Comparison between empirical, FE and centrifuge test results (Dingle et 

al., 2008) 

2.2.3 Numerical modeling 

For numerical modeling, mainly three different techniques have been used: (i) small-

strain FE modeling, (ii) large-strain FE modeling and (iii) finite difference modeling. 

Among them, very limited studies used the finite difference approach (e.g. Morrow and 

Bransby 2010). A number of studies used the small-strain FE technique in Lagrangian 
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framework (Aubeny et al., 2005; Bransby et al., 2008; Zhao et al., 2010; Martin and 

White, 2012).  However, recognizing the fact pipeline/riser penetration into the seabed is 

a large deformation problem, large deformation FE (LDFE) modeling techniques have 

been developed in the past (e.g. Barbosa- Cruz and Randolph, 2005, Bransby et al., 2008, 

Merifield et al., 2009, Wang et al. 2010, Tho et al., 2011, Dutta et al. 2014). Among them 

remeshing and interpolation techniques with small strain (RITSS) developed at the 

University of Western Australia is one of the well-used techniques. In recent studies, the 

Coupled Eulerian Lagrangian (CEL) approach in Abaqus FE software has been 

successfully used by some researchers (Tho et al., 2011, Dutta et al. 2014). A summary of 

the numerical tools developed in the past is shown in Table 2.2. 

The FE modeling in Lagrangian framework cannot handle large deformation because of 

excessive mesh distortion and convergence issues (Woodworth Lynas et al., 1996). 

Therefore, some researchers conducted FE analysis of pre-embedded “wished in place 

(WIP)” pipe configurations in which the pipe is initially placed at the desired depth and 

then displaced further down to calculate penetration resistance (e.g. Aubeny et al., 2005; 

Bransby et al., 2008). Some researchers used the Arbitrary Lagrangian Eulerian (ALE) 

method which could reduce numerical issues related to mesh distortion to a certain degree 

(e.g. Merifield et al., 2009). 
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Table 2.2: Development of numerical modeling techniques (after Dutta et al. 2014) 

Numerical Technique Soil model (su) References 

Small strain FE analysis 

using Abaqus 

von-Mises, uniform , 

linearly increasing with 

depth 

*,1
Aubeny et al.(2005) 

Tresca, uniform  
*,1

Bransby et al.(2008);  

†,1
Merifield et al.(2008) 

Linear Drucker- Prager (D-

P) elasto-plasticity model, 

uniform 

*,1
 Zhao et al.(2010) 

FE analysis using 

OxLim 

Tresca, uniform, linearly 

increasing with depth 

†,1
 Martin and White 

(2012)
 

Finite difference 

technique FLAC 6.0 

Tresca, linearly increasing 

with depth 

*,1
 Morrow and Bransby 

(2010)
 

Large strain analysis 

using nonlinear 

geometry option in 

Abaqus  

Tresca, uniform 
*,2

Bransby et al.(2008) 

Arbitrary Eulerian Tresca, uniform 
†,2

Merifield et al.(2009)
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Numerical Technique Soil model (su) References 

Lagrangian (ALE) using 

Abaqus 

Large deformation FE 

analysis using RITSS 

technique  

Tresca, uniform , linearly 

increasing with depth 

*,2
Barbosa-Cruz and 

Randolph (2005) 

Tresca, linearly increasing 

with depth, strain softening 

and rate effects. 

†,2
Wang et al. (2010); 

*,2
Chatterjee et al. (2012a);  

2
 Chatterjee et al. (2012b) 

Coupled Eulerian 

Lagrangian technique 

using Abaqus  

Tresca, uniform  
*,2

Tho et al.(2012) 

von-Mises, linearly 

increasing with depth 

*,2
 Shi et al. (2011) 

von-Mises, linearly 

increasing with depth, strain 

softening and rate effects 

*,2
Dutta et al. (2012 a, b); 

†,2
Dutta et al. (2012 c); 

Dutta (2013) 

*
 Analyses performed only for vertical penetration 

†
Analyses performed for both vertical and lateral movement 

1
 Wished in place (WIP) 

2
 Pushed in place (PIP) 

 

The RITSS technique could be used to avoid mesh tangling/convergence issues (Hu and 

Randolph, 1998; Barbosa-Cruz and Randolph, 2005). Finally, the CEL approach available 



 

2-14 

in Abaqus FE software can also model large deformation behaviour (Pike et al., 2010; 

Tho et al., 2012, Dutta et al. 2012a). Tho et al. (2012) conducted FE analyses without 

considering the effects of strain rate and softening, although it has been recognized by 

other researchers that these two factors might significantly influence the undrained shear 

strength of soil and thereby penetration resistance (Wang et al., 2010; Chatterjee et al., 

2012a). Dutta et al. (2014) implemented these two effects using user subroutines and 

conducted FE analyses using Abaqus CEL and showed that it can successfully simulate 

the penetration behaviour of shallow embedment process. 

While the above mentioned numerical techniques could simulate the penetration 

behaviour of partially embedded pipelines, the following issues need to be highlighted. 

a) Computational time 

One of the main issues in large deformation FE analysis is the computational time. For 

example, Barbosa-Cruz and Randolph (2005) mentioned that the simulation of 

penetration of a pipe in plane strain condition using RITSS required 1 to 30 days 

depending upon mesh density using a personal computer having 2.81 GHz Intel 

processor and 2.0 GB RAM. The computational time for 10 simulations was 111 days. 

Similar experience of computational time was reported for the analysis using Abaqus 

CEL (Dutta, personal communication). Therefore, if someone wants to simulate many 

cycles, LDFE techniques may not be feasible or at least extremely high speed 

computer is required. 

b) Role of water in the cavity behind the pipe 

When a pipeline penetrates to an intermediate depth, water might be trapped in the 

cavity behind the pipe as shown in Fig. 2.6. The LDFE cannot model the role of water 
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as it simply model the cavity as a void. In other words, in previous studies the cavity is 

simply assumed as open drainage condition where water can flow easily and the soil is 

modeled using submerged unit weight. 

If the cavity is hydraulically isolated, suction (negative pressure) will be developed in 

the water behind the pipe. Unfortunately, none of the previous LDFE modeling 

technique could simulate this or at least not reported. 

 

 

Figure 2.6: Deformed shape at intermediate penetration: a) Laboratory test after 

Puech et al. (2010), (b) FE simulation using Abaqus CEL after Tho et al. (2012) 

(b) (a) 
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In the present study, the above two factors are taken into consideration and an alternative 

numerical modeling tool in ANSYS CFX is developed. 

2.3 Uplift 

In riser-seabed-water interaction near the touchdown zone, the uplift behaviour is equally 

important in addition to penetration behaviour. However, comparatively lower numbers 

of studies on uplift behaviour are available in the literature. During upward movement 

suction may be developed under the riser and a trench might be formed when it separates 

from the seabed especially near the touchdown point (TDP). In the subsequent movement, 

the riser penetrates through this trench. Therefore, the uplift resistance depends on suction 

under the riser. 

2.3.1 Uplift mechanisms 

Most of the theories for uplift resistance have been developed for horizontal plate 

anchors. To understand the uplift behavior of an anchor, Merifield et al. (2001a) 

performed numerical modeling using the limit theorem of Sloan (1988) and Sloan and 

Kleeman (1995). Analyses were performed for plain strain strip anchor in uniform and 

linearly increasing undrained shear strength profiles. Upper and lower bound breakout 

resistances (i.e. the maximum uplift force) were obtained from numerical analysis. 

Although the maximum uplift force could be obtained, it does not provide any 

information of the development of uplift force with upward displacement of the anchor. 

Moreover, the suction under the anchor was not simulated. 
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Dickin (1994) pointed out that pipelines and anchors exhibits similar behavior for peak 

uplift resistance, although some other issues such as mobilized displacement at failure is 

different for SCR/pipelines. 

Pipe laying contractors reported that the required uplift force for pipe retrieval is greater 

than the self-weight of the pipe Foda (1983). This greater uplift force is due to the suction 

under the pipe. Foda (1983) proposed the following empirical equation to determine the 

time to break out an object from seabed while applying a constant load. 

5.1γ  Fst ub
          2.4 

Where, tb is the break out time in second, γ is the shape factor of the plate in N
1/2

-s-m
2
 and 

F is the pullout force (N). 

Audibert et al (1984) stated that the uplift resistance of a buried pipeline can be calculated 

assuming it as reverse bearing capacity problem and proposed an equation similar to 

bearing capacity equation as:  

DNsq cvuu            (2.5)  

Where, Ncv represents vertical bearing capacity factor. 

The reverse bearing capacity type failure mechanisms were simulated for uplifting of a 

pipe section by Martin and White (2012) who conducted numerical investigation using 

the finite element limit analysis code OxLim developed at Oxford University. They 

conducted FE analyses for ‘wished-in-place’ pipe configuration assuming full (unlimited) 

and no interface tensions. For no tension condition, zero (for smooth) and small (for 

rough) uplift resistance is calculated for shallow embedments (e.g. less than half a 
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diameter of the pipe) because the suction under the pipe is not modeled. The formation of 

trench due to uplift was not examined in their study. 

2.3.2Experimental studies 

Bostrom et al. (1998) conducted an experimental investigation of pipeline-soil interaction 

for penetration and uplift as encountered in the touchdown section of SCR. A small pipe 

section was rigidly attached to an actuator for penetration and subsequent uplift through a 

clay seabed. Figure 2.7 shows the variation of vertical force (penetration and uplift) for 

two tests. They also conducted numerical modeling using this force-displacement 

behaviour and showed that soil suction increases 37% bending moment during quasi- 

static loading. 

 

Figure 2.7: Force displacement curves (Bostrom et al. 1998) 

Figure 2.8 shows a 1g model test results conducted by Aubeny et al. (2008). Cyclic tests 

were conducted with 25mm diameter and 125mm long pipe section in a 220 mm thick 
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consolidated test bed having almost uniform undrained shear strength of 3.7 kPa. 

Figure2.8 shows that the uplift resistance curves are not similar to the penetration 

resistance curves. At a given depth, the uplift resistance is lower that the penetration 

resistance. During upward displacement, significant uplift force acts on the pipe; 

however, at one stage it starts to decrease quickly and reduces to zero but the invert of the 

pipe is still at a depth below the original mudline (i.e. creates a trench). 

 

 

 

 

 

 

 

Figure 2.8: Normalized force-displacement curve. (Aubeny et al. 2008) 

Cheuk et al. (2007) conducted a number of centrifuge model tests using lumpy clay 

backfill material. The pipe was placed on a stiff over consolidated clay bed and the then 

covered with a lumpy clay backfill and consolidated for a varying period of time with a 

targeted cover height of the pipe of 3.5D. The pipe was then pulled up at two different 

speeds (slow 0.16D /hr and fast 8.1D /hr). Figure2.9 shows the measured uplift forces in 

prototype scale (subtracting buoyant weight) with dimensionless pipe displacements. The 

w/D 
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uplift resistance increases with rate of upward displacement. Moreover, with increase in 

consolidation time the uplift resistance increases. 

 

 

Figure 2.9: Influence of uplift speed and consolidation on uplift resistance. (Cheuk et 

al. 2007) 

The rate of movement of the riser into the seabed or from the seabed has a significant 

effect on vertical resistance. Langford et al (2008) conducted a series of large-scale cyclic 

model tests in re-constituted high plasticity marine clay from the Gulf of Guinea. The 

model pipe was rough coated having dimensions of 1300mm in length and 174 mm in 

diameter. Tests were conducted at different speeds. The undrained shear strength of the 

clay seabed increases linearly with depth. The first 3 penetration tests (1, 2 and 3) were 
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conducted at a displacement rate of 0.05mm/s while the test 4 was conducted at 0.5mm/s. 

Figure 2.10 shows that the penetration resistance in test 4 is higher than that of other 3 

tests because of higher displacement rate. 

 

 

 

 

 

 

 

 

Figure 2.10: Initial penetration resistance vs. penetration depth (Langford et al 

2008) 

Figure 2.11 shows the cyclic response. The uplift resistance is more sensitive to the rate 

of displacement than penetration resistance. The maximum uplift resistance inTest4 

(conducted at 0.5 mm/s) is almost twice the maximum uplift resistance in Test1 

(conducted at 0.05 mm/s). However, the maximum penetration resistance in Test 4 is 

approximately 15% higher than the maximum penetration resistance in Test 1. 

  

w/D 
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Figure 2.11: Effect of displacement rate in cyclic loading (Langford et al 2008) 

A large number of laboratory tests were conducted in the CARISIMA-JIP during 1999–

2002 to develop a riser-seabed interaction model. Tests were conducted using Onsøy clay 

collected from the south-eastern part of Norway. The undrained shear strength of the 

model seabed was 1.5 kPa at the mudline and linearly increased to 4 kPa at a depth of 

200mm. In two phases, more than 40 tests were performed at different pullout velocities 

and consolidation time. Figure 2.12 schematically show the summary of all the test 

results, which shows that uplift resistance increases with pullout velocity (Har 2007 and 

Giertsen et. al. 2004). Very similar results were obtained in the STRIDE (Steel Risers in 

Deepwater Environments) JIP two-dimensional small-scale model tests. 

 

w/D 
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Figure 2.12: Effects of displacement rate on uplift resistance (After Har, C.G. 2007) 

In order to understand three-dimensional response, large-scale field and laboratory tests 

(e.g. Bridge et al. 2003; Hodder and Byrne 2010; Wang et al. 2014), reduced-scale 

centrifuge tests (e.g. Elliott et al. 2013a & b, 2014; Hu 2010) and small-scale laboratory 

tests (e.g. Bridge 2005; Aubeny et al. 2008; Langford et al. 2008a & b) were conducted in 

the past to understand this behaviour. 

In summary, small-scale two-dimensional model tests show that the uplift resistance 

significantly depends on pullout velocity and soil shear strength (magnitude, 

consolidation time and variation with depth). Reverse bearing capacity type of failure 

cannot explain the uplift behaviour properly, especially at shallow embedments, and 

suction under the riser plays a significant role. 

Uplift Penetration 



 

2-24 

2.3.3 Trench formation 

The mechanisms of trench formation in the touchdown zone due to cyclic displacements 

of the riser are very complex. Displacement of soil, erosion, flow of water/slurry along 

the trench, pumping and scouring are some of the causes of trench formation. Bridge 

(2005) reported trench shapes of a number of sites as the one shown in Figs. 2.13(a). That 

full-scale test also showed similar type of trench formation (Fig. 2.13(b)). To date no 

theoretical model or numerical analyses are available which could explain trench 

formation mechanisms properly. In the present study, an attempt has been taken to 

simulate trench formation due to riser-seabed-water interaction during loading unloading 

at the touchdown zone. 

2.3.4 P-y curves 

In the current design practice, the riser-seabed interaction in the TDZ is modeled using 

the P-y curves, where P represents the force per unit length and y represents the vertical 

displacement. Based on model test results (e.g. Dunlap et al. 1990; Bridge 2005), Aubeny 

and Biscontin (2008, 2009) proposed a conceptual P-y curve model as shown in Fig. 2.14. 

This idealized seabed model has the following major components: (i) the backbone curve, 

(ii) elastic unloading, (iii) suction, (iv) full separation and (v) reloading. The backbone 

curve (0-1) represents the penetration of the riser into the virgin soil and can be defined 

by P=NpsuD, where Np is a bearing capacity factor. Based on small strain finite element 

modeling of “wished in place” pipes, (Aubeny et al. 2005) proposed an empirical relation 

Np =a(w/D)
b
, where a and b are fitting parameters and w is the depth of embedment of the 

invert of the pipe. Aubeny and Biscontin (2009) further modified this equation using 
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initial width of the trench. It is shown that the depth and width of the trench has a 

significant effect on penetration resistance. 

 

 

 

Figure 2.13: Observed trench shapes: (a) Allegheny site (b) full-scale test (Bridge et 

al. 2003) 

(a) 

(b) 
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Figure 2.14: P-y curve model for rise-seabed interaction (after Aubeny and 

Biscontin, 2009) 

Another important component of the P-y model is the unloading (uplift), which is 

represented by 1-2-3-0 in Fig. 2.14. The initial elastic rebound reduces the resistance 

quickly to P=0 followed by negative P (uplift resistance), which mainly depends upon 

suction under the riser for shallow embedments. The maximum uplift force is developed 

at point 2 and then gradually decreases to 0 at point 3 where full separation of the riser 

from the seabed is occurred. The path 3-0 represents the travel of the riser in water. Upon 

reloading, the P-y curve follows the path 0-3-1 instead of 0-1 because of the trench 

formed by previous loading-unloading cycle. 

The suction under the riser significantly affects its fatigue life (Thethi and Moros 2001).  

Quantification of suction is a challenging task. Based on field observation and model test 

results empirical factors have been proposed in the past. The ultimate suction force 
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(Pu_suc) is expressed as a function of ultimate penetration resistance Pu using a model 

parameter fsuc as Pu_suc=-fsucPu. The value of fsuc depends on many factors such as rate of 

upward movement of the risers, soil strength, flow of water under the riser and others. 

The value of fsuc could vary widely between 0 and 1.0. Another empirical factor known as 

“suction decay factor” is used to define the upward displacement of the riser over which 

suction could sustain. 

Another nonlinear mathematical model (Fig. 2.15) proposed by Randolph and Quiggin 

(2009) is in fact an improved version of Aubeny and Biscontin (2009) model with some 

additional features. In the Fig. 2.15 penetration represents by z instead of y. In this model, 

the initial penetration resistance increases with depth and asymptotically approaches the 

ultimate penetration resistance (Pu). Similarly, with upward displacement, the uplift 

resistance curve asymptotically approaches the ultimate suction resistance curve (Pu-suc). 

The displacement from which suction decay initiates (segment 4 of the uplift curve) is 

defined by another factor. Suction decay could bring the uplift resistance to zero. In 

subsequent loading it will follow the re-penetration curve and again reaches 

asymptotically the Pu curve. The re-penetration curve is also defined by some empirical 

factors. 

Based on extensive laboratory experiment results in various conditions, Bridge et al. 

(2004) proposed an empirical model to calculate soil suction during uplift (Fig. 2.16). 

According to their model, the ratio between the maximum suction and ultimate 

penetration resistance (fsuc) can be calculated as 

𝑓𝑠𝑢𝑐 = −𝑘𝐶𝑘𝑉𝑘𝑇         (2.6) 
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Where kC, kV and kT are dimensionless empirical factors. The constant kV is related to v/D 

as 𝑘𝑉 = 𝑘𝐹(𝑣/𝐷)
𝑛𝐹, where kF are nF are two empirical constants.  

 

 

Figure 2.15: P-y curve for different modes (after Randolph and Quiggin, 2009) 

 

Bridge et al. (2004) also provided a model for breakout displacement B (the vertical 

displacement of the riser from the maximum penetration to the point where the riser 

separates from the seabed). 

𝐵

𝐷
= 𝑘𝐷𝐶𝑘𝐷𝑉𝑘𝐷𝑇         (2.7) 
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Where kDC, kDV and kDT are empirical constants. Moreover, 𝑘𝐷𝑉 = 𝑘𝐷(𝑣)
𝑛𝐷, where kD are 

nD are two empirical constants. 

 

 

Figure 2.16: Proposed uplift curve from experimental results (after Bridge 2004) 

 

In summary, although simple, the proposed P-y curve models require a number of 

empirical factors. 

2.4 Chapter summary 

Both penetration and uplift behaviour are equally important in the design of riser fatigue 

life near the touchdown zone. Available LDFE model can simulate the penetration 

behaviour for shallow or deep embedment conditions; however, at the intermediate depth 

the water in the cavity behind the riser might be trapped which could influence 
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penetration resistance. Moreover, the existing LDFE modeling techniques currently 

available in the literature are computationally very expensive. One of the major 

limitations of the current LDFE modeling tools is that they cannot simulate the suction. 

To the best knowledge of the author, there is no numerical model available in the 

literature for simulation of suction in riser-seabed-water interaction. Currently, P-y curves 

are used in the design, which are based on a number of empirical factors. 

In order to overcome some of the above limitations, a numerical technique has been 

developed in the present study for riser-seabed-water interaction. The penetration 

behaviour is presented in Chapter 3 and mainly the uplift behaviour discussed in Chapter 

4. 
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Chapter 3 

Modeling of Penetration of Steel Catenary Riser in Soft Clay Seabed 

3.1 Introduction 

Steel Catenary Risers (SCRs) are frequently used in offshore to connect floating 

production facilities to the seabed well systems. Typically the diameter of SCR varies 

between 150 mm and 600 mm (Hu et al. 2011). The surface waves and current could 

cause vertical motion of the riser of several diameters near the touchdown point (TDP), 

which could be even higher in storm events. Proper modeling of cyclic motion of the riser 

near the TDP and its interaction with the seabed and water is very important in the design, 

because the region near the TDP is a fatigue hotspot. The fatigue life of a steel catenary 

riser depends on seabed properties at the touchdown zone (TDZ) as well as motion 

characteristics. In the current industry practice, the seabed response is idealized using 

linear/nonlinear soil springs or rigid surfaces. Empirical equations have been proposed in 

the past to model the seabed taking into account of various complex mechanisms, 

including trench configuration, nonlinearity of soil stiffness, degradation of soil shear 

strength, and suction effects (Aubeny et al. 2005; Randolph and Quiggin, 2009). While 

these methods attempt to capture the processes involved in riser-seabed-water interaction, 

significant uncertainties still remain in modeling of this intrinsically complex problem. 

Moreover, the uncertainties from other sources such as vortex induced vibration could 

further complicate the process. Because of these uncertainties, the design codes (e.g. 

DNV 2010) recommend design fatigue factor of 6.0 and as high as 10 for critical 
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components. The design fatigue factor has no actual theoretical basis, but has been 

established from experience to maintain low risk of failure (Li and Low 2012).The main 

objective of the research presented in this chapter is to develop an advanced 

computationally efficient numerical tool to simulate the penetration behaviour of a 

section of riser.  

3.2Previous studies 

Large-scale field tests and small-scale laboratory model tests were performed in the past 

to understand the complex mechanism of riser-seabed-water. In the STRIDE JIP (Steel 

Risers in Deepwater Environments Joint Industry Project), full-scale tests were conducted 

over a period of three months at a harbor location in the west of England (Bridge et al. 

2003). Large-scale indoor tests (e.g. Hodder and Byrne 2010; Wang et al. 2014) are also 

available in the literature. A series of small-scale laboratory tests were conducted under 

the Catenary Riser-Soil Interaction Model for Global Riser Analysis (CARISIMA) JIP 

using clay from a site in Onsøy, Norway. Similar tests were conducted in the STRIDE 

JIP, and it was shown that the results are consistent with CARISIMA test results (Bridge 

2005). The STRIDE and CARISIMA test results provide some valuable insight into the 

riser-seabed-water interaction mechanism, such as penetration resistance, suction 

mobilization during uplift, suction plateau, suction release and effect of soil consolidation 

(Bridge and Willis 2002; Willis and West 2001). 

To understand load-displacement mechanisms, Dunlap et al. (1990) conducted a series of 

small-scale laboratory tests in soft sediment having undrained shear strength (su0) of 1.0-

1.5 kPa using a 1.52 m×152 mm (length×diameter) model pipe section. Aubeny et al. 
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(2008) investigated the cyclic response by conducting tests in kaolin clay seabed of 

su03.7 kPa using a 125 mm length and 25 mm diameter model pipe section. Langford 

and Aubeny (2008) conducted tests in a high plastic clay of linearly increasing su0 profile 

using a rough coated 1,300 mm×174 mm pipe section. 

Besides 1g laboratory tests, centrifuge tests were also conducted in the past.Hu (2010) 

presented centrifuge modeling of penetration and uplift behavior of riser sections in 

Malaysia kaolin clay of varying over consolidation ratio (OCR) of 1, 3 and 5, where the 

tests were conducted with 600 and 1,000 mm diameter (D) pipe sections in prototype 

scale. While some other centrifuge tests (e.g. Dingle et al. 2008) provides penetration 

behavior of shallowly embedded pipelines, Hu (2010) shows the response for wider range 

of embedments (3D). In the above centrifuge tests, only a section of the riser is modeled. 

However, at C-CORE and Memorial University, centrifuge modeling of a full length riser 

(108 m in prototype) was performed using a novel experimental facility developed at C-

CORE supported by offshore industry (Elliott et al. 2013a, b, 2014). 

Currently, the riser-seabed interaction in the TDZ is modeled using the P-y curves, where 

P represents the force per unit length and y represents the vertical displacement. Based on 

model test results (e.g. Dunlap et al. 1990; Bridge 2005), Aubeny and Biscontin (2008, 

2009) proposed a conceptual P-y curve model. The nonlinear mathematical model 

proposed by Randolph and Quiggin (2009) is in fact an improved version of Aubeny and 

Biscontin (2008) model with some additional features. One of the main components of 

these models is the backbone curve. Based on small strain FE modeling of pipes in 

“wished in place” configuration, Aubeny et al. (2005) proposed an empirical relation for 
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penetration resistance, which has been further modified, incorporating the effects of 

initial width of the trench, in Aubeny and Biscontin (2009).   

3.3 Problem definition 

In the CFX modeling, a section of a riser of diameter D is placed in water above the 

mudline at a distance yw as shown in Fig. 3.1. The riser is then displaced vertically 

downward at a velocity v. To eliminate buoyancy effect of water, the weight of the riser is 

assumed to be equal to the weight of the riser section filled with seawater. During the 

initial displacement through water, the resistance is simply governed by the flow of water 

around the riser. However, when the bottom of the riser is moved close to the mudline the 

response is govern by riser-seabed-water interaction. The penetration of the riser in the 

soft clay seabed is relatively fast and therefore undrained condition governs the behavior. 

Two types of variation of undrained shear strength (su0) are used in this paper: (i) uniform 

su0, (ii) linearly increasing su0, which is defined as ykss umu
0 where sum is the 

undrained shear strength of clay at the mudline, k is the strength gradient and y is the 

depth of the soil element from the mudline (Fig. 3.1). The depth of penetration (w) 

represents the depth of the invert of the riser from the mudline. 
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Figure 3.1: Problem definition 

3.4 CFD simulation 

The general purpose ANSYS CFX 13.0 software is used in this study for CFD simulation. 

Note that the CFD approach has been used in previous studies for modeling debris flows, 

glide blocks and out-runner blocks (e.g. De Blasio et al. 2004 a & b, 2005; Gauer et al. 

2005 & 2006; Harbitz et al. 2003; Zakeri 2009;  Zakeri et al. 2009a; Zakeri and Hawlader 

2013). In ANSYS CFX, the domain is discretized into three-dimensional mesh. The 

governing equations are solved adopting a solution methodology based on finite volume, 

which are constructed using the discretized mesh. The force-displacement behaviour is 

modeled using the Navier-Stokes equations, which has been developed applying 

Newton's Law (F=ma) to fluid elements. Here F is the force, m is the mass and a is the 

acceleration. The forcing term (F) is the sum of gravitational force (Fgrv), pressure force 

(Fpress) and viscous force (Fvisc). The gravitational force Fgrv (=mg) is same as it is in solid 
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mechanics, where g is the gravitational acceleration. The last two (Fpress and Fvisc) are the 

reaction forces to the motion, which are analogous to the normal and frictional resistance 

in solid mechanics. The parameters required in CFX to calculate Fgrv and Fpress are given 

by density of soil and water, and the boundary conditions including the displacement of 

the riser. The coefficient of dynamic viscosity () is used to calculate Fvisc. The definition 

of , as a function of undrained shear strength, is discussed in the following sections.  

3.4.1 CFX model setup 

Figure 3.2 shows the domains used in CFX simulation. The riser (D=350 mm) is modeled 

as an impermeable wall. The CFX allows only three-dimensional modeling, and therefore 

the analyses are performed for one element of 10 mm in the out of plane direction. The 

following three CFX modeling techniques are first developed to identify an appropriate 

modeling approach.  

Model-I: In this case, the center of the riser is placed at one diameter above the mudline 

in water and then displaced downward. As shown in Fig. 3.2(a), the upper 2.35 m (=6.7D) 

of the domain is water and the lower 4.65 m (=13.3D) is clay. The right vertical boundary 

is placed at 3 m (=8.6D) from the center of the riser. The boundaries are placed at 

sufficiently large distance from the riser and therefore no boundary effects are observed 

on penetration/uplift resistance and soil displacement. Taking the advantage of symmetry, 

only the right half of the domain is modeled. 
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Figure 3.2: CFX models  
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Clay and water are modeled using homogeneous multiphase Eulerian materials. The 

interface between clay and water that represents the mudline is defined by a step function 

through CFX Command Language (CCL) — a declarative language in CFX for enhanced 

simulation without writing external FORTRAN routines. The clay and water in the 

domain are defined initially using the volume fraction tool. In the elements above the 

mudline, the volume fraction of water is set to 1 and the volume fraction of clay is 0. On 

the other hand, in the elements below the mudline, the volume fraction of water is 0 and 

volume fraction of clay is 1.  

The bottom and all the vertical faces are defined as walls, which are solid impermeable 

boundaries to fluid flow. No-slip boundary condition is applied to the bottom wall and 

riser surface, and therefore the velocity of the Eulerian material (soil/water) next to these 

walls is zero. Free-slip boundary condition is applied on the right vertical wall. On the 

other three vertical faces, symmetry plane boundary conditions are applied, which implies 

that the flow of Eulerian material (soil/water) on one side of the plane is a mirror image 

of the flow on the opposite side. “Unspecified mesh motion” option in CFX is used for 

the vertical walls. This setting allows the mesh node on these walls to move in the vertical 

direction preserving the quality of mesh during the displacement of the riser. The top of 

the water is defined as an opening to allow water to flow in and out of the domain. 

The mesh is formed using the options available in CFX. Very fine mesh is used near the 

riser and the size of the elements is increased with distance from the riser. The maximum 

dimension of the mesh just outside the riser surface is 10 mm. The riser is displaced 

vertically downward at a given velocity specifying the motion of the nodes on riser wall. 
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Model-II: In this case, the riser is kept at a fixed location as shown in Fig. 3.2(b) and the 

clay is moved upward. The bottom boundary is defined as an inlet while the other 

boundary conditions are same as in Model-I. The clay is entered through the inlet at a 

constant velocity (v). As the clay is modeled in undrained condition (no volume change), 

the top surface of the clay (mudline) moves upward at constant velocity v until it touches 

the riser. When the riser obstructs the flow of soil, the flow pattern changes and a berm 

forms near the pipe. However, the velocity of top soil surface far from the riser, such as 

the points near the right wall, is still same as the flow velocity in the inlet. That means, 

the relative velocity between the riser and soil surface far from it in Model-II is same as 

in Model-I. 

Model -III:  This approach can be considered as a “subdomain approach.” The Model-III 

is same as Model-I, except for an inner subdomain shown by the shaded zone near the 

riser in Fig. 3.2(c). No mesh deformation is allowed in the subdomain, and therefore the 

shape and size of the mesh does not change with displacement of the riser. However, the 

Eulerian materials (clay and water) can flow through the mesh both in subdomain and 

outside the subdomain. The radial thickness of the subdomain of 1.5D is used because the 

velocity of soil elements outside this zone during penetration is not significant as shown 

later. As the modeling of the zone near the riser is very critical, the inclusion of the 

subdomain increases the robustness of simulation significantly, which is discussed further 

in the following sections. In this case, the riser and the subdomain are displaced vertically 

at a constant speed specifying the motion of the nodes using CCL expressions. No 

additional interface conditions, such as no-slip or free-slip conditions, are applied to the 

interface between the subdomain and surrounding soil/water. This allows inward and 
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outward flow of soil and water through this interface maintaining same fluid flux in both 

side of the interface. 

3.4.2 Undrained shear strength in CFX 

Based on fluid mechanics approach, the dynamic viscosity () of soft clay can be defined 

as  / , where  is shear stress and   is shear strain rate. Following geotechnical 

notations, the symbol  is replaced by su0. Comprehensive discussions on estimation of 

shear strength of soft clays in deepwater are available in Lunne and Andersen (2007) and 

Lunne et al. (2011).  It is known that the undrained shear strength increases with strain 

rate; however, it is not considered in this chapter. The effects of strain rate on su0could be 

found elsewhere (Dutta et al. 2014; Zakeri and Hawlader 2013). In CFX analyses, the 

value of  for each element is obtained at every time step, and then  is assigned using 

CCL expressions. 

Generally in FE modeling, the maximum undrained shear resistance at the pipe-soil 

interface is defined as su0, where  is a coefficient that varies between 0 

(smooth/frictionless) and 1 (rough). As it depends on many factors, analyses have been 

performed in the past for different values of . For example, Wang et al. (2010) used 

=0.5 while some other researchers (e.g. Tho et al. 2012) modeled for smooth condition 

(=0). In CFX, different values of  cannot be defined directly. Therefore, the shear 

strength of one row of clay elements just outside the riser (su_int) is defined as su_int=f2su0 

with 0f21.0. Note that, f2=0 approximately represents the smooth condition as the soil 

near the riser cannot sustain any shear stress. 
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3.4.3 Penetration resistance 

The geometry and soil parameters used in the analyses are listed in Table 3.1. The 

penetration resistance (Np) is presented in normalized form as Np=F/suNDeL, where F is 

the penetration resistance, suN is the undrained shear strength used for normalization, De is 

the effective diameter and L is the length of riser section (=10 mm). The undrained shear 

strength depends on mode of shearing (e.g. triaxial or simple shear), depth (linear su0), 

and strain rate. One should interpret Np value carefully because suN at different conditions 

has been used in previous studies (e.g. Langford and Aubeny 2008; Zhu and Randolph 

2010; Wang et al. 2010; Bridge 2005). In the present study, considering triaxial 

compression as the standard test of reference, su0at the invert of the riser (su0(i)) in triaxial 

compression condition is used for suN. Using Tresca hexagon in the deviatoric plane it can 

be shown that 
)(0

3

2
iuuN ss  (Smith and Griffiths 2004; Sousa et al. 2011; Tho et al. 

2013). For uniform su0 profile su0(i)=su0 and for linearly increasing su0 profile the value of 

su0(i) increases with depth of penetration. It is to be noted here that some researchers (e.g. 

White et al. 2010; Tho et al. 2011) reported a corrected value of Np by subtracting the 

influence of soil buoyancy on penetration resistance. However, the normalized 

penetration resistance presented in the following sections is without any correction of 

buoyancy. 

Following the concept of Gui and Bolton (1998) and assuming that the failure is occurred 

at a distance of half of the element size from the outer surface of the riser, the value of De 

can be calculated as 360 mm (=350 mm+2×10 mm/2) for 10 mm element size just outside 

the riser. If D (=350 mm) is used instead of De, the normalized penetration resistance will 
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be increased by only 2.8%. In this study De is used. The depth of penetration is 

normalized as ŵ w/De. 

Table 3.1: Geometry and Material Parameters used in CFX analysis 

Parameters Values 

Diameter of riser, D (mm) 350 

Length of riser section, L (mm) 10 

Soil parameters  

a) Uniform shear strength, su0 

Undrained shear strength, su0 (kPa) 3.7 (2.3,5) 

Saturated unit weight, sat (kN/m
3
) 16.31 

Coefficient f2 1.0 (0.01,0.2,0.5) 

b) Linearly increasing shear strength ( ykss umu
0 ) 

Mudline shear strength, sum (kPa) 2.3(1.0,3.7) 

Shear strength gradient, k (kPa/m) 2.0 (0,1,3) 

Coefficient f2 0.01(0.2,0.5,1.0) 

Saturated unit weight, sat (kN/m
3
) 16.31 

Note: Numbers in parenthesis in right column show the values 

used in the parametric study 



 

3-13 

Figure 3.3 shows the Np vs ŵ  curves obtained from three CFX models (I, II, and III in 

Fig. 3.2) for the following parameters: su0=3.7 kPa (uniform), sat=16.31 kN/m
3
, f2=1 and 

v=60 mm/s. The value of Np is zero until the riser touches the mudline at ŵ =0. In all 

three models (I to III) the penetration resistance increases with depth of penetration. The 

value of Np at ŵ =5D is 10.45. If we subtract the buoyancy effect of approximately equal 

to As/su0D, the value of Np will reduce to 9.97. The plasticity limit analysis (Randolph 

and Houlsby 1984; Martin and Randolph 2006) shows that the value of Np for deep 

embedments and rough pipe-soil interface condition is 11.94, which is higher than the 

calculated value because fully deep failure mechanism is not developed at ŵ =5D, rather 

it is in the transition stage as shown later. 

For all three cases, very similar Np vs ŵ  curves are obtained for these conditions. 

However, in Model-I significant mesh distortion occurs at large penetration. Although the 

analysis could be performed for this particular condition, numerical issues are 

encountered for other conditions presented in the following sections and therefore the 

Model-II and III are developed.  

Unlike Model-I, numerical errors due to mesh distortion are not encountered in Model-II. 

However, one disadvantage with this model is that the presentation of the results, such as 

instantaneous velocity vectors of soil, is difficult because soil is moved instead of the 

riser. In addition, one of the main objectives of the present research program is to model 

the suction under the riser when it moves upward during cyclic motion, which could not 

be simulated using the Model-II. 
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Figure 3.3: Penetration resistance for three models (f2 =1.0; su0 = 3.7 kPa) 

Some mesh distortion occurs outside the subdomain in Model-III; however, it does not 

have significant influence on simulation. In this case, non-deformable subdomain mesh 

moves with the riser at same velocity, and Eulerian materials (clay and water) flow 

through it. Numerical issues due to mesh distortion near the riser also could be avoided. 

Another advantage is that the value of f2 could be precisely assigned to the first row of the 

soil elements near the riser surface because the size of the mesh does not change with 
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riser displacement. Considering these advantages, the Model-III is used in the following 

CFX analyses. 

 Figure 3.4 shows the negative pressure in the Eulerian materials (clay and water) 

calculated by CFX. The solid lines show the clay-water interface. For w=2.0D, the 

suction (absolute values of negative pressure) is developed in a small zone just above the 

springline of the riser. At this depth of penetration, there is a wide space above the riser 

between clay-water interface and symmetry plane. Water can flow easily through this 

space during penetration. With increase in penetration depth, the width of the trench 

above the riser becomes narrow as shown in Fig. 3.4(c and d). For this penetration speed 

(60 mm/s), sufficient water cannot flow through this narrow space and therefore 

considerable suction develops above the riser as shown in Figs. 3.4c and 3.4d with shaded 

zones. As CEL cannot simulate this suction, Np from CEL is less than the values obtained 

from CFX for ŵ >3.0. 

In a recent study, Tho et al. (2012) showed the influence of size and shape of the trench or 

soil cavity on penetration resistance. They also recognized the importance of the 

boundary conditions at the trench wall or cavity which are related to drainage of water 

through the trench. Two extreme idealized scenarios identified are: (i) open drainage, 

where the water in the cavity can easily drain away and (ii) closed drainage, where the 

water in the cavity is hydraulically isolated. They performed FE analyses using Abaqus 

CEL for an open drainage condition by modeling the trench as void and therefore the 

trench walls are stress-free. 
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Figure 3.4: Suction at different pipe penetration depth (a) 2D (b) 3D (c) 4D (d) 5D 
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In Abaqus CEL analysis, the trench walls are stress-free and a void space represents the 

trench. In contrast, the trench is filled with water in CFX modeling. The stress on the 

clay-water interface is not always zero. The CFX calculates the stress that depends mainly 

on trench shape and penetration speed. For example, Fig. 3.4(a) shows that at w=2D the 

stress on the clay-water interface of the trench is negligible. However, at w=5D a 

considerable stress acts on trench wall due to suction in water above the crown. 

Therefore, it can be concluded that CFX can simulate the stress condition on the trench 

wall which could not be done using Abaqus CEL. 

The suction above the riser also has some effects on trench formation and instantaneous 

velocities of clay. Figure 3.5 shows the shape of the trench and instantaneous velocity 

vectors obtained from CFX analysis. At a large ŵ  (e.g. ŵ =3 or 5) the suction in water 

pulls the clay particles towards the crown of the riser that enhances formation of circular 

shaped instantaneous velocity vectors in CFX. In CFX simulation, the suction above the 

crown could also promote the backflow mechanism and speed up the closure of trench 

walls. The CFX simulation of clay velocity vectors even at large ŵ is consistent with 

centrifuge test results of Hu (2010). 

The CFX analysis shown in Fig. 3.3 takes only 104 minutes with a 3.2 GHz Intel Core i5 

processor and 8 GB RAM. A same analysis is performed using Abaqus CEL (not shown 

here), which takes approximately23hourson the same computer (i.e. CFX is 13 times 

faster than CEL). One of the main advantages of the CFX Model-III is that the finer mesh 

near the riser moves at same velocity of the riser. However, in CEL the mesh is fixed 

which cannot be moved. The difference between solution techniques of these two 

numerical programs is also the cause of significant variation in computational time. It is 
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to be noted here that RITSS technique developed at the University of Western Australia is 

also computationally intensive and takes several days to analyze this type of problem 

(Barbosa-Cruz and Randolph 2005). In summary, the present CFX modeling is 

computationally very efficient as compared to other large deformation FE analyses. 

3.5 Parametric study 

As shown in previous sections, CFX can successfully simulate the penetration resistance. 

Moreover, the proposed CFX Model-III is computationally very efficient. This model is 

used for a parametric study. 

3.5.1  Uniform su0 

In the parametric study for uniform su0, the following parameters are kept constant: 

D=350 mm, sat=16.31 kN/m
3
, and v=60 mm/s, while the value of f2 and su0are varied. 

a)Effects of f2 - uniform su0 

Figure 3.6 shows the variation of Np with ŵ for four different values of f2 (0.01, 0.2, 0.5 

and 1.0) and su0=3.7 kPa. The penetration resistance increases with f2. At shallow depths, 

these results are comparable with previous studies (e.g. Wang et al. 2010: ideal soil 

without rate and softening effects). At ŵ =5, Np=9.33 and 10.45 for f2=0.01 and 1.0, 

respectively. Note that, at this ŵ  the suction in the cavity above the riser increases the 

magnitude of Np.  
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Figure 3.5: Velocity vectors and trench formation at different penetration depths  
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Figure 3.6: Effects of f2 on pipe penetration resistance for su0= 3.7 kPa 

b) Effects of su0 

Figure 3.7 shows the variation of Np for three different values of uniform su0. The 

magnitude of Np increases with decrease in su0. Martin and White (2012) conducted FE 

analyses of pipes in wished in place configuration and showed that Np increases with a 

normalized parameter D/su0. The values of D/su0 for the analysis presented in Fig. 3.7 

are 1.0 and 0.46 for su0= 2.3 and 5 kPa, respectively. At ŵ =5, Np=10.94 and 9.69 for su0= 

2.3 and 5 kPa, respectively. Although the analyses of Martin and White (2012) are for 
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some idealized conditions (full tension/no tension and smooth/rough), the calculated Np in 

their study are comparable with the present study. 

 

 

Figure 3.7: Effects of soil undrained shear strength on pipe penetration resistance 

for f2 = 0.5 
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The insets of Fig. 3.7 show the shape of the trench for two penetration depths and su0. As 

shown in inset-a that for a low su0=2.3 kPa the wall of the trench touches the symmetry 

plane at ŵ =4 that results in almost a closed drainage condition for the water in the cavity 

just above the crown. Further penetration results in suction in this cavity and increases Np. 

On the other hand, for su0=5 kPa there is still a wide space between the trench wall and 

symmetry plane even at ŵ =5 (inset-b in Fig. 3.7). In other words, the shape of the trench 

at the intermediate depths also influences Np. 

3.5.2 Linearly increasing su0 

The analyses presented in the previous sections are for uniform su0. In deepwater, linear 

increase of su0 with depth has been reported by many researchers (e.g.  Puech et al. 2010; 

Jeanjean 2002; Dingle et al. 2008).The linearly increasing su0 profile is defined as 

ykss umu
0 (Fig. 3.1). The parameters used in the “base case” analyses for linearly 

increasing shear strength profile are: D=350 mm, v=60 mm/s, sum=2.3 kPa, k=2.0 kPa/m, 

f2=0.01 and =6.5 kN/m
3
. In the parametric study, only one parameter is varied while the 

other parameters are same as above unless otherwise mentioned.  

In this study, a special technique in CFX has been developed such that the soil elements 

carry the initial value of su0 although they move through the mesh.  The parallel contours 

in Fig. 3.8(a) show that su0increases linearly with depth before penetration of the riser in 

the seabed. Fig. 3.8(b) shows the su0 contours at w=5D, which are no longer parallel lines. 

The displaced soil elements carry the initial value of su0. For example, the soil elements 

just below the riser are pushed down from a higher location but still carry su0 at original 
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locations. In summary, su0 is properly carried by the displaced clay elements during the 

progress of analysis. 

 

Figure 3.8: Contour of initial shear strength su0: (a) before penetration (b) at w= 5D 

Figure 3.9 shows the comparison of Np from CFX simulation for the base case of linearly 

increasing su0 profile. In the inset of Fig. 3.9, the zone of suction (negative pressure) is 

shown for three different w (2.5D, 4D and 5D). Considerable suction is developed above 

the riser at large embedments (e.g. w=4D to 5D) that increases the penetration resistance. 

The effects of suction on Np are discussed in detail in the previous sections for uniform 

su0. 
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Figure 3.9: Penetration resistance for base case linearly increasing shear strength 

profile (su0 = 2.3 + 2.0yʹ kPa with f2 = 0.01) 

a) Effects of f2 

The effects of f2 on Np for linearly increasing su0profile are shown in Fig. 3.10. The 

normalized penetration resistance increases with increase in f2. At ŵ =5, Np=8.5 and 9.4 

for f2=0.01 and 1.0, respectively. 
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Figure 3.10: Effects of f2 on penetration resistance for linearly increasing shear 

strength profile 

b) Effects of sum 

The mudline shear strength might vary from zero to several kPa (e.g. sum=2.0 kPa in 

Langford and Aubeny 2008; sum=3.7 kPa in Aubeny et al. 2008; sum=0 in Hu 2010; 

sum=4.3 kPa in Clukey et al. 2011). Figure 3.11 shows the variation of Np for three 

different values of sum (=1.0 2.3, 3.7 kPa) with f2=0.5. As shown in this figure that with 

increase in sum the normalized penetration resistance decreases. The insets of this figure 

show the shape of the trench. When sum=3.7 kPa, the trench is open even at ŵ =5 (see 
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inset-b). However, the face of the trench touches the symmetry plane for a low sum=1.0 

kPa at ŵ =3 as shown in the inset-a. The water in the cavity above the crown is 

hydraulically isolated and therefore suction will develop during further penetration, which 

also contributes to the higher Np for sum=1.0 kPa. 

 

 

Figure 3.11: Effects of mudline shear strength on pipe penetration resistance (f2 = 

0.5; k = 2 kPa) 
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c) Effects of shear strength gradient, k 

The shear strength gradient (k) could vary widely in deepwater offshore clays (e.g. Fugro 

1999; Jeanjean 2002). Model tests were also conducted in the past for a wide range of k. 

For example, Aubeny et al. (2008) conducted model tests in kaolin clay of uniform su0 

(k=0) of 3.7 kPa, while Langford and Aubeny (2008) conducted a series of model tests 

using a high plastic marine clay from the Gulf of Guinea with k=13 kPa/m and sum=2.0 

kPa (i.e. su0=2.0+13y in kPa). Similarly, Hu (2010) conducted centrifuge modeling 

varying k between 1.39 and 5.19. 

Figure 3.12 shows the variation of Np for four different values of k. The other soil 

parameters used in these analyses are sum=2.3 kPa/m and f2=0.5. Very small variation in 

Np is obtained up to ŵ =0.75. This is consistent with the small strain FE analyses of 

Aubeny et al. (2005), who showed that at shallow embedment (w0.5) the normalized 

penetration resistances fall into a very narrow range for uniform and linearly increasing 

su0. For ŵ ≥0.75, the higher the value of k the lower the Np. This trend is also similar to 

previous studies (Morrow and Bransby 2010; Martin and White 2012), although their 

analyses are for different soil properties and riser-soil interface conditions. 
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Figure 3.12: Effects of shear strength gradient on penetration resistance (f2 = 0.5;  

sum = 2.3 kPa) 

3.6 Chapter summary 

The penetration of steel catenary riser and other cylindrical objects, such as offshore 

pipelines or T-bar penetrometer, in soft clay seabed is of practical importance in many 

deepwater oil and gas development. Finite element (FE) analyses of these large 

deformation problems are computationally very expensive. Water can also play a 

significant role through development of suction behind the riser. Keeping in mind two 

critical issues, namely the computational cost and modeling of suction, a numerical 
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modeling technique is developed using the computational fluid dynamics (CFD) 

approach. The CFD modeling is performed using ANSYS CFX 13.0 software. Among the 

three different types of CFX models developed in the present study, the ‘subdomain’ 

modeling techniques is found to be more efficient. It is shown that CFX can successfully 

simulate the penetration of riser or pipeline in soft clay seabed. The main advantages of 

the present CFX modeling over existing large deformation finite element modeling are: 

(i) the CFX can simulate suction and (ii) the CFX modeling with a subdomain is 

computationally very efficient. 
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Chapter 4 

Modeling of Suction and Trench Formation at the Touchdown Zone 

4.1Introduction 

Steel catenary risers (SCR) are pipes that connect the seabed systems to the flexible 

floating production systems (FPS) such as Floating Production Storage and Offloading 

vessels (FPSO), semi-submersible and SPARs, which are widely used in deepwater oil 

and gas production. The SCR are usually suspended from FPS to the seabed in catenary 

shape. The riser-seabed-water interaction near the touchdown zone significantly 

influences the design of SCR, because this is one of the places of high stress 

concentration and possible fatigue damage. In conventional analysis, the seabed is 

modeled using simple linear springs with or without damping. Large-scale field and 

indoor tests (e.g. Bridge et al. 2003; Hodder and Byrne 2010; Wang et al. 2014), reduced-

scale centrifuge tests (e.g. Elliott et al. 2013a & b, 2014; Hu 2010) and small-scale 

laboratory tests (e.g. Bridge 2005; Aubeny et al. 2008; Langford et al. 2008a & b) were 

conducted in the past to understand this behaviour. 

The vertical penetration and uplift of the riser are two of the main loading phenomena at 

the touchdown zone. The vertical penetration of a cylindrical body, such as a section of 

riser, pipeline or a T-bar penetrometer, has been examined by many researchers. Previous 

research on modeling of vertical penetration of pipelines can be categorized into three 

groups: (i) theoretical modeling based on bearing capacity equations, upper and lower 

bound plasticity models and slip-line field theory (e.g. Small et al. 1972; Murff et al. 
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1989; Aubeny et al. 2005; Zhao et al. 2009), (ii) small and large-scale physical modeling, 

(Dunlap et al. 1990;SINTEF 1986a, b; 1987; AGA/PRC 1992; Cheuk et al. 2007; 

Cardoso et al. 2010; Dingle et al. 2008; Hu 2010; White and Dingle 2011) and (iii) 

numerical analyses. The numerical analyses are performed using small strain FE 

modeling techniques in Lagrangian framework (Aubeny et al. 2005; Bransby et al. 2008; 

Zhao et al. 2010; Martin and White 2012), finite difference approach (Morrow and 

Bransby 2010), and also recently introduced large deformation FE modeling techniques 

(Barbosa-Cruz and Randolph 2005; Merifield et al. 2009; Wang et al. 2010; Shi et al. 

2011; Tho et al. 2012; Chatterjee et al. 2012). The penetration behaviour is discussed in 

Chapter 3 and is not repeated here.  

Similar to vertical penetration, physical modeling was also conducted in the past for uplift 

(e.g. Bridge 2005; Hu 2010; Giertsen et al. 2004). The numerical modeling of uplift is 

very limited. Most of the theories and numerical models for uplift are developed from 

modeling of horizontal plate anchors (Merrifield et al. 2001, 2003; Thorne et al. 2004). 

Martin and White (2012) conducted FE analyses of ‘wished-in-place’ pipes embedded in 

clay at different depths for full (unlimited) and no interface tensions. For no tension 

condition, zero (for smooth) and small (for rough) uplift resistance was calculated for 

shallow embedments (e.g. less than half a diameter of the pipe) because the suction under 

the pipe is not modeled. The formation of trench due to uplift was not examined in this 

study. Significant soil strength degradation occurs if the riser separates from the seabed 

(breakout) during unloading leaving a trench near the mudline, because in the subsequent 

penetration, the riser moves through the trench to the clay underneath (Clukey et al. 

2007). Hu (2010) examined this effect through centrifuge modeling and showed that the 
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water entrainment during re-penetration increases the degradation of soil strength. 

Therefore, numerical simulation of the motion of the riser through water to the seabed 

better represents the condition in this zone, instead of cycling only in clay or clay and 

void. 

In this chapter the discussion is mainly focused on uplift resistance, although both 

penetration and uplift are numerically simulated. This chapter is organized in the 

following way. First, the observed response in model tests is presented. Second, the CFX 

modeling including the fundamental concepts related to riser-seabed-water interaction 

analyses are discussed. Third, as the shear strength of soil significantly influences the 

force-displacement behaviour, the modeling of soil and its implementation in CFX are 

discussed. Fourth, the performance of the present numerical model is shown by 

comparing the results with available empirical models based on experimental results and 

also with FE analysis. Finally, a parametric study is conducted to show the effects of 

various parameters. 

4.2 Two-dimensional model test results 

A series of model tests were conducted under the Catenary Riser-Soil Interaction Model 

for Global Riser Analysis (CARISIMA I) Joint Industry Project (JIP) using clay from a 

site in Onsøy, Norway, a marine clay with geotechnical properties similar to deepwater 

Gulf of Mexico clay (Marintek 2000a, b). To show the trend, the force-displacement 

curves for 3 uplift tests are shown in Fig. 4.1. In these tests, a 101.6 mm diameter and 

406.4 mm long pipe section was pushed in the virgin clay seabed to 0.5D depth in 

undrained condition. The undrained shear strength of the seabed increases linearly from 
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an average value of 1.5 kPa at the mudline at a rate of 12.5 kPa per meter depth (Bridge 

2005).  After 12 hours consolidation under 100 N vertical load, the pipe was pulled 

upward at different speeds (v).  

 

Figure 4.1: Uplift resistance in CARISIMA Phase-I test (Redrawn from Bridge, 

2005) 

The negative values of normalized resistance F/(suNDL) in Fig. 4.1 represent the uplift 

resistance, where F is the vertical resistance, D and L are the diameter and length of the 

pipe section, respectively, and suN is the undrained shear strength of clay. During the 

vertical movement of the riser, the mobilized undrained shear strength (su) of a soil 

element depends on mode of shearing, strain rate, strength degradation and the location of 
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the soil element. As su is not constant, the penetration and uplift resistance have been 

normalized by su at different conditions in the past, which will be discussed in the 

following sections. The values of suN used in Fig. 4.1 are obtained from Bridge (2005). 

The use of different suN will not change the general trend of the curve although the 

magnitude of normalized resistance will be different. In the vertical axis of Fig. 4.1, w 

represents the depth of pipe invert. Figure 4.1 shows that the uplift resistance is 

significantly influenced by v. Upon upward displacement, the uplift resistance increases 

gradually, reaches to the maximum and then decreases. The maximum uplift resistance 

also increases with v. Moreover, the depth at which the pipe separates from the seabed 

depends on v. For example, the riser separates from soil, leaving a trench, at w/D=0.18 in 

Test 03, which is very different from Test 02 and Test 04. In Test 02, the uplift resistance 

is measured even above the mudline. 

In the STRIDE (Steel Risers in Deepwater Environments) JIP, similar two-dimensional 

small-scale model tests were performed. The uplift tests were conducted in existing 

trenches, which were created by pushing a pipe to a depth of 0.5D. Tests were conducted 

in high plastic soft clay from the Watchet Harbour. Bridge (2005) presented a large 

number of test results and showed a very good comparison between CARISIMA and 

STRIDE 2-D test results. 

In summary, the STRIDE-2D, CARISIMA, and other model tests (e.g. Aubeny et al. 

2008; Langford and Aubeny 2008a & b) provide some valuable insight into the 

mechanism to develop a riser-seabed-water interaction model. Empirical models have 

been proposed in the past in the form of P-y curve based on model test results and field 

observation (Bridge et al. 2004; Aubeny and Biscontin 2009; Randolph and Quiggin 



 

4-6 

2009). These models are also used to calculate the response of riser (e.g. Nakhaee and 

Zhang 2010; Ting et al. 2011; Li and Low 2011; Shiri and Randolph 2010). Although 

these models are simple, a number of empirical parameters are required to define the P-y 

curve, especially for uplift as discussed in the following sections. 

4.3 Problem definition 

A riser section of diameter D is placed in water above the mudline at a distance yw (Fig. 

4.2), which is then displaced vertically at a velocity v. To eliminate buoyancy effect of 

water, the weight of the riser is assumed to be equal to the weight of the riser section 

filled with seawater. Two types of variation of initial undrained shear strength (su0) are 

considered in this study: (i) uniform su0, and (ii) linearly increasing su0. After penetration 

to the desired depth (0.5D), the riser is pulled up at a constant velocity v. 

4.4 CFD simulation 

The numerical simulations are performed using ANSYS CFX 13.0.  

4.4.1 Fundamental concepts 

In ANSYS CFX, the domain is first discretized into three-dimensional mesh. The 

governing equations are solved adopting a solution methodology based on finite volume, 

which are constructed using the discretized mesh. The force-displacement behaviour is 

modeled using the Navier-Stokes equations (also known as momentum equation), which 

has been developed applying Newton's Law (F=ma) to fluid elements. Here F is the 

force, m is the mass and a is the acceleration. The momentum equation is also 
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supplemented by the mass conservation equation. The forcing term (F) is the sum of 

gravitational force (Fgrv), pressure force (Fpress), viscous force (Fvisc). 

𝑚𝑎 = 𝐹𝑔𝑟𝑣 + 𝐹𝑝𝑟𝑒𝑠𝑠 + 𝐹𝑣𝑖𝑠𝑐        (1) 

 

 

Figure 4.2: Problem definition 

The gravitational force Fgrv (=mg) is same as it is in solid mechanics, where g is the 

gravitational acceleration. Pressure (p) is the normal stress on the surface of the control 

volume, which is analogous to the normal stresses in solid mechanics. The pressure 

gradient ∇𝑝 is used to calculate Fpress as 𝐹𝑝𝑟𝑒𝑠𝑠 = −∇𝑝𝑑𝑉. The pressure change may be 

caused by external sources such as movement of the riser. The viscous force Fvisc is 

caused by the shear stress acting parallel to the surface. It is similar to frictional force in 

the solid mechanics. Similar to Fpress, shear stress gradient (∇𝜏) is used to calculate 

𝐹𝑣𝑖𝑠𝑐 = ∇𝜏𝑑𝑉. 
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In this study, the parameters required in CFX to calculate Fgrv and Fpress are given by 

density of soil and water, and the boundary conditions including the displacement of the 

riser. The most critical component of the present CFX modeling is the definition of , 

which must be consistent with the undrained shear strength of clay (su). The CFX uses the 

coefficient of dynamic viscosity () as an input parameter to calculate . The definition of 

 as a function su are discussed in the following sections. In summary, assigning these 

input parameters properly, the force-displacement behaviour of the riser can be 

calculated. 

4.4.2 CFX model setup 

Figure 4.3 shows the CFX model setup. CFX allows only three-dimensional modeling, 

and therefore the analyses are performed for only one element of 10 mm in the out of 

plane direction. The riser (D=350 mm) is modeled as an impermeable wall. The center of 

the riser is placed in water at yw=1.0D above the mudline. An inner subdomain, shown by 

the shaded zone near the riser, is created. No mesh deformation is allowed in the 

subdomain and therefore the shape and size of the mesh does not change with 

displacement of the riser. Moreover, it moves with the riser at same velocity. However, 

soil and water as Eulerian materials flow through the mesh both in subdomain and outside 

the subdomain. Based on previous studies (e.g. Dutta et al. 2014), the radial thickness of 

the subdomain of 1.5D is considered because the strains in the soil elements outside this 

zone are not very significant. This modeling approach increases the computational 

efficiency and robustness of the simulation significantly as discussed in Chapter 3. It has 

also some other advantages as discussed in the following sections. 
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Figure 4.3: Development of CFX model in ANSYS 

As shown in Fig. 4.3, the upper 2.35 m (=6.7D) of the domain is water and the lower 

4.65 m (=13.3D) is clay. The right vertical boundary is placed at 3 m (=8.6D) from the 

center of the riser. The boundaries are placed at sufficiently large distance from the riser 
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and therefore no boundary effects are observed. Taking the advantage of symmetry, only 

the right half of the domain is modeled. 

The bottom and all the vertical faces are defined as walls, which are solid impermeable 

boundaries to fluid flow. No-slip boundary condition is applied to the bottom wall and 

riser surface, and therefore the velocity of the Eulerian material (soil/water) next to these 

walls is zero. Free-slip boundary condition is applied on the right vertical wall. On the 

other three vertical faces, symmetry plane boundary conditions are applied, which implies 

that the flow of Eulerian material (soil/water) on one side of the plane is a mirror image 

of the flow on the opposite side. “Unspecified mesh motion” option in CFX is used for 

the vertical walls. This setting allows the mesh node on these walls to move in the vertical 

direction preserving the quality of mesh during the displacement of the riser. The top of 

the water is defined as an opening to allow water to flow in and out of the domain. If one 

wants to compare with typical FE modeling, the above boundary conditions represent 

rollers in vertical faces and hinges at the bottom. Vertical displacement (same as the 

displacement of the riser) is assigned for the interface between the subdomain and 

surrounding soil/water without giving any additional interface conditions such as no-slip 

or free-slip conditions. This allows inward and outward flow of soil and water through 

this interface maintaining same fluid flux in both side of the interface.  

Both clay and water are modeled using homogeneous multiphase Eulerian materials. The 

interface between clay and water that represents the mudline is defined by a step function 

through CFX Command Language (CCL) — a declarative language in CFX for enhanced 

simulation without writing and linking separate external Fortran routines. The clay and 

water in the domain are defined using the volume fraction tool. In the elements above the 
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mudline, the volume fraction of water is set to 1 and the volume fraction of clay is 0. On 

the other hand, in the elements below the mudline the volume fraction of water is 0 and 

volume fraction of clay is 1. 

The mesh is formed using the options available in the CFX. Very fine mesh is used near 

the riser and the size is increased with distance from the riser. The maximum dimension 

of the mesh just outside the riser surface is 10 mm. The riser is displaced vertically 

specifying the motion of the nodes on riser wall and subdomain. Mesh sensitivity 

analyses are performed with coarser and finer mesh than the one shown in Fig. 4.3. Based 

on these analyses the optimum mesh (Fig. 4.3) is selected for further analyses. 

4.5 Modeling of soil 

In deepwater, very soft clays of low su0 and high plasticity index are generally 

encountered near the mudline (Fugro, 1999). The su0might be constant or increase linearly 

with depth. The linear variation of su0 is defined as ykss umu
0 , where sum is the 

undrained shear strength of clay at the mudline, k is the strength gradient and y is the 

depth of the soil element (Fig. 4.2). Fugro (1999) reported typical values of sum (1.2–2.6 

kPa) and k (0.8–1.6 kPa/m) for deepwater clays in the Gulf of Mexico, West Europe and 

West Africa. Numerical analyses and laboratory tests for higher values of sum up to 10 

kPa and k of 13 kPa/m were also performed to show the effects of these parameters (e.g. 

Chatterjee et al. 2012; Langford and Aubeny 2008b). A comprehensive discussion on 

estimation of shear strength of soft clays in deepwater are available in Lunne and 

Andersen (2007) and Lunne et al. (2011). 
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The mobilized undrained shear strength (su) depends on rate of shearing. Also, the soil 

around the riser might experience significant plastic strain that could degrade the shear 

strength (e.g. Einav and Randolph 2005; Zhou and Randolph 2007). The effects of these 

two factors on su are incorporated as: 

021 uu sffs          (2) 

where  
101

2
/




fuu ssf and  
102

1
/




fuu ssf are the effects of strain rate and softening, 

respectively. 

4.6 Effect of shear strain rate 

4.6.1 Geotechnical and fluid mechanics frameworks 

There are two frameworks available in the literature to incorporate the effects of shear 

strain rate (  ) on su, namely the geotechnical and fluid mechanics frameworks. In the 

geotechnical framework, the inverse hyperbolic, logarithmic and power law models are 

commonly used to capture the effects of   (Einav and Randolph 2005; Lunne et al. 2011; 

Boukpeti et al. 2012a). These models show satisfactory performance for typical 

geotechnical engineering practice if appropriate values of model parameters are selected. 

Typical ranges of the model parameters are given by several authors based on 

experimental results (e.g. Boukpeti et al. 2012a; Lunne and Andersen 2007). 

In the fluid mechanics approach, clay slurries or very soft clays are usually modeled using 

the Herschel-Bulkley model, in which the dynamic viscosity () is defined as: 

 










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Where y represents the minimum shear stress required for commencement of viscous 

flow (yield stress); K is the viscous property and the flow index (n) is a material property. 

As the geotechnical approach is used, the symbol y is replaced by suc. Experimental 

evidences show that both K and y increase exponentially with volumetric concentration 

of solid (Csv) as svC
eK 1

1


  and svC
y e 2

2 


 (O’Brien and Julien1988; Major and 

Pierson 1992), where 1, 1, 2 and 2 are material constants. That means, K can be 

assumed to be proportional to y (or suc), for a given Csv. 

4.6.2 Laboratory test results 

Because of faster penetration and pull-out,   in soil near the touchdown zone could be 

significantly higher than   in typical geotechnical laboratory tests, such as triaxial tests. 

Sheahan et al. (1996) conducted consolidated undrained triaxial tests and showed that the 

effects of   on su increases at high strain rates. Biscontin and Pestana (2001) conducted 

vane shear tests at shear strain rates much higher than that used in common laboratory 

tests. From T-bar penetrometer and vane shear tests at various water contents, Boukpeti et 

al. (2012a) reported the effects for a wide range of  . To investigate the effects of high 

strain rates, Abelev and Valent (2013) conducted vane shear tests for a wide range of 

on sediments from the Gulf of Mexico. The undrained shear strengths reported in these 

studies are plotted in Fig. 4.4 in normalized form. In this figure, the data from Boukpeti et 

al. (2012a) are plotted in terms of ref  / , where 06.0ref
 s

-1
. On the other hand the data 

from Biscontin and Pestana (2001) and  Abelev and Valent (2013) are plotted in terms of 

/ref, where  is the angular rotation rate of the vane. The standard field vane shear tests 
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at =0.1/s represent an approximate shear strain rate of 0.05 s
-1

 (Boukpeti et al. (2012a). 

Therefore, all data represent the effect of   as they are normalized using reference values 

of similar range. 

 

Figure 4.4: Strain rate effects on undrained shear strength 

4.6.3 Power law model 

One of the widely used model for strain rate effect is the power law model, 

   
 refref0 /// 

uu ss , where  is a constant (0.05-0.1) (Boukpeti et al. 2012b). 

Two red dashed lines in Fig. 4.4 are drawn using the power law model with =0.05 and 
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0.1.  As shown, most of the data points are in between these two lines. However, a unique 

value of  cannot model properly the whole range of  . For example, consider Biscontin 

and Pestana (2001) tests data. The power law with =0.05 can model properly the shear 

strength up to 20/ ref  . Above this strain rate, =0.05 underestimates the shear 

strength, and to match the test results higher values of  is required. In other words, a 

constant value of  does not model the whole range of  above ref . To fit these data, 

Abelev and Valent (2013) revised the power law with an additive term, which is similar 

to the Herschel-Bulkley model (Eq. 3).
 

4.6.4 Proposed unified model 

A unified model is proposed in this study combining the power law and modified form of 

Herschel-Bulkley model. It is suggested to use the modified Herschel-Bulkley model at 

higher strain rates (
ref  ). As mentioned before, K can be assumed to be proportional to 

suc. Assuming ucscK 1 , where c1 is a material property, the variation of su with  in a 

modified form of Herschel-Bulkley model can be written as: 

)1( 1
n

ucu css            (4) 

Using the reference strain rate conditions ( 0uu ss  at 
ref  ) it can be shown that 

)1/( 10
n
refuuc css   . Now inserting suc in Eq. (4), the following expression is obtained. 
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0 1

1
         (5) 

Equation (5) represents the strain rate effects f1=su/su0 in Eq. (2) without any softening. 
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The undrained shear strength of clay in deepwater is usually obtained from T-bar, ball 

penetration, and vane shear tests. The operative shear strain rate of these equipment is 

usually higher than that used in typical laboratory triaxial tests. For example, Boukpeti et 

al. (2012a) showed that the operative shear strain rate for standard field vane is ~0.05 s
-

1
and for T-bar and ball penetration is 0.15 s

-1
, although it depends upon rotation and 

penetration speed. On the other hand,   is in the range of 3 to 1410
-6

 s
-1

in typical 

laboratory triaxial tests. Using 06.0ref
 s

-1
, they also showed that the strain rate 

dependent models reasonably fit their test data. As T-bar, ball and vanes are widely used 

in offshore geotechnical investigation, a reference shear strain of 0.05 s
-1

 is used in the 

present study, and su0 represents the strength at .ref  

The thick dashed line in Fig. 4.4 shows the variation of su/su0 with  for c1=0.4 s
n
 using 

Eq. (5). As shown, Eq. (5) fits the test data better than the power law models for .ref 

Different relationships between c1 and suc and also the variation of n might fit individual 

set of test results better. However, such attempt is not taken in this study considering 

other uncertainties in deepwater geotechnical characterization. Equation (5) is used to 

calculate f1 for .ref   

For ref  , Eq. (5) calculates higher undrained shear strength (see Fig. 4.4) than test 

data and power law model. Not only the experimental results shown in this figure, a large 

number of previous studies showed that the power law can model reasonably su in this 

range of  . Therefore, the power law model (Eq. 6) 

  ref0 // 
uu ss

         (6) 



 

4-17 

is used to calculate f1 with =0.06 for ref  . 

The performance of the combined model with power law and Eq. (5) is shown by the 

thick dashed line in Fig. 4.4, which shows that the proposed combined model fits the test 

results better than only the power law or Herschel-Bulkley model for a wide range of  . 

4.7 Degradation of shear strength 

The shear strength of clay sediments around the riser decreases during penetration and 

uplift due to strain softening. The degradation of undrained shear strength depends on 

remoulded sensitivity of the soil. Attempts have been taken in the past to model such 

complex process of degradation. Einav and Randolph (2005) proposed a simple model for 

undrained shear strength degradation as a function of plastic shear strain. This model has 

been used by various authors to simulate pipeline penetration in the seabed (Chatterjee et 

al. 2012; Wang et al. 2010). Similarly, Hodder et al. (2010) proposed a simplified model 

for progressive loss of shear strength using a triangular damage influence function, 

avoiding complete analysis of the zone of influence. While this method is very useful for 

modeling cyclic response, the variation of undrained shear strength with radial distance 

from the pipe is not incorporated. 

For better visualization of the effects of strength degradation on uplift resistance and 

suction, a simple degradation model shown in Fig. 4.5 is used where the degradation is 

defined using three zones. The location of the riser at the end of maximum penetration 

depth (0.5D) is shown in this figure. The extent of soil failure mechanism from the riser 

and the variation of  
102

1
/




fuu ssf with distance are considered. 
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Figure 4.5: Degradation of undrained shear strength used in CFX model 

A reduced shear strength is prescribed to a thin layer of soil (10 mm) near the riser (Zone-

I), which can be considered as finite thickness interface elements. Note that finite 

thickness interface elements have been successfully used in previous studies to calculate 

the pullout capacity of suction caissons (Supachawarote et al. 2004) and also in slope 

stability analysis (Jostad and Andresen 2004). The interface shear strength is generally 

obtained by multiplying the undrained shear strength of soil by a factor , where 

01.0. In this study, a constant undrained shear strength su_int=0.4 kPa is used in this 

thin zone, which is then multiplied by strain rate effect f1 to calculate mobilized su. As the 

size of the mesh does not change in the inner subdomain (Fig. 4.3), this shear strength 

could be easily assigned to the elements just outside the riser surface when the soil is in 

contact with the riser. Note that, the thickness of the first row of elements near the riser is 
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10 mm. When the soil is not in contact with the riser (e.g. at the level of mudline in Fig. 

4.5), the face of the clay is identified using the clay volume fraction, and from that face to 

a distance of 10 mm an undrained shear strength of 0.4 kPa is assigned. After 10 mm 

radial distance, the value of f2is increased using a parabolic function baRf x  22
2 and 

reached to f2=1 (no degradation) at a distance of Rx=. Using the boundary conditions 

f2=f20 at Rx=0, and f2=1 at Rx=, the constants
22

20 /)1(  fa  and 
2

20fb  are obtained. 

Now inserting a and b in the parabolic equation, 
2

20
22

202 )/)(1( fRff x  is obtained. 

For simplicity, the average value 2/)1( 202 ff   is used in the berm. Analyses are also 

performed with 15 mm and 20 mm thickness of Zone-I and no significant difference in 

penetration or uplift resistance is found.  

In summary, this simple model shows that the maximum degradation occurs near the riser 

and the shear strength reaches to the original value at Rx=. The location of the outer 

surface of the degraded shear strength zone (thick dashed line) remains constant during 

uplift and therefore the value of  is updated with each time increment during the 

analysis. The value of =1.0D at the start of uplift (w=0.5D) is assumed for the “base 

case.” However, the parametric study for different values of  is also conducted. For 

simplicity, the outer surface of Zone-II is assumed to be circular. The value of f20 depends 

on number of penetration-uplift cycles. After a number of cycles of loading-unloading it 

could be reduced to 1/St, where St is the remoulded sensitivity. As only one cycle is 

simulated in this study, a value of f20=0.45 is assumed based on numerical simulation of 

Dutta et al. (2014). 
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The large deformation FE analyses under monotonic loading show that the influence of 

shear strength degradation on penetration resistance is not very significant (Chatterjee et 

al. 2012, Dutta et al. 2012a & b). As in this study only one penetration-uplift cycle is 

simulated, the shear strength degradation effects during penetration is neglected. Detailed 

discussions on penetration behaviour are available in Dutta et al. (2014) and also in 

Chapter 3. 

It is recognized that an improved model considering possible factors related to 

degradation might better simulate the response. However, with the proposed simple 

degradation model the advantages of CFD approach for modeling suction and uplift 

resistance are shown. 

4.8 Soil parameters 

Table 3.1 shows the parameters used in base case analysis, which are selected from a 

critical review of previous laboratory tests and proposed models for very soft clays in 

deepwater (e.g. Biscontin and Pestana 2001; Zhu and Randolph 2011; Boukpeti et al. 

2012a; Abelev and Valent 2013). 

4.9 Numerical results 

The penetration and uplift resistances are presented in normalized form as Npu=F/suNDeL, 

where F is the penetration or uplift resistance, suN is the undrained shear strength used for 

normalization, De is the effective pipe diameter and L is the length of riser section (=10 

mm). The undrained shear strength depends on mode of shearing (e.g. triaxial or simple 

shear), strain rate and depth (in linear su0). One should interpret the value of normalized 
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resistance carefully because suN at different conditions has been used in previous studies 

(e.g. Langford and Aubeny 2008; Zhu and Randolph 2010; Wang et al. 2010; Bridge 

2005). In the present study, considering triaxial compression mode as the reference, su0 at 

the invert of the riser (su0(i)) in triaxial compression stress condition at ref is used for suN. 

Using Tresca hexagon in the deviatoric plane it can be shown that
)(0

3

2
iuuN ss  (Smith 

and Griffiths 2004; Sousa et al. 2011; Tho et al. 2013). Following the concept of Gui and 

Bolton (1998) and assuming that the failure is occurred at a distance of half of the 

element size from the outer surface of the riser, the value of De can be calculated as 360 

mm (=350 mm+2×10 mm/2) for 10 mm element size just outside the riser. If D (=350 

mm) is used instead of De, the normalized penetration resistance will be increased by only 

2.8%. In this study De is used. The depth of embedment is normalized as ŵ w/De. 

4.9.1 Performance of CFX modeling 

In order to show the performance of the present CFX modeling, the base case is 

considered first. In this case, the riser is moved downward through water and penetrated 

into the seabed sediment of linearly increasing su0 as su0 (kPa)=2.3+3.6y(in m) to a depth 

of 0.5D and then uplifted. A constant velocity of 20 mm/s is maintained in both 

penetration and uplift. The normalized penetration and uplift resistance curves are shown 

in Fig. 4.6.Details of Fig. 4.6 are provided in the following sections. 
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Figure 4.6: Normalized penetration and uplift resistance with depth for base case 

4.9.2 Implementation of su0 in CFX 

As discussed in previous chapter, a special technique in CFX has been developed such 

that the soil elements carry the initial values of su0 although they move through the mesh 

as Eulerian material.  Figure 4.7(a) shows the contour of su0 at w=0.48D during uplift.   
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Figure 4.7: Undrained shear strength model implementation: (a) su0, (b) strain rate, (c) shear strength degradation, (d) 

mobilize su at w=0.48D during uplift  
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As shown, the displaced soil elements carry the initial value of su0. For example, the soil 

elements which were initially near the mudline are pushed under the pipe at point A or in 

the berm at point B still have the same value of su0 although they are displaced to 

different locations. The mobilized su at a particular time is calculated with this su0 using 

Eq. (2). 

The variation of  at w=0.48D during uplift is shown in Fig. 4.7(b). Note that this figure 

shows  at this particular time. One soil element might have significant strain, but 

could be very small at this stage. For example, the soil element near or in the berm might 

have significant strain accumulation but at the current instance  is negligible. Once the 

value of  is known, f1 is calculated using Eq. 5 or 6. Figure 4.7(c) shows the contour of 

strength degradation factor f2 (1.0) in Zone-II. Outside Zone-II f2=1.0, meaning that no 

shear strength degradation occurs in Zone-III. Once the values of f1 and f2 are known, the 

mobilized su is calculated using Eq. (2). As shown in Fig. 4.7(d), su is different from su0 

especially near the riser. Figures 4.7(a-d) show that the proposed model of undrained 

shear strength is properly implemented in CFX. 

4.9.3 Uplift resistance 

Upon displacement reversal at w=0.5D, the resistance is reduced and then become 

negative (Fig. 4.6). The negative value represents the uplift resistance. In this case, the 

maximum normalized uplift resistance is 2.8, which is 53% of the maximum penetration 

resistance. In previous studies (e.g. Randolph and Quiggin 2009, Shiri and Randolph 

2010, Li and Low 2011) used an empirical factor named as ‘suction ratio’, which is the 

ratio of the maximum uplift and penetration resistance. They performed analyses with 
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suction ratio of 0.1-0.6 and also with 1.0 (extreme cases) recognizing the fact that the 

suction ratio depends on various factors. 

As shown in Fig.4. 7 that even at  w=0.48D  the soil is not in contact with the  riser  above 

the springline. Therefore, the main sources of uplift resistance in Fig. 4.6are the suction 

and interface resistance between soil and bottom half of the riser. Figure 4.6 also shows 

that the uplift resistance slowly decreases from point B to point C with vertical upward 

displacement. The uplift resistance decreases quickly after point C ( ŵ 0.25) and become 

zero at point D ( ŵ 0.1). The separation of the bottom of the riser from clay occurs very 

quickly during the upward displacement from C to D, and the riser completely separates 

from clay at point D leaving a trench of approximately 0.1D depth. 

The performance of the proposed model and numerical simulations are verified using 

model test results. Based on extensive laboratory experiment results in various conditions, 

Bridge et al. (2004) proposed an empirical model to calculate soil suction during uplift. 

According to this model the ratio between the maximum suction and ultimate penetration 

resistance (fsuc) can be calculated as 

𝑓𝑠𝑢𝑐 = −𝑘𝐶𝑘𝑉𝑘𝑇         (7) 

Where kC, kV and kT are dimensionless empirical factors. Bridge et al. (2004) suggested 

kC=1.0, and 0.56 for undisturbed and remoulded undrained shear strength condition. The 

constant kV is related to v/D as 𝑘𝑉 = 𝑘𝐹(𝑣/𝐷)
𝑛𝐹 , where kF are nF are two empirical 

constants.  
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Bridge et al. (2004) also provided a model for breakout displacement B (the vertical 

displacement of the riser from the maximum penetration to the point where the riser 

separates from the seabed). 

𝐵

𝐷
= 𝑘𝐷𝐶𝑘𝐷𝑉𝑘𝐷𝑇         (8) 

Where kDC, kDV and kDT are empirical constants for uplift resistance. For the first pullout, 

Bridge (2005) suggested kDC=1.0 Moreover, 𝑘𝐷𝑉 = 𝑘𝐷(𝑣)
𝑛𝐷, where kD are nD are two 

empirical constants. As in the present study the riser is lifted immediately after the 

penetration, the consolidation time is zero. Therefore, kT and kDT are 0.9 and 0.8, 

respectively, as suggested by Bridge et al. (2004). 

Analyzing extensive experimental results of the CARISIMA and STRIDE projects, 

Bridge et al. (2005) suggested the following values for two clays: (i) for OnsØy clay 

kF=1.12, nF=0.18, kD=0.98, nd=0.26 and (ii) for Watchet Harbour clay kF=0.98, nF=0.21, 

kD=0.83, nD=0.19. 

Now using the above empirical values fsuc and B are calculated. Then multiplying the 

maximum normalized penetration resistance by fsuc, the normalized maximum suction is 

calculated. 

Bridge et al. (2004) also defined the mobilization of suction using 3 linear lines. At the 

vertical upward displacement of 0.075B the maximum suction is mobilized, which has 

been referred as “suction mobilization.” Between 0.075B and 0.7B the suction remains 

constant at the maximum value. This zone has been referred as “suction plateau.” Finally, 

form 0.7B to B the suction force reduces from the maximum to zero, which has been 

referred as suction release zone. 
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The calculated suction profiles for the OnsØy and Watchet Harbour clays for the two 

limiting values of su (undisturbed and remoulded) are shown in Fig. 4.6. As partial 

degradation of su occurs (cf. Fig. 4.5), the suction profile obtained from the present CFX 

model lies in between these two limits. Calculated suction and its mobilization are 

comparable with experimental results because Bridge et al. (2004) developed their model 

from an extensive test results. This also implies that the simple degradation model (Fig. 

4.5), together with the model parameters (Table 3.1), can simulate the trend of suction 

force as observed in model test results. 

In order to show direct comparison, simulation are also performed with the shear strength 

profile of OnsØy clay (su0 (kPa)=1.5+12.5y (in m), Bridge 2005). The calculated 

normalized resistance is slightly higher than that of the base case, but again comparable 

with the empirical model developed from experimental results. Further discussions on the 

effects of soil profile are presented in the following sections.  

Based on upper bound solution for rough pipe in constant su profile (Murff et al. 1989), 

Bridge (2005) recommended the maximum normalized penetration resistance of 5.92 at 

0.5D penetration, which is shown by a circle in Fig. 4.6. Numerical investigation of 

penetration resistance of offshore pipelines has been presented in Chapter 3. Therefore, 

instead of repeating, the main focus of the following sections is given to the uplift 

resistance and suction. 

4.9.4 Suction 

The negative pressure contours in clay around the riser during upward displacement are 

shown in Fig. 4.8. The negative values of pressure represent the suction. Figure 4.8(a) 
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shows that a considerable suction is developed in clay under the riser and its extent is 

almost a diameter of the riser. The maximum suction is generated below the invert of the 

riser, and it gradually decreased with radial distance. The suction in soil elements in the 

berm or near the mudline is not very significant. When the pipe is displaced up at w=0.3D 

(Fig. 4.8b), the zone of suction becomes smaller. Figure 4.8(c) shows that there is a very 

small zone of suction near the pipe invert at w=0.2D. A considerable length of pipe 

surface under the springline separates from clay and formed a channel for water to flow 

through. Because of this separation, the uplift resistance decreases quickly in this phase of 

upward movement (c.f. Fig. 4.6). Figure 4.8(d) shows no suction under the pipe at 

w=0.1D. A larger channel is formed through which water flows almost to the invert of the 

riser. The uplift resistance is almost zero at this stage (Fig. 4.6). A trench of 0.1D 

maximum depth is formed. The riser left the seabed with this trench with further upward 

displacement. 

The instantaneous velocity vectors of soil and water are also shown in Figs. 4.8a-d. 

Figure 4.8(a) shows that the soil elements move towards the invert of the pipe because of 

high suction. At this stage, the water particles above the top half of the pipe move mainly 

in the upward direction. At w=0.3D (Fig. 4.8b), the water particles near the springline 

move downward towards the bottom of the pipe. The velocity of water particle increases 

when the riser separates from clay and a channel is formed as shown in Fig. 4.8c. The 

flow of water under the riser increases further when the channel becomes wider as shown 

in Fig. 4.8d. 
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Figure 4.8: Suction and velocity vectors during uplift: (a) w=0.49D, (b) w=0.3D, (c) w=0.2D, (d) w=0.1D (-ve pressure 

means suction) 
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4.9.5 Computational time 

The present CFX simulation is computationally very efficient as discussed in chapter 3. 

The simulation shown in Fig. 4.6 takes only18minutes with a 3.2 GHz Intel Core i5 

processor and 8 GB RAM. The comparison of computational times only for penetration to 

0.5D shows that the present CFX simulation is significantly faster than large deformation 

FE analyses using Abaqus CEL of similar problem (Dutta et al. 2014). As shown in Fig. 

4.3, the finer mesh in the subdomain moves with the riser and therefore the present CFX 

model requires less number of elements as compared to CEL, because the mesh in CEL is 

fixed and finer mesh is required to be created over a large area where considerable soil 

deformation occurs. 

In summary, in the numerical modeling of uplift, at least three key aspects should be 

considered: large deformation, suction, and riser-seabed-water interaction. The available 

FE techniques cannot simulate properly all of them together. For example, the advanced 

Abaqus CEL FE technique can simulate large deformation but cannot simulate the suction 

properly. However, the present CFX model can successfully simulate this behavior. 

Moreover, it is computationally very efficient. 

4.10 Parametric study 

Experimental evidences show that the uplift behavior depends on a number of factors 

such as undrained shear strength of soil, upward velocity and shear strength degradation 

(Giertsen et al. 2004; Bridge 2005; Hu 2010). A parametric study is conducted using the 
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above CFX model in which only one parameter is varied while the other parameters are 

kept constant as listed in Table 3.1, unless otherwise mentioned. 

4.10.1 Mudline shear strength (sum) in linear su0 profile 

Figure 4.9 shows the penetration and uplift resistance for four different values of sum with 

k=4 kPa/m. At a given ŵ , the normalized penetration resistance increases with decrease 

in sum. For sum=0.2 kPa, a very small increase in normalized penetration resistance with 

depth is found for ŵ greater than 0.15. The penetration resistance in this case increases 

almost linearly with depth from ŵ =0.15 and as it is normalized by su0(i) that also 

increases linearly with depth, the normalized penetration resistance is almost constant 

with ŵ . From centrifuge tests with sum=0, Hu (2010) showed that the penetration 

resistance increases almost linearly with depth. On the other hand, for sum=2.3 kPa, the 

centrifuge test results in Dingle et al. (2008) show the normalized penetration resistance 

very similar to other four penetration curves in Fig. 4.9. In summary, the normalized 

penetration resistance depends on sum, and it can be calculated using the present CFX 

model. 

The effect of sum on uplift resistance is different from that of on penetration resistance. 

For sum1.0 kPa, the normalized uplift resistance gradually decreases with upward 

displacement, and from ŵ 0.27 it decreases quickly and the complete breakout occurs at 

ŵ =0.08-0.15. However, the normalized uplift resistance is almost constant for sum=0.2 

kPa until ŵ =0.2. The uplift resistance decreases almost linearly with depth in this range, 

and as it is normalized by linearly increasing su0(i), the normalized uplift resistance 

remains almost constant. The complete breakout in this case occurs above the mudline. 
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As the shear strength of clay near the mudline is very low, the soil can easily follow the 

riser due to the suction developed under it. Dragging of soil above the mudline was 

observed in model tests including Test-2 of CARISIMA model tests (Fig. 4.1) for high 

speeds. The present numerical analyses show that it could also occur in clay with very 

low mudline shear strength. However, it is not possible if the shear strength of clay is 

high near the mudline, and therefore breakout occurs before the invert of the riser reaches 

the mudline. That means, the higher the value of sum, the higher the depth of trench. 

 

Figure 4.9: Effect of mudline shear strength 
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4.10.2 Shear strength gradient (k) in linear su0 profile 

Keeping the value of sum constant (=2.3 kPa), the analyses are performed for four 

different values of k (=0 (uniform), 1.5, 3.0 and 4.5 kPa/m). Figure 4.10 shows that the 

normalized penetration resistance slightly increases with increase in k for this range of 

embedments. 

 

Figure 4.10: Effect of undrained shear strength gradient (k) 
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Negligible variation in the maximum normalized uplift resistance is calculated for the 

cases analyzed. Faster suction decay occurs in the suction release phase if k is increased. 

Therefore, the uplift resistance curve for higher k (e.g. 4.5 kPa/m) is under the curves 

with lower k (e.g. k=1.5 kPa/m). At a given embedment in the suction release phase, the 

shear strength of clay below the riser is higher for higher k value. The suction under the 

riser cannot pull this soil easily and therefore suction release occurs quickly for higher 

values of k. Overall, k values of this range does not have significant influence on Npu for 

these embedments. 

4.10.3 Uniform su0 profile 

In the above sections, the simulations for linearly increasing su0 profile are presented. 

Figure 4.11 shows the simulations for five different uniform su0 (i.e. k=0). The normalized 

penetration resistance increases with decrease in su0. Using Abaqus CEL, without any 

effect of  , Tho et al. (2012) also showed that the normalized penetration resistance 

increases with decrease in su0. Note that, the effects of  on su during penetration are 

considered in the present study. An opposite trend, although not very significant, is found 

in the maximum uplift resistance, which decreases with decrease in su0. Moreover, with 

increase in su0 faster suction release is occurred resulting in larger trench depths. The 

possible mechanisms involved in such variation of uplift resistance with su0 are similar to 

that discussed in previous sections for linearly increasing su0. 
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Figure 4.11: Effect of variation of uniform su0 

4.10.4 Zone of strength degradation 

In the analysis presented in previous sections, the extent of shear strength degradation 

zone is defined by =D (Fig. 4.5). In order to examine the effects of  on uplift 

resistance, analyses are performed for 8 different values of (Fig. 4.12). As soil strength 

degradation is not incorporated during penetration, the penetration resistance is same for 

all 8 cases. The maximum uplift resistance decreases with increase in . Initially the 

depth of trench increases slightly with increase in  for 0.25D1.0D.  
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Figure 4.12: Effect of shear strength degradation zone 

The increase in size of degradation zone reduces the shear strength over a larger area 

around the riser and therefore gives lower uplift resistance. For large values of  (=1.25D 

and 1.5D), the clay in a large area near the riser becomes soft which can move easily with 

the riser, and therefore the complete breakout occurs at shallow depths with large suction 

plateaus. For =0, the ratio between the maximum uplift and penetration resistance is 

0.89, and a very large suction plateau is obtained. In summary, the extent of shear 

strength degradation has a significant influence on suction and trench formation. 
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4.10.5 Pullout velocity 

The pullout velocity is one of the key parameters that significantly influence the uplift 

resistance. A total of 54 analyses are performed for uniform and linearly increasing su0. 

For uniform su0, analyses are performed for three different su0 (=1, 3 and 5 kPa) and five 

velocities (10, 20, 50, 100, 200 and 300 mm/s). For brevity, the maximum uplift 

resistance is presented in Figs. 4.13, which shows that the normalized maximum uplift 

resistance increases with v/De in a semi-log plot. One of the reasons is that the increase in 

v increases  and shear strength (c.f. Fig. 4.4). Note that, the rate of increase in maximum 

uplift resistance with v depends on model parameters , c1 and n. The present simulation 

results are consistent with CARISIMA and STRIDE 2D model test results (Bridge 2005). 

Assume that the riser separates from clay when the normalized uplift resistance in the 

suction decay phase first reaches to a very small value (<0.2). The embedment at this 

stage gives the depth of trench. The maximum depth of trench of 0.15D is obtained when 

su0 is high (5 kPa) and v is low (10 mm/s), although the variation in trench depth is not 

significant for v≤50 mm/s. For a low su0 (1 kPa) and high velocities (200 or 300 mm/s), 

uplift resistance is calculated even above the mudline, which is consistent with Test 2 of 

Fig. 4.1. 

Simulations are also performed for linearly increasing su0. Figure 4.14(a) shows the 

variation of the maximum normalized uplift resistance for three different values of sum. 

Similar to Fig. 4.13, the maximum uplift resistance increases with v. The maximum depth 

of trench of 0.17D is obtained when sum=5 kPa and v=10 mm/s. Unlike uniform su0, for 

sum=1 kPa, the separation of the riser occurs below the mudline with trench depths 
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between 0.05D to 0.08D. This is because, su0 increases with depth in this case and 

therefore clay does not move easily with the riser as compared to uniform su0=1 kPa. 

Therefore, it can be concluded that trench depth depends on not only the velocity but also 

shear strength profile. 

 

 

Figure 4.13: Effect of velocity for different uniform su0 on maximum uplift 

resistance 

Finally, the analyses are performed to investigate the effects of shear strength gradient k 

for a linearly increasing su0 (=2.3+kyʹ) profile. Figure 4.14(b) shows that the maximum 

uplift resistance increases with v. Small variation in trench depth, in the range of 0.08D to 

0.12D, is obtained for these values of k and v. 
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Figure 4.14: Effect of velocity for linearly increasing su0 on maximum uplift 

resistance (a) sum effect (b) k effect 
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4.11 Chapter summary 

In this chapter both penetration and uplift behaviour are simulated using computational 

fluid dynamics (CFD) approach. The simulation results for penetration are presented in 

Chapter 3. In this chapter, CFD simulations of uplift resistance, suction and trench 

formation using ANSYS CFX are discussed.  A new model for undrained shear strength 

of soft clay is proposed that is applicable to a wide range of shear strain rates. The effects 

of strain rate and strength degradation are incorporated properly in ANSYS CFX and 

simulations are performed for one penetration-uplift cycle. Comparing with empirical 

models developed from experimental results it is shown that the present CFX model can 

simulate the suction and uplift resistance. Moreover, the CFX model developed in this 

study using the subdomain approach is computationally very efficient. The suction under 

the riser is the main source of uplift resistance for shallow embedments. The parametric 

study shows that the maximum uplift resistance and depth of trench depend on uplift 

velocity and undrained shear strength of clay. 
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Chapter 5 

Conclusions and Recommendations for Future Research 

5.1 Introduction 

Steel catenary risers (SCR) are widely used in deepwater oil and gas production. The 

riser-seabed-water interaction near the touchdown zone is one of the main concerns in the 

design of fatigue life of SCR. However, fatigue assessment of SCR is a major engineering 

challenge mainly because of lack of proper understanding of the force displacement 

response in the touchdown zone. In order to understand the mechanisms better, numerical 

modeling has been conducted in the present study for vertical penetration and uplift of a 

section of a riser. 

During upward displacement of the riser, suction might be developed under the riser and 

a trench might be formed when it separates from the seabed near the touchdown point 

(TDP). In the subsequent downward movement, the riser penetrates through this trench to 

the seabed. Therefore, modeling of suction and trench formation is very important. In the 

existing models available in the literature for uplift resistance, these factors are 

incorporated using empirical relationships. 

5.2 Conclusions on penetration of riser 

The penetration of riser in soft clay seabed is fundamentally a large deformation problem. 

In addition to physical modeling, various numerical modeling techniques have been 

developed in the past to simulate this. Among them the RITSS and Abaqus CEL are the 
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two FE approaches used by a number of researchers. Both of these techniques are 

computationally very expensive and cannot simulate suction properly. In this study 

(Chapter 3), computational fluid dynamic approach is used to simulate the load-

penetration response of a riser. The numerical simulations cover a wide range of 

embedments (up to 5D). The failure mechanisms in the ‘transition zone’ where they 

change from ‘shallow’ to ‘deep’ failure mechanisms are critically examined. The 

following conclusions can be drawn from the numerical simulations presented in Chapter 

3 on penetration behaviour: 

i) ANSYS CFX can successfully simulate the penetration resistance. 

ii) The depth of transition zone and shape of the trench depend on magnitude and 

variation of undrained shear strength of clay with depth. A cavity is formed 

above the crown when the two faces of the trench touch each other. The 

negative pressure in the hydraulically isolated cavity increases the penetration 

resistance and it could enhance the initiation of deep failure mechanisms. 

These processes can be simulated by CFX modeling. 

iii) The proposed CFX Model-III with a subdomain is computationally very 

efficient. 

iv) The present CFX model can successfully simulate the influence of water on 

penetration behavior which could not be done properly using the large 

deformation FE modeling. 
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5.3 Conclusions on uplift resistance 

Similar to penetration behaviour, the uplift resistance in the touchdown zone significantly 

influences the fatigue life of steel catenary risers (Thethi and Moros 2001). For shallow 

embedments, the uplift resistance primarily depends on suction under the riser. The 

modeling of trench formation due to uplift, especially near the touchdown point, is 

equally important in the simulation of response under cyclic loading. In the present study 

(Chapter 4), a new numerical modeling approach is developed in ANSYS CFX software 

to simulate suction, trench formation and uplift resistance. A new unified model for the 

effects of strain rate on undrained shear strength is proposed, which is valid for a wide 

range of strain rate. Combining strain rate effects with a simplified model for strength 

degradation the undrained shear strength is calculated. The soil model is implemented 

properly in ANSYS CFX software. The analyses are performed for uniform and linearly 

increasing shear strength profiles for one cycle of loading-unloading. The following 

conclusions can be drawn from the numerical simulations presented in Chapter 4. 

a) The undrained shear strength increases with the increase in strain rate. While the 

power law model can be used for low strain rates, the proposed model is a better 

option for a wide range of strain rates. 

b) The present CFX model with a subdomain is computationally very efficient as 

compared to large deformation FE analysis. 

c) The present CFX model can simulate the suction under the riser during uplift. The 

suction is high at the start of upward displacement, gradually decreases to zero 

when the riser separates from the seabed. 
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d) The breakout distance and depth of trench depend on soil shear strength and uplift 

velocity. The depth of trench decreases with increase in uplift velocity and/or 

decrease in undrained shear strength of clay near the mudline.  

e) The parametric study shows that the soil strength degradation has a significant 

influence on uplift resistance. The suction effects might exacerbate the strength 

degradation process in multiple cyclic loading although only one cycle is 

simulated in the present study. 

5.4 Recommendations for future research 

Although an excellent performance of CFX modeling is shown, there are some limitations 

in this study which could be addressed in future research. 

a) Strain softening and strain rate effects on undrained shear strength are not 

considered in modeling of penetration behaviour. 

b) A simplified model is used for soil strength degradation to show the effects 

without introducing a complex model. A better strength degradation model might 

improve the simulation results. 

c) Although a parametric study is performed, some other factors, such as trench 

shape, consolidation time and depth of penetration might have effects on uplift 

resistance. 

d) Only one loading cycle is simulated in this study. However, simulation is required 

for many loading cycles as encountered in the field. 

e) Only vertical displacement is applied; however, in the field lateral displacement 

might be also significant. 
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f) Simulation is performed only for plane strain condition using a rigid riser section. 

Coupled three-dimensional simulation with realistic material properties of the 

riser will provide a complete picture, although it will be computationally 

intensive. 
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